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Abstract 

This thesis describes experimental and theoretical investigations into new particle handling and 

separation methods and techniques. It makes a major contribution to the rapidly expanding field 

of cell separation technology. A novel dielectrophoretic cell separation system has been 

developed, which is capable of processing large sample volumes (-50mL) in a flow through 

system. Previously reported dielectrophoretic cell separator systems typically process sample 

volumes in the 100gL range. The electrode configuration developed for this work allows the 

isolation and concentration of single particle types from large sample volumes; a method which 

could be further developed into a new rare-cell separation technology. In addition, a new 
technique of particle fractionation was developed termed 'Dielectrophoretic Chromatography'. 

A cell separation chip was designed and built using standard micro-fabrication techniques. 

Experimental work was undertaken to demonstrate the function and limitations of the device. 

Numerical modelling of the particle motion in the device is presented and compared with 

experimental work for a number of different particle types, applied voltages and fluid flow rates. 

The dielectrophoretic separation system comprises a microfluidic channel, of cross-section 
100ýtm x 10mm and length 50mm, with two sets of interdigitated microelectrode arrays. The 

first set of arrays, with characteristic electrode size 40ýtm, called a focussing device, has 

electrodes patterned onto the top and bottom surfaces of the flow channel. The second electrode 

array, which is part of the same device, has an electrode array patterned only on the bottom of 

the channel. Two sizes of secondary electrode array were used 20ýtm and 40ýtm. AC voltages 
(from IV to IOV peak) are applied to the microelectrode, with a frequency between lOkHz to 

180MHz. A dielectrophoretic force is exerted on the particles as they flow along the channel. 
The first electrode array uses negative dielectrophoresis to focus the stream of particles entering 

the device into a narrow sheet (one particle diameter thick) midway between the upper and 
lower channel surfaces. The second electrode array, down stream from the first is separately 

controllable. This is used to selectively attract a desired sub-population of particles from the 

flow stream under positive dielectrophoresis. The separation electrode retains these particles 

while all other particles flow through to the channel outlet, where they can be collected. 
Removal of the signal applied to the separation electrodes releases the captured particles, which 

can then also be collected from the outlet. 

Experiments carried out using the new system show it to be capable of the separation of binary 

mixtures of cell types into their component parts. Mixtures of trophoblast cells were isolated 

from the chorionic membranes of the human placenta by enzymatic digestion. These cells were 
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mixed with human peripheral blood cells, that had been isolated on a density gradient and 

passed through the system at a rate of ImUhr. Flow-cytometeric analysis of the samples prior 

to, and following passage through the separation system showed a 30-fold enrichment of the 

sample for trophoblast cells. Similar experiments were carried out with mixtures of 6ýlm latex 

beads and peripheral blood cells, and demonstrate the ability of the system to selectively capture 
100% pure populations of blood cells at the separation electrode. 

Dielectrophoretic chromatography was performed using the two-stage separation electrode 
device. Following focussing using the initial electrode arrays, cells with different dielectric and 

volumetric properties flow into the secondary electrode array and experience different forces 

and therefore follow different trajectories. The individual cells or particles are therefore 

attracted onto the separation electrode array at a position which depends on particle parameters, 

suspending medium flow rate, suspending medium density, and applied voltage and frequency. 

The mean banding position of a collection of like particles is shown to be in quantitative 

agreement with numerical simulations of the particle trajectories. 

The efficacy of the system was determined by investigating the separation of two cell types, 

namely cultured human monocytes cell line (THP-1) and human peripheral blood cells. It was 

shown that the cells could be separated into sub-populations with a distinct distribution along 

the length of the separation electrode array. Measurements were performed on the THP-1 cells, 

allowing the calculation of their dielectric properties, giving a mean value for the specific 

membrane capacitance of 17.7± 2.7mFM72, with a cell radius of 6.4 ±I ýtm. The dielectric 

properties of human peripheral blood cells were obtained from the literature. Simulation of the 

position of the cells was found to be in reasonable agreement with experiment. The ability of the 

system to concentrate very low number densities of biological particles from large volumes 
(10raL), containing fewer than 100 cells per mL was demonstrated, using blood cells, bacteria, 

and sub-micron latex beads (460nin diameter). 

Maternal peripheral blood samples (20niL) were obtained from pregnant women expecting male 

babies. Following pre-treatment these samples were passed through the system under 

experimental conditions chosen to select for the foetal cells (trophoblast). PCR analysis of the 

post-sort samples was negative for the presence of the Y-chromosome indicating that the system 

did not enrich sufficiently for the small numbers of foetal cells that might have been present in 

the samples. Further work is required to assess the full capabilities of the dielectrophoretic 

particle separation system for rare cell isolation on matemal samples or other biological 

materials. 
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Chapter One: Introduction 



1 Introduction to rare particle separation 

The separation of rare cells (less than 1%) from heterogeneous cell suspensions is useful for a 

variety of clinical and biological applications. The majority of applications requiring the 
isolation of these cells can broadly be divided into two categories: (1) the positive selection of a 

particular cell type for analysis or clinical use or (2) the depletion of undesired cells from a 

population of desired cells. Examples of the first category are the isolation of foetal cells from 

the maternal circulation [1,2], and the isolation and detection of cancer cells from the 

circulation for diagnostic purposes [3]. Examples of the second category are the depletion of 

residual tumour burden cells from bone marrow or stimulated aphaeresis product [4], and the 

removal of bacteria from blood products. 

A variety of techniques aimed at achieving the separation and/or identification of various cell 

types (rare and not so rare) have been developed over the years. The history of cell separation 
dates back to the 1960's, with available separation parameters being exploited as soon as they 

were identified as being specific for a given cell type. Initially, physical characteristics (e. g., 
density) or biochemical characteristics were used. For example, L-leucine-methyl ester kills the 

lysosome-rich monocytes and natural killer (NK) cells and can thus be used for their depletion. 

Boyum [5] first described the use of Ficoll-density gradients for the isolation of lymphocytes 

from blood in 1968. With the development of monoclonal antibodies (mAbs) in the 70's the 

isolation of cells with distinct functional differences became possible. Polyclonal antibodies are 

also useful for cell separation but tend to be less specific. 

Techniques based on the attachment of niAbs to a variety of substrates (e. g. for panning, 

immunomagnetics, immunofluorescence, etc. ) has lead to the development of highly 

sophisticated sorting tools capable of detecting and isolating large numbers of cells based on a 

number of different criteria. Depending on the technique employed cell selection can often be 

based on multiple criteria at once (e. g. the presence of a number of different antigens on the cell 

surface). These tools however are often expensive and typically require skilled operators to 

achieve the optimal results. 

Each cell type has its own complement of surface proteins (antigens) specific to that cell type. 

Antibodies can be produced which recognize these surface antigens and bind specifically to 

them. It should be noted that other molecules can be used to recognise other surface antigens 

(e. g. lectins bind to carbohydrates in the cell membrane). If the antibodies are attached to a 

substrate (e. g. fluorescent molecule, magnetic bead, etc. ) their binding to a cell's surface can 

then allow a variety of separation schemes to be used. For example, once labelled with an 

antibody, the target cell population can be selectively enriched using flow cytometry, or 

magnetic separation methods as discussed below. 
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To date,, nearly all separation strategies have been antibody based. Unfortunately, these methods 

are limited by the lack of specificity of currently available antibodies. As a result, cells other 
than those targeted can bind the antibody and be positively selected, along with the target cells, 

resulting in contamination of the "sorted" sample. 

The case of foetal cell isolation demonstrates the need for high-resolution sorting schemes 

capable of discriminating between cell types, without the need for labelling. The search for 

antibodies specific to any of the foetal cell types present in the matemal blood has proved 

unfruitful, despite concerted effort by a number of groups working in this area, with the same 
being true for many other cell types. Although in time, specific antibodies may be produced to 

address these problems, interest in other non-antibody based separation techniques is growing. 
One example is the novel AC electrokinetic technique; dielectrophoresis [59], which has been 

shown to be capable of distinguish between different cell types by using the electrical properties 

of the cell membrane as the discriminatory factor. 

The application of microsystems technology to the fields of biological, chemical and medical 

science has developed exponentially over the last decade (e. g. [6]). The technology promises 

great developments, with the miniaturisation of current technologies and the development of 

entirely novel methods. The field of miniaturised separation science has been transformed by 

the use of capillary electrophoresis (CE) for the separation of chemicals, proteins, 

macromolecules, etc (e. g. ref [7-9]). The CE technique has allowed the development of high- 

speed, high-resolution separations on extremely small sample volumes (<lnL compared with 

slab electrophoresis which requires sample volumes in the ýtL range). 

The technique of dielectrophoresis is currently experiencing a period of intense interest as a 

method for bio-particle separation. This thesis presents my work on a novel dielectrophoretic 

cell separation device. 

1.1 Cell types in blood 

Whole blood contains a variety of cell types, each with a different physiological role. Red blood 

cells (RBCs), white blood cells (WBCs) and platelets are all suspended in a protemaceous fluid 

called plasma. Plasma, which is 90% water, constitutes about 55% of the blood volume. Plasma 

contains various proteins (e. g. albumin, fibrinogen, globulins and other clotting proteins). Table 

I -I shows the average concentration of the various cell types found in the peripheral blood of a 

healthy human. 
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Red blood cells 

T-lymphocytes 

B-lymphocytes 

Monocytes 

NK cells 

Basophils 

Eosinophils 

Neutrophils 

Platelets 

Number of cells per milliliter 

Table 1-1. Concentration of major cell populations in normal adult human blood [10]. 

1.1.1 Red blood cells (RIBCs) 

Red blood cells (or erythrocytes) are perhaps the most recognizable component of whole blood. 

They typically express a bi-concave disc morphology and contain haemoglobin, an iron- 

containing protein that carries oxygen throughout the body. It is the haemoglobin that gives 
blood its characteristic red colour. The percentage of blood volume occupied by RBCs (the 

haematocrit) for an average adult male is 47 percent. Manufactured in the bone marrow, RBCs 

are continuously being produced and broken down. They live for approximately 120 days in the 

circulatory system before being removed from the blood by the spleen. 

White blood cells 

White blood cells (WBCs, also known as leukocytes) are responsible for protecting the body 

from invasion by foreign substances such as bacteria, fungi and viruses. The majority of WBCs 

are produced in the bone marrow, where they outnumber RBCs by two to one. However, in the 

blood stream, there are about 600 RBCs for every WBC. There are several types of WBC, these 

include; Granulocytes (including Neutrophils, Basophils, Eosinophils) and Monocytes (that 
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become tissue Macrophages) which protect against infection by destroying invading bacteria 

and viruses, and Lymphocytes which aid in the immune defence. 

1.1.3 Platelets 

Platelets (or thrombocytes) are very small cellular components (-lýLm) that help with the 

clotting process by sticking to the lining of blood vessels. Platelets are made in the bone marrow 

and survive in the circulatory system for an average of 9-10 days before being removed from the 
blood by the spleen. The platelet is vital to life, because it helps prevent blood loss resulting 
from trauma, and blood vessel leakage that results from normal daily activity. 

1.2 Examples of rare cell isolation 

1.2.1 Isolation of foetal cells from maternal blood 

The isolation of foetal cells from the maternal circulation has been investigated by a number of 

groups [1,2,11-37]. Over the past 30 years the use of prenatal diagnosis by expectant couples 

and their doctors has expanded as molecular biology techniques have developed. In the U. K., 

U. S. and many other countries it is normal to offer cytogenetic diagnosis to pregnant women 

who will be 35 years or older at the time of delivery. In order to carry out such cytogenetic 
diagnoses, a sample of foetal nucleated cells must be obtained via an invasive technique such as 

chorionic villus sampling (CVS) or amniocentesis. The age threshold of 35 years corresponds to 

the maternal age at which the chance of an infant being born with the most common autosomal 

aneuploidy, trisomy 21 (Down's syndrome [20]), is equal to the chance of miscarriage due to 

these procedures (-I in 250). 

Despite the safety and improving accuracy of invasive techniques, the incidence of Down's 

syndrome births is still about 1 per 1000 for all live births. The reason for this is that although 

there is an increased likelihood of aneuploidy with increased maternal age, as a group older 

women are having fewer births when compared with younger women [20]. Of all the Down's 

syndrome births, 80% of them are to women under 35 years old [20]. This group of women are 

currently not offered the prenatal diagnostic techniques because the risk from the invasive 

procedures is greater than the risk of the infant having Down's syndrome. For every positive 

Down's test, there are four miscarriages of healthy babies resulting from invasive prenatal 

diagnostic testing. It is therefore clear that a non-invasive method of isolating foetal nucleated 

cells for cytogenetic diagnosis would be of great value. 
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Several recent reports have described the isolation of foetal cell types from the maternal blood 

[ 11-22]. These cells, originating from the foetus, are released throughout the course of the 

pregnancy. They find their way across the placenta (from the foetus) and into the maternal blood 

supply, via a number of physiologically normal routes (see below). The isolation of these foetal 

cells from samples of maternal blood potentially represents a non-invasive procedure, without 

risk to the foetus. The maternal blood samples can be safely obtained by vein puncture, usually 
from the mother's arm. The current methods used for the isolation of these cell types from the 

maternal blood are still at an early stage of development and are still far from being used as part 

a routine diagnostics technique. This is primarily due to the complexity and expense of the 

current technologies. 

In 1893 Schm6rl [23] first reported observing foetal cells within the maternal vasculature when 
he described multinucleated syncitiotrophoblast cells in the pulmonary vasculature of a woman 

who had died of eclanipsia. However, the suggestion that these cells Might provide a useful 

source of genetic material for prenatal diagnostic purposes did not anse until 1969 when 
Walknowska et al [24] reported the detection of foetal metaphases in maternal blood. Such a 

projection has only become possible with recent developments in molecular biology and a better 

understanding of certain areas of biology C). I * 

For many years the existence of foetal cells in maternal blood was considered controversial. 

However, using recently developed molecular techniques such as polymerase chain reaction 

(PCR) and fluorescence in situ hybridisation (FISH), various groups have demonstrated beyond 

doubt the existence of foetal cells in maternal blood. Many groups have used PCR to detect Y- 

chromosome sequences (male DNA) and single gene sequences (e. g. haemoglobin 

Lepore(Boston)) in maternal blood. FISH has been used to detect the most common 

chromosomal abnormalities involving chromosomes 21,18,13, X and Y, which account for 95 

- 98% of all chromosomal abnormalities at birth. Free foetal DNA sequences, as well as freely 

circulating intact nuclei, have also been shown to exist in maternal blood and plasma [1,2,25- 

27]. These also represent a potential source of foetal DNA for prenatal cytogenetic testing. 

1.2.2 Foetal cell types in maternal blood 

There are a number of foetal cell types present in the maternal circulation, which could 

potentially be isolated and used for prenatal cytogenetic diagnosis. What follows is a summary 

of the various foetal cell types that have been shown to be present in the matemal circulation. 

These cells are thought to enter the matemal blood stream in either of two ways: (1) when they 

are dislodged ftom the placental tissue by the invasion of the matemal vasculature into the 

placenta or (2) via 'micro bleeds', small haemorrhages of the foetal blood vessels. 
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1.2.2.1 Foetal lymphocytes 

Initial attempts, using flow cytometery, to recover foetal leukocytes were carried out by 

Herzenberg et al. [28,29]. Foetal lymphocytes clearly exist in the matemal blood but their use 
is problematic as they can persist in the maternal blood after pregnancy and may become a 

source of contamination precluding their use for diagnostic purposes in future pregnancies. 
Bianchi et al. [30] studied women who had delivered male children between 6 months and 27 

years earlier and found that foetal lymphocytes from these pregnancies were still present in their 

blood. 

1.2.2.2 Foetal granulocytes 

To date there has only been one reported investigation showing foetal granulocytes in matemal 
blood [3 1 ]. The authors used flow cytometery to look for cells showing a Y-chromosome signal. 
As these cells have a short half-life, persistence to another pregnancy is unlikely. At present 

there is no way of differentiating between foetal and matemal granulocytes making separation 
impossible. 

1.2.2.3 Foetal nucleated red blood cells (fnRBCs) 

Erythroblasts, or nucleated red blood cells (nRBCs) are found in the peripheral circulation. 

Foetal nucleated red blood cells (fiiRBCs) have been shown to be present M the maternal 

circulation by a number of groups (e. g. [11,15,17,21,32-34]). They are by far the most widely 

studied cell type, with regard to their isolation from the maternal blood supply. Foetal 

haemoglobin has been used successfully as a marker for the isolation of these cells by flow 

cytometry [35,36]. 

1.2.2.4 Trophoblast 

The trophoblast cells of the placenta form the interface between the conceptus and the mother, 

with the outer layer of terminally differentiated syncytiotrophoblast cells bathed in maternal 

blood. The inner layers of mononuclear cytotrophoblast cells proliferate, differentiate and fuse 

to form the multinucleated syncytiotrophoblast. As the syncytiotrophoblast cells and the 

underlying mesenchyme and blood vessels continue to proliferate the tissue forms branches 

called villi. The cavities form initially within the trophoblastic shell during early development. 

These cavities increase in size and communicate with one another, producing the maternal blood 

lake within the placenta. This process results in the formation of these cavities or lacunae lined 

with syncytiotrophoblast cells. The lytic activity of the syncytiotrophoblast cells causes the 

rupture of both maternal arterial and venous blood vessels with a resultant flow of maternal 

blood from the arteries into the lacunar spaces and back into the maternal system via the veins. 
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There are two routes by which trophoblast cells gain access to matemal circulation [ 115]. 

Syncytiotrophoblast cells are thought to be shed continuously into the matemal circulation and 
lodge in the capillary beds of the matemal lungs where most are degraded, however small 

numbers of these cells may escape into the peripheral circulation [24]. In early pregnancy, the 

matemal spiral arterioles are invaded by speciallsed cytotrophoblast cells, and this is essential to 

the development of a good blood supply for the placenta (see figure 1-1 below). It is therefore 

probable that there is a heterogeneous population of trophoblast cells present in the matemal 
bloodstream at different times of gestation, although one would expect that the smaller 

cytotrophoblast cells be more prevalent than the syncytiotrophoblast cells in the matemal blood. 

Figure 1 -1. Drawing of the placental anatomy [ 114]. 

The first report of the isolation of trophoblast from peripheral blood of pregnant women was 

that by Covone et al. [37]. These cells appear early on in gestation (from 6weeks until birth). 

Trophoblast cells are endothelial cells of placental origin and have quite different physiological 

functions and properties compared with both foetal and maternal blood cells. One would expect 

these differences to be reflected in the structure/morphology and protein content of the cellular 

membrane, and therefore of the foetal cells present in the maternal blood the trophoblast is 

likely to show the most significant differences in dielectric properties when compared with 

maternal blood cells. Part of the work presented in this thesis therefore focuses on the isolation 

of trophoblast from blood. 

1.2.3 Cancer cells in the peripheral circulation 

The detection and quantitative measurement of rare cancer cells in the blood or bone marrow is 

potentially very important for diagnostic and therapeutic purposes [3,38-44]. These cells, if 

isolated, could be used to determine the likely prognosis and aid in decision-making about the 
8 

I ý.! -11 
urribib" voiti circulallon urnbiltcal atleries deC; dLJa Parietalis 



type and aggressiveness of treatment. Currently used high-dose chemotherapy treatments 
destroy the haematopoietic system; chemotherapy can then be followed by autologous bone 

marrow transplantation to restore the patient's blood cell production. The patient's own bone 

marrow or peripheral blood stem cells are used in autologous transplant and these are collected 

prior to chemotherapy. In order to avoid the possibility of the re-infusion of the contaminating 
tumour cells back into the patient, these tissues need to be purged of tumour cells before they 

can be used therapeutically [45,46]. 

Model studies have shown [47,48] that current state-of-the-art techniques are capable of 

purging a 10% tumour cell load in a sample of bone marrow by a factor of 10-3 to 10-4. 

Obviously, the level (10%) of tumour cell contamination used in these model systems is not 

realistic; a truer example might be closer to 0.1 % or fewer tumour cells in the sample. If these 

contaminating cells are not removed, a typical autologous bone marrow transplant could result 

in thousands of turnour cells being infused back into the patient, with the possibility of these 

cells causing further disease. 

1.3 Cell separation and detection 

There are currently two main cell sorting techniques in use; they are fluorescence-activated cell 

sorting (FACS) and immunomagnetic cell separation. The primary advantage of FACS Is Its 

ability to identify individual cells based upon multiple parameters such as cell size, granularity, 

colour and intensity of fluorescence. FACS has the drawback that its sorting rate is limited to a 

maximum of about 104 cells per second (dedicated research instruments can, when optimally 

configured achieve sort rates approaching 10' cells/s). Immunomagnetic cell separation has the 

advantage of being fast and simple to operate. However, it can only sort cells on the basis of a 

single parameter. There are a plethora of other cell separation techniques currently being used to 

isolate specific cell fractions, but none have the resolution of either the FACS or 

immunomagnetic cell separation technologies. 

The following discussion will concentrate mainly on the detection and separation of cells using 

flow cytometry, of which FACS is a sub-technique, and immunomagnetics. Other cell 

separation techniques are discussed briefly and a variety of cell identification and detection 

technologies are then discussed. 

1.3.1 Flow cytometry 

A flow cytometer is an instrument that measures the properties of cells in a flowing stream. 

Strictly speaking, instruments other than those commonly referred to as flow cytometers must 
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be included if one uses this definition. There are two main types of flow cytometer - analysers 

and sorters. Sorters have the ability not only to collect data on cells (i. e. analyse) but also to sort 
the cells based upon their particular wavelength of emission (as defined by fluorescent labelling 

of the cell sample) and light scattering properties. 

Two companies, Becton Dickinson and Beckman Coulter have dominated the commercial flow 

cytometer market (with both analysers and sorters). There are a number of other companies 

producing flow cytometers, but they hold only a small percentage of the market. Advances in 

fluidics, optics, electronics, lasers, computers and software have made flow cytometers 

considerably more complex, but also easier to use. 

1.3.1.1 The Coulter technique 

The Coulter technique, originally proposed by Coulter in the 1950's [49], allows the 

measurement of the number and size of particles suspended in an electrolyte by passing them 

one-by-one through a small onfice and measuring the change in electrical impedance between a 

pair of electrodes placed at either side of the orifice. The change in the impedance as a particle 

passes through the orifice generates a voltage pulse whose amplitude is proportional to the 

particle's volume. The technique has been applied to count blood cells [49,50] and bacteria [5 1, 

52] as well as other cell types. The pulses, once amplified, sized and counted give information 

about the particle size distribution within the suspension. 

The Coulter counter operates as shown in figure 1-2, a pressure difference across a small orifice 

causes a defined volume (typically 0.05ml, 0.5ml, 2ml) of the particle suspension to flow 

through an orifice. The samples must be sufficiently dilute such that only a single cell will be 

present in the orifice at any given time. The impedance across the onfice changes and the 

resultant voltage pulses are processed by the system electronics. To reduce background noise, 

all pulses above a certain threshold level are counted, thus the count represents the number of 

and size of particles above a certain minimum size in the defined suspension volume. 

10 



To vacuum 
Threshold 

circuit 

Main Pulse 
amplifier amplifier 

Scope 

I10. 
Horizontal 

sweep 

Counter 
driver 

I 

Counter 'Start-Stol; 

Digital 

Figure 1-2. Schematic of the Coulter counter [53], the electrodes are positioned on either side of a small 

orifice (highlighted by the red circle). 

The Coulter counter relies upon the basic assumption that the voltage pulse generated by a 

particle as it passes through the onfice is directly proportional to the particle cross-sectional 

area. This assumption is true so long as the change in the resistance of the onfice, due to the 

presence of the particle, does not affect the current flow through the onfice. The external 

resistance of the circuit is designed to be sufficiently high so as to ensure this constant current. 

Coulter counters are generally used to analyse the proportions or numbers of blood cells in a 

sample. Few cell sorters have been developed using the Coulter technique. Recently, a number 

of microfabricated devices based on the Coulter principle have been developed, some of which 

have attempted to integrate sorting capabilities within the system (e. g. [54]). 

1.3.1.2 Fluorescence-Activated Cell Sorting (FACS) 

The term Fluorescence-Activated Cell Sorting (FACS) describes an instrument that can measure 

physical, as well as multi-colour fluorescence properties of cells flowing in a stream. The term 

FACS is applied equally to sorters and analysers. 
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Figure 1-3. Fluorescence- activated cell sorting (FACS) [55]. 

The principle of FACS is shown in figure 1-3. Antibodies tagged with fluorochromes are 

attached to the cells. These fluorescent labels allow the identification of particular cell types in 

liquid suspension, as they flow past an optical sensing zone, where the fluorescent molecules 

are excited by a laser beam and emit light. An electrical signal is generated by sensors, which 

detect the emitted and scattered light and control whether or not a specific cell is selected. If a 

cell fulfils the criteria set by the operator, the droplet containing that cell is electrically charged. 

The droplets are then passed through an electric field, which deflects charged droplets out of 

stream and into a collection tube. 

The light emitted by the cells as they pass one by one through a laser beam, or other light source 

is collected by optical elements in both the direction of laser light (forward scatter, FSQ and 

normal to the direction of the laser (side scatter, SSQ. Photomultiplier tubes (PMTs) or 

photodiodes are used to detect the light and generate an electrical signal, which is processed by 

the instrument and displayed on a computer screen. FSC correlates mainly with cell size. SSC 

correlates with the internal contents of the cell as well as its size. For practical purposes SSC 

can be considered to represent the cell granularity. Fluorescent emission from the particle is 

filtered and separate detectors are used to detect the various colours (these are typically referred 

to as FL1, FL2, FL3, etc). 
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FACS machines can also be used to count cells, and measure the numbers of different cell 

populations in a sample. The data is usually displayed In the form of a two-dimensional scatter 
plot, showing combinations of the optical parameters measured. Clusters of dots represent cells 
of a particular type. Figure 14 illustrates an example of SSC versus fluorescence for white 
blood cells fluorescently labelled with a marker specific to white blood cells. 
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Figure 1-4. Fluorescence versus SSC plot showing relative positions of the WBC subpopulations [56]. 

Production of new fluorescent probes has seen the development of more flexible instruments so 

that eight or more parameters of correlated data can be collected at once. Three colour (along 

with the FSC and SSC information) FACS is most widely used. 

1.3.2 Immuno-magnetic techniques 

The preparation and labelling of cells for immunomagnetic separation [55-57] is similar to that 

used in fluorescence flow cytometry. There are a number of magnetic matrices that have been 

developed for immunomagnetic cell separation, With commercial manufacturers including 

Polysciences, Bangs Labs, Amersham International. The most widely used matrices are the 

microspheres from Dynal Inc., and the 'MACS' nanoparticles from Myltenyi Biotech. A 

discussion of the MACS system as developed by Myltenyi Biotech (this is the system used in 

the work of this thesis) is given initially; this is then followed by a brief description of the 

microshperes technology from Dynal. 
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1.3.2.1 Magneticafly activated ceU sorting - MACS 

Cells of interest are specifically labelled with super-paramagnetic rMcrobeads (co-precipitates of 

iron oxide and polysaccharides) 20-100nm in diameter. The cells are incubated with the 

magnetic beads, whose surfaces have been functionalised with antibodies specific to the cell 

type to be removed from the suspension. After magnetic labelling, the cells are passed through a 

separation column, which is placed in a strong permanent magnet. The column matrix (usually a 
fine wire mesh) serves to create a high-gradient magnetic field. The magnetically labelled cells 

are retained in the column, while non-labelled cells pass through. After removal of the column 
from the magnetic field, the magnetically retained cells can be eluted. Both labelled and non- 
labelled fractions can be recovered and are available for further use. Figure 1-5 shows the basic 

set-up. 
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Figure 1-5. Magnetically activated cell separation [55]. 

The matrix consists of wire wool coated with a thin biocompatible plastic polymer to prevent 

corrosion. For a permanent magnet of 0.5-1 Tesla (T) and matrix wire of diameter 50 - 100ýLm, 
2 

extremely high magnetic field gradients (i. e. high forces) can be generated >10 4T2 m7 3 

The extremely small size of the MACS microbeads reduces the mechanical stress on the cells 

and allows short incubation and fast processing times. The beads form a stable colloidal 

suspension and do not sediment or aggregate in magnetic fields. Their size and composition 

(iron oxide and polysaccharide) make them blocompatible. They are reported not to activate 

cells or influence ftmction and viability. Therefore, bead detachment is not required, so 

positively selected cells (i. e. magnetically labelled ones) can be used immediately after 

separation for analysis and subsequent experiments. 

14 



The MACS system has been used for the isolation of rare cells with concentrations down to I 

rare cell for every 10' cells in the sample, with lower frequencies having been isolated using a 
combination of depletion and positive selection. Haernatopoietic stem and progenitor cells, 
residual tumour cells or antigen-specific B or T cells, have all been isolated. Even the isolation 
of cells according to the expression of cytoplasmic proteins or selection of live cells based on 
secreted proteins is feasible. As with FACS the technique is limited by the availability of 
antibodies specific to the cell type being isolated. 

Miltenyi Biotech have developed an automated cell sorting system based on their MACS 

microbead technology. The autoMACS is an automated bench-top magnetic cell sorter capable 
of sorting up to 10 million cells per second from samples of up to 4xIO' total cells allowing 

ultra high-speed positive selection as well as depletion. Using the system for positive selection, 
isolation of up to 2x 10' pure target cells within a few minutes is possible. Cells as rare as 1 in 

10' have been enriched to high purity using a double positive selection protocol [5 6]. 

MACS microbeads are compatible with flow cytometry. It is therefore possible to fluorescently 

and magnetically label cells simultaneously. After MACS sorting, cells can be used 
immediately for flow cytometeric analysis or further fluorescence activated cell sorting. 

1.3.2.2 Microspheres 

Dynal manufactures a range of magnetic microspheres of different sizes (2.8,4.5,5.0ýtm in 
diameter) [55]. The M450 polystyrene microspheres are the most widely used for cell 

separation, they are 4.5ýLm in diameter and contain -20% by weight of magnetite (FE303) 

dispersed throughout their volume. The particles are super-paramagnetic, meaning they can be 

collected in a magnetic field, but do not retain any magnetism when the field is removed. The 

microspheres are available uncoated or precoated with a variety of monoclonal antibodies or 

other coating suitable for molecular biology applications. The Dynal microspheres have been 

used to separate or isolate a variety of cell types as well as other sub-cellular components and 

proteins, DNA and RNA. 

The principle of operation is similar to that of the MACS beads described above. However, due 

to the large size of these microspheres there is no need for a wire wool matrix (used in the 

MACS system to create large magnetic field gradients). The cells with attached microspheres 

can simply be held against the side of the separation vessel (typically a tube) with a magnet held 

on the outer wall of the tube. Non-magnetically labelled cells are then simply decanted from the 

tube and the labelled cells along with any free microspheres retained within the tube. The cells 

can be removed from the microspheres by a number of methods. 
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1.3.3 Other cefl separation methods 

1.3.3.1 Erythrocyte lysis 

Because of the high proportion of RBCs in blood (99%) it is generally useful to remove these 

cells prior to other isolation procedures. Red blood cells can be selectively removed from a 
blood sample because of their susceptibility to hypotonic shock, compared with that of 
leukocytes (white blood cells) and other nucleated cells. Low salt concentration solutions and 

commercial lysis kits can be used. When the cells are suspended in the lysis solution, of suitable 

osmotic pressure, the difference in ion concentration between the inside and the outside of the 

cell membrane results in a flow of water molecules across the cellular membrane into the cell, 

causing it to swell and burst. Density gradient separation can be used to separate the dead cells 
(RBCs) from the live (WBCs). 

1.3.3.2 Density Gradients 

Different cell types differ in their densities. If blood is treated to prevent clotting and permitted 
to stand in a container, the RBCs (being the densest) will settle to the bottom of the tube; the 

plasma will stay on top; and the white blood cells and platelets will remain suspended between 

the plasma and the RBCs. A centrifuge may be used to increase the sedimentation rate and 
hasten this separation process. 

Based on this principle, cells can be separated on single-step or continuous-density gradients. 
The most commonly used are Ficoll (high molecular weight sugar) and Percoll (colloidal 

silicate); these allow the preparation of gradients of correct density and osmolality, with low 

viscosity. Two important uses of Ficoll are the isolation of peripheral blood mononuclear cells 

(PBMCs) from RBCs, and the separation of live cells (low density) from dead cells (high 

density). Figure 1-6(a) shows an outline of the density centrifugation procedure using a single 

step gradient, with the relative positions of the various cell types following centrifugation 

shown on the right. Figure 1-6(b) shows a photograph of a continuous Percoll density gradient 

formed by ultra-centrifugation, the different coloured beads have different densities and are 

placed in the tube to illustrate the density profile. Such gradients can be used to separate 

different cell types, and when compared with the position of the marker beads the density of a 

cell type can be estimated. 
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Figure 1-6. (a) Relative position of the various blood cell types after density gradient centrifugation using 

a single step Ficoll density gradient [55]. (b) Continuous Percoll gradient beads of differing colour have 

different densities. 

1.3.3.3 Panning 

Panning utilises antibodies coated onto polystyrene plastic dishes. The cell mixture is poured 

over the antibody-coated dish and the cells allowed to sediment. Cells expressing surface 

antigens corresponding to the coating, bind via these surface markers to the antibodies on the 

dish. Unbound cells are washed off and collected, the bound cells can be scraped off the dish 

with ice-cold buffer or cultured in the dish [55]. 

1.3.3.4 Complement lysis 

Complement treatment can be used to destroy, or purge, an unwanted cell subpopulation. First 

the sample is incubated with an antibody specific for the cell type requiring depletion, and then 

incubated with complement in the form of serum. Upon binding the antibody, complement 

factors are converted in a cascade, which eventually results in a molecular complex that punches 

holes in the cell membrane, resulting in the death of the cell. 

1.4 Cell identification 

A variety of methods are available that allow the accurate identification (and analysis) of the 

various cell types within a population, or once they have been isolated from a heterogeneous 

mixture. A brief description of these methods is given here. Those techniques used in the course 

of this work are described in more detail in chapter three along with details of the 

methodologies. 
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There are three main methods for the identification of cells. They include: a variety of staining 
(labelling) techniques, identification and amplification of specific DNA or mRNA sequences, 

and the selective culture of cells in the presence of growth accelerators or inhibitors. 

1.4.1 Staining 

There are various methods that alter the optical appearance of a cell or specific subpopulation of 

cells. Methods are available for assaying the viability of cells in a sample, identification of 

physiologically distinct cells, identification of immunologically distinct cells, etc. 

1.4.1.1 Dye exclusion 

Dye exclusion is one of the simplest, but still widely used methods for identifying the 

proportion of live to dead cells in a sample. For example, the dye Trypan Blue is mixed with the 

cell sample, with the dead cells taking up the dye and appearing blue under examination using a 
light microscope. The dye enters the dead or dying cells by passing through their more 

permeable cytoplasmic membrane. The proportion of blue to non-blue cells in the sample can 

thus be counted. A similar method uses membrane permeable fluorescent dyes (e. g. 
CeIlTrackerTm from Molecular Probes) which when inside a cell are converted to a membrane 
impermeable form of the dye. In this case the living cells are the ones that retain the dye and 
fluoresce, the dye will leak out of the dead or dying cells. 

1.4.1.2 Fluorescence in situ hybridisation (FISH) 

FISH involves the hybridisation of a probe that is complementary to a nucleic acid sequence 

(DNA or RNA). The probe is labelled with a reporter molecule (usually fluorescent) that allows 

the visualization of the sequence if present. Using chromosome-specific probes allows the 

number of copies of chromosomes to be seen within the nucleus of the cell. FISH methods for 

looking at single gene sequences are also available. Figure 1-7 shows an example of a FISH 

labelled cell. 
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Figure 1-7. Example of a typical FISH image from a male fhRBC isolated from chord blood. The nucleus 

appears blue, X-chromosome (green), Y-chromosome (red), and foetal haemoglobin stained orange. 

1.4.2 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) allows the amplification of a specific DNA sequence, thus 

increasing the number of copies of that sequence to a level at which it can be detected. The 

basic outline of the procedure for the detection of specific gene sequences using the PCR 

technique is shown below in Figure 1-8. 

The PCR process uses two oligonucleotide primers (short sequences of DNA, which are 

complimentary to a specific sequence) one at each end of the target DNA segment. The primers 

are added to the DNA, heating causes them to denature, they are then cooled and allowed to 

reanneal. The reannealing primers hybndise to opposite strands of the DNA sequence. An 

enzyme, DNA polymerase, and the four base nucleotides (A-C-G-T) are mixed together and 

thermally cycled. The DNA denatures with the heat and when cooled the primers reanneal to 

opposite strands of the DNA at opposite ends of the target sequence. The DNA polymerase adds 

nucleotides to the 5' end of the primers building up a complementary sequence. The process 

proceeds for a number of cycles (n=20-30) until sufficient copies of the target DNA are 

produced. In theory each round of amplification doubles the amount of DNA so that the amount 

of DNA produce grows exponentially (2n). In practice PCR is usually about 85% efficient after 

20 cycles. 
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Figure 1-8. Amplification of DNA sequences using the polymerase chain reaction [58]. 

To detect the DNA sequence, the PCR products are digested with restriction enzymes and the 

fragments 'run' on an electrophoresis gel. The fragments are labelled with ethidium bromide to 

allow visualization under ultraviolet light. 

1.4.2.1 Use of PCR in prenatal diagnostics 

Populations of foetal cells isolated from matemal blood will contain contaminating matemal 

blood cells, and therefore matemal DNA will always be present. This limits the usefulness of 

PCR for genetic diagnostics other than looking for DNA sequences specific to the Y- 

chromosome. Consider for example the case of a Down's syndrome foetus; the difference 

between the normal matemal cell and the foetal cell is 2: 3 copies of chromosome 21. It is 

therefore impossible to diagnose Down's syndrome using PCR, as the slightly increased amount 

of chromosome 21 will not be seen. 

If a pure sample of cells can be obtained, they may be subjected to quantitative PCR (qPCR) a 

technique that allows the amount of DNA in the sample to be determined with resolution such 

that aneuploidy (multiple extra copies of chromosomes) could be detected. 
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1.4.2.2 Nested PCR 

PCR on single cells is possible but with an increased likelihood of false positives, making 
positive and negative controls very important. Non-specific binding of the primers early on in 

the PCR process will obviously lead to greater errors M the final product (false positive). 

Nested PCR limits the effect of non-specific binding by initially running the PCR reaction with 
a set of primers slightly outside the sequence (external primers) and then running a second PCR 

reaction using a set of internal primers within the original primers. The initial primers may 

amplify other similar sequences present in the genome, swamping the specific target sequence; 
the second PCR reaction will then amplify only sequences present within the initial primer. 
Nested PCR allows for greater amplification and higher specificity. 

1.4.2.3 Ligase chain reaction (LCR) 

The ligase chain reaction (LCR) is method for detecting small quantities of a target DNA, and 

works in a manor similar to PCR. The technique uses four primers instead of two and uses the 

enzyme DNA ligase to join adjacent synthetic oligonucleotides together after they have bound 

the target DNA sequence. The small size of the primers means that they are destabilised by 

single base mismatches, and so form a sensitive test for the presence of mutations in the target 

sequence. LCR can have greater specificity than PCR and has use in molecular diagnostics. 

1.4-2.4 Comparative Genomic Hybridisation (CGH) 

Comparative genomic hybridisation (CGH) allows the analysis of the entire genetic complement 

of a single cell. CGH compares all the genetic information in a control genome (e. g. from one of 

the mother's cells) with that of the foetal cell under examination. The technique is quantitative 

and generates large amounts of data allowing the identification of single gene disorders and is 

therefore far more detailed than the relatively crude method of chromosome counting. 

1.5 Cell separation and detection in microsystems 

1.5.1 Dielectrophoretic ceH separation systems 

Dielectrophoresis (DEP) has been applied to the separation and manipulation of a wide array of 

bioparticles since it was first described by Pohl in 1951 [59-63]. The general theory describing 

the behaviour of particles in dielectrophoretic systems is described in chapter two. Explained 

briefly, when a cell is suspended in an electrolyte solution and subjected to an externally applied 

electric field, the charge distribution on and around the cell membrane is disturbed causing the 
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cell to polarise [59]. The interaction of this polarisation with the externally applied field results 
in a force acting on the cell. For the case of a uniform field the net force acting on the cell Is 
zero. If however, the electric field is non-uniform then the particle experiences a force, which 
moves it towards or away from the regions of high electric field intensity (i. e. towards or away 
from the electrodes). The direction of the DEP force depends upon the relative polarisabilities of 
the cells and the suspending media. If the polarisability of the cell is greater than that of the 

suspending medium the cell will experience a positive DEP force, attracting it to the electrode. 
If the polarisability of the cell is less than that of the suspending medium the cell will 
experience a negative DEP force, repelling it from the electrode. DEP has been shown to be a 

sensitive method for discriminating between sub-populations of cells, allowing the separation of 

cells based on their intrinsic membrane capacitance and conductance (see below). 

The DEP force varies in magnitude and direction with the applied electric field magnitude and 
frequency, the medium conductivity and permittivity, the cell volume and the intrinsic dielectric 

properties of the individual cells. These properties are governed by the morphology of the cell, 
in particular the membrane structure, protein content and charge. Similar cells will therefore 

experience similar DEP forces. A number of groups have investigated the possibility of using 
the differences in dielectric properties of various cell types as a means of cell separation, where 

the difference in the DEP force can be exploited to separate the cells into sub-populations (see 

below). 

1.5.1.1 Characterisation of cells for DEP separation 

DEP cell separation methods require that the intrinsic dielectric properties of the various cell 

types differ sufficiently, such that they experience DEP forces of differing magnitude or 

direction. It is thus important to measure the cell's properties before separation. A number of 

methods allow this, e. g. dielectric spectroscopy of suspensions of a single cell type [64,65], 

electrorotation measurements of individual cells [66-69], dielectrophoretic crossover 

measurements [70,71]. 

Chan et al [71] measured the dielectric properties of trophoblast cells and peripheral blood 

mononuclear cells using dielectrophoretic crossover and single cell electrorotation methods. 

Both dielectrophoretic crossover data and electrorotation data gave an average specific 

membrane capacitance for the peripheral blood mononuclear cells of 11.6 ± 4.2m]F M-2 . 
Trophoblast cells prepared using three different methods had a higher average specific 

membrane capacitance in the range 13-18mFM-2 . The authors suggest that the differences in 

capacitance between the cell types could be exploited as the basis of an AC electrokinetic 

system for the separation of trophoblast cells from peripheral blood mononuclear cells. 
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Yang et al [72] used a more sophisticated cell separation protocol, based on magnetically 

activated cell sorting (MACS) and sheep erythrocyte rosetting methods, to produce almost pure 

samples of the four main leukocyte subpopulations, namely, B- and T-lymphocytes, monocytes9 
and granulocytes. They measured the dielectric characteristics by electrorotation over the 
frequency range I kHz to 120 MHz and found the mean specific membrane capacitance values 
to be 10.5,12.6,15.3, and 11.0 mF M-2 for T- and B-lymphocytes, monocytes, and granulocytes, 
respectively. Scanning electron microscopy (SEM) of the purified cell sub-populations 
confirmed earlier findings [73] suggesting that these values correlate with the richness of the 

surface morphologies of the different cell types. Scanning electron micrographs of the four main 
leukocyte sub-populations are shown in figure 1-9, showing the differences in membrane 

morphology. From a physical point of view, three possible explanations could account for 

differences in values of specific membrane capacitance for the different cell types; these are 
differences in membrane area, thickness, or composition. Yang et. al. [73] found that T- 

lymphocytes (figure 1-9(a)) tend to have fewer surface features than B-lymphocytes (figure I- 

9(b)), in agreement with the measured value of membrane capacitance which is slightly lower 

for the T-lymphocytes. Monocytes (figure 1-9(c)) were found to have the greatest density of 
folds and ruffles of the four leukocyte populations, and had the largest membrane capacitance of 

the four cell types. The granulocytes (figure 1-9(d)) have a more complex surface structure than 

that of lymphocytes, however their specific membrane capacitances is smaller than that of the 

B-lymphocytes, the authors suggest that this could be due to the composition of the membrane. 
The group further suggests that dielectrophoretic cell sorters could have the ability to 

discriminate between, and to separate, leukocyte subpopulations under appropriate conditions. 
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Figure 1-9. SEM image purified samples of the various leukocyte sub-populations (a) T-lymphocytes, (b) 

B-lymphocytes, (c) Monocytes, (d) Granulocytes showing the differences in their surface morphology, 

which leads to differences in DEP properties between the cell types. Scale bar 20ým [72] 
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Table 1-2 gives the mean specific membrane capacitance for a variety of cell types taken from 

the literature. 

CeH Type Capacitance (mF/m') 

Trophoblast [7 1 17.8 ± 9.6 

Cytotrophoblast [71] 26.6 ± 6.2 

T-Lymphocyte [72] 10.5 ± 3.1 

B-lymphocyte [72] 12.6 ± 3.5 

Monocytes [72] 15.3 ± 4.3 

Granulocytes [72] 11.0 ± 3.2 

Erythrocyte [63] 9 

NRBC [see ch. 6] 22.8 

Table 1-2. Membrane electrical properties of various cell types. 

1.5.1.2 Batch DEP separation 

A number of batch DEP separation systems have been developed for the separation of cells and 

microorganisms. These systems are generally quite simple in construction and operation, 

usually consist of two glass slides sandwiching a thin gasket material (typically 100-500ýtm) 

that defines a flow channel. Arrays of electrodes are patterned on the facing surface of one or 

both of the glass slides, the commonest electrode design being that of the, castellated electrode 

shown in figure 1- 10 - 

T 

Figure 1-10. Castellated microelectrodes. 
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Typically, a sample of cell suspension (-100ýd) is injected into the separation chamber with the 

electrodes energised at a frequency and magnitude such that all the cells undergo positive DEP 

and are held at the electrode edges. Sinusoidal or square wave voltages in the frequency range 
lOOkHz to IOMHz are commonly used with peak-to-peak voltages of between 5V and 20V. 
Once all the cells are trapped at the electrode edges the flow of cell free medium through the 

chamber is initiated. A slight reduction in the applied frequency results in the release of one cell 
type, which can be collected as it elutes from the chamber. Further reductions in the frequency 

result in the selective release of further cell types, which can also be collected. Finally the 

release of all the remaining cells from the chamber is achieved by either a further reduction in 
the frequency of the applied field, or by setting the applied voltage to zero. 

The batch separation of a variety of cell types has been demonstrated. These include the 

separation of viable and non-viable yeast cells [74]; the separation of leukaemia [75], and breast 

cancer cells [76] from blood; the separation of CD34+ cells from bone marrow and peripheral 
blood [77,78]; as well as the separation of various bacteria species from each other and from 

blood cells [79,80]. 

Variations on the batch separation theme have been demonstrated (e. g. the use of time varying 

conductivity gradients, instead of the variation of the applied frequency [81]). However, all the 

batch methods to date have been limited by the small sample volumes used, and the problem of 

steric hindrance. Steric hindrance results in the trapping of cells, that should normally be 

released (i. e. they are experiencing a -ve DEP force), by cells of a different type that are being 

held at the electrode edge under a +ve DEP force. Reduction in the sample concentration 

reduces steric hindrance effects but also reduces the number of cells processed per sample. As a 

result the purity of the cell fractions obtained after batch separation could be inversely 

proportional to the initial sample concentration for a given device [74]. 

1.5.1.3 Continuous dielectrophoretic cell separation 

Continuous separation of cells has been demonstrated, where the cell mixture is injected into the 

centre of the separation chamber and the fluid flow direction and field are switched periodically 

[82]. The cyclical regime for cell separation is as follows, 

0 The cell sample is introduced into the centre of the chamber. 

A field frequency is applied such that cells of type A are repelled and move into the 

electrode bays (see figure 1-10), while cells of type B are attracted to the electrode 

edges by +veDEP. 
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Fluid flow in one direction results in cell type A moving in that direction while cell type 
B remains held at the electrode edge under the influence of positive DEP (positive DEP 

exhibits a stronger holding force against the fluid flow than negative DEP). 
The DEP force is removed by switching off the voltage and the whole sample is 

pumped in the opposite direction. 

0 Reapplication of the field applied in step two, and fluid flow to the left cames cell type 
A to the left. 

This regime results in sufficient spatial separation of cell types A and B along the electrode 
array to allow the injection of more cell sample during step one of the next cycle. Separation of 
the two cell types is thus achieved with collection of cell type A from the channel's left hand 

port and cell type B from the right hand port. 

The continuous separation system described has been used to separate viable and non-viable 
yeast with 92-97% efficiency. The purity of sorted samples is thought to be a result of reduced 
steric hindrance as a result of the mixing effects that occur when all the cells are released from 
the electrodes, moved with the fluid flow and then recaptured when the voltage is reapplied. 
This process, although capable of processing large samples of cells is slow. 

1.5.1.4 DEP-fleld flow fractionation (DEP-FFF) 

Conceptualised in the 1960's, field-flow fractionation (FFF) is a family of separation techniques, 

all of which involve superimposing a physical field, at right angles to a main channel flow. The 

principle of FFF is shown schematically in figure I -11. Directed along the channel length, the 

main channel flow sweeps sample components from the channel inlet to outlet. The particles in 
the flow interact with the cross field and are forced into different positions in the parabolic flow 

profile of the main channel flow. Separation occurs because particles at different heights, in the 

channel, move with the velocity at which the fluid is moving at that height. Particles closer to 

the centre of the channel therefore have a higher velocity than those levitated to a position closer 

to the chamber wall. For FFF to operate successfully it is critical that strict laminar flow be 

achieved across the thin dimension of a ribbon-like channel. 

27 



Inflow 
(sample Imlection) Field 

%lb. - 

\l/ 

=/ 
Exploded 

view 

Flow 
Parabohe flow Proille 

X 

Acumlation well 

Figure 1-11. Schematic of the principles of fie Id- flow- fractionation [83]. 

FFF is capable of separating not only cells and cell-sized particles, but also a broad range of 

particles from approximately I nm to 100 ýtm in diameter. The field itself can be any physical 

phenomenon and characterizes the specific FFF sub technique; for example electrical, magnetic, 

thermal gradient, sedimentation or gravitational, flow, and stenc field-flow-fractionation 

methods exist. For more information the reader is referred to one of the many books on the FFF 

technique (e. g. [83]). 

Recently, a further FFF sub-technique has been described in the literature, that of 
Dielectrophoretic-Field Flow Fractionation (DEP-FFF) or gTavitational-DEP-FFF. The basis of 

the technique (shown in figure 1-12) is to use negative DEP forces to balance the gravitational 
(sedimentation) forces on particle such that particles of different dielectric properties as well as 
density are levitated to different heights in the parabolic flow profile. The basic device uses an 

array of interdigitated microelectrodes, lining the bottom surface of a thin chamber, to generate 

a dielectrophoretic force that levitates the cells above the electrode array. The DEP force acts 

counter to the gravitational force causing the different cell types to occupy different equilibrium 

positions above the electrode array. The height depends on the frequency of the applied field, 

the applied voltage, and the dielectric properties of the specific cell. Such channels exhibit a 

parabolic fluid velocity profile, with zero velocity at the top and bottom of the channel surfaces 

and maximum fluid velocity at the channel centre. The time a cell takes to elute from the 

channel is therefore related to the height of levitation. Various groups have demonstrated the 

feasibility of DEP-FFF [84-94]. 
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Figure 1-12. Principle of DEP-FFF [72]. 

Gascoyne's group at MD Anderson Medical Center in Texas have reported the use of the above 

system to purge human breast cancer MDA-435 cells from haematopoletic CD34(+) stem cells 
[95]. CD34(+) stem cells were levitated higher and were carried faster by the fluid flow, exiting 
the separation chamber before the cancer cells. Efficient separation of the cell mixture was 

observed in less than 12 min, and CD34(+) stem cell fractions with a purity >99.2% were 

obtained. 

Subsequent papers from the same group have demonstrated separation of latex beads of 

differing size, and surface functionality, also the separation of the various white blood cell 

subpopulations (i. e. T- and B-lymphocytes, monocytes, and granulocytes) using the combined 

DEP-field flow fractionation (DEP-FFF) device. 

They have also coupled the output port of their DEP-FFF device to the inlet of a flow 

cytometer, thus enabling online analysis of the fractionation process as shown in figure 1-13. A 

possible further step would be to use the separation capabilities of the flow sorter to further 

select cells of interest from the sample. 
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Figure 1-13. Schematic of the DEP-FFF device of Yang et al 1999 [72]. 
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The DEP-FFF technique is a non-contact process whereby the cells are retained in suspension 

away from the chamber walls. All the other DEP separation systems rely upon all the cells 

interacting with the field and being held at the chamber surfaces for at least a portion of the 

separation procedure. This can result in contamination due to non-specific adhesion of cells to 

the chamber surfaces (this is discussed later). 

1.5.1.5 3-D cell handling 

The group of Fuhr at the Humboldt University in Berlin have designed a number of serial 

cell/particle manipulation systems [96-100] (these sort particles individually, one after the 

other). Their particle handling system consists of 3-D microelectrode elements patterned onto 
two layers (the upper and lower channel walls). They demonstrate the ability of these structures 
to form 3-D DEP field structures, such as funnels, aligners, cages and switches. The top and 
bottom electrode structures are separated by a 40ýtm thick polymer spacer, which forms a flow 

channel. The electrodes of the funnel, aligner or switch were operated with 5-11 V at 5-15 MHz, 

and it was found that efficient handling of particles could be achieved with flow rates up to 

3500ýtm/s. Cells could be aligned effectively at flow rates up to 300ýtm/s in PBS. The group has 

gone on to commercialise this technology with a company called EVOTEC. 

Figure 1-14.3-D DEP field cell manipulation device of Muller et al. [99] 

An example of a 3-D DEP cell sorter is shown in figure 1-14. Particles enter the device, from 

the left of the picture, under the influence of pressure driven fluid flow. The particles can then 

be manipulated as they flow through a number of electrode elements. Particles can be focussed 

into a beam, captured and rotated (to allow characterisation), and deflected so they flow into the 

chosen output channel (sorting). 
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1.5.2 Micro-flowcytometry 

A number of micro-flowcytometric devices have been described in the literature over the last 

three or four years. 

ýXACS 

Ramsey's group at Oakridge have demonstrated a microfabricated flow cytometer based on a 
cross-shaped channel, etched in glass [101]. Particles are transported electrophoretically by 

applying potentials to fluid reservoirs at the channel ends. The device uses electrokinetic 
focusing at the cross intersection to produce a beam of single particles, and detection occurs 
50gm downstream from this intersection. Latex particles with diameters of I and 2gm were 
detected and counted using laser light scattering and fluorescence coincidence, with a maximum 

sample throughput of 34 particles/s. In a separate report, fluorescently labelled E. coli were 

counted at rates from 30 to 85 cells/s [102]. 

Figure 1-15. Time integrated CCD image of electrokinetically focussed beads [ 10 1 ]. 

Quake's group at California Institute of Technology describe a 'disposable' microfabricated 

fluorescence-activated cell sorter [103] fabricated in PDMS (polydimethylsiloxane) using 'soft 

lithography' [104], the device is shown in figure 1-16. Transport of particles along the T-shaped 

channel (3ýtm wide by 4ýtm deep) is accomplished by electro-osmotic flow, and sorting is 

achieved at the T-junction by switching the applied voltage, sending particles down one of the 

two channels. They demonstrate sorting of micron-sized beads of various colours, and the 

separation of E. coli expressing green fluorescent protein (GFP) from a background of non- 

fluorescent E. coli. Sort rates of 20 cells/s have been achieved. The same device has been used to 

size and sort DNA molecules [105]. 
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Figure 1-16. ý&ACS of Quake [ 103] fabricated in PDMS. The channels narrow from I 00prn at the wells 

to 3ýtrn at the sorting junction, with a channel depth of 4ýtm [103]. 

Harrison's group [106] at the University of Alberta have used electroosmotic and/or 

electrophoretic pumping to drive cell transport within a network of capillary channels fabricated 

on a glass chip. Saccharomyces cerevisiae, canine erythrocytes, and Exo1i were selected and 
transported from one location to another within the capillary network, with velocities up to 

about 0.5 mm/s in capillaries with a 15 x 55ýLm cross section. Canine erythrocytes were 

intentionally lysed within the chip, to demonstrate that cell selection and a subsequent reaction 

could be achieved. 

Compared with conventional FACS machines, ý&ACS devices have the potential to provide 

higher sensitivity, no cross-contamination, and lower cost. As well as the potential for low 

power hand held machines that could be used in the field. These devices are also potentially 

more cell-friendly as the forces required to manipulate particles in a microstructure is orders of 

magnitude smaller than those used in macrosco ic systems. p 

1.5.2.2 gCoulter counter 

Koch et al [ 107] have designed and fabricated a micromachined Coulter counter, shown in 

figure 1-17. They etched a channel in silicon; sputter coated the channel walls with 100nm of 

titanium, which was then patterned to form metal electrodes on the channel walls. To seal the 

channel a Pyrex wafer was anodically bonded on top of the silicon substrate. Passage of 3ýjm 

diameter particles through the 5ýtm wide channel with an electrode spacing of 40ýtrn showed a 
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relative resistance change of 1.8%. They did not report counting rates or the device's ability to 
distinguish between particles of different type. 

Figure 1-17. Koch's micromachined coulter counter [1071. 

Saleh et al [108] fabricated a microchip Coulter counter on a quartz substrate with a PDMS lid, 

and used it to detect individual colloidal particles, shown in figure 1-18. The device showed 

sensitivity proportional to particle size, down to particles as small as 87 nm in diameter, and the 

ability to distinguish between colloids whose diameters differ by less than 10%. They suggest 

that further reductions in the pore size would allow the device to measure biological 

macromolecules, such as DNA and proteins. 

Figure 1-18. pCoulter counter of Saleh et al. The electrodes can be seen in the channels either side of the 

pore, which is shown in the inset [ 108]. 
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1.5.2.3 gImpedance spectroscopy 

Ayliffe et al [109] described the first microfabricated device capable of performing 
microelectronic impedance measurements on femtolitre (10-1) volumes, thus suggesting the 

possibility of rapid single cell impedance measurement in a flow through system. The device 

was fabricated on glass and consisted of a 10ýtm wide by 4ýtm high epoxy channel (defined 

using SU-8 photoresist) with integrated gold measurement electrodes. Suspensions of cells were 
flowed along the channel and passed between the electrode pair, allowing the measurement of 
the dielectric properties of individual cells as they passed through the sensing zone. 
Measurements of human leukocytes and teleost fish red blood cells were shown to give 

statistically different results over a measurement range of I OkHz to I MHz. 

Sohn et al at Princeton [110] have developed a PDMS flow through "capacitance cytometry" 

chip (see figure 1-19) that purports to measure the DNA content of eukaryotic cells. They 

measure a change in capacitance that is evoked by the passage of individual cells across aI -kHz 
electric field. Analysis of the cell-cycle kinetics (cells at different points in the cell cycle have 

different amounts of DNA) of populations of cells was compared with standard flow cytometry 
data and the authors reported favourable results. 

PDMS 
Microfluicic 
ChALMftl 

Figure 1-19. Schematic of the Princeton capacitance cytometer [110]. 

Fuller et al [I I I] have developed (see figure 1-20) a microfabricated flow-through impedance 

characterization system capable of performing, multi-frequency measurements on cells and 

other particles. The sensor measures both the resistive and reactive impedance of passing 

particles, at rates of up to 100 particles/s. With particle impedance measured at three or more 

frequencies simultaneously, enabling the derivation of multiple particle parameters. Human 

peripheral blood granulocyte radius, membrane capacitance, and cytoplasmic conductivity were 

measured and were found to be in agreement with published values. 
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Figure 1-20. Micro flow-through impedance chip of Fuller et al [I I I]. 

Gawad et al [54] at EPFL (PEcole polytechnique f6d6rale de Lausanne), Lausanne describe a 
device, which measures the spectral impedance of individual cells or particles at a rate of 100 

cells/s (figure 1-21). The device consists of a polyimide channel fabricated on glass, with 

microfabricated electrodes on the channel bottom and a PDMS lid. As the particles flow through 

the measurement area each particle's impedance is recorded by a pair of micro-electrodes. The 

cell free media surrounding the cell is used as a reference. They describe the impedance 

measurements of cells and particles of different sizes and types displaying the data in a similar 
fashion to that of the graphical output obtained from a FACS analyser. A prototype DEP sorting 

element was also demonstrated. 

( Fk, l I 

Figure 1-21. Flow-through cell impedance analyser of Gawad et al [54]. 

1.5.3 Micro-structures 

Mechanical sorting of cells in microstructure has also been shown to have potential for the 

separation of cells. Simple filters based on size exclusion have been demonstrated (see [6] for 

examples). Carlson et al [ 112] constructed a lattice consisting of a set of 5 ýtm wide channels of 
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varying length, as shown in figure 1-22(a). Fonning parallel arrays of these channels, and 
forcing a drop of human blood containing red and white blood cells through the lattice caused 
the white cells to self-fractionate into their subpopulatlons. The pattern of white cells that forms 

is due to a combination of stretch-activated adhesion of cells with the walls, stochasti I ic sticking 
probabilities, and hetero-avoidance between granulocytes and lymphocytes. Figure 1-22(b) 

shows the separation of the leukocyte sub-populations, with monocytes and granulocytes 
labelled with a green fluorescent probe and T-lymphocytes labelled with a red probe. 

T-lymphocytes 

Granulocytes 

Monocytes 

Figure 1-22. (a) Silicon microchannel array of Carlson et al. (b) Separation of fluorescently labelled 

white blood cells captured along the length of the lattice. Flow is from top to bottom with granulocytes 

and monocytes labelled with green fluorescence and T-lymphocytes labelled with red fluorescence [112]. 

1.6 Summary and aims of this thesis 

From the discussion above it is clear that although there have been continuous developments in 

the field of cell separation since the 1960's, neither macroscopic nor microscopic cell separation 

strategies are currently capable of isolating rare cells, other than in immuno-magnetic 

techniques or highly configured flow cy-tometers in experimental settings, thus making all the 

current methods for isolating rare particles extremely expensive and usually technically labour 

intensive requiring highly trained operators. 

Although interesting as a cell separation technique, most DEP systems are restricted to the 

processing of small sample volumes and useful for little more than demonstrating the ability of 

DEP devices to distinguish between a variety of cell types. Rare cell isolation inherently 

requires the ability to process large numbers of cells and thus requires a system capable of 

handling such samples. To overcome this problem a novel electrode design has been developed 

and tested for this thesis. It is shown that the system can be used to isolate low numbers of 

particles from dilute suspensions and is capable of continuous handling of large sample volumes 

in excess of 10ml. A novel method of particle isolation is proposed "Dielectrophoretic 
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Chromatography". This allows on-chip separation of particles based on the particle dielectric 

properties, its size and density. 

Chapter summary 

In chapter one a general introduction to the field of cell and particle separation techniques was 
presented with focus on the problem of rare cell isolation. Dielectrophoretic particle separation 
systems were discussed in some detail and the state of the art in area of m1crofabricated particle 
separation and detection systems presented. 

Chapter two introduces the theory behind the polarisation of dielectric materials, along with a 
description of the AC electrokinetic phenomena arising from the interaction of an applied non- 
uniform field and this polarisation. The nature of the dielectrophoretic force is discussed; this is 
followed by a discussion of the other forces present within micro-fabricated particle separation 

system as pertinent to this work. These include buoyancy forces, viscous forces, and the effect 

of thermal forces (i. e. Brownian motion and diffusion). The electrohydrodynamic phenomenon 

of AC electro-osmotic and electro-thermal fluid flow are discussed. An analytical representation 

of the DEP force generated by an array of interdigitated bar electrodes is presented. Finally, the 

theoretical background is given for the dielectric modelling of real particles. 

Chapter three gives details of the biological protocols used throughout the thesis. Cell 

preparation and identification methods are presented here along with the detailed description of 

the sample preparation for the experimental work. Chapter four gives details of the device 

fabrication methods used and the devices and equipment developed during the course of this 

work. Details of any other equipment used are also given. 

Chapters five through eight contain the main results from this thesis. Chapter five describes the 

numerical simulations used to model the motion of the particles as they flow through the 

dielectrophoretic separation system. The results of the simulations are presented with regard to 

particle separation in the device and discussed. Chapter six introduces the novel DEP separation 

method of "Dielectrophoretic Chromatography". Experiments were conducted using a variety of 

particle types the results are presented and discussed with reference to the simulation work of 

chapter five. 

Chapter seven presents the results of experimental work carried out to separate binary mixtures 

of cell types. Two model mixture systems are used here; (i) the separation of PBMCs from 6ýtm 

latex beads and (ii) the separation of placentally derived trophoblast cells from PBMCs. The 
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n'k ability of the separation system to isolate and concentrate low numbers of particles (cells, sub- 

micron latex beads, etc) from large fluid volumes in a continuous flow manner is also presented. 
Chapter eight presents results of work carried out to isolate foetal cells from clinical samples of 

maternal peripheral blood obtained from pregnant women. Related to this, the dielectric 

properties of foetal nucleated red blood cells (ffiRBCs) were also measured using crossover 

measurements and the results are presented. Experimental work to modif the s face chemis y ur try 

of the separation device is also presented in this chapter. The aim of this is the tailoring of the 

separation device with antibodies specific to the cell type of interest, while also attempting to 

block any non-specific binding (i. e. other non-target cell types) within the channel. The study 
looked at the effect of laminin and other proteins on the adhesion of trophoblast cells and 

PBMCs to treated glass surfaces. 

Chapter nine contains concluding remarks and proposals for future work. 
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Chapter Two: Forces in AC electrokinetic microsystems 



Introduction 

The field of alternating current (ac) electrokinetics is concerned with the investigation of the 
movement of polarizable particles and liquids in non-uniforin ac electric fields. This movement 
arises from the interaction of an applied electric field with the particle and the fluid. A variety of 
forces and phenomena result and these can roughly be separated into those that act directly upon 
the particles and those that act upon the suspending fluid. 

This chapter presents the theory behind the polarisation of dielectric materials, along with a 
description of the ac electrokinetic phenomena arising from the interaction of an applied non- 

uniform field and this polarisation. Also presented is a discussion of the forces acting within the 

micro-fabricated particle separation system pertinent to this work. 

2.1 Dielectrics and polarisation 

Dielectric materials polarize under the influence of an external applied electric field (see [1-7] 

for theory of the various polarisation processes described below). Polarization is the ability of a 

material to acquire a dipole through the action of this external electric field. Ideal dielectrics 

possess no free charge carriers, with all charges being strongly bound to the atoms or molecules 

of the dielectric material. Upon the application of an electric field these bound charges can only 
be forced to move slightly, with the positive charges moving one direction and the negative 

charges moving in the opposite direction. A dielectric in which this charge displacement has 

taken place is said to be polarized. 

For the case of a homogeneous dielectric there are three polarisation processes: electronic cc,, 

atomic (Xa and orientational (x.. In the case of a heterogeneous dielectric system, a further 

polarisation mechanism is present, interfacial polarisation cti. The total polarisability of the 

material (XT is the sum of these processes, CCT=()Ce+(Xa+(Y-o+(Xi. Each of the polarisation processes 

posses a characteristic time constant, resulting in a dielectric relaxation or dispersion. 

Electronic polarisation 

Electronic polarisation occurs in both polar and non-polar materials. An applied field causes the 

nucleus and electrons of an atom to experience oppositely directed forces. The electron orbitals 

are distorted in such a way that their average position no longer coincides with that of the 

nucleus. The electric fields generated by the microfabricated electrodes used in dielectrophoretic 

systems are typically of the order of 106Vm-1, and considerably smaller than those within the 

atom 10"Vm-'. The displacement of the charges is therefore only of the order of 10A. The 
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P-- - 1014 trequency region of this polarisation process is above Hz (LJV regions and higher) and 
therefore of no consequence to this work. 

2.1.2 Atomic polarisation 

Atomic polarisation occurs as a result of the displacement of differently charged ions within a 
material, and can contribute greatly to the total polarisation in inorganic compounds. This 

mechanism only makes a small contribution to the total polarization in organic solvents where 
there are no ions present. Atomic polarisation occurs in the frequency range above 1012 Hz again 
making it of little consequence to this work. 

2.1.3 Orientational polarisation 

Orientational polarisation only occurs in polar molecules, i. e. those molecules that contain 

permanent dipoles in their chemical structure. The pen-nanent molecular dipoles in these 

materials are free to rotate about their axis of symmetry and to align with an applied electric 
field. Orientational polarisation is temperature dependent. As the temperature of the material is 
increased so the thermal agitation of the molecules within the material increases, this results in a 

reduction in the level of polarisation of the material. This reduction is due to the increased 

random movement and consequent disordering of the orientation of the molecules in the 

material. 

2.1.4 Debye relaxations 

For a homogeneous dielectric the movement or formation of each dipole has a characteristic 

relaxation time. Due to the physical size of the dipole moment there is a limit to the speed with 

which it can orient within a time varying electric field. If the applied field has a period much 

shorter than the relaxation time of the dipole, the dipole is unable to orient with the field and the 

polansation no longer occurs. 

As just described dipole reorientation is typically the slowest polarisation mechanism in a 

homogeneous dielectric and is usually the first polarisation term to disappear as the frequency 

of the field is increased. The atomic and electronic polarisation processes have relaxation 

frequencies high enough such that their contribution to the total polarisation is unaffected by the 

angular frequency of the electric fields used in this work. As a consequence, the low frequency 

limit of polarisation for a homogeneous dielectric is given by the sum of the electronic, atomic 

and orientational polarisations. While the high frequency limit of polarisation is given by the 

sum of the electronic and atomic polarisations only. 
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2.1.5 Interfacial polarisation: Maxwell-Wagner polarisation 

When a heterogeneous system is subjected to an applied electric field it generally shows 
frequency dependent dielectric and conductive properties that are different to those of the 

constituent parts. Heterogeneous systems therefore exhibit further dispersions due to interfacial 

phenomenon; these are in addition to the above-mentioned polarisation processes and are 
known as Maxwell-Wagner interfacial polarizations [1-7]. An accumulation of charges at the 

structural interface between the dissimilar materials gives rise to the formation of a charge layer 

at the boundary. 

The simplest example of a Maxwell-Wagner interfacial polarization is that of a parallel plate 

capacitor comprised of two dielectrics of differing thickness (di, d2). permittivities (F. 1, E, ) and 

conductivites ((Y 1 (Y2) and plate area A, as shown in figure 2-1. Conductivity can be thought of as 

a measure of the ease with which current flows through a material, while permittivity is a 

measure of the energy storage in a system [6]. 

Figure 2-1. Parallel plate capacitor with plate area A and two dielectrics of thickness d, and d2 with 

permittivities FI, 62 and conductivities cyl, C72- 

The frequency, at which the relaxation due to the Maxwell-Wagner interfacial polarisation 

occurs, depends on the nature of the interface. Figure 2-2 shows the variation in the real F, ' and 

imaginary E" parts of the complex permittivity (e* is the complex permittivity given by 

6 oc'- 
je" ), with frequency for a typical Maxwell-Wagner interfacial polansation. AF, is 

the dielectric decrement. 
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Figure 2-2. Variations of the real (6') and imaginary (E; ") parts of the complex permittivity for a 

dielectric exhibiting Maxwell-Wagner interfacial polarisation. 
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Figure 2-3. The effects of electronic, atomic and orientational and Maxwell-Wagner polarisation on the 

real (E: ') and imaginary (F, ") parts of the complex permittivity of a dielectric. 
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The overall effect of each of these polarisation processes (electronic, atomic, orientational, 
interfacial) is to produce a number of dispersions and in the dielectric permittivity of the system. 
As the applied field frequency is increased from the steady state, the permittivity changes from 

the static field value F,., o, to the high frequency value 6 equal to 1, as shown in figure 2-3. 

At the optical end of the frequency spectrum the electronic and atomic polarisations appear as 

resonances in the system, and the associated peaks in F. " characterise the absorption of radiation 
by the material. 

2.1.5.1 Two layer system: simple case 

On application of a static field across the two-layer capacitor, the electric flux density flowing 

through the dielectrics will be equal. In order to ensure continuity of current flow in both 

dielectrics a charge carrier discontinuity arises at the interface of the two dielectrics. The build 

up of charge at this interface causes a frequency dependent polarisation. This is the origin of the 

dielectric dispersions in heterogeneous systems [4,5]. 

The system can be modelled as a pair of capacitors in series. Assuming that C72 is negligibly 

small, and that F,,, F-2 and a, are frequency independent a simplified expression is obtained for the 

behaviour of the dielectric system. The total capacitance of the two capacitors is given as, 

I=1+1 

Ctot Cl C2 

where, 

jul As 
Co (2-2) 

and, 

C2 
= 

ACo C2 
(2-3) 

d2 

where qO =8.854 x 10-" Fm-' and is the permittivity of free space, giving the total capacitance 

as, 

tot 

A'EoS2 EI - 

jul 

0-) 
(2-4) 

d2 el - 
j(71 

+ dIE2 

03 
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from which the low frequency limit ((o->O) of the effective permittivity is given by, 

co)-->O - 
62d 

(2-5) d2 

and the high frequency limit (o)--> oo) of the effective permittivity is given by, 

6162d 
(2-6) 

d2-61 + d, 62 

If there is a difference between 61 andF-2 the system will exhibit a dielectric dispersion. 

2.1.5.2 Two layer system: complete analysis 

A fuller analysis of the two-layer system [4] (i. e. not taking q2 to be negligibly small, and 

assuming that F, -2 and a, are frequency dependent) demonstrates that the dielectric dispersions 

can be described in terms of the Debye equations (see section 2.2.4), giVing the following 

expressions for the dielectric parameters of a two-layer system, 

+ 
cw-"o 

. 60 (2-7) 
1 cor 

and, 

pf (S W->O 
6 

W--->00 
)697 

u 
9=1+ 

C02, r2 
+ 

cos 0 
so (2-8) 

and, 

d (. v, da2+. 6 d or 
2) 

12221 (2-9) 
(0-+0 (d2171 

+ d, 072 
)2 

and, 

6162d 
(2-10) 

d2 61 + dl. 6, 

where 

(cld2+ c, dl) ý2 
d2al + d1a, 
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The conductivity of the interfacial system as a whole is given by, 

(T = 
dal C2 

(2-12) d2 (: Fl + dl(72 

2.2 Dielectrophoresis (DEP) 

As described in section 2.1.5, when an electric field is applied, the interface between a particle 
and the medium in which it is suspended undergoes Maxwell-Wagner mterfacial polarisation. 
The interaction of the charges (associated with the formation of the effective dipole moment) 
with the applied electric field results in a force, which acts upon the particle. For a unifonn 
electric field the net force experienced by a neutral particle is zero. However, if the particle is 

placed in a non-uniform electric field the resulting force imbalance across the particle causes it 

to move. This movement arises due to the variation in the charge density over the particle. It is 

important to make the distinction between the phenomenon of dielectrophoresis and 

electrophoresis. 

2.2.1 Electrophoresis 

Electrophoresis is the motion of charged matter under the influence of an applied electric field. 

The direction of motion is always toward the electrode of opposite charge to that of the particle, 

and it is of no consequence whether the field is uniform or non-uniform. Due to the presence of 

the double layer, a charged particle when suspended in aqueous solution appears electro-neutral. 
Despite this, movement of the particle still occurs due to the mobility of the ions in the double 

later. The velocity of a charged particle due to the electric field is a function of the particle's 

size and charge as well as the viscosity and conductivity of the suspending liquid (i. e. the 

thickness of the double layer surrounding the particle). The electrophoretic mobility of a 

charged particle suspended in solution is given by the function 

2Lý 
PE .. 3q 

(2-13) 

where q is the viscosity of the liquid, c the absolute permittivity of the liquid, ý the particle's 

zeta potential, and J(Ka) is a function of the ratio of the particle radius a to the double layer 

thickness K-1. The functionj(Ka) varies between I and 1.5 as the value Of Ka vanes between 0 

and oo(see [6] for further details). 
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The main application of electrophoresis is in the separation of macromolecules such as DNA 

and proteins, with the different macromolecules moving with different velocities under the 
influence of the applied electric field. As the technique will work with any charged particle it is 

applicable to the separation of cells, which typically have a net negative surface charge at 

physiological pH [5-6]. 

2.2.2 The dielectrophoretic force 

Dielectrophoresis is distinctly different in nature from electrophoresis. Dielectrophoresis (DEP) 

is the translational movement of neutral matter as a result of polansation effects in non-uniforin 

electric fields [4,5,7]. 

Under the influence of a uniform DC electric field, a particle with charge q will experience a net 
force toward the electrode of opposite polarity to that of itself A neutral particle will become 

polarised as a result of the electric field but will experience no net movement in the uniform 
field, this is shown below in figures 2-4 and 2-5. 
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Figure 2-4. Effect of a uniform field on uncharged particles. No net translational force is exerted on the 

neutral particle. (a) the polarisability of the particle is greater than that of the medium (b) the 

polarisability of the particle is less than that of the medium. Adapted from [6]. 
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(a) (b 

Figure 2-5. Plots of the electric field lines for an uncharged spherical particle placed in a uniform field (a) 

the polarisability of the particle is greater than that of the medium, (b) the polarisabIlIty of the particle Is 
less than that of the medium. Adapted from [6]. 

If these particles are now placed in a non-uniform DC electric field the situation is somewhat 
different. The charged particle will still experience a net translational force towards the 

electrode of opposite polarity. However, the neutral particle will now experience a net 

translational force, moving it towards or away fTom the regions of high electric field intensity, 
depending upon the relative polarisability of the particle and the suspending medium. 
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Figure 2-6. Effect of a non-uniform field on uncharged particles. A translational force is exerted on the 

neutral particle. (a) the polarisability of the particle is greater than that of the medium, (b) the 

polarisability of the particle is less than that of the medium. Adapted from [6]. 
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Figure 2-7. Plots of the electric field lines for an uncharged spherical particle placed in a uniforni field (a) 

the polarisability of the particle is greater than that of the medium, (b) the polarisability of the particle is 

less than that of the medium. Adapted from [6]. 

The charge redistribution in and around the particle due to the field results in equal amounts of 

oppositely charged ions facing the electrodes of opposite polarity. However, as the field is non- 

uniform, the forces experienced by opposite ends of the neutral particle have different 

magnitudes. The resultant net translational force in this case is therefore non-zero, giving rise to 

motion. If the neutral particle is more polarisable than the surrounding medium, the translational 

force is along the field line toward the region of higher electric field intensity. If the particle is 

less polarisable than the surrounding medium, the translational force is away from the region of 

higher electric field intensity. 

For an AC electric field, the neutral particle will always move towards the high or low field 

regions as described above, irrespective of the polarity of the electrodes. At low frequencies the 

charged particle will move toward the electrode of opposite polarity under the influence of 

electrophoresis, its direction oscillating with the field direction. At higher frequencies the DEP 

force will move the charged particle towards the region of high or low field strength depending 

upon the relative polansabilities of the particle and the surrounding medium. The direction of 

the electrophoretic force is changing so rapidly that the particle has no time to move and the 

effect of electrophoresis is no longer observed. 

2.2.3 Positive and negative dielectrophoresis 

In the previous sections it was shown that the polansation of a dielectric material is frequency 

dependent with characteristic dispersions of polarisation occurring at different frequencies. 

Materials therefore exhibit characteristic dielectrophoretic spectra due to differences in their 

In of high field dielectric properties. Particles may therefore experiences a force towards a regio 
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intensity at one frequency and may experience an oppositely directed force at a different 

frequency, all other things remaining the same. Figure 2-8 shows the normalised DEP force 

frequency spectra for a latex particle suspended in water (see section 2-9 for further details). 

The movement of a neutral particle to a region of high field intensity is called positive 
dielectrophoresis (+DEP), and the movement of a neutral particle away from a region of high 

field intensity is called negative dielectrophoresis (-DEP). The frequency at which the 

polarisability of the particle is equal to that of the suspending medium is known as the crossover 
frequencyf,. At this frequency the particle experiences no DEP force (see section 2.9). 
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Figure 2-8. Nonnalised DEP force experienced by a 10[tm latex particle suspended in water of 

conductivity 0.1 mSrn7 1. 

2.2.4 Derivation of the force on a dipole 

The DEP force acting on a particle can be derived first, by estimating the net force upon a small 

physical dipole, and then generalising to the force acting on a particle of effective dipole 

moment pff (see [4] and [6]). 

A neutral particle within an externally applied electric field has an induced dipole moment, with 

centres of equal positive and negative charge separated by a distance d. We assume that no 

field contributions arise from the dipole itself 
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For a dipole in a non-uniform field the positive and negative charges experience different 

electric field strengths. This gives rise to a total force on the particle of, 

F= qE(r + d) - qE(r) 

where r is the position vector of -q. 

E(r+d) 

E(r) 

z 

Figure 2-8. The force on a small dipole in a non-uniform electric field. 

(2-14) 

If the magnitude of d is small compared to the characteristic scale of the electric field non- 

uniformity, a simplified vector Taylor series (i. e. A(x + dx) = A(x) + dx -VA+ higher order 

terms) can be used to describe the electric field about position r, i. e. 

E(r + d) = E(r) +d- VE(r) (2-15) 

where V is the del operator, and all higher tenns of d have been neglected. Using the above 

equations we obtain the force acting on a particle as, 

F= qd - VE. (2-16) 
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From this we obtain the force on a dipole due to an applied electric field, 

Fdipole 
-,, ' (p 

- V)E. (2-17) 

The above equation is an approximation for the force exerted on any physical dipole. For a 
polarisable particle of finite size equation 2-17 gives good results if the electric field non- 
uniformity can be neglected, when measured over a length scale similar to the size of the 

particle. This approximation generally leads to good results when applied to small micron or 
sub-micron sized particles interacting with the electric fields produced by the electrodes of the 

size used in this work [4]. However, when calculating the forces experienced by particles very 
close to the electrode edge, or the fields generated by mutual particle -to-particle interactions 
(between closely spaced particles) the approximation can become significantly erroneous. 
Higher order linear multipolar terms must therefore be included in such situations (see [4,8-10] 
for a discussion of linear multipoles). 

2.3 The effective dipole moment 

From the above discussion (section 2.1.5) it is apparent that a dielectric particle suspended in a 
liquid will experience Maxwell-Wagner interfacial polarization at the particle/liquid interface, 

inducing a dipole moment in the particle. The concept of the effective dipole moment, p ff of 

the particle, can then be defined as the moment of the equivalent point dipole immersed in the 

same fluid with its position the same as the center of the original particle. 

The electrostatic potential 
Odipole due to a point dipole of moment pff in a dielectric medium 

of permittivity c.. is given by [4], 

P,, ff COSO Odipol, 

4; rcm r2 

where 0 and r are polar coordinates for a spherical system. 

The effective complex polarisability a of a homogeneous solid dielectric sphere can be written 

in terrns of the complex dielectric properties of the sphere and the surrounding medium [4], 
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46 pm 

3.6m 
* ep + Zc* 

m 

where Z is the complex pen-nittivity given by 6* =. 6046, -j. and the subscripts m and p 

refer to the medium and the particle respectively. 

The effective dipole moment of a dielectric particle suspended in a liquid is therefore frequency 
dependent and can be expressed as, 

p, ff =v aE (2-20) 

where v is the particle volume. This can be written more explicitly as, 

peff : -- 47r, 6 -pm-a3E. (2-21) m6*+ 2c* 
pm 

The frequency dependence of the effective dipole moment is described by the term in brackets 

(2-19) 

known as the Clausius-Mossotti factor, 

fcm = (2-22) 
+ 2c' 

m 

where the Clausius-Mossotti factor corrects for the fact that the field acting locally on the dipole 

is not the same as the external field applied to the system, due to the effect of the fields 

associated with the neighbouring dipoles. 

The above solution is correct under conditions where the radius of the sphere is small compared 

to the characteristic length of the electric field non-uniformity. This is generally the case for the 

microfabricated electrodes used in the experimental work carried out for this thesis. 

The effective moment method described above simplifies the calculation of the force on a 

particle and avoids the need for complicated derivations based on the Maxwell stress tensor (see 

[4] for detail). It may be used to calculate the forces on particles as long as the dielectric loss in 

the suspending liquid is negligible (i. e. 
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2.3.1 The time averaged dielectric force 

The instantaneous force on a dipole in an electric field is given above (2-17). For the case of a 
time varying electric field (E = Eoejav ) the dipole varies with the same angular velocity as the 

electric field, but with a phase lag 0. The time-averaged force is, 

ýFý =1 Re[(p - V)E *] (2-23) 

where * is the complex conjugate of E. After manipulation using suitable vector identities 
and inserting the expression for the effective dipole moment the time averaged DEP force 
becomes [4], 

ýFý = ze. a'Retfcm ýVýEI' (2-24) 

where VIE12 is the gradient of the square of the electric field and Re {fcm) is the real part of the 

Clausius-Mossotti factor, which is defined by the limit -0.5 < Re Vcm) < 1. 

2.4 Forces other than DEP on particles in solution 

There are a number of forces other than DEP experienced by a particle moving in a 
dielectrophoretic separation system of the type described in this thesis. There are externally 
imposed forces such as the gravitational and the dielectrophoretic forces, which are the 

predominant forces acting on particles greater than Iýtm. Intrinsic forces, such as Brownian 

motion and diffusion are also present and must also be accounted for. There is also the effect of 

the fluid motion, which is transferred into movement of the particles due to viscous drag. There 

are two types of fluid flow in a DEP separation system; the first is the flow arising from 

electrohydrodynamic forces on the fluid due to interaction of the electric field and the fluid; and 

the second is the fluid flow due to the hydrostatic pressure pumping the fluid through the 

channel. 

For the purposes of this thesis particles with diameters ranging from -100 nm to -10 Am were 

investigated. The forces acting on particles in this size range in aqueous suspension can be 

modelled using Newtonian mechanics. In order to simplify the analysis we will consider the 

one-dimensional system, the result can easily be generalised to three dimensions. 
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Figure 2-9 shows the various forces on a particle in a DEP microfluidic system. FG is the 

gravitational force, Fs (or Fdg) is the Stokes drag force and FI)Ep is the DEP force on the 

particle. FGcan act in either direction depending upon the relative density of the medium and 
the particle. Depending on the relative polansabIlItIes of the particle and the medium FDEPcan 

act either towards or away from the electrodes. 

Figure 2-9. Forces on a particle in a DEP flow through system. 

2.4.1 Gravitational forces 

A particle of volume v and mass density PP, suspended in a fluid of density p,, experiences a 

buoyancy force due to gravity. The net force on the particle can be written as: 

Fg =mg= v(p. - pp)9 (2-25) 

where g the gravitational acceleration (9.81 ms-'). The force acts with gravity if pp > p,, and 

against gravity if pp < p,. 

2.4.2 Viscous drag 

A particle moving though a liquid medium with velocity v experiences a frictional drag force 

F due to the viscous nature of the fluid, drag ý 

Fd, 
ag fv=-f 

A 
dt 

(2-26) 

where f is the ffiction, or Stokes' drag, factor. For a sphere with radius a moving through a 

fluid with dynamic viscosity n, the friction coefficient is, 

67Ma. (2-27) 
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The mass of a latex bead with radius a can be calculated as, 

pv=p m3 (2-28) 3 

where p= 1050kgm-', hence aI gm radius latex bead has amass m =4.398x I O-"kg. 

The rate at which a particle approaches steady state terminal velocity is determined from the 

ratio of its inertial and viscous components. For a sphere, the relaxation time r is given by 

m pv 2 pa 
2 

T=-=-=- (2-29) ff9 77 

A step change in force gives a velocity change, 

1-e M 

(2-30) 
f 

Using the value for dynamic viscosity of water, at 20 T, 17= IXIO-3 kgm-'s-, equation 2-30 

predicts aI ýtm latex bead has relaxation time T=1.11 xI 0-'s. A particle will therefore reach its 

steady state terminal velocity almost instantaneously, and any measured change in velocity is a 

result of a change in force on the particle [6]. 

2.5 Analytical solution of the 2D field gradient 

Morgan et al [11,12] have provided an analytical solution for the two-dimensional electric field 

gradient above an array of interdigitated "bar" microelectrodes (see figure 2-9). Their solution 

uses Fourier series analysis to obtain an analytical solution for the dielectrophoretic force on a 

particle generated by this design of electrode array. Solutions for both the dielectrophoretic and 

traveling wave dielectrophoretic force are given. A full analytical expression is given for the 

dielectrophoretic force in two-dimensions based on infinite series. A simpler one-dimensional 

expression is also derived for the force at a distance of the order of the electrode size d above 

the electrodes to infinity. 
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Figure 2-9. Schematic of the interdigitated bar electrodes. 

Their analytical solution gives results that are in close agreement with previously published 
experimental observations [13,14] and with previously derived analytical solutions obtained 

using Green's theorem [15-17], as well as other techniques [18]. Figure 2-10 shows a vector 
plot of the DEP force generated by such arrays of interdigitated bar electrodes. 
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Figure 2-10. Plot of the normalised DEP force vectors above an array of interdigitated bar electrodes. d is 

the width of the electrodes and of the spaces. Adapted from [6]. 

2.5.1 Full two-dimensional solution of the DEP force 

The analytical form for the two-dimensional electric field above an array of interdigitated bar 

electrodes is given by the sum of an infinite Fourier series. Assuming linear boundary 

conditions for the potential, and for the special case where d, = d2 =d the closed form 

expression for the horizontal and vertical components of the field at any point is given by, 
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2V [tan-, 
sin x- tan-' Cos x (2-31) Ex (x, y) = 

zd sinh y sinh y 

Ey (x, y) = 
V, 

In coshy^+cosx^ coshy^ (2-32) dz cosh ^- cos X^ cosh ^ 

1 

where Vo is the peak applied voltage. 

The DEP force is obtained from the derivatives of the electric field components, with explicit 

expressions for E,,,, E,, y, Ey', and Eyy given by: 

AP 
- 

aEy 
(x, y) = u£-, x -=- EY, 

y 
(x, y) ax ay 

(2-33) 

2 V,, sinh y Cos X^ 
d2 cosh 2y^ - cos 2X 

(3E Ex, 
Y 
(x, y) = ý, - x= 

cy 

aEY 
= EY,., 

ax 

sin iI + 
cosh 2ý + cos 2x^ I 

(2-34) 

Lcosh2 ̂  +cos2X y 
sin i 

cosh 2ý - cos 2i yI 

where y =)zyl2d and x^ = izx'12d =; zx/2d + 7r14, and x'= x+ d12. 

We can thus write the field gradient as, 

V(E' + E')=2u, (E,, E + EYEY, 
x) + 2uy(ExEy, 

x + EYEY, 
), 
) (2-35) 

vyX, X 

where u, and uy are unit vectors in the x and y directions. 

The time averaged DEP force at any point above the electrode array is then expressed as, 

2V coshy[ Cos x 

ýf =I vRe[a]V(E .2+E2) 
(2-36) DEP 

) 

4 
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2.5.2 Forces at heights greater than the characteristic electrode size 

For height y greater than d (where d= (dl+d2)12) the higher order tenns of the infinite series 
sum become negligible and all but the first term can be neglected giving the DEP force for the 

general case, d, -# 
d2 #d as, 

ly 

(FDEp) 
= -16 2 Re[(+os 2 7rd, 

edu 
702 d 4d 

and for the special case where d, = d2 =d the DEP force is, 

2 Iry 
(FDEP )= 

-8 
V" v Re[a]e- du 

7rd3 y 

(2-37) 

(2-38) 

These equations accurately describe the field at heights greater than d above the electrode array 
but deviate somewhat for values of y<d (this is further discussed in chapter 5). 

2.6 Fluid flow in microchannels 

The Navier-Stokes equation describes the motion of fluids and can be written as [2], 

-VP+77V'v -P 
av 

+ (V. V)v 
at 

(2-39) 

where P is the applied pressure, v is the velocity vector, p is the fluid density and 77 is the 

viscosity of the fluid. The terms on the left side of equation 2-39 represent the forces on the 

fluid due to applied pressure and viscosity while the terms on the right side represent the inertial 

forces. 

If we assume that the liquid is incompressible (a good assumption at flow speed much less than 

the speed of sound) ando is therefore constant we have the additional equation, 

V"v=O (2-40) 
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For any fluid flow a dimensionless number R can be calculated as the ratio of the inertial forces 

to the viscous forces, i. e. 

'I cv 
Vý 

at 

17VIV 

pr 
2 

ovr 
(2-41) 

77 T 

where, r is the characteristic size of the channel in which the fluid is flowing, and -cis the time 

scale over which the velocity is changing (where ul r= aular). 

The Reynolds number is defined as, 

Re 
- 

pvr 
77 

(2-42) 

and is a measure of the characteristics of the fluid flow behaviour in the steady state, i. e. when 

r-ýoo and gives an indication of the relative smoothness of the fluid flow (i. e. whether it is 

laminar or turbulent). For the case of the microfabricated flow channels used in this work, with 

at least one characteristic dimension in the micrometer range, and with low fluid velocities, it 

can be shown that the fluid flow is in the low Reynolds number regime (R, << 1). At these low 

values of Reynolds number the inertial effects, which cause turbulence and secondary fluid 

flows, are negligible and viscous effects dominate the dynamics of the fluid. This type of flow is 

termed laminar. 

For laminar flow (i. e. low Reynold's number flow) occurring in a system driven by a 

hydrostatic pressure difference applied along the length of the channel we get so called 

Pouiselle type flow. This is characterised by a parabolic flow profile across the channel, with 

the maximum flow velocity at the channel centre and zero flow velocity at the channel walls. 

For a rectangular flow channel of width w, length 1 and height h the mean flow velocity at 

height y is given as [ 191, 

vm =6ývm)y I-- 
h h 
Y) (2-43) 

where <v,,, > is the mean velocity of the fluid and the bottom channel wall is taken to be y=O, 

andy=h the top of the channel (see figure 2-11). Equation 2-43 assumes that the channel width 

and length are much greater than the channel height. 
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Figure 2-11. Parabolic flow profile characteristic of Pousielle type flow in a micro-channel. 

The average volume flow rate Q is given by integrating the fluid velocities over the entire 
channel cross-section. 

2.7 Electrohydrodynamic forces 

Electrohydrodynamic (EHD) forces on fluids anse as a result of the interaction of the electric 

field with the solution causing fluid motion. Particles within the fluid experience drag forces 

from the fluid resulting in a force on the particle. The types of EHD forces are described below. 

See chapters six and eight in Morgan and Green's book [6] for a detailed description of EHD 

phenomena in microsystems. 

2.7.1 Electrothermal forces 

Due to the small size of the electrodes the application of relatively low voltages can produce 

very high electrical field strengths (_106V/M) . These high field strengths can generate a large 

power dissipation in the fluid surrounding the electrode. The power generated per unit volume is 

proportional to the conductivity of the medium a,, and the magnitude of the electric field E 

squared and is expressed as, 

W= uME' (2-44) 

The electrical power density can be highly non-unifon-n due to the non-uniform fields produced 

by microelectrodes, with the highest power density localised at and close to the electrodes. This 

results in the formation of temperature gradients in the fluid, leading to gradients in viscosity, 

density, permittivity and conductivity of the fluid. These gradients can give rise to fluid flow in 

two ways, natural convection and electrothen-nal fluid flow. 
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2.7.1.1 Natural convection 

Natural convection arises due to buoyancy forces acting on the fluid. Local Joule heating results 
in the fonnation of temperature gradients in the fluid that produce variations in density 
throughout the fluid. The denser fluid elements move due to gravitational forces to displace less 
dense fluid. The buoyancy force is expressed as, 

Fg = Apmg = 
ap'. 

'A T9 
aT (2-45) 

where AT is the temperature rise. 

Ramos et al [20] estimated the order of magnitude effect of natural convection and found that 
for all situations involving microelectrode structures, the effects of natural convection can be 

considered to be negligible when compared with electrical forces. 

2.7.1.2 Electrothermal fluid flow 

Electrothermal fluid flow arises due to local Joule heating giving rise to gradients in permittivity 

and conductivity. The electric field interacts with these gradients producing electrical forces. 

Depending upon the frequency range employed either Coulombic or dielectric forces 

predominate. The transition from the frequency region where Coulombic forces dominate to that 

where dielectric forces dominate occurs at a frequency of the order of the inverse of the charge 

relaxation time of the fluid given by, 

S 
z-c =- 

0" 

2.7.2 AC electro-osmosis 

(2-46) 

Observation of the low-frequency behaviour of biological particles in DEP systems shows that 

the motion of the particles cannot be explained by DEP alone. It was assumed [21] that this 

motion was a result of low frequency negative DEP coupled with electrophoretic effects acting 

on the particles. Further investigation [20,22-30] has revealed that these low frequency effects 

have their origin in fluid movement. The fluid motion described cannot however be explained 

by electrothermal effects alone. 

Planar microelectrodes produce non-uniform electric fields. The electric field has both a normal 

and a tangential component to the electrode surface. A force similar to DC electro-osmosis 
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occurs at the electrode surface due to the force generated by the tangential component of the 
field acting on the double layer. The direction of this force is independent of the applied voltage 
since the sign of the excess charge in the double layer is always opposite to that of the charge on 
the electrode, with both the sign of the charge and the tangential component of the field 

changing every half cycle. The forces on the fluid are shown schematically in figure 2-12 
below. 

E E 

Figure 2-12. Schematic showing the forces acting in AC electroosmosis. Adapted from [6]. 

2.8 Brownian motion and diffusion 

All particles in solution undergo Brownian motion, to a greater or lesser extent depending 

primarily on the particle size and viscosity of the suspending medium. This irregular motion is 

due to the transfer of kinetic energy (via random collisions) between the molecules of the fluid 

and the suspended particles. The collisions are irregular, with the time-averaged displacement 

being zero. Over time the particle distribution follows a Gaussian profile, with a mean squared 

displacement, in one dimension given by, 

ýVj 
2= 

2Dt (2-47) 

where D is the diffusion coefficient. For a sphere of radius a, 

D- 
kbT 

(2-48) 
6; T77a 

where kb is the Boltzmann constant. 

The equations of motion for an isolated particle suspended in a fluid above an array of DEP 

microelectrodes can be written in terms of four forces, the acceleration force, the fluid drag 
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force, the DEP force, and the random thermal force. Summation of these forces gives us the 
following equation 

dv 
=-f V+FDEP +FBrown 

dt 
(2-49) 

where m is the mass of the particle, v the velocity, f the ffiction factor and FB,,,,, the random 
Brownian force, and FDEp is the time averaged DEP force. Equation 2-49 is referred to as 
Langevin's equation [3 1 ]. The Langevin equation is only valid for calculations of the movement 
of single isolated particles. Solving this equation allows the calculation of the trajectories of 
single particles in microelectrode structures. 

For ensembles of particles one must employ a statistical approach to predict particle 
distributions. The particle-conservation equation can be written as, 

ac +V- VC = -V - JTol 

at 
(2-50) 

where c is the concentration of particles per unit volume and JT,, is the total flux of particles 

comprising the diffusion, sedimentation and DEP fluxes, 

JT, 
t --": JD + J9 + JDEP 

where, 

JD= -DVc, 
ig - 

cFg 

67rqa 
JDEP = 

cFrjj7p 

67rqa 

(2-51) 

(2-52) 

Here we are assuming that particle-particle interactions are negligible and can be ignored. 

For the case of negative DEP the particle-conservation equation can be used to investigate the 

confinement of particles within potential energy minima. Particles can be trapped within a 

region of space whose surface is defined at positions where the thermal and electrical energies 

are equal. Particles lying outside this region can move freely as their thermal energy is greater 

than the dielectrophoretic potential energy. Within this region a particle's thermal energy is less 

than the DEP potential energy the result being that the particle will remain confined within the 

energy minima. For the case of negative DEP the particle-conservation equation can be 

expressed as [6], 
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-DVc+- 
cFD, 

=0 
67ri7a 

(2-53) 

Equation 2-53 can be integrated to give the steady state concentration of particles across the 

channel 

c(y) = C, exp 
f 

6m7aD 
dy (2-54) 

where C, is an integration constant and h is the channel height in the y direction. Further details 

of particle concentration profiles are given in chapter five, where the distribution of sub-micron 

particles between two arrays of interdigitated electrodes is modelled. 

2.9 Dielectric models of real particles 

2.9.1 Latex beads: surface conductance 

For spherical linear solid homogeneous particles such as latex beads, the crossover frequency is 

related to the surface conductance of the particle. This allows the surface conductance of such 

particles to be determined from the measurement of their crossover frequency. 

The Clausius-Mossotti factor fcm and surface conductance K, are given by the following 

expressions: 

=-C, 
-Ein (2-55) fcm 

s. + 2c* 
p 

and 

2Ks (2-56) 
a 

where c* is the complex permittivity as described above, up is the particle conductivity, (o is 

the angular frequency of the applied field and a is the particle radius [32,33]. 
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At the DEP crossover frequencyf,, the DEP force is zero and Re[fc?, f] = 0. From equations 2-55 

and 2-56, the relationship between bead surface conductance K, andf, is then: 

Ks orm + 
[gu 2- 4«ep - ein Xep 

+ 2em X2zfx )2f2 
(2-57) 4 

where for latex ep is 2.56go, 6,, = 78co, and co the permittivity of free space. Thus measurement 

of the crossover frequencies at a known suspending medium conductivity a, allows K, to be 

calculated. 

2.9.2 Dielectric Shell models 

In general real particles such as cells are not homogeneous in their electrical and physical 

properties. Take the case of the erythrocyte; in 1913 H6ber showed that this cell type could be 

represented as a conducting sphere surrounded by a resistive membrane. In 1891, Maxwell 

demonstrated that such a concentric system could be replaced by a homogeneous sphere of the 

same external radius and effective resistance rp [3]. This "smeared-out" sphere can be 

substituted for a heterogeneous sphere without altering the externally applied electric field. 

Wagner [34] extended the work of Maxwell and derived the effective complex permittivity of a 

system composed of particles dispersed in a dielectric medium. This theory, and that of a 

multishell model for cells was further developed [35-391, more recently by Huang et al [40]. An 

ellipsoidal multishell model has also been presented in the literature (e. g. [41]). 

2.9.2.1 The spherical multishell model 

Biological cells are complex living system and compartmentalisation of their interiors is an 

integral property of all eukaryotic cells. However, the heterogeneous nature of the cell can be 

simplified somewhat, with the cell being described as a particle comprised of an outer 

membrane, composed of lipid molecules, proteins, ion channels, and sugar molecules. This 

outer membrane encloses the cell interior, comprised of an aqueous cytoplasm rich in ions. 

Within this cytoplasm lies the cell nucleus comprised of a nuclear membrane, which in turn 

surrounds the aqueous nucleoplasm as shown in figure 2-13. The membranes actively transport 

ions across themselves maintaining the differences in the properties of the various cell 

compartments. This represents a simplified description of the cell but one that has been shown 

to allow the accurate modelling of biological cells in electric fields in the frequency region 

encountered in this work. 
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nuclear membrane 
Figure 2-13. Simplified model of a cell. 

The spherical multishell model can be used to describe the dielectric properties of cells. If we 
assume the cell geometry is spherical and the different parts are concentric in their orientation, 

the spherical multishell model is as follows [37,40,42]: 

RN+l 

RN 

8 
peff 

=c Neff = CN+l 
RN-+ 

RN 

3 

N-leff N+I- 

N-leff 
+2cN+l 

(2-58) 

where E*Neff IS the effective complex permittivity of the N-shelled sphere model. RN and RNj is 

the radius of the Nth-shell and the N+lth shell respectively. F, *N-leff is the effective complex 
*S the effective complex permittivity of the N-Ith shell working from the innermost shell. F-*N+Ieff II 

pen, nittivity of the N+ I th shell. Figure 2-14 shows the N-shelled model. 

3 
c 

N-leff N+l 

+2 * c N-leff + 2cN+l 
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Figure 2-14. Multi-shell model of a spherical dielectric particle. 

2.9.2.2 Ellipsoidal multishell model 

The above spherical shell model is a special case of the more general ellipsoidal multishell 

model. Particles may be better modelled using the ellipsoidal model [41] if the particles are 
distinctly non-spherical, as in the case of certain bacteria. Erythrocytes can be approximated 

using the ellipsoidal model, however the results are generally not good due to the lack of a more 

suitable oblate spheroid model. We shall not describe the details of the ellipsoidal model, as it 

was not used in the present work, suffice it to say that if more detailed descriptions of the 

properties of non-spherical particles are required this model is available. 

2.9.3 Dielectrophorefic cross-over frequency 

When there is no translational force acting on a particle, the complex permittivity of the particle 

and that of the suspending medium are equal. Measurement of the frequency at which this zero 

net force condition arises allows the calculation of various dielectric properties of the particle 

under investigation. For the case of a biological cell a value of membrane capacitance can be 

calculated. For particles such as latex beads a useful parameter, that of surface conductance can 

be obtained as descnbed above. 
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2.9.3.1 Membrane capacitance of a ceR 

As the frequency of the non-uniform AC electric field increases, a particle such as a biological 
cell experiences a translation force pushing it towards the low field intensity region. The cell 
experiences negative DEP because the complex permittivity of the cell membrane is less than 
the complex permittivity of the suspending medium. As the frequency of the applied electric 
field increases further it becomes sufficiently high to penetrate through the cell membrane into 
the interior of the cell (into the cytoplasm) where the complex permittivity of the cytoplasm is 

generally higher than that of the suspending medium (typically a, ý, O>cyn). When this occurs the 
translation force will move the cell toward the high field intensity region; the cell undergoes 
positive DER There are two interfaces and therefore two dispersions. 
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Figure 2-14. The real (solid) and imaginary (dashed) values of the Clausius-Mossotti factor versus 
frequency for a typical human lymphocyte. Circle shows crossover frequency point for the cytoplasmic 

membrane. 

As the translation force changes from negative DEP to positive DEP, there is a transition period 

where no net force acts on the cell. This zero force point, known as the dielectrophoretic 

crossover frequency, occurs because the complex permittiVities of the cell and the suspending 

medium are the same, and the net translation force disappears. Figure 2-14 shows the real and 

imaginary parts of the Clausius-Mossotti factor versus frequency for a biological cell suspended 

in a low conductivity medium. 
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Measurement of the dielectrophoretic crossover frequency allows the value of the membrane 
capacitance of the cell to be calculated. Gimsa [42] gave the first theoretical description of this 
and others have also given descriptions of the theory (e. g. [43]). 

As the complex permittivitY of the particle and that of the medium are equal, the real part of the 
. '"I - Clausius-Mossotti factor is equal to zero, i. e. 

Substitution for the complex permittivity and rearranging gives the angular frequency of the 
DEP cross-over frequency as, 

ojx = 
(am 

-a, 
Xa, 

+ 2cm ) 

-) 

2, 

(coep-coc. ý-Ocp+2coc, 

for which the DEP cross-over frequency is fx = 
CO x 
27c 

Re EM 

6* +A* 
(2-59) 

(2-60) 

Use of the generalised dielectric shell model [40], 

mem 

3 
R 

+2 
6 in - . 6mem 

R-d Z+ 2Z in mem (2-61) 
R6 in - Emem 

R-d Z+ 2c* in mem 

where c* and .6 are the complex permittivities of the cell interior and the cell membrane in mem 

respectively. R and d are the radius of the cell and thickness of the cytoplasmic membrane 

respectively. 

From the above the membrane capacitance of the cell can be calculated. The cytoplasmic 

membrane of a cell is a thin poorly conducting envelope of low relative permittivity, whereas 

the cell interior is of relatively high conductivity and permittivity in comparison. At frequencies 

well below the typical Maxwell-Wagner relaxation frequency for a cell (<I MHz) 
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in nem 

*+ 16 * in mem 

(2-62) 

The radius R of the cell is substantially larger than the thickness of the cytoplasm d. Taking this 
into consideration allows us to write equation 2-61 in a simplified form giving the complex 
permittivity of the cell as, 

*R sp =c (2-63) M'? m 

d 

where the specific membrane capacitance (capacitance per unit area) can be written as, 

emem 
(2-64) Smem 

d 

The permittivity of the cell can thus be described in terms of the specific membrane capacitance. 

6p= CsmemR. (2-65) 

Given the condition that the conductivity of the medium is very high compared to that of the 

membrane and ap ; z: ý 0, then 

fx = 
(T m 

; T-52cp 
(2-66) 

Substituting 2-65 into 2-66 gives an expression for the specific membrane capacitance of a cell 

in terms of three measurable quantities; medium conductivity, size and cross-over frequency, 

CSmem '- - 
am 

7r. %F2f ý, 
R 

(2-67) 
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Chapter Three: Materials and methods 



Introduction 

This chapter gives details of the biological protocols used in the rest of this thesis. All blood and 

placental samples were obtained from patients at the Queen Mother's Hospital, Yorkhill or 
Glasgow Royal hifirmary (GRI) following informed written consent. The Yorkhill Ethics 

Committee and Glasgow Royal Infirmary Ethics Committee approved all procedures. 

Cord blood samples were obtained and experiments using these samples were carried out while 

visiting the lab of Dr. Diana Bianchi, at the New England Medical Center (NEMC, Tufts 

University, Boson, MA, USA) over a period of three weeks in November 1999. Samples were 

obtained, following the appropriate ethical guidelines as set down by NEMC. 

Members of the Bioelectronics group in the Department of Electronics at Glasgow University 

and research staff from the department of Obstetrics and Gynaecology at the GRI kindly 

donated all the other blood samples. 

All reagents were purchased from Sigma unless stated otherwise. 

3.1 Preparation of single cell suspensions from human tissue samples 

Tissue samples or other collections of cells often require pre-treatment in order to obtain a 

mono-disperse sample of the cells. In the case of blood samples, or free-floating culture 

systems, the cells are already freely suspended in the medium and can easily be re-dispersed in a 

variety of media. However, the cells of interest are often contained within complex three- 

dimensional tissue structures, held in place by cell: cell and cell: matrix interactions [1]. A 

variety of strategies exist to liberate cells ftom these local attachments. There are three basic 

methods: 

0 Mechanical - the tissue is cut, minced, or forced through filters. 

Chemical - divalent cations (e. g. Ca", Mg 2+ ) are removed by washing or chelating. 

Digestive - enzymes are used to digest components of the extracellular matrix. 

In practice a combination of the above methods are usually required to obtain satisfactory 

results. 
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3.1.1 Peripheral blood mononuclear cells (PBMCs) from whole blood 

Blood samples were obtained via vein puncture from healthy volunteers. As discussed in 
chapter one, blood comprises a variety of cell types. These cells can be separated into 
subpopulations based on differences in cell density [2]. The use of a commercially available 
media, Histopaque-1077 (a Ficoll based density media) allows the isolation of mononuclear 
cells (monocytes, T-lymphocytes, B-lyrnphocytes) from the more dense erythrocytes and 
polymorphonuclear cells (granulocytes). 

Blood samples were processed as follows: 

5ml of whole blood was collected into a sterile Vacutainer TM tube (Becton Dikinson) 

containing 4.5mg of EDTA, and inverted several times to ensure mixing. 

" Blood was diluted 1: 2 with PB S (0.1% w/v EDTA). 

" 5ml of diluted blood was pipetted into a centrifuge tube and then gently underlaid with 
5ml of Histopaque-1077. 

" Centrifuged for 20min at 600g. 

" The "buffy coat" (band containing the PBMCs at the blood/Histopaque interface) was 

pipetted off and resuspended in 10ml Puck's Saline A (PSA) with 25MM Hepes buffer 

(pH=7.4, Gibco). 

This was centrifuged for 15min at 500g to remove the supernatant (and any residual 

Histopaque) and the cell pellet resuspended in either fresh PSA or desired media. 
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Figure 3-1. Density gradient centrifugation, and the positions of various cell types following 

centrifugation over Histopaque-1077. The "buffy coat" contains the PBMC layer [3]. 

EDTA was used as an anti-coagulant. There is little difference between EDTA, Acid citrate 

dextrose or hepann anticoagulants when working with fresh blood samples. However, EDTA 

has been shown to be unsuitable for blood storage as it leads to contamination of the PBMC 

density gradient fraction with RBCs [4]. 

84 



3.1.2 Retrieval of trophoblast cells from the amnion-chorionic membranes of the human 
placenta 

Normal term placentas were obtained immediately after delivery following Caesarean section or 
spontaneous vaginal delivery. The cytotrophoblast cells were prepared from the amnlochononIc 
membranes of the placenta (these membranes are attached to the placenta and form the sack 
surrounding the foetus) using a combination of mechanical and enzymatic digestion techniques 
[5,6]. A schematic showing the anatomy of the placenta and the position of these membranes is 
shown in figure 3-2. 
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Figure 3-2. Drawing of the placenta showing the amniochorionic membranes [ 17]. 

The initial isolation of the amnionic membrane from the placenta was carried out on the labour 

ward, to avoid the problems with the membranes drying out and blood clot formation. 

The amniochorionic membrane dissection protocol used is outlined below: 

01 Ocm xI Ocm pieces of amniochorionic membrane was cut from the placental 

membranes. 

0 The amnionic and chononic membranes were carefully separated (pealed apart) and the 

chononic membranes retained. 

The decidua and any blood were gently scraped from surfaces of chorionic membranes 

using a large flat razor blade. 

Chononic membranes were washed in PBS and placed In RPMI-1640 culture medlum 

(with 25mM Hepes buffer (pH=7.4), 5% foetal calf serum (FCS)) for transport to lab. 
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The enzymatic digestion of chorionic membranes was performed in the lab, as follows: 

9 Chononic membrane was placed in a universal tube containing I mg/ml of protease type 
XXIV (P-8038) in RPMI for I hour at 37'C in a 6%CO2 incubator and agitated gently 
every 15 min. 

9 PBS wash to remove enzyme. 

9 Membrane was placed into a universal tube containing I mg/ml collagenase type IV (C- 
5138), 2mg/ml hyaluronidase (H-3506) in RPMI for 90mins at 37'C in 6%CO2 

incubator and agitated gently every 15 min. 
Sample filtered through 100ptm gauze to remove tissue fragments. 

Centrifuged for 15mins at 500g to remove supernatant 

0 Centrifuged for 20mins at 600g on a Histopaque-1077 gradient and cells were collect 
from the interface and washed in PSA. 

0 Cells were resuspended to required density in culture medium or other desired media. 

3.1.3 Umbilical cord blood 

Complete placentas with attached umbilical cord were obtained directly after spontaneous 

vaginal delivery, from healthy non-smokers. Cord blood samples were obtained immediately to 

avoid clotting, as follows: 

9 The end of the cord proximal to the placenta was clamped. 

e The placenta was raised with the cord hanging downward. 

0 Blood within the cord was forced out by squeezing, starting at the proximal end of the 

cord and moving distally. 

0 Cord blood was collected, via a plastic collection funnel, into a sterile tube containing 

4.5mg of sodium citrate and inverted several times to ensure good mixing. 

0 Blood samples were stored at 4'C until required (for a maximum of 4 hours). 

3.2 Culture of human mononuclear cells 

The mononuclear cell line, THP-1 was used. These cells were grown and maintained in culture 

from an initial gift of cells provided by Ms. S. Robertson and Ms. S. Kitsen at the Deptartment 

of Haematology, Glasgow Royal Infirmary. The cell lines grow and divide while free-floating in 

ire attachment to a solid suspension. The fact that these cells grow in suspension and do not requi 

substrate, means that they can be harvested with the minimum amount of processing. 
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It should be noted that the convenience of harvesting these cells and using them for 

experiments, instead of obtaining fresh blood samples, is countered by the need to maintain the 
cultures. Sterile technique was used throughout to avoiding contamination [7]. 

3.2.1 THP-1 

The THP-1 cell line is a mononuclear cell line derived from a human monocytic leukaemia. 
These cells will divide and survive indefinitely if kept under suitable conditions. 

The following culture medium was prepared and stored in the refrigerator at 4*C: 

* 500mlofRPMI-1640(25mMHepesandNaHC03)with, 

9 5ml L-glutamine. 

s 5ml Penicillin/Streptomycin. 

* 2-5ml Fungizone or Amphotocerin B. 

Initial samples of cells ("seeds") were obtained from a continuous culture held at the GRI. 

These cells were resuspended in a sterile culture flask containing 30-50ml of the above culture 

medium supplemented with 10% foetal calf serum (FCS) (FCS is a nutrient used to feed the 

cells, and was defrosted and added to the above media just prior to resuspension of the cells). 

The cells were then maintained at 37'C in an incubator with 5%CO2 atmosphere. Every few 

days the cells were observed using a light microscope and split if necessary. Cells were 

harvested just prior to experiments and resuspended in the desired media at the required cell 

concentrations. 

3.3 Culture of bacteria - E. Coli, K-1 2 

E. coli bacteria were grown in culture. To aid visualisation the bacteria were genetically 

transformed to express Green Fluorescent Protein (GFP), and selectively cultured to produce a 

population of cells, all of which expressed GFP. A kit was obtained from Bio-Rad containing all 

the necessary reagents and a sample of Iyophilised E. coli K-12 strain. 

An outline of the procedure for culture and transformation of the E. coli cells is given below, for 

more detail the reader is referred to the Bio-Rad manual, "Bacterial Transformation The 

pGLOTMSystem" [8]. 
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The host organism Exo1i K-12 strain, the vector coding the recombinant GFP protein, and the 
subsequent transformants created by their combination are non-pathogenic. As with the 
mononuclear cell culture, sterile culture techniques were used throughout. 

The protocol for culture and transformation of the E. coli was as follows: 

Grew Exo1i K-12 (NCTC 10538) overnight on agar to produce competent cells. 
Picked single colony and dispersed in 250ptL of CaC12(5OmM, pH 7.4) in a micro- 
centrifuge tube. 

Added 1 gl of plasmid vector solution to the tube. Incubated on ice for 1 Omins 

Heatshocked tube at 42'C for 50s in a waterbath. 

* Removed from water bath and incubated on ice for 2mins 

Removed from ice. Added 250ýd of LB broth to the tube. Incubated at room temp. for 

10mins. 

Plated 100ýd of the transformed solution on an LB agar plate (supplemented with 

arnpicillin and arabinose). 
Incubated overnight at 37T. 

Following day checked for growth and fluorescence. 

Figure 3-3 shows the transformation process in schematic form. 
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Figure 3-3. Insertion of pGLO gene into bacteria. 

After successful transformation and culturing the E. coli cells emitted green light (wavelength 

-515nm) when excited with blue (488nm) or ultraviolet light. Figure 3-4 shows the streaked 

E. coli cultures under white light conditions and when placed under a handheld UV lamp 
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emitting light at 365nm. Figure 3-5 shows the E. coli in suspension and viewed using a 
microscope and FITC filter set, with excitation light of 488nm 

Figure 3-4. Example of the GFP expressing E. coli cultured on agar plates. The sample is viewed under 

white light conditions (left) and illurnMated with a UV lamp (right). 

Figure 3-5. GFP expressing E. coli in suspension. 

3.4 Trypan blue - cell viability 

The viability of cells can be assayed simply by observing whether they uptake the dye trypan 

blue [3]. The test gives an indication of the integrity of the cell membrane as a measure of cell 

survival. 
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The protocol is outlined below: 

" Obtain the cell sample to be assayed in suspension. 

" 0.05ml of cell suspension adjusted to lxlO' cells/ml was added to 0.95ml of trypan blue 

solution in a small tube and incubated at room temperature for 5mins. 

" The tube was tapped to resuspend the cells, and 30gl of cells transferred by pipette to a 
haernocytometer chamber. 

0 Count the number of clear unstained cells, and also the total number of cells. 

The cell viability is then calculated and expressed as the percentage of unstained cells in the 
total cell population. 

3.5 Flow cytometry analysis 

Flow cytornetric analysis of cells was perfonned on a Becton Dickinson FACScan@ (Becton 

Dickinson, LJK) flow cytometer in the Dept. of Haematology at GRI. Standard instrument 

seftings were used [9]. 

3.5.1 Labelling of mononuclear cells for flow cytometry analysis 

Direct immunofluorescence staining of cell surface antigens on isolated mononuclear cell 

preparations (PBMCs) or cultured mononuclear cells (THP-1 or BOB) was performed prior to 

analysis by FACS. 

The following reagents were used: 

9 FITC, RPE, APC, and/or RPE-Cy5 conjugated monoclonal antibodies to human cellular 

surface antigens CD14, CD45, and/or CD69 (all purchased from Dako Ltd., High 

Wycombe, UK). 

o PBS (calcium and magnesium free). 

9 Labelling medium: PBS with 1% w/v BSA. 

Cell fix: 1% w/v paraformaldehyde in PB S. 

FITC, RPE, APC, and RPE-Cy5 are fluorescent molecules. These are covalently attached to 

monoclonal antibodies that recognise specific antigens on the surface of different cell types. 

This allows identification of the cell type based on the colour of its fluorescence. Anti-CD14, 
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anti-CD45, and anti-CD69 are monoclonal antibodies specific to Monocytes, Leukocytes and T- 
lymphocytes respectively (see chapter one for more detail). 

The following DAKO [10] labelling protocol was used: 

0 Cells samples were suspended in labelling medium at concentrations of _107 cells/ml. 
0 100 gl of cell suspension (_106 cells) was mixed with 10 gl of fluorochrome conjugated 

antibody. For dual or triple colour labelling, lOgI each of FITC, RPE, APC, and/or 
RPE-Cy5 conjugated antibody was added to the same sample. 

0 Cells were incubated in the dark at 4*C for 15-30 minutes. 

o Washed with cold PBS (4*Q. 

9 Fixed by resuspending cells in Iml of PBS with 100pl 1% paraformaldehyde. (optional) 

3.5.2 Internal labelling of trophoblast cells using JMB2 and Cyto-7 

As discussed in chapter one, trophoblast cells do not express surface antigens for which there 

are commercially available surface antibodies specific to this cell type. It was therefore 

necessary to identify these cells using antibodies specific to certain internal proteins within the 

cytoplasm of the cell. Trophoblast cells were thus labelled prior to FACS analysis using either 

the JM132 or Cyto-7 antibodies. These antibodies are specific for cytokeratin, a protein found in 

epithelial cells and not present in blood cells. 

To allow these antibodies access to the inside of the cell, the cellular membrane must be made 

permeable. A commercially available permeabilization kit was purchased (Fix and Perm, Caltag 

labs, Califomia). 

3.5.1.1 JMB2 and Cyto-7 

Anti-JMB2 culture supernatant [I I] was kindly donated by Professor McGee, University of 

Oxford. The JMB2 antibody labels syncytiotrophoblast and both villous and extravillous 

cytotrophoblast [6]. Titration experiments were carried out using the JMB2 and Cyto-7 (see 

appendix A. 3.1) to obtain the antibody concentrations, which gave the optimal labelling levels. 

Cells were labelled using either JMB2 or Cyto-7 (both label cyto-skeletal cytokeratin) according 

to the same protocol. The optimal concentration of the JMB2 antibody was found to be 1: 200 in 

PBS; and that of Cyto-7 was found to be 1: 25 in PBS (see appendix A. 3.1 for details). 
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The following antibodies were used (all purchased from Dako apart from JMB2): 

P antibodies: 

e JMB2 1: 200 in PBS (250ptl). 

9 Cyto-7 1: 25 in PBS (250ptl). 

e Negative Control; Anti-mouse IgGI -FITC 1: 9 in PBS (20ýil: 180pil). 
2' antibodies: 

e FITC-conjugated goat anti(mouse IgG) F(ab)2 1: 100 in PB S (1 00gl) 

The JMB2, Cyto-7 and a negative control antibody were each used separately with the 
following labelling protocol: 

9 Centrifuge sample 15mins at 500g, resuspend pellet in 100ýtl of Fix and Perm for 15 

mins at room temperature. 

Centrifuge for 15mins at 500g. 

Resuspend pellet and incubate with l' antibody on ice for 30mins. 

Centrifuge for 15mins at 500g and resuspend in PBS. 

Centrifuge for 15mins at 500g, resuspend pellet with 2' antibody on ice for 30mins in 
the dark. 

9 Resuspend cells in PBS for FACS. 

3.6 Magnetically activated cell sorting of PBMCs 

MACS separations were carried out using the MiniNIACS separation system (Myltenyi Biotech, 

Germany). The labeling procedure was similar to that used for the fluorescent labeling of cell 

surface antigens for FACS analysis (described above). Cell labeling can be performed at the 

same time for both FACS and MACS. 

For MACS separation, cells were magnetically labeled with MACS MicroBeads and separated 

on a wire mesh column, which was placed in the intense magnetic field of a MACS separator. 

The magnetically labelled cells were retained in the column while the unlabelled cells ran 

through the column and were collected in a test tube. The unlabelled cells were thus separated 

from the cell type binding the specific MACS Microbeads-antibody combination. After 

removal of the column from the magnetic field, the cells magnetically retained in the column 

were eluted and collected in a separate tube. 
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The MACS labeling protocol was taken from the datasheets [12] proVided with the MACS 
Microbeads and was as follows: 

Cells washed in PBS, centrifuged for 15mins at 500g and re-suspend In 80 gl of MACS 
buffer (PBS with 0.5 % bovine serum albumin and 2mM EDTA) per 10' total cells (for 
fewer cells, use same volume). 

9 20 gl of MACS MicroBeads were added per 107 total cells, mixed well and incubate for 
15mins at 4'C. 

Add fluorochrome-conjugated antibody, to allow analysis by FACS. 
Cells washed by adding 1-2ml of the MACS labeling buffer, centrifuged at 500g for 15 

minutes to remove supernatant. 
Cell pellet was resuspended in MACS buffer (typically 500 gl of buffer per 10' total 

cells). 

9 Magnetic separation was performed by passing through the MACS column. 

3.7 CeIlTracker fluorescent probes 

For increased fluorescence, some experiments were carried out using CeIlTracker dyes. 

CeIlTracker probes can freely pass through a cell's cytoplasmic membrane. However, once 
inside the cell the dye molecules undergo a glutathione S-transferase mediated reaction 

producing a cell impermeant reaction product [13]. This product is retained within the cell 

allowing them to be visualised using either fluorescence microscopy or FACS analysis. 

The following CeIlTracker probes were purchased from Molecular Probes Inc. 

* Yellow-green, chloromethyl derivatives of fluorescein diacetate (CMFDA) (C-2925). 

0 
tI CH 

3-C- 

0 
11 O-C-CH 3 

Excitation wavelength - 492nm 

Emission wavelength - 516nm 

CH 2 
cl 
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0 Blue, chloromethyl derivatives of hydroxycournarin (CMHQ (C-21 11). 

(CH 3)2 N0 (CH 
3)2 

C 
11 

60 

CICH --4ýýc -NH 2 j, 
05 

0 

Excitation wavelength - 372nm 

Emission wavelength - 470nm 

Orange, chloromethylbenzoylaminotetramethyl-rhodamine (CMTMR) (C-2927). 

HCk,, 

CH 
2 

cl 

Excitation wavelength - 540nm 

Emission wavelength - 566nm 

Loading of the CeIlTracker dyes into cells was achieved by simply adding the diluted probe to 

the cell suspension, incubating, and then briefly washing with fresh medium before analysis. 
Stock solutions of the dyes were made up by dissolving each of the dyes in anhydrous 
dimethylsiloxane (DMSO) to yield a lOmM stock solution. These stock solutions were then 

divided into 12.5gl aliquots and stored at -700C. 

For labelling cells with CeIlTracker dyes the protocol was as follows: 

Aliquots of stock were taken from the freezer and thawed. 

12.5gl of CeIlTracker stock was added to 4.988ml of warm PBS (37'C) to give a 25gM 

solution and vortexed to mix. 

Cells were spun down at 500g for 15min and the supernatant was removed 

Cell were resuspended in the dilute stock solution (25gM) and placed in the incubator at 

37'C for 15-30mins. 

Centrifuged for 15mins at 500g discarding supernatant, the cell pellet was then 

resuspended in warm PBS (37'C) and returned to the incubator for a ftirther 30mins. 

Centrifuged for 15mins at 500g and resuspend in PBS or other media. 

Figure 3-6 below shows THP-1 cells labelled with the blue (CMHC) CeIlTracker dye. The 

image is viewed in epi-fluorescent mode using a DAPI filter, With low-level brightfield 

illumination from a halogen lamp to allow visualization of the cell shape. 
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Figure 3-6. Combined transillumination and epi-fluorescence image of THP- I cells labelled with blue 

CeIlTracker dye. 

The CeIlTrackerrm dyes are converted within the cell, from a membrane permeable form of the 
dye, to a membrane impermeable form of the dye. However, the dye is only membrane 

impermeable if the cells are healthy and have intact cellular membranes. Dead or dying cells 
tend to have leaky cellular membranes, and therefore the dye leaks out of the cells. The 

CeIlTrackerTm dyes can thus be used in a similar manner to trypan blue for cell viability studies, 

with live cells fluorescing and dead or dying cells not fluorescing. 

3.8 Polyrnerase chain reaction (PCR) 

All PCR reactions were carried out by staff at the Duncan Guthrie Institute, Yorkhill Hospital, 

Yorkhill, Glasgow. The primers used allowed the amplification and detection of a portion of the 

Y (male) chromosome. All reactions were thermally cycled 30 times, unless stated otherwise. 

Post reaction DNA was incubated with ethidium bromide and run on a gel electrophoresis 

system. Finally, the bands were visualised under UV illumination and photographed. Adult male 

and female blood samples were run at the same time as controls. 
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3.9 FISH 

Fluorescence in-situ hybridisation is a technique that involves the hybridisation of a 
complementary nuclelc acid probe to a DNA or RNA sequence in the cell under examination. 
The probe is labelled with a reporter molecule (usually fluorescent) that allows the visualization 
of the sequence if it is present in the cell. 

FISH reactions were carried out as follows, 

0 Cells were allowed to sediment onto glass slides. 
These were then fixed by immersion in MeOH: Acetic acid (3: 1) for 3 Omins or longer. 

Wash 

o 2xSSC (3M NaCl, 0.3M sodium citrate; lOn-fl dH20,40ml SSQ for 5mins at 
42T. 

o 2xSSC / 0.05% Tween20 for 15mins at 42T. 

o 2xSSC / 0.05% Tween20 for 15mins at 42T. 

o 2xSSC 5mins at 42T. 

" Dehydrate at room temperature in an ethanol series (70%, 80%, 100%) for 2mins each. 

" Place 30gl of hybridisation solution onto sample and cover with a coverslide. 

" Seal with rubber cement, cure cement at 42'C for 8mins. 

" Denature for 10mins at 90oC, and hybridise at 42'C overnight in a humid slide box. 

" Gently remove the coverslide. 

" Wash 

o 2xSSC for 5mins at 42T. 

o 2xSSC / 50% Formamide for 5mins at 42T. 

o 2xSSC / 50% Fonnamide for 5mins at 42T. 

o 2xSSC 5mins at 42T. 

DAPI stain: 4ýd DAPI into 40ml 2xSSC for 5mins at room temperature. 

Place coverslide with antifade solution (FluroguardTm, Bio-Rad 170-3140). 

o Observe using fluorescence microscope. 

Figure 3-7 shows an example of FISH carried out on a ffiRBC at NEMC in Boston. The probes 

used were specific for the X (Cy-3) and Y (FITC) chromosomes and can be seen in the figure as 

red and green near the centre of the cell. The blue is the DAPI stained DNA. The orange halo 

around the cell is the y-haemoglobin stain used to label the cell for FACS sorting. The X (Cy-3) 

and Y (FITC) chromosome probes were synthesised in house. 
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Figure 3-7. FISH image from a male fnRBC isolated from foetal cord blood. The nucleus appears blue 

(DAPI), X-chromosome (green), Y-chromosome (red), and foetal y-haemoglobin stained orange. 

3.10 SEM of cells 

Cell samples were prepared for viewing on the Hitachi S800 scanning electron microscopy. The 

cells were initially fixed and then dehydrated through a series of solvents. 

Fixation was achieved as follows: 

0A drop of cell suspension was pipetted onto a glass microscope slide, and the cells 

allowed to sediment onto the glass. 

Slides were immersed for 15mins in 2% glutaralclehyde in PBS. 

x4 wash in PBS. 

Post-fix soaked in 1% osmium tetroxide in PBS for 15mins. 

x4 wash in PBS. 

x2 wash in 
dH20- 

Dehydration involved sequential immersion of the sample (after fixation) in the following: 

5 0% Analar ethanol in dH-, O for I Ornins. 

* 50% Analar ethanol in dHO for 10mins. 

0 100% Analar ethanol for I Ornins. 
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0 100% hexamethyldisilazane for 10mins. 

* Air dried. 

Samples were stored in an airtight box until examined using the SEM. 

3.11 Dielectrophoretic separation media 

A requirement for dielectrophoresis of particles is that the particles are in suspension. The 

relative polarisabilities of the particle and the suspending medium must also be suitably chosen 

so as to allow both positive and negative DEP. Generally, this requires that the properties of the 

suspending media are controlled, rather than trying to alter the dielectric properties of the 

particle. 

3.11.1 Latex beads 

Latex particles are generally suspended in low ionic strength media such as distilled water with 

a small amount of PBS, to adjust the medium conductivity. Figure 3-8 shows the effect on 

medium conductivity with the addition of PBS to water. 
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Figure 3-8. Conductivity changes due to the addition of small amounts of PBS to water. 
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Changing medium conductivity alters a Particle's relative polarisab, * ility versus frequency 

characteristics. Figure 3-9 shown the effect of changing the medium conductivity has on a IOPLm 
latex sphere suspended in water, with the particle's surface conductivity K, = 2.44xlO-' S, and 
the bulk conductivity of the latex cyp =Ix 10-' Sm-1 [ 16]. 
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Figure 3-9. Effect of suspending medium conductivity on the real part of the Clausius-Mossotti factor for 

aI Oýirn latex bead, with K, = 2.44x 10-9 S, and up =Ix 10-9 Sm- 1. From top to bottom cy.. = 0.1,0.5,1,5, 

1 10,50 mSm- . 

3.11.2 Mammalian cells 

Mammalian cells require pH and iso-osmotic conditions similar to the physiological state from 

which they have been removed. For the blood cells (both primary and cultured) and the 

trophoblast cells (obtained from the placental membranes) the pH should be in the region 6.8- 

7.4, and the osmolality of the suspension should be 290mOsnf. The conductiVity should be 

sufficiently low such that the cells can undergo both positive and negative dielectrophoresis. 

DEP cell manipulation is usually performed in the frequency range between IkHz and 20MHz 

where cells will only achieve positive DEP if suspended in sufficiently low conductivity media. 

The vast majority of cell culture, suspending, and washing media are rich in ions, and are 

therefore highly conductive (e. g. PBS -0.6 Sm-'). Typically, the conductivity of 

dielectrophoretic separation media is in the range 20-7OmSm-', tending to the higher end of this 

range so as to reduce ion leakage from the cells. 
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Figure 3-10. Variation in density with the addition of sucrose or FicoII400. 

To obtain the condition of neutral buoyancy (where the cell density is equal to that of the media) 

and hence eliminate the effects of sedimentation due to gravity, the 'standard' sucrose based 

dielectrophoretic separation medium (see for example [14]) was augmented. FicoII400 (Sigma, 

F4375) a long chain poly-sucrose molecule was chosen; it is a neutral polymer and readily 
dissolves in aqueous media. The addition of Ficoll increases the density of a suspension in 

approximately the same way as sucrose (see figure 3-10). However, due to the size of the Ficoll 

molecule it is too large to permeate through the cell membrane, and as such its addition does not 

alter the osmotic balance of the medium. Figure 3-11 shows the effect that sucrose and 

Ficol1400 have on the osmolality of the medium when added to water. 

The 'standard' dielectrophoretic separation medium used in this work consisted of. 

dH20(distilled water) 

9% sucrose (w/v). 

0.1% glucose (w/v) 

0.8% BSA (w/v) 

1 mM EDTA. 
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The pH and conductivity were adjusted by the addition of small amounts of mono- or di-basic 

phosphate buffer to a density of 1.041kgM-3 and viscosity of 1.31niPa. s (measured using a 
Beckman Viscometer) at 25T. 
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Figure 3-11. Variation in osmolality, with the addition of sucrose or Fico11400 to water. 

The Ficoll containing dielectrophoretic separation medium consisted of- 

* d-H20 

9% sucrose (w/v) 

3.5% FicolI400 (w/v) 

0.1% glucose (w/v) 

0.8% BSA (w/v) 

lmM EDTA. 

with the pH and conductivity again adjusted by the addition of small amounts of mono- or di- 

basic phosphate buffer. This medium has a density of 1.065kgm-' and viscosity of 1.50mPa. s at 

250C. 
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3.11.3 Bacteria 

The bacterial cells were cultured as described in section 3.3. For DEP experiments these cells 
were washed and resuspended in a solution of 0.3% (w/v) D-Mannitol giving the correct 
osmolality, the conductivity was altered by the addition of PBS (see figure 3-8). 
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A-3.1 Appendix 3.1 - Titration of JMB2 and Cyto-7 
The optimal concentrations of the JMB2 and Cyto-7 antibodies for cell labelling were achieved 
by titration. These antibodies label the cytokeratin component of the cell cyto-skeleton (they are 
internal labels). Thin sections of placenta were cut using a Cryostat, these sections were then 

incubating with different concentrations of the JMB2 and Cyto-7 antibodies in order to find the 

required concentration for labelling. The antibody labelling was visualised using a DAB 

reaction, which forms a dark brown precipitate easily visible under a microscope. 

The titration protocol was as follows: 

0 Sections were placed onto polylysine coated slides. 

0 Wash slides and store in freezer until needed at -70'C. 

Fixation: 

e Thaw section 10mins. 

9 Fix in acetone I Ornins. 

9 Rinse in PBS 5mins. 

Blocking peroxidase activity: 
* 0.5% H202 / methanol 30mins. 

o Wash in PBS 2x 10mins. 

Antibody labelling: 

9A wax boundary circle was drawn around the area where the antibody was to be 

applied, this confined any liquid pipetted onto surface of slide. 

0 Block with 20% goat and 20% human serum 30mins at 25T. (300gl onto each slide). 

o Tap off blocking serum and add I'Ab JMB2 (dilute in 2% goat serum) Ihour at 25'C in 

humidified box. 

* Rinse in PBS 2x 5mins. 

e Add 2'Ab biotinylated anti mouse IgG (DAKO), 1: 200 in 2% goat serum with 5% 

human serum added 30mins at 25'C in humidified box. 

0 Rinse in PBS 2x 5mins. 

o Add streptavidin, 1: 400 in PBS 30mins. 

0 Rinse in PBS 2x 5mins. 
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DAB reaction: 

Make up DAB - 15ml 50mM Tris (pH 7.6) +I DAB tablet (Sigma, D5905) + 12ý11 H202. 
Add to slide through a filter leave for 10mins at 25T. 

Wash in PBS 5mins then running tap H20- 

Stain in Haematoxylin for a few seconds then wash in H20. 
Dehydrate through alcohols to xylene (5mins each). 

" Mount in DPX. 

" View. 

Images of the labelled placental cryo-sections are shown below in figures A-3 -I to A-3-3. These 
images show cross-sections through the placental villi. The villi are comprised of trophoblast 

cells, having a core of cytotrophoblast cells and a syncytiotrophoblast covering. A number of 
blood vessels can be seen in these images. Figure A-3-1 shows the control (no JMB2 or Cyto-7 

labelling) sample with only the nuclear stain visible. Figure A-3-2 shows the pattern of cell 
labelled using the P\4132 antibody at a concentration of 1: 200. JMB2 can be seen to label the 

trophoblast cells on the outer surface of the villi, but also labels a number of other cell types 

within the tissue. In particular the smooth muscle cells surrounding the blood vessels are 

strongly labelled by the JMB2. For comparison the pattern of labelling of the Cyto-7 antibody is 

shown in figure A-3-3. The Cyto-7 can be seen to label far fewer cells (if any) in this tissue, 

showing it to be far more specific than the JMB2 (this finding has been confinned by others 
[15]). 
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Figure A-3-1. Placental cryo-section incubated with no antibody - control (no brown). 
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Figure A-3-2. Placental cryo-section incubated with JMB2 at a concentration of 1: 200, showing staining 
of trophoblast and vascular smooth muscle). 
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Figure A-3-3. Placental cryo-section incubated with Cyto-7 at a concentration of 1: 25. 

For the purposes of this thesis the non-specific labelling seen in figure A-3-2 should not be of 

concern, as the JMB2 nor the Cyto-7 antibodies label peripheral blood cells. In view of the 

above results the JMB2 antibody was chosen for use in this study. 
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Chapter Four: Fabrication and related technological 

considerations 



4 Introduction 

The experimental work in this thesis required the design and construction of a flow through 
dielectrophoretic particle separation devi This ce. chapter desc ibes the methods used the n 
construction of the device and the ancillary equipment built to control the device, as well as 
associated sample handling equipment. 

4.1 Standard Electrode types 

Dielectrophoresis uses non-uniform AC electric fields to generate forces on particles as 
described in chapter 2. In order to produce such fields, a variety of electrode configurations 
have been developed by various workers over the years. These range in complexity from simple 

wire and pin type electrode structures of early experimenters (see [1]), through planar electrode 

arrays [2] (e. g. interdigitated bar and castellated electrodes, parabolic, etc. ) to examples of 

complex three-dimensional geometries such as those of Schnelle [3]. 

The majority of contemporary electrode designs rely upon microfabrication methods initially 

developed for the integrated circuits industry in the 1960's. 

4.1.1 Microelectrode fabrication 

Arrays of interdigitated microelectrodes were fabricated onto glass microscope slides using 

standard photolithography and either lift-off or wet etching techniques as described below. 

Electrode widths and inter-electrode gap size were in the range 10ýtm to 40ýtm. Figure 4-1 

shows an example of a double electrode array fabricated using photolithography and wet 

etching. 

Figure 4-1. Photograph of the double array electrodes developed for this work. 
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4.1.2 Mask production 

The electrode structures were designed using the CAD section of the microwave waveguide 
simulation package WAveMaker (WAM). These designs were saved in GDSII file format. The 
GDSII files were then transferred to a VAX workstation and converted to the CATS file type, 

readable by the CAD package used to process the pattern files for the beam-wnter. A control 
file was then written for the beam-writer. The control file and pattern files were then sent to the 
bearn-writer control workstation and chrome mask plates written. 

4.1.3 Cleaning of glass substrate 

Soda lime glass microscope slides of two sizes (76mm x 26mm x 0.8-1.0mm and 75mm x 
38mrn x 1.215mm) were used as substrates for the majority of devices fabricated in this project. 
A third glass substrate was used for some devices. 500ýLm polished glass sheets were purchased. 
The glass sheets were cut to size (75mm x 38mm) using a diamond tipped scribe. 

Prior to device fabrication the glass was cleaned to remove any dust or organic material from its 

surface. This cleaning step was crucial for good adhesion of the multiple layers of metals and 

resists, which were deposited to make up the device. 

4.1.3.1 Solvent cleaning 

For solvent cleaning the slides were placed in beakers and ultrasonicated in the following: 

Optoclear W (Fluka, Switzerland) for 5mins 

" Acetone for 5mins 

" Methanol for 5mins 

" Distilled water for 5mins 

" Rinsed in distilled water and blown dry under a stream of filtered air. 

4.1.3.2 Acid cleaning 

Acid cleaning was used to remove any remaining organic material from the surface of the glass. 

H2SO4was mixed 8: 1 with H202 causing an increase in temperature to 80'C. The glass slides 

were placed in this aggressive liquid for 20 minutes then removed and rinsed with distilled 

water and blown dry under a stream of filtered air. 

4.1.4 Electrode patterning 

In order to form the electrode structures either a lift-off, or a wet etching technique was used. 

The first, lift-off requires that a thin layer of patterned photoresist be formed directly on to the 
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glass substrate on top of which a metal layer was then evaporated (see below). When the resist 
is removed it takes with it any metal not adhering directly to the glass. The second method, wet 
etching, required the metal layer be evaporated directly onto the cleaned glass surface. The 

patterned photoresist is then formed on top of the metal layer. The resist layer in this case acts 
as a mask protecting the metal directly beneath it from the etching solution. Figure 4-2 shows 
the various layers for lift-off and for wet etching. 

(a) 
Photoresist 

, 4eý 6-M 

Metal 

, 4eeooooo 

Glass 

(b) Photoresist 
Metal 

Glass 

Figure 4-2. Fabrication levels for (a) lift off and (b) wet etching. 

4.1.4.1 Photoresist patterning 

Shipley S 1818 positive tone positive photoresIst (Shipley, UK) was processed as follows: a few 

drops of hexamethyldisilazane (HMDS) were placed on to the substrate, which was spun at 

40OOrpm for 10 seconds using a vacuum chuck spinner (Headway Research, UK). HMDS was 

used to enhance the adhesion of the S 1818 photoresist to the underlying substrate material. This 

coated the substrate with a layer of methyl (CHO groups. The S1818 was then gently pipetted 

through a 0.45ýtm filter onto the substrate to cover the entire area in a bubble free layer. The 

sample was then spun at 40OOrpm for 30 seconds, removed from the chuck and placed in an air 

forced oven at 90'C for 15-20 minutes prior to exposure. This pre-exposure bake was used to 

dry off any remaining solvent in the resist. 
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Pattern transfer was achieved using a quartz-chromium photolithography mask and a UV mask 
aligner (HTG3, Hybrid Technology Group, USA). The substrate and mask were aligned and 
brought into hard contact, the resist was then exposed to light of wavelength 346nm, through the 

mask for 12 seconds at a power density of 120MW/CM2. 

To realise the resist profile the substrate was then immersed in a 1: 1 mixture of developer 
(Microposit, UK) and RO water for 75 seconds under gentle agitation, before being rinsed in 
RO water and dried using filtered air. Only the areas of resist, which were not exposed to the 
UV light remain. 

4.1.5 Deposition of thin Mm metal layers 

Three layers of metal were deposited onto either the cleaned glass substrate or the patterned 
photoresist covered glass substrate, using a Plassys MEB450 electron beam evaporator (Plassys, 
France). First, a l0nm layer of titanium was deposited (this improves the adhesion of the gold to 
the glass substrate). Next, 100nm of gold was deposited on top of the 10nm titanium layer. 

Finally, 20nm of titanium was deposited as a tough top layer to protect the softer gold beneath. 

4.1.6 Lift-off 

For the lift-off procedure, the substrate had the metal layers deposited over the pattemed 

photoresist layer. The substrate was placed into a bath of acetone to dissolve the resist layer and 
thus remove any metal that was not directly adhering to the glass slide. 

It was found during initial fabrication tests that lift-off could be unreliable over large areas, 

especially for fabrication of the smaller 10ýtm wide electrode arrays. Occasionally, fragments of 

the "lifted-off' metal were deposit back onto the substrate resulting in the formation of short 

circuits on the final electrode array. Removal of these short circuits was possible but difficult. 

Three methods were used to overcome the short circuit problem: 

0 Mechanical cutting of the short or the electrodes effected. However, this typically 

resulted in damaged to the electrode array over an area greater than that affected by the 

short. 

0 Application of a dc voltage of 20-30V across the electrode array resulted in a current 

flow that melted any small short circuits, and generally caused little damage to the 

surrounding electrodes. This method only worked for short circuits smaller than the 
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electrodes, for larger short circuits the electrodes themselves melted due to the current 
density being higher in the electrode than in the short. 
A wet etching technique was used; this method removes metal by dissolving it 
removing the possibility of re-depositIon of metal fragments. 

Furthermore, lift-off typically produced a ragged electrode edge (see figure 4-3(a)), where the 

waste metal has been torn away from the substrate. These ragged edges could potentially 
damage cells and other particles coming into direct contact with them; either by slicing into 
them mechanically or via electrical damage due to the high electric field strengths produced by 

the sharp protrusions. 

4.1.7 Wet etching 

The fabrication protocol for the wet etching procedure was similar to that for lift-off. However, 

for wet etching the metal was deposited prior to the photoresist. The S 1818 photoresist pattern 

was then formed using photolithography as before but this time the photoresist pattern was used 
to protect the metal from the etchants. This results in a pattern of metalisation identical to that of 
the photoresist pattern. Following the wet etch procedure the substrate is rinsed in RO water and 
inspected using a microscope. Finally, the photoresist was removed by immersion in acetone, 

and rinsed in methanol then RO water and blown dry. 

The standard etchants used are generally metal specific with different etch rates for each metal. 

The two echants used were: 

* Titanium etch -1 part hydrofluoric acid (HF) to 26 parts RO water. All work with HF 

was carried out using PTFE dishes/beakers as HF etches glass, although at a slower etch 

rate compared to Ti. 

* Gold etch - 16% (w/v) of potassium iodide (KI) and 4% (w/v) of iodine (12) dissolved 

in water. 

Metal Etchant Etch rate 

Ti HF : RO water (1: 26) 2nm. s-' 

Au KI: 12 : H20 (32g: 8g: 200ml) 1-2nm. s-1 

Table 4-1. Etchants and etch rates for gold and titanium 

Table 4.1 shows the etch rates of these etchants for the pure metal. During fabrication it was 

found that the etch times had to be varied slightly, and etch times were defined visually during 
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the etch procedure. The reason for this change in etch rate is due to the formation of a thin alloy 
layer between the different metal layers as they are deposited in the evaporator. This interfacial 
alloying is only a few atoms thick, but can result in altered etch rates compared with the etch 
rate of the pure metal. 

Figure 4-3 shows a comparison between lift-off and wet etch formed electrodes. The large 
horizontal scratches visible on figure 4-3(a) are due to handling the substrate prior to SEM and 
should be ignored. However, the ragged electrode edges are clearly visible. Figure 4-3(b) shows 
the smoother wet etched electrode edges. The wet etch image also shows the slight over etching 

and resultant pitting of the glass substrate due to this sample being left in the HF etch bath for 

too long. 

(a) 

Figure 4-3. SEM images of showing (a) lift-off and (b) wet etch formed electrodes. 

4.2 Flow channel 

To contain the samples flowing over the electrode arrays a flow channel was formed with the 

upper and lower channel walls comprising of the electrode arrays. As the DEP force decreases 

exponentially with distance from the electrode array the height of the fluidic chamber must be 

sufficiently small such that the electric fields produced by the energised electrodes express their 

non-uniformity across the entire height of the channel (see chapter five for details). A channel 

height of 100ýtm was chosen for the devices. 

The flow chamber were defined using either a thick photoresist and photolithoghaphy, or by 

fori-ning the channel from a sheet of thermal adhesive, which was laminated between the upper 

and lower electrode substrates. 
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4.2.1 Thick photoresist layers - SU-8 

SU8-1070 (SOTEC Microsystems, Switzerland) a negative tone photo-resist initially developed 
by EBM for thick and ultra thick resist applications, is now commonly used in MEMS research 
(Micro Electro Mechanical Structures) (see for example [4]). It is a chemically amplified resist 
system based on epoxy resin technology, and has been shown to possess adhesion 
characteristics superior to other conventional thick resists. It is sensitive in the near-UV, 365 

nm, E-beam, and X-ray regions. Low optical absorption in the LJV region allows the formation 

of nearly vertical sidewall profiles in thick films. Aspect ratios of 20: 1 have been achieved in 
films up to 400ýLm [5]. Crosslinked SU-8 is chemically resistant when cured above 100 'C and 
thermal stability is greater than 250 'C. This thermal stability allows high temperature 

processing techniques such as reactive ion etching (RIE) to be used in conjunction with this 

resist. 

SU-8 has a low wetting ability for high-energy surfaces such as gold and silicon dioxide. This 

results in adhesion problems on these surfaces. To increase the adhesion of the SU-8 to the glass 

slide and electrodes, a 200nm thick layer of low stress PECVD (plasma enhanced chemical 

vapour deposition) silicon nitride (S13N4) was deposited over the entire substrate prior to 

spinning the layer of SU-8. 

SU8 was processed as follows: 

0 Si3N4covered slides were cleaned in acetone then dehydrated in nitrogen filled oven for 

a minimum of 30mins at 200'C. 

0 SU-8 was pipetted onto the slide and allowed to spread. The SU-8 coated slides were 

then placed on a horizontally level flat surface and left for 1-2 hours to obtain a bubble 

free uniform layer. 

0 Samples were spun at 500rpm for 10 seconds, the speed was gradually increased to 

20OOrpm over 10 seconds, and held at 20OOrpm for a further 15 seconds. The substrate 

was then left for 1-2 hours to remove any edge beading. 

0 Samples were soft-baked in an oven for 60 minutes at 90'C and allowed to cool slowly. 

Samples were exposed to light of 365nm through a chrome mask in three equal 100 

second exposures, with 60 seconds between each exposure to allow cooling of the 

substrate, this was followed by a postexposure baked for 15 minutes at 95'C. 

After gradual cooling the samples were developed sequentially in Microposit EC 

solvent (Shipley, UK), then 1: 1 Microposit EC solvent: isopropyl alcohol (IPA) mixture, 

rinsed in EPA and dried under a stream of filtered air. 
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Finally, the S13N4was removed to expose the electrode surfaces by dry etching with CF6using 

a Plasmateck BP-80 DRIE (deep reactive 'on etching) machine (Plasmateck, UK). 

Arrays of interdigitated microelectrodes 
were fabricated on glass. 

200nm of silicoii nitride was deposited 

SU8 spun on and patterned 

Silicone nitride removed to expose electrodes 

Second glass slide glued to fonn lid 

Figure 4-4. Fabrication protocol for SU8 channels 

4.2.1.1 Alternative thick layer resists - Polyimide 

SU-8 is only one of a number of thick film negative tone photoresists used in the MEMS 

industry. A number of test structures were built using an alternative resist - Durimide 7020, a 

poly1mide based photoresist. Samples were processed in a similar fashion to the SU-8. 

However, problems with this resist's profile were encountered. Figure 4-5 compares the resist 

profiles for the poly1mide and SU-8 resists. The Durimide channel structures had a tendency to 

shrink during the post-development bake (this is not required for SU-8). This resulted in the 

formation of a ridge around the channel shoulder. The ridge can be seen in trace (shown in 

figure 4-5b) obtained using a surface profiler. 
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Figure 4-5. Resist profiles (a) SU-8 and (b) Durimide 7020. 
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The SU-8 and polyimide processes described above produce flow chambers of highly defined 

and reproducible geometry. However, the processing of these materials is time consuming and 

expensive. A number of these photoresist flow channels were produced and used in the 

experimental work, however the sizes of the flow channels (9mm x5 Omm x 0.1 mm) meant that 

photolithographic patterning of the channel was not necessary. As a result of this, other 
fabrication scenarios were investigated with the aim of simplifying device production. The use 

of a laminated adhesive hotmelt foil proved successful and is described below. 

4.2.2 Hotmelt foil 

The hotmelt foils (SEKA Werke, GmbH) were obtained as sheets, comprising an adhesive foil 

and a non-stick silicone-backing sheet. The flow channel was defined and cut out using a scalpel 

blade prior to bonding. The cut foil was placed between one half of the electrode array (i. e. the 

top or bottom substrate) and an unprocessed blank glass slide. The foil side was placed facing 

towards the electrode substrate and the non-stick silicone-backing sheet facing the blank glass 

slide. The samples were clamped using two medium sized bulldog clips and placed in the oven 

for 5 minutes at 1 IO'C. The sample was removed from the oven and the bulldog clips removed 

allowing the blank glass slide and non-stick silicone paper to be removed. The second glass 

substrate with the mating electrode array was then placed in position with the top and bottom 

electrode arrays lined up precisely (see section 4.2.3) and clamped again using bulldog clips. 

The structure was then once again placed in the oven at II OOC for 5 minutes forming an 

hermetically sealed channel. 
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Figure 4-6. Hotmelt foil test samples showing distortion due to flowing (a) I 10'C for 6 minutes, (b) 

II O'C for 7 minutes. 

The minimum time needed for good bonding of the foil to the glass was approximately 5 

minutes at I IO'C. However, at this temperature, flowing of the foil will occur if the sample is 
left in the oven for longer than 5 minutes (see figure 4-6). Flow of the foil resulted in distortion 

of the channel relative to its original shape, and a reduction in channel height. An example of a 

channel produced using the hotmelt foil is shown in figure 4-7. 

Channel 

Figure 4-7. Photograph of a device made using the hot-melt foil. 

4.2.3 Alignment and bounding of lid 

To form a closed channel a second glass slide processed identically (but without the channel) 

was used to form the lid of the fluidic chamber. Inlet and outlet holes were drilled in the glass 

substrate prior to bonding of the lid, using Imm. diameter diamond tipped drill bits (Diama, 
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UK). Alignment of the top and bottom electrode arrays was carried out by hand while being 

viewed under a dissecting microscope. Once aligned the slides were held together under 
pressure using a spring-loaded clamp (bulldog clip). 

For the case of the SU-8 channels medium viscosity UV curing glue (Loctite 350) was applied 
to the edges of the slides and allowed to creep between the slides under the action of capillary 
forces. Just as the glue reached the flow channel edges the device was exposed to a LJV light 

source, this exposure cured the glue and stopped it from flowing into the channel. The UV light 

was focussed through a microscope objective allowing defined areas (IMM2) of the device to be 

cured as necessary. The hotmelt foil channels were thermally bonded as described in the 

previous section. 

4.3 Sample handling and injection 

Prior to bonding inlet and outlet holes were drilled in the glass substrate using a diamond tipped 
drill. PEEK tubing was connected to the device either by directly glueing the tubing in place 

using epoxy resin, or by glueing Gripper fittings (Omnifit, LTK) into place over the holes in the 

glass. This second method allowed push-fitting and removal of 1/16" PEEK tubing for sample 
handling. The Gripper fitting method allowed for the removal and replacement of the PEEK 

tubing if it became damaged or blocked. Figure 4-8 illustrates the gripper fitting method of 

connection. 

Gripper fittings 

lomm 

Ak 

Electrodes 
k-. 

Figure 4-8. Device mounted on Perspex support (no heat sink), the gripper fittings are clearly visible. 
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4.3.1 Sample injection 

The standard method for holding a sample prior to its introduction is to use a sample loop. 
Sample loops are coils of tubing of sufficient length to hold the required sample volume. This 

method works well for high flow rates where the velocity of the fluid passing through the loop 
is sufficient to carry with it all the particles (e. g. cells, beads, etc), even those which may have 

sedimented to the bottom of the tubing coils. This setup also works well for submicron-sized 
particles, where sedimentation is not a problem due to the influence of Brownian motion 
keeping the particles in suspension 

The sample volumes used in this work were large (0.5-2ml) compared to the device chamber 

size (-50ýfl) and the sample flow rates were relatively low (of the order of 2ml/h)- In order to 
hold the sample volume in a loop of sufficiently low internal diameter so as to create flow 

velocities high enough to carry all the particles to the separation chamber, many meters of 
tubing would be required. This length of tubing inherently has a large internal surface area 
increasing the problem of cells adhering to the tubing. 

The ideal method of getting the sample into the device would be to hold it in a vertical tube 
directly above the inlet port of the device. Any sedimentation would thus direct the cells into the 
device. A sample injection column was constructed with this in mind. A length of 1/8" PEEK 

tubing was cut to the desired length (i. e. volume). At either end, electronically controlled valves 
(Omnifit, LJK) were fitted to allow vibration free switching of the fluid path. A third electronic 

valve was also required for this switching system to be realised. Cell free medium was pumped 

using a syringe pump either directly through the device or pumped to the sample column to 

displace the cell suspension from the column into the device. A diagram of the valves and 

column is shown in figure 4-9. 

Each valve is controlled individually via switching circuitry housed in a separate control box. 

The positions of the three valves at any point in time can be controlled so as to allow one of 

three modes: 

a) Sample column filling and displacement of air from column. 

b) Device priming and flow of cell ftee medium through the device. 

c) Injection of sample from column into device. 

The three modes of operation are shown schematically in figure 4-9. 
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Figure 4-9. Column modes (a) sample filling (sample from the right, cell free medium from the left) (b) 

cell free medium into device (c) sample injection into device. 

A diagram of the injection column and separation device is shown in figure 4-10 and a 

photograph of the sample injection column and separation device is shown in figure 4-11. A 

close up of the point where the column interfaces with the separation device is shown in figure 

4-12. 

Figure 4-10. Schematic of the in ection column attached to the DEP separation chip. i 
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Figure 4-11. Photograph of the complete system showing the injection column and DEP separation chip. 

Figure 4-12. Detail of the injection column - separation device interface. 
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4.3 Temperature control 

The large area electrode arrays (5 OOMM2) fabricated for this work can generate large amounts of 
heat due to the power dissipation in the device. This heat is potentially damaging to the cells 
and temperature variations will alter the dielectric properties of the suspending media. 

Figure 4-13 shows measurements of the medium conductivity versus temperature for two 
concentrations of FicoII400 in the standard DEP separation media described in section 3.11-2. 
The variation in the conductivity can be seen to be linear, with the small difference in the 

conductivity between the two samples being due to the addition of slightly different amounts of 
BSA and EDTA to the media. 
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Figure 4-13. Effect of temperature change on medium conductivity. 

In order to reduce the temperature in the chamber, the device was mounted (using heat sink 

compound) on a block of aluminium through which water of controlled temperature was 

pumped. The temperature of the water is controlled with a water bath and circulated using a 

peristaltic pump (see figure 4-14). The temperature controller is made up of two parts. The 

cooler, an aluminium block with an internal network of channels, through which water of 

controlled temperature is pumped. The second part is the clamp, made up of two aluminium 

plates this screws together to hold the glass separation device. The clamp has a twofold use; it 
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reduces the chance of leakage from the channel and allows the device to be fixed to the cooler 
block. 

Figure 4-14 shows the temperature control system schematically. A peristaltic pump controls 
the flow of water from a water bath into the cooler. The temperature of the water in the water 
bath can be controlled, allowing thermal regulation of the cooler and DEP device. 

Clamp 
Separation device 

Figure 4-14. Diagram of cooler setup. 

The temperature controller is shown below in figure 4-15 and a device mounted on the cooler is 

shown in figure 4-16. One can see the inlet and outlet pipes attached to the cooler and the DEP 

chip mounted and clamped on the upper surface of the cooler. 
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Figure 4-15. Temperature control block with device clamp attached. 
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Figure 4-16. Close-up of inlet and outlet pipes for cooler. 

4.4 Baffles 

a 

At high flow rates the cells held at the electrode edges by the DEP force become dislodged and 

tend to roll along the surface of the electrode array. In an attempt to avoid this problem and 

allow the use of high flow rates with reasonable applied voltages (i. e. voltages low enough such 

that the electric fields produced do not damage the cells trapped at the electrode edges and also 

to reduce heating effects) resist baffles were fabricated in the gaps between the electrodes. The 

aim being that as the particles are pulled down to the electrode edges they are shielded from the 

fluid flow in the spaces between the baffles. Thus reducing the viscous drag force tending to 

pull the cells from the electrode edges in the direction of the fluid flow. Experiments carried out 

using these devices showed that the resist baffles had no effect on cell capture (appendix A. 5.1). 

electrodes appear light grey and the glass surface of the device dark grey. 
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The positive tone photoresist AZ 4562 (Clariant, USA) similar to S1818 was used to produce 
the baffles. The processing was similar to that used for the S1818 resist in section 4.1.4.1. The 
resist baffles formed are shown in the series of SEM pictures in figures 4-17 and 4-18. 

Figure 4-18. SEM of the DEP separation electrode array with resist "baffles" or "traps", the sample has 

been cleaved. 

4.5 Cleaning 

The devices were cleaned after use. The cleaning method depended on whether the experimental 

sample was biological or polymer based. The cleaning fluid was passed through the device as 
described below. 

4.5.1 Removal of latex beads 

For submicron latex beads cleaning of the device was as follows: 

01 ml toluene at I ml/min. 

*I ml methanol at I ml/min. 

01 Oml water at I ml/min. 

The toluene was used to dissolve the latex beads, which adhered to the chamber walls and 

electrodes. However, the toluene also dissolves the polymer used to form the channel. It was 
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found that immediate washing with methanol and water following the toluene resulted in very 
little damage to the channel. 

4.5.2 Cleaning after the use with cells 

Following experiments involving cells, the channels were cleaned using a mixture of water and 
detergents. This solution was heated to 60'C and 20ml was pumped through the device at 
Iml/min. The device was inspected and this cleaning step repeated if necessary. The cleaning 
solution found to be most effective consisted of 5% (w/v) Vircon and 1% (v/v) Tween2O in 

water, following this 20ml of water was passed through the device at Iml/min. 

4.6 Other equipment 

4.6.1 Signal sources 

Two Thurlby-Thandor TG120 function generators were used to supply sine wave signals in the 
frequency range I OOHz - 20MHz. These signals were amplified using an in-house built current 

amplifier, which boosted the signal power. Applied peak voltages of between OV and 26V were 

achievable. 

4.6.2 Microscopes and cameras 

Various microscopes were used throughout the course of this work, they included; Zeiss 

Axiovert 200 inverted fluorescence microscope; Nikon Microphot upright fluorescence 

microscope; Nikon Microphot upright phase contrast microscope; Nikon inverted microscope; 

Leica dissecting microscope. Figure 4-19 shows the separation device mounted on the cooler, in 

position above a Nikon inverted microscope. The microscope stage has been removed to allow 

the device to be viewed (this was a result of the limited travel length of the objective when 

using the focus control, and the thickness of the cooler block and clamp). An x- y- z- 

micromanipulator (seen at the bottom right comer of figure 4-19) was used to move the 

separation device allowing the length and breadth of the electrode arrays to be scanned. 
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Figure 4-19. Device clamped and mounted on the cooler, above the modified Nikon inverted microscope. 

The following cameras were used to capture either single images or video footage of 
experiments; Orca-ER (Hamamatsu Photonics, UK) controlled using SimplePCI ver5.0 
(Compix Inc., PA, USA) camera control and imaging software. A filter wheel (prior, USA) was 

also controlled by this software allowing the capture of multi-colour images. A JVC video 

camera was used to capture colour video footage over the duration of the experiments. This 

footage was recorded on S-VHS and frames were later "grabbed" onto computer using a Miro- 

DC30 (Pinnacle) image capture card. 
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Chapter Five: Simulation of forces on particles and their 

motion in DEP microsystems 



5 Introduction 

This chapter presents results of the numerical simulations used to calculate the forces 

experienced by particles as they pass through the particle separation system. The effect of the 
DEP force and the forces exerted on the particle by the fluid are used to predict the trajectories 
of particles as they pass through the system under different operating conditions. 

The DEP separation system is based on the use of arrays of interdigitated bar micro-electrode 
arrays positioned on the upper and lower walls of a flow channel. The interdigitated bar 

electrode type was chosen as it generates a well-defined electric field for which a number of 
analytical solutions have been presented in the literature [1 -4], one of which is used here [2]. 

Initially, the nature of the electric fields produced by arrays of interdigitated bar micro- 

electrodes is discussed. Knowledge of the electric field produced by such electrodes when 

energised with an alternating voltage of defined magnitude and frequency enables the 

calculation of the DEP force experienced by a particle. The forces ansing from the interaction of 
the fluid with the particles are also discussed. 

Owing to the complexity of the expressions involved, the development of an analytical solution 
for the problem would be difficult. Numerical techniques were therefore used to obtain a 

solution for the partial differential equations (PDE) involved. The Euler method [5] was used to 

iteratively calculate the forces on a particle at a particular position within the channel, and from 

this calculate the instantaneous velocity of the particle. The particle velocity was then used to 

calculate the new particle position and the process repeated until the particle reached a 

predetermined position within the channel. 

A schematic diagram of the DEP-separator is shown in figure 5-1. The system consists of two 

separate arrays of interdigitated bar electrodes integrated into the one device. The two sections 

of the device are designed to perform different actions. The initial electrode array uses negative 

DEP to force particles away from the chamber walls and focus them into a narrow sheet midway 

between the top and bottom electrode arrays. The second electrode array, down stream from the 

first, is the separation electrode. This electrode array is energised such that all the particles 

experience positive DEP and are attracted and held at that array. For a given set of operating 

conditions the trajectory of a particle and its final position along the separation electrode array 

are defined by the particle's size, density, dielectric properties and the suspending medium 

conductivity, density, and viscosity. 
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Figure 5-1. Schematic of DEP separation chip. The electrode array on the left uses -veDEP to focus all 
the particles into the mid-plane of the channel. The electrode array on the right uses +veDEP to attract 
particles to the bottom channel wall. 

5.1 Methods 

5.1.1 Modelling environment 

Two software packages were used for the simulation work; FlexPDE (PDE Solutions, CA, 
USA) version 2.22, and MATLAB8(The Math Works Inc., USA) version 5.2. Simulations were 
run on an 850MHz Intel Pentium III personal computer running the Windows 2000 operating 

system. 

FlexPDE is a finite element PDE solver [6]. The 2-D version of the software was used. The 

finite element method works by dividing the solution space into sub-regions comprised of small 

triangles, and solves over these simultaneously. The program solves the PDE by deten-nining the 

values at discrete points at the comers of the triangles, and at the midpoints between these 

comers. To obtain values at other points an algorithm interpolates between the points and fits a 

polynomial function to each of the triangles. Details of the solution space, and boundary 

conditions are given in Appendix A. 5.1. 

The simulation programs used to numerically solve the motion of particle as they flow through 

the DEP separation system were written in MATLAB'ý. The plots of the electric field and its 

various components, obtained from the analytical solution of Morgan et. al. [2,3] were 

calculated in MATLAB and the data transferred to Origin 6.1 (OnginLab, MA, USA) for 

plotting purposes. Particle trajectory simulations were either plotted using MATLAB's internal 

plotting functions or Origin. Further specific details of the numerical simulations are given in 

the text as and when these details become relevant. 
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In order to simulate the motion of particles within the DEP separation system, one must take 
into consideration the effects of all the forces acting on the particles as they flow through the 
system. First, the forces arising from the interaction of particles with the applied electric fields, 

namely the dielectrophoretic forces are investigated. Second, the forces arising from the 
particle's interaction with the suspending fluid are investigated. These consist of buoyancy 

effects due to gravity arising from differences in the average density of individual particles and 
that of the suspending medium. Also those forces arising ftom the viscous nature of the fluid, 
i. e. the Stokes drag force. Third, other forces are described including the Brownian force, which 
is considered in more detail at the end of this chapter. 

5.2 Dielectrophoretic force 

As described in chapter two, the time-averaged DEP force acting on a spherical particle is given 
byq 

F=I vRe[a]V IE 12 

4 

where v is the volume of the particle, a the polarisability and E the electric field. For the 

particular case of a homogeneous spherical particle suspended in a liquid, the effective 

polarisability a is equal to 3efc, where -,, is the permittivity of the liquid and fcm is the 

complex Clausius-Mossotti factor [7,8]. When this factor is positive particles experience 

positive DEP and move towards high field regions, when it is negative the opposite occurs. 

The factor VIE I' in equation 5-1 is related to the gradient of the electric field and is dictated 

by the geometry of the electrodes. It has a direct influence on the DEP force on a particle, with 

large field gradients producing large DEP forces. For simple electrode geometries (such as the 

interdigitated bar electrode) analytical approximations for the field and gradient can be 

formulated [1 -4]. Otherwise numerical techniques must be used to determine the DEP force [9]. 

5.2.1 Analytical solution for electric field and DEP force 

An analytical solution for the electric field produced by an array of interdigitated bar 

microelectrodes is provided by Morgan et. al. [2,3]. This solution uses Fourier series analysis to 

derive a simple one-dimensional expression for the force, at a distance of approximately one 

electrode spacing from the electrode array and beyond. A full analytical expression is also given 
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for the dielectrophoretic force in two dimensions. These analytical expressions were described 
briefly in chapter two and are presented here in greater detail. 

The electrode arrays used in this work are fabricated on planar insulating substrates. Figure 5-2 

shows the geometry, with electrode width d, and spacing d2 as shown. The electrodes are 

oriented perpendicular to the direction of the fluid flow, and as such the particles will 

experience variations in the electric field, in both the horizontal and vertical direction, as they 

travel through the channel. Owing to the symmetry of this type of electrode geometry a number 

of assumptions and simplifications can be made [2]: 

The electrodes are much longer (z-axis) than their width dl so the problem can be 

reduced to that of two dimensions. 

" The electrode array is assumed to be of infinite length so that symmetry arguments can 
be used to reduce the problem to a periodically repeated unit cell. 

" Since the electrodes are much thinner (y-axis) than their width their thickness can 

ignored, allowing the potential on the electrodes to be specified as being at y--O. 

" It is assumed that the potential between the electrodes is a linear function. 

" The boundary condition for the electrodes is a fixed potential. 

The reader is referred to the paper by Morgan et. al. [2,3] for further details of the analysis. 

Figure 5-2. Enlarged view of an array of interdigitated micro-electrodes. d, and d, are the electrode and 

gap width respectively. 
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5.2.2 Full two-dimensional solution of DEP force 

The analytical form for the two-dimensional electric field above an array of interdigitated bar 

electrodes is given by an infinite series sum. Assuming linear boundary conditions for the 

potential, and for the special case where d, = d2 =d the closed fonn expression for the 
horizontal and vertical components of the field at any point is given by, 

2V [tan 
-, sin x- tan-' Cos'i Ex (x, y) =ý0 

7rd sinh ^ sinh ^ yy 

and, 

v cosh ^+ cos X^ E, (x, y) =' In y 
dz 

[ 

cosh ý- cos X^ 
cosh 
osh ^ -sin x c Yý 

(5-2) 

(5-3) 

where Vo is the peak applied voltage, with VO and -VO applied to alternating electrodes giving a 

potential difference between consecutive electrodes of 2 Vo and ý= ny / 2d and 
A 

nx'12d = nxl2d + ; r/4, and x'= x+ d12. 

Plots of the x- and y-components of the electric field above an array of interdigitated bar 

electrodes are shown below in figure 5-3. The electrode and gap size for the specific example 

are d=d, = d2 = 40pm. Figure 5-3 a shows the x-component of the electric field E, above 

such an electrode array, with the different lines representing E, at a different heights above the 

array. Figure 5-3b shows the y-component of the electric field plotted for different heights 

above the electrode array. It is apparent from the plots that the magnitude of electric field 

components varies greatly depending upon the horizontal and vertical position along the 

electrode array, with the greatest values of Ey being found at or directly above the electrode 

edges. 
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Figure 5-3. Variation of the (a) horizontal and (b) vertical components of the electric field along an 

interdigitated micro-electrode array. Individual lines represent the field at different heights' above the 

array, from 2ýim to 100ýim, with lines of higher value being closer to the electrode array. The 

characteristic electrode size and gap size d=d, = d, = 40ýtm. 

Heights = 2,4,6,8,10,20,30,40,50,60,70,80,90 and 100microns above the electrode array. 
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The DEP force is obtained from the derivatives of the electric field components, with explicit 
expressions for E,,,, E,, y, Ey, and Ey, y given by: 

rl m- 
_ 

My 
(x, y) 

ýv ,, 
(5-4) 

2 V,, sinh ^ cosx 
d2 

Ex, 
y 
(x, y) = 

L9Ex 
_ 

C'IY 

cosh 2^- cos 2X^ y 

My 
= EY�, 

ax 

sin x 
cosh 2A+ cos 2-i yI 

(5-5) 

2 V. cosh ý Cos X^ 
d2 cosh 2+ cos 2X^ y 

sin x 
cosh2ý-cos2i] 

Plots of the derivatives of the electric field components (E,,,, E.,, y, Ey, and Eyy) are shown below 

in figures 5-4a and 5-4b. The indiVidual lines represent the field at heights of between 2ýtm and 

100ýLrn above the electrode surface. 
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Figure 5-4. Variation of the (a) horizontal and (b) vertical components, of VIE 12 along an interdigitated 

micro-electrode array. Individual lines represent the field at different heights above the array, from 2pm 

to 100ýtm. The characteristic electrode size and gap size d=d, = d, = 40ýim. 
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The field gradient can be written, 

V(E' + E') = 2u, (E., Eý,,,, +EE xyyY, x) + 2u,, (ExEy, 
_r 

+ E), E,,,, 
Y) 

(5-6) 

where u, and uy are unit vectors in the x and y directions. 

The time averaged DEP force at any point above the electrode array is directly proportional to 
the field gradient of equation 5-6 and can be expressed as, 

(FD, 
p) vRe[a]V(E2 +E2 (5-7) 4xy 

Figure 5-5 shows how this factor varies, i. e. V(E' + E') varies with position along the array xY 
at different heights ranging from 2ptm to 100ýtm above the electrode array. This is a direct 

measure of the DEP force. 
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Figure 5-5. Variation of the magnitude of VIE 12 along an interdigitated microelectrode array. This is 

directly proportional to the DEP force experienced by a particle. Individual lines represent the field at 

different heights above the array, from 2ýLrn to I OOpm. The characteristic electrode size and gap size d 

d, = (ý, = 40pm. 
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5.2.3 Forces at heights greater than the characteristic electrode size d 

The full expression for the force is an infinite series. However, at heights greater than d (where 

d= (d, +d2)12) above the electrode array the higher order terms of the infinite series become 

negligible, and all but the first term can be neglected. This gives a simple analytical expression 

for the electric field gradient at heights greater than d. For the general case where d, # d2 #d 

the electric field gradient is given by, 

12 
v2 ly 

VIE -64 02 Cos 
2 7rd 1edu (5-8) 

702 d 4d 

and the DEP force expression becomes, 

I ly 

(FDEP )= 

-16 2 Re[aýos 2 

-Ld 1ed UY (5-9) 
-xd2 d 4d 

For the special case where d, = d2 =d the electric field gradient is, 

2 lry 

VIE 
12 

= -32 
Vo' 

ed UY (5-10) 
, rd3 

giving the DEP force as, 

I 7n, 

(FDEP 
-8 

ILo-'V 
Re[a]e- d 

uy 
7rd3 

Figure 5-6 (a) shows the variation of the magnitude of the electric field gradient for the one- 

dimensional expression versus height above an electrode array of electrode size 

d, = d2 =d= 40, um and peak applied voltages in the range I to lOV. Variation of 

VIE 12 with height above electrode arrays of d=d, = d-, =10ýtm, 20ýLm, and 40ýLm is shown in 

figure 5-6 (b). 
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Figure 5-6 (a). Variation of the one-D magnitude of VIE I' versus the height above the electrode array 

for applied voltages from I-1 OV, and d=d, = dý, = 40ýtm. 
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Figure 5-6 (b). Variation of VIE 12 with height above electrodes of characteristic size 

d, =I Opm 20ptm and 40pm. 

138 

0 20 40 60 80 100 

Height pm 



Figure 5-7 shows a comparison of the one-dimensional and two-dimensional electric field 
gradients as a function of height above an electrode array of electrode size 
d, = d2 =d= 40, um and applied peak voltage of IV. The red line shows the one-dimensional 
field, while the black lines are plots of the magnitude of the electric field gradient variation with 
height along vertical slices passing through different positions along the electrode array. 
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Figure 5-7. Comparison of the variation in the vertical component of VIE12, versus the height above 

the electrode array, plotted for the I -D (red line) and 2-D (black lines) analytical solution. Peak applied 

voltage of IV and d=d, = d, = 40pm. The different lines represent different cross sections through the 

electrode array. 

When a particle is far ftom the electrode it initially experiences a force directed down towards 

the electrode array. As the particle approaches to a distance less than d, the force directs it 

towards the edge of one of the nearest electrodes. FlexPDE Tm a 2D finite element method 

program for solving partial differential equations was used to solve Laplace's equation and 

calculate the vector field of VIE 12 (see Appendix A. 5.1). Figure 5-8 shows the vector field 

above half an electrode and half a gap. This is the minimum-repeating unit space with the 

electric field generated by electrodes outside of this repeating unit being a mirror image of this 

domain. A plot of the two-dimensional field gradient in figure 5-5 shows that the variation in 

field above the electrode is most pronounced above or close to the electrode edges. For the case 

of -veDEP the vector field is the same but the direction of the vectors is reversed. 
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Figure 5-8. Vector plot of the magnitude and direction of VIE 1', above one half of an electrode and 

electrode gap, for a peak applied voltage of IV and d=d, = d, = 40ýtrn. 

5.3 Forces arising from the interaction of the particle with the fluid 

This section describes the non-DEP forces exerted on a particle as it passes through the 

separation system. These forces anse due to the viscous nature of the fluid and the buoyancy 

force resulting from differences in the density of the particle and the suspending medium. 

5.3.1 Fluid velocity profile 

Due to the small size of the channel and the low fluid flow rates employed, the fluid exhibits 

low Reynolds number behaviour. This means that the fluid flowing through the system behaves 

in a laminar, i. e. non-turbulent manner. The pressure driven fluid flow in the channel takes on 

the characteristics of Poiseuille flow, resulting in the characteristic parabolic flow profile, with 

the maximum fluid velocity at the centre of the channel. 

The analytical expression for the fluid velocity profile can be derived &om the Navier-Stokes 

equations, and can be expressed in a simplified form to give the expression for the parabolic 

flow profile [10], 
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fluid 
(Y) 6ý v fluid 

ýy 
1-Y 

hh (5-12) 

where `ýVfluidý' is the mean velocity of the fluid and the bottom channel wall is taken to be y=O, 
and y=h the top of the channel. The maximum fluid velocity v,., is at the centre of the channel 
(at y--h12), 

max 
V fluid = 

ýv 
fluid 22 

(5-13) 

Equation 5-12 can alternatively be expressed as a function of the pressure difference along the 
length of the channel giving the velocity as, 

fluid 
(Y) 

I AP (hy 
- y') 277 Ax 

(5-14) 

where AP is the pressure difference, Ax the length of the chamber of height h and y=0 defines 

the bottom of the chamber as before. For the sake of comparison with experiment it is 

convenient to calculate the volume flow rate Q (in cubic metres per second) through the device 

given by the integral of equation (5-14) over the channel dimensions, 

wh 
3 AP 

(5-15) 
12)7 Ax 

where w is the width (in the z-axis) of the device and 77 is the viscosity of the medium. 
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Figure 5-9. Deterryunistic forces experienced by a particle in the DEP separation systern, 
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The forces arising from the pressure driven fluid flow can be considered to act only in the 
horizontal plane (x-direction). The formation of laminar flow within the channel ensures this, 
and for channels of the cross sectional dimensions used here (w--9mm and h=O. Imm) the 
laminar flow profile can be shown to be fully established within the first few microns of the 
inlet port [10]. This distance is known as the entrance length. 

5.3.1.1 Entrance length 

The entrance length Lh can be calculated based upon the hydraulic diameter Dh of the channel 
[10]9 

4A 
(5-16) 

p 

where A and P are the cross-sectional area of the channel and the perimeter respectively. For the 

case of a channel where the cross section is a circle, Dh is simply the diameter of the circle. For 

a channel of rectangular cross section used in this work the value of Dh is approximately 
200ýtm. This allows an estimate of the entrance length from the following relation [10], 

Lh 

= 0.056Re 
Dh 

(5-17) 

where R, is the Reynold's number. If we take R, =I (in reality R, << 1) this gives an entrance 

length of approximately 11 ýim. The flow can therefore be assumed to be fully developed 

throughout the channel. 

5.3.2 Viscous drag 

As a particle moves through a fluid it experiences a drag force ansing from the viscous nature of 

the fluid. This drag force, known as the Stokes force can be expressed generally as, 

Fd,,, 
g 

=- 

wheref is the friction, or Stokes drag factor. For a sphere the fTiction factor is, 

6mla 

(5-18) 

(5-19) 
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5.3.3 Wall forces 

Forces ansing due to the interaction of the particles with the channel wall can also be 

considered, such as modified horizontal drag forces. These forces only occur when the particle 
is touching or in close proximity to the wall. 

The horizontal drag on a cell in contact with the wall is given by the modified form of Stokes 

equation [ 11 ], 

F, 2-- 61ri7ac(Vj7uid - Vp ) (5-20) 

where c=1.7 , vp is the cell velocity and vfl,, id is the medium velocity at a above the wall. 

The effects of these near wall forces on the motion of the particles in similar particle separation 
systems have been investigated by others and shown to be negligible [12,13]. These forces 

were not included in the siMulation. 

5.3.4 Bouyancy forces 

Particles also experience a force due to gravity, the magnitude and direction of which is related 
to the relative densities of the particle and fluid, and also the particle size. This force acts along 

the vector of the gravitational acceleration (i. e. along the y-axis). The force is given by, 

Fg = 
4M3Aog 

3 
(5-21) 

where g is the gravitational acceleration, Ap the difference in density between the particle and 

fluid, and a the particle radius. This can either push the particle up or down depending on the 

relative densities of particle and suspending medium. 

The buoyancy force is thus, 

F Buoyancy v (p 
r P, )g 

where pp and p,, are the density of the particle and suspending medium respectively. 

(5-22) 
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5.4 Other forces 

A number of other forces act upon a particle. These are described here briefly, as they were not 
included in the simulations. For a further discussion of these forces see chapters two and six. 

5.4.1 Brownian forces 

The effects of Brownian motion can be assumed to be negligible for particles greater than I ý'm 
in radius, when compared to the DEP and fluid drag forces. The effect of thermal motion on 
particles is therefore neglected in the initial analysis, but returned to in section 5-8 and chapter 
six. It should be noted that the inclusion of Brownian motion components Within the simulation 
increases the complexity of the computational problem resulting in it becoming very 
cumbersome, when run on a PC. 

5.4.2 Particle-particle interaction 

The model ignores the effect of particle-particle interaction. The assumption that the particles 
do not interact with each other is taken to be valid as the particle concentrations used in the 

experimental sections of this work are low (ca. 106 particles/ml [see ch. 6]) and therefore the 

particles are well spaced. The typical distance beyond which particle-particle interactions no 
longer occur and can be ignored is typically about three particle diameters [7]. This is true for a 

particle suspended in a conductive medium, in which case the free charge in the electrolyte acts 

to screen the particle's charge. The field associated with the particle's charge therefore decays 

rapidly into the suspending medium. The only particle-particle interaction forces now available 

act over only very short distances, these are electrostatic interactions and van der Waals or 

Hamaker forces. See Morgan and Green for a discussion of particle-particle interactions and 

DVLO theory [14]. 

5.4.3 Electrode polarisation 

Simply put the double layer capacitance can be thought of as a capacitor of reactance I /jcj Cd, in 

series With the suspending medium. As w approaches zero the reactance goes towards infinity 

with all the potential being dropped across the double layer and none across the suspending 

medium. Electrode polarisation resulting from the build up of charge at the electrode solution 

interface is assumed to be negligible at the frequencies used (lOkHz - 10OMHz) and the effect 

that the electrical double layer has on the system is therefore neglected [14]. 
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5.4.4 Electrohydrodynamic effects 

Forces arising from the interaction of the electric field and the associated forces on the fluid are 
also neglected. The electrothermal forces and the electro-osmotic forces as described In chapter 
two are assumed to be negligible for the analysis [9,15-17]. The effect of thermally induced 
changes in the viscosity of the medium is taken to be negligible. 

5.5 Simulation 

The forces acting on a particle can be divided into horizontal and vertical components, giving a 
pair of coupled differential equations (equations 5-24 and 5-25 below). The solution of these 
equations of motion gives the particle's trajectory. Considering the forces in the vertical or y 
direction first and ignoring the effects of hydrodynamic lift forces, particle-particle interactions, 
particle-surface interactions, and the random thermal effects due to Brownian motion, the 
equation of motion in the vertical direction can be expressed as, 

dvy 
FF DEPj, 

+ 
Buoyancy 

+F 

dt Drag, 

where FDEp is the DEP force, FB,,,, 
Y,,,, y 

is the buoyancy force, FD,, 
g,, is the force due to viscous 

(5-23) 

drag of the fluid on the particle, and vy is the particle's velocity, all acting in the y direction, 

and m is the mass of the particle. Since the particles have very small masses (e. g. 4.5x 10-15 kg 

for a latex particle of radius Iýtm) and therefore little inertia, the viscous nature of the fluid 

dominates their behaviour. Under these conditions the particle can be assumed to reach its 

steady-state velocity instantaneously (e. g. aI ptm latex bead has a relaxation time of just I Ins, 

see section 2.4.2). Therefore, any variation in the velocity of the particle corresponds to a 

variation in the force on the particle. The left hand side of equation 5-23 contains the inertial 

component of the particle's motion and tends to zero giving a simplified equation for the y- 

component of the velocity, 

vy = 

FDEP,. +F 
Buoyancy 

(5-24) 
f 

In the horizontal plane, and for a distance greater than d from the electrodes, the dominant force 

acting on the particle is the Stokes force due to the pressure driven movement of the fluid. In 

general and in the absence of any other forces, the particle velocity can be regarded as being the 

same as the fluid. As the particle approaches the electrode surface, the x component of the 
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electric field gradient becomes significant (see figure 5-8) and starts to influence the particle's 
motion. The velocity of the particle in this direction is given by the sum of the Stokes fluid drag 
force and the component of the DEP force in the x-direction as follows, 

F 
vx =V tluid 

(Y) 
+ DEPx 

f 
(5-25) 

The motion of particles was calculated using an iterative Euler method written in MATLAB. 
The above equations of motion (equations 5-24 and 5-25) were solved using this iterative 
technique. The initial position of the particles was set, and from this the program calculated the 
forces on the particle, and hence the particle velocities in the x and y directions. Taking these 

velocities and multiplying them by a suitably small time step allows the incremental position of 
the particle to be calculated. The forces on the particle were recalculated giving the velocities in 
the x and y directions at this new position. The programme repeats, calculating the velocity and 
incremental position of the particle, until the particle reaches a predefined position in the 

channel, typically a predetermined height. 

5.5.1 Time step 

The time step was varied depending on the simulation. Typically, time steps of I microsecond 

were used in all the simulations, values less than this had no observable effect on the final 

results. Time steps longer than this were found to produce results of sufficient accuracy for 

simulations involving the motion of the particle at distances far from the electrode array. To 

reduce computation times a variable time step procedure was used, in which the time step was 

changed when a particle reached a specified distance from the electrode arrays. Time steps 

between I ms and I gs were therefore used with the time step getting progressively smaller the 

closer the particle got to the electrode surface. 

5.5.2 Comparison of simulation with theory and experiment 

For the particular case of a homogeneous spherical particle, such as a latex sphere, suspended in 

a liquid, the effective polarisability a is equal to 3gfcm. For the special case d=d, = d2, the 

steady state particle levitation height can be found, by balancing the dielectrophoretic force 

(equation 5-11) with the gravitational force (equation 5-21) giving [2], 

h=d ln 
24 V,, 2c. Re[fcm 

(5-26) 
ir 7rd3 A pg 
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This assumes that the particle is experiencing -veDEP, and is repelled from the electrodes. 
Figure 5-10 shows a comparison of the levitation heights obtained from the theory (equation 5- 

26), the simulations of this chapter, and experimental results derived from the I iterature [18 ] for 

6Rm diameter latex particles suspended in water. Electrode arrays of characteristic size d= 

I Oýtm, d= 20Rm and d= 40ýtm and applied peak voltages V, between 2 and 4V. With a value of 
Re[f,,, ] = -0.5, and the assumption that electrode polansation effects are negligible. The density 

of latex and water were taken as 1055kgm-' and 1000kgm-' respectively. 
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Figure 5-10. Comparison between theory, simulation and experimental [ 18] data for the steady state 

levitation height of 3pm diameter latex particles above three sizes of interdigitated electrode array. 

The simulation and theoretical levitation heights are in good agreement with the experimental 

results. The limiting factor being the choice of small enough time step <I ms. 
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5.6 Particle trajectories 

Trajectories were calculated for different experimental conditions. The effects of variation of 
the following parameters were investigated, 

0 applied voltage 

particle polarisability 
flow rate 

particle size 

electrode size 

medium density 

medium viscosity 

The following two sections present these results. 

5.6.1 Particle focussing 

In this section the simulations of the focusing electrode section of the device are presented. 

Figure 5-11 shows the function of the focusing electrode. This electrode section comprises two 

interdigitated bar electrode arrays, forming the top and bottom of the flow channel, and uses 

-veDEP to focus particles to the mid-plane of the flow channel. 

Focussing electrode array 
'de /t 

-veDEP, 000-0 

-veDEý 

FI ow 

Figure 5-11. Schematic of the particle focussing system. 

The channel is assumed for simulation purposes to have a height of 100[tm and width of 9mm, 

giving a cross sectional area of O. qmM 2. These dimensions are the same as that of the fabricated 

devices. Table 5-1 lists the values of the various parameters used in the simulation program. The 

values given in this table were used in all the simulations unless otherwise stated. 
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Parameter Value 

a particle radius 5ýim 
VO applied peak voltage 2V 
71 viscosity of medium 

--71- 
1.5xlO-'kgms 

PM density of medium 1055 kgm -3 

PP density of particle 1055 kgm -3 

Q volume flow rate I mlhr-' 
d=dl=d2 size of electrode or gap 40ýtm 

time step 1XIO-1 S 
Re[fcm] -0.5 

Table 5-1. Typical simulation parameters, for the focussing section. 

A plot showing the simulated trajectories of a 5ýtm radius latex particle (chosen due to the 

similarity in size to the blood cells used in the experimental work) passing through the focussing 

region of the device is shown in figure 5-12. A 5ýtm radius particle was chosen, as this is similar 

to the size of blood cells. The initial height of the particle is 5ýtm above the bottom electrode 

array, the particles move from left to right and are being pushed towards the centre of the flow 

channel (i. e. towards the top of the plot). The simulation parameters are those shown in table 5- 

I, and the applied voltage is varied between 1V and 1 OV. The undulating profile of the particle 

trajectories is due to the particle passing over electrode edges where the electric field gradient is 

stronger. 

E 

0) 

ci I 

104 

Decreasing V 

0.5 522 t) a 

Distance (m) 
10 

4 

Figure 5-12. Particle trajectories in the focussing electrode array for different applied voltages. 
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We now define the 'focussing distance' of a particle flowing through the channel as the distance 
that that particle must travel before reaching a point a from the centre of the channel (i. e. a 
height (hl2-a) from the electrode array). For a 100ptm high channel and a particle of radius 5ýtm 
this is the height of 501im ± 5ptm depending on whether the particle's initial position is above or 
below the centre of the channel. 
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Figure 5-13. Vanation of the distance along the electrode array a particle must travel before it is focussed 

versus (a) peak applied voltage and (b) characteristic electrode size. 

Figure 5-13 shows how the focussing distance varies with applied voltage and the characteristic 

size of the focussing electrode array. An increase in applied voltage results in the particle 

becoming focussed more quickly requiring a shorter focussing distance. For the 40ýtm electrode 
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a focussing distance of only 100gm is required to bring a 5gm particle from near the chamber 
wall to within 5grn of the centre of a 100gm channel. It is apparent that very low voltages 
(<IV) can be used to manipulate particles given an electrode of sufficient length and neutral 
buoyancy conditions. However, if the particle is not of the same density as the suspending 
medium, there will be a threshold voltage below which the particle will not attain full focussing- 
If the applied voltage is not sufficient for the particle to attain a steady state levitation height 
(recalling section 5.5.2), at or above the mid-point of the channel then the particle will never 
become focussed. Variation in the electrode size d also has a marked effect on the focussing 
distance. Figure 5-6(b) shows VIE I' for different electrode sizes and the reason for this 

variation in focussing distance. 
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Figure 5-14. Variation of the distance along the electrode array a particle must travel before it is focussed 

versus (a) fluid flow rate and (b) initial particle height for various applied voltages. 
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Figure 5-14(a) shows a linear dependence of focussing distance with fluid flow rate as one 
would expect. The effect of the initial height of a particle on the focussing distance is shown in 
figure 5-14(b), this figure is symmetrical about its right hand side, with particles starting at 
heights greater than the channel centre (>50ptm) requiring increasing focussing distances as the 
height away from the channel centre increases. Particles with initial height close to the electrode 
arrays will require the greatest time to become focussed and therefore represent the upper limit 

on focussing distance and time. 
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Figure 5-15. Vanation in the particle trajectories for different values of particle polansation. 
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Figure 5-15 shows how the focussing distance varies with a decreasing polansability of the 
particle. As the polarisability of the particle decreases, the -veDEP force increases in magnitude 
resulting in a reduction in the required focussing distance, if all other parameters remain the 
same. Figure 5-15(b) illustrates this point with particle trajectory plots for 5ýim particles with 
values of -0.5 to -0.1 for the real part of the Clausius-Mossotti factor. 

Figure 5-16(a) shows how the focussing distance varies with the density of the suspending 
medium for the case of a latex particle of density 1055kgm-'. This only applies to a particle 
originating near the bottom of the channel and moving upwards. For a particle starting near the 
top electrode array the focussing distance will increase with increasing medium density due to 
the reduction in the effective downward force due to gravity. 
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Figure 5-16. Effect of (a) suspending medium density and (b) particle size on the focussing distance a 

particle must travel before it is focussed to within 95% of the channel centre. 
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Figure 5-16(b) shows how the focussing distance vanes with the size of the particle. For particle 
of radius less than 1 ýtm the effects of Brownian motion become significant and must be factored 

into the simulation. 

5.6.2 Particle separation 

Once the particles have been focussed to the mid-plane of the device by the focussing electrode, 
they then travel further through the device and are attracted towards a second electrode array 
under the influence of +veDEP forces. This second array shall be referred to as the separation 
electrode array. A schematic of this is shown in figure 5-17. 

Separation electrode array 

Flow 

+veDEPIMý* 4L 

\4 

Figure 5-17. Schematic of the particle separation system. 

Again the channel is assumed for simulation purposes to have a height of 100ýtm and width of 

9mm., giving a cross sectional area of 0.9mm'. Table 5-2 lists the values of the various 

parameters used in the simulation program. The values given in this table were used in all the 

simulations unless otherwise stated. 

Parameter Value 

a particle radius 5 ýim 

VO applied peak voltage 2V 

77 viscosity of medium 1.5x 10-3 kgms-' 

PM density of medium 1055 kgm -3 

PP density of particle 1055 kgm -3 

Q volume flow rate I mlhr- 1 

d=d I =d, size of electrode or gap 40ýim 

time step 
IX10-5 S 

Re[fcm] I 

Table 5-2. Typical simulation parameters for the separation section of the system. 
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Figure 5-18 (a) shows the distance along the separation electrode array at which a 5ýtm particle 
is captured under the influence of +veDEP for initial starting heights of 404m, 504m and 604m; 

and for various applied peak voltages. Figure 5-18 (b) shows the distance along the separation 

electrode array at which the same 5gm particle is captured and held under the influence of 

+veDEP for an initial starting height of 50ýtm and applied peak voltages of IV, 5V and I OV for 

varying flow rates. The capture distance vanes in a linear fashion (on the logarithmic scale) with 

flow rate for applied voltages of IV and 5V. The particles are captured at discrete positions 
(electrode edges) along the electrode array resulting in the stepped line for IOV. The scale is 

logarithmic and this result in the step-like profile at low flow rates and high applied voltages, 

where the particle is captured on the first few electrode edges. 
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Figure 5-18. Variation of the distance along the separation electrode array versus (a) voltage for starting 

heights of 40ýim, 50ýirn, and 60ýtrn and (b) flow rate for peak applied voltages of 1V, 5V and I OV. 
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The distance along the separation electrode array at which a particle becomes trapped is divided 
into a set of discrete positions, corresponding to the position of the electrode edges. The 

simulation of the particle separation assumes that the particle is attracted to within one particle 
radius of the surface, at which point the simulation is terminated. The assumption that the 

particles reach the surface of the electrode array and are frozen in position allows for 

simplification of the simulation program. In reality upon reaching height r above the electrode 
surface particles tend to continue moving along the array under the influence of the fluid flow 

and the x component of the DEP force. Particle motion continues until the particle reaches an 
electrode edge where it becomes captured and remains there held under the influence of 
+veDEP. The condition for a particle being held at the electrode edge assumes that the fluid 

drag force is less than the DEP force holding the particle at the electrode. 

Figure 5-19 shows the simulated particle trajectories for a 5ýlm radius particle with varying 

polarisabilities (values of Re[fcm] between 0.1 and 1) for two different starting heights 40ýim 

and 60pim. This plot of particle trajectories illustrates the need for effective particle focussing. 

Any variation in the initial height of the particle, due to poor focussing of the particle sample 

will be translated into a distribution of capture positions on the separation electrode array. 
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Figure 5-19. Variation of the distance along the separation electrode array versus polansability. Re[fc, W] 

varying between 0.1 and 1 and for two strarting positions 401Am and 6opm. 
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Figure 5-20 (a) shows the capture distance along the separation electrode array, at which the 

5ptm particle is captured for initial starting heights of 40gm, 50ýlm and 60pim, versus particle 

size. The DEP force scales linearly with the volume of the particle, explaining the observed 
dependence of capture distance with size. Figure 5-20 (b) shows the effect of particle 

polarisability as illustrated in the trajectory plot of figure 5-19 above. 
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Figure 5-20. The distance along the separation electrode array before being captured versus (a) siZe and 

(b) polarisability. For starting heights of 40ýtný 50ýirn and 604m. 
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5.7 Conclusion 

A simple analytical model has been developed which calculates the trajectories of particles as 
they flow through the DEP separation system. The effect of various experimentally controllable 
parameters has been investigated using the model. ne simulations show the possibility of 
separating particles along the length of the separation electrode array, based on their dielectric 

properties and size. Effective focussing of the particle stream prior to entry in to the separation 
portion of the channel is necessary to obtain effective particle separation. The model is used in 
the next chapter where simulations (using the experimental parameters) are compared with 
experiment using a variety of particle types. 
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A. 5 Appendix 5- Numerical Simulation using Flex]PDE TM 

Two dimensional numerical simulation were carried out using a commercially available finite 

element based partial differential equation solver, FlexPDE TM (PDE Solutions Inc., USA). 

A. 5.1 FlexPDE TM 

First, a description of the problem to be solved is written in a scripted format understood by 

FlexPDE TM 
. The problem description contains the partial differential equations system 

describing the problem, and the boundary conditions for the problem. FlexPDE TM solves the 

problem by converting the user-defined description of the problem into a finite element model, 

which is solved and outputted. The output can be presented either graphical or numerically. 
Specific details of how the software operates can be found in the Flex]PDE TM online help or in 

[I]. 

A. 5.2 The electrical problem - equations and assumption 

Simulations of the electrical potential fields produced by the interdigitated bar electrode 

structures were carried out and from this the DEP force vector fields was obtained. 

For the currents and frequencies used in this work and indeed those used in most AC 

electrokinetic systems, Maxwell's equations can be reduced to the quasi -electrostatic form [2, 

3]. That is, 

E= -Vo E is irrotational 

V-J+LP =0 charge conservation equation (A. 5-2) 
at 

V. D=p Gauss' law (A. 5-3) 

where 0 is the electric potential, p is the free charge density, J is the free current density, and D 

is the electric flux density. 

In order to obtain a solution for the DEP force we first solve numerically Laplace's equation for 

the electrical potential 

. (, 6v 0) = (A. 5-4) 
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Where calculation of VO gives the magnitude of the electric field, and from this the normalised 

DEP force VIV01' is obtained. 

A. 5.2.1 Boundary conditions and symmetry 

For the sake of simplicity we make the assumption that the interdigitated electrodes are 
sufficiently long and the problem can be simplified and considered to be two-dimensional. This 

is possible as the length of the individual electrode fingers is large (I OMM) when compared with 
the individual electrode finger's height (-100nm) and width (10-40ýtm). By taking into 
consideration the geometrical symmetry of such a system it is possible to further simplify the 

problem. If we assume that the electrode array is infinitely long the unit element, shown in 
figure A. 5-1 is sufficient to describe the array assuming we impose suitable boundary 

conditions. 
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Figure A. 5-1. Unit solution space; showing boundary conditions and symmetry. 

Odd and even mirror boundaries are used to define the boundaries of the unit solution space. 

The Neuman (LO = 0) and the Dinchlet (0 = 0) boundary conditions are used for boundaries 
CY 

of even and odd symmetry respectively. The Neuman condition forms a boundary with the same 

charges or potentials on either side. The Dirichlet condition forms a boundary with opposite 

charges or potentials on either side. The electrodes are considered to be infinitely thin (a valid 

assumption as they are -100nm thick whereas the electrode size is ý40ýtm) and are therefore 

approximated as sections of the boundary and given the value of the applied potential (V,, ). Such 

an approximation for the electrodes gives inaccuracies when very close to the electrode surface, 

but in any case the dipole approximation for the DEP force breaks down in this region [4,5]. 
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For the case where the electrode array is present only on the bottom surface of the channel the 
boundary conditions are as follows. At heights much greater than the characteristic electrode 
dimensions, the potential and hence the electric field both go to zero. Therefore, by taking the 
upper boundary sufficiently far from the electrodes allows us to specify either a Dinchlet or a 
Neuman condition. The left side of the solution space (i. e. the vertical line through the centre of 
the electrode) is defined with a Neuman boundary condition, giving even symmetry. The right 
side of the solution space (i. e. the vertical line through the centre of the gap) is defined with a 
Dirichlet or odd boundary condition. The electrode on the lower boundary has the value of IV 

and the gap on the lower boundary is described by a Neuman boundary. 

Figure A. 5-2 shows the results of the numerical simulation of the electrical potential and 
normalised DEP force vector field above an array of interdigitated bar micro-electrodes of 

characteristic size d=d, = d2= 40ýtm with an applied voltage of IV. Electrodes are present 
only on the bottom wall of the channel, with half an electrode and half a gap shown in the 

simulation. The electrical potential can be seen to decay to zero as the distance from the 

electrode increases. The DEP force can be seen to act only in the vertical direction at distances 

of >d12 from the electrode array, with the horizontal component of the force only becoming 

apparent close to the electrode edges. 

For the case where electrode arrays are present on both the top and the bottom surfaces of the 

channel (as seen in the focussing section of the device) the boundary conditions are the same as 
before, apart from the upper boundary condition, which now becomes identical to that of the 

bottom. The electrode on the upper boundary has the value of 1V and the gap is described by a 
Neuman boundary. It is possible to simplify the unit solution space further by imposing a 

Neuman boundary condition horizontally along the mid-plane of the channel, but for the 

purpose of illustration the upper and lower electrodes are included in the simulations. 
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Figure A. 5-2. Numerical simulation of (a) the electrical potential and (b) normalised DEP force vector 

field above an array of interdigitated bar micro-electrodes of characteristic size d=d, = d, = 40pm with 

applied voltage of IV. Electrode only on the bottom of the channel. 
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Figure A. 5-3 above shows the numerical simulation of the electrical potential and normalised 
DEP force vector field between two arrays of interdigitated bar micro-electrodes of 
characteristic size d=d, = d2 = 40ýLm patterned on the upper and lower channel surfaces, 
separated by 100ýtm, and with an applied voltage of lV. Once gain half an electrode and half a 
gap is shown in the simulation data. The DEP force becomes zero at the centre of the channel. 
The vectors in figure A. 5-3(b) show +veDEP acting towards the electrode edges. -veDEP forces 

act towards the channel centre and can be v1sualised by revesIng the direction of the arrows in 
the figure. 

Figure A. 5-4 shows the numerical simulation of the electrical potential and normalised DEP 
force vector field between the same electrode arrays on the top and bottom of the channel but 

this time the electrodes are energised with signals of opposite phase; the top electrode has an 

applied voltage of IV and the bottom electrode has an applied voltage of -IV. This is the same 

as having the top and bottom electrodes energised with the same signal but 180' phase 
difference between the two. The DEP force again becomes zero at the centre of the channel. The 

vectors in figure A. 5-4(b) show +veDEP acting towards the electrode edges. For the case of - 
veDEP the forces act towards the channel centre and can be visualised by reversing the direction 

of the arrows. 

A subtle difference between the two simulations is apparent if one looks at the vector plots in 

figures A. 5-3(b) and A. 5-3(b). The +veDEP forces will effectively appear identical for the two 

cases, with particles being attracted to the electrode edges no matter what relative phase is 

applied to the top and bottom electrodes. An interesting effect occurs in the -veDEP regime 

where the particles will be forced to the mid-plane of the channel and in the case were the upper 

and lower electrodes are in phase (figure A. 5-3(b)) the particles will experience a small force 

towards the region in the centre of the channel where the gap is. In other words the particles will 

collect in lines in the middle of the gap, this is seen experimentally if there is no fluid flow. If 

the upper and lower electrodes are in 180* out of phase (figure A-54(b)) the particles will 

experience a force towards the region in the centre of the channel between the upper and lower 

electrodes away from the gap. The particles will collect in lines between the upper and lower 

electrode fingers. Again this is seen experimentally as the particles will disappear (being hidden 

by the opaque electrodes) when the electrodes are energised. Figure A. 5-5 illustrates this 

schematically. 
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Figure A. 5-5. Schematic showing the -veDEP collection position of particles depending upon the relative 

phase of the upper and lower electrode arrays. 

Figure A. 5-6 shows the effect misalignment of the top and bottom electrode arrays. In this case 

the boundary conditions were altered with the left and right boundaries being translationally 

mapped - the left hand edge of the solution space is mapped onto the right and vice versa. 
Figure A. 5-6(a) shows the electrical potential field and (b) shows the DEP vector field, 

illustrating that electrode missalignment (e. g. due to fabrication limits) will have little effect on 

the overall DEP field and behaviour of the devices. 
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A. 5.3 Effect of the channel baffles 

A device was fabricated with resist baffles running parallel to the electrodes and in the gaps (see 

chapter four section 4.4). The aim of such a structure was to trap the particles attracted to the 

electrode array, in the troughs created between the baffles, shielding them from the drag force of 
the fluid allowing the use of lower applied voltages. Figure A. 5-7 shows the electrical potential 
and DEP force vector field for a structure similar to that fabricated and described in chapter 
four. 
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d, = 40pm with applied voltage of IV. 

169 



Experimentally, the baffles had no measurable effect on the particle dynamics within the device. 

The reason for this can be attributed to the low Reynold's number flow in the channel; the fluid 

in such a structure is laminar and therefore flows around the baffle structure, in and out of the 

troughs. Figure A. 5-8 shows numerical simulation of the fluid streamlines in such a system 

under conditions of pressure driven fluid flow fTom left to right. Again simulations were carried 

out using FlexPDE TM 
, this time solving the Navier-Stokes equation. The boundary conditions 

were non-slip boundaries on the top and bottom channel surfaces, and a constant pressure 
boundary at the channel inlet and outlet (left and right sides of the simulation space). Particle 

trajectories will follow the fluid streamlines, flowing from left to right and around the baffles. 
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Figure A. 5-1. Numerical simulation of the fluid flow through the channel including the 10ýtm high and 

20ýtm wide baffle structures. 
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Chapter Six: Dielectrophoretic chromatography 



Introduction 

This chapter presents the results of experiments undertaken to characterise the particle 
separation capabilities of the DEP separation system, based on the focussing/separation 

electrode geometry, described in the previous chapters. The focussing section of the device Is 
discussed first, and the results of the experiments to characterise the functioning of this part of 
the device are presented. This is followed by the experimental characterisation of the separation 
section of the device. These results are discussed with reference to the simulation work of the 

previous chapter. 

6.1 Materials and methods 

A general description of the experimental protocols relevant to this chapter, are given here. 
Specific details of the device fabrication, and sample handling and labelling protocols used can 
be found in chapters three and four. 

6.1.1 Experimental apparatus 

Flow through DEP separation devices were fabricated, as described in chapter four. Two 

electrode sizes were used, with electrode and gap sizes d=d, = d2 = 20gm or 40gm. The 

dimensions of the flow channels were measured for each device and this information was used 

in the simulations relating to specific experiments. 

The experimental set-up is shown schematically in figures 6-1 and a photograph is shown in 
figure 6-2. The channels were viewed using an inverted microscope in either phase contrast or 

epi-fluorescence mode. Images were recorded using a CCD camera onto S-VHS, or captured 

directly to a PC. 
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Figure 6-1. Schematic of experimental setup, showing the DEP separation device mounted on the cooler, 

the sample injection column, and the other apparatus. 

The photograph in figure 6-2 shows the experimental setup used for the experiments involving 

non-fluorescently labelled particles. The fluorescence microscopy setup (shown on figure 7-2) is 

identical to that shown in figure 6-2, apart form the use of a Zeiss Axiovert200 inverted epi- 
fluorescence microscope. 

The DEP separation devices were mounted on the temperature controller (see section 4.3). 

Water at room temperature was pumped through the controller in order to dissipate any heat 

produced by the device during the course of the experiments, maintaining the device at a 

constant temperature (-25'C). The whole device was held in Position using an x- y- 

micromanipulator, allowing the entire flow channel to be viewed. The focus control of the 

microscope allowed observation at different heights within the flow channel. The entire 

apparatus (microscope, x- y- micromanipulator, etc. ) was mounted on a vibration free platform, 

comprising a heavy steel plate resting on rubber mountings. The fluorescence set up was 

mounted on a pneumatically isolated optical bench (a gift from IBM, Greenock). Movement of 

the device for viewing purposes was therefore relatively vibration free. This was an important 

consideration as initial experiments showed that, even small vibrations (e. g. due to people 

walking in the lab) were sufficient to cause cells to be released from the electrode edge and flow 

further along the separation electrode array before becoming captured once more. 
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Figure 6-2. Photograph of the experimental setup used for non- fluorescence experiments. 

6.1.2 Sample preparation 

Particles (i. e. cells or latex beads) were suspended at known concentrations in the relevant DEP 

separation media (see section 3.11 for details) of known conductivity. The particle samples were 

prepared and loaded into the injection column of the device. The sample was then forced from 

the injection column and flowed through the separation device under the influence of pressure 

driven fluid flow applied using a programmable syringe pump. The rate of fluid now through 

the device was controlled by manually programming the syringe pump. 

6.2 Particle focussing 

The DEP separation system can be divided into two distinct functional parts. The focussing 

section where all particles undergo -veDEP and are forced into a thin sheet midway between the 

top and bottom electrode arrays, and the separation section where particles are attracted under 

the influence of +veDEP to that electrode array. This section describes the experiments carried 

out to investigate the operation of the focussing electrode section of the device. Experiments 

were carried out using two sizes of latex beads (diameters 10ýtm and 557nm). Due to the 

difficulty of accurately measuring particle positions (with the fluid flow on) the measurements 

were made under zero flow conditions. Observations of the particle positions with the fluid 

flowing gave qualitatively similar results. 
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6.2.1 Steady state particle levitation heights 

In order to establish the functioning of the focussing device, steady state levitation heights of 
particles were measured in the absence of fluid flow. Figure 6-3 shows a graph of the steady- 

state levitation height plotted against the peak applied voltage (logarithmic scale) for 109m 
diameter latex spheres. Measurements were made with the top and bottom electrode arrays 
energised with the same applied voltage on each array. The particle levitation heights were 
measured using the calibrated focus control on a Nikon Microphot microscope used in 
brightfield mode, using a x1O magnification lens. The measurement resolution for such a system 
is determined by the graduations on the focus control and is approximately ±I gm. 

Prior to conducting levitation height measurements, the graduated focus knob of the microscope 

was calibrated against the thickness (height) of the channel (channel thickness was measured 

using a DEKTAK TM surface profiler prior to bonding the channel lid). To double-check this a 

micrometer was used to measure the height of the channel following bonding of the lid. This 

was calculated from the measured thickness of the device less the measured thickness of the 

glass substrates used for the upper and lower channel walls. Both measurements gave the 

channel height of 100ýtm, resulting in a focus control calibration factor of 1.37 for the xlO dry 

lens with a numerical aperture of 0.3. The axial distance measured (i. e. the height in the 

channel) using the focus knob is then multiplied by this calibration factor to give an accurate 

measurement of axial distance. 

Three measurements were made to calculate the height of individual particles: the position of 

the bottom electrode array, the position of the top electrode array, and the position of the 

particle when it's mid-plane appeared in focus (i. e. measurements were made focussing at the 

centre of the particle). The position of the focus knob was noted at each of these three positions 

and the particle position was calculated. The data was collected with a suspending medium 

conductivity of ImSm-', at a frequency of 1OMHz, where all the beads experience -veDEP, and 

the factor Re[fcm] was calculated to be -0.476 (this value for the real part of the Clausius- 

Mossotti factor was derived from values measured by Cui et. al. [I]). The density of latex is 

1055kgm -3 , and the beads were suspended in dilute KCI solution (density of 1000k gm-3). 

Particle concentrations were approximately I. OxIO' beads per ml. At this concentration and for 

this size of bead the likelihood of the particles interacting is small, the volume of a single logm 

bead is -5.2x 10-19M3 and the channel volume is -5xlO-9m', it would therefore require 1010 10ýtm 

beads to pack the channel. 
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An analytical solution for the steady state levitation height above a single electrode array was 
given (section 5.5.2, equation 5-26) for a homogeneous spherical particle (e. g. a latex sphere) 
suspended in a liquid. For the special case d=d, = dý,, an expression for the steady state 
focusing position of a particle can be found, by balancing the dielectrophoretic force due to the 
top and bottom electrode arrays (equation 5 -11) with the gravitational force (equation 5-22). For 

the case where there is an electrode array on the top and bottom of the channel the equation is, 

_RY -ir(h-y) 24V 2 
c. Re 

ed-ed0 
lfcm I 

, Td3AM 
(6-1) 

where h is the channel height, g is the gravitational acceleration, Ap the difference in density 

between the particle and fluid, V,, is the applied peak voltage, Re[fcm] the real part of the 

Claussius-Mosotti factor, e.. the permittivity of the medium, and y is the particle height. The 

terms on the left of equation 6-1 express the exponentially decaying nature of the DEP force at 
distances greater than d from the top and bottom electrode arrays. Simplification of this 

equation to give the theoretical value of levitation height versus applied voltage is not easily 

achievable due to the two exponential expressions on the left of equation 6-1. Figure 6-3 shows 

experimentally derived values for the levitation heights, and the simulated levitation heights 

(see chapter five for details of the simulations) in the focussing array versus the peak applied 

voltage. 

The beads were levitated to a stable position where the buoyancy force is balanced by -veDEP 
levitation forces [1-4]. A settling time of 5 minutes was allowed following the change in the 

applied voltage; this allowed time for the beads to reach their equilibrium position. It can be 

seen that the experimental and simulated particle positions are comparable, and that when the 

top and bottom electrodes are energised, particles are focussed (rather than levitated) to a 

constant height half that of the chamber height. The focussing position does not vary with 

applied voltage, above a threshold of 3V peak for the 40ýLm electrode and 4V peak for the 20ýLm 

electrode arrays, for channels of height 100ýLm- 
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Figure 6-3. Comparison between simulated and measured steady state focussing helghts for I Opm 

diameter latex particles, between focussing electrodes comprising either the 10pn-4 20pm or 40pm 

electrode arrays. Experimental data is shown for the 20pm and 40pm electrode arrays. 

Levitation height measurements were not made using 10ýtm electrodes due to difficulties in 
fabricating arrays of such small feature size over large areas (5cm x lcm). Measurements were 

also made with beads flowing through the device. It was observed that particles were levitated 

to the mid-plane of the chamber within a short distance (few millimetres) of the start of the 

electrodes, which corresponded roughly with the trajectory calculations of chapter five, 

although accurate values were difficult to obtain. 

All the particles were focussed and confined to a narrow sheet, one particle diameter wide, with 

uniform particle distribution across the width of the chamber. Upon exiting the focussing 

section of the device, the particles continued to travel along the middle of the chamber where 

the fluid flow velocity was greatest. No particles were observed adhering to any of the chamber 

walls within this section of the separation device, even after many repeat experiments on the 

same device. Similar results were found for experiments carried out using blood cells. The fact 

that no beads or cells could be seen adhering to the section of the channel where the applied 

DEP was negative suggests that the technique may be a useful method for antifouling, although 

the use of -veDEP for antifouling has previously been proposed by others (e. g. [5]). 
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6.2.2 Focussing of submicron particles 

Similar experiments were conducted with sub-micrometer particles, in this case, 557nm 
diameter fluorescent latex spheres. These were suspended at a concentration of 2.76x 106 
beads/ml. With the applied potential switched off the beads diffused to occupy the available 

volume of the channel. In order to characterise the focussing, the width of the band was 

measured (using the calibrated focus control on the microscope) as a function of frequency from 

IMHz to IOMHz with beads suspended in KCI at a conductivity of ImSm-' and peak applied 

voltages of 5V and 1OV. The band was defined by choosing heights at which the number of 

particles in focus was 90% of the number observed at the centre of the channel. This was 

achieved by counting the number of beads in focus at various heights within the channel. 

Re[fc,, ] 

0.00 -0.07 -0.14 -0.21 -0.29 

These particles did not follow the same trend as observed for the larger particles. They occupied 

a band whose width varied with increasing frequency as the polarisability of the particles 

increased (i. e. Re[fcm] becoming more negative). Figure 6-4 shows the percentage of the 

channel height occupied by the 557nm beads (i. e. rather than the mean particle height as used to 

describe the larger beads). At the highest frequency the band occupied a region of ±20ýtm 

around the mid-point of the channel. When the voltage is removed the particles rapidly diffused 

to occupy the entire volume of the channel in a few seconds. 

-0.36 -0.43 -0.50 

100 

90 

ll 80 

70 
a- 

60 

50 

40 

30 

20 
a- 

10 

0 

Applied frequency (MHz) 

Figure 6-4. Thickness of the band of 557m-n latex beads when focussed between two electrode arrays of 

40pm separated by I OOpm as a function of applied voltage 5V and 10V frequency. 
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The characteristics of the 557nm latex beads have been investigated previously [6] and their 

polarisability versus frequency data is shown in figure 6-5. These beads experience -veDEP 
between I to lOMHz for the suspending medium conductivities used (a,, = ImSm-1). The 

thickness of the band of 557nm beads corresponds to the variation in the applied 
dielectrophoretic force around this frequency. As the frequency increases the magnitude of the - 
veDEP force increases and thus confines the beads to a narrower band as shown in figure 6-4. In 

this frequency range the 557nm beads always experience negative DEP, but the value of Re[fcml 

changes from -0.2 at IMHz to -0.48 at 1OMHz. Measurements correspond to three standard 
deviations of the particle distribution. The band thickness is due to a balance of fluxes, and is 
broader at lower frequencies because JDEp (i. e. the particle flux due to DEP) is less at lower 

frequencies as shown in figure 6-5. This is further discussed in section 6.6.1. 
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Figure 6-5. Variation in the Re[fcm] (or normalised DEP force) with applied ftequency for 557nm latex 

beads and medium conductivity I mSrný'. 

The focussing ability of the device is dependent on the applied voltage, frequency, particle size, 

electrode size, and the flow rate. Because the DEP force varies with the third power of the 

particle radius, large particles move to the mid-plane of the device at reasonably low applied 

voltages. In order to focus the smaller, sub-micron beads, the applied voltages required must be 

large (>IOV) for the 40ýLm electrode and 100gm channel height. These large voltages cause a 

large amount of heat to be dissipated into the system. Focussing (in this case taken as the middle 
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10% of the channel height) of the sub-micron beads was not fully achievable using this 

electrode design. 

In order to produce a device capable of confining particles to a small sample volume in a 
microfluidic channel the devices used here could be scaled down. This would result in a larger 
DEP force at the channel centre without the need for increasing the applied voltages with the 

consequent temperature rise that this voltage increase would bring. 2D focussing could also be 

achieved by using an extruded quadropole electrode geometry along the length of a microfluldIc 
channel as illustrated schematically in figure 6-6(a). 
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Figure 6-6. (a) Schematic of 2D focussing electrodes positioned in the comers of a microfluidic channel. 

(b) Numerical simulation of the 2D focussing electrode arrangement showing )a vector plot of the DEP 

force, directing particles radially into the centre of the flow channel. 

To illustrate the focussing effect for the system shown in figure 6-6(a) the values of VýEj' were 

determined across a 2-D slice through the such a system. FlexPDE Tm (PDE Solutions Inc. ) was 

used to solve Laplace's equation using voltages of +IV and -IV on each electrode. A vector 

,,;, "4 ,, 
pf 

I!, 
'. \ X, -, - ý, ý% ,, 

2466 10 

x e-6 

171EI 

1 20 
1 10 
1 00 
090 

It 

080 
0 70 
060 
050 
040 
0.30 
020 
0 10 BE 000 Scale = E17 

181 



plot of VIE12, S shown in figure 6-6(b). Note that the direction of the DEP force vectors push 

particles away from the electrode edges at the comers and into the centre of the flow channel. 
Particles experiencing a -veDEP force from the electrodes will therefore become focused into a 
stream of single particles as they flow along such a channel. 

6.3 Particle separation 

After passing through the focussing section of the device, all the particles should ideally be 

positioned at a height halfway between the upper and lower channel walls. From the preceding 
work it was shown that this is true for particles of the size of a typical mammalian cell, with a 
suitable applied voltage and frequency. As a particle flows from the focussing section of the 
device into the separation section, the direction and magnitude of the forces on it change. 
Whereas the focussing electrodes produced a -veDEP force on the particles, the separation 
electrode array applies an electric field such that the particles undergo +veDEP and are pulled 
down onto the electrode array. This section describes the experiments that were carried out to 

characterise the separation section of the device. Variation of the applied voltage and flow rate 

resulted in a change in the capture position of the cells along the length of the separation 

electrode array. The experimental results are compared with simulations, assuming ideal 

operation of the focussing electrodes (i. e. all particles are positioned at height h/2 in the flow 

channel when they enter the separation electrode section of the device). Experiments using sub- 

micron beads (557nm latex) are also presented, and the limitations of the system are discussed. 

6.3.1 Particle banding: variation in position with applied voltage 

PBMCs were used as model particles to investigate how the position of a particle along the 

separation electrode array vanes with applied voltage. PBMCs were collected from whole blood 

and prepared according to the methods described in chapter three. The cells were suspended at a 

known concentration in the DEP separation medium of density approximately equal to that of 

the cells (-1.060kgm-'), thus eliminating sedimentation effects. These cells were passed through 

the separation device under similar conditions but with different applied voltages. 

Figure 6-7 shows the experimental results for banding of PBMCs using 40ýtm electrodes for 

different applied voltages. The other experimental parameters did not change between runs, the 

flow rate was 0.4mlhr-', medium conductivity 2lmSm-1, and applied frequency 5MHz. The 

mean position of the band of cells is shown, with the error bars indicating the distance within 

which >95% of the cells were captured on the electrode array. 
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Figure 6-7. Variation in capture position along the separation electrode versus applied voltage. Dashed 

lines show position expected from simulations for monocytes and T-lymphocytes. 

The dashed lines in figure 6-7 show the simulated banding position of monocytes (r=4.63um, 

Re[fcm]=0.869) and T-lymphocyte (r--3.29um, Re[fcm]=0.845) using the size and specific 

membrane capacitance values given by Yang et. al. [7]. The simulations were carried out using 

the same parameter values as that of the experiments only varying the applied voltage. Of the 

cells present in PBMCs, monocytes and T-lymphocytes have, respectively, the highest and 

lowest values of specific membrane capacitance (i. e. the monocytes and T-lymphocytes 

experience the highest and lowest DEP forces, attracting them towards the electrode array, of all 

the PBMC sub-populations). These cells therefore represent the upper and lower limits of the 

mean capture position for the PMBC subpopulations. 

6.3.2 Particle banding: variation in position with flow rate 

THP- I cells were grown in culture and collected according to the methods described in chapter 

three. These cells were resuspended in DEP separation media. In order to characterise the 

dielectric properties of the THP- I cells, crossover measurements were made on these cells (see 

section 2.9.3 for details). The data from the crossover measurements is presented in figure 6-8. 

183 

0.0 0.5 1.0 1.5 2.0 



150 

140 

130 

120 

- 110 
100 

90 

80 

70 

60 

50 
0 0 40 
0 30 

20 
10 

0 

Suspending medium conductivity (mSm-') 

Figure 6-8. Crossover frequency versus suspending medium conductivity for THP- 1 cells. 

From the crossover measurement data the specific membrane capacitance of the THP- I cell type 

was calculated to be C,,, e .. = 17.7 ± 2.7 mFm-2 , the cell radius was r=6.4 ± 1.0 gm (as measured 

manually using the image analysis software (see section 4.6.2). 

Figure 6-9 shows the experimental results obtained for the mean banding position along the 

separation electrode array at which the THP-1 cells were captured. In these experiments two 

electrode sizes (d = d, = dý, = 20ýtm or 40ýtm) were used. The focussing section of the device 

was d=d, = 45ý, = 40ýtm in both cases. The conditions for the 20ýtm electrode array experiments 

were applied peak voltage Vo = 1.5V, field frequency lOOkHz, and a,, = 28mSm-'. For the 

experimental runs using the 40gm array, the applied peak voltage was Vo = 1.25V, field 

frequency of IMHz, and a,, = 26.9mSm-1. The dashed lines show the results of simulations 

based on the parameters used in the experiments, and using the dielectric properties of the THP- 

I cells as measured (ignoring the effect of membrane conductance). 
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Figure 6-9. Banding position of THP- I cells on 20pm and 40pm electrode arrays for different flow rates. 
Dashed lines represent the simulation taking dj=d, and the dotted line shows the simulation with 

dl=36gm and d, =44ýtm. Error bars span the upper and lower limits where cells were captured on the 

electrode arrays. 

Part of the discrepancy between the calculated banding position and experiment for the 40gm 

electrodes is due to the electrode and gap size not being equal. The electrode and gap sizes were 

measured and found to be d, = 36ýtm and tý, = 44ýLm respectively. In order to account for the 

variation in the electrode/gap size, as measured for the larger sized array, a 1D expression for 

the DEP force was implemented in the simulation (dotted line in figure 6-9), this allowed the 

electrode/gap size difference to be included in the calculation. The effect of this was to reduce 

the discrepancy between the calculated and experimental results. EHD effects may also have a 

slight disruptive effect on the banding positions of the cells. 

Figures 6-10(a) and (b) shows a micrograph of the banding of the THP- I cells for two of the 

separation runs using the 40ýtm separation electrode arrays. Figure 6-10(a) shows the captured 

cells after 0.5ml of sample had passed through the device at a flow rate of 0.5mlhr-'; figure 6- 

1 O(b) shows the results for the same experiment but using a higher flow rate of I. Omlhr-'. There 

is obviously some distribution in the captured position of these cells. 
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The spread of cells captured on the separation electrode can be attributed to a number of factors: 

the build up of cells on the electrode array distorts the field geometry resulting in an 

altered DEP force, which acts on the upstream cells upon entry into the separation 

electrode 

the heterogeneous nature of the cell population (i. e. distribution in fcm and size, 

resulting in a distribution in the DEP force acting on the individual cells) 

0 imperfect focusing (before entering into the separation electrode) of the particle stream 

as it flows through the focussing section of the device (see figures 5-18 to 5-20) 

* EHD fluid flow 

Figure 6-10. Banding of THP- 1 cells showing the capture of particles at defined positions along the 

length of the 40ýim electrode array, at flow rates of (a) 0.5rfflhr-' and (b) I. Omlhr-'. 
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Figure 6-11 shows how the position at which the THP-1 cells come down on the separation 
electrode array vanes with the size of the cell. The flow of sample was from left to right as in 
the above figures. Assuming that the specific membrane capacitance of the THP- I cells remains 
constant, then the DEP force experienced by individual cells will vary with the size of the cell. 
In this example all the cells were attracted to the separation electrode under the influence of the 
+veDEP force, the larger THP-1 cells can be seen to have collected further upstream than the 

smaller cells. 

Figure 6-11. Banding of THP- I cells showing the separation of particles according to size along the 

length of a 40pm electrode array. 

6.4 Binary mixture of cells 

The above discussion describes the ability of the system to pull particles out of solution and 

retain them at the electrode surface, under the influence of positive DER The parameters vaned 

were the flow rate and the applied voltage, with all other parameters remaining the same. From 

the simulations of chapter five it is predicted that cells of different type should come down at 

different positions along the length of the separation electrode array (as seen above with THP-1 

cells of different size). The experiments of section 6.3, using PBMCs shows that cells will band 

along the electrode array. However, it was not possible to distinguish between the different cell 

types on the electrode array, and ascertain whether their position along the length of the 

electrode array corresponded to a particular cell type. In order to achieve this the cells were 

fluorescently labelled with different colours according to the cell type. 

6.4.1 THP-1 and PBMCs 

To allow the identification of different cell types within the separation device, specific cell types 

were labelled with fluorescent dyes of different colour and visualised with a fluorescence 

microscope using epi-fluorescence illumination. THP- I cells, and PBMCs (isolated from whole 

human blood) were labelled with CeIlTracker TMfluorescent dyes (Molecular Probes). The THP- 
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I cells were incubated with the blue CellTrackerTm dye (CMHC, 372nni/470nm) and PBMCS 

were incubated with the green CeIlTracker"m dye (CMFDA, 492nm/516nm). The labelling 

procedure for this dye is described in chapter three. 

6.4.1.1 Methods 

The THP-1 cells were grown in culture and harvested prior to experiments as described in 

section 3.2.1. Blood samples were obtained 1-2 hours prior to the experiments and the PBMC 

cell fraction isolated as described in section 3.1.1. The two cell populations were labelled 

separately with different coloured CeIlTracker Tm dyes, according to the protocol given in 

section 3.7. The two populations were then mixed together at known cell concentrations (_106 

cells per ml. ) and resuspended in DEP separation media of conductivity U, ' = 26.3mSm-'. The 

variation in the value of Re[fcm] with frequency for the THP-1 cells, monocytes, and T- 

lymphocytes is shown in figure 6-12. 
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Figure 6-12. Variation in the Re[fciq] with applied frequency for THP- I cells (blue) and monocytes (red, 

left) and T-lymphocytes (red, right). Medium conductivity = 26.3mSm-'. 

6.4.1.2 Results 

It should be noted that the following fluorescence images were captured using a monochrome 

camera (Orca ES, Hamamatsu), with images of the different fluorescent dyes captured using 

0 
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different filters. The monochrome images were then combined to form the complete image, with 

each of the monochrome images represented by pseudo colour, i. e. red, green or blue. The 

image shown in figure 6-13 is therefore a pseudo colour image, with the THP-1 cells appearing 

in green (although they were labelled with a blue dye) and the PBMCs appearing red (despite 

being labelled with a green fluorescent dye). 

Figure 6-13 shows a fluorescence image of a portion (640ýLm by 800ýtm) of the separation 

electrode array after a mixture of labelled THP-1 cells (green) and PBMCs (red) were passed 

through the device. The majority of the THP-1 cells were attracted and captured by the first few 

electrodes, while the majority of the PBMCs were captured in a wider band further along the 

electrode array. This distribution of the two cell types, although not completely separated in this 

experiment, demonstrates the principle of DEP cell separation using this electrode 

configuration. 

The data from the experiment shown in figure 6-13 is presented in figure 6-14 in graph form. 

The number of cells and the cell type in the gaps between the electrode fingers were counted. 

The distribution of the two cell types can be represented with reasonable accuracy using 
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electrode array. Flow rate of 0.5mlý-, applied peak voltage of 1.5V at l50kHz. 



Gaussian distributions fitted using the statistical routines in Origin 6.1. The Gaussian fit to the 
THP-1 data has an R' value of 0.95957 and is centred around the second electrode gap with a 
width of 2 gaps, the Gaussian curve for the PBMC data has an R2 value of 0.85486 and is 
centred on electrode gap number 7 with a width of 6.5 electrode gaps. 
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Figure 6-14. Distribution of THP- I cells and PBMCs on the 40Vm separation electrode array. 

It should be noted that particle build up on the electrodes distorts the electric field produced by 

the electrode arrays, leading to disruption of the particle trajectories and alteration in the 

positions at which the cells band on the separation electrode array. 

6.4.2 THP-1 and PBMC fractions 

The above experiment was repeated with lower numbers of THP-1 cells and PBMCs (-5x 104 

cell per ml). The aim of this was to reduce the effect of particles building up on the electrodes, 

and hence reduce the disruption of the electric field and fluid flow caused by this. Figure 6-15 

shows the results. The THP-1 cells showed a similar distribution to the previous experiment, 

collecting on the first few electrodes. However, the PBMC distribution can be seen to be wider 

than that of the previous experiment, and shows an indication of having more than one peak. 
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Figure 6-15. Distribution of THP- I cells and PBMCs on the 40pm separation electrode array, (a) single 

Gaussian fit to the data and (b) fitting of a triple Gaussian to the PBMC data. 
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Using the statistical analysis routines in Origin 6.1 (OriginLab Co., MA) the distribution of cells 
was examined. The THP- I cell population can be fitted to a Gaussian distribution (R 2= 0.92598) 

with the centre of the distribution at the third electrode (240ýtm) along the array. The 
distribution of cells along the electrode array for the PBMC population is not as accurately 
modelled by a single Gaussian distribution (R 2=0 

. 65418) (see figure 6-15(a)). This would be 

expected as the PBMC population is made up of a number of cell types as described above. 
There are three main cell types present within this population, each with distinct dielectric 

properties and different size [7]. Fitting of a triple peak Gaussian (again using the statistical 

analysis routines in Origin 6.1) to the PBMC distribution allowed for a better representation of 
the data (R'=0.87127) (see figure 6-15(b)). 

The data of figure 6-15 is suggestive of the separation of the PBMCs in the their sub 

populations, i. e. monocytes, B-lymphocytes, and T-lymphocytes. Figure 6-16 illustrates this by 

showing the simulated particle trajectories for the four PBMC subpopulations using the same 

experimental parameters to that of the above experiment. It should be noted that the majority of 

the granulocytes are removed during the pre-processing of the whole blood sample, and will 

therefore not be present in the experimental sample. 
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Figure 6-16. Simulated trajectories for the different peripheral blood mononuclear cell sub-populations, 

using data corresponding above experiment (section 6.4.2). Applied peak voltage was 3V at 250kHz with 

medium conductivity of 33mSm-', and the chamber was I 10ýtm in height. PBMC properties from [7]. 

In this experiment, using the lower numbers of cells, the cells were again captured on the 

separation electrode giving a similar distribution to that of the previous experiments. However, 
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this time the cells were generally captured and held at the electrode edges. The cells Nvere 
distributed evenly along the length of the individual electrode fingers, and showed no sign of 
clumping; suggesting that the disruption to the cell trajectories caused by the build up of cells 
on the electrodes had little effect on the capture position when the cell concentration is low. The 

cells were therefore captured on the electrode array at a position more closely related to the 

cell's dielectric properties and size than in the experiment of section 6.4.1.2. 

A further set of experiments was carried out with the aim of demonstrating conclusively, that 
the PBMC cells were indeed being separated along the length of the separation electrode array. 
The PBMC sample was obtained as described above and labelled (section 3.5-1) with CD69- 
Cy5 (T-lymphocyte specific - 630/660nm) and CD14-FITC (monocytes specific - 488/515mm) 
fluorescent antibodies. Unfortunately, the fluorescence set up, used for these experiments, was 

not sensitive enough to image the fluorescently labelled cells while using the low magnification 
lens (A) needed to image a suitably large section of the electrode array (the CD69 and CD14 

fluorescent molecules only label the cell surface, unlike the CeIlTracker Tm dyes which fill the 
interior of the cells and are therefore far brighter). Use of a x20 objective lens allowed the cells 
to be imaged however it was not possible to measure their absolute position on the electrode 

array. An attempt to manually scan along the length of the device and capture images resulted in 

vibration of the device, which disrupted the position at which the cells collected on the electrode 

array (i. e. the cells were shaken loose from their initial capture position). 

6.5 Sub-micron particles 

Experiments were carried out to investigate the possibility of separating sub-micrometre sized 

particles along the length of the separation electrode. As seen in section 6.2.2 it is possible to 

focus these particles within a defined region of the channel using the focussing electrode section 

of the device. The thickness of this region of particles is dependent upon the size and 

concentration of the particles within the channel, as well as the applied voltage and particle 

polarisability. Sub-micrometre sized particles exhibit a stochastic motion due to the random 

Brownian motion force experienced by such particles. Simulation of the motion of these small 

particles is therefore more difficult, as it can no longer be assumed that the particles have 

reached their terminal velocity instantaneously in the time frame of the computational step. 

6.5.1 Experimental results 

Fluorescently labelled (FITC) latex particles of diameter 557nm were suspended in dilute KCI 

(cym =: I mSm-1) and passed through the separation system. These particles can experience both 
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-veDEP and +veDEP, as shown in the normalised force-frequency plot of figure 6-5. This plot 

shows the theoretical behaviour of such particles when suspended in water with conductivity 
I msm-,. 

The focussing electrodes were energised with an applied peak voltage of 5V at a frequency of 
IOMHz, and the separation electrodes were energised with an applied peak voltage of 3.75V at 
lOOkHz. The particles were observed using a fluorescence microscope and FITC filter set, with 

images being captured to video. 

The particles were partially focussed by the focussing electrode array, away from the channel 

walls and towards the mid-plane of the channel, in a manner similar to that described in section 
6.2.2. Estimation of the exact thickness of the focussed particles was difficult, but the majority 

of the 557nm particles appeared to be within 20 - 25ýim above or below the mid-plane of the 

channel by the time they reached the end of the focussing electrode array. The separation array 

showed particles undergoing +veDEP and being captured at either the electrode edges, or in 
bands on top of the individual electrodes of the separation electrode array. The capture mode 

varied depending on the frequency of the signal applied to the separation electrode. Lower 

applied frequencies resulted in EHD fluid motion (see chapter two) driving the particles from 

the electrode edges to a stable position on top of the electrodes. 

Figure 6-17.557nm latex beads as they pass through the focussing electrode array. The image is 

focussing on the mid-plane of the channel; particles above or below this are seen to be out of focus. 

Particles were observed to collect along the entire length of the separation electrode array; 

banding of these particles was not observed in either mode of operation. This lack of particle 

banding is probably due to the poorly focussed stream of particles, passing from the focussing 

section of the device the section containing the separation electrode array. Simulations in 
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chapter five demonstrated the effect that poor or imperfect focussing had on the final position of 
10ýtm particles travelling through the device. Small variations in the focussing height translated 

into relatively large shifts in the final position of particles on the separation electrode array. For 

the case of the 557nm beads, the majority of the particles were observed to be within 20 - 25pm 

of the centre of the channel, the focussing is therefore rather poor. Simulations (Ignoring 
Brownian motion effects) show that the majority of the particles (i. e. those initially focussed to 

within ±20ýtm of the channel centre) would be attracted to the separation electrode array and 
become captured at distances along the entire length of the separation electrode array (see figure 
6-18). 

X 10-4 

1-10.6 E 
1: 5 0.5 

-T- 
0.4 

0.9 

0.8 

0.7 

-- ------------- ---------- ------r -- ------------ ------r 

-- ------------ ---------- ---- ----- --------- ------------ ------ 

---- ------ ---- ------ -- -------- ---- ------ 

-- ------------ ------ 

-- -------- ---- ------r 

---- ------------ ---------- ------ r -- ---------- ------r 

- 

---- ---------- ---------- -------- -------- 

0.3 ; 

0.2 - 

0.1 - 

0 
0 

----------------------------------------- 

---------- 
Ir 

---------------------r 

I 

-----------L---------i---------------------L 

I 

0.002 0.004 0.006 0.008 0.01 0.012 0.014 
Distance (m) 

Figure 6-18. Simulation of the trajectories of 557nm latex beads with applied peak voltage of 3.75V and 

various starting heights. Brownian motion was neglected in the simulation. 

The effect that Brownian motion has on these particles must also be considered. The DEP force 

constantly attracts particles towards the electrode array as they flow through the device, 

individual particles were observed to have their motion disrupted by jumping about due to this 

random force. The particle trajectories due to the deterministic forces acting on the particles (i. e. 

the DEP force, fluid motion and the gravitational force) are therefore modified by the 

superposition of a random walk. Thus altering the position on the separation array at which 

individual particles become captured. 
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The combination of the poorly focussed particle stream, and the Brownian motion resulted in 
particles being evenly distributed along the electrode array. Some experiments did however 

show a slight gradient in the particle concentration along the length of the separation electrode 
array, with an initially high particle concentration at the start of the array reducing as the 
distance along the array increased (see figure 6-19). In these experiments, a higher applied 
voltages or low flow rate was used. The particles were depleted from the suspension as they 
flowed through the device. The ability of the system to remove (filter or deplete) small numbers 
sub-micron particles from suspensions is investigated in chapter seven. 

Figure 6-19. Capture of 557mn latex beads, showing concentration gradient along the length of the 

separation electrode array. 

6.6 Discussion 

The experimental results presented demonstrate that the DEP separation system operates as 

predicted for large particles. The simulations based on the work presented in chapter five are in 

reasonably good agreement with the experimental results for large particles (i. e. those greater 

than 2ýtm in diameter and not significantly affected by the disruptive force of Brownian 

motion). The focussing section uses -veDEP forces to confine particles to the central region of 

the flow channel. For the separation section of the device to function it was important that the 

focussing section works effectively. As shown in figures 5-18 to 5-20 the banding position of a 

particle vanes considerably with the accuracy of the particle focussing. 

Owing to fabrication considerations, both the focussing and separation electrode arrays were the 

Ih electrode sizes tallored to the same length (25mm). Future devices could be fabricated wt 
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particular application and particle type being used. Smaller sizes of separation electrodes would 

allow higher resolution separations and the use of lower applied voltages. Furthermore. 

variation in the spacing of the interdigitated electrodes could be used as a means of varying the 

DEP force along the length of the separation electrode. With such a structure the force 

experienced by the particles could be tailored to give a more uniform acceleration towards the 

electrode surface (i. e. reduce the steepness of the particle trajectories as the particles approach 
the electrode surface). The uniformly spaced interdigitated bar electrodes were used in this work 

solely to allow a straightforward comparison between the experimental results, and the 

simulation work based on the analytical solution for the DEP force available for such electrodes. 

6.6.1 Sub-micrometre particle concentrations 

Simulation of the particle concentration profiles for sub-micron particles within the focussing 

section of the device was carried out using FlexPDE TM (see chapter five for details). At steady- 

state the concentration profile in one dimension, across the channel height between the upper 

and lower focussing electrode arrays is given by the balance of the DEP and diffusion fluxes. 

The total flux of particles is made up of the diffusion, sedimentation and DEP fluxes, JD 9 jg I 

andjDEp respectively. In the steady state these fluxes balance such that, 

J ": jg + JDEP 
D' (6-2) 

If we assume that sedimentation effects are negligible we get the following (see section 2.8), 

- DVc + cF DEP 
=0 

67rqa 
(6-3) 

where D is the diffusion constant of the particles, c is the particle concentration, Vc is the 

particle concentration gradient, FDEp the DEP force, and 6; T77a is the friction factor. 
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Figure 6-20. Numerical simulation of the particie concentration protlie ot sub-nucron beads in the 

focussing section of the DEP separation system. 

Figure 6-20 shows the particle concentration profile calculated from equation 6-3. The profile is 

given for half the channel and is symmetrical about the right hand side of the plot. The particle 
distribution can be seen to have Gaussian-like profile with the maximum concentration of 

particles in the centre of the channel and very few particles near the electrodes. The simulation 

gives a qualitative representation of the particle distribution within the device. Unfortunately, 

the simulation only converged under a very limited set of particle concentrations, and 

comparison with the experimental results could therefore not be made. 
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Chapter Seven: Particle isolation and enrichment 



Introduction 

This chapter presents the results of experimental work carried out to characterise the particle 
separation system's ability to isolate an individual particle type from a mixture of particles. The 

work follows on from that of the preceding chapters, with many of the experimental procedures 
having already been discussed in those chapters. An introduction to the general field of particle 
sorting and separation was given in chapter one and the reader is referred back to this chapter 
for a discussion of the "state-of-the-art" in DEP particle separation systems. 

In this chapter the application of the system to the problem of isolating cells from latex beads, 

and trophoblast from peripheral blood mononuclear cells (PBMCs) is investigated. The 

trophoblast/PBMC model system was chosen as it has relevance to the problem of isolating 
foetal cells from matemal blood samples for prenatal diagnostics (for discussion see section 
1.2). The use of the system for the removal of low numbers of cells and virus-sized particles 
(460nm latex beads) is investigated. 

In the last decade there has been a major drive to isolate and enrich foetal cells from the 

maternal circulation, in order to perform non-invasive prenatal diagnostic tests. To date all the 

enrichment strategies are antibody based, typically with the antibodies attached to a fluorescent 

or a magnetic label. The lack of specificity of the antibodies used, and the fact that they often 

only target a sub-population of the target cells has meant that contamination is a major problem. 
This makes such diagnostic tests less reliable than the traditional invasive prenatal diagnostic 

methods. The potential to enrich foetal cells using a non-antibody based strategy, which exploits 
differences in the dielectric properties of PBMCs and trophoblast cells is of great interest. 

7.1 DEP particle separation 

The trophoblast cells of the placenta form the interface between foetal and maternal circulation 

and are present from very early on in pregnancy. They are shed directly into the maternal 

circulation. Since trophoblast cells are morphologically and functionally distinct from peripheral 

blood cells, one would expect that the dielectric properties of these two cell types should be 

distinctly different. In recent work it has been shown that trophoblast cells do indeed behave 

differently when placed in a non-uniform AC electric field when compared with matemal blood 

cells [1]. That is to say trophoblasts do have different dielectric properties from that of the 

average PBMC. 
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DEP is a sensitive method of discriminating between different populations of cells and uses AC 

electric fields to separate cells according to their membrane capacitance and conductance (see 

chapter two). This method has been used to achieve selective separation of sub-populations of 
cells, such as breast cancer cells, leukaemia cells and CD34 + cells [2-6]. The DEP force vanes 
(both in magnitude and direction) with the applied electric field frequency and magnitude, the 

medium conductivity and permittivity, cell volume and the intrinsic dielectric properties of the 

each individual cell. These last properties are governed by the morphology of the cell, in 
particular the membrane structure, protein and carbohydrate content and charge. Groups of 

similar cells will therefore experience similar DEP forces. If two populations of cells have 

sufficiently different dielectric properties then the resulting difference in DEP force can be 

exploited to separate the cells into sub-populations. 

Variation of the frequency of the applied electric field causes the magnitude and direction of the 
DEP force to vary. It is therefore possible to select an applied field frequency such that different 

cell types will experience diametrically opposite DEP forces. DEP separation systems have been 

demonstrated that are capable of isolating single cell types from heterogeneous mixtures of cells 
(see chapter one and the review paper by Pethig [4] for details). For bulk separation of particles 
from mixtures all current DEP based separation systems work essentially in only one 
dimension, i. e. at the surface of the electrode array. 

The systems operate along the following basis; all the cell types are initially attracted by 

+veDEP and held at the electrode edges. One of the physical parameters controlling the relative 

DEP force on the cells is altered (e. g. field frequency [7], medium conductivity [8], etc. ), such 

that all the cells experience -veDEP or extremely weak +veDEP and are released from the 

electrodes and carried away in a fluid stream. The systems are all limited in their usefulness, 

having limited separation purity due to problems of non-specific adhesion to the separation 

chamber walls, or of steric hindrance (i. e. cells being retained at the electrode surface not by the 

+veDEP force but being held their amongst other trapped cells). Most of these systems work in 

a "stop-go" mode and are therefore very slow or are limited to processing only very small 

sample volumes <100ýtl- 

To overcome these problems a new electrode configuration has been developed, which allows 

separation to occur in 2-dimensions. Details of the design and construction of the device are 

discussed in the previous chapters. Details of the various particle sorters including DEP based 

systems were presented in chapter one and are therefore only discussed briefly in the present 

chapter. 
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7.2 The DEP particle separation system 

The principle of the DEP separator developed for this work is outlined in figure 7-1. It differs 
from previous DEP separation systems in that it has an initial particle-focussing element 
incorporated up stream of the separation electrodes. This allows a controlled feed of the particle 
sample into the region of the separation electrode array. 
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Figure 7-1. Principle of DEP cell separation for the isolation of single cell or particle types from mixture. 

The basic operation is as follows; when particles enter the device they are carried in a fluid 

stream and are distributed randomly throughout the volume. Using -veDEP forces, the electrode 

arrays concentrate this wide distribution of particles entering the device into a well-defined 

sheet 5-10ýtm thick (i. e. one particle diameter), positioned midway between the upper and lower 

electrode arrays. The functioning of the focussing electrode was described in the previous 

chapter. It has been noted in the previous chapters that the formation of a sheet of particles only 

occurs for particles large enough such that the DEP force acting on the particles is sufficient to 

overcome the disruptive influence of Brownian motion. Following focussing particles enter the 

second separation electrode array, which is energised such that the DEP forces acting on the 

particles pull the desired sub-population of particles out of solution onto the electrode surface 

under the influence of +veDEP. The remaining particles experience a -veDEP force and remain 

in the high fluid velocity streamlines, which exist in the centre of the chamber (under laminar 

flow) these particles are thus rapidly eluted from the device. Those particles held at the 

electrode can be eluted for further processing by removal of the electric field (or application of a 

frequency to initiate negative DEP) whilst continuing to flow fluid through the device. 
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7.3 Materials and methods 

All the experiments in this chapter use electrodes of characteristic electrode widths and inter- 

electrode gap sizes of d, = d2= 40ýtm and channel cross-section 100gm x 900gm. 

7.3.1 Sample handling 

Sample handling prior to introduction into the device is problematic, especially so if one is 
dealing with rare cell types. As already mentioned in chapter one, the cell type of interest may 

make up only a very small percentage of the total sample. This means, for example, that a 20ml 

sample of maternal blood may contain only tens of foetal cells among the millions of matemal 
blood cells e. g. [9,10]. The same is also true for the case of the metastatic cancer cell; these 

cells break off from primary cancerous tumours and are released into the peripheral blood 

supply. Once freely circulating they move to other parts of the body lodging in the small 

capillaries resulting in secondary tumour formation. The ability to detect such cells is of great 
importance, as potentially only one cell is needed to form a new tumour. For detection to be 

relevant and clinically useful the ability to detect very low numbers of cells is of paramount 
importance. To this end, careful sample handling prior to introduction into the device is 

necessary to avoid losing the cells of interest. 

Large particles, such as cells will sediment to the bottom of any tubing or sample injection loops 

during the 30 minutes or so required to process a typical experimental sample. Under the low 

flow rate conditions used in this work (typically <2ml/hr) the particles remain in the tubing and 

are not carried into the device by the fluid. To achieve sufficiently high flow rates such that all 

the particles are carried along with the fluid requires the use of sample injection loops consisting 

of long coils of narrow bore tubing. This results in a large surface to volume ratio with the 

associated problems of particles adhering to the tubing walls. To overcome this problem a 

vertical sample injection column was designed and built (see section 4.3). This ensures that all 

cells enter the separation device and are not lost in the tubing. The experimental setup is shown 

in figure 7-2, using the device shown in figure 4-11, it consists of a section of 0.125" internal 

diameter PEEK tubing that is filled with the sample and held vertically above the inlet port of 

the chamber. Also shown in figure 7-2 is the valve arrangement, which allows cell-free 

suspending medium to be flowed through the device with minimum of dead volume. The 

electronic control valves also reduce the mechanical shocks to the system, which occur when 

using manually switched valves. 
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Figure 7-2. Separation device showing complete system including the fluidic and electrical connections. 

7.3.2 Cell and bead samples 

Cell and bead samples were prepared as descnbed below, with all samples having their 

conductivities measured prior to the experiment. 

7.3.2.1 Beads 

Latex beads of two sizes (6ýtm and 460nm diameter) were obtained from Polysciences Inc. They 

were washed twice in suspending media and then seeded at known concentrations into the 

samples. A Coulter counter was used to measure the number of 6ýlm beads in the samples. The 

460nm beads are supplied as a percentage weight of latex per unit volume, allowing the 

calculation of the particle numbers. The beads could then be serially diluted to the required 

concentrations. 

7.3.2.2 PBMCs and THP-1 cells 

Penpheral blood samples were collected into EDTA coated tubes (Vacutainer, Becton Dickson) 

from healthy volunteers and processed according to the protocol in section 3.1-1. THP-1 cells 

were grown in culture and harvested when required according to the protocol in section 3.2.1. 

ree dielectric separation medium (dH These cells were washed twice in Ficoll-f I1 '0 with 9% w/v 

sucrose, 0.1% w/v glucose), following the washing step the cell pellet was resuspended in 

dielectric separation medium containing Ficoll (dH, O with 9% w/v sucrose, 0- 1% w/v glucose, 
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3.5% w/v Ficoll) of the correct osmolality -290mOsm-'. This two step washing procedure was 
necessary as the density of the Ficoll containing medium renders the cells neutrally buoyant, 

making centrifugation problematic. Cell counts were performed using a Coulter counter, with 
serial dilutions carried out as required. 

7.3.2.3 Trophoblast cells 

The trophoblast cells were prepared from the amniochorionic membranes of the placenta using a 
combination of mechanical and enzymatic digestion techniques, according to the method 
described in chapter three [ 11,12]. Cell viability was examined by trypan blue dye exclusion 
test and found to be >90%. The percentage of trophoblast cells in the final preparation was 
evaluated by flow cytometry using the trophoblast specific cytoskeletal antibody JMB2 to label 

the trophoblast, and the leukocyte specific antibody CD45 to label the blood cells. 

Cell concentration was determined using a haemocytometer. Known numbers of trophoblast 

cells were mixed with PBMCs and resuspended in dielectric separation medium (H20 

containing 9% w/v sucrose, 3.5% w/v Ficoll, 0.1% w/v glucose, 0.8% w/v BSA and IMM 

EDTA), pH 6.8-7.2 and osmolality -290mOsm-1. 

7.3.2.4 Bacteria 

E. coli bacteria (K-12 strain) were grown in culture. To aid visualisation these cells were 

genetically transformed to express Green Fluorescent Protein (GFP). The culture procedure and 

transformation details are given in section 3.3. The cells were harvested and washed twice in 

suspending medium of known conductivity prior to the experiments. 

7.3.2.5 Flow cytometry analysis 

Flow cytometric analysis was performed on FACScan@ (Becton Dickinson UK) using standard 

instrument setting (see chapter three for further details). 

7.4 Separation of binary mixtures 

To test the ability of the system to separate mixtures of particle types two model systems were 

investigated. The first, involved the separation of human PBMCs from mixtures of PBMCs and 

6jum latex spheres. The second, and more interesting model system involves the separation of 

placentally derived trophoblast cells from a mixture of these trophoblast cells and human 

PBMCs. 
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7.4.1 PBMCs from 6ýLm latex beads 

To demonstrate the separation of cells from beads, mixtures of cells and 6ýum diameter 

carboxylated latex beads were introduced into the device at typical concentrations of _106 
particles per millilitre. The applied electric field frequency and suspending medium 
conductivities were chosen such that the cells were attracted to and retained at the separation 
electrodes while the beads experienced -veDEP and were repelled from the electrodes. Flow 

rates between 0.5ml and 2ml per hour were used and applied voltages of between 3Vpp and 
6Vpp. The DEP force frequency spectra for a T-lymphocyte [13] and a 6ýtm bead (K, =1.5nS, 
[ 14]) were calculated for a medium conductivity of 20mS. m-' and are shown in figure 7-3. 

20: 1 mixtures of PBMCs and 6um latex beads suspended in low conductivity sugar solution 

were passed through the device and showed almost complete removal of PBMCs from the 

sample (see figure 7-4). Observation of the beads and cells as they flowed through the device 

showed that the particles were focussed to the mid-plane of the chamber in a short distance. 

Particles were observed to form a sheet with an equal number density across the width of the 

chamber. Upon exiting the focussing section of the device the beads continued to travel along 
the middle of the chamber where the fluid flow was greatest. The cells were attracted to the 

separation electrodes, where they tended to collect in a band. The position of the band vaned 
depending on the flow rate and applied voltage, as described in chapters five and six. No 

particles were observed adhering to any of the chamber walls even after many repeat 

experiments on the same device. 
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Figure 7-3. Real part of the Clausius-Mossotti factor versus frequency for 6pm latex beads with surface 

conductance K, = 1.5nS [ 14] (blue line) and PBMCs [ 13] (red line) at a suspending medium conductivity 

of 20mS. m-'. 
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The results of a typical experiment are shown below in figure 7-4. The medium conductiVity of 

the cellfbead mixture was measured to be 21MS. m-', and a flow rate of 0.4ml. hr-1 was used. The 

focussing electrode arrays were energised with 6Vpp at lOkHz. A 5MHz signal at 4VPP was 

applied to the separation electrode array. Figure 7-4 (a) shows the scatter plots obtained by 

flowcytometry analysis of a portion of the sample prior to passing through the DEP sorting 
device and figure 7-4(b) shows the same analysis for the sample collected while the electric 
field was still applied to the separation electrodes. 

When observed through the microscope it was clear that the cells collected on the separation 

electrode array. It was also observed that during the course of the separation experiment not a 

single latex bead collected on the separation electrodes. The positive ftaction held at the 

separation electrode array under the influence of +veDEP forces contained no latex beads (held 

under steric hinderance, or otherwise) when examined under the microscope. 
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Figure 7-4. Scatter plot showing forward scatter versus side scatter data for the separation of PBMCs 

from 6[tm latex beads (a) pre-sort mixture (b) negative fraction collected with 5MHz signal applied to the 

separation electrodes. 

The negative fraction collected at the outlet of the channel while the separation electrode was 

still energised is shown in figure 7-4 (b). The scatter plot shows that virtually all the cells have 

been removed from the sample and are held on the separation electrode. An applied voltage of 

4Vpp was used for all the experiments involving the PBMC/beads mixtures. With flowrates of 

4mlhr-' or greater it was found that the negative fraction began to contain PBMCs as well as the 

beads, with higher flow rates resulting in increased sample contamination. The reason for this 

was that the DEP force was not sufficiently strong to hold the cells at the electrode edges 

against the drag force due to the fluid flow. Higher applied voltages improve the separations at 

higher flow rates but the higher electric field strengths will tend to damage the cells. 
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7.4.2 Bacteria from PBMCs 

Similar experiments were carried out separating bacteria from mixtures of blood cells. Due to 
the size of the Ecoli (ca. Iýtm x 2ýtm) they could not be detected using the FACS machine. A 
further limitation of the experimentation with these E. coli cells is that they do will not undergo 
-veDEP at suitably low frequencies. At the medium conductivities used, the crossover 
frequency for the GFP expressing bacteria was experimentally found to be -160MHz. A high 
frequency signal generator and tuned amplifier were used to energise the focussing electrode 
arrays. This allowed only very weak focussing of the sample due to the signal loss ansing ftom 
the impedance mismatch between the 50Q signal source and the electrode array. Further 

engineering of the device is required to enable such devices to work in this high frequency 

region. 

Electrode Bacteria Electrode 
Figure 7-5. GFP expressing E. coli captured onto the separation electrode array under the influence of 

+veDEP from a mixture of PBMCs and E. coli. 

Figure 7-5 shows an experimental image of E. coli K12 captured on the separation electrode 

array under the influence of +veDEP. The medium conductivity of the cell/bacteria mixture was 

measured to be 38mS. m-', and a flow rate of 0.5ml. hr-' was used. The focussing electrode arrays 

were energised with 24Vpp at 18OMHz (the voltage actually seen on the electrodes was 

probably considerably less than this, due to impedance mismatches). A lOkHz signal at 6Vpp 

was applied to the separation electrode array, in this region the PBMCs experience -veDEP and 

the E. coli are attracted to the electrodes under +veDEP. Most of the bacteria were seen to 

collect on the initial few electrodes of the separation electrode. 
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7.4.3 Trophoblast from PBMCs 

The dielectric properties of the human trophoblast cells have been charactensed [1]. In this 

work the authors investigated the dielectric properties of the trophoblast cells and PBMCS using 
electrorotation and crossover measurements. The PBMC data was found to be in close 
agreement with that of Yang et. al. [ 13 ]. Trophoblast cells obtained from two sources 

1. enzymatic digestion of placental membranes (method descnbed in section 3.1.2) 

2. isolated from retroplacental blood samples 

have been shown to have distinctly different dielectric properties from those of the human 

PBMCs [1,13] and also that of RBCs [15]. The aim of the current section is to assess whether 
these differences, measured by Chan et. al. [1], can be exploited to separate artificial mixes of 
trophoblast cells and PBMCs using DEP sorting techniques. 

Figure 7-6 shows an SEM image of a pair of cells (thought to be trophblast) prepared from the 

amnionic membranes of a human placenta by enzymatic digestion of the amnionic membranes 

(this figure also appears in the paper by Chan et. al [1]). The morphology of these cells appears 

distinctly different from that of the PBMCs as seen in the work of Yang et. al. [13] (reproduced 

in chapter one, figure 1-9). It is likely that morphological differences between the cytoplasmic 

membranes of the cells shown in figure 7-6 and those seen in figure 1-9 accounts for the 

difference in membrane capacitance measured for the trophoblast cell type [1] and the PBMCs 

[1,13]. 

Figure 7-6. SEM of (probable) trophoblast cells isolated from placental membranes [I]. 
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From the dielectric spectra shown in figure 7-7 one can see that, if the frequency of the applied 
field is chosen correctly (i. e. choosing a frequency within the shaded region), it should be 

possible to selectively attract trophoblast to the electrode surface under the influence of +veDEP 

and retained them there, while the PBMCs experience -veDEP and are repelled from the 

electrode surface. Any cells not held by the +veDEP force will pass through the chamber. 
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Figure 7-7. Plot of real part (solid lines) and imaginary parts (hatched lines) of the Clausius-Mossotti 

factor (i. e. normalised force) versus electric field frequency for a typical trophoblast [I] (red) and T- 

lymphocyte [13] (blue). Suspending medium conductivity of 50mS. m-'. Shaded area shows window of 

useable separation frequencies. 

To test this, mixtures of trophoblast and PBMCs were passed through the separation system 

with the electrodes energised, using AC voltages of I to 5Vpp in the frequency band ranging 

from 0.1 MHz to 0.5MHz depending on the suspending medium conductivity used. The negative 

fraction was first collected i. e. those cells not held at the electrode by the electric field. Cell-free 

conductivity medium was then allowed to flow through the chamber and the field was switched 

off releasing the cells held under +veDEP (positive fraction). 

The pre-sort mixture, and the post-separation positive and negative fractions were fluorescently 

labelled with antibodies (as described in section 3-5) specific to trophoblastl (JMB2) and 

PBMCs (CD45). The fractions of the artificial mixture were analysed using FACS allowing the 

degree of enrichment of trophoblast in the positive sorted fraction and the degree of 

' JMB2 may label other cell types but has been shown not to label PBMCs [ 16]. 
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contamination with PBMCs to be calculated from an initial 1: 1 mix. Figure 7-8 (i)-(iii) show the 
FACS data from a separation experiment. Figure 7-8 (i) shows approximately equal 
concentrations of trophoblast and PBMCs in the pre-sort sample. The FACS instrument settings 
were chosen such that events in region R2 show fluorescently labelled cells. The populations 
Following separation the negative fraction (i. e. that collected at the outlet of the device with the 
field on, figure 7-8 (ii)) is comprised of approximately equal numbers of trophoblast and 
PBMCs. The positive fraction (i. e. that collected following release of the field) shown in figure 
7-8 (iii) clearly shows an enriched population of trophoblast cells. Furthermore the PBMC 

component of the mixture has been almost completely eliminated. 
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Figure 7-8(i). FACS scatter plot of SSC versus Fl, I for the pre-sort mixture of trophoblast and PBMCs 

showing (a) CD45 labelled cells (PBMCs) and (b) JMB2 labelled cells (trophoblast). 
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Figure 7-8(ii). FACS scatter plot of SSC versus FL I for the negative fraction showing roughly equal 

numbers of (a) PBMCs and (b) trophoblast. 
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Figure 7-8(iii). FACS scatter plot of SSC versus FL1 for the positive fraction showing (a) the majority 

of PBMCs have been removed and (b) the enriched trophoblast fraction. 

From the FACS analysis data above a thirty-fold enrichment of trophoblast was demonstrated 

using the separation system, with a concurrent 99% depletion of lymphocyte cells under the 
following experimental conditions: 

1: 1 mixture of trophoblast to PBMCs 
106 cells per ml 

sample conductivity = 46.4mS. m-1 
flow rate = 0.4ml. hr-1 

volume of sample processed = 0.5ml 

focussing electrode 6Vpp at I OkHz 

separation electrode 3Vpp at l20kHz 

Figure 7-9 shows the image looking down the microscope and shows cells collecting on the 

electrode edges under the influence of +veDEP. This image was captured under similar 

experimental condition to those described above. The cells are likely to be trophoblast cells. 

This assumption is based on two factors; firstly, their morphology many of the cells in figure 7- 

9 are different in morphology from that of PBMCs, which appear spherical when In suspension 

and secondly, the flowcytometery data which shows enrichment for cells positively labelling 

with the anti-JMB2 and therefore likely to be trophoblast. 

213 



M 
ýF IN 

Figure 7-9. Micrograph showing +veDEP of a mixture of cells held at the separation electrode during 

experiment relating to that of figure 7-8. 

7.5 Rare particle isolation 

One of the major requirements for many analytical devices is the capability of the system to 

retrieve small numbers of particles from relatively large volumes. Applications include removal 

of a rare cell type from a mixture, isolation of small numbers of viral particles from a fluid, 

separation of bacteria from blood supplies, water, food, etc. This section discusses the ability of 

the DEP-based separation system to remove, concentrate and retain small numbers of particles 
from a continuous fluid stream, and also the usefulness of the system for isolating low numbers 

of cells or particles from large volumes of fluid. The device operates as described above by 

pulling particles out of a fluid stream onto the separation electrode using +veDEP. 

7.5.1 Materials and methods 

Samples containing small numbers of particles were passed through the separation system. The 

particles used were either THP-1 cells or 460nm diameter latex beads. The initial number of 

particles in each of the samples was measured first by either Coulter counter (in the case of the 

cells) or calculated from the percent latex value given on the datasheet supplied with the 460nm 

beads. Samples underwent serial dilution to reduce the particle number per unit volume. These 

samples were then passed through the device and both the positive and negative fractions were 

collected and the number of particles within each of the ftactions was counted. As a cross check 

the number of particles held on the energised separation electrode array were also counted by 

scanning the microscope along the length of the device. 
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7.5.2 Results: Low numbers of THIP-1 cells 

Table 7-1 shows the data collected for passing low numbers of THP-1 cells through the 

separation system at different particle concentrations and under different experimental 
conditions. The medium conductivity of the sample, flow rate and cell concentration are shown. 
The focussing and separation electrode arrays were energised with 6Vpp at I OkHz and 6Vpp at 
IMHz respectively for all experiments. One millilitre of sample was passed through the device 
for each of the four runs, this was followed by 0.2ml of cell-free suspending medium (i. e. 4x the 

chamber volume) to ensure all the particles had time to enter the device. Runs 1-3 were carried 

out using a separation electrode array of gap and electrode size 40ýtm. While run 4 was carried 

out using a 20gm electrode array. 

Run Cells per ml Flow rate (ml. hr-1) am (MS. M-2) Cells on device Cells in collection tube 

1 700 0.5 8.5 753 0 

2 127 0.5 10.6 153 0 

3 13 0.5 9.8 0 0 

4 850 1 8.0 460 28 

Table 7-1. Low numbers of THP-1 cells passed through device. 

The number of cells held on the electrode array was counted using the microscope and scanning 

along the length of the electrode array. The medium flowing through the device with the 

separation electrodes energised was collected in a 1.5ml sample tube. This was centrifuged to 

form a pellet and the medium drawn off. The pellet was resuspended in 50ýtl of PBS and 

pipetted onto a microscope slide for examination. 

Runs I and 2 showed greater than 100% collection of the cells, this is due to errors introduced 

by the dilution process (i. e. cells adhering to sample tube, etc. ) and illustrates problems 

associated with counting such low numbers of particles. Run 3 resulted in no cells being 

captured by the separation electrodes, again probably due to problem with the accuracy of the 

serial dilution when dealing with such low numbers of particles. 

Run 4 used a 20ýtm electrode array and a higher flow rate of Iml. hr-'. In this sample only 460 

cells were counted on the electrode (54%). For this experiment 28 cells were counted in the 

collection tube. The reasons for this are probably due again to errors in the serial dilutions and 

also problems with the loss of cells in the outlet tubing and cells adhering to the tube. 
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7.5.3 Results: Low numbers of sub-micron beads 

At higher concentrations these particles did not follow the same trend as observed for the larger 

particles. The sub-Micron particles occupied a band ±20ýim around the mid-point of the channel. 
The reason for this is that a diffusion flux is generated which is opposes the DEP flux. When the 
voltage is removed the particles rapidly diffuse to occupy the entire volume of the channel in a 
few seconds. For the situation where the particle concentrations are sufficiently low, such that 
there is no diffusion flux acting counter to the DEP force, focussing is possible. Observation of 
the 460nm latex beads passing through the focussing section of the device showed that they can 
be focussed into the centre of the channel. Banding however was not observed for these beads 

and this is due to the disruption of the particle's motion by the Brownian force. This 

randomising force can act both towards or away from the separation electrode array resulting in 
some particles being captured earlier then expected and others being captured further down 

stream in the channel than simulation (without inclusion of the Brownian motion) would 

suggest. The overall result was the capture of the 460nm beads along the entire length of the 

separation electrode array. 

Experiments were conducted passing low numbers of the 460nm beads through the separation 

system. The beads were suspended in dH20 and passed through the device at flowrates of 
0.5mlhr-'. Serial dilutions of the particle samples were performed to give particle concentrations 

of -100 beads/ml. Sample volumes of 10ml were then passed through the device, with applied 

voltages of 20Vpp at 5MHz on the focussing electrode arrays and 5Vpp at lOkHz on the 

separation electrode arrays. The samples were left to run undisturbed overnight and the particle 

numbers on the separation electrodes counted after the entire 10ml sample had flowed through. 

In these experiments only the number of beads on the separation electrode array were counted. 

Table 7-2 shows the number of beads collected on the separation electrode array. 

Run Beads on device 

1 643 

2 821 

3 675 

Table 7-1. Low numbers of 460nm latex beads passed through device. 

Due to the large volumes used in this series of experiments it became problematic to centrifuge 

and isolate the beads present in the collection tube (i. e. those beads passing through the device 

having not been captured by the separation electrode array). 
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7.5.4 Discussion 

A major problem with DEP-based separation systems is non-specific adhesion of unwanted 
cells on the separation or collection electrodes. One application of a device is the isolation of 
small numbers of rare cells from a large population of unwanted particles with minimum 
contamination. This is minimised by the use of the initial particle focussing electrodes. Since all 
the particles entering the device are initially pushed away from the channel walls by a -veDEP 
force, only the cells that undergo +veDEP and are attracted to the separation electrode come 
into contact with the channel walls. The result of this is to reduce any chances for steric trapping 

and adhesion of contaminant cells at or to the channel walls. 

The ability of the system to separate binary mixtures of cell sized latex beads and peripheral 
blood mononuclear cells (PBMCs), as well as mixtures of PBMCs and placentally derived 

trophoblast cells has been demonstrated. Removal of almost all the PBMCs from the beads mix 

was achieved with a pure sample of PBMCs held at the separation electrode. Problems with 

particles being retained in the fluidic tubing of the device restricted the analysis although visual 
inspection of the electrodes showed extremely good separation purity. The same is likely to be 

true for the trophoblast/PBMC experiments, and one could argue the that the enrichment of 

trophoblast cells of up to thirty times, with almost complete depletion of contaminating PBMCs 

represents a lower limit on the system's resolution. 

Problems were encountered removing the cells from the separation electrode array. Although 

the majority of the cells were released with the cessation of the +veDEP signal, or the 

application of a -veDEP to the separation electrode array, a small percentage (approx. 5-10%) 

of the cells remained stubbornly attached to the electrodes. The addition of the Fico11400 (MW 

= 400,000) to the suspending media had the beneficial effect of reducing the number of trapped 

cells. The mechanism by which this occurs is not known, one hypothesis is that this large 

polysucrose molecule forms a molecular layer between the cells and the channel walls, on top of 

which the cells sit when held at the electrodes, thus acting as a cushion keeping the cells from 

intimately contacting the glass or electrode surfaces (the non-stick effect of the Ficoll containing 

medium requires further investigation). 

It has been shown that low numbers of particles can be isolated from large volumes of liquid 

allowing the continuous separation and concentration of a variety of particle types. THP- I cells 

were captured and concentrated with almost 100% efficiency from dilute samples. Although the 

experiments involved the isolation of particles of a single type from large volumes the ability of 

the system to isolate rare particles from mixtures of particles follows from this. All the particles 

are initially focussed to the centre of the channel and therefore, if the particles are sufficiently 

well distributed so that they do not interact and the relative DEP forces on the particles are 
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suitably different, rare particle isolation should be possible. Similar experiments were carried 
out using low numbers the sub-micron (460nm) latex beads showing that they too can be 
focussed in the device, however the disruptive effect of Brownian motion stops these particles 
from banding on the separation electrode array. The ability of the system to concentrate low 

numbers of these particles from large sample volumes was demonstrated. 

Unfortunately, time did not allow for the full charactensation of the separation system and 
therefore the data needed to describe the resolution of the device is not available. The work of 
the next chapter attempts to address this point, but by the very nature of the clinical samples 
used, the exact number of rare cells in these samples is not known. 

7.6 Conclusions 

The system described can be used for the continuous isolation and/or concentration of rare 

particles from large samples as well as separate single cell types from binary mixtures of 

particles. Further work is required to optimise the system in order to increase the enrichment 
factor with the aim of allowing the isolation of subpopulations of cells which are otherwise 

impossible to separate using the traditional antibody based techniques. The example of the 

trophoblast in the maternal blood arises once again and is investigated in chapter eight. The 

numbers and proportions of the trophoblast types within the maternal circulation may vary with 

gestation; this physiological trait could possibly be investigated using a dielectrophoretic 

isolation system of the type described here. 
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Chapter Eight: Isolation of foetal cells from maternal blood - 

real systems and associated technical considerations 



Introduction 

The work presented in this chapter follows on from that of chapter seven, and was designed to 
test the ability of the DEP separation system to Isolate rare cells from biologically relevant 
samples. The aim of these experiments was to isolate trophoblast (foetal cells) from maternal 
blood samples. A number of maternal blood samples were donated for these experiments. These 

samples, following some pre-processing, were passed through the DEP separation devices as 
described in the previous chapters. The results of the experiments are presented and discussed in 

this chapter. 

As discussed earlier (chapter one) there are a number of foetal cell types present in the maternal 
blood. All of these cells could potentially be used for prenatal diagnostic purposes if a method 

could be found to reliably isolate them from maternal blood samples. Work was undertaken to 

characterise the dielectric properties of the foetal nucleated RBC (ffiRBC). The ffiRBC is unique 

among the other foetal blood cell types found within the matemal blood. Whereas most of the 
foetal blood cell types have an abundance of matemal counterparts in the matemal blood 

supply, the nucleated RBC (nRBQ is rare in the matemal circulation (in general nRBCs are rare 

in adult blood). The dielectric properties of nucleated RBCs (nRBQ were calculated using data 

obtained from crossover measurements made on nRBCs isolated from umbilical cord blood (i. e. 

of foetal origin). 

A major problem with all biological material is that it has a tendency to adhere to surfaces. 

Many cell types require solid substrates on which to grow and multiply, they therefore tend to 

adhere to a surface when they come into contact with it. The final part of this chapter looks at 

the results of work done to chemically alter the channel and electrode surfaces. The aim was to 

reduce the non-specific adhesion of blood cells (i. e. the non target cell type) within the device, 

while at the same time enhance the affinity of the channel surfaces for the target cell type (i. e. 

the trophoblast). The adhesion properties of a variety of molecules were investigated using 

Interference Reflection Microscopy (IRM). 

8.1 Isolation of foetal cells from maternal blood samples 

The isolation of foetal cells from the maternal circulation for prenatal diagnostic purposes was 

first proposed by Walknowska et. al. in the late 1960's [1]. Many groups have investigated the 

possibility of recovering these cells from the maternal circulation as an alternative, non-invasive 

method of obtaining foetal cells for cytogenetic analysis. The background to this work is given 

in chapter one. Presently, there are no antibodies specific to foetal cells that would allow these 

cells to be reliably isolated from samples of matemal blood. As such, a major part of the work 
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presented in this thesis was directed toward developing a novel DEP based separation method 
capable of isolating rare cells from heterogeneous mixtures. As discussed in the previous 
chapters, the DEP separation technique relies upon the inherent difference in the dielectric 

properties of the trophoblast cell type, and those of the peripheral blood mononuclear cells. The 

technique therefore dispenses with the need for complex and expensive, and often unavailable 
labelling protocols and techniques. 

Trophoblast cells isolated from a variety of sources; e. g. whole placenta, placental membranes, 

and retroplacental blood, have been shown to have markedly different dielectric properties when 

compared to those of the PBMCs sub-populations present in the maternal blood [2]. These 

distinct characteristics are attributable to highly folded cellular membrane of the trophoblast 

cells (figure 7-6 shows such folded membrane morphology in what is thought to be a pair of 

trophoblast cells). This suggests that the trophoblast cell type may be amenable to isolation from 

samples of maternal blood using techniques such as DEP. Artificial Mixtures of trophoblast 

cells (isolated from placental membranes), and PBMCs were made up in known ratios. These 

mixtures were passed through the DEP separation system in order to test the feasibility of DEP 

separation. The results of these experiments presented in chapter seven demonstrate that, in 

principle, the enrichment of trophoblast (JMB2 positive cells) from blood cells is possible using 

DER However, the percentage of trophoblast cells present in these samples was relatively large 

( ý4 0%) when compared with the numbers typically reported for maternal blood (I - 10 per ml of 

whole blood). 

As well as the non-representative cell ratios used in the experiments presented in the previous 

chapter, there is also some doubt as to whether the trophoblast cells used in the model system 

are truly representative of the trophoblast cells that make their way into the maternal circulation 

and are found in the maternal blood. That is to say, the dielectric properties of the trophoblast 

cells, as measured by Chan et. al. [2] may be different from those of the cells present in the 

maternal circulation. Furthermore, the enzymatic digestion protocol used to isolate the 

trophoblast cells from the placental membranes was rather aggressive, and potentially damaging 

to the cells. This may have altered the dielectric properties of the trophoblast cells, and could 

affect their responses to the applied electric fields. There is therefore some doubt as to the 

relevance of the dielectric properties of the cells presented in the paper by Chan et. al., to the 

cells present in the maternal blood, despite having measured the properties of trophoblast 

derived from a number of sources. 

A number of maternal blood samples were therefore obtained from healthy volunteers, and these 

were run through the DEP separation system in order to test the system's ability to isolate 

trophoblast from matemal blood samples. 

222 



8.2 Maternal blood samples 

Women who had undergone prenatal diagnostic testing, and therefore knew the sex of their 
baby, were asked to donate blood samples if they were carrying a male foetus. A number of 
matemal blood samples were collected. These were pre-processed as described below and 
passed through the DEP separation system. 

The blood samples were pre-processed to remove the majority of the RBCs (as described in 
chapter three), and a MACS protocol was used to remove as many leukocytes (CD45' cells) and 
monocytes (CD14' cells) as possible. The remaining cells were suspended in separation medium 
at known conductivity and the samples were passed through the DEP separation system under 
defined operating conditions. The various post-sort fractions were analysed using PCR to detect 
Y chromosomal DNA (i. e. evidence of male and therefore foetal cells), or the cells were 
allowed to sediment onto glass slides and ICC was carried out. ICC involved labelling the cells 

with the trophoblast specific antibody JMB2 [34], the details of which are described in chapter 
three. This enabled identification of trophoblast cells when the samples were viewed using a 

microscope. 

8.2.1 Methods 

Approximately 20ml of blood was collected from each pregnant female volunteer into sterile 
Vacutainer TM tubes containing EDTA anticoagulant. The red blood cells were removed by 

density gradient centrifugation, using a Histopaque 1077 gradient, as described in chapter three. 

The MACS cell separation system was then used to remove the majority of CD45' and CD14+ 

cells (i. e. leukocytes and monocytes respectively) from the sample. The monocytes cells were 

specifically targeted for removal using the CD14 conjugated MACS beads as these cells have 

been shown to have similar dielectric properties to that of the trophoblast cells [2,3]. To reduce 

the total number of maternal cells in the sample, CD45 conjugated MACS beads were used to 

remove as many leukocytes as possible from the sample. This pre-processing was carried out to 

reduce the sample volume from 20ml (maternal blood sample) to approximately Iml, thus 

allowing the entire sample to be processed in a reasonable time (<I hour) using the 

experimental DEP separation devices. 

The cells remaining in the samples after density gradient centrifugation and MACS pre- 

processing steps were resuspended in DEP separation media, and the conductivities of the 

samples adjusted to approximately 30mSm-1, with a pH of between 6.8 and 7.4. 

Experiments were carried out as described in chapters six and seven, with specific experimental 

conditions for each experiment given in table 8-1. The protocol was as follows: the positive 
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fractions (i. e. those cells retained by the separation electrode) were collected. Each of the 
collected samples were split into two; one portion was used for the PCR analysis, the cells in the 
rest of the sample were sedimented onto glass microscope slides and subjected to 
immunocytochernical (ICC) labelling. The PCR work was carried out in collaboration with staff 
at the Duncan Guthrie Institute, Yorkhill Hospital Glasgow. Primers specific for human Y- 

chromosome DNA were used, with the reactions performed as described in the protocol given in 
chapter three. The post reaction samples were then run on a gel electrophoresis system, and the 
DNA bands visualised autoradiographically. Adult male and female PBMC samples were used 
as controls with each of the PCR reactions. 

The frequency and applied voltages for the experiments were chosen according to values for the 
properties of the cells reported in the literature [2,4,5]. A computer program wTitten in 
MATLAB was used to calculate the optimal frequency for separation of the trophoblast and 
PBMCs. Figure 8-1 shows a typical plot obtained for a suspending medium conductivity of 
30mSm-'. The plot illustrates the frequency range over which the separation of trophoblast from 

PBMCs should be possible. 
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Figure 8-1. Force frequency plot showing the real part of the Clausius -Mossotti factor for trophoblast 

and T- and B-lymphocytes versus frequency for a suspending medium conductivity of 30mSm-1. The 

shaded region shows the band of separation frequencies. 

From figure 8-1 it can be seen that for a suspending medium conductivity of 30mSm-', applied 

frequencies of between 8OkHz and 180kRz would result in trophoblast cells experiencing a 
iencing a -veDEP force. Separation experiments were +veDEP force, and lymphocytes expen 
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therefore carried out using frequencies within this region. The conductiVities of the cell 

suspensions, applied field frequencies, applied peak voltages, and fluid flow rates for the 
individual experimental runs are shown in table 8-1. 

8.2.2 Results 

Five experimental runs were carried out using blood donated by five women, all of whom were 

in the third trimester of their pregnancies and expecting baby boys. Table 8-1 shows the 

experimental conditions and the results obtained using PCR and ICC (see section chapter 3 for 

details). 

Expt. PCR ICC (+ve) Frequency V. (peak voltage) Flow rate a,, 
1 -ve 0 cells lOOkHz 5V 0.6ml/hr 30.2mSm-1 

2 -ve 0 cells l20kHz 6V 0.6ml/hr 37.8mSm-' 

3 -ve 3 cells l20kHz 6V 0.5ml/hr 33. OmSm-' 

4 -ve 0 cells l20kHz 6V 0.5ml/hr 30.8mSm-' 

5 -ve 0 cells l20kHz 6V lml/hr 30.9mSm-1 

Table 8-1. Data from matemal blood samples. 

Of the five experimental runs carried out using maternal blood samples none produced a 

positive result with the PCR using primers for Y-chromosome DNA (see section 3.8). However, 

in experiment 3, a small number of JMB2 positive cells were seen on the ICC processed slides, 

suggesting the presence of trophoblast in the sorted fraction. The positive ICC sample was 

handed over to collaborators at the Duncan Guthrie Institute, Yorkhill for FISH analysis. Owing 

to the technical difficulties of performing FISH analysis on cells that have been previously 

labelled using the ICC protocol (specifically the DAB reaction), the results were inconclusive. 

Initial experiments attempting to isolate foetal trophoblast cells from maternal blood samples 

were carried out in collaboration with Dr. K Chan. These experiments were conducted using a 

DEP separation system similar to the one developed for this thesis, but without the initial 

focussing electrode array. Of the 10 experimental runs conducted on matemal blood samples 

using this system, a number of positive results were obtained using PCR to detect Y- 

chromosomal DNA. The PCR products for these experiments, as well as that for the controls, 

are shown on the gel reproduced in figure 8-2. It should be noted that these matemal blood 

samples were obtained post-partum (i. e. following delivery), rather than 3" trimester as above. 
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Figure 8-2. PCR results from maternal blood samples passed through an earlier DEP separation system. 

In three samples, DNA from the X- and Y-chromosomes is present, indicating the presence of 

male (i. e. foetal) cells in the sample. In the first positive result, the Y signal was relatively 

strong, requiring 30 rounds of PCR to obtain sufficient amount of the amplified product for 

visualisation on the gel. The other two positive results (to the right of the first) were only visible 

after a further 10 rounds of PCR amplification (i. e. 40 rounds in total) after which a faint band 

showing Y product became visible. This requirement for further rounds of PCR, to produce 
bands in these two male samples, is probably due to smaller amounts of foetal DNA being 

present (i. e. a lower number of foetal cells) in these samples. Ideally an additional control for 

the extra PCR rounds would be required to ensure the reliability of this result. 

8.2.3 Discussion 

Although all the experiments carried out on maternal blood samples using the DEP separation 

device with the focussing section were negative for Y-DNA PCR, the fact that one sample 

showed JMB2 positive cells suggests that some foetal cells may have been isolated by the 

separation system. There are a number of possibilities as to why the system failed to isolate 

more foetal cells: 

1. very few or no foetal cells in the sample 

2. cells were lost in pre-processing steps 

3. cells were lost in tubing, stuck in device, etc. 

4. the DEP system may not be sensitive enough 

Owing to the small number of experiments where matemal blood was used (five), and the 

known variability of foetal cell numbers in the matemal circulation, no firm conclusion can be 

reached as to whether the DEP separation system is sufficiently sensitive to extract these rare 
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cells. The positive PCR results, based on work carried out using an earlier design of electrode 
suggests that DEP isolation of these cells may well be possible. The number of trophoblast 

present in the matemal circulation is known to vary throughout the course of the pregnancy and 
varies with the gestational age of the foetus [6-8]. However, as these experiments used blood 

samples from mothers who had already given birth, the levels of foetal cells present in these 

samples was probably significantly higher than that commonly reported in typical, healthy 

pregnancies pre-partum [9,10]. 

It should be noted that the specificity of the JMB2 antibody, although excellent with respect to 
PBMCs may result in the labelling of other epithelial cells (e. g. skin cells) present in the sample. 
For conclusive evidence of the foetal origin of the cells isolated by the DEP system, analysis by 

FISH would be required. 

More experimental runs are required to ascertain whether the DEP separation of trophoblast 
from matemal blood is possible using the current separation system. The uncertainty about the 

true DEP characteristics of the foetal cells in the matemal circulation, and possibility of loss of 

already rare cells during the sample pre-processing steps (e. g. loss of cells in the density 

gradient) need to be investigated. Ideally a large number of maternal blood samples require to 

be run through the DEP separation system, under a variety of experimental conditions. The post 

sort fractions of these experiments could then be analysed. 

In order to improve the chances of isolating foetal cells from maternal blood samples, other 

foetal cell types should be targeted as well as that of the trophoblast. As there is no data in the 

literature regarding the dielectric properties of the other foetal cell types known to be present in 

the materrial blood during pregnancy, it was of interest to study these cell types. The next 

section discusses measurements that were carried out to measure the dielectric properties of 

foetal nucleated RBCs derived from cord blood. 

8.3 Measurement of the dielectric properties of foetal erythroblasts 

As described above, trophoblast are likely to have distinct dielectric properties compared with 

PBMCs. Foetal blood cells, on the other hand, would be expected to have similar dielectric 

properties to that of their maternal counterparts making DEP separation impossible. The case of 

the fhRBC is somewhat different. nRBCs are present in both the maternal and foetal blood 

supply. However, nRBCs are rare in the maternal blood, and enrichment for nRBCs to produce 

a purified sample of ffiRBCs from a maternal blood sample could still be extremely useful. The 

number and purity of ffiRBCs derived from maternal blood increases with increasing gestational 
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age, ranging from 50 to 500 ffiRBCs per 20ml blood sample, and from 0.1 to 1% (ffiRBCs as a 
percentage of the total maternal nRBCs population), from the 6th week of gestation to term 
[11]. 

The number of ffiRBCs also varies depending upon the health of the mother and that of the 
foetus. For example, mothers carrying a foetus with an aneuploide (e. g. extra X or Y 

chromosomes, or other genetic abnormality) have an increased likelihood of foetal cell transport 
into the maternal blood, and therefore an increase in the number of foetal cells present in the 

maternal blood. Pregnancies with pre-eclampsia show an increase (up to a factor of 10) in the 

number of ffiRBCs [12]. 

Durrant et. aL [13] demonstrated the usefulness of targeting multiple foetal cell types. The 

trophoblast cells were sorted using paramagnetic beads labelled with a novel monoclonal 

antibody (Mab34). This was followed by triple density gradient enrichment to remove maternal 
lymphocytes and red blood cells. Nucleated red blood cells (nRBQ were sorted by incubation 

with ferromagnetic particles coated with CD71 (an antitransferrin receptor monoclonal 

antibody), and separation was carried out using a mini-MACS column. Sorted cells were sexed 

using nested PCR for the Y chromosome and the results compared with the karyotypic analysis 

of the CVS. They found that the sensitivity in determining a male pregnancy by isolating 
ffiRBC alone was 38% and isolating trophoblasts alone was 39%. Sorting for both cell types 

correctly predicted a male pregnancy in 10/18 or 56%. Of the 10 males correctly identified, 3 

were diagnosed using nRBCs alone, 3 using trophoblast alone and 4 with both cell types. 

This section describes the results of crossover measurements made on nRBCs isolated from 

umbilical cord blood samples. Other foetal cell types have been shown to be present in the 

maternal circulation, and these may also have suitable dielectric properties, which would allow 

their separation from maternal blood using dielectrophoretic techniques. As discussed in chapter 

one, there are potentially a number of different foetal cell types in the maternal blood, only one 

of which has had its dielectric properties characterised. The dielectric properties of human 

trophoblast cells were characterised by Chan et. al. [2], and this information was used to 

calculate suitable applied field frequencies for the DEP separation experiments of this chapter, 

and those of chapter seven. In order to investigate the dielectric properties of other foetal cell 

types, work was carried out in collaboration with Dr Diana W. Bianchi at the New England 

Medical Center, Tufts University, Boston. The aim of this collaboration was to characterise the 

dielectric properties of the foetal nucleated red blood cell (ffiRBC). Dr Bianchi's laboratory is at 

the forefront of research into the basic physiology of the ffiRBC, and has a particular interest in 

developing methods for isolating ffiRBC from the matemal blood [ 14-2 1 ]. 
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8.3.1 Materials and methods 

The enrichment procedure described here concentrated the cell sample for nucleated RBCs, and 
not specifically for fiiRBCs. However, as the blood samples were obtained directly from the 
foetal cord, the majority of the cells should be foetal in origin, and therefore most of the nRBCs 
present in the sample can be assumed to be ffiRBCs. 

Cord blood was collected into sodium citrate tubes, and processed as described in chapter three. 
Briefly, the blood was pre-processed by spinning over a Ficoll 1119 density gradient and the 

mononuclear cell layer was collected (see section 3.1 for further details). The denser Ficoll 1119 

gradient was used instead of the standard 1077 gradient to ensure that none of the nfRBCs 
present in the sample were lost within the gradient [22]. nRBCs unlike RBCs are mononuclear 
cells (i. e. they have a nucleus) and as such are less dense than erythrocytes, to which they are 
the precursor. Following the density gradient centrifugation step, the nRBCs are found in the 
buffy coat layer along with the other mononuclear cells. 

A two-step MACS protocol was used to deplete PBMCs from the sample and enrich for nRBCs- 
To achieve this,, the collected mononuclear cell layer was washed by re-suspending the cord 
blood sample 1: 1 in Hanks buffered saline solution (HBSS) and centrifuging at 500g for 

15mins. The pellet was resuspended in Iml HBSS with 0.5% BSA and 5MM EDTA. 30ý11 of 
CD14, CD15 and CD45 conjugated MACS beads were added to the sample, and incubated for 

30min at 4'C. The sample was then passed through the MACS separation system. Cells not 

retained by the magnetic field were collected, and incubated with 30gl of CD71 conjugated 

MACS beads. These were then passed through the MACS system once again (using a fresh 

column). This time the cells retained by the magnetic field were collected. 

The use of the combination of CD14, CD15 and CD45 conjugated MACS beads (Myltenyi 

Biotech, Germany) allowed the removal of the majority of the white blood cells from the 

sample. CD71 (Myltenyi Biotech, Gennany) was then used to positively select for nRBCs, as 

this label targets the transferrin receptor present on the surface of nRBCs but not RBCs. This 

nRBC enriched cell sample (CD14-, CD15-, CD45-, and CD71) was split into two aliquots. The 

cells in the first aliquot were used for FACS analysis, the rest of the sample was resuspended in 

separation medium and used for DEP crossover measurements. For FACS analysis and sorting, 

the cells were fixed in 4% formaldehyde in HBSS and fluorescently labelled with fluorescent 

probes specific for leukocytes (anti -CD45 -FITC), DNA (Hoechst 33342), and the foetal protein 

y-haemoglobin (made in house by a collaborator), according to the protocols described in 

chapter three. Two cord blood samples were obtained and processed as described above. Figure 

8-3 shows the FACS data obtained for the nRBC enriched sample, each dot represents the 

fluorescence from a single cell. Region RI was chosen as being the fnRBC Population as it 
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selects for cells that label positive for foetal haemoglobin and also negative for leukocyte 

antigens. From the data it is apparent that there are very few cells labelling as leukocytes in the 

population. The majority of the events detected and showing up in the lower left hand sector of 
figure 8-3 are likely to be non-nucleated (i. e. mature) erythrocytes or dead cells, both of which 
are distinctly different in appearance from fnRBC when viewed down the microscope. 
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Figure 8-3. FACS data showing the purity of fiiRBCs derived from cord blood following enrichment 

using density gradient centrihgation, and the CD14-, CD15-, CD45-, and CD71+ MACS protocol. Region 

Rl contains cells labelled as fhRBCs. 

The samples were analysed using a FACS sorter to ascertain concentration of ffiRBCs in the 

sample. The FACS data of figure 8-3 shows that, following the enrichment protocol described 

above, approximately 30% of the cells in the sample were fhRBCs. Two different cord blood 

samples gave similar purities for fiiRBCs following pre-processing and labelling steps. To 

conclusively demonstrate that the cells gating in region R1 of the FACS plot were foetal in 

origin, cells from this region were sorted onto glass slides using the FACS machine. The cells 

were identified for sorting by gating on the fluorescence signal associated with the fluorescence 

label of the gamma-chain of foetal haemoglobin (anti-HbF), and the fluorescence of the nuclear 

staining (Hoechst 33342). Additionally, the cells had to be CD45 negative (i. e. non leucocytes). 

A fluorescence image of a labelled ffiRBC isolated with the gating conditions described above 

is shown in figure 8-4. This cell was sorted onto a glass slide and subsequently FISH labelled 

(see chapter three), to demonstrate the cell's foetal nature. The X- and Y-chrOmosomes were 

labelled and can be seen as the pale blue and pink spots within the cell nucleus. The diffuse blue 

staining is DNA labelled with the Hoechst dye, and the orange halo around the cell is the 7- 

hemoglobin. All the cells sorted onto the glass slides, under the above conditions, exhibited 

similar labelling. 
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Figure 8-4. Fluorescence image of a fhRIBC showing the X- and Y-chromosomes (pale blue and pink 

respectively), the nucleus (blue) and the y-haemoglobln (orange on the inside of the cellular membrane). 

The cells not used for FACS analysis, were suspended in a suspending medium of known 

conductivity. The osmolality of the separation medium could not be measured (and therefore 
finely adjusted), due to the lack of an osmometer in the Boston lab. There is therefore some 
doubt as to the exact value of the suspending medium osmolality, but should be in the region of 

-290mOsm-'. The suspending medium consisted of dHO with 9% (w/v) sucrose, 0.1% (w/v) 

glucose, 0.8% (w/v) BSA and I mM EDTA. The pH (6.8-7.2) and conductivity were adjusted by 

the addition of phosphate buffer. 

30ýtl of the cell suspensions at each of the conductivities (in the range 20 - l20mSm-') were 

applied to an array of interdigitated castellated micro-electrodes (similar to those shown 

schematically in figure 1-10) patterned onto a glass microscope slide. These electrode arrays 

had a typical feature size of 50pm. A coverslip was placed over the suspension allowing the 

cells to be viewed using a microscope. A signal generator was used to apply a voltage of 

approximately 5 Vpp to the electrodes in the I OOkHz -I MHz frequency range. Adjustment of the 

frequency caused the cells to undergo either +veDEP or -veDEP (i. e. movement to or from the 

electrode edges), at the crossover frequency point the cells experienced neither +ve or -veDEP 

and remained stationary with respect to the electrode edge. Increasing the frequency caused the 

cell to be attracted to the electrode edge and a decrease in frequency caused the cell to be 

repelled from the electrode edges. The motion of the cells was observed as the applied field 

frequency was varied and the crossover frequency for individual cells noted. Visual 

identification of the cells used for the cross-over measurements was carried out to select for 

ffiRBCs, with identification being based on the rejection of RBC (bi-concave disc morphology) 

and cell debris. 
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Control samples were also run to ascertain whether the presence of MACS beads on the surface 

of the cells change the cell's dielectric properties. Female RBCs were obtained, from a 

volunteer, and crossover measurements made on these cells with and without glycophonn-A 
(GPA, an erythrocyte specific antigen) conjugated MACS beads attached to their surface. 

8.3.2 Results and discussion: DEP crossover measurements on fnRBCs 

Measurements of the crossover frequencies were performed on multiple cells (typically 15-20 

cells) for various measured suspending medium conductivities. Two samples of cord blood were 

collected. The first, sample 1 was used for crossover measurements with suspending medium 

conductivities in the 70 120mSm-1 range. The second sample (sample 2) was used for 

crossover measurements in the lower conductivity region 20 - 40mSm-1. The measurement data 

is plotted in figures 8-5 and 8-6. The size of the cells was measured as a= 3ýtm. 
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Figure 8-5. Variation of crossover frequency with suspending medium conductivity for nRBCs, and 

RBCs (with and without attached MACS beads). 

8.3.2.1 RBC controls 

Equation 2-60 in chapter two gives the value for the DEP crossover angular frequency. This can 

be written in tenns of DEP crossover frequencyf, as in equation 8-1 below. 
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where c is the permittivity and a is the conductivity, and the subscripts p and m represent the 
particle and the medium respectively. 

Equation 8-1 can be simplified to the form [23], 
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where CSmem ý-- 6mem /d is the effective specific membrane capacitance and GSMem ý 47Smem /d is 
the specific membrane conductance, where d is the membrane thickness, and em, m and asmem are 
the membrane permittivity and conductivity. Emem is derived from the slope of the graph in 
figure 8-5 and Usmem is derived from the horizontal axis intercept using the following relations 
[23,24]q 
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The crossover measurements for the control RBCs resulted in a calculated membrane 
-2 capacitance of 2lmFM . This value is quite different to that expected from previous studies 

-9mFM-2 [24]. The reason for this is unclear, but is probably due to sub-optimal suspending 

medium conditions. RBCs are highly susceptible to suspending medium osmolality, more so 
than most nucleated cell types. Unfortunately, due to the lack of an osmolality metre in Dr 

Bianchi's lab, there was no way of measuring the osmolality of the suspending mediums used 
for these experiments. Any variation in the medium osmolality away from the ideal, iso-osmotic 

condition would result in the RBCs swelling or shrinking. This stress on the cells could account 
for the anomalous results. The use of RBCs as a control was therefore not a good choice. The 

ability of nRBCs to cope with changes in the osmolality conditions is not known. However, one 

would assume that nRBCs would be less affected by osmolality variations than the RBCs, due 

to the presence of a nucleus and the small cytoplasmic volume of this cell type. 

233 



8.3.2.2 R-BCs with GPA-conjugated MACS beads 

The control sample containing the RBCs with conjugated MACS beads had a similar membrane 
capacitance to that of the naked RBCs. This suggested a common problem with the suspending 
medium osmolality. The MACS beads are typically 20nm in diameter. There was no observable 
difference in the dielectric properties of the RBCs, with or without the GPA (Glycophorin A) 

conjugated MACS beads attached to the cell's surface. Typically, an erythrocyte has between 
2x 10' and Ix 10' GPA receptors on its cell membrane. Therefore it is to be expected that nRBCs 
have a similar number of CD71, transferrin receptors on their surfaces, and consequently a 
similar number of MACS beads would be expected to be present on the surface of the nRBCs. 

The lack of effect on the dielectric properties, with MACS beads attached to the surface of the 
RBCs, is in agreement with observations made on cells derived from the monocytic cell line 

THP-1 (see chapter six). The crossover frequency of THP-1 cells was observed, with and 

without CD14 MACS beads attached to their surface. No difference in the crossover frequency, 

and therefore no change in the cell's dielectric properties were observed with the MACS beads 

attached. Measurements of the electrophoretic mobility of these cells, with and without the 

MACS beads attached, showed no change when measured using a zeta potential analyser 
(DELSA440, Beckman Coulter, (data not shown)). Similar observations have been reported in 

the literature, Yang et. al. [5] describe DEP separation of the main leukocyte subpopulations 

using DEP-FFF (see chapter one). In these experiments they observed no difference in the 

elution time of the cells fTom their DEP-FFF device for cells with or without MACS beads 

attached to their surfaces. Their separation system relies upon -veDEP forces to levitate the 

cells within the flow channel. Differences in the mean levitation heights of the different 

leukocyte subpopulation within the flow channel, results in the cell populations having different 

mean velocities in the channel, and therefore different elution profiles. One would expect any 

changes in the dielectric properties, as a result of the attachment of the MACS particles to the 

cell's surface to be seen as a change in the elution profiles. As these changes were not observed, 

it was concluded that the attachment of the MACS beads has no observable effect on the 

dielectric properties of a cell under the experimental conditions used. 

8.3.2.3 fnRBC 

Only approximately 30% of the cells in the processed cord blood samples (used for crossover 

measurements) were ffiRBCs (see FACS data of figure 8-3). Many of these cells were likely to 

have been contaminating cells not removed by the pre-processing steps. Visual identification 

and selection of nRBCs was therefore necessary for the crossover measurements. 
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The data of figure 8-3 shows that there is a difference in the measured membrane capacitance of 
the fnRBCs, compared with that of the typical mature RBCs (i. e. -9mFm-'). This would be 
expected as nRBCs have quite different morphology to RBCs. Whereas "Cs have a bi- 
concave disc morphology, nRBCs and fnRBCs are spherical and have an average radius of 
approximately 4gm making them similar in size and shape to leukocytes. 
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Figure 8-6. Variation of crossover frequency with suspending medium conductivity for nRBCs. The 

slope of higher gradient was calculated using the crossover data obtained from the three highest 

suspending medium conductivities. 

Figure 8-6 shows the variation in crossover frequency with suspending medium conductivity for 

nRBCs. The lines of best fit are shown using the crossover data obtained combining both 

samples, and using only sample 1 (i. e. the three highest medium conductivities). The results of 

the crossover measurements for both cord blood samples (samples I and 2) gives a value of 

17.7mFM-2 for the specific membrane capacitance. Previous studies have demonstrated the 

detrimental effect of ion leakage from cells undergoing electrorotation and DEP crossover 

measurements while suspended in media of low ionic strength (e. g. [25]). The duration over 

which the cells remained in the experimental media while the crossover measurements were 

being made, could be expected to have resulted in substantial changes to the cell's physical and 

dielectric properties. Using the data obtained from only sample one gives a value of 13.4nlFM-2 

for the membrane capacitance. This figure suggests that the dielectric properties of the fiiRBC 
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are not significantly different from that of the other blood cell types, considering only the 
preliminary results obtained using sample one. 

If one considers both samples I and 2, and takes the value at which the line of best fit intersects 
the horizontal axis, the specific membrane conductance is calculated to be 127,000 SM-2 . The 
data from sample I is too scattered to give a meaningful value of specific membrane 
conductance. Typical values for the specific membrane conductance of blood cells are given in 
the literature and are of the order 3300 SM-2 for leukocytes [2,3]. 

Unfortunately, the cell samples measured were contaminated with other cell types, and although 
visual identification of the sample was used to try and select for ffiRBCs, inevitable errors will 
have been made. It might be expected that a number of distinct populations, representing 
different cell types with different dielectric properties, would appear from the data if the number 
of cells measured had been greater. However, as the sample size was relatively small, with 
approximately 15-20 cells being measured at each of the different conductivities, this effect 

remains hidden. The relatively high value of 17.7mFM-2 for the membrane capacitance, suggests 
that the ffiRBC type may also be amenable to isolation using the DEP separation methods 
described in this thesis. The more reasonable value of 13.4mFM-2 would suggests that the 
ffiRBC has dielectric properties similar to that of the human leucocytes, thus making the 

prospects for separation of ffiRBCs from maternal blood using the DEP methods rather poor. 

8.3.3 Conclusion 

Further work is required in order to overcome some of the problems associated with the 

measurements made on the ffiRBC samples. However, the data is suggestive of a slight 

difference in the dielectric properties of these cells compared with that of the average PBMC. 

Whether DEP separation techniques would be sufficiently sensitive to isolate these cells from 

maternal blood samples is therefore still unclear. Due to the work having been carried out while 

visiting another lab it was not possible to take this work further. 

8.4 Surface functionalisation of the separation chamber 

Application of a +veDEP force within the separation device results in the collection of cells at 

the edges of the energised electrodes. Cells also collect over the electrodes and in the spaces 

between the electrodes. The cells are therefore held in close proximity to the channel wall under 

the influence of the +veDEP force for the duration of the experiment (30min - 60min), allowing 

time for interaction with the channel surfaces. Cessation of the applied electric field, or 

application of a -veDEP force field ejects the majority of these cells from the electrode surfaces, 
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but it was found that 5-10% of the cells consistently remain attached to the surface (see section 
7.5-4). This adhesion of cells occurs non-specifically and disrupts experiments. In order to 
facilitate the release of these cells from the chamber surfaces, and allow the retrieval of all the 
cells from the separation device, a number of approaches involving the alteration of the flow 

channel surfaces were investigated. 

The investigations had a two-fold aim; firstly to alter the device surfaces in order to reduce the 

non-specific adhesion of blood cells, and secondly to attempt to increase the system retention 
specifically for trophoblast cells. As a model system, glass coverslips were functionalised by the 

addition of various molecules. These included BSA, human anti-CD45, whole laminin (derived 
from human placenta), and a laminin peptide fragment. 

Loke et al. [26-28] has shown that human extravillous trophoblast cells could be isolated from a 

mixture of PBMCs using lammin-coated magnetic beads. Other extracellular proteins (e. g. 
fibronectin) have been shown to interact with trophoblast but not as specifically as laminin. The 

effect of chemically functionalising the inner surfaces of the separation chamber with these 

molecules was investigated for this thesis. 

A non-stick polymer poly(MPC-co-33-BMA) was also tested for its anti-adhesive properties. 
The polymer is synthesized from 2-methacryloyloxyethyl phosphory1choline (MPQ and butyl 

methacrylic acid (BMA), and forms a polymeric surface coating when applied to the glass 

substrate. The polymer coating is composed of phospholipid polar groups and has a structure 

similar to a phosphotidy1choline biomembrane. The glass surface of the separation device, when 

coated with the polymer, presents a biomimetic surface to approaching proteins, platelets and 

cells. This family of polymers have been shown to have excellent in vivo non-thrombogenicity. 

No studies to date have investigated the polymers usefulness as an anti-adhesive coating with 

respect to cell types other than that of blood cells, with the majority of the studies concentrating 

on the polymer's efficacy for reducing adhesion of platelets. 

8.4.1 Materials and methods 

Glass coverslips were functionalised as described below. Suspensions of trophoblast and 

suspensions of PBMCS were made up at defined cell concentrations in either PBS or the Ficoll 

free dielectrophoretic separation medium (see section 3.11.2). The samples were pipetted onto 

the functionalised glass coverslips and the cells left to sediment onto the slides for 30 minutes. 

This time was chosen to simulate the time cells would spend in the separation chamber during a 

typical separation experiment. The coverslips were washed gently and the percentage of cells, as 

a measure of the original cell concentration, adhering to the glass was determined by counting. 
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The strength of adhesion of individual cells was observed using interference reflection 
microscopy (ERM) (see below). The distance between the cell and the substrate has been shown 
to correlate with the strength of adhesion of the cell to the substrate [33]. 

8.4.1.1 Preparation of PBMCs and trophoblast 

Peripheral blood samples were obtained from both healthy male and pregnant female 

volunteers, according to the protocol given in chapter three. Peripheral blood mononuclear cells 
(PBMCs) were obtained by diluting whole blood 1: 2 with PBS (IMM EDTA). Samples were 
processed on a Histopaque 1077 gradient with the buffy coat collected, washed, and the cell 

pellet resuspended in PBS or separation medium (dH20with 9% w/v sucrose, 0.1% w/v 

glucose, 0.8% w/v BSA and ImM EDTA). 

Trophoblast cells were obtained from placental membranes using the enzymatic digestion 

technique described in chapter three. Placentas were obtained from healthy non-smokers 

undergoing caesarean section. The cells were resuspended at known concentration in PBS or 

separation medium. Cell counts were performed using a haemocytometer. The dielectric 

separation media had pH 6.8-7.2 and osmolality -290mOsm-'. 

The surface of the glass coverslips were functionallsed as described below, and the cells were 

allowed to sediment out of solution onto these surfaces. After a predefined time (30 minutes), 

the slides were washed gently in PBS and the cells were fixed with 2% formaldehyde in PBS. 

The number of cells adhering to the glass substrates was counted using an inverted microscope, 

in phase contrast. These same substrates were then used for the ERM and SEM work. The SEM 

samples required an additional dehydration protocol (see chapter three). 

8.4.1.2 Surface functionalisation 

Glass coverslips (22mm x 22mm x 0.1 mm) were cleaned in Caro's acid (7: 1, H2SO4: H202) for 

twenty minutes, to remove any organic matter and expose the surface hydroxyl groups. 3- 

Aminopropyltrimethoxysilane (APTS) (Sigma, A1435) was dissolved in 95% ethanol, 5% dH20 

to give a 1% solution. The glass coverslips were immersed in the APTS solution for 2 minutes. 

This provided surface amino groups for attachment of secondary molecules. 

Romagnano et. al. [29] reported experiments carried out to study the interaction of trophoblast 

with laminin in vitro. They found that trophoblast attachment and spreading on laminin matrices 

was competitively inhibited in the presence (in solution) of the laminin peptides YIGSR (Tyr- 

Ile-Gly-Ser-Arg), RGD (Arg-Gly-Asp), and IKVAV (Ile-Lys-Val- Ala-Val). This suggests that 

the adhesion molecules responsible for adhesion of the trophoblast to the laminin matrix were 
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binding these peptides and becoming blocked. The laminin peptide chosen for use in the current 
study contained the IKVAV sequence. It should be noted that the above study was carried out 
using mouse trophoblast cells, whether the peptide sequence used in this study is present in the 
human placenta cytotrophoblast basement membrane needs clarification. 

Laminin peptide fragment: Cys-Ser-Arg-Ala-Arg-Lys-Gln-Ala-Ala-Ser-Ile-Lys-Val-Ala-Val- 

Ser-Ala-Asp-Arg (Sigma, C6171) was attached to the glass surface via a heterobi functional 

crosslinker, sulfo-GMBS (Pierce, No. 22324, Illonois USA). A 0.2mm solution of sulfo-GMBS 
in 50mM phospate buffer (pH8) was allowed to react with the amine denvitised surface of the 

glass for 1 hour at room temperature. The glass was then rinsed with PBS and dH20- I ýIM 

synthetic laminin peptide in phosphate buffer (pH7) was subsequently applied to the surface for 

2 hours. The cover slips were finally rinsed with PBS. 

Whole human laminin molecule (Sigma, L6274), bovine serum albumin (BSA) (Sigma, 

A3294), and monoclonal anti-human CD45 antibody (Sigma, C7556) were attached via a 

simpler two-step process. After silanisation the glass was immersed in a solution of 2% 

gluteraldehyde (Sigma, G7526) in PBS with 40mM sodium cyanoborohydride (NaCNBH3) 

(Sigma, S8628) for I hour at R. T. The glass was rinsed with dH20.0-4tg/ml solutions of each 

of the proteins (in PBS with 40mM NaCNBH3)were applied to the glass surface and allowed to 

react for I hour at R. T. The slides were washed twice in PBS and then immersed in O. IM 

glycine (Sigma, G7403) in PBS for 1 hour, before rinsing with PBS. All the reagents and 

solution were freshly made. 

The poly(MPC-co-33-BMA) was supplied by Dr Peter Rolfe, University of Keele. The polymer 

came as a dry powder, and was dissolved 1: 50 (w/v) in ethanol. The polymer solution was 

applied to the surface of the glass cover slips by pippetting a small amount of the solution onto 

the surface of the glass, leaving for a few seconds and then rinsing with dH20. This procedure 

forms a layer of adsorbed polymer on the surface of the glass. 

8.4.1.3 Interference reflection microscopy 

Interference reflection microscopy (IRM) is an optical technique for measuring the thickness of 

thin films. Curtis was the first to apply it to the study of cell adhesion in 1964 [33]. For the case 

of a cell adhering to glass there is a thin film of intercellular medium between the cell's plasma 

membrane and the glass. Differences in the refractive indices of the glass, medium and plasma 

membrane result in reflective interfaces between the different materials. When an intense beam 

of monochromatic light is projected with normal incidence onto the interfaces, interference 

occurs due to phase differences in the light reflected from the different interfaces. The intensity 
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of the reflected light is related to the separation of the interfaces. Distances down to about 50A 

can be accurately measured. ER-M allows quantitative analysis of distance between the adhering 
cell and the glass surface. Cells adhering more strongly to glass substrates typically have higher 

numbers of focal adhesion points, which appear as darker regions in the IRM image. Focal 

adhesion points are regions of close contact between the glass and the cell [33]. 

Interference reflection microscopy (ERM) of adhering cells was carried out using equipment in 

the laboratory of Prof. ASG Curtis, Centre for Cell Engineering, IBLS, Glasgow University. 

The coverslips with the adhering cells were fixed in formaldehyde and gently rinsed with dH20 

to remove any salt crystals from the sample (residue from evaporated PBS) and mounted cell 

side down on oil filled cavity slides. The cells were viewed using the IRM microscope with 

attached video camera and image capture and analysis software. 

8.4.2 Results and Discussion 

The number of cells adhering to the glass coverslips were counted and expressed as a 

percentage of the total number of cells in the sample. Cell numbers were counted for each glass 

coverslip, the data is shown below in tables 8-2 and 8-3. The cell samples were suspended in 

either PBS or the sucrose based (Ficoll free) dielectric separation medium. The dashes in tables 

8-2 and 8-3 represent missing data points, resulting from loss or damage of the coverslips 

during the course of the experimental work. 

Suspending 

medium 

Larninin Laminin 

peptide 

BSA MPC Glass Anti- 

CD45 

PBS 12 12 12 37 62 

PBS 8 16 16 39 31 - 

PBS 42 34 - 17 59 93 

PBS 36 54 28 17 50 84 

Medium 17 34 84 - - 84 

Medium 29 27 67 10 20 62 

Table 8-2. Percentage PBMCs from the suspension adhering to the substrate after 30 minutes. 
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Suspending 

medium 

Laminin Laminin 

peptide 

BSA Poly 

MPC-co- 

BMA 

Glass 

PBS 8 10 8 4.5 3 
PBS 7.5 9.75 8.25 3 3 
PBS 21 84 - - 63 
PBS 

Medium 

21 

14 

84 

8 

25 

11 

9 9 

1.5 
Medium 

Medium 

44 

12 

44 

8.25 
- 
11.25 1.5 

22 

1.5 
Medium 44 44 34 5 8 

Table 8-3. Percentage trophoblast from the suspension adhering to the substrate after 30 minutes. 

The human anti-CD45 antibody was chosen as a control molecule. This antibody recognizes the 
CD45 leukocyte common antigen family present on all cells of leukocyte lineage; it should 
therefore bind all PBMCs with good affinity. This was indeed observed, with the PBMCs 
having a high affinity for the anti-CD45 coated surface, indicating that the surface 
functionalisation was working. 

Due to the small size of the data set and variability of the data no clear differences in the pattern 

of adhesion is immediately apparent. Statistical analysis of the data was therefore undertaken to 

determine if there was any significant difference between the various substrates, or differences 

between the use of PBS or the sugar solution suspending media. A two-factor ANOVA 

(analysis of variables) with repeated measures test was used to analyse the data. This was 

followed by a post hoc Tukey-test. For the PBMCs a weakly significant (p=0.039) difference 

was found between the cells adhering to the MPC and BSA substrates, with more cells adhering 

to the BSA coated substrate. No difference was found for the different suspending media. As 

mentioned above the anti-CD45 coated surface showed a marked increase in the number of 

PBMCs adhering to it and a statistically significant increase in the percentage of cells adhering 

to this substrate (p=0.001 1). 

For the trophoblast data the two-factor ANOVA with repeated measures test was again used and 

in this case showed a minor statistical differences between the substrates. Further analysis of the 

data using a post hoc Tukey-test showed a weak statistically significant (p=0.0656) difference 

between the number of cells adhering to the glass substrate and the MPC layer. 
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Analysis of the difference in the adhesion properties between the two cell types and all the 
substrates showed very little difference between the various surface functionalisations. The 
trophoblast showed a reduced adhesion to the MPC layer when compared with the PBMCs. The 
idea that the whole laminin or the laminin peptide, could be used to increase the affinity of the 
channel walls to retain the trophoblast cells on the interior of the separation chamber (in 

preference to PBMCs) has not been demonstrated by this data. 

The results of this study do not show an advantage for using the whole laminin or the laminin 

peptide instead of the untreated glass. It has been shown by others that the adhesion of 
trophoblast cell lines is strongly influenced by the laminin type [30]. Further investigation of 
different laminin subtypes might be expected to reveal differences, and give more positive 
results. 

The non-stick polymer appears to reduce the adhesion of trophoblast compared with the 

untreated glass surface. The BSA functionalised surfaces had little effect on the surface 

adhesion for both cell types, when compared with the untreated glass surface. This was 

surprising as BSA is widely used to block surfaces and reduce non-specific protein interactions 

at surfaces. Protein adsorption onto a surface is widely recognised as a pre-cursor to cellular 

adhesion. 

The interaction of cells with laminins and fibronectin is mediated largely by integrin type 

receptor family subunits [31]. For example the pattern of staining for the alpha5, alpha6, beta I 

and beta4 subunits indicates that the integrins expressed by trophoblast are predominantly the 

alpha5betal and the alpha6beta4 heterodimers [30]. It has been shown that early trophoblast 

cells adhere to peptide in the E8 domain of laminin using a mechanism that is independent of 

the one used for adhesion to fibronectin [32], suggesting that laminin should be a better choice 

for this work. Choosing a peptide, fragment containing the above-mentioned heterodimers may 

result in increased adhesion of the trophoblast cells to the substrate. 

Figure 8-7 shows an SEM image of an isolated trophoblast adhering to an untreated glass 

surface. The cell can clearly be seen to be starting to spread across the glass surface With 

projections emanating from all sides of the cell. The image is typical for a trophoblast after only 

30 minutes incubation on such a substrate. 

242 



Figure 8-7. SEM of an isolated trophoblast on glass. 

8.4.2.1 Interference reflection microscopy 

The IRM data are presented in figure 8-8. Briefly, IIZ-M images are produced due to reflections 

arising at the interfaces between the glass, medium and the cell's plasma membrane. 
Interference occurs due to phase differences in the reflected light arising from the different 

interfaces. The intensity of the reflected light is directly related to the distances a cell is from the 

glass substrate, down to a lower limit of 5nm. IRM therefore allows quantitative analysis of the 

adhesion of a cell to a transparent surface. Points of strong adherence (i. e. small cell to substrate 

distances) correlate with dark areas on the IIZ-M images. 

The ER-M data in figures 8-8 (a) - (c) show the trophoblast cells interacting with the surfaces. 

The trophoblast on the laminin coated surfaces (figures 8-8 (b) and (c)) give IRM images with a 

much darker profile. These cells are exhibiting a much stronger interaction with the laminin 

surfaces, than that of the glass coated with non-stick polymer. Regions of focal contact (dark 

spots) can be clearly seen in these images. The IRM images of the trophoblast cells on the non- 

stick polymer coated slide (figure 8-8(a)) show weak adhesion of these cells to the glass surface. 

The same effect was seen for the PBMCs plated onto this surface. 
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(b) 

Figure 8-8. IRM images of trophoblast cells adhering to glass surfaces with (a) no surface 
functionalisation, (b) whole larninin surface, and (c) laminin peptide surface. 

It has been reported that isolated trophoblast cells assume a flattened, sessile phenotype when 

cultured on laminin but tend to exhibit a more spreading, motile morphology when plated onto 
fibronectin coated surfaces [30]. The whole laminin coated surface exhibited strong cell 

adhesion (large numbers of cells adhering, and lots of black in the IRM image) but with few 

outgrowths (lamellaepodea etc. ), in accordance with the previous study [30]. However, cells 

adhering to the glass functionalised with the laminin peptide showed greater spreading, more 

like that expected from cells plated on fibronectin coated substrates. One possible reason for this 

is that the functional epitope on the laminin and fibronectin molecules is the RDG sequence. 

This is the integrin binding epitope and is the main functional, binding part of these molecules. 

Differences in the structures of the molecules containing this RDG sequence results in 

differences in their binding efficacies. The laminin peptide used does not contain a RDG 

sequence and may therefore cause effects more like that expected of the fibronectin molecule 

than that of the whole laminin molecule. 

Based on the above results the internal glass and electrode surfaces of the separation device 

could be modified, by the addition of proteins and other forms of chemical functional i sati on. 

Judicious choice of peptide fragment could allow enhanced performance of these surfaces. This 

244 



would allow the cells flowing in the separation system to not only interact with the electric 
fields (DEP forces) but also to have a strong differential affinity for the channel walls. 
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Chapter Nine: Conclusions and future work 



9 Achievements of this thesis 

The realisation of a novel dielectrophoretic particle separation system, for the isolation of rare 
particles from large sample volumes and complex particle mixtures, involves a number of 
different technical issues. As a result of this, the work presented in this thesis is truly 
interdisciplinary in nature, and falls within the field of bioelectronics. A number of the 
techniques developed are potentially applicable to the technologies described as Lab-on-a-chip 
and micro-Total Analysis Systems. The review of cell separation methods given at the start of 
the thesis focussed on the recent developments in the field of microfabricated cell sorters. At 
present the development of such systems is proceeding with great speed. 

Dielectrophoresis for cell separation was first postulated 50 years ago [1] and is currently 
enjoying renewed vigour as a separation technique in micro-systems - each year an increasing 

number of new papers are published on some application of dielectrophoresis. Indeed 
dielectrophoresis is becoming a widely recognised tool for particle separation, growing 
alongside more traditional separation techniques such as electrophoresis, FACS, MACS, 

centrifugation and others. 

A new configuration of DEP particle separation device has been developed and constructed. 
Associated equipment to aid with sample injection and handling was also developed. The ability 

of the system to manipulate a variety of cell types (i. e. human blood, E. coli bacteria) and 

particles (sub-micron latex beads) types has been demonstrated. Furthermore, these 

experimental results were compared with a numerical model that was developed to simulate the 

trajectories of particles within the system. Variation in the applied signal (voltage and 

frequency) and characteristic electrode size were examined and the experimental results were 

found to vary in accordance with the predictions of the numerical model. Prediction of the mean 

banding position of THP-1 cells using the measured value of specific membrane capacitance 

(17.7 ± 2.7mFM-2) is in good agreement with the actual experimental data. Similar experiments 

using peripheral blood mononuclear cells gave equally good agreement with the simulations 

(cell parameters taken from the literature [2]). 

Dielectrophoretic particle chromatography is introduced as a novel means of particle separation. 

The proof of concept is demonstrated by the separation of two cell types labelled with different 

wavelength fluorescent probes. THP-1 cells were spatially separated from PBMCs along the 

length of an interdigitated electrode array of with individual electrode size 40ýLm. 

The ability of the system to isolate rare particles from model systems such as artificial mixtures 

of cell types and latex beads (sizes ranging from 460nm to 10ýim in diameter) vvas investigated. 
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Concentration of low numbers of cells as well as sub-micron latex beads from large sample 
volumes was demonstrated. Samples with particle concentrations in the region of 100 particles 
per mL were used. Scaling up of the separation system to allow the use on even greater sample 
volumes is potentially possible simply by running a number of similar devices in parallel. 

The experimental work described in chapter eight, proved unsuccessful in its attempt to 
completely purify foetal cells from maternal blood samples. However, in the scope of this 
project, this was not entirely unexpected due to the shear magnitude of the problem. The 
dielectric properties of the particular cells targeted (i. e. trophoblast) were predicted from 

measurements made on cells isolated from the placental membranes by Chan el. al. [3]. These 
cells are probably not representative of the cells that make their way into the maternal 
circulation (i. e. they may have different dielectric properties), and therefore may not experience 
+veDEP at the frequencies used. The presence and number of foetal cells also varies throughout 
the course of pregnancy, and therefore the number of foetal cells in the samples prior to sorting 
was not known. Further work is required to test the ultimate resolution of the DEP separation 
system, and to assess its potential for rare cell isolation. 

9.1 Suggestions for future work 

A number of improvements to the system are possible, some of which have been discussed in 
the preceding chapters, but were not investigated due to time constraints. 

Further characterisation of the lower limits of cell detection 

As alluded to above, further characterisation of the system is required to allow quantification of 

the lower limit of particle numbers that can be isolated from a sample. Similarly, the absolute 

resolution of the system for separating mixtures of cell types is still unclear, this requires further 

experimental work. It is therefore necessary that a number of samples be run through the device 

under various operating conditions, and the pre- and post-sort samples analysed (by FACS, 

FISH, PCR, or other suitable methods). Work carried out by Bianchi et. al. [4] describe the use 

of a model system, where low numbers (down to the level of single cells) of 'model' male foetal 

cells were mixed into female peripheral blood mononuclear cells. The three main cell separation 

methods for the isolation of foetal cells from maternal blood were then compared (FACS, 

MACS, and immunomagnetic beads). Foetal cell yields and purities were assayed by a 

quantitative polymerase chain reaction (qPCR) using chromosomes Y- and 7-specific 

sequences. The use of a similar experimental protocol, to quantify the DEP separation system's 

ability to isolate rare cells, would allow the resolution of the system to be demonstrated. 
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9.1.2 Cyto-genetic analysis on-chip 

Currently, the aim of much research and development in the microfluidic bio-chip area is the 
development of particle (e. g. cells, proteins) separation and manipulation techniques, equally as 
important is the performance of various analytical measurements. Integration of these separation 
and analysis steps into a single device is one of the central philosophies driving this area of 
research forward. The benefits arising from such 'complete' systems are huge and include: 
reduced size and cost of clinical diagnostic and scientific research systems, reduction in the size 
of sample required, increased speed of analysis, reduced reagent costs, portable systems. 

On-chip analysis of the cells isolated by the separation device would reduce the need for sample 
handling and the loss of cells that this generally entails. This is obviously of greater importance 
when dealing with very low numbers of cells, as is the case for the foetal cells in matemal blood 

problem. Retention of the cells using +veDEP is limited by the requirements of a suspending 
medium of low conductivity. Unfortunately, most cell labelling and analysis protocols require 
the use of high conductivity media for the washing and labelling steps. Such high conductivity 
media result in -veDEP forces acting upon the cells at the frequencies used. 

Functional isation of the separation electrode array (see chapter 8) could potentially allow cells 
to be retained within the device, even when the DEP force was removed. The cells could then be 

labelled allowing cyto-genetic analysis (e. g. FISH) of the cells within the device, with the 

various buffers and labelling probes being introduced into the device via the channel inlet and 

outlet. The small volume of the channel (50ýtl, ) would lead to a reduction in the volumes of 

probes and buffers required. Laminin has been suggested as an adhesive substrate for 

trophoblast (see chapter 8), however there exists a plethora of possible surface functional isation 

molecules which could be used to promote cell adhesion, depending on the cell type under 

investigation. 

9.1.3 Development of the system 

DEP has been shown to be useful for the separation and isolation of various cell types. The 

work presented in this thesis goes some way towards the development of a practical DEP cell 

separator. 

9.1.3.1 Towards a bench-top DEP cell separation system 

Many current cell separation techniques are moving further towards fully automated sample 

handling and analysis, with the operator introducing the sample (following minimal pre- 

treatment) into the system, and with the sorted cells being outputted after a short period Of time. 
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Initial attempts using the LabVEEWTm programming language, to control the various 
components of the DEP separator were made with the aim of making the system semi- 
automated. With further automation the system could be developed to run as a fully automated 
cell separation system, with all pumps, valves and applied signals under microprocessor or PC 
control. 

9.1.3.2 Expand useable applied frequency range 

Changes in the electrode design to enable the use of higher applied signal frequencies would 
allow the efficient manipulation of bacteria and other particles, which may require the use of 
frequencies in excess of 10OMHz to achieve -veDEP. To achieve suitable field strengths at such 
high frequencies requires that the impedance of the microelectrode arrays are matched to that of 
the signal source driving the electrodes (typically 50Q). The design and construction of 
electrode arrays for use at frequencies of 20OMHz or higher is possible with the use of strip-line 
techniques. 

9.1.3.3 Increased sample handling capabilities 

At present the system is capable of sorting particle samples at a rate of typically 1-2mLh-'. 

Paralleling-up of the system would allow a linear increase in sample throughput, with relative 

ease, and is only a matter of fabrication. Issues of plumbing and heat production could 

potentially limit the practical size of such separation systems. However, practical systems 

capable of isolating cells from sample volumes of a few litres, in 15 minutes or so, should be 

relatively simple to realise. 

9.1.4 Ideas for micro-floweytometers 

Using the interdigitated electrode array geometry, particles could be focussed into a narrow 

sheet but not a beam. However, it would be relatively simple to construct an orthogonal 

electrode array, which would confine the particles into a narrow beam. One example of such an 

electrode has been published by Fuhr's group [5]. The ability to produce such a well-defined 

narrow beam of particles would allow all the particles to be passed through a small detection 

zone in a manner similar to FACS systems. Furthermore, the positioning of the particles at the 

very centre of a channel would allow rapid sorting of the particles based on a method by which 

the particles are pushed away from the central axis by some force (e. g. optical pressure of - 

veDEP) and camed into one of a number of outlet channels. 
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Figure 9-1 shows preliminary work on a particle focussing system using an arrangement of four 
electrodes (two on the top and two on the bottom of the channel). The fluid is moving from left 
to right and the particles focused by the -veDEP forces into the centre of the flow channel (it 
should be noted that the channel has a constant cross-section along its entire length and only the 
electric fields are responsible for the particle focussing). 

The benefit of such a system would be the rapid sorting of cells in a microsystern based on 

optical and/or impedance measurements carried out on individual particles. The technique could 

potentially be useful for sorting smaller particles such as single viruses and even single 

molecules, if scaled down sufficiently [6]. 'Bolting-on' of such a device to the end of the DEP 

separator proposed in this thesis would allow detection of, and counting of the cells as they flow 

to the channel outlet. 
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