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Abstract

The work in this thesis charts the revival and development of research that tests some

of the core fundamental assumptions that characterise the study of magnitude-redshift

surveys for the estimation of galaxy luminosity functions (LF). Estimating LFs, either

parametrically or non-parametrically, generally requires the assumption of separability

between the LF, φ(L), and the density function ρ(z). The work carried out initially

by Rauzy (2001) amounts to a test statistic, Tc, constructed from the cumulative

luminosity function (CLF). It is a direct probe of separability and therefore is rendered

a magnitude completeness test to identify the presence of potential systematics and/or

evolution within a particular survey sample.

We originally applied Rauzy’s test of completeness to the Millennium Galaxy Cata-

logue (MGC), the Two Degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan

Digital Sky Survey (SDSS). We then extended the Tc statistic for data-sets charac-

terised by two distinct faint and bright apparent magnitude limits. Following on from

this we have developed a variant on Tc that we have named, Tv, which was constructed

instead from the cumulative density function (CDF) and can be considered a differen-

tial form of the much celebrated, Schmidt (1968) V/Vmax statistic.

The completeness analysis of data-sets such as the 2dFGRS and the Clowes Campu-

sano Large Quasar Group Survey (CCLQG) have also lead to developing a procedure

that will optimise our estimators based on the signal-to-noise of our sampling technique.

Finally, we have developed a new, robust statistical probe to constrain evolution-

ary models applied to current and future redshift surveys. This probe exploits the

fundamental assumption of separability coupled with a maximum entropy technique to

constrain the evolutionary parameter that characterises, in particular, pure luminosity

evolution.



“These are the days of miracle and wonder,

This is the long distance call.

The way the camera follows us in slow-mo,

The way we look to us all.

The way we look to a distant constellation

That’s dying in a corner of the sky.

These are the days of miracle and wonder,

And don’t cry baby, don’t cry.”

Paul Simon, ‘The Boy in the Bubble’, 1986
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Preface

The role of galaxy redshift surveys is now central to modern cosmology. Since their

inception just over thirty years ago, they have not only provided the cosmology com-

munity with an unprecedented amount of data, but have allowed sophisticated 3D

mapping of the Universe, leading to powerful constraints in areas such as large-scale

structure, galaxy formation and evolution, and the nature of dark matter and dark

energy. As a result there has also been an explosion in the new field of ‘statistical cos-

mology’ that has paved the way for the ongoing development of sophisticated statistical

processes to not only test the quality of the data but also constrain and explore, for

example: current evolutionary models derived from galaxy redshift surveys, baryonic

acoustic oscillations and the neutrino distribution to name a few.

In the opening chapter we give a very selective overview of cosmology, highlighting

the observational evidence that supports the current favoured ΛCDM concordance

model. We then trace the history of galaxy redshift surveys before focusing one of

their more fundamental applications in Chapter 2 - estimating the galaxy luminosity

function (LF).

Estimation of the LF of extragalactic objects presents a considerable challenge due

to the complexities of the many selection effects caused by detection thresholds in

apparent magnitude, colour and surface brightness, coupled with systematics and/or

evolutionary effects. In order to overcome these effects numerous parametric and non-

parametric statistical methods have been devised, including the Schmidt (1968) 1/Vmax

estimator, the Lynden-Bell (1971) C− method and various Maximum Likelihood Esti-

mators (e.g. Sandage et al., 1979), where a parametric form of the LF is assumed. We

provide a thorough review of all these major statistical developments and discuss some

of the more significant variations and extensions that have arisen due to the myriad

of complexities of the many redshift catalogues that are now available to us. We also

include discussions of some very recent developments in this area that propose new,

and perhaps improved, methods by which the LF may be determined.

Towards the end of the second chapter we introduce an area research that has
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formed the backbone of the work carried out in this thesis: tests of independence.

In all the above methods for estimating the LF it is fundamentally assumed that the

LF is statistically independent of the 3D spatial distribution of objects for a given

survey catalogue. In particular, we discuss a paper published by Efron and Petrosian

(1992) where they present a statistical tool that can be used to test the validity of

this assumption. In Chapter 3 we summarise the work carried by Stéphane Rauzy

(Rauzy, 2001) which extends the Efron and Petrosian test as a method for assessing

completeness in magnitude-redshift galaxy surveys. The Rauzy method constructs a

statistic based on the cumulative luminosity function (CLF), called Tc, which is used to

determine the true apparent magnitude limit of a survey that is flux-limited. We apply

Rauzy’s test to the Millennium Galaxy Catalogue (MGC) and discuss the results. In

Chapter 4 we examine the Two Degree Field Galaxy Redshift Survey (2dFGRS) and a

sample from the Early Types catalogue of the Sloan Digital Sky Survey (SDSS). These

samples were key to extending the Rauzy method:

1. for surveys which have well defined faint and bright apparent magnitude limits

and,

2. for surveys where the presence of a bright limit is less clearly defined and therefore

may be more difficult to detect.

We extend the method further in Chapter 4 by introducing a variant on the Rauzy’s Tc

statistic which we have named, Tv. Unlike the Tc statistic, Tv is constructed from the

cumulative distribution function (CDF) of the redshift distribution and represents a

differential version of the classic Schmidt (1968) V/Vmax test. We apply Tv to all three

surveys, MGC, 2dFGRS and SDSS-Early Types and compare the results with the Tc

statistic.

In Chapter 5 we apply Tc and Tv to a Galaxy Evolution Explorer (GALEX) selected

sample from the Clowes-Campusano Large Quasar Group Survey (CCLQG). This data-

set proved to be useful in identifying an adverse effect on the Tv statistic introduced

by the highly rounded photometric redshift data. Other results from this survey and

the 2dFGRS have led to our ongoing research that we detail in Chapter 6. This work

explores optimising both the Tc and Tv statistics by basing their calculations on a

signal-to-noise threshold which will lead to a more optimised measure of completeness

that overcomes the effects of shot-noise.

In the final chapters we shift our focus from completeness to developing statisti-

cal tools to probe evolutionary models applied to current survey data. In Chapter 8
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we firstly introduce our methodology for creating Monte Carlo-generated mock galaxy

catalogues based on the MGC, 2dFGRS and SDSS-Early Types survey samples. By

constructing mock catalogues from the observed redshift distribution of these surveys,

we demonstrate how they can provide us with an effective controlled testing ground

without the need for the scale of computing power demanded from dark matter N-body

simulations. Furthermore, we provide a full completeness analysis of all our mocks and

discuss the results and implications. In Chapter 9 we apply our MGC and SDSS mock

samples to test how we can exploit the fundamental properties of our statistics - where

if the wrong evolutionary correction were applied, the ‘observed’ joint sampling distri-

bution of luminosity and redshift will not be separable. Hence, given only the sampling

distribution of Tc and Tv under the null hypothesis of independence, we can translate

the computed values of each statistic for different ‘trial’ evolutionary model parameters,

β̂, directly into confidence limits for this parameter. This was explored in two differ-

ent ways: firstly by implementing the Pearson-Product correlation coefficient, ρ, that

equals zero for the correct model parameter that is equivalent to βtrue; and secondly

by adopting a fundamental, information-theory approach that utilises a measure of the

relative entropy, S, of galaxy survey data which will then be minimised for βtrue. We

discovered that in the case of the MGC mocks the correlation coefficient appeared to

detect the correct evolutionary test parameter, βtrue within a fairly broad bootstrapped

error distribution. However, when applied to the SDSS mocks, ρ indicated two possible

values of βtrue for every trial evolutionary model applied. In contrast it was found that

the relative entropy approach was most effective for determining βtrue. For both the

MGC and SDSS mocks, the relative entropy method minimised to the correct value of

β for every βtrue model applied, with a resulting narrow error distribution compared to

that of the ρ estimator.

Finally, in the concluding chapter we explore the key results and discuss the scope

for future development in the area of statistical cosmology.
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Chapter 1

A Selective Overview of Cosmology

“Religions die when they are proved to be true. Science is the record of

dead religions.”

Oscar Wilde - ‘Phrases and Philosophies for the use of the Young’, 1894

A quick historical search on the SAO/NASA Astrophysics Data System (ADS) website

finds the first use of phrase, era of precision cosmology, attributed to Turner (1998).

Since then, it has been used in countless cosmology publications and, most probably,

countless grant applications as well! However, it is a phrase that, when first stated,

clearly resonated with the cosmology community. Emerging technologies during the

1990’s, such as the Hubble Space Telescope (HST), and the Cosmic Background Ex-

plorer (COBE) had allowed not only the mapping of the large-scale structure of Uni-

verse to high redshifts, but also, for the first time, detection and measurements of the

temperature fluctuations in the cosmic microwave background radiation (CMBR).

Presently, we have high precision data obtained from Wilkinson Microwave Anisotropy

Probe (WMAP) that seem to support the current ΛCDM model to a high accuracy by

measuring precisely these anisotropies in the CMBR. There is also the ongoing Sloan

Digital Sky Survey (SDSS) that, at the end of its second phase in 2008, had mapped 230

million celestial objects including: 930,000 galaxies, 120,000 quasars and 225,000 stars

within 8,400 deg2 of the sky. The coming years will usher in the the next generation

of both radio and optical telescopes. With the advent of the Square Kilometre Array

(SKA) and its associated pathfinder projects radio astronomy is sure to witness similar

advances of instrumental precision in other regions of the electro-magnetic spectrum.

Such technology will be able to survey the sky on an unprecedented scale, with the
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hope that we can learn about the origin and evolution of cosmic magnetism, as well

carrying out strong-field tests of gravity using pulsars and black holes, and advancing

our knowledge of galaxy evolution to name just a few of its scientific aims.

In the optical range there are projects such as the Panoramic Survey Telescope And

Rapid Response System (Pan-STARRS) in Hawaii that will measure astrometry and

photometry of the available sky several times each month (see e.g. Kaiser, 2002). Its

scientific goals include detection of exoplanets and gamma-ray bursts (GRBs), stellar

evolution, galaxy clustering and providing extensive weak lensing maps (to name just

a few). The system will utilise an array of four telescopes of D ∼ 1.8m and will have a

3 degree field of view with a CCD digital camera with 1.4 billion pixels. Its design is

such that 6,000 deg2 will be covered per night.

The precision with which we are now able to measure the Universe has increased

dramatically and has allowed cosmology research to flourished over the last 20 years or

so, taking centre stage in astronomy. Ironically, however, as we will see, these modern

observations, now allude to the existence of quantities aptly named as Dark Energy and

Dark Matter about which we know very little, but which are the dominating forces in

the Universe as we understand it currently. This chapter will map the course that has

lead us from a time where cosmology was perhaps more a theoretical pursuit without

much substantial observational data, to the present time where we now have almost

more data than we can handle, providing us with powerful constraints on the origins

and evolution of the Universe.

1.1 The Road to Concordance

Today, what we perceive as modern cosmology can be attributed to the development

of Einstein’s theory of General Relativity in 1915. This new way of thinking about

space, time and gravity has allowed, over the twentieth century, many other pioneer-

ing theorists to propose a new model of the Universe that is now referred to as the

concordance (or standard) model for cosmology.

The Concordance Model represents the most concise model to date, combining

astronomical observations with theoretical predictions to explain the origins, evolution,

structure and dynamics of the Universe. In its current, simplest form, the model is often

labelled as Λ Cold Dark Matter, where Λ refers to a non-zero cosmological constant.



1.1: The Road to Concordance 3

1.1.1 In the beginning...

The origins of the concordance model are rooted in the Copernican principle - a fun-

damental assumption proposed by Nicolaus Copernicus in the 16th century that states

we do not occupy a privileged position in the Universe. Since then this has proposition

been generalised within a general relativistic framework whereby there is no privileged

observer in the Universe.

Stemming from this, we can build the framework of concordance which is hinged

upon the Cosmological Principle and which assumes that the Universe is both ho-

mogenous and isotropic. This implies that on large scales (typically >100 Mpc), the

structure of the Universe looks the same in all directions (isotropic) and the average

density of matter is approximately the same in all points in the Universe (homogenous).

In the early part of the 20th century before galaxies were understood to be galax-

ies (they were thought to be nebulae), Bulletin # 58 was published in the Lowell

Observatory by Slipher (1913). This paper recorded one of the first radial velocity

measurements of the nebula called, M31 in Andromeda. These velocity measurements

were understood to be caused by the Doppler effect and in terms of electromagnetic ra-

diation, are referred to as either blueshift (indicating movement towards the observer)

or redshift (receding from the observer).

As for the Doppler shift, we define redshift, z, as the change in wavelength (or

frequency) of the emitted light from an object, in this case galaxy’s, divided by the

rest wavelength (or frequency) of the light. This change in the observed wavelength is

due to the galaxie’s movement away from the observer and expressed as,

z =
λo − λe

λe

=
νe

νo

− 1 (1.1)

where, λo and νo are the respective observed quantities, wavelength and frequency, and

λe and νe are respectively the rest (or emitted) wavelength and frequency.

Sixteen years after these initial measurements were made, Hubble (1929) published

what would turn out to be one of the most important discoveries that would radi-

cally advance our understanding of the Universe and our place within it. Hubble had

discovered a linear relation between the distance to galaxy’s and their corresponding

recession velocity (or redshift) and provided the first observational evidence supporting

the theory of an expanding Universe (see Figure 1.1). This relation is simply cast as,

H0 =
cz

d
(1.2)

where, H0 is the Hubble constant describing the rate of expansion, c is the speed of

light, z is the redshift and d is the distance to the object.
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Figure 1.1: The famous Hubble diagram taken from his seminal paper, Hubble (1929),
showing the relation between the recession velocity of galxies with distance. This result
marked the first evidence for the expansion of the Universe.

Although Hubble’s findings marked a pivotal moment in cosmology, we have to go

back 14 years earlier to appreciate just how important his result was to validating, in

part, the standard model.

1.1.2 Einstein to Friedmann-Lemâıtre-Robertson-Walker

The current standard model is formulated in the framework of Einstein’s general rela-

tivity (GR) Einstein (1915). Throughout this section we will attempt to refrain from

carrying out a detailed derivation and simply highlight the main points. As we have

already discussed, the current paradigm states that we live in a Universe based upon

the cosmological principle. This principle was formally described initially by Alexander

Friedman in 1922, and then extended and generalised by Howard Robertson, Arthur

Walker and Georges Lemâıtre and is now referred to as the Friedmann-Lemâıtre-

Roberston-Walker metric, or more simply - the FLRW metric. The metric describes

geometry of space-time and it can be written as:

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (1.3)

where we assume that the units for the velocity of light is c = 1 for the remainder of

this section, a(t) is the scale factor and r, θ and φ are co-moving spatial coordinates.
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The constant, k describes the curvature of space-time and is aptly called the curvature

parameter, taking on the values, -1, 0 or +1 only.

As we have said, Friedmann derived his set of equations that model the Universe

from Einstein’s field equation, which in their simplest form can be written as,

Gµν + Λgµν = 8πGTµν , (1.4)

where Tµν represents the energy-momentum tensor of the matter field, Gµν is the

Einstein tensor, gµν is the metric tensor, Λ is the cosmological constant, G is the

gravitational constant. If we assume a FLRW framework then we can describe the

Universe as an ideal fluid and thus express the energy momentum tensor, Tµν as

Tµν = (ρ+ p)uµuν + pgµν (1.5)

where, uµ is the 4-velocity of the matter, ρ is the mean density and p is the mean

pressure. From this starting point it is possible to derive the Friedmann Equations

that model the Universe based on the cosmological principle and which are given as,(
ȧ

a

)2

=
8πG

3
ρ̄− k

a2
+

Λ

3
(1.6)

and, (
ä

a

)
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.7)

where, we can recast Hubble’s law in terms of the scale factor yielding,

H =
ȧ

a
(1.8)

We can now use Equations 1.6 and 1.7 to define the cosmological parameters that

current observations attempt to constrain. The basic parameters can be summarised

as follows:

• Ωm - the total matter density (including dark matter)

• ΩΛ - the dark energy density (or vacuum energy)

• Ωk - the curvature parameter

• ρcrit - the critical density

• t0 - the age of the Universe

• w - from the equation of state
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The first three parameters on the list come directly from Equation 1.6 and are dimen-

sionless quantities such that:

Ωm =
8πG

3
ρ̄, ΩΛ =

Λ

3
, Ωk = − k

a2
(1.9)

Therefore, by definition,

Ωm + ΩΛ + Ωk = 1 (1.10)

If we assume FLRW framework we can define the expression for the critical density,

ρcrit by assuming that Λ = 0 and the curvature, k = 0 (the critical model). From

Equations 1.6 and 1.8 we get,

ρcrit =
3H2

8πG
, (1.11)

and thus the matter density parameter, Ωm, can be rewritten as,

Ωm ≡ ρ

ρc

=
8πGρ

3H2
(1.12)

Therefore, if we assume that our Universe is dominated by baryons, collisionless dark

matter and the cosmological constant, the cosmic expansion can be described as,(
ȧ

a

)2

= H2
0

(
Ωm

a
+ 1− Ωm − ΩΛ + ΩΛa

2

)
. (1.13)

As an example, in the Einstein-de Sitter model (Ωm = 1,ΩΛ = 0) the analytic solution

of Equation 1.13 yields,

a(t) =

(
t

t0

)2/3

, t0 =
2

3H0

. (1.14)

where the present age of the Universe, t0, is in general given by

t0 =
1

H0

1∫
0

rdr√
Ωmr + (1− Ωm − ΩΛ)r2 + ΩΛr4

. (1.15)

The cosmological equation of state relates to the pressure, p, and the density, ρ such

that,

p = wρ (1.16)

where w is a parameter that for an accelerating Universe with a cosmological constant

has the value, w = −1. The cosmological equation of state relates very much to the

thermodynamic equation of state and the ideal gas law as it describes an isotropic

universe filled with a perfect fluid.
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Figure 1.2: Modern observational evidence that supports the current ΛCDM model. The
left panel shows the SnType Ia data from Riess (1998) which clearly favours a non-zero
cosmological constant. The top-right image shows the temperature fluctuations recovered
from the COBE satellite. The bottom-right image is represents the same fluctuations taken
from the recent WMAP satellite. COBE had an angular resolution of 7◦ where as WMAP
had an increased resolution of ∼ 0.2◦. Whilst the level of detail in WMAP compared to
COBE is striking, both maps show the same basic features which marked a great success for
both missions. Both images courtesy of NASA

1.1.3 Supporting evidence

Apart from Hubble’s discovery of an expanding Universe, there have been other key

observations that support the current standard model. Probably the most significant

discovery in recent times has been the strong observational evidence that supports a

non-zero cosmological constant, Λ i.e. that we live in a Universe that is currently

going through an accelerated expansion. Whilst it was accepted that the Universe

was expanding (and even thought to have been decelerating), there was no direct

evidence to support an overall cosmic acceleration. However, observations Riess (1998)

and Perlmutter et al. (1999) of Type Ia supernovae provided this evidence. Type

Ia supernovae are regarded to be standard candles, that is, they are considered to

share the same peak absolute magnitude. Therefore measurement of the ΩΛ parameter

through the redshift-distance relation depends on comparing the apparent magnitudes

of low-redshift SNe Ia with those of their high-redshift ones (see Figure 1.2).

http://map.gsfc.nasa.gov/
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The discovery of the Cosmic Microwave Background Radiation (CMBR) in the

1960’s by Arno Penzias and Robert Wilson marked key observational evidence to sup-

port the Big Bang model. In 1992, however, another breakthrough saw results from the

Cosmic Background Explorer (COBE) published by Smoot (1992) and Wright (1992)

identify fluctuations in the CMBR temperature of the order of δT/T ≈ 10−5. Such

fluctuations had already been predicted 25 years earlier (e.g. see Sachs and Wolfe,

1967; Silk, 1967; Peebles and Yu, 1970).

The Wilkinson Microwave Anisotropy Probe (WMAP) saw the next generation

of instruments dedicated to mapping the anisotropies in the CMBR to a very high

precision. However to achieve the level of detail in both maps shown in Figure 1.2

required subtracting the foreground contamination from contributing sources such as

our own galaxy and extra-galactic sources.

The first data-realease published in Spergel (2003) measured the angular power

spectra and supported the current standard model of a Λ-dominated universe con-

straining the baryon density, Ωb = 0.024 ± 0.001, matter density, Ωm = 0.14 ± 0.02,

Hubble constant, h = 0.72± 0.05 and to = 13.7± 0.2 Gyr. The WMAP team recently

released the five-year data release (see Komatsu, 2009; Dunkley, 2009; Hinshaw, 2009;

Nolta, 2009; Gold, 2009) that provided, among other results, improved constraints on

inflation and the curvature parameter, Ωk; and also provided independent corrober-

ation of primordial nucleosynthesis or Big Bang Nucleosynthesis (BBN), which was

originally explored by Gamow (1946).

Figure 1.3 shows a simple pie chart illustrating what we know, or more appro-

priately, our ignorance about what the makes up the Universe. Combining all these

modern observations we currently estimate that dark energy is the domineering force

accounting for approximately 70% of the matter of the Universe. Dark matter now

plays second fiddle, accounting for 25%, whilst the baryon population is a meagre total

of approximately 5%. Perhaps this chart is more of an indication of the gap between

the much publicised ‘era of precision’ to the actual precision that we are still required

reach.

Although not a observed quantity, computer simulations have also begun to come of

age. Cosmologists do not have the luxury that, say, experimental particle physicist do.

They cannot re-create a Universe in the laboratory and observe the various dynamical

processes as they unfold and evolve over time. However, what we can do is attempt

to simulate the Universe via high performance computers. One of the milestones in

computational cosmology within the last 10 years has been the development of galaxy

simulations which attempt to bridge gap between the theoretical with the observed
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Figure 1.3: Breakdown of our current understanding of the distribution of matter in the
Universe. Image courtesy of NASA.

Universe. In recent years the Millennium Simulation (Springel, 2005) – a ten billion

particle N-body simulation that invokes the standard ΛCDM cosmology has made it

possible to compare the model predictions with the now varied and large observational

surveys, which in turn allows us to probe the physical processes that drive the intrinsic

evolution of galaxies.

1.2 Redshift Surveys - Past, Present and Future

Galaxy redshift surveys have played, and continue to play a vital role in our under-

standing of the formation, evolution and distribution of galaxies in the Universe. Prior

to the 1970’s, models of the structure of the Universe were based on the observed

distribution of galaxies projected onto the plane of the sky. Whilst early pioneers

had already identified the clustering nature of galaxies from 2-D samples (e.g. Hubble

1936 and Charlier 1922), it would take the move to three-dimensional data-sets before

the wider astronomy community would accept these claims. As a consequence, this

required the measurement of redshifts on a much grander scale.

1.2.1 Methods for measuring redshifts

The way in which redshifts are obtained varies from survey to survey. However,

presently the most precise method of measurement is spectroscopically (zspec). As

we outlined earlier in this chapter, the essence of this technique involves measuring

http://www.nasa.gov/
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the relative shift of a galaxy’s spectral lines compared to the known position of these

spectral lines as z = 0 i.e in the galaxy’s rest frame. It is this technique that has, until

very recently, been the most commonly used. Despite this, the acquisition of survey

data in this way requires a two-stage process whereby one firstly measures the pho-

tometry of all galaxies in a region of space and then, secondly, targets these galaxies

for spectroscopic analysis to obtain their corresponding redshift. Moreover, as tele-

scope technologies improve we are now able to sample the deeper Universe. This has

left observers reaching the limit of spectroscopic analysis since, as we move to higher

redshifts, the spectral lines are redshifted out-with the spectral range. The time con-

suming process coupled with the physical limitation of spectroscopy has, more recently,

spurred a renaissance, of sorts, in the technique of obtaining redshifts photometrically.

Photometric redshifts (zphoto) are obtained by identifying the shapes and broad-

band spectral features of spectral energy distributions (SEDs), such as the onset of

the Lyman α forest (912Å ‘Lyman break’). Techniques for obtaining zphoto’s are by

no means a recent development. In fact, during the 1960’s the first method using

photometry was developed for elliptical galaxies by Baum (1962). This technique

measured the SEDs of elliptical galaxies in the Virgo cluster which were then used a

calibrator and compared to the SED’s from elliptical galaxies from another cluster.

The displacement between two energy distributions at the 912Å Lyman-continuum

discontinity gave the redshift, and hence the distance via Hubble’s Law, to the second

cluster. This method represented a rudimentary version of what would become known

as the ‘template fitting technique’ further developed by Koo (1985) and later by Loh

and Spillar (1986b).

As with Baum (1962) the template fitting technique used the photometric data for

each galaxy and converted it into the SED. By using a set of template spectra, each

template was compared to the SEDs of the observed galaxies at the same 4000Å break.

A χ2 minimisation technique was then use to determine the best matching spectrum and

hence the redshift of the observed galaxy. In Loh and Spillar (1986b) they applied their

technique to 34 galaxies of known zspec and in Loh and Spillar (1986a) they extended

its use to 1000 galaxies to measure the mass density of the Universe. Bolzonella et al.

(2000) would go on to revive this template fitting method by developing and making

publically available, the hyperz code. Their SED fitting algorithm used a minimisation

procedure based on effects such as age, metallicity, reddening and absorption in the

Lyman forest.

A second, and yet, very similar technique for estimating redshifts photometrically

was initially developed by Connolly et al. (1995), Brunner et al. (1997), and Wang et al.
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(1998) . This approach provided an empirical technique that requires a large training

set of galaxies derived from both multi-colour photometry and measured spectroscopic

redshifts and is therefore, often referred to as the ‘empirical training set’ technique. A

relationship is determined between the colour, C, and the redshifts, z, and, for example,

in the case of Connolly et al. (1995), the redshifts are estimated via linear regression to

determine a parametric fit. Whilst this remains a very popular approach, the technique

is limited in redshift range by the spectroscopically obtained training sets. Moreover,

both the SED fitting technique and the empirical training set techniques suffer from

large photometric errors resulting in an overall accuracy of δz ≈ 0.1.

The fact that galaxy surveys are now able to sample out to increasingly high red-

shifts, has accelerated and facilitated research into overcoming these shortcomings and

improving on the large errors that plague zphoto. For example, work by Kodama et al.

(1999) and Beńıtez (2000) developed a Bayesian inference approach to estimating zphoto

where redshifts can be estimated by finding the probability p(z|D, I), that is, the prob-

ablility of a galaxy having a redshift z given the data, D = {C,m0} and the prior

information, I.

Even over the last few years there seems to be accelerated interest in improving

and developing new techniques. Here we mention just a few. Sheth (2007) generalises

various luminosity function estimators for zphoto; Ball et al. (2008) developed a near-

est neighbour instance-based algorithm to improve on the zphoto probability density

functions (PDF); Lima et al. (2008) provide an empirical method for estimating zphoto

based on weighting the spectroscopic subsample; Stabenau et al. (2008) use galaxy

surface brightness as a prior for template-based techniques; Oyaizu et al. (2008) pro-

vided a new estimator based on the training set approach using recent surveys such as

SDSS and DES; Budavári (2009) present a unified approach to the template fitting and

empirical techniques; Wittman (2009) use the redshift probability distribution, p(z),

reduce the errors; and Wolf (2009) has proposed another Bayesian approach based on

the empirical training sets technique.

Although it may be unlikely that photometric redshift estimations will replace its

spectroscopic counterpart completely, it seems that there are plenty of people investing

the much needed time to improve on techniques to estimate them. This, at the very

least, will help the continuation of photometric redshifts as a complementary option

for the cosmology community, and perhaps be the replacement.
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Figure 1.4: The CfA redshift surveys. The strip on the sky was 6 degrees wide and 130
degrees long with our origin being at the apex of the wedge. The initial survey, CfA, surveyed
a total of 1100 galaxies as shown on the left-hand wedge. The right-hand wedge is CfA2
that surveyed a total of 18,000 galaxies in the same region as CfA. Images courtesy of the
Smithsonian Astrophysical Observatory

1.2.2 The early pioneers of redshift surveys

Over the last 30 years, redshift surveys have developed into a thriving industry, and

whilst they have been many and varied over the years, we will only scratch the sur-

face, highlighting some of the more significant successes here. There is, however, a

table provided with an extensive list of past, present and future (proposed) surveys in

Table 1.1.

The size of redshift surveys is largely limited by the technological advances in tele-

scopes, CCD imaging (i.e photometry) and, perhaps more importantly, spectrographs.

To make a large enough survey where redshifts of thousands of galaxies could be mea-

sured would require a lot of dedicated telescope time and funding. Nevertheless, it was

in 1977 that these investments were made and dedicated redshift surveys began. The

first major breakthroughs in mapping large scale structure began with the CfA survey

which ran from 1977 to 1982 Huchra et al. (1983) and measured spectroscopic redshifts

for a total of 1100 galaxies out to a limiting apparent magnitude of mlim ≤ 14.5 mag

(see Figure 1.4 left). This survey represented the first large area maps of large-scale

structure in the nearby universe and confirmed the 3-D clustering properties of galaxies

already proposed a little over 50 years previously. By extending this survey between

1985 and 1995, CfA2 (Geller and Huchra, 1989) measured a total of 18,000 redshifts

out to 15,000 kms−1 and mlim ≤ 15.5 mag as shown in the right-hand plot of Figure 1.4.

On this plot you can see more distinctly, the famous supercluster of galaxies referred

to as ‘The Great Wall’. Despite this tremendous achievement, spectrographic techno-

logical constraints allowed only one galaxy at a time to be observed, making the whole

http://www.cfa.harvard.edu/~huchra/zcat/
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Figure 1.5: The IRAS PSCz redshift survey. The left-hand image shows the Infrared As-
tronomical Satellite (IRAS). The right-hand image is 3D representation of the of the PSCz
survey. The left image courtesy of NASA. The right image courtesy of Dr. Luis Teodoro.

process extremely time consuming. However, the 1980’s saw developments in spectro-

scopic technology for the first multi-object fibre spectrographs that allowed between

20 and 200 galaxies to be observed simultaneously during one exposure. Moreover, the

photometric technology also reached new heights.

1.2.3 A new chapter in surveying the Universe

The Infrared Astronomical Satellite (IRAS) was launched in 1983. Since effects from

galactic extinction do not affect measurements in the infrared, this satellite allowed

the first full-sky surveys. However, it was not until the 1990’s that a new era of space-

based galaxy surveys was ushered in. The PSCz redshift survey ran from 1992 to

1995 and mapped 15,411 galaxies over 84% of the sky out to 0.6 Jy Saunders (2000).

Following this was the Hubble Deep Field-North (HDF-N) survey in 1995 (Williams,

1996). This survey utilised the Wide Field and Planetary Camera 2 (WFPC2) on the

Hubble Space Telescope and for the first time, allowed unprecedented detail of faint

galaxy populations to a magnitude of mV = 30 mag and as deep as z ∼ 6. In 1998

the follow up survey, HDF-South, sampled a random field in the southern hemisphere

sky with equal success. Consequently a photometric redshift catalogue was created by

Fernández-Soto et al. (1999) of 1067 galaxies in the catalogue out z = 5.6.

In terms of the sheer quantity of galaxies with measured redshifts the Two Degree

http://library01.gsfc.nasa.gov/cgi-bin/gdprojs/searchAlpha.pl?letter=I/
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Figure 1.6: The 2-degree field multi-object spectrographic system located at the Anglo-
Australian Telescope. This instrument can obtain up to 400 spectra simultaneously
and marked a significant leap forward in spectrographic technology. Images courtesy of
http://www.2dfquasar.org/

Field Galaxy Redshift Survey (2dFGRS) (Colless, 1998) could be considered the next

landmark. This survey ran from 1998 to 2003 and used the multifibre spectrograph on

the Anglo-Australian Telescope (AAT) which could record up to 400 galaxy redshifts

simultaneously (see Figure 1.6). The photometry was taken from the APM scans of

the UKST plates and measured magnitudes out to mlim = 19.45 mag. The 2dFGRS

team recovered a total of 245,591 redshifts, 220,000 of which were galaxies. With this

increase in instrumentation precision and the vast number of objects catalogued, the

scientific goals became equally ambitious. Some of 2dFGRS goals included measuring

the power spectrum of the galaxy distribution on scales up to few hundred Mpc−1,

determining the galaxy LF, clustering amplitude and mean star formation rate out to

a redshift z ∼ 0.5. The survey was not only a success in terms of its achieved goals but

also in the size of the collaboration: a total of 33 collaborators were involved from the

UK, Australia and the USA. Figure 1.7 shows the impressive scale of the survey when

compared to CfA in Figure 1.4.

At around the same time as the 2dFGRS another team was carrying out a survey

called the Two Micron All Sky Survey (2MASS) (Skrutskie, 2006). This saw the

return of a near-infrared full sky survey and was the first all-sky photometric survey of

galaxies brighter than mK = 13.5 mag and catalogued approximately 100,000 galaxies,

including the ‘zone of avoidance’ - a region where dust in our own galaxy renders optical

surveys near impossible.

In 2003 the HST was revisited to survey what remains today as the deepest imaging

of the Universe in the optical range. The Hubble Ultra Deep Field (HUDF Beckwith,

2006) ran from 2003 to 2004 and surveyed over 10,000 galaxies out to a staggering

http://www.2dfquasar.org/
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Figure 1.7: The 2dF galaxy redshift survey final data release showing approximately 220000
galaxies. The 2 wedges represent the Northern and Southern stips. Image courtesy of
http://msowww.anu.edu.au/2dFGRS/

zphoto = 8.

Moving to present day we now have the Sloan Digital Sky Survey - Data Release 7

(SDSS-DR7) which has been the most ambitious survey to date, attempting to map a

quarter of the entire sky (Adelman-McCarthy, 2006). It has only just completed the

second phase of the project having already catalogued just under one million galaxies.

The SDSS uses a dedicated, 2.5-metre telescope on Apache Point, New Mexico, USA

and a pair of spectrographs fed by optical fibres that can measure spectra and therefore

the redshifts of more than 600 galaxies in a single observation.

1.2.4 Surveys... The next generation

The future of mapping the Universe looks set to begin a new ambitious phase that will

truly mark the difference between 20th and 21st century observational cosmology. For

example, within the foreseeable future the Square Kilometer Array (SKA) is planned

to be constructed. The host country for its construction has now been shortlisted to

South Africa and Western Australia. The project has been in the planning stages since

1999 (Taylor and Braun, 1999) and is one that will dwarf all previous collaborations

with more than 50 institutes in 19 countries involved. SKA will operate at metre to

cm wavelengths and have a field of view that will carry out instantaneous imaging of

up to several tens of degrees. It will serve as an interferometric array with an overall

http://msowww.anu.edu.au/2dFGRS/
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collecting area of order one million square metres, providing a sensitivity of around 50

times higher than the largest existing radio telescopes (see Figure 1.10). The main key

science objectives include:

• Strong-field tests of gravity using pulsars and black holes;

• The origin and evolution of cosmic magnetism;

• Galaxy evolution and cosmolgy;

• Probing the Dark Ages;

Although the main SKA facility is due to begin construction in 2022, there are 2

pathfinder instruments due to be built in the shortlisted countries. There is the Aus-

trailian SKA Pathfinder (A-SKAP) and the South African MeerKAT. Both are due to

complete constuction in 2012.

With this potential wealth of data cosmologists can make confident statements

about the nature of the large-scale distribution of galaxies in the Universe and focus

on particular galaxy types without being constrained by the low numbers which was

a problem 30 years ago. For example, the VISTA Atlas survey is attempting to map

∼450,000 luminous red galaxies to measure such aspects as the dark energy equation

of state to a redshift z ∼ 0.7 via baryonic oscillations.

The Large Synoptic Survey Telescope (LSST) plans to be another ambitious ground

based optical telescope. With a primary mirror 10 metres in diameter, it is planned

that this telescope can survey in the order of 3 billion galaxies and provide extensive

weak lensing maps to probe both dark matter and dark energy. Construction is due to

start in 2010 and to go online in 2015.
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Figure 1.8: The top image shows the 2.5 m telescope located at Apache Point Observatory in
New Mexico . in used for the Sloan Digital Sky Survey (SDSS). The bottom image shows the
SDSS multi-object fibre spectrograph which can measure up to 600 objects simultaneously.
Images courtesy of http://skyserver.sdss.org/

http://skyserver.sdss.org/dr1/en/proj/basic/color/fromstars.asp
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Figure 1.9: The Sloan Digital Sky Survey redshift distribution on the sky. Image courtesy
of http://www.sdss.org.

Figure 1.10: Artists impression of the Square Kilometre Array. Image courtesy of
http://www.skatelescope.org/

http://www.sdss.org
http://www.skatelescope.org/
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1.3 The Galaxy Luminosity Function

One of the most fundamental and yet challenging problems in observational cosmol-

ogy is characterising the luminosity distribution of galaxies in the Universe. Just as

the study of the distribution of stellar luminosities can be a tool to help understand

the physics of star formation and stellar structure, Cosmologists hope to learn about

the processes of galaxy evolution by studying the distribution of galaxy luminosities.

This is achieved through the determination of the optical luminosity function (LF),

Φ(L), which is an essential tool for interpreting large-scale structure, determining the

luminosity density and constraining galaxy formation models.

The LF describes the relative number of galaxies of different luminosities by count-

ing the number of galaxies in a representative volume of the Universe which measures

the co-moving number density of galaxies of luminosity, L, per unit luminosity such

that,

dN = Φ(L)
dL

L
dV (1.17)

The quantity, Φ(L), provides us with robust handle to compare the difference between

different sets of galaxies i.e. at different redshifts, galaxy types, environment etc...

The LF is most commonly described by the Press-Schechter function named after its

pioneers, William Press and Paul Schechter (Press and Schechter, 1974) and is typically

written in the form given by,

Φ(L)dL = φ∗
(
L

L∗

)α

exp

(
−L
L∗

)
dL

L∗
, (1.18)

where,

• φ∗ is a normalisation factor defining the overal density of galaxies, usually quoted

in units of, h3Mpc−3.

• L∗ is the characteristic luminosity which is approximately the luminosity at which

most of the light of galaxies is emitted.

• α defines the faint-end slope of the luminosity function. It is typically negative,

implying large numbers of galaxies with low luminosities.

Contrastingly, galaxy surveys in infra-red have yield LF’s that do not seem to fit the

standard Press-Schechter. For example in Lawrence et al. (1986) the following power

law analytical form was fitted to data obtained from the Infrared Astronomical Satellite

(IRAS),

φ(L) =
dΦ

dL
= φ∗L1−β1

(
1 +

L

L∗β2

)−β2

, (1.19)
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Figure 1.11: Schematic illustrating the characteristic shape of the Schechter luminosity
function. The LF is typically presented in terms of log of the luminosities. The left hand
plot shows the three parameter for with the Schechter LF depends upon - L∗, α and φ∗. The
middle plot illustrates how we would expect the shape of the LF to change with the presences
of pure density evolution within a survey, whilst the right-hand plot illustrates the effect of
pure luminosity evolution. The degree with which both forms of evloution are effected is
dependent on their respective evolution parameters γ and β.

where β1 and β2 define the slopes of the two power laws. In Saunders (1990) a log-

Gaussian form was adopted for a survey also using the IRAS given by,

φ(L) =
dΦ

dL
= φ∗

(
L

L∗

)1−γ

exp

[
− 1

2σ2
log2

10

(
1 +

L

L∗

)]
(1.20)

1.3.1 Necessary corrections

As we will go on to discuss in greater detail in the next chapter, there are several issues

that affect the accuracy with which one can determine the LF. Two of the main issues

relevant to this course of research are k-corrections and evolution.

1.3.1.1 The k-correction

The use of k-correction can be traced backed to early 20th century pioneering observers

such as Hubble (1936a) and Humason et al. (1956), where the term, k, referred to the

particular band-pass. The observed wavelength from a galaxy is different from the

one that was emitted due to cosmological redshift, z. The k-correction allows us to

transform from the observed wavelength, λo when measured through a particular filter

(or bandpass) at z, into the emitted wavelength, λe in the rest frame at z = 0. Whilst

there are very thorough and pedagogical reviews of its derivation e.g Hogg et al. (2002),

we shall provide a simplified summary.

Firstly we consider the relation between the corresponding emitted frequency, νe
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and the observed frequency, νo, given by,

νe = (1 + z)νo. (1.21)

By now considering the shift of the spectrum through a particular band-pass we can

relate the observed flux, fλ(λo) to the emitted luminosity, Lλ(λe) by,

fν(νo)dνo =
Lν(νe)dνe

4πd2
L

=
Lν(νe)(1 + z)

4πd2
L

dν0, (1.22)

where dL is the cosmology dependent luminosity distance. The flux at νo is related to

the luminosity at νo by,

fν(νo) =
L(νo)

4πd2
L

(
νeL(νe)

νoL(νo)

)
, (1.23)

where, in the most general sense,

k(z) =

(
νeL(νe)

νoL(νo)

)
. (1.24)

Converting this correction from fluxes and luminositites to magnitudes yields,

m = M + 5 log(dL) + k(z), (1.25)

where m and M are the respective apparent and absolute magnitudes of the galaxy.

1.3.1.2 Evolution

Understanding the origins and growth of structure that form the galaxies we observe

today is one of the many driving forces behind current cosmological research. Whilst

the intricacies of galaxy evolution are beyond the scope of our work, we do draw upon

evolutionary models as applied to estimating the galaxy LF which can be described in

two broad groups:

Pure Luminosity Evolution (PLE) assumes that massive galaxies were assembled

and formed most of their stars at high redshift and have evolved without merging i.e.

not convolved number evolution. The correction applied to account for this form of

evolution is redshift and galaxy type dependent and of the form:

L∗(z) = L∗0(z)(1 + z)β (1.26)

converting to absolute magnitudes gives

M∗(z) = M∗
0 (z)− 2.5β log10(1 + z) (1.27)

where, β is the evolution parameter and although is galaxy type dependent, a global

correction is often used. The effects on the galaxy LF due to this form of evolution is

illustrated in in the right-hand panel of Figure 1.11.
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Pure Number (Density) Evolution Number evolution assumes that galaxies

were more numerous in the past but have since merged. The treatment of this type

of evolution is complex involving mergers of massive halos under Cold Dark Matter

(CDM) framework of N-body simulations. PDE is generally modelled as,

φ∗(z) = φ∗0(z)(1 + z)γ (1.28)

where the parameter, γ, is the number evolution parameter. As with the PLE model,

we can see the effects of this form of correction on the LF in the middle panel of

Figure 1.11.

1.4 Conclusions

In this chapter we have taken a very broad look at the development of modern ob-

servational cosmology. We have summarised the development of the current standard

model of the Universe, ΛCDM and highlighted some of the observational measurements

that support this model. We have also examined the development of redshift surveys

through the ages and discussed how they have played and continue to play a key part

in our continuing quest to study the origins and evolution of the Universe.

One of the main issues pertinent to the course of study throughout this thesis is

the need for developing robust statistics to cope with vast amounts of data that we

are now acquiring. However, we must be cautious. Despite ongoing claims that we are

working in a field tagged as ‘precision cosmology’, there remains critical selection effects

inherent from observations that have to be accounted for and properly understood if

we are to achieve the level of required precision.

For example, redshift surveys compiled the neutral hydrogen HI 21 cm line are

often used to determine the mass function in the nearby Universe. The completeness

of these surveys is of major importance and difficult to quantify. Galaxy detection

requires significant amounts of neutral hydrogen gas and targeting using an optical

counterpart. However, low surface brightness galaxies are not easy to detect optically

which can lead to significant biasing (see e.g. Zwaan et al., 1997; Salzer and Haynes,

1996; Schneider, 1996).

In the following chapter we focus in on the development of statistical methods

as applied to another fundamental area of research concerning estimating the galaxy

luminosity function with exploration into current tests of completeness.



Chapter 2

Development of Statistical
Cosmology

“See me in snapshots narrating my previous lives,

And a mountain of other lies.”

‘Language of Flowers’ - Pale Saints, 1993

In this chapter we consider the development and impact of the statistical methodology

within the branch of observational cosmology that attempts to determine the galaxy

luminosity function (LF) derived from magnitude-redshift surveys. From the previous

chapter, we will refer to the respective differential LF as φ(M), where M is the absolute

magnitude of the object, and the density function ρ(z), where z is the redshift of

the object. As we have discussed the LF plays a vital and fundamental role in our

understanding of the distribution and brightness of galaxies in large-scale structure

studies and consequently is a fundamental test for galaxy formation and evolution.

However, estimating the LF for extragalactic objects can be a very tricky process

where the presence of selection effects due to detection thresholds in apparent mag-

nitude, colour and surface brightness, coupled with systematics and/or evolutionary

effects, complicate the task of describing the luminosity distribution of galaxies accu-

rately. Therefore, in order to overcome these effects and accurately determine the prob-

ability densities of φ(M) and ρ(z) numerous sophisticated statistical techniques have

been devised. There are non-parametric methods such as the classical number count

test (e.g Hubble, 1936b; Christensen, 1975), the Schmidt (1968) 1/Vmax test, the φ/Φ

method (e.g. Turner, 1979), and the Lynden-Bell (1971) C− method. Alternatively,
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there have also been parametric methods developed (Sandage et al., 1979) based on

the Maximum Likelihood Estimator (MLE) where a parametric form of the LF (most

commonly that of Schechter, 1976) is assumed. There is also a non-parametric counter-

part of the MLE developed by Efstathiou et al. (1988) called the Stepwise Maximum

Likelihood method (SWML). Before we begin our review, we note that there are two

important fundamental assumptions common to most of these methods. Firstly, they

assume that the survey catalogue in question is complete to some specified apparent

magnitude limit.

For clarity, completeness, in a cosmological context, can be defined in two distinct

ways: firstly, ‘redshift’ completeness - the percentage of successfully measured redshifts

over a list of targets within a survey; and secondly, magnitude completeness - the

probability that a galaxy of apparent magnitude, m, is observable. Throughout this

thesis we are referring to the latter.

The second assumption applies to all non-parametric and maximum likelihood es-

timators. The assumption is of separability between the probability densities, φ(M)

and ρ(z). The bivariate distribution of P (M, z) where no evolution is present, can be

expressed it in terms as the product of two univariate distributions such that,

P (M, z) = φ(M)ρ(z) (2.1)

There have been rigorous reviews of both parametric and non-parametric methods

as they have developed over the years. One of the first reviews by Felten (1977)

performed nine determinations of the LF using variations of the classical method.

Binggeli et al. (1988) give a very comprehensive review of all non-parametric and

parametric methods that had been developed up to 1988; Willmer (1997) compare the

relative merits of Lynden-Bell’s C− method with the MLE of Sandage et al. (1979)

via Monte Carlo simulations; and finally, Takeuchi et al. (2000) apply the 1/Vmax

estimator, the C− estimator and two variations on the MLE to simulated 2dFGRS

data and Hubble Deep Field data. Therefore, the review in this chapter is very much

in the same spirit, tracing the most relevant extensions and variations of the traditional

approaches as well as considering more recent emerging statistical advances.

2.1 The Maximum Likelihood Estimator

We begin with the maximum likelihood estimator (MLE). As a statistical tool, the

MLE is by no means a recent development. In fact it was R. A. Fisher who first

pioneered the method between 1912 and 1922 (see e.g. Fisher, 1912, 1922). For a
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comprehensive historical review of the MLE see Aldrich (1997). However, in terms of

its application within the context of observational cosmology it was Sandage, Tammann

& Yahil (1979), hereafter STY-MLE who pioneered this approach as applied for the

determination of the LF. This is parametric technique which assumes an analytical

form for the LF and therefore eliminates the binning of data. The more popular non-

parametric counterpart of the MLE called the stepwise maximum likelihood (SWML)

will be discussed in the following section.

If x, a continuous random variable, is described by a probablity distribution function

(PDF) given by,

f(x; θ1, θ2, ..., θk), (2.2)

where θ represent the parameters we wish to estimate, then the likelihood function, L,

is given by,

f(x1, x2, ..., xN |θ1, θ2, ..., θk) = L =
N∏

i=1

f(xi; θ1, θ2, ..., θk) (2.3)

where x1, x2, ..., xN are N number of independent observations. It is often the case that

the likelihood function is expressed in terms of the logarithmic likelihood such that,

Λ = lnL =
N∑

i=1

ln f(xi; θ1,θ2, ..., θk) (2.4)

We therefore obtain the maximum likelihood of θ1, θ2, ..., θk by maximising L or Λ such

that,
∂(L or Λ)

∂θj

= 0, j = 1, 2, ..., k (2.5)

So in the context of estimating the parameters of the LF we consider a galaxy at redshift

z for which we can define the cumulative LF and thus determine the probability that

the galaxy will have an absolute magnitude brighter than M as,

p(M |z) =

M∫
−∞

φ(M ′)ρ(z)f(m′)dM ′

∞∫
−∞

φ(M ′)ρ(z)f(m′)dM ′
, (2.6)

where ρ(z) is the density function for the redshift distribtution, f(m′) is the complete-

ness function which for a 100% complete survey would be,
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f(m′) =


1, mbright

lim ≤ m′ ≤ mfaint
lim

0, otherwise.

(2.7)

It follows that the probability density for detected galaxies is given by the partial

derivative of P (M, z) with respect to M ,

p(Mi, zi) =
∂P (M, z)

∂M
=

φ(Mi)
Mbright(zi)∫
Mfaint(zi)

φ(M ′)dM ′

(2.8)

Note that the density functions have cancelled thus rendering the technique insen-

sitive to density inhomogeneities. We finally maximise the likelihood to give us,

L =
N∏

i=1

p(Mi, zi). (2.9)

Most commonly a Schechter function is assumed where the parameters that we wish

to estimate are α, M∗ and φ∗ as defined in Equation 1.18 on page 23.

Marshall et al. (1983) extend the use of the MLE for quasars by simultaneously

fitting evolution parameters with the luminosity function parameters. For this they

test both pure density and pure luminosity models. Similarly Saunders (1990) applied

the MLE method to determine the density field without knowledge of the LF. They

demonstrate that by parameterising the radial density function ρ(|r−|) they can fit it as

a step function and obtain the variation on the MLE as,

L′ =
N∏

i=1

ρ(zi)∫
ρ(zi)(dV/dz)dz

. (2.10)

A more recent paper by Sheth (2007) revisited the STY-MLE and generalised it for

the case where photometric redshifts have been used.

Although the MLE method has become more popular than other traditional non-

parametric ones there are aspects not to be overlooked. As highlighted by Springel

and White (1998) the MLE offers no built-in measure of goodness-of-fit. The result of

which implies that nearly any functional form can be made to ‘fit’. Furthermore, the

nature of the method effectively determines the slope of the LF at any point. However,

if the survey sample is not complete near the apparent magnitude limit sources close

to the limit will be underestimated thus making the slope of the LF underestimated

(Saunders, 1990).
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2.2 The Traditional Non-Parametric Approaches

2.2.1 The classical approach

The classical method, as coined by Felten (1977), represents the first rudimentary

binned number count approach to determining the LF and was initially developed and

applied by e.g. Hubble (1936b), van den Bergh (1961), Kiang (1961), and Shapiro

(1971). However, as pointed out in Binggeli et al. (1988) the method was not formally

introduced until Christensen (1975), Schechter (1976) and Felten (1977).

The underlying assumption of the method is that the distribution of sources within

the data-set in question is spatially homogeneous. From this starting point we count

the number of galaxies N within a volume V such that,

Φ ≡ N

V
(2.11)

The volume, V (M), is calculated for the maximum distance that each galaxy with an

absolute magnitude, Mi, could have and still remain in the sample. As an example,

Felten (1977) applies the following expression to calculate the volume neglecting k-

corrections,

V (M) =
4

3
π exp[0.6(mlim −Mi − 25)]×

[
E2(0.6α ln 10)− E2(0.6α ln 10 csc bmin)

csc bmin

]
(2.12)

where mlim is the apparent magnitude limit of the survey, α and bmin are related

to the directional-dependent galactic absorption calculation, and E2(x) is the second

exponential integral (Abramowitz and Stegun, 1964, Chap 5).

The number of galaxies, N , within the absolute magnitude limits of the survey, M ,

is binned into an arbitrary interval e.g. (M − 1
2
∆M,M + 1

2
∆M) (see Felten, 1977;

Binggeli et al., 1988) with each bin divided by V (M) to convert the histogram to units

of mag−1Mpc−3 and give a binned estimation of the differential LF, φ(M).

Whilst this method is relatively straightforward to apply, its basic assumption of

homogeneity is well known to be a major handicap. At the time when galaxy surveys

were shallow it was common practice to exclude clustered regions such as the Virgo

cluster and members of the Local Group to try and avoid biasing in the shape and thus

the parameters of the LF (Felten, 1977).

2.2.2 The V/Vmax test

A natural development from the classical approach is the famous V/Vmax test which

was first described by Kafka (1967) but more formally detailed and applied in the now
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max
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Figure 2.1: Schematic illustrating the construction of the traditional Schmidt (1968) V/Vmax

test.

seminal paper by Schmidt (1968) to assess the uniformity and the cosmological evolu-

tion of quasars at high redshift (see also Schmidt, 1972, 1976). As with the classical

method, V/Vmax assumes spatial homogeneity. Figure 2.1 illustrates the construction

of V/Vmax. The basic principle of the test is simple and is defined by considering two

volumes:

• V , the volume of the sphere of radius R, where R is the distance at which a

galaxy was actually detected, compared to

• Vmax, the maximum volume within which a galaxy could have been detected.

That is, the volume enclosed at maximum redshift, zmax at which the galaxy in

question can be observed.

It then follows that the value V/Vmax is expected to be uniformly distributed in the

interval [0,1] under the assumption of homogeneity in the survey. Thus, V/Vmax has

expectation value 〈
V

Vmax

〉
=

1
2
, (2.13)

with an often quoted statistical uncertainty of 1/(12N)1/2, where N is the total number

of objects in the sample (see e.g. Hudson and Lynden-Bell, 1991). In reality, the value

calculated from V/Vmax for a survey will deviate from 1/2. By how much the value

deviates from 1/2 is usually considered to be either a signature of incompleteness

and/or an indication of evolution: a value that is greater than 1/2 would imply a

density evolution where galaxies were more numerous in the past, whereas a value less

than 1/2 would imply that galaxies were less numerous in the past.
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In the same paper, Schmidt also outlined a variation of this statistic that could be

used to estimate the quasar LF,

Φ =
N∑

i=1

1

V i
max.

(2.14)

Once again it was Felten (1976) who would dub this estimator as the ‘Schmidt’s esti-

mator’.

2.2.2.1 Development and variations of V/Vmax

Since its inception, V/Vmax has remained a popular estimator for determining luminos-

ity functions and as a probe of evolution, most likely due to its simplicity and ease of

implementation. As a result the technique has evolved, been improved and refined over

the years to accommodate the many different types of surveys that have steadily grown

in size and complexity. We have selected some of the most significant developments of

the method and summarised them below.

Huchra and Sargent (1973) were the first to extend its use to galaxies from the

Markarian lists I to IV (see Markarian, 1967, 1969a,b; Markarian et al., 1971) and

perform V/Vmax as a completeness test whilst including the Virgo Cluster and the Local

Group. They showed that the effects of including such clusters had a minimal impact

on the results. Furthermore, they calculated the space density Φ(M) via Schmidt’s

1/Vmax estimator, where they summed over all galaxies within an absolute magnitude

interval (M − 1
2
∆M,M + 1

2
∆M), where ∆M is typically 0.1.

Felten (1976) made an extensive comparison of 1/Vmax with the classical test of

Equation 2.11. This paper derives a generalised version of 1/Vmax between absolute

magnitude ranges M1 < M < M2 to give,

M2∫
M1

φdM =
N∑

i=1

1

Vi

(2.15)

and shows that it is superior to that of the classical estimator.
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Figure 2.2: The left hand shows the construction of the generalised V/Vmax for two incoherent
overlapping samples (B and D) into two region independent samples, (B-C) and D (see
Equation 2.16). The middle panel shows the construction of Ve/Va for a coherent sample
constructed from two overlapping samples (B and D). The shaded region in the right-hand
panel represents Ve for the case z ≤ zB

max(F ) in Equation 2.18.

Avni and Bahcall (1980) generalised V/Vmax for multiple samples for two distinct

cases:

1. Firstly, for combining independent multiple samples that are still physically sep-

arated.

2. Secondly, for combining independent samples in which the individual samples are

physically joined together.

In the first scenario they consider complete ‘incoherent’ samples which do not overlap

on the plane of the sky that could either be initially non-overlappling, or could be

constructed from overlapping samples as illustrated on the left-hand panel in Figure 2.2.

The term ‘incoherent’ refers to combining samples in which one remembers for each

object its parent sample.

In this particular case the V/Vmax statistic can be constructed from overlapping

samples dividing the space into tow distinct volumes (B-C) and D. For this method

they show that a combined sample average of V ′/V ′
max is given by,〈

V ′

V ′
max

〉
B−C,D

=
NB−C

NB−C +ND

〈
V ′

V ′
max

〉
B−C

+
ND

NB−C +ND

〈
V ′

V ′
max

〉
D

(2.16)

where V ′ represents the density-weighted volume, NB−C is the number of objects in

sample (B-C) and ND is the number of objects in sample D.

The second scenario considers the simultaneous analysis of independent complete

‘coherent’ samples in which the indivdual samples are physically joined and a new
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statistic, Ve/Va, is constructed (see illustration in the middle panel of Figure 2.2). By

this description, ‘coherent’ refers to the method of combining independent samples.

Here, a new variable V ′
a is defined as the density-weighted volume available to an

object for being included in the coherent sample. This new volume is defined as,

V ′
a[Fi] =

ΩB−C

4π
V ′[zB

max(Fi)] +
ΩD

4π
V ′[zD

max(Fi)] (2.17)

where ΩB−C and ΩD are the solid angles subtended on the sky and Fi is flux of the

object. The second new variable V ′
e is defined as the density-weighted volume enclosed

by an object in the coherent sample and is given by,

V ′
e [zi, Fi] =


ΩB−C

4π
V ′(zi) + ΩD

4π
V ′(zi), zi ≤ zB

max(Fi)

ΩB−C

4π
V ′[zB

max(Fi)] + ΩD

4π
V ′(zi), zi > zB

max(Fi)

(2.18)

This first case in Equation 2.18 is illustrated in the right-hand panel of Figure 2.2.

This leads to the sample average of V ′
e/V

′
a being defined as,〈

V ′
e

V ′
a

〉
=

1

NT

∑
i

{
V ′

e [zi, Fi]

V ′
a[Fi]

}
(2.19)

where NT is the total number of objects in the two combined samples.

Hudson and Lynden-Bell (1991) recast V/Vmax for analysis of the diameter func-

tion of galaxies. Therefore, for diameter-limited catalogues which have both a max-

imum and minimum diameter cut-off they show that the completeness test can be

written as,
V

Vmax

=
θ−3 − θ−3

max

θ−3
lim − θ−3

max

, (2.20)

where θ is the major diameter of a given galaxy, θlim is the lower diameter limit of the

survey and θmax is the maximum diameter cut-off of the survey.

Eales (1993) extended the generalised 1/Vmax estimator introduced by Felten (1976)

to examine the evolution of the LF as a function of redshift. Similarly, van Waerbeke

et al. (1996) looked specifically at the effects of pure luminosity evolutionary models

on QSO’s via the Vmax estimator to constrain cosmological parameters.

Qin and Xie (1997) generalised the now familiar Schmidt notation in terms of a

new statistic called n/nmax that is applicable to any kind of distribution of objects.
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This, therefore, would be an improved measure of the traditional V/Vmax test where

the estimator is weighted differently and the distribution in question is assumed to

homogenous. This fitting technique demonstrated that if the adopted LF is correct

then the distribution of n/nmax is uniform on the interval [0,1] ,

n(M, z)

nmax[M, zmax(M)]
=

z∫
0

Φ(M, z)dV (z)

zmax(M)∫
0

Φ(M, z)dV (z)

(2.21)

and the authors showed that its expectation value 〈n/nmax〉 is 1/2.

Following from this, another new statistic, o/omax, based on the cumulative LF and

was introduced by Qin and Xie (1999) which is similar to but independent of n/nmax.

o(M, z)

omax(z)
=

M∫
Mmin

Φ(M, z)dM

Mmax(z)∫
Mmin

Φ(M, z)dM

, (2.22)

This statistic is designed to provide a test of the LF and it is also shown that the two

distributions of n/nmax and o/omax correspond to a unique normalised LF which can

provide a sufficient test for any adopted LF form. In the latter paper they apply both

estimators to AAT sample data from the UVX survey Boyle et al. (1990).

Page and Carrera (2000) improve the method of constructing binned LFs using

the 1/Vmax to take into account systematic errors introduced for objects close to the

flux limit of a survey . As pointed out in this paper, for evolutionary studies of galaxies

this traditional approach, as extended by Avni and Bahcall (1980) and Eales (1993),

is very common (see e.g. Maccacaro et al., 1991; Ellis et al., 1996) but can distort

the apparent evolution of extragalactic populations. Through the use of Monte Carlo

simulations, with a sample of 10,000 objects and simulating an unevolving two-power

law model X-ray LF, they compare the 1/Vmax estimation of the differential LF given

by,

φ1/Vmax(L, z) =
1

∆L

N∑
i=1

1

Vmax(i)
, (2.23)

to their improved binned approximation of the φest, which assumes that φ does not

change significantly over the luminosity and redshift intervals ∆L and ∆z respectively
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and is defined as,

φest =
N

Lmax∫
Lmin

zmax(L)∫
zmin

(dV )/(dz)dzdL

, (2.24)

where N is the number of objects within some volume-luminosity region.

Sheth (2007), recognising the increased use photometric redshifts in deep surveys

as well as surveys vast in the number of objects, has presented an extension to the Vmax

estimator to provide unbiased results in zphoto where photometric redshifts are far less

precise that than ones measured spectroscopically.

To do this, Sheth considers p(zphoto|zspec), the probability of estimating the redshift

as zphoto when the true value is the more accurate spectroscopic redshift, zspec. He then

shows the distribution, N(zphoto) of estimated redshifts is given by,

N (zphoto)

dzphoto

=

∫
dzspec

N(zspec)

dzspec

p(zphoto|zspec) (2.25)

By considering a catalogue that has both a minimum limiting volume, Vmin for which an

object would be too bright to be included in the catalogue, and the familiar maximum

volume, Vmax, the number of galaxies, N , with absolute magnitude, M , in a magnitude

limited catalogue is given by,

N(M) = φ(M)[Vmax(M)− Vmin(M)] (2.26)

Sheth goes onto show that the number, N , of estimated absolute magnitudes, M is

given by,

N (M) =

∫
dMφ(M)V(Vmax, Vmin,M) (2.27)

where,

V(Vmax, Vmin,M) =

DL(Mmax)∫
DL(Mmin)

dDL
dVcom(DL)

dDL

p(M −M|DL,M) (2.28)

where DL is the luminosity distance and Vcom is the comoving volume. In Rossi and

Sheth (2008) they apply this method via mock catalogues to probe their effectiveness

in areas such as the size-luminosity relation which is often distance-dependent.

2.2.3 The φ/Φ method

As we have previously discussed, the major drawback in the use of the V/Vmax is the

assumption that the distribution of objects is spatially uniform. The increase in the
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number and variety of redshift surveys over the years have confirmed that galaxies have

strong clustering properties. Naturally, this can introduce a bias in constructing the

differential LF. However, it was not long before alternative approaches were developed

that could circumvent this problem.

Originally introduced by Turner (1979) and Kirshner et al. (1979) the φ/Φ method

(as coined by Binggeli et al., 1988) is a natural progression from the classical method,

detailed in section 2.2.1, that gives a binned estimate of the LF. For a magnitude-

limited sample we calculate the ratio of the number of galaxies in the interval dM ,

N(dM) to the total number of galaxies brighter than M , N(≤ M) within the maxi-

mum volume for a complete sample.

N(dM)

N(≤M)
=
dN(≤M)

N(≤M)
=

φ(M)ρ(z)dM dV
M∫
−∞

φ(M ′)ρ(z)dM ′dV

=
φ(M)dM

Φ(M)
≈ d ln Φ(M), (2.29)

where ρ(z) is the density function and Φ(M) is the integrated LF. It is clear from this

equation that the density functions cancel, thus rendering the estimator independent of

the distribution of galaxies. This estimator has been further developed slightly - Davis

et al. (1980), Davis and Huchra (1982) to bin the data in equal distance intervals, and

more recently by Petrosian (2002) to account for various types of truncation. However,

as shown in de Lapparent et al. (1989) the approximation in Equation 2.29 introduces

a bias in the determination of the LF for large dM . To avoid this bias it has been

common place to assume an analytical form for the LF as in Turner (1979), Kirshner

et al. (1979), Davis and Huchra (1982) and de Lapparent et al. (1989). So although by

its construction this estimator is non-parametric, its application has rendered it more

of a parametric one.

2.2.4 The C− method

The C− method was introduced by Lynden-Bell (1971), where he applied it to the

quasar data of Schmidt (1968). It is essentially a maximum likelihood procedure that

does not require any binning of data and therefore utilises all the data in the sample.

Furthermore, It has the advantage over the classical and 1/Vmax methods as it does

not require any assumptions about the distribution of objects within the data-set.

This method generates a cumulative LF without normalisation with the differential LF

described as a weighted sum of Dirac δ-functions.
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The method can be summarised as follows. We consider the observed distribution

of galaxies with absolute magnitude, M , and distance modulus, Z, plane (M,Z), and

represent the differential luminosity and density distribution functions respectively as,

φ(M) =
N∑

i=1

ψiδ(M −Mi), (2.30)

ρ(Z) =
N∑

i=1

ρiδ(Z − Zi). (2.31)

The distance modulus, Z, is calculated by,

Z = m−M = 5 log10(dL) + 25 (2.32)

where dL is the luminosity distance to the object and m is the apparent magnitude.

The data is then sorted such that Mi+1 ≥Mi for i = 1, N . We then define a region on

the plane for each galaxy located at M ′ denoted as the C−(M ′) function such that,

Ci ≡ C−(Mi), i = 1, ..., N


Mmin ≤Mi < M ′,

Zmin ≤ Zi ≤ mlim −M ′,

(2.33)

as illustrated in Figure 2.3. Therefore, the coefficients of the LF are determined from

the relation,

ψi+1 = ψi
Ci + 1

Ci+1

, (2.34)

and can be written in the cumulative form such that:

M∫
Mmin

φ(M)dM =

Mi<M∑
i:

ψi (2.35)

= ψ1

Mi<M∏
i:

Ci + 1

Ci

(2.36)

Although Jackson (1974) extended the original method to account for the combining

of multiple data-sets, the method remained limited to deriving only the shape of the

probability density function. As a result Choloniewski (1987) revisited and improved

the method to not only simplify it, but to properly normalise the LF and estimate the

density evolution of galaxies simultaneously. A lesser known paper by Schmitt (1990)

extended the method for samples with multi-flux limits.

Another drawback of C− lay in its basic construction - weighted step functions - and

therefore it has limited use towards the faint magnitude limit of the survey in question.
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Figure 2.3: Schematic illustrating the construction of the C− method introduced by Lynden-
Bell (1971).

To overcome this, Caditz and Petrosian (1993) introduced a smoothing non-parametric

method based on a Gaussian kernel, which replaces the δ-function in Equation 2.31

with,

K(x) =
1

(2π)d|C|1/2
exp

{
−1

2
TCx

}
, (2.37)

where K(x) is the kernel function, d is the number of measured parameters for each

object, x describes the observed data and C is the inverse of the sample covariance ma-

trix. The kernel therefore replaces the δ-function distributions given in Equations 2.30

& 2.31.

Subbarao et al. (1996) extended the method for photometric redshifts by consid-

ering, for each galaxy, the probability distribution in absolute magnitude M resultant

from the photometric redshift error. By adopting a Gaussian error distribution for the

function z∗(mi,M), the redshift for the ith galaxy with an apparent magnitude mi,
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they showed that for a complete magnitude limited sample the defined region C(M) is

now given as

C(M) = 0.5
∑

i

[
erfc

(
z∗(mi,M)− zi

σi

)
− erfc

(
z∗(mlim,M)− zi

σi

)]
, (2.38)

where erfc(x) is the complementary error function.

2.2.5 The stepwise maximum likelihood method

One of the first incarnations of the stepwise MLE approach, was presented by Nicoll and

Segal (1983) and can be thought of as a binned version of the Lynden-Bell’s C− method.

This was applied in their analysis of chronometrical cosmology and also considers vari-

ations of progressive truncation in apparent magnitude as well as multivariate complete

samples.

A more advanced version of Nicoll and Segal’s approach by Choloniewski (1986)

applied the same Poisson probability distribution in the MLE of Marshall et al. (1983)

(see section 2.1). In this paper, the data is projected on the absolute magnitude M

and distance modulus Z plane and divided into equal sized cells. Using the notation

from Takeuchi et al. (2000) it is shown that the likelihood function can be represented

as,

L =
∏

(Mi,zj)∈S

e−λijλ
nij

ij

nij!
, (2.39)

where,

λij =
1

n̄
Φ(M)ρ(x, y, z)dM dx dy dz, (2.40)

where nij is the number of galaxies in the (i, j) cell, n̄ is the mean density of the sample,

Φ(M) is LF , and ρ(x, y, z) is the number density where the assumption of separability

between M and x, y, z is employed.

The method which is actually named the stepwise maximum likelihood method (SWML)

was introduced by Efstathiou et al. (1988) and represents the non-parametric version

of the STY-MLE method. Unlike the MLE this technique does not depend on an an-

alytical form for φ(M). Instead the LF is in effect parameterised as a series of step

functions such that,

φ(M) =
N∑

i=1

φiW (Mi −M), (2.41)
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where,

W (x) ≡

{
1, −∆M

2
≤ x ≤ ∆M

2
,

0, otherwise.
(2.42)

Therefore, it can be shown that the expression for the step wise likelihood is given by,

L({φi}i=1,...,I | {Mk}l=1,...,K) =

Nobs∏
k=1

K∑
l=1

W (Ml −Mk)φl

K∑
l=1

φlH(Mlim(zk)−Ml)∆M

(2.43)

where,

H(x) =


0, x ≤ −∆M/2,

(x/∆M + 1/2), −∆M/2 ≤ x ≤ ∆M/2,

1, x ≥ ∆M/2.

(2.44)

The SWML has now become a very popular method for determining the LF and Sodre

and Lahav (1993) extended it (and the STY-MLE estimator) to a bivariate distribution

of magnitudes and galaxy diameters (see also Santiago et al., 1996). Driver et al. (2005)

further extended this approach for the joint distribution of surface brightness and space

density.

Heyl et al. (1997) extended the use of the SWML method by generalising it in a

similar way as Avni and Bahcall (1980) did for V/Vmax by combining various surveys

with different magnitude limits, coherently. Moreover, this extension also provided an

absolute normalisation and was used to probe density evolution in the LF by spectral

type. Springel and White (1998) also explored evolution and provided a variation of the

method by parameterising in terms of piecewise power laws as opposed to top-hats as

in Equation 2.44. For the SDSS- Early Types Bernardi (2003a), replace Equation 2.42

with Gaussian weights.

2.3 Emerging Methods and the Future of Estimat-

ing the LF

Despite the continuing popularity of such methods as V/Vmax and the SWML, there

exists a need (even if it is not widely recognised at present in the wider observational

cosmology community) to push the development of robust statistical techniques to the

next level, so that one may overcome all the potential hazards and pitfalls inherent

with current approaches already discussed in the previous sections. Therefore, we

examine here two new approaches to estimating the LF that could potentially be key

to satisfying such a need.
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2.3.1 A semi-parametric appraoch

The first one by Schafer (2007) is by his own account statistically rigorous and considers

data-sets that are truncated. There are four key points that lay the foundation for this

method which are:

1. No strict parametric form is assumed for the bivariate density.

2. No assumption of independence between redshift and absolute magnitude is

made.

3. No binning of data is required.

4. A varying selection function can be incorporated.

By not assuming separability Schafer decomposes the bivariate density φ(z,M) into,

log φ(z,M, θ) = f(z) + g(M) + h(z,M, θ), (2.45)

where h(z,M, θ) has an assumed parametric form that folds in, for example, evolution

of the LF. The functions f(z) and g(M) are determined non-parametrically. He then

incorporates an extended form of the maximum likelihood approach called the ‘local’

likelihood estimator for the density estimation and applies this to 15,057 quasars from

Richards (2006). This semi-parametric approach has the advantage of allowing the

user to estimate evolution of the LF with redshift without assuming a strict parametric

form for the bivariate density. The only parametric form required is that which models

the dependence between redshift and absolute magnitude. We now summarise this

procedure in more detail.

The local likelihood density estimation: This approach is a non-parametric ex-

tension of the MLE where one assumes the data X = (X1, X2, ..., Xn) are observations

of independent, identically distributed random variables from a distribution with den-

sity f0. The MLE for f0 is defined as the f ∈ F , where F denotes the class of candidates

for f0, and is maximised as,

n∑
j=1

log f(Xj)− n

∫
f(x)dx (2.46)

From this, one can localise the likelihood criterion and thus construct the final local

likelihood f̂LL estimator by smoothing the local estimates giving,
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f̂LL(x) ≡

[∑
u∈G

K∗(x, u, λ)f̂u(x)

]/[∑
u∈G

K∗(x, u, λ)

]
(2.47)

where G forms a grid u ∈ G of equally spaced values (between -3 and 3 in the authors

example) of a Gaussian density with mean zero and variance of unity. The term,

K∗(x, u, λ), is therefore a kernel function such that,∑
u∈G

K∗(x, u, λ) = 1 ∀x.

By making G sufficiently large, the amount of smoothing is completely dominated my

the kernal function parameter, λ.

Extending to flux-limited data: This approach is the extended for the use flux-

limited survey data where one can include the dependence between the redshift, z, and

absolute magnitude, M . A first order approximation of h is made from Equation 2.45

such that,

h(z,M, θ) = θzM. (2.48)

After an extensive derivation, a global criterion is found to be given by,

L∗(f, g, z, M,θ) ≡
n∑

j=1

wj

(∑
u∈G

K∗(zj, u, λ)au(zj)

+
∑
u∈G

K∗(Mj, v, λ)bv(Mj) + h(zj,Mj, θ)

−
∫
A

{
exp(h(z,M, θ))

[∑
u∈G

K∗(M, v, λ) exp(bv(M))

]

×

[∑
u∈G

K∗(M, v, λ) exp(av(M))

]
dM dz

})
, (2.49)

where au(z) and bv(M) are degree p polynomials which form part of the smoothing

term of K∗ for local estimates. A defines the region outside of which the data are

truncated on the (z,M) plane.

Estimating the LF in this way has the advantage of allowing the user to estimate

the evolution of the LF without assuming a strict parametric form of the bivariate

density.
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2.3.2 A Bayesian approach

The second technique by Kelly et al. (2008) adopts a Bayesian approach to estimating

LFs. In this paper they derive a likelihood function of the LF that relates observed data

to the true LF (assuming some parametric form). They then use a Bayesian framework

to estimate the LF and the posterior probability distribution of the LF parameters via

a mixture of Gaussian functions. By modelling the LF using Gaussian functions, they

circumvent the problem of having to assume a parametric form.

Estimating the LF likelihood: The form of the likelihood function that they adopt

for the LF estimation is derived from a binomial distribution. Whilst they highlight

that the traditional approach of using a Poisson distribution is incorrect, they show

that as long as the survey’s detection probability is small, both approaches yield the

same results. We recall the relation of the LF to the probability density of (L,z) can

be written in the form of,

p(L, z) =
1

N
φ(L, z)

dV

dz
, (2.50)

where L is the luminosity, z is redshift and N is the total number of objects in the

observable Universe. From this starting point, the authors assume a parametric form

for φ(L,z), with parameters θ and show that the observed data likelihood function is

given by,

p(Lobs, zobs, I|θ,N) ∝ CN
n [p(I = 0|θ)]N−n

∏
i∈Aobs

p(Li, zi|θ), (2.51)

where,

p(L, z|θ) =
N∏

i=1

p(Li, zi|θ) (2.52)

is the likelihood function for all N sources in the universe. By adding in sample

selection, the probability that the survey misses a source, given by the parameters θ,

is,

p(I = 0|θ) =

∫∫
p(I = 0|L, z)p(L, z|θ)dL dz (2.53)

In Equation 2.51 I is a vector of size N taking on values:

Ii


1 if ith source is included in survey

0 otherwise

(2.54)

Finally the term CN
n is the binomial coefficient and Aobs is the set of n included sources.
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Bayesian estimation the LF: A mixture of Gaussian functions are then used to

model the LF for the joint distribution of log L and log z. By taking the log of L and

z fewer number of Gaussians are expected to be required to sufficiently describe the

LF. Equation 2.50 is now re-written as,

p(L, z) =
p(logL, log z)

Lz(ln 10)2
, (2.55)

Using a mixture of K gaussian functions, the model for the LF is given by,

φ(L, z|θ,N) =
N

Lz(ln 10)2

(
dV

dz

)−1 K∑
k=1

πk

2π|
∑

k |1/2
exp

[
−1

2
(x− µk)

T
∑−1

k
(x− µk)

]
(2.56)

where
∑−1

k πk = 1, xi = (logLi, log zi), µk is the 2-element mean position vector for the

kth Gaussian,
∑

k is the 2 × 2 covariance matrix for the kth Gaussian, and xT denotes

the transpose of x.

The Metropolis-Hastings algorithm (MHA) is then used for obtaining random draws

of the LF from the posterior distribution. Given a suitably large enough number of

Gaussian functions it is flexible enough to give an accurate estimate of any smooth and

continuous LF and therefore has potentially the advantage of being able to extrapolate

beyond the survey flux limits.

2.4 Tests of Independence

So far we have looked at the various non-parametric and parametric methods used

to determine LFs. However, as we discussed at the beginning of this chapter, the

fundamental assumption for all the non-parametric techniques is the separability of

the density function and the LF that allows us to write the probability distribution of

observables as,

Φ(L, z) = φ(L)ρ(z) (2.57)

This is a fundamental and crucial assumption that is generally accepted over small

redshift bins (or shallow redshift surveys). However, what is sometimes overlooked is

whether the assumption of separability is valid i.e. are luminosity, L, and redshift, z,

of Equation 2.57 uncorrelated?

2.4.1 Efron and Petrosian independence test

In order to test this assumption of independence (or separability) between two vari-

ables, Efron and Petrosian (1992) developed a simple ranked-based non-parametric
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Figure 2.4: Schematic illustrating the construction of the Efron and Petrosian (1992) test of
independence

test statistic for data-sets with a single truncation. Their method is, in principle, an

extension of the C− method. It is this approach which has formed the backbone of

the work within this thesis. For this technique Efron and Petrosian construct the test

statistic, τ , based on the rejection of independence between the random variables x

and y under test. Although they give a very detailed and formal explanation, we only

summarise the main points of the method here. If x and y are independent, then the

rank, Ri, of xi, for the simple case where there is no truncation, will be uniformly

distributed between 1 and N with respected expectation value and variance,

E =
1

2
(N + 1), V =

1

12
(N2 − 1). (2.58)

The statistic T is the defined as,

Ti =
(Ri − E)

V
, (2.59)
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such that Ri is now normalised to have mean of zero and a variance of unity. The

hypothesis of independence is then rejected or accepted depending on the value of Ti.

Moreover, one can construct confidence levels of rejection and combine Ti into a single

statistic τ such that,

τ =

∑
i

(Ri − E)√∑
i

V
(2.60)

where, by definition, a τ of 1 indicates a 1-σ correlation and conversely, a τ of 0

indicates that the variables are completely uncorrelated.

For the case of an imposed faint apparent magnitude limit i.e. a singly truncated

data-set, the method is modified to measuring the ranks Ri for subsets of the entire set

of observables. Therefore, within each set, all objects which could have been observed

up to the flux limit are counted such that each set is defined as,

Ji ≡ j : Lj > Li, Llim,j < Li. (2.61)

Therefore, for each galaxy an area is defined within the range Li < L < ∞ and

0 < z < zmax(Li) as illustrated in Figure 2.4. Within this subset Ri is uniformly

distributed between 1 and Ni, where Ni is the number of objects in each subset. With

this amendment to the method, the construction of the τ statistic remains the same

with τ once again being defined as,

τ =

∑
i

(Ri − E)√∑
i

V
(2.62)

where the expectation value E and variance V are the as in Equation 2.58. The statistic

τ thus gives us a measure of correlation of the data-set whilst properly accounting for

the truncation of the survey due to the flux limit.

In Efron and Petrosian (1999) they extend this method for data which has a double

truncation i.e. a survey that has distinct faint and bright flux-limits. The natural

progression was to explore cases where the value of |τ | ≥1, which implies random

variables L and z cannot be considered separable. In this case they assume that there

is some form of luminosity evolution in the underlying data. And so by adopting a

parametric form for luminosity evolution that varies with an evolutionary parameter,

k, they were able to show that for a particular value of k, τ(k) would equal 0.

Maloney and Petrosian (1999) apply these methods on various quasar samples to

determine the density functions and the luminosity evolution. These techniques have

also been used by Hao and Strauss (2005) for AGN’s to test the correlation between

the host galaxy and nuclear luminosity.
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2.5 Conclusions

Throughout this chapter we have examined all the innovative statistics developed for

the study of the LF. Figure 2.5 shows a time-line diagram which charts the genealogical

progress of all these statistics. We have shown that whilst the traditional number count

classical approach is straightforward in its construction, it is limited by its assumption

of spatial homogeneity - a limitation also shared with the 1/Vmax estimator. Neverthe-

less, this seems to have not deterred observers from applying Schmidt’s estimator, as

is evident from its numerous extensions to multiple surveys with varying flux limits,

diameter-limited surveys, fitting generic LFs and adaptation to photometric redshifts

and so on. It should be noted, however, that despite all these extensions to the basic

estimator, the predictive power of V/Vmax remains limited. It is difficult to determine

whether a significant departure from the expectation value of V/Vmax (≈ 1/2) is indeed

due to effects such as clustering and/or evolution or simply an indication of underlying

incompleteness of the catalogue. Despite this, 1/Vmax and V/Vmax remain one of the

most widely applied non-parametric statistical tools for constructing LFs and testing

for evolution resectively.

Although, the construction of the φ/Φ estimator offered a way to effectively cir-

cumvent the assumption of homogeneity by the cancellation of the density terms, it is

still a statistic that required the binning of data. Later extensions to the method have

rendered it a parametric one where an analytical form of the LF is assumed.

The C− method could be considered as a breakthrough since no binning of the

data was required with no dependancy on spatial distribution. And yet, despite the

fact that it was pioneered just three years after Schmidt’s estimator and eight years

before φ/Φ, it did not grow in popularity as other tests did. Moreover, as Petrosian

(1992) demonstrated, all non-parametric methods are essentially variations of the C−

method. It is therefore a slight mystery as to why this approach has not been applied

more often. Perhaps this is due to other maximum likelihood estimators (MLE) that

have developed as a result.

Probably the most notable of the MLE’s is the so called STY estimator named

after its developers, Sandage, Tammann and Yahil in 1979. Its main appeal is that one

must adopt a analytical form for the LF and estimate its parameters via a maximum

likelihood process. A common form to adopt is the Schechter function (Schechter,

1976). Approaching the problem this way avoids many of the problems associated with

binning techniques and also avoids issues of density inhomogeneities. Efstathiou et al.

(1988) extended STY’s idea to the non-parametric case by replacing the analytical
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form of the LF with a series of step functions. This stepwise maximum likelihood

method (SWML), often referred to as the EEP method, has become the most favoured

estimator in recent times.

We have also briefly considered more recent sophisticated estimators that have

emerged within the last two years. The first one we looked at, developed by Schafer

(2007), states key points for its construction that include making no assumption of

independence between redshift and absolute magnitude and incorporating a varying

selection function into the method. The second by Kelly et al. (2008), takes a Bayesian

approach to constructing the LF, where the LF is approximated as a mixture of Gaus-

sian functions. Whether approaches such as these become popular remains to be seen,

since shifts towards seemingly more convoluted techniques can take time to catch on.

The fact that 1/Vmax is still very much in use today is an indication that perhaps

simpler is better?

Finally, we took a step back and turned our attention to one of the basic assump-

tions of all non-parametric estimators - the assumption of separability between the

luminosity function φ and the density function ρ(z). By building on the C− method,

Efron and Petrosian (1992) constructed test statistic than can serve as a test of corre-

lation between the assumed independent variables M and z and furthermore be used a

to constrain pure luminosity models where any such evolution would introduce a corre-

lation in the (M, z) distribution. This work was the foundation for a new completeness

test introduced by Rauzy (2001) which we describe in detail in the following chapter

and is the basis for the work presented thereafter in this thesis.
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Figure 2.5: Schematic charting the development of all the major statistical methods that
estimate the galaxy LF.



Chapter 3

Review of the Rauzy ROBUST
Method of Completeness

“Do not put your faith in what statistics say until you have carefully

considered what they do not say.”

William W. Watt

This chapter reviews the original ROBUST test for completeness which was introduced

by Stéphane Rauzy (2001; hereafter R01) and which represents the foundation of the

research presented in this thesis. We will also demonstrate through analysis of the

recent Millennium Galaxy Catalogue (MGC) redshift survey how this test is applied

and how the results are interpreted.

3.1 Constructing the R01 Completeness Statistic

The motivation for the original development of this statistical method was to introduce

a non-parametric test that could determine the true completeness limit in apparent

magnitude of a magnitude-redshift survey whilst retaining as few model assumptions

as possible.

3.1.1 Assumptions and statistical model

The fundamental assumption of the Rauzy completeness test is that the luminosity

function of a galaxy population is universal (does not depend on the 3-D redshift

space position z = (z, l, b) of the galaxies or their type). Although this assumption is
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Figure 3.1: Schematic diagram illustrating the construction of the rectangular regions S1

and S2, defined for a typical galaxy at (Mi, Zi). The plot shows the original R01 construction
of regions S1 and S2 which are defined for ‘trial’ faint apparent magnitude limit mf

∗. Also
shown is the true faint apparent magnitude limit mf

lim, within which the rectangular regions
S1 and S2 contain a joint distribution of M and Z that is separable.

restrictive, note that it is common to most classical number counts tests of completeness

and indeed (when applied in the context of assessing magnitude completeness) to the

Schmidt (1968) V/Vmax test too as previously discussed in Chapter 2. Moreover, the

results derived in Appendix 1 of Rauzy et al. (2001) imply that the completeness

test of R01 remains valid in the case of pure density evolution. Note also that the

completeness test remains valid for the case of pure luminosity evolution provided that

the correct evolutionary model is applied to account for the (assumed known) functional

dependence of the mean luminosity at given redshift. Following R01, we introduce the
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corrected distance modulus Z, defined as

Zcorr = 5 log10

(
dL

1 Mpc

)
+ 25 + k(z) + e(z) + Ag(l, b), (3.1)

where, k(z) and e(z) are k-corrections and evolutionary corrections respectively and

Ag(l, b) is an extinction correction dependent on galactic co-ordinates (l, b). The lumi-

nosity distance dL, in a Friedmann Universe, is defined as

dLi
= (1 + zi)

(
c

H0

)∫ zi

0

dz√
(1 + z)3Ωm0 + ΩΛ0

, (3.2)

where Ωm0 and ΩΛ0 represent the present-day dimensionless matter density and cos-

mological energy density constant respectively, zi is the redshift of the ith galaxy in the

survey, c is the speed of light, and H0 is the Hubble constant.

R01 goes on to define the corrected absolute magnitude, Mcorr as:

Mcorr = m− 5 log10(dL)− 25− k(z)− e(z)− Ag(l, b). (3.3)

Neglecting for the moment any observational selection effects, the joint probability

density in position and absolute magnitude for the galaxy population can be written

as

dPzM ∝ dPz × dPM = ρ(z, l, b)dldbdz × f(M)dM, (3.4)

where ρ(z, l, b) is the 3D redshift space distribution function of the sources along the

past light-cone and f(M) is the galaxy luminosity function, defined following e.g.

Binggeli et al. (1988). We now take as our null hypothesis that the selection effects

are separable in position and apparent magnitude, and that the observed sample is

complete in apparent magnitude for those objects which are brighter than a specified

faint apparent magnitude limit, mf
lim. Under this null hypothesis the selection function

ψ(m, z, l, b) can be written as

ψ(m, z, l, b) ≡ θ(mf
lim −m)× φ(z, l, b), (3.5)

where θ(x) is the Heaviside or ‘step’ function defined as

θ(x) =

{
1 if x ≥ 0,
0 if x < 0,

(3.6)

and φ(z, l, b) describes the selection effects in angular position and observed redshift.

Taking into account this model for the selection effects, the probability density func-

tion describing the joint distribution of absolute magnitude M and corrected distance
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modulus Z for the observable galaxy population may therefore be written as

dP = h(Z)dZ f(M)dM θ(mf
lim −m), (3.7)

where h(Z) is the probability density function of Z for observable galaxies, marginalised

over direction on the sky, i.e.

h(Z) =

∫
l

∫
b

h(Z, l, b)dldb, (3.8)

and the integrand h(Z, l, b) is equal to the (suitably normalised) product of the 3-D

redshift space density ρ(z, l, b) and the selection function φ(z, l, b), re-expressed as a

function of Z rather than redshift, z.

3.1.2 Defining and estimating the random variable ζ

Note from Equation 3.7 that the faint apparent magnitude limit introduces a correlation

between the variables M and Z for observable galaxies. To retain the assumption of

separability, the key to the construction of the Rauzy completeness statistic is the

definition of the random variable ζ. Since, by the introduction of a faint limit we have

a correlation betweenM and Z, we construct the random variable, ζ, in such a way as to

render M and Z separable again. This is achieved by constructing a rectangular region

within mf
lim (illustrated in Figure 3.1) and defining within that region the variable ζ

satisfying:

ζ =
F (M)

F [Mlim(Z)]
, (3.9)

where F (M) is the Cumulative Luminosity Function (CLF) defined as,

F (M) =

∫ M

−∞
f(x)dx. (3.10)

It follows immediately from its definition that ζ has the property of being uniformly

distributed between 0 and 1. Under the null hypothesis as described in section 3.1.1,

the random variable ζ can be estimated directly from the data, without prior knowledge

of the functional form of the CLF.

Consider a galaxy located at (Mi, Zi) as illustrated in Figure 3.1. The galaxy defines

the rectangular region S1 ∪S2 within a trial magnitude limit, mf
∗. The regions, S1 and

S2 are defined as:

• S1 = {M ≤Mi and Z ≤ Zi}
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• S2 = {Mi < M ≤Mlim and Z ≤ Zi}

We then define the number of galaxies, ri, contained within S1 as:

ri

Ngal

= F (Mi)×
1

A

Zi∫
−∞

h(Z, l, b)dZdldb (3.11)

where Ngal is the number of galaxies in the dataset. Similarly, the number of galaxies,

ni, contained within the region S1 ∪ S2 is defined as:

ni

Ngal

= F [Mlim(Zi)]×
1

A

Zi∫
−∞

h(Z, l, b)dZdldb (3.12)

Therefore, for an unbiased estimate (see e.g. Efron and Petrosian, 1992) of ζ we have,

ζ̂i =
ri

ni + 1
. (3.13)

which has an expectation value Ei and variance Vi given by, respectively,

Ei = E(ζ̂i) =
1

2
, Vi = E

[(
ζ̂i − Ei

)2
]

=
1

12

ni − 1

ni + 1
. (3.14)

Note that Vi tends towards the variance of a continuous uniform distribution between

0 and 1 when ni is large.

We can, therefore, combine the estimator ζ̂i for each observed galaxy into a single

statistic, Tc, which we can use to test the magnitude completeness of our sample for

adopted trial magnitude limits mf
∗. Tc is defined as,

Tc =

Ngal∑
i=1

(
ζ̂i −

1

2

)/Ngal∑
i=1

Vi

 1
2

. (3.15)

If the sample is complete in apparent magnitude, for a given trial magnitude limit,

then Tc should be normally distributed with mean zero and variance unity. If, on

the other hand, the trial faint magnitude limit is fainter than the true limit, Tc will

become systematically negative, due to the systematic departure of the ζ̂i distribution

from uniformity on the interval [0, 1].

3.1.3 Implementing the Tc statistic

Following R01, we calculate Tc as a function of trial faint magnitude limit denoted

as m∗. Slicing the data in this way allows us to determine a differential measure of

completeness over the whole range of apparent magnitudes.
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Figure 3.2 illustrates the systematic way in which we can computationally exclude

regions in the M-Z plane to estimate ζ̂i for each galaxy located at (Mi, Zi). For an

initial value of m∗ we remove all galaxies mi > m∗. From this we calculate an absolute

magnitude limit for each galaxy such that,

Mlim(Zi) = mi
∗ − Zi, (3.16)

and remove all galaxies fainter than Mlim(Zi). Finally, before we estimate ζ̂i we can

remove the remaining galaxies that lie at a distance modulus greater than Zi. By

applying these initial steps we improve the efficiency of the of Tc calculation. Thus,

for each Tc(m∗) we now estimate the random variable ζ̂i for each galaxy at (Mi, Zi)

by simply counting the number of galaxies in the pre-determined regions, ri and ni

(given by equations 3.11 and 3.12 respectively) whilst simultaneously calculating the

variance, Vi.

We then combine all the ζ̂i’s for our m∗ and calculate a value for the completeness

statistic, Tc(m∗) from equation 3.15. Therefore, for a sample complete in apparent

magnitude, one expects the value of Tc(m∗) to be normally distributed around zero with

sampling fluctuations of dispersion of unity. However, as Figure 3.3 illustrates, when

the trial magnitude limit, m∗ moves beyond the true magnitude limit of the survey,

mlim, the number of galaxies contained ni contained in S1 ∪S2 drops considerably (see

the blue region in Figure 3.3) the result of which is a sharp, systematic drop in the

value of Tc statistic indicating the limit of the survey.

As is detailed in R01, these confidence levels of rejection for |Tc| < 1, |Tc| < 2,

|Tc| < 3 are 84.13%, 97.72% and 99.38% respectively, and theses confidence levels may

be then used to make a choice of the appropriate completeness limit. These numbers

correspond to probabilities for a normal distribution with a one sided rejection test.

We have chosen a significance level of 3σ throughout this thesis as our adopted criterion

for identifying completeness limits.

3.2 Applying Tc to the Millennium Galaxy Cata-

logue (MGC)

In this section we now apply the Tc test statistic to the Millennium Galaxy Catalogue

(MGC) to carefully illustrate how the results are interpreted.
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Figure 3.2: Schematic diagram illustrating the way in which we computationally select the
S1 and S2 regions, defined for a typical galaxy at (Mi, Zi). The plot shows the original R01
construction of regions S1 and S2 defined from the ith galaxy which are defined for ‘trial’
apparent magnitude limit m∗ shown as the red diagonal line. Also shown is the true faint
apparent magnitude limit mf

lim (black diagonal line), within which the rectangular regions
S1 and S2 contain a joint distribution of M and Z that is separable. The purple region
shows how we firstly remove all galaxies m fainter than m∗

i . The red triangular shaded region
represents the galaxies that are then removed which are fainter than Mlim(Zi). Finally, we
remove the remaining galaxies that lie at a distance moduli greater than Zi. Processing the
data-set in this way allowed us to compute the remaining S1 and S2 regions with far greater
efficiency.

3.2.1 The Data

The Millennium Galaxy Catalogue (MGC) is a medium-deep, B-band imaging survey,

spanning 30.9 deg2 that is fully contained within the 2dFGRS (Colless, 2001) and SDSS-

DR1 (Abazajian, 2003). As of 2005 the full catalogue contained 10095 galaxies out to

published limiting apparent magnitudes of 13.0 < mlim < 20.0 mag - see e.g. Cross et al.

(2004) for more details. The photometry was obtained with the Wide Field Camera
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Figure 3.3: Diagram illustrating movement of mf
∗ beyond the apparent magnitude limit of

a given survey. As this diagram shows, as the trial magnitude limit mf
∗ moves beyond the

apparent magnitude of the survey, the number of galaxies in region S2 drops significantly as
indicated by the blue region. Therefore, the resulting Tc curve drops sharply below 3σ as mf

∗
moves beyond a sharp limit, indicating the true limit of the dataset.

on the 2.5 m Isaac Newton Telescope in La Palma. The spectroscopy was constructed

mainly from the redshifts obtained in the Two Degree Field Galaxy Redshift Survey

(2dFGRS) and the Sloan Digital Sky Survey (SDSS). Additional redshifts were obtained

from 2QZ (Croom et al., 2001), the Nasa Extragalactic Database (NED), Francis et al.

(2004) and Impey et al. (1996) (LSBG). In addition, the MGC team measured their

own redshifts using the spectrograph on the Anglo-Australian Telescope for galaxies in

the catalogue that had no assigned redshift.
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3.2.2 Selection Limits & Cosmology

The MGC team adopted the same redshift quality procedure that was originally applied

to the 2dFGRS. Galaxies were assigned a redshift quality, Qz, from 1 to 5: Qz = 1

indicates that no redshift could be estimated; Qz = 2 indicates a possible redshift

measurement; Qz = 3 is a ‘probable’ redshift with 90% confidence; Qz = 4 is a reliable

redshift with 99% confidence; and Qz = 5 is a reliable redshift with a high-quality

spectrum. Therefore, galaxies with a published redshift quality Qz ≥ 3 were selected.

For ease of comparison we have imposed the same redshift selection as Driver et al.

(2005) (D05) – i.e only galaxies in the range 0.013 < z < 0.18 were included. From the

parent catalogue of 10,095 galaxies this yields a sub set of 7,878 galaxies.

In keeping with D05 and for ease of comparison we adopt the same cosmology

with present-day dimensionless matter density parameter, Ωm0 = 0.3 and cosmological

constant term ΩΛ0 = 0.7. For this survey we have adopted a value of H0 = 100 kms−1

Mpc−1 for the Hubble constant.

3.2.3 k- and evolutionary corrections

Where appropriate we have applied the k-corrections and evolutionary corrections as

described in greater detail in D05. Such corrections applied to the MGC catalogue

are galaxy specific and are determined by using a galaxy spectrum template-fitting

technique for each individual galaxy. Corrections for evolution within the data-set

were characterised by a global correction of the form,

L = L0(1 + zi)
β (3.17)

where L is the luminosity, z is the redshift and β is an evolution parameter. To convert

to absolute magnitudes we know the relation,(
L

L0

)
= 10−0.4(M−M0) (3.18)

giving the evolution correction in the form,

E(z) = −β × 2.5 log10(1 + zi). (3.19)

The value of β was determined in Driver et al. (2005) to be in the range−2.0 < β < 1.25

and a global value of β = 0.75 was considered suitable.
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Figure 3.4: A subset of the MGC M-Z distribution. In this sample we have 7878 galaxies
from parent catalogue of 10,095 galaxies. The red diagonal lines indicate the survey apparent
magnitude limits. Since we are considering a subset we note that there are no galaxies present
at the published bright apparent magnitude limit mb

lim = 13.0 mag

3.2.4 Results

Figure 3.4 shows the M-Z distribution of the selected data-set. It should be noted that

although MGC has a published bright limiting magnitude of mb
lim = 13.0 mag, one can

clearly see from Figure 3.4 that there is no clear sharp bright cut-off, an effect that

will play a crucial role in subsequent chapters.

By applying Tc we confirm the completeness of the MGC data demonstrated in

Figure 3.5 where the dashed curve shows the Tc statistic, as a function of trial magni-

tude limit, computed using apparent magnitudes that have not been (k+e)-corrected,
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Figure 3.5: Results for the completeness statistic Tc applied to MGC without explicitly
accounting for a bright apparent magnitude limit. The red dashed line represents the results
from the MGC data-set without any k or evolution corrections applied to the dataset. The
blue solid line is the result we have apply the k-corrections and evolution corrections with
β = 0.75. The decay in the curve for the corrected magnitudes is thought to be due to the
mixing of different galaxy populations as a result of individual corrections, resulting in a
‘fuzzy’ magnitude limit close to mlim = 20.0 mag.

but have been corrected for extinction only. We have chosen to compute Tc for an

m∗ moving to increasingly fainter magnitudes in increments of 0.1 from the brightest

galaxy in the set, m = 13.63 mag. The figure clearly shows that the Tc statistic re-

mains within the 3σ limits – consistent with being complete in apparent magnitude –

up to the published magnitude limit of 20.0 mag, and then drops very sharply for trial

apparent magnitude limits beyond 20.0 mag. To further illustrate this point we can

observe the (ζ, Z) distribution for two different slices of m∗ shown in Figure 3.6. By

definition, the ζ for a complete sample at any given m∗ will be uniformly distributed

between 0 and 1. The left hand panel in the figure considers this distribution at the
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Figure 3.6: The random variable ζ vs distance modulus, Z, for MGC at different values of
m∗. The left hand panel shows the (ζ, Z) distribution for m∗ = 20.0 mag - the published
magnitude limit of the survey. The Tc curve in Figure 3.5 showed the data-set was indeed
complete up to mlim which is also verified by this plot since the left hand panel shows a uniform
distribution of ζ between [0,1]. The sharp drop in Tc that was observed as we moved beyond
the apparent magnitude limit is seen just as dramatically in the (ζ, Z) distribution as shown
in the right hand panel which is for m∗ = 20.5 mag. Here we observe that the distribution
of points are no longer uniform between [0,1] particularly at the top right section, due to the
deficit in the number of galaxies in the S2 region, as already shown in Figure 3.3. This in
turn renders the the S1 and S2 regions un-separable which manifests as a systematic shift of
the points in the (ζ, Z) plane.

magnitude limit of the survey, mlim = 20.0 mag. As we have already stated, the Tc

results indicate the survey is indeed complete up to and including this limit, and the

distribution on the left and panel also confirms this. It is clear by eye that the ζ is

uniform on the interval [0,1]. On the right hand panel of Figure 3.6 we now consider

the (ζ, Z) distribution for an m∗ = 20.5 which takes us beyond the sharp cut-off of

the survey and equates to a value of Tc ≈ −32.3σ. What results is a curving of the

(ζ, Z) distribution at the top right corner. If we now consider the solid blue curve on

Figure 3.5, we once again see the Tc statistic as a function of trial magnitude limit but

now computed for (k+e)-corrected apparent magnitudes. Although the MGC dataset

is still consistent with being complete up to the published magnitude limit of 20.0 mag,

there is a noticeable departure in the behaviour of Tc from that for the uncorrected

dataset: for trial magnitude limits in the range 18.0 . m∗ ≤ 20.00 mag, Tc for the

corrected dataset exhibits a slow decline, before again dropping sharply beyond 20.0
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mag. The most likely explanation for this feature seems to lie in the way in which the

dataset is selected and corrected. The raw dataset, with uncorrected magnitudes, has

the same magnitude limit imposed on all galaxies independent of their galaxy type. If,

then, each galaxy is individually k-corrected, the resultant overall magnitude limit for

the corrected data will become ‘fuzzy’ without a sharp cut-off. Furthermore, different

galaxy populations will be scattered differently, leading to a smooth decrease close to

the original uncorrected magnitude limit. This effect will be compounded slightly by

the global e-correction which is also incorporated. On the other hand, if we do not

apply the (k+e)-corrections, the original magnitude limit remains well defined (albeit

now without explicitly accounting for the effects of evolution and redshifting of each

galaxy’s spectral energy distribution). Therefore, to obtain an improved measure of

completeness which does properly incorporate (k+e)-corrections, one could apply R01

separately to subsets of different galaxy type. This would, in principle, lead to the

definition of different apparent magnitude limits for different galaxy types. One could

of course apply type-dependent corrections and impose an apparent magnitude cut-off

on the whole data-set based on the Tc results derived from mcorr. In any event, it is

clear from Figure 3.5 that the impact on the inferred ‘global’ apparent magnitude limit

of applying, or not, (k+e)-corrections to the MGC dataset is small.

3.3 Conclusions

In this chapter we have reviewed the construction of the original Rauzy test for com-

pleteness, Tc and shown how it is applied to real data. For this demonstration we

used the MGC redshift survey. It was shown that the magnitude completeness of the

survey was confirmed up to its published magnitude limit of mlim = 20.0 mag. Inter-

estingly, however, we found that when we incorporated (k+e)-corrections, a noticeable

(although not statistically significant) departure from the results obtained where no

corrections were added close to the magnitude limit. A possible cause for this effect

could be the mixing of galaxy populations to which k- and global e-correction is then

applied – resulting in a slightly blurred magnitude limit.



Chapter 4

Extending the Method for Doubly
Truncated Surveys

“An unsophisticated forecaster uses statistics as a drunken man uses

lamp-posts - for support rather than for illumination.”

Andrew Lang (1844-1912)

This chapter will show in detail the development and extension of the original R01

completeness test (see Chapter 3 and Rauzy, 2001) which arose directly from the

completeness results obtained when analysing the Two Degree Field Galaxy Redshift

Survey (2dFGRS) and the Sloan Digital Sky Survey - Early Types (SDSS-Early Types).

4.1 Analysis of the 2dFGRS

4.1.1 The Data

The Two Degree Field (2dFGRS) Galaxy Redshift Survey (Colless, 2001) ran from 1997

to 2003 and, at the time of the completion, was the second largest redshift survey next

to the Sloan Digital Sky Survey (SDSS), which has now only just reached completion

of the second phase. The survey utilised the AAOmega multifibre spectrograph on the

Anglo-Australian Telescope capable of measuring redshifts up to 400 objects simulta-

neously. The corresponding photometry was taken from the APM galaxy catalogue

(Maddox et al., 1990) for galaxies brighter than an apparent magnitude of mbj
= 19.45

mag. The survey region covered two strips: one 75◦ × 10◦ around the north galactic

pole and the other 80◦ × 15◦ around the southern galactic pole (see Figure 4.1).
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Figure 4.1: Survey map of the 2dFGRS showing the digitised APM plate regions as
dashed squares. The selected 2dFGRS regions are shown by the circles. Image courtesy
http://www2.aao.gov.au/2dFGRS/

There were many objectives for this survey but some of the more crucial ones

were to measure: the cosmological mass density (Peacock, 2001), the galaxy power

spectrum P (k) on scales up to few hundred Mpc, (Percival, 2001; Tegmark et al., 2002;

Outram et al., 2003); the redshift-space distortions of large-scale clustering resulting

from peculiar velocity fields; higher order clustering statistics of the galaxy distribution;

and of course to provide an extensive spectroscopic database to be used in conjunction

with other surveys.

We have used the 2dFGRS public final release data-set, from the ‘best observations’

spectroscopic catalogue, which records redshifts for a total of 245,591 sources.

4.1.2 Selection limits

To construct a clean catalogue, we first selected those galaxies with reliable redshifts.

The 2dFGRS team classified the redshift for each galaxy with an assigned Quality

number from 1 to 5 (Colless, 2001) as we have already detailed in § 3.2.2 on page 60.

Therefore, galaxies with a redshift quality of Qz ≥ 3 were selected.

We then imposed maximum and minimum limits in redshift following Cross (2001),

http://www2.aao.gov.au/2dFGRS/
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0.015 < z < 0.12, to minimise the effects of peculiar velocities and isophotal corrections

respectively. We used final magnitudes with extinction correction and excluded any

galaxies fainter than mbj
= 19.45 mag. From the parent catalogue of 245,591 sources

we used a total of 110583 galaxies. The correspondingM -Z distribution of our selection

is shown in Figure 4.2, with the published survey apparent magnitude limit, mf
lim =

19.45 mag shown as the red diagonal line.

4.1.3 The k- and evolutionary corrections

To explore the effect k- and e - corrections on the Tc statistic we applied various forms

that have been used on the 2dFGRS data-set since its release.

The first is a simple global correction, following Driver et al. (1994), and applied in

Cross (2001):

k(z) = 2.5z (4.1)

Similarly, Norberg (2001) used a global correction given by:

k(z) = (0.03z)/(0.01 + z4) (4.2)

The final two corrections we considered are type dependent (k+e)-corrections defined

using a method based on principal-component analysis (PCA), where galaxy type is

defined by the η parameter, a linear combination of the first two principal components

(Madgwick, 2002). From Norberg (2002b),

k(z) =


2.6z + 4.3z2 for η < −1.4 (early types)

1.5z + 2.1z2 for η > −1.4 (late types)

1.9z + 2.7z2 (full sample)

(4.3)

With further division of type in Norberg (2002a) we have:

k(z) =


(2z + 2.8z2)/(z + 3.8z3) for η < −1.4

(0.6z + 2.8z2)/(1 + 3.8z3) for 1.1 < η < −1.4

(z + 3.6z2)/(1 + 16.6z3) for 1.1 < η < 3.5

(1.6z + 3.2z2)/(1 + 14.6z3) for η > 3.5

(4.4)

4.1.4 Initial Results

The 2dFGRS revealed some anomalous behaviour in the resulting completeness Tc

curves which led us, through a process of experimental investigation, to the conclusion
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Figure 4.2: The M -Z distribution of our selected sub-set of the 2dFGRS. The red line
indicates the published apparent magnitude limit, mf

lim = 19.45 mag.

that this particular survey is inconsistent with magnitude completeness unless one

adopts a secondary bright limit. Figure 4.2 shows the distribution of galaxies within

the M -Z plane that we are testing. Our initial approach was to apply the original R01

Tc statistic (Chapter 2) to our 2dFGRS selection since the published literature on the

survey gives no indication about the presence of a secondary bright limit. Figure 4.3

shows the behaviour of Tc as a function of trial magnitude limit, mf
∗, for five different

cases. The solid red curve represents the completeness test with with no k- or e-

corrections applied. The remaining four curves show Tc with various (k+e)-corrections

applied to the 2dFGRS data-set, as explained in the figure key.

If we consider firstly the uncorrected data-set (solid red curve), we see that for

m∗ < 14.85 mag the Tc statistic appears to behave in a manner consistent with what we

would expect for a complete sample (although of course this is at the cost of ‘throwing

away’ most of the galaxies in the survey by imposing such a low value for the faint

limit). However, for higher values of mf
∗ the statistic drops dramatically to a minimum

value of nearly 8σ below its expectation value of zero at mf
∗ = 16.90 mag. As we
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Figure 4.3: The Tc statistic for our entire 2dFGRS sample. The data used for this plot
are the combined north and south regions of the survey. The dashed lines represent various
(k + e)-corrections that have been applied to this dataset. The striking features indicate a
dramatic departure from completeness with a minimum near m ≈ 16.90 mag and a peak at
m ≈ 18.15 mag. The addition of different types of (k + e)-corrections clearly show that they
do not improve the underlying issues that are indicated by Tc.

continue to increase mf
∗, Tc rises sharply to reach a peak at mf

∗ = 18.15 mag, beyond

which the statistic drops dramatically again, exceeding 3σ below its expected value at

mf
∗ = 18.60 mag – i.e. significantly brighter than the published magnitude limit of

mf
lim = 19.45 mag.

At first it was thought that the behaviour of Tc could be related to the fact that we

have used an uncorrected (k+e) data-set. To address this question consider now the re-

maining four curves; the dotted and short dashed curves correspond to the Cross (2001)

and Norberg (2001) global (k+e)-corrections respectively, whereas the long dashed

and solid black curves correspond to the type-dependent (k+e)-corrections of Norberg

(2002b,a) as detailed in section 4.1.3. It is clear that the adoption of any of these

corrections has very little effect on the completeness statistic compared with the un-

corrected case. Indeed, if anything, the addition of (k+e)-corrections appears to yield
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Figure 4.4: The M -Z distribution of the 2dF - Northern and Southern strips.

a Tc statistic which is more strongly inconsistent with a complete sample. This latter

effect was discussed in greater detail when we analysed the MGC in section 3.2. It

should be noted that the type-dependent (k+e)-corrections do not appear to perform

significantly better than their global counterparts.

The fact that the value of Tc differs from zero at many standard deviations over

a wide range of trial faint magnitude limits is clear evidence that the distribution of

M and Z for observable galaxies is not separable with these faint limits alone. The

physical reason for this is not immediately clear. However, it was thought initially

that the cause of incompleteness may lie within one of the regions of the survey. By

simply splitting the data-set into the north and south regions (see Figure 4.4) we

can show, however, that the Tc results for both regions (Figure 4.5) exhibit the same

characteristics as seen in Figure 4.3 for the whole survey.

Our further attempts to determine the cause of incompleteness and, therefore, what

had broken the separability between M and Z, led us to investigate the individual

photometric plates that make up the survey. The photometric data used in this survey

was taken from a subsample of the Automated Plate Measuring-machine (APM) galaxy

catalogue. Figure 4.6 shows the magnitude limit mask plate regions for for both,

North and South. The colour gradient indicates the varying magnitude limit for each

plate which is defined by the change in the photometric calibration for each UKST
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Figure 4.5: The 2dFGRS Tc results for the Northern (NGP) and Southern (SGP) regions.
We see similar features to that of the combined NGP and SGP shown in Figure 4.3.

photographic plate and change in the dust extinction correction at each position on

the sky. It was thought that perhaps there may have been inconsistencies within one

or more plates to which Tc was being sensitive.

There are a total of 30 plates that cover the Northern Galactic Pole (NGP) and

46 plates in the Sourthern Galactic Pole (SGP) region of the 2dF. Tables 4.1 and 4.2

show in more detail a break down of the number of galaxies we are considering in each

plate before and after our selection process. We also show the brightest and faintest

magnitudes from plate to plate. Figures 4.7 and 4.8 show plots the Tc statistic obtained

by analysing individually each plate in the NGP region and Figures 4.9, 4.10 and 4.11

show the corresponding Tc results for the SGP. For the northern region the results

indicate that within each plate there seems to be no evidence of incompleteness, which

was at first a puzzling result. However, when examining the southern region we noted

that three of the plates, 354, 408 and 477 showed similar behaviour to that of the whole

combined survey with each having marginal dips in the Tc curve below the −3σ level.

It was at this point that it became apparent that each plate had at most a few
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Figure 4.6: The 2dFGRS magnitude limit masks for the NGP (top) and the SGP
(bottom). Each square represents one of the APM plates. The variation in colour
indicates the varying magnitude limits from plate to plate. Image courtesy of
http://msowww.anu.edu.au/2dFGRS/

thousand galaxies and by inspection of the corresponding M -Z diagrams it was clear

to see that in the majority of plates there was not an obvious, well defined bright limit

in apparent magnitude. However, when we looked more closely at those Tc plots that

dropped slightly below the −3σ level, namely plates 354, 408 and 477 from Figure 4.12,

we could see that each of the corresponding M -Z distributions indicate the presence of

a fairly distinct bright apparent magnitude limit. By comparing these to the randomly

selected plate 788, where the Tc curve is well behaved (Figure 4.12-top right) we see

that on plate 788 there is a slight scatter of nearby bright galaxies that have the effect

of blurring any presence of a bright limit. This result led to the conclusion that perhaps

the 2dFGRS has indeed a bright limit which should be more carefully accounted for,

by incorporating it explicitly into the ROBUST method.

http://msowww.anu.edu.au/2dFGRS/


4.1: Analysis of the 2dFGRS 72

Table 4.1: 2dF-Northern Plate Information. This table shows information regarding the
Northern Galatic Pole region of 2dF. The IFIELD column refers to the UKST plate number.
The following two columns show the number of galaxies in each plate before and after our
selection criteria respectively. The faintest and brightest galaxies for each plate given in
apparent magnitudes are those after selection.

Index IFIELD No. in IFIELD No. in IFIELD Faintest Brightest
(raw) (after selection) app. magnitude app. magnitude

1 781 3355 1605 19.399 14.715
2 782 2819 1605 19.291 14.209
3 783 2887 1306 19.404 14.798
4 784 3021 1691 19.347 14.611
5 785 3178 2095 19.314 14.450
6 786 3115 1636 19.371 14.158
7 787 1904 889 19.306 14.766
8 788 1806 934 19.354 14.394
9 789 2346 1031 19.440 15.378
10 790 2678 1312 19.437 14.524
11 791 2234 1144 19.227 14.378
12 792 1621 913 19.162 14.451
13 793 1418 659 19.407 14.583
14 794 1359 662 19.284 14.494
15 795 1776 1059 19.195 14.702
16 853 3411 2220 19.025 14.193
17 854 4269 2637 19.323 14.102
18 855 4788 2618 19.450 14.505
19 856 4038 2338 19.335 14.509
20 857 4476 2560 19.360 14.444
21 858 3517 1965 19.239 14.097
22 859 3980 2105 19.225 13.957
23 860 3057 1623 19.249 14.395
24 861 3949 2335 19.241 14.930
25 862 3780 2147 19.266 14.168
26 863 4421 2769 19.217 13.454
27 864 2928 1696 19.106 14.061
28 865 2973 1347 19.386 14.035
29 866 2598 1254 18.933 13.348
30 867 1930 841 19.192 14.570
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Figure 4.7: Tc curves for the 2dF-NGP plate numbers: 781 to 853.
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Figure 4.8: Tc curves for the 2dF-NGP plate numbers: 854 to 867.
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Table 4.2: 2dF-Southern Plate Information. This table shows information regarding the
Southern Galatic Pole region of 2dF. The IFIELD column refers to the UKST plate number.
The following two columns show the number of galaxies in each plate before and after our
selection criteria respectively. The faintest and brightest galaxies for each plate given in
apparent magnitudes are those after selection.

Index IFIELD No. in IFIELD No. in IFIELD Faintest Brightest
(raw) (after selection) app. magnitude app. magnitude

1 349 3126 1722 19.431 14.441
2 350 2933 1524 19.455 14.508
3 351 1792 765 19.521 14.707
4 352 2288 913 19.430 14.387
5 353 2335 874 19.502 14.410
6 354 2936 1229 19.500 14.399
7 355 2635 1364 19.455 13.971
8 356 2094 948 19.519 14.553
9 357 1179 523 19.432 14.604
10 404 2465 1051 19.402 15.406
11 405 2843 1094 19.423 14.305
12 406 3296 1758 19.445 14.429
13 407 2783 1325 19.467 15.084
14 408 3260 1616 19.410 15.171
15 409 4576 2457 19.435 14.525
16 410 4269 2314 19.427 14.550
17 411 4429 2522 19.406 14.400
18 412 4378 1883 19.601 14.386
19 413 3956 1619 19.545 14.631
20 414 3840 1559 19.467 14.466
21 415 3998 2047 19.421 14.464
22 416 2798 1206 19.378 14.332
23 417 2512 1066 19.386 14.275
24 418 3932 1671 19.381 14.440
25 466 4054 2144 19.276 14.345
26 467 4268 2049 19.305 14.185
27 468 3186 1499 19.384 14.293
28 469 3928 2179 19.358 14.015
29 470 3821 1800 19.322 14.802
30 471 2671 1440 19.446 14.295
31 472 1816 879 19.440 14.691
32 473 1505 778 19.363 14.184
33 474 1698 1126 19.301 14.279
34 475 1361 576 19.365 14.706
35 476 1837 792 19.506 14.393
36 477 1415 510 19.342 14.601
37 478 1442 708 19.366 14.631
38 479 1710 762 19.400 13.893
39 480 2051 872 19.349 14.777
40 481 1880 1069 19.242 15.013
41 532 3663 1763 19.210 14.213
42 533 3319 1878 19.331 13.959
43 534 2454 1232 19.361 14.290
44 535 2575 1082 19.254 14.710
45 536 1945 873 19.307 14.845
46 537 933 528 19.390 14.885
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Figure 4.9: 2dF-SGP plates 349 to 410
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Figure 4.10: 2dF-SGP plates 411 to 473
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Figure 4.11: 2dF-SGP plates 474 to 537
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Figure 4.12: The first three plots, plates 354, 408 and 477 show the M -Z distribution (top)
and the resulting Tc curve which all show a brief drop below the −3σ level. What is also
clear is that all three curves show an overall similar trend to that of whole 2dF data-set in
Figure 4.3. By examining the M -Z distributions of these plates we observe that all appear
to have a well defined bright apparent magnitude. Plate 788 is randomly selected to show a
Tc curve that behaves as one would expect for a complete sample. The M -Z distribution of
plate 788 shows some scattering of nearby galaxies in the lower left of the figure, that would
indicate there not being a clear bright limit.

4.2 Generalising the Tc statistic

4.2.1 Re-defining the random variable ζ

As in R01, the key element of our extended completeness test is the definition of

a random variable, ζ, related to the cumulative luminosity function of the galaxy

population. We proceed in a similar manner to R01, but now with both a bright and

faint apparent magnitude limit.
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Figure 4.13: In this schematic we have imposed a bright magnitude limit of m = 16.0 mag to
the MGC data-set to illustrate how the the random variables M and Z remain unseparable
under the traditional construct of S1 and S2.

We now modify the selection function as previously defined by Equation 3.5 to

include a bright limit in apparent magnitude, mb
lim, such that

ψ(m, z, l, b) ≡ θ(mf
lim −m)× θ(m−mb

lim)× φ(z, l, b), (4.5)

Thus, the probability density function which was defined in equation 3.7 now takes

form

dP = h(Z)dZ f(M)dM θ(mf
lim −m)θ(m−mb

lim). (4.6)

To see how we construct ζ in this more general case consider Figure 4.14, which

schematically represents an M -Z plot of corrected distance modulus versus absolute

magnitude for the observable population of galaxies. Shown in the plot are solid diag-

onal lines representing the ‘true’ faint and now the bright apparent magnitude limits,

mf
lim and mb

lim respectively, while the red diagonal line represents putative faint mag-

nitude limit, mf
∗. Comparing the original Rauzy construction of the completeness test

from Figure 4.13, where a bright magnitude limit is well defined, with our new con-
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Figure 4.14: Diagram illustrating the construction of the rectangular regions S1 and S2,
defined for a typical galaxy at (Mi, Zi). The schematic shows the construction of regions S1

and S2 with the inclusion of a bright limit. These regions are uniquely defined for a slice
of fixed width, δZ, in corrected distance modulus, and for ‘trial’ faint apparent magnitude
limit mf

∗. Also shown are the true bright and faint apparent magnitude limits mb
lim and mf

lim,
within which the rectangular regions S1 and S2 contain a joint distribution of M and Z that
is separable.

struction in Figure 4.14, we can see that the addition of a bright magnitude limit has

a major impact on the construction of this separable region: in short, the region is no

longer unique.

In graphical terms, the essential idea of our extended completeness test is to identify

from the data the faintest value of mf
∗ and the brightest value of mb

∗ which together

bound a rectangular region of the M -Z plane, within which the joint distribution of

M and Z for observable galaxies is separable. If we fix the width, δZ, in corrected

distance modulus as shown in Figure 4.14, the corresponding separable region is now

uniquely defined. Moreover we can then define for the ith galaxy the following absolute
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magnitudes:

• M f
lim(Zi), the absolute magnitude of a galaxy, at corrected distance modulus Zi,

which would be observed at the true faint apparent magnitude limit mf
lim,

• Mb
lim(Zi−δZ), the absolute magnitude of a galaxy, at corrected distance modulus

Zi − δZ, which would be observed at the true bright apparent magnitude limit

mb
lim.

These two absolute magnitudes are indicated, for the corresponding putative faint

magnitude limit mf
∗ and the (assumed known) true bright magnitude limit, mb

lim, by

the vertical dashed lines in Figure 4.14.

We now re-define the random variable ζ as follows:

ζ =
F (M)− F [Mb

lim(Z − δZ)]

F [M f
lim(Z)]− F [Mb

lim(Z − δZ)]
, (4.7)

where F (M) is the CLF, i.e.

F (M) =

∫ M

−∞
f(x)dx. (4.8)

Thus ζ shares the same two defining properties as the corresponding random variable

defined in R01. Equation 4.7 therefore generalises the definition of ζ to the case of a

galaxy survey with bright and faint magnitude limits. The relevance of ζ as a diagnostic

of magnitude completeness will be demonstrated in the next two sections.

4.2.2 Estimating ζ and computing the Tc statistic

As was the case in R01, the random variable ζ has the very useful property that we

can estimate it without any prior knowledge of the CLF, F (M). Given a value of δZ,

it is clear from Figure 4.14 that for each point (Mi, Zi) in the M -Z plane we can define

the regions S1 and S2 as follows:

• S1 = {(M,Z) : Mb
lim ≤M ≤Mi, Zi − δZ ≤ Z ≤ Zi},

• S2 = {(M,Z) : Mi < M ≤M f
lim, Zi − δZ ≤ Z ≤ Zi}.

In the special case where there is no bright limit the regions S1 and S2 are as shown

in Figure 3.1.
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Clearly the random variables M and Z are now independent within each sub-sample

S1 and S2. Therefore from Equation 4.6 the expected number of points ri belonging to

S1 satisfies
ri

Ngal

=

∫ Zi

Zi−δZ

h(Z ′)dZ ′ ×
∫ Mi

Mb
lim

f(M) dM, (4.9)

where Ngal is the total number of galaxies in the sample. Similarly the expected number

of points ni in Si = S1 ∪ S2 satisfies

ni

Ngal

=

∫ Zi

Zi−δZ

h(Z ′)dZ ′ ×
∫ M f

lim

Mb
lim

f(M) dM. (4.10)

The integrals over absolute magnitude in Equations 4.9 and 4.10 may be rewritten as∫ Mi

Mb
lim

f(M) dM = F [Mi(Zi)]− F [Mb
lim(Zi)], (4.11)

and ∫ M f
lim

Mb
lim

f(M) dM = F [M f
lim(Zi)]− F [Mb

lim(Zi)]. (4.12)

Thus, given a pair of ‘trial’ magnitude limits mf
∗ and mb

∗, it follows from Equation 4.7

and Equations 4.9 to 4.12 that an estimate of ζ for the ith galaxy is simply the ratio

of the number of galaxies belonging to S1 and S1 ∪ S2 respectively (where Mb
∗ and M f

∗

replace Mb
lim and M f

lim in the definition of S1 and S2). In fact an unbiased estimate of

ζ for the ith galaxy is (c.f. R01)

ζ̂i =
ri

ni + 1
. (4.13)

This estimator is identical to that defined in R01; the introduction of a bright mag-

nitude limit has simply changed the definition of the random variable ζ itself and the

membership criteria of the two regions S1 and S2. Thus, provided that both mf
∗ ≤ mf

lim

and mb
∗ ≥ mb

lim, then under our null hypothesis ζ̂i will be uniformly distributed on [0, 1]

and uncorrelated with Zi, exactly as was the case in R01. Moreover the expectation

value Ei and the variance Vi of the ζ̂i are given respectively by

Ei = E(ζ̂i) =
1

2
, Vi = E

[(
ζ̂i − Ei

)2
]

=
1

12

ni − 1

ni + 1
. (4.14)

Note that Vi tends towards the variance of a continuous uniform distribution between

0 and 1 when ni is large.

As in R01, we can, therefore, combine the estimator ζ̂i for each observed galaxy

into a single statistic, Tc, which we can use to test the magnitude completeness of our
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Figure 4.15: 2dFGRS M -Z distribution showing our adopted apparent magnitude bright
limit of 13.60 mag.

sample for adopted trial magnitude limits mf
∗ and mb

∗. Tc is thus defined as

Tc =

Ngal∑
i=1

(
ζ̂i −

1

2

)/Ngal∑
i=1

Vi

 1
2

. (4.15)

If the sample is complete in apparent magnitude, for a given pair of trial magnitude

limits, then Tc should be normally distributed with mean zero and variance unity. If,

on the other hand, the trial faint (bright) magnitude limit is fainter (brighter) than

the true limit, Tc will become systematically negative, due to the systematic departure

of the ζ̂i distribution from uniform on the interval [0, 1].

4.3 Applying the Revised Tc to MGC and 2dFGRS

In the absence of a clear indication from the literature of what is an appropriate bright

magnitude limit, we adopted the brightest galaxy in our main subset, mb
lim=13.364

mag. The right hand plot of Figure 4.16 shows the Tc curve obtained when we include
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Figure 4.16: Performance of the Tc statistic applied to our 2dFGRS sample. In the left hand
panel we compute Tc assuming only a faint magnitude limit, for both uncorrected magnitudes
and after applying various different (k + e)-corrections. In the right hand panel we include
the effect of a bright apparent magnitude limit, adopting for simplicity a value equal to the
apparent magnitude of the brightest galaxy in our sample. The resulting Tc curve (shown for
uncorrected magnitudes and computed assuming a fixed ‘slice’ width of δZ = 0.08 in distance
modulus) is now entirely consistent with magnitude completeness up to and including the
published faint limit, but drops very sharply at fainter magnitudes.

this bright limit. The plot in this figure demonstrates a change in the behaviour of

the 2dF completeness that is dramatic compared with the original R01 Tc statistic in

Figure 4.16, left. Our choice of δZ = 0.08 was motivated by the fact that a small

δZ leads to low numbers of galaxies within the subsets S1 and S2, making our test

statistic more sensitive to large statistical fluctuations and therefore less sensitive to a

sharp cut in magnitude. We investigate the sensitivity to δZ more fully in Figure 4.17

and discuss the implications in greater detail in Chapter 6. However, we can see that

by simply accounting for a bright limit - not withstanding the fact that no published

bright limit has been reported in the literature - we find that the 2dFGRS data-set is

indeed complete to the published faint magnitude limit with no evidence for residual

systematics. Having already established in Chapter 2 that MGC is indeed complete

up to the published faint magnitude limit of 20.0 mag, we can now use this survey

to demonstrate how the presence of a well defined bright limit can affect the Rauzy

completeness test, if not properly accounted for as was described in Section 4.1.4.
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Figure 4.17: Our generalised version of Tc applied to 2dFGRS showing the effect of varying
values of δZ. As can be seen, for very small values of δZ i.e 0.002 and 0.008 in this case, the
statistic suffers from small numbers with the effect of Tc ‘flat-lining’ within the 3σ level. As
we increase the value of δZ the Tc statistic begins to drop sharply for values of m∗ > mf

lim.

To do this we imposed: mb
lim > 14, mb

lim > 15, and mb
lim > 16 mags respectively (see

Figure 4.18). Figure 4.19 - left shows Tc curves for the data-sets with these artificial

bright limits, but where Tc was computed assuming no bright limit. The plots clearly

show that, as the bright limit is made progressively fainter, the computed value of

Tc deviates more strongly from the behaviour expected for a complete data-set. This

trend is as expected: as can be seen in Figure 4.19 - left, the presence of the bright limit

breaks the separability of the M and Z distributions for observable galaxies. Hence, if

the bright limit is ignored then the computed value of Tc will be systematically biased.



4.3: Applying the Revised Tc to MGC and 2dFGRS 87

Figure 4.18: MGC M -Z distributions with progressively fainter bright limits: top left - no
cut in apparent magnitude, top right - m > 14, bottom left - m > 15 and bottom right -
m > 16 respectively.

We now impose the same artificial bright limits as before but apply our generalised

Tc method which accounts for a bright and faint limit (see Figure 4.19 - right) and

fix the value for mb
∗ in each slice to be equal to the brightest observed galaxy. It is

evident from this plot that, even with a bright magnitude limit as faint as m = 16 mag,

the performance of the Tc statistic at fainter magnitudes is largely unaffected, showing

consistent behaviour for all the bright limits considered.
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Figure 4.19: The Tc statistic computed for the MGC survey (without (k+e)-corrections) but
now illustrating the effect, close to the faint limit, of imposing artificially a bright apparent
magnitude limit on the selected galaxies. In the left panel the solid black curve shows Tc

computed assuming no bright limit (identical to the right hand portion of the red dashed
curve in Figure 3.5 on page 62 while the other three curves correspond to progressively
fainter bright limits, at m > 14, m > 15 and m > 16 mag respectively). For all four curves
we calculated Tc following R01 – i.e. assuming no bright limit. We can clearly see that the
presence of a bright limit, if ignored, has a significant impact on the computed value of Tc for
faint magnitudes, and thus could adversely affect the assessment of magnitude completeness
close to the faint limit. In the right hand panel we repeat our analysis for the same four
cases as in the left panel, but now use our extended method which explicitly accounts for
the presence of the bright limit. We can clearly see that the performance of Tc is no longer
adversely affected, and a consistent estimate of the faint magnitude limit is obtained for
different imposed bright limits.

4.4 Analysis of the Sloan Digital Sky Survey - Early

Types

4.4.1 The data

The Sloan Digital Sky Survey (SDSS) used the 2.5m Ritchey-Chretien wide-field altitude-

azimuth telescope located at the Apache Point Observatory in New Mexico. For the

spectroscopy the SDSS team utilise a pair of spectrographs capable of measuring more

than 600 redshifts simultaneously. See Stoughton (2002) for a description of the Early

Data Release; Abazajian (2003) for a description of DR1, the First Data Release;

Gunn (1998) for a detailed description of the camera; Fukugita et al. (1996), Hogg
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Figure 4.20: The M -Z distribution for the SDSS-Early Types. This particular data set
has well defined apparent magnitude limits as indicated by the red lines. To correctly apply
the Tc statistic, the traditional Rauzy test had to be extended to include the bright limit in
apparent magnitude.

et al. (2001) and Smith (2002) for details of the photometric system and calibration;

Lupton (2001) for a discussion of the photometric data reduction pipeline.

There has been a total of seven data releases since 2001. See York (2000) for a tech-

nical summary of the SDSS project; Pier et al. (2003) for the astrometric calibrations;

Blanton et al. (2003) for details of the tiling algorithm; Strauss (2002) and Eisenstein

(2001) for details of the target selection.

In broad terms, the SDSS sample includes spectroscopic information as well as

photometric measurements in the u∗, g∗, r∗, i∗ and z∗ bands. The SDSS First Data

Release covers an area of ≈ 2000 deg2 (Abazajian, 2003) on the sky.

4.4.2 Selection limits and cosmology

For our analysis we used galaxies present in the SDSS, early types only (hereinafter

referred to as ‘SDSS-Early Types’ ). The selection criteria have been discussed in detail
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in Bernardi (2003a) and the data-set compiled in Bernardi et al. (2005). A total of

39,320 objects have been targeted as early-type galaxies and have dereddened Petrosian

(hereinafter referred to as, mr) apparent magnitudes in the range 14.5 < mr < 17.75,

and a redshift range of 0.0 < z < 0.4.

We have assumed a Hubble constant of 70 kms−1 Mpc−1 as adopted in Bernardi

(2003b). It should be noted that within the range of H0 values that we have considered

throughout this thesis i.e. 70 to 100 kms−1 Mpc−1, the effect on our statistics has been

minimal.

4.4.3 Results

As previously discussed, the SDSS data-set has both a published bright and faint ap-

parent magnitude limit of mr = 14.55 and mr = 17.45 mag respectively. Figure 4.20

shows the corresponding M -Z distribution for the selection we are considering. We,

therefore, tested the completeness of the SDSS-Early Type galaxies using our gener-

alised Tc statistic which accounts for both a faint and bright limit. As an illustration,

we chose to fix the bright limit of the SDSS data-set to be equal to the published

value, and computed the Tc statistic as a function of the trial faint magnitude limit.

We set δZ = 0.2. Figure 4.21-left shows the resulting Tc curve. We see that our results

are in agreement with the published faint magnitude limit – i.e. the behaviour of Tc

is consistent with magnitude completeness up to and including a sharp, faint limit of

mr = 17.45 mag, followed immediately by the strongly negative behaviour expected

for an incomplete sample at fainter magnitudes.

The right-hand panel of Figure 4.21 shows the Tc curve computed using the tra-

ditional Rauzy method with a faint limit only. Here the results show a similar trend

to that seen for the MGC data-set with an artificially imposed bright limit section,

and that of the 2dFGRS before a bright apparent magnitude limit was adopted. The

results therefore further underlines the importance of correctly accounting for a bright

and faint limit when both are present in the data.

4.5 Conclusions

In this chapter we have shown that our initial approach to the 2dFGRS was to apply

the original Rauzy (2001) test which accounts for a single, faint magnitude limit only.

This approach was motivated by the current literature, in which only a faint limiting

magnitude of mf
lim = 19.45 mag was defined for the survey. However, the application
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Figure 4.21: Performance of the Tc statistic applied, as an illustrative example, to the SDSS-
Early Type elliptical galaxies. In the left panel we compute Tc using our extended method,
fixing the bright magnitude limit to equal the published value of 14.55 mag. We see that, in
this case, the behaviour of Tc is consistent with magnitude completeness up to and including
the published faint limit of 17.45 mag., but the statistic drops rapidly thereafter – indicating
the sharp onset of magnitude incompletness. In the right hand panel, on the other hand,
we compute Tc following Rauzy (2001) – i.e. assuming a faint magnitude limit only. As
anticipated, we see that the test statistic deviates very strongly from its expected value for a
complete data-set at magnitudes which are much brighter than the published faint magnitude
limit (although it is worth noting that Tc still decreases even more rapidly once the published
faint limit is exceeded).

of our Tc test revealed that the 2dF survey is strongly inconsistent with being complete

in apparent magnitude when only a sharp, faint limit is adopted. Furthermore, the

SDSS-Early Types data-set we used has well defined bright and faint apparent mag-

nitude limits and therefore we developed the completeness test statistic, Tc, technique

to account for the presence of both a faint and bright apparent magnitude limit in

magnitude-redshift samples.

Applying our generalised method to SDSS-Early Types, 2dFGRS and MGC sur-

veys confirms the completeness of data-sets such as SDSS-Early Types where a faint

and bright limit is well defined and published in the literature. Specifically, we have

demonstrated that the SDSS-Early Types are complete in apparent magnitude up to

the published magnitude limit of mr = 17.45 mag indicating no residual systematics.

Similarly, we confirm the 2dFGRS indicated completeness up to themf
lim = 19.45 mag
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but only if a secondary bright limit (mb
lim = 13.6 mag in our subset) is also included.

Lastly, using the 2dFGRS data, we observed that for small values δZ the Tc statis-

tic will be dominated by shot-noise, resulting in a flat-line effect (or seemingly over

completeness) beyond the magnitude limit. We shall explore this behaviour in greater

detail in Chapter 7.



Chapter 5

Introducing the Tv statistic

Rimmer - “Step up to red alert.”

Kryten - “Sir, are you absolutely sure? It does mean changing the bulb.”

From the series Red Dwarf

In this brief chapter we introduce a further variant on the test statistic Tc, which we

have named Tv, that is related to the distribution of corrected distance modulus for

observable galaxies in a magnitude-redshift survey and which is actually close in spirit

to the V/Vmax test.

5.1 Construction the Tv statistic

5.1.1 Defining the random variable τ

Figure 5.1 shows two schematic M -Z plots that are analogous to Figures 3.1 and 4.14.

Therefore, we consider the following two cases:

• Case I: Data-sets with a single faint apparent magnitude limit, mf
lim, in keeping

with R01,

• Case II: Datasets with both a faint and bright limit,mf
lim and mb

lim respectively.

The left hand panel in Figure 5.1 illustrates Case I with the ‘putative’ faint limit, mf
∗

shown as a red diagonal line and as before. The right hand plot illustrates Case II

showing a ‘true’ bright and faint apparent magnitude limit, mb
lim (blue diagonal line)

and mf
lim, with ‘putative’ faint limit, mf

∗, shown as the bold red diagonal line. Again,

the position, (Mi, Zi), of a typical galaxy is shown on each panel.
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Figure 5.1: Schematic diagram illustrating the construction of the rectangular regions S3

and S4, defined for a typical galaxy at (Mi, Zi), which feature in the estimation of our new
completeness test statistic, Tv. The left hand panel illustrates how S3 and S4 are constructed
for a survey with only a faint magnitude limit mf

lim, and are shown for a trial faint limit
mf

?. The right hand panel shows the case where the survey also has a true bright limit mb
lim

(which we assume for simplicity is known), and the rectangles are constructed for trial bright
and faint limits mb

lim and mf
lim respectively. Note that the construction of the rectangles is

unique for a ‘slice’ of fixed width, δM , in absolute magnitude.

We can define for the ith galaxy:

• Case I and II : Zmax(Mi), the corrected distance modulus of a galaxy, with

absolute magnitude Mi, which would be observed at the true faint apparent

magnitude limit mf
lim.

In the right hand panel of Figure 5.1, we consider a ‘slice’ of width δM in absolute

magnitude brighter than Mi. Therefore, for Case II we see that, given the three

quantities, mb
lim, mf

lim and δM , we can also define the following corrected distance

moduli such that:

• Case II only : Zmin(Mi − δM), the corrected distance modulus of a galaxy,

with absolute magnitude Mi − δM , which would be observed at the true bright

apparent magnitude limit mb
lim.

These two limiting distance moduli are indicated, for the putative faint magnitude

limit mf
∗ and the true bright magnitdue limit, mb

lim, by the horizontal dashed lines in

Figure 5.1.
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We now let H(Z) denote the cumulative distribution function of corrected distance

modulus for observable galaxies, i.e.

H(Z) =

∫ Z

−∞
h(Z ′) dZ ′. (5.1)

Then τ is defined as

Case I : τ =
H(Z)

H[Zmax(M)]
. (5.2)

Case II : τ =
H(Z)−H[Zmin(M − δM)]

H[Zmax(M)]−H[Zmin(M − δM)]
. (5.3)

It is straightforward to show that in both these cases τ possesses the following proper-

ties:

• P1: τ is uniformly distributed between 0 and 1,

• P2: τ and M are statistically independent.

These two properties are exactly analogous to the defining properties of ζ, except that τ

is now independent of the distribution of corrected absolute magnitude, M . Once again

we can use property P1 to construct a test for completeness in apparent magnitude.

5.1.2 Estimating τ and computing the Tv statistic

Under the assumptions introduced in the previous section, it follows that τ can be esti-

mated from our observed data without any prior knowledge of the spatial distribution

of galaxies. To see how this estimate is constructed, consider again Figure 5.1. For

each point with co-ordinates (Mi, Zi) in the M-Z plane we can define the regions S3

and S4 as follows:

Case I :

(i) S3 = {(M,Z) : M ≤Mi, Z ≤ Zi},

(ii) S4 = {(M,Z) : M ≤Mi, Zi ≤ Z ≤ Zi
max}.

Case II :

(i) S3 = {(M,Z) : Mi − δM ≤M ≤Mi, Zmin ≤ Z ≤ Zi},

(ii) S4 = {(M,Z) : Mi − δM ≤M ≤Mi, Zi ≤ Z ≤ Zi
max}.
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It should be noted that in Case I, S3 is identical to the region S1 shown in Figure 3.1.

As in Chapter 2, we see that the random variables M and Z are independent in

each sub-sample S3 and S4. Therefore we can estimate τ by counting the number, ri,

of galaxies that belong to S3 and the number, ti, of galaxies that belong to S3 ∪ S4.

Similarly, an unbiased estimate of τ is given by

τ̂i =
ri

ti + 1
. (5.4)

Thus, provided that mf
∗ ≤ mf

lim, then under our null hypothesis τ̂i will be uniformly

distributed on [0, 1] and uncorrelated with Mi, exactly analogous to the properties of

for ζ̂i under the same hypothesis. Moreover the expectation Ei and variance Vi of the

τ̂i are respectively

Ei = E(τ̂i) =
1

2
, Vi = E

[
(τ̂i − Ei)

2] =
1

12

ti − 1

ti + 1
. (5.5)

Again, the variance of τ̂i tends towards that of a continuous uniform distribution be-

tween 0 and 1 for large ti.

We can, therefore, again combine the estimator τ̂i for each observed galaxy into a

single statistic, Tv, which we can use to test the magnitude completeness of our sample

for adopted trial magnitude limits mf
∗ and mb

∗. Tc is defined as

Tv =

Ngal∑
i=1

(
τ̂i −

1

2

)/Ngal∑
i=1

Vi

 1
2

. (5.6)

If the sample is complete in apparent magnitude, for a given pair of trial magnitude

limits, then Tv should be normally distributed with mean zero and variance unity. If,

on the other hand, the trial faint magnitude limit is fainter than the true limit, in

either case Tv will become systematically negative, due to the systematic departure of

the τ̂i distribution from uniform on the interval [0, 1].

5.2 Application of the Tv Statistic

In the previous chapters we introduced and applied our improved Tc statistic, which

can account for both a faint and bright magnitude limit in assessing the completeness

of a magnitude-redshift survey. In this section we apply the Tv statistic, introduced in

§ 5.1 above, to the same data-sets. Our Tv statistic can be thought of as an improved,

differential, version of the classical V/Vmax test of galaxy evolution, which is generally

presented in the literature as yielding a single number – the mean value of V/Vmax
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Figure 5.2: Comparison of the Tc and Tv statistics computed for MGC (left panel), SDSS-
Early Types (middle panel) and 2dFGRS (right panel). For the latter two surveys the same
bright limits were adopted as in Figures 4.21 and 4.16 respectively, and appropriate values
for δZ (for Tc) and δM (for Tv) were chosen. Note the almost identical agreement of the test
statistics in each case. To illustrate the robustness of this result, the MGC results are with
(k+e)-corrections applied, the SDSS-Early Types results are with k-corrections only applied,
while the 2dFGRS results are for uncorrected galaxy data.

averaged over all galaxies in the survey, adopting a given faint apparent magnitude

limit and assuming that the underlying spatial distribution of galaxies is homogeneous.

In contrast, we can compute Tv as a function of an incrementally increasing mf
? and

thus analyse our data-set via a series of progressively truncated subsets.

Figure 5.2 shows a comparison of the Tv and Tc curves for all three surveys. The

left hand plot is the MGC survey with (k+ e)-corrections applied. The Tv curve shows

an almost identical match to the Tc statistic. Similar behaviour is evident with SDSS-

Early Types and 2dFGRS (middle and right plots). That Tv and Tc give a consistent

indication of the completeness of these surveys should not be too surprising, since we

are confident (at least once a bright limit is included in our analysis of the 2dFGRS)

that all three are well calibrated and well understood. Moreover, they are all relatively

shallow in redshift range, which means that extinction and evolution corrections are

not likely to impact too strongly on our assessment of their completeness (a fact which

is supported by our results for Tc). However, one can ask under what conditions might

the two statistics Tc and Tv diverge from each other?

Consider a galaxy, i, characterised by its ‘coordinates’ (Mi, Zi). We have two com-

plementary ways of generating magnitude limited data-sets for such a pair:

• At fixed luminosity we can ask what redshift distribution will produce apparent
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magnitudes permitted by our selection criteria?

• Alternatively, at fixed redshift we can ask what distribution of luminosities (i.e.

what part of the underlying galaxy luminosity function) are we sampling, given

our selection limits in apparent magnitude?

The former criterion resembles the procedure used to construct the Tv statistic, while

the latter criterion is more closely related to the procedure used to construct Tc. This

also implies that one might expect the two statistics to behave differently when evolu-

tion becomes important – simply because evolution will, of course, break the separabil-

ity of the underlying joint distribution of M and Z, i.e. the conditional distributions

of M at given Z and Z at given M will no longer be simply equal to their marginal

distributions. It seems likely, therefore, that an exploration of the systematic differ-

ences between Tc and Tv for deeper surveys may be an effective probe of evolution. We

will investigate this further in subsequent chapters.

5.3 Conclusion

We have demonstrated in this chapter the development of a variant on the original

Rauzy Tc completeness statistic, which we denote by Tv, based on the cumulative

distance distribution of galaxies in a magnitude-redshift survey. We find that Tv has

potential advantages over the widely used V/Vmax test: not least, the Tv statistic retains

the same properties as that of Tc – i.e. is independent of the spatial distribution

of galaxies within the survey. Furthermore, we have shown by example, that Tv –

when applied to the same well calibrated and relatively shallow survey samples as Tc

– produces almost identical results to that of the Tc statistic.



Chapter 6

Analysis of the CCLQG Survey:
GALEX Selected Sample

“I can prove anything by statistics except the truth.”

George Canning - From A Dictionary of Thoughts (1908)

6.1 The Data and Sample Selection

This data-set has been compiled from two slightly overlapping 1.2 degree fields within

the Clowes-Campusano Large Quasar Group (herein referred to as CCLQG) in the

Far-UV (FUV; λeff = 1538.6Å) and Near-UV (NUV; λeff = 2315.7Å) filter bands,

using the UV satellite GALEX (GALaxy Evolution eXplorer). The pipeline reduction

was done by the GALEX team, including the photometric calibration. Optical com-

plementary data are from the Sloan Digital Sky Survey DR5 (Adelman-McCarthy and

et al. , 2007), which is sensitive to limiting apparent magnitudes of u = 22.0, g = 22.2,

r = 22.2, i = 21.3, z = 20.5.

The source catalogue consists of 15688 sources created using SExtractor v.2.5.0

(Bertin and Arnouts, 1996). By excluding bad regions at the edge of the GALEX

images and saturated sources using weight maps (weight watcher version 1.7) as

well as flag images, a cross-correlation with the SDSS-DR5 resulted in 14316 sources

(matching radius: 4.5 arcsec).

The data was further reduced to clean the sample from false detections (e.g. bright

star contaminations and reflections) such that only objects which have a SExtractor
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extraction FLAGS ≤ 2 in the NUV filter were selected, which resulted in a subsample

of 13760 objects (final UV selected sample). Finally, we consider all galaxies in the

range 0.05 < zphoto < 2.5 which leaves us with a final sample of 13748 objects in which

the brightest and faintest galaxies are mb = 14.33 and mf = 25.72 respectively in the

NUV filter.

The raw apparent magnitudes have already been corrected for galactic extinction,

Ag(l, b), and we therefore convert to absolute magnitudes by,

Mi = mi − 5 log10(dLi
)− 25 (6.1)

where there are as yet no published evolution correction. The distance modulus, Z is

calculated by,

Zi = 5 log10(dLi
) + 25 (6.2)

where the luminosity distance, dLi
, is given by Equation 3.2 on page 54. We also adopt

a Hubble constant of H0 = 100 kms−1 Mpc−1. Figure 6.1 shows the M -Z distribution

of our final survey sample.

6.2 Results

The completeness test results for this selected data-set revealed two very interesting

features shown in Figure 6.2:

1. a large spike in the Tv curve and,

2. a systematic drop in both Tc and Tv, below −3σ considerably brighter than the

magnitude limit of the survey.

We shall explore both features separately to allow an accurate assessment of complete-

ness of the data.

6.2.1 Photometric redshift truncation effect

The Tc and Tv results in Figure 6.2 show the original R01 method i.e. assuming a

faint limit only. What is immediately clear is an uncharacteristic departure of Tv

(the red curve) from Tc (the black curve) that begins at m∗ ≈ 18.7 mag. The Tv

statistic then rises sharply peaking at m∗ = 22.6 mag, σ = 18.58 before dropping

systematically below −3σ at m∗ ≈ 24.45 mag. A result with this atypical behaviour

has not been observed for any of the surveys that we have examined thus far and
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Figure 6.1: M-Z distribution of the CCLQGS data-set. The red line indicates the faint
apparent magnitude cut-off of the sample, mlim = 25.8 mag. Also evident is the low precision
level of the photometric redshifts which manifests itself as discretisation on the M-Z plane.

therefore it was, at first, somewhat baffling. This was compounded since both statistics

up to m∗ ≈ 18.0 mag had shown close agreement. It should also be noted that the

case where Tc and Tv drop sharply as the limit of the survey has been passed, is due to

the decreasing number of galaxies within the respective S2 and S4 regions. Similarly

this implies that an observed sharp increase above 3σ would indicate an over-densed

region.

The next step in our analysis, as in the case of the 2dFGRS, was to test any

significant change in this result when adopting a bright limit. Figure 6.3 shows varying

values of δZ and δM for Tc and Tv respectively in the range 0.1 < δZ, δM < 2.0. What

is immediately evident is the Tv spike remains for every value of δM and δZ. At this

point it was becoming increasingly obvious (essentially by a process of elimination)

that the precision level of the photometric redshifts coupled with the distribution of
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Figure 6.2: Initial Tc and Tv results of the CCLQGS data. We have assumed initially that
there is no well defined bright limit and as such applied the original R01 statistic. Although
both Tc and Tv fall below the −3σ before the official magnitude limit of mlim = 25.8 mag, it
is the distinct departure in completeness between the two statistics which peaks at around
18.5σ for Tv.

galaxies in the survey was playing a more crucial role than first thought.

Although never examined in detail, it was inferred in the Rauzy (2001) paper that

finite precision data, in this case apparent magnitudes, will introduce discretisation to

the data creating artificial gaps, and ‘steps’ in the magnitude distribution function.

This in turn could introduce ‘spurious variations of the Tc statistic’. However, a well-

documented way to overcome this effect requires the addition of a small amount of

random noise or ‘jitter’ (e.g. see Sivia and Skilling, 2006, p186) to the data to impose

a ranking which therefore breaks any statistical ties. In the case of Rauzy (2001) a uni-

form random distribution between [-0.005,0.005] was added to the SSRS2 magnitudes

to overcome any potential rounding problems.
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Figure 6.3: Initial Tc and Tv results of the CCLQGS data. We have assumed initially that
there is no well defined bright limit and as such applied the original R01 statistic. Although
both Tc and Tv fall below the −3σ before the official magnitude limit of mlim = 25.8 mag, it
is the distinct departure in completeness between the two statistics which peaks at around
18.5σ for Tv.

With this in mind, we examine more closely the M -Z distribution in Figure 6.1 and

observe that the redshifts are rounded to 0.001 and appear heavily ‘quantised’ in the

figure. Since our method considers the distance modulus, Z, which is essentially the

log10(z) of the redshift distribution, the quantised nature of the in Z is more apparent

for nearby with lower values of z. We therefore adopt the same approach as in Rauzy
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Figure 6.4: Results for the CCLQGS Tv statistic with random noise added to the raw redshift
distribution. We add successive small amounts of trial uniformly distributed noise to the
photometric redshifts between [−10−8, 10−8], [−10−10, 10−10] and [−10−14, 10−14]. The left-
hand panel are results using the R01 method, whilst the right-hand panel shows the resulting
JTH method. We observe that the Tv curve in all cases (red lines) shows no evidence of the
spurious spike we originally found, and now shows similar behaviour as the Tc curve.

(2001) and apply different levels of uniformly distributed random noise to z denoted

by an η parameter. In Figure 6.4 we have added an amount, η, of uniform random

noise between [−10−8, 10−8], [−10−10, 10−10] and [−10−14, 10−14] to z and compared it

to the case of using the raw redshifts. The left hand panel in Figure 6.4 shows the R01

Tc and Tv statistics where the red solid line represents Tv with no noise added. The

remaining red dashed curves represent (z+η). As we can see, as soon as the statistical

ties are broken by the addition of a small amount of random noise, the spike of Tv

now reverts to the form of Tc. Similarly, in the right hand panel of Figure 6.4 we

observe the same behaviour when we apply the Johnston, Teodoro and Hendry (2007)

(hereafter referred to as, JTH) Tc and Tv statistics, adopting a bright magnitude limit

of mb
lim = 14.33 mag based on the brightest galaxy in the set.

Although we had established the cause of the spurious spike observed in Tv was

a direct result of truncation of the redshifts, this did not completely explain why Tv

departs from Tc at around m∗ = 18.5 mag. The answer can be found by examining

the M -Z distribution once again. In Figure 6.5 we have plotted this distribution and
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Figure 6.5: M -Z distribution for CCLQGS illustrating where Tv departs from Tc in Fig-
ure 6.3. The blue dashed line represents the trial limit magnitude, m∗ = 18.5 mag and
is approximately where we see Tv initially departing from Tc. The red dashed line is for
m∗ = 20.2 mag and is approximately where Tv first crosses the 3σ confidence limit on its way
to peak at m∗ ≈ 22.5 mag.

superimposed two key trial magnitude limits, m∗ - the first, where Tv initially departs

from Tc (the blue dashed line), and the second where Tv crosses the 3σ confidence

limit at m∗ ≈ 20.2 (the red dashed line). Up to m∗ = 18.5 mag, the distribution is

sparsely populated by distant bright galaxies (top left of the M-Z diagram in Figure 6.1)

which show little in the way of discretisation due to the fact we are observing these

galaxies in terms of their distance modulus. As we move beyond m∗ = 18.5 mag to

m∗ = 20.2 mag we can see the nearby galaxies are now playing a more crucial role in

the Tv calculation where the discretisation in Z is now clearly visible. This suggests

that the more ‘quantised’ galaxies at approximately Z < 40 dominate this truncation

effect observed in Tv.
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To test this we used the raw redshifts and simply sampled slices of the data and

applied our statistics in two opposite ways using the JTH method and adopting a δZ

and δM = 1.0 throughout. The first approach applied Tc and Tv in Figure 6.6-top,

starting from the furthest galaxies in the survey and working in decreasing limiting

values of redshift (as shown in the top right-hand panel). Thus, the ranges in redshift

we considered were 1.0 < z < 2.5, 0.8 < z < 2.5, 0.4 < z < 2.5 and 0.1 < z < 2.5. The

top left-hand plot of Figure 6.6 shows the resultant Tc and Tv curves for each range in

redshift. What is immediately clear is that between 0.4 < z < 2.5, Tv shows none of

the spiking characteristics seen when testing the whole data-set. Even when we extend

the computation back to a zmin = 0.1 there is only a relative marginal peak present in

Tv at ∼ 6.5σ. We therefore, test the data in the opposite direction by starting at the

minimum redshift, zmin = 0.05, and sampling at increasing maximum limits of redshift:

0.05 < z < 0.15, 0.05 < z < 0.2, 0.05 < z < 0.5 and 0.05 < z < 1.0 as illustrated on

the bottom right-hand panel of Figure 6.6. The solid red line on the bottom left-hand

panel of Figure 6.6 represents the Tv results for the 0.05 < z < 0.15 slice and shows

a strong peak at Tv ∼ 33σ. As we move to increasing limiting values of redshift we

observe this peak fall towards the level shown in the right-hand panel of Figure 6.4.

Therefore, our results are indicating that the relatively nearby galaxies z . 0.15 are

dominating the atypical nature of this bias.

The reason why we observe this effect only in Tv and not in Tc is now straightforward

to explain. Figure 6.7 shows the construction of both Tv (left) and Tc (right) for a galaxy

at (Mi, Zi). For the construction of the regions S3 and S4 for Tv we can see that for all

galaxies lying at the same distance modulus as Zi will always be counted in S3 by the

definition given in Equation 5.4 on page 97. Since there are fewer nearby galaxies in

distance modulus this introduces a bias into the estimator which can only be overcome

by either adding random noise to the redshift data to break the ties, or improving on

photometric redshift model predictions to begin with (for example see Sheth, 2007).

It becomes apparent that for the case of rounded data in redshift, the Tc will not be

affected, since the construction of this statistic samples the cumulative distribution of

absolute magnitudes and not redshifts. Therefore, it follows that if the magnitudes

suffered from a similar truncation one would expect to see an adverse effect in the Tc

statistic but not necessarily with Tv.
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Figure 6.6: The top-left panel represents the JTH Tc and Tv curves for four slices in redshift,
z. We have adopted a δZ and δM = 1.0 throughout. The top-right hand panel shows
schematically how the redshift slices: 1.0, 0.8, 0.4 and 0.1 < z < 2.5, relate in the context in
the M-Z plane. The completeness statistics clearly show that within the range of zmin slices
from zmin > 0.4, both Tc and Tv behave as one would expect for a complete sample. As we
move to a zmin = 0.1 we see the strange feature in Tv begins to reappear. The bottom panel
on the left represents the resulting Tc and Tv curves for the following four slices in redshift:
0.05 < z < 0.15, 0.05, 0.5 and 1.0, and is shown schematically in the bottom right-hand
panel. Both completeness statistics in this case clearly show a much greater peak that we
have observed previously within the small range 0.15 > zmin > 0.02. As we move to greater
limiting redshifts we observe the peak reverting to its expected confidence level for a complete
survey.
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Figure 6.7: Construction of Tc and Tv to illustrate the bias introduced into the Tv estimator
due to truncated redshifts. The left and right-hand panels shows the familiar construction
for Tv and Tc respectively, where we do not include the presence of a bright limit.

6.3 Final Completeness Assessment of the Data

Having established the causes surrounding the large spike observed in Tv we continue

with our completeness analysis. For the remainder of this chapter we will be adding

an amount, η, of uniformly distributed random noise between [−10−8, 10−8] to the raw

redshift data.

Let us re-visit Figure 6.2 on page 103 where the R01 Tc method has been applied.

The curve firstly shows a dip in completeness with a Tc ∼ −4.7σ minimum at a

limiting apparent magnitude m∗ ∼ 20.5. There is then a slight recovery within |Tc|<
3σ before dropping systematically and indicating a true apparent magnitude limit of

m∗ ∼ 23.2 mag, an apparent magnitude which is considerably brighter than the limit

of the survey data of mlim = 25.8 mag. This behaviour is not unlike the initial analysis

of the 2dFGRS in Figure 4.3 on page 69. By adding the noise element to the redshifts,

Figure 6.4-left showed that Tv follows a similar trend to Tc. In the case of 2dFGRS,

we concluded that a bright limiting magnitude would have to be included into our

completeness calculation in order to make an accurate assessment of the data. Whilst

examining the Tv ‘spike’ in the previous section we adopted a bright limit which, as
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Figure 6.8: M -Z distribution for the CCLQGS data showing the average completeness
magnitude limit derived from Tc and Tv. The blue dashed line on the left-hand plot shows
the magnitude limit as identified by both statistics, m∗ = 23.7 mag. The right-hand plot is a
histogram of the apparent magnitudes for the same sample with the same limiting magnitude
superimposed shown as the blue dashed line. There is a visible turnover in the magnitudes
between 23 . m . 25.0 indicating a steady drop in the number of galaxies towards the
magnitude limit instead of a sharp cut in magnitude at the limit. This, however, does
not explain why both statistics have systematically dropped below the −3σ limit by m∗ =
23.7 mag.

with the 2dFGRS, was chosen as the brightest galaxy in the sample mb
lim = 14.33 mag.

We then applied the JTH statistic for a selection of δZ and δM between [0.1,2.0] (see

Figure 6.3 and Figure 6.4-right). The results show that the initial dip below −3σ is

no longer there, however, as we increase the size of both δZ and δM , the completeness

results for Tc and Tv indicate a varying range for the true apparent magnitude limit

an effect that we examine in more detail in the following chapter. Moreover, if we look

once again at Figure 6.6 we also observe a change in the magnitude limit for increasing

slices in redshift.

What now remains is the question - why do Tc and Tv indicate an average minimum

magnitude limit of mlim ∼ 23.7 mag which lies at a point considerably brighter than the

limit of the survey data? Unfortunately, at this time there is no immediate answer, and

for the moment we can only speculate. In the right-hand panel of Figure 6.8 we have

plotted the apparent magnitude distribution of our sample with the superimposed blue

line indicating our completeness magnitude limit result. It is obvious in this plot that

the distribution is not defined by a sharp cut-off, but instead turns over gradually at
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approximately where our method is indicating the actual limit of the survey. However,

this is inconsistent with what we would expect in such a scenario. If a data-set is

defined with an mlim that has a gradual tail off, then as a result we would expect to see

Tc and Tv drop gradually to reflect this. However, our statistics drop systematically

before the turnover in the magnitude distribution begins.

6.4 Conclusions

The completeness analysis of this survey sample has prompted us to consider possible

limitations of the method and/or the survey catalogue that may not have surfaced

otherwise. When applying the Tv estimator we observed a very distinct and large peak

which had not been observed in the analysis of previous surveys. We concluded that

this effect was a direct result of highly rounded photometric redshift data that, in turn,

created large artificial gaps, and ‘steps’ in the distribution function for the distance

modulus for the relative nearby galaxies. Consequently, this introduced a strong bias

in the Tv estimator since the range in redshift for which this effect dominates accounts

for approximately one third of the total number of galaxies in data-set. This led us to

add a small amount of statistical ‘jitter’ to the redshift data to break any statistical

ties that may be adversely affecting our calculation. This additional step appears to

have corrected this issue.

Although, this procedure is a well recognised one within the statistics community,

it would be too easy to be judgmental of the Tc and Tv estimators (and indeed other

estimators that this may affect) as it brings to light a key issue regarding the precision

of the photometric redshift measurements. The addition of any amount of random

noise to data is essentially adding physical precision to an instrument, and therefore,

the model predictions, that have clear limitations in measurements.

Our completeness results also indicated a possible range for the true faint magnitude

limit as we varied the values of δZ and δM in the JTL method. This, combined with a

similar result from the 2dFGRS, has lead us to propose a more efficient and optimised

way to compute both Tc and Tv that should provided the user with a confidence level

for the choice of mlim based on the signal-to-noise of the system. We explore this in

the following chapter.

Finally it is important to reiterate that the magnitudes presented here have not

yet been corrected for any form of evolution, that will undoubtedly be inherent with

such a deep redshift survey. Nor have they been k-corrected. These are both crucial

factors which would potentially have strong impact on the completeness assessment for
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a survey that extends to such high redshifts. Prior to the testing of this sample we

have only examined data-sets which are relatively shallow in redshift, where the effects

of evolution are less dominant. Since we observe a change in the magnitude limit

assessment for different slices in redshift may indeed suggest evolutionary effects are

impacting on our statistics. Future studies could include simulating such surveys out

to high redshifts such that we can control and explore the impact of all these effects.



Chapter 7

Optimising Tc and Tv

“Science is always wrong; it never solves a problem without creating

ten more.”

George Bernard Shaw

In this chapter we present our ongoing research into an area concerning the optimisation

of the generalised JTH Tc and Tv statistics. The need for this research has been

prompted largely by the completeness results from the 2dFGRS in chapter 4 and the

CCLQG data in the previous chapter. In both cases we briefly discussed that by

varying the widths of δZ and δM two distinct side-effects for the determination of the

true mf
lim were revealed:

1. For very small values of δZ and δM the respective Tc and Tv statistics will be

dominated by shot-noise, making it impossible to draw statistical conclusions

concerning the true faint apparent magnitude limit, mlim.

2. Conversely, for values of δZ and δM that are very large we observe a range

in possible values for the faint magnitude limit for data-sets that are not well

described by a sharp mlim.

Therefore, we now examine the 2dFGRS and CCLQG data-sets in more detail along

with the other surveys we previously examined, namely MGC and SDSS (Early Types).

We demonstrate that by choosing to estimate the random variables with fixed values

of δZ and δM we unavoidably introduce the above effects which, if not accounted for

properly, could adversely influence our conclusions with regards to our estimation of
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the correct faint magnitude limit, mf
lim. In final part of this chapter we will outline

an alternative approach to estimating the random variables that amounts to a direct

determination of the signal-to-noise of the system and which should circumvent issues

which we now describe.

7.1 Current Issues with the ζ and τ Estimators

Firstly, let us recall our definitions for the random variables ζ and τ for respective

statistics Tc and Tv,

ζ =
F (M)− F [Mb

lim(Z − δZ)]

F [M f
lim(Z)]− F [Mb

lim(Z − δZ)]
=

S1

S1 ∪ S2

=
ri

ni + 1
, (7.1)

τ =
H(Z)−H[Zmin(M − δM)]

H[Zmax(M)]−H[Zmin(M − δM)]
=

S3

S3 ∪ S4

=
qi

ti + 1
. (7.2)

where the points for each region are represented by, ri belonging to S1, ni belonging

to S1 ∪ S2, qi belonging to S3, and ti belonging to S3 ∪ S4. Essentially, the milestone

of our extension to the R01 method lay in the introduction of the fixed quantities δZ

for ζ and δM for τ . Fixing these quantities to a predetermined width allowed us to

re-construct the regions in Equations 7.1 and 7.2 within any doubly truncated survey

i.e. for a survey with well defined bright and faint apparent magnitude limits. Let us

firstly examine the results obtained from all the of the above surveys for the case of

small values of δZ and δM .

7.1.1 Shot noise - the ‘flat-line’ effect

In the top two panels of Figure 7.1 we have applied Tc and Tv to the 2dFGRS over

the range 0.001 < δZ, δM < 0.008 in increments of 0.001. We observed that all curves

for both test statistics fluctuate within the 3σ limits for each trial m∗ within 13.346 <

m∗ < 19.45. However, once m∗ moves beyond the published limit of the survey all the

curves drop slightly and then flatten or ‘flat-line’ inside −3σ < Tc, Tv < 3σ instead

of dropping sharply below the −3σ level as one, by now, might expect. Similarly, the

top panels of the Figures 7.2, 7.3 and 7.4 demonstrate the same flat-lining effect for

the SDSS (Early Types), MGC and CCLQG respectively. For the SDSS-Early Types,

observe that for values 0.001 < δZ, δM . 0.01, Tc and Tv flat-line beyond the survey

limit of mf
lim = 17.55 within the 3σ limits. As we move to increasing values of δZ and

δM as shown in the bottom panels, the curves remain flat-lined beyond the magnitude
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Figure 7.1: Tc and Tv results for the 2dFGRS applying the Johnston et al. (2007) gen-
eralisation for values in the range of 0.001 < δZ, δM < 0.08. We observe for values
0.001 < δZ . 0.01 and 0.001 < δM . 0.02 Tc flat-lines within the 3σ limits thus indicating
that the noise level is greater than the ζ and τsignal. However, as we move to increasing
values of δZ and δM as shown in the bottom panels, the curves remain flat-lined beyond the
magnitude limit but are now below −3σ indicating that there is enough signal in ζ and τ to
draw meaningful statistcal conclusions.

limit but are now below −3σ. For the MGC in the range 0.001 < δZ, δM . 0.06, Tc

and Tv flat-line within the |3σ| limits. Once again, as we move to increasing values of

δZ and δM as shown in the bottom panels, the curves remain flat-lined beyond the

magnitude limit but are now below −3σ. Finally, the CCLQG survey in Figure 7.4,
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confirms this behaviour as we observe both statistics flat-line between the same values

as MGC, 0.001 < δZ, δM . 0.06.

This flat-lining is essentially an indicator of the shot-noise level for the chosen width

of δZ and δM and understanding why this happens is quite straightforward when we

consider the contributing factors: the number of objects in the catalogue and the range

in apparent magnitude, m, of the survey. Figure 7.5 illustrates how the shot-noise

dominates for small values of δZ and δM . In our example we look at the 2dFGRS

data-set. The top left panel shows the now familiar M -Z distribution with the red

diagonal lines representing the faint apparent magnitude limit mf
lim and our adopted

bright limit mb
lim. The main feature of this plot is the narrow red, blue and green lines

which actually define the Tc regions S1 and S2 for a galaxy at (Mi, Zi) for δZ = 0.001,

0.008 and 0.02 respectively, where we are considering a trialm∗ equal to the survey limit

i.e. mf
lim = 19.45. Since these ‘strips’ represent such a tiny fraction of the diagram,

the top right hand plot shows a close up of this particular region where the areas are

clearly defined. The bottom panels in Figure 7.5 represents, for the same galaxy at

(Mi, Zi), the Tv construction for δM = 0.001, 0.008 and 0.02. What is immediately

obvious for both Tc and Tv is the relative small number of galaxies that are counted

within the S1 and S2 regions for each δZ and δM . By considering Equations 7.1 and

7.2, it becomes more obvious that as we move m∗ beyond the mf
lim cut-off, the Tc and

Tv statistics will see the same small fractional change in the relative numbers between

ri and ni and qi and ti respectively for each m∗ > mf
lim, and hence the shot-noise is

dominant. In other words, the fact the flat-line occurs within the 3σ limit is perhaps

an indication that the shot noise level is greater than the ζ and τ ‘signal’. Therefore,

it also follows that as we increase δZ and δM in size, the number of galaxies counted

within the stated regions also increase and thus the respective statistics become more

sensitive to mf
lim and the signal-to-noise also increases.

Finally, since we are dealing with flux-limited catalogues with a finite number of

galaxies, we can show via Figure 7.6 that by applying the original Rauzy completeness

test, which consequently has no restriction in the height of the constructed regions,

and allowing m∗ to move far enough beyond mf
lim then ultimately we still observe

shot-noise, albeit at a much larger negative level of σ.

7.1.2 Variation in mlim effect

In this section we explore the apparent variation in determining the true mlim resulting

from larger values in δZ and δM of a survey that is doubly truncated. As we have
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Figure 7.2: Tc and Tv results for SDSS applying the JTH generalisation for values in the
range of 0.001 < δZ, δM < 0.08. We similarly observe, as with the 2dFGRS, that for values
0.001 < δZ, δM . 0.01, Tc and Tv flat-line within the 3σ limits indicating that the noise level
is greater than the ζ and τsignal. Once again, as we move to increasing values of δZ and δM
as shown in the bottom panels, the curves remain flat-lined beyond the magnitude limit but
are now below −3σ.

seen from the previous section, if δZ and δM are sufficiently small then the resulting

shot-noise associated with the Tc and Tv curves will dominate and therefore flat-line

within the 3σ limits. This implies that one has to choose larger values such that

both statistics will drop below −3σ once the true magnitude limit has been identified.

However, as we shall demonstrate, this in turn has potential problems. If we now look
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Figure 7.3: Tc and Tv results for MGC applying the JTH generalisation for values in the
range of 0.001 < δZ, δM < 0.08. We that for values 0.001 < δZ, δM . 0.06, Tc and Tv

flat-line within the 3σ limits indicating that the noise level is greater than the ζ and τsignal.
Once again, as we move to increasing values for δZ, δM > 0.06 as shown in the bottom
panels, the curves remain flat-lined beyond the magnitude limit but are now slightly below
−3σ.

at Figures 7.7-2dFGRS, 7.8-SDSS and 7.9-CCLQG we can quite clearly see that as δZ

and δM increase, the point at which the test statistics systematically fall below our

−3σ limit (indicating the true apparent magnitude limit) varies with it. In the case

of the 2dFGRS, on the interval 0.003 < δZ, δM < 3.0 we actually observe a respective

range of mlim from 19.4 . mlim . 19.0. For SDSS on the interval 0.4 < δZ, δM < 2.0
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Figure 7.4: Tc and Tv results for the CCLQG data between 0.001 < δM, δZ < 0.08. The
top panels show Tc and Tv in the range 0.001 < δM, δZ < 0.008 where we observe the
flat-lining effect. As we move to 0.01 < δM, δZ < 0.08, we observe the same behaviour as
with the 2dFGRS and SDSS-Early Types. In this case the Tc curves begin to drop below
−3σ for values of δM and δZ = 0.07 and 0.08 corresponding to m∗ = 25.8 mag and m∗ =
25.6 mag respectively. The Tv curves, however, show for δM and δZ = 0.07 and 0.08, limiting
magnitudes of m∗ = 25.8 mag and m∗ = 25.1 mag respectively.

the respective observed shift is 17.15 . mlim . 17.45.

For the CCLQG survey (Figure 7.4) we see both Tc and Tv flat-line within the 3σ

limits for 0.001 < δM, δZ < 0.06 oncem∗ has moved beyond the limit of the survey. We

then find for the range 0.07 < δM, δZ < 0.8 both estimators indicated completeness for
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Figure 7.5: Schematic illustrating the cause of the flat-lining effect (within the 3σ confidence
limits) observed for small values of δZ and δM . The left hand panels, both top and bottom,
show the (M,Z) distribution for the 2dF with the faint apparent magnitude limit mf

lim and
our adopted bright limit, mb

lim shown as red diagonal lines. The top-left plot considers the
ζ construction for a galaxy at (Mi, Zi), with δZ = 0.001, 0.008 and 0.02. The top-right plot
is a zoomed in version of the left to allow us to see the three distinct regions created by the
increasing sizes of δZ and the relative number of galaxies contained therein. Similarly, the
bottom left panel shows the τ construction for a galaxy at (Mi, Zi) for δM values that are
equal to δZ. Consequently, the bottom-right panel is the zoomed in version of the bottom
left.

the survey between the respective range of limiting magnitudes, 23.7 < Tc(m∗) < 25.6

and 23.7 < Tv(m∗) < 25.8. The bottom panels on Figure 7.9 show that 1.0 < δM, δZ <

4.0 then converge to a Tc(m
∗
lim), Tv(m

∗
lim) ∼ 23.6 mag, a behaviour also echoed in the
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Figure 7.6: Tc and Tv plots for MGC, SDSS and 2dFGRS using the R01 method to illustrate
the flat-line effect. We can see in all three plots that if one allows m∗ to pass far enough
beyond the magnitude the shot-noise level will eventually dominate albeit for extremely
negative values of σ.

2dFGRS analysis.

However, as one might expect, the MGC completeness results shown in Figure 7.10

for 0.1 < δZ, δM < 4.0 show no variation in mlim and show a consistent drop in both

statistics at mlim = 20.0. This result is not unexpected since the application of the

R01 method to this survey in § 3.2 yielded the same result.

This scope for variation in identifying the true magnitude limit of a survey could

potentially lead anyone applying these methods to select the ‘best’ result possible

for their data-set without knowing or being aware of the actual uncertainty of their

result. This would then in turn defeat the purpose of the original Rauzy completeness

test where one should be able to identify non-paramterically, and therefore validate

independently, the completeness level of a given data-set up to a given magnitude

limit.

We therefore must consider at this stage the possibility that neither 2dFGRS, SDSS

or CCLQG are complete up to their respective apparent magnitude limits of mf
lim =

19.45, mf
lim = 17.55 mag, and mf

lim = 25.8 and have to provide an alternative route to

estimating our random variables which allow the user to estimate the error for each

Tc and/or Tv point and simultaneously choose a signal-to-noise threshold that allows

a varying δZ and δM to determine the true limit of the survey independent of the

potential bias from the user.
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Figure 7.7: Tc and Tv results for 2dFGRS applying the JTH method for values in the range
of 0.1 < δZ, δM < 3.0. In all four panels we observe that as both δZ and δM increase, the
Tc and Tv curves resemble the characteristic shape when we applied the R01 method which
assumes a faint apparent magnitude limit only. Moreover, the incremental increase in the
random variables results in systematic shift in the magnitude limit where Tc and Tv cross the
−3σ limit. If we include results from Figure 7.1 such that 0.003 < δZ, δM < 3.0, we observe
then that our resulting trial mlim ranges from 19.4 . mlim . 19.0.
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Figure 7.8: Tc and Tv results for SDSS applying the JTH generalisation for values in the
range of 0.1 < δZ, δM < 2.0. In a similar fashion to that of the 2dFGRS, all four panels
exhibit a variation in the resulting trial mlim as both δZ and δM increase, such that for
the range 0.4 < δZ, δM < 2.0, the resulting trial mlim ranges from 17.15 . mlim . 17.45
respectively.
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Figure 7.9: Tc and Tv results for the CCLQG data between 0.1 < δM, δZ < 4.0. The top
panels show Tc and Tv in the range 0.1 < δM, δZ < 0.8 where we observe a range in possible
limiting magnitudes from m∗ = 25.1 mag to m∗ = 23.7 mag as δM and δZ increase. As we
move to 1.0 < δM, δZ < 4.0, the values for the limiting magnitudes seem to converge to a
value of m∗ ∼ 23.6 mag, the same as the when we applied the R01 statistic in the left-hand
Figure 6.4.
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Figure 7.10: Tc and Tv results for the MGC applying the JTH generalisation for values in
the range of 0.1 < δZ, δM < 4.0. The main difference from that of 2dFGRS and SDSS-Early
Types is that no matter how much you increase δZ and δM , the resulting magnitude limit
is the same i.e. mlim = 20.0. As we have discussed previously, this data-set is seems to be
well described by a faint limit only, thus for large δZ and δM ≈ 1.0, Tc and Tv resemble the
same characteristics as when the R01 method was applied.
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7.2 Optimising the ζ and τ Estimators

In this section we present work that is currently ongoing that concerns optimisation

of the JTH estimators, ζ and τ in a way that will overcome the issue of shot-noise

detailed in § 7.1.1. Although there are several ways in which we can improve the ζ and

τ estimators, we consider two approaches that can be summarised as follows:

1. Maintain a constant number of galaxies, Ngal, in the S1 ∪ S2 region for ζ and

S3 ∪ S4 region for τ .

2. Calculate Tc and Tv based on setting minimum thresholds respective signal-to-

noise ratios of the random variables, (ζ/δζ) and (τ/δτ).

As we will show, the second scenario potentially provides us with a much more robust

optimiser than the first. However, the inception of the signal-to-noise (s/n) approach

came directly from the results from our initial trials for having a fixed number of

galaxies in the ζ and τ regions which is shown to be a rudimentary s/n approach.

7.2.1 Approach #1: Fixing Ngal

Firstly, we denote the number of galaxies in S1 ∪ S2 (ni region) for ζ and S3 ∪ S4 (ti

region) for τ by, Ngal. When estimating ζ and τ we can, for every galaxy located at

(Mi, Zi), maintain a fixed number of galaxies, Ngal, counted in the respective regions,

ni and ti. Therefore, instead of maintaining a constant width for δZ and δM as in the

JTH method, we modify JTH (and if we wished, R01 as well) to allow these quantities

to vary. However, as we will demonstrate, this approach introduces a trade off between

accurately determining the true faint apparent magnitude limit mf
lim and the testing

completeness for the whole possible ranges in m∗ for a given survey, particularly at

brighter m∗’s where there are inherently fewer galaxies observed.

In Figure 7.11 we have applied this procedure to the R01 method to MGC, where

the absence of an imposed bright limit provides a simple testing ground for this form of

optimisation. We shall discuss the effect of a bright limit on optimising our estimators

in more detail in the following sub section. The left- and right-hand panels show the

resulting respective Tc and Tv curves for a trial range, 10 ≤ Ngal ≤ 500. For both Tc

and Tv with Ngal . 100 we observe similar behaviour to that of the JTH method for

small fixed widths of δZ and δM where shot-noise dominates, resulting in flat-lining

beyond the survey data mlim. Therefore, if we wish to accurately determine the true

completeness limit of the survey, where our test statistics systematically drop below
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Figure 7.11: MGC Tc and Tv results applying a modified version of the R01 method where
the number of galaxies, Ngal, in the respective S1∪S2 and S3∪S4 regions is kept constant. In
this example we have applied successive trial values of Ngal from 10 to 500 galaxies and present
the resulting Tc and Tv curves. For Tc in the left panel we observe that up to Ngal ∼ 100, the
statistic is shot-noise dominated. Similarly, for Tv, shot-noise dominates the statistic up to
Ngal ∼ 50. As we move to greater values of Ngal up to 500 galaxies, we observe both statistics
systematically drop below −3σ. Therefore in order to accurately determine the true apparent
magnitude limit we must have a relatively large number of galaxies in the ζ and τ regions.
However, as we can see in both panels, this affects the sampling at brighter m∗’s where there
are not enough galaxies to be included in the overall Tc and Tv calculations.

−3σ, we require to increase the number of galaxies inNgal. In both panels in Figure 7.11

we can see that for sufficiently large Ngal & 100 both Tc and Tv begin to drop below

−3σ as required by the method. However, this comes at a price. If we again look

closely at both panels on Figure 7.11 we also observe that as we increase the number of

galaxies, Ngal, required to estimate ζ and τ , our ability to ascertain the completeness

limit at brighter m∗’s diminishes. This simply implies that as Ngal increases there are

not enough observable brighter galaxies available to estimate ζ and τ . This results in

these galaxies being dropped from the overall Tc and Tv calculation.

In Figure 7.12 we look more closely at how δZ and δM vary with m∗ for two of the

trial fixed number of galaxies used in MGC. For Tc in the top panels, Ngal = 10 and 150,
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Figure 7.12: Resulting δZ and δM distribution for the respective MGC Tc and Tv statistics.
The top panels show how δZ (for Tc) varies at every trial apparent magnitude, m∗, for
Ngal = 10 (left) and Ngal = 150 (right). For Ngal = 10 this represents the shot-noise
dominated statistic shown in the left panel of Figure 7.11. As we can see this results in the
majority of δZ values being distributed between 0 < δZ . 0.2. Consequently, for Ngal = 150
(top right panel), the overall δZ increases to 0 < δZ . 2.0. We observe a similar trend for
Tv in the bottom panels.
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Figure 7.13: CCLQG Tc and Tv results applying a modified version of the R01 method where
the number of galaxies, Ngal, in the respective S1 ∪ S2 (left panel) and S3 ∪ S4 (right panel)
regions is kept constant. The CCLQG has a comparative number of galaxies in the total data-
set as MGC and therefore we vary Ngal by the same amount as in Figure 7.11. For this survey,
we observe the same behaviour as in MGC where, for small values of Ngal . 100, both Tc and
Tv are noise dominated and therefore is impossible to accurately determine the true apparent
magnitude limit. For each successive Ngal up to 500, we observe the same variation in the
indication of the true mlim as we have already seen in Figure 7.9 (on page 124). However,
by modifying the ROBUST method in this way allows us, in principle to determined a fixed
error on Tc and Tv for each fixed value of Ngal.

and for Tv in the bottom panels Ngal = 10 and 100. Each point in the plots represent

the final δZ or δM value for the resulting respective ζ or τ calculation. As we would

expect, for the small value of Ngal = 10, the majority of the respective δZ and δM

distributions are approximately in the range 0 < δZ . 0.2 and 0 < δM . 0.6. For the

larger Ngal values that result in the test statistics dropping systematically below −3σ

(as shown in Figure 7.11), the overall δZ and δM have to increase in order that they

include the required number of galaxies. For Tc(Ngal = 100) we observe the majority

of δZ in the range 0 < δZ . 2.2, and for Tv(Ngal = 150) the majority of δM are in the

range 0 < δZ . 1.5.

We have applied this approach to the CCLQG data-set. The Tc and Tv results in
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Figure 7.13 show a similar trend to that observed in MGC. Here, we have applied the

same range of Ngal for both ζ and τ estimators as in MGC and we can see that as the

trial Ngal values increase beyond ≈ 100, both Tc and Tv drop below −3σ indicating

where the true mlim is located. However, as we have already observed with this survey,

when applying the JTH method, as Ngal increases the indicated magnitude complete-

ness limit also varies. However, the scope for this approach would in principle allow us

to determine an error for each Tc and Tv point. It should also be reinforced that al-

though setting the number of galaxies, Ngal, to be included in each estimation of ζ and

τ to increasingly larger values, increases the amount of signal over the noise, it severely

limits our ability to test the completeness limits of the whole data-set. For example,

if we look at the the Tc(Ngal = 500) curve for MGC in Figure 7.11, it is obvious to see

that the test statistic does not begin to register a result until m∗ ≈ 18.4 mag which

equates to approximate range of 4.5 mags from the brightest galaxy in the data-set.

Therefore, if we are to retain the essence of the Rauzy method whereby one can assess

the completeness limit over the whole apparent magnitude range of a given survey,

then we require a more sophisticated approach that allows us to use as much of the

data as possible without being noise dominated and being able to determine an error

estimate on the Tc and Tv statistics.

7.2.2 Approach #2: Measuring the signal-to-noise

Our proposed second solution to this problem lies in estimating the random variables,

ζ and τ based on the calculated signal-to-noise (s/n). As we will demonstrate, the s/n-

ratio can tell us the minimum number of galaxies we require to accurately estimate ζ

and τ . Therefore, Tc and Tv can be calculated based either on a minimum or constant

s/n level.

For the Tc statistic we have derived an expression for the s/n-ratio where ζ repre-

sents the signal and δζ represents the noise. In this case Equation 7.1 then becomes

δζ =
δri(ni + 1)− riδ(ni + 1)

(ni + 1)2
. (7.3)

To take into account the cross-terms we square Equation 7.3,

(δζ)2 =
δr2

i

(ni + 1)2
+
ζ2[δ(ni + 1)]2

(ni + 1)2
− 2ζδri[δ(ni + 1)]

(ni + 1)2
, (7.4)

ζ2

(δζ)2
=

r2
i

δr2
i

+
(ni + 1)2

[δ(ni + 1)]2
− ri(ni + 1)

2δri[δ(ni + 1)]
. (7.5)
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Therefore, the s/n ratio is for ζ is given by,

ζ

(δζ)
=

[
r2
i

δr2
i

+
(ni + 1)2

[δ(ni + 1)]2
− ri(ni + 1)

2δri[δ(ni + 1)]

]1/2

. (7.6)

By applying a similar approach for Tv we can obtain a similar expression for the signal-

to-noise for estimating τ . Starting from Equation 7.2 we can show that,

τ

(δτ)
=

[
q2
i

δq2
i

+
(ti + 1)2

[δ(ti + 1)]2
− qi(ti + 1)

2δqi[δ(ti + 1)]

]1/2

. (7.7)

From a computational point of view, the incorporation of this approach defined by

Equations 7.6 and 7.7 into the current JTH method would be tricky and computation-

ally intensive as we have illustrated with the SDSS M-Z distribution in Figure 7.14.

Recalling the current construct of the JTH method, for a fixed value of δZ we can

determine the quantity, Mb
lim which allows us to exclude galaxies in the region we have

denoted as, ST , and define the rectangular region S1 ∪ S2 which remains between m∗

and Mb
lim. However, if, for example, we wish to base our estimation of ζ on a fixed

s/n-ratio level then we have to allow δZ to grow in size until the appropriate s/n value

has been reached. This implies that for every incremental increase in δZ (left-hand

panel of Figure 7.14) we have to continually re-define the quantity Mb
lim in order to

remove any galaxies that may be present in the ST region. This only becomes a signifi-

cant issue for larger δZ, as illustrated on the right-hand panel of Figure 7.14. It is this

extra process that would significantly hamper the efficiency of the current coding of Tc

(and Tv). Another important issue we have to consider is how the growth of δZ affects

the size of the S1 and S2 and the resulting s/n. In the left-hand panel of Figure 7.14

we observed that as δZ increases in size, the S1 and S2 regions also grow, increasing

the number of galaxies going in to the ζ calculation. However, as δZ increases to the

indicated size on Figure 7.14 as Zi+n, S1 begins to narrow due to the presence of mb
lim

whilst S2 continues to grow. It follows, therefore, that there would be a point at which

δZ becomes so large that S1 becomes too narrow to sample any galaxies. As we will

see, this effect introduces what we can think of as a ‘forbidden’ region on the δZ −m∗

plane, allowing us to set limiting values on δZ. The exact same issue is also inherent

in the τ estimation for increasing δM .

7.2.2.1 The growth of s/n: initial tests

To better understand how we might expect the s/n grow with m∗ we initially incorpo-

rated Equations 7.6 and 7.7 into the R01 method. For the reasons described above, the
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Figure 7.14: Schematic illustrating a procedure to calculate the signal-to-noise for ζ. The
left hand plot is a section of the M -Z distribution for SDSS-EDR. Here, we consider the
construction for the ζ estimate for a galaxy located at (Mi, Zi) at a trial magnitude limit
m∗ = 17.0 mag. Since we have already sorted the data-set for Z we begin at Zi then construct
the S1 and S2 regions around Zi → Zi+1, and calculate the signal-to-noise ratio. We then
systematically construct S1 and S2 for Zi → Zi+2, Zi+3, ..., Zi+n until the predetermined
signal-to-noise level has been reached. However, constructing S1 for each incremental shift in
Zi+n is tricky. The right hand panel shows the S1 and S2 regions for Zi+n. The grey region
represents the galaxies that are easily excluded from the calculation by traditional means.
However, we have to now continually calculate a new region denoted by ST since Mb

lim is no
longer a fixed quantity.

R01 method does not consider a bright limiting magnitude and therefore we can allow

δZ and δM grow to there maximum - provided of course we use a suitable data-set.

We, therefore, use MGC for this analysis where it has proven throughout our analysis

to be a very good calibrator for our estimators.

In Figure 7.15 we have plotted the distribution log ζ/δζ (top panels) and log τ/δτ

(bottom panels) as a function of δZ and δM respectively. In the left-hand panels in

both cases each point represents the total log(s/n) for the ith galaxy’s ζ calculation.

The coloured regions indicate the increasing values of m∗. As we would expect, for

both ζ and τ as m∗ moves to increasingly fainter magnitudes the overall s/n increases

with it. This is a result of increasingly more galaxies being included in the ζ and τ

calculation. In the right-hand panels for both ζ and τ we have also illustrated the rate

of growth of the log(s/n) for each galaxy at an m∗ = 18.0 mag, indicated by the blue

lines. It is clear to see that by and large in both cases, the log(s/n) rises sharply within
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Figure 7.15: MGC survey signal-to-noise (s/n) for the R01 ζ and τ estimators. The top
panels show the signal-to-noise for ζ. In the left-hand we have considered the distribution of
log(s/n) [or equivalently log(ζ/δζ)] versus varying width δZ. Each point on the distribution
represents the total resultant s/n value for the ith galaxy’s ζ calculation. Since we are not
considering a bright apparent magnitude limit δZ is allowed to grow to its maximum width.
The right-hand plot traces growth of s/n for increasing δZ at an m∗ = 18.0 mag. Therefore,
the end point for each trace corresponds to the blue points on the left-hand plot. The bottom
panels show the same distributions for the τ estimator.
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Figure 7.16: CCLQG survey signal-to-noise for the R01 ζ and τ estimators.

a relatively narrow δZ and δM width. This indicates that perhaps a δZ, δM ≈ 1.0 is

a reasonable width to choose since the bulk of the s/n seems saturated beyond this

point, indicating perhaps there is little more relavent information to be added to the

calculation for large δZ and δM ’s.

We also applied this procedure to the CCLQG data-set (see Figure 7.16) since the
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total number of galaxies in the sample is comparable to MGC and we have yet to

conclusively prove the need for a bright apparent magnitude limit. We observed in

this case the ζ and τ showed very different distributions for their resultant log(s/n)

as m∗. However, in both cases, the overall rising trend of the log(s/n) is similar to

that of MGC which is perhaps better illustrated in the respective right-hand panels of

Figure 7.16 which again shows the rate of growth of log(s/n) for an m∗ = 22.0 mag. It

is interesting to note the discretisation effect of the redshifts manifesting, particularly

for smaller δZ, in the top-left panel.

7.2.2.2 From R01 to JTH

The reason for optimising the JTH Tc and Tv statistics was brought about from adverse

effects introduced by the presence of a bright limit. However, examining how the s/n

varied when applied to R01 method has ultimately lead us to a more concise and

efficient way of implementing the s/n to the JTH method. Therefore, for a first order

approximation to optimise JTH we plan to determine the s/n for trial values of δZ and

δM and for eachm∗ value, and then interpolate for a threshold s/n value. Consequently,

we would have, for each m∗, an averaged δZ and δM width that should, in principle,

allow us to utilise as much of the data as possible.

We are presently at the stage of mapping the resulting log(s/n) as a function of m∗

and δZ (or δM) in a slightly more sophisticated way than in Figures 7.15 and 7.16.

For our main example, we once again examine MGC shown in Figures 7.17 to 7.20. If

we look firstly at Figure 7.17, in both panels we have plotted a 3D surface map of the

log(s/n) varying with m∗ and trial values of δZ. For both panels in this figure and

indeed in the remaining figures in this chapter we increment m∗, δZ and δM by 0.1.

For MGC, the range in δZ that we have considered is 0.1 ≤ δZ ≤ 6.3, and the range

for the trial apparent magnitude is 13.0 ≤ m∗ ≤ 20.0. The colour gradient represents

the changing log(s/n).

Let us recall for a moment, the distributions in Figures 7.15 and 7.16. In those

figures each point represented the total log(s/n) for each galaxy in the survey sample

at a given m∗. In the top panel of Figure 7.17 we have instead determined where

the maximum (or peak) log(s/n) occurs for the corresponding m∗ and trial δZ width,

thereby illustrating the best possible s/n scenario one could achieve for a given sample.

However, since the peak s/n is not necessarily the most representative we have also

taken the average s/n level shown in the bottom panel of Figure 7.17. The dark blue

region observed represents a log(s/n) = −1 which equates to the ‘forbidden’ region
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discussed earlier where the δZ or δM width has become too large for the respective S1

or S3 region to be sampled. This region is more clearly defined in Figure 7.18. Lastly,

we have also superimposed where the maximum log(s/n) occurs at each m∗ for the

smallest δZ(and δM across the whole range in δZ (shown in white). In the cases where

there are equal values of log(s/n) we chose the smallest δZ width. If we now look at

Figure 7.18 we illustrate further how one might use this line to compute Tc.

The panels in Figure 7.18 are the 2D representation those in Figure 7.17. The

black lines in both panels are iso-contours of constant signal-to-noise. If we wish to

maximise the efficiency of our code it is our hope that we can use the optimised white

line in conjunction with the iso-contours to minimise the width of δZ but retain the

optimised s/n. This point is more relevant for the fainter values of m∗ where the (M,Z)

diagram shows considerably more galaxies beyond m∗ & 17.0 mag. In Figures 7.19 and

7.20 we show the corresponding MGC Tv s/n maps and observe an overall similar

trend to that of Tc. For illustrative purposes we have generated the same maps for

CCLQG (Figures 7.21, 7.22, 7.23 and 7.24), SDSS (Figures 7.25, 7.26, 7.27 and 7.28)

and 2dFGRS (Figures 7.29, 7.30, 7.31 and 7.32).

Future work in this area will be concerned with taking these maps to the next level

and applying them to Tc and Tv. Moreover, by exploring the cross-correlations within

Tc and Tv we it should be possible to determine their respective covariance which will

lead to obtaining an error for the Tc and Tv statistics. The combination of these two

areas will provide the user with a statistic that has not only has well defined errors, but

also utilises the data in the most efficient and effective way based on the signal-to-noise.

The latter point could improve the more established non-parametric estimators.
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Figure 7.17: 3D representation of the MGC signal-to-noise map derived from the application
of the JTH Tc statistic. The map is constructed by applying the JTH Tc statistic in the usual
way for successive incremental values of δZ = 0.1. Then, at each trial apparent magnitude,
m∗ for a given δZ, we have determined both the peak (top panel) and the average (bottom
panel) signal-to-noise. The white line superimposed on both maps charts the maximum
signal-to-noise value at each m∗ for the smallest δZ allowable over the whole range in δZ.
This line therefore, indicates the optimised δZ required to maximise the signal-to-noise.
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Figure 7.18: 2D representation of the MGC signal-to-noise map derived from the application
of the JTH Tc statistic shown in Figure 7.17. The signal-to-noise is shown by the gradated
colour. The white line superimposed on both maps indicates the optimised δZ required to
maximise the signal-to-noise. The black lines represent iso-contours of constant signal-to-
noise. By using the iso-contours in conjunction with the optimised white line we can also
maximise the computational efficiency by selecting a smaller δZ value that retains the same
s/n level.
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Figure 7.19: 3D representation of the MGC signal-to-noise map derived from the application
of the JTH Tv statistic.
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Figure 7.20: 2D representation of the MGC signal-to-noise map derived from the application
of the JTH Tv statistic.
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Figure 7.21: 3D representation of the MGC signal-to-noise map derived from the application
of the JTH Tc statistic. In the top panel we can see that the white line
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Figure 7.22: 2D representation of the CCLQG signal-to-noise map derived from the appli-
cation of the JTH Tc statistic.
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Figure 7.23: 3D representation of the CCLQG signal-to-noise map derived from the appli-
cation of the JTH Tv statistic.
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Figure 7.24: 2D representation of the CCLQG signal-to-noise map derived from the appli-
cation of the JTH Tv statistic.
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Figure 7.25: 3D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tc statistic.
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Figure 7.26: 2D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tc statistic.
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Figure 7.27: 3D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tv statistic.
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Figure 7.28: 2D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tv statistic.
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Figure 7.29: 3D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tv statistic.
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Figure 7.30: 2D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tv statistic.
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Figure 7.31: 3D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tv statistic.
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Figure 7.32: 2D representation of the SDSS signal-to-noise map derived from the application
of the JTH Tv statistic.
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7.3 Conclusions

This chapter has been largely concerned with specific details of the JTH method that

have arisen from analysis of survey samples from 2dFGRS and CCQLG. In the first

half of the chapter we explored two effects of the JTH method that, if not accounted for

properly, could lead to inaccurate conclusions. The first of these concerned a resulting

flat-lining of the Tc and Tv statistics beyond the survey apparent magnitude limits. We

concluded that this effect manifested if the respective widths δZ and δM applied to

the statistics were too small resulting in a shot-noise dominated scenario. Moreover,

for each survey that we explored - MGC, 2dFGRS, SDSS and CCLQG - the resulting

flat-line would occur at the exact limit of the survey i.e. the faintest galaxy in the

data-set. However, as we have identified, particularly in the 2dFGRS and CCLQG

surveys, this is not necessarily where the true completeness limit lies. Indeed, for these

particular survey samples we have observed that they do not have well defined sharp

apparent magnitude limits and therefore for a δZ and δM that is too small, there is

no possibility of accurately determining the true limit of the survey.

Conversely, the second effect arose from the case where δZ and δM become suffi-

ciently large that the respective Tc and Tv statistics both indicate a range where the

true apparent magnitude limit may lie. In order to overcome these issues and improve

and optimise our estimator, we are currently working on estimating ζ and τ based on

the their signal-to-noise ratio calculated from the respective areas, S1, S2 and S3, S4.

Thus far we have generated s/n maps for each of the surveys already examined by

applying the JTH method for incremental range of δZ and δM . These maps have

allowed us to trace the optimal s/n as a function of the trial apparent magnitude limit,

m∗ and the widths, δZ and δM . Our continuing work with this will lead to using these

maps to optimise Tc and Tv based on a constant or minimum s/n level. Furthermore,

we acknowledge that the implementation of either the original JTH or this improved

optimised approach still leaves scope for manipulation to gain the best possible value

for determining the true apparent magnitude limit. Our future work will therefore

develop a complimentary extension to our method that will provide a comprehensive

error estimate for both Tc and Tv.



Chapter 8

Creating Mock Galaxy Catalogues

“I have no data yet. It is a capital mistake to theorise before one has

data. Insensibly one begins to twist facts to suit theories instead of

theories to suit facts.”

Mr Sherlock Holmes - A Scandal in Bohemia (1892)

So far we have seen how real survey data has been instrumental in developing and

implementing our statistical methods. However, real data carries the possibility that

systematics, from sources such as errors in magnitude, can creep in and prompt us

to draw wrong conclusions. For the work that follows in the next chapter, we needed

to have ‘clean’ catalogues where we could mimic effects that appear in nature such

as evolution without the risk that the signatures of theses effects might be masked or

distorted.

In this chapter we turn our attention to the production of Monte Carlo, or mock,

simulated galaxy redshift surveys. Simulating galaxy surveys provides us with a con-

trolled testing ground that, in our case, will facilitate the development of our current

statistics for the study of evolution. We provide the details of the procedure adopted

which allows us to efficiently mock surveys such as, MGC, 2dFGRS and SDSS (Early

Types) before going on to compare these mocks to the actual survey data and finally

perform a completeness analysis.
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8.1 Different Methodologies

We firstly consider two alternative approaches to the generation of mock galaxy cata-

logues, in order to highlight some of the pertinent issues.

8.1.1 Theoretician’s approach

The first is a standard approach to generate mock catalogues which could be thought

of as the ‘theoreticians approach’. If one knows enough of galaxy formation and has

access to state of the art computers to run simulations, then one can generalise this

method as one of simulating,

p(Mabs, z) =

∫
p(Mabs, z,mDM) dmDM

=

∫
p(z|Mabs,mDM)p(Mabs|mDM)p(mDM) dmDM (8.1)

Where p(Mabs|mDM) is called the mass-to-light ratio, mDM denotes the distribution

of dark matter halos, z the redshift, Mabs is absolute magnitude, and Pr(z|mDM)

expresses our knowledge regarding galaxy formation and evolution.

We can cast Equation 8.1 in the framework of the ‘Halo Occupation Distribution’

(HOD) (see Seljak, 2000; Berlind and Weinberg, 2002). HOD describes the bias of a

given class of galaxies by specifying the probability of finding N such galaxies in a dark

matter halo,

p(N, z) =

∫
p(N, z,mDM)dmDM

=

∫
p(N |z,mDM)p(z|mDM)p(mDM) dmDM (8.2)

where, mDM is the virial mass of a dark matter halo containing N galaxies (see above).

From either of these starting points, we can describe mock generation in two main

steps:

• Draw from a cosmological N-body simulation, generated in a ΛCDM framework

which samples the mass distribution of dark matter halos to produce a catalogue

that has realistic clustering. Galaxies are ‘assigned’ to each dark matter halo and

then one chooses a location and orientation of the observer within the simulation

that represents the local Universe.
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• From a given redshift survey, one adopts a luminosity function, typically the

Schechter function, that has parameters, M∗, α, and Φ∗, which are inferred from

observations and should represent the present day luminosity function. Finally,

loop over all the galaxies in the simulation and select the galaxies that are con-

sistent with the survey selection function, at which point an apparent magnitude

is generated to be consistent with the redshift of the galaxy from the simulation.

8.1.2 Observer’s approach

If the first method for generating mocks can be characterised as the theoretician’s

approach, the latter method can conversely be thought of as the ‘observers approach’.

It is this method that we have opted to use for the remainder of this thesis and it differs

from the ‘theoretician’s approach’ in one crucial respect. Instead of using an N-body

simulation, to generate a realistic spatial distribution of dark matter halos, which we

then ‘populate’ with galaxies, we chose to use the observed redshift distribution from

a known galaxy survey, which allows us to re-write Equation 8.1 in a simpler form,

Pr(Mabs, z) = Pr(Mabs|z)P (z) = Pr(z|Mabs)Pr(Mabs) (8.3)

The first of the equalities has the advantage of being able to replicate the observed

redshift distribution exactly, whilst the second mimics the luminosity function exactly.

In both cases they do not demand the scale of computing power required from N-

body simulations. Conversely, we could use the observed magnitude distribution from

a known survey. However, whichever observed distribution we choose, this method

obviously lacks the scope for producing multiple realisations of that distribution where

the effects of cosmic variance (particularly in smaller volumes at high redshift) for one

realisation make it difficult to draw statistical conclusions (Somerville et al., 2004).

It becomes clear that ultimately the way to overcome this limitation is to adopt the

‘theoretician’s approach’ above where one can effectively generate as many ‘Universes’

as one requires. However, for the purposes of our analysis the observer’s approach will

be more than sufficient.

8.2 Which Frame?

Having chosen to generate mocks from an observed redshift distribution we now con-

sider the way in which we will sample the absolute magnitudes. This leads us to

consider two possible ‘reference frames’ in which our magnitudes may be selected. The

first we call the ‘observer’s frame’ and the other we have termed the ‘galaxy’s frame’.
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The Observer’s Frame: represents a realisation of the actual observed apparent

(or absolute) magnitude distribution of galaxies from a survey prior to any corrections

(such as evolution and/or k-correction). In practice, the process in which one obtains

a real distribution in this frame can be summarised as follows.

1. Galaxy detection: An observational cosmologist will measure apparent magni-

tudes of galaxies in a portion of the sky out to a faint limiting apparent magni-

tude, mf
lim imposed by the physical limitations of the telescope. Limitations on

the CCD instrumentation, where effects from pixel saturation due to very bright

objects also imposes a bright limit to the survey, mb
lim . The data reduction side of

this process is by no means a trivial task and there are several effects that hinder

the process of obtaining a magnitude complete catalogue. For example, objects

that are close to bright stars may be missed as well as objects that either lie at

the edge of the image or at a defected part of the detector. Moreover, galaxies

with the same surface brightness may or may not be detected depending on their

shape and overall extent: a compact object is more likely to have enough pixels

above the detection limit than a very diffuse galaxy of the same brightness.

2. Extinction correction: Once the observing run is complete, it is then necessary

to correct the magnitudes for galactic extinction using extinction maps as in for

example, Schlegel et al. (1998). Although there is of course also intrinsic galactic

extinction for each targeted galaxy, it is a very difficult quantity to measure

and therefore generally ignored. Other related effects that must be carefully

accounted for include atmospheric dust and varying sky brightness.

3. Measure redshifts: At this stage the catalogue consists of measured magnitudes

and sky positions only, without their 3D spatial redshift distribution. Therefore,

each galaxy is then targeted to obtain a measure of its redshift either spectro-

scopically or photometrically. Although the majority of surveys obtain redshifts

spectroscopically, as it is far more accurate than the photometric counterpart,

the main drawback of spectroscopic redshifts arises from spatial limitations. For

example, in a region that has a high density of objects, a lot of galaxies may be

missed since there is a physical spatial limit on how close the fibres can be placed

close enough together.

4. Impose a magnitude cut: It is often necessary to impose a magnitude limit

that is brighter than the detection limit of the instrument. This is commonly due

to effects such as the required signal-to-noise of the spectra. If one is obtaining
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redshifts spectroscopically then effects caused by the number of fibres, sensitivity

and field of view of the spectrograph will also play a key role in the magnitude cut

of the survey. Similarly, for surveys that use photometric redshifts, limitations

are imposed by the accuracy of the photometry.

5. Combine the data: Finally, both the imaging and the redshift data are com-

bined to form the final catalogue. What we would have now represents the

publicly released data that, for the surveys we have already analysed, has an

M -Z distribution that resembles e.g. Figures 3.4 (MGC), 4.2 (2dFGRS) and

4.20 (SDSS-Early Types).

At this stage the magnitudes have not been corrected to take into account effects such

as k-correction and possible evolution within the survey. The data therefore represents

the observer’s distribution, hence the term, ‘observers frame’.

The Galaxy Frame: We want to compare galaxies in the rest (or the galaxy’s)

frame, or equivalently at z = 0. Since we generally observe each galaxy through a

single bandpass, we only see a fraction of its total spectrum which is redshifted into

the observer’s frame. Therefore, each galaxy’s magnitude requires to be k−corrected

to take this effect into account. Furthermore, the further away a galaxy is from us,

the more its total magnitude will be affected from evolutionary effects. If all these

corrections have been accurately accounted for, in principle one should be able to

determine a present day universal luminosity function from a given survey.

Therefore, to summarise in the context of the variables we have been using throughout

this thesis,

Galaxy’s Frame


mcorr = mobs − k(z)− e(z)− Av(l, b),

Mcorr = mcorr − 5 log10(dL)− 25,

Z = 5 log10(dL) + 25.

Observer’s Frame


m = mobs,

M = m− 5 log10(dL)− 25,

Z = 5 log10(dL) + 25,

where k(z) is the redshift dependent k-correction, e(z) is the redshift dependent evolu-

tionary model correction, mobs is the apparent magnitude of a galaxy in the observers
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frame prior to the application of these corrections and mcorr is the final corrected mag-

nitude that brings the galaxy from the observer’s frame to the galaxy (or rest) frame.

8.3 Our Mock Recipe

Since we chose to adopt the observer’s approach for generating our mock catalogues, it

was a natural step to implement the redshift distributions from the MGC, 2dFGRS and

SDSS (Early-Types) samples that we have already analysed. Moreover, this allowed

us the opportunity to adopt similar, and in the case of MGC, the same LF parameters

already derived by the respective teams. The process in which we create a mock

catalogue based on the Universal LF derived from the corrected magnitudes for each

survey is now described.

8.3.1 Sampling the magnitudes

The LF from which we are sampling the magnitudes for the MGC and 2dFGRS cata-

logues is the widely used Schechter function of Schechter (1976). For the SDSS (Early

Types) we sample from a Gaussian function as applied in Bernardi (2003b).

Initially, it was our intention for the MGC and 2dFGRS mocks to sample luminosi-

ties, L, directly from from a Schechter function and then convert to them to absolute

magnitudes, M . Such an approach would therefore involve generating a Monte Carlo

sample drawn from a gamma distribution since from Equation 1.18 on page 23 we have:

Γ(α) =

∞∫
0

tα−1e−tdt, (8.4)

where, t =

(
L

L∗

)
,

then convert them to absolute magnitudes,

M = M∗ − 2.5 log

(
L

L∗

)
. (8.5)

Sampling magnitudes in this way, directly from the Schechter function would both be

computationally efficient and elegant. However, the published value of α in surveys

such as the 2dFGRS is negative with a typical value of α = −1.21 as in Norberg (2002a).

After searching extensively through the literature, although there are gamma function



8.3: Our Mock Recipe 159

random number generators, it would appear there are none that sample directly from

a gamma distribution for negative values of α.

Having to reluctantly abandon this direct sampling approach we used the more

conventional method of the probability integral transform, or as it is also known, ‘in-

verse transform sampling’. The transformation F (X), of a random variable, X, with

an invertible cumulative distribution function, F , to a uniform distribution between

[0,1] allows us to generate a random sample drawn from the PDF of X. In the present

case our random variable is absolute magnitude, M , and our function is the luminosity

function, Φ(M). This requires us to firstly convert the LF from luminosities, L to

absolute magnitudes, M . From Equation 1.18 we have:

Φ(M)dM = Φ(L)dL = φ∗

(
L

L∗

)−α

exp

(
− L

L∗

)
dL (8.6)

The relation between absolute values of luminosities and magnitudes is given by,

L

L∗
= 10−0.4(M−M∗) = exp[−0.4 ln 10(M −M∗)] (8.7)

It follows that,

dL

dM
= −0.4L∗ ln 10 {exp[−0.4 ln 10(M −M∗)]} (8.8)

Substituting Equations 8.7 and 8.8 into Equation 8.6 gives:

Φ(M) = φ∗ exp[−cα(M −M∗)] exp[− exp(−c(M −M∗))] exp[−c(M −M∗)] (8.9)

= φ∗ exp {[−c(α+ 1)(M −M∗)]− exp[−c(M∗ −M)]} (8.10)

where, c = 0.4 ln 10.

Sampling from a Gaussian function: To construct a mock catalogue for the SDSS

(Early Types) we have sampled magnitudes from a Gaussian function of the form given

by Bernardi (2003b),

Φ(Mi, zi|M∗, σM) =
φ∗√
2πσ2

M

× exp

(
− [Mi −M∗]

2

2σ2
M

)
, (8.11)

where M∗ is once again the characterisitic absolute magnitude, φ∗ is the comoving

number density of the galaxies, and σM is the variance.
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Figure 8.1: Schematic example of how we sample the absolute magnitudes for our mock
catalogue from the CDF of a Schechter function . We have used the 2dFGRS for this example.
The left-hand panel shows MCDF vs the normalised CDF of the Schechter function. Using a
random number generator, we produce a random deviate from a uniform random distribution
between [0,1]. We then used cubic spline interpolation to return a value for Msamp and check
to see if its value lies within both absolute and apparent magnitude limits. If it is, we accept
the value, if it is not, we reject it and resample. This process is repeated until we have a
full catalogue based on the number of redshifts from the 2dFGRS. We can then compare the
CDF’s from our new mock catalogue with the actual observed absolute magnitude distribution
as shown on the right hand panel. It is clear that both CDF’s match very well indicating
that our selection procedure is working.

8.3.2 Final selection

The selection procedure for the magnitudes can be broken down into the following steps

which detail how we can convert from the galaxy’s frame (G-Frame) to the observer’s

frame (O-Frame).

1. We firstly create a CDF from the appropriate LF by generating a series of ab-

solute magnitudes, MCDF, in a predetermined range Mmax > MCDF > Mmin that

encompasses the range of the observed survey we are attempting to mock. The

LF parameters used are those already derived from the corrected magnitudes of

the real survey in the G-Frame. We then normalise the CDF as illustrated in the
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left hand panel in Figure 8.1.

2. For each redshift, zi in our catalogue, we sample absolute magnitudes from the

CDF by generating a random uniform deviate between [0, 1] and then use cu-

bic spline interpolation to determine a corresponding sampled value Msamp (see

Figure 8.1). We then convert this to a sampled apparent magnitude msamp(zi)

using,

msamp(zi) = Msamp(zi) + Zi,

where the distance modulus, Z, is calculated directly from our observed redshift

distribution assuming a cosmological model.

3. We have now sampled magnitudes from a LF that represents the corrected mag-

nitudes in the galaxy’s frame. At this stage we must impose our selection criteria

which ensures the value, Msamp(zi), satisfies the conditions where by the galaxy

lies within both the apparent and absolute magnitude limits. However, these

limits are initially defined by the raw uncorrected magnitudes in the observer’s

frame. We therefore, need to move from the observer’s frame to selecting galaxies

in the galaxy’s frame which is achieved satisfying the following conditions,

Condition 1

{
mf

lim(mock) = mf
lim(survey)− k(z)− e(z)

mb
lim(mock) = mb

lim(survey)− k(z)− e(z)
(8.12)

Condition 2

{
M f

lim(mock) = mf
lim(mock)− 5 log10[dL(zi)]− 25

Mb
lim(mock) = mb

lim(mock)− 5 log10[dL(zi)]− 25
(8.13)

If the galaxy satisfies both conditions it is accepted and Steps 2 and 3 are repeated

for the next galaxy at redshift zi. Otherwise it will be rejected and the absolute

magnitude will be resampled as per Step 2 until conditions 1 and 2 are satisfied.

By including both evolutionary and k-correction into our selection criteria we

are creating a mock catalogue in the galaxy’s frame (G-Frame). That is, the

magnitudes selected in our mock represent the corrected magnitudes of the survey

we are simulating. If, on the other hand, we wish to mock the uncorrected survey

data which represents the observer’s frame (O-Frame) we have to introduce a

final step.

4. To convert the final selected G-Frame mock magnitudes, mGF
sel and MGF

sel , to the
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observer’s frame we simply apply the k- and evolution-corrections such that,

mOF
sel = mGF

sel + k(z) + e(z) (8.14)

MOF
sel = MGF

sel + k(z) + e(z), (8.15)

where mGF
sel and MGF

sel are msamp(zi) and Msamp(zi) respectively provided that the

sampled galaxy has passed the selection criteria at step 3.

We now have a mock catalogue which is a true representation of the actual survey

data (before corrections). In our example in Figure 8.1 we have mocked a sub

selection of the 2dFGRS. The right hand panel compares the CDF’s of both the

actual observed absolute magnitudes for the survey to our mock magnitudes. As

expected, these show close agreement.

Depending on the frame in which we are wishing to present our mock catalogue, we

finally loop over all galaxies in our redshift catalogue until all the magnitudes have

been selected.

8.4 Mocking MGC, 2dFGRS and SDSS (Early Types)

Now that we have established our procedure for generating mock surveys, we apply

it to the three surveys that have already played a key role in our understanding and

extension of the Tc and Tv statistics - MGC, 2dFGRS and SDSS (Early Types) - and

compare the distribution of the mock surveys that we generate to the actual survey

data.

8.4.1 MGC

For the MGC redshift distribution we have used the exact selection criteria we applied

in Chapter 3, section 3.2.2 on page 60, giving us a total of 7878 galaxies in the range

0.013 < z < 0.18. We recall that for this survey a global pure luminosity evolution

correction was applied given by,

E(z) = −β × 2.5 log10(1 + zi) (8.16)

where a value for the evolution parameter, β = 0.75 was found to be suitable. The

k-corrections as applied in Driver et al. (2005) (D05) were derived on an individual

galaxy basis utilising a fitting procedure to 27 spectral templates from Poggianti (1997),
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Figure 8.2: Plots tracing the k-correction models as applied to MGC, 2dFGRS and SDSS
(Early Types). The left-hand plot traces the 27 k-correction spectral templates as applied to
the MGC survey data by Driver et al. (2005). The middle panel shows the global k-correction
for our 2dFGRS which was derived by Norberg (2002a), and the right panel is k-corrections
applied to our SDSS survey sample as derived in Bernardi (2003a).

as illustrated in the left-hand plot in Figure 8.2. If our sole goal was to produce a

completely accurate representation of the survey data, it would obviously be necessary

also to simulate the varied galaxy type and apply the same k-correction procedure as

in D05 for each realisation. However, for the purposes of our analysis in next chapter

it is sufficient to apply the same k-correction values as derived for the observed survey

data.

In D05 the authors recover Schechter LF parameters from a joint luminosity-

surface-brightness step-wise maximum-likelihood procedure where the above selection

effects have been taken into account. Their fitted parameters are: φ∗ = (0.0177 ±
0.0015)h3Mpc−3, M∗

BMGC
−5 log h = (−19.60±0.04) mag and α = −1.13±0.02. Using

the notation from Equations 8.12 and 8.13, we have set the faint and bright apparent

magnitude limits to mf
lim(survey) = 20.0 mag and mb

lim(survey) = 13.64 mag. From

this, we have generated 1000 MGC realisations in both the O-Frame and the G-Frame.

Figure 8.3 shows the apparent and absolute magnitude distributions for the real survey

compared to our mocks. The blue shaded regions represent the actual survey whilst

the red are the mock distributions. In the top panels we can see the resulting appar-

ent magnitude distribution where the left-hand panel represents the G-Frame and the

right-hand panel is the O-Frame. Comparing our mocks to the survey we can see that

they agree very well with only slight discrepancies towards the peaks of the distribu-

tion, a result mirrored in the corresponding absolute magnitude distributions shown in

the bottom panels.

In the G-Frame panel for the apparent magnitudes we observe a systematic change
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Figure 8.3: Apparent and absolute magnitude distributions comparing our MGC mocks to
the real data. The top panels show the histograms of apparent magnitudes for the actual
MGC survey (blue region) and 1000 of our mock catalogues (red regions). The left-hand
of the two panels considers this distribution in the galaxy frame where, in the case of the
survey data, the magnitudes have been corrected for evolution, k-correction and galactic
extinction. Consequently, the right-hand panel shows the observer’s frame that represents
the distribution of magnitudes before any of the aforementioned corrections have been applied
to data. The bottom panels mirror the top for the distribution of absolute magnitudes. All
four plots demonstrate that our mocks show close agreement with the actual MGC data
showing only slight discrepancies towards the peak of the distributions. This is most likely
due to the fact that our mocks do not account for any galactic extinction modelling in our
selection function.

in the faint magnitude limit compared to the O-Frame for the uncorrected data. This

is caused by the (k+e)-corrections that have been added to the magnitudes which
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causes the apparent magnitude limit to curve according to these models, this effect is

shown in M -Z distributions in Figure 8.6-top . In this figure we have selected a mock

at random (left-hand panel) to compare it to the survey (right-hand panel). Since

no corrections have been added to the distance modulus distribution, we observe the

apparent magnitude limit to curve in such a way modelled by the (k + e)-corrections,

shown by the black points in diagram, relative to the uncorrected magnitudes shown

by the red points. If we recall our initial completeness analysis of the actual MGC

and 2dFGRS survey’s, we note that this behaviour was not observed, since we followed

the procedures laid out in Rauzy (2001), where, in addition to correcting both the

apparent and absolute magnitudes, the distance modulus was also corrected. This

approach ensures that the apparent magnitude limit (faint or bright) will always remain

straight. We explore both of these approaches and its effects on our statistical analysis

in greater detail in Appendix-A.

8.4.2 2dFGRS mocks

For the 2dFGRS mocks we decided to use a smaller subsample than was used in our

initial completeness analysis in Chapter 4 in order to maximise the computational

time. We have therefore selected galaxies between 0.015 < z < 0.1 and within the

apparent magnitude range 12.0 < m < 19.0. This now gives a more manageable

subsample of 66696 galaxies. In Norberg (2002a) they derived the following Schechter

LF parameters: φ∗ = (0.0161 ± 0.08)h3Mpc−3, M∗ − 5 log h = (−19.66 ± 0.07) mag

and α = −1.21 ± 0.02 from a sample of 110,500 galaxies out to z < 0.2 between

17.0 < m < 19.0. We therefore do not expect these LF parameters to completely

accurately describe our subsample, however, we can use them as a guide to draw a

suitable mock magnitudes. We also use the global (k+e)-correction (see middle panel

in Figure 8.2) derived in Norberg (2002a) and given by,

k(z) + e(z) = (z + 6z2)/(1 + 20z3) (8.17)

Figure 8.4 shows our initial magnitude distributions for a trial 2dFGRS mock which

samples magnitudes using the exact LF parameters as stated above. The apparent

magnitudes are shown on the left-hand panel and the absolute magnitudes are on the

right. Unsurprisingly, when we compare our mock (shown in red) with the actual survey

sample we are using (show in blue) they do not match. However, by changing the value

of M∗ from -19.66 mag to -20.10 mag we now recover magnitude distributions shown in

Figure 8.5 which are much closer to the survey distribution. Once again, in Figure 8.6-

middle, we can view the M -Z distributions for one of the mocks (left) compared to
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Figure 8.4: Apparent and absolute magnitude distribution for a trial 2dFGRS mock com-
pared to the observed survey subsample we have selected. The red distribution in both panels
shows our first trial mock adopting the exact LF parameters as in Norberg (2002a). As ex-
pected, since our subsample does not match the same survey sample in the paper, both the
absolute and apparent magnitude distributions do not match the observed magnitudes of the
survey shown as the blue shaded regions.

the survey (right). In both cases they illustrate the curved apparent magnitude limit

(G-Frame) for the corrected magnitudes and the straight magnitude limit (O-Frame)

for the uncorrected magnitudes.

8.4.3 SDSS Mocks

Creating suitable SDSS mocks based on the Early Types catalogue uncovered the same

issues with sampling the magnitudes correctly as we saw with the 2dFGRS mocks. The

LF adopted here was a Gaussian from Bernardi (2003b) where the parameters recovered

by the SDSS team were based on an early sample of approximately 9000 galaxies in the

redshift range 0.01 ≤ z ≤ 0.3 given as φ∗ = (0.0058 ± 0.003)h3Mpc−3, M∗ = −21.15

mag and σM = 0.84. Since the redshift catalogue we are sampling from consists of

35421 galaxies out to z < 0.4 we realised that these published LF parameters were

useful only as guide. After a little tweaking we found that M∗ = −20.80 mag and
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Figure 8.5: Histograms of apparent and absolute magnitudes comparing our 2dFGRS mocks
to the real data. The top panels show the histograms of apparent magnitudes for the actual
MGC survey (blue region) and 1000 of our mock catalogues (red regions). Although our LF
parameters were based on those derived in Norberg (2002a), we found it necessary to vary
M∗ and α slightly since our subsample does not represent the same one used in that paper.
All four plots demonstrate that our mocks show close agreement with the actual 2dFGRS
data showing only slight discrepancies towards the peak of the distributions.

σM = 0.87 provided a reasonable fit for mock magnitude distributions as shown in

Figure 8.7.
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We apply the same k-correction model as described in detail in Appendix-A of

Bernardi (2003a). Figure 8.2-right traces the functional form of the template used.

The bottom panels Figure 8.6 show the resulting M -Z distribution for one of the

thousand mocks we generated compared to the survey sample data.
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Figure 8.6: M -Z distributions for one of our MGC, 2dFGRS and SDSS mocks compared
to their respective survey samples. The black points in all the panels show the corrected
magnitudes, whilst the red points are the uncorrected magnitudes. What is evident with all
the surveys is the apparent magnitude limit resulting from a modelled k- and e-corrections.
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Figure 8.7: Apparent and absolute magnitude distribution for a trial SDSS (Early Types)
mock compared to the survey subsample. The top panels show the histograms of apparent
magnitudes for the actual SDSS survey (blue region) and 1000 of our mock catalogues (red
regions). Similarly with 2dFGRS our LF parameters were based on those derived in Bernardi
(2003b). However, the parameters derived were for an earlier data release with a smaller
sample of only 9000 galaxies. To generate mocks that resembled the survey data we were
considering, an M∗ = 20.8 and σM = 0.87 was found to be adequate.
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8.5 Completeness Analysis of the Mocks

In this section we turn our attention to the completeness of the mocks for all three

surveys in both the galaxy’s frame and the observer’s frame. For MGC and SDSS

we have run our completeness statistic for 1000 realisations. For the 2dFGRS mocks

we tested total of 100 realisations due to the length of time which it takes to run the

programs.

It is important to reiterate that when we apply Tc and Tv based the R01 and JTH

methods in this chapter, the distance modulus, Z values remain uncorrected in the

G-Frame with only the magnitudes being corrected.

8.5.1 Completeness of the MGC mocks

For the MGC mocks, we apply the R01 completeness procedure where we do not

consider a bright limiting apparent magnitude. If we look at Figure 8.8 we observe

what is at first glance a strange behaviour in Tc and Tv in the O-Frame (left-hand

panel). The black and blue superimposed lines represent the respective 1000 mocks for

Tc and Tv. We can clearly see a systematic upward trend in both statistics beginning at

m∗ ∼ 17.0 mag and continuing up to the survey limit where Tv peaks at σ ∼ 7.0 before

dropping sharply as both statistics pass the survey limit at mlim = 20.0. This kind of

behaviour is perhaps not unexpected since the frame in which we are considering the

magnitude distributions are uncorrected for effects such as evolution and k-correction.

Therefore, we should expect the variablesM and Z to be un-separable and consequently

the assumption of separability to break down.

However, there does seem to be a region between the 3σ limits where the magnitudes

have been sampled in such a way that render Tc and Tv to show consistent completeness

up to the magnitude limit. This is in fact where we see the actual survey, shown in

red, fluctuate. This perhaps an indication that effects from evolution and k-correction

have a minimal impact on this survey due to the relatively shallow redshift range we

are considering, but there exists certain sampled magnitude distributions where these

effects can manifest.

For the G-Frame in the right-hand panel of Figure 8.8 we are now considering the

corrected magnitude data. This time we Tc and Tv behave as one would expect for a

separable, complete sample. Since, as we have already discussed, the Z-distribution

remains fixed, this introduces an apparent magnitude limit that is curved according

to the evolution and k-correction models applied to the data. In this case the overall

trend is for the limit to become systematically brighter with increasing redshift. This
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Figure 8.8: Tc and Tv results for MGC mocks in both the G-Frame (right-hand panel) and
the O-Frame (left hand panel). In both cases we have a applied the R01 method which does
not account for a bright limit. The blue and black lines are the respective Tv and Tc results
for a total of 1000 superimposed realisations, whereas the red solid and dashed lines are the
respective Tc and Tv results for the real survey data. In the O-Frame, which represents the
case of uncorrected magntidues, we observe a systematic rise in both Tc and Tv for the mocks
beginning at m∗ ∼ 17.0 mag continuing up to the survey limit where Tv peaks at σ ∼ 7.0
before dropping sharply as both statistics pass the survey limit at mlim = 20.0. For the
corrected magnitudes in the G-Frame on the right-panel we observe both statistics behaving
as one would expect for a complete data-set. The mocks in this case indicate a range for the
true magnitude limit between 19.3 . m∗

lim . 19.7 with the the real survey data indicating
m∗

lim ∼ 19.5 mag.

is reflected in the both Tc and Tv shown as a systematic drop below −3σ in the range

19.3 . m∗
lim . 19.7. This result is confirmed by the actual survey data shown as red

lines.

8.5.1.1 The distribution of Tc and Tv

Creating multiple realisations gives us an opportunity to examine some of the more

fundamental aspects of our estimators. One such aspect is the resulting sampling

distribution of Tc and Tv for any given m∗ slice.

By their construction, both Tc and Tv should have a Gaussian sampling distribution

with mean zero and variance equal to unity. This, therefore implies that if we have

many realisations of a survey that is complete in apparent magnitude and apply the

R01 method, we should expect for any given trial apparent magnitude limit, m∗, this
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Figure 8.9: Tc and Tv distributions determined from the MGC mocks, applying the R01
method. In this example we have taken slices at m∗ = 15.5 mag and m∗ = 19.0 mag
indicated by the red dashed line on the bottom panel. Their respective distributions are
shown on the top-left and top-right of the figure with Gaussian fits superimposed. On each
panel µ and σ2 refer to the mean and variance of the distributions respectively.

assumption to hold. However, as we will see, we do not necessarily expect the same

to apply in the JTH extension under certain conditions. We therefore use our MGC

mocks to briefly examine this.
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Figure 8.10: Tc and Tv distributions determined from the MGC mocks, applying the JTH
method for δZ, δM = 0.01. In this example we have taken slices at m∗ = 16.0 mag and
m∗ = 19.0 mag indicated by the red dashed line on the bottom panel. Their respective
distributions are shown on the top-left and top-right of the figure. On each panel µ and σ2

refer to the mean and variance of the distributions respectively.

R01: In the bottom panel of Figure 8.9 we have Tc and Tv results for 1000 of our

MGC mocks in the G-Frame when applying the R01 method. The red dashed lines

represent the slices in m∗ that we consider, the first at m∗ = 15.5 mag and the second

at m∗ = 19.0. The resulting distributions are respectively shown at the top left and

right panels in Figure 8.9 along with Gaussian fits superimposed. On each panel µ and
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Figure 8.11: Tc and Tv distributions determined from the MGC mocks, applying the JTH
method for δZ, δM = 1.0. In this example we have taken slices at m∗ = 15.5 mag and
m∗ = 19.0 mag indicated by the red dashed line on the bottom panel. Their respective
distributions are shown on the top-left and top-right of the figure. On each panel µ and σ2

refer to the mean and variance of the distributions respectively.

σ2 refer to the mean and variance of the distributions respectively. It is clear to see

at m∗ = 15.5 mag both Tc and Tv statistics do not have a distribution consistent with

mean zero, but in fact have distributions centred around -0.898 and -0.911 respectively.

However, they appear to be consistent with being Gaussian with an overall variance

of ∼ 0.74. If we check where the complementary red dashed line in the bottom panel
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crosses the distribution we can indeed see dip in the overall Tc and Tv distributions.

Therefore, this is more a reflection of the mock catalogues as opposed to the underlying

properties of the statistics themselves.

Towards the faint magnitude limit at m∗ = 19.0 we see resulting distributions

have a mean µTc [m∗(19.0)] = −0.190 and µTv [m∗(19.0)] = −0.308 which seems a more

consistent result. Moreover both are again consistent with being Gaussian and have

variances of σTc = 1.033 and σTv = 1.017.

JTH - δZ, δM = 0.01: We now apply the JTH method to the same mocks and

adopt a δZ, δM = 0.01. This value is a very small and has been shown in Chapter 5

to be dominated by shot noise. In Figure 8.10 we can see the two slices at m∗ =

16.0 mag and m∗ = 19.0 mag. This time we observe for m∗ = 16.0 mag mean values

of µTc [m∗(16.0)] = 0.0356 and µTv [m∗(16.0)] = −0.028 with respective variances of

σ2 = 0.827 and σ2 = 0.92. At m∗ = 19.0 mag we observe a very narrow Gaussian

distribution with variances of σ2
Tc = 0.138 and σ2

Tv = 0.141 and respective means of

µ[m∗(19.0)] = 0.017 and µ[m∗(19.0)] = 0.0007. This result confirms once more the

effects of shot-noise on our statistics when the widths of δZ and δM are very small.

JTH - δZ, δM = 1.0: Lastly, we increase δZ, δM = 1.0 which we found in previous

chapters to be a suitable level to accurately determine the completeness of the data.

For fainter magnitudes we now observe results resembling closer to that of the R01

method. This time the mean values are µTc [m∗(16.0)] = 0.023, µTv [m∗(16.0)] = 0.01

with respective variances σ2 = 1.072 and σ2 = 1.057. For the faint magnitude slice we

find µTc [m∗(19.0)] = 0.027, µTv [m∗(19.0)] = 0.017 with respective variances σ2 = 0.711

and σ2 = 0.664.

With this simple analysis, we can see that, overall the mocks validate the underlying

properties of Tc and Tv, but have shown us the conditions where they deviate from this

- when δZ and δM have values so small that shot noise begins to dominate.

8.5.2 Completeness of 2dFGRS mocks

When creating the 2dFGRS mocks we allowed for a brighter faint apparent magnitude

limit in our selection criteria. This resulted in the magnitude distribution being well

described by a faint apparent magnitude limit only. This is clearly visible in the M -Z

distribution shown for mock #78 in the middle-left panel in Figure 8.6. Consequently,
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Figure 8.12: Tc and Tv results for 2dFGRS mocks in both the G-Frame and the O-Frame.
Here, we apply the R01 methodology to the data which considers a faint apparent magnitude
limit only. In the O-Frame on the left-hand panel the same rising trend in Tc and Tv is
observed for the mocks as with MGC. Of course, the actual 2dFGRS survey data shown in
red, shows a similar trend to that of our original completeness results in § 4.3 on page 4.3.

this has allowed us to apply both the R01 and JTH completeness methods to the

mocked data.

If we firstly examine the completeness results for the R01 method in Figure 8.12

then we record a similar result to that of the MGC mocks. In the un-corrected O-

Frame the mocks demonstrate a systematic rise in Tc and Tv that begins at around

m∗ ∼ 16.0 and continues to rise, just like MGC, to the magnitude limit of the sample,

mlim = 19.0 with a peak in Tv ∼ 7.2σ. The survey data indicated by the red lines show

the characteristic trend of our original completeness results in § 4.3 on page 4.3.

In the G-Frame shown in the right-hand panel in Figure 8.12, the mock surveys

show an overall completeness, with Tc and Tv indicating the true limit at m∗lim ∼ 18.9

mag due to the curving of the data at the limit.

We now introduce a bright apparent magnitude limit (mb
lim = 12.0) for the mock

and real survey data and run the JTH method with a δZ and δM = 0.08 applied to

Tc and Tv respectively (see Figure 8.13). What is immediately obvious in the O-Frame

results is the suppression of rising behaviour that was observed in the application of

R01 in Figure 8.12. This indicates that for small widths of δZ and δM , any potential

effects which would break the separability between M and Z may be masked. However,

it should also be noted that in both the O-Frame and the G-Frame of Figure 8.13 the



8.5: Completeness Analysis of the Mocks 178

Figure 8.13: Tc and Tv results for 2dFGRS mocks in both the G-Frame and the O-Frame. In
this case we apply the JTH methodology to the data which considers both faint and bright
apparent magnitude limits.

correct magnitude limit is correctly identified.

8.5.3 Completeness of the SDSS mocks

As we move to our final set of mocks, we note that we should be limited to using the JTH

method on SDSS since, as shown on the bottom panels of Figure 8.6, the survey data is

defined by a relatively narrow range in apparent magnitude i.e. 14.50 < m < 17.45, i.e.

with sharp cut-off’s at both faint and bright apparent magnitude limits. Consequently,

applying appropriate widths in δZ and δM when we examine the mocks in the O-Frame,

may mask any breaks in separability due to k and/or evolutionary effects. Indeed, in

the left-hand plot in Figure 8.14 for the uncorrected data the Tc and Tv statistics for

the mocks indicate the M -Z distributions are complete up to the faint magnitude limit

indicating that k-corrections have minimal impact on this sample.

In the G-Frame we observe the resulting true limited indicated by Tc and Tv as a

due to the curved apparent magnitude limit of the mock sample. In this case, the limit

is identified as being mlim ∼ 17.2 mag. It also worth noting that the Tc and Tv results

for the actual SDSS survey compare very well to the mock Tc and Tv distributions.
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Figure 8.14: Tc and Tv results for 2dFGRS mocks in both the G-Frame and the O-Frame
applying the JTH methodology. Since we are using the same sample size as originally defined
in Chapter 4, we adopt the same δZ and δM values of 0.2. As was the case with the 2dFGRS
mocks, the introduction of δZ and δM appears to mask the break in separability that we
would expect to observe in the uncorrected O-Frame. However, in both frames, the correct
faint apparent magnitude limits are identified with an average mlim ∼ 17.2 mag observed in
the corrected G-Frame.

8.6 Conclusions

In this chapter we have examined some of the different approaches one can take to

simulate a real galaxy redshift catalogue. We concluded that for our purposes, using

an existing observed redshift distribution from a survey was the most efficient and

convenient way to proceed as it replicates the observed redshift distribution exactly

giving us built in clustering. In our examples we used the redshift distributions for

MGC, 2dFGRS and SDSS redshift survey samples. We established that the ‘observer’s

approach’ allowed us to simulate these galaxy catalogues in two different frames.

The first frame we referred to as, the ‘observer’s frame’, or the O-Frame (not to be

confused with the ‘observer’s approach’). In this frame we simulated the real observed

apparent and absolute magnitudes of a given survey which represent magnitudes before

k- and/or e-corrections have been applied. The second frame was the ‘galaxy’s frame’,

or the, G-Frame. This represented apparent and absolute magnitudes that have been

corrected for k- and/or e-corrections and therefore should be the magnitude of a galaxy

at the time of emission, or equivalently at z = 0.
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We have provided a transparent step by step account of our galaxy selection proce-

dure and compared our mock catalogues to that of the real survey data. We concluded

that all our Monte Carlos simulations compared very well real survey in both the

G-Frame and O-Frame. Since our 2dFGRS and SDSS survey samples did not rep-

resent the exact samples used to derive the survey luminosity function parameters,

we required to tweak them slightly so our distributions closely match the observed

magnitude distribution.

Once satisfied that we had simulations that represented the three surveys, we per-

formed a completeness analysis using Tc and Tv. We demonstrated for all three survey

mocks in the G-Frame, the Tc and Tv statistics systematically dropped at a point that

indicated the true magnitude limit brighter than the actual survey limit. In the case

of MGC, the survey limit was mlim = 20.0 mag, but Tc and Tv indicated a limit in the

range 19.3 . mlim
∗ . 19.7. The 2dFGRS mocks had a survey limit of mlim = 19.0 mag

but Tc and Tv indicated the magnitude limit to be at mlim
∗ ∼ 18.9 mag. Finally,

SDSS whose survey limit was mlim = 17.45 mag showed a resulting Tc adn Tv magni-

tude limit mlim ∼ 17.2 mag. The reason for these results lay in the way we selected

the galaxies in the G-Frame. By making our final selection of galaxies according to

Equations 8.12 and 8.13 which are dependent on the k- and e-correction models, we

inevitably introduce a curved apparent magnitude limit. Since our modelling of m∗ is

such that it is assumed to remain straight,the Tc and Tv statistical results then reflect

at which point the curved faint limit begins to dominate.

Conversely, the completeness results in the O-Frame indicated the true apparent

magnitude limit to be exactly at the survey limit for all three surveys. Since we

convert the selected magnitudes from the G-Frame to the O-Frame by Equation 8.14,

this renders the M -Z distribution with straight magnitude limits which resembles the

distribution of the raw magnitudes from the real surveys.

Finally, we took a brief look at more fundamental aspect of our statistics that

relates to the sampling distribution of Tc and Tv. By their construction they should

have a Gaussian sampling distribution with mean zero and variance equal to unity.

Using MGC as an example, we compiled Tc and Tv results for a 1000 mock realisations

(in the G-Frame) by firstly applying the R01 method followed by the JTH method

for a δZ and δM of 0.01 and 1.0. We then sliced through the resulting Tc and Tv

distributions at two different m∗ values. We showed that for the R01 method and the

JTH method for a δZ and δM of 1.0, the underlying properties generally hold. When

we applied the JTH method we found that for a small value of δZ and δM=0.01 we

confirmed that for brighter values of m∗ the overall sampling distribution for both Tc
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and Tv seems consistent with a Gaussian distribution over the |3σ| range. As we moved

to a faint m∗=19.0 mag the distribution was considerably narrower further illustrating

the dominance of shot-noise for very small values of δZ and δM . As we increased δZ

and δM to 1.0 we observed the distributions broaden as we would expect since we are

allowing more galaxies into the each calculation of ζ and τ .



Chapter 9

A New Probe for Evolution

“What I find most disheartening is the thought that somewhere out there

our galaxy has been deleted from somebody elses sample.”

Dr Alexander Boksenberg, 1996

As we move into the final part of the thesis we focus on another major area in charac-

terising the galaxy luminosity function (LF) - evolution. In this chapter we look solely

at the role of pure luminosity evolution (PLE) models as applied to galaxy luminosity

functions. In Chapter 1 we explored the different effects of evolution on the shape of

the LF. Generally, this form of evolution is described parametrically by,

e(z) = −2.5β log10(1 + z), (9.1)

where β is the evolutionary parameter and is usually considered to be galaxy dependent.

In this chapter we will show we can extend our application of robust statistical

methods to probe PLE models. We revisit the properties of our random variable, ζ,

and introduce a new random variable, χ, based on the observed redshift distribution.

We will demonstrate how the ζ-χ distribution derived from a set of magnitudes (drawn

from an evolving LF) and redshifts can be used to constrain effectively the value of the

evolutionary parameter, βtrue.

As a controlled testing ground we generate mock galaxy catalogues based on the

MGC, 2dFGRS and SDSS data-sets which we have already analysed in Chapter 8

and apply two different techniques intended to estimate the correct value of β. The

first approach tests the correlation between our two random variables (ζ,χ), whilst the

second approach measures the relative change of entropy between the (ζ,χ). In the
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following sections we detail these techniques, and step through our methodology of

their application before presenting the results and conclusions.

9.1 Methodology to Probe Evolution

9.1.1 ζ and the new random variable, χ

The cornerstone of our analysis lies in the use of the random variable, ζ. We recall that

the definition of ζ for the R01 and JTH case is based on the cumulative luminosity

function, denoted as F (M), and respectively given by,

ζ(R01) =
F (M)

F [Mlim(Z)]
, or ζ(JTH) =

F (M)− F [Mb
lim(Z − δZ)]

F [M f
lim(Z)]− F [Mb

lim(Z − δZ)]
. (9.2)

For a complete sample ζ has, in both cases, the property of being uniformly distributed

between [0,1] and independent of the distribution in Z.

We introduce a second variable, χ, that could be used with ζ as a test of inde-

pendence. This variable is based on the cumulative observed redshift distribution and

given by,

χ =
H(z)

H(zu)
, (9.3)

where,

H(z) =

zu∫
z

h(z′)dz′. (9.4)

where zu is the upper redshift limit. This simple transform means that by definition,

χ shares the same property as ζ: its sampling distribution should be uniform on the

interval [0,1]. For a complete sample, therefore, the sampled points will be uniformly

distributed on the ζ-χ plane within a unit square, as illustrated in Figure 9.1. On

the other hand; it follows that for a data-set which is drawn from an evolving LF the

evolution will have a joint ζ-χ distribution modified by evolution. This will introduce

correlations between the proposed variables (see right-hand panel of Figure 9.1). To

detect such correlations, we will make used of the two estimators detailed below.

9.1.2 The coefficient of correlation approach

The coefficient of correlation is a well established statistical tool that measures the

correlation between two random variables X and Y (or in our case ζ and χ). The
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Figure 9.1: Example illustrating a typical (ζ,χ) distribution for a complete data-set for
an MGC mock catalogue. The left-hand distribution shows ζ and χ estimated at apparent
magnitudue limit of the survey mlim = 20.0 and appears to be a random uniform distribution.
Correlations between ζ and χ are shown on the right-hand panel where ζ and χ have been
estimated at m∗ = 20.5 (beyond the limit of the survey).

coefficient, ρ(ζ, χ) is defined as,

ρ(ζ, χ) =
cov(ζ, χ)√

cov(ζ, ζ)
√

cov(χ, χ)
. (9.5)

More specifically, ρ is usually estimated from sampled bivariate data using the Pearson

product-moment correlation coefficient, and the covariance defined by,

cov(X, Y ) =
1

Ngal − 1

Ngal∑
i=1

(Xi − X̄)(Yi − Ȳ ), (9.6)

where Ngal is the number of galaxies in the sample and the mean of, X̄ and Ȳ are

simply estimated by,

X̄ =
1

Ngal

Ngal∑
i=1

Xi, and Ȳ =
1

Ngal

Ngal∑
i=1

Yi, (9.7)

respectively. Therefore, ρ(ζ, χ)≈0 implies no correlation between ζ and χ. This condi-

tion will be satisfied if ζ and χ are independent. The implementation of this approach

is discussed in § 9.1.4.
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Figure 9.2: Example of measuring the entropy of a typical (ζ,χ) distribution for a complete
data-set taken at the m∗ = mlim = 20.0 of an MGC mock catalogue. We calculate the total
entropy of this distribution by imposing a grid with a predermined mesh size. In this example
we have split the grid into 0.1 × 0.1 mesh. We then count the number of objects contained
in each box, pi, and calculate the relative entropy. We then determine the total entropy by
summing each p1, p2, ...pi, ..., pn.

9.1.3 A relative entropy approach

In our second approach we applied a method based on the measured entropy, S, of the

ζ-χ distribution. In our case we utilise the relative entropy, also known as the Kullback-

Leibler divergence (Kullback and Leibler, 1951), which measures the difference between

two probability distributions p and q, where p represents the observed distribution of

the data and q represents our theoretical model for that distribution. In Figure 9.2 we

illustrate how the entropy is measured for the (ζ, χ) distribution.

We firstly impose a mesh over the distribution with equally spaced cells of a pre-

determined breadth and height. In the example shown in Figure 9.2 we choose a cell



9.1: Methodology to Probe Evolution 186

size of (0.1× 0.1) which equates to a total of 100 cells. We will discuss the influence of

the mesh size on the final results in § 9.3. For each cell we calculate the probability, pi

from the observed (ζ, χ) distribution given by,

pi =
N(cmn)

Ngal

, (9.8)

where N(cmn) is the number of galaxies within the cell, c, located at (m,n), and Ngal

is the total number of galaxies for the whole (ζ, χ) distribution in the sample. We

also require to calculate qi, the theoretical model that represents, in the ζ-χ plane, the

ideal uniform distribution of points in the ζ-χ plane such that each cell has the same

number of galaxies. This clearly, then, satisfies,

qi =
1

Ctot

, (9.9)

where Ctot is the total number of cells that make up the mesh. Therefore, for a given

(ζ, χ) distribution we can calculate the relative entropy by,

S(β̂k) =
n∑

i=1

pi ln

(
pi

qi

)
(9.10)

By its definition the value of relative entropy is a convex function of pi and always

non-negative with the property of being equal to zero only if pi = qi. In reality of

course, sample variance within the observed distribution implies that the total relative

entropy will always be greater than zero. Therefore the relative entropy of a distribution

is ‘maximised’ at its minimum. One could, therefore, redefine S as,

S(β̂k) = −
n∑

i=1

pi ln

(
pi

qi

)
, (9.11)

such that the entropy is maximised at the maximum of S(β̂k).

9.1.4 Implementation

Although the two approaches described in the previous two sub sections can be used

to test for correlations in different ways, both are otherwise implemented in exactly

the same way. The flowchart in Figure 9.3 summaries the seven steps we carry out to

test our evolutionary model, and we now detail those steps below:

1. We create Monte Carlo mock realisations drawn from an evolving luminosity

function. This required us to change the procedure slightly that we adopted in
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§ 8.3 on page 159. We are applying a pure luminosity evolutionary (PLE) model.

This is dependent both on redshift and the evolution parameter, β, which remains

fixed thorough the magnitude sampling process. To incorporate this model into

the LF we allow the characteristic absolute magnitude, M∗, to evolve, which

requires us to re-write Equation 8.10 as,

Φ(M) = φ∗ exp {[−c(α+ 1)(M −M∗
ev)]− exp[−c(M∗

ev −M)]} (9.12)

where, M∗
ev, is defined as,

M∗
ev(z) = M∗

0 (z)− E(z, βtrue) (9.13)

= M∗
0 (z)− 2.5β log10(1 + z).

Here, M∗
0 is the initial value of, M∗, derived for a universal LF from the survey

we are simulating. Since M∗ is evolving with redshift, we effectively require to

create a unique CDF[M∗(zi)] for each galaxy at a unique redshift zi.

2. Another way in which these mocks differ from the those derived in Chapter 8 is

our final selection of the magnitudes. If our goal in this chapter was to reproduce

the universal mocks as in Chapter 8 then the selection conditions as laid out in

Equations 8.12 and 8.13 would be recast as,

Condition 1



mf
lim(mock) = mf

lim(survey)− e(z)︸︷︷︸
[1] LF(βtrue)

− k(z)︸︷︷︸
[2] from survey

mb
lim(mock) = mb

lim(survey)− e(z)︸︷︷︸
[1] LF(βtrue)

− k(z)︸︷︷︸
[2] from survey

(9.14)

Condition 2

{
M f

lim(mock) = mf
lim(mock)− 5 log10[dL(zi)]− 25

Mb
lim(mock) = mb

lim(mock)− 5 log10[dL(zi)]− 25
(9.15)

where, in Condition 1, term-[1], e(z) is the evolution model as applied to the lu-

minosity function (LF) in Equation 9.13 and term-[2] represents the k-corrections

originally derived from the real survey. Therefore, to simplify our testing we have

decided to set k(z) = 0 and therefore exclude term-[2] from the final magnitude

selection process.
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3. We have at this stage a mock that represents the distribution of apparent and

absolute magnitudes drawn from an evolved LF. Therefore, the next step is to

correct the magnitudes starting with a minimum trial value of β̂min.

4. For each corrected sample data-set at β̂k, we then estimate our random vari-

ables ζ and χ for a trial magnitude limit m∗ equivalent to the faintest apparent

magnitude, m of the corrected data-set.

5. At this point we feed the resulting (ζ,χ) distributions into our ρ and entropy

estimators. For both estimators we apply incremental values β̂ (typically 0.1) in

the range β̂min < β̂ < β̂max that encapsulates the true βtrue value used to create

the mock. Therefore, as each successive β̂ is implemented, we expect the value of

the ρ estimator to cross zero for a value of β̂ that corresponds to the βtrue applied

to the LF of the mock survey. Similarly, the relative entropy estimator should

minimise for a value of β̂ that corresponds to the βtrue. These two scenarios are

illustrated in Figure 9.3.

6. Stages 2 to 4 are repeated for the next trial value of β̂.

7. Stages 1 to 5 are now repeated for a new random seed in the LF magnitude

selection to determine results for a new realisation.
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Figure 9.3: Flow diagram summarising the implementation of our test for evolution. The two
plots illustrate the kind of results we expect when we apply either the correlation coeffecitent
(left) or the relative entropy approach (right). For the correct value of β̂ we expect the
corresponding ρ value to equal zero (within a given statistical uncertainty). In the case of
the relative entropy, we expect the value of S to be minimised at the correct value of β̂.
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9.2 Results Part I - Coefficient of Correlation

For the purposes of applying both the coefficient of correlation method and the relative

entropy method, we have decided to use the MGC and SDSS mock catalogues.

9.2.1 MGC - Mocks (R01)

Throughout all the work carried out during this thesis the MGC survey has stood

apart from the others that we have analysed, as we have applied both the R01 and

JTH method and achieved consistent completeness results which imply the survey is

complete and well described with a faint limit only.

Using our MGC mocks to apply the coefficient of correlation approach allows us,

therefore, to consider generating (ζ, χ) distributions using either the R01 or the JTH

method. For our intial analysis we shall apply R01 to observe the impact where we

have no size restriction on the areas S1 and S2 (see Figure 3.2 on page 58). We have

generated mock catalogues that have no evolution (i.e. βtrue = 0) and those drawn

from a LF with βtrue = 1.0, 2.0 and 3.0. In Figure 9.4 we present the results for each

of these values for a range in trial −10.0 ≤ β̂ ≤ 10.0 in increments of β̂inc = 0.2. For

an initial analysis we have applied 50 mock realisations in to each βtrue value in the

panels of Figure 9.4.

The top left panel of Figure 9.4 shows the results for βtrue = 0. For larger negative

values of β̂k / −1.0 , the coefficient, ρ(ζ, χ) indicates positive-correlation between ζ

and χ. Then, in general, we observe that as β̂k approaches zero (i.e the true value, βtrue

used in generating the mocks), ρ(ζ, χ) also tends to zero implying no correlation. For

the relatively small number of mock realisations that we are considering, there is an

obvious spread in the values of beta around β̂ ∼ 0 for where ρ(ζ, χ) = 0 indicates the

estimated true value of β. The correlation coefficient vanishing (absence of evolution)

is obtained for β̂ in the range −0.9 . β̂k . 0.5. We can use the spread in β̂(ρ = 0) to

calculate the uncertainty in β̂. This is performed more rigorously § 9.2.2.1. For now we

are concerned only with the general behaviour of the ρ estimator with β̂. Finally in this

plot we see that as β̂k moves to increasingly larger positive values ρ now indicates strong

anti-correllations between ζ and χ and therefore these values of β̂ can be excluded.

The remaining three panels show the results for positive values of the evolution

parameter. If we look at the top-right panel, for βtrue = 1.0, we observe a similar

spread in β̂ values for ρ = 0 that are this time roughly distributed around β̂ = 1.0

with a range 0.8 . β̂(ρ = 0) . 1.5. For βtrue = 2.0 and 3.0 the resulting range in β̂ for

ρ = 0 are shown to be 1.1 . β̂(ρ = 0) . 2.4 and 2.3 . β̂(ρ = 0) . 3.4 respectively.
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Figure 9.4: Trial β̂ vs the correlation coefficient ρ for a series of MGC mock catalogues
using the R01 method for estimating ζ and χ. For βtrue = 0 we find a resulting range
−0.9 . β̂(ρ = 0) . 0.5. The top right panel indicates a range 0.8 . β̂(ρ = 0) . 1.5 for
βtrue = 1.0 at ρ = 0. For βtrue = 2.0 (bottom left) and 3.0 (bottom right) we observe a
respective range of 1.1 . β̂(ρ = 0) . 2.4 and 2.3 . β̂(ρ = 0) . 3.4.

9.2.2 MGC- Mocks (JTH)

We now consider the case where MGC has a bright limit and apply the JTH method

to determine the ζ-χ distribution for each trial value of β̂. In each case we adopt a

bright limit corresponding to the brightest galaxy in each β̂k corrected sample. As

we demonstrated in Chapter 6, values of δZ that are too small result in shot-noise
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Figure 9.5: Plot showing how varying sizes of δZ effect the ability of the ρ estimator to
constrain βtrue. In each panel we have generated 50 mock realisations. In the top-left panel
we have fixed δZ = 0.01 which results in the β̂ being distributed about ρ = 0 for the entire
range of β̂. This is another indicator of how shot noise can dominate over the signal. Since
δZ is so small the resulting number of galaxies in S1 and S2 regions is too small to notice any
significant change in the ζ estimation for each value of β̂. Therefore, ρ will approximately
equal zero for any β̂. We observe that a δZ = 1.0 shown in the bottom left panel, is now
large enough for ρ to successfully constrain β̂.

dominating in the Tc statistics. Therefore, as m∗ passes beyond the survey limit, Tc

flat-lines since there remains constant small number of galaxies in the resulting S1 and

S2 regions. Therefore, when applying the JTH method to the ρ estimator we must be
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careful in choosing a suitable value of δZ for estimating ζ for the corrected magnitudes

according to the trial β̂.

In Figure 9.5 we have set βtrue = 0 and applied the ρ estimator for δZ=0.01, 0.1, 1.0

and 2.0 to 50 mock realisations. We show that for δZ = 0.01 and 0.1 the ρ estimator

suffers from the same shot noise issue as with Tc and Tc (see Chapter 6) which is

not unsurprising. It is not until that δZ = 1.0 (bottom-left panel) that we observe ρ

successfully constraining βtrue. Notice also that for δZ = 2.0, the overall distribution

in ρ(β̂) = 0 appears to systematically shift to a range −0.8 . β̂ . 0.0. The most

probable reason for this is when δZ becomes sufficiently large, galaxies near the our

imposed bright apparent magnitude limit can no longer be sampled and as such these

galaxies are dropped from the calculation. Therefore, the total number of galaxies

in the survey that are used in the ζ calculation is reduced and as a result is now no

longer representative of the original mock data-set. Therefore, this implies that ρ in

this special case will not be able to recover the original true value of β.

9.2.2.1 Error Analysis

Ultimately, we want to assess the distribution of β̂ at the point where the correlation

coefficient is zero. In this section we have generated more bootstrap (BS) mock re-

alisations in order to accurately assess the distribution and therefore the uncertainty

in β̂ about ρ = 0. In order to maximise computing time and give an accurate error

analysis we have compared the difference in the β̂(ρ = 0) distributions for 200 and

1000 bootstraps as shown in Figure 9.6. Also, for each curve on the β̂-ρ plane, we have

used interpolation at intervals of β̂ = 0.05 to estimate each value of β̂ at ρ = 0. In the

example in Figure 9.6 we have applied the JTH method to the MGC mock data with

a δZ = 0.5. The blue distribution represents 200 BS’s, whilst the red represents 1000

BS’s. For each case we indicated the mean, β̄, shown as vertical dashed lines as well as

the 68% confidence interval (CI) indicated as solid vertical lines. which further shows

a minor change on the right hand error.

For the 200 BS level we determined a β̄ = 0.017 ± 0.001 and a corresponding

CI of [-0.260, 0.146]. When we compare this for 1000 BS’s we observe very little

change with a β̄ = 0.017 ± 0.0001 and a CI of [-0.2311, 0.1544]. Since there is not

a significant difference in the distributions we concluded that 200 BS’s was enough

to make a reasonable assessment of the data. If we now turn to Figure 9.7 we show

for each βtrue value, the 200 BS curves for ρ versus β̂ applying the R01 method (i.e.

assuming a faint apparent magnitude limit) over narrower β̂ range than in Figure 9.4.



9.2: Results Part I - Coefficient of Correlation 194

Figure 9.6: MGC β̂ distribution at ρ = 0 for 200 (shown in blue) and 1000 (shown in red)
bootstraps. Both distributions were obtained by applying the JTH method to each mock for
a δZ = 0.5. The blue and red vertical lines represent the 68% confidence interval (CI) for the
respective 200 and 1000 bootstraps. We can see that increasing the number of bootstraps
from 200 to 1000 only marginally affects the β̂ distribution and consequently the errors at
68% CI.

We observe that for each panel in Figure 9.7 the overall distribution is roughly centred

about the expected true β value. However, in each case there is definite skewness

to the right of β̂(ρ = 0) which is more clearly seen in Figure 9.8. Here, we have

plotted the corresponding β̂(ρ = 0) distributions for each βtrue. As with Figure 9.6

we have indicated the 68% CI as blue vertical lines and in blue parenthesis. We

have also included the mean of the distribution as a red vertical dashed line with the

corresponding value, β̄, also in red. Although, in each panel we can see that the mean

of the β̂ distribution is consistent with each βtrue value, each distribution is slightly

skewed. The reason for this is best illustrated by considering the (ζ, χ) distributions
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Figure 9.7: 200 MGC bootstraps applying the R01 method for four values of βtrue =0.0,
1.0, 2.0 and 3.0. In each case we have plotted the resulting ρ versus β̂ with each red line
representing each bootstrap. It is clear to see that for each βtrue the overall distribution at
ρ = 0.0 is skewed. Figure 9.8 better shows the β̂ distribution at ρ = 0.0.

resulting from selected β̂ corrections. In Figure 9.9 we consider one of the MGC

mocks with magnitudes that have been sampled with no evolution (i.e. βtrue = 0). We

have then corrected the magnitudes with trial β̂ = βcorr = −3.0, −10.0 (left panel) and

β̂ = βcorr = +3.0 and +10.0 (right panel) and plotted the resulting (ζ, χ) distributions.

In the left panel we can see that from a βcorr = −3.0 (shown in red) to βcorr = −10.0

(shown in black), the distribution becomes extremely anti-correlated. This explains
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Figure 9.8: MGC bootstrap β̂ distribution at ρ = 0.0. In each panel the red dashed line rep-
resents the mean of the distribution, with the corresponding value, β̄, in red. The blue vertical
lines show the 68% confidence interval with the corresponding values in blue parenthesis.

the steepness the (β̂, ρ) curves observed in Figure 9.4. However, as we move to positive

values of β̂ (i.e β̂ > βtrue) we observe that although the (ζ, χ) distribution is now

positively correlated, there is only a marginal change in the distribution βcorr = +3.0

to +10.0. Looking at the corresponding M -Z for the same MGC mock in Figure 9.10

we have plotted the distributions for βcorr = −10.0 (blue), βcorr = βtrue = 0 (black)

and βcorr = +10.0 (green). Also shown are the respective trial limiting apparent

magnitudes, m∗ = 19.8, 20.0 and 21.8 mag, which are determined from the faintest
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Figure 9.9: ζ-χ distribution for one of the MGC mocks. These plots demonstrate how
we obtain anti-correlations and positive correlations for respective β̂ values which are
both smaller and larger than the βtrue. In this example βtrue = 0 and the left hand
panel shows the distribution for βcorr = β̂ = −3.0 (shown in red) and βcorr = β̂ = −10.0
(shown in black) where we observe anti-correlation. Conversely, the right hand panel
shows βcorr = β̂ = +3.0 (shown in red) and βcorr = β̂ = +10.0 (shown in black)
resulting in positive correlations.

galaxy in each β̂ corrected data-set and used to estimate the random variable, ζ. It is

obvious that for βcorr = −10.0, the curving of the M -Z distribution produces a sizeable

gap between the majority (distant) of galaxies and the corresponding m∗ = 19.8 mag

line which therefore manifests as the anti-correlation observed in left panel of Figure 9.9.

However, for βcorr = +10.0 the M -Z distribution is now outwardly curved resulting in

the faintest galaxies being the most distant ones giving an m∗ = 21.9 mag (shown in

green). Therefore, when we estimate ζ in this case, the curving of the distribution in

this way (top-right region) dominates the ζ calculation (since the majority of galaxies

are located here). We can see that these galaxies are not distributed as far from the

m∗ limit as with the cases of βcorr = +10.0 does and therefore the resulting correlation

in the right-hand panel of Figure 9.9 is diminished.
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Figure 9.10: M -Z distribution for the MGC mock catalogue examined in Figure 9.9 with
βtrue = 0 (shown as the black distribution of points). The other coloured distributions
illustrate the effect of correcting the absolute magnitudes according to our trial β̂ correction.
In this example the blue distribution represents a correction of βcorr = β̂ = −10.0 with a
resulting m∗ = 19.8 mag. The green points represent βcorr = β̂ = +10.0 with a resulting
m∗ = 21.9 mag.
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9.2.3 SDSS-Mocks

We now use the JTH method for estimating ζ and χ and use Figure 9.11 as a guide for

choosing the optimum value of δZ where we have plotted (β̂, ρ) curves for δZ = 0.01,

0.1, 0.5 and 1.0. We can see in the top two panels the same characteristic noise

dominated behaviour already observed in the MGC analysis for small value of δZ.

Although a δZ = 0.5 would appear an adequate choice we do observe odd behaviour

in ρ across the range in β̂. In the bottom panels of Figure 9.11 it is clear to see that ρ

peaks sharply at β̂ = 0.0 for all the mock realisations. However, the value of ρ at this

point is ∼ 0.07 at δZ = 0.5 and ∼ 0.157 at δZ = 1.0. Furthermore, there appears to

be two possible range in β̂ where ρ = 0 for which ζ and χ would be considered to be

unocorrelated. For δZ = 0.5 this occurs at −0.5 . β̂ . −0.4 and 0.2 . β̂ . 0.8. For

δZ = 1.0 there is a slightly broader spread at −1.7 . β̂ . −1.1 and 1.1 . β̂ . 1.8.

When we apply ρ to evolved mocks in Figure 9.12, where βtrue = 1.0, 2.0 and 3.0,

we observed exactly the same behaviour. For each βtrue = 1.0, 2.0 and 3.0, ρ shows

anti-correlation from most large negative values, then crosses through ρ = 0 and peaks

at the expecting β correction value as indicated by the vertical red lines in each case.

The reason for this is not immediately clear, however, in the following sub section we

offer possible solutions that indicate the ρ estimator is perhaps insufficient for this type

of analysis.

9.2.3.1 Erorr Analysis

As with MGC in § 9.2.2.1 we use 200 bootstraps for the SDSS analysis and interpolate

each β̂ curve within a small range in intervals of β̂ = 0.05. As in Figure 9.12 we

have applied a δZ width of 0.5. In Figure 9.13 we have plotted the (β̂, ρ) curves for

βtrue =0.0 and 1.0. As we have already observed in Figure 9.12, for each βtrue there

are two distinct points where β̂ crosses ρ = 0. If we look at Figure 9.14 we can observe

this distribution for each case. For βtrue = 0 in the top panel of Figure 9.14 we can see

that the distribution left of β̂ = 0 is tightly distributed with a mean value of β̄ = 0.41

and a corresponding 68% CI of [0.382, 0.451]. For the distribution right of β̂ = 0, we

observe a β̄ = −0.53 and a CI = [-0.461, -0.600]. In this case the overall distribution is

broader than its left counterpart. In the bottom panel of Figure 9.14 we see an almost

identical distribution for βtrue = 1.0. In this case the β̄(ρ = 0)=1.416 and 0.472 with

respective CI’s=[1.382, 1.451] and [ 0.399, 0.538].

In Figures 9.15 and 9.16 we show similar distributions for βtrue =2.0 and 3.0. Once

again we see, particularly in Figure 9.16, very similar distributions for β̂(ρ = 0) as in
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Figure 9.11: Four plots demonstrating the shot noise behaviour in the SDSS mocks for
varying sizes of δZ. In this example we applied δZ = 0.01, 1.0, 0.5 and 1.0. As with MGC
in Figure 9.5 lower values of δZ = 0.01 and 0.1 appear to be insufficient for ρ to constrain
β. However, although δZ = 0.5 (bottom-left) and indeed 1.0 (bottom-right) now appear to
be acceptable choices we observed behaviour in ρ that is inconsistent with the true value of
β for the evolved mock catalogues.

Figure 9.14. For βtrue = 2.0 we have determined β̄ =2.416 and 1.472 with a respec-

tive 68% CI=[2.381, 2.499] and [1.399, 1.538]. For βtrue = 3.0 we have determined a

corresponding β̄ =3.416 and 2.472 with a respective 68% CI=[3.381, 3.449] and [2.399,

2.538].
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Figure 9.12: Plots showing the resulting correlation coefficient, ρ, for SDSS mock catalogues
generated from an evolving LF with βtrue=0.0, 1.0, 2.0, 3.0. In all four cases we have fixed
δZ = 0.5.

So we are left with the question of why do we see, in each βtrue, two distinct ranges

for constraining β̂? Whilst there has been a rigorous effort to check for inconsistencies

in the programming, none as yet has been found. It may perhaps be necessary to

explore the higher order moments of ρ in order to find some answers. However, at this

juncture we shall apply the entropy approach that has all the higher order moments

contained within it. As we shall see this has proven to be crucial for constraining

evolution.
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Figure 9.13: ρ versus β̂ for 200 SDSS bootstraps with βtrue=1.0 and 2.0. As already observed
in Figure 9.12 we can see that β̂ crosses ρ = 0 at two distinct points either side of βtrue.
Figure 9.14 shows the corresponding β̂(ρ = 0) distribution for these two panels.



9.2: Results Part I - Coefficient of Correlation 203

Figure 9.14: β̂(ρ = 0) distribution for 200 SDSS bootstraps at βtrue =0.0 and 1.0. In each
panel the red dashed line represents the mean of the distribution, with the corresponding
value, β̄, in red. The blue vertical lines show the 68% confidence interval with the corre-
sponding values in blue parenthesis. Unlike MGC, the SDSS mocks indicate two possible
values for βtrue which for βtrue = 0 is β̄ =0.41 and -0.53, and for βtrue = 1 is β̄ =1.416 and
0.472.
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Figure 9.15: ρ versus β̂ for 200 SDSS bootstraps with βtrue=2.0 and 3.0. As already observed
in Figure 9.12 we can see that β̂ crosses ρ = 0 at two distinct points either side of βtrue.
Figure 9.14 shows the corresponding β̂(ρ = 0) distribution for these two panels.
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Figure 9.16: β̂(ρ = 0) distribution for 200 SDSS bootstraps at βtrue =2.0 and 3.0. In each
panel the red dashed line represents the mean of the distribution, with the corresponding
value, β̄, in red. The blue vertical lines show the 68% confidence interval with the corre-
sponding values in blue parenthesis. Unlike MGC, the SDSS mocks indicate two possible
values for βtrue which for βtrue = 2 is β̄ =2.416 and 1.472, and for βtrue = 3 is β̄ =3.416 and
2.472.
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Figure 9.17: M -Z distribution for SDSS mock with βtrue = 0 shown as the black distribu-
tion of points. The other coloured distributions illustrate the effect of correcting the absolute
magnitudes according to our trial β̂ correction. In this example the blue distribution repre-
sents a correction of βcorr = β̂ = −2.0 with a resulting m∗ = 17.4 mag. The green points
represent βcorr = β̂ = +2.0 with a resulting m∗ = 18.15 mag.
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9.3 Results Part II - Relative Entropy

9.3.1 MGC-Mocks (R01)

Before we test mocks that are drawn from an evolving LF, let us firstly consider the

case when βtrue = 0 resulting in a mock drawn from a Universal LF. In Figure 9.18 we

use these mocks to observe the behaviour of the relative entropy for varying resolutions

of the imposed mesh on the ζ-χ plane. We try a range −10.0 ≤ β̂ ≤ 10.0 in increments

of 0.5. For each cell size we use 10 mock realisations. For each trial cell size we expect

the relative entropy to minimise at a β̂k = βtrue. As we can see in Figure 9.18 this is

indeed the case! However we make the following observations regarding the choice in

cell size:

1. For the cell sizes where we have a total of 25 cells (for a 0.2× 0.2 cell), and 100

cells (for the 0.1×0.1 cell), the relative entropy does minimise, but for a possible

range of β̂. For the 0.2 × 0.2 cell size this range is 1.4 . β̂ . 0.8, and for the

0.1 × 0.1 cell size we observe a narrower range of −0.6 . β̂ . 0.2. As we move

to a smaller cell size of 0.02× 0.02 the relative entropy appears to minimise very

sharply at the exact true value for β. For even smaller cell sizes at 0.001× 0.001

(corresponding to 1,000,000 cells on a unit square) we observe that although there

is a sharp minimisation at β̂ = 0, the overall entropy curve across the interval

[-10,10] is flattened.

2. Recalling that for the condition where the observed, pi, equals the theoretical

model, qi, the relative entropy, S will equal zero. In Figure 9.18, as the number

cells increases, the observed relative entropy moves further from S = 0.

In the case of our first observation, if we have a small number of cells making up our

mesh (meaning larger and larger individual cell sizes), it becomes apparent that the

range for which we can minimise S broadens. Conversely if we have a grid size that

has a very large number of cells then we would expect the result to be noise dominated

since there will only be a few galaxies in every cell. This would explain why we see S

begin to flatten for cell size of 0.001× 0.001 but shows very little variation for a broad

range of β̂ for 0.2× 0.2 cells (Figure 9.18).

The second observation relates to the theoretical model, qi, that we have chosen to

use. For our model we have simply distributed the points on the ζ-χ uniformly such

that there is an equal number in each cell. Although this represents an ideal case it

does not of course necessarily represent a realistic model since it does not account for
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Figure 9.18: Relative entropy, S versus trial β̂ using MGC mocks for varying mesh sizes
applying the R01 method. In this example we have used 10 mock realisations for each mesh
size drawn from a Universal LF i.e βtrue = 0. For each mesh the cell sizes are shown as
follows: 0.001× 0.001 in green, 0.02× 0.02 in blue, 0.1× 0.1 in red and 0.2× 0.2 in magenta.
The main result from this plot indicates that despite varying resolutions in the mesh, the
relative entropy minimises at the correct trial β̂ = βtrue = 0.

any sample variance that would result from a real galaxy distribution. Therefore, on

small scales, the resulting ζ-χ distribution will inevitably exhibit clustering which will

alter the relative entropy compared to our theoretical model. Hence, in Figure 9.18

we observe a shift in S from zero on small grid scales. Although we could use a more

realistic theoretical model, it is important to note that the model we adopt does not

seem adversely affect its ability to constrain βtrue.

Continuing for now with the R01 method estimating ζ, we now apply our mocks that

are drawn from an evolving LF. We apply successive values of βtrue =1.0, 2.0 and 3.0

and assume a mesh size cell size of 0.02 × 0.02 as show in Figure 9.19. For each βtrue
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Figure 9.19: Relative entropy, S versus trial β̂ using MGC mocks for three different values
of βtrue applying the R01 method. For each trial β̂ we have applied 50 mock realisations with
successive values of βtrue = 1.0, 2.0 and 3.0. In each case we can clearly see that the relative
entropy approach minimises at the correct value. Notice also that values chosen by S are the
negative of the βtrue value. This is expected since we correcting the data in such a way as to
render the M -Z distribution in a separable form.

we have generated 50 mock realisations. The resulting entropy, S, show that for mocks

generated with evolution of the order βtrue =1.0, 2.0 and 3.0, S(ζ, χ) minimises at

respective β̂ =-1.0, -2.0 and -3.0.

9.3.2 MGC-Mocks (JTH)

As we have already demonstrated in Chapters 4 and 6, one of the features of the JTH

generalisation allows us to choose a suitable width, δZ, for the S1 and S2 regions in

order that the regions remain separable within the bright and faint apparent magnitude

limits of a given survey. Computationally, this implies that the smaller the width of δZ,
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Figure 9.20: Relative entropy, S versus trial β̂ using MGC mocks implementing the JTH
for different values of δZ. Similarly with the correlation coefficient, we observe that for a
δZ = 0.01, the entropy S does not minimise. However, for values ≥ 0.5 we can observe a
clear signal in S. It is also worth noting that at δZ = 2.0, the value at which S minimises is
unchanged unlike in the same case for the corrlation coefficient in Figure 9.4. Although the
number of galaxies going into the ζ and χ estimation is changing with the size of δZ, the
number of galaxies going into the theoretical model changes with it so that we are comparing
p and q with an equal total number, N .

the faster the code will run for each estimation of the random variable, ζ. However, as

revealed in Chapter 6, as we move to increasingly smaller values of δZ, the shot noise

begins to dominate and our ability to recover any meaningful signal diminishes as a

result. Therefore, as we incorporate the JTH method in to our analysis in this section,

we experiment with a range of δZ for the ζ estimation that will maximise both the

processing time and amount of signal required to constrain β̂. In exactly the same way

as in Chapter 4 when applying the JTH method we assume a bright limit equal to the

apparent magnitude of the brightest galaxy for every β̂ corrected sample. Figure 9.20
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Figure 9.21: Relative entropy, S versus trial β̂ using MGC mocks for βtrue = 1.0, 2.0 and 3.0
applying the JTH method with a δZ = 0.5. We have implosed a mesh cell size of 0.02× 0.02
and have incremented trial β̂inc = 0.2. Just as with the R01 method we observe that in
each case, applying the JTH method, the relative entropy estimator appears to constrain β
extremely well.

illustrates the effect of varying δZ for values, 0.01 (red), 0.1 (blue), 0.5 (green), 1.0

(black) and 2.0 (dark green). We have assumed in each case a mock with βtrue = 0

and generate 50 mock realisations in each case. For a δZ = 0.01 we observe a near

flat-line for the full range of β̂ with only a minor kink as β̂k pass zero. Although as

δZ increases to 0.1 we can observe the relative entropy minimise at β̂ = 0, the signal

remains quite weak. It’s not until δZ & 0.5 that we achieve a signal which is similar

to that shown in Figure 9.19 for the R01 method.

In Figure 9.21 we have generated 200 mock realisations for βtrue =1.0, 2.0 and 3.0

and with apply a δZ = 0.5 throughout. Once again we can see that the relative

entropy’s in each case minimise exactly at the respective expectant values of β̂ =-1.0,
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Figure 9.22: β̂(Smin) distribution for varying increments of β̂. In this figure we want to
determine a suitable increment in β̂ for finding the minimised entropy, Smin. We have tested
values β̂inc = 0.01, 0.05 and 0.1. The mean of each distribution, β̄, is shown as a dashed
red line with the 68% CI indicated by the parallel blue lines in each panel. Since there is a
differnce of only 0.005 in β̄ between β̂inc = 0.01 and 0.05 we have chosen to use increments
of 0.05 to maximise computational time.

-2.0 and -3.0.

9.3.2.1 Error Analysis

To assess the error distribution of β̂ we applied the same number of bootstrap realisa-

tions as with the ρ statistic. To further optimise the runtime of the code we initially

tested 3 values of β̂inc to observe whether there was any significant differences between

three distributions. The increments we chosen were β̂inc=0.01, 0.05 and 0.1 and the

corresponding distributions are shown in Figure 9.22. Once again we have superim-

posed the 68% CI in blue and and the mean value of β̂ as the red dashed line. In

this example βtrue=0. As we can see all three incremental values are all very tightly

distributed about zero with only variation of 0.0083 in the mean from β̂inc=0.01 to 0.1

and only 0.005 difference between 0.01 and 0.05. Therefore, we chose to increment β̂inc

in intervals of 0.05.

Figure 9.26 shows the resulting β̂(Smin) distributions for the trial βtrue=0, 1, 2 and

3. We can see that in all cases the distributions are very narrow compared to the ρ

test, with very little visual evidence of skewness. For βtrue=0 we recover a mean value
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Figure 9.23: β̂(Smin) distribution for 200 MGC bootstraps for βtrue = 0, 1.0, 2.0 and 3.0.
We follow the same convention as with the ρ testing superimposing the 68% CI’s solid blue
vertical lines, and the average of the distribution as a vertical red dashed line.

of β̄=-0.03925 with a 68% CI of [-0.2,0.1]; βtrue=1, β̄=0.9665 with a 68% CI of [0.85,

1.1]; βtrue=2, β̄=1.951 with a 68% CI of [1.85, 2.05]; and βtrue=3, β̄=2.96325 with a

68% CI of [2.8, 3.1].

As we have discussed already in this chapter, the spread of these distributions would

vary if one were to vary the cell widths for the entropy calculation. However, we have

found that the cell size of 0.02 × 0.02 is appropriate for this level of testing.
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Figure 9.24: Relative entropy, S versus trial β̂ using SDSS mocks for three different values
of δZ : 0.01, 0.1 and 1.0 and varying cell sizes. In each case we have drawn from mocks
with a βtrue = −3.0. The left-hand panel shows the results for cell size of 0.1 × 0.1 (100
cells), whereas the right-hand panel is for a cell size 0.02 × 0.02 (2500 cells). In both cases
we observe the that a δZ & 0.1 would be require to recover an adequate signal.

9.3.3 SDSS-Mocks (JTH)

We now test the entropy approach for mocks where the data is very well defined by

both a faint and bright limit. To do this we apply our SDDS mocks. Just like MGC,

we have explored various scenarios in Figure 9.24 with variations on both the mesh size

for the entropy measurement and δZ for ζ to determine the optimum for both. In the

left panel of the figure we adopt at cell size of 0.1× 0.1 for the mesh and vary δZ for

0.01, 0.1 and 1.0. As with MGC, for δZ = 0.01 there is no real observable minimisation

in the entropy, however, as we increase to δZ & 0.1 we see S clearly minimise for the

correction value of β̂ = 3.0 in this case. We observe the same pattern in the right hand

pane of Figure 9.24 where the cell size in this case is 0.02 × 0.02. For this mesh size

there is a clear sharper minimisation compared that of the left panel. Therefore, as we

go on to test other values for βtrue we adopt a δZ = 0.2 and a cell size of 0.02× 0.02.

In Figure 9.25 we have once again apply the same βtrue values as before: the red lines

trace the results for mock with an initial βtrue = 1.0, the blue lines are for βtrue = 2.0

and the green lines area βtrue = 3.0. It is clear that in all three cases the relative

entropy once again constrains βtrue extremely well. Moreover, there does not appear

to be any anomalous behavour that was observed for the same set of mocks under ρ



9.3: Results Part II - Relative Entropy 215

Figure 9.25: Relative entropy, S versus trial β̂ using SDSS mocks for three different values of
βtrue. For each βtrue value we have generated 50 mock realisations. In each case we observe
the relative entropy constraining βtrue extremely well.

test.

9.3.3.1 Error Analysis

We apply the same procedure to SDSS as with MGC. However, as we have seen in

Figure 9.25, S minimises very sharply for each βtrue trial, with almost no visual error

distribution. We therefore use a very small increment in β̂inc=0.005 in order to accu-

rately assess the error distribution as shown in Figure 9.26. Compared with MGC, we

see an even narrower distribution overall with each average β̄ centred very close to the

βtrue value to within ∼ 0.1. To summarise Figure 9.26 we have for: βtrue=0 we recover

a mean value of β̄=-0.00095 with a 68% CI of [-0.015,0.015]; βtrue=1, β̄=0.99857 with

a 68% CI of [0.98, 1.015]; βtrue=2, β̄=1.99822 with a 68% CI of [1.985, 2.015]; and

βtrue=3, β̄=2.9987 with a 68% CI of [2.985, 3.015].
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Figure 9.26: β̂(Smin) distribution for 200 SDSS bootstraps for βtrue = 0, 1.0, 2.0 and 3.0.
The 68% CI’s are represented as solid blue vertical lines, and the average of the distribution
as a vertical red dashed line.

9.4 Conclusions

In this chapter we have proposed a proof of concept for a new approach to constraining

evolution in galaxy redshift surveys. Through the generation of Monte Carlo simula-

tions from the redshift distributions of real galaxy surveys with magnitudes sampled

from a β dependent evolutionary model, we have demonstrated that we can effectively

constrain evolution. This was achieved by extending our robust statistics to consider
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the distribution of ζ and a new random variable, χ. The key to the success can be

summarised as follows:

1. The random variable, ζ, has the property of being uniformly distributed on the

interval [0,1] for a magnitude-complete sample.

2. Our method for generating mock galaxy catalogues with evolution introduces a

curve into the apparent magnitude limit that is curved by an amount dependent

on the evolutionary corrections to the absolute magnitudes.

3. The construction of our statistics requires us to estimate ζ and χ from an M -Z

sample within the apparent magnitude limit defined by a trial magnitude limit

m∗. For the purposes of this analysis we have fixed m∗ to be straight, and defined

it as the faintest galaxy in each corrected data-set. This makes our estimator very

sensitive to any curved distribution (caused by evolutionary effects or other) close

to the limit.

4. Consequently, correcting the magnitudes of an evolved mock catalogued with the

correct value of β̂ will render the M -Z distribution separable and will be defined

with a straight apparent magnitude limit.

To test for correlations we applied two different approaches. The first was the corre-

lation coefficient, ρ and the second, a relative entropy, S, approach. For this analysis

we applied our mock catalogues of MGC and SDSS based on the procedure detailed in

Chapter 8. We demonstrate that the ρ estimator constrained evolution very well when

applied to the MGC mocks. However, when we applied this estimator to the SDSS

mocks we found that ρ indicated two distinct ranges for the β parameter. Assuming

there are no computational errors, we plan to explore the higher order moments of ρ

to see if this can shed any light on this strange result.

However, the relative entropy approach proved to be very successful at constraining

β in both the MGC and SDSS cases with very narrow error distributions. Clearly there

is scope to develop this approach further to be used on real data. However, this will

require a modification of the way in which we sample our mock catalogues. The scenario

we have tested in this chapter relies on an M -Z distribution that is representative of an

observed survey with realistic evolutionary effects inherent. Our magnitude selection

process therefore renders this distribution with a curved apparent magnitude limit.

This curving of the limit is not observed in actual survey data. Instead the survey

data has an imposed straight magnitude cut. Since our procedure exploits the curved
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nature of M -Z distribution close to the limit, in its current construction, we do not

expect it to recover the corrected evolutionary parameters required to correct the raw

magnitudes of a given survey.

The solution to this may lie in the way we model m∗, as discussed in Appendix

A, or in the way in which we correct the data before estimating ζ. Since, for a real

survey the resulting M -Z distribution is defined by straight limit, we can, as in Rauzy

(2001), correct both the magnitudes and the distance modulus, Z. This introduces an

extra degree of freedom for they way in which the galaxys on M -Z plane can move.

Moreover, for any evolutionary corrections that we apply to the data always render the

M -Z with a straight limit.



Chapter 10

Discussion and Future Development

“I could tell you what’s happening, but I don’t know if it would really

tell you what’s happening.”

Snow, From the movie Solaris (2002 version)

10.1 Initial Development of the Completeness Test

Historically, it has often been the case that when estimating luminosity functions,

either by parametric or non-parametric means, one assumes,

1. the survey sample data is already complete in apparent magnitude and,

2. the probability distributions φ(M) and ρ(z) are separable and therefore statisti-

cally independent.

Although work by Efron and Petrosian (1992, 1999) provided statistical tools to test

the latter assumption of separability, it was Rauzy (2001) (R01) who developed the

methodology for a completeness test for magnitude-redshift samples.

10.1.1 Reviving the Rauzy completeness test

We initially revived the work by Rauzy and applied the R01 Tc statistic for the first

time to the recent MGC survey sample. We confirmed that the survey data, when not

corrected for k- and/or e-corrections, was complete up to the published apparent mag-

nitude limit mlim = 20.0 mag and showed no signs of any residual systematics. With
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the addition of (k+e)-corrections we noted that although the Tc statistic confirmed the

initial completeness result, there was noticeable (although not statistically significant)

systematic drop in the statistic just prior the magnitude limit of the survey. It was

concluded that this feature was due to the faint magnitude limit being ‘fuzzied’ by the

addition of these corrections.

An interesting point worth noting regarding MGC is that, although there was a

published bright limit, the distribution of galaxies on the M-Z plane coupled with our

completeness test results indicated that the survey data was well described by a faint

limit only. This observation would turn out to be crucial in discriminating between

surveys that have both a faint limit and bright limit that may be more difficult to

detect.

10.1.2 The 2dF survey and double truncation

When we applied R01 to the 2dFGRS data, we discovered anomalous behaviour in Tc

that initially suggested the survey sample was incomplete. When the data was split

according to their APM plates and re-tested, it was found that, for the most part, Tc

showed completeness up to the corresponding faint magnitude limits in each plate. It

was finally concluded that the total survey data could only be considered complete if

secondary bright apparent magnitude limit was included and accounted for correctly.

Applying R01 to an SDSS-Early Types sample, where the data was published with

distinct faint and bright limiting magnitudes, we found similar anomalous behaviour

to that of the 2dFGRS. Both of these results lead to our extension of the R01 Tc

statistic as published in Johnston, Teodoro & Hendry (2007) - JTH.

The JTH generalisation required the introduction of a quantity, δZ, which fixed

the width of the regions S1 and S2 to ensure the separable rectangular region could be

uniquely defined within the bright and faint limits of a given survey. One would then

choose a suitable value of δZ that was large enough to overcome effects of shot-noise

(see § 10.4), but also small enough to ensure S1 and S2 remained within the magnitude

limits. By applying the JTH method in this way we demonstrated that both the

2dFGRS and the SDSS-Early Types could now be considered complete up to their

respective published faint magnitude limits, mlim = 19.45 mag and mlim = 17.45 mag.

Since there was no published bright limit for the 2dFGRS, we adopted a bright limit

equal to the brightest galaxy in the subsample, which proved to be adequate.
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10.1.3 From Tc to Tv

The Tv statistic, emerged by considering the cumulative distance distribution of the

galaxies in a magnitude-redshift survey. The construction of Tv was such that it re-

tained the analogous properties to that of Tc - independence of the spatial distribution

of galaxies within the survey and normally distributed with mean zero and variance of

unity. Moreover, Tv essentially represents a differential version of the popular V/Vmax

test. The natural next step developed Tv for surveys with two limiting magnitudes.

Therefore, the introduction of the quantity, δM , allowed the separable regions S3 and

S4 to remain uniquely defined within the two magnitude limits in exactly the same

way that δZ was designed for Tc. For comparison, Tv was applied to the three previous

surveys - MGC, 2dFGRS and SDSS-Early Types. The results were almost identical to

that of the Tc statistic giving further credibility to the reported survey sample selection

of all three data-sets.

10.2 Future Work: Part I - Error Estimation

Whilst the JTH method marked a significant improvement over R01, results from 2dF-

GRS (and the later examination of the CCLQG survey sample) has revealed a possible

shortcoming that could potentially undermine the essence of the Rauzy completeness

test if not accounted for correctly. As we have already demonstrated throughout this

thesis, the completeness test provides an independent approach to help assess and val-

idate the completeness level of a magnitude-redshift sample up to its faint apparent

magnitude limit. In the absence of a bright limit, the R01 approach allows the regions

S1 and S2, for Tc and S3 and S4, for Tv to grow to a size where the maximum number

of galaxies can be included in the respective ζ and τ calculations. This renders both

estimators extremely sensitive to any adverse effects inherent in the data, especially

close the the faint limit where bias caused by selection effects are more prominent.

In the JTH method we have already discussed that if the choice of δZ and δM

are made too small, then the estimators will be dominated by shot noise resulting in

a flat-lining of the statistics within the |3σ| limits as m∗ moves to fainter magnitudes

beyond the limit of the survey. The 2dFGRS and CCLQG samples differed to MGC

and SDSS in one crucial way - they both have faint magnitude limits that are not well

defined by a sharp cut-off. This has the effect whereby, for each incremental increase δZ

and δM that overcomes the effects of shot-noise and allows the test statistics to drop

below −3σ, we find a range of possible values that indicate the true faint magnitude
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limit. This in effect would allow any one applying the method to simply choose the

magnitude limit to suit their requirements. Therefore, we recognise that to make our

statistical tools more robust we require to develop an error estimate for each Tc(m∗)

and Tv(m∗) point that will be correlated with the adaptive width (see § 10.4) of the

respective δZ and δM .

10.3 The Tv Anomaly

When we were presented with a GALEX selected sample from the Clowes-Campusano

Large Quasar Group Survey (CCLQGS) it allowed us to test a data-set that was both

deep in its redshift range and utilised photometric redshifts. Once again, it was the

application of our tools to real data that prompted the need to amend the method.

The CCLQG sample provided us with an interesting effect that was only observed in

the Tv statistic. This particular sample was described out to a limiting magnitude of

mlim = 25.8 mag, however when we applied Tc and Tv there was a noticeable departure

in Tv from Tc that lead to an observed peak at Tv[m∗(22.5)] ≈ 18.5σ. Initially, it was

thought this may be a result of evolution since this was the first deep survey sample

(zmax ∼ 2.5) to which our statistics had been applied. We had previously discussed

the possibility of discrepancies between Tc and Tv where pure luminosity evolution will

be a more dominant effect with deeper redshift surveys. Moreover, there were no k-

or evolutionary corrections provided with this data-set which could account for the

observed effects. However, in this particular case, the differences between Tc and Tv

was, in the end, not a result of evolution but instead the nature of the photometric

redshifts themselves.

It is well understood among the observational cosmological community that while

the use of photometric redshifts over the spectroscopic counterpart is far more efficient

for processing large surveys, they severely lack the same level of precision leading to the

data being highly rounded. As a result, this creates large discrete artificial gaps in the

distribution function for the distance modulus, which is more noticeable for the nearby

galaxies. Consequently, this introduced an artificial bias in the Tv estimator which

manifested itself as a sharp rise in the resulting Tv curve. We noted that within the

statistical literature effects of this nature can be overcome by adding a small amount

of uniform random noise to the data. This has the effect of breaking any statistical ties

and imposing rank to the data where none was present before. We also noted that this

type of effect was also alluded to in R01 when Rauzy considered similar truncation in

the magnitude distribution data.
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10.4 Future Work: Part II - Optimisation

In Chapter 7 we outlined our proposed method for optimising the Tc and Tv estimators.

We detailed an approach that will estimate ζ and τ by assessing their respective signal-

to-noise (s/n) levels, (ζ/δζ) and (τ/δτ). We discussed that one of the most efficient

ways to incorporate this form of optimisation is to base the ζ and τ calculations on

a minimum s/n threshold. This would allow the widths of both δZ and δM to vary

for each estimation of ζ and τ - since the number of galaxies increase with increasing

distance moduli, the corresponding sampled regions for ζ and τ should, in turn, decrease

in size to achieve the required minimum s/n level.

So far, we have generated s/n maps for each of the surveys, and demonstrated how

the s/n varies as a function of the trial apparent magnitude limit, m∗ and δZ (or δM).

One of the main striking features to come out of these maps was a triangular region

where δZ or δM has grown too large, rendering the respective regions, S1 and S3

too narrow to sample any galaxies within the two defined apparent magnitude limits,

mf
lim and mb

lim. Therefore, the s/n was could not be defined, effectively making this

a forbidden region. This region in itself is a useful guide to place a maximum limit

on either δZ or δM if we are to try and maximise the sampling of the data to test

completeness out to as bright a trial magnitude limit as possible. The rest of the

maps indicated how the s/n increased as overall as we move out to fainter values of

m∗. Although we superimposed white lines showing where the maximum s/n value

occurred for each m∗ at the corresponding smallest δZ and δM widths, in practice,

implementing these maps will require a different approach.

Our main goal is to not only optimise the JTH method but also that of the pro-

gramming code itself in order that the next generation of surveys may be processed

more efficiently. This will require us to be able to minimise the width size of the re-

gions that define ζ and τ as much as possible, and still achieve the required target

s/n threshold. As an initial test we can adopt a 2 step procedure that represents a

simplistic approach to implement these maps into our estimators:

1. For a trial minimum s/n threshold, interpolate across the (m∗, δZ) and (m∗, δM)

range. This will give an average value for the δZ and δM widths at each m∗.

2. Incorporate the interpolation into the Tc and Tv calculation such that both esti-

mators should maintain an approximate constant s/n.

Of course this rudimentary test will be prone to exclude galaxies close the bright

magnitude limit of a given survey since for eachm∗ the width of sampling regions will be
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fixed. Further stages of development will allow the code to be more adaptive. However,

a balance will need to be struck between how many galaxies we can realistically sample

in our calculations, to that of the efficiency of the code and assuring that we are

sampling enough to determine if the completeness test is working accurately.

10.5 Using Completeness to Probe Evolution

10.5.1 The mocks

Developing a statistical tool to probe evolutionary models required us to generate a

simple but effective methodology for creating Monte Carlo mock galaxy catalogues. For

ease of comparison and computer efficiency our mocks were drawn using the observed

redshift distributions from MGC, SDSS, and 2dFGRS catalogues. This had the advan-

tage of replicating the observed redshift distribution exactly with in built-clustering

and selection effects. We then only had to mock the magnitude distribution which

was achieved by sampling absolute magnitudes from known luminosity functions based

published luminosity function parameters. This was found to be an effective way to

simulate these surveys.

A total of a thousand realisations were generated for each survey, representing

both the observer’s frame (uncorrected absolute magnitudes) and the galaxy’s frame

(corrected absolute magnitudes). In terms of the quantities we have been concerned

with, both frames of reference are easily summarised as:

Galaxy’s Frame


mcorr = mobs − k(z)− e(z)− Av(l, b),

Mcorr = mcorr − 5 log10(dL)− 25,

Z = 5 log10(dL) + 25.

Observer’s Frame


m = mobs,

M = m− 5 log10(dL)− 25,

Z = 5 log10(dL) + 25,

The statistics Tc and Tv were then applied to both frames using the R01 or JTH

method where appropriate. Within the observer’s frame we found that, in general,

both Tc and Tv indicated acceptable levels of completeness up to the survey magnitude

limits, mf
lim. With the 2dFGRS and MGC mocks there was a definite rise in Tc and

Tv towards the limit for some of the realisations which we concluded may be a sign

of mild k- and evolutionary effects arising from the variation of possible magnitude

distributions from different sampling seeds.
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When examining completeness in the galaxy’s frame we found that both statistics

showed completeness for all three surveys entirely consistent with a curved magnitude

limit due to the addition of evolutionary corrections.

10.5.2 Testing for evolution

In Chapter 9 we implemented our mock catalogues to probe standard pure luminosity

evolution models (PLE). Central to our methodology was the use of the (ζ-χ) distri-

bution, where χ represented a new random variable defined directly from the CDF of

the redshift distribution. We exploited the fact that ζ and χ are independent, and

the resulting joint distribution for a given trial apparent magnitude limit, m∗, brighter

than the true limit should be uniformly distributed on a unit square.

Therefore, we utilised our mocks and starting from a Universal LF we introduced

and evolved M∗ modelled on PLE with a known intrinsic value of β called, βtrue,

and proceeded to sample the mock magnitudes from this evolving LF. Once the mock

catalogue was generated we demonstrated that the resulting (ζ-χ) distribution indicates

correlation. Our goal was then to correct the mock magnitudes with the known PLE

model for a series of trial values of β̂k. For each corrected data-set we then applied two

different statistical techniques to assess the observed correlation between ζ and χ. The

first was the correlation coefficient, ρ, whilst the second measured the relative entropy,

S, of the distribution. For the correct value of β̂k that equals βtrue and thus corrects

the evolved LF distribution to that of a Universal LF, should result in a ρ = 0 for the

correlation coefficient and a minimisation of the relative entropy, S.

We applied both approaches to our set of MGC and SDSS Monte Carlo mock

catalogues with varying success. In terms of the correlation coefficient, ρ, we found

this test statistic to constrain βtrue fairly well when applied to MGC. We generated

200 bootstrap realisations and found that whilst, for each trial value, β̂, the the overall

distribution was roughly centred around the true values for ρ = 0, there was a definite

skewness in each case. We concluded that this could be attributed to the way in which

the M-Z distribution changes its overall curvature near the apparent magnitude limits

when we move from negative values to positive values of β̂.

The results from the SDSS samples yielded surprising results that remain unex-

plained. Our results showed the following: for each of the 200 bootstraps, ρ crossed

zero at two distinct points either side of the βtrue value. Moreover, ρ appeared to peak

sharply significantly above ρ = 0 at exactly the β value we were trying to constrain.

Assuming there are no programming issues, the reasons for this odd behaviour remains
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a baffling one and most definitely requires further exploration. The next step will be to

investigate the higher order moments of ρ to see if we can recover any more information.

The application of the entropy approach was a resounding success for constraining

βtrue. Perhaps one of the main advantages this technique has over the ρ is that all the

higher order moments are contained within the entropy, S, statistic. For every βtrue

case in both MGC and SDSS, we found that the relative entropy technique minimised

at the correct value with no ambiguity at all in the overall β̂ distribution. In fact,

the error distribution about the minimum values of β̂(Smin) were very narrow indeed

compared to the results from the ρ, showing very little, if any, skewness.

10.6 Future Work: Part III - Evolution and Other

Avenues

Clearly there is still much work to be done in our studies of evolution. For the moment,

we have, with the maximum entropy method, a proof of concept that has shown itself

to work remarkably well at constraining a single evolutionary parameter. However,

further work will adopt this directly to real data where, for uncorrected data, the M-Z

distribution is rendered with constant fixed magnitude limits - not curved as we have

been using in our tests. This will require a reworking of how we generate our mock

catalogues and perhaps, ultimately, draw our mocks from N-body simulations instead

of using the observed redshift distributions. Naturally, it would be advantageous to

develop this test to include density evolution as well. Ultimately, for real data k and e-

corrections are often convolved. Therefore, applying our method to constrain evolution

in future surveys will lead a general expression that will convolve PLE and PDE models

with k-corrections into a single expression in the form of e.g. a Taylor expansion.

Development of completeness is not restricted to just the magnitude-redshift data-

sets. There is most certainly scope to adapt and extend all our techniques to other

scenarios. Such areas where ROBUST could be extended are bivariate distributions

that would include surface brightness and/or colour. Of course, wherever there is a

case of testing the independence of two quantities, our statistical analysis could be

adapted to suit.

It may also be possible to reverse the role of completeness and incorporate our

methodology into the next generation of redshift surveys i.e. we can ask, will it be

possible to have completeness by design? This could be an important question as

telescope time comes at a premium for the smaller endeavours. If completeness could

be incorporated into the observing runs it could potentially maximise the time required
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to gather complete samples.

10.7 Concluding Remarks

Statistical cosmology is sure to play an increasingly crucial role for observational cos-

mology in the not so distant future. For example with the the advent of the Aus-

tralian SKA Pathfinder and the equivalent MerrKAT in South Africa both acting as

the progenitors to the Square Kilometre Array, the cosmology community will surely

be overwhelmed with an unprecedented amount of data. Such constructions will mark

the next generation in surveys which will be on increasingly adventurous scales (both

in volume and shear numbers of objects). As a result, the need for more sophisticated

statistics is quickly becoming a challenge of a dual nature that should not be overlooked

- to develop unbiased estimators that can efficiently process large numerical data-sets.



Appendix A

Modelling m∗

If one has an analytical expression for both the k(z)- and evolutionary corrections,

should the trial apparent magnitude, m∗, in Tc and Tv be modelled accordingly? Below

we consider the alternative ways the M -Z distribution may be constructed and how

this impacts our test statistics.

A.1 Methods for Corrections

Approach #1 (Rauzy, 2001): The apparent magnitude for each galaxy was firstly

corrected for k(z)-correction, e(z)-correction and extinction, A(l, b). For simplicity, we

only consider the effect of combinations of e(z), and k(z)−corrections. Therefore, the

corrected apparent magnitude for the ith galaxy, mcorr
i is given by,

mcorr
i = mi − k(zi)− e(zi), (A.1)

where mi is the uncorrected raw apparent magnitude. The author then converts to

absolute magnitudes by folding in Equation A.1 to give,

M corr
i = mcorr

i − 5 log(dL)− 25

= mi − 5 log(dLi
)− 25− k(zi)− e(zi), (A.2)

where, dLi
is the luminosity distance of the ith galaxy. Finally, the same corrections

are added to the distance modulus calculations giving,

Zcorr
i = 5 log(dLi

) + 25 + k(zi) + e(zi) (A.3)

Since the corrections are effectively added twice, the corresponding trial limiting ap-

parent magnitude, m∗ is modelled as,

m∗ = M corr
i + Zcorr

i = mj
∗ (A.4)
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where mj
∗ denotes the initial trial value of mj

∗. This implies that each trial mj
∗ will be

a fixed straight line on the resulting M-Z plane. As such all the points in this plane

will be perturbed in a diagonal direction with the apparent magnitude limits, mb
lim and

mf
lim of the survey remaining straight and thus parallel to each mj

∗. This is illustrated

in the top panel of Figure A.1 where we show the resulting MGC M-Z distributions

where, no corrections have been added (green), only k(z)-corrections have been added

(shown in blue), only e(z)-corrections have been added (shown in black), and where

both k(z)- and e(z)-corrections have been added (shown in black).

We observe that for the case where the evolutionary correction has only been ac-

counted for, the distribution of points is systematically shifted diagonally downwards

compared to that of the green uncorrected data. The effect is small, however, since the

value of β in the evolutionary model is small (i.e. β = 0.75). Moreover, the reason we

observe a downward shift is due to the functional form of the model which is given by,

e(z) = −β × 2.5 log10(1 + zi). (A.5)

Where this equation is taken from our analysis of MGC in 3.2.3 (on page 60). In

contrast, the addition of the k(z)-corrections, in blue, shows a significant upward shift

particularly with the more distant galaxies. When we include both k(z)- and e(z)-

corrections, in red, we can see that overall, the distribution is dominated by the k(z)-

correction which is not unsurprising.

The movement of galaxies on this Mcorr-Zcorr raises a few very pertinent questions:

1. How sensitive are Tc and Tv in the Mcorr-Zcorr plane?

2. Are the surveys, MGC, SDSS and 2dFGRS simply too shallow for our statistics,in

their current construction, to observe effects such as evolution that should, by

definition, render the uncorrected M-Z distribution un-separable?

3. Consequently, is there an alternative way to model the data that would maximise

the sensitivity of our test statistics?

There is no straight forward answer to any of these questions, however, we can begin

by addressing the last question first and consider two other possible approaches to

modelling m∗.
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Approach #2 (Fixing Z): We now consider applying the corrections to the mag-

nitudes only and maintain a fixed distance modulus Z that is derived from the redshift

distribution that is not corrected. With this approach we derive the following expres-

sions for M and Z such that,

M corr
i = mi − 5 log(dLi

)− 25− k(zi)− e(zi), (A.6)

which is identical to Equation A.2. Since the calculated observed distance modulus,

Zobs
i , remains uncorrected throughout the expression is simply given by,

Zobs
i = 5 log(dLi

) + 25, (A.7)

which now leads to trial apparent magnitude limit that could legitimately be modelled

as,

m∗ = M corr
i + Zobs

i = mj
∗ − k(zi)− e(zi). (A.8)

If we look at the bottom-left panel of Figure A.1 we can see the resulting M-Z distribu-

tions after applying these corrections. By correcting the absolute magnitudes only, we

restrict the movement of galaxies on the plane to a horizontal direction. Comparing

this to the Approach # 1 where we correct both M and Z, we now observe that if

we apply any combination of the k(z)- and e(z)-corrections the resulting distributions

shows a distinct curved apparent magnitude limit, mf
lim (depending on the sign con-

vention of the correction). For the case of the k(z)-corrections (in blue), the overall

distribution is corrected towards brighter magnitudes compared to that of the case

where no corrections have been applied (in green). Conversely, the e(z)-corrections

curve the distribution towards fainter magnitudes compared to the uncorrected data.

In each case, we observe increased divergence from the uncorrected M-Z distribution

as we move to higher values of distance modulus. This is expected since both k(z)-

and e(z)-corrections have a strong redshift, z, dependency.

Approach #3 (Fixing M): Conversely we could correct the distance modulus, Z,

and maintain a constant uncorrected absolute magnitude. For this case we now have

expressions for M and Z given by,

Mobs
i = mi − 5 log(dL)− 25. (A.9)

Finally, the (k+e)-corrections are added to the distance modulus calculations giving,

Zcorr
i = 5 log(dL) + 25 + k(zi) + e(zi). (A.10)
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Figure A.1: MGC survey M -Z distributions showing varying methods for correcting the
data. In all panels , the distribution of blue points represent k(z)-corrected data, the black
shows e(z)-corrected data only, the red shows (k+e)-corrections, and the green points show
no corrections to the data. The top panel illustrates Approach # 1, where both M and Z
have been corrected. The effect of this sees galaxies move in a diagonal motion which renders
mf

lim to remain straight and fixed. The the bottom-left panel shows illustrates Approach # 2
where we the Z distributions remain fixed and we correct only theabsolute magnitudes.
Galaxies in this cases can move only left or right in the M -Z plane according to the correction
model applied to the data. Finally, the bottom panel represents Approach # 3 where the
M distribution remains fixed with the Z values being corrected. In this case the corrected
galaxies can move only up or down on the plane.
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This leads to a trial apparent magnitude limit, m∗ that could be modelled as,

m∗ = M + Z = mj
∗ + k(zi) + e(zi). (A.11)

This form of correction is now shown in the bottom-right panel Figure A.1. In this

case galaxies can only move vertically on the M-Z plane creating, once again, a curving

of the magnitude limit.

A.2 How Should We Sample the Data?

A.2.1 A constant m∗

Now that we have established a further two approaches for correcting redshift-magntiude

survey data, we can now examine their impact on the Tc and Tv completeness statistics.

Although the three possible routes one can choose to obtain an M-Z distribution that

represents a corrected data-set, we can still construct our test statistics based on an

m∗ that remains modelled as a straight line in all three cases. In Figure A.2 we apply

m∗ in exactly this way to all three approaches detail in the previous section.

In the top-left panel we show the Tc and Tv results from Chpater 3 (page 62) where

no corrections have been added (i.e. the observed raw data). In the panel right of this

we show results where corrections have been added to both M and Z as in the original

R01 procedure (Approach #1). You will see the red lines in this panel representing the

same (k+e)-corrections also discussed in Chapter 3 (page 62). We also show the effect

of the individual corrections of evolution and k shown respectively in black and blue.

The effect of the e-correction alone seems, to the eye, to make only a slight difference

in the M-Z distribution compared to the uncorrected case shown in the top panel of

Figure A.1. However, we observe a significant departure from the 3σ completeness

level at m∗∼ 18.1 mag as indicated in Figure A.2 compared to the k-correction.

If we look now at the bottom-left panel in Figure A.2, where we apply Approach

#2, we now observe very different behaviour. By sampling the galaxies within a region

defined by an m∗ that is straight and not modelled by the k- and/or e-corrections, we

obtain a new measure of completeness. It is this approach that was successfully applied

in Chapter 9 when creating our mock galaxy catalogues to probe evolutionary mod-

els. Since the corrections cause the magnitude limit of the M-Z distribution to curve

according the particular model applied, we observe Tc and Tv to reflect this. In the

bottom-left panel of Figure A.2 the evolution corrected magnitudes (in black) recover a

Tc and Tv that indicate the data is complete up to the survey limit of mlim = 20.0 mag.
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Figure A.2: MGC survey Tc and Tv statistics resulting from applying varying methods for
correcting the data. In each case we have assume a faint limit only (i.e R01 method). The top-
left panel shows the results where no corrections have been added to either the magnitudes
or the distance modulus. In the remaining panels the black lines are resultant from applying
e(z)-correction only, the blue represent the k(z)-corrected data and the red lines represent
the combined (k + e)-corrections. To distinguish between Tc and Tv we have use a solid line
and a dashed line respectively. In the top-right panel, both the distance modulus, Z, and the
absolute magnitudes, M , have been corrected. In the bottom-left panel we have corrected M
only, and in the bottom-right pane we correct Z only.
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However, both Tc and Tv do not drop sharply until m∗∼ 20.1 mag. Conversely, when

the k and (k+e)-corrections are now included both Tc and Tv drop at respective ap-

parent magnitude limits of m∗∼ 19.5 mag (blue lines) and m∗∼ 19.7 mag (red lines).

As discussed in Chapter 9, this behaviour reflects the direction of the curved M-Z dis-

tribution. If, in the case of the e-correction, the M-Z distribution is curved towards

fainter magnitudes than the observed uncorrected data, then it is inevitable that Tc

and Tv will determine the limit to be approximately equal to faintest galaxy in the

corrected data-set. Since the corrections we are considering are z-dependent, the rate

at which the distribution is curved becomes more acute with increasing redshift as we

have already discussed for Figure A.1. Moreover, as we move to greater redshifts we

are estimating Tc and Tv with a substantially increased number of galaxies contained

within a larger volume. Therefore, galaxies contained within this region are more likely

to dominate the statistical results compare to the contribution of nearby galaxies. As

such, when we observe Tc and Tv begin to drop before the actual mlim of the survey

as with the k and (k+e)-corrections, the galaxies at higher distance moduli are now

significantly brighter than m∗= mf
lim= 20.0 mag. This manifests as a deficit in the

number of galaxies counted in the S2 and S4 regions for ζ and τ respectively, leading

to Tc and Tv dropping systematically below the −3σ limit.

The same behaviour is observed when we now correct the distance moduli and keep

the absolute magnitudes as ‘raw’ as in Approach #3 (see the bottom-right panel in

Figure A.2). Since the corrections are begin added to Z, the behaviour of Tc and Tv

is the opposite to that of Approach #2 where the correction are subtracted from the

absolute magnitudes.

The fundamental construction of the Tc and Tv statistics do require further inves-

tigation if we are to improve and maximise their use within the analysis of redshift

surveys (and perhaps other areas of cosmology). Therefore, exploration into modelling

m∗, when applying Approaches #2 and 3, may lead us to a better understanding of

our statistics. This would be achieved by modelling m∗ according to the evolutionary

and/or k-correction used to correct the data. Thus, as the magnitude limit in the M-Z

distribution curves for a given model correction, the m∗ line would also curve according

to the z-dependent model.
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