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Abstract

A microarray is a powerful tool for surveying the expression levels of many thou-

sands of genes simultaneously. It belongs to the new genomics technologies which

have important applications in the biological, agricultural and pharmaceutical

sciences.

In this thesis, we focus on the dual channel cDNA microarray which is one of

the most popular microarray technologies and discuss three different topics:

• Optimal experimental design,

• Estimating the true proportion of true nulls, local false discovery rate

(lFDR) and positive false discovery rate (pFDR),

• Dye effect normalization.

The first topic consists of four subtopics each of which is about an indepen-

dent and practical problem of cDNA microarray experimental design. In the first

subtopic, we propose an optimization strategy which is based on the simulated

annealing method by Wit et al. (2005) to find optimal or near-optimal designs

with both biological and technical replicates. In the second subtopic, we discuss

how to apply Q-criterion for the factorial design of microarray experiments. In

the third subtopic, we suggest an optimal way of pooling samples, which is actu-

ally a replication scheme to minimize the variance of the experiment under the
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constraint of fixing the total cost at a certain level. In the fourth subtopic, we

indicate that the criterion for distant pair design (Fu and Jansen, 2005) is not

proper and propose an alternative criterion instead.

The second topic of this thesis is dye effect normalization. For cDNA microar-

ray technology, each array compares two samples which are usually labelled with

different dyes Cy3 and Cy5. It assumes that: for a given gene (spot) on the array,

if Cy3-labelled sample has k times as much of a transcript as the Cy5-labelled

sample, then the Cy3 signal should be k times as high as the Cy5 signal, and

vice versa. This important assumption requires that the dyes should have the

same properties. However, the reality is that the Cy3 and Cy5 dyes have slightly

different properties and the relative efficiency of the dyes vary across the intensity

range in a “banana-shape” way. In order to remove the dye effect, we propose a

novel dye effect normalization method which is based on modeling dye response

functions and dye effect curve. Real and simulated microarray data sets are used

to evaluate the method. It shows that the performance of the proposed method

is satisfactory.

The focus of the third topic is the estimation of the proportion of true null

hypotheses, lFDR and pFDR. In a typical microarray experiment, a large number

of gene expression data could be measured. In order to find differential expressed

genes, these variables are usually screened by a statistical test simultaneously.

Since it is a case of multiple hypothesis testing, some kind of adjustment should

be made to the p-values resulted from the statistical test. Lots of multiple test-

ing error rates, such as FDR, lFDR and pFDR have been proposed to address

this issue. A key related problem is the estimation of the proportion of true null

hypotheses (i.e. non-expressed genes). To model the distribution of the p-values,

we propose three kinds of finite mixture of unknown number of components (the

ii



first component corresponds to differentially expressed genes and the rest compo-

nents correspond to non-differentially expressed ones). We apply a new MCMC

method called allocation sampler to estimate the proportion of true null (i.e. the

mixture weight of the first component). The method also provides a framework

for estimating lFDR and pFDR. Two real microarray data studies plus a small

simulation study are used to assess our method. We show that the performance

of the proposed method is satisfactory.
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Chapter 1

Introduction

Since worldwide efforts to sequence genomes began formally in 1990, rapid tech-

nological advances have been introduced so that over the past few years a large

number of organisms have had their genomes completely sequenced, including

yeast, worm, fly, mouse and human. But the billions of bases of DNA sequence

do not tell us what all the genes do and how sets of genes interact with each

other in the genome. In order to solve these problems, a lot of efforts are being

made to the functional genomics which is an area of genome research concerned

with assigning biological function to DNA sequences. For functional genomics

new technologies are being applied to take full advantage of the large and rapidly

increasing body of sequence information. Among the most powerful and ver-

satile tools are DNA microarrays, which allow simultaneous monitoring of the

expression levels of numerous genes.

The principle of a microarray experiment, as opposed to the classical northern-

blotting analysis, is that mRNA from a given cell line or tissue is used to generate

a labelled sample (sometimes termed the target), which is hybridized in parallel

to a large number of DNA sequences (sometimes termed the probes), immobilized
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CHAPTER 1. INTRODUCTION 2

on a solid surface in an ordered array. Tens of thousands of transcript species

can be detected and quantified at the same time. Although many different mi-

croarray systems have been developed, the most commonly used systems today

can be divided into two groups, according to the arrayed material: complemen-

tary DNA (cDNA) and oligonucleotide microarrays. High-density oligonucleotide

microarray experiments provide direct information about the expression levels in

a mRNA sample of the 200,000-500,000 probed DNA sequences. By contrast,

cDNA microrarray experiments typically involve hybridizing two mRNA sam-

ples, each of which has been converted into cDNA and labelled with its own

fluorophore (Cy3 and Cy5 dyes) respectively, on a single glass slide that has been

spotted with as many as 10,000-20,000 cDNA probes. Data from such experi-

ments provide information on the relative expression of the sample genes, which

correspond to the probes.

Microarray experiments usually generate large and complex multivariate data

sets, and some of the greatest challenges lie not in generating these data but in

the development of statistics tools to design the experiment and analyse the large

amount of data. In this thesis, our interest is the cDNA microarray and we try to

discuss three different topics in the statistical analysis of the cDNA microarray

experiments in Chapter 2, 3 and 4 respectively.

The first general topic is relevant to the optimal design of cDNA microarray

experiments. As two samples can be applied or “hybridized” to a single cDNA

microarray, the array is a blocking factor. Another nuisance factor is the two-level

dye factor, as the gene expressions in the two samples on an array are measured

via a Cy3 and a Cy5 dye. When more than two sample conditions or treatments

are of interest, then not every sample can appear on an array so that some form of

an incomplete-block design should be considered. This brings with it a challenge
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how to design the experiments (i.e. which samples should be co-hybridized on a

single array) so that the efficiency and reliability of the microarray data can be

improved and the precise estimates of biologically important parameters can be

obtained.

Many of the microarray designs currently used are the so-called reference

designs. In this type of design, each sample condition of interest is compared with

a fixed, standardized condition. Making all comparisons to a reference sample is

however inefficient, because half of the hybridization resources are allocated to the

reference sample, which is usually of little or no interest. Alternatives to reference

designs have been suggested. Dye swap designs and loop designs have gained some

popularity. However, Kerr and Churchill (2001a) have pointed out that dye swap

designs are quite inefficient and loop designs are optimal only for a relatively

small number of conditions. Wit et al. (2005) have shown how the application

of a simple optimization algorithm, simulated annealing with local design moves,

to incomplete-block designs with block size 2 can find optimal or near-optimal

designs for given number of conditions and arrays based on different optimality

criterion. However, this optimization strategy just assumes that for each sample

condition (treatment) the number of independent biological replicates is not less

than the total number of replicates needed. Unfortunately, in some cases this

assumption does not stand (i.e. no enough biological replicates available) so that

technical replicates have to be used. Then a question arises: How to assign the

biological and technical replicates to the arrays in an optimal way? To deal

with this problem, we follow the spirit of the simulated annealing framework for

optimal design and develop a modified optimization strategy to find the optimal

or near-optimal design and allocation of biological and technical replicates in the

first part of Chapter 2.
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In recent years more and more biologists begin to consider multi-factorial

microarray experimental set-ups to identify differentially expressed genes, e.g.

Caetano et al. (2004). The problem of how to find optimal (efficient) factorial

design has received some attention. For example, Glonek and Solomon (2004)

used A-optimality to find optimal designs of factorial experiment with a small

number of factors. In the second part of Chapter 2, we use a new multi-factorial

design optimality criterion called Q-optimality (Tsai et al., 2000) and show that

under the simulated annealing framework it can be used to search near-optimal

multi-factorial microarray experimental designs.

Statistical design of microarray aims at reducing unwanted variations to in-

crease the precision of the quantities of interest. Pooling true biological RNA

replicates is a cost-effective way to achieve this goal. In the third part of Chapter

2, we make some practical suggestions about optimal pooling samples for a mi-

croarray experiment. We find a replication scheme that minimizes the variance

of the experiment under the constraint of fixing the total cost at a certain level.

Recently the combined study of gene expression and molecular marker data

has been proposed as a novel strategy for the analysis of regulatory networks.

Costs of such studies are high and require that resources microarrays and samples

are used as efficiently as possible. Fu and Jansen (2005) propose a new design

called distant pair design for this kind of studies, which co-hybridizes sample

individuals with dissimilar genomes. The corresponding optimality criterion is

defined for the case of single marker and is further extended to the case of multiple

markers by simply averaging the criterion for single marker. We believe the

extension is not very proper and propose a new criterion for the case of multiple

markers as an alternative in the final part of Chapter 2.

The second topic in this thesis is about dye effect normalization. The current
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technology of cDNA microarray is based on measuring optical intensities of dye

labeled cDNA that has hybridized to gene-specific probes on the microarray. Two

different types of dyes Cy3 and Cy5 are commonly used for the two samples on

the array. Ideally, these two dyes should have the same properties so that the

direct comparison between the two gene expression data of the two channels

can be meaningful. However, the fact is that the dyes have slightly different

properties and the relative efficiency of the dyes usually vary across the intensity

range in a “banana-shape” way. In order to remove the dye effect as much as

possible, several methods have been proposed, such as dye-swap normalization

by Yang et al. (2002b) and intensity-dependent dye normalization (LOESS) by

Yang and Speed (2003). In Chapter 3 we suggest a new dye effect normalization

method based on modeling dye response functions and dye effect curve. The

performance of our method is compared to LOESS by using simulated microarray

gene expression data and real microarray data.

In a typical cDNA microarray experiment, a large number of gene expressions

are usually measured. When these variables are simultaneously screened by a

statistical test, it is necessary to consider the adjustment for multiple hypothesis

testing. Quite a few error rates of multiple testing such as false discovery rate

(FDR), positive false discovery rate (pFDR) and local false discovery rate (lFDR)

have been proposed and widely used to address this issue. A related problem is

the estimation of the proportion of true null hypotheses, π0. In Chapter 4, we

first review the background of multiple hypothesis testing and its error rates, then

we deal with the estimation of π0 by modeling p-values from the experiment with

finite mixtures with unknown number of components. Three different mixture

models are considered. A newly developed MCMC method, allocation sampler

(Nobile and Fearnside, 2007) is not only applied to estimate π0 but also pFDR
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and lFDR for both real and simulated microarray gene expression data.

Since this thesis deals with three very different topics in the statistical anal-

ysis of cDNA microarray experiments in Chapter 2, 3 and 4, we include a more

detailed introduction section for each of these chapters.

The Chapter 5 is a conclusion of the whole thesis and discussion of further

potential research opportunities.



Chapter 2

Optimal design of cDNA

microarray experiments

2.1 Introduction to cDNA microarray experi-

mental design

Spotted complementary DNA (cDNA) microarray is a powerful and cost-effective

technology which provides molecular biologists and geneticists with a tool to

monitor thousands of genes simultaneously (Brown and Botstein, 1999). Since

its introduction in 1995 (Schena et al., 1995), this revolutionary technology has

greatly influenced and accelerated the molecular biological and medical research.

A cDNA microarray, also called two-channel microarray or spotted microar-

ray, typically consists of thousands of microscopic spots of DNA oligonucleotides

(gene). For each spot, it measures the relative abundance of the DNA samples

(under two different treatments) hybridized to the spot. The experiment usually

consists of several steps. First, pools of mRNA derived from experimental or

7
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clinical samples under two treatments are reversed-transcribed into cDNA and

labelled with Cy3 (green) and Cy5 (red) fluorescent dyes respectively. Second,

the two labelled cDNA pools are mixed in equal proportions and hybridized to

the probes on a solid surface (i.e. array), which can be glass or a silicon chip.

The probes are synthesized prior to being spotted onto the array surface and

can be oligonucleotides, cDNA or small fragments of PCR products that corre-

spond to mRNAs. Third, probe-target hybridization occurs on the array: the

probe catches the complementary matched cDNA and the unhybridized cDNA

is washed away. Finally, the red and green signal intensities are separately read

out for each spot on the array by a laser scanner. The ratio of the optical signal

intensities represents the relative abundance of the corresponding mRNA under

two treatments. A higher intensity of one treatment over the other means that

the spot (gene) is more “active” under the former.

2.1.1 Microarray experimental effects

The primary objective of a microarray experiment is to look for changes in gene

expression across factors of interest. The factor could be the different type of

samples (tissues) or the different drug or stress treatments (conditions) or the

different stages of a biological process (time points).

Basically, there are four microarray experimental effects:

1. Treatments (T): the categories of the factor of interest.

2. Genes (G): spotted sequences (e.g. genes, ESTs, or DNAs).

3. Dyes (D): Cy5 (red) and Cy3 (green) labels.

4. Arrays (A): number of arrays over which the hybridization is replicated.
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Therefore there are 15 experimental effects in a microarray experiment in

total, including four main effects (T, G, D, A), six two-factor interactions (TG,

TD, TA, GD, GA, DA), four three-factor interactions (TGD, TGA, TDA, GDA)

and one four-factor interactions (TGDA).

Treatment main effects (T) account for overall differences in treatments. Such

differences could arise if some treatments have more transcription activity in

general.

Gene main effects (G) occur when certain genes emit a higher or lower fluo-

rescent signal overall, compared to other genes. These effects arise because some

genes have generally higher or lower levels of expression than others irrespective

of treatments, dyes or arrays.

Dye main effects (D) measure the difference in the two dye fluorescent labels.

For example, one dye may be consistently brighter than the other when averaged

over the other factors.

Array main effects (A) account for differences between arrays, averaged over

all genes, dyes, and treatments. These effects arise if, for example, arrays are

probed under inconsistent conditions that increase or reduce hybridization effi-

ciencies of the labeled cDNA.

Treatment × Gene (TG) interactions arise when the relative expressions of

specific genes are different from one treatment to the other (when averaged over

arrays and dyes). This can be illustrated graphically in Figure 2.1 (a). These

effects are the most important in the experiment and their identification and

quantification is often the main objective of the experiment.

Dye × Gene (DG) interaction effects occur when differences in intensity be-

tween Red and Green dyes are different from one gene to the other. This can be

illustrated graphically in Figure 2.1 (b). This can happen when cDNA sequences,
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(a) (b)

(c) (d)

Figure 2.1: The four main effects result in six two-factor interactions ( TG,
TD, TA, GD, GA, DA). Here we illustrate the four most impor-
tant interactions effects, which are (a) gene-treatment interac-
tion, (b) gene-dye interaction, (c) gene-array interaction and (d)

dye-treatment interaction.

matching specific genes on the chip, incorporate red dye molecules at a different

rate than green molecules while sequences specific to other genes show the reverse

trend. This effect is quite likely due to the chemistry of dye incorporation and

so must be accounted for in any array experiment. Note that if this effect exists

and has not been detected, estimates of relative expressions are biased and may

lead to misleading results.

Array × Gene (AG) interaction effects or spot effects may arise because there

is no complete control over the amount and concentration of cDNA immobilized

from one array to the next. This can be illustrated graphically in Figure 2.1 (c).

A Dye× Treatment (DT) interaction effect for given gene A is shown in Figure
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2.1 (d). It may occur in the experiment when one fluorescent dye hybridizes more

with cDNA from treatment T1 than from T2, but the other dye is consistent. If

this sort of effect was consistent over many genes and arrays, we should find a

DT interaction. However, we do not always see this happen in practice.

Besides the above four main effects and four two-factor interaction effects, it

is difficult to relate the other remaining 7 higher-order interaction effects to the

microarray experimental process. For example, two-factor interaction effects like

Array × Dye (AD), Array × Treatment (AT), and three- factor interaction effect

like Array × Dye × Treatment (ADT) do not involve the genes. It is difficult to

relate any of these to the process underlying microarrays and to suppose a reason

why such interactions would come into play. Array × Dye × Gene (ADG), Array

× Treatment × Gene (ATG), Dye × Treatment × Gene (ATG), and Array ×
Dye × Treatment × Gene (ADTG) effects all do involve the genes. The presence

of such interactions would mean there is gene-specific variation attributable to

a particular array and dye, a particular array and treatment, a particular dye

and treatment, or a particular array, dye, and treatment combination. Again,

these high-order interactions are difficult to relate to the physical and chemical

processes that make up this technology and so they are generally assumed not to

occur. This assumption should, however, be checked in practice.

2.1.2 Replication

In noisy experiments, replication is an important concept. It is necessary in order

to reduce the variability inherent in microarray experiments. Generally, there are

two types of replication: technical and biological. One form of technical repli-

cation is spot duplication. If space permits, cDNAs can be spotted in duplicate
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on every array and the degree of conformity between duplicate spot intensities

is a good indicator of the quality of the slide and hybridization. It is advisable,

however, that duplicate spots be well spaced apart rather than spotted adjacently

as this facilitates inspection of the degree of variability across the slide. Another

type of technical replication is the array replicate. It is the replication of multi-

ple arrays hybridized with RNA from the same sample (preparation). Due to the

length and complexity of a microarray experiment, it is crucial to check that the

results were not obtained by mere chance fluctuations, but rather arise from gen-

uine underlying biological variation. Technical replication can be used to obtain

an average measurement from each sample or to quantify systemic variation.

Biological replicates could be hybridizations performed using RNA from in-

dependent preparations from the same source, or preparations from biologically

distinct sources, such as different organisms or different versions of a cell line.

The latter type of biological replication is more popular since it encompasses

greater variation in measurements. For instance, an experiment investigating

drug treatment in mice is subject to the variation within the mice population,

such as differences in immune system, sex, and age. The greater variability in-

herent in this form of replication contributes to a broader generalization of the

experimental results.

In conclusion, a researcher should use biological replicates to validate gener-

alizations of conclusions and technical replicates to estimate and eliminate the

variability associated with the hybridization.
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2.1.3 Pooling

Due to the instability of RNA, it can be difficult to extract sufficient material

for hybridization, especially if the sample is to be spread over several replicates.

Sometimes the RNA required for even a single array may be unachievable for

small organisms. In such circumstances, the RNA from several samples could be

pooled by biologists to make up the volume needed, but this practical constraint

may alter the objectives of the investigation. After pooling the researcher is

no longer able to make inferences about the individual samples, but only about

the population from which they were drawn. This restriction may not be too

important when the purpose of analyzing individual samples is to make inference

on the population, which is typically the case.

When one wishes to characterize a population, pooling might reduce the over-

all costs of an experiment because arrays are often, though not always, more

expensive than the generation of the samples. The cost of an experiment can

be substantially reduced by measuring a number of pooled samples on a smaller

number of arrays. Pooling multiple replicates will have the effect of decreas-

ing the population variance and diminishing random fluctuations. However, the

researchers should be aware of situations where it is not appropriate to pool sam-

ples. For example, when studying the effect of a drug on cancer patients, the

gene expression in specific patients is of interest. In this case, hybridizations

with individual samples should be carried out. On the other hand, in an inves-

tigation of two inbred homozygous ecotypes of Arabidopsis, differences between

the individual plants are not of interest, so pooling may be justified.
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2.1.4 Experimental designs

A single microarray experiment is just a comparison between two RNA samples

collected under different treatments, both are applied to the same dual-channel

array. The array can be considered as a blocking factor, similar to a plot of land

in an agricultural field trial. Therefore, basic microarray experimental design is

a block design with block size two. Since design can involve direct or indirect

comparisons, there are usually more than one way to pair and label samples for

cDNA microarrays.

2.1.4.1 Direct comparisons

Due to the parallel nature of dual-hybridization microarrays, the most efficient

design to compare two samples is to directly compare them on the same array.

By pairing samples, we can examine the relative abundance of the two samples,

while accounting for variation in spot size that would otherwise contribute to the

error.

Dye swap is a simple and effective design for the direct comparison of two

samples. This design compares two samples by using two arrays instead of one.

On array one, one sample is assigned to the red dye, and the other sample is

assigned to the green dye. On array two, the dye assignments are reversed. See

Figure 2.2 (a). In the vocabulary of experimental design, a dye-swap design is a

complete block design, taking the form of a 2×2 Latin Square (Table 2.1). This

simple design plan removes dye effect from the measurements by taking the mean

log expression ratio on each probes for both dye-swaps. This arrangement can

also be repeated by using an even number of arrays (e.g. four or six or more)

to compare the same two biological samples. See a simple example in Figure 2.2
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Red dye (Cy5) Green dye (Cy3)
Array 1 Sample 1 Sample 2
Array 2 Sample 2 Sample 1

Table 2.1: A Latin Square design to compare two samples directly.

(b). Repeated dye-swap experiments are used for reducing technical variation

(although not very popular in practice). If independent biological samples are

used, the experiment will account for both technical and biological variation.

If a microarray experiment involves more than two samples under different

treatments, then not every sample can appear on every array and some form

of incomplete block design should be considered instead. This brings with it

a challenge of how to design the experiments (i.e. which samples should be co-

hybridized on a single array) so that the efficiency and reliability of the microarray

data can be improved and precise estimates of biologically important parameters

can be obtained.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Diagrammatic representations of the designs of six microarray
experiments. Each microarray array is represented by an arrow.
The head of the arrow indicates that the sample was labeled with
Cy5, while the tail represents a sample that was labeled with
Cy3. (a) Direct comparison (dye-swap) between two samples;
(b) A repeated dye-swap experiment between two samples with
four arrays; (c) A reference design (indirect comparison) studies
three samples; (d) A variation of the reference design (Figure 2.2
(c)) using a dye swap for each comparison; (e) A loop design with
five treatments; (f) An interwoven loop design for five treatments

and ten arrays.
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2.1.4.2 Reference design

The reference design of Kerr and Churchill (2001a) affords a means of indirect

comparison, and is commonly used for studying multiple treatments of a factor

of interest. It is called a reference design because it uses an aliquot of a common

reference RNA as one of the samples hybridized to each array (See a simple

example in Figure 2.2 (c)). This is done so that the intensity of hybridization to

a spot for a test sample is measured relative to the intensity of hybridization to

the same spot on the same array for the reference sample (typically of no scientific

interest).

The reference sample is usually labelled with one dye and acts as an inter-

mediate and allows an indirect comparison between the samples of interest, all

of which are labelled with the other dye. This means that treatment effects are

completely confounded with dye effects. Consequently, the effects of interest,

treatment × gene (TG) are completely confounded with dye × gene (DG) effect.

If the dye × gene (DG) effect is significantly noticeable, then the microarray data

from reference designs have to be validated before making conclusions. Alterna-

tively a reverse-dye comparison could be incorporated in a biological replicate to

account for the dye effect on specific genes (i.e. use two arrays in a dye-swap

configuration, see an example in Figure 2.2 (d)). Another disadvantage is that

making all comparisons to a reference sample can be inefficient, because half of

the hybridization resources (e.g. arrays) are allocated to the reference sample,

which is presumably of little or no interest.

In spite of its inefficiency, the reference designs are very popular among practi-

tioners. There are several reasons. First of all, reference designs are very intuitive

to understand: by being measured against the same reference the values across

different arrays can be directly compared with one another. Secondly, it is also
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very straightforward to use the same reference to control variation in each spot

and there are only two path-steps connecting two samples in a reference design,

so each comparison can be made with equal efficiency. Thirdly, as long as the

amount of reference sample is not limiting, the reference design can be extended

to handle a large number of treatment levels. From a practical perspective, every

new sample in a reference experiment is handled in the same way. This reduces

the possibility of laboratory error and increases the efficiency of sample handling

in large projects. Finally, the reference design is robust to loss of arrays resulting

from poor quality hybridization, although the loss of one array may entail the

complete loss of information about one nonreference sample.

2.1.4.3 Loop design

The loop design is an alternative to the reference design (Kerr and Churchill,

2001a). Loop designs compare two treatments via a chain of other treatments

without the need for a reference treatment. The nominal last treatment is con-

nected with the nominal first treatment. A simple loop design with five treat-

ments is shown in Figure 2.2 (e).

The loop design is more efficient than the reference design since the former

can measure twice the number of replicates by using the same number of arrays as

the latter. In simple loop designs, treatments are balanced with respect to dyes

because each sample is labeled once with the red dye and once with green dye.

This balance means that dye effects are unconfounded with treatment effects, so

treatment × gene effects are unconfounded with dye × gene effects. Thus the

effects of interest will not be biased by any strange behavior of genes with respect

to dyes.

Along with these advantages, there are three problems with loop designs.
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First of all, contrasting two treatments far apart in the loop involves modeling

many indirect effects, corresponding to the arrays linking the two treatments of

interest. This adds substantial variance to many of these contrasts (Khanin and

Wit, 2004). Thus loop designs are not ideal for large numbers of treatment levels

(Kerr and Churchill, 2001a). Secondly, loop designs are less robust against the

presence of bad quality arrays: two or more bad arrays can break the loop apart

and collapse the experiment. However, this problem can be solved by repeating

the bad quality arrays. Finally, adding additional treatment levels to the loop

design is not as easy as in the reference design.

2.1.4.4 Interwoven loop design

As alternatives to the reference design, loop designs have gained some popularity

among practitioners. However, Kerr and Churchill (2001a) have pointed out that

loop designs are optimal only for a relatively small number of treatments. Wit

et al. (2005) identified a type of designs, interwoven loop designs, that seems to

have good optimality properties.

The interwoven loop design, sometimes also called the replicated loop design,

is an extension of the original loop design (Churchill, 2002). If the number of

microarrays is a multiple k of the number of treatments p, then an interwoven

loop design Ip(1, j2, ..., jk) can be defined as an ordinary loop design (with k repli-

cates) where each sample is also measured with respect to the samples that are

j2, j3, . . . , jk jumps further along the circle. An interwoven loop design example

I5(1, 2) is shown in Figure 2.2 (f). When the number of treatments is quite large,

interwoven loop designs have been demonstrated to have very nice properties:

easy to implement, high efficiency, automatic dye balance (Wit et al., 2005).
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2.1.4.5 Alternative designs

Besides the designs discussed above, it is possible to find other good designs.

John and Mitchell (1977) suggested exhaustive search algorithms for finding the

optimal design within particular classes of designs, but these have only limited

practical applicability. John and Williams (1995) discussed the employment of

simulated annealing for optimal row-column designs that could be directly ap-

plicable to dual channel microarray designs. Kerr and Churchill (2001b) used

a computer program for graphs and taking into account other design properties

such as balance, they searched exhaustively for non-isomorphic connected de-

signs. However, this is only possible when the number of microarrays is small,

typically less than 10.

Inspired by these works, Wit et al. (2005) applied a simple optimization strat-

egy, also based on simulated annealing, to obtain optimal or near optimal mi-

croarray experimental designs in the sense of minimizing a criterion based on the

variance of all the possible contrasts between treatments.
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2.2 Optimal design with biological and techni-

cal replicates

Wit et al. (2005) applied an optimization strategy based on simulated annealing

to search for near-optimal designs for any number of treatments and any num-

ber of arrays. However, the optimization strategy simply assumes that for each

sample condition (treatment) the number of biological replicates available should

exceed the number of arrays it involves. In other words, there should be enough

independent biological samples for each treatment. Unfortunately, this is not

always possible. For example, sometimes biological material may be very lim-

ited when one is conducting research on mammals (Byrne et al., 2005). In that

case, one has to use technical replicates instead of biological replicates. Then we

have the following problem: How to assign optimally the biological and technical

replicates to the arrays?

In this section, we develop a modified optimization strategy using simulated

annealing to find near optimal designs and near optimal allocations of biological

and technical replicates.

2.2.1 A statistical model for microarray gene expression

intensity

A cDNA microarray experiment contains information about the expression of

thousands of genes. Each spot on the array measures two gene expression signals

under two treatments associated with two dyes Cy3 and Cy5. Since the signals are

essentially positive and typically behave multiplicatively, rather than additively,

the logarithmic transformation can be applied to transform the optical intensity
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of a spot associated with a particular gene from the multiplicative scale into an

additive scale (Chen et al., 1997). Here, we model the gene expression intensity for

each channel separately. This allows us to compute the variance of any contrast,

and to determine the effect of biological and technical replication on the variance.

Consider the gene expression models for the two channels c1 and c2 of an

array:

log xc1k1r1 = θc1 + S + D + εc1k1 + ηc1k1r1 , (2.1)

log xc2k2r2 = θc2 + S + D + εc2k2 + ηc2k2r2 , (2.2)

where xckr is the signal intensity, θc is proportional to the true gene expression

under channel c, S is the nuisance effects such as spot effect and spatial effect,

D is the dye effect. Note that we set the spot and spatial effect D be the same

for the two channels for the reason that they are assumed to affect each of the

channels similarly because the two channels has the same spot size and have the

same position-dependent sources of variation. Dye effect D is also assumed to be

the same for the two channels for the purpose of simplicity.

εck is the biological variation for individual k under channel c and assumed

to be normal distributed with mean zero and variance σ2
b , ηckr is the technical

variation for the rth replicate of the individual k under channel c and assumed to

be normal distributed with mean zero and variance σ2
t . We make several further

assumptions for biological variation and technical variation.

• ε and η are independent from each other no matter what the subscript.

• When c1 = c2 and k1 = k2, Cov(εc1k1 , εc2k2) = σ2
b ; otherwise,

Cov(εc1k1 , εc2k2) = 0.

• When c1 = c2, k1 = k2 and r1 = r2, Cov(ηc1k1r1 , ηc2k2r2) = σ2
t ;
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otherwise, Cov(ηc1k1r1 , ηc2k2r2) = 0.

The difference between the gene log expressions of the two treatments in one

spot is equal to the log-ratio of the gene expressions. For a particular gene on an

array, we can calculate the log-ratio of the gene expressions of the two treatments:

yc1c2k1k2r1r2 = log xc1k1r1 − log xc2k2r2

= θc1 − θc2 + εc1k1 − εc2k2 + ηc1k1r1 − ηc2k2r2 , (2.3)

2.2.2 Parametrization and estimation

In a comparative microarray experiment across p treatments, the parameters of

interest are: θ = (θc1 , θc2 , . . . , θcp)
T , where θci

is the average log gene expression

for channel ci. The log-ratio formulation of the microarray gene expression model

is informative about the gene expression θ only up to an additive constant. In

order to identify the parameter θ, we should impose some constraint such as

setting the sum of θ to zero or setting the first element of θ to be zero, i.e.

θc1 = 0.

Instead of the vector of absolute expression θ, we can reparameterize the model

with a vector of δ∗ = {δcicj
|ci > cj}, where δcicj

= θci
− θcj

. This parametriza-

tion contains all the possible relative (differential) expressions, but it is over-

parameterized. Therefore we use a canonical parametrization δ consisting of

p − 1 terms, δ = (δc2c1 , . . . , δcpc1)
T . Any other item in δ∗ can be regarded as a

linear combinations of δ (e.g. δcicj
= δcic1− δcjc1). Thus we can have the log-ratio
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of the gene expressions of two treatments ci and cj of an array as follows,

ycicjkikjrirj
= δcicj

+ εciki
− εcjkj

+ ηc1k1r1 − ηc2k2r2

= δcic1 − δcjc1 + εciki
− εcjkj

+ ηc1k1r1 − ηc2k2r2 . (2.4)

Assuming that the microarray experiment involves n arrays (i.e. 2n channels)

and p treatments, we can write the log-ratio gene expression intensity according

to the spirit of Equation (2.4) for all the arrays respectively and then we have a

system of n equations which can be described in matrix notation as follows,

y = Xδ +

p∑
i=1

Ziεi + η, (2.5)

where y is a n× 1 vector of observations, X is a n× (p− 1) design matrix, δ is

the (p − 1) × 1 canonical parametrization, Zi is a n ×mi random effect matrix

for treatment i, εi is a mi × 1 vector of biological variation for treatment i and

is assumed to be normally distributed with zero-mean and covariance matrix

σ2
bImi

, mi is the total number of independent biological replications available

under treatment i, η is a n × 1 vector of technical variation and is assumed to

be normally distributed with zero-mean and covariance matrix 2σ2
t In. Here Imi

denotes the mi ×mi identity matrix and In denotes the n× n identity matrix.

If we let ε =
∑p

i=1 Ziεi + η, then Equation (2.5) can be rewritten as

y = Xδ + ε, (2.6)

where ε is a n× 1 vector of normally distributed with zero-mean and covariance
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matrix Σ, which can be calculated from Equation (2.5) as

Σ =

p∑
i=1

σ2
bZiZ

t
i + 2σ2

t In. (2.7)

If the elements of ε are uncorrelated with each other, Σ is a multiple of identity

matrix. If not, then Σ can be found according to the experiment design. An

example of computing Σ is discussed in the next subsection.

By using maximum likelihood estimation (MLE), we get a generalized least

squares (GLS) estimator,

δ̂ = (X tΣ−1X)−1X tΣ−1y, (2.8)

which is the best linear unbiased estimator (BLUE) for δ, in the sense of having

smallest sampling variability in the class of linear unbiased estimators, provided

Σ is known (according to the Gauss-Markov Theorem). The variance of the

estimator not only depends on the design matrix X but also on the covariance

matrix Σ,

Var(δ̂) = (X tΣ−1X)−1. (2.9)

2.2.3 An example: computation of Σ

The computation of Σ is just the computation of the covariance of the expressions

of any two arrays. Here we summarize the rules of computation in the following

(see the details in Appendix A):

1. When the two arrays have one common treatment and have the same tech-

nical replicate under that treatment, the covariance is σ2
b +2σ2

t (if the arrays

have the same type of dye attached on that treatment) or −σ2
b +2σ2

t (if the
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arrays have different types of dye attached on that treatment).

2. When the two arrays have two common treatments and have the same

technical replicates under both of the treatments, the covariance is 2σ2
b +

2σ2
t (if the arrays have the same types of dye attached on the treatments)

or −2σ2
b + 2σ2

t (if the arrays have different types of dye attached on the

treatments).

3. When the two arrays have two common treatments and have the same

technical replicate under one treatment, the covariance is σ2
b + 2σ2

t (if the

arrays have the same type of dye attached on that treatment) or −σ2
b +2σ2

t

(if the arrays have different type of dye attached on that treatment).

4. Under other situations, the covariance is zero.

Following the above rules, we can get the explicit form of covariance matrix Σ

according to the experiment layout. As an example, let’s consider an experiment

with 3 treatments and 6 arrays. Each treatment has 2 biological (a and b)

samples split into 2 technical replicates. Two design layouts of this experiment

are shown in Figure 2.3, and two corresponding explicit forms of Σ are deduced

in the following. For the dye-swap design in Figure 2.3 (a), we have

Σ = 2σ2
b




1 −1 0 0 0 0

−1 1 0 0 0 0

0 0 1 −1 0 0

0 0 −1 1 0 0

0 0 0 0 1 −1

0 0 0 0 −1 1




+ 2σ2
t




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




,
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a. A dye-swap design b. An alternative design

Figure 2.3: Two microarray experimental design with the same layout (3
treatments and 6 arrays) but different allocation of sample repli-

cates.

For the alternative design in Figure 2.3 (b), we have

Σ = 2σ2
b




1 0 0 1
2

0 1
2

0 1 1
2

0 1
2

0

0 1
2

1 0 −1
2

0

1
2

0 0 1 0 −1
2

0 1
2
−1

2
0 1 0

1
2

0 0 −1
2

0 1




+ 2σ2
t




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

Although both designs have the same design matrix, the different allocation

of biological and technical replicates makes these designs have very different Σ.

The non-zero entries off the diagonal in the covariance matrix reflects that some

arrays (gene expressions) are correlated with each other due to having common

biological replicates.

Note that when there are enough independent biological replicates available

(e.g. 4 biological replicates for each treatment), we would have a very simple Σ:
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Σ = 2σ2
b




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




+ σ2
t




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

In this special situation, the variance of the estimate δ̂ can be simplified to be

Var(δ̂) = (X tX)−1σ2, where σ2 = 2σ2
b + 2σ2

t , which is exactly the case discussed

in Wit et al. (2005).

In the same way, for any microarray experimental design, we can compute Σ

and decompose it into two separate parts: a biological part and a technical part.

Σ = 2σ2
bΣB + 2σ2

t ΣT ,

where ΣT is always an identity matrix and ΣB can be easily computed given the

details of the biological and technical replicates allocation. We can also rewrite

Equation (2.10) as:

Σ = 2σ2
t (ρΣB + I).

where ρ =
σ2

b

σ2
t

and ρ is assumed to be a constant and we should know its value

before planning the experimental design. In practice, ρ can not be known before

experiment because it can only be estimated from the result of the experiment. As

a way out, for each gene (spot) ρ could be estimated from previous experimental



CHAPTER 2. OPTIMAL DESIGN OF CDNA MICROARRAY EXPERIMENTS 29

data by using restricted maximum likelihood (REML) or maximum likelihood

(ML), but these methods are very inaccurate with the small sample sizes often

used in microarray studies. In recent approaches, using all the spots on the array

has been suggested to improve estimation. For example, Smyth, Michaud and

Scott (2005) use empirical Bayes estimation to improve the estimate of σ2
t and

assume a single ρ value that can be computed from all the genes. Cui et al. (2005)

use shrinkage estimation to improve the estimation of all the variance components

and so on. In this section, we do not concern ourself with the estimation of ρ (σ2
t

and σ2
b ) and assume ρ is already known.

2.2.4 Optimality criteria

Optimal design is a matter of applying the observations to the treatments in

such a way that the parameters of interest are estimated most “optimally”. For

microarray experiments, there is a limited number of arrays available as well as a

certain amount of RNA from several biological treatments of interest. The ques-

tion then is which samples should we put on which arrays in order to maximize

the precision of resulting parameter estimates?

The definition of precision depends on what optimality criterion is used. There

are are several quite popular forms of design optimality, such as D-optimality, A-

optimality and its related L-optimality (Wit et al., 2005). The covariance matrix

of the parameter estimates plays a key role in all of these three forms of design

optimality.

D-optimal design seeks to minimize the determinant of the covariance matrix

of the parameter estimates. A-optimal design is the design for which the average

variance of the parameter estimates is minimal. L-optimal design is a modified

A-optimal design which minimizes the average variance of the estimates of several
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linear functions of the parameters.

The appropriate criterion for comparing designs for a specific experiment

should be closely related to the objectives of that experiment. If the aim is to

acquire maximal precision of all differential gene expressions, it is better to use

the canonical parametrization and choose L-optimality rather than A-optimality,

because A-optimality depends on the particular parametrization that is chosen

while L-optimality’s linear functions can map the canonical parameters into all

possible contrasts between the treatments. If the aim is to minimize the gener-

alized variance of all differential gene expressions, D-optimality is a choice which

does not depend on the parametrization of the model.

In the next section we use simulated annealing to search for optimal or near-

optimal designs, which not only consider the optimality of the design matrix,

but also take into account the allocation of independent biological and technical

replicates.

2.2.5 Simulated annealing implementation for finding near-

optimal designs

We denote the class of possible designs for n arrays, p treatments and (s1, . . . , sp)

biological replicates with respect to parametrization β as χ(n, p, s, β), where s =

(s1, . . . , sp) the number of biological replicates available for treatments 1, . . . , p.

One way to select the optimal design consists in using discrete optimization

over the space of design matrices χ(n, p, s, β). Since the design space is large,

exhaustive searches are infeasible even for only moderately large n and p. We

follow the simulated annealing framework in Wit et al. (2005) to find near optimal

designs for arbitrary n, p, X and Z.
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The simulated annealing algorithm to maximize an objective function f(x)

works as follows. First of all, let (X,Z) be the current state, where X is the design

matrix and Z is the random effect matrix. Secondly, propose a new candidate

state (X ′, Z ′), where X ′ is the new design matrix and Z ′ is the new random

effect matrix, from some proposal distribution q((X,Z) → (X ′, Z ′)). Then, the

candidate is accepted as the next state with probability:

min

{
1,

(
f(X ′, Z ′)
f(X,Z)

)1/Ti q((X ′, Z ′) → (X, Z))

q((X,Z) → (X ′, Z ′))

}
, (2.10)

where Ti is the current temperature parameter that decreases with the iteration

index i. If the proposal p satisfies q(X ′, Z ′ → X, Z) = q(X, Z → X ′, Z ′) for all

(X,Z) and (X ′, Z ′), we have a simpler form of the acceptance probability:

min

{
1,

(
f(X ′, Z ′)
f(X, Z)

)1/Ti
}

. (2.11)

If the candidate is rejected the next state is set to be the current state. The

simulated annealing algorithm is started at a relatively high temperature T0, so

that at the beginning virtually all candidates are accepted. As the temperature is

gradually decreased to zero, it becomes increasingly more difficult to accept moves

to states that decrease f(X,Z). van Laarhoven and Aarts (1987) prove that

under some conditions on the proposal distribution q (essentially irreducibility

of the resulting Markov chain) and on the cooling schedule (Ti proportional to
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1/ log(i)) the simulated annealing algorithm converges with probability 1 to a

global optimum.

In this paper, we choose exponential cooling schedules, such as Ti = T0c
i

where c is a constant that is smaller than but close to 1. We use T0 = 10 and

c ∈ [0.99, 1). The total number of iterations was set to achieve a preset low final

temperature Tfinal = 0.0001. The last visited state (X,Z) is returned after the

last iteration.

Our implementation is very similar to the one in the paper by Wit et al.

(2005). One difference is that we search over a larger design space here, not only

the fixed design matrix X, but also the random effect matrix Z (from which we

can compute biological replicates allocation matrix Σ). The other difference is

that we implement a new schedule of proposals to explore the complete design

space χ(n, p, s, β). Given a design D (e.g. (X, Z)) at iteration t, we propose a

combination of the following moves.

1. Update X and Z:

(a) Single edge move: pick at random one comparison in design D, say

a biological replicate a of treatment i and a biological replicate b of

treatment j. Pick at random two treatments, say a biological replicate

c of treatment k and a biological replicate d of treatment l and propose

a new design D′, where the comparison between (i, a) and (j, b) has

been replaced by a comparison between (k, c) and (l, d). Note that the

move is not symmetric: q(old → new) ∝ 1
nk
× 1

nl
, q(new → old) ∝

1
ni
× 1

nj
, where nc is the number of biological replicates for treatment

c.

(b) Single vertex move: pick at random one comparison in design D, say
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a biological replicate a of treatment i and a biological replicate b of

treatment j. Pick at random one of the two treatments, say i, and pick

at random one of the treatments except i and j, say k which contains a

biological replicate c. Propose a new design D′, where the comparison

between (i, a) and (j, b) has been replaced by a comparison between

(i, a) and (k, c). Note that the move is not symmetric: q(old → new) ∝
1

nk
, q(new → old) ∝ 1

nj
, where nc is the number of biological replicates

for treatment c.

(c) Balanced two-edge move: pick at random two non-overlapping com-

parisons in design D, say the first between a biological replicate a of

treatment i and a biological replicate b of treatment j, and the sec-

ond between a biological replicate c of treatment k and a biological

replicate d of treatment l, where i, j, k and l are all distinct. Pro-

pose a new design D′, where the comparison between (i, a) and (j, b)

is changed to (i, a) and (l, d) and the comparison between (k, c) and

(l, d) is changed to (k, c) and (j, b). This balancing move guarantees

that all the treatments remain measured equally often in D′ as they

are in D. Note that the move is symmetric: q(old → new) ∝ 1
nl
× 1

nj
,

q(new → old) ∝ 1
nj
× 1

nl
, where nc is the number of biological replicates

for treatment c.

2. Keep X fixed, update Z:

(a) Single replicate move: take a random comparison; select randomly one

of the two treatments and replace this replicate by another available

biological replicate.

(b) Balanced replicate move: Randomly pick a treatment i, then randomly
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pick two comparisons that both involve the treatment i. Exchange the

biological replicate for treatment i between the two comparisons.

It is easy to find that each of the above two moves has symmetric proposal

probabilities.

Note that it is guaranteed that the whole design space can be visited (i.e. the

resulting Markov chain is irreducible), by simply using move 1(a). The reason for

proposing the other moves is to improve the efficiency of finding the optimum.

One can start from any arbitrary state, but starting at a good initial design

can clearly save a lot of computational time. At each iteration one of the five

moves that are described above is selected, with respective probabilities p1, p2,

p3, p4 and p5 = 1 − p1 − p2 − p3 − p4. In our experience, using p1 = 0.15,

p2 = 0.4, p3 = 0.2, p4 = 0.15 seems to work reasonably well.

2.2.6 Results

For each gene, the design matrix X and the random effect matrix Z are exactly

the same and consequently the covariance structure among the parameters is

proportional to (X tΣ−1X)−1. Therefore, although we consider optimality for one

gene at a time, the same design is simultaneously optimal for all genes.

2.2.6.1 Example one

Consider a microarray experiment for 3 treatments and 6 arrays. If we assume

that each treatment can have 2 or 3 or 4 independent biological replicates, then

there are 9 different scenarios in total. By using the simulated annealing algo-

rithm we have developed in the last section, we are able to find the (possibly near)

L-optimal design for each of the scenarios. The results are represented in Figure
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Figure 2.4: The L-optimal designs of microarray experiment for 3 treatments
and 6 arrays with respect to different combinations of numbers
of independent biological replicates for each treatment. In the
caption of subfigure, the notation c(x, y, z) is used to indicate
that treatment 1, 2 and 3 has x, y, z independent biological

replicates respectively.

2.4. From the layouts, we see that each treatment uses as many biological repli-

cates as possible: for treatments with enough biological replicates available (e.g.

the treatments with 4 biological replicates), an independent biological replicate

is used for each array it is involved with; for treatments with a limited number of

biological replicates (i.e. less than the number of arrays on which they hybridize,

like the treatments with only 2 biological replicates), the optimal design has to

use technical replicates, i.e. repeats of certain biological replicates.
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Figure 2.5: Comparisons of the reciprocals of L-optimality scores for the 9
designs shown in Figure 2.4 across the range of ρ from 0 to 4.
Larger value of reciprocal of L-optimality score means higher L-
optimality efficiency. Here, the design c(4,4,4) and c(2,2,2) has

the highest and lowest L-optimality value respectively.

For example, in Figure 2.4 (e), 4 samples are needed for treatment 1, but only 2

biological replicates are available and therefore it has to use an extra 2 technical

replicates, one technical replicate for each biological replicate.

The comparison of the reciprocals of L-optimality scores for the 9 scenarios

across a range of ρ (i.e. the ratio of variance of biological variation to variance

of technical variation) from 0 to 4 is shown in Figure 2.5. From these results,

we find that the designs with more independent biological replicates would have

high L-optimality efficiency. If one design has more biological replicates than the

other design for all the treatments, then the former is definitely more efficient

than the latter. For example, the design c(4, 4, 4) has the highest L-optimality
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score, i.e. highest L-optimality efficiency, while the design c(2, 2, 2) has the lowest

L-optimality score, i.e. lowest L-optimality efficiency, where c(x, y, z) indicates

the experimental scenario that treatment 1, 2 and 3 has x, y and z independent

biological replicates respectively. On the other hand, if a design only has more

biological replicates than the other design for some of the treatments, then it

may be difficult to judge which one is more efficient. For example, out of the

three treatments, the design c(3, 3, 3) only has only one treatment with more

biological replicates than the design c(2, 4, 4), but the former is still slightly more

L-optimality efficient than the latter.

2.2.6.2 Example two

Now we consider a bigger scenario that we have a microarray experiment for 5

treatments (conditions) and 15 arrays, each of the treatments has 6 biological

replicates except the first one which has only two biological replicates, and ρ

is assumed to be in the range of [0.5, 2]. By using the simulated annealing al-

gorithm, we are able to find the L-optimal (or near L-optimal) design which is

shown in the Figure 2.6. From the layout, we see that each of the treatment

uses as many independent biological replicates as possible. For treatments with

enough independent biological replicates, like condition 2, 3, 4 and 5, they use

an independent biological replicate for each array they involve. For treatments

with limited number of biological replicates available and less than the number

of arrays on which they should hybridize, like treatment 1, they have to use

technical replicate which is the copy of the corresponding independent biological

replicate. For the treatment 1 in Figure 2.6, it needs six samples but only two

biological replicates are available therefore four extra technical replicates are used

(two technical replicates for each of the two biological replicates).
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Figure 2.6: A cDNA microarray L-optimal design with 5 treatments and 15
arrays. The first treatment has only two independent biological
replicates available while the rest of treatments have six indepen-

dent biological replicates.

2.2.6.3 Are dye-swap designs optimal?

In a typical dye-swap experiment like in Figure 2.3 (a), each hybridization is done

twice with the dye assignments reversed in the second hybridization using techni-

cal replicates, i.e. the same biological replicates of the first hybridization. Since

it is useful for reducing systematic differences in the red and green intensities,

the dye-swap design has been quite popular among practitioners. The alterna-

tive design in Figure 2.3 (b) is not a dye-swap design although it has the same

design matrix as Figure 2.3 (a). The only difference between the two designs

is that the dye-swap design uses technical replicates in the second hybridization

while the alternative design uses independent biological replicates in the second

hybridization.

One way to compare two designs is to calculate the relative efficiency, which

is defined as the ratio of their optimality score (which depends on the optimality
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Figure 2.7: Comparisons across the dye-swap design and the alternative de-
sign under L-optimality and D-optimality criteria. When the
ratio of biological variance to technical variance, ρ, varies from
0 to 5, the relative efficiencies are calculated as the ratio of the
scores under the dye-swap design and the alternative design. The
dashed curve represents the case of L-optimality and the dotted

curve represents the case of D-optimality.

criterion one uses). Here we choose L-optimality and D-optimality as the criteria.

As the score also depends on the value of ρ to some extent, the relative efficiency

of these two designs with different ρ value, from 0 to 5, is computed and displayed

in Figure 2.7. It shows that the alternative design of Figure 2.3 (b) is not only

more L-efficient but also more D-efficient than the dye-swap design of Figure 2.3

(a) (e.g. the relative efficiency is smaller than 1) except when ρ is zero which

is not possible in practice. With the increase of ρ value, the efficiency of the

alternative design with respect to the dye-swap design increases steadily (e.g.

lower relative efficiency).
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2.3 Optimal design for factorial experiment

So far, this chapter has only considered single factor experiments (typical fac-

tors being time, genotype, tissue type or treatment). Microarray experiments

investigating two or more factors require a more complex design, like factorial

experiment design which can be used to study the expression profiles resulting

from the combined effect of multiple factors.

Since in recent years more and more biologists have begun to consider multi-

factorial microarray experimental set-ups to identify differentially expressed genes,

e.g. Caetano et al. (2004), the problem of how to find efficient factorial designs

has received some attention. For example, Glonek and Solomon (2004) used A-

optimality to find optimal designs for factorial experiments with a small number

of factors. Their approach enables the selection of an efficient design subject to

the information available on the parameters of interest to biologists.

One way to design a factorial experiment is to consider all factor combinations

as treatments and do a one-way optimal design. It corresponds to a full factorial

model which assumes that all interactions are equally important. However, this is

not necessary and higher-order interactions could be down-weighted. Therefore

we suggest that using the Q criterion rather than A-optimality, L-optimality

or D-optimality would be a proper choice for the optimal design of factorial

experiments. In the next section we first introduce a gene expression model in a

multi-factorial way before introducing the Q criterion.
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2.3.1 Statistical gene expression models for p× q factorial

experiment

In Section 2.2.1, we have introduced Equation (2.1) and (2.2) as general statistical

microarray gene expression models for the two channels of an array. If we ignore

dye effects, spatial effects and the difference between biological error and technical

error, then for one channel the gene expression x under treatment c after taking

logarithms can be reduced to

log xc = θc + ε, (2.12)

where θc is the true gene expression under treatment c, ε is the total error.

If we consider a p×q factorial experiment and think of all factor combinations

as treatments, then the factorial experiment has p × q different treatments in

total. According to Equation (2.12), we can denote by θi the gene expression

of a gene for a certain treatment i, where the parameters of interest are θ =

(θ1, θ2, . . . , θp×q)
t, which correspond to all the treatments respectively. Instead of

a vector of absolute gene expression values θ, we use the canonical parametrization

δ consisting of p × q − 1 terms, δ = (δ21, δ31, . . . , δp×q,1)
t, where δi1 = θi − θ1 for

i = 2, . . . , p× q. Computationally speaking, using the canonical parametrization

δ is equivalent to using θ with the constraint θ1 ≡ 0.

On the other hand, if θc is considered to have some factorial structure, e.g.

c = (p, q) treatment specified by level p from the first factor and level q from the

second factor, then we have an extended model of gene expression for the p × q

factorial experiment:

log xst = µ + αs + βt + (αβ)st + ε, s = 1, . . . , p, t = 1, . . . , q, (2.13)
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where the intercept µ is the baseline intensity with each factor at its lower level, α

is a main effect parameter for the difference in intensities among the p levels of the

first factor, β is a main effect parameter for the difference in intensities among

the q levels of the second factor, αβ is the interaction of the two factors. We

impose the sum-to-zero constraints on the parameters in each of these factorial

models that:

p∑
i=1

αi = 0,

q∑
j=1

βj = 0,

p∑
i=1

(αβ)ij = 0,

q∑
j=1

(αβ)ij = 0.

Therefore there are p− 1 parameters for α, q − 1 parameters for β and pq − p−
q + 1 parameters for (αβ) in this model. Further, because we study differential

expressions, µ is set to be zero. As a result, the new parametrization of this

extended model is different from the canonical parametrization δ and consists of

p × q − 1 terms in total. We denote it by ϕ = (α, β, (αβ))t, where α denotes

{αi}i=2,...,p, β denotes {βj}j=2,...,q and αβ denotes {(αβ)ij}i=2,...,p;j=2,...,q.

2.3.2 Q-criterion

Tsai et al. (2000) suggested a new multi-factorial design optimality criterion

called the Q-criterion. It is an approximation to the mean A efficiency, ignoring

the intercept, over all models that will be used for fitting. The models may

include main effects as well as interactions.

Assume that the maximal model of interest is E(y) = Xγ, where y is an N×1

vector of observations, X is an N×(v+1) design matrix and γ = (γ0, . . . , γv)
t is a

(v +1)×1 vector of parameters for a particular factorial model. The information

matrix for this model is X tX and the covariance matrix of the least squares

estimator of γ divided by σ2 is (X tX)−1. The elements cii for i = 1, . . . , v on
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the diagonal of the matrix (X tX)−1 are approximated (for details see Tsai et al.

(2000)) as

cii(X) =
v∑

j=0

1

aii

a2
ij

aiiajj

,

where aij for i, j = 0, . . . , v are the elements of X tX. Then the Q-criterion for

design matrix X is defined as the average of the sum of weighted cii (i.e. the

criterion of A-optimality) over n0 models:

Q(X) =
1

n0

v∑
i=1

v∑
j=0

1

aii

a2
ij

aiiajj

wij, (2.14)

where n0 is the total number of factorial submodels of X.

A weight matrix W is calculated such that its element wij (for i, j = 0, . . . , v)

stores the number of models that contains both effect terms i and j, i.e. the

number of factorial submodels of X, both of which include γi and γj:

wij =

n0∑
s=1

Ms(i, j)

and

Ms(i, j) =





1 if effects i and j are both included in model Ms,

0 otherwise.

where Ms is a model for fitting and contains a subset of effects of the maximal

model.

Generally, the Q-criterion depends on the parametrization, the information
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matrix and the weight matrix. It is a weighted average of approximated A-

efficiency, where the weights enhance main effects and lower-order interactions.

Due to the absence of the intercept γ0 in the microarray log-expression ratio

model, we need a slight modification of the Q-criterion:

Q(X) =
1

n0

v∑
i=1

v∑
j=1

1

aii

a2
ij

aiiajj

wij (2.15)

In case one chooses to use the old Q-criterion, then that corresponds to in-

cluding an explicit dye-effect in the expression model.

2.3.3 Simulated annealing implementation for finding near

Q-optimality design

In this section we discuss how to find Q-optimality design by using the simulated

annealing algorithm.

First of all we give a definition of Q-optimality. Consider designs for n sam-

ples and m treatments with respect to parametrization ψ with design matrices

from the class χ(n,m, ψ). A design is a Q-optimal design if its design matrix

XQ-opt(ψ) minimize the Q-criterion value:

XQ-opt(ψ) = argminX∈χ(n,m,ψ)Q(X). (2.16)

Then we are allowed to follow the framework of the simulated annealing algo-

rithm proposed in the Section 3 of Wit et al. (2005) to find a near Q-optimality

design. However, the application of the simulated annealing is not straightfor-

ward. The problem is that the simulated annealing algorithm we use depends on
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the canonical parametrization δ rather than the new parametrization ψ. There-

fore we have to find a transformation matrix T , such that

ψ = T−1δ, (2.17)

because then

E(y) = Xδ = XTψ

and, so,

V (ψ̂) ∝ T−1(X tX)−1(T−1)t

and, therefore, the information matrix for the model is

I(ψ̂) = T t(X tX)T, (2.18)

This is useful when we implement the simulated annealing algorithm, because T

will always be fixed for every design matrix X and so T has to be calculated only

once.

As T can be easily found from standard software (e.g. model.matrix in R),

we can extend the simulated annealing for finding near-optimal design by using

Q-criterion.

2.3.4 An example: 2× 4 factorial microarray experiment

We now demonstrate with an example how to find Q-optimal or near Q-optimal

designs for a two-factor microarrray experiment. The discussion will be given in

terms of a single gene and it is intended that the same parametrization be applied

separately for every gene on a slide.
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Consider a two-factor microarrary experiment: two lines of pigs whose ovary

material is studied 2, 3, 4 and 6 days after inducing luteal regression. It is

anticipated that measuring changes over time would distinguish genes involved

in promoting or blocking differentiation. We are interested in genes differentially

expressed between the two lines (the first factor with 2 levels denoted as A and B)

and 4 different time points (the second factor with 4 levels denoted as 1, 2, 3 and

4), i.e. in the main effects. If we think of all factor combinations as treatments,

the 2 × 4 factorial experiment has 8 different treatments, which are denoted as

A1, A2, A3, A4, B1, B2, B3 and B4, respectively.

According to the discussions in the Section 2.3.1, if the gene expression ob-

servations from the experiment are modelled as in Equation (2.12), then we have

the corresponding canonical parametrization δ = (δ21, . . . , δ81), where δi1 is the

difference between the gene expression of the ith treatment and the first treat-

ment, for i = 2, . . . , 8; if the gene expressions are modelled as in Equation (2.13),

then we have the new parametrization ψ = (α2, β2, β3, β4, (αβ)22, (αβ)23, (αβ)24)
t,

where everything is measured relative to line 1 at time point 1: αi is the average

difference between line 1 and line i over all the time points, βj is the average

difference between time point j and time point 1 across both lines, (αβ)ij is the

difference between the actual difference between line 1 and line i at time point j

and the difference between those lines at time point 1, for i = 2 and j = 1, . . . , 4.

Note that in this case αi is a main effect parameter for the difference in intensities

between two lines, βj is a main effect parameter for different days after inducing

luteal regression, (αβ)ij is an interaction.
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The relationship between the new parametrization ψ and canonical parametriza-

tion δ is summarized in matrix notation:

ψ = Cδ

where

C =




−1
4
−1

4
−1

4
1
4

1
4

1
4

1
4

1
2

0 0 −1
2

1
2

0 0

0 1
2

0 −1
2

1
2

0 0

0 0 1
2
−1

2
0 0 1

2

1 0 0 1 −1 0 0

0 1 0 1 0 −1 0

0 0 1 1 0 0 −1




.

Note that C corresponds to T−1 in Equation (2.17) and in this situation the infor-

mation matrix of the model using the new parametrization is (C−1)t(X tX)C−1

rather than X tX.

In this example, the total number of factorial submodels n0 = 5, and the

corresponding weight matrix W is shown in Table 2.2. According to Equation

(2.15), only the elements {wij}i,j=1,...,7 are useful for computing Q-criterion values

in our application.
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wij 0 1 2 3 4 5 6 7
0 5 3 3 3 3 1 1 1
1 3 3 2 2 2 1 1 1
2 3 2 3 3 3 1 1 1
3 3 2 3 3 3 1 1 1
4 3 2 3 3 3 1 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1

Table 2.2: The elements of weight matrix W = {wij}i,j=0,...,7 are computed
for 2 × 4 factorial design. Note that i and j denote the index of
two effects in the maximal model respectively, and wij = wji, for

i 6= j.

Assuming this 2×4 factorial experiment involves 12 arrays, we can search for

the Q-optimal and L-optimal designs. The results are given in Figure 2.8 (a) and

Figure 2.8 (b) respectively. Obviously, the Q-optimal design does not correspond

to the L-optimal design.

The detail of the Q-optimal design layout for this 2 × 4 factorial experiment

is represented in Figure 2.9 (a). It is interesting to see the difference between our

Q-optimal design and a more “intuitive” design (Figure 2.9 (b)).

2.3.5 Conclusion

In this section, we introduced the Q-optimality criterion for optimal factorial

design of cDNA microarray experiment. We discussed step by step how to in-

corporate this new optimality criterion into the simulated annealing framework.

One simple example was used to show that the optimal finding by Q-optimality

is different from that by L-optimality criterion. It should be pointed out that

this Q-optimality criterion is applicable only when we feel interested in the main

effects and lower-order interactions of the experiment. If high-order interactions
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are our interest or all the effects are equally important, then alternative criteria

or methods could be considered to find optimal designs.

Trace Score : Tr[ Inv(X’X) ] = 3.9815 .
No of arrays = 12 .  No of conditions = 8

1

2

3

4

5

6

7

8

Trace Score for Contrasts: Tr[ Inv(X’X) ] = 19.5575 .
No of arrays = 12 .  No of conditions = 8

1

2

3

4

5

6

7

8

a. Q-optimal design b. L-optimal design

Figure 2.8: Different design criterions make different optimal designs.

a. Q-optimal design b. Non Q-optimal design

Figure 2.9: Q-optimal and non Q-optimal design.
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2.4 Optimal pooling strategy

Since microarray experiments are quite expensive but funding for biological re-

search projects is usually limited, it is necessary for us to study how to pool and

replicate RNA samples to achieve minimum variance using the minimal amount

of resources. We call this approach optimal pooling. The choice for pooling is a

trade-off between the cost of sampling RNA and the cost of a microarray. Note

that only when the RNA sample is much cheaper than the array, then pooling a

lot of RNA samples on an array is a good choice.

2.4.1 Methods

In this subsection we suggest an approach for optimal pooling: we try to find out

which pooling scheme to use to minimize the variance of expression given a fixed

budget.

If each RNA pool contains only one biological sample (i.e. replicate) from

each subject then the observed log expression of a particular gene in pool i for

the jth technical replication of that pool to an array is:

xij = θ + εi + ηij (2.19)

where θ is the true gene expression, ε is the biological variation (i.e. between-

pool variation) among subjects and η is the technical variation (i.e. within-pool

variation). It is assumed that both biological and technical variation variations

are independent from each other and they are normally distributed respectively,

that is, εi ∼ N(0, σ2
ε ) and ηij ∼ N(0, σ2

η), where i = 1, ..., na, j = 1, na is the

number of pools in the experiment.
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If each RNA pool contains several independent biological samples then we

have a new expression model xp
ij as follows,

xp
ij = θ + εp

i + ηij, (2.20)

where εp
i ∼ N(0, σ2

ε /si) and si is the number of samples in pool i. The idea be-

hind this is that if a biological sample of a particular RNA under a treatment is

expressed with a standard deviation of σ, then by mixing an independent collec-

tion of n RNA samples, the observed biological variation reduces to only σ/
√

n.

In other words, the effect of the biological variation depends on the number of

samples in the pool. The more samples in a pool, the less distinguishable the

pools become.

The total number of samples in the whole experiment is ts =
∑na

i=1 si. The

estimation of the expression level θ is x, the mean of xp
ij. If we assume that each

pool contains the same number of samples, ns, the variance of x is,

V (x) = V

(
1

na

∑
i,j

[θ + εp
i + ηij]

)

=
1

n2
a

[ na∑
i=1

V (εp
i ) +

∑
i,j

V (ηij)

]

=

∑na

i=1 1/si

n2
a

σ2
ε +

1

na

σ2
η

=
σ2

ε

nans

+
σ2

η

na

. (2.21)

It is obvious that increasing both the number of arrays na as well as increasing

the number of samples in each pool ns will reduce the overall variance of estima-

tion of expression. However increasing both will increase the cost. We assume

that there are two types of cost associated with the number of samples in each
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pool and the number of arrays used in the experiment. Let Cs be the cost of a

single RNA extraction and preprocessing and Ca is the cost of a single microar-

ray including cost of reverse transcription and label. Note that for dual-channel

microarray, if the reference design is chosen, Ca is the cost of microarray plus

both dyes; if the loop design (both channels contains sample of interest) is used,

then Ca is half of the value.

Therefore the optimization problem can be formulated as minimizing the vari-

ance under the constraint of fixing the total cost at a certain level B = tsCs+naCa.

We use Euler-Lagrange optimization to minimize the variance under the con-

straint of keeping the budget to a preset level. We find the minimum of the

objective function f ,

f(ns, na, λ) =
σ2

ε

nsna

+
σ2

η

na

+ λ(naCa + nansCs −B), (2.22)

where λ is the Lagrange multiplier, by setting the following first derivatives to

zero:

∂f(ns, na, λ)

∂ns

= λCsna − σ2
ε

na

1

n2
s

,

∂f(ns, na, λ)

∂na

= λCsns + λCa − σ2
ε

ns

1

n2
a

− σ2
η

n2
a

,

∂f(ns, na, λ)

∂λ
= Cana + Csnans −B.
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The system of equations is solved and the minimum can be found at

ns =

√
Ca

Cs

σε

ση

and na =
B

Ca +
√

CaCsσε/ση

. (2.23)

The result shows that the solution depends on the array cost Ca, sample cost

Cs, the prescribed budget B and the ratio of biological variation and technical

variation σε/ση. Practically, the values of Ca, Cs and B can be decided by

biologists according to the specifics of theirs own experiment. The value of σε

should be truly fixed, depending only on the particular gene, the value of ση

changes from lab to lab and from platform to platform. But both of σε and ση

are unknown to us. One way to solve this problem is to estimate them by using

REML. In the following we would like to follow a simple method proposed by

Wit and McClure (2004) to deduce reasonable values for them.

Churchill (2002) finds that the correlation between two arrays hybridized with

the same RNA is approximately 0.70, while this correlation for arrays with RNA

from different biological replicates is just over 0.30. If θ is considered as the

expression of a randomly selected gene,

Cor(θ + ε1 + η11, θ + ε1 + η12) ≈ 0.7

Cor(θ + ε1 + η11, θ + ε2 + η21) ≈ 0.3

where θ+εi is the actual expression of a particular sample i and ηij is the technical

error associated with the jth technical replicate of sample i. This results in the

following:

σ2
a + σ2

ε

σ2
a + σ2

ε + σ2
η

≈ 0.7
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σ2
a

σ2
a + σ2

ε + σ2
η

≈ 0.4

where σa is the variation on a single microarray. Wit and McClure (2004) ob-

serves that σ2
a varies between 0.6 and 1.0 for the log expression values in several

full genome arrays, therefore here we assume it is 0.8. These figures and the

correlations allow us be able to estimate the values for σε and ση:

σε = 0.9 and ση = 0.7.

Note that the above result of variances can be just used as approximate and

candidate values for computing ns and na. Since different genes have different σε

and different experiments result in different ση, consequently the variance ratio

σε/ση might vary to some extent.

The optimization problem can also be formulated as minimizing the total cost

B = tsCs + naCa under the constraint of fixing the variance at a certain level

v(x̄) = σ2
0. In the same way, Euler-Lagrange optimization can be used to get the

expression of ns and na: see Wit and McClure (2004) for the results.

The variability constraint v(x̄) = σ2
0 is difficult to interpret. However, it can

be reformulated in terms of detectable fold-changes, type I error and type II error

(Wernisch, 2002).

If we assume that the log expressions xij of the same gene under two different

treatments have the same error model as Equation (2.19), then the differential

expression is a normal distribution with mean log f0 with variance 2σ2
0, where f0

is the fold-change.

The probability p that a gene with no differential expression (i.e. fold-change
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zero) has a sample differential expression at least f0 fold-change is:

p = 1− Φ

(
log f0√

2σ2
0

)
(2.24)

where Φ is the standard normal cumulative distribution. In a same way, the

probability q that a gene with differential expression f fold-change has a sample

differential expression smaller than f0 fold-change is:

q = 1− Φ

(
log f − log f0√

2σ2
0

)
(2.25)

If we let p = α and q = β, after solving of Equation (2.24) and (2.25) we can

obtain:

σ2
0 =

1

2

[
log f

Φ−1(1− α) + Φ−1(1− β)

]2

(2.26)

where log f is the target fold-change which should be detectable at significance

level of α for the probability of a type I error while the probability of making a

type II error is controlled at level β (i.e. at power of 1 − β). Therefore, we can

use the above expression for σ2
0 in the optimum result of ns and na.

2.4.2 Example

As an example, we assume that total budget for microarray experiment is 8,000

British pounds, the cost of one microarray is 700 British pounds and the cost

of one subject is 100 British pounds. If the value of σε and ση are 0.9 and

0.7 respectively, then the optimal number of samples in a pool is 3 and the

corresponding number of arrays is 8. We also explore the relationships among the

variance ratio, the number of samples in pool and the variance of gene expression
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Figure 2.10: An example of optimal pooling by minimizing the estimation
variance V (x̄) = σ2

ε
nsna

+ σ2
η

na
, subject to not overrunning one’s

budget B = nsnaCs + naCa. Here, B = 8000, Ca = 700,
Cs = 100, σ2

η = 0.7. The yellow, green and red curves represent
the relationship between gene expression variance and number
of samples in pool when variance ratio is set to be 0.5, 1 and 2

respectively.

value when the variance ratio (σε/ση) is not fixed. Figure 2.10 shows that when

the variance ratio is 0.5, 1 and 2, the optimal number of samples in a pool is 1, 3

and 6, respectively, and the corresponding optimal number of array is 10, 8 and

6, respectively.

Note that usually the results are not integer, we have to round them to the

nearest integer as the numbers of arrays and samples should be always integers.

The ratio of the biological to technical variance is an important value for decid-

ing the optimal pooling strategy. Biological variation is fixed but the technical

variation ση would be shrunk by continual improvements of technology so that

the cost associated with the array can be reduced.
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2.5 Optimal distant pair design

2.5.1 Introduction

In recent years, the combined study of microarray gene expression and molecular

marker data has been proposed as a novel strategy for the analysis of gene regu-

latory networks (Darvasi, 2003; Jansen and Nap, 2001, 2004; Kraft and Horvath,

2003).

Such a kind of study usually involves relatively large number of genotypes

(i.e. number of conditions), since for n markers on a genome the corresponding

number of potential genotypes is 2n. Therefore, even for a small number of

markers studied, the number of genotypes will be quite large and the resulting

experimental costs may become prohibitive. So it requires that resources (i.e.

microarrays and biological replicates) should be used as efficiently as possible.

Instead of the popular reference and loop designs where samples are compared

to a common reference sample or to each other in a loop order, Fu and Jansen

(2005) proposed a new strategy for two-color cDNA microarrays, called distant

pair design.

To illustrate the design issues involved, we consider expression profiling a

population of recombinant inbred lines (RILs). RILs are homozygous individuals,

which result from repeated self-self mating or sibling mating, starting from a F1

of two homozygous parents, carrying alleles of type A and B respectively. The

genome of a RIL is therefore a mosaic of the “founder” genomes, which can be

viewed with the aid of molecular markers. See Figure 2.11.

The idea of the reference design is to compare all conditions (RILs) to one

common reference. The loop design co-hybridizes the first RIL with a second

RIL on one array, this second RIL with a third RIL on a second array, and so on.
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Reference design Loop design Random pair design Distant pair design

Figure 2.11: Illustration of four alternative experimental designs (Fu and
Jansen, 2005). The hypothetical compositions of four genet-
ically different homozygous individuals are shown, each indi-
vidual carrying different mixtures of two founder genome (dark
and light). Four alternative designs to pair samples with two-
channel microarrays are indicated: the reference design, the
loop design, the random pair design (samples are randomly
paired), and the distant pair design (samples with dissimilar

genomes are paired).

This way all RILs can be profiled, not just once as in the reference design, but

twice, which is a great improvement in the use of microarray resources.

One could alternatively use a random pair design, where the first RIL is

compared to a randomly chosen second RIL, a randomly chosen third RIL to a

fourth RIL, and so on. For each direct comparison between RIL i and RIL j with

red and green dye respectively, there are four possible combinations at a given

marker: A/B (RIL i carries allele A, RIL j carries allele B), B/A (RIL i carries

allele B, RIL j carries A), A/A or B/B (RIL i and j carry the same alleles). These

four combinations occur with equal probability in a random pair design. We are

primarily interested in detecting differential expression between A and B, thus

A/B and B/A are of interest, and A/A and B/B are not. Therefore, a natural

next step is to improve the random pair design in such a way that the number

of A/B and B/A comparisons is maximized and with minimal extra variation
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of total numbers A/B and B/A across the different markers. For this purpose,

Fu and Jansen (2005) proposed the optimality criterion for distant pair design

which co-hybridizes RILs that show to be genetically distant according to their

molecular marker fingerprints. The optimality criterion is initially proposed for

the case of single marker and then extended for the case of multiple markers by

simply averaging the criterion for single marker. In this section, we first introduce

the gene expression model for multiple markers and then propose an alterative

(and more proper) A-optimality criterion for the case of multiple markers.

2.5.2 Model

The variation of gene expression is caused by genetic variation at a regulatory

locus. Since the expression level of the gene under study may be high or low

when the regulator locus has genotype A (B) or vice versa, we can observe two

types of ratio: the informative A/B and B/A, and the relatively uninformative

A/A and B/B. The expression ratios of the latter type should be close to unity

(i.e. one in original scale), unless there is dye-bias. This can be formulated into

mathematical models.

For the microarray gene expression on a single channel with dye d (i.e. Cy3

or Cy5), we have:

zd,i = αd +
k∑

j=1

βjxd,ij + εi (2.27)

where zd,i is the gene expression with dye d for individual i after taking logarithm.

xd,ij corresponds to the genotype (A or B) at marker j for array i with dye d and

takes the following values: 0 for A and 1 for B. αd is the gene-specific effect for

dye d. βj is the effect of allele expression at jth marker under study. k is the
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number of different markers (regulatory loci) on the genome. εi is the normal

distributed error with mean zero and variance σ2. Note that Equation (2.27) can

be considered as a special case of 2× k multi-factorial design where each marker

is a factor although it ignores the higher order effects (the interactions among

the k markers).

For array i, we observe the log-ratio of gene expression from its two channels:

yi = zCy3,i − zCy5,i

= β0 +
k∑

j=1

βjxij + εi (2.28)

where β0 = αCy3 − αCy5, xij = xCy3,ij − xCy5,ij. The possible values for xij are -1

when xCy3,ij = 0 and xCy5,ij = 1 (i.e. A/B), 1 when xCy3,ij = 1 and xCy5,ij = 0

(i.e. B/A) and 0 when xCy3,ij = 0 and xCy5,ij = 0 or xCy3,ij = 1 and xCy5,ij = 1

(i.e. A/A or B/B). The sign of xij (i.e. from 1 to -1 or from -1 to 1) is determined

by the way of dye assignment to the two channels (RILs).

If the experiment contains n arrays, we can write in matrix notation that:

y = Xβ + ε (2.29)

where y = (y1, . . . , yn)t, β = (β1, . . . , βk, β0)
t, X is a n by k + 1 matrix where

Xij = xij for i = 1, . . . , n, j = 1, . . . , k and Xij = 1 for i = 1, . . . , n, j = k + 1.

Using the least squares method, we have the estimate of β: β̂ = (X tX)−1X ty

and its variance-covariance matrix: V (β̂) = (X tX)−1σ2.
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2.5.3 Optimality criteria

Based on the single-marker gene expression model (Equation (2.28) for j = 1), Fu

and Jansen (2005) proposes an A-optimality criterion of the distant pair design

for the case of single marker, which finds the minimum of

n +
∑n

i=1 x2
i1

n
∑n

i=1 x2
i1 − (

∑n
i=1 xi1)2

, (2.30)

then they extend it to the case of multiple markers by summing or averaging over

all markers of the variance of β̂,

S =
k∑

j=1

{
n +

∑n
i=1 x2

ij

n
∑n

i=1 x2
ij − (

∑n
i=1 xij)2

}
, (2.31)

where j refers to the jth marker and k is the number of markers. This is identical

to optimizing
n+

∑n
i=1 x2

ij

n
∑n

i=1 x2
ij−(

∑n
i=1 xij)2

for j = 1, . . . , k separately.

As an alternative, here we propose an A-optimality criterion based on the

multiple-markers gene expression model (Equation (2.28)). It minimizes the sum

of the variances of β̂ for given markers. This is equivalent to choosing X such

that the trace of the matrix (X tX)−1 is smallest. Obviously, this criterion is

applicable to not only the case of single marker (i.e. k = 1) but also that of

multiple markers (i.e. k = 2, 3, . . .).

2.5.4 Example

Now we use a simple example to show that our proposed A-optimality criterion

for the case of multiple markers is more proper than that of Fu and Jansen.

We assume that there is a microarray experiment with n = 4 arrays. Each

array pairs two RILs, so that 2n = 8 RILs are involved. We also assume that
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Table 2.3: The corresponding xi1 and xi2 values are listed for the 16 possible
combinations from the four types of RILs a, b, c and d.

1 2 3 4 5 6 7 8 9 10

RILs a/a a/b a/c a/d b/b b/c b/d c/c c/d d/d
Marker 1 A/A A/A A/B A/B A/A A/B A/B B/B B/B B/B
Marker 2 A/A A/B A/A A/B B/B B/A B/B A/A A/B B/B

xi1 0 0 -1 -1 0 -1 -1 0 0 0
xi2 0 -1 0 -1 0 1 0 0 -1 0

11 12 13 14 15 16

RILs b/a c/a d/a c/b d/b d/c
Marker 1 A/A B/A B/A B/A B/A B/B
Marker 2 B/A A/A B/A A/B B/B B/A

xi1 0 1 1 1 1 0
xi2 1 0 1 -1 0 1

the number of markers on the genome is k = 2 and there are 4 types of RIL:

a = {A,A} (RIL carries allele A and A on the first and second marker), b =

{A,B} (RIL carries allele A and B on the first and second marker), c = {B, A}
(RIL carries allele B and A on the first and second marker) and d = {B, B} (RIL

carries allele B and B on the first and second marker).

Given four types of RILs, there are 16 possible RIL combinations in an array.

Recall that xij in Equation (2.28) takes -1 for A/B, 1 for B/A, and 0 for A/A and

B/B. Then, we know the corresponding xi1, xi2 values of all these combinations

for this example, see Table 2.3.

Because of the small number of markers and arrays (i.e. k = 2, n = 4), it is

easy for us to give the expression of A-optimality score explicitly. If we ignore
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the dye effect item β0 in Equation (2.29), we have the design matrix:

X =




x11 x21 x31 x41

x12 x22 x32 x42




t

,

then we have

X tX =




∑4
i=1 x2

i1

∑4
i=1 xi1xi2

∑4
i=1 xi1xi2

∑4
i=1 x2

i2


 ,

and

(X tX)−1 =
1∑4

i=1 x2
i1

∑4
i=1 x2

i2 − (
∑4

i=1 xi1xi2)2




∑4
i=1 x2

i2 −∑4
i=1 xi1xi2

−∑4
i=1 xi1xi2

∑4
i=1 x2

i1


 ,

therefore finding A-optimal design is to minimize the score:

(X tX)−1 =

∑4
i=1 x2

i1 +
∑4

i=1 x2
i2∑4

i=1 x2
i1

∑4
i=1 x2

i2 − (
∑4

i=1 xi1xi2)2
. (2.32)

where i refers to the ith array. Note that it favors large
∑4

i=1 x2
i1,

∑4
i=1 x2

i2 and

small
∑4

i=1 xi1xi2. Here
∑4

i=1 x2
i1 and

∑4
i=1 x2

i2 represent the total number of

informative A/B and B/A comparisons for the two markers respectively (should

be large),
∑4

i=1 xi1xi2 represents the difference of the number of arrays with

different comparison on the two markers (i.e. A/B and B/A) and the number of

arrays with the same comparison on the two markers (i.e. A/B and A/B or B/A

and B/A) (should be small).

For the optimality criterion proposed by Fu and Jansen (2005), it is to find
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the minimum of

S =
2∑

j=1

{
4 +

∑4
i=1 x2

ij

4
∑4

i=1 x2
ij − (

∑4
i=1 xij)2

}
, (2.33)

where j refers to the number of markers. Note that it is an average of the

optimality scores for multiple markers. When single marker is considered (j =

1), this criterion favors a design with large
∑4

i=1 x2
i1 and small

∑4
i=1 xi1. Here

∑4
i=1 x2

i1 represents the total number of informative A/B and B/A comparisons

(should be large), and
∑4

i=1 xi1 represents the difference between the number of

A/B comparisons and the number of B/A comparisons (should be small, i.e. dyes

should be well balanced).

In this example if we propose a experimental design by randomly selecting 4

RIL pairs from the 16 types of RIL pairs in Table 2.3 (ordered and with replace-

ment), there are 164 = 65536 possibilities.

In order to find the optimal designs, we compute the optimality scores for

all the 65536 possible designs using Equation (2.32) and (2.33) respectively and

determine the optimal designs which have the smallest optimality score.

Under our proposed A-optimality criterion, we find 96 optimal designs with

the same score 0.5. If we ignore the permutation of the RIL pairs in the design,

the number of optimal design is reduced from 96 to 9. Table 2.4 shows these

results, which are almost exactly the same (i.e. all consist of two pairs of a and

d and two pairs of b and c) except the difference in the RIL’s order in a pair

(i.e. a/d or d/a, b/c or c/b). The reason that they have the same score can be

found in Equation (2.32), which shows that the optimality score is invariant to

the change of the RIL’s order in a pair (i.e. the change of sign of xij). Further,

if we check the corresponding markers for the pairs a/d, d/a, b/c and c/b in



CHAPTER 2. OPTIMAL DESIGN OF CDNA MICROARRAY EXPERIMENTS 65

Table 2.3, we find all the pairs have the maximum number (i.e. two) of informa-

tive A/B and B/A comparisons possible (a/d={A/B,A/B}, d/a={B/A,B/A},
b/c={A/B,B/A} and c/b={B/A,A/B}), which validates the optimality of these

findings.

For simplicity, we neglect the dye effect item β0 in Equation (2.29) in the

derivation of Equation (2.32) so that in the optimal findings the RIL’s order in a

pair is irrelevant. Now, if we include the dye effect item β0, then we have a new

design matrix:

X =




x11 x21 x31 x41

x12 x22 x32 x42

1 1 1 1




t

,

and the corresponding expression form of (X tX)−1 is cumbersome to derive ex-

plicitly. As a simple way out, in this example we do not show the explicit ex-

pression but compute the value of this expression directly by using R. We find

24 optimal designs with the same score 0.75. If we ignore the permutation of

the order of RIL pairs in the design, then the number of findings is reduced from

24 to 1, which is listed in the first row of Table 2.4. In this design (i.e. { a/d,

d/a, b/c, c/b }), all the pairs not only have the maximum number (i.e. two) of

informative A/B and B/A comparisons possible, but also take the dye balance

into account.

Under Fu & Jansen’s criterion, we find 36 optimal designs with score 1.0. If

we ignore the permutation of the order of RIL pairs in the design, the number of

optimal designs is reduced from 36 to 3. Table 2.5 shows the findings.

Under our proposed criterion, only 1 out of the 3 designs is found to be A-

optimal (which is exactly the first design shown in Table 2.4) while the other 2

designs are not optimal, because they are unable to estimate all the effects in
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Table 2.4: The 9 optimal designs found by our A-optimality criterion (dye
effect excluded) and also their corresponding optimality scores un-
der our criterion (dye effect included) and Fu & Jansen’s criterion.

design optimality score
ours ours with dye effect Fu & Jansen’s

1 a/d d/a b/c c/b 0.50 0.75 1.00
2 a/d d/a b/c b/c 0.50 1.25 1.33
3 a/d d/a c/b c/b 0.50 1.25 1.33
4 a/d a/d b/c c/b 0.50 1.25 1.33
5 a/d a/d b/c b/c 0.50 NaN Inf
6 a/d a/d c/b c/b 0.50 NaN Inf
7 d/a d/a b/c c/b 0.50 1.25 1.33
8 d/a d/a b/c b/c 0.50 NaN Inf
9 d/a d/a c/b c/b 0.50 NaN Inf

Table 2.5: The 3 optimal designs found by Fu & Jansen’s criterion and also
their corresponding optimality scores under our criteria (dye effect

ignored or considered)

design optimality score
Fu & Jansen’s ours ours with dye effect

1 a/d a/d d/a d/a 1.00 Inf NaN
2 a/d b/c d/a c/b 1.00 0.5 0.75
3 b/c b/c c/b c/b 1.00 Inf NaN

the additive main effects model (see their extreme large optimality scores or not

being a number).

Although Fu & Jansen’s criterion not only aims to maximize the number of

A/B or B/A comparisons but also ask for dye balance, it is only applied for one

marker. That’s why it finds designs like {a/d, a/d, d/a, d/a} and {b/c, b/c, c/b,

c/b}, which are not truly optimal for the case of multiple markers. In contrast,

our criterion (including the dye effect) is for all the markers on the genome and

takes into account of the joint effect of genes.
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As a conclusion, in this example we show that Fu and Jansen’s A-optimality

criterion might result in non-optimal findings and our proposed A-optimality

criterion is a more proper choice when the studied gene expression is affected

by multiple markers. The key reason is that our criterion is formulated from

the multiple-markers gene expression model which inherently considers the joint

effect of markers while Fu and Jansen’s single-marker gene expression model plus

taking average can not grasp such joint effects properly. We recommend our

A-optimality criterion for distant pair design.



Chapter 3

Dye effect normalization

3.1 Introduction

The current technology of dual-channel cDNA microarray is based on measuring

optical intensities of dye labeled cDNA that has hybridized to gene-specific probes

on the microarray. Two types of dyes Cy3 and Cy5 are commonly applied in the

experiment so that the corresponding two labeled cDNA samples on the array can

be distinguished. Despite similarities, the dyes have slightly different properties

(Wit and McClure, 2004). Firstly, the quantum yield from the dyes is different.

Secondly, the sizes of the Cy3 and Cy5 molecules differ slightly, which leads to

different numbers of dye molecules attaching to the samples. Thirdly, the dyes

react differently to photo-bleaching, an effect that occurs as a result of multiple

scans of the array (Chris and Ghazal, 2003). Besides the different efficiencies of

dyes, the unequal quantities of the two samples being mixed is another source of

a dye effect. As a result of all these issues, the direct comparison of dual-channel

gene expression data is difficult and some ways should be found to remove as

much bias as possible.

68
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This chapter consists of three sections. In the first section, we review the

background of the dye effect in cDNA microarray experiments and discuss the

normalization methods proposed to account for the dye effect. In the second

section, we propose our dye response model and, based on this model, we suggest

a new normalization method for the dye effect. In the final section, we compare

the normalization methods by using simulated microarray gene expression data

and real microarray data.

3.1.1 Linear and non-linear dye effects

Several normalization methods have been proposed to deal with the dye effect.

Early research by Kerr et al. (2000) suggested correcting the effect by a constant,

possibly different for each array (also called “dye-array interaction”). This means

that the dyes are assumed to have efficiencies that differ by an multiplicative

constant. This corresponds to a linear relationship between the log-transformed

expressions in the Cy3 and Cy5 channels. However in most cases this assumption

does not always stand up to further scrutiny.

To better understand it, we take a look at a real microarray dataset example

which was produced by Dr Nighean Barr, a researcher at the Cancer Research

UK Beatson Laboratories in Glasgow. The experiment that she carried out inves-

tigated differences between gene expressions in cancerous and normal fibroblast

cells. These cells are a key constituent of connective tissue within the body and

make fibres and the extracellular matrix. In the skin, these cells are susceptible

to become cancerous if exposed to UV radiation from sunlight. By finding which

genes are differentially expressed in the cancerous versus normal cells, one can

focus research into treatments for cancer. This skin cancer experiment is a direct
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Table 3.1: The design details of the skin cancer experiment.

Array Cy3 sample Cy5 sample
1 Cancer Normal
2 Normal Cancer
3 Cancer Normal
4 Normal Cancer

comparison of cancerous fibroblast cells with normal cells. From each of these two

cell lines, four technical replicates were created, and hybridized to dual channel

cDNA arrays which contained 4,608 genes replicated twice. Finally, four arrays

were produced in the experiment. For the first and third arrays, the normal tissue

was stained with Cy5 dye and the cancerous tissue was stained with Cy3. On

the other two arrays the dye assignments were swapped. The design details are

given in the Table 3.1.

Figure 3.1(a), (b), (c) and (d) represent the scatter-plots of the log-transformed

data from the array 1, 2, 3 and 4 respectively. Note that spatially normalized

data is used, rather than the original log-transformed data. The main reason for

it is that the dye effect might be confounded with a spatial effect on the array.

It is essential to perform spatial normalization in advance, or else it may lead to

bias. See Wit and McClure (2004, pg. 132) for more details. Global normaliza-

tion methods are not enough when dye bias depends on the overall spot intensity.

None of the four plots suggest a linear relationship. Besides Figure 3.1(a) which

looks relatively “linear”, all of the remaining plots show a very clear deviation

from a constant dye effect. The relative efficiency of the dyes seem to vary across

the intensity range. However, some obvious differences can be found: in Figure

3.1(b), Cy5 dye seems to have been incorporated more efficiently while in Figure

3.1(c) and (d), Cy3 seems to have been incorporated more efficiently, these plots
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share a very common pattern: Cy3 dye seems to have gained in efficiency relative

to Cy5 in the middle of the intensity range, which is known as “banana effect”.
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Figure 3.1: The log-transformed data (after taking global normalization)
from four different cDNA slides from the skin cancer experiment.
Each point in the scatter-plots represents a spot (gene) on the
array. The x-axes and y-axes stand for the Cy3 and Cy5 value
respectively. The lines in both plots correspond with the line of
equality and a loess smoother through the points. Although plots
of all the four arrays show a non-linear relationship between the

dyes, plots (b), (c) and (d) are more obvious.
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3.1.2 Dye effect normalization methods

The dye effects are intensity-dependent. Three methods have been proposed for

dealing with intensity-dependent dye effects so far. The simplest one is called dye-

swap normalization, which consists of repeating a hybridization twice with the

dyes swapped and averaging the expression values for each spot over the Cy3 and

Cy5 channel. The second method is to consider the dye effect as a nuisance effect

in an ANOVA model. The third method includes two steps, firstly estimating the

relative dye efficiency at each intensity and then subtracting it from the original

data.

3.1.2.1 Dye swap method

Dye-swap normalization is an easy and intuitive way of eliminating dye effects and

is very popular among practitioners. In spite of these merits, it has two potential

disadvantages. The first one is that the dye effect might not be the same from

array to array, which means there is no guarantee that this method can effectively

remove the dye effect. The second one is that a dye-swap experiment design is

not very efficient especially, since it needs twice as many resources as the ordinary

loop design.

3.1.2.2 ANOVA method

The analysis of variance (ANOVA) method handles normalization and data analy-

sis simultaneously, by modelling the nuisance effect and the estimation of condition-

specific gene expression.

A single gene expression data can be denoted as yijkg, which is the fluorescence

measurement for the mRNA of gene g under condition k, labelled with dye j on
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the ith array. In order to account for these sources of variation in a microarray

experiment, Kerr et al. (2000) proposed an ANOVA model for the gene expression

data under the logarithmic scale:

log(yijkg) = µ + Ai + Dj + Tk + Gg + (AG)ig + (TG)kg + εijkg, (3.1)

where µ is the overall mean value, A is the main effect of arrays, D is the main

effect of dyes, T is the main effect of treatments, G is the main effect of genes,

AG is the interaction effect of arrays and genes and accounts for the spot-to-spot

variation, TG is the interaction effect of treatments and genes and is the effect of

interest. ε is the random error which is assumed to be independent and identically

distributed with mean zero.

Unfortunately, it has been widely recognized that many artifacts are non-

linear or intensity dependent and a simple linear model like Equation (3.1) is not

sufficient (Tseng et al., 2001; Wolkenhauer et al., 2002; Yang and Speed, 2002).

Although it is theoretically possible to propose more complex models involving

all the effects simultaneously, the computation is usually infeasible.

3.1.2.3 Two-step intensity-dependent dye normalization method

The idea of the two-step method of intensity-dependent dye normalization is to

fit a smooth curve to a scatter plot of Cy5 versus Cy3 values, such as in Figure

3.1. The method has several problems. First, the model is not invariant under

the exchange of the axes. Given that neither Cy3 nor Cy5 is a natural response

value, this is not very satisfactory. Second, the usual residuals are not the smallest

distances to the smoothed line. Orthogonal distances, the perpendicular distances
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from the data points to the fitted line, could be used, but this tends not to be very

standardly implemented. Instead, Yang and Speed (2003) suggest the smoothing

of the data on a transformed scale. Basically, the average of the two dye values

(A) are considered a predictor variable for the differences of the two dye values

(M) and it is on this transformed version of the data that the function conducts

the smoothing. This method is sometimes known as the MA scatter plot.

The two-step method of intensity-dependent dye normalization uses all or part

of the data to estimate a line of equal expression and then to define individual gene

expressions as deviations from that line. In general, there are two criteria for the

choice of a normalization set. First, the expression of the selected genes should

be expected to be approximately equal across both dyes, which implies that they

are very likely to be non-differential genes, so that the risk of “normalizing away”

true differential expressions can be minimized. Second, the normalization set

should be relatively large and ideally, the expressions of the selected genes should

distribute evenly across the whole range of the intensity so that the experimental

noise of the normalization curve can be reduced to minimum.

The details of a variation of the two-step method of intensity-dependent dye

normalization are described below.

1. For each probe i in the invariance set N , transform the raw Cy3 and Cy5

values, G and R respectively, via 45 degree log transformation as follows:

mi = log(Ri)− log(Gi), (3.2)

ai = 0.5× (log(Ri) + log(Gi)). (3.3)
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2. Find a smooth curve function f̃ through points by using a scatter plot

smoother.

3. In order to remove the “trend” from the differences (M), we subtract the

data from the smoothing line to get the residuals of the data, which con-

stitute a normalized MA plot,

m̃i = mi − f(ai), (3.4)

ãi = ai. (3.5)

4. By taking inverse of Equations (3.2) and (3.3) and using normalized MA

in Equations (3.4) and (3.5), we have the dye-normalized gene expression

values in the original scale,

log(R̃i) = ãi + 0.5m̃i, (3.6)

log(G̃i) = ãi − 0.5m̃i. (3.7)

By scatter plot smoother we mean a method that draws a smooth curve

through the scatter-plot of M vs A. If we think M as response variable and A as

the explanatory variable, then there is a wide range of methods available, such

as local polynomial regression (Cleveland, 1979; Cleveland and Devlin, 1988) or

smoothing splines.

Local polynomial regression, also known as LOESS, is a smoothing method.

It combines much of the simplicity of linear least squares regression with the
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flexibility of nonlinear regression. It does this by fitting simple models to localized

subsets of the data to build up a function that describes the deterministic part of

the variation in the data point by point. In detail, at each point in the data set

a low-degree polynomial is fit to a subset of the data, with explanatory variable

values near the point whose response is being estimated. The polynomial is fit

using weighted least squares, giving more weight to points near the point whose

response is being estimated and less weight to points further away. The value

of the regression function for the point is then obtained by evaluating the local

polynomial using the explanatory variable values for that data point. The LOESS

fit is complete after regression function values have been computed for each of

the data points.

LOESS depends on smoothing parameters. There are two types of parameter.

One is the degree of the polynomial fitted locally to the data and the other is

the fraction of the data to be included in the smoothing of each point, the larger

the fraction, the smoother the fit. We use the loess function from the statistical

software package R to perform intensity-dependent dye normalization. Yang et al.

(2002a) recommended using 20% of the data to be included in the smoothing of

each point, that is span = 0.2. The default degree of the polynomials in loess

is two, but we recommend to use linear functions, that is, polynomials of the

first degree. The reason for it is that high-order polynomials tend to be unstable,

particularly near the edges.

Smoothing splines is another popular smoothing method, which fits a cubic

smoothing spline to the supplied data. In R, the function smooth.spline is

implemented.

For illustration purposes, let’s consider a numerical example. The data we

use is from the second skin cancer array in Figure 3.1(d) which shows a clear
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non-linear dye effect. The array contains no information about spiking controls

or housekeeping genes, which are expected to be similarly expressed across the

two dyes. We decided to use the part of the whole data which is defined as those

genes whose relative rank among all 9,216 values has not changed by more than

250. In this way, 3,404 genes are selected as invariant ones. The Cy3 and Cy5

values are transformed according to Equations (3.2) and (3.3). Figure 3.2 (b)

shows the transformed values for this array. The invariant genes are used to

compute the smoothed curve of equality. Figure 3.2 (c) shows the results of using

two different smoothing approaches in R, namely loess and smooth.spline. For

the LOESS method, the parameter setting span = 0.2 and degree = 1 is more

stable than the default setting span = 0.75 and degree = 1, especially at the

edges. The smoothing spline’s performance is much worse than LOESS in this

case. In fact we have also applied the smoothing spline to other data in the skin

cancer experiment and we have found that it isn’t a very stable method (so we

do not recommend it for smoothing). After subtracting the LOESS line from the

MA-plot, the data are back-transformed to give the dye normalized Cy3 and Cy5

values on the original scale. This final result is shown in Figure 3.2 (d), which

does not show any intensity-dependent deviation from the line of equality.
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Figure 3.2: Dye normalization for the second skin cancer array. (a) the scat-
ter plot shows the unequal dye efficiencies in the original data; (b)
transform the original data into the MA scale; (c) for the invari-
ant genes, a smoothed line is fitted to the scatter plot by using
LOESS and smoothing spline; (d) the residuals of the smoothed

regression are transformed back to the original scale.
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3.2 Method

In a typical cDNA microarray experiment, the dye effect can be decomposed in

two parts: an additive part, which comes from the unequal quantities of two

samples onto the array (i.e. the interaction of dye and array) and a nonlinear

part, which is non-linear response of a dye (i.e. the interaction of dye and gene).

The former part is easy to remove but the latter part is quite difficult to deal

with. As we mention in Section 3.1, most of people circumvent this challenge

by using simple dye-swap normalization or two-step intensity-independent dye

normalization with smoothing techniques. Although these methods can give good

normalization results, there are no strong or direct scientific reasons supporting

them, because none of the methods take into account the cause of the non-linear

dye effect (i.e. the non-linear dye response). In the following, we first study

the dye effect by considering the different responses of dyes, then based on it we

suggest a novel normalization method for dye effect.

3.2.1 Dye response model

We set out to propose a model for dye response. Initially, we should consider

this problem at pixel level. For a pixel of a spot on a microarray, we assume

that the magnitude of signal intensity response of a pixel is strictly linear with

the number of dye molecules on that pixel. This assumption is the foundation of

dual-channel microarray technology. However, the scatter-plots of real microarray

data (e.g. see Figure 3.1) show that there are always some non-linear dye effects

remaining in the data, which means the assumption does not always hold strictly.

Therefore we argue that, strictly the dye response to the quantity of the sample

is not exactly linear, but contains a non-linear component.
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3.2.1.1 Model one

We propose a simple dye response model for the ith pixel of the jth spot labeled

with dye d as follows,

fd,ij(xij) =





1 xij ∈ [0, ad,ij],

M
bd,ij−ad,ij

(xij − ad,ij) + ε xij ∈ (ad,ij, bd,ij),

M xij ∈ [bd,ij, N ].

(3.8)

where xij is the number of dye molecules on the pixel, f(xij) is the corresponding

intensity signal, a is the intercept of the line of dye response with the lower

horizontal limit line of the signal intensity and b is the intercept of the line of dye

response with the upper horizontal limit line of the signal intensity. N denotes

the largest possible number of dye molecules in a pixel, which is in fact unknown,

M and 1 are set to be the largest and smallest possible signal intensity (M is

216 − 1 for a 16-bit microarray platform) so that fd,ij(xij) will be truncated to

be M and 1 when xij is larger than bd,ij or smaller than ad,ij, ε is the error term

which is assumed to be normally distributed with mean zero and variance σ2
ε .

Note that the dye response model for each pixel is different so that we use a

subscript for the purpose of discrimination. The possible value of dye type d is 3

or 5 corresponding to Cy3 or Cy5 respectively.

In this model the range of the number of dye molecules is partitioned into

three parts: the left end part, the central part and the right end part. When the

number of dye molecules lies in the left and right end part of its range, the pixel

signal intensity is set to be one and maximum respectively. When the number

of dye molecules lies in the central part of its range, the pixel signal intensity is
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Figure 3.3: The two dye response models for a pixel in a spot on a dual-
channel microarray. For Cy3 dye the linearity between the signal
intensity and the number of dye molecules is assumed to be true
when the number of dye molecule is in the range between a3 and
b3. When the number of dye molecules is in the range between
0 and a3 or b3 and N , the signal intensity is truncated to be 1
and M respectively. For Cy5 dye the linearity between the signal
intensity and the number of dye molecules is assumed to be true
when the number of dye molecule is in the range between a5 and
b5. When the number of dye molecules is in the range between
0 and a5 or b5 and N , the signal intensity is truncated to be 1

and M respectively.

strictly linear with the number of dye molecules, starting from one and ending

at maximum. Since each of the pixels in the spot has some slightly different

characteristics from each other, the dye molecules of a pixel might be more or

less sensitive to the laser scanning. This would result in slightly different dye

response patterns for different pixels. In our model it is achieved by setting the

starting and ending points of the central part on the axis of dye molecule numbers

as random variables. Figure 3.3 displays the dye response functions for two dye

types according to the Equation (3.8). If the mean of the starting point and

the ending point are closer to 0 and N respectively, the resulting curve of spot



CHAPTER 3. DYE EFFECT NORMALIZATION 83

dye response tends to be more linear. If the mean of the starting point and the

ending point are far away from 0 and N respectively, the resulting curve of spot

dye response then tends to be more nonlinear.

We define the signal of a spot, the gene expression, as the average of all pixel

intensities in the spot: we have the jth spot signal intensity as:

yd,j =
1

n

n∑
i=1

fd,ij(xij), (3.9)

where n is the number of pixels in the spot. If each pixel has exactly the same

dye response properties, then the dye response model for pixel intensity can be

used directly for spot intensity.

Let us assume that there are a large number of genes on a microarray and

for most genes the dye molecule numbers for the two channels are the same (e.g.

most genes have very similar expression value under the two conditions, which is

true in practice) and these genes are distributed evenly along the whole range of

signal intensity. Then we can use these unchanged genes to study the relationship

between the dissimilarity of the two dye response curves and the pattern of the

scatter-plot of the two channel microarray gene expression data: According to

the dye response functions in Figure 3.3, each non-differential expressed gene has

two separate signal intensity values (i.e. Cy3 and Cy5 channels), given its dye

molecule number. After taking logarithms of the values, we can determine the

points for all the genes in the scatter-plot of the two channel microarray gene

expression data. Then we can draw a smooth line through these points, which

is called the “dye effect curve”. By comparing it to the line of equality we can

judge the dye effect pattern in the microarray gene expression data. In essence,
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this method visualizes the dissimilarity of the efficiencies of the two dyes across

the range of signal intensity from zero to the maximum.

In the Figure 3.4 we show that the simple dye response model (i.e. Equa-

tion (3.8)) is able to generate a variety of typical dye effect patterns. To avoid

unnecessary complexity, firstly, we do not specify the exact type of dye in the

figure, instead we just denote channel one or channel two to distinguish the two

different data; secondly, we scale the range of number of dye molecules from [0, N ]

into [0, 1], which can be understood as the fraction of maximal number of dye

molecules.

Figure 3.4(a) shows that if the curves of the two dye responses overlap com-

pletely then the resulting dye effect curve is just on the top of the line of equal

expression which means no dye effect is found. Figure 3.4(b) shows that if the

diagonal line part of the two dye response curves have the same intersection on

the axis of dye molecule number, then the resulting dye effect curve parallels to

the line of equal expression, which is a linear (constant) dye effect. The reason

for it is quite simple. The diagonal line part of the two dye response curves

only differs in slope. After taking logarithm of the original signal intensity, the

difference is reduced to be the logarithm of the ratio of the slopes, which is a con-

stant. Figure 3.4(c) shows that if the diagonal line part of the two dye response

curves have no point of intersection, then the resulting dye effect curve is not

linear any more and the efficiency of dye of channel one increases when the signal

intensity decreases. Figure 3.4(d) shows that if the diagonal line part of the two

dye response curves have only one intersection not on the axis of dye molecule

number, then the resulting dye effect curve is also non-linear and the efficiency of

dye of channel two increases when the signal intensity decreases. The dye effect

curve intersects with the line of equality and the intersection corresponds to the
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intersection of the diagonal line part of the two dye response curves. For Figure

3.4(c) and Figure 3.4(d), the absolute distance between the two intersections of

the dye response curves and the axis of dye molecule number greatly affects the

degree of non-linearity of the dye effect curve: the longer the distance, the larger

the degree of non-linearity. Note that if we swap channel one data with channel

two data in the scatter-plot we obtain a symmetrical dye effect curve with respect

to the line of equality.
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Figure 3.4: Dye effect patterns are caused by the dissimilarity of the two
dye response curves (see Equation (3.8)). Several typical ones
are shown here for illustration purpose: (a) no dye effect; (b)
linear dye effect; (c) one type of non-linear dye effect and (d)
another type of non-linear dye effect. For each figure the left
subfigure shows the two dye response curves (red and blue curves)
in original scale and the right subfigure shows the resulting dye

effect pattern (red curve) in logarithm scale.
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Figure 3.5: An example of the pixel level and spot level relationship for sim-
ple dye response model. (a) shows that 1000 observed gene ex-
pressions (pixel level) are generated to scatter across the whole
range of true log intensity [0, 14] according to two different sim-
ple dye response models (for the Cy3 dye response model, a = 3
and b = 10, for the Cy5 dye response model, a = 4 and b = 12.
M = 12). Red “+” and green “*” stand for a gene in Cy3 and
Cy5 channel respectively. (b) is the corresponding scatterplot of
Cy3 vs Cy5. (c) shows the 1000 observed gene expressions at spot
level (each spot consists of 40 pixels). (d) is the corresponding

scatterplot of Cy3 vs Cy5.
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Figure 3.4(c) and Figure 3.4(d) are similar to the real dye bias patterns we see

in Figure 3.1. This finding justifies the effectiveness of our dye response model

to some extent. Besides Figure 3.4, Figure 3.5 also clearly shows that the simple

dye response model can result in “banana effect” pattern at the pixel level (see

Figure 3.5 (a) and (b)) and at the spot level (see Figure 3.5 (c) and (d)).

Since the simple dye response model (see Equation (3.8)) is completely deter-

mined by specifying the starting point and ending point of the central part of the

range of dye molecule number, it is natural for us to estimate these four param-

eters. If the dye response model is known, we can easily transform the observed

spot signal intensity into the corresponding number of dye molecules which we

regard as the real signal intensity. One standard way to estimate the parameters

is to use the method of maximum likelihood estimation. For each gene (spot), we

can write two equations according to Equation (3.9) and (3.8), one for dye Cy3

and the other for dye Cy5. Therefore, assuming that there are n non-differentially

expressed observations (spots), we have 2n independent equations:

yd,j =

[
M

bd − ad

(xj − ad) + ε

]M

1

, j = 1, . . . , n, d ∈ 3, 5. (3.10)

where xj is the number of dye molecules in the jth spot, [· · · ]M1 denotes that the

value of the expression inside the square bracket is truncated to M if it is larger

than M , and 1 if it is smaller than 1. Here we assume that all gene share the

same a3, a5, b3 and b5.

By rearranging Equation (3.10), we manage to have the likelihood as follows,

Likelihood(x1, · · · , xn, a3, b3, a5, b5, σ
2) =

∏

d=3,5

n∏
j=1

1√
2πσ

exp

{
− 1

2σ2

[
yd,j −

[ M

bd − ad

(xj − ad)
]M

1

]2}
. (3.11)
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After taking the logarithm of Equation (3.11), we have the log-likelihood,

Log − likelihood(x1, · · · , xn, a3, b3, a5, b5, σ
2) =

∑

d=3,5

n∑
j=1

{
− log σ − 1

2σ2

[
yd,j −

[ M

bd − ad

(xj − ad)
]M

1

]2}
. (3.12)

Taking the first derivatives of the expression of Equation (3.12) with respect

to x1, · · · , xn, a3, b3, a5, b5, σ2 and setting them to be zero leads to a system of

n + 5 independent equations for the n + 5 unknown parameters. The system of

equations is not uniquely soluble, because there are many combinations of x, a3,

a5, b3, b5 and σ that give the same max log-likelihood.

It is important to note that the model is over-parametrized. It is possible

for us to solve the equations by fixing several parameters. For example, we may

let a3 and b3 fixed, then xj is easy to estimate iteratively by using the following

steps:

1. Use only data y3,j to estimate xj.

2. With these xj we can fit a5 and b5.

3. Use a3, b3, a5, b5 and all data y3,j, y5,j to fit xj.

4. Go back to Step 2.

After a few iterations it will converge. Note that this method assumes that

the majority of the genes are not differentially expressed. Once we know the

expression of the dye response model, we could do the dye normalization by

mapping the observed gene expression (with dye effect) into the dye molecule

numbers which represent the true gene expression intensity.
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3.2.1.2 Model two

We can find an alternative dye response model whose parameters could be easily

estimated. Recall that we made the assumption in Section 3.2.1.1 that each pixel

of a spot has the same dye response properties so that the dye response model for

the pixel intensity can be used for the spot intensity directly. This assumption

is too strict and it is not likely to be true in practice. It is more reasonable

to assume that each pixel has a slightly different dye response from each other.

Equation (3.8) takes account of it by setting a and b as random variables. Then

the resulting dye response model for a spot (i.e. Equation 3.9) will be different

from that for a pixel. In particular, it will smooth the curves around the two

turning points in Figure 3.3.

To illustrate this issue, we first scale the original pixel intensity and the num-

ber of dye molecules on a pixel by dividing by M and N respectively, and then

calculate the average. Figure 3.6 shows such an example in a scenario where the

number of pixels in a spot is 60, a is normally distributed with µ = 0.15 and

σ = 0.08 and b is normal distributed with mean µ = 0.85 and σ = 0.08. Besides

Figure 3.6, Figure 3.5 (c) also supports the argument to some extent.

We believe that the “S” curve in Figure 3.6 is a more reasonable model for

spot dye response. There are several reasons for it: first of all, it accords with

the main characteristics of dye response: continuous and strictly monotonic as-

cending; secondly, the “S” curve is not very different from a straight line, which

is important, because it is unlikely for the spot dye responses to deviate far away

from linearity; thirdly, it is relatively flexible and different “S” dye response curve

for spot could be generated if the parameters of the model are adjusted. There-

fore, we are motivated to find a model which can describe the “S” curve for spot

dye response.
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Figure 3.6: A spot’s nonlinear dye response is generated by taking the aver-
age of its pixels’ linear dye responses.

Inspired by the “S” shape curve in Figure 3.6, we propose that the cumulative

distribution function (cdf) of the normal distribution is a nice candidate for the

dye response model. The cdf, evaluated at a specific number x, is defined to be

the probability of the event that a random variable with a normal distribution is

less than or equal to that number. It is expressed in terms of the normal density

function as follows,

Φµ,σ2(x) =

∫ x

−∞

1

σ
√

2π
exp

(
− (u− µ)2

2σ2

)
du

= Φ

(
x− µ

σ

)
, x ∈ R, (3.13)

where the standard normal cdf Φ is the general cdf evaluated with mean µ = 0
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and standard deviation σ = 1:

Φ(x) = Φ0,1(x) =
1√
2π

∫ x

−∞
exp

(
− u2

2

)
du, x ∈ R. (3.14)

The inverse cumulative distribution function, or quantile function associated with

the normal distribution (probit function), can be expressed as:

Φ−1
µ,σ2(p) = µ + σΦ−1(p) = µ + σ

√
2erf−1(2p− 1), p ∈ (0, 1), (3.15)

where erf is called the error function and is defined as

erf(x) =
2√
π

∫ x

0

exp(−u2)du. (3.16)

erf−1(x) can be represented by a series expansion as

erf−1(x) =
∞∑

k=0

ck

2k + 1

(√
π

2
x

)2k+1

, (3.17)

where c0 = 1 and

ck =
k∑

m=0

cmck−1−m

(m + 1)(2m + 1)
. (3.18)

If the cdf of normal distribution is used as a reference, the change of mean

value of normal distribution can shift the “S” curve horizontally while the change

of the value of variance can adjust the slope degree of the ‘S’ curve. Therefore

it is natural to use the probit function to mimic a curve like the nonlinear dye

response function in Figure 3.6 by adjusting these two parameters simultaneously.

There are some problems needed to be addressed before we apply the cdf of

the normal distribution to model the dye response. Firstly, the range of the cdf
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of normal distribution is only [0, 1], and not [1, 65535] which is original range of

gene expression. Secondly, the “S” curve pattern of the cdf of normal distribution

(our interest) does not cover the whole domain of x, [−∞,∞], instead it largely

lies on a small interval of x ranging from the mean minus three times standard

deviation to the mean plus three times standard deviation.

For the first one, it can not be a problem if we consider it as the scaled gene

expression (spot) intensity. We can linearly transform the range of the cdf of the

normal distribution from [0, 1] to [0, 11.1] which approximately corresponds to

the range [1, 65535] of gene expression on the logarithmic scale.

For the second problem, we should realize that a spot’s dye molecule number

is equivalent to its true gene expression (also gene log expression) in concept,

then we can arbitrarily let one of the two dye response function, say Cy3, be

fixed to be the cdf of the normal distribution with µ = 8 and σ = 1 (the other

dye response function for Cy5 is slightly different from that of Cy3 with different

mean and variance). Therefore the “S” curve pattern mostly lies on the interval

of x from 5 to 11 in log scale, which approximately corresponds to the original

gene expression interval from 148 to 59874 (very close to the limiting range of

[1, 65535]). Note that the reason that one dye response function is fixed will be

explained later.

Suppose that we use the cdf of the normal distribution for the dye response

function as we describe above, can we model the dye response curve and do the

dye normalization? If we use maximum likelihood, then we will meet the same

problem as we have in the Section 3.2.1.2: it is difficult to estimate the parameters

(i.e. mean, variance and x’s) of the cdf function. So we have to find another way

out.
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In the following, we propose a new way to estimate the parameters of dye re-

sponse function. The key idea is described as follows: From the microarray data,

we get the dye effect pattern (i.e. original dye effect curve). Then we model a

pair of dye response functions (Cy3 and Cy5) by using two separate cdf of normal

distribution. Since the two dye response functions lead to a proposed dye effect

curve, then we can compute the distance between the original dye effect curve

and the proposed dye effect curve. In this way, we repeatedly propose alterna-

tive pair of dye response functions and calculate the corresponding distance until

the minimum of distance is found. In a word, we just want to search for such

a pair of dye response functions whose corresponding dye effect curve is equal

to or very close to the original dye effect curve. However, we can not find an

unique pair of dye response functions unless we specify one of the dye response

functions in advance. That is why we have to fix one of the dye response function

by specifying its mean and variance (i.e. the Cy3 dye response function). After

we estimate the parameters of the Cy5 dye response function, we can do the dye

normalization for the observed two channel spot signal intensities by mapping

them to true gene expression data (i.e. dye molecule number) via the two dye

response functions respectively.

The detailed steps of the algorithm are described below:

1. Read the observed Cy3 and Cy5 gene expression data from a microarray

which may contain tens of thousand of genes. We select part of the whole

dataset which is defined as those genes whose relative rank among all the

values has not changed by a relatively small number, let’s say, 250. Using

the selected genes, we can draw the dye effect curve in the scatter-plot of

microarray data Cy3 vs Cy5. We call this the target dye effect curve.
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2. Assuming the Cy3 dye response function is known (i.e. the cdf of the

normal distribution with µ = 8 and σ = 1), we propose the cdf of normal

distribution for Cy5 dye response function with initial mean and variance

value (i.e. Equation (3.13)). Subsequently we can determine the resulting

proposed dye effect curve in the scatter-plot of microarray gene expression

data Cy3 vs Cy5. Then the distance between the target curve and the

proposed dye effect curve is computed according to Equation (3.19) below.

3. Keep proposing alternative mean and variance values for the cdf of nor-

mal distribution for Cy5 dye response function until the resulting distance

between the target curve and the proposed curve is minimized. A general-

purpose optimization method based on Nelder-Mead (or quasi-Newton or

conjugate-gradient algorithms) could be used here to obtain the “optimal”

cdf of normal distribution for Cy5 dye response function.

4. For the observed Cy3 channel microarray data, we transform it back to the

original data via the inverse of the cdf of the normal distribution for the

Cy3 dye response function (i.e. Equation (3.15)). For the observed Cy5

channel microarray data, we transform it back to the original data via the

inverse of the optimal cdf of normal distribution for the Cy5 dye response

function.

In the above, we calculate the so called “distance” between two curves in a

two dimensional plane. The “distance” is defined as following: assuming that

there are two curves A and B in a two dimensional space and each of the curves

is approximately determined by n points which are evenly distributed along the

curve, that is, for A we have points a1,· · · ,an and for B we have points b1,· · · ,bn,
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then the distance between A and B is defined as

n∑
i=1

min
j∈N

{|bi − aj|}, N = {1, . . . , n}, (3.19)

where |bi − aj| denotes the Euclidean distance between the two points bi and aj.

The optimization method we implement here is Nelder and Mead (1965). The

Nelder-Mead method is a commonly used nonlinear optimization algorithm. It is

a simplex method for finding a local minimum of a objective function of several

variables. In our case, the objective function is the distance between the proposed

cdf of normal distribution and the target cdf of normal distribution and there are

two unknown variables: mean and variance of the proposed cdf. For two variables,

a simplex (a generalized triangle in N dimensions) is a triangle, and the method is

a pattern search that compares function values at the three vertices of a triangle.

The worst vertex, whose function value is the largest, is rejected and replaced

with a new vertex. A new triangle is formed and the search is continued. The

process generates a sequence of triangles (which might have different shapes), for

which the function values at the vertices get smaller and smaller. The size of the

triangles is reduced and the coordinates of the minimum point are found. In R,

the function optim provides us with a variety of optimization methods including

Nelder-Mead which is the default method.

3.3 Results

In this section, we study the performance of model two.
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3.3.1 Evaluating the model

We try a variety of combinations of mean and variance values for the cdf of

Cy5 dye response function to evaluate our model. Figure 3.7 shows that the

model of dye response function discussed in Section 3.2.1.2 is flexible enough

to generate different typical dye effect patterns. In general, it is better than the

simple model in Section 3.2.1.1, because it can generate much smoother dye effect

curves and the resulting nonlinear dye effect patterns (e.g. Figure 3.7 (a), (d) and

(g)) strongly resemble the banana effect which we often see from real microarray

experimental data.

3.3.2 Evaluating the method

Besides the dye response model, we are also interested in knowing the performance

of the method. One way to evaluate it is to use the cdf of normal distribution

for dye response function with known parameters as input information to test

the optimization method of the algorithm. If the estimation of parameters in the

“optimal” cdf of normal distribution for dye response function matches the input

prespecified parameters, then it would mean that the method works well.

Here we use three cases from Figure 3.7 as the examples. The prespecified

mean and variance parameter values are 7.8 and 0.8, 7.8 and 1.0, and 7.8 and

1.2 for the Cy5 dye response function (red curve) in Figure 3.7 (a), (d) and

(g) respectively. For all these cases, the parameters have been estimated by the

optimization method and the results turn out to be exactly the same as these pre-

specified ones. That isn’t a surprise, because in essence our proposed algorithm

is just an inverse calculation of the generation of the dye effect pattern from two

dye response functions.
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(a) µ = 7.8, σ = 0.8 (b) µ = 8.0, σ = 0.8
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(c) µ = 8.2, σ = 0.8 (d) µ = 7.8, σ = 1.0
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(e) µ = 8.0, σ = 1.0 (f) µ = 8.2, σ = 1.0
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(g) µ = 7.8, σ = 1.2 (h) µ = 8.0, σ = 1.2
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(i) µ = 8.2, σ = 1.2

Figure 3.7: The difference between the Cy3 dye response function (the cdf of
normal distribution with mean 8 and variance 1) and the Cy5 dye
response function (the cdf of normal distribution with different
combinations of mean and variance value) results in a variety of
dye effect patterns. For each figure, the left subfigure shows the
two dye response functions (the green dash curve is for Cy3 and
the red curve is for Cy5) and the right subfigure shows the dye

effect curve (red curve).
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Then we can take further ways to study the performance of the method versus

that of LOESS. The basic idea is: firstly, for each channel, we make up observed

gene expression data by transforming true data via Equation (3.13); secondly,

apply the new method and LOESS method respectively to the transformed data

and get the resulting normalized data; thirdly, compare the results with the

original data so as to evaluate the two methods.

Let’s consider a more detailed scenario as follows. We assume that in a

microarray experiment we have a number of genes, let’s say 500, whose relative

rank between Cy3 and Cy5 channels among all the values is relatively stable. We

assume the true gene expression (after taking logarithm) for these 500 genes is

normally distributed with mean 8 and variance 1. The generated values bigger

than 11.1 are set to be 11.1 and the values smaller than 1 are set to 1. The

dye response function for Cy3 is fixed and assumed to be the cdf of normal

distribution with µ = 8 and σ = 1. The Cy5 dye response function is the cdf of

a normal distribution with unknown µ and σ.

Once we propose the mean and variance values for the Cy5 dye response

function, we are able to generate 500 observed Cy3 and Cy5 gene expression data

(contain dye effect) by transforming the true gene expression data via the Cy3 and

Cy5 dye response functions respectively. Note that before the transformation, we

add some small variation ε to the true expression data, where ε ∼ N(0, σ2
ε). It

makes possible that the resulting observed gene expression data in the Cy3 vs

Cy5 scatter-plot do not overlap on the dye effect curve but distribute around it.

Figure 3.8 shows such an example of simulated data when mean and variance of

Cy5 dye response function is set to be 7.7 and 1.1, and σε, the standard deviation

of the error, be 0.1.
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Figure 3.8: An example of gene expression simulation when the mean and
variance of Cy5 dye response function is set to be 7.7 and 1.1,
the mean and variance of Cy3 dye response function is fixed
to be 8 and 1, and the standard deviation of variation, σε, is
set to be 0.1. The left figure shows Cy3 dye response function
(green dot curve) and Cy5 dye response function (red curve); The
middle figure shows the resulting dye effect pattern (blue curve);
The right figure shows the simulated 500 gene expressions (blue
points) scattering around the dye effect curve, which is like the

“banana effect” from practical experiment.

Then we can apply our method and LOESS to the simulated gene expression

data respectively. Each of the methods does the dye normalization and gives out

its corresponding reconstructed gene expression data. Since we know the original

microarray data in advance, we are able to evaluate the performance of these

two methods quantitatively by calculating the sum of squares of the difference

between the reconstructed data and the original data for each channel. The

method with low sum of squares of the difference is preferable.

In order to compare the methods properly, we should transform all the data

before comparison by standardization,

z =
g − E(G)√

Var(G)
(3.20)
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Table 3.2: Comparison of LOESS and the new method. In the scenario of the
example in the Figure 3.8, the new method has smaller amount of
the sum of the squares of the difference between the normalized
reconstructed data and original data than LOESS in both of the

Cy3 and Cy5 channels.

Channel New method LOESS

Cy3 5.67 22.17
Cy5 5.14 23.70

where the reconstructed gene expression data is assumed to be a random variable

G, g is an observation of G and z is the corresponding standardized observation.

For the example in Figure 3.8, Table 3.2 shows that the new method seems

to be better than LOESS. Figure 3.9 (b) and (c) show the result from the new

method and LOESS. Figure 3.9 (d) and (e) show the comparison of the normalized

result from the new method and LOESS in Cy3 and Cy5 channel respectively. It

shows that the result from LOESS not only tends to be an underestimate when

the original gene expression data is close to the upper-limit of its possible range,

but also be an overestimate when the original gene expression data is close to

the lower-limit of its possible range. In contrast, the new method has no such

drawback.

Figure 3.10 considers a variety of combinations of mean and variance values

for the Cy5 dye response function and σε to evaluate the performance of the new

method and LOESS by computing the sum of squares of the difference between

the standardized reconstructed data and standardized original data for Cy3 and

Cy5 respectively. The results unanimously show that the reconstructed data by

the new method has much smaller sum of square of the difference than that by

LOESS, which means the new method has much better performance than LOESS
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for simulated gene expression data from the dye response model.

Figure 3.11 gives the reconstructed gene expression result from real microar-

ray gene expression data on skin study by using the new method and LOESS

respectively. Basically, from the figure we see that generally the performance of

new method is comparable to that of LOESS, although it is impossible for us to

judge quantitatively.
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Figure 3.9: An example of comparison of the performance of the new method
and LOESS method. The input Cy3 and Cy5 gene expression
data (with dye effect) is simulated from the example shown in
Figure 3.8. (a) the scatter plot of original Cy3 and Cy5 data
with dye effect; (b) the scatter plot of the reconstructed Cy3
and Cy5 data from the new method; (c) the scatter plot of the
reconstructed Cy3 and Cy5 data from LOESS method; (d) the
comparison between the standardized original Cy3 data and the
standardized reconstructed Cy3 data, the green curve stands for
LOESS method and the red curve stands for the new method;
(e) the comparison between the standardized original Cy5 data
and the standardized reconstructed Cy5 data, the green curve
stands for LOESS method and the red curve stands for the new

method.
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Figure 3.10: Comparison of the performance of the new method and LOESS
method for a variety of scenarios. Subfigure (a), (b), (c), (d)
and (e) show the sum of square of the difference between the
standardized reconstructed data (line for new method, dotted
line for LOESS) and standardized original data for Cy3 and
Cy5 when the variance for Cy5 dye response function is set to
be 0.8, 0.9, 1.0, 1.1 and 1.2 respectively, and for each subfigure
it considers the performance in the case of different mean value
for Cy5 dye response (i.e. 7.5, 7.7, 7.9, 8.1, 8.3 and 8.5) and
different standard deviation of the error added to the true gene
expression (red, green and blue color corresponds to 0.1, 0.15

and 0.2 respectively).
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Figure 3.11: An example of dye effect normalization using real skin microar-
ray gene expression data from experiment. Up-left subfigure
shows the scatter-plot of all the gene expression in Cy3 and Cy5
channel; up-middle-left sub-figure shows the the scatter-plot
of all the gene expression whose ranking is not changed more
than 500 in Cy3 and Cy5 channel; up-middle-right and up-right
subfigures show the resulting two-channel dye response models
and also the dye effect curve respectively; down-left and down-
middle-left subfigures show the reconstructed gene expression
(not changed more than 500 and all the data) data by the new
method respectively; down-middle-right and down-right subfig-
ures show the reconstructed gene expression (not changed more

than 500 and all the data) data by LOESS respectively.
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3.4 Discussion

In this chapter, we first give a review of the background and recent development in

dye effect normalization, especially the two-step intensity-dependent dye normal-

ization method (i.e. LOESS method). In order to know the problem of dye effect

normalization better, we suggest the concept of dye response function (model)

and dye effect curve and study the causal relationship between these two issues.

We propose two kinds of dye response model, one is linear and the other is nonlin-

ear. We argue that the “S” shape nonlinear one is more reasonable, and propose

to model it by the cdf of normal distribution (probit function). (Note that it is

possible to use other mathematical models to represent the “S” shape curve, for

example logistic distribution and inverse tangent function). Based on this model

we develop our new method. The main idea of our method is to determine such

a pair of dye response functions that the resulting dye effect curve matches the

dye effect curve from the observed gene expression data. After specifying the

pair of dye response functions we can use them to transform the observed gene

expression intensity to true intensity. In fact it is equivalent to the calculation

of the inverse of cdf of normal distribution. Finally, our method is compared to

the LOESS method using simulated gene expression data and experimental gene

expression data. In the case of simulated data, the performance of our method is

better than that of LOESS method. It is anticipated because our method for dye

normalization is just an inverse calculation of our method for data simulation so

we do not expect LOESS method can outperform our method (although we add

different levels of variation to the simulated data). In the case of experimental

data, by comparing the original Cy3 vs Cy5 scatterplot and the dye-normalized

Cy3 vs Cy5 scatterplots from the two methods visually, we can find that our
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method is comparable to the LOESS method although it is unfortunate that we

can not measure the performance quantitatively because we have no information

of the true gene expression data. Further, compared to other popular method

(e.g. LOESS) a strong merit of our method is that it is based on reasonable dye

response model, not like LOESS method which has no good motivation and is

purely an application of a general smoothing method.



Chapter 4

Estimating the proportion of true

nulls

4.1 Introduction

With the rapid development of microarray technologies, scientists are able to take

measurements of expression levels of thousands of genes in different conditions

(e.g. treatment or control) simultaneously. Among the applications of microar-

ray experiments, a very common one is to find out which differentially expressed

genes to subject to further experimentation. Hypothesis testing is usually used

for the identification of differentially expressed genes. For each statistical test

performed, there is some probability that an erroneous inference will be made.

If thousands of tests are performed, quite a number of incorrect inferences might

occur just by chance alone. The need then arises to properly account for the

occurrence of errors in applications that involve multiple testing. Until recently,

statistical procedures devoted to this multiple testing problem mostly have fo-

cused on controlling or estimating false positive error criteria (Pounds, 2005).

110
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For microarray experiments, the most used criterion nowadays is the false

discovery rate (FDR) which is the expected proportion of false discoveries among

all discoveries (Benjamini and Hochberg, 1995). Besides it, there are some other

popular error rates such as positive false discovery rate (pFDR) (Storey, 2002)

and local false discovery rate (lFDR) (Efron et al., 2001). In order to access

or control these multiple error rates, we must estimate the proportion π0 of true

null hypotheses (i.e. the proportion of not differentially expressed genes) properly.

Many statistical methods have been proposed to estimate the proportion of true

nulls, among others Schweder and Spjøtvoll (1982), Allison et al. (2002), Storey

and Tibshirani (2003), Pounds and Cheng (2004), Pounds and Cheng (2004), Liao

et al. (2004), Dalmasso et al. (2005), Langaas and Lindqvist (2005), McLachlan

et al. (2006) and Lai (2007). Other methods for selecting differentially expressed

genes in microarray experiments produce an estimate of π0 as a by-product, (Cox

and Wong (2004); Lönnstedt and Speed (2002); Newton et al. (2001, 2004); Smyth

(2004)). In this chapter, we focus on estimating π0 on the basis of calculated p-

values from hypothesis tests, by using mixture models with unknown number of

components. We then apply the estimate of π0 to the computation of pFDR and

local FDR for real datasets.

The outline of this chapter is as follows. In the first section we introduce

the general aim and structure. In the second section we review the definitions

and controlling procedures of different error rates for multiple hypothesis testing

in microarray experiments, and give an example to compare some of these error

rates. In the third section we first review the two-component mixture model and

the proportion of true null hypotheses and then review recently published meth-

ods of estimating the proportion of true null. In the fourth section we propose
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three different mixture models with an unknown number of components for de-

scribing the distribution of p-values produced from the microarray experiments.

In the fifth section we review the approach of Nobile and Fearnside (2007), a

Markov chain Monte Carlo method for the Bayesian analysis of finite mixture

distributions with an unknown number of components. In order to apply the

MCMC method to our models, for each of the three mixture model we derive

the corresponding explicit expression of the joint posterior distribution of the

number of components and the allocation variables by integrating out the com-

ponent parameters and mixture weights. In the sixth section, we illustrate our

models with real and simulated gene expression data. The proportion of true null

hypotheses, pFDR and lFDR are estimated and we show that lFDR gives more

specific and relevant quantification of the evidence for differential expression that

can be substantially different from pFDR. The final section contains a discussion.
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4.2 Multiple hypothesis testing and error rates

4.2.1 Classical hypothesis testing

Statistical hypothesis testing is a formal means of distinguishing between one

hypothesis concerning the parameters of the distribution of a population (the

null hypothesis often denoted by H0) against another (the alternative hypothesis

often denoted by H1). For instance, in a test concerning the value of an unknown

parameter, the null hypothesis specifies a particular value for the parameter,

whereas the alternative hypothesis specifies either an alternative value or a range

of alternative values. The role of these two hypotheses is asymmetric, with the

null hypothesis assumed as true until enough evidence to the contrary has been

collected.

From the null hypothesis, a reference distribution of a test statistic (such

as a t-statistic) can be derived and the resulting distribution is called ‘the null

distribution’ which describes the variability of that statistic due to chance. By

comparing the test statistic on the actual data to the null distribution, a p-value

is computed to summarize the comparison. The p-value is the probability of

observing a value for the test statistic that is at least as extreme as the observed

test statistic under the assumption that null hypothesis is true. If the actual

value of the statistic is too far from its expected value, which corresponds to a

very small p-value, the test is deemed to be significant and the decision is to

reject H0 in favor of the alternative hypothesis. Otherwise, the test is deemed to

be not significant and the decision is to not reject H0. The set of values of the

statistic that lead to the rejection of H0 is called critical region or rejection region



CHAPTER 4. ESTIMATING THE PROPORTION OF TRUE NULLS 114

and the set of values that do not lead to rejection of H0 is called the acceptance

region.

There are two cases when the test leads to a correct result. These occur when

H0 is true and the test leads to its acceptance and when H1 is true and the test

leads to rejection of H0. On the other hand there are two cases when the test

leads to an incorrect result. These occur when H0 is true but the test leads to

its rejection (a Type I error or false positive) and when H1 is true but the test

leads to the acceptance of H0 (a Type II error or false negative). The probability

of making a Type I error is denoted by α. It is also the significance level of the

test, which determines the size of the critical region. The smaller the significance

level, the smaller the critical region. The probability of making a Type II error

is denoted by β. The power of the test, which is the probability of accepting the

alternative hypothesis when it is in fact true, is 1− β.

In a microarray experiment, we usually like to know whether or not a gene is

differentially expressed and we are interested in the parameter θj, which is the

population mean difference in gene expression for gene j. Therefore, for m genes

we have m pairs of mutually exclusive hypotheses:

H0j : θj = 0, gene j is not differentially expressed

H1j : θj 6= 0, gene j is differentially expressed.

When only a single pair of hypotheses is to be tested, the probability of each

type of erroneous inference can be limited to desired levels by carefully planning

the experiment and the statistical analysis. In this simple setting, the probabil-

ity of a false positive can be limited by preselecting the significance level. The

probability of a false negative can be limited by performing an experiment with

adequate replication. Statistical power calculations can determine how much
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replication is required to achieve a desired level of control on the probability of

a false negative result. When multiple hypothesis tests are performed simultane-

ously, which is often the case in a microarray experiment, the situation is more

complicated.

4.2.2 Multiple hypothesis testing

The problem of multiple testing can be described as the potential increase of

false positive (i.e. Type I errors) that occurs when many statistical hypotheses

are tested and each test has a specified Type I error probability. In the microar-

ray setting, that means: “ a p-value of 0.001 for one gene among a list of several

thousands will no longer correspond to very few significant findings, as it is in-

evitable that such small p-value will occur by chance when considering a large

enough set of genes. ” (Dudoit et al., 2002)

To understand this problem better, consider m independent tests performed

all at the per-comparison level αC (i.e. the probability of making a Type I

error). The corresponding family-wise significance level αF (i.e. the probability

of making at least one Type I error) is given by αF = 1− (1− αC)m. The larger

the number of tests, the closer αF to 1. Thus, controlling αF to a small value, say

0.05, will require an extremely small per-comparison level αC . Therefore, in order

to retain the desired overall rate of false positives (rather than a higher rate) in

a experiment involving more than one test, the standard for each test must be

more stringent. However, reducing the threshold of significance may substantially

increase the number of false negatives. Therefore, choosing the p-value threshold

used to determine statistical significance is a delicate problem that requires very

careful attention. Additionally, the results must be appropriately interpreted

after the significance threshold is chosen.



CHAPTER 4. ESTIMATING THE PROPORTION OF TRUE NULLS 116

4.2.3 Error rates for multiple testing

Consider the situation of testing simultaneously m pairs of hypotheses H0j and

H1j, j = 1, . . . , m. The problem can be described by Table 4.1. The specific

m hypotheses are assumed to be known in advance, the numbers m0 and m1 =

m−m0 of true and false null hypotheses are unknown parameters. The number

of rejected hypotheses S is an observable random variable, and TN , FP , FN and

TP are all unobservable random variables. FP is the number of false positives,

TP is the number of true positives, TN is the number of true negatives and FN is

the number of false negatives. In general, one would like to minimize the number

FP of false positives or Type I errors and the number FN of false negatives or

Type II errors. The standard way in a univariate setting is to pre-specify an

acceptable Type I error rate α and seek tests which minimize the Type II error

rate, i.e. maximize power, within the class of tests with Type I error rate α. In the

multiple testing situation like a microarray experiment, it is no longer suitable

to use the original Type I error rate any more. Therefore, statisticians have

defined some other kinds of error rates, such as false positive rate (FPR), family-

wise error rate (FWER), false discovery rate (FDR), positive false discovery rate

(pFDR) and other FDRs like conditional FDR (cFDR), marginal FDR (mFDR)

and local FDR (lFDR) to measure the occurrence of erroneous inferences when

determining which results should be considered statistically significant. In the

following sections we focus on the review of these error rates in the analysis of

microarray experiment.
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Table 4.1: Outcomes from m hypothesis tests. All the random quantities TN ,
FP , FN and TP depend on the data and the pre-specified level α.

H0 accepted H0 rejected Total
H0 true TN FP m0

H0 false FN TP m1

Total m− S S m

4.2.3.1 False positive rate (FPR)

The false positive rate (FPR) is the proportion of the number of true null hy-

potheses that were erroneously judged as being positive:

FPR =
FP

m0

. (4.1)

Most traditional methods focus on controlling FPR. This is equivalent to saying

the false positive rate is equal to the significance level.

4.2.3.2 Family-wise error rate (FWER)

The family-wise error rate is the probability that among all those genes that are

truly not differential expressed at least one is incorrectly declared as differential

expressed (e.g. making at least one Type I error among all hypotheses (Hochberg

and Tamhane, 1987)), regardless of the number of genes tested,

FWER = Pr(FP ≥ 1). (4.2)

A similar, but less stringent, error rate is the generalized familywise error rate

k-FWER, which is defined to be the probability of at least k Type I errors.

Generally, FWER is a very conservative error rate. Especially, with a large
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number of hypotheses, it is typically impractical to insist that the probability

of making even only one false rejection should be small. The FWER approach

tends also to have low power as it tends to screen out all but a handful of genes

that show extreme differential expressions.

4.2.3.3 FWER controlling procedures

Two main methods for controlling FWER are often used in practice. The simplest

one is the well-known Bonferroni correction which guarantees that FWER ≤ α

by declaring all genes with p-values less than α/m differentially expressed. In

other words, the procedure determines the actual Type I error rate for each

hypothesis test as the ratio of the desired FWER level α and the number of

tests. For example, to control the FWER at a 0.05 level with 5,000 hypothesis

tests, a rejection cut-off of 0.00001 for each individual gene’s p-value is required.

Bonferroni correction is a single-step FWER control method which means that

all of the p-values are tested against the same cut-off level.

The other method is Hochberg’s procedure (Hochberg, 1988) which is a step-

down method for controlling FWER. The procedure guarantees that the FWER

is less than or equal to α.

1. Let P(j) be the j-th order statistic of the p-values, for j = 1, . . . , m.

2. If P(m) < α, then reject all Hj, for j = 1, 2, ..., m, where Hj is the null

hypothesis associated with the gene with the jth smallest p-value; If P(m) ≥
α, then Hm can not be rejected and one has to go on to compare P(m−1)

with α/2.

3. If P(m−1) < α/2, then all Hj are rejected, for j = 1, 2, ..., m − 1. If this is

not the case, then P(m−1) can not be rejected.
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4. Continue to compare P(m−2) with α/3, and so on until the smallest i such

that P(m−i) < α/(1 + i). Then reject all Hj, for j = 1, 2, ..., m− i.

Although both procedures control FWER, the size of the sets of genes re-

jected by the methods can vary greatly. The difference is that these methods

have different level of power. In the microarray setting, power is the expected

proportion of truly differential expressed genes that are correctly identified as

being differential expressed, that is, power = E
[
1− FN

m1

]
= E[ TP

m1
]. Though Bon-

ferroni correction has the advantage of being simple to implement, it comes at the

cost of reduced power as it will fail to reject many truly differentially expressed

genes. Hochberg’s procedure has greater power than Bonferroni’s single step pro-

cedure, because it gains power by only subjecting the smallest p-value, P1, to the

single-step level test (e.g. α/m); larger P-values are subject to progressively less

stringent bounds. However, this feature might not lead to any more genes being

discovered in many practical microarray experiments, since when m is very large

and j is very small, the cut-off by Hochberg’s procedure is not very different from

that of Bonferroni, α/m.

There are some other similar procedures for controlling FWER like S̆idák’s

method which is a single-step method and Holm’s method (Holm, 1979). More

details can be found in Dudoit et al. (2002).

For controlling k-FWER, see Dudoit et al. (2004) who propose some proce-

dures for it.

4.2.3.4 False discovery rate (FDR)

Benjamini and Hochberg (1995) introduce a different multiple hypothesis testing

error measure called the false discovery rate (FDR). The quantity is the expected

proportion of false positive findings among all the rejected hypotheses times the
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probability of making at least one rejection,

FDR = E

[
FP

S

∣∣∣∣S > 0

]
Pr(S > 0). (4.3)

FDR offers a much less strict multiple testing criterion than FWER. Since

FDR is more relevant than FWER in large-scale hypotheses generating studies,

it is now widely recognized as a useful measure of the false positives in microarray

experiments.

4.2.3.5 FDR controlling procedures

The aim of multiple testing procedures for control of FDR is to determine a

threshold for significance in such a way that the false discovery rate is limited

to being less than or equal to a prespecified level of tolerance. For example, by

deciding to accept a FDR of 5% for a microarray experiment, a FDR procedure

will find the largest subset of genes to be classed as differentially expressed that

has an expected percentage of not differentially expressed genes of 5%.

After introducing the FDR as a useful error rate for multiple testing, Ben-

jamini and Hochberg (1995) also propose a method (we call Benjamini and

Hochberg’s FDR procedure) that operates on p-values to control the FDR at

a prespecified level. It is a step-up method and works as follows.

1. Let P(j) be the j-th order statistic of the p-values, for j = 1, . . . , m.

2. Determine a threshold value for rejection by finding the largest integer j

such that P(j) ≤ jα/m, where α is the desired FDR level.

3. Reject any hypothesis whose p-value is smaller than or equal to P(j). There-

fore j is the number of the total rejections from the hypothesis tests.
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This approach has been mathematically proven to ensure that FDR ≤ π0α if

the p-value under the true null hypotheses (i.e. genes that are truly not differen-

tially expressed) are statistically independent and uniformly distributed over the

interval [0, 1]. Note that π0 is the proportion of true null hypotheses. In order

to control FDR precisely, π0 is required. However, this proportion is not really

known, therefore π0 is replaced by 1 to guarantee that the FDR is controlled

conservatively. As this procedure is quite conservative, it is possible to develop

a method that finds more significant results and still controls the FDR at the

prespecified level.

Benjamini and Hochberg (2000) introduce another method for adapted FDR

control. For a set of observed p-values, if the Benjamini and Hochberg’s FDR

procedure declares any results significant, then the null proportion π0 is estimated

to adjust the results that may lead to additional significant findings. However,

this method offers limited power gain over the original Benjamini and Hochberg’s

FDR procedure, because the estimate of π0 is very conservative (Hseuh et al.,

2003).

4.2.3.6 A simple example for FPR, FWER and FDR

In this section, we use a well-known ALL/AML leukaemia dataset as an example

to illustrate and compare the error rates and controlling procedures described so

far.

Golub et al. (1999) are interested in identifying genes that are differentially

expressed in patients with two types of leukaemia, acute lymphoblastic leukaemia

(ALL) and acute myeloid leukaemia (AML). Gene expression levels are measured

using Affymetrix high-density oligonucleotide chips. The learning set comprises

38 samples, 27 ALL cases and 11 AML cases (data available at http://www.genome
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.wi.mit.edu/MPR). For the purpose of simplicity, we use the data as provided in

the R package, multtest, which can be downloaded from http://www.bioconduc

tor.org. The data has already been pre-processed and is summarized by a

3051× 38 matrix X = (xji), where xji denotes the expression level for gene j in

tumor mRNA sample i.

For these data, two-sample Welch t-statistics are calculated for each gene,

along with their p-values. The different procedures at different α levels are then

applied to these p-values, and the numbers of genes rejected by each combination

of error rate (procedure) and α levels are compared in Table 4.2.

From Table 4.2, we find that using FPR will result in finding a very large

number of active genes. If we choose to look at the results when we control the

error rates at 5%, the FPR procedure declares 1164 out of 3051 genes tested are

differentially expressed. Even if no gene is actually differentially expressed (i.e.

m1 = 0, m0 = m), we would expect around 152 positive genes which are all false

positive.

Using either of the two FWER controlling procedures (the Bonferroni and

Hochberg) leads to very similar numbers of positive genes. The reason for it

has been discussed in section 4.2.3.3. Since FWER is a very strict error rate,

it is unlikely for us to falsely class any inactive genes as “differential expressed”

by using it, but on the other hand, it would also make us overlook many truly

differential genes.

Table 4.2 also shows the number of genes declared active for the Benjamini

and Hochberg’s FDR procedure controlled at different levels. For example, if we

control FDR at 5%, then we expect that around 883 × 0.05 ≈ 44 genes selected

as differential will be actually inactive.
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Table 4.2: Comparison of numbers of rejected genes by using different error
rates in the leukaemia experiment.

Error rate and its Desired α level
controlling procedure 0.005 0.01 0.05 0.1

FPR 686 815 1164 1392
FWER (Bonferroni) 153 169 228 258
FWER (Hochberg) 154 170 233 261
FDR (Benjamini and Hochberg) 482 569 883 1063

4.2.3.7 Positive false discovery rate (pFDR)

As an alternative to FDR, positive false discovery rate (pFDR) is initially men-

tioned in Benjamini and Hochberg (1995) and later thoroughly studied by Storey

(2002),

pFDR = E

[
FP

S

∣∣∣∣S > 0

]
. (4.4)

The term “positive” reflects the fact that it conditions on the event that positive

findings have occurred.

The definition of pFDR is motivated by concerns about what happens when

Pr(S > 0) is much less than 1, in which case FDR might be misleading. Concep-

tually, pFDR is more sound than FDR. But for microarray data with a large m

and many differentially expressed genes, the difference between pFDR and FDR

is generally small as the extra factor in FDR, Pr(S > 0) is very close to 1.

Storey (2003) proposes that the pFDR at p is the probability that H0j being

true (i.e. gene j is not differentially expressed) conditional upon its p-value Pj

being less than or equal to p, that is,

pFDR(p) ≡ Pr(H0j being true|Pj ≤ p) =
π0p

F (p)
. (4.5)
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where π0 is the proportion of true nulls and F (p) is the proportion of hypothesis

testings with p-value less than p.

Storey (2002) defines the q-value as a pFDR analogue of p-value. The q-value

gives a hypothesis testing error measure for each observed statistic with respect

to pFDR just like the p-value to type I error and the adjusted p-value to FWER.

Storey proposes q-value as

q(P(i)) = minj≥i

[
pFDR(P(j))

]

for i = 1, 2, ..., m, where P(1) ≤ P(2) ≤ ... ≤ P(m) are the ordered observed p-

values. This definition ensures that q(P(1)) ≤ ... ≤ q(P(m)). The q(P(i)) gives us

the minimum pFDR that we can achieve for rejection regions containing [0, P(i)]

for i = 1, ...,m. In other words, for each p-value there is a rejection region with

pFDR equal to q(P(i)) so that at least P(1), ..., P(i) are rejected.

The q-value is appealing because it gives a measure of significance that can

be attached to each gene, but it must be stressed that it is not an estimate of the

probability for the gene to be a false positive. The q-value is generally lower than

the latter because it is computed using all the genes that are more significant

than gene i. Obviously a gene whose p-value is near to the threshold P(i) does

not have the same probability to be differentially expressed than a gene whose

p-value is close to zero. Hence the q-value gives a too optimistic view of the

probability for the gene to be a false positive. Therefore it is important to obtain

an estimate of the FDR attached to each gene, called Local FDR. See Section

4.2.3.8 for more details of local FDR (lFDR).
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4.2.3.8 Local FDR (lFDR)

Besides pFDR, Benjamini and Hochberg (1995) also mention other two alterna-

tive FDR error measures: Conditional FDR (cFDR) and marginal FDR (mFDR).

The cFDR is the FDR conditional on the observed number of rejections S = s,

cFDR = E

[
FP

S

∣∣∣∣S = s

]
=

E [FP | S = s]

s
, (4.6)

provided that s > 0, and cFDR = 0, for s = 0.

The marginal FDR (mFDR) is the ratio of the expectation of FP to the

expectation of S,

mFDR =
E[FP ]

E[S]
. (4.7)

FDR, pFDR, cFDR and mFDR provide general information about a group of

genes. But if we are actually interested in specific evidence for each gene, which

kind of error rate should we use? The local false discovery rate (lFDR) is proposed

by Efron et al. (2001) in a mixture model framework for this purpose. The lFDR

at p is defined as the probability that gene j is not differentially expressed (i.e.

H0j is true) conditional upon its p-value Pj being equal to p, that is

lFDR(p) ≡ Pr(H0j being true|Pj = p) =
π0

f(p)
. (4.8)

where f(p) is the density of the p-values, which can be considered as a two

component mixture with weights π0 and 1− π0: the Un(0, 1) distribution under

H0 and an unknown distribution under the alternative H1. From Equation (4.5)

and Equation (4.8), we can find a simple relationship between pFDR and lFDR,
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that is,

pFDR(p) = Ef (lFDR(Pj)|0 < Pj < p),

which is called the averaging theorem by Efron and Tibshirani (2002).
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4.3 The mixture model and the estimate of the

proportion of true nulls

4.3.1 The two-component mixture model for the distri-

bution of the test statistic

Efron et al. (2001) first proposed a two-component mixture model for the distri-

bution of the test statistic in the microarray multiple testing setting. The model

is motivated as follows: let zj be 1 if the jth gene expresses differentially and 0 if

it does not. It is natural to model zj, j = 1, ...,m, as Bernoulli trials with proba-

bility 1− π0, where π0 = m0/m. Let Tj be a test statistic for testing hypothesis

Hj, f0 be the density of Tj distribution given zj = 0 and f1 be the density of

Tj distribution given zj = 1. The probability density function (pdf) of a test

statistics Ti, i = 1, ..., m is then a two-component mixture,

f(t) = π0f0(t) + (1− π0)f1(t), (4.9)

where π0, f0 and f1 are unknown.

4.3.2 Motivation for estimating π0

The mixing parameter π0 represents the proportion of non-differentially expressed

genes in the microarray setting and it has attracted a lot of interest recently. The

parameter π0 is important for several reasons. Firstly, knowing the proportion

of non-differentially expressed genes in a microarray experiment is of interest in

its own right. It gives an important global measure of the extent of the changes

studied. Secondly, knowing π0 can help us not only control FDR, pFDR and
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lFDR, but also estimate them better. Finally, this quantity is also crucial for

sample-size calculations in a microarray experiment (Jung, 2005).

4.3.3 The two-component mixture model for the distri-

bution of p-values

Many statistical methods have been proposed to estimate π0, and most of the

theoretical formulations are presented in terms of p-values rather than in terms

of test statistics. Two basic assumptions are made concerning their distribution.

First, it is assumed that test statistics corresponding to true null hypotheses

will generate p-values that follow a uniform distribution on the unit interval.

Thus, under the null distribution, the probability that a p-value falls below some

threshold π0 equals π0. Second, p-values are, unless stated otherwise, assumed to

be independent. Therefore the p-values P1, ..., Pm (not ordered) can be regarded

as independent and identically distributed random variables with mixture density

f(p) = π0Un[0,1] + (1− π0)h(p), (4.10)

where h(p) is defined to be the density for Pi under the alternative distribution.

One problem arising from the use of p-values is that we can’t distinguish up-

and down-regulated genes any more. However, one may look separately at the

two tails of the distribution of the test statistic to assess differential expression

corresponding to up- and down-regulation.

4.3.4 Some recent methods for estimating π0

In the remainder of this section we give a general review of the recent papers on

estimating the proportion of true null hypothesis, π0. Note that although many of



CHAPTER 4. ESTIMATING THE PROPORTION OF TRUE NULLS 129

these publications aim to the estimation of FDR, they actually focus on π0 since

a reliable estimate of this quantity is the most important step for the estimation

of FDR.

Allison et al. (2002) is the first to apply the two-component mixture model to

the observed p-values rather than the test statistics from multiple hypothesis test-

ing. Besides the two basic assumptions discussed above, another assumption is

made concerning the distribution of the p-values under the alternative hypothesis:

the alternative distribution on the interval [0, 1] can be modeled as a mixture of

a few component distributions (Parker and Rothenberg, 1988). Each component

is a two-parameter beta distribution with parameters α and β. Considering the

fact that a uniform distribution on [0, 1] can be regarded as a special form of the

beta distribution when α = 1, β = 1, the p-values can be modeled as independent

and identically distributed random variables with mixture probability density:

f(p) = π0Un(p|0, 1) +
V∑

j=1

πjBe(p|αj, βj) =
V∑

j=0

πjBe(p|αj, βj) (4.11)

where π0 is the proportion of true null hypotheses, V is the total number of com-

ponents for the alternative distribution, πj represents the proportion of the false

null hypotheses from the jth component distribution, and α0 and β0 are set to be

1. A bootstrap test is used to first determine if the set of observed p-values dif-

fers significantly from a uniform distribution. If significant departure is detected,

then a mixture model with a uniform component and a single two-parameter beta

component is fit to the observed p-values. A bootstrap test is used to determine

whether incorporation of another two-parameter beta component into the mix-

ture model would significantly improve the model fit. This process is repeated
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until it is determined that adding another beta component will not significantly

improve model fit. The final fitted model is then used to compute an estimate

of the FDR. This method implicitly assumes that all p-values are independent,

but they show that the FDR estimates should be reasonably accurate when the

p-values are mildly correlated, as long as the model fits well.

Pounds and Morris (2003) introduces a mixture model which is very similar

to that of Allison et al. (2002). The mixture model consists of a continuous uni-

form component and a one-parameter beta component Be(p|α, 1) (beta-uniform

mixture, BUM):

f(p) = π0Un(p|0, 1) + π1Be(p|α, 1). (4.12)

Maximum likelihood estimation is used to fit this model to the observed set of

p-values. Given a threshold of significance, the resulting estimated distribution

is partitioned into regions corresponding to the occurrences of false positives,

false negative, true positives and true negatives. The geometric partition of the

fitted model is used to compute estimates of the FDR and other multiple testing

error rates. The method assumes that all p-values are statistically independent.

The reliability of this method heavily depends on whether the BUM model can

accurately represent the actual distribution of p-values.

Liao et al. (2004) develops a special mixture model (which contains a continu-

ous uniform component and the other component derived from a flexible piecewise

proportional hazards model) tailored to multiple testing by requiring the p-value

distribution for the differentially expressed genes to be stochastically smaller than

the p-value distribution for the non-differentially expressed genes. A smoothing

mechanism is built in. A Bayesian inference is proposed for the mixture model
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and a block-at-time Metropolis-Hastings algorithm (Chip and Greenberg, 1995)

is used to fit the model. The fitted model gives robust estimates of local FDR.

Schweder and Spjøtvoll (1982) suggests an estimator π̂0(λ) of π0. Let P1, ..., Pm

be the observed p-values. Let W (λ) = #{Pj > λ} be the number of p-values that

are greater than some threshold value λ. Since the p-values associated with the

false null hypotheses are likely to be small, a large majority of the p-values in the

interval [λ, 1], for λ not too small, should come from the uniform distribution on

[0, 1] (true null hypotheses). This means that,

E[W (λ)] ≈ mπ0(1− λ).

Therefore, we have a estimator of π0 for a given λ,

π̂0(λ) =
W (λ)

m(1− λ)
=

#{Pj > λ}
m(1− λ)

.

The choice of λ is crucial for this estimator. Storey (2002) chooses

π̂0 = minλ′∈R{π̂0(λ
′
)},

where the minimum is computed on a grid R = {0, 0.05, 0.10, ..., 0.95}. However

Langaas and Lindqvist (2005) show that this estimator underestimates π0 and

propose a new estimator of π0 which has better performance, proved by simulation

studies,

π̂0 = π̂0(λ̂),

where λ̂ = argminλ∈R{M̂SE(λ)}, M̂SE(λ) is the bootstrap estimator of MSE{π̂0(λ)}
suggested by Storey (2002) and Storey et al. (2004).
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Storey and Tibshirani (2003) proposes a procedure for estimating π0 based on

spline smoothing of the function π̂0(λ) (implemented in R function QVALUE).

The smoothing approach is motivated by the fact that π̂0(λ) usually fluctuates

wildly for λ near 1 (when λ → 1, bias decreases while variance increases). The

method is applied as follows: First, π̂0 is calculated over a fine grid of λ (i.e. like

the range {0, 0.01, 0.02, ..., 0.95}). Second, a natural cubic spline y with 3 degrees

of freedom is fitted to (λ, π̂0(λ)). Finally, π0 is estimated by limλ→1π̂0(λ).

Pounds and Cheng (2004) introduce a method that uses a special non-parametric

density estimator called the spacings loess histogram (SPLOSH) to smooth the

observed distribution of p-values and then estimate the upper bound of π0. The

SPLOSH density estimate is used to compute estimates of the cFDR and other

multiple testing error rates.

Dalmasso et al. (2005) propose a family of estimators called LBE (Location

Based Estimator) for an upper bound of π0 based on the expectation of the trans-

formed p-values and provide results on their asymptotic distribution under the

assumption that the p-values are independent. In order to select one particu-

lar estimator among the proposed family, they give guidelines depending on the

experimental setup and the accuracy needed.

Langaas and Lindqvist (2005) follow the two-component mixture model of

the observed p-values to handle multiple testing and assume that the distribution

under the alternative hypothesis, f1(p) is decreasing on [0, 1] with f1(1) = 0 which

implies π̂0 = f(1). Instead of parametric estimation, they derive estimators of π0

based on nonparametric maximum likelihood estimation of the p-value density,

restricting to decreasing and convex decreasing densities under the assumption

of independent test statistics.
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Lai (2007) proposes a moment-based method coupled with sample splitting

for estimating the proportion of true null hypotheses. It is a very easy method

and requires no independence assumptions. Explicit formula for the estimator of

π0 can generally be derived.
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4.4 The proposed mixture models with an un-

known number of components

In this section, we follow the spirit of the two-component mixture model (Efron

et al., 2001) and propose that the alternative distribution h(p) on [0, 1] might

be approximated by a mixture of uniform distributions or by a mixture of one-

parameter beta distributions.

4.4.1 Model 1: The uniform mixture distributions

Since a finite mixture of uniform distributions can approximate any distribu-

tion on [0, 1], we suggest that a possible model for the density of p-values from

microarray experiment is given by:

f(p) =
k∑

j=0

πjUn(p|aj, bj), k ≥ 0, 0 ≤ aj ≤ bj ≤ 1, a0 = 0, b0 = 1, (4.13)

where k is the unknown total number of components for the alternative hypothesis

part of the mixture model, and the mixture weight of the jth component, πj,

satisfies that πj > 0, j = 0, ..., k and
∑k

j=0 πj = 1. The parameters for the jth

component are aj and bj. The first uniform distribution component is for the

null hypothesis and it is completely specified so that a0 = 0 and b0 = 1. The

remaining k components for the alternative hypothesis are not specified.

Assuming the density of the alternative distribution is a monotonic decreasing

function of p-value, a more parsimonious model can be considered by letting

aj = 0 for all j in Equation (4.13):
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f(p) =
k∑

j=0

πjUn(p|0, bj), k ≥ 0 and 0 ≤ bj ≤ 1, (4.14)

which only has half as many unspecified parameters as Equation (4.13) does. In

order to distinguish it from the model of uniform mixtures, we call it the model

of one-parameter uniform mixtures.

4.4.2 Model 2: The one-parameter beta mixture distri-

butions

Inspired by Allison et al. (2002)’s mixture of two-parameter beta distributions

for modeling the alternative distribution on [0,1], we propose a mixture of one-

parameter beta distributions for the density of the alternative distribution.

The beta distribution is a family of continuous probability distribution de-

fined on the interval [0, 1] parameterized by two non-negative shape parameters.

Assume a random variable X follows the beta distribution, then the probability

density function of X is

Be(x|a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1, (4.15)

where Γ is the gamma function and a > 0, b > 0. The beta density function can

take on different shapes depending on the values of the two parameters. When

a = 1, the beta density function in Equation (4.15) reduces to

Be(x|1, b) = b(1− x)b−1 0 ≤ x ≤ 1. (4.16)
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Since the uniform distribution on [0, 1] is also the beta distribution Be(1, 1),

one can model the distribution of p-values as a finite mixture of beta distributions:

f(p) =
k∑

j=0

πjBe(p|1, bj), 0 ≤ p ≤ 1, (4.17)

where bj = 1 for j = 0, πj > 0 for j = 0, ..., k and
∑k

j=0 πj = 1. This model is

more flexible than BUM (Pounds and Morris, 2003) whose alternative distribution

only considers one beta distribution.

4.4.3 The inference problem

Assuming that p-values capture the essence of the biological research problem,

our aim is to make inference about π0 based on a sample p1, ..., pm from f given

in Equation (4.10). However, π0 would not be identifiable if we do not make some

assumptions on the function h(p).

Since p-values corresponding to false null hypotheses should presumably be

small, it is natural to assume that the density h(p) is very low for p near 1. It may

even be natural to assume that h(p) is a decreasing function of p. This motivates

the assumption that f(p) is decreasing with a minimum f(1) at p = 1. This

condition makes π0 identifiable in the Equation (4.10) with π0 = f(1). A weaker

sufficient condition for identifiability of π0 is the existence of p0, 0 ≤ p0 ≤ 1, with

a minimum f(p0) at p0. In practice, we may consider f(p0) as the upper bound

of π0.
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4.5 A Bayesian approach for finite mixture model

4.5.1 Introduction

In the previous section we have proposed three different types of finite mixture

models with an unknown number of components for the p-values arising from

a microarray experiment. Due to their flexibility, mixture models can be used

to model complex probability density distributions that are not easily described

using standard models.

Suppose that random variables x1, ..., xn are independent and identically dis-

tributed and have a parametric finite mixture density of form

f(x|k, π, θ) =
k∑

j=0

πjf(x|θj). (4.18)

Three types of parameters appear in the mixture model : k + 1 is the number of

components (Note that in the following we just call k the number of components

for the purpose of simplicity), π = (π0, π1, ..., πk) denotes the mixture weights

which satisfy that πj > 0 for j = 0, ..., k and
∑k

j=0 πj = 1 and θ = (θ0, ..., θk)

denotes the parameters occurring in the mixture components. The mixture com-

ponent densities f(x|θj) are assumed to be known and belong to the same para-

metric family, thus having the same functional form. We can understand the

model in another way: each observed datum x has probability πj of originating

from the jth component, thus a latent vector g = (g1, ..., gn) (also called the

allocation vector) is behind the mixture model and gi represents the index of the

component that generates xi.

Our interest is the estimates of the parameters k, π and θ from the n obser-

vations in the finite mixture model. A variety of estimation methods have been
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available for this purpose, including the method of moments, maximum likelihood

estimation, minimum distance and Bayesian approaches. See Titterington et al.

(1985) and McLachlan and Peel (2000) for general reviews. Although maximum

likelihood via EM algorithm (Dempster et al., 1977) or other numerical algo-

rithms, such as Newton-Raphson and the method of scoring, has been the most

widely applied method so far, Bayesian approaches have been getting popular

due to the rapid progress of computing in the last two decades.

The basic idea of Bayesian theory is that prior beliefs about an unknown

parameter vector ψ ∈ Ψ are transformed to posterior beliefs, given sample data

x = (x1, ..., xn), by means of Bayes’ theorem:

f(ψ|x) =
f(ψ,x)

f(x)
=

f(ψ)f(x|ψ)∫
Ψ

f(ψ)f(x|ψ)dψ
, (4.19)

where f(ψ) is called the prior distribution, f(x|ψ) is the likelihood function and

f(ψ|x) is the posterior distribution. The role of the denominator is to make the

posterior distribution integrate to 1. Note that in the mixture model (4.18) ψ

corresponds to the parameters k, π and θ.

When ψ consists of more than three unknown parameters the numerical eval-

uation of the denominator of Equation (4.19) will be a demanding task. This

is an important reason why the implementation of the Bayesian paradigm for

mixture models is not at all straightforward.

The application of the Bayesian approach to the estimation of finite mix-

tures was accelerated only after the break-through papers by Tanner and Wong

(1987) and Gelfand and Smith (1990). These publications creatively introduce

two Markov chain Monte Carlo (McMC) algorithms called Data Augmentation

and Gibbs sampling that allow simulation from complex posterior distributions
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in a simple practical manner. A few years later, Diebolt and Robert (1994) apply

both of these two MCMC methods in a mixture context, to estimate the poste-

rior distributions for a mixture of normals with number of components k assumed

known. But how to determine the number k of components in the mixture? It

is a even more challenging problem. Although it has been researched for years

there isn’t a fully satisfactory solution available. Many different informal and

formal approaches have been proposed. One method of choosing the number of

components is to construct the posterior of k. A prior distribution is placed on

k and then the marginal likelihoods for each k are estimated. The posterior of

k is then found by simple implementation of Bayes’ theorem. It is what Nobile

(1994, 2005) and Roeder and Wasserman (1997) do. Green (1995) proposes a

novel MCMC method known as Reversible Jump MCMC (RJMCMC) which al-

lows the MCMC sampler to jump between different models. In the case of finite

mixture models the sampler can jump between models with different number of

components. Richardson and Green (1997) apply RJMCMC to sample from the

joint posterior distribution of all the parameters, including the number k of com-

ponents. They evaluate the posterior distribution of k by computing the relative

frequency for each model visited throughout the simulation. However, if more

and more parameters are included in the model, the dimension-jumping moves

of RJMCMC will turn out to be very computational. A way of counteracting

this significant increase in the number of parameters with an increase of k is to

integrate some of the parameters out of the models, for example the component

parameters and weights, only leaving in the model the number of components and

the allocation vector. The integration is computable in a closed form if conjugate

priors are used for the parameters. Then the only unknowns left in the model

are the number of components k and the vector of allocations conveying from
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which components each of the observations is coming. Quite a few works have

been done in this framework such as Nobile (1994), Steele and Emond (2003),

Fearnhead (2004). The latest work is Nobile and Fearnside (2007) and Fearnside

(2007). They propose a new MCMC sampler, which has both the component pa-

rameters and weights integrated out. In the remainder of this section we make a

summary of this MCMC sampler, and then apply it to our finite mixture models

in Section 4.4.

4.5.2 The allocation sampler

Nobile and Fearnside (2007) propose an MCMC method called “the allocation

sampler” for the Bayesian analysis of finite mixture distributions with an un-

known number of components. The object of the allocation sampler is to draw

samples from the joint posterior distribution of the number k of components and

the allocation variables g under the assumption that the component parameters

θ and mixture weights π can be integrated out of the model analytically:

f(k, g|x, φ) ∝ f(k, g, x|φ) = f(k)f(g|k)f(x|k, g, φ) (4.20)

where φ is a vector of hyperparameters in the prior distribution over θ (parameters

in θ). In order to get the explicit expression of f(k, g|x, φ), we should know the

expressions of f(k), f(g|k) and f(x|k, g, φ). The first item is the prior distribution

on k, and following Nobile (2005) we choose the Poi(1) distribution as prior on

k, restricted to 1 < k ≤ kmax; kmax is set to 50 in this thesis. The expressions of

the remaining two items are discussed in Sections 4.5.2.1 and 4.5.2.2 which are

based on Nobile and Fearnside (2007).
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4.5.2.1 Calculating f(g|k)

We begin with the allocation vector g = (g1, ..., gn)t, where gi is the index of

the component that generated xi. It is assumed that the gi are conditionally

independent given k and π and that

Pr(gi = j|k, π) = πj, j = 0, 1, ..., k, i = 1, .., n.

Therefore we have

f(g|k, π) =
k∏

j=0

π
nj

j ,

k∑
j=0

nj = n (4.21)

where nj is the number of observations generated from the jth component: nj =

card{Aj} and Aj is the set of indices of the observations that g allocates to

component j: Aj = {i : gi = j}.
A popular choice for the prior on the mixture weights π = (π0, . . . , πk) is the

Dirichlet distribution, Dir(α0, ..., αk), where αi > 0 for j = 0, 1, . . . , k:

f(π|k) =
Γ(α∗)

Γ(α0)...Γ(αk)
πα0−1

0 ...παk−1
k , πj ≥ 0,

k∑
j=0

πj = 1 (4.22)

where α∗ =
∑k

j=0 αj. We have chosen to use a symmetric Dirichlet distribution

in this setting, where the hyperparameters are αj = α0 = 1. Consequently, the

prior can be thought of as a uniform distribution on the simplex of the weights.

This distribution is a conjugate prior for the mixture weight and it is also used

by Richardson and Green (1997) and Stephens (2000).

One can obtain f(g|k) by integrating the density (4.21) with respect to the
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density of the mixture weights:

f(g|k) =

∫
f(g|k, π)f(π|k)dπ

=
Γ(α∗)

Γ(α∗ + n)

k∏
j=0

Γ(αj + nj)

Γ(αj)
. (4.23)

4.5.2.2 Calculating f(x|k, g, φ)

In order to get the expression for f(x|k, g, φ), we need to know f(x|k, π, θ, g)

and f(θ|k, π, g, φ). Since the density of xi is f(xi|θgi
) and the data x1, ..., xn are

assumed conditionally independent given k, π, θ and g, we have

f(x|k, π, θ, g) =
n∏

i=1

f(xi|θgi
). (4.24)

Similarly, the component parameters θj are assumed independent of π and

g, conditional on k. They are conditional independent with prior distributions

f(θj|φj), given hyperparameters φ = {φ0, ..., φk}. Thus,

f(θ|k, π, g, φ) =
k∏

j=0

f(θj|φj). (4.25)

We assume that the independent priors on the θj’s, f(θj|φj) are chosen so

that the parameters θj’s can be integrated out analytically from (4.24). After

multiplying (4.24) and (4.25) and integrating out θ, we get
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f(x|k, g, φ) =

∫
f(x|k, π, g, θ, φ)f(θ|k, π, g, φ)dθ

=

∫ n∏
i=1

f(xi|θgi
)

k∏
j=0

f(θj|φj)dθj

=
k∏

j=0

∫ ∏
i∈Aj

f(xi|θj)f(θj|φj)dθj

=
k∏

j=0

f(xj|φj) (4.26)

where xj = {xi : i ∈ Aj}. We use the shorthand f(xj|φj) to denote the integral

in the third line of Equation (4.26):

f(xj|φj) =

∫ ∏
i∈Aj

f(xi|θj)f(θj|φj)dθj (4.27)

Note that if Aj = ∅, f(xj|φj) = 1.

So far, we have presented the general expression of f(x|k, g, φ). In the next

section we show how this specializes to the cases of mixtures of uniforms and

mixtures of one-parameter betas proposed in Section 4.4.

4.5.2.3 Application to Model 1: The uniform mixture distributions

For the mixture of uniform distributions in Equation (4.13), the densities f(xi|θgi
)

in Equation (4.24) are Un(xi|aj, bj), which is 1/(bj − aj) for aj < xi < bj and 0

for xi ≥ bj or xi ≤ aj. For simplicity, we denote
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Un(xi|aj, bj) =
1

bj − aj

I(aj ,bj)(xi), (4.28)

where IA(x) is an indicator function which takes on the value 1 if x ∈ A and the

value 0 otherwise. Thus,

∏
i∈Aj

f(xi|θj) =

nj∏
i=1

Un(xi|aj, bj)

=

nj∏
i=1

1

bj − aj

I(aj ,bj)(xi)

=
1

(bj − aj)nj

nj∏
i=1

I(aj ,∞)(xi) ·
nj∏
i=1

I(−∞,bj)(xi),

and since
∏nj

i=1 I(aj ,∞)(xi) and
∏nj

i=1 I(−∞,bj)(xi) are equivalent to I(−∞,x(1))(aj) and

I(x(nj),∞)(bj) respectively, where x(i) is the ith order statistic of xj for i = 1, . . . , nj,

we have

∏
i∈Aj

f(xi|θj) =
1

(bj − aj)nj
I(−∞,x(1))(aj) · I(x(nj),∞)(bj).

Independent priors are assigned to the parameters (aj, bj), j = 1, ..., k and we let

f(aj, bj) = 2/(φ2 − φ1)
2, φ1 < aj < bj < φ2. Therefore, using Equation (3.27)
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f(xj|φj) =
2

(φ2 − φ1)2

∫ I(−∞,x(1))(aj) · I(x(nj),∞)(bj)

(bj − aj)nj
dajdbj

=
2

(φ2 − φ1)2

∫ φ2

x(nj)

∫ x(1)

φ1

1

(bj − aj)nj
dajdbj,

which is a standard double integral problem. Fearnside (2007) considers this

model with φ2 = −φ1 and computes f(xj|φj). Here we allow for general φ2 > φ1

and following the same derivations as in Fearnside (2007, Appendix A.1) we get

the marginal density of the data allocated to the jth component,

f(xj|φj) =





2
(φ2−φ1)2

[
(x(nj)−x(1))

2−nj−(x(nj)−φ1)2−nj−(φ2−x(1))
2−nj +(φ2−φ1)2−nj

]
(nj−1)(nj−2)

nj > 2,

2
(φ2−φ1)2

[
log

(φ2−x(1))(x(nj)−φ1)

(φ2−φ1)(x(nj)−x(1))

]

nj = 2,

2
(φ2−φ1)2

[
x(1) log

φ2−x(1)

x(1)−φ1
+ φ2 log φ2−φ1

φ2−x(1)
+ φ1 log

x(1)−φ1

φ2−φ1

]

nj = 1.

(4.29)

If we choose φ1 = 0 and φ2 = 1, a seemingly sensible choice in Equation

(4.13), we obtain a much simplified form:
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f(xj|φj) =





2
[
(x(nj)−x(1))

2−nj−x
2−nj
(nj)

−(1−x(1))
2−nj +1

]
(nj−1)(nj−2)

nj > 2,

2 log
x(nj)(1−x(1))

x(nj)−x(1)
nj = 2,

2

(
x(1) log

1−x(1)

x(1)
+ log 1

1−x(1)

)
nj = 1.

(4.30)

In a similar way, we derive the expression of f(xj|φj) for the model of a

mixture of one-parameter uniforms in (4.14) where aj is fixed to be 0:

f(xj|φj) =





1−x
1−nj
(nj)

1−nj
nj > 1,

log 1
x(nj)

nj = 1.

(4.31)

For the details of the derivation of (4.31), see Appendix B.1.

Note that the results (4.30) and (4.31) are only valid for the components j =

1, . . . , k. For the first component (j = 0) in Model 1, it has been already specified

as a standard uniform distribution (a0 = 0, b0 = 1), therefore f(xj|φj) = 1.

4.5.2.4 Application to Model 2: The one-parameter beta mixture

distributions

For the mixture of one-parameter beta distributions in Equation (4.17), the den-

sity f(xi|θj) in Equation (4.24) is Be(xi|1, bj), that is bj(1−xi)
bj−1, see Equation
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(4.16). Independent exponential priors are assigned to the parameters bj for

j = 1, ..., k and that is f(bj) = γe−γbj . Therefore,

f(xj|φj) =

∫ ∏
i∈Aj

f(xi|θj)f(θj|φj)dθ

=

∫ ∞

0

∏
i∈Aj

bj(1− xi)
bj−1γe−γbjdbj

=

∫ ∞

0

b
nj

j

[ nj∏
i=1

(1− xi)

]bj−1

γe−γbjdbj.

After straightforward computations (for the details, see Appendix B.2), the

marginal distribution of the data allocated to the jth component is:

f(xj|φj) =
γ Γ(nj + 1)

∏nj

i=1(1− xi)
[
γ −∑nj

i=1 log(1− xi)
]nj+1 . (4.32)

Note that the result (4.32) is only valid for the components j = 1, . . . , k.

For the first component (j = 0) in Model 2, it has been already specified as a

standard uniform distribution (b0 = 1), therefore f(xj|φj) = 1.

4.5.2.5 Posterior distributions

Finite mixture models can be summarized by looking at the posterior distribu-

tions of all the parameters in the model. Even though the parameters do not

explicitly appear in the sampling procedure, the posterior distributions can be

calculated using the MCMC output. This is in contrast to the usual RJMCMC
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scheme, where all the parameters explicitly appear in the MCMC sampling pro-

cedure.

In this thesis, our interest is only in the posterior distributions of the first

component’s weight π0, the number of components k and the posterior predictive

distribution of a future observation xn+1.

For the mixture weight πi, its prior distribution is the beta distribution, πi ∼
Be(αi, α∗ − αj), where α∗ =

∑k
j=0 αj. The posterior distribution of the mixture

weight πi conditional on k and g is also a beta distribution:

πi|k, g, x ∼ Be(αi + ni, α∗ − αi + n− ni). (4.33)

Therefore, the marginal posterior distribution of the weights unconditional on g

are found by averaging the right hand side of Equation (4.33) over the posterior

distribution of g:

πi|k, x ∼
∑

g

f(g|k, x)Be(αi + ni, α0 − αi + n− ni). (4.34)

It only makes sense to calculate the posterior distribution of the weight given a

certain value of k, because the meaning of the weight for component j changes

as k changes.

The posterior distribution of the number of components is a product of the

MCMC sampler. We keep a record of the changing states of k throughout the

simulation to estimate this posterior. The posterior probability for having k

components in the model is found by taking the ratio of the sampler being in a

state with k components and the total number of visited states:
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f̂(k|x) =

∑N
i=1 I(k(i) = k)

N
, (4.35)

where k(i) is the number of components in the ith simulation, N is the total num-

ber of allocation vectors simulated by the MCMC sampler and I is the indicator

function.

The posterior predictive distribution is of great importance when using mix-

tures as a density estimation tool. Conditional on k, π, θ, g and x the future

observation xn+1 is independent of the previous data x and has distribution of

the same form as Equation (4.18):

f(xn+1|k, π, θ, g, x, φ) =
k∑

j=0

πjf(xn+1|θj). (4.36)

Integrating this density with respect to the joint distribution of π and θ given

k, g and x and then averaging it with respect to the joint distribution of k and

g (see Chapter 2, page 36 of Fearnside (2007)) yields the posterior prediction of

xn+1:

f(xn+1|x, φ) =
∑

k,g

f(k, g|x, φ)
k∑

j=0

αj + nj

α∗ + n
f(xn+1|xj, φj), (4.37)

where

f(xn+1|xj, φj) =

∫
f(xn+1|θj)f(θj|xj, φj)dθj (4.38)

is the posterior predictive density of xn+1 according to component j. Note that

this expression can be simplified, see Chapter 2, page 37 of Fearnside (2007) for
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more details.

4.5.2.6 Implementation of the allocation sampler

For the implementation of the allocation sampler, we basically follow the way

proposed by Nobile and Fearnside (2007) and Fearnside (2007) to sample from

the joint posterior distribution of the number of components k and the allocation

vector g given in Equation (4.20).

The allocation sampler is a hybrid approach and it makes use of both fixed

k moves and variable k moves in order to try and move around the whole state

space (i.e. all the possible allocation vectors) when approximating the posterior

distribution. The sampler starts a move by firstly randomly selecting between

these two types of move with equal probability.

The first type of moves updates g while keeping k at its current value and

consists of:

• Gibbs sampling on the components of g,

• three different Metropolis-Hastings moves on g.

The Gibbs sampler on the components of g, from g1 to gn, only changes one com-

ponent of g at each step and it guarantees that theoretically the whole state space

would be swept given enough simulation time. In contrast, the three different

Metropolis-Hastings moves on g can change several components of g at the same

time. The combined use of them aims at moving around the state space more

efficiently, especially for the case of large sample size n.

The second type of moves changes the number of components k and the

allocation vector g simultaneously and consists of a pair of Metropolis-Hastings

moves: a move creates a new component (ejection move) and a reverse move
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deletes a existing component under the constraint of 1 ≤ k ≤ kmax (absorption

move). For more technical details of the two types of moves and the performance

evaluation of the sampler, see Section 3 of Fearnside (2007).

Besides the above two type of moves, an extra “post-processing” step (a rela-

beling method) is used to reassign labels in the allocation to perform parameter

inference (Fearnside, 2007; Nobile and Fearnside, 2007). This issue arises from

the lack of identifiability from finite mixture distributions. Finite mixture distri-

butions are not identifiable because the likelihood function for a mixture model

is invariant to a permutation of the labels of the components in the model. For

example, in a mixture of two components, whether the components are labeled

{1, 2} or {2, 1} has no influence on the value of likelihood of the mixture model.

This lack of identifiability should be addressed if parameter estimation is of in-

terest. In this chapter we are interested in estimating π0 only, and since the

first component is completely specified to be a standard uniform distribution,

the inference of π0 may proceed without the need of a “post-processing” step to

reassign the labels.
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4.6 Applications and results

In this section a selection of different datasets will be analysed using the allocation

sampler. We shall not focus on the type of data analysis, preprocessing and test

for differential expression that have been performed to produce the p-values, but

instead on reporting and comparing to previous analyses carried out by other

methods.

4.6.1 Allocation sampler procedure

The allocation sampler is implemented to produce the posterior results in the

same way for all the following datasets. Initially, the sampler is started from

k = 1 and had a burn-in of 10000 iterations preceding another 1000000 iterations.

A thinning parameter, 100, is used to produce a sample of 10000 draws from the

iterations. For the thinning parameter of the next run of the allocation sampler,

we simply double the value of the latest thinning parameter. We keep running the

sampler by updating the thinning parameter until we find that the Markov chain

has converged. In contrast, Nobile and Fearnside (2007) and Fearnside (2007)

chose a more complex way to determine the thinning parameter, see Chapter 4,

page 89 of Fearnside (2007).

There are several ways to judge the convergence of the Markov chain. One

way is to study the cumulative occupancy fraction of k. If the pattern is stable,

then it seems that the Markov chain has converged. Another way is to calculate

the AR estimate of effective sample size, see Fearnside (2007, Appendix B).

Since the samples drawn from the posterior distribution are not independent,

the effective sample size is the number of independent samples required to produce

an estimate with the same precision as that given by a number of dependent
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samples. Normally several thousand effective samples is a good indication of the

convergence of Markov chain.

The implementation of MCMC is always very computational intensive. In

order to be more efficient, the code of the allocation sampler is written in com-

bination of Fortran and R (Fearnside, 2007; Nobile and Fearnside, 2007). A

workstation with a AMD Opteron CPU and 4 GB RAM is used to execute the

allocation sampler for the datasets in this section. The amount of processor time

required for running the allocation sampler depends on a lot of factors such as

the size of the dataset, the number of the iterations, the number of the com-

ponents of the mixture and the type of the model used. Therefore we do not

think it is very meaningful to record and compare the exact processor running

time for each dataset in this section, since the datasets are different from each

other. However, to give readers a rough idea of the implementation speed, as an

example, we report that the allocation sampler would cost about 2.5 hours to

finish 1 million iterations for 10000 data observations using beta mixture model

with 3 or 4 components.

4.6.2 Breast cancer data

For our first example, we consider the data from the study of Hedenfalk et al.

(2001), which examined gene expressions in breast cancer tissues from women who

were carriers of the hereditary BRCA1 or BRCA2 gene mutations, predisposing

to breast cancer. The dataset comprised the measurement of 3226 genes using

cDNA arrays, for 7 BRCA1 tumours and 8 BRCA2 tumours. It is publicly

available at http://research.nhgri.nih.gov/microarray/NEJM Supplement.

A total of 56 genes were filtered out, because they had one or more expression

measurements exceeding 20, which were considered not trustworthy (Storey and
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Tibshirani, 2003). Therefore, 3170 gene expression measurements for 15 samples

are used here. The p-values are calculated on the basis of permutation tests, as

described in Storey and Tibshirani (2003).

We first apply the allocation sampler to Hedenfalk’s data using the beta mix-

tures. The corresponding result is shown in Figure 4.1, which contains several

subfigures. The top subfigure shows the trace of 10000 samples of k from 2 mil-

lion iterations. The middle left subfigure shows that the AR estimate of effective

sample size is 6780, which is large enough for a reasonable precision of the esti-

mates. The middle right subfigure shows the cumulative occupancy fraction of k

is very stable, which also means the convergence of Markov chain. Since the most

frequent number of components k is 3 (the probability is more than 0.75), the

histogram of estimates of π0 conditional on k = 3 is shown in the bottom right

subfigure. The bottom middle subfigure is the plot of the posterior predictive

distribution imposed on the histogram of the original Hedenfalk’s data (i.e. f

density estimate).

We also apply the allocation sampler to Hedenfalk’s data using uniform mix-

tures and one-parameter uniform mixtures respectively. The corresponding re-

sults are displayed in Figure 4.2 and Figure 4.3.

It shows that for the efficiency of the implementation of the allocation sampler

the beta mixtures is better than the one-parameter uniform mixtures and the one-

parameter uniform mixtures is better than the uniform mixtures. The effective

sample size for the beta mixtures achieves 6780 from just 2 million iterations,

in contrast, the effective sample size for the the one-parameter uniform mixtures

and the uniform mixtures is only 305 from 64 million iterations and 1106 from

8 million iterations. It means that for the one-parameter uniform mixtures and

the uniform mixtures the MCMC chain is not mixing well. One possible reason
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is that they involve more components than the beta mixtures.

In this chapter, our key focus is the estimation of π0. There are actually two

different ways to estimate the upper bound of π0. One is to use the estimate of

π0 from our method directly. The other is to use the minimum value of f as the

estimate of π0 (see Section 4.4.3). As a simple way to do it, we can compute f

values on a fine grid of the [0, 1] interval and select the smallest one from them

to approximate the minimum. We expect both of the ways to work well and give

very similar estimates. In reality, it is not true with the first one: sometimes it

would have difficulty in identifying π0. This problem originates from our method

which does not impose any condition for π0 identification to the mixture model.

In our method, we only fix the first component to be Un(0, 1) and then just let

the method automatically specify the remaining components and decide which

data observation (p-value) is from which component. So, sometimes we might

have the following situation (note that the problem isn’t found in the case of

Hedenfalk’s data): for some datasets, our method can find another component

very similar to the first standard uniform component, and then it would be very

difficult to assign the observations to which of the two components in a proper

way so that the estimate of π0 would be quite variable. Therefore, in order to

avoid the effect of any potential “lack of identification” problem, we prefer the

way of estimating π0 from minimum f .

Table 4.3 summarizes the posterior distribution of π0 for each of the three

models. Although the effective sample size is not ideally large enough for the

case of the one-parameter uniform mixtures and the uniform mixtures, all the

results are quite consistent: the median of posterior π0 only varies in a small

interval from 0.656 to 0.694. In contrast, among other analyses of this dataset,

π0 was estimated to be 0.669 by QVALUE, 0.586 by BUM, 0.622 by SPLOSH,
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Table 4.3: Hedenfalk’s breast cancer data: the estimation of π0 using three
different mixture models.

Models Percentiles of π0 posterior
2.5th 25th 50th 75th 97.5th

Beta mixtures 0.613 0.643 0.656 0.669 0.693
One-parameter uniform mixtures 0.610 0.666 0.679 0.692 0.722
Uniform mixtures 0.648 0.677 0.694 0.713 0.731

0.688 by LBE, 0.675 by Langaas and Lindqvist (2005) and 0.673 by Liao et al.

(2004). There is a very high degree of agreement between our method and these

published methods except BUM.

The research for multiple hypotheses testing has so far mainly focused on FDR

and pFDR. The methods for lFDR are much less developed. One reason is that

it is more difficult to estimate the lFDR than FDR or pFDR. The FDR or pFDR

can be formulated in terms of F , the cumulative distribution of f , for which the

empirical distribution of the p-values is a consistent and stable estimator (Storey,

2003). To estimate the lFDR, however, it is necessary to estimate the density f .

Here our method provides such a estimate via calculating the posterior predictive

distribution according to Equation (4.37). After knowing the estimate of π0, F

and f , we are able to calculate lFDR and pFDR according to Equation (4.8) and

(4.5) respectively.
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Figure 4.1: Analysis of Hedenfalk’s breast cancer data using the beta mix-
ture distributions. From top to bottom and from left to right, it
shows jittered time series plot of k, autocorrelation function of k,
cumulative occupancy fraction of k, the plots of posterior predic-
tive distribution imposed on histogram of p-values, the posterior
of number of components and the histogram of the posterior π0

conditional on the number of the most frequent component (i.e.
3 in this case).
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Figure 4.2: Analysis of Hedenfalk’s breast cancer data using the one-
parameter uniform mixture distributions. From top to bottom
and from left to right, it shows jittered time series plot of k,
autocorrelation function of k, cumulative occupancy fraction of
k, the plots of posterior predictive distribution imposed on his-
togram of p-values, the posterior of number of components and
the histogram of the posterior π0 conditional on the number of

the most frequent component (i.e. 6 in this case).
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Figure 4.3: Analysis of Hedenfalk’s breast cancer data using the uniform mix-
ture distributions. From top to bottom and from left to right, it
shows jittered time series plot of k, autocorrelation function of k,
cumulative occupancy fraction of k, the plots of posterior predic-
tive distribution imposed on histogram of p-values, the posterior
of number of components and the histogram of the posterior π0

conditional on the number of the most frequent component (i.e.
7 in this case).
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Since the estimate of π0 is represented in a distribution form, the estimates of

lFDR and pFDR is also in a distribution form. Figure 4.6 (a) and (b) plot low and

high bounds of 95% and 50% credible interval and median against raw p-value for

the estimated lFDR and pFDR respectively (beta mixtures model is used here).

For the purpose of comparison, we also plot the lFDR and pFDR estimates us-

ing Liao’s method (The R code is available at http://www.geocities.com/jg

liao/software) and Storey’s QVALUE method (The R code is available at

http://faculty.washington.edu/~jstorey) in these two figures respectively.

It shows that the estimates by our method are quite close to those by Liao’s

method and Storey’s QVALUE in the whole range of p-values.

For the purpose of model checking, we also estimate F̂ and the cumulative

distribution Fm according to the following two equations:

F̂ (p) = π̂0p + (1− π̂0)F̂1(p), (4.39)

where F1 is the cumulative distribution for density f1 for p-values under the

alternative distribution, and

Fm(p) = #{Pi ≤ p}/m, (4.40)

which is the empirical cumulative distribution of raw p-values P1, . . . , Pm and

converges to F (p) uniformly over p ∈ [0, 1]. The estimated F̂ (scaled to unit) and

the empirical cumulative distribution Fm is plotted in Figure 4.6(c). It shows

that they are almost identical, indicating excellent model fitting.
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4.6.3 Lipid metabolism data

The second data is from a study of lipid metabolism by Callow et al. (2000). The

apolipoprotein AI (ApoAI) gene is known to play a pivotal role in high density

lipoprotein (HDL) metabolism. Mice which have the ApoAI gene knocked out

have very low HDL cholesterol levels. The purpose of this experiment is to de-

termine how ApoAI deficiency affects the action of other genes in the liver, with

the idea that this will help determine the molecular pathways through which

ApoAI operates. The experiment compared 8 ApoAI knockout mice with 8

normal C57BL/6 (“black six”) mice, the control mice. For each of these 16

mice, target mRNA was obtained from liver tissue and labelled using a Cy5

dye. The RNA from each mouse was hybridized to a separate microarray. Com-

mon reference RNA was labelled with Cy3 dye and used for all the arrays.

The reference RNA was obtained by pooling RNA extracted from the 8 con-

trol mice. In total, the experiment involves 8 microarrays and for each mi-

croarray 6384 genes were measured. The raw experiment data is available at

http://bioinf.wehi.edu.au/limmaGUI/DataSets.html and is analysed as de-

scribed in Smyth, Thorne and Wettenhall (2005), on the basis of the theory pre-

sented in Smyth (2004). The resulting p-values from the comparison of knockout

mice with normal mice were the input to the estimation of π0.

We apply the allocation sampler to Callow’s data using the model of beta

mixtures, one-parameter uniform mixtures and uniform mixtures respectively.

Similar to the Hedenfalk’s data, for the one-parameter uniform mixtures and

uniform mixtures the MCMC chain is not mixing well. Even after huge number

of iterations, the effective sample size is still not large enough. So here for Callow’s

data we just show the output result from the beta mixtures model in Figure 4.4.

Table 4.4 summarizes the posterior distribution of π0 conditional on the most
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Table 4.4: The Callow’s lipid metabolism data: the estimation of π0 using
three different mixture models.

Models Percentiles of π0 posterior
2.5th 25th 50th 75th 97.5th

Beta mixtures 0.817 0.854 0.868 0.881 0.902
One-parameter uniform mixtures 0.815 0.865 0.889 0.904 0.923
Uniform mixtures 0.858 0.900 0.912 0.922 0.939

frequent number of components in the posterior distribution of the number of

components for each of the three models. It shows that results from the three

models are quite consistent: the median of posterior π0 only varies in a small

interval from 0.868 to 0.912. In contrast, among other analyses of this dataset,

π0 was estimated to be 0.901 by QVALUE, 0.837 by BUM, 0.830 by SPLOSH,

0.895 by LBE , 0.866 by Langaas and Lindqvist (2005) and 0.830 by Liao et al.

(2004). Again, we see a very high degree of agreement between our method,

QVALUE, LBE and Langaas and Lindqvist (2005)’s method.

Like the study of Hedenfalk’s data, we analyze Callow’s data using our method

(using model of beta mixtures), Liao’s method and Storey’s QVALUE respec-

tively. The estimates of lFDR by our method and Liao’s method are plotted in

Figure 4.7 (a), and the estimates of pFDR by our method and Storey’s QVALUE

are plotted in Figure 4.7 (b). Again, it shows that the estimates by our method

are very similar to these by Liao’s method or Storey’s QVALUE. The estimated

F̂ (scaled to unit) from the beta mixtures model of our method and the empir-

ical cumulative distribution Fm is compared in Figure 4.7 (c). They are almost

identical, indicating excellent model fitting.
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Figure 4.4: Analysis of Callow’s lipid metabolism data using the beta mix-
ture distributions. From top to bottom and from left to right, it
shows jittered time series plot of k, autocorrelation function of k,
cumulative occupancy fraction of k, the plots of posterior predic-
tive distribution imposed on histogram of p-values, the posterior
of number of components and the histogram of the posterior π0

conditional on the number of the most frequent component (i.e.
2 in this case).
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4.6.4 A small simulation study

Since our proposed method is very computational intensive, it is infeasible for us

to evaluate the performance by running a large simulation study. As an alterna-

tive, we apply our proposed beta mixture model to a small number of simulated

datasets. The experiment is designed to have m = 10000 genes in total, with m0

of them non-differentially expressed and m−m0 of them differentially expressed.

Each of the two comparison groups (e.g. cancer versus normal) has 15 subjects.

We generate, for j = 1, . . . , 15,

x
[1]
ij ∼ N(0, 1), i = 1, . . . ,m,

x
[2]
ij ∼ N(0, 1), i = 1, . . . , m0,

x
[2]
ij ∼ N(δ, 1), i = m0 + 1, . . . , m.

The corresponding p-value pi, i = 1, . . . , m, is computed from the one sided

t-test comparing x
[1]
ij , j = 1, . . . , 15 with x

[2]
ij , j = 1, . . . , 15. Sixteen sets of p-

values are generated with different combinations of π0 (i.e. m0/m) and δ (π0 =

0.5, 0.6, 0.7, 0.8; δ = 0.4, 0.7, 1.0, 1.3). Figure 4.5 displays the histograms of the

p-values of these 16 datasets.

For each set of p-values, we apply our method and Storey’s QVALUE to

obtain the posterior distribution of π0 and the estimate of π0 respectively. Table

4.5 shows that the results of the two methods are very similar across nearly all

the settings. When compared to the true π0, we find that not only our method

but also the popular Storey’s QVALUE tend to give estimates very close to the

true π0.

Figure 4.8 shows the plots of the estimates of lFDR against p-values by our
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method and Liao’s method respectively. Figure 4.9 shows the plots of the esti-

mates of pFDR against p-values by our method and Storey’s QVALUE respec-

tively. For the purpose of comparison, we also impose the curves of true lFDR

and pFDR in the two figures respectively. Note that the true lFDR and pFDR

can be calculated from the dataset given the way of simulation, see Appendix C

for details.

For the case of pFDR, our method and QVALUE give very similar estimates

throughout all the situations and the estimates from our method seem to be closer

to the true pFDR than those from QVALUE. For the case of lFDR, our method

also gives quite similar estimates as Liao’s method does although there is some

small disparity between Liao’s estimate and 95% credible interval of our estimate

in the 6th, 7th and 15th dataset. In the former two datasets, Liao’s estimates

are more close to the true lFDR, and in the latter one our estimate is more close

to the true lFDR.

From this small simulation study, we show that the performance of our method

is satisfactory, and in general our method is able to give nice estimates of pFDR

or lFDR similar to other popular methods like QVALUE or Liao’s method. More-

over, comparing Figure 4.8 and Figure 4.9, we see the obvious difference between

pFDR and lFDR: given a p-value, its corresponding lFDR can be much larger

than corresponding pFDR.
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Table 4.5: The estimation of π0 by our method (using model of beta mix-
tures) and Storey’s QVALUE for the 16 simulated data.

Dataset π0 δ π0 posterior percentiles π0 (QVALUE)
2.5th 25th 50th 75th 97.5th

1 0.5 0.4 0.445 0.523 0.551 0.567 0.588 0.535
2 0.5 0.7 0.398 0.446 0.476 0.496 0.532 0.495
3 0.5 1.0 0.460 0.480 0.487 0.494 0.505 0.500
4 0.5 1.3 0.479 0.506 0.507 0.509 0.512 0.496
5 0.6 0.4 0.601 0.638 0.651 0.662 0.682 0.646
6 0.6 0.7 0.521 0.596 0.622 0.629 0.640 0.591
7 0.6 1.0 0.513 0.566 0.612 0.617 0.623 0.573
8 0.6 1.3 0.540 0.596 0.598 0.600 0.604 0.565
9 0.7 0.4 0.628 0.683 0.704 0.723 0.751 0.721
10 0.7 0.7 0.683 0.714 0.720 0.725 0.735 0.715
11 0.7 1.0 0.694 0.703 0.706 0.709 0.714 0.708
12 0.7 1.3 0.666 0.696 0.698 0.700 0.703 0.673
13 0.8 0.4 0.699 0.752 0.793 0.844 0.891 0.844
14 0.8 0.7 0.772 0.791 0.799 0.805 0.817 0.793
15 0.8 1.0 0.768 0.783 0.789 0.794 0.803 0.837
16 0.8 1.3 0.779 0.788 0.791 0.793 0.798 0.807
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Figure 4.5: The histograms of p-values for 16 simulated datasets. The title
of each subfigure indicates the two parameters π0 and δ used for

generating the dataset.
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Figure 4.6: Analysis of the Hedenfalk’s breast cancer data using the model of
beta mixtures. (a) The estimated lFDR (low and high bound of
95% and 50% credible interval and median) and Liao’s method.
(b) The estimated pFDR (low and high bound of 95% and 50%
credible interval and median) and Storey’s QVALUE method. (c)
The estimated cumulative F from the beta mixture distributions
model and the empirical cumulative distribution F from the p-

values.
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Figure 4.7: Analysis of the Callow’s lipid metabolism data using the model of
beta mixtures. (a) The estimated lFDR (low and high bound of
95% and 50% credible interval and median) and Liao’s method.
(b) The estimated pFDR (low and high bounds of 95% and 50%
credible interval and median) and Storey’s QVALUE method. (c)
The estimated cumulative F from the beta mixture distributions
model and the empirical cumulative distribution F from the p-

values.
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Figure 4.8: The lFDR estimates by our method (using model of beta mix-
tures) and Liao’s method for 16 simulated datasets in Section
4.6.4. The datasets 1-16 are from left to right and from top to
bottom. For our method, low and high bound of 95% and 50%
credible interval and median of the lFDR estimates are drawn
with dash green line, dash blue line and red line. For Liao’s
method, the lFDR estimates are drawn with light blue line. For
the true lFDR, it is drawn with yellow line. The title of each
figure indicates the two parameters π0 and δ used for generating

the dataset.
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Figure 4.9: The pFDR estimates by our method (using model of beta mix-
tures) and Storey’s QVALUE for 16 simulated datasets in Section
4.6.4. The datasets 1-16 are from left to right and from top to
bottom. For our method, low and high bound of 95% and 50%
credible interval and median of the pFDR estimates are drawn
with dash green line, dash blue line and red line. For Storey’s
QVALUE, the pFDR estimates are drawn with light blue line.
For the true pFDR, it is drawn with yellow line. The title of each
figure indicates the two parameters π0 and δ used for generating

the dataset.
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4.7 Discussion

The main motivation of this chapter is to provide a tool for accurate estima-

tion of proportion of true null hypotheses π0 which is a key input value for the

calculation of a variety of important error rates for multiple hypothesis testing

in microarray experiments. For this purpose, the whole chapter is arranged to

have two main parts. In the first part we give a background introduction to

the different error rates for multiple hypothesis testing. In the second part we

propose three different type of finite mixtures (beta, one-parameter uniform and

uniform) with unknown number of components and the first component known to

be a uniform distribution to model the distribution of p-values from microarray

experiments.

A newly developed MCMC method called the allocation sampler is applied

to estimate π0, lFDR and pFDR in the context of these finite mixture models for

both real and simulated microarray gene expression data.

We find that the beta distribution is a more suitable building block than the

one-parameter uniform or uniform distribution to approximate the distribution of

p-values, because the mixture would involve fewer components and subsequently

need less computation time. Also, for the beta mixture model the allocation

sampler performs more efficiently and it can achieve much more effective samples

given a fixed number of MCMC iterations. Therefore we suggest to use beta

mixtures in the Bayesian analysis framework. Modelling the distribution of p-

values as finite mixture of beta distributions has been proposed in earlier work

by Allison et al. (2002) and Pounds and Morris (2003). The former use a beta

mixture model with unknown components while the latter only consider a simple

but less flexible two-component beta mixture model. Although our proposed beta
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mixture model is the same as that of Allison et al. (2002), our method has its

own merit: it can indicate the degree of variation of the estimates by giving their

posterior distribution.

Besides the proportion of true nulls (non-differentially expressed genes), the

proposed method can also be applied to estimate lFDR and pFDR. Several au-

thors have recently raised the important issue that pFDR (FDR) can give mis-

leading inference when particular genes are of interest. Finner and Roters (2002)

discuss cheating with FDR. Suppose that one wishes to reject a particular hy-

pothesis, one can simply group this hypothesis with 99 other hypotheses that are

false and will certainly be rejected. The FDR for the family of 100 hypotheses

is then no greater than 1/100. Glonek and Soloman (2003) give more realistic

examples. In their example one, the pFDR is 0.17 if we reject all the hypotheses

with test statistic Z ≥ 2. Given the test statistic Z in the small proximity of 2,

however, the lFDR is a huge 0.99972. All these examples show that the averag-

ing mechanism in pFDR may not be desirable. Suppose that we want to identify

genes that show some evidence of differential expression for further biological

study. The lFDR quantifies the gene-specific evidence for each gene. The pFDR

or FDR, however, averages over other genes with stronger evidence. The lFDR

should thus be preferred in such situations.

Take the Hedenfalk’s breast cancer data in Section 4.6 as an example. For

comparing between BRCA1 or BRCA2 tissues, a total of 319 genes are declared

differentially expressed if it is based on pFDR < 10%. The 156 genes among

them, however, have lFDR > 10% and the smaller pFDR values are the result

of averaging over genes with stronger evidence for differential expression. Only

163 genes will be declared differentially expressed if it is based on lFDR < 10%.

We believe that whether a specific gene should be selected for further biological
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investigation should depend on the evidence for that specific gene, not other

genes with stronger evidence. Therefore the inference based on lFDR should be

preferred, furthermore, the concept of lFDR is easier to understand.

Our method assumes that the genes (p-values) are independent. More so-

phisticated analysis that takes into account the dependence structure of different

groups of genes may be carried out in the future as our knowledge of microarray

data accumulates. Nevertheless, our proposed method will remain a useful tool

for basic analysis before more complicated modelling is attempted.



Chapter 5

Conclusion and future research

This chapter will summarize the conclusions that can be drawn from the work

presented in this thesis. Also, some possible future work will be considered.

As a new powerful tool for generating thousands of gene profiles simultane-

ously, the cDNA microarray has been a hot research topic in statistical bioinfor-

matics circles. So far most of the research efforts have made to the statistical

analysis of gene expression data from the experiments. However, only a small

amount of work has been done on the design of cDNA microarray experiments

despite the fact that a good experimental design is a must for efficient estima-

tion of the parameters of interest and best use of the limited number of arrays

and samples. In this thesis, Chapter 2 deals with four problems related with the

optimal designs of cDNA microarray experiments. Section 2.1 gives a general

introduction to the issues of cDNA microarray experimental designs, including

experimental effects, technical and biological replications, pooling and experi-

mental designs.

175
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Section 2.2 describes an approach for designing optimal microarray experi-

ments considering both technical and biological replicates. For a specific treat-

ment (condition), the gene expression is modelled as the sum of true gene ex-

pression plus biological and technical variations. For a whole cDNA microarray

experiment involving multiple treatments and arrays, a design matrix can be

obtained. An optimality score can be computed from the design matrix given

an optimality criterion. Like Wit and McClure (2004), a simulated annealing

method is applied to search for optimal or near-optimal designs. We illustrate

the approach with two examples. It shows that it is L-optimal for microarray

experiments to use as many biological replicates as possible. Also, a dye-swap

design is not always L- or D-optimal if both technical and biological replicates

are used for each treatment in the experiment.

Section 2.3 argues that factorial experiment design should be considered if

the aim of microarray experiments is to study the gene expressions from mul-

tiple factors. It suggests using the Q-optimality criterion rather than the L-

or D-optimality criterion is a proper choice for the optimal design of factorial

microarray experiments. In this section, the gene expression is modelled in a

multi-factorial way and a simple example is used to demonstrate how to find the

Q-optimal design.

In section 2.4 we discuss the difference between technical and biological varia-

tion and explain how pooling samples reduces biological variation of gene expres-

sion. We propose an approach to pool samples optimally so that the variance

of gene expression value can be minimized given a fixed budget. An practical

example is used to study the relationship among the variance of gene expression

value, the number of samples in a pool and the ratio of biological variance and

technical variance.
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In section 2.5 we review the distant pair design which is introduced for the

case of the combined study of cDNA microarray gene expression and molecular

marker data by Fu and Jansen (2005). We find that the A-optimality criterion for

the case of multiple markers proposed in their original paper is not very proper.

Therefore, we introduce the gene expression model and suggest an alternative

A-optimality criterion for the case of multiple markers. A simple example is used

to show that the alterative one is a better choice.

Typically, a cDNA microarray is subject to several artifacts, each of which can

compromise the quality of the data. Therefore, these artifacts should be removed

before analyzing the data, or else the results would be biased. A dye effect is a

major artifact which is non-linear or intensity dependent. To deal with it, (Yang

and Speed, 2003) suggest a two-step intensity-dependent normalization method

(i.e. LOESS method) by fitting a smooth curve to a scatter plot of Cy5 and Cy3

values in a transformed scale (i.e. MA scatter plot). As an alternative, we propose

a new method in Chapter 3. The method is based on an assumption that the dye

response function is a “S” curve and can be modelled by functions like the probit

function. Since the dye response function describes the relationship between the

observed gene expression data and true gene expression data, our method tries to

find such a pair of dye response functions (Cy3 and Cy5) so that the resulting dye

effect curve matches the dye effect curve from the observed gene expression data.

Once a pair of dye response functions is specified, the observed gene expression

data can be transformed back to true data. In essence, our method is also a kind

of intensity-dependent normalization by fitting a “smooth curve” to a scatter plot

of Cy5 versus Cy3 although the “smooth curve” we use is the difference of two dye

response functions. The performance studies with simulated and experimental

gene expression data show that our method is comparable to the LOESS method.
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In a microarray, often thousands of genes are tested simultaneously, against

a null hypothesis (expressed or not). When confronted with such a vast number

of hypothesis tests and the potential for numerous false positives, the traditional

statistical approach is to impose a penalty to account for multiple testing, such

as the Bonferroni correction. However that penalty can be far too severe, espe-

cially so when it is likely that many of the alternatives are true. To address this

problem, quite a few error rates of multiple testing such as false discovery rate

(FDR), positive false discovery rate (pFDR) and local false discovery rate (lFDR)

have been proposed. To assess or control these multiple error rates, a reliable

estimate of the proportion of true null hypotheses π0 (the proportion of genes

that are not differentially expressed) is very important. In Chapter 4 of this the-

sis, we assume that the p-values from the multiple testing are, unconditionally,

independent and identically distributed random variables with mixture density

which has a unknown number of components. Three kinds of mixture distribu-

tions (beta, uniform and one-parameter uniform) are proposed for approximating

the distribution of p-values. A MCMC method called the allocation sampler is

applied to estimate π0 and the mixture density. With these estimates, pFDR and

local FDR can be subsequently computed. We demonstrate that the estimates

from our method is similar to that from Storey’s QVALUE method, and we also

claim that when particular genes are of interest local FDR is more specific and

relevant than pFDR.

This thesis deals with three areas in statistical analysis of cDNA microarray

experiments: optimal experimental design, dye effect normalization and estima-

tion of the proportion of true null hypotheses, pFDR and lFDR. Some future

researches could be done in these areas.

• In Chapter 2, we discuss how to find L- or D-optimal design for microarray



CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 179

experiment with both biological and technical replicates. Readers might

criticise these designs and ask: What if an array fails in my experiment? Is

a reference design not more robust? To answer these questions we should

have a clear definition of a robust optimal design. Consider that if an array

fails the corresponding row in the design matrix X is eliminated, then we

can think of the design matrix as a random variable X∗ by sampling the

rows of X with some fixed success rate. Therefore we can try to give

a definition of robust: A design X is robust optimal, if X∗ maximizes

E(score(X∗)). In practice, we can estimate the expected value by drawing

X∗ and calculating the mean of scores for different draws X∗. Following this

conceptual extension, some real practical applications can be made. Bailey

(2007) defines robust design in a different way: “the measure of robustness

is the number of blocks which can be lost”. It would be interesting to

compare our definition with Bailey’s.

• In Chapter 2, we use several simple examples to show that it is optimal

to use as many biological replicates as possible. However we are not able

to give a mathematical proof to this claim. Is it possible to check the

conjecture that “Biological replicates always result in more optimal designs”

strictly? Another related and more detailed conjecture is that to prove that

Trace{X t(σ2
t I + σ2

bZZt)X}−1 ≥ Trace{X t(σ2
t + 2σ2

b )IX}−1,

where X is the design matrix, Z is the assignment matrix with exactly one

1 and one -1 in each row.

• In Section 5 of Chapter 2, we consider relatively small values for the num-

ber of markers k and arrays n. This allowed us to calculate the optimal
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distant pair design by an exhaustive search. However, if k and n grow, the

number of possible designs become intractable. This means that we have

to resort to an other type of optimization techniques, such as for example,

simulated annealing. We plan to implement this in the future. Also, when

the number of markers k becomes larger than the number of arrays, our

main effect model becomes unidentifiable. In other words, every design is

unable to estimate all the effects. In this case, it becomes interesting to

consider alternative models, such as for example penalized models. This

would involve adding a term λ||β||q to the likelihood, where λ is a tuning

parameter and ||.|| is the q-norm of a vector. For different values of λ > 0

the solution for β becomes tractable again and allow us to find an optimal

design. Interesting designs are those designs that for a reasonable range of

λ are close to optimal.

• As we mention in the end of Chapter 4, our method depends on the as-

sumption of independence between test statistics. Since this assumption

could hardly stand in practice, it is necessary for us to develop more so-

phisticated methods to deal with the dependence structure between the

test statistics. Also, it will be interesting to model different dependence

between test statistics when planning the simulation experiment studies.



Appendix A

Computing Σ

We are able to calculate the covariance matrix Σ with some important information

of a microarray experiment, such as the random effect design matrix that contains

information about the assignment of biological and technical replicates to array.

Let us assume that there is a microarray experiment with m arrays and n

conditions, (m,n > 2). We focus on two different arrays, let’s say the ith and jth

array, each of which involves two samples under different treatments. The ith

array corresponds to the a and b sample replicates under the K and L treatments

respectively while the jth array corresponds to the c and d sample replicates under

the O and P treatments respectively. In the experiment, a and c are labeled with

one type of dye while b and d are labeled with the other type of dye.

Based on the gene expression model and the information in the last paragraph,

the covariance of gene expressions of the ith and jth arrays is given:

Cov(yi, yj) = Cov(δKL + εKa − εLb + ηi, δOP + εOc − εPd + ηj),
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After ignoring the constant δ and expanding the right side, we have

Cov(yi, yj) = Cov(εKa − εLb + ηi, εOc − εPd + ηj)

= Cov(εKa, εOc)− Cov(εKa, εPd) + Cov(εKa, ηj)− Cov(εLb, εOc)

+Cov(εLb, εPd)− Cov(εLb, ηj) + Cov(ηi, εOc)− Cov(ηi, εPd)

+Cov(ηi, ηj). (A.1)

If we assume that the biological error and technical error are independent from

each other, then the covariance of biological errors and technical errors are zero,

which reduces the expression of Cov(yi, yj) to a group of covariances of biological

errors and covariances of technical errors as follows,

Cov(yi, yj) = Cov(εKa, εOc)− Cov(εKa, εPd)− Cov(εLb, εOc)

+Cov(εLb, εPd) + Cov(ηi, ηj). (A.2)

Since we assume that

Cov(εC1k1 , εC2k2) =





σ2
b if C1 = C2 and k1 = k2

0 otherwise

and

Cov(ηi, ηj) =





σ2
t if i = j

0 otherwise
,

we are able to compute the values of Cov(yi, yj) in different situations, some of

which are shown in Figure A.1.
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Figure A.1(a) describes that the ith and jth arrays involve a common treat-

ment (e.g. treatment K) and under that treatment each of them has the same

technical replicate labeled with the same type of dye (e.g. replicate a). In this sit-

uation the expression of Cov(yi, yj) in Equation (A.1) is reduced to Cov(εKa, εKa)

which is σ2
b . Figure A.1(b) describes a similar situation except that the two tech-

nical replicates are labeled with different type of dye, in such case Cov(yi, yj) is

equal to −σ2
b .

Figure A.1(c) describes that the two arrays have two treatments in common.

Under one of the treatment both of the arrays has the same technical replicate

labeled with the same type of dye, under the other treatment each of the arrays

has different technical replicate. In this situation the expression of Cov(yi, yj)

is also reduced to Cov(εKa, εKa) which is σ2
b . Figure A.1(d) describes a similar

situation except that the two technical replicates are labeled with a different type

of dye, in such case Cov(yi, yj) is equal to −σ2
b .

Figure A.1(e) describes another situation that the two arrays have two treat-

ments in common but have the same technical replicate labeled with the same

type of dye under each of the two treatments. In this case the expression of

Cov(yi, yj) is reduced to Cov(εKa, εKa)+Cov(εLb, εLb) which is 2σ2
b . Figure A.1(f)

describes a similar situation except that for each of the treatments, the technical

replicates are labeled with a different type of dye, in such case Cov(yi, yj) is equal

to −2σ2
b .
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(a) (b) (c)

(d) (e) (f)

Figure A.1: Directed graphs describe six typical situations involved in com-
puting covariance of gene expressions of the ith and jth microar-
rays. Each array is represented by an arrow. The head of the
arrow indicates that the sample was labeled with Cy5, while
the tail represents a sample that was labeled with Cy3. The two
experimental treatments of an array are indicated by capital let-
ters, like K, L and P . The sample replicate allocated for each
treatment is represented by lowercase letters, like a, b and c. (a)
two arrays have one common treatment, under that treatment
both of the arrays has the same technical replicate; (b) the same
as (a) except the jth array has a different dye assignment; (c)
two arrays have two common treatment, under one treatment
both of the arrays has the same technical replicate while under
the other treatment they have different technical replicate; (d)
the same as (c) except that the jth array has a different dye
assignment; (e) two arrays have two common treatments and
under both treatments the arrays has the same technical repli-
cates; (f) the same as (e) except the jth array has a different

dye assignment.



Appendix B

Integrating parameters from the

model

This appendix contains the details of the integral

f(xj|φj) =

∫ ∏
i∈Aj

f(xi|θj)f(θj|φj)dθj

which defines the marginal distribution of the data x where the prior on the

parameters f(θj|φj) is non-conjugate.

B.1 Uniform distribution

Let f(xi|θj) = Un(xi|0, bj), which is 1/bj for 0 < xi < bj and 0 for xi < 0 or

xi > bj, then
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∏
i∈Aj

f(xi|θj) =
1

b
nj

j

nj∏
i=1

I(0,∞)(xi) ·
nj∏
i=1

I(−∞,bj)(xi)

=
1

b
nj

j

nj∏
i=1

I(xi,∞)(bj)

=
1

b
nj

j

I(x(n),∞)(bj),

where I is the indicator function. Then

f(xj|φj) =

∫
1

b
nj

j

I(x(n),∞)(bj)f(θj|φj)dθj.

The prior on the parameter θj = (0, bj) is defined as

f(θj|φj) =
1

φ2 − φ1

, φ1 < bj < φ2,

where φ = (φ1, φ2) is an known hyperparameter.

Then we calculate f(xj|φj) as follows,

f(xj|φj) =
1

φ2 − φ1

∫ φ2

x(nj)

1

b
nj

j

dbj.

This integral with respect to bj has two different cases which need to be

examined separately.

When nj > 1,

f(xj|φj) =
1

φ2 − φ1

∫ φ2

x(nj)

db
1−nj

j

1− nj

=
1

φ2 − φ1

φ
1−nj

2 − x
1−nj

(nj)

1− nj

.
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When nj = 1, (note that x(n) = x(1) here.)

f(xj|φj) =
1

φ2 − φ1

∫ φ2

x(nj)

dbj

bj

=
1

φ2 − φ1

log
φ2

x(nj)

.

By setting φ1 = 0 and φ2 = 1 and collating the above two equations, we have

the final result as follows,

f(xj|φj) =





1−x
1−nj
(nj)

1−nj
nj > 1,

log 1
x(nj)

nj = 1.

(B.1)

B.2 One-parameter Beta distribution

Let f(xi|θj) = β(xi|1, bj), whose expression is bj(1− xi)
bj−1 for 0 < bj < ∞ and

0 < xi < 1. Then

∏
i∈Aj

f(xi|θj) =
∏
i∈Aj

bj(1− xi)
bj−1

= b
nj

j

[ nj∏
i=1

(1− xi)

]bj−1
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Independent gamma prior for the parameters bj is

f(bj) =
γα

Γ(α)
bα−1
j exp{−γbj}, j = 1, ..., k.

where α is the shape parameter, γ is the rate parameter and Γ is Gamma function.

Therefore,

f(xj|φj) =

∫ ∏
i∈Aj

f(xi|θj)f(θj|φj)dθ

=

∫ ∞

0

b
nj

j

[ nj∏
i=1

(1− xi)

]bj−1
γα

Γ(α)
bα−1
j exp{−γbj}dbj

=
γα

Γ(α)
∏nj

i=1(1− xi)

∫ ∞

0

b
nj+α−1
j exp

{
− bj

[
γ −

nj∑
i=1

log(1− xi)
]}

dbj.

Since

∫ ∞

0

[
γ −∑nj

i=1 log(1− xi)
]nj+α

Γ(nj + α)
b
nj+α−1
j exp

{
− bj

[
γ −

nj∑
i=1

log(1− xi)
]}

dbj = 1,

then we have

f(xj|φj) =
γα

Γ(α)
∏nj

i=1(1− xi)

Γ(nj + α)[
γ −∑nj

i=1 log(1− xi)
]nj+α .

Let α = 1, then the final result is
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f(xj|φj) =
γ∏nj

i=1(1− xi)

Γ(nj + 1)[
γ −∑nj

i=1 log(1− xi)
]nj+1 . (B.2)



Appendix C

Calculate true pFDR and lFDR

In this appendix we demonstrate how to calculate true pFDR and lFDR from

simulated datasets.

Assume that we have the simulated data Xij ∼ N(0, σ2) and Yij ∼ N(δ, σ2)

for i = 1, . . . , m, and j = 1, . . . , n, we can compute corresponding p-value, pj by

using one sided t-test. The probability of pj coming from true null hypotheses is

π0 = m0/m and the probability of pj coming from false null hypotheses is 1−π0.

We can write the probability of having a p-value under true null hypotheses

smaller than p as follows:

Pr0[P ≤ p] = Pr0[1− F0,2(n−1)(T ) ≤ p]

= Pr0[T ≥ F−1
0,2(n−1)(1− p)]

= 1− Pr0[T ≤ F−1
0,2(n−1)(1− p)]

= 1− F0,2(n−1)[F
−1
0,2(n−1)(1− p)]

= p, (C.1)
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where T is the t statistic and the degrees of freedom for this test is 2(n − 1).

F0,2(n−1) is the cdf of t distribution with 2(n − 1) degrees of freedom and non-

centrality parameter zero. In the same way, we can write out the probability of

having a p-value under false null hypotheses smaller than p:

Prδ∗ [P ≤ p] = 1− Fδ∗,2(n−1)[F
−1
0,2(n−1)(1− p)], (C.2)

where Fδ∗,2(n−1) is the cdf of t distribution with 2(n− 1) degrees of freedom and

non-centrality parameter

δ∗ =

√
n

2

δ

σ
.

Therefore we have

Pr[P ≤ p] = F (p)

= π0Pr0 + (1− π0)Prδ∗

= π0p + (1− π0)(1− Fδ,2(n−1)[F
−1
0,2(n−1)(1− p)]). (C.3)

If we want to get the density of p, f(p), then we can take derivative on

Equation (C.3):

f(p) = π0 + (1− π0)
F
′
δ∗,2(n−1)[F

−1
0,2(n−1)(1− p)]

F
′
0,2(n−1)[F

−1
0,2(n−1)(1− p)]

. (C.4)

Finally we can plug the expressions of F (p) and f(p) into the following equa-

tions to get true value of pFDR and lFDR given a p-value.

pFDR(p) =
π0p

F (p)
,
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and

lFDR(p) =
π0

f(p)
.
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