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Hasan Ibrahim, 2009  Abstract 

Abstract: 

Leishmaniasis and African Trypanosomiasis are diseases caused by the Kinetoplastida 

parasites of Leishmania sp. and Trypanosoma sp. respectively. Control and management of 

these diseases, which affect a significant number of people in the tropics and subtropical 

areas of the world, is beset with numerous problems such as drug toxicity, affordability and 

the emergence and spread of parasites resistance to most of the routinely used drugs. This 

situation calls for an urgent search for new drugs that would address these concerns. Based 

on report of excellent antimicrobial activities against other parasites and the possession of 

other known good values, analogues of choline and curcumin were thoroughly assessed in 

this study for their potential as antitrypanosomal and antileishmanial drugs. 

Standard methods such as the Alamar Blue, propidium iodide and direct microscopy 

methods were used to determine the susceptibility of the parasites to the different 

analogues. Toxicity tests were performed to determine the effect of these compounds on 

Human Embryonic Kidney (HEK) cells. The presence of mediated transport of these 

compounds across the parasite plasma membrane was investigated using the classical 

uptake technique. In order to investigate the possible mechanism of antiparasitic action of 

the compounds, this study employed flow cytometry to assess the mitochondrial membrane 

potential Ψm, as well as parameters such as production of reactive oxygen species (ROS), 

the permeability of the plasma membrane and any effects of the test copounds on the 

parasite’s cell cycle. 

Five out of 7 choline compounds tested in this study had EC50 values of 0.13-1.8 µM 

against T. brucei, 0.14-6.9 µM against L. major, L. mexicana promastigotes and 1.69-12.9 

µM against L. mexicana amastigotes. With regard to the curcuminoid compounds, 35 out 

of 98 tested were observed to exhibit trypanocidal activity better than the original 

curcumin with EC50 values between 0.05 and 1 µM. Against Leishmania, most of the 

compounds displayed higher antiparasitic activity than curcumin but lower than observed 

against trypanosomes. The activity of choline analogues was very similar against L. 

mexicana and L. major promastigotes (P>0.05), and much higher than against L. mexicana 

amastigotes. Interestingly, some of the compounds displayed EC50 values below that of 

pentamidine, the routinely used drug. 

Assessment of parasite growth pattern in the presence of choline analogues showed that 

two of the compounds, T1 and MS1, are fast acting, killing the population of BSF T. b. 
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brucei within 8 h with the onset of cell death at 2-4 hours of treatment. In contrast, the 

other three choline compounds observed to have antiparasitic activities acted more slowly, 

completely killing the trypanosome population after more than 30 hours of incubation. 

However, all the choline compounds appeared to rapidly inhibit trypanosome proliferation.  

The choline compounds exhibited low toxic effects against HEK cell line T29, with the 

selectivity index (S.I.) being high for some of the compounds. The curcumin compounds, 

too, were observed to have generally similar or lower toxicity against the human cells than 

the parent curcumin compound (AS-HK001), which in itself is not considered toxic and 

routinely used in food. Investigations on the toxicological and pharmacological effects of 

the curcumin compounds on the survival and the glutathione and protein content of 

primary murine hepatocytes showed no significant difference between hepatocyte cells 

treated with curcuminoid compounds AS-HK001, AS-HK009, and AS-HK014 compared 

with controls.  

We also investigated how choline and its analogues enter the trypanmosome. Evidence 

gathered in this study strongly suggests that unlike in Leishmania species and Plasmodium, 

choline transporters are not expressed in the bloodstream form of T. b. brucei. It was also 

conclusively shown that the P2, high affinity pentamidine transporter (HAPT) and low 

affinity pentamidine transporter (LAPT) do not play any significant role in the uptake of 

this compound. Lacking radiolabeled forms of the choline analogues, this study could not 

identify a definitive route of uptake of this class of compounds into the parasite. 

Analysis of cell cycle progression, by flow cytometry, showed trypanosomes in the G1, S, 

and G2/M stages. Curcuminoids do not appear to cause any important changes in the 

proportion of cells in G1, S or G2/M phase of the cell cycle. Cells exposed to various 

concentrations of some curcumin compounds, such as AS-HK014 and AS-HK096, showed 

a rapid increase in cell permeability, reaching between 80% and 90% in 4 hours. The 

permeability was observed to increase with increasing drug concentration and/or the 

incubation time. Investigations of cell membrane permeability also showed that choline 

analogues caused plasma membrane defects which could probably lead to cell death.  

With regard to the effect of the compound on mitochondrial membrane potential Ψm the 

dicationic choline compounds, including M38, G25, T4 and MS1, were observed to have 

pronounced effects on Ψm with an onset as early as 8 h of contact and we believe the 

mitochondria could be the main target of these compounds rather than indicating the 

induction of apoptosis, as the action of the test compounds was not associated with the 
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production of reactive oxygen species. Indeed, both choline and curcumin analogues 

reduced the production of reactive oxygen species in T. b. brucei cultures. Furthermore, 

there were no major defects in choline phospholipid metabolism upon treatment with the 

choline compounds, suggesting that phospholipid metabolism is not the target of the anti-

trypanocidal activity of these compounds. 

Preliminary results with infected ICR mice infected with T. b. brucei did not reveal 

significant in vivo activity of the three curcumin compounds on blood parasitemia when 

they were injected intra-peritoneally with two doses of 50 mg/kg body weight.  

With reference to evidence obtained in this study, it can firmly be concluded that 

analogues of choline and curcumin display highly promising antiparasitic activities and are 

generally non-toxic to human cells. Information provided in this thesis could therefore 

assist in the further development of these classes of compounds as lead compounds against 

kinetoplastid diseases. We strongly recommend that further investigation be carried out to 

understand the full mechanism of action of these compounds in order to facilitate this 

strategy.  
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1.1 African Trypanosomiasis 

1.1.1 Disease 

Human African trypanosomiasis (HAT), or sleeping sickness, is one of the world’s major 

killers and is resurgent in Sub-Saharan Africa (WHO, 2006a). This disease is caused by 

two closely related parasites, Trypanosoma brucei gambiense and Trypanosoma brucei 

rhodesiense. African trypanosomes are flagellated protozoa belong into the subphylum 

kinetoplasta, family trypanosomatidae, order kinetoplastida, genus Trypanosoma and 

species Trypanosoma brucei. Based on the characteristics of the disease, Trypanosoma 

brucei is generally divided into three sub species; first, Trypanosoma brucei gambiense, 

which causes a chronic sleeping sickness and is found in West Central Africa; second, 

Trypanosoma brucei rhodesiense, which causes acute sleeping sickness and is found in 

Angola, Zambia, Tanzania, and Zimbabwe; third, Trypanosoma brucei brucei, which is 

restricted to wild animals and cattle (Jeffrey and Leach, 1991; Liew and Cox, 1998). 

Trypanosoma brucei brucei can not infect the human because it is killed by a haptoglobin 

called trypanosome lytic factor (TLF) found in the human serum (Smith et al, 1995). This 

factor is identified as apolipoprotein L1 (apoL1) and is associated with human high-

density-lipoprotein that described by presence of Haptoglobin-related protein (Vanhamme 

et al, 2003; Pays et al, 2006). The latter protein leads to convert the function of 

trypanosome haptoglobin-hemoglobin receptor in order to educe the innate human 

immunity against the trypanosome (Vanhollebeke et al, 2008).  

The two forms of Human African trypanosomiasis are transmitted by several species of 

tsetse flies (Glossina sp.). Therefore, the distribution of these diseases is connected with 

the distribution of the vector (Ehrhardt et al., 2006). The most important vector species that 

carry the parasites that are responsible for chronic disease are Glossina palpalis and G. 

tachinoides in West Africa, and G. fuscipes in Central and East Africa. On the other hand, 

G. morstans, G. swynnertoni and G. pallidipes are the most important species involved in 

the transmission of acute disease (Service, 1996). 

According to a WHO report, sleeping sickness exists in more than 36 countries in sub-

Saharan Africa (WHO, 2006c). The number of people infected with the parasite was 

reported to be rising every year. Incidence of the disease in 1996 was 25,000 (Service, 

1996) whilst 40,000 cases were recorded in 2004 (Gibson, 2004).  
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In 1999, there were 300,000 to 500,000 reported cases, and about 60 million people are at 

risk (Barrett, 1999) Figure 1.1. However, the actual prevalence of infected cases in 2006 

was estimated to be 50,000 to 70,000 (WHO, 2006a). Recent control strategies have started 

to bring the prevalence down significantly from its peak in the late 1990s (Simarro et al, 

2008) 

 

            
Figure 1.1. The geographical distribution of sleeping sickness in African countries. 
Reproduced from (Simarro et al, 2008).  
 

1.1.2 Morphology and life cycle 

Even though trypanosomes are morphologically indistinguishable and have similar life 

cycles, they have different clinical symptoms and different epidemiologies. They also 

share many biochemical features with other pathogenic organisms such as Leishmania sp. 

and Trypanosoma cruzi. Since it is difficult to morphologically distinguish between the 

three sub species of Trypanosoma brucei, molecular and biochemical methods are the only 

reliable means for differentiation (Hide & Tilley, 2001; Garcia, 2007).  
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T. brucei has two main hosts: a vertebrate host (human, or domestic and wild animals) and 

an invertebrate host (Tsetse fly). The life cycle of the parasite, as illustrated in Figure 1.2, 

starts when the metacyclic trypomastigotes are injected by tsetse flies during feeding on 

the host’s blood. These forms multiply and modify into trypomastigotes (14-33 µm long 

and 1.5-3.5 µm wide) and are related to as slender blood stream forms (figure 1.3). This 

form has a long flagellum multiplies by longitudinal binary fission in the blood and lymph 

nodes. After many divisions, it transforms into a stumpy form. The stumpy form without 

free flagellum (~15 µm long), is shorter and thicker than the slender bloodstream form. 

This form cannot divide in the bloodstream and is pre-adapted to infect the tsetse fly 

vector.  

 

 

Figure 1.2. shows the life cycle of T .brucei in the two hosts: human and tsetse fly. 
Reproduced from The Centres for Disease Control (http://pathmicro.med. sc.edu). 
 
 

The infective forms are taken with the blood meal by male and female tsetse flies 

(Glossina sp.), and they pass through the oesophagus to reach the mid-gut. The 

differentiation into long procyclic trypomastigotes occurs in this place. The new forms 

multiply and penetrate the membrane. They then migrate to the esophagus, pharynx, and 
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later to the salivary glands. In the salivary glands, the procyclic trypomastigotes 

etam tage) 

hich is injected into the host blood during the next blood feeds. The period from the 

fected hosts to the infective metacyclic trypomastigotes in the salivary glands is 18-34 

ays. (Jeffrey & Leach, 1991; Service, 1996; Garcia, 2007). 

 

 

ed that there is no animal reservoir 

1996).  

m orphose to epimastigotes and then to metacyclic trypomastigotes (infective s

w

in

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Diagram shows the general structure of the bloodstream form 
trypomastigotes of Trypanosoma brucei. Reproduced from (Vickerman et al, 1993). 
 

In Gambian sleeping sickness, it is traditionally believ

and that humans are the only hosts, although in West Africa some wild animals and 

domestic pigs may harbor this kind of parasites. On the other hand, the Rhodesian disease 

is a zoonosis and the animals do not play an important role as reservoir hosts (Service, 
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1.1.3 Clinical manifestation and pathology 

The clinical manifestations of sleeping sickness are similar and depend on the type of 

disease. Two types of disease are known, chronic disease which is caused by T. b. 

gambiense, and acute disease resulting from an infection with T. b .rhodesiense. The 

former is called Gambian or West African sleeping sickness, and it has a long incubation 

period; from several weeks to months, sometimes several years. The latter infection is 

called Rhodesian or East African sleeping sickness; the incubation period is shorter than 

the first and clinical signs will typically develop within two to three weeks. Death usually 

occurs after several years of the chronic disease, and within a year in the case of the acute 

disease (Vickerman et al, 1993; Markell E. et al, 1999).  

The symptoms of sleeping sickness start after few days of infection with a trypanosomal 

chancre appears within days of a bite by an infected tsetse fly at the site of inoculation. 

Two stages of the disease are distinguishable; the early stage which does not involve the 

Central Nervous System (CNS), and the late stage (Jeffrey and Leach, 1991). During the 

early stage of infection is characterized by irregular episodes of fever as a result of high 

and low levels of parasites. The main reason for the variable parasitaemia is the antigenic 

variation of these organisms. Lymphadenophaty, the swelling of lymph nodes, is one of the 

main signs of sleeping sickness. Additionally, the spleen and liver are also affected and 

become enlarged. Backache, headache, tachycardia and encephalitis are associated with 

chronic sleeping sickness caused by T. b. gambiense; whereas headache, vomiting, 

hivering, bone pain and encephalitis with rapid development of coma are caused by T. b. 

rhodesiense. The invasion of the CNS occurs within a few weeks in Rhodesian sleeping 

en months to some years in the Gambian species (Markell E. et al, 

ieved through the preparation of peripheral 

consuming and needs skilled workers. 

s

sickness, and betwe

1999; Jeffrey & Leach, 1991; Garcia, 2007).  

 

1.1.4 Diagnosis 

Clinical history is very important in the diagnosis of the disease. Diagnosis of the early 

stage of trypanosomiasis is usually done by identifying the organisms in the blood, lymph 

nodes, and sometimes bone marrow. This is ach

blood films stained with Giemsa’s stain. However, this method is not useful in some cases 

because of the very low and irregular parasitimia levels, especially in infections with T. b. 

gambiense (Kreier and Baker, 1987; Chappuis et al, 2005). Furthermore, it is time 
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The microhaematocrit centrifugation technique is another method used to identify the 

presence of the parasites (particular T. b. gambiense). In this technique, the trypanosomes 

are concentrated by centrifugation before microscopic examination. Inoculation of a 

patient’s blood to laboratory animals (mice and rats) is also used as a method of diagnosis 

n use 

and it can be easily used in the field. Furthermore, there is a new type of this test which is 

alled Card Indirect Agglutination Test for Trypanosomiasis (CIATT) that can be used in 

r, 1987; Barrett, 2000; Chappiuis, 2005). 

miasis in these countries. A major factor 

militating against the successful treatment of the disease is the emergence and spread of 

 

immune system (Herbert, 2001). Moreover, poverty in developing countries has deprived 

(Kreier and Baker, 1987). However, this method is not successful in some species like T. b. 

gambiense (Garcia, 2007), as this species grows poorly in laboratory rodents.  

There are several Immunodiagnostic methods which are used to diagnose African 

trypanosomes, for example, enzyme-linked immunosorbence assay (ELISA), indirect 

immunofluorescence, and agglutination. The Card Agglutination Test for Trypanosomiasis 

(CATT) is a test for anti- T. b. gambiense antibodies in serum, and this test is simple i

c

the diagosis of the disease (Kreier and Bake

 

1.1.5 Chemotherapy and control: 

Despite the spread of trypanosomiasis in Subsaharan African countries, the World health 

organization (WHO) and the Governments of these countries were unaware of the growing 

incidence of sleeping sickness throughout the 1980’s and early 1990’s. This situation has 

led to an increase in mortality rate of trypano

parasites resistant to the commonly used anti-trypanosoma drugs. There is therefore an 

urgent need for novel anti-trypanosoma drugs.  

Another factor is the antigenic variation of trypanosomes, which enables them to change 

their cell surface and trick the host’s immune system. Trypanosoma have a typical 

membrane, which is covered by surface coat (Seed & Hall, 1992). Indeed the metacyclic 

and bloodstream form trypanosomes are uniformly coated with a glycoprotein called 

Variant Surface Glycoprotein or VSG (Liew & Cox, 1998). Consequently, the oscillating 

parasitaemia is connected to the ability of this parasite to alter its VSG and evade the

nation of funds in order to deal with the problem of trypanosomiasis. Moreover, the 

movements of tourists and migrant workers have contributed to the spread of the disease.  
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There are many control programmes in the endemic areas that aim to eradicate sleeping 

sickness from Africa. Vector control using DDT is one of the measures employed to 

reduce the incidence and spread of the disease. This compound remains effective in killing 

the flies for at least 2–3 months (Service, 1996). Chemotherapy is another control measure 

and is usually effective when the drug is administered before parasites invade the CNS. 

Surveillance, health service and health education are also very important in attempts to 

eradicate sleeping sickness. WHO (2002) has identified surveillance as “an essential step 

towards the elimination of sleeping sickness”. It also suggested that the weak surveillance 

and high proportion of sleeping sickness cases at the late stage may be due to either patient 

environment or health system. Problems include the financial status of patients and the 

ate stage (Odiit et 

l, 2004).  

Four drugs are currently licensed for the treatment of human African trypanosomiasis. 

ome infections. Pentamidine was introduced in 1941 to treat the early stage of T. 

b. gambiense infections. This drug is given as a course of seven to ten daily itramuscular 

 of this drug include 

the inhibition of the enzymes S-adenosylmethionine decarboxylase (Fairlamb, 2003), 

topoisomerase II (Shapiro & Englund, 1990) and the Ca2+ ATPase in the plasma membrane 

(Benaim et al, 1993). Considering the very high level to which pentamidine accumulates 

within the trypanosome, it is likely that it affects multiple processes.   

diagnostic techniques used. For example, in Uganda surveillance of sleeping sickness is 

unacceptably poor and half the cases are detected when they are in the l

a

These are pentamidine, suramin, melarsoprol and eflornithine (DFMO).  

 
1.1.5.1 Pentamidine 

Pentamidine is an aromatic diamidine drug (Figure 1.4A) used against HAT (Table 1). 

Another diamidine drug, Berenil ® (diaminazene aceturate) is licensed for veterinary 

trypanos

(im) injections of 4 mg/kg (Jannin and Cattand, 2004). The side effects of this drug are 

vomiting, abdominal pain, hypotension and hypoglycaemia (Legros et al, 2002; Croft et al, 

1997).  

The mode of action of pentamidine is still not fully understood even though it has been in 

use for many years. This drug, which is reported to be taken up by three different 

transporters, the P2 adenosine transporter; high affinity pentamidine transporter (HAPT1) 

and the low affinity pentamidine transporter (LAPT1), accumulates inside the cells to 

millimolar concentrations (De Koning, 2001b). The suggested targets
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1.1.5.2 Suramin 

Suramin is a sulfonated naphthylamine polyanionic compound, and has been used to treat 

the early stage of T. b. rhodesiense since the early 1920s. Being highly charged, this drug 

can not traverse biomembranes or the blood brain barrier (BBB) (Fairlamb, 2003) and it is 

therefore used to treat only the early stage of the disease. A typical recommended dose of 

suramin is 20 mg/kg a day for five days, and not more than 1 g per injection (Jannin and 

Cattand, 2004). Some reported side effects associated with the drug are: nausea, vomiting, 

pruritus, renal failure, anaphylactic shocks, haemolytic anaemia, jaundice, sever diarhoea, 

neurotoxic signs, severs cutaneous reactions and hypoesthesia (Legros et al, 2002; 

Fairlamb, 2003). The mode of action of suramin is still unclear. The drug is taken up and 

accumulated in the cells by low density lipoprotein (LDL) receptor mediated endocytosis 

(Vansterkenburg et al, 1993). It has also been reported that suramin inhibits several 

enzymes and receptors (Wierenga et al, 1987).  

1.1.5.3 Melarsoprol 

Melarsoprol was introduced for the first time by Friedheim in 1949 to treat the late stage of 

both of T. b. gambiense and T. b. rhodesiense infections. The general structure of this drug 

is shown in Figure 1.4C. It is also effective against the early stage of both trypanosome 

species, but because of its high risk of serious side effects during treatment it is not 

recommended for use at this stage. The drug is given in one dose for ten consecutive daily 

intravenous (iv) injection of 2.2 mg/kg (Legros et al, 2002; Jannin & Cattand, 2004). 

Melarsoprol is a prodrug which is directly converted in patients’ plasma to melarsen oxide 

within 1 hour of administration. It has a half-life of 3.5 h (Fairlamb, 2003; Barrett et al, 

2007). Both melarsoprol and melasin oxide are capable of crossing the BBB and 

accumulate in the CNS to about 1-2 % of maximum plasma level (Burri et al, 1993). 

However, melarsoprol is toxic and has several side effects such as a reactive 

encephalopathy, also known as a post-treatment reactive encephalopathy (PTRE). This 

effect is observed in 5-15% of cases, and death occurs in up to 50% of these patients 

(Pepin & Milord, 1994; Jannin & Cattand, 2004). 

The mode of action of melarsoprol and its metabolite, melarsen oxide, is still unclear. One 

of the suggestions is that melarsen oxide interferes with the glycolytic pathway and inhibits 

its enzymes which are responsible for the production of ATP. This action leads to quick 

cell lysis before the ATP reaches a critically low level (Van Schaftingen et al, 1987; 

Denise & Barrett, 2001). Trypanothione, a molecule found in trypanosomatids and not in 

 9



Hasan Ibrahim, 2009  Chapter 1 

mammalian cells (Fairlamb et al, 1985) is another potential target for these arsenical 

compounds, (Fairlamb et al, 1989). Melarsen oxide interacts with this thiol, yielding 

melarsoprol-trypanothione adduct (MelT), which inhibits trypanothione reductase. 

1.1.5.4 Eflornithine 

Eflornithine or α-difluoromethylornithine (DFMO) is an analogue of the amino-acid 

ornithine (Figure 1.4D). This drug is used to treat the late stage of T. b. gambiense 

infections, and it was registered for use in the beginning of the 1990s. Treatment is 

achieved with a dose of 100 mg/kg every 6 hours for two weeks, by slow intravenous (iv) 

infusion (Barrett et al, 2007). Side effects of this drug include pancytopenia, diarrhoea, 

convulsions and hallucinations (Legros et al, 2002; Jannin and Cattand, 2004). 

DMFO has a similar affinity for both mammalian and trypanosomal enzymes (Phillips et 

al, 1988; Denise & Barrett, 2001). However, enzyme ornithine decarboxylase (ODC), a 

key enzyme in the polyamine pathway, is the main target for this drug (Bacchi et al, 1980; 

Barrett et al, 1999). The very rapid turnover rate of enzyme ODC and its short half-life in 

human (10-20 min, (Tabor & Tabor, 1984), and in T. b. rhodesiense (~4 h , (Iten et al, 

1997) made it ineffective as anti-tumour and Rhodesian trypanosomiasis drugs, 

respectively (Delespaux & De Koning, 2007). In contrast in T. b. gambiense, this enzyme 

is very effective and has a long half-life (18-19 h) (Iten et al, 1997).  

1.1.5.5 Nifurtimox 

Nifurtimox is a 5-nitrofuran developed in the 1960s to treat Chagas’ disease, which is 

caused by the American trypanosome, Trypanosoma cruzi. This drug (Figure 1.4E) is not 

licensed for use to treat African trypanosomes, however, it has been found to be effective 

against the late stage of T. b. gambiense especially in those patients who do not response to 

treatment with melarsoprol (Garcia, 2007). The most promising results was obtained by the 

study performed by Checcchi and colleagues (Checchi et al, 2007) who reported that a 

combination of Nifurtimox and Eflornithine is effective in the treatment of the late stage of 

sleeping sickness.  
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(A) 

(B) 

(C) 

(D) 

(E)  
 

Figure 1.4.General structures of the trypanocidal copounds licensed for use against 
Human African trypanosomiasis (HAT). 

Pentamidine (A); suramin (B); melarsoprol (C); eflornithine (D) and nifurtimox (E).  
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 Table 1.1: Overview of trypanocidal drugs. 
 Cattand, 2004).     

drug 

species Stage 
&

dosage route Half life Side effects 

 Compiled from (Legros et al, 2002; Jannin &
  

 

 start 
use 

Pentamidine T. b. 

ga se 

Intram- 7 injections 9.4 h (im) Hypotension, 

 isethionate mbien

Early 
stage 

1941 

ascular 

(im) 
4mg/kg per 

day 
6.4 h (iv) hypoglycaemia

Suramin T. b. 

rho  

Slo
en-

Start with 

f

50 days Anaphylactic 
 

l 

desiense

Early 
stage 

1920s 

w 
intrav
ous (iv) 
infusion 

test dose 
olwed by 5 
doses of 

20mg/kg in 
5-7 days 

shochs, severe
cutaneous 
reaction, neuro-
toxic signs, rena
failure 

Melarsoprol T. b. 

ga se 

Late 
stage 

Intraven- 35 h 

mbien
& T. b. 

rhodesiense 
1949 

ous (iv) 
injection 

2.2mg/kg/ 
day for 10 

consecutive 
days 

Encephalopathc 

Syndrome 

 

Eflornithine 

ga se 

Late 
stage 

Intraven- 10 g 
every 6 h for 

3 h topenia, 

 

T. b. 

mbien
1981 

ous (iv) 
infusion 

0 mg/k

14 days 

Pancy
diarrhoea, 
convulsions 

Hallucination

Nifurtimox T. b. 

ga se 

Late 
stage 

orally 3 doses for 2 

1  
fo

3 – 5 h 

mbien
1977 

weeks. 

5 mg/kg
r children 

20 mg/kg 
for adults 

Anorexia and 

neurological 
complications 

 

 

1.1.6 Drug resistance 

Report of resistance of T. brucei to most of the available anti-trypanosome drugs have a 

major public health problem, which could hinder the control and treatment of the disease. 

The incidence of drug resistance by parasites seems to be rising (Peregrine, 1994), and the 

resistance to at least one of the trypanocidal drugs in use has been reported in some 

countries in sub-Saharan Africa (Afewerk et al, 2000). Donald (1994) reported that the 

resistance of trypanosome parasites leads to reduce the production efficacy, increasing 

costs and exhausts the effective control devices.  

Generally, the suggested mechanism of the parasite’s resistance to drug includes the loss of 

one or more transport functions in the plasma membrane of the parasite (Figure 1.5). 

 12



Hasan Ibrahim, 2009  Chapter 1 

Another mechanism may be due to inactivation, excretion or modification of the drug 

within the parasite’s cytoplasm (Borst & Ouellette, 1995; Borst, 1991). As suggested in the 

figure, there could also be an increase in repair mechanisms by the cells damaged by the 

drug. 

 

Figure 1.5. The mechanism of drug resistance. 

 (Adapted from Borst and Ouellette, 1995). 
 
 

It has been reported that trypanosome resistant to melarsoprol are cross-resistant to 

diamidine (Bacchi, 1993; Fairlamb et al, 1992). These observations suggest that the two 

compounds are taken up into the parasite through a common transporter. It has been 

demonstrated that loss of function the P2 aminopurine transporter, which is responsible for 

melarsoprol and diamidine uptake into T. brucei results in parasites resistant to these drugs 

(Carter & Fairlamb, 1993; Carter et al, 1995; De Koning & Jarvis, 1999; Barrett et al, 

1995). It was therefore concluded that a decrease in drug uptake because of the loss of the 

transporter resulted in resistance to arsenicals and diamidines in African trypanosomes. 

s are involved in the uptake only of an However it must be emphasized that P2 transporter
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estimated 50% of pentamidine, with the rest being transported by a low-capacity high-

ffinity pentamidine transporter (HAPT) and a high-capacity lowaffinity pentamidine 

transporter (LAPT) (De Koning, 2001b). In contrast, diminazene aceturate has been shown 

a

to be solely transported by the P2 transporter (De Koning et al, 2004). Deletion of the gene 

encoding P2 thus results in a high level of diaminazene resistance, but barely changes 

sensitivity to pentamidine (Matovu et al, 2003).  

It is likely that this differences contributes to the observation that while resistance to 

diminazene aceturate widely reported (Anene et al, 2006; Ainanshe et al, 1992; Geerts et 

al, 2001). There are no credible reports of pentamidine resistance in the field, after more 

than 60 years of use (Delespaux & De Koning, 2007). They recent characterisation of the 

T. b. brucei clone B48, which has lost both P2 and HAPT function reveals that resistance 

to both pentamidine and melarsoprol dramatically increases when HAPT is lost from a P2- 

background (Bridges et al, 2007).  
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1.2 Leishmaniasis 

1.2.1  Disease 

Leishmaniasis is a group of diseases caused by several species of protozoan parasites 

Leishmania. This genus of parasites was first described in 1903 by Leishman and 

sified under the kinetoplastidae family (Olliaro et al, 2002). Leishmania 

genus was divided in two sub genera: Leishmana and Viannia (Garcia, 2007), and it has an 

rganelle which is called a kinetoplast. They belong to the class Zoomastigophora, order 

Kinetoplastida (Kreier & Baker, 1987). Several species, subspecies, and strains of 

eishmania parasites cause three different types of Leishmaniasis: cutaneous (CL), muco-

cutaneous (MCL), and visceral (VL) leishmaniasis (Service, 1996). 

 th  in at least 88 countries, especially developing countries, are 

in niasis, and annually there are 2 million new cases (WHO, 2006b). 

About 75% of infected people suffer from cutaneous leishmaniasis (Figure 1.6A) and 25% 

s & Feldmeier, 2005). 

called 
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More an 12 million people

fected by leishma

from visceral leishmaniasis (Figure 1.6B) (Matlashewski, 2001; TDR, 2004a). There are 

also about 350 million people at risk (TDR, 2004a). About 90% of the cases caused by CL 

are concentrated in seven countries: Afghanistan, Algeria, Brazil, Iran, Peru, Saudi Arabia 

and Syria; whereas, 90% of that by VL occur in five countries: Bangladesh, India, Nepal, 

Sudan and Brazil (TDR, 2004a; TDR, 2004b; TDR, 2005). In Kabul alone, it is estimated 

that 67,500 people are infected with cutaneous leishmaniasis (Reithinger & Coleman, 

2007). Leishmaniasis and HIV co-infection has been reported in more than 35 countries in 

all the world continents except Australia and North America (Harm

The co-existence of this disease with HIV plays an important role in increasing the number 

of infected people, for example: in Afghanistan the numbers have increased from 14,200 

cases in 1994 to 67,500 in 2002; in Aleppo, Syria from 3,900 cases in 1998 to 6,275 in 

2002; and from 21,800 cases in 1998 to 60,000 in 2003 in Brazil (TDR, 2004a). 

The epidemiology of leishmaniasis has been studied for many years, and the distribution of 

this disease is connected with the prevalence of the vector. The disease is transmitted from 

reservoir animals to man and animals by phlebotmine sandflies, which include four genus: 

Phlebotomus, Lutzomyia, Psychodopygus and Sergentomyia. The first two genera are the 

most important in leishmania transmission, and they play a significant role in increasing 

the prevalence of leishmaniasis. The genus Phlebotomus is only found in the Old World 

such as the Mediterranean region, semi-arid savannah areas and tropical Africa, especially 

in Central and south Africa (Service, 1996). In contrast, the species of Lutzomyia are only 
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found in the New World, and transfer the same disease in the forested areas of Central and 

South America (Service, 1996; WHO, 2000). 
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1.2.2  Morphology and Life cycle 

eishmania parasites are morphologically represented in two forms: amastigote and 

ter 

croghages in vertebrate hosts. These forms are ingested by female 

feeding on the blood of infected hosts. These flies normally 

feed on plant juices, but sometimes the females need blood-meal in order to develop eggs. 

 The latter migrate to the 

oesophagus and multiply again. Infective forms will be found in the mouthparts and the 

transmission to vertebrate hosts occurs when the infected females feed on blood of another 

h

L

promastigote. Amastigote forms are rounded in shape, nonflagelate, 3 - 4 µm in diame

and live within ma

sandflies when the insects are 

The blood can be taken from humans or many animals like farm livestock, dogs, birds, 

wild rodents, snakes and lizards. After emerging from the macrophages, amastigotes 

multiply by binary fission in the midgut, and develop flagellum and became elongated. 

After further development, they transform into non-infective procylic promastigotes that 

rapidly modify into infective metacyclic promastigotes.

ost (Figure 1.7).  

The promastigote forms are spindle-shaped, elongated, 14–20 µm in length, and 1.5-3.5 

µm in width, with free terminal flagellum (15-28 µm long). The infective flies inject the 

promastigotes into the bloodstream where they are quickly ingested by macrophages and 

transform to amastigotes. The latter start to divide by binary fission and when the infected 

macrophages die the amastigotes will be ingested by other macrophages (Kreier and Baker, 

1987; Service,1996; Matlashewski,2001). 
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Figure 1.7. Diagram showing the life cycle of Leishmania species.  

Reproduced from http://pathmicro.med.sc.edu 

 

1.2.3  Clinical manifestation and pathology 

Cutaneous leishmaniasis (CL) is a disease known in the Old World as Oriental sore, and 

occurs in the Middle East, India, central Asia, North Africa, and west and southern Africa. 

Several local names of CL in the Old World such as Baghdad boil, Delhi boil, Biskra 

button and Aleppo evil are associated with the geographical distributions of disease. Many 

species of genus Leishmania such as Leishmania tropica, L. major, L. aethiopica and 

rarely L. infantum are responsible for causing this sort of leishmaniasis. This type of 

disease is also found in the New World, especially in the forests from Mexico to northern 

Argentina. The common names of this disease are sometimes associated with the places 

where they are found, these include; chiclero ulcer (Mexico), dicera de Baurid (Brazil), uta 

(Peru), and pain bois (Guyana). L. mexicana complex, L. braziliensis complex, and L. 

guyanensis complex cause this type of disease.  

The incubation period of CL depends on the parasite species, and it takes from two to eight 

weeks, and sometimes can be long as three years. The disease starts as lesions, which are 
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erythemateous papules on the part of the body that received the sandfly bite. The papule 

grows and increases in size to 2 cm or more (Figure 1.8). In L. major the papule is covered 

by serious exudates and the ulceration occurrs early, whereas it is dry in Leishmania 

tropica and L. aethiopica and ulcerates after several months (Markell E. et al, 1999). 

Multiple lesions may occur depending on the number of bites and the exposure area of the 

body. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Image of cutaneous leishmaniasis showing a 2-cm lesion located at the 
exposed area on the arm.  

Taken from: http://www.emedicine.com/med/ byname/ Leishmaniasis.htm  

 

Amastigote forms of L. aethiopica and few subspecies of L. mexicana (L. m. pifanoi and 

maybe L. m. amazonensis) diffuse across the skin and cause a severe condition called 

diffuse cutaneous leishmaniasis (DCL). This kind of disease occurs when the anergic 

patients are incapable of mounting a response to the infection. It starts as a regular lesion 

but then develops to affect many places as nonulcerative nodules on the body. In the Old 

World, the disease caused by L. major and L. tropica has been described as crusted ulcers, 

and in the New World (caused by L. mexicana) as tiny closed lesions (Balana-Fouce et al, 

1998; Chang et al, 1985; Garcia, 2007; Jeffrey & Leach, 1991; Kreier & Baker, 1987; 

Service, 1996).  

Mucocutaneous leishmaniasis (MCL) is an American disease found in Central and South 

America from Mexico to Argentina. The common name of this disease is Espundia. Three 
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species of genus Leishmania, Leishmania panamensis, L. braziliensis and L. guyanensis, 

are responsible for this disease. The main target organs that are usually infected by this 

disease are nose, mouth, ear, larynx and pharynx (Kreier & Baker, 1987; Jeffrey & Leach, 

1991; Service, 1996). Other symptoms such as weight loss, fever and anaemia are also 

present. The mucosal lesions by L. brazilensis are common in South America, and 5% of 

patients with cutaneous leishmaniasis develop this disease after several months to 30 years 

from the initial infection (Chang et al, 1985; Matlashewski, 2001). In over 80% of cases, 

this disease infects the nose, and it may move to the mouth and throat in 25% of patients 

(Chang et al, 1985). 

Visceral leishmaniasis (VL) is the most severe form of the disease. It is commonly known 

as Kala-azar (Figure 1.9). The description of it was given by British doctor, Dr. Leishman, 

in 1900, and the development of a diagnosis of this disease was by Dr. Donovani 

(Matlashewski, 2001). VL is caused by Leishmania donovani donovani in Africa and 

India; and by L. d. infantum in Asia and the Near East; whereas in South America it is 

caused by L. d. chagasi. Human, jakals and dogs infected by visceral leishmaniasis will die 

if untreated (Chang et al, 1985). The inner organs, including liver, spleen, lymph nodes 

and bone marrow are infected by large numbers of macrophages filled with amastigotes.  

 

 

 

 

 

 

 

 

Figure 1.9. Picture showing a patient infected with visceral leishmaniasis.  

Image obtained from: (http://pubs.acs.org/cen/80th/images/).   
 

 20

http://pubs.acs.org/cen/80th/images/


Hasan Ibrahim, 2009  Chapter 1 

The main symptoms of VL are irregular fever, organized granuloma, enlargements of 

lymph nodes, liver (hepatomegaly) and spleen (splenomegaly). Furthermore, a sharp rise of 

nephrosis, anemia, leucopenia typical ashinese of skin color may occur. Transmission of 

VL from infected human to others may also occur through blood transfusion, kidney 

transplantation, and sharing of needles (Chang et al, 1985; WHO, 2000). The mortality rate 

of VL reaches 100% if untreated, and it is characterized by substantial loss of weight 

(WHO, 2000; TDR, 2004b).  

 

1.2.4  Diagnosis 

Because there are no direct tools to detect the presence of the parasites, the diagnosis of 

this disease is difficult. One of the important problems in diagnosis of leishmaniasis is the 

co-infection with HIV. The dependency on the clinical manifestations to diagnose the 

leishmaniasis is not always effective, because these signs (fever, weight loss, enlargement 

of liver and spleen, inflammation of lymph nodes) are not always present. On the other 

hand, the diagnosis of leishmaniasis, especially visceral leishmaniasis, may be confused by 

the symptoms of the related diseases such as cryptosporidium, disseminated 

cryptococcosis, mycobacterial infection and cytomegalovirusinfection (WHO, 2000). 

These signs may also assimilate that of typhoid, malaria, shistosomiasis and tuberculosis 

(Schallig et al, 2001). The diagnosis of cutaneous leishmaniasis is usually performed in the 

endemic areas by aspiration of the fluid from the ulcer area to demonstrate parsites 

(Markell et al, 1999). In visceral leishmaniasis, diagnosis can be performed by aspirations 

from lymph nodes, bone marrow, spleen, liver or skin. Parasites taken from venous blood 

or specimens of the organs can be cultured on an appropriate medium under laboratory 

conditions (Jhingran et al, 2008). There are three mediums that could be used for this 

technique: Schneider’s Drosophila medium supplemented with 10% (v/v) fetal calf serum 

(FCS), Novy-MacNeal-Nicolle (NNN) medium supplemented with 20-30% rabbit blood 

(Jhingran et al, 2008) or RPMI medium 1640 (Markell et al, 1999). Bone marrow aspirate 

(BMB) is considered to be the most secure and most sensitive technique. In addition, liver 

biopsy and spleen aspirate are also used in this diagnosis (WHO, 2000). 

The most important diagnosis tools in the field are the direct agglutination test (DAT) and 

the immunofluorescence test (IFAT). These serological tests are used to detect the 

antibodies, and the consolidation DAT-PCR may lead to detection of the parasites in the 

patients (Schallig et al, 2001; TDR, 2005). The Latex agglutination test (KAtex) is also 
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used to detect the presence of antigens in the urine of patients infected with Kala-azar 

(Jhingran et al, 2008; TDR, 2005), rK39 is another test based on re-combinant leishmanial 

antigen (Jhingran et al, 2008; TDR, 2005). However, the most popular, sensitive and 

specific assay is ELISA (enzyme-linked immunosorbent assay). This technique can easily 

differentiate between visceral and cutaneous leishmaniasis due to presence or absence of 

gp63 antigen which is found in the former and not in the latter (Shreffler et al, 1993).  

  

1.2.5  Chemotherapy 

Public health attention is drawn more towards Visceral leishmaniasis (VL) because of it 

severity and prevalence (Olliaro et al, 2002). In most cases of cutaneous leishmaniasis 

(CL), the granuoloma heals in a few months after the infection; therefore, treatment is 

sometimes not necessary. However, in some cases, the lesions multiply and are present for 

more than 6 months (Chang et al, 1985).  

1.2.5.1 Antimonial therapy 

The first line of treatment of the disease is the use of Antimonial. These drugs have been 

used since 1947 for treating both Visceral and cutaneous leishmaniasis. Two different 

preparations for antimonial therapy are available: Pentostam ((Sodium Stibogluconate-

Wellcome) Figure 1.10A) and Glucantime (Meglumine Antimoniate-Rhodia, Specia). 

Malaise, vomiting and anorexia are early signs of toxicity of pentavalent antimonals 

(Chang and Bray, 1985; Kreier and Baker, 1987). The first drug is distributed in English-

speaking countries, while the second is found in French and Spanish-speaking countries 

(Balana-Fouce et al, 1998). Visceral leishmaniasis usually responds to antimony thearapy. 

Relapse is possible and retreatment of the disease is sometimes with amphtericin B or 

pentamidine (Olliaro et al, 2002). Approximately 50% of cases have suffered from VL 

relapses (Ganguly, 2002). The main idea of pentavalent antimonials is based on the amount 

of antimony (Sb) absorbed per body weight. The optimal dosage which was recommended 

in 1982 by WHO for treating leishmaniasis is 20 mg per kg per day and this dosage should 

not be increased to more than 850 mg of Sb per day for 28 days (Balana-Fouce et al, 

1998).  

The mode of action of pentavalent antimonials in amastigotes forms of different species of 

Leishmania is that these drugs interference with glycolysis and the β-oxidation of fatty 

acids, leading to a depletion in the level of intracellular ATP (Van Voorhis, 1990). Using a 
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high dose of theses drugs leads to many side effects including headache, anorexia, nausea, 

cardiotoxicity, phlebitis (Navin et al, 1992), myalgia, malaise, hepatotoxicity (Hepburn et 

al, 1993), fever, skin rash, cough, gastrointestinal irriation (Wyler & Marsden, 1984), and 

pancreatitis (Gasser et al, 1994). Parasite resistance against pentavalent antimonals leads to 

treatment failure: relapses are very common in patients and occur in 10-25% of cases 

(Opperdoes & Michels, 2008). The preferred second-line drugs include: Pentamidine, 

Amphotericin B and Amphotericin B encapsulated in liposomes (WHO, 2000). 

1.2.5.2 Pentamidine 

Pentamidine (Figure 1.10B) is an aromatic drug used as a second line of treatment in the 

case of an antimony-relapsed visceral leishmaniasis. This drug is highly effective, 

expensive, and toxic. The therapeutic dose of pentamidine is intramuscular injections of 2-

4 mg/kg body weight three times a week for 3-5 weeks (Balana-Fouce et al, 1998). The 

side effects of this drug have been noted in 30-50% of treated cases, and these effects 

including hyperglycemia, hypoglycemia, sudden shock, sterile injection abscess(Sundar, 

2001b), skin rashes, anemia, nephrotoxicity, induction of hepatic enzymes (Balana-Fouce 

et al, 1998; Sundar, 2001b) and diabetes mellitus in 10% of pentamidine treated cases 

(Ganguly, 2002). 

This drug is taken up and concentrated inside the cells by an energy dependent mechanism 

and competes with the arginine and polyamine transport systems (Basselin et al, 1996). 

The mechanism of pentamidine action is not clear right now but one of the possibilities is 

that this drug affects the parasite’s mitochondria by reducing the membrane potential of 

this organelle (Basselin et al, 2002; Mukherjee et al, 2006). 

1.2.5.3 Amphotericin B 

Amphotericin B is a second line drug used for the treatment of all types of leishmaniasis. It 

has been reported to be active against antimony relapses of visceral leishmaniasis (Olliaro 

& Bryceson, 1993). This drug is expensive and also toxic. However, the lipid formulations, 

disteroylphosphatidyl glycerol amphotericin B complex (AmBisome), cholesterol sulfate-

amphotericin B liposo- mes (Amphocil) and Abeleet are less toxic and more active against 

VL and ML (Yardley & Croft, 2000). Amphotericin B (Figure 1.10C) and amphotericin B 

liposomes are effective against VL and CL experimental models (Croft et al, 2005). The 

use of this drug in Bihar (India) and Napal, for example, became wide spread, and 

extended treatment is necessary if the parasites are still in marrow or splenic smears. 
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The recommended dose of amphotericin B is from 0.5 to 1 mg/kg body weight i.v. on 

alternative days. However, at the higher doses, some unusual toxicities are possible 

including hypokalemia, hypomagnesemia, hepatic toxicity, renal dysfunction, fever, bone 

marrow suppression, myocditis and sudden death (Balana-Fouce et al, 1998; Sundar, 

2001b).  

The mode of action of amphotericin B in Leishmania and fungi is based on sterol 

metabolism, and the main sterol synthesized in the membranes of these organisms is 24-

ergosterol. Parasite can be killed due to an increase in membrane permeability by the 

action of amphotericin B which has a high affinity for sterols and changes the cell 

membrane construction (Balana-Fouce et al, 1998; Singh et al, 2006).  

1.2.5.4 Miltefosine 

Miltefosine is an alkyl phospholipid (Figure 1.10D) which was originally developed as an 

anti-cancer agent but later found to have excellent activity against leishmaniasis. This drug 

is the first oral remedy for VL (TDR, 2005; Fischer et al, 2001) and is also effective 

against CL (Croft et al, 2005). Miltefosine has been tested against VL in Bihar (India) and 

found to be very effective with more than 94% cure rate (Singh et al, 2006). Furthermore, 

several studies have reported that this agent is clinically effective against CL in Africa and 

Colombia (Opperdoes & Michels, 2008). The optimal therapeutic dose of miltefosine is 2.5 

mg/kg per day for four weeks (Jha et al, 1999; Sundar et al, 2002). Miltefosine has minor 

gastrointestinal effects like vomiting in 40% of patients and diarrhea in 20% of cases 

(Singh et al, 2006). On the other hand, miltefosine has a long half-life of 154 h , which 

might lead to the development of drug resistance if this drug was used alone (Singh et al, 

2006). A study was performed in vitro and in vivo by (Seifert & Croft, 2006) on the 

combination of miltefosine with other drugs such as amphotericin B, Pentostam, 

paromomycin and sitamaquine. The in vivo result of that study revealed that the best 

combination of miltefosine was with amphotericin B or paromomycin.   

This drug is potential teratogenicity, therefore, the use of it is very limited (Olliero et al, 

2002) and can not be used in pregnant women (TDR, 2005). Furthermore, after healing, the 

drug leaves a skin eruption.  

1.2.5.5 Paromomycin 

Paromomycin (Figure 1.10B) is used to treat bacterial and intestinal parasitic infections 

(such as amoebiasis) that are associated with VL. It is particularly used for the treatment of 
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highly antimony resistant VL. This drug is cheap, effective and authorized (Sundar, 2001b; 

Olliaro et al, 2002). Paromomycin is safe and used as an alternative to amphotericin B 

which is toxic and expensive, it has also been used in oral and tropical formulations for the 

treatment of enteric protozoa and Old World CL respectively (TDR, 2005). The standard 

dose of this drug is 14-16 mg/kg/day for three weeks with a maximum daily dose of 1 g. 

Toxicity of this drug includes nerve toxicity and nephrotoxicity (Sundar, 2001b). 

Paromomycin ointment was assessed in central Tunisia for it suitability for treatment of 

Leishmania major, which causes zoonotic CL. The results imply that this drug is not 

effective (Ben Salah et al, 1995). Furthermore, the combinations between paromomycin 

and antimonials have been extensively studied to treat the New (Soto et al, 1995) and Old 

leishmaniasis (Jha et al, 1998; Thakur et al, 2000).  

Table 1.2 showing the differentiation between the antileishmanial drugs were used to treat 

the cutaneous and visceral leishmaniasis throughout 20 years (1985-2005).  

 
 
 
 

A C 

E D 

 

B 

 
 

Figure 1.10. Structural formulas of drugs used against Leishmaniasis. 

Pentostam (A); Pentamidine (B); Amphotericin B (C); Miltefosine (D) and 
Paromomycin (E).  
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Table 1.2 Drugs in use and on trial in 1985 and 2005. 

 (Adapted from Croft et al, 2005). 
Visceral 

leishmaniasis 1985 2005 

First-line drugs 
Sodium stibogluconate 
(Pentostam); meglumine 
antimoniate (Glucantime) 

Sodium stibogluconate (Pentostam, generic 
sodium stibogluconate); meglumine antimoniate 
(Glucantime) 

 Amphotericin B (Fungizone) Amphotericin B (Fungizone) 
  Liposomal amphotericin B (AmBisome) 
 Pentamidine Pentamidine 
Clinical trials Allopurinol (Phase II) Miltefosine (oral, Phase IV, registered in India) 
  Paromomycin (Phase III) 
  Sitamaquine (oral, Phase II) 
  Other amphotericin B formulations 
Drugs in 
preclinical 
development 

– – 

Cutaneous 
leishmaniasis 1985 2005 

First-line drugs 
Sodium stibogluconate 
(Pentostam); meglumine 
antimoniate (Glucantime) 

Sodium stibogluconate (Pentostam); meglumine 
antimoniate (Glucantime) 

 Amphotericin B (Fungizone) Amphotericin B (Fungizone) 
 Pentamidine Pentamidine 
  Paromomycin (topical formulations) 

Clinical trials Paromomycin (topical 
formulation, Phase II) Miltefosine (oral, Phase III) 

 Allopurinol riboside (Phase II) Paromomycin (other topicals, Phase II) 
  Imiquimod (topical immunomodulator, Phase II) 
Drugs in 
preclinical 
development 

– – 

 

 

1.2.6 Drug resistance 
 

The spread of resistance to antileishmanial agents has become a serious problem in efforts 

to control the various diseases caused by Leishmania parasites. There are few drugs 

available against leishmaniasis.  

Pentavalent antimonials have been used as antileishmanial agents for a long time. The 

resistance to these drugs is now found in many regions in the world such as: North East 

India, especially in north Bihar, which has a treatment failure of between 50-65% (Sundar 

et al, 2000; Sundar, 2001a), in Iran (Hadighi et al, 2006) and in South America (Rojas et 
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al, 2006). The optimal dose of this drug, which was used for more than half a century, is 10 

mg/kg body weight (maximum 600 mg/day) for 6-10 days. The resistance to this drug 

started in early 1980, therefore, WHO changed the dosage and the duration to 20 mg/kg 

body weight (maximum 850 mg/day) for 20 days (WHO, 1984). There are colleagues 

reports that this dosage cures 81% of patients in 20 days, and in 40 days the cure rate is 

97% (Thakur et al, 1988).  

The use of amphotericin B has been limited due to the cost and toxicity. At the moment, no 

resistance to amphotericin B has been reported. The use of this drug in lipid formulations, 

which have a long half-life, has become popular in the last few years (Croft et al, 2006a). 

Pentamidine has also been used as a second-line drug for CL, DCL and VL. This drug is 

limited in use, hence development of resistance to this drug against CL is not a serious 

problem (Croft et al, 2006). However, resistance to pentamidine has been reported for 

visceral leishmaniasis in different countries in the New and Old Worlds. For instance, a 

high proportion of patients with this disease did not respond to treatment with pentamidine 

in India (Jha, 1983; Jha et al, 1991; Giri, 1994). Miltefosine is the fist oral drug introduced 

to treat visceral leishmaniasis in India, with a cure rate of 95% (Jha et al, 1999). Even 

though the use of miltefosine in clinical use started several years ago, no resistance has 

been yet reported to this drug (Choudhury et al, 2008). However, the long half-life of this 

drug in plasma, and the in vitro selected miltefosine-resistance cell line suggest that the 

development of drug resistance may be quit possible (Seifert et al, 2003; Sundar et al, 

2006). Parasite resistance to paromomycin has not yet been reported. This is possibly due 

to the fact that it has limited use for the treatment of visceral leishmaniasis (Croft et al, 

2006).  
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1.3 Natural products derivatised for treatment of protozoal 
infections 

There are a limited number of drugs licensed and used as antiparasitic agents for humans. 

Because of the current upsurge in drug resistance, many of these drugs have become 

inactive or less active against the parasites. Furthermore, problems like the toxicity, costs 

and availability are associated with these drugs especially in the disease endemic and poor 

regions of the world. Consequently, sources of natural products, such as plants; 

microorganisms (bacteria, fungi), marine organisms, protozoa, sponges and invertebrates 

have been examined to ascertain their antiprotozoal activities. Some are already being used 

to treat diseases (Kayser et al, 2003). There are more than 20,000 species of plants that are 

used in the world as traditional medical remedies to confront a huge number of diseases 

(Phillipson, 1994). It was estimated that 6.1 billion people in the world (66%) rely on 

traditional medical drugs because of the limitation of availability and/or the rising costs of 

pharmaceutical medicines (Tagboto & Townson, 2001). However, a high percentage of 

these people are using these drugs with poor or no knowledge about their toxicity. Hence 

the use of some of these compounds leads to fatal consequences.  

The first three traditional herbal remedies used as natural products derived from plants are 

foxglove, ephedra, and morphine. These three drugs are widely used for the treatment of 

heart disease as respiratory disorders, and as a potent analgesic, respectively (Tagboto & 

Townson, 2001). On the other hand, most antiprotozoal plant-extracted compounds have 

been utilized as starting points for the synthesis of new drugs with stronger activity and 

less toxicity.  

A number of natural antiparasitics are going to be discussed in more detail below. Two of 

these compounds, quinine and artimisinin, are in use to treat malaria, whereas the third, 

curcumin, has been proposed for use to confront several parasitic and non-parasitic 

diseases.  

 

1.3.1 Quinine 

Quinine is a natural white crystaline alkaloid compound (Figure 1.11A) extracted from 

Cinchona species. The first use of this compound was in South America to treat tropical 
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fevers. This compound has been used as a treatment for malaria caused by P. falciparum. 

This drug is also used for its analgesic and anti-inflammatory properties. 

There are five forms of quinine base: quinine dihydrochloride, quinine hydrochloride, 

quinine sulfate and quinine gluconate. All these forms of quinine can be given orally or by 

intravenous injection in doses of 8 mg/kg of quinine base three times a day. However, 

Barennes and colleagues reported that it can also be safely given rectally or 

intramuscularly every 12 hours in doses of 20 mg per kg or 12.5 mg/kg of quinine base, 

respectively (Barennes et al, 2006).  

Though the mode of action of quinine against the malaria parasites is not well understood, 

it has been postulated to be similar to that of chloroquine; causing cytotoxicity by 

inhibiting the polymerisation of haeme into haemozoin, with the consequent built up of 

free haeme, which is toxic to the parasite (Yakuob et al, 1995). It has also been proposed 

that the drug forms a complex with double-stranded DNA to prevent strand separation or 

that it blocks DNA replication and transcription and thus prevents proliferation of the 

malaria parasites. 

Quinine has been found to exhibit some side effects including cinchonism, heart attack, 

stroke, cardiac arrhythmias, thrombocytopenia, liver failure or damage, kidney failure or 

damage, hearing loss, cardiovascular problems, allergic reactions to quinine and erectile 

dysfunction among others 

(http://www.resource4thepeople.com/defectivedrugs/quinine.html). Several studies have 

investigated the use of quinine to treat people infected with malaria. However, very few 

studies have been conducted to test the effect of this compound on trypanosomes in vitro. 

One of these studies was carried out by Merschjohann and co-workers, which measured the 

efficacy of this drug together with 33 other alkaloids on two species of Trypanosoma: T. 

brucei brucei and T. congolense (Merschjohann et al, 2001) . The IC50 value of quinine on 

T. b. brucei was determined as 4.9 µM in this study. 

 

1.3.2 Artemisinin 

Artemisinin (Figure 1.11B) is a compound derived from a herb, Artemisia annua (Ferreira 

& Janick, 1996). It has been identified as the active ingredient of the natural herbs to treat 

skin diseases, malaria and another parasitic infections such as Schistosoma mansoni, S. 
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japonicum and Clonorchis sinensis (Hien & White, 1993). It is also used to protect against 

some types of cancer, especially leukemia and colon cancer (http://www.antiaging-

systems.com/a2z/artemisinin.htm). Due to its ability to regulate hormones, it is also used in 

the treatment and prevention of breast cancer (Rowen, 2002). This compound was 

discovered in the 1960s by Chinese biologist Tu Youyou and was named Qinghaosu in 

Chinese. In 1970s, the compound was classified as a multi-drug resistance drug for the 

treatment of P. falciparum malaria (Arnold et al, 1990).  

Derivatives of artemisinin are artemether, artesunate, arteether and artelinate. These 

compounds are easily converted to their active plasma metabolite, dihydroartemisinin, 

which is reported to be the active compound that exhibits the anti-malarial activity 

(Wilairatana et al, 1998). The optimum dose of artemisinin for treatment of the disease is 3 

g administrated over 3-5 days (about 50 mg per kg). Due to the short half-life of the 

derivatives, it is recommended that they are combined with other antimalarial drugs of 

longer half-life (White, 2004). 

Although the specific mechanism of action of artemisinin is not clear, a study in 2005 

using a yeast model demonstrated that the ‘drug acts on the electron transport chain, 

generates local reactive oxygen species, and causes the depolarization of the mitochondrial 

membrane’ (Li et al, 2005). 

No side effects have been reported even at a high dosage of 70 mg/kg body weight per day 

(Rowen, 2002). However a report indicated that the concentrations of serum aspartate 

aminotransferase (AST) were elevated in a volunteer receiving a high dose (120 mg/kg) of 

artimisinin over 3 days (Hien & White, 1993). This increase of AST is an indication of 

damage to acute or mild hepatocytes toxicity. 

 

1.3.3 Curcumin 

Curcumin (diferuloyl methane, Figure 1.11C), a phenolic compound, is the predominant 

compound, and a natural yellow dye, extracted from the roots and rhizomes of different 

species of Curcuma plants, which is known as Zingiberaceae (Perez-Arriaga et al, 2006). 

Curcuma longa Linn (turmeric) is a major medicinal plant in this group, and the powder of 

this herb is widely used to give color, spice and flavour to foods (Pan et al, 1999; Iqbal et 

al, 2003; Sharma et al, 2005). The active ingredients of Curcuma spp. are divided into 
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three parts: the first is essential oils including zingiberene, turmerones and atlantones, the 

second is turmerin (a water soluble peptide) and the last is curcuminoids such as curcumin 

(Sharma et al, 2005).  

Curcumin dissolves in acetone, ethanol and dimethylsulphoxide, but is comparatively 

insoluble in water (Sharma et al, 2005). Wang et al., (1997) show that curcumin is unstable 

at neutral and basic pH as it is broken down to feruloyl-methane and ferulic acid. Using 

spectrophotometery, Oetari et al., (1996) also observed that curcumin, which is light 

sensitive is unstable in phosphate buffer at pH 7.4. In another study by Pan and colleagues 

it was found that above 90% of curcumin decays in neutral-basic pH buffer (Pan et al. 

1999). However, the presence of fetal calf serum and some anti-oxidants such as ascorbic 

acid, glutathione and N-acetylcysteine in the culturs medium blocks this degradation 

(Wang et al, 1997). Studies by the groups of Pan and Maheshwari showed that the main 

curcumin metabolites are dihydrocurcumin and tetrahydrocurcumim, which are further 

metabolised to monoglucuronide conjugates (Pan et al, 1999) (Maheshwari et al, 2006b). 

Holder and co-workers have also demonstrated that the main metabolites of curcumin are 

glucuronide conjugates of tetrahydrocurcumim (THC) and hexahydrocurcumin. (Holder et 

al, 1978). 
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Figure 1.11. Chemical structures of some natural antiprotozoal agents. 
Quinine (A); artimisinin (B) and curcumin (C). 

 31



Hasan Ibrahim, 2009  Chapter 1 

 
1.4 Medicinal applications of curcumin 

Curcumin has been used to confront two of the main diseases of the developed world, 

namely cancer and cardiovascular disease. It has also been reported to have anti-oxidant, 

anti-inflammatory and anti-carcinogenic (tumor-promoting) activities (Sharma et al, 2005; 

Iqbal et al, 2003; Koide et al, 2002). Curcumin also exhibited many interesting biological 

activities against microorganisms, for instance, antiprotozoal activity (Araujo et al, 1999; 

Reddy et al, 2005), antibacterial activity (Dahl et al, 1989; Dahl et al, 1994), antifungal 

activity (Apisariyakul et al, 1995) and anti-HIV (Mazumder et al, 1995). 

Oxidative stress plays a significant role in the pathogenesis of many diseases such as 

myocardial ischemia, cerebral ischemia-reperfusion injury, neuronal cell injury, cancer and 

hypoxia (Maheshwari et al, 2006). This kind of stress is  influence by the presence of 

reactive oxygen compounds such as hydrogen peroxide (H2O2), superoxide, lipid peroxides 

and hypochlorous acid (Balasubramanyam et al, 2003). Curcumin plays a major role in the 

protection of different cells from oxidative stress. As an example, it protects against the  

injury of kidney cells (LLC-PK1) by blocking lipid peroxidation, lipid degradation and 

cytolysis (Cohly et al, 1998). 

Inflammation is an important contributor to chronic neurodegenerative diseases, and 

cyclooxygenase-2 (COX-2) is reported to play a crucial role in this process (Kang et al, 

2004). In various cells, the transcription factor NF-kappa B also plays a significant role in 

the transcriptional regulation of pro-inflammatory gene expression (Jobin et al, 1999). 

Curcumin has been reported to be a promising anti-inflammatory agent due to its ability to 

block the activity of both COX-2 (Cho et al, 2005) and NF-kappa B (Jobin et al, 1999; 

Weber et al, 2006). On the other hand, inflammation is one of the three processes of 

wound healing, granulation and tissue remodeling, and tissue repair (Maheshwari et al, 

2006). It has been reported that, after curcumin treatment, the treated wound biopsies 

exhibit an abundance of infiltrating cells including macrophage, fibroblasts and neutrophils 

(Sidhu et al, 1998).  

Several studies have demonstrated the use of curcumin as an anti-cancer agent. The 

compound has been found to be a dose dependent chemopreventive  agent against  many 

animal tumor bio-assays such as oral, oesophageal, stomach, colon and duodenal 

carcinogenesis (Maheshwari et al, 2006). Other epidemiological and animal model studies 

reported further support that the nation curcuminoids have anti-inflammatory or anti-
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oxidant activities and can be used as an inhibitor of carcinogenesis (Viaje et al, 1977; 

Kozumbo et al, 1983; Nakadate et al, 1984; Smart et al, 1987; Huang et al, 1997). Among 

the more significant findings in the demonstration that curcumin strongly prevents 12-O-

tetradecanoylphorbol-13-acetate (TPA) induced tumor promotion in mouse skin (Huang et 

al, 1988; Lu et al, 1994; Limtrakul et al, 1997; Huang et al, 1997).      

As an anti-parasitic agent, curcumin and its analogues have been shown to possess very 

good activity against some intestinal protozoal infections. One of these studies reported 

that this natural agent a potently inhibits the growth of axenic Giardia lamblia, with 

morphological changes and DNA fragmentation (Perez-Arriaga et al, 2006). On the other 

hand, numerous studies using this compound have been performed on kinetoplastid 

protozoa, especially Leishmania species (Koide et al, 2002; Araujo et al, 1999; Gomes et 

al, 2002a; Gomes et al, 2002b; Alves et al, 2003; Saleheen et al, 2002) and T. brucei (Nose 

et al, 1998) with a moderate-to-low activity (see chapter 5, section 5.1).  

Curcumin  inhibits the growth of both chloroquine sensitive (CQ-S) and resistant  (CQ-R) 

Plasmodium falciparum in vitro with an IC50 of 3.25 µM and 4.21 µM, respectively 

(Mishra et al, 2008). Furthermore, twelve analogues were tested on the same two strains, 

and the results showed that the activities of some of these analogues against the parasites 

are 10 times stronger than the activity of curcumin itself. A study by Reddy and coworkers 

also showed that curcumin displays dose dependent activity against CQ-R P. falciparum 

with an IC50 of ~5 µM (Reddy et al, 2005).  In the same study it was also found that oral 

curcumin fed to mice infected with Plasmodium berghei decreased parasitemia by 80-90%. 

In recent years, curcumin has been used in combination with artemisinin, another natural 

compound, to treat P. berghei with very promising results (Nandakumar et al, 2006). 

Moreover, curcumin-treated P. falciparum lead to generation of reactive oxygen species 

(ROS) and degradation of the nuclear and mitochondrial DNA (Cui et al, 2007a). 
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1.5 Choline metabolism in kinetoplastids as a therapeutic 
target 

Choline performs many essential functions in eukaryotes. Among other things, it is an 

important substrate required for the structural integrity and signalling functions of cell 

membranes, acetylcholine synthesis and methyl group metabolism. In addition, a 

metabolite of choline, betaine, methylates homocysteine to form methionine (Finkelstein, 

2000). Methionine then becomes the precursor for S-adenosylmethionine (AdoMet), which 

is the physiological methyl group donor for protein, RNA and DNA methylation (Jeltsch, 

2002).  

The surface of kinetoplastid protozoa (T. brucei, T. cruzi and Leishmania spp) are 

morphologically divided into two distinct parts: the flagellar pocket and the plasma 

membrane (Vial et al, 2003). The plasma membrane of these parasites comprises a dense 

coat of glycoprotein and/or glycolipid. Generally, phospholipids are synthesized by 

esterification of an alcohol to a phosphatidic acid called 1,2-diacylglycerol 3-phosphate. 

The most common phospholipids in T. brucei are phosphatidylcholine (PC, Figure 1. 12 

A), phosphatidylethanolamine (PE, Figure 1.12 B) and phosphatidylserine (PS, Figure 1.12 

C) which constitute about 80% of the total trypanosomal lipids (Patnaik et al, 1993). These 

phospholipids play an important structural role to the membrane and, in addition, 

determine membrane fluidity and cell-surface charge (Gibellini et al, 2008). 

The fatty acid composition of the various phospholipids has been described (Patnaik et al, 

1993) as has the acyl donor specificity of the T. b. brucei lyso-phosphatidylcholine:acyl 

CoA acyltransferase (Samad et al, 1988). The most important saturated fatty acids are 

myristate (14:0), palmitate (16:0) and stearate (18:0), in addition to unsaturated fatty acids 

such as oleolate (18:1), linoleate (18:2) and arachidonate (20:4). Of particular significance 

is myristate, an essential component of glycosyl phosphatidylinositol (GPIno) anchors 

(Werbovetz et al, 1996; Werbovetz & Englund, 1996). GPIno anchors attach the 

trypanosome’s Variant Surface Glycoprotein (VSG) to the plasma membrane (Englund, 

1993), which is essential for survival and pathogenesis within the host (Ferguson, 1999). 

VSG is initially synthesized in the endoplasmic reticulum (ER) and it is immediately taken 

up to the cell surface by the Golgi apparatus (Ferguson et al, 1986; Duszenko et al, 1988).  

Sphingolipids, such as sphingomyelin (SM), also play an important role in the normal cell 

membrane of all eukaryotic cells including kinetoplastid protozoa (Fridberg et al, 2008). 

Bloodstream T. b. brucei contain sphingomyelin (choline phosphorylceramide) and 
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ethanolamine phosphorylceramide but no inositol phosphorylceramide (IPC) (Sutterwala et 

al, 2008), although procyclics do contain IPC (Fridberg et al, 2008; Sutterwala et al, 

2008). Ceramide, a fundamental structural unit in all sphingolipids, is synthesized in the 

ER and then transported to the Golgi apparatus to bind with the polar head groups and 

produce sphingomyelin (Sutterwala et al, 2007). Unlike L. major promastigotes, 

sphingolipid biosynthesis is essential for T. brucei viability (Sutterwala et al, 2007; Zhang 

et al, 2007).   

Phosphatidylcholine can be synthesized in various organisms by three different metabolic 

ways: the first is called de novo or Kennedy pathway, by which the conversion of choline 

into phosphatidylcholine occurs in mammalian cells, bacteria and fungi (Carman & Henry, 

1989; Lykidis & Jackowski, 2001; Sohlenkamp et al, 2003). The second is CDP-

diacylglycerol pathway in mammalian liver cells and yeast. This route starts by the 

formation of phosphatidylserine from serine and CDP-diacylglycerol, followed by 

decarboxylation of phosphatidylserine to phosphatidylethanolamine (PE). The latter is then 

converted to PC by addition of methyl groups donated by S-adenosylmethionine (Kanipes 

& Henry, 1997; Vance et al, 1997; Sohlenkamp et al, 2003). The last pathway occurs in 

plants (Mudd & Datko, 1986; Datko & Mudd, 1988) and Plasmodium falciparum (Pessi et 

al, 2004; Pessi et al, 2005). The main idea of this route is the methylation of 

phosphoethanolamine to phosphocholine followed by synthesis of phosphatidylcholine 

through the Kennedy pathway.  

In Trypanosoma brucei, PC accounts for about fifty percent of all phospholipids in both 

life-cycle stages (procyclic and bloodstream forms), whereas PE accounts for 16 to 21% 

(Patnaik et al, 1993). Synthesis pathways of PE and PC are very similar, and begin with 

the generation of phosphoethanolamine and phosphocholine by ethanolamine and choline 

kinases (Gibellini et al, 2008) through the Kennedy pathway (Figure 1.13). However, 

choline is not believed to be directly taken up by bloodstream forms of Trypanosoma 

brucei, as the species lacks a choline transporter (Rifkin et al, 1995), and the mammalian 

bloodstream contains only low levels of free choline to be salvaged (Zeisel, 1981). In 

contrast, ethanolamine is taken up very efficiently by bloodstream T. b. brucei, with a Km 

value of 3.7 µM – close to the plasma concentration of this nutrient – and it is estimated 

that T. b. brucei can satisfy its ethanolamine requirements via this transporter (Rifkin & 

Fairlamb, 1985a). In contrast to the situation in other species including Saccharomyces 

cerevisiae (Nikawa et al, 1986), the ethanolamine transporter does not share affinity with 
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choline: a 500-fold excess of choline did not inhibit ethanolamine transport in T. b. brucei 

(Rifkin et al, 1995).  

Thus T. b. brucei cannot salvage choline directly from its environment (Rifkin et al, 1995) 

and while Plasmodium falciparum synthesises PC by methylation of PE (Pessi et al, 2005), 

this pathway is clearly absent in T. b. brucei as [3H]ethanolamine does not label PC (Rifkin 

& Fairlamb, 1985; Menon et al, 1993; Signorell et al, 2008). Nor can T. brucei salvage PC 

directly (Samad et al, 1988; Mellors & Samad, 1989) and it thus relies entirely on salvage 

of lyso-phosphatidylcholine (lyso-PC), which attains levels of some 250 µM in the human 

bloodstream (Zeisel, 1981), as the source of choline.  

 

In leishmania, choline is taken up by a highly selective carrier with a Km value of 2.5 µM 

that is not inhibited by ethanolamine (Zufferey & Mamoun, 2002). Instead, ethanolamine 

may be taken up by a serine transporter in L. major, as it is a potent inhibitor of this carrier 

(dos Santos et al, 2009), and structurally similar. Thus, Leishmania is not thought to rely 

on lyso-phospholipids to the same extent as T. b. brucei. The dependence of some 

trypanosomatids on lyso-phospholipid salvage for phospholipid biosynthesis can be 

exploited for chemotherapy. For example, miltefosine is a lyso-phospholipid analogue used 

as a potent drug against trypanosomatid parasites, Leishmania sp and T. cruzi, and its mode 

of action by inhibition of phosphatidylcholine biosynthesis (Urbina, 2006). 

 

The utilization of lyso-phosphatidylcholine (lyso-PC) by the parasite is dependent on three 

enzymes: phospholipase A1 (PLA1), acyl-CoA synthetase (ACS) and acyl-CoA 

acyltransferase (AAT) (Bowes et al, 1993). Lyso-PC and lyso-PE are available to T. 

brucei, with concentrations of 250 and 10 µM, respectively (Bell & Coleman, 1980; NYE 

et al, 1961). The biosynthesis of phospholipids PC and PE by the Kennedy pathway (see 

Figure 1.13) starts when the parasites are exposed to a significant level of lyso-PC 

(Kennedy, 1956; Bowes et al, 1993). Lyso-PC is very toxic to cells and increases the 

membrane permeability (Gallo et al, 1984), it is rapidly metabolized by enzyme PLA1,  

associated with plasma membrane, to free fatty acids and glycerophosphocholine (GPC) 

(Sage et al, 1981; Bowes et al, 1993). The latter is converted to choline by 

glycerophosphodiester phosphodiesterase (GDPD) (Smith T., unpublished observation). 

Choline is immediately converted by choline/ethanolamine kinase2 (CEK2) to choline 

phosphate (ChoP) (Gibellini et al, 2008), which is subsequently activated to CDP-choline, 

a high energy donor, by CTP:phosphocholine cytidyltransferase (CCT) (Signorell et al, 

2008). The activated phosphocholine is then finally coupled to 1,2-diacylglycerol by the 
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enzyme diacylglycerol: CDP-cholinephosphotransferase (CPT), to form PC (Signorell et 

al, 2008; Signorell et al, 2009). On the other hand, the free fatty acids generated by PLA1 

are converted by acyl-CoA synthetase (ACS) into acyl-CoA and used by acyl-CoA 

acyltransferase (AAT) to produce additional amounts of phosphatidylcholine (Bowes et al, 

1993; Werbovetz & Englund, 1996).  

Being crucial to the survival of the parasite, the processes of choline salvage and 

metabolism constitute potential therapeutic drug targets. The identification and selection of 

appropriate inhibitors and cytotoxic compounds as anti-kinetoplastid agents will therefore 

depend on the detailed knowledge of the kinetic characteristics of the choline uptake 

mechanisms and metabolism in these parasites. Additionally, the plasma membrane of 

these organisms can itself become a drug target since it is the first point of interaction 

between the cell and the external environment including  phospholipid analogues (Croft et 

al, 2003). The identification and characterization of choline transporters in Trypanosoma 

and Leishmania spp in order to facilitate a choline-based chemotherapy of these organisms 

therefore forms a major objective of the current study. The other objectives are stated 

below. 
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Figure 1.12. The chemical structures of the major phosphlipids. 

Phosphatidyl-choline (A); Phosphatidylethanolamine (B) and Phosphatidylserine (C). 
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Figure 1.13. Choline metabolism pathway in kinetoplastid parasites.  

(PLA1) Phospholipase A1; (GDPD) Glycerophosphodiester phosphodiesterase; 
(PLA2) Phospholipase A2; (CEK2) Choline/Ethanolamine kinase 2; (AAT) Acyl CoA 
acyltransferase; (CPT) diacylglycerol:CDP-cholinephosphotransferase; (CCT) 
CTP:phosphocholine cytidyltransferase; (CMP) cytidylmonophosphate; (SMS) 
Sphingomyelin Synthetase (TbSLS4, sphingolipid synthase 4); (SMase), 
Sphingomylelinase; (ACS) Acyl CoA synthase; (DAG) Diacylglycerol; (CoA) 
Coenyme A; (1) Sutterwala et al (2008); (2) Bowes et al (1993); (3) Gibellini et al 
(2008); (4) Werbovetz and Englund (1996); (5) Signorell et al (2008); (6) Signorell et 
al (2009); (7) Jiang et al (2004); (8) Smith T., unpublished; (9) Sage, L. et al (1981); 
(10) Ridgley and Ruben (2001); (11) Sutterwala et al (2007); (12) Coppens I.  et al 
(1995); (13) Samad et al. (1988); (14) Rifkin et al. (1995).  
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1.6 Aims 

Specifically, this study will aim to investigate these points: 

• To identify new curcumin and choline analogues with activity against African 

trypanosomes and Leishmania spp in vitro and in vivo. 

• To identify structural determinants or motifs responsible for anti-protozoal activity. 

• To study the mode of action of the most promising anti-protozoal metabolites 

identified in the screening. 

• To determine the mode of uptake of these potential drugs. 

• To study the toxicity of the anti-protozoal metabolites by in vivo observation in 

mice and incubations with hepatocytes. 
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Chapter two 

2 Materials and Methods 
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2.1 Parasites, cell lines and cultures: 
2.1.1 Trypanosoma brucei blood stream forms in-vitro:   

Three clonal lines of trypanosomes were used in this study: Trypanosoma brucei brucei 

strain 427 wild type (WT); TbAT1 knock out (KO) derived from WT, which lacks the 

TbAT1/P2 aminopurine transporter and as a result is resistant to several important 

trypanocides (Matovu et al, 2003); and the pentamidine-adapted clonal line TbAT1-KO-

B48 (Bridges et al, 2007). The standard culture medium for bloodstream trypanosomes of 

Trypanosoma brucei was HMI-9 medium supplemented with 10% heat-inactivated Fetal 

Calf Serum (FCS) (Hirurni and Hirurni, 1989). About 14 µl of β-mearcaptoethanol per 

litre of medium were added before the sterilization of medium (filtration with a Millipore 

Stericup, capacity 500 ml, pore size 0.22 µm inside a flow cabinet). The parasites were 

passaged three times per week in this medium (pH 7.4) and incubated in a 37 °C and a 5% 

CO2 atmosphere.  

2.1.2 Trypanosoma brucei blood stream forms in-vivo: 

Bloodstream forms of Trypanosoma brucei brucei strain 427 WT were intraperitoneally 

injected in adult female rats (Wistar strain) or ICR mice. Parasitaemia was daily monitored 

by tail venepuncture and examined utilizing a light microscope. The number of parasites in 

each field was estimated according to the method of Herbert & Lumsden (1976). At peak 

parasiteamia, the blood was collected from the infected animals by cardiac puncture under 

terminal anaesthesia using CO2. The blood was collected into 15 ml Falcon tubes 

containing 5 ml of heparin in Carter’s balanced salt solution (CBSS) 500 unit/ml 

(Appendix I), and centrifuged at 2500 x g for 15 minutes at 4 °C. Separating the blood into 

three different layers:  a plasma layer, a red blood cell layer, and in the middle a parasites 

with buffy coat layer. The last layer was gently collected using a plastic Pasteur pipette and 

loaded onto a DE52 anion-exchange column at pH 8.0 as described by Lanham and 

Godfrey (1970). The cells were then washed from the column by 200 ml of phosphate 

saline glucose (PSG) solution pH 8.0 (Appendix I), and washed twice in assay buffer at 

2200 x g for 10 minutes at 4 °C. The cell pellet was re-suspended in the required volume 

(~108 cells/ml), and left at room temperature for 15-20 minutes to adapt to the 

experimental conditions.  
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2.1.3 Leishmania major & Leishmania mexicana promastigotes: 
Promastigote forms of Leishmania major (Friedlin strain) and Leishmania mexicana 

(MNYC/BZ/62/M379 strain) were propagated at 25 °C in plastic flasks for tissue culture. 

These parasites were passaged three times a week in 10 ml of HOMEM medium (pH 7.4) 

with 10% Fetal Calf Serum (FCS). The medium was sterilized by filtration prior to use and 

stored at 4 °C. 

2.1.4 Leishmania mexicana amastigotes: 

Axenic L. mexicana amastigotes were maintained in 80% Schneider’s Drosophila medium, 

supplemented with 20% heat-inactivated Fetal Calf Serum (HIFCS), 0.3% gentamicin per 

ml of medium, and  10 µl of 1.0 M hydrochloric acid per 1 ml of medium (pH 5.5). The 

parasites were passaged twice a week in 10 ml of the mentioned medium, and the 

appropriate conditions of this culture are 32 °C in a 5% CO2 incubator. 

2.1.5 Human embryonic kidney (HEK) cells (strain: 293 T): 

HEK cells were cultured two or three times a week in a vented culture flasks at 37 °C and 

5 -10% CO2. In order to keep the cells in mid-log phase, the cells were usually passaged at 

80-85% confluence. The standard culture medium for these cells is Dulbecco’s Modified 

Eagle’s Medium supplemented with New-born Calf Serum and 1% of both L-Glutamax 

(200 mM) and Penicillin (10,000 units/ml)/Streptomycin (10,000 µg/ml) solution (GIBCO).  

 

2.2 Materials: 
2.2.1 Media and growth chemicals: 

Alamar Blue (Resazurin sodium salt), Dulbecco’s Modified Eagle’s Medium, 0.25% 

Trypsin-EDTA solution, Gentamicin, Diminazene aceturate, Digitonin, Heparin, 

collagenase, Trypan blue and O-phthaldehyde (OPT) and choline chloride were all 

obtained from Sigma. New-borne Calf Serum, L-Glutamax (200 mM), 

Penicillin/Streptomycin, Gentamicin, New-borne Calf Serum, HOMEM medium and 

Schneider’s Drosophila medium were purchased from GIBCO. Heat-inactivated Fetal Calf 

Serum (FCS) was purchased from Biosera. Propidium iodide, dichlorofluorescein (DCF) 

and curcumin were purchased from Fluka. Troglitazone was from Biomol. Alamar BlueTM 

was obtained from Trek Diagnostics (UK). 

 42



Hasan Ibrahim, 2009   Chapter 2 

2.2.2 Animals 
The adult female mice (ICR strain) and adult male rats were purchased from Harlan UK 

Ltd, Bicester, Oxford Shire, UK. 

  

2.2.3 Radiolabeled compounds 
[3H] pentamidine (88 Ci/mmol), and [3H] choline chloride (83 Ci/mmol) were purchased 

from Amersham, and [3H] curcumin (10 Ci/mmol) was obtained from Moravek. These 

compounds were prepared from tritium gas and purified by high performance liquid 

chromatography. 

2.2.4 Tested compounds: 
2.2.4.1 Choline compounds: 

This group consist of seven compounds namely: G25 (Bisquaternary), T3 and T4 

(Bisthiazolium), T1 (Mono), M38, MS1 and M53 (Quaternary ammonium/ Alkylamidine). 

The compounds referred to as choline analogues in this thesis are not closely related to 

choline, as they are derived from the choline template after several iterations. A more 

accurate description would be choline derivatives. These compounds were tested in 

collaboration with Henri Vial, University of Montpellier, France. All these compounds 

were dissolved completely in DMSO at 20 mM, except M53, which dissolved in DMSO at 

0.5 mM due to limitations of its solubility. The stock solutions are stored in the freezer at -

20 °C for the in vitro assays. The structures of the choline compounds are shown in section 

3.1. 

2.2.4.2 Curcumin analogues: 

This group includes 158 analogues, which are labelled as AS-HK 001 to 158. All these 

analogues were dissolved in DMSO at 20 mM, and the stock solutions were stored at –20 

°C. These compounds were synthesised by Apichart Suksamrarn, Ramkhamhaeng 

University, Department of Chemistry, Bangkok, Thailand. The structures of curcumin 

compound and its analogues are shown in the appendix II. 

 

2.3  In-vitro drug sensitivity using Alamar Blue dye: 
The drug susceptibility of the different forms of the mentioned parasites (T. brucei WT, 

KO and KO-B48 bloodstream forms, L. major promastigotes and L. mexicana 

promastigotes and amastigotes) was assessed using a fluorescence method Alamar Blue. 

This technique was performed according to Raz et al (1997), Mikus & Steverding (2000) 

and Fumarola et al (2004) with minor modifications. Alamar Blue (Resazurin sodium salt) 
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was prepared by the addition of 12.5 mg of Resazurin (Sigma) in 100 ml of Phosphate 

Buffered Saline (PBS) at pH 7.4 and filter-sterilized for use in the experiments. This 

material can be stored in the dark at 4 °C for up to 20 months or frozen at -70 °C (Raz et 

al, 1997). All the drug dilutions were freshly prepared in the respective medium on the 

same day of the assay, and the final concentration of DMSO did not exceed 1%, which had 

no effect on the growth of parasites. 

  

2.3.1 Alamar Blue assay in T. b. brucei bloodstream forms: 
Setting up of the experiments in the presence of anti-trypanosomal drugs was performed as 

follows: 

1- The stocks of the drugs were prepared by dilution in HMI-9 medium at a concentration 

of 200 µM (i.e. 2 x highest concentration required in the assay).  

2- Into each well in the first column of the first (A), third (C), fifth (E) and seventh (G) 

rows of the 96-well plates, 200 µl of different drugs which would be tested were pipetted. 

Two rows were used for each drug and each plate was used for four drugs. Diminazene 

aceturate was used as an internal control for each experiment.   

3- Into all remaining wells, 100 µl of HMI-9 medium was pipetted, and 23 serial doubling 

dilutions of drugs were prepared with a multi-channel pipette by transferring 100 µl from 

the first column and mixing with the medium in the wells of column number 2, then 

another 100 µl from number 2 to the number 3 and so on. 100 µl from the 23rd dilution was 

discarded (second column of the B, D, F and H rows). The last wells of every two rows 

(the wells B,D,F and H in the first column) do not received any drug solution and remain 

free of drug as a control. 

4-  A cell count of trypanosome culture was performed and a culture with an adjusted 

density of 2x105 cells per ml was prepared. Then 100 µl of this prepared culture was added 

to all the plate wells, and the final density became 1x105 cells per ml. 

5- The plates were incubated for 48 hours at 37 °C with 5% CO2 atmosphere, after which 

20 µl of Alamar Blue solution was added to each well and the plates were incubated as 

before for a further 24 hours and after 72 hours incubation the absorbance of the plates was 

measured using a FLUOstar OPTIMA plate reader at 544 nm excitation and 590 nm 

emission. 

2.3.2 Alamar Blue assay in L. major and L. mexicana promastigotes: 

The sensitivity of anti-leishmanial drugs was performed in the same way as in T. brucei as 

montioned in section 2.3.1 with the following modifications: 
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1- The medium in this case was HOMEM 90% + 10% FBS. 

2- The control drug for L. major promastigotes was pentamidine. 

3- The primary cell culture density of the promastigotes was set at 2x106 cells per ml, and 

the final density was 1x106 cells per ml. 

4- The 96-well plates were incubated at 27 °C + 5% CO2  for 72 hours before 20 µl of  

Alamar Blue (Resazurin sodium salt) was added  to each well and the plates were 

incubated for a further 48 hours.  

2.3.3 Alamar Blue assay in L. mexicana amastigotes: 

All steps were as those in L. major promastigotes (section 2.3.2) with two exceptions: 

1- The medium for amastigotes was 80% Schneider’s Drosophila Medium (SDM), with 

20% HI-FCS and 0.3% Gentamicin. 

2- The 96-well plates were incubated at 32 °C in the presence of 5% CO2 for the same 

period as L. major promastigotes.  

 

2.4 In-vitro drug sensitivity using propidium iodide dye:  

This assay was developed in our lab (Gould et. al., 2008), and it was set up similar as 

Alamar Blue assay with one exception: the cells were incubated for 72 h in trypanosomes 

and Leishmania, after which 20 µl of a mixture of 90 µM propidium iodide and 200 µM 

digitonin was added to each well and followed by a 1-hour incubation in the same 

conditions. The plates were then read in a FLUOstar OPTIMA fluorimeter and the 

fluorescence measured at 544 nm excitation and 620 nm emission.      

 

2.5 In-vitro toxicity assay using human embryonic kidney 

cells: 

This technique was performed using an adaptation of the above Alamar Blue protocol. In 

this assay, the culture flasks of HEK cells (strain 293) were taken from the incubator at the 

mid-log phase and about 2 ml of  0.25% Trypsin- 0.02% EDTA in Hanks' Balanced Salt 

Solution was added to each flask after removing the medium. After 5 minutes, 10 ml of 
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medium, pre-warmed at 37 °C, was added and the suspension was transferred to a 50 ml 

falcon tube. The cells were centrifuged at 1200 x g for 5 min, after which the supernatant 

was decanted and the cells were re-suspended in 10 ml of fresh medium.  

In standardised protocol, the cells were counted at 2 pm and 100 µl of 3x105 cells/ml was 

added to each well of a 96-well plate. The plates were left for 3 hours. Using other 96-well 

plates, serial dilutions of tested drugs were prepared at two times the highest concentration 

to be used as follows: 260 µl of drug stock was added into the first column of plates, and 

130 µl of DMEM medium was added into the remaining wells; 130 µl was taken from the 

fist column by the multichannel pipette and mixed with the medium in the wells in the 

second column, etc. The last column was left as drug free control. 

At 5:00 pm on the same day and using a multi-channel pipette, 100 µl from each well of 

the plates containing the drug solutions was added to the equivalent well containing the 

HEK cells. At 9 am the next day, 20 µl of Resazurin solution was added to each well, and 

the plates were read after a further 24 hours, using a Perkin-Elmer fluorescence LS55B 

plate reader at 530 nm excitation and 590 nm emission. Phenyl Arsine Oxide (PAO) was 

used as a positive control at 50 µM and all other compounds were tested at 400 µM (1% 

DMSO).   

 

2.6 Monitoring in-vitro cell growth: 
2.6.1 Using cell count: 

In this method, the cell count was taken in duplicate at six time points for each drug: 2, 4, 

6, 8, 10, and 24 hours.  24 well plates were used, and 1 ml is the total volume for each 

well. The final concentration of drugs was 20 µM, solutions were prepared at 10 times the 

final concentration and the plates were incubated at 37 °C and 5% CO2. At each time point, 

10 µl of culture was loaded onto a haemocytometer in order to take the cell count for the 

growth curve and the rest of the culture was immediately transferred to sterile Eppendorf 

tubes, spun at 2500 rpm for 10 min and washed twice in fresh medium. The suspension 

was transferred onto new 24-well plates and placed again in the incubator. A final cell 

count was taken at 24 hours. This procedure assessed whether the effect of the drug was 

reversible. 
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2.6.2 Using a spectrophotometer assay: 

This lysis assay was performed exactly as described previously (Bridges et al, 2007) with 

minor differences. The inhibition curves of trypanosome parasites were determined using a 

UV/Visible spectrophotometer (HP-8453, Hewlett Packard). Bloodstream forms of Tb 427 

strain were used in this real-time assay, at a minimum cell density of 1x107 cells/ml. In 

order to get this concentration, 200 ml (100 ml in 450 ml flask) of culture were seeded with 

trypanosomes two days before. On the day of the experiment, the test compounds were 

prepared at 20 times the final concentration, and the culture was centrifuged for 10 min at 

2200 rpm and washed twice in HMI-9 medium, re-suspended in the appropriate volume of 

HMI-9 to obtain the designed cell density, and placed in a water bath for 15 min.  

One ml of medium was added in the first cuvette and the spectrophotometer was blanked at 

750 nm wavelength. 950 µl of cell suspension was added to all cuvettes and a reading was 

taken every 30 seconds. After 15 min, 50 µl of each test compound was added and mixed 

to the appropriate cuvette, leaving the first and second cuvettes as negative (drug free) and 

positive (PAO) controls, respectively.  

For the reversibility curves, at a specific incubation time (30, 60, 180 min), the samples 

were spun at 2500 rpm for 10 min and washed twice in fresh medium, returned to restart 

the instrument and incubated further in the presence and absence of the same concentration 

of test compound.  

2.6.3 Propidium iodide assay: 

Propidium iodide (PI) assays were performed using 96-well plates. 100 µl of an 

appropriate (HMI-9 for bloodstream forms and HOMEM for promastigotes) was added to 

wells, leaving the first column empty. 200 µl of different test compounds, at twice the final 

concentration, was added to the wells in the first and second rows in the plate and so on (4 

drugs in each plate). Doubling dilutions were performed leaving the last column drug free 

as a negative control. 100 µl of PI solution (18 µM) was added to all the wells in the first 

row of each test compound as controls. The same volume of cells at 1x107 cells/ml in PI 

solution was added to the second rows of drugs. The plates were then incubated in a 

FLUOstar OPTIMA fluorimeter at 37 °C with 5% CO2 atmosphere for bloodstream forms, 

and at 25 °C for promastigotes, and the fluorescence was monitored over time at 544 nm 

excitation and 620 nm emissions.    
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2.7 In-vivo assessment of drug action: 
2.7.1 Assessment of in vivo toxicity: 

In order to determine whether a test compound displays any acute toxicity, the most 

promising curcumin analogues (AS-HK 09, AS-HK 14 and AS-HK 27) were selected for 

in-vivo activity. Adult female mice (ICR strain; weights between 25.0 and 33.0 g) were 

used. Three mice were used in each procedure. The drugs were prepared at 50 mM in 

DMSO, and mice were intra-peritoneally injected once with 150 µl solvent’ DMSO 

administering initially 1 mg/kg. If no adverse effects are observed a different mouse would 

be injected with 10 mg/kg, and finally 50 mg/kg BW. The period of observation after each 

procedure was two weeks and the mice were monitored twice daily. 

2.7.2 In vivo efficacy of curcumin analogues: 

The second step of the experiment was to assess the effect of candidate drugs against 

trypanosomes using 5 groups (5 mice in each group), the first three groups for the three 

tested compounds and the 4th and 5th groups as a positive (diminazene at 7 mg/kg twice) 

and negative (150 µl DMSO) controls, respectively. The animals were weighted and the 

drug doses were calculated at 50 mg/kg BW. The T. b s427 culture was diluted in a sterile 

HMI-9 medium to 1x105 parasite/ml and 100 µl of this solution was injected intra-

peritoneally into each mouse, giving each mouse a dose of 1x104 parasites per mouse. Two 

drug doses were given to each mouse, the first after 6 hours from infection, and the second 

24 hours after the first administration. The animals were checked daily and the 

parasitaemia was monitored under the light microscope (X400 magnification) by taking a 

blood drop from the mouse’s tail and making a wet film on a glass slide. The level of 

parasitaemia was calculated according to the method of Herbert & Lumsden (1976).  

 

2.8 Pharmacological and toxicological experiments: 
2.8.1 Isolation of hepatocytes: 

Stock (Hank’s Buffer (10x) and Krebs-Henseleit Buffer (2x)) and Perfusion (Hank I, Hank 

II, Krebs-Albumin Buffer, and Krebs-HEPES Buffer) solutions were prepared as shown in 

the appendix I, and filtered and stored at 4 ºC. 
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2.8.1.1  Perfusion apparatus: 

This apparatus was situated in a laminar flow cabinet and consisted of a peristaltic pump, a 

water bath, three plastic 200 ml beakers with lids, a reservoir and rubber tubes for 

connecting the apparatus.  

2.8.1.2 Procedure: 

Male Spragus-Daweley rats (180 – 250 g) were used in this procedure. The rats were 

anaesthetised by intra-peritoneal injection of 60 mg/kg (100 µl/100 g) sodium 

pentoparbitone (60 mg/ml). The peritoneal cavity was subsequently opened by med-

transversal incision. Heparin (500 unit in 0.1ml) was injected in the inferior vena cava. The 

hepatic portal vein was cannulated by a steel cannula that has an internal diameter of 1.75 

mm and a 2.50 mm external diameter. The cannula was fixed in place with a clip. The liver 

was initially perfused with Hank I buffer after which it was dissected. The flow rate of 

perfusion was adjusted in order to restore the liver to its normal shape. After removing the 

liver from the body it was placed for 10 min in the first beaker, which contained 150 ml 

Hank I buffer. The liver was then transferred to the second beaker and perfused for 15-30 

min in 150 ml Hank II buffer containing 78 mg collagenase. The recirculation continued 

until the liver became soft and the cells in the liver sac had dissociated. 

The liver was transferred into a Petri dish containing 80 ml Krebs Albumin buffer, and the 

cells were dispersed by using two forceps. Within two minutes, the cell suspension was 

filtered through sterile cotton gauze to remove clumped cells and any remaining connective 

tissues. The filtrate was left for 2-3 min to allow the cells to settle under gravity. The 

supernatant was then removed by aspiration, and the cells were washed by using 50 ml of 

Krebs Herpes buffer. 

2.8.2 Isolated hepatocytes viability: 

The viability of the isolated rat hepatocytes was directly determined after the perfusion 

using Trypan blue. 10 µl of cell suspension was added to 990 µl of Trypan blue and the 

results were calculated by loading the sample on both sides of a haemocytometer. The 

examination was done using a light microscope, and the cells were counted in 18 

heamocytometer sections of 0.1 mm3  each. 

Percentage of viability = No. of cells excluding Trypan blue / Total No. of cells X 100 

The viable cell count = (No. of cells excluding Trypan blue / 18) X 104 X 100 

 49



Hasan Ibrahim, 2009   Chapter 2 

 100 is the initial dilution and 104 is the conversion factor. 

The standard level of cell suspension density was 2x106 cells/ml. 

 

2.8.3 Incubation of rat hepatocytes:  

Three round bottom flasks were used, the first was cells without drug as a cell control, the 

second was cells with drug, and the last was drug without cells as a drug control. About 12 

ml of cell suspension was added into both flasks 1 and 2 whereas 12 ml of Krepes Hepes 

buffer (KH) was added to flask 3.  Then 60 µl of 20 mM drug was added to flasks 2 and 3, 

and the cells were incubated at 37 °C for 2 hours with 95% O2 and 5% CO2, and the flasks 

were rotated at 60 rpm (Figure 2.1). Samples were taken at regular time intervals (0, 15, 

30, 60, 90 and 120 min) in order to assess viability, total cell protein (Lowry Assay), 

glutathione and drug metabolism. The first time point (0 minute) was taken immediately 

after adding drug. 
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2.8.4 Effects of lead compounds on incubated hepatocytes viability. 

cell viability was measured by taking 100 µl of Trypan blue solution (0.1% w/v in 

2.8.5 Total cell protein measurement (Lowry Assay): 

ined times, 0.5 ml 

l bovine serum albumin in 0.5 M NaOH) was used for the 

ple + 950 µl 

 Determination of Reduced Glutathione by Fluorimetry: 

The solutions that were used in this assay are Sodium Phosphate buffer (pH 8.0), 10% 

TCA, and 1 mg/ml O-phthaldehyde (OPT) in methanol or ethanol freshly dissolved 

      

The 

PBS, pH 7.4) in which was added to 100 µl of cell suspension. The cells were loaded onto 

a haemocytometer, and 50 cells (live and dead) were counted from the centre of the grid. 

The percentage was calculated by multiplying the live cells x 2.  

 

The assay was performed according to Lowry et al. (1951). At predeterm

of cell suspension was taken from each flask and transferred to 15 ml Falcon tubes, then 

immediately centrifuged for 4 minutes at 50 x g. The supernatant was removed and the 

pellet was re-suspended in 0.5 ml 10% trichloro acetic acid (TCA). The samples were left 

on ice for at least 10 min and then centrifuged again at 500 × g. The supernatant was 

removed, transferred to microfuge tubes and frozen at -20 ºC for GSH measurement by 

fluorimetry following derivatisation with O-phthaldehyde (OPT).  The pellet was re-

suspended in 0.5 ml of 0.5 M NaOH and digested for 18 hours at 37 ºC for use in the 

Lowry assay. 

The protein standard (200 µg/m

standard curve and stored at -20 ºC.  On the day of the assay, the standard curve and two 

solutions were made up: solution A and solution B (appendix I).  

The cell samples were diluted 20-fold with 0.5 M NaOH (50 µl of sam

NaOH). Then 5 ml of solution A was added to all standards and samples, and mixed. The 

samples were left at room temperature for 10 minutes after which 0.5 ml of solution B was 

also added and mixed immediately and very thoroughly. The samples must be left for at 

least 30 minutes and at most 90 minutes before the absorbance is read at 725 nm. 

 

2.8.6
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(should be kept in the dark by wrapping the bottle in tin foil). The standard was made up as 

descriped in appendix I. 

temperature in the dark for at least 15 minutes and not for more 

than 40 minutes after which the fluorescence was read at 350 nm excitation and 420 nm 

2.9.1 Transport assay in T. brucei brucei: 

Transport assays for [3H] pentamidine, [3H] choline, and [3H] curcumin by T. brucei brucei 

ed exactly as described  previously (De Koning, 2001b; 

olated from blood taken from infected 

rats as described in section 2.1.2. Cells were washed twice in Assay Buffer (pH 7.3) for 10 

25 µl of both standards and samples was taken into clean test-tubes, and 2.3 ml of 

phosphate buffer and 100 µl of 1 mg/ml OPT in methanol were added and mixed well. The 

tubes were left at room 

emission using water to zero the fluorimeter.  

 

2.9 Transport assays: 

blood stream forms were perform

Wallace et al, 2002). Briefly, trypanosomes were is

minutes at 2200 x g and 4 °C, and then re-suspended at ~1x108 cells/ml and left at room 

temperature for 20 minutes before using. Cells (100 µl) were then incubated, in 1.5 ml 

Eppendorf tubes containing a mixture of 300 µl of dibutyl-phthalate oil (Merck)/mineral 

oil (Sigma) 7:1 (v/v), with the same volume of the radiolabel at two times the final 

concentration in presence or absence of potential effectors. Transport was terminated by 

adding 1 ml of ice-cold stop solution (vast excess of unlabeled permeant in Assay Buffer at 

0 °C), and followed by rapid centrifugation at 13,000 rpm for 30 seconds through an oil 

layer. The samples were then frozen in liquid nitrogen and the tubes were cut in 

scintillation tubes containing 300 µl of 2% of sodium dodecyl sulphate (SDS). The 

samples were left for 20 minutes to allow the pellet to be dissolved, and then 3 ml of 

scintillation fluid (OPTIPHASE HISafe III; Perkin-Elmer) was added to each tube, which 

were left overnight at room temperature (see Figure 2.2). All experiments were performed 

in triplicate, and the cell pellet radioactivity was determined using a 1450 MicroBeta Trilax 

scintillation counter.    
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2.9.2 Transport assay in Leishmania mexicana promastigotes: 

stigotes was 

igure 2.2 A Schematic of the rapid oil-stop protocol used in the uptake assays. (Adapted 
from Al-Salabi M. PhD Thesis, 2006, Glasgow University). 

 

Transport of radiolabelled permeants into Leishmania mexicana proma

measured exactly as described in section 2.9.1 for T. brucei brucei bloodstream forms with 

one exception, which is that the cells were grown in vitro for two days in 200 ml of 

HOMEM medium supplemented with 10% FCS.  
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2.10 FACS analysis: 

T. brucei brucei bloodstream forms were incubated in 25 ml flasks (10 ml final volume) in 

HMI-9 medium with different concentration of test compounds. The flasks were kept at 37 

ed as described by (Mutomba et al, 1997; Hammarton et al, 

2003b). About 1 ml of treated and non-treated cells (~2x106 cells/ml) was centrifuged at 

sured as previously described (Figarella et al., 2005; 

Uzcátegui et al., 2007) using propidium iodide staining. One millilitre of treated and 

ondrial membrane potential:  

The mitochondrial membrane potential of treated and untreated cells was evaluated using 

Tetramethylrhodamine ethyl ester (TMRE) (Figarella et al, 2006; Denninger et al, 2007). 

Briefly, following incubation of bloodstream trypanosomes with and without test 

°C with 5% CO2 atmosphere for up to 72 hours. At different time points, 1 ml was taken 

from each culture and added in Eppendorf tubes for assessment of DNA content, cellular 

permeability, and mitochondrial membrane potential.   

2.10.1  DNA content: 

This method was perform

1000 x g for 10 minutes at 4 °C. The pellet was re-suspended and fixed in 1 ml of 70% 

methanol and 30% PBS (pH 7.4) and left at 4 °C overnight. The cells were washed twice 

with 1 ml PBS by spinning at 2500 x g for 10 minutes at 4 °C, and re-suspended in 1 ml 

PBS containing Propidium iodide (Sigma) and RNAse (Sigma) both are at 10 µg/ml, and 

incubated in the dark at 37 °C for 45 minutes. A sample cells incubated without drug was 

used as a positive control, and the DNA content of samples stained by PI was analyzed 

with a Becton Dickinson Fluorescence Activated Cell Sorter Calibur (FACSCalibur) using 

the FL2-Area detector and CellQuest software.   

2.10.2  Cellular permeability: 

Plasma membrane integrity was mea

untreated cells (~2x106 cells/ml) in HMI-9/FCS medium was taken and spun at 2500 x g 

for 10 minutes at 4 °C, and resuspended in the same volume of propidium iodide solution 

(5 µg/ml) in the same medium. The samples were left in the dark for 10 minutes at room 

temperature, and immediately transferred into FACS tubes and analyzed with 

FACSCalibur as mentioned in section 2.10.1. Digitonin 6 µM was used as a positive 

control for plasma membrane disruption.  

2.10.3  Determination of the mitoch
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compounds for a determined time, 1 ml of cells (~106 cells/ml) was transferred to 

Eppendorf tubes and centrifuged for 10 minutes at 2500 x g, and then washed once in 1 ml 

This assay was performed using black bottom 96-well plates. 200 µl of test compounds, at 

ice the final concentration, were added to the wells in the first column in the plate as 

shown in Figure 2.3 (4 drugs in each plate). Then 100 µl of Phosphate buffer saline (PBS), 

ich, 100 µl of 

hydrogen peroxide (H2O2) at 100 µM was added to all the wells in the last column. Drug 

PBS. Thereafter, the pellet was resuspended in 1 ml PBS containing 25 nM of TMRE, and 

incubated at 37 °C for 30 minuets. Two positive controls were used: valinomycin 100 nM 

and troglitazone 10 µM. The samples were then analyzed with flow cytometry using the 

FL2-Heigth detector and CellQuest software.  

 

2.11 Measurement of reactive oxygen species (ROS): 

tw

pH 7.4, was added to all wells, leaving the last column empty. After wh

doubling dilutions were performed in the PBS from 50 µM to 0.01 µM. 100 µl of PBS, 

without cells, was added to the first four rows, and the same volume of culture at 2x106 

cells/ml in PBS was added to each well of the other rows. Immediately, and in the dark, 2 

µl of 1 mM dichlorofluorescein (DCF) was added to all wells. The plates were then 

incubated in a FLUOstar OPTIMA fluorimeter at 37 °C for T. brucei blood stream forms, 

and the fluorescence was monitored over time at 485 nm excitation and 520 nm emissions.   
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Figure 2.3. A diagram of a 96-well plate used in reactive oxygen species measurement. 

Four different drugs, 1; 2; 3; 4, were used in the plate. Serial drug doubling dilutions 
in phosphate buffer saline were performed in the presence (II) and absence (I) of cells 
at 1x106 cells/ml. Drug free (a) and 100 µM hydrogen peroxide were used as negative 
and positive controls, respectively.  

 

 
2.12 Measurement of lipid content in T. brucei:  

2.12.1  Lipid Extraction 
 
Lipids were extracted according to the method of (Bligh & Dyer, 1959). Briefly, mid-

logarithmic cells treated with either solvent or test compound for 8 h were collected by 

centrifugation (800 x g, 10 min) and washed with PBS and resuspended in 100 µl PBS and 

transferred to a glass tube. 375 µl of 1:2 (v/v) CHCl3: MeOH added to each tube and the 

samples were vortexed and agitated vigorously for a further 10-15 min. The samples were 

made biphasic by the addition of 125 µl of CHCl3, and vortexed and then 125 µl of H2O 

was added and vortexed again and spun at 1000 x g at room temperature for 5 min. The 

lower phase of each sample was transferred to a new glass vial, and the solvent was dried 

under nitrogen and stored dry at 4 ˚C until analysed by electrospray mass spectrometry 

(ES-MS and ES-MS-MS). 

 

2.12.2  Nano-electrospray ionization tandem mass spectrometry 
 
Samples were resuspended with chloroform/methanol (1:2 v/v) to the desired volume, 

depending on the desired resolution of peaks. An aliquot of total lipid extract was analyzed 
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with a Micromass Quattro Ultima triple quadrupole mass spectrometer equipped with a 

nanoelectrospray source. Samples were loaded into thin-wall nanoflow capillary tips 

(Waters) and analyzed by ES-MS in both positive and negative ion modes using a capillary 

voltage of 0.9 kV and cone voltages of 50V. Tandem mass spectra (MS-MS) were obtained 

using argon as the collision gas (~3.0 mTorr) with collision offset energies as follows: 

35V, PC/SM in positive ion mode, parent-ion scanning of m/z 184; 45V, GPIno in 

negative ion mode, parent-ion scanning of m/z 241; PE in negative ion mode, parent-ion 

scanning of m/z 196; 28V, PS in negative ion mode, neutral loss scanning of m/z 87; 45V; 

and 50V, all glycerophospholipids detected by precursor scanning for m/z 153 in negative 

ion mode. MS-MS daughter ion scanning was performed with a collision offset energy of 

35V.  

In positive ion mode, ions in the PC and SM spectra were annotated based on their 

[M+HNMe3(+)]+,[M-140], and [GPA-H] daughter ion derivatives, respectively and 

compared with that of their theoretical values and previous analyses (Richmond & Smith, 

2007). Annotation of all phospholipids is also based upon comparison with their theoretical 

values and other ES-MS and ES-MS-MS analyses conducted on whole cell extracts 

(Smith, T.K. unpublished data). Each spectrum encompasses at least 50 repetitive scans.   

2.13 Data analysis: 

The results were analyzed by using the GraphPad Prism software package, versions 3.0 

and 4.0 by using non-linear regression, plotting the data typically to sigmoid curves. The 

IC50 values were calculated by nonlinear regression. All transport experiments were 

performed in triplicate and kinetic parameters and IC50 values are presented as means and 

standard error (S.E.) of at least 3 independent experiments. Wilcoxon’s signed ranks test 

for two groups was used to assess the differences between the average EC50 values of 

groups of compounds against different species or of different forms within one species 

such as L. major and L. mexicana promastigotes, L. mexicana promastigotes and 

amastigotes, and between T. brucei, T. evansi and T. equiperdum bloodstream forms. The 

differences were considered statistically significant when the probabilities of equality, P 

values, were ≤0.05. All the data obtained by flow cytometery were analyzed by using 

CELLQuest software to determine the fluorescence of each sample. 10,000 cells were 

analyzed per run, and the percentages of cells in each cell cycle phase were determined 

with excluding cell autofluorescence and cell debris. 
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Chapter three 

3 Assessment of choline analogues as new anti-
kinetoplastid lead compounds 
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3.1 Introduction: 

Choline is a natural amine belonging to the B complex group of vitamins. It is naturally 

abundant in the lipids that make up the cell membrane and is also found in the 

neurotransmitter acetylcholine.  

In most protozoa, choline phospholipids and sphingomyelin are essential. This makes 

choline salvage and metabolism as potential drug targets. The choline group of compounds 

consists of a large number of choline analogues. More than 420 analogues have been 

synthesized (Calas et al, 1997; Calas et al, 2000; Vial, 1996). Most previous studies of 

these compounds concentrated on activity against malaria parasites, especially Plasmodium 

falciparum (Ancelin et al, 2003; Ancelin et al, 1985; Roggero et al, 2004). The thiazolium 

T1 and the bisquaternary (G25) and the bisthiazolium salts T3 and T4 were reported to 

exhibit high antimalarial activity against P. falciparum in vitro with EC50 values of 70, 

0.65, 2.3-9 and 0.65-2.9 nM, respectively (Hamze et al, 2005; Vial et al, 2004). G25 was 

also shown to inhibit the growth of Plasmodium vivax (Wengelnik et al, 2002) and G25, 

T3 and T4 display potent in vivo activities against Plasmodium vinckei in mice (Hamze et 

al, 2005; Vial et al, 2004). Choline compounds have also been reported to possess anti-

babesial properties (Richier et al, 2006). In this regard, T16, a Bisthiazolium analogue, was 

shown to potently inhibit the growth of Babesia canis and Babesia divergens, with EC50 

values of 7 and 28 nM, respectively (Richier et al, 2006). 

The discovery that choline analogues inhibit the synthesis of new membranes and block 

the growth of the parasite has stimulated efforts to test this class of compounds for 

potential as antitrypanosomal and antileishmanial chemotherapy. Seven analogues were 

investigated in this study for effects on kinetoplastid parasites: G25 (Bisquaternary), T3 

and T4 (Bisthiazolium), T1 (Monothiazolium), M38, MS1 and M53 (bisalkylamidine) 

(Figure 3.1). We initially assessed these compounds for overall activity against Leishmania 

and Trypanosoma species, but also against Human Embryonic Kidney (HEK) cells in 

culture for a preliminary assessment of toxicity to human cells.  
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Figure 3.1. Chemical structures of choline and various choline analogues. 
 
 

Colorimetric and fluorimetric methods using different stains like Alamar Blue, propidium 

iodide, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) are 

widely used in-vitro to asses the anti-protozoan activites. Alamar Blue (Resazurin) is used 

as an indicator for oxidation-reduction reactions. It is extensively used in colorimetric 

(Mikus & Steverding, 2000) and fluorimetric (Raz et al, 1997) methods to test drug 

activity against protozoan parasites. This dye has no toxic effects on living cells (Fumarola 

et al, 2004) and it is used to evaluate the sensitivity of cells to drugs, based on the ability of 

the intracellular enzymes of these cells to reduce the non-fluorescent Blue Resazurin 

(Figure 3.2A) to the fluorescent pink Resorufin (Figure 3.2B) (O'Brien et al, 2000). This 

colorimetric assay, being simple and rapid, was used in this study to measure the 

sensitivity of different compounds against different protozoan species namely T. brucei 

(bloodstream forms), L. major (promastigotes) and L. mexicana (promastigotes and 

amastigotes).  

An alternative fluorescent dye, propidium iodide (PI), was used in this study to evaluate 

drug action against the target cells. The main idea of this assay is based on the ability of 
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this dye to bind to nucleic acids. The dye is not able to cross the intact membrane of live 

cells, and its fluorescence thus reliably indicates the moment at which the integrity of the 

plasma membrane is breached (Gould et al; 2008).  

 

                                     

Figure 3.2 Structure of Alamar Blue dye. Non-reduced fluorescent form of Alamar 
Blue, Resazurin (A), and reduced Alamar Blue form, Resorufin (B). 
 
 
 

In order to understand the activity of any anti-parasitic compound, transport studies should 

be performed to investigate by which mechanism this drug is taken up. There are at least 

four relevant uptake modes that should be considered: endocytosis, passive diffusion, 

receptor-mediated uptake and transporter-mediated uptake, with channels usually allowing 

only the flux of ions or very small molecules (De Koning, 2001a). Pentamidine, an 

aromatic diamidine used to treat Human African Trypanosomisis (HAT) and antimony-

resistant leishmaniasis, is accumulated by African trypanosomes to millimolar 

concentrations and taken up by three different transporters: the P2 adenosine/ adenine 

transporter (encoded by the gene TbAT1), a high affinity pentamidine transporter 

(HAPT1), and a low affinity pentamidine transporter (LAPT1). About 50-70% of 

pentamidine is taken up by the P2 transporter, depending on the concentration of the drug 

(Bray et al, 2003).  In trypanosomes, drug resistance is very often associated with the loss 

of a transporter function, thus the presence of multiple transporters for pentamidine 

probably contributed to the observed lack of resistance for this drug, although resistance is 

common for some other diamidines (De Koning, 2001b). 

For the choline-type test compounds, it was investigated whether they enter the parasite 

through a designated choline transporter, or through the known drug transporters HAPT1 

and LAPT1.  
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3.2 In-vitro efficacy of choline-type compounds using Alamar 
Blue  

To examine the effect of the trypanocidal and leishmanicidal choline analogues using 

Alamar Blue in-vitro, all experiments were performed at least four times for each test 

compound, and the mean values and SE were calculated and shown in the tables below. 

The no-drug control was considered to represent a 100% value for fluorescence, typically 

measuring 100-250 arbitrary units out of a scale of 1000. Background fluorescence was 

observed to be typically 25–30 units. All early experiments were performed on a Perkin-

Elmer LS 55 fluorimeter equipped with a plate reader. Later experiments were performed 

with a BMG FLUOstar OPTIMA plate reader, and the arbitrary scale extends to 65,000. In 

this part, we investigated the suitability of Alamar Blue as a drug screening assay in-vitro 

with different species of protozoan parasites.  

3.2.1 Trypanosoma brucei brucei (BSF) 

Doubling serial dilutions of choline analogues were tested in order to determine the 

effective concentrations against three strains of Trypanosoma brucei brucei: Tb 427 wild 

type (TbAT1WT or T. brucei adenosine transporter 1), TbAT1 knock out (TbAT1KO), and 

the pentamidine-adapted clonal line (TbAT1-KO-B48). TbAT1-KO displays a high level 

of resistance to diminazene aceturate (Matovu et al, 2003) and B48 additionally displays a 

very high level of resistance to both pentamidine and melaminophenyl arsenicals (Bridges 

et al, 2007). 

The trypanosomes were incubated in serial dilutions of drugs for 48 h prior to the addition 

of 20 µl of resazurin dye. The trypanosomes were then incubated for a further 24 h before 

the plates were read. Drug free incubations and diminazene were utilized as negative and 

positive controls, respectively. Alamar Blue results with these three strains showed a 

strong trypanocidal activity on the three strains. Representative results of the Alamar Blue 

assays are displayed in Figure 3.3 and comparisons of effects of the choline analogues on 

the different strains show that there is no cross-resistance with the existing trypanocides. 

For example, strain B48, over 100-fold resistant to pentamidine and strongly cross-

resistant to melarsen oxide in vitro (Bridges et al., 2007), displayed almost the same 

sensitivity to the choline analogues as the Tb427 wild-type strain. With the sole exception 

of the EC50 value for T4 against the B48 strain (Table 3.1), no significantly different 

effects of choline agents were observed on control and resitant strains. 
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 Figure 3.3. Sensitivity of bloodstream forms of three T. brucei clones, Tb427 (A), 
TbAT1-KO (B), and KO-B48 (C), to seven choline compounds.  
T1 (∆), T3 (■), T4 (○), M38 (♦), G25 (▼), MS1 (□), and M53 (◊). Diminazene (▲) was 
used as a positive control. The data shown is a representative experiment using 
Alamar Blue method as described in section 2.3.1.  
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Some of the choline-type compounds display a similar EC50 values as the control 

(diminazene). Compound MS1 performed the best against the three strains, with EC50 

values of 0.13 ± 0.02 (n=4), 0.25 ± 0.04 (n=4), and 0.18 ± 0.01 (n=6) µM against the WT, 

KO, KO-B48 strains, respectively.  

 

Table 3.1 Comparisons of EC50 values of choline analogues against T. brucei clones 
Tb-427, TbAT1KO, and KO-B48 evaluated by Alamar Blue. Values are the average ± 
SE of 4-6 independent experiments. 
 

T. brucei  
(WT) 

T. brucei  
(KO) 

T. brucei  
(KO-B48) 

compound 

EC50 (µM) EC50 (µM) EC50 (µM) 

T1 1.8 ± 0.1 2.2 ± 0.5 2.3 ± 0.2 

T3 7.9± 2 11± 2 10± 0.9 

T4 0.61 ± 0.2 2.0 ± 0.9 2.5 ± 0.2** 

M38 0.17 ± 0.06 0.28 ± 0.1 0.23 ± 0.01 

G25 0.20 ± 0.04 0.37 ± 0.1 0.34 ± 0.03 

MS1 0.13 ± 0.02 0.25 ± 0.04 0.18 ± 0.01 

M53 2.6 ± 0.7 4.0 ± 0.2 4.7 ± 0.6 

diminazene 0.10 ± 0.01 2.4 ± 0.3*** 0.29 ± 0.1 

Pentamidine1 0.0021 ± 0.0002 0.0079 ± 0.0011 0.27 ± 0.02 

 
1 values from Bridges et al., 2007. 

  **, P<0.01 and **, P<0.001 ompared to the WT strain, using an unpaired Student’s  
                               T test. 
 

3.2.2 Leishmania major and L. mexicana promastigotes using Alamar 
Blue dye: 

Promastigotes of L. major and L. mexicana were incubated with serial dilutions of drugs 

for 72 h , after which 20 µl of Alamar Blue dye was added to each well. The cells were 

then incubated for a further 48 h before the fluorescence was measured. Drug free 

incubations and pentamidine were used as negative and positive controls, respectively. The 

general results in promastigotes of L. major and L. mexicana with this group of drugs are 

similar to those in T. brucei strains, and the EC50 values of the seven investigated drugs 

have been summarized in Table 3.2. All compounds, except T3 and T4, displayed an 

activity better than pentamidine (Figure 3.4). However, no EC50 values could be 

determined for M53, due to its limited solubility in aqueous buffers (5 µM). 
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 Figure 3.4. In vitro efficacy of different serial concentrations of choline compounds. 
T1 (∆), T3 (■), T4 (○), M38 (♦), G25 (▼), and MS1 (□), against L. major (A) and L. 
mexicana (B) promastigotes using the Alamar Blue method. Pentamidine (▲) was 
used as a positive control.  

 
 

The data in Table 3.2 showed that T1 was the most effective compound against 

promastigotes of both species, L. major and L mexicana, with EC50 values of 0.14 ± 0.03 

(n=5) and 0.28 ± 0.08 (n=5), µM respectively, followed by MS1 and M38. The sensitivity 

to these compounds was slightly lower in L. mexicana than in L. major promastigotes 

(Table 3.2). T1 also had a potent antileishmanial activity against amastigotes of L 

mexicana, with an EC50 value of 1.7 ± 0.4 µM (n=5). For comparison between the two 

forms of L. mexicana, promastigotes and amastigotes, the results shown in Table 3.2 

indicated that the activity of all the tested choline-type compounds were lower in the latter 

stage than in the former stage. Pentamidine, a drug used currently against leishmaniasis, 
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had an EC50 of 14 ± 3 (n=5) against L. mexicana amastigotes and pesented a lower potency 

than all choline agents except T3. 

 

Table 3-2 Effective concentration (EC50) of choline compounds on promastigotes and 
amastigotes of the two species of Leishmania evaluated by Alamar Blue assay. NS, not 
significant; ND, not determined. NE, no effect at indicated concentration. GI, growth 
inhibitory at a concentration of approx 3 µM. Values are the average ± SE of 3-5 
independent experiments.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L. major 
 (promastigote) 

L. mexicana 
 (promastigote) 

 P-value*  L. mexicana 
 (amastigote) 

P-value**  compound 

EC50 (µM) EC50 (µM)  EC50 (µM)  

T1 0.14 ± 0.03 0.28 ± 0.08   NS 1.7 ± 0.4 P<0.02 

T3 24 ± 5 33± 3 NS 38 ± 10 NS 

T4 4.3 ± 0.9 6.9 ± 0.5 NS 13 ± 4 NS 

M38 0.68 ± 0.07 0.95 ± 0.1 NS 2.9 ± 0.9 P<0.05 

G25 1.1 ± 0.2 2.1 ± 0.3 P<0.02 4.8 ± 1 NS 

MS1 0.29 ± 0.03 0.42 ± 0.03 NS 3.0 ± 0.6 P<0.01 

M53 GI NE, 5 µM ND 3.4 ± 1.7 ND 

 pentamidine 2.9 ± 0.4 2.9 ± 0.5 NS 14± 3 NS 

*= significant differences between L. major and L. mexicana promastigotes (Student T-test). 
      ** = significant differences between L. mexicana promastigotes and amastigotes (Student T-test). 

 

 

3.3 Cytotoxic activities of choline analogues using Human Embryonic 
Kidney (HEK) cells 

The toxic effect of choline compounds, at concentrations up to 400 µM of the choline 

anolgues on HEK cells was evaluated after an incubation time for 40 h in-vitro using the 

Alamar Blue (AB) method described in section 2.1.5. Our results indicate that there is only 

a low toxicity associated with some of the choline compounds. These results also indicate 

that these compounds have different levels of toxicity. However, the Selectivity Index 

(S.I., EC50 (human cells)/EC50 (parasite)) is very high for some of them (Table 3.3), mostly 

depending on their antiparasitic EC50 values rather than their activity against HEK cells. 

M38 and G25, in particular, displayed an excellent S.I. against both trypanosomes and 

leishmania promastigotes in vitro. T1 displayed a promising Selectivity index only against 

promastigotes. For clinical application, it is very important to consider a Selectivity index 
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(May et al, 2006). Obviously, a higher index increases the chance of a non-toxic but 

curative dosage of a test drugs.  

 
 

Table 3-3. EC50 values and Selectivity Index of Human Embryonic Kidney cells 
treated by choline compounds in Trypanosoma and Leishmania. 
 ND, not determined. For M53, no toxicity could be observed at the limit of solubility, thus 
no Selectivity Index could be calculated. 
 

drug HEK       
  EC50 (µM) 

T. brucei  
Tb 427 

T. brucei  
TbAT1KO 

T. brucei 
KO-B48 

L. major         
promastigote 

L. mexicana 
promastigote 

L. mexicana 
amastigote 

T1 41.9 23 19 18 303 152 25 

T3 597 63 44 49 70 15 57 

T4 508 821 487 201 116 33 39 

M38 247 1409 869 1064 364 252 86 

G25 364 1480 801 885 278 134 63 

MS1 65 490 255 365 226 161 22 

M53 ND ND ND ND ND ND ND 

 

3.4 Comparison of Alamar Blue and propidium iodide-based 
assays for determination of EC50 values:  

We have recently developed an alternative to the standard Alamar Blue assay, using the 

fluorophore propidium iodide (PI). This protocol has several advantages over the Alamer 

Blue assay, including that the outcome of the test is not dependent on the metabolic 

activity of the parasites. Conceivably, the test compounds themselves could influence the 

reduction of the AB dye to its fluorescent state (resorufin), or accelerate it to colourless, 

non-fluorescent hydroresorufin (Gould et al., 2008). With the new protocol available late 

in this project we decided to verify the antiparasitic activity of the choline analogues. 

 For this assay, used to determine EC50 values for test compounds, propidium iodide dye is 

added at the end of the incubation with the test compound; it is not, as Alamar Blue, 

incubated with the parasites while in culture. Digitonin was added together with the PI, in 

order to permeabilise the cells to PI. The level of fluorescence was, under those conditions, 

directly proportional to the number of cells in the well (Gould et al., 2008).  

 67



Hasan Ibrahim, 2009   Chapter 3 

The Alamar Blue assay and propidium iodide assay were performed using the same 

conditions and 96-well plates, as described in chapter 2, section 2.4. In the propidium 

iodide assay, cells of T. brucei bloodstream forms or promastigotes of L. major and L. 

mexicana were incubated for 72 h in the appropriate medium. Then 20 µl of propidium 

iodide with digitonin (final concentration 9 µM and 20 µM, respectively) was added, 

followed by 1 h incubation in the same atmosphere.  

The data show that the EC50 values obtained with the propidium iodide plus digitonin assay 

were very close to those acquired using the Alamar Blue assay for bloodstream forms of T. 

brucei WT (Figure 3.5A), L. major promastigotes (Figure 3.5B) and L. mexicana 

promastigotes (Figure 3.5 C).  

In order to investigate whether the different incubation periods of L. major promastigotes 

influenced results, the more potent choline compounds were tested by setting up four 

identical plates (as described previously) at the same time, and after predetermined times 

(2, 3, 4, and 5 days) propidium iodide and digitonin were added, and fluorescence read 

after 1 h . The data show that there are no significant differences in EC50 values using the 

propidium iodide assay after 2, 3, 4, or 5 days of incubation with choline compounds 

(Figure 3.6). However, some differences were noted in pentamidine between the first and 

last two days probably as a result of the very slow action of pentamidine on these parasites. 

The same values were obtained from each plate after freezing at -20 °C for 24 h after the 

addition of PI/digitonin, showing that an additional freeze thaw cycle did not cause further 

cell lysis. 
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Figure 3.5. Comparison of EC50 values of choline compounds measured by propidium 
dide and Alamar Blue methods in three different types of parasites, bloodstream 

forms of T. brucei s427 (A); promastigotes of L. major (B) and L. mexicana (C). 
Values are the average ± SE of 3 independent Alamar Blue and PI experiments. 
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Figure 3.6. Effect of the incubation time of L. major promastigotes treated by some 
holine drugs on the development of propidium iodide fluorescence. Four plates were 

set up at the same time and incubated for 2 (red) 3 (green), 4 (blue), and 5 (pink) 
. entamidine was used as a positive control.  

 

romastigotes of L. major. Therefore, this incubation period 

confirmation. 

To investigate whether the 20 µM of digitonin used killed all the cells, doubling serial 

propid  promastigotes of L. major at a cell density 5x107 cells/ml. The cells 

 

c

days  P

The results demonstrate that 48 h is a sufficient incubation time for drug screening assay 

using propidium iodide with p

might be valid for all species of Leishmania, although this needs further experimental 

dilutions of digitonin, starting at 25 µM, were incubated in the presence of 9 µM of 

ium iodide with

were monitored for 2 h using a FLUOstar OPTIMA plate reader. The measurements shown 

in Figure 3.7 indicate that 6.2 µM of digitonin is able to kill all the promastigotes within 

the first 15 min of incubation.  
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Figure 3.7. Development of fluorescence intensity in L. major promastigotes over 2 h 
due to binding of propidium iodide with DNA of permeable cells using different 
concentrations of digitonin.  

(a) 25 µM; (b) 12.5 µM; (c) 6.25 µM; (d) 3.13 µM; (e) 1.56 µM; (f) 0.78  µM; and (g) 
no-drug control. 

 

3.5 Assessment of choline uptake in T. b. brucei and L. 

understand the mechanism of action of the choline analogues, we 

ptake of [3H]-choline into Leishmania mexicana promastigotes and Trypanosoma brucei 

rucei bloodstream forms were performed using a rapid oil-stop protocol as described in 

Fl
uo

re
se

nc
e

mexicana. 

In order to fully 

investigated their effect on choline uptake by the parasite using the classical uptake 

technique. It was ascertained whether the choline compounds tested in this study enter the 

parasite through a designated choline transporter or not. 

U

b

section 2.9. All experiments were performed in triplicate and radioactivity in the cell 

pellets was determined using liquid scintillation counting. Preliminary transport studies 

were performed to investigate choline uptake in T. brucei bloodstream forms and L. 

mexicana promastigotes.  

Assessment of choline transport by T. brucei bloodstream forms showed that no uptake of 

0.25 µM [3H]-choline was detectable in the presence or absence of 1 mM of unlabelled 

choline over 60 s (Figure 3.8A). These results suggested that T. brucei bloodstream forms 

do not express choline transporters. In contrast, the transport of 0.25 µM [3H]-choline by L. 
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 72

mexicana promasatigotes was linear for at least 20 s, and plateaued at 0.15 pmol/107 cells 

after 20 s of incubation (Figure 3.8B). 

 

m cana promastigotes over 120 

S.E. In Figure A, linear regression through either data set produced a line (not 
shown) with a slope that was not significantly different from zero (F-test; GraphPad 

Figure 3.8. Time course of 0.25 µM [3H]-choline uptake by strains of trypanosomes 
and Leishmania. 

(A) T. brucei 427 bloodstream forms and (B) L. exi
seconds in the presence (○) or absence (■) 1 mM unlabelled choline. Assay was 
performed in triplicate and representative of 4 similar experiments. Error bars are 

Prism).  

 
 

We investigated the effect of choline analogues on [3H]-choline uptake in L. mexicana 

promastigotes. Transport of [3H]-choline in L. mexicana promastigotes, assessed after 10 

seconds of radiolabel incubation, was inhibited by T1 and T3 (Figure 3.9). These two 

compounds were effective inhibitors of [3H]-choline transport with average Ki values of 

4.0 ± 0.3 µM and 0.41 ± 0.1 µM (n=3), respectively. Indeed, T3 displayed a very similar 

affinity as choline itself, which displayed an average Km of 0.49 ± 0.2 µM and Vmax of 0.11 

± 0.04 pmol (107 cells)-1s-1 (n=4). The inhibition curves with T1 and T3 were consistent 

with competitive inhibition, displaying Hill slopes near the theoretical value of -1. The 

effects of the other choline analogues on [3H]-choline uptake were not determined.  
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Figure 3.9. Inhibition of 0.25 µM [3H]-choline uptake in L. mexicana promastigotes by 
various concentrations of unlabelled choline (■), T1 (▲) and T3 (▼), with IC50 values 
of 2.6 µM, 5.4 µM and 0.87 µM, respectively. The inset shows the conversion of 
choline inhibition data to Michaelis-Menten plot of total choline uptake, with a Km 
value of 1.3 µM and a Vmax of 0.012 pmol (107 cells)-1s-1. 

3.6 Choline analogues as inhibitors of pentamidine transport in 
T. b. brucei 

The best characterised drug transporters in T. brucei are the HAPT and LAPT transporters 

that are implicated in the uptake of diamidine drugs such as pentamidine (de Koning, 

e activity of pentamidine transporters in T. brucei 

ormed in three independent experiments, each performed in triplicate. The 

results indicated that G25 and M38 did not inhibit the [3H]-pentamidine uptake at the 

oncentrations at which they are pharmacologically active, and are clearly poor substrates 

Figure 3.10), with Ki values 44 ± 10 µM (n=4) and 45 ± 4 µM (n=3) 

results were obtained for these two compounds of LAPT1 (Figure 

2008). With the exception of the monocationic T1, the choline analogues are structurally 

similar to pentamidine in that they are dications in which the positively charged end groups 

are joined through a flexible aliphatic linker chain. In order to determine whether choline 

compounds can interfere with th

bloodstream forms and might possibly be substrates for these transporters, pentamidine 

uptake assays were performed using [3H]-pentamidine at 40 nM for HAPT1 and 1 µM for 

LAPT1, as their respective Km values are 36 ± 6 nM and 56 ± 8 µM (De Koning, 2001b). 

Under these conditions the two transporters can be studied in virtual isolation. These 

assays were perf

c

of T. brucei HAPT1 (

respectively. Similar 

3.11), with Ki values 560 ± 200 µM (n=3) for G25 and 200 ± 70 µM (n=3) for M38. T4 

was also tested and the IC50 values were 210 ± 50 µM (n=3) and >1000 µM (n=1) for 

 73



Hasan Ibrahim, 2009   Chapter 3 

HAPT1 and LAPT1, respectively. In each [3H]-pentamidine transport experiment, 

unlabeled pentamidine was used as a positive control and inhibited HAPT and LAPT with 

average Km values of 0.035 ± 0.005 µM (n=4) and 61 ± 8 µM (n=5), respectively, values 

nearly identical to those published previously (De Koning, 2001b). 
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Figure 3.10. Inhibition of 0.04 µM [3H]-pentamidine uptake (high affinity 
pentamidine transporter) in T. brucei 427 bloodstream forms by various 
concentrations of G25 (■), M38 (▲) and unlabeled pentamidine (▼), with IC50 values 
of 22.2 µM, 115 µM and 0.11 µM, respectively. The inset shows the conversion of the 
pentamidine inhibition plot to a Michaelis-Menten curve. 
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Figure 3.11. Inhibition of 1 µM [3H]-pentamidine uptake (low affinity pentamidine 
transporter) in T. brucei 427 bloodstream forms by various concentrations of G25 (■), 
M38 (▲) and unlabeled pentamidine (▼), with IC50 values of 43.5 µM, 158 µM and 
19.6 µM, respectively. The inset displays the conversion of the pentamidine inhibition 
data to a Michaelis-Menten plot. 
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The IC50 values of choline compounds on HAPT1 were approximately 1000 lower affin

than that for pentamidine, and on LAPT displayed also lower affinity than pentamidine. It 

unlikely that these pentamidine transporters mediate the uptake of these compounds, as th

flux would be very low at the submicromolar concentration of which the compounds act on t

trypanosomes.  

ity 

is 

e 

he 

 

 

 not to pentamidine and arsenical drugs like melarsen oxide, melarsoprol, 

and melarsamine hydrochloride, whereas TbAT1KO-B48 has a very high resistance level 

itivity of the human pathogenic African 

trypanosomes, T. b. gambiense and T. b. rhodesiense in vitro (Raz et al, 1997) and against 

3.7 Discussion 

It was demonstrated in this study that choline analogues have anti-parasitic activities 

against Trypanosoma and Leishmania species. In particular, the activities of M38, G25 and 

MS1 against bloodstream forms of three different strains of Trypanosoma brucei brucei 

(Tb427 WT, TbAT1-KO and TbAT1 KO-B48) was very promising and close to the level 

of the positive control, diminazene aceturate. TbAT1KO has a high level of resistance to 

diminazene, but

to pentamidine. Considering the severe problems with drug resistance in the field 

(Delespaux & De Koning, 2007), the apparent lack of cross-resistance between the choline 

analogues and the diamidine and arsenical classes of trypanoscides is an absolute condition 

for the further development of any agent against African trypanosomiasis. It must also be 

considered that this study only assessed a small sample of the existing choline analogue 

library. As such, the activities identified are highly encouraging. The same is true for the 

antileishmanial activities reported here, with the activity of T1 ten-fold better than 

pentamidine. 

Many methods like microscopic counting (Rolon et al, 2006), colorimetric MTT assay 

(Mosmann, 1983; Ferrari et al, 1990), acid phosphate activity (Bodley et al, 1995), Alamar 

Blue assay (Raz et al, 1997; Mikus & Steverding, 2000; Rolon et al, 2006) and propidium 

iodide assay (Gould et al, 2008) have been described to determine the drug susceptibility 

of different pathogenic cells. Alamar Blue, an endpoint measurement for cytotoxicity, is a 

fast, sensitive and simple method for drug screening, and the cell viability can be measured 

by performing cell counts during the incubation time. This method was found to be an 

acceptable tool for measuring the drug sens

L. major promastigotes (Mikus & Steverding, 2000), and L. mexicana amastigotes (Al 

Salabi & De Koning, 2005). 
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Yet, problems with the Alamar Blue assay exist. It needs to be optimized for all type, as 

they can metabolise the dye at different rates, but over incubation must be avoided as cells 

can metabolise the fluorescent resorufin to non-fluorescent and colorless hydroresorufin 

(O'Brien et al, 2000). Compared with T. brucei bloodstream forms and human embryonic 

kidney cells, promastigotes of L. major and L. mexicana and amastigotes of L. mexicana 

reduced Alamar Blue dye more slowly (Gould et al, 2008). The same result have been 

obtained by Mikus & Steverding (2000) and Rolon et al., (2006) when they found that the 

reduction of Alamar Blue is more slowly in L. major promastigotes and T. cruzi 

ation, the 

ent of the disease. This finding is reassuring 

2 12 oderate 

anti-parasitic activity of this compound whilst the dicationic nature of T4 might contribute 

to the significant increase in the anti-parasitic activity of this compound. 

epimastigotes, respectively.  In this study, the optimal cell density and incubation period 

for T. brucei were found to be 105 cells/ml and 48 h plus 24 h with Alamar Blue, 

respectively. In all Leishmania species these parameters were 106 cells/ml and 72 h plus 48 

h with Alamar Blue. Raz et al, (1997) found that the optimal period for Alamar Blue 

incubation for T. b. rhodesiense and T. b. gambiense was 66 h Plus 6 h or 24 h, 

respectively, after adding the dye. The differences in the rate of Alamar Blue metabolism 

between the different types of cells may in past attributed to differences in incub

temperature and the doubling time.  

Choline compounds designated T1, M38, G25 and MS1 inhibited the growth of 

Leishmania species with EC50 values less than 2.0 µM. Interestingly the EC50 value of less 

than 2.0 µM obtained for some of the compounds studied is lower than that of 

pentamidine, a drug used in the routine treatm

considering the current need for novel anti-parasitic drugs to replace the routinely used 

drugs for which the parasites have developed resistance. Choline compounds, with the 

exception of compound T3 and M53, also showed significant anti-parasitic activity against 

trypanosomes.  

The level of potency of these choline compounds appears to be determined, among other 

things, by the presence or absence of a second cationic ring. Against the T. brucei 

bloodstream forms, the bisthiazolium T4 (0.61 µM) was observed to be 3 times more 

active than the monothiazolium T1 (1.8 µM). A similar trend in activity against 

Plasmodium species has previously been reported (Hamze et al, 2005). The presence of an 

aliphatic side chain [(CH ) ] in compound T1 could probably account for the m
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Up to a concentration of 400 µM, the choline analogues were found to be non-toxic to 

HEK cells. It must be emphasized that it is very important to consider the selectivity index 

D50/EC50] of a drug before clinical use (May et al, 2006). Higher index means the drug is 

ss toxic to host cells. Some of the compounds tested in the current study were found to 

have a lower therapeutic index. This observation is quite important since it implies that 

me of the choline compounds may lend themselves as novel anti-leishmania and/or anti-

trypanosomic drugs. It is now imperative that a much larger group of choline compounds is 

aluated for activities against these parasites. 

The propidium iodide fluorescence procedure was used in this study because it is more 

rapid than Alamar Blue and is not influenced by the level of cellular metabolism. The 

staining by PI takes 1 h prior to fluorescence reading compared with the Alamar Blue 

which is 24 or 48 h depending on the cell type. Each of the dyes has its own mode of 

indicating the number of cells. The main idea of the PI assay is that the use of digitonin, to 

permeabilise all the cells in each well, allows the PI dye to cross the cell membrane of cells 

to bind the nucleic acids, upon w ethod is sensitive and the level 

of fluorescence correlates well with cell numbers (Gould et al, 2008). Importantly, the 

EC50 e sing 

Alam l

Data obtained s do not 

express specific choline transporters acting in the micromolar concentration range. This 

observation is consistent with the results obtained by (Rifkin et al, 1995). How the choline 

compounds traverse the cell wall of the parasites is therefore a question that remains to be 

answered. Further investigations are needed in this direction. Generally, there are at least 

four different uptake modes in protozoan parasites: endocytosis, passive diffusion, 

receptor-mediated uptake and transporter-mediated uptake (De Koning, 2001a).  

Labeled choline was taken up by L. mexicana promastigotes and it was inhibited by 

unlabeled choline and some choline analogues like T1 and T3 with apparent Km values of 

0.49, 4.0 and 0.41 µM, respectively. This result indicates that promastigotes of Leishmania 

spp express choline transporter(s). Such a carrier was previously reported by (Zufferey & 

Mamoun, 2002), with a Km value of 2.5 µM.  

Pentamidine one of the controls in this study is known to accumulate in trypanosomes to 

millimolar concentrations and studies indicate that it is taken up by three different 

transporters: the P2 adenosine/adenine transporter; a high affinity pentamidine transporter 

[L

le

so

ev

hich it fluoresces. This m

valu s obtained here with the PI method were very similar to those obtained u

ar B ue. 

in this study strongly suggest that T. brucei bloodstream form
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(HAPT1); and a low affinity pentamidine transporter (LAPT1 (De Koning, 2001b). Since 

uptake of pentamidine into the parasites seemed not to be inhibited by any of the choline 

ally relevant concentrations it is not likely that the choline 

compounds are taken into the cell through either the low or high affinity transporters. 

analogue at pharmacologic

Uptake through the P2 transporter was not specifically addressed but must be considered 

highly unlikely given the structures of choline compounds, which do not contain the well-

established P2 recognition motif (Luscher et al, 2007; De Koning et al, 2005). 
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Chapter Four 

4 A study of the mechanism of action of the 
choline analogues in kinetoplastida 
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4.1 Introduction 

In this chapter we investigate how the choline compounds interact with Trypanosoma 

rucei cells. The first parameter is to study the effect on growth, giving information about 

e rate at which the compounds affect the cell population, and whether the effect is 

irectly on the viability of the parasites (parasitocidal effect), or rather on their ability to 

ivide (parasitostatic effect).  

here are many ways to study growth curves in parasitic protozoa. In this study, assays 

ke direct microscopic cell counts, spectrophotometric lysis assays and viability assays 

ith propidium iodide were used to assess the cells’ viability and growth. Flow cytometry 

as used to analyze cell cycle progression, identifying trypanosomes in the G1, S, and 

2/M stages. The kinetoplast and nucleus undergo division separately, with the division of 

rucei life cycle, 

mature, a 

new one is formed, and the daughter flagellum is starting to grow out. The kinetoplast S 

crotic cells due to plasma membrane 

disruption. Propidium iodide fluorescence was monitored both in real time in a fluorimeter 

(up to 8 hours) and using flow cytometry aft  low concentrations 

of the test compounds for a prolonged time. We further used flow cytometry to asses the 

mitochondrial membrane potential Ψm, using the fluorophore Tetramethylrhodamine ethyl 

ester (TMRE). By studying cellular permeability, Ψm and DNA content in parallel we 

aimed to establish whether changes in cell cycle, DNA integrity or mitochondrial function 

occur before loss of cell integrity. We also examined whether the cell death process by 

choline compounds is mediated by the production of reactive oxygen species in T. brucei. 

Finally, we investigated whether incubation with these choline analogues alters the plasma 

membrane lipid composition of T. b. brucei through inhibition of choline lipid synthesis.  

b

th

d

d

T

li

w

w

G

the former proceeding first (see Figure 4.1). In the G1 phase of the T. b. b

all the cells have one kinetoplast and one nucleus, the pro-basal body becomes 

phase is shorter than the nuclear S phase and initially results in cells with two kinetoplasts 

and one nucleus, rapidly followed by nuclear division to cells with two kinetoplasts and 

two nuclei (G2 phase). These cells then enter M phase with the formation of a furrow and 

longitudinal division into parent and daughter cells (Hammarton et al, 2003a).  

Cell membrane permeability was assayed using the fluorescence dye propidium iodide, 

which does not cross intact membranes. At the moment of cell permeabilization, this 

fluorescent marker can stain the nuclei of ne

er exposure of cultures to
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The mode of action of similar choline analogues has been investigated previously in 

Plasmodium falciparum (Ancelin et al, 1985; Ancelin & Vial, 1986; Richier et al, 2006; 

Roggero et al, 2004). For example, the quaternary ammonium choline compounds were 

found to inhibit very early and specifically the synthesis of phosphatidylcholine and 

concomitantly block the in vitro growth of Plasmodium falciparum (Ancelin & Vial, 

1986). Ancelin et al. (1985) first demonstrated that the choline analogues hemicholinium 3 

and decyltrimethylammonium inhibit phosphatidylcholine (PC) biosynthesis in P. 

falciparum and Ancelin and Vial (1986) subsequently showed that these quaternary 

ammonium compounds acted on the choline transporter of the infected erythrocytes, 

characterised by Ancelin et al. (1991), thereby affecting the de novo PC biosynthesis 

en reported that some antimalarial choline analogues enter 

and the diamidine pentamidine enter the 

fected cell through the NPP, followed by uptake into the parasite by the P. falciparum 

f 

phosphatidylserine (PS) to phosphatidylethanolamine (PE) by phosphatidylserine 

pathways. Yet, it has also be

infected erythrocytes through the so-called New Permeation Pathways (NPP) and enter the 

parasites through a choline transporter characterised by Biagini et al (2004). Indeed, these 

authors showed that the choline analogue T16 

in

choline transporter (Biagini et al, 2004). As their primary impact, these compounds did not 

affect choline phosphorylation, the first step of the Kennedy pathway (see Chapter 3). 

Indeed, the quaternary ammonium compound G25 was shown to inhibit the process of de 

novo PC biosynthesis and at higher concentrations also the decarboxylation o

decarboxylase (Roggero et al., 2004). At a concentration of 1 µM G25 caused a significant 

inhibition (56%) of phosphatidylcholine biosynthesis, and almost complete inhibition at 10 

µM (Roggero et al, 2004). This seems to suggest that choline analogues have more than 

one impact on lipid metabolism, and might exert their antimalarial effects in different 

ways. 

This chapter will focus on biological activities of seven choline analogues on T. b. brucei 

with the aim of establishing how they effect this parasite and might exert their toxic effect. 

 
 

 81



Hasan Ibrahim, 2009   Chapter 4 

 
 
 
Figure 4.1. Cell division cycle of T. b. brucei. 
Reproduced from McKean (2003). (a) The trypanosome cell cycle is separated into 
nuclear and kinetoplast components. Cell cycle duration for exponentially growing 
procyclic trypanosomes is 8.5 h . Kinetoplast replication (S) initiates before nuclear S 
phase, and is considerably shorter and consequently kinetoplast segregation (D) 
occurs before the onset of nuclear mitosis (M). The phase annotated on the 
kinetoplast cycle as ‘A’ refers to the ‘apportioning’ phase during which basal bodies 
continue to move apart. (b) Schematic representations of trypanosome cells taken 
from various time points through the cell cycle. The black arrow indicates the 
direction and position of the cleavage furrow. 
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4.2 Choline analogues reversibly inhibit growth of 
kinetoplastid parasites but do not lead to rapid cell lysis 

In order to study the effect of choline compounds on the growth of T. brucei bloodstream 

forms (BSF), it was first necessary to construct a normal growth curve by collecting and 

counting cells at regular times of days. For BSF growth curves, a cell culture was set up at 

log phase 1x105 cells/ml in HMI-9 supplemented with 10% foetal calf serum. Using a 

haemocytometer, cell numbers were determined every 24 h until the cells stopped growing 

(stationary phase). Figure 4.2 shows a reference growth curve of T. b. brucei seeded at 104 

cells/ml. Cells grew logarithmically for three days, after which the culture entered 

stationary phase and cells started dying by day 5. 
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Figure 4.2. Graph showing the normal growth curve of T. brucei 427 bloodstream 
forms. Cells were grown in HMI-9 medium at 37 °C & 5% CO2. Cells were counted 
once a day for 6 days using a hemocytometer. 

e the effect of choline analogues on the viability and proliferation of a 

sessment of the effects of the compounds on the growth and survival of trypanosomes.  

Cells were seeded up to 24 h at 1x105 cells/ml in the presence and absence of different 

concentrations of 6 choline analogues (T1, T3, T4, M38, G25 and MS1) which were 

selected from the Alamar Blue results (described in chapter 3) as the most promising 

choline compounds against T. brucei BSF. When these cells were incubated with the 

 

Next, to investigat

population of T. brucei BSF, cell counts were performed on cultures incubated with the 

various choline analogues. This method is easy and inexpensive, and allows an initial 

as
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indicated compounds at 3 x EC50, G25 and T4 were the least effective in reducing the 

growth rate, which continued normally for up to 24 and 32 h , respectively. In contrast, T1, 

T3, M38 and MS1 appeared to inhibit growth almost immediately, even though the 

compounds did not start to reduce the cell population until approximately 30 h (data not 

shown). From this experiment it cannot distinguish between the two possibilities that T1, 

T3, M38 and MS1 rapidly induced cell cycle arrest, leading to an effective freeze of the 

cell density, or killed a proportion of the cell population at a rate similar to the growth rate. 

At 10 x EC50, T1 (EC50 = 1.8 µM) killed the cells in less than 4 h, whereas MS1 (EC50 = 

0.13 µM), induced cell death after 24 h and T3 (EC50 = 7.9 µM) in 28 h (Figure 4.3A). 

Thus, there was no correlation between EC50 value and the rate of decline of the cell 

population. In a next experiment, the cells were incubated with 20 µM of each of the 

compounds for 24 h, and the results in Figure 4.3B demonstrate that T1 and MS1 are fast 

choline compounds appear to gradually reduce the 

ypanosome population, even at concentrations of 10x EC50, with perhaps the exception of 

1, which displayed a more drastic trypanocidal effect. This may well be related to the fact 

that T1 is the only monocation, the other analogues all being symmetrical dimers of 

choline lipid analogues (see Figure 3.1). It is thus to be expected that the uptake dynamics 

of T1, for instance, might differ from the other compounds.  

acting drugs at this concentration, and they killed the population of BSF T. b. brucei in 

about 8 h. The onset of apparent cell death in the trypanosome population was between 2 

and 4 hours. In contrast, the other choline compounds caused a slower reduction in cell 

numbers, although most appeared to have an effect within one cell cycle, usually estimated 

at 8 hours under the conditions used. This is important to note as the cell population is not 

synchronised and the compounds might act on a specific point of the cell cycle.  

Overall, we can say that most of the 

tr

T
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Figure 4.3. In vitrol effect of choline analogues on proliferation of bloodstream forms 
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of T. brucei 427.  

The figure shows incubation in vitro with choline compounds at 10x their EC50 value 
(A) and 20 µM (B). Drug free (■), 0.5 µM PAO (▲), T1 (■), T3 (▲), T4 (▼), M38 (♦), 
G25 (●) and MS1 (■). The inset shows the same figure in lower magnification.  
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An alternative method of assessing the effects of compounds on a trypanosome population 

is the spectrophotometric assay used by Fairlamb and others (Fairlamb et al, 1992; Carter 

& Fairlamb, 1993; Bridges et al, 2007) to monitor cell lysis in response to melarsen oxide. 

The advantage of this assay over the cell count is that it allows the real time monitoring of 

up to eight trypanosome cultures using our HP-8453 spectrophotometer (Hewlett-Packard). 

Fairlamb and his collages defined the cell lysis as “all the trypanosomes were observed to 

ter 6 hours of incubation (Figure 4.4A). The same experiment was repeated with 

the increased drug concentration to 20 µM. The results showed that MS1 at this 

concentration started to affect cells after 2 hours of incubations, followed by T1 after 6 

hours (Figure 4.4B). The results obtained by the spectrophotometric assay confirmed those 

were resulted from the cell count and additionally showed that the choline compounds had 

no immediate effects on cell motility. 

 
 

have become swollen and immotile with loss of their normal refractile appearance” 

(Fairlamb et al, 1992). The assay really monitors light scatter by the highly motile 

trypanosomes in a cuvette, and a reduction in absorbtion may thus equally signify cell 

death or loss of motility as a result of, e.g., ATP depletion. The assay is performed at 37 °C 

in a full culture medium, but because it is not performed under CO2 atmoshere, it is only 

useful for up to 8 hours. 

The results showed that, at 10 µM, there is no significant activity of the choline analogues 

studied within the 8 hours of incubation time the experiment allows. Only MS1 started its 

effect af
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Figure 4.4. Inhibitory curves of choline analogues on mobility of T. brucei BSF 
measured by light scaterring. The figure shows the effect of 10 µM (A) and 20 µM (B) 
of (a) T1; (b) T3; (c) T4; (d) G25; (e) MS1 on the parasites. (f) 0.5 µM Phenyla
o
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The spectrophotometric assay was also performed to test whether the co-administration of 

1 µM pentamidine with 20 µM of some choline analogues has any effect on the cell lysis 

or not. This effect could be either synergistic, accelerating cell lysis, or antagonistic as 1 

µM pentamidine fully inhibits the HAPT and P2 drug transporters (Matovu et al, 2003). 

For these investigations, the T1 and MS1 compounds were used, and their activities were 

tested in the presence and absence of 1 µM pentamidine. There was no clear difference in 

the effect of T1 and MS1 in the presence of this concentration of pentamidine (Figure 4.5). 

Pentamidine at 1 µM itself had no effect (data not shown). The experiments were repeated 

with increased concentrations of pentamidine. The results show that the drug activity of 

MS1 increased slightly in the presence of 1, 10, 100 µM of pentamidine (Figure 4.6). From 

this result it can be concluded that uptake of the choline analogues is not dependent on the 

Figure 4.5. Effect of choline analogues on T. brucei light scatter in the presence or 
absence 1 µM of pentamidine. 50 µl of 400 f drugs were added to 950 µl of cell 
culture after 15 min of recording. Conditions from t = 0 min: a, 20 µM T1; b, 20 µM 

ntamidine; c, 20 µM MS1;  µM MS1 plus 1 µM pentamidine; e, 
sine oxide; f, no drug control. The figure shown is representative of 

P2 or the HAPT drug transporters. While some synergism was observed between MS1 and 

pentamidine this was at pentamidine concentrations that would be unattainable in patients. 

Surprisingly, 1 mM pentamidine completely prevented the effects of 20 µM MS1 (Figure 

4.6). This may be attributable to the pentamidine blocking the uptake mechanism for the 

drug rather than antagonism at the site of action, although this cannot be excluded.  
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Figure 4.6. Effect of serial dilutions of pentamidine on the activity of 20 µM of MS1 
for light scatter by T. brucei, measured at 750 nm by light absorbance. Traces: a, 20 
µM MS1; b, 20 µM MS1 plus 1 µM pentamidine; c, 20 µM MS1 plus 10 µM 
pentamidine; d, 20 µM MS1 plus 100 µM pentamidine; e, 20 µM MS1 plus 1 mM 
pentamidine; f, 1 mM pentamidine; g, 0.5 µM Phenylarsine oxide; h, drug free 
control. The shown experiments are representative of two similar repeats. 

  

Next, light scatter assays were used to explore the minimal duration of contact of the 

choline drugs with the parasites in order to exert a non-reversible trypanocidal effect. T1 

and MS1 were tested for reversibility of their activity. The cells were incubated with these 

drugs and the absorbance was monitored for up to 120 min, the cells were then washed 

twice in fresh HMI-9 medium and incubated for a further 5 hours with or without drugs, as 

described in section 2.6.2. The results in Figures 4.7A and 4.7B indicated that an 

incubation of T1 and MS1 did not affect cell viability when the cells were subsequently 

resuspended in fresh media without drug. A tentative conclusion can be drawn that 

trypanosomes must be continuously exposed to these test compounds until cell death 

occurs. 

 88



Hasan Ibrahim, 2009   Chapter 4 

A

0 60 120 180 240 300 360 420 480
0.00

0.25

0.50

0.75

1.00

1.25

a

bc

d

e
A

bs
or

ba
n

Time (mins)

ce
 (A

U
)

 

B

0 60 120 180 240 300 360 420 480
0.00

0.25

0.50

1.25

0.75

1.00

A
U

)

d

a
b

ce

Time (mins)

A
bs

or
ba

n

 

Figure 4.7. Reversibility curves of T. brucei s427 bloodstream forms with 20 µM of 
(A) T1 and (B) MS1.  

Drugs were added to cells ~5x107 cells/ml in HMI-9 medium after 15 min of 
recording. Monitored for 2 h at 750 nm and after then washed twice and re-suspend 
in fresh medium and monitored again for 5 h . Traces: a, No wash; b, cells washed 
after 2 h and resuspended in fresh medium; c, washed after 2 h and resuspended in 
20 µM of test compound; d, no drug control; and e, 0.5 µM phenylarsine oxide.  
 
 

ce
 (

cellular penetration of PI, is also much more sensitive to small changes and can be 

While the spectrophotometric assay used above allows real-time monitoring of cell 

populations, the results are relatively hard to interpret as a response could equally signify 

reduced motility or cell lysis. We thus recently developed a new assay (Gould et al., 2008) 

based on propidium iodide (PI), which allows monitoring of a breach of plasma membrane 

integrity as a proxy for cell death. This assay, based on fluorescence being developed on 
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performed in a 96 –well format, allowing the monitoring of many cultures in parallel, 

under a CO2 atmosphere. Parasites were exposed to various drug concentrations and the 

fluorescence was monitored for up to 8 hours in T. brucei and 20 hours in Leishmania 

under appropriate culture conditions.  

For the most active compounds, T1, M38, G25, and MS1, time-dose responses were 

investigated. Concentrations of 100, 50, 25, and 12.5 µM T1 killed T. brucei BSF in 15, 

30, 90, and 180 min respectively (Figure 4.8A), whereas these times were 30, 90, 150, and 

west concentration tested (6.25 µM) did not affect 

trypanosome viability for any of the 4 compounds tested. 

the dose response in promastigotes of L. 

major and L. mexicana. The EC50 values listed in Table 3.2 showed that, using the standard 

270 min respectively for MS1 (Figure 4.8B). M38 and G25 showed trypanocidal activity 

only at 100 and 50 µM, after 3 and 4 h, respectively (data not shown). Thus it is clear that 

these drugs only display fast trypanocidal activity at high concentrations, in excess of 100-

fold their EC50 values. The lo
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Figure 4.8. Dose response curves of two choline compounds. 

Figure shows the effect of T1 (A) and MS1 (B) when incubated with T. brucei 
bloodstream forms.Cells were cultured in HMI-9 medium supplemented with 10% 
FCS and treated with indicated drugs at different concentrations, 100 µM (a), 50 µM 
(b), 25 µM (c), 12.5 µM (d), 6.25 µM (e), and drug free (f). Propidium iodide at 9 µM 
was added and the fluorescence was monitored over time at 544 nm excitation and 
620 nm emissions.  

  
The same protocol was also utilized to measure 

Alamar Blue protocol, L. major promastigotes were very slightly more sensitive than L. 

mexicana promastigotes. The results depicted in Figure 4.9, however, show that the L. 
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mexicana promastigotes were killed more quickly by T1 and MS1. As with T. b. brucei, 

these compounds rapidly killed the parasites only at relatively high concentrations, 

considering the EC50 values were between 0.14 and 0.42 µM (Chapter 3). 

 

 

Figure 4.9. Comparison of dose response over time between promastigotes of L. major 
(A,B), and L. mexicana (C,D) for two choline analogues: T1 and MS1.Cells were 
seeded at 5x106 cells/ml in HOMEM+10% FCS. The drugs were added at: 100 µM 
(a), 50 µM (b), 25 µM (c), 12.5 µM (d), 6.25 µM (e), 3.125 µM (f), 1.56 µM (g), and 
drug free (h). The final concentration of propidium iodide was 9 µM.  
 
 
 

The compounds M38 and G25 displayed almost no activity against L. major promastigotes 

over the course of the experiment, even at 100 µM. The same experiment with L. mexicana 

showed approximately 50% lysis after 18 h with 25 µM M38 or with 12.5 µM G25 (data 

ot shown). n
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Complete lysis of parasite cell populations of the choline analogues in the above dose 

response assays, over the 20 hours of the experiment, occurred generally at over 100-fold 

the EC50 value. Therefore, these results suggest that incubation with such a high 

concentration of the choline analogues rapidly kills the trypanosomatid parasites through a 

different mode of action than incubation at low or sub-micromolar concentrations.   

 

 
4.3 Effect of choline lead compounds on the cell cycle 

We examined the in vitro antitrypanosomal effects of choline analogues on the cell cycle, 

plasma membrane integrity and DNA content of bloodstream forms of T. b. brucei.  

The permeability of the plasma membrane was assessed in treated and untreated cell 

cultures at ~2x106 cells/ml. The cells were spun at 2500 x g for 10 minutes at 4 °C, and re-

suspended in propidium iodide solution (5 µg/ml). After 10 minutes in the dark and at 

room temperature, the samples were analysed with FACSCalibur using FL2-Area detector 

and CellQuest software. Three different concentrations were used for each drug: 1, 2, and 5 

µM, and the fluorescence was measured at 4 time points 4, 24, 48, and 72 hours. The 

positive control, 6 µM digitonin, was used to permeabilize the cell plasma membrane. This 

assay uses the same principle of propidium iodide fluorescence as described above but 

allows far longer incubation times as the PI is only added at the termination of the 

incubation, instead of the cells being continuously exposed to the dye, which can itself 

affect cell division (Gould et al., 2008). In addition, the flow cytometric analysis also gives 

a snapshot of the DNA content of the permeable cells, which would show extensive DNA 

degradation. 

Lines I and II of Figure 4.10 show the controls for this assay. Panel I-A shows the drug-

free control after 72 hours of incubation, with virtually no fluorescence detectable in the 

10,000 cells counted, as the plasma membrane is intact, excluding the PI. Panel II-A shows 

a sample of the same cell population but treated with digitonin to permeabilise the plasma 

membrane, generating an intense fluorescence that peaks at 200 units, corresponding to 

cells with a ‘normal’ diploid set of chromosomes and a smaller peak at twice the intensity 

of cells undergoing cell division, with a 2K2N set of chromosomes. The combination of 

panels I-A and II-A thus shows that at 72 hours the plasma membranes of the control 

culture were intact and that the cells had a normal distribution of 1K1N and 2K2N cells. 

This result was repeated for cells exposed to 1% DMSO as the solvent of the choline test 
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compounds (Panels I-B and II-B), whereas Panels I-C and II-C show that the treatment 

ct on plasma membrane permeability after incubation for 4 hours (data not 

est compound. The percentage viable cells was defined as the 

(10.9% of cells permeable) and 2 µM (15.9%), compared to 9.85% for the drug free 

4.11E) also had a dose-dependent effect on cell viability. At the lowest concentration of 1 

with 6 µm digitonin does indeed permeabilise control (‘healthy’) cells. 

At a concentration of 5 µM, none of the compounds used in this study (see Chapter 3) had 

a noticeable effe

shown), in agreement with the earlier conclusion (section 4.2) that these compounds act 

slowly on trypanosome viability. 

Treatment with 1 µM compound G25 was illustrated in Figure 4.10 (rows III and IV) as an 

example for the analysis of the flow cytometry data. The cells analysed in row IV were 

taken from the same cultures as those in row III but treated with 6 µM digitonin to display 

what the DNA content would look like if the cells were fully permeable. At 24 h (panel III-

D), few cells were permeable to propidium iodide and the population consisted mostly of 

cells in a normal distribution of 1K1N and 2K2N cells (compare panels II-A and IV-D). 

Panels E show that at 48 h a majority of cells are permeable (small but clear difference 

between III-E and IV-E) and there is evidence of very extensive degradation of nucleic 

acids as the majority of cells display a very low level of fluorescence (broad peak at ~50 

units, corresponding to ≤25% of normal nucleic acid content in the cell). At 72 h (panels 

F), all cells were permeable to PI and extensive DNA damage was virtually universal. 

The results for all seven choline analogues have been summarised in Figure 4.11, plotting 

non-permeable (‘viable’) cells against incubation time for various concentrations (1 µM, 2 

µM and 5 µM) of the t

percentage of 1K1N and 2K2N cells in the digitonin-treated population, minus the 

percentage of 1K1N +2K2N cells in the non-digitonised population. In the example of 

Figure 4.10, 24 h of treatment with 1 µM G25 resulted in 79.8 – 11.5 = 68.3% viable cells, 

which was reduced to 29.8 – 19.8 = 10% after 48 h and 0% after 72 h , compared to 72.3% 

for the 1% DMSO control (Panels I-B and II-B). 

Compound T3 (Figure 4.11B) showed very little effect on cell permeability at 

concentrations up to 5 µM – perhaps unsurprising since its EC50 value was determined at 

~8 µM (Chapter 3). The effect of T1 (Figure 4.11A) was also marginal up to 72 h at 1 µM 

control. At 5 µM, however, there was a clear and increasing effect on cell viability after 

24, 48, and 72 h . Compounds T4 (Figure 4.11C), M38 (Figure 4.11D) and G25 (Figure 
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µM, MS1 permeabilised almost all cells within 24 h , reflecting its low EC50 value of 0.13 

µM. M53 had only a small effect on cell viability after 72 h at 5 µM, i.e. 2xEC50 (Figure 

4.11G). 

 
 

Figure 4.10. Flow cytometry analysis of cellular permeability of T. brucei bloodstream 
form stained with 5 µg/ml propidium iodide.  

(I): controls after 72 h , A, drug free control; B, 1% DMSO (v/v); and C, 6µM 
digitonin. (III): treated cells with 1 µM G25 at: D, 24 h ; E, 48 h ; and F, 72 h . (II) 
and (IV): the same samples in I and III respectively after adding 6 µM digitonin and 
analyzed after 10 min. 10,000 events were analysed. The data shown are 
representative of three independent experiments of three different concentrations of 
seven choline compounds (see appendix III for the equivalent data on the other 
choline compounds). 
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Figure 4.11. Flow cytometry analysis of T. brucei treated with choline analogues. 

Drug free (■), T1 (A), T3 (B), T4 (C), M38 (D), G25 (E), MS1 (F), and M53 
(G).Bloodstream form of T. brucei s427 were incubated in present of 1% DMSO (▼), 
1 µM (♦), 2 µM (○), and 5 µM (∆). Cells were taken at 24, 48, and 72 h and stained 
with 5 µg/ml propidium iodide and analyzed by flow cytometry as described in 
section 2.10.2. 
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The second step for investigating whether choline analogues have any effect on the cell 

cycle was to specifically measure the DNA content, with emphasis on the ratio between 

1K1N and 2K2N cells as well as the appearance of cells with higher chromosome copy 

umbers. For this method, untreated and treated cells with 5 µM, 7.5 µM, and 10 µM of 

cho pound were lysed at 8 and 24 % l, S t in 

the fridge till analysis. Cells were th ined 10 µg ropid

con at 10 µ and bated ark a C for 45 minutes before 

analyzing the DNA content by flow cytometry. The results, summ  in T  4.1, 

indicated the o clea ct of f the d com ds on mount of DNA 

in the cells. Moreover, the proportion of cells in G1 and G2/M phases did not change over 

a 24 h incubation time, with gated cells 60-70% in G1 and 20-30% in G2/M phases. As 

shown in Figure 4.12, an example figure, there were no significant differences between 

control and treated cells with T1 at any concentration, at up to 24 h. The results of the 

highest concentration (10 µM) showed that the es in G1 or G2 phase 

did not chan g the i tion Furth re, no  the 2 cuba  with 

choline analogues caused a significant proportion cells t ad acc lated  than 

2K2N amou

Zoids, cells  <1K1N DNA content, were excluded from the calculation of the 

K1N /2K2N Yet it ar fro ure 4. at the ortio ells in zoids 

ategory increased with incubation time and/or concentration of the test compound. In our 

pinion, this phenomenon may represent dead or terminally damaged cells with extensive 

NA degradation but a sufficiently intact cellular structure to be counted in the flow 

eter. DNA da  

4.13 and 

has been observed after treatment of T. b. brucei 

n

line test com h in 70

with 

methano 30% PB

ium iodide solution 

and kep

en sta /ml P

taining RNAse g/ml,  incu in d t 37 °

arized able

re was n r effe any o teste poun  the a

ratio of trypanosom

ge durin ncuba time. ermo ne of 4 h in tions

 of hat h umu more

nt of DNA.  

that had

1  ratios. is cle m Fig 12 th  prop n of c  the 

c

o

D

cytom mage was also particularly pronounced after 24 h incubation with 5 or

7.5 µM M38, but not with any of the other choline compounds (see Figure 

appendix III). Similar DNA degradation 

with specific prostaglandins (Figarella et al, 2006).  

This raises the possibility that some of the choline analogues cause DNA degradation 

and/or fragmentation prior to cell death. Further investigations will be required to establish 

whether this is part of the mechanism of action or a downstream effect of the primary 

cellular effect of these compounds. 

From Table 4.1 it can be noted that choline compounds did not have a specific effect on the 

cell cycle and did not cause cell cycle arrest - there is no clear accumulation of cells in a 

particular stage of the cell cycle. 
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Figure 4.12. Analysis of DNA content of T. brucei bloodstream forms incubated with 
compound T1. 

Cells were cultured in HMI-9 medium containing (A) no drug; (B) 5 µM, (C) 7.5 µM; 
and (D) 10 µM, and samples were withdrawn after (I) 8 h and (II) 24 h and analyzed 
by flow cytometry as described in section 2.10.1. 10,000 events were analyzed and the 
percentage of cells in each cell cycle phase was determined using CELLQuest 
software.  
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Figure 4.13. DNA degredation in T. brucei  bloodstream forms incubated for 24 h 
with 7.5 µM choline compounds. T1 (A); T3 (B); T4 (C); M38 (D); G25 (E) and M53 
(F).
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Table 4.1 FACS results of DNA Percentages of T. brucei bloodstream forms in 
presence and absence of three different concentrations of choline analogues after 8 h 
and 24 h.  

ND: not determined because too few cells with intact DNA were observed. 
 

8 h  24 h  compounds 
1K1N 
(%) 

2K2N 
(%) 

4K4N 
(%) 

1K1N 
(%) 

2K2N 
(%) 

4K4N 
(%) 

Drug free 70.4 25.2 4.4 70.1 25.0 4.9 
5 µM 61.0 31.7 7.3 70.9 23.7 5.4 
7.5 µM 64.2 29.8 6.1 66.8 26.5 6.7 

T3 

10 µM 63.3 30.8 5.9 65.8 26.9 7.3 
5 µM 63.2 29.9 6.9 73.9 21.7 4.5 
7.5 µM 60.4 31.6 7.9 72.6 22.2 5.2 

T4 

10 µM 72.2 24.3 3.5 74.1 21.1 4.8 
5 µM 76.0 20.2 3.8 83.5 14.4 2.1 
7.5 µM 77.3 19.0 3.7 79.7 16.9 3.5 

M38 

10 µM 76.0 20.4 3.6 ND ND ND 
5 µM 76.4 20.0 3.6 82.5 15.4 2.1 
7.5 µM 77.7 18.7 3.6 81.5 15.8 2.7 

G25 

10 µM 75.8 19.6 4.6 ND ND ND 
5 µM 75.6 21.1 3.3 ND ND ND 
7.5 µM 75.3 21.3 3.5 ND ND ND 

MS1 

10 µM ND ND ND ND ND ND 
5 µM 60.3 32.5 7.3 64.0 29.6 6.4 
7.5 µM 65.6 28.3 6.1 57.4 36.2 6.4 

M53 

5 6.4 10 µM 76.0 20.6 3.4 60.1 33.
 
 
 
 
 
 
4.4 Some choline compounds reduce the mitochondrial 

b

mbrane potential Ψm, either as an 

are given as the percentage of cells with fluorescence above 100 arbitrary units, which was 

mem rane potential 

To determine the changes of the mitochondrial me

apoptosis marker or as indicator of mitochondrial targeting, bloodstream forms of T. brucei 

were cultivated for up to 24 h in the presence and absence of 2 or 5 µM choline 

compounds. The samples were stained with 25 nM tetramethylrhodamine (TMRE) for 30 

min at 37 °C and analyzed by flow cytometry. Valinomycin was used as control for 

mitochondrial membrane depolarisation and troglitazone as a control for mitochondrial 

membrane hyperpolarisation as described for T. b. brucei by Denninger et al. (2007). 

Figure 4.14 depicts histograms of TMRE fluorescence with panels I-A and II-A displaying 

the control cells, incubated without test compound for 8 h and 16 h , respectively. Values 
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approximately 50% for the controls. A shift to higher fluorescence signifies an increased 

Ψm, whereas a shift to lower fluorescence signifies a depolarization of the mitochondrial 

membrane (Denninger et al, 2007).  

 

 
 

Figure 4.14. Effect of choline analogues on mitochondrial membrane potential as 
measured by flow cytometric analysis of T. brucei bloodstream forms stained with 25 
nM of tetra-methylrhodamine (TMRE).  

Control (A) and treated cells: (D) 5 µM T1; (E) 5 µM T4; (F) 2 µM M38; (G) 5 µM 
G25 and (H) 2 µM MS1, were harvested at (I) 8 and (II) 16 h and prepared for 
mitochondrial membrane potential analysis as described in chapter 2. The positive 
controls were performed with 100 nM valinomycin (B) and 10 µM troglitazone (C) 
for decreasing and increasing the mitochondrial membrane potential, respectively.   
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A B C D 
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51.0% 13.3% 80.6% 52.9% 

35.6% 26.1% 2.05% 4.0% 

50.3% 26.6% 82.5% 52.6% 

7.30% 8.71% 7.62% 0.52% 

 99



Hasan Ibrahim, 2009   Chapter 4 

Compared with the drug free control at 8 h (51.0%) and at 16 h (50.3%), the results 

showed that there was no effect on mitochondrial membrane potential with 5 µM of 

compounds T1, T3 and M53 for up to 24 h (Figure 4.15). At 8 h the percentages of these 

compounds were 52.9, 49.8 and 52.3%, whereas, at 16 h they were 52.6, 50.4 and 51.6% 

respectively. In contrast, 5 µM T4, 2 µM M38, 5 µM G25, and 2 µM MS1 caused a clear 

decrease in mitochondrial membrane potential occurred within 8 h cultivation (Figures 

4.14 and 4.15). These compounds clearly decreased Ψm, showing a reduction of cells with 

fluorescence >100 AU, from 50% at t = 0 h to 35.6, 26.1, 2.1, and 4.0%, respectively at 8  

h. The mitochondrial membrane was completely depolarised after 16 h in T4 (7.30%) and 

M38 (8.71%). Cells incubated with G25 for 16 h displayed two fluorescence peaks, the one 

at approximately 150AU representing cells with a highly depolarised mitochondrial 

membrane and those displaying fluorescence below 100 AU possibly represented dead 

cells. This interpretation means that 16 h of incubation with compound MS1 leaves all 

cells dead, and this is in agreement with results presented above (e.g. Figure 4.11).  
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orescence of TMRE. 
Figure 4.15. Effect of choline compounds on the mitochondrial membrane potential of 
T. brucei bloodstream forms as measured by flu

 (■) 5 µM T1; (▼) 5 µM T3; (▲) 5 µM T4; (♦) 2 µM M38; (●) 5 µM G25; (■) 2 µM 
MS1; (■) 100 nM valinomycin; (▲) 10 µM troglitazone and (■) drug free control. 
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4.5 Effects of choline analogues on the generation of Reactive 
Oxygen Species (ROS) in T. b. brucei. 

gth of 485 nm and 520 nm for 

emissions. Cells in the stationary phase at 2x106 cells/ml in PBS were seeded in 96 well 

mes in culture generate substantial amounts of reactive 

oxygen species over time, which is greatly enhanced in the presence of H2O2. The rate at 

In order to assess the production of reactive oxygen species (ROS) in T. brucei 

bloodstream forms, the ROS-sensitive fluorescent dye, 2’,7’-dichlorodihydrofluorescein 

diacetate (DCFH-DH) (Figarella et al, 2006), was used to measure the increase of 

fluorescence using fluorimetry at an excitation wavelen

plates and exposed to serial doubling dilution of choline compounds. The dye was then 

directly added to all the plate wells at 10 µM as a final concentration and the fluorescence 

signals was measured over time. Four wells were included at each plate as controls: (1) 

2x106 cells/ml in PBS without test compound, (2) 2x106 cells/ml in PBS incubated with 

100 µM hydrogen peroxide, (3) PBS without cells or test compound and (4) 100 µM H2O2 

in PBS without cells.  

The results show that trypanoso

which ROS were generated was dose-dependently reduced by incubation with T1 and MS1 

(Figure 4.16 A, B). The same trends continued for up to 12 h (data not shown), with the no 

drug control showing a higher production of ROS than cells incubated with MS1 or T1. 
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Figure 4.16. Effect of serial dilutions of choline analogues on reactive oxygen species 
production in bloodstream forms of T. brucei. 

Cells at 2x106 cells per ml PBS were cultured in 96 well plate in presence and absence 
of H2O2 and some choline compounds, T1 (A) and MS1 (B), and the DCFH-DH was 
added. Drug dilutions were at 50 µM (a); 25 µM (b); 12.5 µM (c); 6.25 µM (d); 3.13 
µM (e); 1.56 µM (f); 0.78 µM (g); 0.39 µM (h) and 0.195 µM (i). Hydrogen peroxide at 
100 µM (k), drug free cells (j), H2O2 without cells (m) and PBS without cells (l) were 
used as controls.This experiment is representative of two identical experiments 
performed independently. 
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4.6 Effects of choline analogues on cellular lipid content. 

The ES-MS of the lipid extracts of the untreated cells, and cells treated with choline 

analogues for 8 h was employed to characterise the major T. brucei phospholipid classes 

and their molecular species from total lipid extracts using nano-electrospray tandem mass 

spectrometry (ESI-MS). Cymelarsan was used as a control trypanocidal compound that 

does not act through the lipid metabolism (Figure 4.17F). 

The positive ion survey spectrum (300-1000m/z) of wild-type cells (Figure 4-17A) shows 

multiple molecular species between 650-950m/z, as a result of multiple different fatty acid 

side chains for the phospholipids. The corresponding positive ion survey spectra of the 

cells treated with the test compounds T1, M38, G25 and MS1 (Figure 4-17B-E, 

respectively) initially look different from the untreated cells (Fig 4-17A). However most of 

these differences can be attributed to the presence of molecular species in the lipid extract 

samples, which ionise better than the phospholipids, resulting in the suppression of the 

phospholipid ionisation/signal.  

This is particularly true for Figure 4-17B, where the positively charged molecular ion of 

T1 can clearly be observed at 312m/z, Figure 4.17C, whereas the positively charged 

molecular ion of M38 can cleared be observed at 434m/z, and Figure 4.17D, where the 

positively charged molecular ion of G25 can been observed at 395m/z, very close to the 

background non-related ion at 393m/z (observed in all samples). No positively charged 

ions are observed for MS1 and cymelarsan (Fig 4.17E and F respectively). 

As the choline analogues were suspected to possibly interfere with metabolism of choline 

containing phospholipids, i.e. phosphatidylcholine and sphingomyelin, these were 

analysed. A positive ion precursor scan for m/z 184 (phosphocholine) detects all PC and 

SM [M+H]+ ions, and their natural isotopes, each represented as a m/z signal in a 

spectrum. Colliding ions from the monoisotopic signals produces specific daughter ion 

he composition of the choline containing lipid species in untreated cells and those treated 

with potential inhibitors were remarkably similar indicating that there are no major defects 

fragments, which were used to assign the m/z signal to a molecular species that contains a 

certain number of FA carbons and associated degree of unsaturation. There are numerous 

PC and SM molecular species in total lipid extracts of bloodstream form wild type T. 

brucei (Fig. 4.18A). Annotation of these species is provided in a separate table (Table 4.2).  

T
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in choline phospholipid metabolism upon treatment either the various potential inhibitors 

at their respective concentrations (compare Fig. 4.18A, with frames B to F).  

Negative ion survey spectra (600-1000m/z) of wild-type cells and cells treated with the 

potential inhibitors were compared, but no significant differences were observed (data not 

shown). ES-MS-MS analysis of all of the other major phospholipids classes, 

phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and 

phosphatidylglycerol were conducted in both untreated and treated cells, but no major 

differences were observed (data not shown). These mass spectrometry analyses suggest 

that phospholipids metabolism is not the target of the anti-trypanocidal activity observed 

by these compounds. 
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Figure 4.17. Positive ES-MS survey scans of lipid fraction of untreated and treated T. 

. brucei. Lipids extracted from untreated T. b. brucei (A) or treated with 7.5 µM T1 
), 10 µM M38 (C), 10 µM G25 (D), 5 µM MS1 (E) or 0.05 µM Cymelarsan (F).The 

amples were analysed by positive ion mode ES-MS (300-1000 m/z) as described in 
ection 2.12. The arrows indicate the presence of the potential inhibitor that has been 
o-extracted with the lipids. 

b
(B
s
s
c
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Figure 4.18. ES-MS-MS scans of untreated and treated T. b. brucei. Lipids extracted 
from T. brucei wild type (A) or treated with 7.5 µM T1 (B), 10 µM M38 (C), 10 µM 
G25 (D), 5 µM MS1 (E) or 0.05 µM Cymelarsan (F).The samples were analysed by 
parent ion scanning of 184m/z ES-MS-MS for Gro-P-Cho and SM in positive ion 
mode (600-1000 m/z), parent-ion scanning of m/z 184 as described in section 2.12. 
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Table 4.2. Composition of Choline-containing phospholipids in extracts of 
bloodstream T. b. brucei not treated with test compounds. 

 Peakb     
% 

 PC Seriesc m/zd 
range Principal componente m/zd 

 - 0.3  lysoPC 520-572 see Fig. 4.18  
 A 0.2  28:2 - 28:0 674-678 28:1 (14:0/14:1) 676 
 C 1.3  30:4 - 30:0 and SM(16:0)  698-706 SM(16:0) 703 
 E 1.2  32:3 - 32:0 and SM(18:0) 728-734 SM(18:0) 731 
 G 4.8  34:4 - 34:0 and SM(20:0) 754-762 SM(20:0) 759 

di-
cyl 

I 19.1  36:6 - 36:0 and SM(22:0) 778-790 36:2 (18:0/18:2) (18:1/18:1) 786 
a

 K 13.6  38:6 - 38:0 806-818 38:4 (18:0/20:4) (16:0/22:4) 810 
 M 34.4  40:8 - 40:0 830-846 40:5 (18:0/22:5) 836 
 N 3.8  42:11 - 42:0 a/o e-42:3 – a-42:0 852-874 42:8 a/o e-42:0 a/o a-42:1 858 
 O 3.0  44:12 - 44:0 a/o e-44:4 – a-44:0 878-902 44:9 a/o e-44:1 a/o a-44:2 884 
        
 B 0.2  e-30:4 – a-30:0 682-692 e-30:0 a/o a-30:1 690 
 D 0.4  e-32:2 – a-32:0 714-720 e-32:0 a/o a-32:1 718 

ether F 1.8  e-34:4 – a-34:0 738-748 e-34:1 a/o a-34:2 744 
 H 13.0  e-36:4 – a-36:0 766-776 e-36:1 a/o a-36:2 (a-18:0/18:2) 772 
 J 1.4  e-38:6 – a-38:0 790-804 e-38:2 a/o a-38:3 798 
 L 1.6  e-40:6 – a-40:2 818-828 e-40:4 a/o a-40:5 822 

a 
b  

-Cho) are in bold. 
c All of the molecular species detected within the area of the peak are contained within the lowest and 

 
 

d 
e  

, 
 

Precursor scanning for the m/z 184 ion detects PC and sphingomyelin (SM). 
Peak identities refer to the spectrum peaks in Fig. Y.  The peak series containing the most abundant
Gro-P-Cho species (>10% of total Gro-P

 
 
    PCa Composition in bloodstream T. brucei 
 
 
 
 
 

highest mass range outliers listed, the degree of unsaturation decreases by one from the lowest mass
in each series until the highest mass is met.  e = plasmenyl (alkenylacyl); a = plasmanyl (alkylacyl);
a/o = and/or 
[M+H]+ ions over charge. 
Defined here as the [M+H]+ ion within the series with the greatest intensity.  Precise fatty acyl
constituents and their positions are not discernable in positive ion mode; however, where possible
the most likely fatty acid candidates (in parentheses) for the sn-1 and sn-2 constituents of the
molecular species presented were deduced from the available literature. 
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4.7 Discussion 

The effect of choline compounds on cellular growth of T. brucei bloodstream forms was 

reported in this study under in vitro culture conditions.  

Various techniques were employed and indeed developed to assess the effects of the 

choline analogues on trypanosome growth, viability, cell cycle and proliferation. It was 

clear that all these compounds act rapidly to inhibit trypanosome proliferation at 

concentrations as low as 3x EC50, and gradually reduce the actual cell density in a 

population over a number of hours. The rate at which a population declines is clearly 

concentration dependent and varies (depending on the choline analogue and concentration) 

from a few hours to few days) 

The outcomes of the cell counts, spectrophotometric lysis assays and PI fluorescence were 

all in good agreement, showing that at concentrations of 10 or 20 µM, MS1 induces cell 

tural difference gives 

death within hours (e.g. figures 4.3B, 4.4 and 4.7), although cell death is various defined as 

a decline in trypanosome population, reduced light scatter and breach of plasma 

membrane. Compound T1 displayed similar effects at this concentration (e.g. figures 4.3B, 

4.5) but whereas 20 µM constitutes 150xEC50 for MS1, it represents only 11xEC50 for T1. 

The EC50 values were determined using the Alamar Blue assay over 72 h. It would 

therefore appear that T1 is the quickest-acting compound of the test series and it is possible 

to speculate that this is related to its structure as monocation whereas the other test 

compounds are symmetrical di-cations at neutral pH, with two quaternary ammonium head 

groups connected by a long flexible linker (see figure 3.1). This struc

rise to a hypothesis that the action of T1 is faster than for the di-cationic analogues, 

possibly reflecting a difference in uptake rates.  

Transport of the choline analogues was briefly addressed in Chapter 3. In Leishmania 

species and Plasmodium (Lehane et al, 2004; Zufferey & Mamoun, 2002), these or similar 

choline analogues are potent inhibitors of choline transporters, but no such transporters are 

expressed by bloodstream T. b. brucei and our studies have not yet identified a definitive 

route of uptake for this class of compounds. It was concluded that the HAPT and LAPT 

transporters were unlikely to play a significant role in their uptake at pharmacologically 

relevant concentrations, because the IC50 values were very high. The observation that up to 

100 µM pentamidine was unable to delay cell lysis induced by T1 and MS1 (Figs 4.5 and 

4.6) shows that at least HAPT and TbAT1/P2 do not mediate (most of) the uptake these 

compounds, as both are fully inhibited by even 1 µM of pentamidine (De Koning, 2001b; 
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Matovu et al., 2003). Indeed the low affinity transporter LAPT would also be mostly 

inhibited by 100 µM pentamidine, as it displays a Km value of 56 µM (De Koning, 2001b). 

A full inhibition of MS1-induced trypanosome lysis was observed in the presence of 1 mM 

pentamidine (figure 4.6) but at this concentration pentamidine blocks many processes at 

the cell by a slow but irreversible process (Delespaux & De Koning, 2007). Rather, it 

suggests that uptake is indeed slow, and probably equilibrative, which means that the 

compounds will leave the cells as soon as the extracellular concentration becomes lower 

than the intracellular concentration.  

While the diamidines are known to induce cell death in trypanosomes after an exposure 

time measured in days (e. g. Gould et al., 2008) the melamine arsenical drugs, such as 

melarsoprol and cymelarsan, as well as simple aromatic arsenicals such as phenyl arsine 

oxide (PAO) rapidly kill trypanosomes and lyse the cells as can be easily monitored by any 

of the assays employed in the current study (e.g. Carter and Fairlamb, 1993; Matovu et al., 

2003; Gould et al., 2008). However, we found no evidence, using flow cytometry with 

propidium iodide, that the choline analogues used in this study cause plasma membrane 

defects as a cause of cell death: even when a large proportion of trypanosomes had died 

after exposure to 1 µM G25, the remaining cells were non-permeable to propidium iodide 

(compare figure 4.10, frames III-E and IV-E).  

Monitoring the DNA content with flow cytometry did reveal that M38, and possibly T1, 

appear to induce extensive DNA fragmentation (Figure 4.13), probably before the integrity 

of the cell is compromised. DNA degradation has been linked with programmed cell death 

in many species but it is unclear whether the observation reported here should be 

categorised as evidence for apoptosis. Another marker for apoptosis would be a 

depolarisation of the mitochondrial membrane potential Ψm. Several choline compounds, 

the plasma membrane (De Koning, unpublished observation) and this action cannot be 

considered specific without further investigation.  

The conclusion that the choline analogues act slowly on trypanosomes prompted the 

important question whether a population of trypanosomes needs to be constantly exposed 

to high concentrations of these potential drugs until all parasites are dead. Considering the 

evidence presented in Figure 4.7 this does seem to be the case: washing 20 µM of either T1 

or MS1 out after a 2-hour incubation (i.e. almost up to the time where the first cells would 

start to die) completely prevented subsequent cell death. This seems to suggest that the 

compounds are not, like pentamidine, rapidly accumulated in the cell and subsequently kill 
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including M38, G25, T4 and MS1, but not T1, did have very pronounced effects on Ψm as 

early as 8 h and at concentrations that do not affect cell viability so quickly. Rather than 

dicating the induction of apoptosis as a mechanism of action for these compounds, we, 

elieve this suggests that the mitochondria may be the main target of these compounds, 

especially the dicationic ones. This would not be entirely surprising as the dicationic 

iamidines are also known to predominantly accumulate in the mitochondria, driven by the 

Ψm. While the mechanism of action of diamidines on trypanosomes has never been 

tisfactorily defined and may be multi-factorial, it is believed that the mitochondria are 

the main target for this class of drugs (Lanteri et al, 2008). For instance, pentamidine 

sistance in L. donovani has been linked to exclusion of pentamidine from the 

itochondrion (Basselin et al, 2002; Mukherjee et al, 2006). Indeed, fluorescent 

diamidines can be detected within the T. b. brucei mitochondria within one minute, but this 

uorescence is much-delayed in diamidine-resistant trypanosomes (Stewart et al, 2005).  

The fact that all the dicationi tested rapidly depolarised the 

mitochondrial membrane, but only one of these compounds (M38) affected DNA integrity, 

lead  in 

tryp ial 

membrane depolarisation an 2005; Figarella et al, 

2006). In addition, the programmed cell death (PCD) induced by the prostaglandins was 

found to be associated with the production of reactive oxygen species (Figarella et al., 

2006) as was PCD in Trypanosoma cruzi (Piacenza et al, 2007). However, we found that 

the choline lipid analogues actually reduced the production of ROS.  

Finally, it has been shown that some of these choline analogues disrupt the biosynthesis of 

choline-containing phospholipids in Plasmodiumn falciparum and Saccharomyces 

cerevisiae (Roggero et al, 2004). The analysis of lipid content in section 4.6, clearly show 

that no change of lipid content is evident in the membrane of T. b. brucei. For this 

experiment we used combinations of incubation times and test compound concentration 

that would take the trypanosome population close to the onset of cell death, so as to 

maximise our chances to observe any alterations to the lipid composition and we must 

conclude that none of the choline analogues tested acts through disruption of lipid 

metabolism. The straightforward conclusions thus that these choline analogues do not 

inhibit or alter choline metabolism in T. b. brucei. Yet, it may not be possible to exclude 

alternative explanations altogether at this point. As the choline analogues rapidly halt 

proliferation, this in itself could prevent further lipid metabolism and the alteration of lipid 

in

b

d

sa
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m
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c choline analogues 

s to the conclusion that the choline compounds, in general, do not induce apoptosis

anosomes, as reported for some prostaglandins, which caused both mitochondr

d DNA degradation (Figarella et al, 
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composition in the plasma membrane. Indeed, it could be argued that the compounds 

inhibit proliferation as a result of inhibiting lipid metabolism. Further investigations may 

tra-mitochondrial target, although this in itself does not yet prove that 

the mitochondrion is the pharmacologically relevant target for this class of drugs. It is not 

be required to arrive at a definitive answer.  

In conclusion, it appears that the dicationic choline lipid analogues, like the structurally 

related dicationic diamidines pentamidine, DB75 and diminazene (Lanteri et al, 2008), 

collapse the mitochondrial membrane potential but do not induce PCD, and are thus highly 

likely to act on an in

unlikely that these compounds interfere with mitochondrial fatty acid metabolism and thus 

the lipid composition of the mitochondrial rather than plasma membrane, as mitochondrial 

fatty acid metabolism was recently shown to be essential for normal mitochondrial 

function, including proper maintenance of Ψm (Guler et al, 2008). For now, the exact 

nature of this target remains to be identified and will be the subject of further investigation.  
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5.1 Introduction 

Human African trypanosomes and leishmaniasis are two of the most important world wide 

diseases caused by protozoan parasites. All the drugs used currently to treat these diseases 

exhibit many side effects. Curcumin, a natural yellow pigment extracted from curcuma 

longa rhizomes, has been traditionally used to treat a large number of infectious and non-

infectious diseases (see section 1.4), but is safe enough to be used as a natural food 

additive and spice.  

Curcumin has been reported to display ED50 values between 7.8 µM (Rasmussen et al, 

2000c) and 46.5 µM (Koide et al, 2002) on the growth of promastigotes of L. major in 

vitro. Several derivatives of curcumin including diarylhepatanoids; diarylpentanoids; 1,7-

ptadiene-3,5-dione and 1,7-bis-(2-hydroxy-4-

methoxyphenyl)-1,6-heptadiene-3,5-dione were tested against L. amazonensis 

taken. Only one study has tested curcumin on African 

trypanosomes (Nose et al, 1998). In this study, curcumin was reported to show potent in-

f

ing limited if any toxicity against a 

human cell line. In addition, we investigated the effect of some of more potent analogues 

n freshly isolated murine hepatocytes. We propose that analogues of curcuminoids are 

bis-(4-propargyl-3-methoxyphenyl)-1,6-he

promastigotes and found to have better activity than the original curcumin (Araujo et al, 

1999; Gomes et al, 2002a; Gomes et al, 2002b). Furthermore, the first two derivatives had 

a very good anti-leishmanial activity against L. braziliensis and L. chagasi promastigotes, 

and against L. amazonensis promastigotes and amastigotes (Alves et al, 2003). Curcumin 

also displayed an average IC50 of 5.3 µM against promastigotes of three species of 

Leishmania, L. major; L. tropica and L. infantum, and was observed to have better efficacy 

than pentamidine against L. major amastigotes (Saleheen et al, 2002).  

In the light of the promising antileishmanial effects of the curcuminoides, it is surprising 

that no effort to systematically screen curcumin and its analogues for their anti-

trypanosomal activity has been under

vitro activity against Trypanosoma brucei brucei with IC50 values of 4.77 µM for 

bloodstream forms and 46.5 µM for procyclic forms.  

In this chapter we describe the synthesis and anti-parasitic screening of a series o  

curcuminoid analogues. Compared to the parent compound, curcumin (AS-HK01), many 

of the new compounds displayed a much-enhanced activity against kinetoplastid parasites 

that cause human and veterinary disease, while display

o
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promising new lead compounds against leishmaniasis and African trypanosomiasis that 

warrant further investigation. 

nsidered to play an important role in the 

cell living by protecting the cells from oxidative damage caused by reactive oxygen 

oncerns.  

The hepatocytes were used in this study as a model system to assess early cytotoxic effects 

of the curcuminoids or their metabolites including hepatocytes viability and glutathione 

(GSH) depletion. There are many reasons for choosing this kind of cells. The first reason is 

that the liver is the primary source of GSH, and hepatocytes express several enzymes 

which are utilized in GSH metabolism (Kretzschmar, 1996). Another reason is that 

hepatocytes are more resistant to GSH depletion than the target cells due to their high 

metabolic activity (Freidig et al, 2001). GSH is co

species, producing coenzymes and maintaining the oxidation status of intracellular thiols 

(Amir et al, 1998; Lu, 1999). It is a tripeptide consisting of glutamate, glycine and cysteine 

(Figure 5.1) found in all mammalian and prokaryotic cells (Anderson, 1998).   

The finding that none of the curcuminoids affected hepatocytes viability or protein content, 

while only some of them affected GSH levels, is only a very preliminary indication that 

safe curcuminoid antiprotozoals may be feasible, and needs a much more extensive 

toxicological evaluation of selected lead compounds that goes well beyond the aims of the 

current study. However, as almost no information on the safety and metabolism of 

curcuminoids exists our preliminary experiments at least have not identified significant 

safety c

 

 

 

 

 

 

Figure 5.1 Glutathione (GSH) metabolism.  

GSSG, oxidized glutathione; glu, glutamate; cys, cysteine; gly, glycine; and ROS, 
reagtive oxygen species. Reproduced from Anderson (1998).  
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5.2 In vitro activity of curcuminoids on trypanosomes 

Curcumin has a broad range of biological activities, especially against protozoan parasites. 

Based on these properties and using the Alamar Blue assay as described in chapter 2, 

curcumin and all its synthesized analogues were tested on trypanosomes to determine the 

pounds AS-HK004 - AS-HK020, AS-HK022 - AS-HK053, AS-HK055 - 

S-HK062, AS-HK065, AS-HK066 and AS-HK073 - AS-HK098) were assessed for in 

vitro trypanocidal properties on the standard drug-sensitive laboratory strain 427 (Table 

.1). Eight of these compounds (018, 034, 044, 048, 086, 095, 097 and 098) are pairs of 

1:1 (a:b) isomeric mixures. Our value for compound AS-HK001 against bloodstream forms 

onomorphic strain 427 was 2.5 ± 0.4 µM (n = 3) which is in agreement with a 

reviously published value (Nose et al, 1998). The two other parent curcuminoids, 

demethoxycurcumin (AS-HK002) and bisdemethoxycurcumin (AS-HK003) were 

pproximately 2- and 3-fold less active than compound AS-HK001 with EC50 values of 4.6 

± 0.8 and 7.7 ± 1 µM, respectively.  

ar Blue assay of curcumin analogues are summarized in Table 5.1 

and an example of this assay is shown in Figure 5.2A. About 35 out of 98 of the curcumin 

nalogues were observed to exhibit trypanocidal activity better than the original curcumin 

AS-HK001 against T. brucei 427 strain. Furthermore, 15 of these compounds have EC50 

alues below 1 µM including 4 compounds; AS-HK014, AS-HK093, AS-HK096 and AS-

K097 that display EC50 values below 100 µM with EC50 values of 0.053 ± 0.007, 0.087 ± 

0.03, 0.052 ± 0.01 and 0.089 ± 0.03, respectively.  

 

EC50 values of these compounds. All the in vitro Alamar Blue assays were performed at 

least three times for each test compound, and the mean values and standard error (SE) were 

calculated. Drug free incubations and diminazene were utilized as negative and positive 

controls, respectively. The no-drug control was considered to represent a 100% value for 

fluorescence, typically measuring 100-250 arbitrary units out of a scale of 1000. Typical 

background fluorescence was observed to be between 25 – 30 units.  

5.2.1  Trypanosoma brucei brucei 

The three parent curcuminoids (compounds AS-HK001 - AS-HK003) and 95 curcuminoid 

analogues (com

A

5

of the m

p

a

The results of the Alam

a

v

H
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5.2.2 Assessment of cross-resistance with current treatments 

he efficacy of curcumin compound was also tested on two additional clonal lines, derived 

from T. b. brucei strain 427: TbAT1-KO (Figure 5.2B) and KO-B48 (Figure 5.2C). 

ost 25-fold resistant to diminazene aceturate in this series of 

xperiments (0.10 ± 0.01 (n = 13) vs 2.4 ± 0.3 µM (n = 14); P<0.001, Student T-test), there 

as no significant resistance to curcuminoid analogues in this line (Wilcoxon’s signed 

nks test for two groups, paired observations; P>0.05). The activity of most of the 

ompounds appeared to be within a 2-fold difference in sensitivity against the two lines 

nd at most 2.7-fold (for compound AS-HK019).  

ut of 98 compounds tested (Table 5.1), only six displayed significantly less activity 

gainst this line: compounds AS-HK033 (3.1-fold), AS-HK044 (5-fold), AS-HK045 (3.6-

ld), AS-HK080 (3.1-fold), AS-HK006 (3-fold) and AS-HK089 (>4.3-fold). The first four 

ompounds are close analogues of AS-HK001, with conjugated di-keto linkers, differing 

nly in the substitutions at the aromatic rings, in particular allyl ether substitutions (AS-

K044, AS-HK045). Unexpectedly, the B48 line proved to be significantly more sensitive 

 some of the most active curcuminoids (Table 5.1), including compounds AS-HK014, 

S-HK034, AS-HK036, AS-HK048, AS-HK049, AS-HK052, AS-HK051, AS-HK057 and 

S-HK059. Moreover, compounds AS-HK036 and AS-HK048 displayed a highly 

ignificant (P<0.001, Student’s T-test) 83- and 60-fold higher activity against the B48 

train. 

onsidering that the only known differences between B48 and WT cells are the loss of the 

bAT1 and HAPT transporters in the former, it is difficult to find an explanation for this 

henomenon. Apparently, the adaptation to high levels of pentamidine that lead to the 

evelopment of the B48 clonal line produced further changes of unknown identity.  

.2.3  Evaluation of activity against veterinary trypanosomes: T. evansi 
T. equiperdum. 

logues 

o groups, paired observations). Although the T. evansi strain was significantly more 

T

Whereas TbAT1-KO was alm

e

w

ra
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5
and 

A sub-set of the analogues was tested against Trypanosoma evansi. Most of the ana

were equally, or more potent against this species than against the T. b. brucei reference 

strain 427 (Table 5.2), but there was no statistical significant difference in overall 

curcuminoid sensitivity between the two species (P>0.05; Wilcoxon’s signed ranks test for 

tw
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sensitive to diminazene than T. b. brucei WT (0.018 ± 0.003 µM, n=5; P<0.001; unpaired 

tudent’s T-test) and compound AS-HK044 (P<0.05), it was less sensitive to compound 

imilar activity to those EC50 values which have been obtained from T. b. brucei reference 

rain 427 with no significant difference in overall curcuminoid sensitivity between the two 

tested species (Table 5.3). For four compounds, the sensitivity of T. b. brucei WT was 

significantly higher than the sensitivity of T. equiperdum (Figure 5.4): AS-HK093 

(P<0.05), AS-HK096 (P<0.01), AS-HK097 (P<0.05) and AS-HK098 (P<0.02). 

Furthermore, similar to T. evansi, T. equiperdum was significantly more sensitive to 

diminazene than T. b. brucei WT (0.013 ± 0.002 µM, n=3; P<0.001; unpaired Student’s T-

test). 

 

 

 

 

S

AS-HK014 (P<0.02) and compound AS-HK045 (P<0.01). Figure 5.3 illustrates the results 

obtained for T. b. brucei WT and T. evansi.  

Another sub-set of the analogues (AS-HK065, AS-HK066 and AS-HK073-AS-HK098) 

was tested in-vitro against Trypanosoma equiperdum. Most of these compounds had a 

s

st
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Figure 5.2 Efficacy of some curcumin analogues against bloodstream forms of three 
T. brucei clones. 

Tb427 (A), TbAT1-KO (B), and KO-B48 (C). The test compounds were: AS-HK009 
(■), AS-HK014 (▲), AS-HK027 (♦) and AS-HK028 (▼). Diminazene (•) was used as a 
positive control. The data shown is a representative experiment using Alamar Blue 
method as described in section 1.3.1. As described (Matovu et al, 2003d) TbAT1-KO 
and B48 (Bridges et al, 2007c) displayed considerable resistance to diminazene.  
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 Trypanosoma brucei and 
Trypanosoma evansi bloodstream forms culture.  

(diminazene aceturate) were tested for 
effect against the two trypanosome species in vitro, using the Alamar Blue protocol 

escribed in the Materials and Methods section. A: T. b. brucei WT. B: T. evansi. (♦) 
diminazene aceturate; (■) AS-HK014; (▲) AS-HK001. Data are representative of 3 – 

 independent experiments. 

  

 

Figure 5.3 Effect of some curcuminoid analogues on

Curcuminoid analogues and a control drug 
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Figure 5.4 shows the susceptibility of bloodstream forms of T. brucei and T. 
quiperdum to some curcumin compounds using Alamar Blue method. 

 427 WT (A) and T. equiperdum (B). Compounds: (•) diminazene aceturate; 
) AS-HK093; (▲) AS-HK096, (♦) AS-HK097; (▼) AS-HK098. Data are 

epresentative of 3 independent experiments. 

e

 T. brucei
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5.3 In vitro activity of curcumin analogues on Leishmania spp  

.3.1  Promastigotes of Leishmania major and L. mexicana 

he same curcuminoids and analogues were tested on promastigotes of Leishmania major 

igure 5.5A) and L. mexicana (Figure 5.5B). The results are listed in Table 5.1. The 

arent compound AS-HK001 exhibited poor activity against the promastigotes of both 

pecies (L. major and L. mexicana) with EC50 values of 33 ± 4 and 26 ± 0.6 µM, 

spectively. No significant differences were found in the overall sensitivity to 

urcuminoids, between the promastigotes of L. major and L. mexicana (P>0.05). 

or L. major promastigotes, five curcumin analogues, AS-HK016, AS-HK033, AS-

K073, AS-HK093 and AS-HK095, exhibited antileishmanial activity with EC50 values of 

ss than 5 µM, whereas ten curcuminoid analogues, AS-HK014, AS-HK017, AS-HK028, 

S-HK044, AS-HK051, AS-HK077, AS-HK081, AS-HK094, AS-HK096, and AS-

K097, showed an activity within the EC50 range of 5-10 µM. The rest of the analogues 

isplayed EC50 values in excess of activity of more than 10 µM. The most active 

ompounds, AS-HK016, and AS-HK073, exhibited activity of 2.7 ± 0.7 µM and 2.8 ± 0.4 

 L. major, respectively (Table 5.1).  

f the curcuminoids 

5% of the compounds (24 out of 98) shows significantly higher activity against L. major 

AS-HK041, AS-HK044, AS-HK046, AS-HK051, AS-HK055, AS-HK057, AS-HK094 and 

AS-HK096; P<0.01 for: AS-HK014, AS-HK017, AS-HK028, AS-HK081, AS-HK093, 

AS-HK an 09 2 -HK S AS 7 and AS-

HK098; and P<0.05 for: AS-HK045, AS-HK075 and AS-HK079. Moreover, only one 

compound (AS-HK061) exhibited significantly less activity against L. m han t 

L. mexicana pro otes ( ).  
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 For L. mexicana promastigotes, the general trend was that the activity o

was less than against L. major, and the two lowest EC50 values were obtained with 

compounds AS-HK033 and AS-HK093 (6.2 ± 0.2 and 12 ± 0.5 µM, respectively). About 

2

than against L. mexicana promastigotes with P value <0.001 for: AS-HK018, AS-HK036, 

095 d AS-HK 7; P<0.0 for: AS 016, A -HK048, -HK07

ajor t agains

mastig P 1<0.0
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5.3.2 Amastigotes of Leishmania mexicana 
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Figure 5.5 fect of rcumin analogues on promastigotes of L. major 
and L. mex enic  amast

The Alamar Blue assay wa describ pter 2. (A . major, (B) L. 
mexicana and (C) axenic L. m mastigo amidine w  as a positive 
drug contro repres f 3 inde xperime

shows the ef  some cu
icana and ax L. mexicana igotes. 

s used as ed in cha ) L
exicana a tes. Pent as used

l. Data are entative o pendent e nts.  
 

-9 -8 -7 -6 -5 -4
0

50

100

150

200

AS-HK 33
AS-HK 34
AS-HK 37
AS-HK 38
Pen etamidin

A

log[Conc ] (Mentration )

Fl
uo

re
sc

en
ce

-9 -8 -7 -6 -5 -4

7

60000

40000

50000

20000

30000

0

10000

0000

AS-HK33
AS-HK34
AS-HK37
AS-HK38
pentamidine

B

log[Concentration] (M)

Fl
uo

e
re

sc
nc

e

-9 -8 -7 -6 -5 -4
0

50

100

150

200

250

300

350

400

AS-HK 14
AS-HK 16
AS-HK17
AS-HK 18
AS-HK 33
Pentamidine

C

log[ ration] (M)

Fl
uo

re
sc

en
ce

Concent

 122



Hasan Ibrahim, 2009   Chapter 5 

Table 5.1 Antitrypanosomal, antileishmanial and cytotoxic activities of curcuminoids  

HK KO B48 Pro- mexicana 
P

mexicana HEK 

 
AS- TbAT1 WT TbAT1 TbAT1 L. major L. L.  

mastigote 
masti

ro-
gote 

amastigot 

001 4.7 ± 9 ± 1 26 ± 0.6 ± 3 37 ± 6 2.5 ± 0.4  0 2..3 33 ± 4 16 
002 5.9  0.2 46 ± 0.5 ± 4 40 ± 5 4.6 ± 0.8  ± 0.5 2.2 ± 37 ± 1 37 
003 9.5  0.5 >100 ± 3 200 ± 40 7.7 ± 1  ± 5 ± 0.3 4. 72 ± 3 63 
004 16 2 20 ± 0.3 ± 3 22 ± 3 9.2 ± 2 ± 2 8.2 ± 0. 20 ± 0.8 18 
005 64 9 ± 5 >100 ± 8 ND 37 ± 7 ± 1 3 61 ± 3 54 
006 >1 6 ± 8 81 ± 30 00 ND 25 ± 6 00 7 >100 >1
007 37 2 ± 2 59  ± 9 120 ± 10 21 ± 10 ± 7 1 90 ± 20 43 
008 34 8 ± 1 >100 01 ND 22 ± 8 ± 1 1 >100 >5
009 4.0 ± 9 >100  10 350 ± 90 2.5 ± 0.4  0.3 5.1 ± 0. 80 ± 10 64 ±
010 76  ± 5 99 ± 1 2.2 ND 51 ± 10  ± 2 50 82 ± 5 3
011 99 5 ± 6 >100 7 ND 93 ± 10 ± 1 5 >100 6
012 22 ±  ± 0.7 18 ± 1 ± 2 50 ± 4 15 ± 0.2 0.3 13 19 ± 2 27 
013 36 ± 0 26 ± 2 >100 ± 8 ND 34 ± 4 .2 36 ± 1 35 
014 0.08

0.0
.023 ± 
0042 

8 34 ± 1  2 24 ± 2 0.053 ± 
0.007 

2 ± 0
05 0.

.9 ± 0.8 17 ±

015 9.7 4 48 ± 1 ± 7 76 ± 3 4.1 ± 2  ± 2 2.2 ± 0. 30 ± 2 22 
016  0.22 ±  ±0.03 14 ± 2 0.7 8.1 ± 1 0.22 ± 0.09 0.02 0.10 2.7 ± 0.7 4.6 ± 
017 1.4 ± 58 ± 

0.08 
7. 21 ± 2  0.6 22 ± 1 1.1 ± 0.3  0.0.2 4 ± 0.1 4.8 ±

018  0.29 ± 032 ± 
0.004 

38 ± 1  6 20 ± 2 0.14 ± 0.05  0.1 0. 13 ± 1 28 ±

019  1.8 ± 0 ± 0.1 26 ± 5 ± 2 30 ± 3 0.65 ± 0.02 0.1 1. 22 ± 2 21 
020 8.8  0.42 73 ±20  2 400 ± 0 8.9 ± 1  ±  ± 0.2 2.9 87 ±5 32 ±
022 1  0.7 16 ±0.8  2 61 ± 2 14 ± 1 9 ± 2 10 ± 16 ±0.2 8.1 ±
023 2.3 ± 5 27 ± 4  ± 5 20 ± 1 1.8 ± 0.8  0.1 1.6 ± 0. 33 ± 8 37
024 2.9  ± 0.4 33 ± 3 ± 4 25 ± 3 2.9 ± 1 ± 0.3 1.8 22 ± 4 30 
025 2.2  0.2 >100 80 ± 20 1.6 ± 0.5  ± 0.2 1.2 ± 73 ± 20 34 ± 4 
026 2.0 0.08 >100 49 ± 6 1.5 ± 0.3  ± 0.1 0.92 ± >100 43 ± 7 
027 3.9  0.3 32 ± 10  1 >500 3.2 ± 0.4  ± 0.1 3.2 ± 66 ± 10 7.1 ±
028 3.1 ± 0.7 3.8 ± 0.2 2.1 ± 0.5 9.3 ± 1 >100 76 ± 10 94 ± 11 
029 3.7 ± 0.4 7.8 ± 0.8 7.8 ± 0.8 20 ± 1 >100 >100 >500 
030 17 ± 3 38 ± 3 5.9 ± 0.92 >100 >100 >100 370 ± 60 
031 78 ± 5 61 ± 5 >100 >100 >100 >100 ND 
032 1.8 ± 0.1 2.5 ± 0.2 3.4 ± 0.1 26 ± 0.1 29 ± 2 12 ± 3 39 ± 7 
033 0.87 ± 0.06 1.1 ± 0.1 2.7 ± 0.52 4.3 ± 0.5 6.2 ± 0.2 3.2 ± 0.5 36 ± 4 
034 0.75 ± 0.1 0.73 ± 

0.08 
0.30 ± 
0.062 

10 ± 2 19 ± 6 7.4 ± 1 63 ± 9 

035 2.5 ± 0.5 3.2 ± 0.1 ND >100 >100 17 ± 5 220 ± 60 
036 1.9 ± 0.2 1.6 ± 0.1 0.023 ± 

0.0034 
12 ± 1 42 ± 1 28 ± 8 26 ± 2 

037 22 ± 0.8 19 ± 0.6 39 ± 4 38 ± 3 66 ± 0.1 72 130 ± 20 
038 32 ± 0.4 28 ± 1 27 ± 2 37 ± 3 >100 >50 140 ± 10 
039 29 ± 2 30 ± 0.6 12 ± 1 76 ± 9 >100 43 ± 20 110 ± 10 
040 30 ± 2 29 ± 0.7 25 ± 4 40 ± 2 64 ± 4 23 ± 7 100 ± 7 
041 15 ± 2 18 ± 0.2 25 ± 8 28 ± 3 >100 14 ± 4 82 ± 5 
042 43 ± 3 46 ± 1 37 ± 3 77 ± 30 >100 >100 130± 20 
043 7.9 ± 0 9.6 ± 0 12 ± 1 19 ± 5 27 ± 0.3 10 ± 4 61 ± 20 
044 2.4 ± 0.1 2.2 ± 0.1 12 ± 23 5.7 ± 0.7 35 ± 0.8 12 ± 4 270 ±100 
045 1.6 ± 0.1 1.9 ± 0.1 5.8 ± 0.63 25 ± 9 >100 >100 >500 
046 13 ± 0.6 14 ± 0.2 24 ± 2 13 ± 0.7 >100 20 ± 5 19 ± 1 
047 80 ± 6 81 ± 4 ND 75 ± 30 ND ND 239 ± 0 
048 3.0 ± 0.3 2.1 ± 0.2 0.049 ± 

4 
15 ± 2 85 ± 30 23 ± 4 40 ± 5 

0.008
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049 45 ± 1 48 ± 2 9.0 ± 34 55 ± 3 >100 >100  200 ± 2 
050 40 ± 3 3 42 ± 4 6.3 ± 0.6 50 ± 4 82 ± 20 64 ± 20 130 ± 2 
051 2.6 ± 0.5 1.9 ± 0.1 0.12 

±0.022 
9.9 ± 1 46 ± 3 21 ± 8 45 ± 3 

052 23 ± 4 40 ± 0.7 4.7 ± 0.3 97 ± 1 >100 >100 220 ± 20 
053 47 ± 0.2 48 ± 1.1 33 ± 5 86 ± 20 >100 >100 220 ± 10 
054 >100 >100 ND >100 >100 >100 220 ± 10 
055 3.6 ± 0.9 3.2 ± 0.3 3.8 ± 0.5 13 ± 1 >100 13 ± 3 90 ± 10 
056 15 ± 0.7 18 ± 0.6 7.7 ± 0.5 42 ± 2 46 ± 2 29 ± 0.3 120 ± 10 
057 2.8 ± 0.8 1.9 ± 0.1 0.6 ± 0.1 8.9 ± 2 30 ± 0.1 12 ± 2 45 ± 8 
058 44 ± 2 45 ± 1 45 ± 4 92 ± 20 >100 >100 >500 
059 14 ± 2 14 ± 0.6 5.1 ± 0.8 76 ± 20 >100 >100 230 ± 7 
060 35 ± 0.8 33 ± 2 40 ± 5 71 ± 6 74 ± 20 >50 140 ± 20 
061 33 ± 2 35 ± 1 30 ± 2 83 ± 4 41 ± 3 >100 150 ± 10 
062 34 ± 3 38 ± 2  69 ± 20 >100 >100 >500 
065 1.2 ± 0.3 1.6 ± 0.2 4.7 ± 0.4 42 ± 10 >100 >100 370 ±100 
066 4.1 ± 2 10 ± 2 12 ± 2 60 ± 10 >100 >100 2701  
073 0.45 ± 0.07 0.62 ±0.07 0.77 ±0.02 2.8 ± 0.4 18 ± 5 10 ± 1 200 ± 50 
074 1.6 ± 0.4 1.9 ± 0.2 1.9 ± 0.1 23 ± 6 65 ± 20 61 ± 3 690 ±200 
075 1.7 ± 0.7 2.0 ± 0.2 2.1 ± 0.1 23 ± 3 50 ± 3 38 ± 6 79 ± 8 
076 1.2 ± 0.2 1.6 ± 0.2 1.3 ± 0.1 >100 >100 27 ± 0.8 >1000 
077 1.4 ± 0.2 1.7 ± 0.1 2.0 ± 0.2 7.6 ± 0.7 27 ± 4 21 ± 4 >500 
078 1.9 ± 0.3 2.9 ± 0.3 3.1 ± 0.1 48 ± 9 55 ± 0.4 27 ± 7 >500 
079 1.3 ± 0.4 1.8 ± 0.1 1.6 ± 0.1 28 ± 2 60 ± 30 34 ± 0.2 >500 
080 0.75 ± 0.5 1.7 ± 0.8 2.3 ± 2 >100 >100 >100 840 ± 80 
081 0.7 ± 0.3 0.85 ±0.1 1.1 ± 0.1 9.7 ± 2 29 ± 1 32 ± 0.7 46 ± 3 
082 33 ± 10 22 ± 5 19 ± 4 41 ± 10 >100 >100 370 ± 20 
083 15 ± 5 13 ± 2 19 ± 0.6 >100 57 ± 30 82 ± 7 158 ± 10 
084 64 ± 10 71 ± 1 91 ± 30 >100 >100 >100 630 
085 0.50 ± 0.10 0.52 ±0.10 0.43 ±0.01 11 ± 1 14 ± 0.7 16 ± 3 130 ± 20 
086 3.0 ± 0.7 2.9 ± 0.5 2.5 ± 0.4 >100 55 ± 3 40 ± 5 77 ± 2 
087 1.9 ± 0.6 1.5 ± 0.2 1.7 ± 0.1 >100 >100 53 ± 3 150 ± 8 
088 17 ± 5 22 ± 2 32 ± 2 75 ± 0.8 89 ± 4 43 ± 6 180 ± 10 
089 23 ± 8 28 ± 2 >100 70± 30 56 ± 30 >100 240 ± 9 
090 26 ± 8.1 27 ± 1 45 ± 4 >100 >100 >100 240 ± 10 
091 13 ± 5 20 ± 3 30 ± 0.8 66 ± 20 >100 45 ± 8 180 ± 4 
092 1.4 ± 0.4 1.0 ± 0.3 1.5 ± 0.4 14 ± 0.7 25 ± 0.1 50 ± 30 230 ± 7 
093 0.087 ± 0.03 0.041 ± 

0.02 
0.039 ± 

0.01 
4.5 ± 0.7 12 ± 0.5 25 ± 4 21 ± 2 

094 1.1 ± 0.3 1.2 ± 0.2 1.8 ± 0.1 6.6 ± 1.0 51 ± 0.8 53 ± 8 43 ± 2 
095 0.86 ±0.3 0.62 ± 0.1 0.89 ± 0.2 4.0 ± 1.3 27 ± 0.8 19 ± 4 30 ± 0.3 
096 0.052 ± 0.01 0.042 ± 

0.02 
0.021 ± 

0.01 
7.8 ± 1.0 31 ± 0.8 35 ± 1 30 ± 2 

097 0.089 ± 0.03 0.078 ± 
0.02 

0.045 ± 
0.02 

7.5 ± 0.8 33 ± 0.8 29 ± 0.8 25 ± 1 

098 0.27 ± 0.06 0.27 ± 
0.07 

0.11 ± 
0.04 

15 ± 0.1 38 ± 4 41 ± 4 26 ± 1 
 

 
Data are EC50 values in µM ± standard errors and are the average and SE of 3 – 6 

dependent experiments except where indicated. ND = Not done. INS = Insoluble. 1, n = 1; 2, 
<0.05 relative to strain 427; 3, P<0.01 relative to strain 427; 4, P<0.001 relative to strain 427. 

in
P
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Table 5.2 Comparing the activity of curcuminoids on T. b. brucei WT and T. evansi. 

 
compound T. b. brucei WT T. evansi Student’s T-tetst 

AS-HK 001 2.5 ± 0.4 2.0 ± 0.3 NS 
AS-HK 012 15 ± 0.2 14 ± 0.5 NS 
AS-HK 014 0.053 ± 0.007 0.17 ± 0.02 P<0.02 
AS-HK 016 0.22 ± 0.09 0.21 ± 0.02 NS 
AS-HK 018 0.14 ± 0.05 0.29 ± 0.04 NS 
AS-HK 022 14 ± 1 7.9 ± 0.6 P<0.05 
AS-HK 027 3.2 ± 0.4 2.5 ± 0.6 NS 
AS-HK 028 3.1 ± 0.7 1.5 ± 0.1 NS 
AS-HK 029 3.7 ± 0.4 2.9 ± 0.2 NS 
AS-HK 033 0.87 ± 0.06 1.1 ± 0.2 NS 
AS-HK 034 0.75 ± 0.10 0.99 ± 0.2 NS 
AS-HK 044 2.4 ± 0.1 1.6 ± 0.2 P<0.05 
AS-HK 045 1.6 ± 0.1 5.6 ± 0.7 P<0.01 

 
 
 

able 5.3 Comparing the activity of curcuminoids on T. b. b. WT and T. equiperdum T
 

compound T. b. brucei WT T. equiperdum Student’s T-tetst 
AS-HK065 1.2 ± 0.3 1.6 ± 0.3 NS 
AS-HK 066 4.1 ± 2 12 ± 5 NS 

AS-HK 073 0.45 ± 0.07 0.45 ± 0.1 NS 
AS-HK 074 1.6 ± 0.4 1.5 ± 0.3 NS 
AS-HK 075 1.7 ± 0.7 1.8 ± 0.3 NS 
AS-HK 076 1.2 ± 0.2 1.0 ± 0.1 NS 

AS-HK 077 1.4 ± 0.2 1.5 ± 0.3 NS 
AS-HK 078 1.9 ± 0.3 2.2 ± 0.1 NS 
AS-HK 079 1.3 ± 0.4 1.4 ± 0.2 NS 
AS-HK 080 0.75 ± 0.5 1.3 ± 0.5 NS 

AS-HK 081 0.7 ± 0.3 0.75 ± 0.2 NS 
AS-HK 082 33 ± 10 44 ± 9 NS 
AS-HK 083 15 ± 5 17 ± 5 NS 
AS-HK 084 64 ± 10 91 ± 30 NS 

AS-HK 085 0.50 ± 0.1 0.60 ± 0.1 NS 
AS-HK 086 3.0 ± 0.7 5.1 ± 1 NS 
AS-HK 087 1.9 ± 0.6 2.1 ± 0.4 NS 
AS-HK 088 17 ± 5 13 ± 2 NS 

AS-HK 089 23 ± 8 22 ± 5 NS 
AS-HK 090 26 ± 8 24 ± 4 NS 

AS-HK 091 13 ± 5 15 ± 3 NS 
AS-HK 092 1.4 ± 0.4 2.5 ± 1 NS 
AS-HK 093 0.087 ± 0.03 0.42 ± 0.1 P<0.05 
AS-HK 094 1.1 ± 0.3 1.1 ± 0.2 NS 

AS-HK 095 0.86 ± 0.3 1.3 ± 0.3 NS 
AS-HK 096 0.052 ± 0.01 0.67 ± 0.2 P<0.01 
AS-HK 097 0.089 ± 0.03 0.78 ± 0.3 P<0.05 
AS-HK 098 0.27 ± 0.06 1.1 ± 0.2 P<0.02 

Data in the two tables are the average of 3 – 4 independent experiments, given as EC50 values 
in µM ± SE. NS = Not Significant. 
 

 125



Hasan Ibrahim, 2009   Chapter 5 

5.4 Preliminary toxicology of curcuminoids 
5.4.1  In vitro effect on Human Embryonic Kidney cells. 

To assess whether the antiprotozoal activity described above should be attributed to 

general toxicity, rather than specific antiprotozoal activity, the analogues were also tested 

for their effect on human embryonic kidney (HEK) cells (see Table 1). Without exception, 

the toxicity to HEK cells was lower than to T. b. brucei WT bloodstream forms. Out of 98 

analogues, only one compound, AS-HK016, had significantly higher activity against HEK 

cells than curcumin (AS-HK001) itself (EC50 = 37 ± 6 µM) and was the only compound 

that displayed an EC50 value below 20 µM. The ratio of EC50 (HEK)/EC50 (T. b. brucei) 

could be described as the in vitro selectivity index and ranged from ~3-fold for compound 

AS-HK050 to >1,000-fold for compound AS-HK076 and 480-fold for the most active 

analogue, AS-HK014.  

As the leishmanicidal activity of most analogues was less than their trypanocidal activity, 

the therapeutic index calculated from the L. major EC50 values was correspondingly lower. 

The most promising compound, by this measure, was AS-HK073, with a selective index of 

just over 70-fold. 

 

5.4.2 Effects on hepatocyte viability and protein content 

Some curcumin compounds were tested for their effects on rat hepatocytes. Three 

compounds were tested: AS-HK001 (curcumin); AS-HK009; and AS-HK014. All the 

experiments were performed in triplicate, and the viability, glutathione (GSH), and protein 

content were calculated separately and adjusted to percentages. The percentage viability of 

control and cells treated for up 120 min was not affected by the three tested compounds: AS-

HK001, AS-HK009 and AS-HK014 which are shown in Figure 5.6 A, B, and C, 

respectively. In all these experiments, the cell viability at T=0 min was found to be about 

100% in all three groups, whereas this percentage was about 71% at the end of the 

experiment. There were no statistically significant differences between the control and 

treated cells (P>0.05), and the viability of all groups reduced similarly over time. 

T ssay, and it is usually used to estimate 

th

integrity. These values were ca l at various points during two hours 

he total protein content was determined by Lowry a

e number of cells and would also highlight significant protein loss through reduced cell 

lculated as mg protein/m
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of incubation of the drugs with hepatocytes, nd also adjusted to percentages. No clear 

d

(F surements performed in parallel. The 

re

ef

te glutathione content 
 

T

h

HK014. The GSH levels of the cells we

ex

content of the cell with curcum

nm

depletion in all experim

difference between the treated and control cells (P>0.05). At T = 120 min, GSH levels in 

cells treated with curcum

and 60%, respectively when com

sharply within the first 15 m

reduced GSH content on the hepatocytes at 100 

a

ifferences between treated and control groups were observed over the period of incubation 

igure 5.7), confirming the results of the viability mea

sults would indicate that the curcuminoids studied do not have significant hepatotoxic 

fects, at least not over the length of the incubation.  

 

5.4.3  Effects on hepatocy

he effect of some curcumin analogues on glutathione (GSH) was also conducted using rat 

epatocytes. The compounds tested were: AS-HK001 (curcumin), AS-HK009 and AS-

re calculated and expressed per 106/cells, as 

pressed per mg of protein as percentages. As shown in Figure 5.6. at T=0 min, the GSH 

in, AS-HK 09 and AS-HK 14 were 17, 15.1, and 17.9 

ol/106 cells, respectively, and taken as 100% value. The results showed there was a GSH 

ental cells at 100 µM drug concentration with no significant 

in (Figure 5.8A) and AS-HK 09 (Figure 5.8B) were down to 30% 

pared with 65% in the controls. This trend was more 

in of treatment with AS-HK 14 (Figure 5.8C), which rapidly 

µM concentration used in this experiment. 
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Figure 5.6 Effects of exposure of freshly isolated rat hepatocytes to 100 µM of 
urcumin analogues on cell viability. 

(A) AS-HK001 (curcumin), (B) AS-HK009, and (C) AS-HK014. Hepatocytes were 
exposed during two hours. Data shown are the average and SE percentages of three 
independent experiments.  
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Figure 5.7 Percentages of protein content reduced by hepatocytes during two hours 
incubation with 100 µM of curcumin analogues. 

(A) AS-HK001 ( curcumin), (B) AS-HK009, and (C) AS-HK014. Data shown are the 
average and SE of three independent experiments.  
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Figure 5.8 Effect of some curcumin compounds on the glutathione content of rat 
hepatocytes during two hours of incubation time.  

The content was calculated per 106 hepatocytes. All compounds tested at 100 µM: (A) 
AS-HK001 (curcumin), (B) AS-HK009, and (C) AS-HK014. Data shown are the 
average and SE of three independent exper
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5.5 Discussion 

5.5.1  Trypanosoma spp. 

Ninety eight new curcumin analogues were tested against bloodstream forms of 

Trypanosoma brucei brucei 427 (TbAT1-WT, TbAT1-KO and TbAT1-KO-B48), 

promastigotes of Leishmania major and L. mexicana and axenic Leishmania mexicana 

amastigotes. The test was conducted in vitro using the Alamar Blue method. The EC50 

value of 2.5 ± 0.4 µM on the TbAT1-WT strain seems to be in agreement with a previously 

published value that showed curcumin (AS-HK001) has distinct trypanocidal properties, 

with an in vitro EC50 value of 4.8 ± 0.9 µM for bloodstream forms of the polymorphic 

strain GUTat 3.1 (Nose et al, 1998). Some of the curcumin analogues were found to 

display substantial and indeed promising activities against bloodstream forms of 

Trypanosoma brucei. More than 35% of these compounds were equal or more active than 

the original compound (AS-HK001). Four analogues exhibited a highly promising activity 

better than the control drug diminazene. These four compounds have similar structures and 

they are alkyl ethers and acetate derivatives with an enone linker. The structure activity 

relationship of the curcumin analogues will be discussed in detail in chapter 7. 

As it is vital that any new drug developed against African trypanosomiasis is not cross-

resistant with the diamidine and arsenic-based drugs currently in use, we tested the activity 

of all the analogues on two additional clonal lines, derived from T. b. brucei strain 427. 

The first line, TbAT1-KO, was derived by the disruption of both alleles coding for the 

TbAT1/P2 transporter (Matovu et al, 2003) and is highly resistant to diminazene aceturate 

as well as slightly resistant to pentamidine and melaminophenyl arsenicals. The second 

line, B48, was derived from TbAT1-KO by incremental exposure to pentamidine in vitro 

and is highly resistant to diminazene, pentamidine and melaminophenyl arsenicals 

(Bridges et al, 2007). The curcuminoids and analogues exhibited antitrypanomosal activity 

against these two clonal lines in similar manner to that of the wild-type strain and it should 

es, such 

HK096, AS-HK097 and the AS-HK098. No 

significant differences were observed between the multi-drug resistant TbAT1-KO strain 

and its parental line, indicating that the P2 transporter is not involved in the internalisation 

of these compounds, at least not to a significant extent, though a trend towards slightly 

higher EC50 values in the TbAT1-KO line was noticeable. 

be emphasized that no resistance was observed for any of the highly active analogu

as AS-HK014, AS-HK016, AS-HK093, AS-
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B48 is a multi-drug resistant line, with in vitro resistance to pentamidine and melarsen 

oxide of 128 and 11-fold, respectively (Bridges et al, 2007). Unexpectedly, the B48 line 

roved to be the most sensitive to the curcuminoids (Table 5.1). In particular compounds 

S-HK014, AS-HK034, AS-HK036, AS-HK048, AS-HK039, AS-HK052, AS-HK051, 

AS-HK057 and AS-HK059 displayed significantly higher activity to this line. Some of 

ese compounds share the enone motif of the most active compound for WT 

trypanosomes, AS-HK014.  

 very significant finding was that the curcuminoids were active against several different 

Trypanosoma spp that cause infectious in livestock (Nagana). Animal African 

ypanosomiasis (AAT) is one of the most serious veterinary problems in the world. This 

disease caused by different species of trypanosomes T. vivax, T. congolense, T. 

uiperdum, T. evansi, T. simiae, T. brucei (Usman et al, 2008). Animal trypanosomiases 

 these species have a greater impact by denying livestock over vast areas, and 

also affecting agricultural production (Schofield & Kabayo, 2008). Furthermore, the 

economic cost of this disease in A ed at US$4.75 billion every year 

(http://www.fao.org/ag/againfo/programmes/en/paat/disease.html

p

A

th

A

tr

eq

caused by

frica has been estimat

).  

Drug ely: 

Diminazi ium 

chloride - Novidium; and Homidium brom m). One of the factors which lead to 

increase this disease is the emerging para t became resistance to the available 

drugs (Anene et al, 2001; Geerts et al, 2001; Matovu et al, 2001). In addition to T. brucei, 

we just tested the effect of curcuminoids on two species of those cause animal 

trypanosomiasis namely, T. equiperdum, T. evansi, and the finding that these parasites are 

sensitive to these compounds lead to a promising hope to use these compounds in future 

instead of those that became less active.  

 

5.5.2  Leishmania spp. 

The published EC50 value for curcumin against promastigotes of L. major is 37.6 ± 3.5 µM 

(Koide et al., 2002). However, another publication (Saleheen et al., 2002) reported a higher 

level of activity against promastigotes of L. major, L. tropica and L. infantum (EC50 values 

~5 µM for all three species). These values were based on parasite numbers at the end of 72 

h incubation with the drug, whereas Koide et al. (2002) used an incubation time of 24 h. 

 control of animal trypanosomiasis relies on three essential drugs, nam

ne aceturate (Berenil), Isometamidium chloride and Homidium (Homid

ide - Ethidiu

site strain tha
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This difference is thus consistent with a slow action of curcumin, especially at lower 

concentrations. Yet it should be noted that our own observations, based on Alamar Blue 

ion with the test compound, agree with the 24 h incubations. 

Differences in technique and parasite strain may contribute to this apparent discrepancy but 

 very similar Alamar Blue-based assessment 

ited 

metabolism after 72 h incubat

it must be remembered that both Saleheen and Koide assessed only the anti-leishmanial 

effects of curcumin, a too small sample size to base general conclusions on. 

Most of the analogues tested in the current study displayed higher antileishmanial activity 

than curcumin. However, the activity was generally well below that displayed for T. 

brucei, T. evansi or T. equiperdum, using

protocols for all species. The activity against L. mexicana and L. major promastigotes was 

very similar (P>0.05), confirming the conclusion of Saleheen et al. (2002) that curcumin 

does not appear to be selective for any Leishmania species – a great advantage for any 

potential lead compound against leishmaniasis. 

While the structural determinations for antitrypanosomal activity are discussed in chapter 

7, a few observations on structure activity relationship (SAR) for leishmanicidal activity 

are appropriate here. The general structures of the most active antileishmanocidal 

curcuminoids are showed in Figure 5.9. It seemed that influence of polarity from the 

oxygen function on the aromatic ring(s) has varying effects on antileishmanial activity. 

This was exemplified in the case of the parent curcuminoid AS-HK001 which exhib

antileishmanial activity (against promastigotes) of 33 ± 4 µM, whereas its mono-O-

demethylated analogue AS-HK033 was almost 8-fold and 4-fold more active against L. 

major and L. mexicana, respectively. However, going from AS-HK033 to the more polar 

analogue AS-HK032, the di-O-demethylated analogue of AS-HK001, resulted in a 6-fold 

and 5-fold decreases in activities, respectively. The increase in lipophilicity in going from 

AS-HK001 to the di-O-methylated analogue AS-HK0073 resulted in ~12-fold and 1.5-fold 

increases in activities, respectively (see Table 5.1). A larger O-alkyl group which increased 

the lipophilicity of the molecule also improved the antileishmanial activity of the 

analogues. For example in L. major, an increase of 5.7- and 4.3-fold in activity was noted 

for the mono-O-alkyl analogues AS-HK044 and AS-HK077, respectively, compared to the 

parent curcuminoid AS-HK001. However, addition of the second alkyl group to the 

analogues AS-HK044 and AS-HK077 to give the corresponding dialkyl analogues AS-

HK045 and AS-HK076 resulted in a sharp decrease in activity.  
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The conjugated keto system is also required for a curcuminoid analogue to exhibit high 

antileishmanial activity. However, analogues with a conjugated di-keto system (e.g. AS-

HK033, AS-HK073), as well as analogues with the conjugated mono-keto system (enones, 

reening these compounds for 

cellular cytotoxicity in human kidney (HEK293) cells. The toxicity results using HEK cell 

lity, GSH and protein contents exposed the absence of significant differences 

pound called menadione and found that 85% of depleted 

glutathione is recovered in medium in the oxidized form (GSSG) (Di Monte et al, 1984).  

 

addressed in chapters 6 and 7, respectively.  

AS-HK016, AS-HK017, AS-HK094 – AS-HK098), displayed similarly high 

antileishmanial activity.  

The cytotoxicity curcumin compounds was assessed by sc

line T293 revealed that the most tested compounds have a toxicity lower than curcumin 

itself (AS-HK001) which has been found to be safe and not toxic in all previous studies 

(Messner et al, 2009; http://www.turmeric-curcumin.com) and is widely used in large 

quantities as a food additive. Furthermore, the toxicological and pharmacological results 

on viabi

between the controls and treated hepatocytes with AS-HK001, AS-HK009, and AS-

HK014. While AS-HK014 rapidly reduced hepatocytes GSH content to 20% of control, 

this did not affect the cell viability, suggesting that the lower intracellular concentration of 

GSH remained sufficient to protect these cells against oxidative damage. This result is 

similar to a previous result by (Carvalho et al, 2004), who found that cell necrosis in vitro 

and in vivo occurs only if the level of intracellular GSH decreases below 10-15% of the 

initial level. Furthermore, this effect of AS-HK014 is most probably linked to the use of 

the high drug concentration at 100 µM, which is 2000x higher than the actual EC50 value 

on trypanosomes. Di Monte and colleagues determined the status of hepatocyte thiols 

exposed to 200 µM of a com

It can be concluded that compounds: AS-HK001 and AS-HK009; are not toxic to 

hepatocytes, while AS-HK014 rapidly depletes hepatocytes of GSH, which may not 

necessarily be linked to hepatotoxicity. The strong antitrypanosomal activity of 

curcuminodes, particularly against multi-drug resistant strains, demands a more in depth 

analysis of their mode of action and structure activity relationships. These issues were
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Figure 5.9 Chemical structures of some curcumin analogues that have shown 
antileishmanial activities. 
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Chapter six 

6 Assessment of the mechanism of action of 
curcuminoid compounds on Trypanosoma 
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6.1 Introduction 

Trypanosoma brucei is a parasitic protozoan and the causative agent of Human African 

trypanosomiasis. Curcuminoids have been reported to possess antiparasitic activity against 

the causative agents of several diseases (Nose et al, 1998; Perez-Arriaga et al, 2006; Koide 

et al, 2002; Rasmussen et al, 2000). Although the activity of Curcumin against 

trypanosomes has been reported previously, its target in this parasite or mechanism of 

antiparasitic action is not well understood. 

urcumin has previously been reported to possess both anti-oxidant and pro-oxidant 

roperties. On the one hand, curcumin has been shown to prevent lipid peroxidation and to 

cavenge radicals (Priyadarsini, 1997), to protect endothelial cells against oxidative stress 

(Motterlini et al, 2000b) and protect against oxidative stress induced by the carcinogen 

ferric nitrilotriacetate (Iqbal et al, 2009). Similarly it showed concentration dependant 

protection of human erythrocytes (Banerjee et al, 2008) and brain tissue (Rosello et al, 

2008) against oxidative agents. On the other hand, curcumin has been implicated in DNA 

dam ge and apoptosis (Yoshino et al, 2004; Bhaumik et al, 1999), leading to the 

conclusion that curcumin displays both pro-oxidant and anti-oxidant properties depending 

on cell type, concentration and environment (Ahsan et al, 1999; Banerjee et al, 2008).  

A large body of scientific literature has been generated in the last few years on the 

teractions of curcumin and curcuminoids with the oxidative stress responses in various 

tive enzymes glutathione peroxidase, catalase, Cu,Zn-superoxide 

t, the situation remains complex and dependent on the 

act cell type: the same paper reports a suppression of Mn-superoxide dismutase 

pression by curcumin. An emerging hypothesis is that curcumin acts as an antioxidant in 

ormal cells and tissues (Kunwar et al, 2009; Motterlini et al, 2000; Aggarwal et al, 2007), 

artly through inhibition of the transcription factor NF-kappa B (Weber et al, 2006; 

hishodia et al, 2007; Kunnumakkara et al, 2007), while damaging DNA, leading to 

optosis in cancer cells (Ahsan et al, 1999; Bhaumik et al, 1999; Hsu & Cheng, 2007) 

d broad chemopreventive properties (Goel et al, 2008). Indeed, the actions of curcumin 

n oxidative stress may be a function of concentration in some cases: 5 µM curcumin 

rotected murine macrophages from �-irradiation-induced reactive oxygen species (ROS), 

C

p

s

a

in

cells and tissues. For instance, Kunwar et al. (2009) very recently reported that expression 

of oxidative stress protec

dismutase and haeme oxygenase were dose-dependently increased on incubation of 

macrophages with curcumin. Ye

ex

ex

n

p

S

ap

an

o

p
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while 25 µM curcumin actually increased ROS formation under these conditions (Kunwar 

 al, 2009).  

ery little is known about the effects of curcumin and its analogues on protozoan cells, 

but, considering the above, it is conceivable that this is the result of DNA damage and/or 

increased oxidative stress – either through the direct generation of ROS or through the 

hibition of the mechanisms preventing oxidative damage.  

uring the normal metabolic process, all organisms produce a range of ROS such as 

hydrogen peroxide (H2O2), hydroxyl radical (.OH) and superoxide (.O2) (Maxwell et al, 

999). These products should be immediately removed from the cells by enzymatic action, 

otherwise they can damage the cell macromolecules and cause cell death (Maxwell et al, 

999).  

y Sharma et al. (2005), curcumin’s effect on the cell cycle and proliferation, 

eration and accumulation in the G2/M phase of the cell 

ycle in three different colon cancer cell lines [e.g.(Chen et al, 1999)] and similar effects 

ave been observed in tumour cells from other tissues (reviewed by Sharma et al., 2005) 

cluding the a human breast cancer cell line (Simon et al, 1998). There have been reports 

of direct binding of curcumin to DNA, particularly to the minor groove (Stockert et al, 

a 

cle could be attributed directly to this 

um te

 thereby prevent parasite growth and proliferation. A 

ypanosome cell has four organelles that play critical roles in cell division: nucleus, single 

a ton et al, 2003). There is a 

requir ment for these cells to replicate and segregate these single organelles and 

et

V

in

D

1

1

As observed b

like its effect on ROS, are not straightforward and likely to be cell type specific. For 

instance, curcumin inhibited prolif

c

h

in

1990; Stockert et al, 1989; Zsila et al, 2004), preferring AT-rich regions (Ber et al, 2008), 

but it is unclear whether the effects on cell cy

interaction.  

Thus, a possible antiparasitic action of curc inoids could be that it in rferes in the 

synthesis of the parasite’s DNA and

tr

mitochondrion, the kinetoplast and the flagellum (H mmar

e

interference in any of these processes could lead to cessation of parasite growth.  

Using biochemical methods, this study investigated whether curcumin compounds are 

trypanocidal or trypanostatic. Specifically, it was investigated in detail whether curcumin 

or its trypanocidal analogues has any specific effect on the cell cycle, causing the parasites 

to accumulate in a particular stage of the cell cycle as described for the kinase inhibitor 

Hesperadin (blocks nuclear division and cytokinesis; (Jetton et al, 2009) and for 
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dihydroxyacetone (cell cycle arrest in G(2)/M phase; (Uzcategui et al, 2007). Cell cycle 

progression in the presence or absence of the test compounds was followed using flow 

cytometry for DNA content with propidium iodide. To investigate any effects on ROS 

production or oxidative stress defenses in trypanosomes, the fluorescent dye 2’,7’-

6.2.1  Monitored by cell counts 
5 n the presence or absence of different 

dichlorodihydro-fluorescein diacetate (DCFH-DH) was used to measure the redox state of 

the cells. DCFH-DH is a nonpolar compound which is rapidly taken up by the cell and 

converted to a nonfluorescent polar agent H2DCF-DA. In presence of H2O2 or other 

peroxidises, H2DCF-DA is rapidly oxidized to a highly fluorescent agent DCF (Zhu et al, 

1994). Because this dye is very sensitive to the changes in redox state of cell, it was used in 

this study to follow changes in ROS levels over a period. 

Since the compound need to be taken into the cell before an action, it is equally important 

to study the method of transport into the cell. We report here the kinetics of curcuminoids 

uptake into trypanosomes. 

 

6.2 Effects of curcuminoids on T. b. brucei cell growth 

Cell cultures were set up at 1x10  cells/ml for 24 h i

concentrations of some lead curcumin analogues (AS-HK009, AS-HK014 and AS-

HK027). Selection of these compounds was based on their activities against T. brucei BSF 

from the Alamar Blue assay (see chapter 5). The cells were incubated with the indicated 

compounds at 20 µM and cell numbers were monitored by counting the cells with a 

haemocytometer under phase contrast microscope. At this concentration, all test 

compounds appeared to kill the trypanosomes within 24 hours, although the rate at which 

this happened varied. Compound AS-HK014 in particular induced rapid cell death, with 

over half the parasite population dead at 0.5 h and no live trypanosomes detectable after 2 

hours (Figure 6.1). The onset of cell death was slower for the other test compounds, but 

exposure to any of them seems to have prevented further cell growth. The no-drug control 

cells continued to grow during the test period. Phenylarsine oxide (PAO), which is known 

to induce rapid lysis in T. b. brucei (Matovu et al, 2003) served as a positive control. The 

experiment was repeated with lower concentrations of test compound, set at 10 times the 

experimental EC50 value for each compound, being 0.5 µM for AS-HK014. The results 

were very similar to those obtained at 20 µM, with near-complete cell death at 2 hours 
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exposure to AS-HK014 (data not shown). These results demonstrated that AS-HK014 is a 

fast acting drug and it rapidly kills the cells in about 2 h even with the onset of lysis in the 

first 15 minutes.  
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Figure 6.1 Effects of curcumin compounds on proliferation of T. brucei bloodstream 

rms.  

Cells were cultured in HMI-9 medium at 37° C and 20 µM of AS-HK009 (■), AS-
K014 (▲), AS-HK027 (♦) and 0.5 µM of phenylarsene oxide (▼) were added and 

cell numbers counted at the indicated time intervals. The data were analyzed and 
ompared with the untreated control cells (■).  

 

.2.2 Monitored by spectrophotometric lysis assay 
 

Lysis assays monitoring absorbance at 750 nm with a Hewlett-Packard HP8453 was used to 

study the effect of curcumin analogues on trypanosome viability. Cells at ~1x108 cells/ml 

were incubated with different concentrations of drugs (5, 10, 15 and 20 µM) and the effect of 

these compounds on cell viability was monitored. Using this assay, no clear activity of up to 

2 085 was detected 

over 8 hours of incubation time (Figures 6.2 and 6.3). In contrast, AS-HK014 was very 

active within the first two hours even at a low concentration of 5µM (Figure 6.2). Cell lysis 

in the presence of this compound (at 15 µM) started at 1 hour and was complete at 3 hours. 

Compounds AS-HK093, AS-HK096, AS-HK097 and AS-HK098 were also observed to be 

very active causing cell lysis after 45 minutes which was complete at approximately 90 

minutes. With AS-HK073, cell lysis started after 2 hours and was finished by 5 hours (Figure 

6.3).  

fo

H

c

 
 

6

0 µM of compounds AS-HK009, AS-HK027, AS-HK029 and AS-HK
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It was also investigated whether the co-administration of 20 µM of AS-HK014 with serial 

concentrations of pentamidine has an effect on the cell lysis. The activity of AS-HK014 at 20 

µM was tested in the presence and absence of pentamidine at 1, 10, 100 µM and 1 mM. The 

results revealed that the activity of this compound was slightly decreased when pentamidine 

was added up to 100 µM, whereas the cell lysis was completely stopped and the drug activity 

was inhibited when 1 mM of pentamidine was added (Figure 6.4). It was concluded that, as 

up to 100 µM pentamidine does not antagonise AS-HK014, the activity of this compound is 

not dependent on the TbAT1 or HAPT transporters (Matovu et al, 2003). The involvement 

of LAPT, which can be inhibited by one mol pentamidine (De Koning, 2001a) can not be 

excluded. 

 

 

 

Figure 6.2 Inhibition curves of T. brucei BSF treated with different concentrations of 

S-HK009: 5 µM (a), 10 µM (b) and 20 µM (c); AS-HK014: 5 µM (d), 10 µM (e) and 
nylarsine oxide (g) and drug free (h) were used as positive and 

egative controls, respectively. 

 

0 60 120 180 240 300 360 420 480 540
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time (mins)

A
bs

or
ba

nc
e h

a

e c

d b

f 

g 

 

 

 

 

 

 

curcumin compounds.  

A
20 µM (f). 0.5 µM Phe
n
 
 
 
 
 
 
 
 
 
 
 

 

 141



Hasan Ibrahim, 2009   Chapter 6 

 
 
 

Figure 6.3 Inhibition curves of T. brucei BSF incubated with 20 µM of some curcumin 
compounds. 

 AS-HK085 (a), AS-HK073 (b), AS-HK098 (c), AS-HK097 (d), AS-HK096 (e) and AS-
HK093 (f). 0.5 µM Phenylarsine oxide (g) and drug free (h) were used as positive and 
negative controls, respectively.  
 
 
 
 
 

ine; (f) 1 mM pentamidine; 
) 0.5 µM Phenylarsine oxide; (h) drug free control. The experiment is 

epresentative of two similar repeats.   

 

 

 

 

 

 

 
Figure 6.4 Effect of serial dilutions of pentamidine on the activity of 20 µM of AS-
HK014 for lysing T. brucei, measured at 750 nm by light absorbance.  

Traces: (a) 20 µM AS-HK014; (b) 20 µM AS-HK014 plus 1 µM pentamidine; (c) 20 
µM AS-HK014 plus 10 µM pentamidine; (d) 20 µM AS-HK014 plus 100 µM 
pentamidine; (e) 20 µM AS-HK014 plus 1 mM pentamid
(g
r

  
 

0 60 120 180 240 300
0.00

0.25

0.50

0.75

1.00

A
bs

or
ba

nc
e

f 
a 

b 

c 

d e 

g 

h 

0 60 120 180 240 300 360
0.2

0.4

0.6

0.8

1.0

1.2

Time (mins)

A
bs

or
ba

nc
e

b

a

c
d

ef 

g

h

Time (mins)

 142



Hasan Ibrahim, 2009   Chapter 6 

6.2.3 ed by propidium iodide fluorimetry 

Since propidium iodide (PI) can not cross intact cell membranes but could penetrate only 

ermeable membranes, it was used in this study to investigate the effect of serial dilutions 

f curcumin compounds on the cell viability, following a protocol recently developed in 

ur laboratory (Gould et al, 2008). PI becomes strongly fluorescent upon entering the cell 

nd binding to nucleic acids. This method is more accurate and high-throughput than the 

pectroscopic lysis assay (section 6.2.2) that it was designed to replace and allows the real-

me monitoring of trypanosome viability in a 96-well plate format under a CO2 

tmosphere. Trypanosomes at 5x106 cells/ml were exposed to various drug concentrations 

nd fluorescence was measured for up to 8 hours in the appropriate conditions (37 °C with 

.6), whereas, 0.8 µM of compounds AS-HK097 and AS-HK014 killed the cells within 30 

inutes and 6 h , respectively (Figures 6.5 and 6.6). Drugs AS-HK009, AS-HK029 and 

S-HK080 at 50 µM killed the trypanosomes within 4, 6 and 8 hours, respectively (data 

trypanosomes and must therefore be tentatively classified as trypanocidal rather than 

 

as monitored for 30 

Monitor

p

o

o

a

s

ti

a

a

5% CO2 atmosphere).  

The time-dose responses were investigated for the most promising curcumin analogues. In 

general, the results are consistent with the spectrophotometeric lysis assays and cell counts. 

At a drug concentration of 3 µM, compounds AS-HK096, AS-HK093, AS-HK095, and 

AS-HK034 killed trypanosomes within 1, 2, 3 and 6 hours, respectively (Figures 6.5 and 

6

m

A

not shown). The above results show that at least some of the curcuminoids, including AS-

HK014, AS-HK034, AS-HK093, AS-HK095, AS-HK096 and AS-HK097, rapidly kill 

trypanostatic. Other compounds, such as AS-HK029 and AS-HK080, seem to act much 

more slowly – even at high concentrations – possibly reflecting a different mechanism of 

action. It is worth emphasizing that AS-HK080, AS-HK034 and AS-HK095 displayed very 

similar EC50 values in the 72 hour Alamar Blue assay (see chapter 5).  

6.2.4 Reversibility of trypanocidal effects 

A further important question is whether the parasites need to be continuously exposed to 

the drug until cell death is complete, or whether a relatively brief exposure to the drug is 

sufficient to ‘condemn’ the parasites even if the test compound is withdrawn after a period. 

Using the spectrophotometric assay described in section 2.6.2, this was investigated for 

AS-HK014. The reversibility of this compound was tested by incubating the bloodstream 

forms of T. brucei cells with 20 µM of the drug and the absorbance w
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minutes. After the 30 minutes incubation, the cells were spun at 2500 rpm for 5 minutes 

and washed twice in fresh HMI-9 medium and incubated again in the same conditions, or 

without drug. The results shown in Figure 6.7 indicate that 30 minutes exposure of the 

parasite to 20 µM AS-HK014 is sufficient for irreversible cell lysis. A similar experiment 

was performed where a culture of trypanosomes was exposed to 20 µM AS-HK014 or AS-

HK027 for 30 minutes, after which the cells were washed into fresh media. After 24 hours 

no trypanosomes were detected. In contrast, exposure of up to 8 hours to 20 µM AS-

HK029 failed to clear all trypanosomes at the 24 hour point. This could be taken as further 

evidence for diversity in mechanism of action of the curcuminoid trypanocides. However, 

these results confirm that at least some curcumin compounds are trypanocidal rather than 

trypanostatic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 144



Hasan Ibrahim, 2009   Chapter 6 

 
                            Group I                                                        Group II  

g 
opidium iodide at 9 µM was added and the fluorescence was monitored 

ver 8 hours at 544 nm excitation and 620 nm emission.  

 
 

 
 

 

Figure 6.5 Dose response curves over time of some curcumin compounds. 

 AS-HK014 (A), AS-HK034 (B) and AS-HK093 (C). The drugs were incubated with 
(group I) and without (group II) T. brucei bloodstream forms in HMI-9 medium 
supplemented with 10% FCS under CO2 atmosphere. The drugs were tested at 
different concentrations: 100 µM (a), 50 µM (b), 25 µM (c), 12.5 µM (d), 6.25 µM (e), 
3.13 µM (f), 1.56 µM (g), 0.78 µM (h), 0.39 µM (i), 0.19 µM (j), 0.09 µM (k) and dru
free (l). Pr
o
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Figure 6.6 Dose response curves of some curcumin compounds. 

 AS-HK095 (A), AS-HK096 (B) and AS-HK097 (C). The drugs were incubated with 
(group I) and without (group II) T. brucei bloodstream forms in HMI-9 medium 
supplemented with 10% FCS under CO2 atmosphere. The drugs were tested at 
different concentrations: 100 µM (a), 50 µM (b), 25 µM (c), 12.5 µM (d), 6.25 µM (e), 
3.13 µM (f), 1.56 µM (g), 0.78 µM (h), 0.39 µM (i), 0.19 µM (j), 0.09 µM (k) and drug 
free (l). Propidium iodide at 9 µM was added and the fluorescence was monitored 
over 8 hours at 544 nm excitation and 620 nm emission.  
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Figure 6.7 Reversibility curves of T. brucei s427 bloodstream forms with 20 µM AS-
HK014.  

Drug was added to cells (~5x107 cells/ml) in HMI-9 medium after 15 min of recording. 
Monitoring continued for
twice and re-suspend in fresh medium and 

 30 minutes at 750 nm and after which cells were washed 
monitored again for 6 h . Traces: (a) No 

wash, (b) wash after 30 minutes and re-suspend in fresh medium, (c) wash after 30 

wed only a minor effect of AS-HK014 (0.4 µM), 

 

minutes and resuspended in the same medium with 20 µM AS-HK014, (d) 0.5 µM 
Phenylarsine oxide , and (e) no drug control. 
 
 
 
 
 
6.3 Curcumin analogues induce cell lysis rather than cell cycle 

abnormalities 

The membrane permeability of treated and untreated bloodstream forms of T. brucei was 

determined using flow cytometry and the propidium iodide dye. The cells were treated for 

pre-determined times with different concentrations of some of the most active curcumin 

analogues. After the incubation time, cells at ~2x106 cells/ml were prepared as described in 

section 2.10.2.  

In a first experiment, the cells were analyzed at 8 and 20 h with the FACSCalibur and 

CellQuest software. This experiment sho

AS-HK092 (1.5 µM), AS-HK095 (1.5 µM), AS-HK096 (0.3 µM), AS-HK097 (0.1 µM) 

and AS-HK098 (0.2 µM) on the cellular permeability. At 20 h , the percentages of the

cellular permeability with these compounds were 4.1%, 3.5%, 6.2%, 3.9%, 5.1% and 

3.7%, respectively, compared with 2.7% for the drug free control. However, compound 
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AS-HK014 had clear effect at 0.8 µM on the cellular permeability. At 8 h more than 90% 

of cells were permeable to PI (data not shown), resulting in cell lysis.  

When the drug concentrations were increased to 1, 2 and 5 µM and the incubation time 

was decreased to 4 hours, untreated control trypanosomes showed only 2.6% cell lysis 

after 4 h of incubation (Figure 6.8). The cells exposed to AS-HK014, AS-HK096 and AS-

HK097 at the various concentrations showed a rapid increase in PI permeability, which 

reached between 80% and 90% at 4 hours. The permeability was strongly increased at 2 

and 5 µM for compounds AS-HK034 (>80%, Figure 6.8B) and AS-HK098 (>75%, Figure 

6.8G) and at 5 µM of compound AS-HK095 (>70%, Figure 6.8D). However, there was no 

significant increase in the permeability even at 5 µM with compound AS-HK009, AS-

HK029, AS-HK033, AS-HK045 (Figure 6.8H) and AS-HK073 (Figure 6.8C). For all the 

t

 was very clear after the first hour (72.8%) and nearly completed at 2 h 

To de vision of T. brucei bloodstream forms 

 ate

d indicate that there was no effect of any of the tested compounds 

on the overall DNA content of trypanosomes. Specifically the proportion of cells in G1 and 

 

tested compounds, it was noted that the cellular permeability increased with increasing 

concentration of all drugs or the exposure time. This trend is evident in Figure 6.9 where 

the effects of 1 µM compound AS-HK096 on PI permeability started at 1 h (22.5%), 

continued at 2 h (27.3%) and reached 77% at 4 h. At 2 µM, the effect was approximately 

49% at 1 h , increasing to 71.9% at 2 h, and almos  completed at 4 h (87.2%). At 5 µM, the 

PI permeability

(86.9%) with little further increase at 4 h (89.3%) (Appendix III).  

termine whether curcumin analogues arrest di

at any particular phase in the cell cycle, the DNA content of the tre d trypanosomes was 

determined by flow cytometry. Untreated and treated cells with selected curcumin 

compounds (AS-HK014 and AS-HK034 at 0.4 µM; AS-HK073, AS-HK092 and AS-

HK095 at 1.5 µM; AS-HK096 at 0.3 µM; AS-HK097 at 0.1 µM and AS-HK098 at 0.2 

µM) were lysed at 8, 12, 16 and 20 h in 70% methanol, 30% PBS. The samples were then 

kept in the fridge overnight or untill the analysis. Cells were stained with 10 µg/ml 

propidium iodide solution containing RNAse at 10 µg/ml, and incubated in the dark at 37° 

C for 45 minutes before being analysed by flow cytometry. A summary of the results is 

shown in Figure 6.10 an

G2/M phases did not change over a 20 h incubation period, with gated cells 45-60% in G1 

phase and 15-21% in G2/M phase(Appendix III). For instance, there were no significant 

differences between untreated and treated cells with the most two potent compounds, AS-

HK014 and AS-HK96, at G1 and G2/M phases up to 20 h .  
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Figure 6.8 Flow cytometric analysis of T. brucei s427 bloodstream forms treated with 
some curcumin compounds.  

Untreated cells, (▲), concentrations at: 1 (▼), 2 (♦), and 5 (•) µM of compounds AS-
HK014 (A), AS-HK034 (B), AS-HK073 (C), AS-HK095 (D), AS-HK096 (E), AS-
HK097 (F), AS-HK098 (G), and with 5 µM of compounds AS-HK009, AS-HK029, 
AS-HK033, and AS-HK045 (H). Digitonin (■) at 6 µM was used as a positive control. 
Cells were taken at 1, 2, and 4 h and stained with 5 µg/ml propidium iodide and 
analyzed by flow cytometry for cellular permeability as described in section 2.10.2. 
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  1 µMAS-HK096
71.9% 87.2% 49.0% 

 

       D 
AS-HK096  2 µM
 

72.8% 86.9% 89.3% 
       E 
AS-HK096  5 µM
               

igure 6.9 Propidium iodide staining of T. brucei bloodstream forms in FACS 
nalysis.  

ells were treated for 1 h (I), 2 h (II) and 4 h (III) with three concentrations of AS-
K096: 1 µM (C), 2 µM (D) and 5 µM (E) and prepared for analysis of cellular 
ermeability. Drug free cells (A) and 6 µM digitonin were used as negative and 
ositive controls, respectively. The data shown are representative three independent 
xperiments of three different concentrations of some curcumin compounds. 
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The results of DNA content also showed that the proportion of cells in G1 and G2/M 

phases were 53.6% and 16.9%, for AS-HK014 and 45.7% and 15.4%, for AS-HK096, 

compared with drug free control cells: 59.1% and 19.2% in G1 and G2/M phases, 

respectively. Furthermore, no significant changes were observed in the proportion of cells 

that contained 2K2N DNA or more, which did not exceed 5% on any of the samples. Zoids 

(cells that had < 1K1N DNA content) were excluded for the calculation of the percentages. 

 
 

Analysis of DNA content of T. brucei bloodstream forms incubated with 

ells were withdrawn after 20 h , fixed in methanol and stained with PI, after which 
e DNA was analyzed by flow cytometry as described in section 2.10.1. The graphs 

hown are histograms of the DNA content evaluated by collecting 10 000 events for 
 the amount of DNA for (A) untreated 

3 at 1.5 
0.3 µM; 

(H) AS-HK097 at 0.1 µM and (I) AS-HK098 at 0.2 µM.   

 
Figure 6.10 
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6.4 Effects of curcuminoids on the T. b. brucei mitochondrial 
membrane potential 

One of the cellular effects observed in tumour cell lines treated with curcumin is a 

reduction of the mitochondrial membrane potential Ψm or activation of mitochondria-

mediated apoptosis pathways (Kellner & Zunino, 2004; Su et al, 2006; Karmakar et al, 

2006) by promoting the opening of the mitochondrial permeability transition pore (Ligeret 

et al, 2004). On the other hand, curcumin attenuates mitochondrial dysfunction in diabetic 

rats (Rastogi et al, 2008).  

To investigate whether the single mitochondrion of T. b. brucei might be a target for 

curcumin and its analogues, Ψ  was determm ined in trypanosomes incubated in the presence 

r absence of test compounds, using the fluorescent dye tetramethylrhodamine (TMRE). 

he bloodstream forms of T. brucei were cultivated for up to 16 h in the presence or 

bsence of different concentrations of curcumin lead compounds. Samples of the cultures 

ere taken at 8 and 16 h and stained with 25 nM of TMRE and analyzed after 30 min at 37 

tion of valinomycin (100 nM) or pentamidine (2 µM) resulted in a 

rescence intensity indicate a 

duction of the mitochondrial membrane potential (Figures 6.11B and 6.11D). In contrast, 

e potential was sharply increased with 10 µM troglitazone with percentages of 80.6 and 

82.5% at 8 and 16 h, respectively (Figure 6.11C). However, the fluorescence intensity in 

the drug free control was 49.7% at 16 h. 

The results showed that no effect occurred up to 16 h in mitochondrial membrane potential 

of untreated cells (Figure 6.11A), nor with cells treated with: 5 µM of AS-HK009, AS-

HK027, AS-HK029 and AS-HK045; 1.5 µM of AS-HK073, AS-HK092 and AS-HK095; 1 

µM of AS-HK033, AS-HK034 and AS-HK044. Similarly, the fluorescence did not change 

over time with 100, 200, 400 nM of compound AS-HK014; AS-HK097 at 0.1 µM and AS-

HK098 at 0.2 µM. However, compounds AS-HK014 at 0.8 µM and AS-HK096 at 0.3 µM 

exhibited a clear decrease in mitochondrial potential from 50 % at 0 times to 24.7% and 

7.3% at 8 h , and 21.7% and 31.9% at 16 h , respectively (Figures 6.11F and 6.11G). Even 

suggest that cell death was occurred by increased cellular permeability, which preceded 

o

T

a

w

°C by flow cytometry. The effects on Ψm of three control drugs were also determined.  

Results show that addi

maximal decrease of TMRE fluorescence from 50 % at 0 time to 2.3 and 23.5% at 8 h; and 

o 6.9 and 9.9% at 16 h, respectively. These decreases in fluot

re

th

3

though these two compounds reduced the potential, yet the decreases were associated with 

cell death measured in parallel using FACS and propidium iodide stain. These results 
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cell disintegration or extensive DNA fragmentation, and that the mitochondrion is not a 

primary target for curcuminoids in T. brucei.  

I II I II 
A A B B 

untreated valinomyci

C C D D 

 

Figure 6.11 Flow cytometry analysis of T. brucei bloodstream forms stained with 25 
nM of tetra-methylrhodamine (TMRE).  
Untreated control (A) and cells treated with 2 µM pentamidine (D); 400 nM AS-
HK014 (E); 800 nM AS-HK014 (F); 0.3 µM AS-HK096 (G); 1.5 µM AS-HK095 (H); 
0.1 µM AS-HK097 (I) and 0.2 µM AS-HK098 (J) were harvested at (I) 8 and (II) 16 h 
and prepared for mitochondrial membrane potential analysis as described in chapter 
2. The positive controls were performed with 100 nM valinomycin (B) and 10 µM 
troglitazone (C) for decreasing and increasing the mitochondrial membrane potential, 
respectively.   
 

E E F F 

G G H H 

I I J J 

0.4 µM AS-HK014 0.8 µM AS-HK014 

0.3 µM AS-HK096 1.5 µM AS-HK095 

n 

2 µM pentamidine 

0.1 µM AS-HK097 0.2 µM AS-HK098 

troglitazone 

50.1% 49.7% 2.33% 6.93% 

50.6% 49.2% 24.7% 21.7% 

80.6% 82.5% 23.5% 4.45% 

37.3% 31.9% 52.2% 42.7% 

55.3% 46.4% 57.7% 44.2% 

 153



Hasan Ibrahim, 2009   Chapter 6 

6.5 Curcuminoids do not increase the production of reactive 
oxygen species in trypanosomes 

In order to assess whether curcumin compounds induce a rise in reactive oxygen species 

(ROS) in T. brucei bloodstream forms, dichlorofluorescein (DCF) fluorescence was 

monitored using a fluorimeter set at 485 nm excitation and 520 nm emission wavelengths. 

Three lead compounds, AS-HK014, AS-HK034 and AS-HK096, were used in this 

analysis. Cells in the stationary phase (2x106 cells/ml) in PBS were seeded into 96-well 

plate and exposed to serial doubling dilution of the curcumin compounds. The dye (10 µM) 

was then added directly to all the wells and the fluorescence signal was measured over 

time. Drug free conditions, hydrogen peroxide, PBS without cells and H2O2 without cells 

were used as controls.  

The results showed that there was no effect of any of the curcumin compounds tested on 

the generation of reactive oxygen species by T. brucei when compared with the no-drug 

control (100%) over 6 hours incubation. As shown in Figure 6.12, doubling dilutions (20-

0.01 µM) resulted in a fast dose dependent protection: increasing the drug concentration 

ad to a decrease in the level of ROS. For instance, the fluorescence intensity DCF 

he treated cells had a lower 

le

percentage with 0.01 µM AS-HK014 was 93.6% at 6 h, and was reduced to 21.9% when 

the drug concentration was increased to 20 µM. However, all t

ROS than the drug free control which did not exceeded 100% at the end of the experiment.  
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Figure 6.12 Curcumin analogues dose-dependently inhibit intracellular ROS 
generation bloodstream forms of T. brucei.  

2x106 T. b. brucei were incubated in PBS for 6 hours in the presence of 10 µM of DCF 
at room temperature. The intensity of DCF fluorescence was monitored in the 
absence and presence of serial doubling dilutions of AS-HK014 (A), AS-HK034 (B) 
and AS-HK096 (C). Drug dilutions were at 20 µM (a); 10 µM (b); 5 µM (c); 2.5 µM 
(d); 1.25 µM (e); 0.63 µM (f); 0.33 µM (g); 0.16 µM (h); 0.08 µM (i); 0.04 µM (j); 0.02 
µM (k) and 0.01 µM (l). Hydrogen peroxide at 100 µM (D1), drug free cells (D2) and 
PBS without cells (D3) were used as controls. This experiment is a representative of 
four separate experiments. The fluorescence level of the drug-free control was set as 
100% in order to simplify comparisons between treated and non-treated cells.  

  
 
 
 
6.6 Curcumin transport by T. b. brucei BSF 

6.6.1 Uptake of [3H]-curcumin 

In order to understand the mechanism of action of curcumin analogues, the uptake of these 

compounds into the bloodstream forms of Trypanosoma brucei brucei was investigated 

using standard uptake techniques. It was investigated whether the test curcumin 

compounds are taken up by the parasite through a specific transporter. While a vast 
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literature on the pharmacology of curcumin has emerged over the last few years, virtually 

nothing is known about curcumin uptake into cells, although it is now known that 

curcumin can inhibit ABC-transporters in various tissues (Ishikawa, 2009) but these are 

efflux transporters and do not mediate uptake into cells. 

Uptake of [3H]-curcumin into Trypanosoma brucei brucei bloodstream forms was 

performed using a rapid oil-stop protocol as described in section 2.9 and exactly as 

published previously (Wallace et al, 2002). All assay points were performed in triplicate 

and in three different experiments. Radioactivity in the cell pellets was determined using 

liquid scintillation counting.  

The time-course assessment of curcumin uptake by T. brucei bloodstream forms showed 

that the transport of 1 µM [3H]-curcumin was slow, and inhibited by 100 µM of unlabeled 

curcumin over 60s (Figure 6.13). [3H]-curcumin uptake was also inhibited by 100 µM of 

AS-HK014, over 120s (Figure 6.14). Overall, the uptake rate of [3H]-curcumin by 

Trypanosoma brucei brucei bloodstream forms was very low 0.088 ± 0.06 pmol(107 cells)-

1s -1 (n=4). 

No radiolabel of any of the curcumin analogues was available and the only [3H]-curcumin 

commercially available was of insufficient specific activity to conduct detailed kinetic 

studies. 

 

                      
 

Figure 6.13 Time course of 1 µM [3H]-curcumin uptake by bloodstream forms of T. 
brucei 427. 

Figure shows upake in the presence (▲) or absence (■) of 100 µM unlabelled 
curcumin over 60 seconds.  
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Figure 6.14 Time course of 1 µM [3H]-curcumin uptake by bloodstream forms of T. 

rucei 427. 

ptake in the presence (♦) or absence (■) of 100 µM AS-HK014 over 120 seconds.  

.6.2 Inhibition of pentamidine transport by curcumin analogues 

these concentrations are several orders of magnitude above the level at which the 

 

b

U

 
 
 

6

To investigate whether curcumin analogues inhibit the activity of pentamidine transporters 

in T. brucei bloodstream forms and thus might be substrates for these transporters, 

inhibition of pentamidine uptake was assessed in bloodstream forms. Inhibition by 

curcumin and AS-HK014 of the uptake of 1 µM and 40 nM [3H]-pentamidine through low 

affinity pentamidine transporter (LAPT1) and high affinity pentamidine transporter 

(HAPT1), respectively was investigated. These assays were determined in three 

independent experiments, and each experiment was performed in triplicate. The results 

indicated that there was no effect of these two compounds on [3H]-pentamidine uptake 

through LAPT1 (Figure 6.15). However, both compounds inhibited HAPT at high 

concentrations. (Figure 6.16), with Ki values of 568 (n=4) and 398 (n=3), respectively. As 

compounds kill trypanosomes, it is highly improbable that HAPT contributes significantly 

to the uptake of these compounds. 
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Figure 6.15 Inhibition of 1 µM [ H]-pentamidine uptake (low affinity pentamidine
transporter) in bloodstream forms of T. brucei 427 by various concentrations of
curcumin analogues. 

Curcumin (■), AS-HK014 (▲), and unlabelled pentamidine (▼). Only pentamid
inhibited uptake of radiolabel with IC50 va
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Figure 6.16 Inhibition of 0.04 µM [3H]-pentamidine uptake (high affinity pentamidine 
transporter) in T. brucei 427 bloodstream forms by various concentrations of 
curcumin analogues. 

Curcumin (■), AS-HK014 (▲), and unlabelled pentamidine(▼), with IC50 values of 
1.1 mM, 1.0 mM and 0.085 µM, respectively. The values for curcumin and AS-HK014 
were extrapolated from the data using a value of -1 for the high slope and a 
maximum inhibition to zero uptake (level of the uptake in the presence of 1 mM 
unlabeled pentamidine).  
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6.7 Preliminary assessment of in vivo toxicity and 
trypanocidal activity of curcumin analogues 

Preliminary results of determining the acute toxicity of curcumin drugs showed no toxic 

fects of AS-HK009, AS-HK014, and AS-HK027 when they were injected intra-

peritonealy into mice model (ICR strain) at 50 mg/kg BW. Therefore, a series of 

periments was conducted to determine whether these compounds have an activity 

against trypanosomiasis in a mouse model. 

 the first experiment, two doses of drugs were injected i.p. into ICR mice, 6 and 24 h 

after infection with T. brucei bloodstream forms. Parasitaemia appeared in the bloodstream 

n the fourth day. No differences in survival rate were observed between the treated and 

negative control untreated groups during the 7 days of the experiment (Figure 6.17.A). In 

all three curcuminoid-treated groups, average parasitaemia was lower than in the untreated 

control, particularly on day 4 PI. In contrast, there was a very clear difference between the 

positive control group, which was treated with 7 mg/kg diminazene, and the negative 

control group, in that no parasi is group. The experiment was 

repeated with one treated group (AS-HK014) in addition to the positive and negative 

con  4 

adm

first injection. Very similar results were o  this repeat and no differences were 

observed in survival rates between treated and control groups (Figure 6.17.B).  

ef

ex

In

o

taemia was observed in th

trol groups. In this experiment, the number of AS-HK014 doses was increased to

inistrations, the first one after 6 h from incubation and 24, 48 and 72 hours after the 

btained from
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Figure 6.17 Changes in parasitaemia levels of mice infected with bloodstream forms 
of T. brucei when treated with some curcumin compounds. 

AS-HK009 (●), AS-HK014 (▲) and AS-HK027 (▼). Drugs were given at 50 mg/kg in 
2 doses at 6 and 24 h after infection (A) or 4 doses at 6, 24, 48 and 72 h after infection 
(B). Drug free (♦) and diminazene 7 mg/kg (■) were used as negative and positive 
controls, respectively. Mice were euthanized on day 6 PI. Data shown are the average 
and SE of five mice of each group.  
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6.8 Discussion  

Several observations lead to the conclusion that most of the curcuminoids, as exemplified 

uld have been indicative of cell cycle arrest. Instead, the curcuminoids seem to 

rapidly cause a permeabilisation of the plasma membrane, as visualised with propidium 

iodide, leaving the nuclear DNA intact and unfragmented. This effect on plasma 

The possible mechanism of action of curcumin analogues was investigated in this study. 

The analogues studied, AS-HK009, AS-HK014 and AS-HK027, were selected from a 

small library of curcumin compounds. The choice of these compounds was based on the 

results from Alamar Blue assays, showing that they have a strong antiparasitic activity 

against T. brucei BSF. The ability of these compounds to cause cell lysis was first 

investigated. Monitoring cell lysis either by direct cell count, spectrophotometric or the 

propidium iodide assay, it was very clear that compound AS-HK014 caused the most rapid 

lysis of the cells. This compound caused cell lysis in less than an hour at a concentration 

below 1 µM. 

Since the cytotoxicity effects of curcumin on cancer cells is due to the pro-oxidant activity 

of this compound through the generation of ROS (Bhaumik et al, 1999), we investigated 

whether curcuminoids increase the level of ROS in T. brucei BSF. None of the tested 

curcumin analogues caused an elevation in the ROS levels, and in fact seemed to display 

anti-oxidant properties, as all the curcuminoids reduced the level of ROS in the incubation 

medium. Therefore their mode of action could not be due to an inhibition of the enzymes 

that protect the cell from damage by ROS. However, a recent study on Leishmania 

donovani promastigote treated by curcumin at 25 µM resulted in an increase of ROS 

production within two hours (Das et al, 2008). This result appears to conflict with our 

findings in T. brucei. However, curcumin has been found to act as antioxidant or as pro-

oxidant agent in different cell types (Ahsan et al, 1999). These two reactions are depending 

on the drug concentration in the different species of parasites (Das et al, 2008). For 

instance, in Plasmodium 1 µM curcumin was enough to cause ROS generation, whereas 

concentrations below 1 µM lead to decrease in ROS concentration (Le Bras et al, 2005).  

by AS-HK014, tested display trypanocidal activity rather than a trypanostatic effect. Using 

several investigative techniques, it was consistently shown that these compounds rapidly 

kill the trypanosomes instead of merely preventing further growth. In addition, low 

concentrations of these compounds, with a delayed onset of parasite killing, did not cause 

any apparent change in the proportion of cells in G1, S or G2/M phase of the cell cycle, 

which wo
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membranes seems to precede any effect on the mitochondrial membranes: the Ψm 

remained unaffected up to the point of cell death. For example, incubation for 16 hours 

with AS-HK014 or 0.3 µM AS-HK096 lead to two distinct populations being observed in 

flow cytometry with TMRE: cells with a normal Ψm identical to the untreated control, and 

those with a completely depolarised mitochondrial membrane. Considering the timing and 

dosage, the latter event is most probably the result of plasma membrane breach.  

The question of the mechanism of the trypanocidal mode of action of curcumin and its 

analogues thus appears to narrow down to how these compounds compromise the plasma 

ailable: [3H]-curcumin 

from Moravek – no labelled compound is available for any of the analogues and the cost of 

sive diffusion, as its accumulation is 

saturable, being inhibited both by unlabelled curcumin and by AS-HK014. This in itself is 

membrane of the trypanosome. Some authors (Das et al, 2008; Cao et al, 2006) have 

described lipid peroxidation in response to curcumin treatment, following increases in 

ROS. However, as we find that curcumin actually protects T. b. brucei against ROS that it 

itself generates, this does not seem a likely mechanism. This conclusion is more in line 

with the emerging consensus in the literature that curcuminoids usually protect against 

lipid peroxidation (reviewed by Goel et al., 2008) and we will next focus on parameters 

such as plasma membrane potential, calcium influx and intracellular pH.  

The extraordinary efficacy of some curcuminoids, killing trypanosomes both very potently 

and rapidly in vitro, shows that these compounds must be taken up efficiently by the 

parasite. We have tried to assess this using the only radiolabel av

custom synthesis is prohibitive. The rate of 1 µM curcumin uptake, at 0.088 ± 0.06 

pmol(107 cells)-1s-1 was found to be slow compared to other substrates (e.g. hypoxanthine, 

glucose, adenosine, uracil; (de Koning & Jarvis, 1998) but uptake rates are concentration 

dependent and the low specific activity of the label did not allow us to obtain Km or Vmax 

values. Moreover, curcumin itself displays only moderate trypanocidal activity and it is 

well possible that the more potent activity of some curcuminoids is the result of much 

faster influx. Even so, this rate is comparable to the Vmax of the highly successful 

trypanocides pentamidine and diminazene aceturate on the TbAT1/P2 transporter (0.068 ± 

0.007 and 0.049 ± 0.010 pmol(107 cells)-1s-1, respectively; (De Koning, 2001b; De Koning 

et al, 2004).  

Curcumin is clearly not principally taken up by pas

a significant finding as we are unaware of any studies assessing curcumin uptake in any 

cell type and the compound is sufficiently lipophilic (cLogP = 2.56; ChemDraw Pro 10.0, 
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CambridgeSoft) to have a significant diffusion rate across biomembranes. However, there 

is no correlation between cLogP and trypanocidal activity (Figure 6.18).  
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Figure 6.18 The correlation between cLogP and trypanocidal activity of curcumin 
nalogues. 

 

urcumin displays considerable structural similarity with pentamidine, being a 

symmetrical molecule with two substituted benzene rings connected by a 7-atom linker 

hain. It was thus reasonable to test whether curcumin inhibits the previously reported 

idine transporters HAPT and LAPT (De Koning, 2001b). However, neither 

curcumin nor AS-HK014 inhibited these transporters at relevant concentrations and the 

ute of entry for these compounds remains unresolved for the moment. While the 

TbAT1/P2 adenosine transporter is also known to transport pentamidine, its substrate 

electivity is now very well understood (De Koning et al, 2005) and, as pentamidine 

idine domains, which are not present in curcuminoids, this 

rter is also not expected to contribute to curcumin uptake. 

With regard to the in vivo study, it was shown that compounds AS-HK009, AS-HK014, 

nd AS-HK027 have no significant effect on trypanosomes in an infected mouse model 

(ICR strain); at drugs level up to 50 mg/kg body weight there was no effect of the 

ompound on parasitaemia. Given that the motivation for this study is to identify 

compounds that can be used in vivo this finding is worrying. This finding maybe referred 
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to the bioavailability of curcumin which is the most major problem for this compound 

(Anand et al, 2007). The bioavailability of curcumin is due to the rapid metabolism and 

poor absorption of curcumin (Maheshwari et al, 2006; Anand et al, 2007). Holder et al 

78 oun hat 75% curcum w excreted in the faeces when it was intra-

ito all ts. It is also possi t curcum compounds get bound to 

m rotei uch as alb in befor hey  leash thei eutic effect. But this 

 w k po ility beca all the p io stud ound neg le amo s o

bl d  after oral admin rat   (Wa  & Blennow, 1978; 

in ana hand ra, 19 ; R indranath & Chandrasekhara, 1981) or after 

l o tr nial adm tration mi (P , 1999)

u im  findi e made in this study, however the full mechanism  

he rc n trypan mes rem s u nown. Compre  inves atio  

 c sid  the  this dy e t e req lly d iph

de  ac  curcum n T. b. b cei

(19 ) f d t of in as 

per ne y administrated in ra ble tha in 

seru  p n s um e t  could un r therap

is a ea ssib use rev us ies f ligib unt f curcumin 

in oo plasma ist ion in rats hlstrom

Rav dr th & C rasekha 80 av

ora r in aperito inis s in ce an et al .  

Tho gh portant ngs wer  of action

of t  cu umin o oso ain nk hensive tig ns taking

into on eration findings in  stu  ar herefor uired to fu ec er the 

mo  of tion of in o ru .
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7.1 Introduction 

The urgent need for new drugs against African trypanosomiasis is clear, as all drugs that 

are used now against this disease are expensive and moderately to extremely toxic. 

Furthermore, the parasites became resistant to some of these drugs.  

Curcumin, a yellow dye extracted from curcuma longa, exhibits a broad range of the 

biological activities. It has anti-oxidant (Rajakrishnan et al, 1999), anti-inflammatory 

(Srimal & Dhawan, 1973; Mukhopadhyay et al, 1982), anti-cancer (Sharma et al, 2001; 

Shukla et al, 2003) and anti-protozoal properties (Rasmussen et al, 2000; Koide et al, 

2002; Nose et al, 1998; Perez-Arriaga et al, 2006; Cui et al, 2007a; Reddy et al, 2005). 

Based on these properties of curcumin, 158 compounds that are analogues of curcumin 

have been synthesized to improve the potency of curcumin as antitrypanosomal agents. All 

these compounds contain a 7-carbon spacer between aromatic rings except one compound 

( HK129) which contains a 5-carbon spa any of these analogues 

s such as AS-

K025, AS-HK073 and AS-HK088, were previously synthesized and tested against 

lasmodium falciparum with EC50 values of 2.3, 7.9 and 8.4 µM, respectively (Mishra et 

ted in triplicate against T. brucei 427 to determine 

 

AS- cer. Significantly, m

were more active than curcumin (see chapter 5). Some of these compound

H

P

al, 2008). All these analogues were tes

the EC50 values. To date, no systematic attempts have been made to correlate curcuminoid 

structure to antiprotozoal activity. However, the extensive data set obtained in our study

allows us to attempt just that. The most active compounds were used as pharmacophore to 

design new lead compounds. In this chapter, a comprehensive study will be presented with 

respect to the structure-activity relationship (SAR) of curcumin and its 157 analogues with 

regards to their antitrypanosomal activities.  
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7.2 Results and discussion: 

To establish an extensive structure-activity relationship (SAR) for curcumin analogues as 

anti-trypanosomal agents, the analogues were divided into ten groups based on their 

structural characteristics. To see whether the methoxy substitutions on the aromatic ring 

exert any effect on the biological activity of curcuminoids, the demethylated analogues 

AS-HK033, AS-HK032 and AS-HK019, and the methylated analogues AS-HK073, AS-

K075, AS-HK074 and AS-HK020 were evaluated for antitrypanosomal activity. It was 

found that the mono-O-demethylated curcuminoid AS-HK033 exhibited approximately 3-

fold higher activity than the parent compound, curcumin (AS-HK001). Further 

demethylation to the di-O-demethylated analogue AS-HK032, however, resulted in about 

2-fold decrease in activity, though it still was more active than compound AS-HK001. 

Com ethylated analogue of the parent curcuminoid AS-HK002, 

was 7-fold more active than arent with an E  value of 0.65 ± 02 er 

surprisingly, it has been found that compound AS-HK073, the O-m yl a of 

com nd -H  was ost 6 ld re active than its parent com S-

HK001, whereas the mono- and di-O

were almos -f e a n th  p t co O-

met ted al ss tha ren rcu S-

HK T c io  th  r tu ns t 

 can only accept such bonds. Both substitutions would 

crease electron density on the rings increasing the binding contribution from any Π-

tacking, but the methoxy substitution would do so more effectively. The data in Table 7.1 

p would also remove electron density from the ring reducing Π-stacking 

H

pound AS-HK019, the dem

 the p C50  0.  µM. Rath

eth nalogue 

pou AS K001,  alm -fo mo pound A

-methylated analogues AS-HK075 and AS-HK074 

t 3 old mor ctive tha eir aren mpound AS-HK002. However, the 

hyla  an ogue AS-HK020 was slightly le  active n pathe t cu minoid A

003. he ontribut n from the me oxy and hyd oxyl substi tio  is thus no

straightforward. The hydroxyl groups can function as both H-bond acceptor and donor, 

whereas the methoxy groups

in

s

is consistent with an interpretation that a hydroxyl substitution is favoured on position R3, 

and that activity is mostly determined through binding of 1 ring, as substitutions on the 

second ring appear to be less critical (compare AS-HK001, AS-HK033 and AS-HK019).  

To test for the effect of an additional polar group on the aromatic ring of curcuminoid, the 

nitro analogue AS-HK041 was synthesized and evaluated for antitrypanosomal activity and 

it turned out that the presence of a nitro substituent resulted in a significant (6-fold) 

decrease in activity, positively as a result of steric effects, but this was not further explored. 

The nitro grou

energy.  
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In order to see the effect of higher alkyl ether analogues on the biological activity of 

curcuminoid analogues, the n-propyl ether AS-HK079, allyl ethers AS-HK044 and AS-

HK045, 3,3-dim 077, AS-HK076 and AS-HK078, and 2-

hydroxye e rs 02 AS- 0 e  for 

antitrypa a ti e es s h e tra  th ct

layed 6.5-fold higher activity 

an the parent compound AS-HK002. 

 the acetates AS-HK025, AS-

s (AS-HK028, AS-HK029 and AS-HK063-AS-

improved the antitrypanosomal activity by > 3-fold, but was 

not improved relatively to the tetra-methoxy analogue AS-HK073. 

 a major H-bond donor/acceptor group is 

responsible for this, and should be further explored.  

by 2- and 5-fold, respectively. In contrast, introduction of one or two pentyl pyridinium 

ethylallyl ethers AS-HK

thyl the AS-HK 4, HK 23 and AS-HK081 were valuated

nosom l ac vity. Th  assay r ult av demons ted that e a ivity of these 

alkyl ether analogues was 1 to 4-fold more active than their respective parent 

curcuminoids, except for compound AS-HK081, which disp

th

In addition to the ether derivatives, the ester analogues, i.e.

HK026 and AS-HK027, and the benzoate

HK067) were subjected to biological evaluation. The results demonstrated that the acetate 

analogues were about 1.5 to 3-fold more active than their parent curcuminoids (see Table 

1). However, it is worth noting that their EC50 values were still in excess of 1 µM. For the 

benzoate analogues, some displayed 2 to 4-fold higher activity (compounds AS-HK066 

and AS-HK065) while others displayed almost identical activity (compounds AS-HK028 

and AS-HK029) to those of the parent curcuminoids. Moreover, replacing the two 

hydroxyl (OH) groups in compound AS-HK001 with two cyanomethyl (OCH2CN) groups 

in compound AS-HK080 also 

Introduction of two groups of ethyl acetate to compound AS-HK001 at positions 3 and 7 

(AS-HK101) increases the activity by 21-fold, whereas introduction of two groups of O-

biotin (AS-HK100) or of isobutyric acid (AS-HK102) did not cause any change in the 

activity of compound AS-HK001. However, introducing one group of isobutyric acid to 

the original compounds AS-HK001 and AS-HK002 (AS-HK103 and AS-HK104) or two 

isobutyric acid groups to the original compounds AS-HK002 and AS-HK003 (AS-HK105 

and AS-HK106) increases the activity between 2- to 4-fold. Thus, the introduction of an 

ester directly at positions 3 and/or 7 has a little or no effect on activity, whereas linking an 

including acetyl, acetyl ester through the carbon to the oxygen group at position three and 

seven was clearly increased trypanocidal potency (AS-HK101). It is certainly possible that 

the spatial orientation of the ester group, as

The introduction of one or two groups of bromopentane ((C5H10Br) AS-HK108-AS-

HK113) or of azylpentoxy ((C5H10N3) AS-HK116) reduces the antitrypanosomal activity 
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(C10H15N) groups on either of the two benzene rings increases the activity dramatically by 

~125-fold and resulting in EC50 values between 0.02 µM and 0.07 µM (AS-HK119-AS-

HK124. Indeed, the increase is so dramatic that it is legitimate to ask whether these 

compounds function as curcuminoids or as pyridinium compounds on the trypanosomes. In 

a separate study (Alsalabi, Roderko and De Koning, unpublished), a series of long-chain 

alkyl pyridinium ions was shown to have mid-nanomolar activity against the same T. 

brucei strains as employed here. Possibly the combination of both motifs to generate a very 

potent trypanocide has a priority for future synthesis. 

Modification of the two keto groups in the linker chain of AS-HK001 with two hydroxyl 

imine (=N-OH), giving AS-HK042, or with two methoxy imines (=N-OCH3), giving AS-

HK012, reduces the activity by 17- and 6-fold, respectively. Given that the hydroxyl 

imines are good hydrogen bond donors and acceptors through the hydroxyl group and even 

the imine nitrogen should be able to function as an H-bond acceptor, the loss of activity on 

the modification of the keto groups is likely due to steric effects, interfering directly with 

either binding to a specific target or with uptake by the parasite. 
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HO

N N
O

OH

O CH3H3C

AS-HK042

OH OH

43 ± 3.2   
R7

O O
R2

R3

R6

R8 R4

R5 R1

 
AS-
HK 

R1 R2 R3 R4 R5 R 7 R8 EC50 (µM) 6 R

001 H O-CH3 OH H H O-CH3 OH H 2.5 ±  0.4   
002 H O-CH3 OH H H H OH H 4.6 ±  0.8   
003 H H OH H H H OH H 7.7 ±  1.1   
033 H OH OH H H O-CH3 OH H 0.87± 0.06  
032 H OH OH H H OH OH H 1.8 ±  0.1   
019 H OH OH H H H OH H 0.65± 0.02  
073 H O-CH3 O-CH3 H H O-CH3 O-CH3 H 0.4± 0.07   
075 H O-CH3 O-CH3 H H H OH H 1.7 ±  0.7  
074 H O-CH3  H H O-CH3 H 1.6 ±  0.4  O-CH3 H
020 H H H H OH H 8.9±  1.4   O-CH3 H 
041  -CH3 OH NO O-CH3 H  H O  2 H OH 15 ±  2   
044  -CH3 O-C O-CH3  H   H O  3H5 H H OH 2.4 ±  0.1 
045  O-CH3 O-C H  H H O-CH3 O-C H5 H 1.6 ±  0.1   H 3 5 3
079  -C O-C H7 HH O H3 3H7 H H O-CH3 O-C3  1.3 ±  0.4   
076  -CH3 O-C O-CH3 5H9 H 2   H O  5H9 H H O-C 1.2 ±  0.
077  -CH3 OH O 3 H9 H 2  H O  H H -CH O-C5 1.4 ±  0.
078  -CH O-C H9 H 3   H O 3 5H9 H H H O-C5 1.9 ±  0.
023  -CH3 O-C2H  O 4OH H 8   H O  4OH H H O-CH3 -C2H 1.8 ±  0.
024  -C OH O 4OH H H O H3 H H O  -CH3 -C2H 2.9 ±  1.1   
081  -C O 4OH H  H O H3 OH H H H -C2H 0.70 ±  0.3
025  -C OC H3 H H O H3 (O)CH3 H H O-CH3 OC(O)C 1.6 ±  0.5   
026  -C OC H3 H    H O H3 (O)CH  3 H H H OC(O)C 1.5 ±  0.3
027  H OC 3 H   H  (O)CH  3 H H H OC(O)CH 3.2 ±  0.4
028  -C OH H5 H    H O H3 H H O-CH3 OC(O)-C6 3.1 ±  0.7
029  -C  H H O H3 OH H H H OC(O)-C6H5 3.7±  0.4   
065  H OC(O)-C6H5 H H  OH H H O-CH3 1.2 ±  0.3  
066  H OC(O)-C6H5 H H  OH H H H 4.2 ±  1.7   
080  -C O-CH  H .5  H O H3 2CN H H O-CH3 O-CH2CN 0.75 ±  0
100  -C O H H O H3 -biotin H H O-CH3 O-biotin 2.1 ±  0.3   
101  -C H2 Et H   H O H3 OC C(O)OEt H H O-CH3 OCH2 (O)OC 0.12 ±  0.02
102  -C C(O  CH H    H O H3 O H H O-CH3 2.6 ±  0.5)C(CH2 H3 ) C OC(O CH2))-C( 3 
103  -C C(O H )C(CH ) CH  H O H3 H H O-CH3 OH 1.1 ±  0.2   O 2  3

104  -C C(O H   )C(CH ) CH  H O H3 O H H H OH 1.0 ±  0.02 2  3

105  -C C(O OC H2) CH3 H    )C(CH2) CH3  H O H3 O H H H 2.0 ±  0.3(O)C(C
106 H H OC(O)C(CH2) CH3 H H H OC(O)C(CH2) CH3 H 2.3 ±  0.2   
108 H O-CH3 O-C5H10Br H H O-CH3 O-C5H10Br H 4.0 ±  1.4   
109 H O-CH3 O-C5H10Br H H O-CH3 OH H 3.1 ±  1.1   
111 H O-CH3 O-C5H10Br H H H OH H 4.6 ±  1.4   
112 H O-CH3 OH H H H O-C5H10Br H 5.4 ±  1.7   
113 H O-CH3 O-C5H10Br H H H O-C5H10Br H 6.0 ±  1.2   
116 H O-CH3 O-(CH2)5-N3 H H O-CH3 O-(CH2)5-N3 H 13 ±  2.9   
119 H O-CH3 O(CH2)5-N-pyridine H H O-CH3 O(CH2)5-N-pyridine H 0.07 ±  0.02  
120 H O-CH3 O(CH2)5-N-pyridine H H O-CH3 OH H 0.02±  0.01   
122 H O-CH3 O(CH2)5-N-pyridine H H H O(CH2)5-N-pyridine H 0.06 ±  0.02  
123 H O-CH3 OH H H H O(CH2)5-N-pyridine H 0.04 ±  0.02  
124 H O-CH3 O(CH2)5-N-pyridine H H H OH H 0.03 ±  0.01  
 AS-HK123 is an isomerise to compound AS-HK120.  

Scheme 7.1 Changes in chemical groups and their effect on the efficacy of original 
curcumin compounds.  
 
 

The reduced analogues of curcuminoids were next tested against T. b. brucei s427. For the 

tetrahydro analogues AS-HK007- AS-HK009, AS-HK085 and AS-HK087, the first two 

analogues (i.e. AS-HK007 and AS-HK008) were approximately 8- and 5-fold less active 
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than their respective parent compounds. However, the number and nature of the oxygen 

functions on the aromatic rings strongly determined the antitrypanosomal activity of the 

tetrahydro analogues. Thus, the analogue AS-HK009 was 3-fold more active than its parent 

curcuminoid AS-HK003 and was almost 9-fold more active than compound AS-HK008, 

the 3″-O-methoxy analogue. However, replacing the two keto groups in compounds AS-

HK009 with two hydroxyl imine (=N-OH) (given AS-HK047) reduces the activity by 10-

fold less than the original compound AS-HK003 and 32-fold less than compound AS-

K009, consistent with a steric interference with target binding as abserved for the 

unsaturated curcuminoiods above. Combined, those observations support the hypothesis 

that 1- the unsaturated and saturated curcuminoids likely act on the same primary target 

and 2- the keto groups of the linker are directly involved in binding to the intracellular 

target. The reduced linkers will allow more conformational flexibility, explaining the 

increased influence of the hydroxyl substitutio the rings.   

 
 

 
 
 
 

7 8 50
(µM) 

H

ns on 

AS-
HK 

R1 R2 R3 R4 R5 R6 R  R  EC  

007 H O-CH3 OH H H O-CH3 OH H 21 ± 11   
008 H O-CH3 OH H H H OH H 22 ± 8  
009 H H OH H H H OH H 2.5 ± 0.4  
083* H O-CH3 OH H H H OH H 15 ± 5  
087 H OH OH H H OH OH H 1.9 ± 0.6  

                * Same structure with compound AS-HK008. 
 

Scheme 7.2 Efficacy of reduced curcumin compounds on their activity.  
 
 

The hexahydro analogues AS-HK030, AS-HK031 and AS-HK082 exhibited very low 

activity, being 7-, 27- and 73-fold less active than the conjugated compound AS-HK024, 

respectively. However, removing one methoxy group from compound AS-HK031 to 

repare AS-HK084 does not significantly change activity. The compound AS-HK086 was 

3.5-fold less active than the corresponding conjugated compound AS-HK033. Compound 

S-HK085 was the most active analogue in this series, apparently owning to the double 

p

A

HO

N N

OH
AS-

OH

HK047

OH

80 ± 6

R7

O O
R2

R3

R6

R8 R4

R R5 1
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bond introduced between carbons 3 and 4 of the linker, resulting in a 6-fold higher activity 

compared to AS-HK086.   

 

AS-HK030

OHO

O

AS-HK031

OHOH

OH

O

HO

CH3H3C
O

OH

O
H3C

HO

CH3

  78 ± 5

 17 ± 3

  

AS-HK082

OHO

O

OH

O

O

CH3H3C

  33 ± 13

H3C

AS-HK084

OHOH

O

OHHO

CH3

 64 ± 12

 

AS-HK085

OO

OH

OH

O

HO

H3C

H

0.5 ± 0.1

     

AS-HK086

OO

OH

OH

O

HO

H3C

H

 3.0 ± 0.7

 
Scheme 7.3 Efficacy of reduced curcumin co
 

mpounds on their activity.  

 

 
ol and isoxazol analogues:

 

Oxaz  

eplacing the diketo group in compounds AS-HK001, AS-HK002 and AS-HK003 with 

isoxazolyl g r ce e ompounds AS-HK004, AS-

HK005 and AS-HK006, respectively. The activity a  low hen al acetyl 

(AS-HK043) and pentyl (AS-HK022) groups were added to these compounds, as described 

above for the equivalent derivatives of AS-HK001-003. In addition, reducing one bond 

from AS-HK004, resulting in AS-HK046, leads to a further decrease in activity. 

Interestingly, replacing the diketo feature in AS-HK001 with an isoxazolyl ring (AS-

HK004) reduces the activity and introducing an isobutyric acid group to AS-HK001 does 

not change the activity, the activity is increased by 2-fold when both groups are together 

introduced in compound AS-HK107. Similarly, introducing one group of bromopentane 

(C5H10Br) to AS-HK004 (AS-HK115) does not make any significant changes in the 

activity. Introduction of one or two pentyl pyridinium (C10H15N) groups in AS-HK001 

while also replacing the diketo group with an isoxazolyl ring resulted of obtaining two of 

R

 rin edu s th  activity from 2- to 10-fold in c

 rem ins  w addition
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the best active compound of curcumin analogues against T. brucei (compound AS-HK126 

and AS-HK125) with EC50 values of 0.01 µM and 0.03, respectively. The profound 

increase in activity with this pyridinium substitution was already described above (AS-

HK119-124) and the fact that the same substitution on isoxazole analogues leads to a very 

similar or even higher activity strength hense the argument that in this case the pyridinium 

moieties maybe the active element. While this has been explored further, the investigation 

of the pyridinium ions is not part of this thesis.  

 

HO

N O
O

OH

O CH3H3C

AS-HK046
13 ±  0.6

      
R7

N O
R2

R3

R6

R8 R4

R5 R1

 

AS-
HK 

R1 R2 R3 R4 R5 R6 R7 R8 EC50 (µM) 

004 H O-CH3 OH H H O-CH3 OH H 9.2 ± 2.3  
005 H O-CH3 OH H H H OH H 37± 7.4   
006 H H OH H H H OH H 25 ± 5.5  
043 H O-CH3 O-C2H5 H H O-CH3 O-C2H5 H 7.9 ± 0.0  
022 H O-CH3 O-C5H11 H H H OH H 14 ± 1.1   
021 H O-CH3 O-C5H11 H H H O-C5H11 H NS  
107 H O-CH3 C4H8O2 H H O-CH3 C4H8O2 H 1.4 ± 0.1  
115 H O-CH3 O-C5H10Br H H O-CH3 OH H 2.1 ± 0.02  
125 H O-CH3 OC10H20BrN H H O-CH3 OC10H20BrN H 0.03 ± 0.004  
126 H O-CH3 OC10H20BrN H H O-CH3 OH H 0.01 ± 0.003  

Scheme 7.4 Effect of changes in chemical groups on the activity of oxazole curcumin 
analogues. NS= not solvent. 
 
 
 

Converting the diketo group in the reduced compounds AS-HK007, AS-HK008 and AS-

HK009 into isoxazol group reduces the activity up to 7-fold in compounds AS-HK088, 

AS-HK089 and AS-HK090, respectively. Furthermore, the addition of two acetyl groups to 

compound AS-HK088, giving AS-HK091, does not improve the activity of this compound. 

Thus the oxazole and isoxazole analogues consistently loose some of their trypanocidal 

activity compared to the di-kito potent compounds- with the exception of the 

alkylpyridinium series. This could be due to the conformational restrictions of the central 

ring structure. 
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R7

N O
R2

R3

R6

R8 R4

R5 R1

 
 

AS-
HK 

R1 R2 R3 R4 R5 R6 R7 R8 EC50 
(µM) 

088 H O-CH3 OH H H O-CH3 OH H 17 ± 4.6 
089 H O-CH3 OH H H H OH H 23± 7.5  
090 H H OH H H H OH H 26 ± 8.1 
091 H O-CH3 O-C2H5 H H O-CH3 O-C2H5 H 13± 4.8  

Scheme 7.5 The effect of introduction and reduction of different chemical groups on 
the activity of the reduced oxazole curcumin analogues.  
 
 
 
 
Other linker modifications: 

We next explored mono-oxygenated analogues of the heptyl linker chain. We first 

synthesized the mono keto analogue AS-HK014, which was obtained by dehydration of 

compound AS-HK030. We discovered that the enone AS-HK014 exhibited very high 

antitrypanosomal activity of 0.053 ± 0.007 µM, which was 50-fold more active than the 

parent compound AS-HK001, or 340-fold more active than its immediate precursor, the 

hexahydro analogue AS-HK030. The activity of AS-HK014 was superior to the activity of 

the standard veterninary trypanocide diminazene aceturate, which displayed an activity of 

0.10 ± 0.01 µM against s427. 

In order to study more about structure-activity relationship and to find any possible 

additional potent analogues by using the mono keto analogue AS-HK014 as the lead 

structure, we further explored different analogues (Scheme 7.6). It was found that the 

mono-demethylated analogue AS-HK034, the completely demethylated compound AS-

HK035, the methylated analogues AS-HK018, AS-HK036, AS-HK048, and AS-HK051 

were all more active than their respective parent curcuminoids AS-HK001-AS-HK003, 

except for compound AS-HK035 whose activity was about the same as that of its parent 

compound AS-HK001. The unsubstituted analogue AS-HK054 also displayed similar 

activity. However, none of them showed higher activity than the enone AS-HK014. 

However, adding methyl (CH3) at C4 of the linker chain to compound AS-HK036 to 

produce AS-HK037 drops the activity from 1.9 µM to 22 µM, and further side chain 

introductions in the linker were not attempted. 
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We then investigated the alkyl ether and the acetate analogues of the enone AS-HK014 

(i.e. compounds AS-HK094-AS-HK098) and it was found that all the analogues exhibited 

high activity. The monoacetate AS-HK097 and the diacetate AS-HK096 displayed the 

highest activity, at 0.089 ± 0.03 and 0.052 ± 0.01 µM, or 28 and 48-fold more active than 

the natural parent curcuminoid AS-HK001, respectively. Clearly, compound AS-HK096 

has a similar activity as the enone compound AS-HK014, so replacement of the two 

hydroxyl groups in AS-HK014 by two acetyl groups in compound AS-HK096 dose not 

change its activity, although ether substitutions did. Introduction of one cyanomethyl 

(OCH2CN) group (compound AS-HK092) reduced the activity of AS-HK014 to 1.4 ± 0.4 

µM, respectively, only 2-fold more active than the parent compound AS-HK001. 

Surprisingly, the introduction of a second cyanomethyl to make the symmetrical AS-

HK093 restored almost all the trypanocidal activity 0.087 ± 0.03 µM. 

Introducing an pentyl bromide (OC5H10Br) ether at R3 in compound AS-HK118 or at R3 

and R7 in compound AS-HK117 reduced the activity of AS-HK014 by 10- or 22-fold. 

However, the presence of one or two O-pentyl pyridinium groups in compounds AS-

HK128 and AS-HK127, while increasing the activity relative to AS-HK001 by 2- and 7-

fold, respectively, but actually reduced the activity of AS-HK014, on contrast to identical 

substitutions on the di-keto scaffold (schemes 7.4 and 7.6). Only one compound (AS-

HK129) contains a 5-carbon spacer; this compound exhibited low antitrypanosomal 

activity with an EC50 value of 48 µM (scheme 7.6).  
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AS-HK037

O

O

OO

CH3

CH3H3C

OH3C
CH3

22 ± 0.8
        

O

AS-HK053 OH
47 ± 0.2

 
 

N N

AS-HK129

++
Br-Br-

48 ± 4.9
                    

R7

O
R2

R3

R6

R8 R4

R5 R1

 
 

AS-
HK 

R1 R2 R3 R4 R5 R6 R7 R8 EC50 (µM) 

014 H O-CH3 OH H H O-CH3 OH H 0.053 ± 0.007 
057 H H H H H H H H 2.8 ± 0.8 
051 H H OH H H H OH H 2.6 ± 0.5 
035 H OH OH H H OH OH H 2.5 ± 0.5 
048 H H OH H H O-CH3 OH H 3.0 ± 0.3 
034 H O-CH3 OH H H OH OH H 0.75± 0.1 
018 H O-CH3 O-CH3 H H O-CH3 OH H 0.14 ± 0.05 
036 H O-CH3 O-CH3 H H O-CH3 O-CH3 H 1.9± 0.2  
094 H O-CH3 O-C5H11 H H O-CH3 O-C5H11 H 1.1± 0.3  
095 H O-CH3 OH H H O-CH3 O-C5H11 H 0.86 ± 0.3 
096 H O-CH3 O-C(O)-CH3 H H O-CH3 O-C(O)-CH3 H 0.052 ± 0.01 
097 H O-CH3 O-C(O)-CH3 H H O-CH3 OH H 0.089 ± 0.03 
098 H O-CH3 O-C2H4OH H H O-CH3 OH H 0.27 ± 0.06 
092 H O-CH3 OH H H O-CH3 O-CH2CN H 1.4 ± 0.4 
093 H O-CH3 O-CH2CN H H O-CH3 O-CH2CN H 0.087 ± 0.03 
117 H O-CH3 OC5H10Br H H O-CH3 OC5H10Br H 1.2 ± 0.1 
118 H O-CH3 OC5H10Br H H O-CH3 OH H 0.5 ± 0.1 
127 H O-CH3 OC10H15N H H O-CH3 OC10H15N H 0.35 ± 0.01 
128 H O-CH3 OC10H15N H H O-CH3 OH H 1.2 ± 0.2 

Scheme 7.6 The  effect of introduction and reduction of different chemical groups on 
the activity of the mono keto curcumin analogues. 

 

In order to see the contribution of the olefinic group in the enone AS-HK014 to the 

antitrypanosomal activity, the corresponding dihydro analogue AS-HK038 was prepared 

and it was found that removal of the conjugated olefinic function resulted in almost 

complete loss of activity. The activity of AS-HK038 was 640-fold less active than that of 

AS-HK014. A similar result was also observed for the saturated keto analogues AS-HK049 

(Scheme 7.7). To assess whether the keto function was also essential for activity, the keto 

group in compound AS-HK014 was replaced with hydroxyl group (-OH) to prepare the 

enol AS-HK050. Another changes were performed on compound AS-HK038 by replacing 

the keto group with hydroxyl imine (=N-OH) or with methoxy imine (=N-O-CH3) to 

prepare AS-HK010 and AS-HK013, respectively. All these changes resulted in an almost 
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complete loss of activity. Furthermore, addition or reduction of the substitutes such as OH 

and O-CH3 on one or both rings of these compounds generally did not cause any marked 

increase in the antitrypanosomal activity (AS-HK011, AS-HK52, AS-HK058 and AS-

HK61). We conclude that an essential structural feature for a curcuminoid to exhibit strong 

antitrypanosomal activity is the presence of an α,β-keto system at the heptyl chain. 

 

HO

OH
O

OH

O
CH3H3C

AS-HK050
  40 ± 3

     

R7

R2

R3

R6

R8 R4

R5 R1
R9

 
 

AS-
HK 

R1 R2 R3 R4 R5 R6 R7 R8 R9 EC50 
(µM) 

058 H H H H H H H H O 44 ± 2.4 
052 H H H H H H OH H O 23 ± 4.3 
038 H O-CH3 OH H H O-CH3 OH H O 32 ± 0.4  
049 H O-CH3 OH H H H OH H O 45 ± 1.0 
061 H H H H H H H H N-OH 33 ± 1.5 
010 H O-CH3 OH H H O-CH3 OH H N-OH 51 ± 9.8 
011 H H OH H H H OH H N-OH 93 ± 11  
013 H O-CH3 OH H H O-CH3 OH H N-O-CH3 34 ± 3.8 

Scheme 7.7  The effect of introduction and reduction of different chemical groups on 
the activity of the reduced mono keto curcumin analogues. 
 
 
 

To further investigate about the importance of the substitution on the aryl rings, all the AS-

HK014 substitution were removed (AS-HK057) resulting in a 53-fold decrease in activity. 

In another investigation about the importance of the keto function in the activity, the keto 

group in compound AS-HK014 was also replaced with hydoxylimine (=N-OH) group to 

prepare AS-HK039 or with methoxy imine (N-O-CH3) to prepare AS-HK040. The results 

were similar to those obtained in the last group and the activity was lost (566-fold less 

active than compound AS-HK014). 
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R7

R2

R3

R6

R8 R4

R5 R1
R9

 
 

AS-
HK 

R1 R2 R3 R4 R5 R6 R7 R8 R9 EC50 
(µM) 

057 H H H H H H H H O 29 ± 0.8 
039 H O-CH3 OH H H O-CH3 OH H NOH 29 ± 2.4  
040 H O-CH3 OH H H O-CH3 OH H NOCH3 30 ± 1.8 

 

Scheme 7.8  The effect of replacing the keto group by hydoxylimine and methoxy 
imine groups on the activity of the mono keto curcumin analogues. 

 
 
 

Similarly, removing all the substitutes on the both aryl rings, and changing the double bond 

position from C4-C5 to C1-C2 (AS-HK059) resulted in a decrease in activity by 245-fold 

compared to AS-HK014. Reinstating on of the aryl substitutions (hydroxyl at position R3; 

AS-HK053) resulted in even lower activity. Similarly, replacing the keto group in AS-

HK059 with hydoxylimine (=N-OH) group or with methoxy imine (N-O-CH3) to prepare 

AS-HK060 and AS-HK062, respectively, also resulted in a further decrease in activity 

(>640-fold less active than AS-HK014). 

 

 

R7

R2

R3

R6

R8 R4

R5 R1
R9

 
 

AS-
HK 

R1 R2 R3 R4 R5 R6 R7 R8 R9 EC50 
(µM) 

059 H H H H H H H H O 14 ± 1.9 
053 H H OH H H H H H O 47± 0.2  
060 H H H H H H H H NOH 35 ± 0.8 
062 H H H H H H H H NOCH3 34 ± 2.9 

 

Scheme 7.9  The effect of changing the bond position with replacing the keto group by 
hydoxylimine and methoxy imine groups on the activity of the mono keto curcumin 
analogues. 
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Within the framework of the most active compound, AS-HK014, we investigated whether 

additional olefinic function would give rise to an increase in biological activity. The 

dienones AS-HK015, AS-HK016, AS-HK055 and AS-HK056 were synthesized and 

assessed for antitrypanosomal activity (Scheme 7.10). The introduction of a further 

conjugated double bond, either at position 1,2 (AS-HK055) or 6,7 (AS-HK056) of AS-

HK014 linker, reduced this compound trypanocidal activity by 1.5- and 6-fold, 

respectively. This appears to indicate that the conjugation as such is not the sole 

determinant in activity, but that flexibility of the linker must be retained as much as 

feasible within the requirement of a single double bond conjugated with the keto group. 

Consistent with this view, the trienone AS-HK017 displayed lower activity than the 

corresponding dienone AS-HK016 and similar to AS-HK015 (P>0.05), leading to the 

conclusion that the double bond C6-C7 is particularly unfavourable. None of the thirty 

trienone compounds (Scheme 7.10) displayed superior activity to AS-HK014, but a few 

had submicromolar EC50 values. On the other hand, the trienone AS-HK017 and AS-

HK130-AS-HK158 were also tested for antitrypanocidal activity. In this group, 19 out of 

30 exhibited EC50 values higher than the original compound AS-HK001, with EC50 values 

between 0.19 µM and 2.5 µM. However, none of them showed higher activity than the 

compound AS-HK014.  
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Scheme 7.10  The effect of introduction and reduction of different chemical groups on 
the activity of the dienone and trienone curcumin analogues. 
 
 
 

AS-
HK 

R1 R2 R3 R4 R5 R6 R7 R8 EC50 (µM) 

151 H H H H H H H H 2.9 ± 0.4 
152 H H OH H H H H H 1.7 ± 0.2 
154 H OH H H H H H H 0.68 ± 0.07 
153 H H O-CH3 H H H H H 5.7 ± 0.1.0 
017 H O-CH3 OH H H O-CH3 OH H 1.1 ± 0.3 
130 O-CH3 H O-CH3 H O-CH3 H H O-CH3 7.1 ± 0.08 
132 H OH O-CH3 H O-CH3 H H O-CH3 0.72 ± 0.04 
135 O-CH3 H H O-CH3 O-CH3 H H O-CH3 2.1± 0.02  
136 H H O-CH3 H O-CH3 H H O-CH3 3.5 ± 0.4 
137 H OH H H O-CH3 H H O-CH3 0.33 ± 0.04 
139 H H H H O-CH3 H H O-CH3 2.0 ± 0.06 
141 H OH O-CH3 H H OH H H 0.28 ± 0.02 
142 H H O-CH3 H H H O-CH3 H 4.9 ± 0.22 
143 H OH H H H H O-CH3 H 0.58 ± 0.03 
145 OH O-CH3 H H H O-CH3 O-CH3 H 0.19 ± 0.01 
146 H OH O-CH3 H H O-CH3 O-CH3 H 0.38 ± 0.06 
147 H H OH H H O-CH3 O-CH3 H 0.65 ± 0.02 
148 H H OH H H H O-CH3 H 1.7 ± 0.22 
149 H OH O-CH3 H O-CH3 H O-CH3 H 1.0 ± 0.09 
150 O-CH3 H O-CH3 H O-CH3 H O-CH3 H 7.0 ± 0.4  
157 OH O-CH3 H H H H H H 1.8 ± 0.2 
158 O-CH3 H H O-CH3 H H H H 4.1 ± 0.4 
133 O-CH3 H O-CH3 H H H Cl H 18 ± 1.7 
134 H H Cl H H H Cl H 8.0 ± 0.7  
138 Cl H H H O-CH3 H H O-CH3 1.9 ± 0.04 
140 H OH O-CH3 H H H Cl H 2.5 ± 0.2 
144 H OH H H H H Cl H 0.97 ± 0.2 
156 Cl H H H H H H H 4.1 ± 0.05 
131 H NO2 H H O-CH3 H H O-CH3 7.1 ± 0.05 
155 H NO2 H H H H H H 1.1± 0.1  

 180



Hasan Ibrahim, 2009   Chapter 7 

 
 

In conclusion, the structure activity analysis of 158 curcumin analogues for trypanocidal 

activity indicated the following outcomes: 

 Converting the diketo groups (C=O) into isoxazol group reduces the activity of 

curcumin.  

 The activity increases when a pentyl pyridinium (OC10H15N) group was added. For 

example, the O-pentyl pyridinium compound AS-HK126 gave the best activity of 

all the analogues with an EC50 value of 0.01 µM. 

 O-linked substitution on the aryl rings replacing the hydroxyl groups of curcumin, 

present a complex pattern. In general, alkyl ethers, acetates, benzoate esters, biotin, 

isobutyric acid and similar substitution do not lead to substantially increased 

activities compared to curcumin. 

 Reduction of one of the diketo groups to a hydroxyl (OH) group or reduction of 

both groups, to a diol, leads to a reduced activity, whereas conversion only one of 

these groups to a conjugated enol increases the activity. 

 Introduction of further double bonds to the linker leads to a substantial loss of 

activity. 

 The further reduction of the enol structure either at the double bond or the keto 

group, or replacement of the keto by hydroxylimine or methoxy imine similarly 

destroys the anti-trypanosomal activity.   

 The activity of the compounds improves when groups such as OH, MeO, O-C2H5, 

O-C2H4OH, O-C3H7, C6H5-COO and O-CH2COOC2H5 are substituted together with 

OH and MeO at R2, R3, R6 and R7. The activity also improved when two groups of 

O-biotin (C10H15N2O3S) or ethyl acetate (O-CH2COOC2H5) were added. 
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Chapter eight 

8 General discussion 
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The increasing burden of parasitic diseases, including African trypanosomiasis and 

leishmaniasis, is a major concern in the world and management and control of the disease 

is fraught with numerous problems. Toxicity of antiparasitic agents is an important 

problem. For instance, melarsoprol, used in the late-stage of sleeping sickness, is reported 

to cause a fatal reactive encephalopathy in 10% of patients (Barrett, 2000; Fairlamb, 2003). 

Pentavalent antimonials (Pentostam and Glucantime), which are antileishmanial drugs, 

also have severe side effects such as malaise, vomiting and anorexia (Chang et al, 1985; 

Kreier & Baker, 1987). The cost and the availability of the drugs are also crucial factors in 

the control of the diseases. For instance, DMFO, a drug used to treat the late stage of T. b. 

gambiense infections costs about US$ 250 per patient whilst US$ 9, 000 is spent for the 

hospitalisation and treatment of leishmaniasis with a regimen of Amphotericin B (Marty & 

Rosenthal, 2002; Rosenthal & Marty, 2003). 

A major and difficult issue associated with antimicrobial agents is the problem of drug 

resistance. For example, resistance to melarsoprol (Bacchi, 1993; Brun et al, 2001; Legros 

et al, 1999; Balasegaram et al, 2006; Delespaux & De Koning, 2007), diminazene (Geerts 

et al, 2001; Anene et al, 2006) and pentavalent antimonials (Sundar, 2001b; Hadighi et al, 

2006) has been reported. The emergence and spread of parasites resistant to the commonly 

used anti-trypanosomiasis and anti-leishmaniasis drugs means that current treatments are 

losing their efficacy in certain regions, rendering the diseases nearly untreatable. Thus, the 

limitations of registered drugs used against these two diseases and the problems associated 

with these drugs, necessitate the urgent development of new therapies to combat 

kinetoplastid diseases.  

A basic guide in the selection of novel anti-trypanosoma/leishmania drugs should be their 

affordability and availability. In the light of this, detailed study of natural compounds is 

important. Our decision to investigate analogues of choline and curcumin as potential 

antitrypanosomal and antileishmanial compounds is therefore appropriate. Curcumin is a 

natural yellow pigment, which is extracted from curcuma longa rhizomes. The compound 

is not only used as natural food additive and spice but has also been used traditionally to 

treat a large number of infectious and non-infectious diseases. 

Using standard drug assessment methods it was clearly demonstrated in this study that 

choline and curcumin analogues have anti-parasitic activities against trypanosomes and 

leishmania. Of the 98 curcuminoid compounds screened in this study, most were found to 
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possess activity against these species. Likewise, five out of the seven choline compounds 

tested in this study showed strong activity against bloodstream forms of Trypanosoma 

brucei brucei (Tb427WT, TbAT1-KO and TbAT1-KO-B48). Interestingly, four of the 

latter compounds inhibited the promastigotes of Leishmania major and L. mexicana, and 

amastigotes of L. mexicana, with EC50 values below that of pentamidine, one of the 

recommended first-line drugs for the treatment of leishmaniasis.  

The toxicity test on human HEK cell line with choline and curcumin compounds 

performed in this study did not highlight any in vitro toxic effects. The same outcome was 

found when some selected curcumin compounds were incubated with rat hepatocytes for 

up to 2 h. It is worth noting that in a study conducted elsewhere it was concluded that 

curcumin has no toxicity at doses up to 10 g per day in humans (Aggarwal et al, 2003). 

Coupled with the finding that the compounds were non-toxic to HEK cells, the findings in 

this study are highly encouraging since these compounds could be developed further to 

become lead compounds for further evaluation as anti-leishmanial and/or anti-

trypanosomal drugs. 

A finding in this study worth in-depth exploration is the observation that the nature of the 

chemical side chain on the choline analogue influenced the efficacy of the compounds. For 

instance, the bisthiazolium compound T4 was observed to be 13 times more active against 

the T. brucei bloodstream forms, than its close analogue T3, although the sole difference 

was the presence of a methoxy (T4) or hydroxyl (T3) group in the alkyl side chain on the 

thiazolium ring (structures see Figure 3.1, page 60). However, the corresponding 

monothiazolium, T1 (equivalent to T3 containing only one ring structure), also displayed a 

4.4-fold higher trypanocidal activity than T3. This leads to the testable hypothesis that a 

‘methoxy-T1’ would have the best activity of this series. These finding seems to support 

similar trends observed in tests against Plasmodium species (Hamze et al, 2005) and are 

also in line with activities against Leishmania species (Table 3.1, page 64). These 

observations highlight the urgent need for a systematic structure/activity analysis with a 

much larger sample size.  

The presence of mediated transport of choline by T. brucei was also investigated using the 

classic uptake technique. The outcome indicates that, unlike in Plasmodium, these 

organisms do not express choline transporters. It was also concluded that the HAPT and 

LAPT transporters were not involved in the transport of choline or choline analogues into 

the parasites. These findings suggest that the mode of action of these compounds could not 

be attributed to an inhibition of a choline transporter. This conclusion was consistent with 
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the observation that the test compounds did not change the lipid composition of T. b. 

brucei (see below). 

To investigate the possible mode of action of these compounds, we employed various 

scientific methods. Whereas some of the curcumin analogues rapidly killed trypanosomes, 

the actions of the choline compounds were mostly trypanostatic in nature. None of the 

choline compound tested caused parasite death as a consequence of plasma membrane 

disruption or by interfering with choline transport or phospholipid metabolism. The 

analysis of phospholipid composition after incubation with high concentrations of choline 

lipids did not identify any changes in overall content of the main phospholipids, including 

PC, PE and sphingolipids. Thus it is highly unlikely that the choline analogues act directly 

as inhibitors or substrates of enzymes of the phospholipid biosynthesis pathways. 

However, several of the analogues were identified in the mass spectra, showing their entry 

into the cells. One possibility would be that the compounds induced apoptosis in 

trypanosomes, as reported for some prostaglandins (Figarella et al, 2005; Figarella et al, 

2006). Indeed, some of the analogues, particularly G25 and MS1 seemed to induce a rapid 

depolarisation of the mitochondrial membrane and others (T1 and M38) appear to cause 

DNA degradation – phenomena ofter associated with apoptosis (Figarella et al. 2005). 

However, none of the compounds clearly induced both phenomena, nor did any of them 

induce the formation of Reactive Oxygen Species (ROS) which was reportedly the 

mechanism by which prostaglandins induced apoptosis in trypanosomes (Figarella et al. 

2006). It must therefore be concluded that the mechanism of action is not identical for the 

entire group of compounds, but that none of them induce an apoptosis-like effect on 

trypanosomes. Future studies will focus on the mitochondrion as a site of action for choline 

analogues. 

Similarly, the mechanism of action of curcumin against trypanosomes and leishmania 

could not be completely deciphered. However, the diverse pharmacological activities of 

curcumin against various cell types have been reported in literature. The compound was 

reported to attack multiple cellular targets in various cell types including the inhibition of 

numerous enzymes such as protein kinase C, cytochrome P450 and telomerase among 

others. For example, Cui et al, (2006) reported that incubation of three human cancer cell 

lines (Bel7402, HL60 and SGC7901) with 1 µM curcumin for 120 h leads to inhibition of 

telomerase followed by induction of apoptosis. Curcumin was reported to prevent 

activation of protein kinase C in mouse fibroblast cells by phorbol esters, pointing to a 

possible effect on cellular regulation (Liu et al, 1993), in mammalian plasma membrane 
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preparations (Mahmmoud, 2007) and in neutrophils (Jancinova et al, 2009). The 

cytochrome P450 (CYP) was also inhibited by curcumin in rat (Oetari et al, 1996) and 

human (Volak et al, 2008) liver cells. Moreover, the inhibitory effect of both curcumin and 

curcumin analogues on the five major human drug-metabolizing CYPs has been also 

reported by Appiah-Opong et al, (2007) and Appiah-Opong et al, (2008), respectively. 

To explore the mechanisms of the chemopreventive effects of curcumin, we have tested 

whether curcumin can induce apoptosis in trypanosomes. Apoptosis is a mode of cell death 

and characterized by plasma membrane blebbing, cell shrinkage, chromatin compaction 

and collapse of the cell into small intact fragments (Pal et al, 2001). Yoshino et al (2004) 

and Su et al (2006) also reported that curcumin-mediated apoptosis is closely related to 

increase in the production of intracellular reactive oxygen species (ROS) in HL60 and 

human colon cancer Colo 205 cells, respectively. Our findings resulted that none of any of 

these signs was observed on the treated trypanosomes with curcuminoids. Therefore, the 

mechanism of curcumin’action by this way is still improbable.  

The pro-oxidant activity of curcumin by generation of ROS has been reported in different 

types of cells. For instance, Bhaumik et al (1999), Cui et al (2007) and Das et al (2008) 

reported that curcumin was found to induce hyperproduction of ROS followed by loss of 

mitochondrial membrane potential in AK-5 tumor cells (a rat histiocytoma), Plasmodium 

falciparum and Leishmania donovani promastigotes, respectively. On the other hand, this 

compound has been widely demonstrated to have potent antioxidant activities and inhibit 

ROS in human hepatoma G2 cells (Chan et al, 2005) and diabetics by inhibiting Ca2+ 

influx and protein kinase C (Balasubramanyam et al, 2003). However, curcumin has been 

found to act both as pro-oxidant and anti-oxidant agent in the DNA cleavage (Ahsan et al, 

1999), human RBCs (Banerjee et al, 2008) and Plasmodium (Le Bras et al, 2005). 

According to these studies it was suggested the pro- or anti-oxidant properties of curcumin 

analogues will dominate depending on the compounds concentration and other conditions. 

The results we report have suggested that on T. brucei curcumin analogues only act as anti-

oxidant, at concentrations ranging from 20 µM to 0.01 µM. 

If curcumin analogues are to be used routinely as antiparasitic drugs then the potential for 

early onset of parasite resistance to the drug must be anticipated. Since curcumin itself is 

currently being used extensively in food preparation, it is anticipated that a mono-therapy 

with curcumin could usher an early onset of parasite resistance as a consequence of drug 

pressure, although this is not necessarily true for curcumin analogues. However, a way to 

circumvent this is to combine this compound with another antiparasitic drug in what could 
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be referred to as curcumin combination therapy (CCT) similar to the artemisnin 

combination therapy currently being used against malaria. The possibility of synergy with 

other antiparasitic drugs should be urgently investigated. 

One of the aims in this study is to improve the pharmacological profile of curcumin against 

kinetoplastid parasites (e.g. improve their activity, selectivity). To achieve this aim, the 

structure activity relationship (SAR) of these compounds was evaluated against T. brucei 

bloodstream forms. This strategy aims to achieve an iterative improvement of the 

biological activity (i.e. trypanocidal activity, therapeutic index) by a continuous feedback 

of screening results to the synthesis strategy. The partnership with Apichart Suksamrarn 

and Chatchawan Changtam of Ramkhamhaeng University, Bangkok, has provided exciting 

results and insights. Among other observations, it was clear that activity was improved in 

the following cases. The first case was when the diketo linker was reduced to a conjugated 

enol. The second was when a pentyl pyridinium (OC10H15N) group, or two groups of O-

biotin (C10H15N2O3S) or ethyl acetate (O-CH2COOC2H5) were added. Finally, activity was 

increased when groups such as OH, MeO, O-C2H5, O-C2H4OH, O-C3H7, C6H5-COO and 

O-CH2COOC2H5 are substituted together with OH and MeO at R2, R3, R6 and R7. 

From the observations made in this study, it can be concluded that certain choline and 

curcumin analogues possess promising antiparasitic activities against trypanosomes and 

leishmania. There is now a need to develop these compounds to become pre-clinical drugs 

candidates taking into consideration some of the important information provided in this 

thesis. Of particular importance would be the improvement of bioavailability and 

pharmacokinetics of these classes of compounds. 
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1- CBSS BUFFER (CARTER’S BALANCED SALT SOLUTION) 
 
Components Quantity per litre 

MES 6.4 g 
NaCl 5.7 g 
KCl 342.9 mg 
CaCl2 44.1 mg 
MgSO4 17.2 mg 
NaH2PO4 904.8 mg 
MgCl2 60.9 mg 
Glucose  2.7 g 

Adjust to final pH 6.0 and store at 4°C. 
 

2- ASSAY BUFFER  
 
Components Quantity per litre 

Glucose  2.53 g 
HEPES 8.0 g 
MOPS 5.0 g 
NaHCO3 2.0 g 
KCl 347.5 mg 
MgCl.6H2O 62.5 mg 
NaCl 5.7 g 
NaH2PO4.2H2O 913.5 mg 
CaCl2.2H2O 40.7 mg 
MgSO4.7H2O 19.9 mg 

 
Adjust to final pH 7.3 and store at 4°C. Note- for uptake assays using yeast, assay buffer 
without the addition of glucose is used for the final wash and re-suspension (all other 
quantities remain the same). 
 
3- PSG (PHOSPHATE-BUFFERED SALINE PLUS GLUCOSE) 
 

Components Quantity per litre 

Na2HPO4 (anhydrous) 13.48 g 
NaH2PO4.2H2O 0.78 g 
NaCl 4.25 g 

  
Make to one litre with dH2O (PS buffer). Dissolve 10 g of glucose in approximately 200 
ml of dH2O (Glucose solution). Add six volumes of PS to four volume of glucose solution 
(PSG buffer). Adjust to pH 8.0 exactly and store at 4°C. 
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4- OIL MIXTURE 

 
Components Quantities 

Mineral oil (Sigma) 50 ml 
di-n-butyl phthalate 350 ml 

 
5- 2% SDS 
 

Components Quantities 

Sodium dodecly sulphate 10 g 
dH2O 500 ml 

 
 
6- Preparation of perfusion solutions:  
6.1- Stock solutions: 

 

6.1.1- Hank’s Buffer (10x):  

Components Quantity per litre 

NaCl 80 g 
KCl 4 g 
MgSO4.7H2O 2 g 
Na2HPO4.2H2O 0.6 g 
KH2PO4 0.6 g 

store at 4°C. 
 
6.1.2- Krebs-Henseleit Buffer (2x):  

Components Quantities 

Distal H2O 785 ml 
16.09% NaCl 200 ml 
1.10% KCl 150 ml 
0.22 M KH2PO4 25 ml 
2.74% MgSO4.7H2O 50 ml 
0.12 M CaCl2.6H2O 100 ml 

 
All these stocks should be stored at 4ºC. The previous solutions were transferred to a 2000 

ml brown bottle and bubbled with 95% O2 and 5% CO2 for 10 minutes. In the mean time, 

9.71 g of NaHCO2 was dissolved in 1000 ml distilled water and also bubbled as the salt 

solution. The second solution was added to the first solution in order to get Krebs-

Henseleit Buffer stock, which was stored at 4º C. 
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6.2- Perfusion solutions: 

The solutions that are used for perfusion the rat liver and preparation of cell suspension 

were filtered and stored at 4º C. 

 

6.2.1- Hank I (500 ml):  

Components Quantities 

NaHCO2 1.05 g 
HEPES 1.05 g 
bovine serum albumin (BSA) 3.33 g 
fraction V, Cat. No. 9418, Sigma 114 mg 
distilled water 450 ml 
Hank’s Buffer (10x) 50 ml 

 

6.2.2- Hank II (500 ml):  

Components Quantities 

NaHCO2 1.05 g 
HEPES 1.5 g 
CaCl2.2H2O 147 mg 
distilled water 450 ml 
Hank’s Buffer (10x)  50 ml 

 

6.2.3- Krebs-Albumin Buffer (500 ml):  

Components Quantities 

HEPES 1.5 g 
bovine serum albumin (BSA) 5 g 
distilled water 250 ml 
Krebs-Henseleit Buffer (2x) 250 ml 

 

6.2.4- Krebs-HEPES Buffer (500 ml):  

Components Quantities 

HEPES 1.5 g 
distilled water 250 ml 
Krebs-Henseleit Buffer (2x) 250 ml 

 

The pH of these four perfusion solutions was adjusted to 7.4 with 5 N NaOH.  
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7- Total cell protein measurement (Lowry Assay): 
 
Solutions used: 
0.5 M NaOH, 1% w/v CuSO4, 2% w/v Na-K-tartrate, 2% w/v Na2CO3 and Folin’s 

(ciocaltau) reagent. 

All the previous solutions should be stored at 4 ºC. The protein standard (200 µg/ml bovine 

serum albumin in 0.5 M NaOH) was stored at -20 ºC.  

1- On the day of the assay two solutions were made up: 

 - solution A: 

Components Quantities 

1% CuSO4 1 ml 
2% Na-K-tartrate 1 ml 
2% Na2CO3 98 ml 

 

- solution B:  

Components Quantities 

Folin’s reagent 5 ml 
H2O  15 ml 

 

2- The standard curve was set up in plastic test-tubes with lids as follows: 

BSA (µl) 0 125 250 500 750 1000 

0.5 M NaOH (µl) 1000 875 750 500 250 0 

Protein conc. (µg/ml) 0 25 50 100 150 200 

 

 

8- Determination of Reduced Glutathione by Fluorimetry: 

 
Solution I:  

Components Quantity per litre 

Na2HPO4 35.6 g 
EDTA 1.86 g 
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Solution II: 

Components Quantity per 200 ml 

NaH2PO4.H2O 6.13 g 
EDTA 0.372 g 
 

The pH of solution I was adjusted to 8.0 by using the solution II, and the buffer was stored 

at room temperature. 

 

The standard was 1 mM GSH (3 mg/ml) in 10 % TCA, and stored at -20 ºC. 

1mM GSH (µl) 0 10 25 50 75 100 

TCA (µl) 1000 990 975 950 925 900 

GSH conc. (µM) 0 10 25 50 75 100 
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APPENDIX II: STRUCTURS OF CURCUMIN ANALOGUES 

HO

O O
O

OH

CH3
O

H3C
HO

O O
O

OH

CH3

HO

O O

OH HO

N O
O

OH

CH3
OH3C

HO

N O
O

OH

CH3

HO

N O

OH HO

O O
O

OH

CH3
O

H3C

HO

O O
O

OH

CH3

HO

O O

OH HO

N
O

OH

CH3
OH3C

HO

N

OH HO

N N
O

OH

CH3
OH3C

O O
CH3 CH3

HO

N
O

OH

CH3
OH3C

O
CH3

HO

O
O

OH

CH3
OH3C

HO

O
O

OH

CH3
OH3C

HO

O
O

OH

CH3
OH3C

OH OH

AS-HK001 AS-HK002 AS-HK003 AS-HK004

AS-HK005 AS-HK006 AS-HK007 AS-HK008

AS-HK009 AS-HK010 AS-HK011 AS-HK012

AS-HK013 AS-HK014 AS-HK015 AS-HK016

HO

O
O

OH

CH3
OH3C

HO

O
O

O

CH3
OH3C

HO

O O

OH

OH

HO

O O

O
CH3

O

N O
O

O

CH3
OH3C

C5H11C5H11 HO

N O
O

O

CH3
OH3C

C5H11 O

O O
O

O
CH3

OH3C
HO OH HO

O O
O

O

CH3
OH3C

OH

AcO

O O
O

OAc

CH3
OH3C

AcO

O O
O

OAc

CH3

AcO

O O

OAc HO

O O
O

O

OH3C
C

CH3
O

HO

O O

O

OH3C
C
O

HO

O OH
O

OH

CH3
OH3C

HO

OH OH
O

OH

CH3
OH3C

HO

O O
OH

OH

HO

CH3 AS-HK019AS-HK017 AS-HK018 AS-HK020

AS-HK021 AS-HK022 AS-HK023 AS-HK024

AS-HK025 AS-HK026 AS-HK027 AS-HK028

AS-HK029 AS-HK030 AS-HK031 AS-HK032

 

 194



Hasan Ibrahim, 2009 Apendix II Structurs of Curcumin analogues 

O O

OH

OH

MeO

HO

O

OH

OHHO

N-OH

OMe

OH

MeO

HO

O

OHHO

O

OMe

OHHO

O

OH

O

O

OMe

OHHO

AS-HK033 AS-HK033

AS-HK051 AS-HK052

AS-HK057

AS-HK039

AS-HK048

AS-HK049

N

OAcAcO

O

AS-HK043

OMe

OH

MeO

HO AS-HK050

O O

OMe

O

MeO

HO AS-HK044

O O

OMe

O

MeO

O AS-HK045

MeO

O

OH

OHHO AS-HK035

HO

O

OMe

OMeMeO AS-HK036

MeO

O

OMe

OMeMeO
AS-HK037

MeO

Me

O

OMe

OHHO AS-HK038

MeO

N-OMe

OMe

OH

MeO

HO AS-HK040

N-OH

OMe

OH

MeO

HO AS-HK042

N-OHO O

OMe

OH

MeO

HO AS-HK041
NO2

OMeMeO

N

OHHO

O

AS-HK046

OMeMeO

N-OH

OHHO AS-HK047

N-OH

OH

O

OHAS-HK053

O

OHAS-HK054

O

AS-HK055

O

OHAS-HK056

O

AS-HK058

O

AS-HK059

N-OH

AS-HK060

N-OH

AS-HK061

N-OMe

AS-HK062

AS-HK034

O O

OH

OH

MeO

HO

O

OH

OHHO

N-OH

OMe

OH

MeO

HO

O

OHHO

O

OMe

OHHO

O

OH

O

O

OMe

OHHO

AS-HK033 AS-HK033

AS-HK051 AS-HK052

AS-HK057

AS-HK039

AS-HK048

AS-HK049

N

OAcAcO

O

AS-HK043

OMe

OH

MeO

HO AS-HK050

O O

OMe

O

MeO

HO AS-HK044

O O

OMe

O

MeO

O AS-HK045

MeO

O

OH

OHHO AS-HK035

HO

O

OMe

OMeMeO AS-HK036

MeO

O

OMe

OMeMeO
AS-HK037

MeO

Me

O

OMe

OHHO AS-HK038

MeO

N-OMe

OMe

OH

MeO

HO AS-HK040

N-OH

OMe

OH

MeO

HO AS-HK042

N-OHO O

OMe

OH

MeO

HO AS-HK041
NO2

OMeMeO

N

OHHO

O

AS-HK046

OMeMeO

N-OH

OHHO AS-HK047

N-OH

OH

O

OHAS-HK053

O

OHAS-HK054

O

AS-HK055

O

OHAS-HK056

O

AS-HK058

O

AS-HK059

N-OH

AS-HK060

N-OH

AS-HK061

N-OMe

AS-HK062

AS-HK034

 

 195

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

O

O O

O

O

CH3

O
H3C

O O

HO

O O

O

O

CH3

O

HO

O O

O

O

O

O O

O

O

CH3

O O

O

O

O

O
CH3

O
H3C

O

O O

O

O O

O

O O

O

O

CH3

O
H3C

O O
S S

O

O O

O

O

CH3

O
H3C

O O

ClCl

O

O O

O

O

CH3

O
H3C

O O

OO
CH3 H3C

O

O O

O

O

CH3

O
H3C

O O

NO2 O2N

O

O O

O

O

CH3

O
H3C

O O
NO2

NO2

O2N

NO2

O

O O

O

O

CH3

CH3H3C

HO

O O

O

O

CH3

CH3

O

O O

O

O

CH3
O

H3C

CH3

CH3

CH3

CH3

HO

O O

O

O

CH3
O

H3C

CH3

CH3 O

O O

O

O

CH3

CH3

CH3

CH3

CH3

O

O O

O

O

CH3
O

H3C

H3C CH3 O

O O

O

OH

CH3

HOO

O O

O

O

CH3
O

H3C

C C
NN

O

O OH

O

O

CH3

O
H3C

CH3H3C

HO

O O

O

OH

CH3

HO

OH OH

O

OH

CH3

HO

O O

OH

OH

H

O
H3C

HO

O O

OH

OH

H

O
H3C

HO

O O

OH

OH

HO

HO

N O

O

OH

O
CH3H3C

HO

N O

O

OH

CH3

HO

N O

OH

O

N O

O

O
CH3

O
H3C

Ac Ac

HO

O

O

O
CH3

O
H3C

CN

O

O

O

O
CH3

O
H3C

C CN N

O

O O

O

O

CH3

O
H3C

H3C CH3

AS-HK063 AS-HK064 AS-HK065 AS-HK066

AS-HK072AS-HK071 AS-HK073

AS-HK067
AS-HK068

AS-HK069
AS-HK070

AS-HK074

AS-HK075 AS-HK076 AS-HK077 AS-HK078

AS-HK079

AS-HK083 AS-HK084 AS-HK085 AS-HK086

AS-HK087 AS-HK088 AS-HK089

AS-HK093

AS-HK082

AS-HK092

AS-HK081AS-HK080

AS-HK091

AS-HK090

AS-HK094

O

O O

O

O

CH3

O
H3C

O O

HO

O O

O

O

CH3

O

HO

O O

O

O

O

O O

O

O

CH3

O O

O

O

O

O
CH3

O
H3C

O

O O

O

O O

O

O O

O

O

CH3

O
H3C

O O
S S

O

O O

O

O

CH3

O
H3C

O O

ClCl

O

O O

O

O

CH3

O
H3C

O O

OO
CH3 H3C

O

O O

O

O

CH3

O
H3C

O O

NO2 O2N

O

O O

O

O

CH3

O
H3C

O O
NO2

NO2

O2N

NO2

O

O O

O

O

CH3

CH3H3C

HO

O O

O

O

CH3

CH3

O

O O

O

O

CH3
O

H3C

CH3

CH3

CH3

CH3

HO

O O

O

O

CH3
O

H3C

CH3

CH3 O

O O

O

O

CH3

CH3

CH3

CH3

CH3

O

O O

O

O

CH3
O

H3C

H3C CH3 O

O O

O

OH

CH3

HOO

O O

O

O

CH3
O

H3C

C C
NN

O

O OH

O

O

CH3

O
H3C

CH3H3C

HO

O O

O

OH

CH3

HO

OH OH

O

OH

CH3

HO

O O

OH

OH

H

O
H3C

HO

O O

OH

OH

H

O
H3C

HO

O O

OH

OH

HO

HO

N O

O

OH

O
CH3H3C

HO

N O

O

OH

CH3

HO

N O

OH

O

N O

O

O
CH3

O
H3C

Ac Ac

HO

O

O

O
CH3

O
H3C

CN

O

O

O

O
CH3

O
H3C

C CN N

O

O O

O

O

CH3

O
H3C

H3C CH3

AS-HK063 AS-HK064 AS-HK065 AS-HK066

AS-HK072AS-HK071 AS-HK073

AS-HK067
AS-HK068

AS-HK069
AS-HK070

AS-HK074

AS-HK075 AS-HK076 AS-HK077 AS-HK078

AS-HK079

AS-HK083 AS-HK084 AS-HK085 AS-HK086

AS-HK087 AS-HK088 AS-HK089

AS-HK093

AS-HK082

AS-HK092

AS-HK081AS-HK080

AS-HK091

AS-HK090

AS-HK094



Hasan Ibrahim, 2009 Apendix II Structurs of Curcumin analogues 

 196

 
 
 
 
 
 
 
 

 

O O
O

O

CH3
O

H3C
O

O O
O

O

CH3

O

O O
O

O

CH3
O

H3C

AS-HK099 AS-HK100 AS-HK101

O

OO

O

O

NO2O2N

OH3C

biotinbiotin
O

OEt

O

EtO

O

O O
O

O

CH3
OH3C

AS-HK0102 OO HO

O O
O

O

CH3
OH3C

AS-HK0103 O
HO

O O
O

O

CH3

AS-HK0104 O

O

O O
O

O

CH3

AS-HK0105 OO O

O O

OAS-HK0106 OO O

N O
O

O

CH3
OH3C

AS-HK0107 OO

HO

O O
O

OC5H10Br

CH3

AS-HK109

O
H3C

BrC5H10O

O O
O

OC5H10Br

CH3

AS-HK108

O
H3C

BrC5H10O

O O
O

OC5H10Br

CH3

AS-HK110

O
H3C

HO

O O
O

OC5H10Br

CH3

AS-HK111 BrC5H10O

O O
O

OH

CH3

AS-HK112
BrC5H10O

O O
O

OC5H10Br

CH3

-HK113AS

BrC5H10O

O
O

OC5H10Br

CH3
OH3C

AS-HK117

BrC5H10O

N O
O CH3

OH3C

OC5H10Br

O

O O
O

O

CH3OH3C

AS-HK114

AS-HK119

HO

N O
O CH3

OH3C

OC5H10BrAS-HK115 N3C5H10O

O O
O

OC5H10N3

CH3

AS-HK116

OH3C

HO

O
O

OC5H10Br

CH3
OH3C

AS-HK118 N
N
++

Br-Br-

HO

O O
O

O

CH3OH3C

AS-HK120
N
+

Br-
HO

O O
O

O

CH3OH3C

AS-HK121
N
+

Br-

N

O

O O
O

O

CH3

AS-HK122N
N
++

Br-Br-

O

O O
O

OH

CH3

AS-HK123N
+

Br-
HO

O O
O

O

CH3

AS-HK124
N
+

Br-
O

N O
O

O

CH3OH3C

AS-HK125N
N
++

Br-Br-

HO

N O
O

O

CH3OH3C

AS-HK126
N
+

Br-
O

O
O

O

CH3OH3C

AS-HK127N
N
++

Br-Br-
HO

O
O

O

CH3OH3C

AS-HK128
N
+

Br-

 
 



Hasan Ibrahim, 2009 Apendix II Structurs of Curcumin analogues 

N N

AS-HK129

+ +
Br- Br- O

OCH3AS-HK130

OCH3

OCH3

OCH3

Cl

O

OCH3AS-HK133

OCH3

O

OH

OCH3AS-HK132OCH3

OCH3
O

AS-HK131OCH3

OCH3
NO2

Cl

O

Cl
AS-HK134

O

AS-HK135

OCH3

OCH3

OCH3

OCH3

O

OCH3AS-HK136OCH3

OCH3

O

AS-HK137OCH3

OCH3
OH

O

AS-HK138

Cl

OCH3

OCH3
O

AS-HK139OCH3

OCH3

Cl

O

OH

OCH3AS-HK140

O

OH

OCH3

HO

AS-HK141 H3CO

O

OCH3AS-HK142
H3CO

O

OH

AS-HK143
Cl

O

OH

AS-HK144

H3CO

O

OCH3H3CO

AS-HK145

OH

H3CO

O

OH

OCH3

H3CO

AS-HK146
H3CO

O

OH

H3CO

AS-HK147
H3CO

O

OH
AS-HK148

H3CO

O

OH

OCH3AS-HK149

OCH3

H3CO

O

OCH3AS-HK150

OCH3 OCH3 O

AS-HK151

O

OH
AS-HK152

O

OCH3AS-HK153

O

OH

AS-HK154

O

NO2

AS-HK155

O

AS-HK156

Cl

O

OCH3

AS-HK157

OH O

AS-HK158

OCH3

OCH3  
 

 197



Hasan Ibrahim, 2009 Appendix III Supplementary Data 

 198

APPENDIX III: SUPPLEMENTARY DATA 

1- Choline compounds: 

1.1  Cellular permeability 
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1.2 DNA content 
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1.3 Mitochondrial membrane potential: 
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2 Curcumin compounds 

2.1 Cellular permeability: 
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2.2 DNA content 
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2.3 Mitochondrial membrane potential 
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