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SUMMARY 

In this research a very expensive method of monitoring the 

structural integrity of offshore platforms has been partially 

adapted for application to bridge decks. The method is based on 

measuring the response of the structure through its natural 
frequencies over a period of time. If there has been any change in 

these frequencies, the frequencies are compared to a data bank of 

computer finite element models in order to predict what structural 

changes have occurred. Hence in this thesis the research can be 

divided into two parts : the main part, computer (numerical) 

research and the second part experimental research. 

The computer research was designed to produce a simple, accurate and 

cheap method of calculating the response of bridge decks to a number 

of structural changes to produce the required data bank of natural 
frequencies, i. e. Dynamic re-analysis. The method developed was 
based on subspace iteration, and the rate of change of the 

generalized eigenproblem. The method proved to be successful in 

predicting the response of bridge structures to a number of changes, 

and it was concluded that structural changes of less than 40% 

produce changes of less than 5% in the structural natural 
frequencies. 

The experimental research designed to investigate how the response 

of bridge decks could be measured using simple techniques; this 

research sought to determine if these simple techniques could be 

used to measure the response of a structure brought about by a 

number of small changes in structural form. The method proved to be 

successful in measuring the response of a model bridge, but the 

results of measuring the response of the model bridge due to a 

number of small changes proved less successful since the changes 
induced in the model proved to be too small. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

In this research a very expensive method of monitoring the structural 
integrity of offshore platforms has been partially adopted for 

application to bridge decks. The proposed method is based on the 
hypothesis that a structure will always display the same frequency 

response to any exciting forces unless the stiffness or mass changes. 
Isolated changes in stiffness or mass affect some natural frequencies 

more than others. 

By measuring these changes in frequency response it may be possible to 

predict what changes in stiffness and mass have caused them. 

The steps taken in monitoring the integrity of a structure by this 

approach are as follows: 

a) The natural frequencies of the structure are measured insitu. 

b) A computer model is constructed to calculate the natural 
frequencies of the structure. 

c) The computer model is "tuned" so that, as far as possible the 

measured frequencies match the calculated frequencies. If it is 

an old structure and the differences between the two sets of 
frequencies are large, then it is possible that structural damage 

has already occurred. This is checked by a visual inspection of 
the structure before the method is applied. 

d) A large number of computer models are constructed with a number 

of different structural faults to produce a "data bank" of 

natural frequencies associated with different structural 
defects. 

e) At frequent intervals (e. g. six months) the structure's natural 
frequencies are monitored. If there has been any change in the 

measured natural frequencies, these changed frequencies are 

compared with the "data bank" of computer model frequencies to 

identify the change in structural configuration causing them. 
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1.2 Bridge Defects and Inspection 

At present, the structural integrity of bridge decks is monitored by 

visual inspection, and defects are likely to be hidden until they 
becomes severe. These defects fall into two categories: stiffness 
defects and mass defects. Some examples of defects are: 

Stiffness'defects: cracking of concrete in a reinforced concrete 
deck 

loss of shear connection betweem the slab and 
stiffening beams in a composite construction 

buckling of structural members 

faulty bridge bearings 

delamination of the "black top" 

Mass defects: bits of the structure falling off 

drainage pipes filling up with silt and water 

The visual technique is very dependent on access and this may not be 

easy or cheap or even possible in the case of a large bridge. Any 

visual method must infer soundness from a lack of evidence of damage, 

and such evidence being taken only from surfaces and indeed from only a 
sample set of surfaces, there must always be some doubt associated with 
visual inspection. 

Since the vibration method described measures the structural stiffness 

and mass, so it can be used to detect stiffness and mass defects. Also 

since it measures structural stiffness, the application of the method 
can provide positive evidence of structural soundness. This is very 
important, since recent legislation in the UK has permitted a higher 

axle loading than that which the structures were originally designed 

for. 



4 

1.3 Review of Previous Research 

A brief review of previous work is presented in three sections under 
the following headings: 

a) Methods of vibration monitoring in offshore platforms 

b) Methods of measuring natural frequencies of bridges 

c) Methods of calculating natural frequencies of bridges 

1.3.1 Methods-of-Vibration-Monitoring_in_Offshore_Platforms 
------------------ - 

An offshore platform vibrates continuously under the action of wind and 
waves. Apart from the response to the periodic wave loading vibrations 
peaks occur mainly at specific frequencies, the natural frequencies of 
the structure. These frequencies are measured by using accelerometers 
above the waterline on the platform. These natural frequencies of the 

structure depend on the mass, stiffness and geometry, but are generally 
independent of the method of excitation. 

If the platform is damaged or deteriorates so that there is a 

measurable change in stiffness or mass then some of the natural 
frequencies will be changed. The nature of damage can be deduced from 

the patterns of changes of the frequencies and the associated mode 

shapes. 

The first application of the method outlined in section 1.1 was on a 

model oil rig in the Mechanical Engineering department at Glasgow 

University (Ref 19). This research led to the first practical 

application on a gas production platform in the southern sector of the 
North Sea. This study was carried out before the platform was removed 
in 1978, (see Figure 1.11 (Ref 17)), by Structural Monitoring Limited. 

The objectives of the study were to demonstrate the damage detection 

techniques as outlined in section 1.1, and to assess the possibility of 

using changes in natural frequencies to detect changes in structural 
integrity., Specifically, one member was deliberately damaged in three 
different ways as follows: 
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a) A hole was cut to allow it to be flooded with water 

b) The member was half-severed by a through-thickness cut half way 
around the circumference, close to a node. 

c) The cut was to be extended to produce a complete severance of the 

member. 

Figure 1.11 shows the location of the damaged member). 

In 1975, in another study, the natural frequencies of the platform were 
recorded. Between that date and 1985 non-structural equipment was 
removed, thus providing an opportunity to assess the application of the 

method to changes in platform mass. 

The natural. frequencies of the platform are given in Table 1.1; also 
given are the damage frequencies for complete severance of the member 
given in Figure 1.11. 

At the same time as the damage study was being carried out, a computer 
study of frequency response was carried out using MSC/NASTRAN. The 

results of this study are given in Table 1.2 for the baseline 

measurements, and for complete severance. 

In this study the authors concluded that: 

a) The overall vibration monitoring technique can reliably detect 

damage. 

b) Structural Monitoring techniques can assist in providing 

assurance of the integrity of a structure. The second conclusion 
is derived by comparing the undamaged measured natural 
frequencies with the computed natural frequencies. 

Over the years Structural Monitoring Limited have carried out a number 
of studies as discussed above and they conclude that at least a 5% 

change in structural stiffness or structural mass must occur before the 

method can be used to detect damage through the use of natural 
frequencies (Ref 11). 
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1.3.2 Measurement_of_Bridge_Natural_Freguencies 

There are four main methods which have been used to excite bridge 

structures, as follows: 

i) " Pull and Release Method 

ii) Energy Input Method 

iii) Special Vehicles Method 

iv) Ordinary Vehicles Method 

A number of different devices can be used to measure the response of 
the bridges, from which structural natural frequencies can be 

calculated. 

1.3.2.1 Pull_and_Release Method 

This method is based on loading the structure, then quick-releasing the 
load thus causing the structure to vibrate. Different modes of 

vibration can be excited by symmetrical and unsymmetrical loading of 
the bridge. 

Douglas and Reid (Ref 10) applied loads to a bridge deck through 

loading cables by two D-8 crawler tractors, and then simultaneously 

quick-releasing the loading cables with electrical solenoid triggers 

thus causing the structure to vibrate. These tractors applied loads of 
11 tonnes. Symmetrical and antisymmetrical modes were excited by 

pulling on the bridge structure in a number of different directions. 

The responses of the structures were measured by the use of 

accelerometers, and the natural frequencies were obtained by using 
Fourier Transform techniques (see Appendix). In total six natural 
frequencies were recorded in the range of 2.72Hz to 14.2Hz. 

Eyre (Ref 13) loaded the Cleddon Bridge, Milford Haven, with loading 

cables attached to a dead weight (327 tonnes). The load was jacked to a 
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height of 2-3m above the water level and then it was released to excite 
the bridge. The aim of this study was to measure the damping of the. 

bridge, and to determine the first longitudinal bending mode, which was 

found, through the use of accelerometers, to be at a frequency of. 
0.52Hz. 

1.3.2.2 Energy_Input_Method 

This method is based on a vibrator system placed on the bridge deck and 

used to vibrate the deck randomly. It can be placed anywhere on the- 

deck to excite symmetrical and unsymmetrical modes. An example of an 

energy input device is given in Figure 1.2. This device was developed 

by the Transport and Road Research Laboratory. It is an inertia 

excitation system consisting of four masses, each driven simusoidally 

at variable frequencies by electro-hydraulic actuators. These masses 

are mounted on a mobile axle system fitted with solid rubber tyres, so 
that the device can be easily towed (Ref 18). 

1.3.2.3 Special_Vehicles_Method 

There are a number of forms of this method of excitation, but they all 

have one thing in common; they involve running vehicles over the 

bridge to excite symmetrical and unsymmetrical modes. Two examples of 

this method are: 

i Using the energy input device developed by the Transport and Road 

Research Laboratory. 

ii Using very heavy vehicles. An example is a logging truck and 

trailer loaded with heavy steel piles, Figure 1.3 (Ref 12). 

An example of this special vehicle method was used in measuring the 

response of two bridges in Oregon USA i. e. North Delland Bridge and 

Troutdale Bridge. The bridge was excited by the heavy vehicle given in 

Figure 1.3. These bridges were excited by running the vehicle at 

different speeds and along different longitudinal axes. In this case 
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the authors were not interested in the structure's natural frequencies, 
but in the induced structural stresses due to vibration. These 

stresses were measured by magnetic strain gauges and were recorded 
on an oscillogram and digitised every 0.5 second. 

1.3.2.4 Ordinary_Vehicles_Method 

This method measures the vibration response of the bridge structure 
excited by normal traffic flow, and this method has been used in a 
number of studies (Ref 24,25,26,27). 

Rainer and Permina (Ref 24) found that a full set of natural 
frequencies could be obtained from normal traffic flow. They came to 
this conclusion by measuring the response of the Ottowa River Parkway 
Service Road Bridge, Canada, by using an energy input method and 
ordinary traffic vehicles. 

The energy input method used was an electrohydraulic inertia shaker, 
with the shaker driven sinusoidally. The structure's natural 
frequencies were recorded by carrying out frequency sweeps to find 

points of resonance. The corresponding modes of vibration were deduced 

by comparing the phases of the seven seismometers used to detect 

resonance. 

The traffic flow method recorded the response of the structure using 

seven seismometers, and the structural natural frequencies were deduced 

by carrying out fourier analyses of the seismometers signals. Again 

the modes of vibration were deduced from the phases of the 

seismometers. 

The natural frequencies of both methods are given in Table (1.3) and 
it can be seen that very good comparison was found between the two 

methods. The difference in the higher modes could be attributed to the 

slight increase in the modal masses owing to the mass of the traffic 

flow. 

1.3.2.5 Instrumentation 
--------------- 

There are a number of instruments used in conjunction with the methods 

mentioned above to measure different forms of response of the 

structure. These instruments are: 
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a) Static measurements 

i) Strain gauges (strain) 

ii) Cantilever deflection gauges (static deflection) (Figure 

1.4). 

b) Dynamic Measurement (or continuous measurements) 

i) Deflectometer (displacement) (Figure 1.5) 

ii) Seismometers (Velocity) (Figure 1.6) 

iii) Accelerometers (acceleration) (Figures 1.7) 

The methods by which dynamic measurements are digitised and processed 
to find the natural frequencies are described in the Appendix. 

1.3.3 Vibration Monitoring in Bridge Decks 

Under a contract to T. R. R. L, Structural Monitoring Limited carried out 

a study over a 18 month period from 1978 on a number of bridge 

structures using the procedure described om Section 1.1 (Ref 26,27) by 

using ordinary vehicles to excite the bridge structure. Part of the 

programme was to study the effects of different air temperatures on the 

natural frequencies of the bridge. They found that the surface 

temperatures of the "black top" affects the bridge natural 
frequencies. They therefore concluded that this factor should be 

0 
eliminated by taking all measurements in "hot" weather (10 C). 

1.3.4 Calculation_of_Bridge_Natural_Frgguencies 

The development of techniques for calculating, natural frequencies in 

structures are linked closely with development in digital computing. 

The first method to calculate the natural frequencies of bridge decks 

was to use very simple beam elements which have bending and torsional 

stiffness constants, corresponding to those of the bridge cross 

section. For example a simple supported bridge was modelled using 3 

equally spaced lumped masses connected by beam elements, see Figure 1.8 

(Ref 29). 
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Continuous spanned bridges were modelled with more lumped masses 

connected by beam elements, spaced at equal intervals within each span, 

see Figure 1.9 (Ref 31). (In the above two examples the number of 
dynamic degrees of freedom equals the number of lumped masses). 

As computers increased in power more and more beam elements were used. 
Then the bridge idealization was changed from beam elements to two 
dimensional plate elements for simple supported bridges (Ref 31). 

Then different elements of the bridge were represented by different 

types of elements, for example, the deck being modelled by plate 

elements, and the girders by beam elements Figure 1.10 (Ref 8). 

The final stage of computer modelling was to change the mass 
representation of bridge structures, from lumped mass theory (mass of 
the structure is concentrated at the nodes) to consistent mass theory 
(mass representation is formed in the same way as the stiffness 

matrix). The consistent mass theory has the advantage that it permits 
k% CP the calculation of the bridge 1lnode shapes and frequencies more 

accurately, 

1.4 Conclusion 

As described above the proposed method for determining the structural 
integrity of bridge decks can be used with advantage, since it is quick 
to carry out, and does not involve any disturbance to traffic flow of 

the bridge (Ref 23). The method has, however, the major disadvantage 

of high cost, and no previous studies like the offshore platform case 

have been carried out. The high cost is associated with two major 

areas. 

i) Computer modelling; the cost is involved in calculating a data 

bank of natural frequencies associated with a number of 

structural changes 

ii) Equipment; the cost is involved in using complex and advanced 

methods of frequency extraction 
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The aim therefore of this thesis is to study these disadvantages of 

monitoring bridges and to see if they can be overcome. The project can 
be split into two sections. 

Section one : Computer Research (Chapters 2-5). 

A method is presented which will allow the calculation 

of changed natural frequencies very efficiently at 
lower reduced cost than before. 

Section two : Expermental Research (Chapters 6-7) 

Since no study similar to the offshore platform has been 

carried out before to test the procedure, a similer 

study to the oil rig was carried out on a model bridge 

and is presented in this section. 



MODE 3ASELYNE BEFORE MEMBER 
MASS WAS SEVERED 
REMOVED 

1978 1975 1978 

1 1.365 1.375 1.325 

2 1.44 1.375 1.375 

3 2.07 2.025 1.76 

4 2.91 2.875 2.89 

5 3.5 3.5 2.62 

6 3.95 4.0 3.85 

TABLE 1.1 COMPARISON BETWEEN BASELINE MEASUREMENT OF 
--------- NATURAL FREQUENCIES AND DAMAGED NATURAL 

FREQUENCIES (HZ) 

MODE BASELINE MEMBER 
SEVERED 

1 1.351 1.32 

2 1.368 1.33 

3 1.76 1.58 

4 2.908 2.73 

5 2.597 1.955 

6 3.85 3.696 

TABLE 1.2 NATURAL FREQUENCIES OF THE COMPUTER MODEL 
(H L 



MODE FORCED TRAFFIC 

1 5.7 5.7 

2 6.3 6.3 

3 8.7 8.7 
4 12.0 11.8 

5 17.4 16.8 

TABLE 1.3 OTTAWA RIVER BRIGDE NATURAL FREQUENCIES (HZ) 
--------- DUE TO FORCED VIBRATION AND TRAFFIC FLOW 
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CHAPTER 2 VERIFICATION OF FLASH 

2.1 Introduction 

In this research work it was planned to incorporate the techniques 
developed in a general purpose, civil engineering computer program, 
FLASH (Ref 14). The first stage was to check the usefulness and the 

accuracy of FLASH by comparison with-published work of similar nature 
based on analysis using MSC/NASTRAN (Ref 20). 

I 

Under Transport and Road Research Laboratory and Fife-Regional Council 

Contracts, Structural Monitoring Limited carried out dynamic monitoring 
of four bridges in Scotland (Ref 25,26,27). Part of their work was 
to construct computer models of these bridges using MSC/NASTRAN (Ref 

20). This Chapter gives the results of the dynamic finite element 

analysis of three of the four bridges. These three bridges are: 

a) Southfield Bridge (Fife) 

b) Westerhouse Bridge (Glasgow) 

c) Baillieston Interchange (Glasgow) 

The dynamic models using FLASH after tuning are described and the 

results compared with the measured values and the computed values 

calculated by Structural Monitoring Limited using MSC/NASTRAN. 

2.2 General Description of the Bridges and the Finite Element 

Models Used 

As far as possible the finite element idealisations used follows the 

models of Structural Monitoring Limited using MSC/NASTRAN and using the 

same number of elements and where possible the same element types. 

In all three bridges the road bitumen surface and pavements were 

modelled as non-structural mass. These masses were represented by 

point masses at all the joints except the support joints. Any 

contribution to the structural stiffness of these layers was neglected. 

23 

1 
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2.2.1 Southfield-Bridge 

Southfield Bridge Figure 2.1 is part of the southern freeway of 
Glenrothes new town, Fife. The bridge is, a four span continuous, 

reinforced concrete slab structure. ' The five supports are a 

combination of concrete cross beams and columns, with the two 

abutments encased in earth embankments. 

The bridge was modelled as a plate with the element mesh as shown in 

Figure 2.4. A typical cross section of the element mesh is shown in 

Figure 2.5. In the computer model the following material properties 

were used: 

Density of concrete = 2400 kg/m3 

Density of road surface = 2100 kg/m3 

Poisson's Ratio = 0.15 

Young's Modulus = 32E9 N/m2 

The bridge supports were represented by springs which allowed no 

rotation about the x-axis, free rotation about the Y-axis, and a 

vertical movement. To include a contribution to the structure 

stiffness from the earth embankment, the vertical springs stiffness of 

the outer spring was increased by a factor; by tuning, this factor was 

found to be approximately 20. 

2.2.2 Westerbeuse_@ridee 

Westerhouse Bridge, Figure 2.2, carries traffic on Westerhouse Road 

over the M8 motorway in the Easterhouse district of Glasgow. The 

traffic flow in each direction is supported in two separate, simply- 

supported sections over four spans. The bridge deck is of composite 

construction, with seven steel I-beams running along the length of the 

deck and supporting a concrete slab and the bitumen pavement. The 

steel I-beams are supported on a concrete beam which in turn is 

supported on two concrete columns. These supports are common to two 

spans. Running the full length of both decks are two pipe ducts. 
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Access to these is through a concrete slab -which 
in turn is supported 

at approximatly 6.25m centres by 500 x 400 mm-reinforcement concrete 
beams. 

For this dynamic finite element analysis deck BC of bridge No. 2 was 
only used. See Figure 2.2. 

The bridge was idealised as a plate model, with the element mesh as 
shown in Figure 2.6. A typical cross section of the element mesh is 

shown in Figure 2.7. 

The main steel beams were represented by beam elements eccentrically 
connected to the concrete deck (plate elements). The transverse beams 
in the pipe access duct were also represented by beam elements, and 
were connected to the concrete deck. The stiffness of this non- 
structural slab was neglected with the mass of the slab being 

represented as a number of point masses along the edge of the duct, 
hence producing "holes" in the element mesh see Figure 2.6. In the 

computer model the following material properties were used. 

Density of concrete = 2400 kg/m3 

Density of road surface = 2100 kg/m3 

Density of steel = 7700 kg/m3 

Young's Modulus of concrete = 28E9 N/m2 

Young's Modulus of steel = 200E9 N/m2 

Poissons ratio = 0.15 

Since the supports are made up of two columns and a cross beam, so the 

supports were represented by two types of springs. The stiff vertical 
springs represented the columns, and the weak vertical spring 
represented the cross beam, see Figure 2.7. All the supports allowed 

no rotation about the x-axis. See Figure 2.6. 
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2.2.3 Bailliston Interchange 

The analysis was carried out on Bridge No 18 of Bailliston Interchange, 

Figure 2.3, which is just East of Glasgow. It carries westbound 
traffic on the slip road from the A89 Airdrie - Glasgow road to the M8 

Glasgow-Edinburgh motorway. It passes over the M8 and also over the 

eastbound carriageway of the A89. 

The bridge is a continuous reinforced concrete deck over seven spans 

with the spans varying in length between 20m and 30m. In plan the 

bridge forms a circular arc of 278.65m radius. It is supported on six 

concrete columns, five of which lie normal to the centre line of the 

bridge, while the sixth lies at an angle, and also there are two 

concrete wall abutments at each end of the bridge. 

The element types used by Structural Monitoring Limited consisted of 

eight noded solid elements which only have three translational degrees 

of freedom per node. This type of element is not available on the 

FLASH program, so the bridge was idealised by a shell element model 

with the element mesh as shown in Figure 2.8. Since the shell elements 

used were four noded, the element joints were taken as the centre line 

of the deck cross section. See Figure 2.9. In the computer model the 

following material properties were used: 

Density of concrete = 2400 kg/m3 

Density of road surface = 2100 kg/m3 

Poisson's ratio = 0.15 

Young's modulus = 28.7E9 N/m3 

The bridge supports were represented by two different spring 

arrangements, two vertical springs which represented each of the six 

concrete columns and nine vertical springs which represented each of 

the concete abutments. The other five degrees of freedom were all 

fixed apart from the rotation about the local Y-axis which was free. 

This was carried out because the Structural Monitoring Limited computer 

model constrained all the translations at the supports. 



27 

_ 2.3 Results 

For each of the examples the number of actual frequencies calculated 
were varied'to match the number of frequencies produced by Structural 
Monitoring Limited under these two contracts. For Southfield Bridge, 
the first five frequencies were calculated; for Westerhouse Bridge, 
ten frequencies were calculated, and Bailliston Interchange seven 
frequencies were calculated. 

Tables 2.1,2.2 and 2.3 compare the results of the FLASH computer 
models and MSC/NASTRAN models by Structural Monitoring Limited. Also 

given in these tables are the measured natural frequencies by 

Structural Monitoring Limited. For each of the FLASH and the 
MSC/NASTRAN (excluding Southfield) models the corresponding mode shapes 
for the natural frequencies were calculated and are given in Figures 
2.10 - 2.14. 

During this verification of FLASH a number of different types of 
analyses of the bridges using FLASH were carried out. For Southfield 
Bridge, since the deck has a thickness of 0.89m a thick plate and shell 
analyses were carried out using the same material properties as the 

plate analysis, and the results are given in Table 2.4. For Bailliston 
Interchange, a thick plate model was carried out since in the case the 

problem is two-dimensional. The elements were taken to act along the 

top surface instead of the centroid of the element's axis-section, but 

the same material properties were used as the shell analysis, and the 

results are given in Table 2.5. 

2.4 Conclusion 

2.4.1 Southfield_Bridgg 

The results from the Southfield Bridge FLASH analysis compare well with 
the natural frequencies found by Structural Monitoring Limited. 

The differences in the results between the plate, thick plate, and 

shell analysis could be due to the fact that the measured frequencies 

only include degrees of freedom which affect vertical motion. In the 
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case of the thick plate, shear stiffness is included, hence changing 

overall stiffness and mass, and hence changing the natural frequencies 

and in the shell case the analysis has both a translational and 

rotational degrees of freedom in other directions of motion, hence 

making the model more flexible. 

2.4.2 Westerhouse_Bridge 

The results from Westerhouse Bridge FLASH analysis do compare well with 

the lower frequencies found by Structural Monitoring Limited 

The differences are shown by the different mode shapes. The reasons 

could be twofold. 

i) MSC/NASTRAN uses a dynamic reduction technique so that only those 

degrees of freedom representing vertical motion are retained for 

the analysis. This dynamic reduction technique is not availabe 
in the FLASH program. 

ii) The method of solution of the finite element equation, the 

method used in FLASH is Subspace iteration and MSC/NASTRAN used a 
determinant search method, and in both analysis eigenvalues 
(natural frequencies) may have been missed. 

2.4.3 Bailliston_Interchange 

The results from Bailliston Interchange FLASH analysis do not compare 

so well with the frequencies found by Structural Monitoring Limited. 

In this case Structural Monitoring Limited did not use dynamic 

reduction techniques. The number of degrees of freedom is very large, 

over 2000, so it is very plausible that eigenvalues (natural 

frequencies) are missed by MSC/NASTRAN or FLASH, because the models do 

not compare. 

The difference in the results between the thick plate and shell 

analysis could be due to the fact that the measured frequencies only 

include degrees of freedom which affect vertical motion. In the case 

of the thick plate the model has less degrees of freedom hence making 

the model more stiff. 
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In conclusion the dynamic finite element analysis of the three bridges 

have shown in FLASH an excellent program for the dynamic analysis of 

bridges. Even so, great care has to be used in choosing the type of 

computer analysis (plate, thick plate, shell) to be used when comparing 

measured and monitored values of natural frequencies. 
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MODE MEASURED- 
FREQUENCIES 

CALCULATED 
MSC/NASTRAN 

CALCULATED 
FLASH 

1 4.8 4.3 4.67 

2 6.6 6.7 5.39 

3 6.9 7.2 6.93 

4 3.4 3.7 3.336 

5 11.6 11.5 12.08 

TA3LE 2.1 SOUTHFIELD BRIDGE 
--------- NATURAL FREQUENCIES 

(HZ) 

MODE MEASURED 
FREQUENCIES 

CALCULATED 
MSC/NASTRAN 

CALCULATED 
FLASH 

1 3.55 3.58 3.55 

2 4.00 3.94 4.04 

3 6.35 6.73 6.34 

4 ---- 11.63 9.68 

5 13.05 12.54 10.89 

6 ---- 13.43 11 .57 

7 16.0 14.31 13.03 

8 19.6 20.03 15.36 

9 ---- 22.36 16.87 

10 24.05 23.56 18.42 

TABLE 2.2 WESTERHOUSE 3RIDGE 
--------- NATURAL FREQUENCIES 

(HZ) 
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MODE MEASURED 
FREQUENCIES 

CALCULATED 
MSCJNASTRAN 

CALCULATED 
FLASH 

1 3.075 3.35 3.08 

2 3.975 3.97 4.99 

3 5.10, 5.14 6.09 

4 ---- 6.76 o. 21 

5 6.95 6.86 7.74 

6 ---- 7.27 8.27 

7 3.0 7.99 8.30 

TABLE 2.3 BAILLIESTON INTERCHANGE BRIDGE 

--------- NATURAL FREQUENCIES 
(HZ) 

MODE CALCULATED 
THIN PLATE 

CALCULATED 
THICK PLATE 

CALCULATED 
SHELL 

1 4.67 5.65 2.10 

2 6.89 8.19 7.31 

3 6.93 13.40 9.79 

8.86 13.82 9.39 

5 12.08 14.69 10.63 

TABLE 2.4 SOUTHFIELD BRIDGE 

--------- COMPARISON BETWEEN DIFFERENT TYPES OF COMPUTER MODELS 

(HZ) 
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MODE CALCULATED 
SHELL 

CALCULATED 
THICK PLATE 

1 3.08 5.23 

2 4.99 7.98 

3 6.09 8.62 

4 6.21 9.25 

5 7.74 9.33 

6 8.27 10.73 

7 3.30 10.95 

TABLE 2.3 BAILLIESTON INTERCHANGE BRIDGE 
--------- COMPARISON BETWEEN DIFFERENT TYPES OF COMPUTER MODELS 

(HZ) 
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SECTION 

Figure 2.3 BAILLIESTON INTERCHANGE - GENERAL ARRANGEMENT 
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Figure 2.10 SOUTHFIELD BRIDGE 

FLASH MODE SHAPES 
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i i 
i 

MODE 4 8.86Hz 

Figure 2.10 (cont) SOUTHFIELD BRIDGE 
FLASH MODE SHAPES 
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Figure 2.10 (cont) SOUTHFIELDBRIDGE 
FLASH MODE SHAPES 



MODE 1 3.55Hz 

MODE 2 4.04Hz 

Figure 2.11 WESTERHOUSE BRIDGE 
FLASH MODE SHAPES 
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MODE 3 6.84Hz 

"I 
. -I 

. -I 

I'll 

MODE 4 9.68Hz 

ý 
iý 

Figure 2.11 (cont) WESTERHOUSE BRIDGE 
FLASH MODE SHAPES 
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1 

MODE 5 10.898z 

MODE 6 11,57Hz 

Figure 2,11 (cont) WESTE OUSE BRIDGE 
FLASH MODE SHAPES 
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MODE 7 13. O3Ha 

MODE 8 15.86Hz 

Figure 2.11 (cont) WESTERHOUSE BRIDGE 
FLASH MODE SHAPES 

/ýý 
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MODE 9 16.87Hz 

MODE 10 18.42Hz 

Figure 2.11 (cont) WESTERHOUSE BRIDGE 
FLASH MODE SHAPES 
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MODE 1 3.08Hz 

MODE 2 4.99Hz 

MODE 3 6.09 

Figure 2.12 BAILLIESTON INTERCHANGE - FLASH MODE SHAPES. 
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MODE 4 6.21Hz 

MODE 5 7.74Hz 

MODE 6 8.27 

Figure 2.12 (cont) BAILLIESTON INTERCHANGE - FLASH 14ODE SHAPES 
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MODE 7 8.79Hz 

Figure 2.12 (cont) BAILLIESTON INTERCHANGE - FLASH MODE SHAPES 
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MODE 1 3.5Hz 

MODE 2 3.94Hz 

MODE 3 6.73Hz 

Figure 2.13 WESTERHOUSE BRIDGE MSC/NASTRAN MODE SHAPES 
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MODE 4 11.63Hz 

MODE 5 12.54i1z 

MODE 6 13.43Hz 

Figure 2.13 (cont) WESTERHOUSE BRIDGE MSC NASTRAN MODE SHAPES 



MODE 7 14.31Hz 

MODE 8 20.03Hz 

MODE 9 22.36Hz 

MODE 10 23.56Hz 

Figure 2.13 (cont) WESTERHOUSE BRIDGE NSC NASTRAN MODE SHAPES 



MODE 1 3.35Hz 

MODE 2 3.97Hz 

MODE 3 3.97Hz 

Figure 2.14 BAILLIESTON INTERCHANGE MSC/NASTRAN MODE SHAPES 
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MODE 4 6.76Hz 

MODE 5 6.86Hz 

MODE 6 7.27Hz 

Figure 2.14(cont) BAILLIESTON INTERCHANGE MSC NASTRAN MODE SHAPES 
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MODE 7 7.99Hz 

MODE 8 8.43Hz 

Figure 2.14 (cont) BAILLIFSTON INTERCHANGE MSC/NASTRAN MODE SHAPES 
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.. 
CHAPTER 3 DYNAM4C FINITE ELEMENT THEORY 

3.1 Introduction 

Since the technique proposed in Chapter 1 involves a large number of 
dynamic analyses which cover a range of variations in stiffness and 
mass of some basic structural form, to carry out each analysis from 

scratch would be prohibitively expensive. In order to make the 
technique cost effective for bridge monitoring a method of re-analysis 
must be developed which involves operating on the basic structural 

matrices. This chapter gives an outline of such a method of dynamic re- 
analysis. 

Since a large proportion of this research work involves the solution of 
dynamic finite element equations, this chapter shows how these equation 

of motion of a body can be solved. Before any of the methods are 
discussed, some important definitions are given. 

3.2 Definitions 

a) A collection of vectors ý1, . 
2,....... ' q is said to be 

LINEARLY DEPENDENT if there exist numbers c 1,0(2......... aq not 
all zero such that, 

°A ý1+ °<2 4+a3 03 .............. q Oq =0(3 . 1) 

If the vectors are not linearly dependent they are said to be 

LINEARLY INDEPENDENT. 

As a consequence of the above definition it can be shown that, if 

the set of q vectors 01, ý2 
........ q are linearly 

independent, then any subset P of q (P <q), are also linearly 

independent (Ref 22). 

b) A set of vectors is said to form a VECTOR SPACE if any linear 

combination (addition, multiplication) of any two members of the 

set also results in a member of the set. 
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c) A BASIS for a vector space is a set of linearly independent 

vectors that spans the space. 

d) A SUBSPACE of a vector space is a vector space such that any 
vector in -the subspace is also in the original space. If ýI, 
ý2........... ýp are the basis vectors of the original space, 
any subset of these vectors forms the basis of a subspace. The 
dimension of the subspace is equal to the number of base vectors 
selected. 

e) If a set of q vectors, of which P vectors (P<q) are linearly 

independent, these vectors are said to SPAN a P-dimensional 

vector space. 

f) A matrix P is an orthogonal matrix if 

pTp = ppT =1 

Hence for an orthogonal matrix we have 

p-1 = pT 

(3.2) 

g) If there is a matrix A, the EIGENVALUES of A are the scalars X 

for which AX = XX possess non zero solutions. The corresponding 

non zero solution X are the EIGENVECTORS. 

h ) If all the eigenvalues of a matrix are positive, it is said that 
the matrix and the operator that the matrix represents are 
POSITIVE DEFINITE. And if all the eigenvalues are greater than 

or equal to zero the matrix is POSITIVE SEMIDEFINITE. 

3.3 Equation of Motion of a Body 

The equation of motion of a multi degree of freedom system can he 

derived from Newton's Second Law which states: "the rate of change of 

momentum of any mass is equal to the forces acting on it" 
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In mathematical form 

P (t) =d ýM dX ý 
dt dt 

where P(t) - applied force vector 

(3.4) 

X(t) - position (displacement) vector of the systems mass (M) 

In structural dynamics it may be assumed that the mass does not vary 

with time. Hence equation (3.4) can be written as: 

P(t) =M MX (t) 

dt2 

(3.5) 

The force P(t) may be considered to include many types of forces acting 

on the mass: elastic constraints which oppose displacements, viscous 
forces which resist velocity etc. By applying d'Alembert's principle 
to equation (3.5) it can be shown that (Ref 3). 

MX(t) + CX(t) + KX(t) = F(t) (3.6) 

where K represents the elastic constraints and is known as the system 

stiffness 
C represents the viscous forces and is known as the system 

damping 

If free vibrations are only considered, then the damping and forcing 

function can be neglected, and hence equation (3.6) can be written as: 

MX + KX =0 (3.7) 

3.4 Solution of the Equation of Free Vibration 

If equation (3.7) is premultiplied by M-1 then the equation becomes 

-1 " -1 tl *MX+M *KX =0 

d2X 

(3.8) 

IX + AX =0 (3.9) 
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where M-1 *M=I (a unit matrix) 

and 14-1 K=A 

Equation (3.9) is the equation of harmonic motion in which 

X=-02X 

Hence the solution to equation (3.9) is: 

(3.10) 

(A-a? I )X=0 (3.11) 

which is the characteristic equation of the system and is known as a 

STANDARD EIGENPROBLEM. The roots of the characteristic equations are 

called the EIGENVALUES, and the vectors of displacements X are known as 

the EIGENVECTORS. The solution to equation (3.7) can also be 

obtained by substituting 

X=ý SIN (t-to) 

to produce the GENERALIZED EIGENVALUE PROBLEM 

Ký=W2Mý 

in which the eigenvalues W 2i gives the natural frequencies fi 

fi= 

(3.12) 

(3.13) 

i=1,2, ......., n (3.14a) CJ 1 

27C 

and the corresponding eigenvectors 1i 
gives the mode of vibration. 

3.5 Methods of Solution of the Generalised Eigenvalue Problem 

The equation which is under consideration is equation (3.13) where K 

and M are the stiffness and mass matrices respectively of an n degree 

of freedom assemblage. If K and M result from a finite element 

idealisation both matrices have special properties. These special 

properties are that, K is symmetric, has a constant lower profile 
(bandwidth), and is positive semidefinite or positive definite. M has 

the same properties as K plus it can have the same bandwidth 
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(consistent mass analysis) as K, or it is a diagonal matrix (lumped 

mass analysis). The generation of finite element stiffness matrices 
and mass matrices are given in many finite element texts e. g. 
reference (B ). 

If the order of the matrices in equation (3.13) is n then there are n 
eigenvalues and corresponding eigenvectors satisfying equation (3.13). 

The i th equation is denoted as (632i, ýi), 
where the eigenvalues 

are ordered according to their magnitudes. 

0< W21 < CJ 22 
............ <(J2i < .......... W2n (3.14b) 

The aim is to solve equation (3.13) for the q lowest solutions and 
hence equation (3.13) can be written as: 

Kj = 141 SL2 (3.15) 

where 
j is an n*q matrix with each column corresponding to the q 

eigenvectors. 

JC2 is an q*q diagonal matrix with each diagonal member 

corresponding to the q eigenvectors. 

Hence k_ 101,02,6 
,........... 

ýq7 (3.16) 

and . R2 = diag (W, 2) i=1,2,.......... q (3.17) 

Before trying to solve for the eigensystem it is necessary to give some 
fundamental properties of the eigensystems, because all the solution 

methods are, in essence, based on these fundamental properties. 

3.6 Fundamental Properties 

a) As it was stated in section 3.4 the solution of the generalized 

eigenproblem K( = C02 Mý yields n eigenpairs (W 2i, ýi) and 
each pair satisfies equation (3.18). 

Kýi = GJ 21 Mýi i=1,2,3, ........ n (3.18) 



65 

b) If in equation (3.18) a vector 6)i2 Mýi is established and it 
is used as a load vector F in equation (3.18) then it becomes 

Kýj =F (3.19) 

This immediately suggests the use of static solution algorithms 
i. e. decomposition, for the calculation of an eigenvector. Later 

it will be shown that the "LDLT" decomposition algorithms are a 

very important part of eigensolution procedures. 

c) It can be shown that an eigenvector is only defined within a 

multiple of itself, hence equation (3.18) becomes 

K (a¢i )= C3 2i m (c4i ) (3.20) 

whereof is a nonzero constant. Hence, with Oi being an 
eigenvector, oC ¢i is also an eigenvector, and it can be said 
that an eigenvector is only defined by its direction in the 

n-dimensional space considered. 

d) A very important property is the Orthonormality of the 

eigenvectors, that is: 

ý; T Mý j_ 

and ýi T Koj 

s ;; 
£i j J 

where Sij is the Kronecker Delta 

that is Sid 
Oifi 

(1ifi=j 

(3.21) 

(3.22) 

The meaning of the above two equation (3.21) and (3.22) is that 

the eigenvectors are M- and K- orthogonal. It follows from 

equation (3.21) and (3.22) 

that IT Kj = JL 2 (3.23) 
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and ýT 
MI =1 (3.24 } 

where the P columns of 0 are the eigenvectors and sz 2 is a 
diagonal matrix containing the eigenvalues. If the H- 

orthonormality and K-orthogonality are satisfied, the P vectors 

need not necessarily be eigenvectors unless P=n. Assume 

that X stores P vectors P<n then equation 3.23 and 3.24 become 

XT KX =D (3.25) 

and XT MX =I (3.26) 

then the vectors in X and the diagonal elements in D may or may 

not be eigenvectors and eigenvalues of equation (3.15). If 

P=n then X=$ and D =e, )2 because only the eigenvectors span the 

complete n- dimensional space. 

e) An important property of the eigensystem is that the eigenvalues 
are the roots of the characteristic polynomial: 

P(SZ2) = det (K-. 22M) 
(3.27) 

and P(ý2i) =0 because ýi #0 

f) Finally another important property of an eigensystem is 
A 

shifting. If a shift of P is performed on K to produce K=K- 

PM (K =K +P M) then equation (3.13) becomes 

(K +. ý M) ý= ca2 M 

Ko 
= GJ2 Mý - M0 

Ko = (w2-M MY (3.28) 

The solution to equation (3.28) produces the eigenvectors to 

equation (3.13) but the eigenvalues produced have to be increased 

byP to produce the solution to equation (3.13). 
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9) 

h ) 

If it is assumed that the matrix [K , AM] can be factorized into 
"LDLT" form, and all the associated eigenvalues are nonzero and 
there are no multiple eigenvalues, the number of negative 
elements in det (K A M) is equal to the number of eigenvalues 
smaller than,. This property is known as the STURM SEQUENCE 
PROPERTY. 

Before the solution methods are considered, a very important 

principle will be discussed. The Rayleigh's quatient /(v) of 
the eigenproblem Av = \v is defined as: 

vTAv 

vTv 

and Al <P(v) <Xn 

(3.29) 

(3.30) 

or i°(v) 1 

If v is made any vector, then considering the problem of varying 
v, /&(v) will always be greater than or equal to )1, and the 
minimum is reached when v= v1, in which / (vl) _ X1. If a 
restriction is imposed on v, such that it is to be orthogonal to 

any vector u (ie vTu=o) and u can be varied to produce a number 
of minimum values of /(v), It can be shown that the maximum value 
of the minimum values equalsX2 (Ref 9) or more general, equation 
3.31. 

X= max min vTAv 
.... n (3.31) 

vTv 

and the principle is called the MINI14AX CHARACTERIZATION OF 
EIGENVALUES. 

3.7 Approximate Solution Methods of the Eigenvalue Problem 

The primary interest in Structural Mechanics is the first q lowest 

eigenpairs of a larger system of order n. 
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A number of methods will be given which, in practice, because the 

solution procedure becomes inefficient as the order n increases, are 
basically only used in "small" eigenvalue problems.. Two methods which 

are used in the solution of "large" eigenvalue problem will also be 

developed section 3.8. These techniques for the solution of large 

eigenvalve probems are based on the principles outlined in Section 

3.6. 

The solution methods for small eigensystems can be divided into four 

groups. 

a) Group One - Vector Iteration Methods. This group uses the basic 

property of: 

Kýi = GJ 2i Moi i=1,2 ............... n (3.18) 

b) Group Two - Transformation Methods. This group uses the basic 

property of: 

If 
KI = . SZ2 (3.23) 

ITMý= I 

C 

(3.24) 

Group Three - Polynomial Iteration Methods. This Group uses the 

basic property of: 
) 

(. rL2) = det (K - JLZM) 
(3.27) 

andi°(ý2i )=0 

d) Group four - This group employs the Sturm sequence property of 
the characteristic polynominals 

In addition to using the basic properties summarized above, the 

techniques also use the Rayleigh quatient. 

3.7.1 Raylgigh___Ritz_Analysis 

The eigenproblem that is under consideration is: 

Ký= Mý. 3LZ (3.15) 



69 

It is assumed that K and M are both positive definite- which assumes 
that all the eigenvalues are positive, 

i. e. 62i >0i=1,2,.......... N where N is the rank of the 
eigenproblem 

(K can be assumed positive definite because a shift can always be 

applied to satisfy this condition. In the case of the mass matrix it 
has to be assumed that M is a consistent mass matrix or a lumped mass 
matrix with no zero diagonal terms). 

The Rayleigh minimum principle state that: 

i, l = min/(t) (3.31) 

where the minimum is taken over all possible vectors 0 and The 

Rayleigh quotient of the standard eigenvalue problem Kv =Xv can be 
defined for the generalized eigenvalue problem (Ref 3) as: 

, P(¢ ) 
6TKb 

ýTMý 

The bounds of Rayleigh quotient are defined as 

0< W2i < /, " 0)ý 632n < 00 

(3.32) 

(3.33) 

considering a set of vectors which are a linear combination of basis 

vectors tii=1,2,........ q these vectors are known as the Ritz basis 

vectors. A typical vector is defined as: 

Xi ýi 

i=1 

where Xi = Ritz coordinates 

(3.34) 

ýi = Ritz basis vectors 

Since $ is a linear combination of the Ritz basis vectors, these 

vectors lie in the subspace spanned by the Ritz basis vectors which are 

called Vq. Since the vectors are linearly independent, the 
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subspace they span has dimension q and also noting the n-dimensional 
vector space in which the matrices K and 14 span Vn, hence: 

. Vq 6 Vn (3.35) 

Before the Rayleigh minimum principle on § can be applied, the Rayleigh 

quotient must be first evaluated. The Rayleigh quotient on ý is: 

ýcýý OT M ý 

The numerator is evaluated as: 

ýT 

ýT Kb 

'I/ 
q 

Ko -> (Xi 'Y i )T K (Xj ýj) 

i=1 j=1 

qq 

_ 7- T cXý 
j=1 ; =1 

j=1 

9 

>1 i=1 

ý 
i)T K (XJ 

Xi Xj ýi T Ký j 

since Xi, and Xj are not vectors. 

(3.32) 

(3.36) 

(3.37) 

(3.38) 

The denominator gives a similar result and hence the quotient becomes: 

9 

Pcý ý 

7- 7- Xi X. i 
ýi TKý. 

i 
j=1 i=1 

qq 
T T- Xi Xj ýiT M ýj 

j=1 i=1 

0 ;) 

(3.39) 
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The condition for a minimum value of a function is determined by 

equating its derivative to zero i. e.: 

Min P(f) ) 

Hence we require 

-Tx- 
výqq 

ý 57 

j=1 i=1 

or 

Ö 
axi 

where 

9 

ý 
1,23 .......... 

(3.40) 
, 

Xi Xj i'iT Kýj 

Xi Xj ýiT M lj 

TT Xi XJ 

Lj=1 i=1 

qq 
Xi Xj 

j=1 i=1 

Rii =ýTiK Oj 

R.. 
1j 

M. 
ýj 

=0 

1c 
- X; Ki ýýý 

=0 (3.41) 

(3.42) 

0. v--t% 

M =ýT imýj ýM X; xä Mý ý ij 

that is R 
M 

J 

that is 
ax1 M 

=0 is required 

6 K rý -ý rý 

M2 

therefore Ö P(tb) =0 gives 

6 X. 

q 9 

j=1 i=1 

(3.43) 
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ZM ýX. K. , 2K 

j=1 
1 lJ L_ J iJ 

j=1 

=0 
[xj 

Xi týij 
; -1 M j=1 

9 
i3 -R RiJ XJ I=0 

j =l ýR1 

If 

I'l 

M 

Hence 

q 
[Ruj 

j-1 
, ýa M ii Xj] =0 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

In actual analysis the q equations in (3.47) are in matrix form, this 

obtaining the eigenproblem 

KX=PMX (3.48) 

Where K and A are q*q matrices with typical elements defined in 
(3.42) and X is a vector of the Ritz coordinates. The solution (3.48) 

yeilds, q eigenvalues /-I1, , 02.......... q which are an approximation 
to W 21, W 22,............ G. W2q, and the vector Xi. which is are an 
approximation to the eigenvector ýi. 

It should be noted that this eigenvalue approximation analysis produces 
an upper bound approximation to the problem considered because of 

equation (3.30) i. e.: 

<P2 :............. Wg < ýq <ý 2 
2n (3.49) W21 < Pl : W2 2 
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The errors of the method depend on the selection of Ritz basis 

vectors. Good results can be obtained if the basis vectors span the 

subspace Vq, in other. words are "close to the least dominant subspace 
of K and M spanned by 0 (Ref 4). However, this does not mean that the 

basis vectors should be close to the eigenvalues sought, but that 

linear combination of the basis vectors will give good approximations 
to the required eigenvectors. 

To summarize the Rayleigh Ritz Method the procedure to calculate the 

eigenproblem Ký = Mý JL2 is now presented as: - 

a) First it is assumed that a load vector F which if possible, 

excites the eigenvalues required and from this load vector by 

considering a static solution the Ritz basic functions T can be 

calculated i. e. 

(3.50) 

where is a matrix storing the Ritz basis functions. 

b) The reduced stiffness and mass matrices, are calculated that is: 

K= TTKý 

R=TM1 

(3.51) 

(3.54) 

c) The new eigenproblem for the eigenvalues is solved thus: 

Kx= Ptl x (3.53) 

d) The approximation to the eigenvectors of the problem 
Kj = MM JL2 are calculated as: 

¢=yX (3.54) 

From the Rayleigh - Ritz Method above it is implied that an 
iterative process could be used. For example if the following 

step is added, the procedure then would become an iterative 

process. 
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This step would be: 

e) From the approximation to the eigenpairs (ii Vii), calculate 
a new'load vector Fk for increment k; k = 1,2....... as: 

Fk =f M¢ (3.55) 

and proceded to step (b) until convergence is reached. 

Hence ./ 0-ýiZi , 
ýi 

-0- 
ýi as k -ý co (3.56) 

3.7.2 Vector-Iteration-Method 
--------------------- 

The technique of vector iteration is used to calculate an eigenvector, 
and at the same time the corresponding eigenvalues'can be calculated. 

The aim is to solve equation (3.15) by operating on it 

K= Mt Mt 2 (3.15) 

If vector X1 is assumed as an approximation to vector ý1 and a value 
for 021 is assumed as W 12 = 1. Hence evaluating the right hand side of 

equation (3.13). 

F1 =1* MX1 (3.57) 

and in general 

KX1 f F1 

Hence introducing a new vector X2 such that 

KX2 = F1 

(3.58) 

(3.59) 

Where X2 is the displacement solution corresponding to the applied 
force F1, In this iterative solution of (3.13) it may be considered 
that X2 is a better approximation to the eigenvector f,. The above 
technique may be refined into a more effective process by using 
"weighting". This technique is known as Inverse Iteration Method. 
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3.7.3 Inv_erse_Iteration_ýethbd 

In this method an intermediate step is introduced between assuming X2 

is. a better approximation to an eigenvector than X. That is X2 is 

mass weighted as follows: 

X2 (weighted) = 
X2 

( X2T MX2) 

Because of the mass orthonormality X2T MX2 --ý- 1 as X2 

(3.60) 

Also a Rayleigh quotient is introduced to calculate the corresponding 

eigenvalues. 

To summarize the inverse iteration procedure to calculate the 

eigenproblem Ký = M1LQ is presented as: 

a) First a starting iteration vector X1 is assumed, and hence Y1 

is calculated that is 

Y1 = MX1 

or 

Yk = MXk 

(3.61) 

b) Calculate KXk +1= Yk (3.63) 

C) Calculate Rayleigh quotient IS K+ 1) 

/, g(Xk 
+1 

Rk+1 K Rk+l 

Rk+1 M Rk+l 

d) Applying the mass weighting 

Y k+1 

(3.64) 

_T 
Rk 

+1 (3.65) 
- ýz ( Xk+l MRk+l) 
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e) Return to (b) until convergence is reached that is: 

Yk+ 1-4'41 and P( k+ 1) . _.. W21 as k o0 (3.66) 

By assuming different starting vectors X or by applying a shift 
it is possible to calculate other eigenpairs. 

" 3.7.4 Transformation-Method 

This method employs the basic properties of the orthonormality of the 

eigensystem that is: 

ýT MQ=I 

The basic scheme is to reduce K and M into diagonal form using 

successive pre- and postmultiplication by matrixes pT k and Pk 

respectively where k=1,2, ......, that is 

14 k+1-P 
T 
kMkPk 

and Kk +1= 
PTk Kk Pk 

(3.69) 

and where the matrices Pk, k=1,2,..... are selected to bring K and 
M closer to diagonal form hence producing. 

Kk+1-c,. J-2 andt4k+1 -0 .1 ask p C-0 

In practice it is not necessary that Kk +1 and Mk +1 converge to 

,R2 and I respectively but only that they should converge to diagonal 

form and 

6L 
2= 

lag 
Kk+1 

t4k +1 
(3.70) 
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and 

= P1 P2 .......... Pk drag 1 

I Mk+1 
(3.71) 

practical applications of this method are the Jacobi Method and 
Householder - QR Method. Only the Jacobi methods will be discussed. 

3.7.4.1 Jacobi Method 

This method was developed for the solution of the case where M is the 

identity matrix. It is initially developed in this form but later the 

generalized eigenvalue problem will be discussed. The major advantage 

of this method is that it is simple and very stable, since the 

eigenvalues properties in equations 3.23 and 3.24 are applicable to all 

symmetric matrices K and M with no restriction on the eigenvalues. The 

Jacobi method can be used to calculate negative, zero or positive 

eigenvalues. 

Consider the Problem 

Ký = W2 

In which equation (3.69) reduces to for the kth iteration step. 

Kk+l -P 
Tk Kk P 

and 

I- PTk Pk 

(3.72) 

(3.73) 

In this method the matrix Pk is a rotation matrix which is selected 
in such a way that an off-diagonal element Kk is zero. For example, 
if, element (i, j) is required to be reduced to zero then the Pk matrix 
is: 
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to to 
t Column j Column 

1 
Cose - Sine 

1 

Pk = 

1 
Si na Cosa 

1 

1 

to i Row 

(3.75) 

to j Row 

where 9 is found by multiplying PkTK kP k out and equating the term 

required of the result to zero, hence 9 is taken as 

2K.. 
1j 

tan 26 = 
Ki K 

Kii ° KJJ 
iý 

6 is (3.77) 

7r 
d 

1 

4 
K=K 

Fl ý33 

An important point to remember is that the above transformation will 

reduce element (i, j) to zero but this element will again become nonzero 
during the transformation which follows. So the choice of which 

elements to reduce is important. The most efficient way is to select 
the largest off-diagonal term for reduction until the diagonal form is 

reached. 
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3.7.5 The_Generalized_Jacobi-Diagonalization-Method 
-------- ------ ------ 

In order to solve the generalized eigenvalue problem it could be 

reduced to standard form. However an alternative approach is to use 
the generalized Jacobi Method where the matrices K and M can be 

operated on simultaneousely. In this method the Pk matrix has the 
following form: 

1 

1 

Pk = 

oC 

ý1 

1 

ith Column jth Column 

ith Row 

(3.78) 

jth Row 

where the constants o< and ö are selected to reduce to zero the (i, j) 

term in Kk and Mk simultaneously, oC and ö are found in a similar 

way to 8 in the Jacobi Method. 

Hence: 

ý 

oC = _JJ 
X 

K. 
ýi 

X 

(3.79) 

(3.80) 

where X=+ sign (ý) (2 )2 + Kii *K ýý (3.81) 
2 



80 

and R. =Kii Mij - Mii Kij 

KJJ -K MiJ - Mjj KiJ 

ý- Kii MJJ MJJ Mii S 
(3.82) 

Equation (3.78) to (3.82) represent one increment k, of matrices Kk 

and Mk 
. 

To summarize the gneralized Jacobi method the procedure to calculate 
the eigenproblem Ký =C42 M(¢ is presented as follows: 

a) The elements in the stiffness and mass matrices to be zeroed are 
chosen. 

b) The constantso< and f of equation (3.78) are calculated. 

c) The pre-and postmultiplication to Kk and Mk are preformed. 

d) (a) is returned to until all the off-diagonal elements are zeroed 

or have reached the correct tolerance. 

e) The eigenvalues and eigenvectors are calculated 

Eigenvalues W2= diag 
K k+l (3.83) 
Mk+l 

Eigenvectors l= P1 P2 ....... Pk diag (1) (3.84) 

J "k11 

It should be noted that the Jacobi Diagonalization method solves 

simultaneously for eigenvalues and corresponding eigenvectors. 

3.7.6 PolynoEnial_Iteration_Technigues 

These methods use the eigensystem property of the characteristic 

polynomial P(6J2), where 
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(W2) = det (K -w2 M) (3.85) 

and the zeros of , o(t02) are the eigenvalues of the eigenproblem 
Ký = G)2 M¢. Hence to find the eigenvalues the roots of the polynomial 
P(6)2) need to be extracted. There are two main ways of calculating the 

root of equation (3.85). These methods are explicit and implicit 

polynormal iteration. 

3.7.6.1 Explicit_Polynomial_Iteration 

In explicit polynomial iteration the solution to equation (3.86) is 

required. ' 

P(&)2) = ao + al w 21 + a26) 22+ 
....... an Cl-) 2n (3.86) 

This is carried out by first evaluating the polynomial coefficients 

ao, al, ..... ai, ..... an, and then calculating the roots of the 

polynomial. 

This method is almost completely abondoned for the solution of equation 
(3.15). This is because the solution is very heavily dependent on 

calculating the polynomial coefficients ai, and 

small errors in ai will cause a large error in the roots of the 

polynomial. But small errors are almost unavoidable, owing to computer 

rounding errors. 

3.7.6.2 Implicit_Polynomial_Iteration 

In implicit polynomial iteration the values of , o(6 j2) are evaluated 
directly without calculating the coefficients ai. The values of 
P(W2) can be obtained effectively by the decomposition of (K-632M) into 

lower (L) and upper (S) triangular matrices, hence: 

K-02M = LS (3.87) 

n 

and det (K-Ga2M) = S11 * S22 *........ Snn = 
-\ Sii (3.88) 

i=1 



82 

In the Gauss elimination procedure, if no column interchanges are 
carried out, (K-02M) will be symmetric and hence equation (3.88) can be 

re-written as: 

n 
det(K-632M) = det ("LDLT") dii 

i=1 

(3.89) 

Since an accurate solution to /(w2) is available, a number of iteration 

schemes can be used to calculate the roots of the polynomial (Ref 3). 

Finally, polynomial iteration methods, only calculate the eigenvalues 

and the corresponding vectors have to be found by another method, say 
by inverse iteration, with the application of shifting. 

3.7.7 PQethods ßased_gn_tlie_Sturm_Segupnce_Properties 

The Sturn sequence property is that if a shift of jt is applied to 

equation (3.15) and after decomparing (K-pM) into LDLT, the number of 
negative elements in D is equal to the number of eigenvalues smaller 
than )J . 

3.7.7.1 Bisection Method 

In the Bisection method, a Sturm sequence is applied to find out how 

many eigenvalues are below a certain value. Simple schemes of 
bisection are applied to identify the intervals within which the 

individual eigenvalues lie. In this process, those intervals in which 

more than one eigenvalue is found to lie as processive bisection are 
applied, then a Strum sequence is carried out to check to see if all 
the eigenvalues are isolated. 

The above technique is straightforward, but the method is very 
inefficient, because each bisection requires LDLT factorization and 
this may be very time consuming because convergence can be very slow 

when a cluster of eigenvalues has to be solved. 

However the Sturm sequence property can be employed in conjunction with 

other solution methods to make sure that no eigenvalues have been 

omitted. 
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3.8' Solution of Large Eigenvalue Problems 

The previous methods given so far as said, are for the solution of 
"small" eigenvalue problems, i. e. stiffness and mass matrices with 

small rank. If used on matrices with large rank the methods become very 
inefficient and time consuming and great care has to be taken. The 

methods are not recommended for general use since in engineering 

problems the P smallest eigenvalues are only required. Both methods in 

the following discussion have been developed for the solution of the P 

smallest eigenvalues and corresponding eigenvectors. 

The methods presented so far are based mainly on one fundamental 

property. The two methods to be discussed are based on a number of 
fundamental properties. These methods are; 

The DETERMINANT SEARCH Method which uses the properties of: 

i) Characteristic Polynomial 

ii) Shifting 

iii) Eigenpairs satisfying the generalized eigenproblem 

The SUBSPACE ITERATION Method which uses the properties of: 

i) Rayleigh minimum principle 

ii) Orthonormality of the eigenvectors 

iii) Shifting 

3.8.1 The-Determinant-Search-Method 
-------------------------- 

This method as the name suggests is very heavily dependent on the 

polynomial iteration method. The first operation to be carried out is 

to find an approximation to W 2i i=1,2..... n by applying a shift to 

the eigenproblem. This is carried out by using an accelerated 
bisection method, known as Secant iteration (Ref 3). In the Secant 

method two lower bounds to 4) 2i are required. The initial two values 
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required for W 21 (p1, p2) are taken as u1 = 0.0 and the other is 
obtained from an approximation to t1 calculated by inverse vectors 
iteration with W 21 equal to zero, hence 

XTk KXk 

,u2= 
(1-0.01) (3.90) 

XTk M Xk 

where Xk is the iteration vector after (k-i) iteration. If }a2 is 
larger than W 21, this is detected by the Sturn sequence count in the 
factorization of (K p 2M). By leting ö be the number of negative 
pivots in the triangular factorization, »2 is divided by (ö+i) until 
equal zero. 

A shift is continuously applied until it has been established that the 

bisection method has jumped over one or more eigenvalues. It does not 

matter if one root, or a cluster of roots have been jumped over because 

a Sturm sequence is applied to detect the number of changes, if any, in 

the signs of the diagonal elements of the triangular factorization of 
the shifted eigenvalue problems. 

Vector inverse iteration is applied with vector deflation (Vector 

orthogonalization). The basis of vector deflation is that in order for 

an interation vector to converage to the required eigenvector using 

vector interaction, the iteration vector must not be orthogonal to it. 
Or conversely if the iteration vector is orthogonalized to the 

eigenvectors already calculated, the possibility that the iteration 

converges to any one of them is eliminated, and guarantees that, it 

converges instead to another eigenvector. At the same time as the 
inverse vector iteration is applied to calculate the eigenvector, the 

application of Rayleigh quotient is applied to calculate the 

corresponding eigenvalue. 

To summarize the Determinant Search Method the procedure to calculate 
the eigenproblem Kj =M 

ýA2 is presented now for the P lowest 

ei genpai rs : 

a) The first two lower bounds on 02 1 (r1, »2) to start the secant 
iteration are calculated. 
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b). With the two lowest bounds to W 2i a secant iteration is carried 
out to find "a better approximation to W2i 

c) A shift of on the eigenproblem under consideration is carried 

out. 

d) A sturm sequence to the eigenproblem (K )JkM) is applied to see 
if there has been any change in the number of negative diagonal 

terms in the LDLT formulation. If no change has occurred, step 
(b) is returned to until changes have occurred. 

e) Since the above value of shift is an approximation to W 2i, 

using this value, as an eigenvalue, the corresponding 

eigenvector, is calculated. This in turn, can be used as the 

starting vector X1 in the inverse vector iteration procedure, 
with 1=1,2,..... until convergence is reached. 

i) calculate: Yl = (3.91) 

ii) then RRj+1 = (K-NkM) X1+1 = Yl (3.92) 

iii) calculate Rayleight quatient P(X1 1) 

/O(x1+1) 

MXi 

AT 
1+1 

9R 
1+1 

9 
1+1 M X1+1 

(3.93) 

iv) During the mass weighting vector deflation is applied to 

vector Rl+1 

This is carried out as follows: 

a vector xl+1 which is M- orthogonal to the eigenvectors ým 

m=1,2........ (i-1) is calculated and is carried out as follows: 

N 

Xl+1 - X1+1 " 

i-i 

E 
M=l 

(3.94) 
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where the coefficientsc(m are obtained by using the condition 
of M- orthogonal. i. e. 

fmM ^'X1+1 =0 

and (3.95) 

ýjT M Oj = 6ii 

Hence giving 

- o(m = ýTm MX 1+1 m=1,2.......... (i-1) (3.96) 

v) (i) is returned to until convergence is reached, that is 

X1- -( and (X1+1) -&W2i as - 1 -A 00 (3.97) 

f) If the Sturm sequence in (d) shows there was more -than one 
eigenvalue the shift "jumped", then step (e) is returned to until 
all the jumped eigenvalues have been calculated, but increasing i 

each time by one. 

9) Finally (b) is returned to until all the eigenvalues which are 
required are calculated. 

The major advantage of this solution procedure is that each 

eigenpair is obtained independently from the previously 

calculated pairs. Hence the eigenvalues and eigenvectors, need 
not be calculated to very high precision. This solution 
procedure is most effective as an in-core solver, but it may 
place considerable limitations on the problem size. 

3.8.2 The_Siibseace_ItPration_Method 

The aim is to solve the eigenproblem KQ = MO . 
l12 for the P- lowest 

eigenvalues. In this method of subspace iteration the main operation 
is a repeated application of the Rayleigh - Ritz method. Hence the 

subspace iteration method uses the fact that the eigenvectors form an 
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M-orthonormal basis of P- dimensional, i. e. least dominant subspace of 
the matrices K, and M, and is denoted by E,,. 

The essential idea of subspace iteration is to iterate simultaneously 

with P linearly independent vectors which initially span the starting 

subspace E until they span E to the required accuracy (Hence the 

name of the method). It follows that convergence is not dependent on 
individual iteration vectors to the eigenvectors but on the subspace 

Ek . 

It was observed that during the subspace iteration, i. e. as Ek--Ek+1 

k=1,2, ........., the reduced matrices, Kk+1 and Plk+1 (Section 

3.7.1) tend towards diagonal form. Hence the generalized Jacobi method 
is used to solve, very effectively, the new eigenproblem of the reduced 

matrices, given in equation (3.53). 

KX =, -, MX (3.53) 

Since the eigenvalues of the reduced problem are equal to the 

eigenvalues for the original problem K( = Mj. RZ and X are the Ritz 

coordinates, and these can be used to calculate the eigenvectors of the 

problem given in equation (3.53). These approximate to the eigenpairs 

are used to update the iteration vectors. 

Bathe found, that if P eigenpairs are required q eigenpairs (q>P) must 
be calculated. This causes the convergence rate to increase, but 

using more iteration vectors will increase the computer effort for an 

individual iteration (Ref 4,5,6). In practice he found that 

q= min (2P, P+8) (3.98) 

gives the best compromise between convergence and computer effort. 

Since convergence is not dependant on the iteration vectors but on the 

subspace E1, so the method's effectiveness lies in finding P linearly 

independent vectors which initially span the starting subspace E1, and 

which are as close to E as possible. Also the starting iteration 

vectors should excite the q lowest eigenvalues. In other words this 

should include all the degrees of freedom, up to q, with which are 

associated a large mass and a small stiffness. The starting iteration 

vectors take the form given in equation (3.99) 
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I 
order of 
the 
stiffness 
and mass 
matrices 

M1 0....... 0 

.0 _-i /. 

.1 ýý v. 
Mii 

.. 0 

Mn 0....... 0 

I 
0 

-1st 2nd 
column column 

q 

1 corresponding to 
the 2nd smallest 
Kii/Mii ratio 

(3.99) 

1 corresponding to 
the qth smallest 
Ku/Mu i ratio 

To summarize the Subspace Iteration procedure to calculate the 

eigenproblem KI = M1,22 will be presented now for the P lowest 

eigenpairs is as follows 

a) From p the rank q of the subspace of the operators K and M are 

calculated using equation (3.98) i. e.: 

q= min, (2P, P+8) (3.98) 

b) The first q degrees of freedom which have a large mass with 

corresponding small stiffness are identified. 

c) The starting iteration vectors (X) which will excite the q 
lowest eigenvalues, by using equation (3.99) are calculated. 

d) The load vector F, is calculated, as: 

F= MX 

so the Ritz basis functions , 
(R), can be calculated as 

KR =Fi. e. X= K-1 F 

(3.100) 

(3.101) 

Now the reduced, or projected, stiffness and mass matrices on the 

subspace Ek+1 are calculated, 

Y= KX ie X=KY (3.102) 

R =X y (3.103) 
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Y=MX' (3.104) 

M=XY (3.105) 

f) The new eigenproblem is solved 

KQ = týQ SL2 

9) 

(3.106) 

using the generalized Jacobi Diagonalization method. 
Where Q are the Ritz coordinates, and. R2 are the eigenvalues of 
Kijl = MOj12 (Section 3.7.5). 

From the Ritz coordinates, the improved eigenvector are 

calculated as 

X= XQ (3.107) 

h) Step (d) is returned to with X as the iteration vectors, and the 

process is repeated from Eke Ek+l, k=1,2,..... until Ek+1 

spans E0, to the required accuracy. Before iteration, is carried 

out a check is applied to see if the eigenvalues are in ascending 

order, since the convergence is increased by reordering them in 

ascending order. 

i) After the q lowest eigenpairs have been calculated to the 

required accuracy, a Sturen sequence is applied to the 

eigenproblem Ký = MýSL2 with a shift of p, where p is just greater 
than (j2 7 to check that the number of negative elements in D, of 
the LDL factorization of (K -y M), is equal to the number of 

eigenpairs calculated. This verifies that nore. of the eigenpairs 
have been omitted. 

3.9 Dynamic Re-analysis 

If the method of dynamic monitoring of bridge structures is going to be 

cost effective, a method of dynamic re-analysis must be developed. The 

reason for such a method is that during the monitoring process a data 

bank of natural frequencies associated with a number of structural 

changes is required. At present to produce such a data bank is very 
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expensive' since for each structural change a complete new dynamic model 

must be constructed. 

Three proposed methods of re-analysis are given. These methods are 
based on the use of. Subspace Iteration, and the rate of change of 

equation (3.15) with respect to any disturbance i. e. with respect to 

any change in stiffness or mass. 

3.9.1 Differentiation-of-K6 =&12 M6 with Reseect_to_any_Disturbance ý-------- T--------- 

Rewriting equation (3.15) for the ith solution 

Kýi -W 
2i M¢i =0 (3.108) 

(K -6j2 i M) Oi =0 (3.109) 

If let Fi 
= (K -ßi2 M) (3.110) 

It follows that 

Fýi =0 

Premultiplication of equation (3.111) by gives 

ITi Fiýi =0 

(3.111) 

(3.112) 

Differentiation of equation (3.112) with respect to any disturbances 

sj, yields: 

T 
i, j Fii+fi Fi, j Yi +fi Fi ¢i, 

j =0 (3.113) 

The first and third terms of equation (3.113) are zero, owing to the 

symmetry of Fi and because of equation (3.111) hence: 

, hTl Fi 
, jýi =0 (3.114) 

If equation (3.110) is differentiatedwith respect to any disturbance 

Si, 
2Fi, 

j= K' j" Wi h1, j- GJ ilJ ý4 (3.115) 
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(Note &) 2i denotes the ith eigenvalue, hence if it is differentiated 

with respect to j it gives 63 2i 
,j 

NOT 20 ij) 

By combining equation (3.114) and (3.115) and using the 
M-orthonormality of eigenvectors give 

61 ij - 
Ti C K' j- G)2i M' j ýýi 

3.9.2 Methods-of-Re-analysis 
---------------- 

(3.116) 

The three methods which are presented here can be placed in two 

categories 

i Full matrices: the complete stiffness and mass matrices are 
worked on 

ii Changed Matrices: the stiffness and mass matrices have entries 

associated only with the structural change. 

Both categories are two stage processes. The first stage of the 

methods is to carry out a complete dynamic analysis of the structure 

under consideration using Subspace Iteration. The working matrices 
from this first analysis are saved, to be operated on later by the 

second stage analysis associated with changes in the original 

structure. The second stage of the analysis, can if required be 

repeated as many times as required. 

3.9.2.1 Categgry_One___Full_Matrices 

In this category the stiffness and mass matrices are formulated in the 

same way as a complete original analysis, that is, the data input to 

any program is the same as the original analysis, but the data are 

adjusted to taken into consideration the structural changes. Hence the 

stiffness and mass matrices are formulated in such a way that 

Knew =K original + Kchange 

14new =M original + Mchange 

(3.117) 

(3.118) 
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After the formulation of the new matrices, the procedure in as follows: - 

a) the stiffness matrix is reduced 

Knew Xnew = 

K 

i. e. Xnew =K new Y 

where Y are iteration vectors from the original analysis 
Hence 

new = Xnew Y 

b) The mass matrix is reduced by first calculating ? 
new 

7 new ° Mnew Xnew 

and hence: 

T 
Mnew 

new 'new 

c) The changed reduced matrices are calculated, that is 

5K = Knew - Koriginal 

SR = Mnew - Moriginal 

(3.119) 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

(3.124) 

d) Application of equation (3.116) to equation (3.123) and (3.124) 

gives the change in eigenvalue associated with a structural 

change: 

sw21 = ýTi (äK - (. A, 12i ýM )ýi 

e) The new eigenvalues corresponding to the new structural 
idealization are calculated as 

222 
Ca i new =Wi old +ýGJ i 

(3.125) 

(3.126) 
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3.9.2.2 Category_Two___Changed_Matrices 

In this category there are two methods discussed. Both methods but the 

stiffness and mass matrices formulation are only the formulations of 
the changed structural idealization, that is, Kchange (SK) and 
Mchange (SM) are only formulated. 

As in the case of operations on the full matrix (equation 3.119) the 

first step is to find the inverse of the matrix (K+ SK). The two 

methods in this category give two possible methods of calculation of 
(K+SK) knowing the inverse of K. 

3.9.2.2.1 Method_On? 

a) The inverse of the'new stiffness matrix needs to be calculated, 

with only knowing the original inverse and the changed stiffness 

matrix (6K) 

i. e. (K+SK)'1 is required 

-1 1 
(K+bK) _ K+bK 

1 

K(I+K-1bK) 

(3.127) 

(3.128) 

= (I+K-1SK)-1K-1 (3.128) 

(because (AB)-1 = B-1 A-1 ) 

now consider at (a+b)n 

(a+b)n = an (1 +b/a)n 

= an (1 + X)n where X= b/a 

(i+x)n =1+ (i) X+ (L) x2 + (3) X3 +......... 

(3.129) 

(3.130) 
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where (n) = n(n-1)......... (n-k+l) 
kk 

Hence (I+K-1" K)-1 =1+ ('i) X+ (2 ) X2+...... (3.131) 

where X= k-1SK 

=1-x+ X2 - X3 + X4 +..... (3.132) 

=I- K-1öK + (k-1sK)2....... (3.133) 

Hence (K+SK)-1 = K-1 - K-1S KK-1 + higher order terms (3.134) 

b) Using the original iteration vectors (y), gives 

X= (K-1- K-"6KK-1)Y 

c) New reduced stiffness matrix is calculated 

K= gTY 

d ) The new reduced mass matrix is calculated 

i 4=MR 

iiM=R 

(3.135) 

(3.136) 

(3.137) 

(3.138) 

e) Now applying equation (3.114) to the reduced matrices equations 
(3.136) and (3.138) give the ith changed eigenvector; 

Sw2i = ýTi (SK - 6,52is M)ýi (3.139) 

f) The new eigenvalues corresponding to the new structural 
idealization are calculated as: 

222 
Wi new =Wi old 

+i (3.140) 

ý 
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3.9.2.2.2 Method-Two- 

a) Rewriting equation (3.114) 

KR =Y (3.102) 

If changes are induced to the stiffness matrix (BK), this cause 

changes in R also, hence equation (3.114) becomes 

(K+EK) (R+sR) =Y (3.141) 

KR '+ SKR + KSR + SKSR =Y (3.142) 

Since KR =Y and neglecting second order terms equation (3.142) 

becomes. 

KSR + SKR =0 

SR =- K-16 KX 

b) The changed stiffness matrix is calculated 

(3.143) 

(3.144) 

öK = SXTY (3.145) 

C) 

Where Y is the iteration vectors from the original analysis. 

Rewriting equation (3.104) 

MR (3.104) 

If changes are induced to the mass matrix (SM), this causes 

changes in 7 also, hence equation (3.104) becomes 

Y+ 6Y = (M +ßM)A 

Y+&? = (MR +6 MR) 

since Y= MR equation (3.147) becomes 

97 = 6MR 

(3.146) 

(3.147) 

(3.148) 
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d) The changed-mass matrix is calculated 

bF, = 
Tö9 (3.149) 

e) Now applying equation (3.116) to the reduced changed matrix, 

equation (3.145) and (3.149) hence 

sti 2i 
= oTi (5K _02 is M) 0i 

f) The new eigenvalues corresponding to the new structural 
idealization are calculated as 

4)2i 
new W 

2i +sw2i 

3.10 Conclusion 

(3.150) 

(3.151) 

In this chapter a number of methods for dynamic finite elements and 

re-analysis of bodies are presented. 

In the dynamic finite element analysis the subspace iteration method 

was used in this research work because: 

a) Subspace iteration method, at present, is the most effective and 

accurate method of extracting P eigenvalues and eigenvectors from 

an eigensystem of rank n were P<MM. 

b) It was already computer coded into the computer program FLASH. 

c) The method can be easily extended to be used in dynamic 

re-analysis. 

In this chapter three methods of re-analysis are given, but only one 

method can be developed further to be used in dynamic monitoring of 

structures or dynamic design of structures. 
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The-full matrix method is very simple, but has the disadvantage that 
the complete structure needs to be remodelled to include the structural 
changes. It has the advantage that when the new structural eigenvalues 
are calculated, these and the corresponding eigenvectors could be used 
as the starting values and vectors in the subspace iteration algorithm, 
so the subspace iteration method can continue, but the number of 
iterations for convergence is unknown. Hence the method was 
eliminated. 

The remaining two methods are based on the changed matrices, hence they 
have the advantage of just generating the changed structural matrices. 
This is very important since the design engineer can "forget about" the 
full structure, but just consider, what changes he/she would like to 

analysis. Method one in this category has also the advantage in that 
(K+SK)-1 is calculated. Hence the method could also be used in 

static re-analysis of the same structural change. This method, was 

also eleminated, since a lower bound to the bandwidth (K-1) can not 
be calculated. 

Thus eliminating the full matrix method and the first of the changed 

matrix methods, it was decided to use the second of the two changed 

matrix methods. Implementation of the chosen method is given in 

Chapter 4 and Chapter 5 where tests of the method on five examples are 

explained in assessing the savings made in cost at the expence of 
accuracy. 
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CHAPTER 4 THE FLASH PROGRA14 

4.1 Introduction 

As discussed in previous chapters, in this research it was decided 

to use the general purpose Civil Engineering Computer program 
FLASH. The reason for this choice was that the technique outlined 
in chapter 3 has to be as general as possible so that the technique 

of dynamic reanalysis can be applied to any structure in 

conjunction with dynamic response measurements outlined in chapter 
1. In this chapter is given a brief history and description of the 

finite element program FLASH and how it works. The description of 
the program is in the form of a simple and brief outline of each of 
the subroutines which form the program FLASH. 

This chapter also includes what changes had to be made to the 

program so that the new solution technique of dynamic reanalysis 

given in chapter 3, section 9 could be implemented. 

4.2 History of Flash 

The computer program FLASH (Finite eLement Analysis of SHells) 

analyses by the finite element method elastic homogeneous shells 
(SHELL ANALYSIS), plate in bending (PLATE ANALYSIS), plates in 

stretching (INPLANE ANALYSIS), axisymmetric structure (AXISYMMETRIC 

ANALYSIS) and also it can analyse ribbed slabs, plane and space 
frames and trusses under static loads. The program is supported 

and developed by Dr. Walder and Partner A. G. Tannackerstrasse 2, 

CH-3073 Bern-Guemligen Switzerland (Ref. 14). 

The program was basically introduced as a "black box" computer 

program for practising engineers and as a teaching tool at 
University for students whose knowledge of finite elements is 

minimal. The above project was started in 1972 under the leadership 

of Prof E Anderbeggen by U. Walder at the Swiss Federal Intitute of 
Technology (E. T. H. ) Zurick Switzerland helped by D. R. Green of 
Glasgow University. 
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The program uses a hybrid finite element technique which includes 

elements which allow the investigation of plate and shells on 
elastic foundations (Ref. 28). With the same elements columns under 
flat slabs can be approximated to avoid the moment singularities 
occurring when working with nodal point supports. Taking into 

account the shear deformation in plates and shells, also relatively 
thick structures as well as sandwich plate problems can be 

analysised. The elastic material properties may be isotropic 
(thin) or orthotropic (thick). Stiffness of plates and shells can 
be modelled with eccentrically connected beams which gives the 
possibility of treating ribbed plates as a plane problem. As usual 
in finite element analysis arbitrary support and edge conditions 
can be considered. 

The program can accept a large number of loadcases or combinations 
of concentrated, uniformly distributed loads and prescribed joint 
displacement. The results can be obtained in the form of 
displacement, moments or stress in the nodes or in the centre of 
the elements for loadcase or combinations or section forces 

envelopes either numerically or graphically in the form of contour 
plot. Furthermore the reinforcement moments can be calculated from 
the superposition of the bending and twisting moments. 

Over the years new versions of the program have been developed 

which include, 2nd order displacement theory, dynamic eigenvalue 
calculation and additional co-ordinate systems. The program at 
present has over 30,000 lines of executable FORTRAN code. 

4.3 The Fortran Program 

The program is split into 7 sections which are summarized as 

OVOO - Main program and auxiliary routines which are called 
throughout the whole program 

OV10 - Data input 
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OV20 - Local element generation. 
OV30 - Loadcase generation. 

OV40 - Generation and solution of the global equations. 
OV50 - Output of the results. 
OV60 - Plotting of results and the reinforecement calculation. 

4.3.1 Main Program 

The main program calls in turn all the main programs section as 
described above, but if any error is found the program 

automatically stops all the "heavy" calculations i. e. calculation 

of the local matrices, global matrices, solution of the global 

matrices etc, but continues checking the data for any more errors. 
Between sections of the program there are facilities for the 

program to restart with, more time, more loadcase or combinations 

etc. If any error is found during a section all the programs 
direct access file are closed, ready for a restart if it is a 

normal termination. 

NOTE: All subroutines which start with OV__ have no arguments apart 
from OV13. 

4.3.2 Section OVOO 

As mentioned above this section contains the program's auxiliary 

routines which are called throughout the whole program. Some of 
these are are 

BLOCK DATA The program's main data base. 

Number packing routine, i. e. PACK, UNPACK, PUTBIT etc 
Direct access files routines: 
READOF reads file of direct access files through system routines. 
WRITTO writes files to direct access file through system routines. 
OPENRA opens a direct access file through system routines. 
CLOSRA closes a direct access file through system routines etc. 
System routines e. g. TIME, DATA, FILES etc. 
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4.3.3 Section OV1O 

In this section the program calls from the main program three 

subsections OV11, OV12, OV13( ), which carry out the data input, 

mesh plotting and the bandwidth optimization (if required) 

respectively. This section also contains an auxiliary function 

LESE which reads the data in, in free format. 

4.3.3.1 Section OV11 

This section inputs the problem analysis i. e. if under data CHECK 

mode, or BEGIN mode, or a RESTART mode. It also inputs the problem 

type, IN-PLANE, AXISYMMETRIC, PLATE, SHELL analysis with the 

problem size, the number of nodes, elements, and types, prints out 

the Programs Banner and input problem definition and finally 

calculates the arrays dimensions for entry into subroutines EINGAB. 

EINGAB Reads in the problem geometry using mesh generator. In the. 

process it calls the following subroutines. 

TANSK displacement generators. 

ROTENO Rotation generators. 

GENKNO generates between two points. 

ORDKL converts the arbitrary input numbering system to a sequence 

numbering system. 

Then eingab echos the problem geometry in coordinate form. 

Subroutine MATPRO is called which reads in the problems material 

properties, element incidences and elements type, using mesh 

generators. In its process it calls FPROF which is used to check 

an input beam element profile which is stored in the programs data 

base. 
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-Then eingab echos the problem material properties for-each type and 
echos each element's nodes and types. 

Then eingab reads in the problems boundary condition using mesh 
generators. Subroutine 

CONINP is called which reads in the nodal constraints and in 

coninp process it calls the following routines. 

MCHECK checks the master nodes. 

SCHECK checks the slave nodes. 

Then eingab echos the properties boundary conditions and 
constraints. 

Finally eingab opens the main programs direct access file (JX) 

which stores information about each node, element and type. 

4.3.3.2 Section OV12 

Subroutine OV12 calculates the arrays dimensions for entry into 

zei Chen . 

ZEICHEN This subroutine calculates and plots the problems elements 
meshes with node numbers, element numbers and type numbers if 

required. In its process it call the following routines. 

ORDS Optimize the element mesh for plotting. 

PLOTIN 'Initialize a plot frame. 

PLOTP Plots a line. 

SYMP Writes text. 

NEWP Changes pens. 
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4.3.3.3 Section OV13 

Subroutine OV13 calculates the arrays dimensions for bandwidth 

calculation before entry into colh if no optimization is required 

or setup if optimization is required. 

COLH for each degree of freedom the subroutine calculates its 

bandwidth and hence the skyline profile of the global 

system. 

SETUP as with colh, setup calculates for each element a 
bandwidth, but it renumbers the elements nodes to produce a 

mimimum skyline profile. In setup process it calls the 

following subroutines. 

BAND calculate the problems original elements bandwidth and 
hence skyline profile. 

OPTNUM carries out the renumbering of the problem elements nodes 
to produce a mimimum profile and optnum in its process 

calls the following routines FNDIAM, TREE, SORTDG, SET, 

PIKLUL, NUMOPT, DELECT, FORMLY, CHECK. For information about 

these routines see reference (1). 

4.3.4 Section OV20 

This subroutine calculates the arrays dimensions for entry into 

stiffn. 

STIFFN This subroutine calls routines for each element type which 

calculate the element stiffness and mass matrices and stores them 

on a newly open direct access file KX; if an axisymmetic element 
it calls WIETYP; if an inplane element it calls SCHEIB and the 

inplane process calls the following routine which calculate: - 

PSICH triangular shape functions. 
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PSISAZ quadrilateral shape function. 

MSCH3 triangular consistent mass formulation. 

MASH4 quadrilateral consistent mass formulation. 

If a plate element it calls PLATTE and the plate process calls the 
following routine which calculate: - 

PSIPLA elements shape functions. 

MPLA3 triangular consistent mass formulation. 

MPLA4 If a shell element, it set up the mass matrix of the 

combinations (see later). 

If a shell element is required, stiffn call schecib then followed 

by Platte because in FLASH the shell elements are formed by adding 
the the inplane degrees of freedom to the plate degrees of freedom 

to produce the 6 degrees of freedom per nodes required for the 

shell element matrices. 

If a beam element is required in any of the above analysis stiffn 

calls STAB which is a general purpose three dimensional stiffness, 

geometric and mass matrix formulation. In its process stab calls 
the following routines. 

BSTRES calculates the element stress matrices. 

LDVEC Reduce the 3-dimensional problems to an inplane or plate 

problem by removing non-contributory degrees of freedom. 

SMAT Removes the stiffness, geometric stiffness and consistent 
mass matrices from incore and converts them into standard 

storage form. 

SUM lumped mass formulation. 
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4.3.5 Section OV30 

This subroutine calculates the arrays dimensions for entry into 
lasten. 

LASTEN This subroutine reads in the problem loadcase using 

generations. From the input data it calculates for each 
loadcase the corresponding load vector. Also it echos out 
for each loadcase the applied loads. In its process it 

calls LASTIT which generates the loadvectors for the 2nd 

order calculations. 

4.3.6 Section OV40 

This section contains all the programs solution routines and if a 

subroutine is required it is called from the main program. There 

are three type of solution available in FLASH, these are: - 

a static solution, uses a skyline block solution. 

b free vibration solution, uses a suspace interation solution. 

c 2nd order solution. 

The solution routines are as follows. 

4.3.6.1 Section OV41 

This subroutine calculates the arrays dimensions for entry into 

blokl. 

BLOKL evaluates the necessary blocklength for the most efficient 

solution (i. e. in or out of core). 

4.3.6.2 Section OV42 

This subroutine calculates the arrays dimensions for entry into 

bldab. 
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BLDAB assembles the global equation systems node by node into the 

global stiffness and mass matrices to produce the skyline 

profile and it opens the direct access file (LX) which 

stores the global matrices block by block. In its process 
it calls the following routines. 

CONSTR adds the nadel constraints. 

PUTROW introduces the constraint parameters into the master row of 
block. 

PUTCOL introduces the constraint parameters into the master 

columns of a block. 

PICK picks local nodal stiffness and mass matrices and places 
them into working space incore. 

ROTATE Rotates a local nodel matrix. 

PUT Inserts local stiffness and mass matrices into the global 

system. 

GETTK Brings local element matrix into core. 

4.3.6.3 Section OV43 

This subroutine calculates the arrays dimensions for entry into 

crout. 

CROUT This subroutine carries out the stiffness matrix 
traingularization and opens the following two direct access 
files. 

(MX) - stores the triangularized matrix. 

(NX) - stores the traingularization pivots. 
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4.3.6.4 Section OV44 

This subroutine calculates the arrays dimensions for entry into 

reduc. 

REDCU This subroutine carries out the elimination and back 

substitution for each loadcase. 

4.3.6.5 Section OV45 

This subroutine calculates the arrays dimensions for entry into 

eigen . 

EIGEN This routine carries out the solution of the generalized 

eiginvalue problem using the subspace iteration method. In 

the process it calls the following routines. 

REDCU2 carries out the elemination and back substitution of the 
iteration vectors. 

MULT multiplies two matrices together taking into account the 

matrices skylines and blocks. 

JACOBI carries out a Jacobian diagonalization. 

4.3.6.6 Section OV46 

This subroutine calculates the arrays dimensions for entry into 

reorg. 

REORG This routine carries out the solution of the 2nd order 
theory. 

4.3.7 Section OV50 

This subroutine calculates the arrays dimensions for entry into 

ausgab. 
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AUSGAB This subroutine inputs all -the required results for each 
loadcase or combination using mesh generators. For the 

required results it calculates all the stress, moments 

reactions etc, for the calculated displacement from section 
4.3.6 and it prints out the required results. 

Finally it closes all the solution direct access files and 

opens two new ones (KRA) - results for the flat element and 
(KRB) - results for the beam elements. 

In the above process it calls the following routines. 

AUSBER For each loadcase/combination, it read the required 

problems output with the use of generators. 

AUSPLS Prints the section forces at the element centroids and 

averages joint section forces 'for plate and inplane 

analysis. 

AUSSCH as above but for shell analysis. 

GSW calculates and prints out the section forces resultants. 

AWU Generators 

HAUPITS Formulae. 

WINKEL Formulae. 

ARMIER Formulae. 

INPTH2 Calculates and prints all the second order 
loadcases/combination results. 

RANDSP Calculates and prints the surface and centroid stresses in 

the element centres. 
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4.3.8 Section OV60 

This subroutine calculates the arrays dimensions for entry into 

ausgre. 

AUSGRE This subroutine inputs the required information so that 

plotting of loadcases/combinations of results can be 

achieved it also inputs the required loadcases/ 

combinations to be combined so that stress, moments, 

reactions envelopes can be calculated and it reads in the 

information required so that reinforcement for the 

calculated envelops can be evaluated. In the above process 
the following routines are called. 

GRENZW calculates and prints the required envelopes. 

BEM1 calculates the problems reinforcement. 

BEM2 sets up the required information so reinforcesment contours 

can be plotted. 

RICHT Formulae. 

RISSR Formulae. 

BETEPS Formulae. 

BOLTZ Prints the reinforcement results. 

ZARW Loadcase/combination results plotting. 

ELPLOT As above but only for requested elements. 

SEREBZ Calculates envelopes for beam section forces. 

ZSGRW Plots the beam section forces. 

Plus also the plotting routine given in section 4.4.3.2. 
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4.4 Changes to FLASH 

Since the changed stiffness or mass matrices were only required in 

the new solution method as described in chapter 3, so it was 
decided to change the whole program input system so that it would 
deal with the following structural changes. 

a) change in element properties 

b) make elements INACTIVE or ACTIVE 

c) changes in boundary conditions. 

which produced changed local stiffness or mass matrices but the 

structural changes were limited so that the number of degrees of 
freedom DID NOT alter. 

The above changes were made in such a way as to minimise the 

changes to the program input flow chart, Figure 4.1. This was 

carried out by introducing a new program switch, which overruled 
the program error checks, but introduced new checks. Also a number 

of new routines were introduced and are described below, as well as 

extending the existing routines. Since there was a time limit in 

this research a number of the program parts were not permitted to 

be accessed under this restart mode and are shown in Figure 4.2 

4.4.1 New Subroutines 

ACTIVE (called from EINGAB) which checks to see if an element was 

already INACTIVE or ACTIVE and prints the correct error 

message if required. 

COLHR (called from OV13) which calculates the skyline for the 

stiffness matrices and the skyline for the mass matrix 
because the skyline for both matrices now could be 

different or some could be zero. From the skylines it 

decides if there is 
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a) change to the stiffness matrix only 

b) change to the mass matrix only 

c) change to both matrices 

so the correct solution can be carried out. 

CALBAN (called from COLHR) which calculates the bandwidth of an 

element. 

CALCOL (called from COLHR) which calculates the global matrices 

column heights. 

ICHECK (called from STIFFN) which compares the old element 

material properties with the new to see if any of the new 

properties are zero, if so then there has been no change in 

the property but the old value may be required so that the 

change in local stiffness can be calculated. (e. g. element 
thickness). 

BCOND (called from STIFFN) which checks to see if there have been 

any changes to the problems boundary conditions. 

IDCODE (called from STIFFN) which decodes the old beam element 
boundary conditions to see if there has been any change. 

DYNWRT (called from EIGEN) if dynamic restart mode is required in 

late runs of FLASH the subroutine stores the data files 

which are required in this restart mode. 

In the solution section, if dynamic restart is required a new 

solution method is picked in sburoutine OV45 and these subroutines 

are as follows. 

OV47 calculates the arrays dimensions before entry into fox. 

FOX solves the changed stiffness and mass matrices using 

equation (3.141) to (3.151) given in chapter 3. 
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In the above process it calls the following routines 

PROJEC projects the changed matrices on to subspaces. 

ARRAYI. solves equation (3.150) for changes in the stiffness 

matrix oHly, 

ARRAY2 solves equations (3.150) for changes in the Mass 
matrix only. 

ARRAY3 solves equation (3.150) for changes in the mass a wc&. 
Sbý iýCb\ wýa4 ?, ces. 

MULTRN multiplies a two dimensional array with a single 
dimensional array. 

4.5 Computes Implementation of Equation (3.150) 

As mentioned in section (4.4) above there are three subroutines 
(ARRAY1, ARRAY2, ARRAY3) which are used to solve equation (3.150) 

which is: 
_ 

S'a2i = hTi (SK -W 2i S M) ýi (3.150) 

The three subroutines are used for numerical slability since 

( SK - GJ2qSM) (4.1) 

can produce very small number because of computer rounding. Hence 

there are three methods of solving equation (3.150). These methods 
were found by trial and error and are: 

4.5.1 Change to Stiffness Matrix Only 

Equation (3.150) reduces to 

63 2i = ti'Ti ý 8K) (4.2) 

and subroutine ARRAY 1 is used to solve this equation. 
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4.5.2 Change to Mass Matrix Only 

Equation (3.150) reduces to 

Sw2i = 
ýTi (-6)2i M) ýi (4.3) 

but the order of multiplication has to be changed since C 42i can 

often be very small, which can cause large rounding errors. Hence 

re-writing equation (4.3) gives 

5W2i = (ýTi (SM ) ýi) * (-632i) 

and subroutine ARRAY2 is used to solve this equation. 

4.5.3 Changes to Both Matrices 

(4.4) 

In this method equation (4.2) is calculated and solved, then 

equation (4.4) is calculated and solved with the results added to 

produced the correct results. 

Subroutine ARRAY3 carries this out by calling subroutine ARRAY1, 

followed by subroutine ARRAY2. 

4.6 Conclusion 

The chapter gives a brief outline of the computer program FLASH, 

and shows how the new method of solution given in chapter 3 has 

been carried out. 

The method produced has a good advantage in that only the changed 

stiffness and mass details have to be inputted and hence solved. 
To bring about this advantage a great deal of time consuming effort 
had to be made in introducing into the program a switch which 

overrules error checks and introduce new ones. 
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-CHAPTER 5 RESULTS OF COMPUTER RESEARCH 

5.1 Introduction 

In this Chapter, five examples of dynamic re-analysis. are given using 

equation (3.150) as its sub-equations (4.2) and (4.4). The following 

examples will attempt to illustrate different aspects of the equation, 
i. e. 

Change in stiffness only examples 1,2 and 4 

Change in mass only example 5 

Change in both stiffness and mass example 3 

In addition an example is given which examples the effects of the 

method when "very" local changes occur in the structural stiffness. 
The five examples are: - 

1) Skew Isotropic Slab 

2) Beam Element Problem 

3) Southfield Bridge 

4) Westerhouse Bridge 

5) Baillieston Interchange 

For each of the five examples a number of different changes were 
introduced into the structural models to see what effect there changes 
have on the structural natural frequencies. These structural changes 

were introduced into two computer models of the example under 
consideration. 

The models were 

a) A dynamic re-analysis using the new method given in Chapter 3 
(i. e. a form of equation 3.150) in which the structural changes 

were the only data input to the program. 



123 

b) .A complete new analysis was carried out with the data modified to 
take the structural changes into account. 

The errors between the complete new analysis (FULL) and the dynamic re- 
analysis (NEW) were calculated as follows: 

ERROR = fi(FULL) - fi(NEW) (5.1) 
fi(FULL) 

5.2 Example 1- Skew Isotropic Slab 

This example is based on the Department of the Environment, Highway 

Engineering Computer Branch, Program calibration problem 6.4 and is 

shown in Figure 5.1. The slab has the following material properties: 

Young's Modulus 75.0 E6 N/m2 

Poisson's Ratio 0.215 

Thickness 0.12m 

Density 2.4 E3 Kg/m3 

It is simply supported along the shorter edges and free along the other 
two edges. 

The slab computer model was analysed with 72 plate bending elements as 

shown in Figure 5.2, with the above material properties. The slabs 

supports are modelled using vertical stiff strings at the element 
boundaries. Since this example was idealised as a plate, the slab was 
modelled using 216 degrees of freedom, with only the first ten natural 
frequencies extracted, and these frequencies are given in Table 5.1. 
(Note: the rank (order) of finite element matrices equals the total 

number of degrees of freedom used). 

This example is only concerned with changes to the structural 

stiffness matrices. The reduced changes were changes in the slabs 
Youngs Modules, but were made out as a "growth" process from joint 1 
(see Figure 5.1), i. e. the changes were introduced into 2,8,18,32, 

50,72, elements consecutively (see Figure 5.2) to produce an envelope 

of errors for the first ten natural frequencies. Three growth studies 

were carried out for 10%, 20%, 30% decrease in Youngs Modulus, and the 



124 

above study could simulate different levels of progressive cracking in 

a concrete slab. 

A graph of the error envelopes plotted against the percentage growth 
in the number of elements affected is given in Figure 5.3. Tables 5.6, 

5.7,5.8 give the numerical comparison between the two types of 

analysis. These show that for a maximum overall decrease in the value 

of the first natural frequency of 16.3% associated with a 30% reduction 
in Youngs Modules, there was only a 2.6% difference between the two 

methods of analysis. This occurs when the region of changed elements 

covers 30% of the idealisation; thereafter the error decreases. This 

could be due to the effects of the unaffected boundary springs being 

very close to the boundary between changed and unchanged elements. 

5.3 Example 2- Beam Element Problem 

Figure 5.4 shows a three span continuous beam, with one support 

completely fixed in all directions and positions. The beam's 

cross-section is taken as a standard hot-rolled universal beam of 

serial size 610 x 305 and a mass per metre of 238Kg/metre. The 

computer model of the beam was constructed with 12 3-D beam element 

with the following material properties. 

Young's Modulus = 210E9N/m2 

Shear Modulus = 81E9N/m2 

Density = 77E3Kg/m3 

The beam boundary conditions were modelled by springs, but joint 1 

(see Figure 5.4) instead of having very stiff springs, it was modelled 

using a spring of stiffness equal to 1E1ON/m2. As a 3-D analysis the 

beam model has 72 degrees of freedom. Only the first ten natural 
frequencies are given in Table 5.2. 

The local changes to the structural stiffness matrices in this example 

are associated with support conditions. The spring support stiffness 

of the-six degrees of freedom of joint 1 were halved in each successive 
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analysis. This simulates different levels of relaxation of the 
support. 

Since this was only a local effect, only four of the ten natural 
frequencies were affected. Figure 5.5 gives a graph of errors of the 

affected frequencies plotted against the percentage change in the 

spring stiffness. Table 5.9 gives the numerical comparison between the 
full and re-analysis results. 

The results of this example demonstrate that the method can be used for 

very local changes. (In this case 6 degrees of freedom out of 72 
degrees of freedom only were affected). 

However care has to be taken since the reanalysis technique introduced 

changes in some natural frequencies which should not have been affected 
by the particular change in stiffness. In this example these changes 

were insignificant errors of "round off" magnitude but this effect may 
be significant in longer studies and care should be taken. But again 
example 2 has shown that equation (3.150) seems to work since the 

maximum recorded error was only 0.067% in the fifth natural frequency, 

and that was after progressively reducing the support stiffness to 
96.875% of its original value. 

5.4 Example 3- Southfield Bridge 

This bridge and the computer model of it are fully described in chapter 
two. The bridge deck was modelled as a plate analysis using 225 
degrees of freedom and from the analysis the first five natural 
frequencies were calculated. These frequencies are given in Table 5.3. 

This test problem was used to study simultanuously changes to the 

structural stiffness and the structural mass. The parameters varied in 

this study were again Youngs Modules (stiffness matrix) and the mass of 
the deck (mass matrix). These two properties were varied in different 

proportions so that the mass changes were twice as large as the 

stiffness changes. The variation in the material properties was 

carried out twice, once as a decrease and the other as an increase. 

These studies could simulate removing, increasing structural tarmac or 

concrete running courses. 
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These changes were made over the whole bridge and hence. the effect is 

seen in every degree of freedom of the structure. The errors fall into 
two zones; one for the increase in properties, the other for the 
decrease. Figure 5.6 gives a graph of these zones plotted against 
dual axis scales of percentage changes in density and percentage 

change in young's modulus. Tables 5.10 and 5.11 gives the numerical 
comparison between the two types of analysis. 

In this example, both parts of equation (3.150) have been affected by 
different propositions so one effect would not cancel out the other. 
Since the study was a global change affecting every degree of freedom, 
this produced the zone effect, seen in Figure 5.6. 

Again the success of the method is demonstrated because after 
introducing a 50% reduction in density coupled with a 25% reduction in 

Youngs modulus, an error of the order of 6% occurs. 

Note that the difference in the two error zones could be attributed to 
the fact that both the stiffness and mass matrices had diagonal 

contribution due to boundary springs and mass point loads, thus 

producing the non-linear error difference between the increase and 
decrease study. 

5.5 Example 4 =/ 
aterh 

se Bridge 

The description of the bridge and computer model used are given in 

chapter two. This example was modelled as a plate analysis with 

eccentrically connected beam stiffners. The computer model had 270 
degrees of freedom, and the first ten natural frequencies were 

calculated. These frequencies are given in Table 5.4. 

A new aspect introduced by the example was of large bandwidth. This 

was because of the concrete cross beams causing an uneven element 

mesh, see Chapter Two. For example the bandwidth in this example was 
almost three times greater than in example 3. 

Since this structure was of composite construction form it led to the 

study of the effect of the connections between the two types of 
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materials i. e. the shear connectors. This type. of problem is analysed 
in such a way that local displacements (or strains) at the interface 
between the two materials are constant (see Figure 5.7). In the ribbed 
plate analysis this was modelled using stiff eccentricity beam 

elements so a study was carried out in such a way as to reduce the 
degree of shear connectors between the two elements of the structure. 
To model this effect correctly the eccentricity of the stiff 
connectors was reduced in such a way as to keep the local axis of 
both elements parallel. If the axis of the stiffener element is not 
parallel to that of the plate elements the axial stiffness of the 

stiffener contributes to the transverse stiffness of the plate. 

This effect is described in detail in Figure 5.8a. The vert/rical 
stiffness (degree of freedom (1)) is not affected by eccentricity of 
the beam. ' If the eccentricity at each end is the same, the flexural 

shear stiffness of the beam is added to the plate. But the flexural 

stiffness (degree of freedom (3)) is increased by the flexural 

stiffness times the eccentricity. The torsional stiffness (degree of 
freedom (2)) of the beam is neglected in this type of analysis. Figure 
5.86 gives the relationship described above in mathematical form. 
Hence decreasing the eccentricity between the plate and beam elements 

models less than 100% shear connection between the two materials. 

If uneven eccentricity is applied the stiffness is increased because 

the beams axial stiffness would increase the plate vertical (shear) 

stiffness. Figure 5.8c gives the relationship for uneven eccentricity 
in mathematical form. 

Figure 5.9 gives a graph of the errors plotted against percentage 

reduction in the rigid connector, and table 5.12 gives the numerical 

comprison between the two types of analysis. 

During this study, a local effect was studied by removing the rigid 

connectors over a central 9.5 meter section of one of the central 
beams. Table 5.13 gives the results of this study. 
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In this example the study was carried out for a full range of- reduction 

of the rigid connectors. This study has shown very good results from 

zero reduction up to about 40% reduction, that is errors less than 5%. 

If the reduction is continued right up to 100%, the error increases to 

a maximum of just under 25%. As seen from Figure 5.9 the errors fall 

into 3 zones, that is bending, torsion and cross bending 

eigenvalues/vectors, with much greater errors occurring on the bending 

and torsional modes, because the rigid connectors affect the 

longitudinal bending of the structure. In this example when 100% 

reduction has been carried out, the reduction in the bending stiffness 
is of the order of 90%. This is because the total bending stiffness 
has three components, that is the bending stiffness of the plate 

elements (concrete check), the bending stiffness of the beam elements 

and, the axial stiffness times the eccentricity of the beam elements, 

and this total stiffness reduces to only the two bending stiffnesses. 
That is 

MPLATE + MBEAM + ECC * ABEAM b. MPLATE + MBEAM (5.1) 

For this example an elastic "composite construction" analysis is 

carried out. The stiffness for one steel beam plus the effective 

concrete slab the EI values (hence the bending stiffness) reduces from 

95.16 NM3 to 10.14NM3 i. e. a 89% reduction. 

The errors falling into 3 zones can be seen very clearly' in Table 

5.13. The error for the local reduction in the rigid connectors are 

very high for the bending modes, that is the first, fourth, and eighth 

natural frequencies. Hence great care has to be taken so that a local 

change, or a global change which seems to be small but which actually 

affects a global degree of freedom very significantly, hence affecting 
the natural frequencies significantly. 

5.6 Example Five - Baillieston Interchange 

For description of the bridge and computer model used see Chapter Two. 

Since this example was modelled as a shell analysis the bridge deck was 

modelled with 2052 degrees of freedom, with the first seven natural 
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frequencies extracted. These are given-in Table 5.5. [Please note the 
difference in the results from Table 2.3 and Table 5.5 for the third 

and fourth frequencies; this is due to the fact that after the results 
in Table 2.3 were produced, the Glasgow University main frame computer 

was upgraded from an ICL 2976 to an ICL 29881. 

As given in the introduction this example is concerned with changes to 

the structural mass. The parameter used in this study was again the 
density of the deck which was progressively reduced to simulate 

removing and replacing the tarmac by a much less dense material. This 

study was carried out over the whole bridge and hence the changes 

affect every degree of freedom of the structure, and the errors fall 

into a zone the same as for example two. Figure 5.10 gives a graph of 
this error zone plotted against the percentage change in density, and 
Table 5.14 gives the numerical comparisons between the two types of 

analysis. 

As seen from Figure 5.10 the maximum error for a global change in 

density of 40% was only 7% so again equation (3.150) seems to work. 

5.7 Computer savings 

As mentioned before, equation (3.150) only deals with the changed 

stiffness and mass matrices, hence the only data input is these 

changes. Given in Figures 5.11 and 5.12 are two examples of the data 

input for 

a full analysis 
b restart analysis 

The two examples are for the skew slab and the beam element problem. 
It can be seen from these figures that if the structure was very large 

the restart analysis for a number of different changes would be much 

easier and simpler than a complete full new analysis. 

The most important point of the new solution method is not the data 

input, but the savings in computer time, and hence COST. To assess the 
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time factor a detailed study was carried out for each part of the 

analysis, that is the time saved in data input, matrix generation, 
solution time and hence the total time, for example one; the skew 
slab. Figure 5.13 gives a graph of these savings, plotted against the 

growth in the structural defect. 

For all the other examples, a study of only the total time was carried 

out, owing to a computer system problem, and the results are given in 
Table 5.15. (Also given in this table are the computer savings in 

carring out a restart analysis for the model bridge used in this 

research (see later)). 

5.8 Conclusion 

The method given in Chapter 3 of this thesis, has been tested over five 

different problems, with each one looking at a different aspect of the 

method. It seems to produce very good results, for large structural 

changes to both the stiffness and mass, but as seen in example four, 

care has to be taken when introducing a structural change, which is too 
large. From the results, a reasonable upper limit would be 40% change 
in structural properties which would place an upper limit to the errors 
of about 7% in natural frequencies. 

The other good point about the method apart from its accuracy is the 

saving in computer time. In the Baillieston Interchange example, the 

full analysis took over 3800 computer processor seconds, which at 
Glasgow University put the analysis into the overnight batch queue, 
but the restart analysis only took less than 280 seconds and could be 

executed almost immediately (depending on how many people are using the 

computer). 

The method described in Chapter 3 applies equation (3.150) to reduced 
stiffness and mass matrices, i. e. the projected matrices. Equation 
(3.150) may also be applied to the full changed matrices, i. e. no 

reduction to the matrices were carried out. This approach may be 

faster than the technique which includes reduction, so a short study 

was carried out using example one, (Ref 15,30,32). 
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The results are given in Table-5.16 and show that this method is not 

very accurate since it did not predict any changes above the third 

natural frequency. Also the error for the first three natural 
frequencies were large. These errors could be due to the computer 

rounding and to the fact that the stiffness and mass matrices represent 
the full structure whereas the reduced matrices represent the 

structural properties of the eigenvalues/vectors under consideration 

and hence lead to more accurate and useful results. 
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MODE FREQUENCY 

1' 0.336638 

2 0.986545 

3 2.3714? 8 

4. 3.468227 

5 4.547134 

6. 5.609734 

7 5.550049 

8 3.089236 

9 10.09023 

10 10.47138 

TABLE 5.1 EXAMPLE ONE - SKEW SLA3 
--------- NATURAL FREQUENCIES (HZ) 

WE FREQUENCY 

1 3.749775 

2 4.730255 

3 6.431323 

4 7.366933 

5 9.302883 

6 10.16875 

7 12.65235 

3 14.38037 

9 16.52464 

10 17-72368 

TABLE 5.2 EXAMPLE TWO - BEAM ELEMENT PROBLEM 
--------- NATURAL FREQUENCIES (HZ) 
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MODE FREQUENCY 

1 4.671113 

2 6.895151 

3 6.932759 

4 3.364517 

5 12.07479 

TABLE 5.3 EXAMPLE THREE - SOUTHFIELD BRIDGE 

--------- NATURAL FREQUENCIES (HZ) 

MODE FREIUENCY 

1 3.553119 

2 4.035084 

3 6.835774 

4 9.680708 

5 10.88913 

6 11.57487 

7 13-03246 

3 15.86477 

9 16.37473 

10 13.41756 

TABLE 5.4 EXAMPLE FOUR - WESTERHOUSE BRIDGE 
--------- NATURAL FREQUENCIES (HZ) 
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MODE FREOUEN-? Y 

1 3.080773 

2 4.995823 

3 5.842-3-80 

4 6.095642 

5 7.399362 

6 8.269837 

7 8.7936 31 

TABLE 5.5 EXAMPLE FIVE - BAILLIESTON INTERCHANGE BRIDGE 
--------- NATURAL FREQUENCIES (HZ), 
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MODE RESTART FULL : ER0R 

1 3.355038 3.382384 3.83 

2 3.843335 3.377276 3.951 

3 6.777163 6.755874 0.315 

4 9.503167 3.940500 6.349 

5 10.69533 10.52451 1.66 

6 11.59439 11.53327 0.096 

7 12.94698 12.85253 0.735 

3 15.77663 15.57751 1.28 

9 16.73137 16.61623 0.99-4 

10 18.2879 18.00739 1.12 

TA3LE 5.13 EXAMPLE FOUR 
---------- LOCAL COMPARISON RESULTS 

(HZ) 
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EXAMPLE FULL 
TIME (S) 

RESTART 
TIME(S) 

r: OF FULL 
ANALYSIS 

SKEW SLA3(MAX) 354.9 73.1 20.6 

8EAM. ELEMENT 44.1 10.0 22.7 

SOUTHFIELD 135.6 27.3 20.5 

WESTERHOUSE 360.3 36.7 10.2 

3AILLIESTON 3362.0 278.8 7.2 

MODEL BRIDGE 38.5 891.5 4.3 

TABLE 5.15 AVERAGE PERCENTAGE SAVING IN COMPUTER TIME 
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equal Iý R 

'equal 

(a) COMPOSITE SECTION 
BEFORE DEFLECTION 

, Aq11ä. L. 
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Diagrams show that a composite section, after deflection, the strains 
at the interface are constant in both materials 

FIGURE 5.7 STRAINS AT INTERFACE OF A COMPOSITE SECTION 
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BEGIN 
SKEW ISOTROPIC SCAB 
PLATE 91 72 72 EIGENVALUES DYNAMIC 10 
MATRIX 7 13 JOINT 11 7 COOD 0.0 PLUS 100 AND -6.928 4.0 

ISOTROPIC 75. OE9 0.215 1.2 TYPE 3 TO 72 
ISOTROPIC 67.5E9 0.215 1.2 TYPE 1 TO 2 
MASS 2.4E3 TYPE 1 TO 72 

MATRIX 12 6 ELEMENT 1 JOINT 2981 

TYPE 1 72 ELEMENT 1 TO 72 

NFF JOINT 1 T0 7 
NFF JOINT 85 T0 91 
ý 
ý 
ý 
DYNAMIC 

ý 

PRINT 10 RESTART 

DATA INPUT FOR FULL ANALYSIS OF SKEW SLAB 

RESTART 
A 
ISOTROPIC 75. OE8 0.215 1.2 TYPE 1 TO 2 

DATA INPUT FOR RESTART ANALYSIS OF SKEW SLAB 

EXAMPLE DATA INPUT FOR DYNAMIC REANALYSIS 

FIGURE 5.11 
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BEGIN 
BEAM ELEMENT PROBLEM 
SHELL 14 12 12 EIGENVALUES DYNAMIC 10 
JOINT 1 COOD 0. PLUS 1.0 JOINTS 2 TO 13 
JOINT 14 COOD 0.1.0 

BEAM 210-E9 81"E9 303.8E-4 82-1E-4 168.8E-4 2.895E-6 
20.8E-4 1.58E-4 TYPE 1 TO 12 

MASS 77. OE3 TYPE 1 TO 12 

BEAM 1 JOINT 12 14 PLUS 11 ELEMENTS 2 TO 12 

TYPE 1 12 ELEMENTS 1 TO 12 

0.5E10 0.5E10 0.5E10 0.5E10 0.5E10 0.5E10 JOINT 1 
NNNNFF JOINT 58 13 
ý 

DYNAMIC PRINT 10 RESTART 

DATA INPUT FOR FULL ANALYSIS OF BEAM PROBLEM 

RESTART 

0.5E10 0.5E10 0.5E10 0.5E10 0.5E10 0.5E10 JOINT 1 

* 
* 

* 

DATA INPUT FOR RESTART ANALYSIS OF BEAM PROBLEM 

EXAMPLE DATA INPUT FOR DYNAMIC REANALYSIS 
FIGURE 5.12 
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CHAPTER 6 RESPONSE MEASUREMENT 

6.1 Introduction 

The literature review of chapter 1 identifies several studies (Ref 17) 

where response analysis has been used to monitor the long-term integrity 

of structures. The proposals made in this study are to extend the 

technique to bridge structures. Dynamic monitoring is generally more 

expensive than visual inspection. For oil rigs, however, since large 

parts of the structure are inaccessible, i. e. below the water line, 

dynamic monitoring is less expensive than visual inspection. When the 

technique is extended to bridges the overall structure is more accessible 
for inspection, but parts which may deteriorate and affect the structural 
integrity are less accessible, e. g. internal stiffness in box structures, 
the deck under the bitumen pavement. If dynamic monitoring is to be 

extended to bridge structures it is desirable to develop methods which 

reduce costs and are more attractive or simpler to apply. 

The cost differences between dynamic monitoring and visual inspection are 

associated with two factors. Firstly, dynamic monitoring analysis 

requires the construction of a large number of finite element models. 
Each model is associated with a change to the original structural 

configuration and the range of changes must be comprehensive enough to 

cover the most likely sources of deterioration in the sturcture. For 

each model the response of the structure must be evaluated. The 

techniques developed in chapters 2 to 5 considerably reduce the cost of 

computer modelling. Secondly high costs arise from the method of 
frequency extraction from the random signal produced by the 

accelerometers used in the response measurements. The Maximum Entrophy 

Method used in earlier dynamic response monitoring (Ref 7), requires the 

use of large amounts of computer equipment. It may be possible to reduce 

costs by using simpler methods of measurement of natural frequencies. 

Such techniques are developed and described in this chapter. 

In order to assess the applicability of the technique to bridge 

structures experimental evidence is required to show that these simpler 

methods can be used to measure the dynamic responses of bridge 

structures. Also evidence is required to show that changes in dynamic 

response can be used to identify changes that have occurred in the 

structure. 
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The following possibilities were considered to provide the experimental 

evidence to validate the simplified measurement techniqes and to 

correlate changes in structural integrity with changes in dynamic 

response. 

a) Monitoring of a real structure 

This proposal has the attraction that, if a real structural 

change occurs during the monitoring period and the change can be 

correlated with calculated response, the technique is proved to 

work. The disadvantages of this approach are : firstly the 

period of the study is indeterminate. Structural Monitoring 

Limited's study of the bridges described in chapter 2 (Ref 17) 
lasted 18 months during which time the dynamic response did not 

change. Secondly, structural changes may occur which are not 

apparent to visual inspection and hence are difficult to quantify. 

b) Monitoring of a real structure with controlled structural changes 
introduced systematically. 

This approach has all the advantages of the previous proposal and 
in addition measured structure changes can be introduced in a 

systematic way and the structure monitored to see if correlation 
is achieved. The disadvantage is one of availability of a 

suitable bridge structure and the possibility of making 

structural changes to it. 

c) Fabrication and Monitoring of a Simple Laboratory Model 

This approach has the advantage that simple measurable structural 

changes can be introduced into the model in a controlled 

environment. The disadvantage is that it may not be valid to 

extrapolate the model response to that of a real structure. 

Since there was a limited period of time available for the experimental 

study, it was important to be able to introduce known structural changes 
in a controlled environment. It was decided to construct a simple 
laboratory model. 
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6.2 Design-and Construction of the Test Model 

6.2.1 Choice of the Structural Form 

The dimensions of the model were based on a footbridge over the river 
Kelvin in Glasgow. The footbridge, Figure 6.1, is part of the river's 

walkway system and is situated just north of Great Western Road in the 

West End of Glasgow. The footbridge is of composite construction, with 
two steel I-Beams running along the length of the deck and supporting a 

concrete slab with a light bitumen pavement. The steel I-Beams are 

supported on two concrete abutments. 

6.2.2 Identification of Possible Structural Changes in the Footbridge 

During the lifetime of a structure a number of different changes may 

occur which affect the structural stiffness and/or the mass. These may 

result from natural wear and tear or from modifications to the 

structure. These changes could be associated with the following effects: 

i) cracking of the reinforced concrete deck which, depending on 
location, may cause a loss of structural stiffness and mass 

ii) reduction in shear transfer between the steel I-Beams and the 

concrete deck so that the deck and stiffening beams act 
independently in the affected region at a reduced overall 

stiffness 

iii) increased friction in the support region which may result in a 

change in structural stiffness associated with change in boundary 

conditions. 

iv) delamination of the bitumen pavement which may result in a loss 

of structural stiffness of resurfacing which may result in a 

change in mass. 

v) differential displacement between support regions may result in 

loss of structural stiffness during the lifetime of the structure. 
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6.2.3 Techniques of Modelling Structural Changes in the Footbridge - 

It is desirable that the laboratory model should be capable of modelling 
the possible changes to the real structure listed above. The model 
therefore incorporates the following features : 

i) The deck and stiffening beams are fabricated separately and can 
be caused to act together by discrete shear connection along the 
line of the stiffening beams. To simulate reduction in shear 
transfer, groups of these discrete shear connections would be 

removed. 

ii) The support system of the model is constructed with independent 

bearings so that a differential displacement can be introduced by 

altering the relative levels of the individual supports. 
Individual bearings should also have the facility of introducing 

different degrees of restraint against translation and rotation. 

iii) Cracking in the concrete deck can be simulated by fabricating the 
deck and stiffening beams separately, and by varying the model 

material of the different components. The reduced stiffness of 
the cracked deck is modelled by a lower modulus in the model 
deck. Also if a selection of stiffening beams are fabricated 

with different second moments of area these beams can be used to 

simulate different levels of corrosion. 

In the limited time available to carry out this study not all the above 

changes could be studied. The following changes were chosen because they 

would be easy to introduce into the model and involved the construction 

of only one deck and one set of stiffening beams: 

i) restraint of the bearings; 

ii) differential displacement of the bearings; 

iii) loss of shear connection between the I-beams and the deck. 
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6.2.4 Definition of*the. Test Model 

To keep the model as simple as possible it was decided to construct the 

model from one material, perspex. Also for simplicity the number of 
different thicknesses of perspex was kept to a minimum, using 1/2" 

(12.7mm) for the bridge deck and 1/4" (6.3mm) for all the other members. 

The model, shown in Figure (6.2) was of composite construction with two 

perspex I-Beams running along the length of the-perspex deck. Three 

small perspex channel cross beams (see Figure 6.2) were used to give 
lateral stability to the longitudinal perspex I-Beams. The stiffening 
I-beams and the bridge deck were connected together with screws at 50mm 

centres. Loss of shear connection between the deck and the beams could 
be simulated by removing these screws. 

The bridge supports were designed in such a way as to allow free rotation 
in support type A, Figures 6.3; 6.5; 6.24. In this case the changes in 

boundary conditions especially rotation were not intended to produce zero 

rotation, but rather the sort of restraint that might arise in practice. 
Rotation could be constrained by grub screws in the perspex bridge and 
the support brackets as shown in Figure 6.6. Rotational and 
translational movement were allowed by constructing bearing type' B, 

Figures 6.4; 6.5; 6.25. This bearing could constrain translational 

. and/or rotational movements by using the metal blocks, grub screws, and 
the black bolts shown in Figure 6.7. To help free rotation and 
translation in all bearing types, grease was applied to all surfaces. 

The differential displacement could be introduced into the model by 

placing small thin plates, shims, under the bearings where differential 

displacement was required. 

6.3 Design and Construction of the Test Rig 

The test rig was connected to the laboratory floor with the bridge model 
located on it, clear of the floor to allow access underneath for an 

energy input device. The support frame had also to accommodate the 

following features : 
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a. it had to be possible to isolate the test rig from the random 
vibrations of the building 

b. the fundamental frequency of the test rig had to be 'higher than 

the highest natural frequency of the bridge model to be recorded. 

c. it had to be possible to move the energy input device so that the 

model can be vibrated at different locations. 

6.3.1 Supporting Framework 

The above requirements were met by using the double frame arrangement 

shown in Figure 6.8. The springs between the two frame systems (part A 

and B of Figure 6.8) isolated one system from the other. The 

frequencies of the springs separating the two rigs were selected so that 

., 
ý the valve of transmissibility was as low as possible. Transmissibility 

is a measure of the amount of vibration transmitted through an isolation 

system. It is a function of damping and the ratio of the fundamental 

frequency of the element being isolated and of the fundamental frequency 

of the isolation system. For satisfactory isolation of two systems a 

minimum value of 2 is recommended (Ref 2). 

The finite element analysis of the bridge (Chapter 7) gave the first ten 

natural frequencies within the range of 40-350Hz. Hence the support 
frame had to be designed to have a fundamental frequency greater than 

350Hz. ' For the dimensions given in figure 6.8 the calculated fundamental 

frequency of the testing rig frame was 465Hz. The ratio of the 

fundamental frequency of the frame to that of the springs was =20 which 

produces a value of transmissibility of less than 0.1 in figure 6.9. 

In order to be able to apply an excitation force at different locations, 

the vibrator could be placed at eight positions along the length of the 

bridge structure and three positions across the width. See Figure 6.10, 

6.11. 
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Three types of excitati, on, viz, mass excitation, sine-wave excitation, 
and random-wave were attempted. the sine-wave excitation and random-wave 

excitation were applied to the structure through a connection which 

consisted of two small diameter rods which formed a "box" so that the 

small cross beams of the bridge would not effect the vibration system, 

and a longer diameter rod to connect the "box" with the appropriate 

vibration apparatus, see Figure (6.12) for details. 

6.4 The Effects of Vibration on Young's Modulus of Perspex 

Since the perspex bridge has to be vibrated a number of times under 

sine-wave excitation and random-wave excitation it was important to find 

out if sustained vibration would result in irreversible changes in 

material properties. Six 350x5Ox6mm thick perspex samples cut from the 

same perspex sheet as the longitudinal beams used in the bridge were 
tested. 

There were two stages to this study. In the first stage, three of the 

six samples were vibrated, while the other three were used as the control 

samples. These samples were vibrated for 1x106 cycles at frequencies of 
480,240,120,60,30Hz with one hour relaxation time between 

frequencies. These frequencies and the vibration times are given in 

Table 6.1. 

The second stage was to measure the Young's Modulus of the six samples, 
i. e. the three vibrated samples and the three control samples. After 

completing the study the variation of Young's Modulus between the 

vibrated and the unvibrated samples was less than 0.1%, so the effect of 

variations, of Young's Modulus due to vibration was neglected. 

6.5 Evaluation of the Response of the Test Model 

The dynamic response of the bridge model was measured under three types 

of excitation. In the first method, mass excitation, a large weight was 

suspended from the model and the structure was released from its 

displaced position by cutting the string connecting the weight to the 

model. This method proved to be unsuccessful for a number of reasons: 
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Because- the model had a high flexural stiffness, large initial 
deformations were needed to excite more than the fundamental frequency. 

The loadings required to produce such deflections were excessive. In 

evaluating this method release loads of 12.7Kg were used, and release of 
this load did result in the first natural frequency being recorded. The 

recorded frequency was approximately 50Hz which coincides with the 
frequency of mains electricity. The effect of mains frequency 
interference could be reduced by increasing the magnitude of the release 
load, but it was clear that the method would prove unsuccessful since the 
bridge could not be isolated during this method of excitation. 

6.5.1 Simple Sine Wave Excitation 

From this simple excitation method a feeling of the response of the 

structure could be obtained. The simplicity of the excitation method 
limited the number of natural frequencies that could be excited at any 

particular input position. Therefore a study was necessary to determine 

how many different locations had to be used to generate all of the 

required frequencies. 

A two dimensional structure like a bridge deck has three types of 

response modes, i. e. longitudinal bending, along the major axis cross 
bending along the minor axis and torsion about the major axis. These 

mode types are shown in Figure 6.13. To excite the above modes by 

sine-wave excitation, two excitation positions were chosen. The first 

excitation location was chosen at the centroid of the model deck. This 

position is the most obvious in which to excite the fundamental frequency 

of the model. The second excitation location was at the 1/4 span of both 

the major and minor axis. This position was chosen to excite all 
longitudinal bending, cross bending and torsion response modes. Figure 

6.14 identifies the vibrator position for both locations. 

6.5.1.1 The Test Apparatus 

In the sine-wave excitation study the experimental setup is shown in 

Figure 6.15. The basic components were the vibration system, the 

measurement system for the input signal, and measurement system for the 

output signal. Figures 6.15,6.26 gives a line diagram and photograph of 
the equipment. 
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The vibrator system comprised : 

a. a simusoidal generator, -used to generate the simusoidal input 

which drives the vibrator; ' 

b. an amplifier, rated power output of 300W, used to increase the 
input signal power to the vibrator; 

c. a cooling fan, used to protect the moving coil assembly of the 

vibrator, from over heating.; 

d. the vibrator. This was a 400 series permanent magnet vibrator 
made by Ling Dynamic Systems Limted with a sine vector force 
(forced air cooled) of 196N. 

Measurement system for the input signal : 

Two accelerometers were used to measure the effect which the small rods 
forming the box of the vibration had on the input signal. The main 
accelerometer, the one used to measure the input signal was located above 
the connecting system on the bridge deck. See Figure 6.12. The signals 

of the above two accelerometers were processed as follows: 

i) The signals from both the accelerometers were passed through a 
high impedance microdot cable. This high impedance cable was 
reduced to a low impedance cable by using a voltage amplifier. 
The reason for this impedance transfer is that if long lengths of 

cables are required on site where low impedance is necessary, so 
the loss of signal power would not be great. 

ii) The signals from both accelerometers were fed through an 

oscilloscope, as the model resonance occurred which was 
associated with maximum amplitude on the oscilloscope screen. 

iii) The signal from both accelerometers were passed through an 
attenuator and an amplifier which were used to decrease or 
increase the accelerometers' signals respectively before they 

were displayed on the oscilloscope. 
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iv. Permanent-records of the input accelerometers' signals could- be. 

made on photographic paper by using an oscillograph. 

Measurement systems for the Output Signals: 

These signals were measured with similar duplicate instrumentation as the 
input signal, except that an oscilloscope was not used. 

6.5.1.2 The Test Procedure 

As was expected, the central vibration location (location b in Figure 

6.14) only excited the fundamental frequency. The off-central vibration 
location (location a in Figure 6.14) was more successful in exciting 
higher modes, and only the results for this position are quoted. 

Altogether nine tests were carried out with the vibrator position at 
location a and with the accelerometers placed at different locations. 

All the accelerometer positions were selected as anti-nodes of the first 

ten mode shapes found from the finite element analysis (Chapter 7). The 

number of accelerometers used for each test varied from 1 to 6 and 
depended on which natural frequencies were sought. In tests A, B, C, Da 

fixed number of natural frequencies were investigated, whereas in the 

remainder of the tests the maximum number of frequencies in the range of 
40-500Hz were explored. Table (6.2) lists the tests and identifies the 

range of each study. 

The test procedure was as follows: 

Within a frequency range, the frequency fine control of the generator was 

adjusted until 'a point of maximum amplitude was recorded on the 

oscilloscope thus indicating a point of resonance. At this frequency, 

oscillograph traces of both the accelerometers measuring the input 

signals and the accelerometers measuring the response of the model were 
taken. With the input accelerometer being fixed in position, the use of 
the oscilloscope at higher frequencies proved to be unsuccessful since 

resonance could not easily be obtained. 
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To overcome. this difficulty the output signals were examined through the 

-oscillographs for a number of fine adjustments to each frequency until 

points of resonance were noted. 

The results were measured from the input oscillograph traces as follows 

: the photographic paper of the oscillographs was fed through the 

oscillograph at a known speed, so that by measuring the distance along 
the trace for 20 cycles, the time for 1 cycle, and hence the frequency 

could be calculated. 

6.5.1.3 Test Results 

The frequencies measured for each test are given in the form of a 
Histogram in figure 6.16. Also given in this figure are the averages of 
these measured frequencies, and the natural frequencies calculated using 
the finite element model described in chapter 7. 

Table (6.3) gives the average frequencies in numerical form, and the 

number of frequencies used to calculate these averages. By comparing the 

numerical frequency with the histogram it can be seen that these 

frequencies have been calculated within ±lOHz. 

By comparing the phase differences between the output signals, the mode 

shapes could be deduced. These modes are given in Table (6.3). Modes 

greater than the 5th mode were difficult to obtain, since at higher 

frequencies correlation was difficult owing to the considerable scatter, 

of results, and hence interpretation for the mode shapes was impractical. 

The effect of the small rods used in the device connecting the vibrator 
to the bridge was found to be insignificant, i. e. no difference was found 

between each trace. 

6.5.1.4 Conclusion 

In general the method of sinusoidal response measurement, as given in 

this section is a very simple method of measuring response, but it has 

two great disadvantages: 
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i) at higher frequencies resonances are difficult to detect 

ii) the method is very time consuming 

This method of excitation has the advantage that it is very simple to use 

and the user can get the feeling of the response of the structure from 

the accelerometer traces produced by the oscillograph very easily. The 

method although it may work successfully in the laboratory to evaluate 
the model response, it would be difficult to translate into a practical 
technique. 

6.5.2 Random Wave Excitation 

There are a number of methods of exciting bridge structures randomly. 
These include traffic flow, energy input devices etc., and are described 

in detail in Chapter 1. In this study an energy input method was used. 
This technique has the advantage that random vibration signals resulting 
from random vibration at a single location can be separated into a range 
of discrete natural frequencies. Success with the method depends on the 

number and location of accelerometers, and therefore a preliminary study 

was necessary to find the best locations and number of accelerometers 

required. 

Although the technique has been applied successfully to a number of 
structures, in order that the method is cost effective when applied to 
bridge structures, simpler techniques must be developed. Hence the 

principal aim of this preliminary study was to produce a simple and 
inexpensive alternative to the rather expensive method of vibration 

monitoring which has proved to be successful for offshore platforms 
(Ref 17). 

6.5.2.1 The Test Apparatus 

There were four components in this test setup and the equipment used in 

each of the components is described in the following sections. Figures 

6.16,6.27 gives a line diagram and photograph of the test arrangement. 
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6.5.2.1.1 Vibration System 

The vibration system comprises : 

Random Noise Generator. The generator used was a Bruel and Kjaer Random 

noise generator which produces a Gaussian random noise signal with a 

uniform spectrum density, (also termed WHITE RANDOM NOISE), in the range 

0-4000Hz. After a time T the signal output for each frequency is 

constant. This generator was used to drive the vibrator randomly and for 

all experiments the signal output was kept constant at 1 volt. 

Band Pass Filter. The filter was a Barr and Stroud EF3. These filters 

allow only adjustable frequency ranges to pass and since from the finite 

element analysis it was shown that the first ten natural frequencies were 
below 500Hz, the filter was adjusted to pass frequencies in the range 

0-500Hz. 

Amplifier. The amplifier, a 1000w Ling Dynamics Ltd. Amplifier, was used 

to increase the signal input to an input signal to the vibrator of 

average valve of 1 amps R. M. S. 

Vibrator. The Vibrator was a V455 series permanent magnet vibrator by 

Ling Dynamics Ltd. with a 1101b peak thrust force, air cooled to prevent 

overheating. 

6.5.2.1.2 Response Measurement 

Response measurement was made by using accelerometers. The signal from 

each accelerometer was fed into a microdot,, cable, and since the cable has 

a high impedance a voltage amplifier was used to convert the signal to 

low impedance. The signals from each of the accelerometers, up to a 

maximum of eight, were recorded on a frequency modulated (FM), eight 

channel tape recorder. 
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6.5.2.1.3 Signal Calculation 

The background noise from the tape recorded signals from the 

=accelerometers was filtered out through the use of band pass filters. 

Two filters were used since the analyser could deal with two 

accelerometer output signals simultaneously. A Hewlett Packard HP 3582A 

dual channel spectrum analyser was used to calculate the response, spectra 

of the dual signals using the fast fourier transform technique (see 

Appendix). 

6.5.2.1.4 Recording of the Results 

Since the spectrum analyser results were produced on a small television 

screen, which was very difficult to read and digitise, the analyser was 

controlled through an IEEE interface thus allowing the screen results to 

be transferred to a micro computer. A program was developed for the 

micro computer (Commodore Pet) so that results could be recorded on a 
disc for permanent storage. These results were stored as digitised 

co-ordinates on disks, and the co-ordinates were also printed. (see 

figure 6.19 for a sample). Finally the co-ordinates were transmitted 

through another Pet micro computer to the University main frame computer 

so that the graphs on the analyser screen could be plotted. Figure 6.18 

gives an example of the plots of the spectrum analyser screen. 

6.5.2.2 The Test Procedure 

From the sine wave excitation study it was found that the vibrator 

positioned at the 1/4 longitudinal span gave better results than when 

positioned at mid-span. During this study the two vibration positions 

chosen were on the centre cross span, location a (Figure 6.20) and the 
1/4 cross span, location b (Figure 6.20). 

For each of the two locations of the vibrator, tests were carried out to 

find the optimum number and positions of accelerometers to give results 

with the least scatter. Altogether 19 different accelerometer positions 

were investigated and up to a maximum of 7 accelerometers at any one time 

were used. 
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Procedure : 

The model bridge was vibrated, and the accelerometer signals were 

-recorded on the 8 channel tape recorder. - One accelerometer in the 
frequency range 0-50OHz was used as reference . If(n) accelerometers were 

used (n-1) analyses were carried out. Channel A of the analyser was 

always taken as the reference accelerometer. 

During each analysis, the results were extracted from the analyser to the 

pet computer for digitising and transfer to the university main frame for 

plotting. By studying the printed results, and graphs of each of the 

analyses, the natural frequencies were deduced. Also by studying the 

phases of the spectra the mode shapes were deduced. 

6.5.2.3 Test Results 

All of the results from each vibrator position were plotted on two 

histograms, given in Figure 6.21 for location a, and Figure 6.22 for 

location b. Comparison of the two histograms indicated that location b 

for the vibrator gave results with less scatter than location a. If the 

results from individual tests for each of the 19 positions were plotted 

on different histograms and these histograms were compared to Figures 

6.22 it was found that the results for the accelerometer position given 
in Figure 6.23 matched most closely that of Figure 6.22. Hence the 

natural frequency of the model bridge using the accelerometer position 

given in Figure 6.23 are given in Table (6.4). 

From the above results, the first nine natural frequencies were found, 

using a frequency range of 0-500Hz in the spectrum analyser. Each 

natural frequency could only be calculated to within ±3.9Hz which was not 

accurate enough for this study. If instead of using one frequency range 
(0-500Hz), if five frequency ranges were used (0-100,100-200,200-300, 

300-400,400-500Hz) the natural frequencies were calculated within 
±0.78Hz. 
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The results from this more accurate analysis using the optimum 

accelerometer position found above are given in Table (6.5). Also given 
in Table (6.5) are the corresponding mode shapes. These modes were 
deduced from the phase differences of the accelerometers signals which 

were produced by the spectrum analyser. 

6.5.2.4 Conclusion of the Random Excitation Method 

A method of random response excitation using an energy input device in 

which the first ten natural frequencies of the model bridge were found 

has been described. Also during the study an optimum number and 

positions of accelerometers were identified and are given in Figure 

6.23. Furthermore it has been shown that a simple method as described 

could be used to measure the response of bridge structures to within ± 

0.78 Hz. 

The main difference between this method described above and the method 

used by S. M. L. is that Structural Monitoring Limited used Maximum Entropy 

Method which involves the use of much more computer arithmetic than the 

Fast Fourier Transform technique used in this study. 

6.6 Conclusion 

In this chapter methods are developed for the response measurement of 
bridge models. The sine wave excitation method is simple but gives a 
large scatter of results, i. e. within 10Hz, whereas the random method 
developed is also simple and semi-automatic, and gives the natural 
frequencies of the model to within ± 0.78Hz. 

The most important aspect of this chapter is the development of a method 

of random response measurement, i. e. the test procedure is summarized as 
follows : 

i) The bridge is vibrated, and the 7 accelerometer's signals are 

recorded on the 8 channel tape recorder. 
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ii) Taking the central accelerometer as reference, figure (6.22) six 

analyses in the frequency range 0-500Hz are carried out (channel 

A of the analyser was always taken as the reference 

accelerometer). 

iii) As above but more detailed analysis in the frequencies ranges 

0-100,100-200,200-300,300-400,400-500 are carried out, hence 

producing 30 more analyses. 

iv) During each. of the 36 analyses, the results were extracted from 

the analyser and fed into the University main frame computer for 

plotting. 

v) By comparing the printed results, and graphs of each of the 36 

analyses, the natural frequencies are deduced. 
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FREQUENCY TIME OF 
VIBRATION 

(HZ) (MINS) 

480 35 

240 69 

120 139 

60 153 

30 556 

TABLE 6.1 VIBRATION FREQUENCIES AND VIBRATION 

--------- TIMES OF THE PERSPEX SAMPLES 

TEST NUM3ER OF 
ACCELEROMETERS 

FREQUENCIES 
REQUIRED 
OR RANGE (HZ) 

NUMBER OF 
TIMES THE 
TESTS WERE 
REPEATED 

a 1 4 4 

b 2 4 4 

c 2 5 4 

d 3 6 4 

e 4 RANGE 40-500 2 

f 4 RANGE 40-500 2 

9 5 RANGE 40-500 2 

h 6 RANGE 40-500 2 

i 6 RANGE 40-500 2 

TABLE 6.2 LISTS OF SINE WAVE EXCITATION TESTS 



181 

MODE 
NUMBER 

AVERAGE 
FREQUENCY 

(HZ) 

NUMBER OF 
RESULT USED 
TC CALCULATE 
THE AVERAGES 

MODE 
SHAPES 

1 40.9 26 1st BENDING 

2 53.9 26 Ist TORSION 

3 131.1 18 2nd BENDING 

4 172.5 17 2nd TORSION 

5 229.1 10 1st CROSS - BENDING 

-5 249.7 6 

7 269.0 7 

5 302.54 10 

TABLE 6.3 AVERAGE NATURAL FREQUENCIES (HZ) 

NODE 
NUMBER 

FREQUENCY 
(HZ) 

1 40.44'+ 

2 56.069 

3 144.35 

4 209.975 

5 251.538 

6 308.413 

7 341-225 

8 382.631 

9 420.913 

TABLE 6.4 RANDOM VIBRATION RESULTS 
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MODE 
NUMBER 

FREQUENCY 
(HZ) 

MODE SHAPE 

1. 41.225 1ST BENDING 

2 60.756 1ST TORSION 

3 143.255 2ND BENDING 

4 221-694 1ST CROSS SENDING 

5 279.506 3RD BENDING 

6 291.225 

7 303.413 

8 331.35 3RD TORSION 

9 416.225 

10 467.788 

TABLE 6.5 BRIDGE MEASURED NATURAL FREQUENCIES (HZ) 

--------- USING THE MORE ACCURATE FREQUENCY RANGES 
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DIFFERENT VALUES OF DAMPING RATIO 
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3MODEL BRIDGE 

ACCELEROMETERS 

-1 

---_j 
VIBRATOR 

-SMALL DIAMETER RODS 

LARGE DIAMETER RODS 

FIGURE 6.12 CONNECTOR BETWEEN MODEL BRIDGE AND VIBRATOR 
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LONGITUDINAL BENDING 

TORSION 

CROSS BENDING 

FIGURE 6.13 2-D STRUCTURAL MODES SHAPES 
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FIGURE 6.24 PINNED END BEARING 

FIGURE 6.25 ROLLER END BEARING 
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FIGURE 6.26 SINE WAVE APPARATUS 

Tý 
FIGURE 6.27 RANDOM WAVE APPARATUS 
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CHAPTER 7 RESPONSE OF MODEL BRIDGE DUE-TO STRUCTURAL CHANGES 

7.1 Introduction 

To test the hypothesis that the measurement of the direction and 

magnitude of changes in individual natural frequencies in a bridge 

structure can be used to predict the location, nature and magnitude of 

changes in structural form that have caused the shifts in the natural 
frequencies, a systematic laboratory study was carried out. The perspex 

model bridge described in chapter 6 formed the basis for this study and 

was monitored for dynamic response using the simple random excitation 

techniques, section 6.5.2, developed during the commissioning of the 

model and test rig. 

In the earlier discussion in section 6.2.2. a very wide range of effects 

was identified which, through changes in stiffness and/or mass, will 

result in changes in dynamic response in a numerical model or in the real 

structure. In addition, practical monitoring of structures has indicated 

other changes in the configurations of structures which should not at 

first order level change stiffness or mass, but which do in fact result 

in appreciable changes in dynamic response, i. e. secord order changes. 

Thermal movements, for example associated with the annual temperature 

cycle have been correlated against appreciable cyclic changes in dynamic 

response by Structural Monitoring Limited (Ref. 27). The choice of a 

laboratory study on a perspex model meant that not all of the real 

structural changes could be investigated. In addition, limitations on 

time meant that the investigation had to be restricted to only a few 

different effects chosen to span the range. Changes in the rotational 

and translational degrees of freedom at the model support points were 

chosen to study the effects of local changes in stiffness. Vertical 

differential movements of the support points were chosen to look at the 

changes in dynamic response associated with a second order change. The 

degree of shear connection between the plate desk and longitudinal 

stiffening beams was chosen to study the effect of an overall change in 

stiffness. 

For each of these effects the magnitude of the change in structural form 

was quantified through static laboratory tests. 
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A comprehensive analytical study, was carried out to correlate these 
changes in structural form with changes in natural frequency using the 
subspace iteration method. 

Finally the correlation was investigated between the experimental and 

numerical modelling results in order to assess the potential of dynamic 

monitoring for measuring the structural integrity of bridge decks. 

7.2 The Computer Model for Dynamic Analysis 

The bridge model structure was modelled as a stiffened plate. The bridge 
deck was modelled with 112 hybrid plate bending elements, and the bridge 

supporting beams and cross beams were modelled with 59 eccentrically 

connected beam elements, giving a total number of 475 degrees of 
freedom. The model support points were modelled with four vertical 

springs of stiffness equal to 1x1030N/mm2. 

During the calibration of the calculated natural frequencies of the model 
bridge, it was found that the vibrator mechanism had to be included in 

the numerical model, since comparison was not achieved if the effect of 
the mechanism was neglected. The mechanism was modelled by using two 

small vertical springs of stiffness equal to lx103N/mm2 at their 

respective locations. See Figure (7.1). 

Using the computer model as described above the first 20 natural 
frequencies were calculated with the results given in Table 7.1; their 

corresponding mode shapes are given in Figure (7.2). The correlations 
between the computed and measured natural frequencies of the model bridge 

are given in Table 7.2. From this table it can be seen that correlation 

was satisfactory for the lower frequencies, but that very little 

correlation was found for the higher frequencies. Also for a number of 
the lower frequencies, i. e. modes 3,5,7,8,9, no correlation between the 

theoretical and experimental modes was found. Modes 3,5,7,8,9, were not 

predominant in the measured random vibration tests when the vibrator was 

connected at location (a) Figure (6.20). 
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The reason for these differences could be attributed to the method of 

vibration and/or the location of the vibrator, since the majority of the 

missing modes are associated with longitudinal bending, indicating that 

the vibration mechanism, which was placed at the quarter span prevented 
the structure from vibrating naturally in the higher longitudinal modes. 
It also can be seen that the 1st and 2nd torsional modes of vibration 
found experimentally were higher than the calculated modes, indicating 

that the vibration mechanism was affecting the overall stiffness of the 

model bridge. 

7.3 The Model Bridge Changes 

The aim of this section was to seek the evidence required to prove that 

small changes in structural form affect the structural natural 
frequencies. The changes applied to the model bridge fall into three 

categories, as mentioned before, with 5 changes associated with 

restraining the rotational and translational movement of the models 
boundary conditions, 6 changes associated with vertical differential 

displacement of the models boundary conditions, and 2 changes associated 

with loss of shear connection. In total thirteen different changes were 
introduced into the model bridge and Table 7.3 gives a complete list of 
these changes. 

In order to assess what the above structural changes had on the global 

stiffness of the model bridge, simple static tests were carried out. 
These measurements were carried out after all the dynamic tests, with the 

isolation springs and vibration mechanism removed. Loads were applied as 

a central line load in increments of 50N up to 500N, then unloaded with 
the deflection measured at three locations across the model, see Figure 

7.3. Hence changes in stiffness at an arbitrary point, i. e. the model's 

centre line, can be calculated from the load deflection curves, see 
Figure 7.4 for an example. 

The original stiffness of the bridge was measured before and after all 
the changes in stiffness were applied to the model. The difference 

between each set of two successive stiffness measurement was 

approximately 3%. This difference could be attributed to errors in 

displacement measurement (measured to with ± 0.01mm) or more likely due 

to creep in the perspex model. 
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7.3.1 Changes in Rotation and Translation Constraints at the Support 

Points 

) 1 Rotation in the pinned end was constrained : This was achieved 
by using the grub screws in the perspex bridge and in the support 
brackets, hence causing the bearings to be completely fixed at a 

single point, see Figure (6.6) 

ii) Translation in the roller end was constrained : This was achieved 
by using the metal blocks and the black bolts in the supports 
brackets, hence preventing the bearing from translating, at a 

single point, see Figure (6.7). 

iii) Rotation in the roller end was constrained : This was achieved 
by removing the black bolts in the metal blocks and by using the 

grub screws in the perspex bridge, hence rotation was prevented 

at a single point, see Figure (6.7). 

) iv Rotation and translation in the roller end were both constrained 
by using a combination of (ii) and (iii) above. 

v) The final change was to constrain all the model's bearings. 

From the static measurement load deflection curves it was deduced that 

the following changes in stiffness occurred for each of the given 

structural change. 

i) By fixing one of the model bridge roller bearings in rotation the 

stiffness is increased by 3.2% 

ii) By fixing one of the model bridge roller bearings in translation 

the stiffness is increased by 11.7% 

iii) By fixing both translation and rotation of one of the roller 
bearings stiffness increased by 11.9% 

iv) By fixing the rotation of one of the pinned end the stiffness is 

increased by 3.5% 

v) By fixing all the models bearings the stiffness is increased by 

18.8% 
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The above results are given in Table (7.4). 

7.3.2 Differential Displacement Changes 

6 studies were carried out in this exercise, which was subdivided into 

two parts. The first part was to apply differential displacement to one 
of the pinned bearings, and the second part was to apply differential 

displacement to one of the roller bearings. These two parts were carried 
out to see what effects, if any, the bearings types had on the 
differential displacement. The differential displacement was achieved by 

placing different thickness of metal skims under each bearing hence 

causing an effective differential displacement of bearings. Three 
different levels of differential displacement were applied at each 
bearing type, i. e. displacements of 1mm, 2mm, 3mm. From the static 

measurement load deflection curves it was deduced that the following 

changes in stiffness occurred for the given structural changes 

i) Differential displacement of the roller end : 

lmm differential displacement causes a decrease in stiffness of 3.4% 

2mm differential displacement causes a decrease in stiffness of 4.4% 

3mm differential displacement causes a decrease in stiffness of 5.5% 

ii) Differential displacement of the pinned end. 

1mm differential displacement caused a , decrease in stiffness of 2.6% 

2mm differential displacement caused a decrease in stiffness of 2.0% 

3mm differential displacement caused a decrease in stiffness of 2.2% 

The above results are given in Table 7.4. 

One interesting point noted from this group of static measurements is 

that the structural change increased the torsional stiffness of the 

structure. In this case if the individual deflections are studied, i. e. 
dual gauges 1,2,3 Figure 7.3, and the changes in stiffness at each gauge 
is calculated, it is noted that the variation in stiffness of the two 

outer gauges was less than the total global variation, denoting an 
increase in torsional stiffness, Table 7.5, hence causing the hiccup in 

the changes in global stiffness for differential displacement at the 

pinned end bearing. 
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7.3.3 Loss of Shear Connection Changes 

Two studies were carried out. in this exercise by removing the screws 

t connecting the perspex I-beams to the perspex deck. The first change was 

to remove every second screw connecting one of the longitudinal beams to 

the deck; the second change was to remove every second screw connecting 
both longitudinal beams to the deck. 

From the static measurement load deflection curves it was deduced that 

50% reduction in shear connection for one stiffening beam, reduced the 

overall stiffness by 2%, and the torsional stiffness was also noted to be 

reduced as expected. In the case of the reduction in shear connection 
for both stiffening beams, the overall stiffness was reduced by 7.9%. 

The above results are given in Table 7.4 

7.3.4 Results 

The effects which the structural changes had on the model bridge's 

measured natural frequencies are given in Table 7.6. For ease of study 

these results have also been plotted in the form of four graphs, In 

these graphs frequency is plotted against change in structural 

configuration, owing to the figures scales and the small variation in the 

natural frequencies due to a structural change, the curves may look 

horizontal, and the results are given in the following figures. 

Figure 7.5 restraint in boundary conditions 

Figure 7.6 differential displacement of a pinned support 

Figure 7.7 differential displacement of a roller support 

Figure 7.8 loss of shear connection between the stiffening beams and 

the bridge deck 

Owing to the method of excitation and/or the method of frequency 

extraction the results given in Table 7.6 and Figures (7.5,7.6,7.7, 

7.8) have omissions. For every experimental change a complete set of 

frequencies was not found. 
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7.4 
_ 

The Model Bridge Computer Study 

The model changes given above could not all be simulated correctly, since 
the computer model was a plate analysis, i. e. 2-dimensional model-, with 3 

degrees-of freedoms per mode, i. e. Rx, Ry, z, whereas the model had 6 

degrees of freedom, i. e. x, y, z, Rx, Ry, Rz. A study, as far as possible 

similar to that of the experimental changes was carried out as follows 

a. changes to rotational boundary conditions were simulated by 

introducing varying rotational stiffnesses at the supports. 

b. differential displacement was simulated by varying the vertical 

support stiffness. 

c. the effect of loss of shear connection was carried out as with 
the Westerhouse bridge study given in chapter 5. 

The above changes in the computer model were split into six sections; 

a) varying rotational stiffness of a pinned end; from being free to 

rotate to completely fixed, by adding a rotation spring and by 

incrementing the spring stiffness by a factor of lx105N/mm2 from 

zero stiffness to 1x1030N/mm2 

b) varying rotational stiffness of a roller end; from being free to 

rotate to completely fixed by adding a rotation spring and by 

incrementing the spring stiffness by a factor of lxlO5N/mm2 from 

zero stiffness to 1x1030N/mm2 

c) varying vertical stiffness of a pinned end from a spring of 

stiffness of 1x1030N/mm2 to lxlO5N/mm2 by incrementing the 

stiffness by a factor of lx105N/mm2 

d) varying vertical stiffness of a roller end from a spring of 

stiffness of 1x1030N/mm2 to 1x1ON/mm2' 

e) fixing all boundary conditions 

f) reducing shear connection along the interface between the plate 

and the stiffening beams. This was achieved by reducing the 
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eccenticity of every second beam element to zero as carried out 
for the Westerhouse bridge study given in Chapter 5. 

Note : the pinned and roller ends were modelled separately because the 

finite element model included the stiffness of the vibrator mechanism. 

Table 7.7 gives a complete list of the structural changes. The results 
from the above study are given in Table 7.8. This table is subdivided 
into five sections : 

a. rotational stiffness of the pinned end 
b. rotational stiffness of the roller end 

c. vertical stiffness of the pinned end 
d. vertical stiffness of the roller end 

e. fixed all boundary conditions and the reductions in shear 

connection 

To assess what effect the above computer changes had on stiffness, a 

static analysis of the dynamic model was carried out for each change. 

Stiffness is defined here as the central deflection when a transverse 

line load of magnitude unity acts at the centre of the span. The results 

of this static study are given in table 7.9. 

7.5 Discussion of the Results 

The discussion of the results will be divided into three sections 

7.5.1 Experimental Results 

7.5.1.1 Restraints'of the Boundary Conditions 

From Table 7.6 and Figure 7.5 it can be seen that a large majority of the 

frequencies show random variation. The only frequencies which show any 

consistent change with the structural changes are the 1st, 2nd, 7-rd and 

10th natural frequencies. If the above frequencies are studied more 

closely, as given in Table 7.10, in general the following can be 

concluded : 
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ii) 

The 1st and 10th natural frequencies vary accordingly to change 
in global stiffness 
The 7th natural frequency shows a general shift denoting the 
boundary conditions have been affected 

iii) The 2nd, natural frequency shows a general shift only when the 

rotational boundary conditions were affected. 

7.5.1.2 Differential Displacement of the Pinned End 

From Table 7.6 and Figure 7.6 it can be seen that a large majority of the 
frequencies show random variation. The only frequencies which show any 

consistent change with the structural changes are the 2nd, 4th, 5th, and 
7th natural frequencies. If the above frequencies are studied more 

closely, as given in Table 7.11, in general the following can be 

concluded. 

i) 4th, 5th, and 7th natural frequencies vary with changes in global 
stiffness 

ii) 2nd natural frequency variation is consistent with the previous 

comments : as the differential displacement increases the model 
torsional stiffness increases, and this has been confirmed since 

with the 2nd natural frequency, the first torsional mode 
increases from a reduced value for small displacements, then 

increases as the displacement increases. 

7.5.1.3 Differential Displacement of the Roller End 

From Table 7.6 and Figure 7.7 the random effects of the results are again 

very pronounced with only one natural frequency, the 3rd mode showing any 
form of consistent change. If the above frequency is studied more 

closely, as given in Table 7.12 in general it can be seen that this 

natural frequency varies according to the change in global stiffness. 

7.5.1.4 Shear Connection Changes 

From Table 7.6 and Figure 7.8 it can be seen that the results are 
incomplete, but 5 of the natural frequencies show changes associated with 
the applied changed in stiffness (i. e. modes 1,2,6,7,10). If the above 
frequencies are studied more closely as given in Table 7.13. In general 
the following can be concluded : 
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The 1st natural frequency varies according to the changes in 

global stiffness 
ii) The remaining four natural frequencies have had a greater effect 

on the shift in frequency for removal of shear connection in one 
beam, ' i. e. for reducing the torsional stiffness. It is 

interesting to note, from Table 7.2 that the affected frequencies 

are all associated with torsional or cross bending modes. 

7.5.1.5 General Discussion 

In general the results were disappointing but there were indications that 

at lower frequencies there was some consistent increase in natural 
frequency associated with an increase in stiffness. The results also 

support the proposition that different types of changes cause different 

effects in different natural frequencies, 

e. g. Restraint of the boundary conditions affected 1,2,7,10 modes 
Differential displacement of a pinned end affected 2,4,5,7 modes 
Differential displacement of the roller end affected 3 modes 
Shear connection affected 1,2,6,7,10 modes 

The above examples do indicate that the method described in chapter 6 

could well be a useful one for detecting structural changes in model 
bridges. Also the percentage changes in natural frequencies, were 

affected to different extents for different types of changes, and values 

of stiffness as follows, i. e. 

i) Boundary conditions showed a maximum natural frequency increase 

of 13.2% in the ist mode for a global increase in stiffness of 
18.8% from the static measurements. 

ii) Differential displacement of the pinned end showed a maximum 

natural frequency decrease of 8.7% in the 7th mode for a global 
decrease in stiffness of 2.6% from the static measurements 

iii) Loss of shear connection showed a maximum natural frequency 

decrease of 8.1% in the 6th mode for a global decrease in 

stiffness of 7.9% from the static measurements. 



Finally, it can be concluded from the results for the four types of 
structural changes in general, that as the structural stiffnesses 
increase the natural frequencies increase, and as the structural 

stiffnesses decrease the natural frequencies decrease. 

The above results illustrate a problem that arose during each experiment 
and that is that a consistent number of natural frequencies was not 
found. This could be attributed to the method of vibration or possibly 
to the randomness of the frequency extraction method given in chapter 6. 
The reasons for the randomness of the results could be due to the fact 

that the spectral density of the accelerometer signals at higher 
frequencies, see Figure 6.18 were low, and of course points of resonance 
were deduced from these spectra density curves. 

The above results have shown up a number of interesting points associated 

with the changes in natural frequencies caused by the changes in 

structural stiffness. 

i) Boundary conditions In general the shifts in natural 
frequencies were according to the shifts in stiffness, but with 
certain frequencies affected in different ways, i. e. in the 2nd 

natural frequency, the first torsional mode, was affected most 
when rotational stiffness of the bearing was increased. 

ii) Differential Displacement of the pinned end : In this case the 

results showed two interesting points. The first was that the 
displacement caused a decrease in bending stiffness, and secondly 
the displacement caused an increase in torsional stiffness, 
denoting that twisting of the pinned bearing had occurred. 

iii) Differential displacement of the roller end : In this case the 

results showed that in general the structural change has very 
little effect on the structural natural frequencies 

iv ) Reduction in shear connection : In this case the results showed 
that this structural change affects both torsional and cross 
bending modes of the structure. The effect is more pronounced 

when the effect is unsymmetrical. 
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So in general it may be-concluded that : 

i) If bending modes show an increase in stiffness then some form of 
bearing fixity has occurred. 

ii) If this is a reduction of the torsional and cross bending modes 
then some form of loss of shear connection has occurred. 

iii) If bending modes show a decrease with an associated trosional 

stiffness increase, i. e. a small decrease in torsional natural 
frequencies, then some form of differential displacement of 
pinned bearing has occurred. 

7.5.2 Computer Dynamic Model Results 

7.5.2.1 Rotational Stiffness Variation 

As mentioned before rotational stiffnesses were introduced to both the 

pinned and roller bearing ends to see if the vibrator mechanism had any 

effect. It can be seen from Table 7.8 that the mechanism does affect the 

2-D dynamic model. It also can be seen from Table 7.8 that changes in 

natural frequencies above the 6th mode are insignificant. 

If the results from introducing a rotational stiffness are studied more 

closely as in table 7.14 it can be concluded 

i) for both the pinned and roller ends when the stiffness of the 

springs increased above 1x1010N/mm2 any further increase has no 

effect on the model's response. 

ii) when bearing fixity has occurred, the second mode of vibration, 
i. e. the first torsional mode has the largest shift, i. e. 12.1% 

increase for a 25.1% increase in stiffness. 

If the results from fixing all bearings are studied, Table 7.15, they 

show a much greater shift in natural frequencies, but in this case the 

first mode shows the greatest increase of. 62.1% for an increase of 

stiffness of 105.6% 



223 

7.5.2.2 Vertical Stiffness Variation 

As with the rotation stiffness the effect of the mechanism has had an 

effect. If the results are studied closely, as in Table 7.16 and Table 

7.8 it can be concluded : 

i) For both the pinned and roller ends the response of the model is 

not affected until the vertical springs stiffness is reduced to 
below 1x1010N/mm2, as with the bearings study. 

ii) The percentage change reduces to less than 1% for natural 
frequencies greater than the 6th mode. 

iii) The reduction in vertical bearing stiffness has a more pronounced 

effect on the bending modes, i. e. modes 1,3,5 with much reduced 

effect on the torsional and cross bending modes, i. e. modes 2,4,6. 

7.5.2.3 Reduction in Shear Connection 

From Table 7.8 and Table 7.17 it can be seen, unlike the other studies, 

every natural frequency was affected. If Table 7.17 is studied, it can 
be seen that reduction in shear connection for one beam, has a greater 

effect on the bending modes, whereas when reduction is applied to both 

beams, the effect is greatest on the torsional and cross bending modes. 

7.5.2.4 General Discussion 

The above results have shown a number of interesting points associated 

with changes in natural frequencies caused by the changes applied to the 

numerical dynamic model. In general it may be concluded that : 

i) If there is a shift in all frequencies and it is noted that the 

decrease is greatest in torsional modes, then some reduction in 

shear connection has occurred. 

ii) If there is large decrease in bending modes associated with a 

smaller decrease in torsional modes, then there has been a 

reduction in bearings vertical stiffness 
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iii) If the shifts in frequencies are limited to the lower ones, i. e. 
ist and 2nd, with the greatest effect on the torsional modes then 

some form of boundary fixity has occurred. 

7.5.3 Comparison of the computed and measured natural frequencies 

From the above discussion of results for the measured natural frequencies 

of the bridge model and the results of the bridge calculated natural 
frequencies, very little common variation was shown. Also from the 

static studies it can be seen that the variation in stiffness between the 

two methods of frequency calculation was large. 

Comparison for each of the three types of structural change: 

i) changes in boundary conditions 

From the dynamic measurement studies it was concluded that if 

some form of bearing fixity has occurred, then the bending modes 

would show an increase in stiffness, whereas if bearing fixity 

occurs in the dynamic numerial model then the first two natural 
frequencies only show any considerable change with the first 

bending mode showing the greatest increase. 

The above disagreement can be illustrated by the changes in the 

model's stiffness for different degrees of boundary fixity. 

e. g. if all boundary conditions are fixed then the model bridge 

shows an increase of stiffness of 18.8%, whereas the numerical 
dynamic model shows an increase in the first natural frequency of 

105.6%. The large discrepancies could be due to the fact that 

the numerical model did not take into account any form of bearing 

friction, but this would not change the numerical models general 

conclusion of only affecting the first two modes of vibration. 

One interesting point the static measurements' showed was that 

fixing the translation bearing movement affected stiffness by 

11.7% and this was far greater than that which occurred when 
fixing rotation, 3.5% for pinned bearings and 3.2% for roller 
bearings. This degree of freedom was not included in the dynamic 

numerical r\ckel 
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Another point that should be noted here is that the position of 
the boundary conditions in relationship to the models neutral 
axis is different in the two models. i. e. in the dynamic finite 

element model the boundary conditions are at the centre line of 
the plate elements and-- in the physical model the boundary 

conditions are at the centre line of the stiffening beams. 

ii) changes in boundary conditions 

From the dynamic measurements studies it was concluded that if 

some form of differential displacement has occurred at a fixed 
bearing then bending modes show a decrease with an associated 

small torsional decrease and if some form of bearing vertical 

stiffness has accurred then there is a large decrease in bending 

modes associated with smaller decrease in torsional modes. 

The above two separate conclusions agree, but comparison cannot 
be made since the two natural frequencies which showed the 

greatest shift (i. e. modes 3,5) were not recorded during the 

original measurements of the unchanged model. These two modes 

were detected during the differential displacement -measurements 
and they also show large shift compared to other changes when 
detected. Hence it could be stated that this type of structural 

change can be modelled in this way in a 2-D dynamic finite 

element idealisation but with the vertical stiffness varied 
between 1x 1010 n/m2 to zero for different levels of 
displacement. 

iii) Changes in shear connections 

From the dynamic measurements studies it was concluded that if 

some form of loss of shear connection has occurred then there is 

a reduction of the torsional and cross bending modes, and if a 
loss of shear connection occurs in the dynamic numerical model 
then there is a decrease in all frequencies, with greater shift 
in torsional modes. 
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Again the above two-separate conclusions seem to agree, but again 

comparison cannot be made since the dynamic numerical model shows 

a reduction in stiffness of 34.7% whereas the model bridge showed 

a reduction in stiffness of 7.9%. If the numerical frequencies 

are scaled, then the same trend was shown with the measured 
frequency. This was checked by adjusting the eccentricity of the 

shear connections in the numerical model i. e.. a reduction in 

eccentraty to produce a reduction in stiffness of 6.1%. The 

results are given in Table 7.18. These results show that lttle 

correlation was found. 

This study gave hope that the method would work, but after 
further study i. e. on expanding the calculated natural 
frequencies data bank, little correlation was found, denoting 

that the physical structural change in the model bridge had been 

modelled incorrectly in the dynamic finite element model. 

7.6 Conclusion 

From the above discussions it is obvious that the results are very 
disappointing. The disappointing results can be attributed to a number 

of causes in both the natural frequencies response measurement studies 

and the calculation of the natural frequencies through the use of finite 

elements. 

Response measurement studies :a complete set of natural frequencies for 

the unchanged model was not found. Also there was no consistency in the 

number of natural frequencies recorded for each structural change. The 

above two problems could possibly be resolved by a more extensive 
investigation into the number of different vibration mechanisms, and 
their location on the model bridge, eg. using a light vibration system, 

with a low stiffness, since the above problems were caused by the large 

stiffness of the system used. 

Another problem which arose during this study was that the model bridge 

was (tcgd stiff. This was very noticeable in the model response spectra, 
Figure 6.18, since at higher frequencies it was very difficult to detect 

points of resonance hence natural frequencies. With the above in mind it 
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now seems that the applied structural changes did not alter the stiffness 
sufficiently to detect any shift in natural frequencies, since changes in 
higher modes of response were undetectable from the spectral curves. 
Owing to the simple form of the bridge model, and the results recorded, 
the following structural changes could possibly improve the situations. 

a) progressive loss of shear connection from one end 
b) completely removing a bearing 

c) introducing diffferent materials for the bridge deck 

d) cutting slots in the bridge deck. 

The first two above possible improvements, were studied, to find what 

effect they would have on the models structural stiffness by carring out 
further static measurements tests. 

It was found that if all the shear connections of one beam were removed 
from the centre line to one pinned end bearing a 4.5% reduction in 

overall stiffness occurred. The value is below the level recommended by 

Structural Monitoring Limited (Ref 11). In the case of removing a 
bearing, one roller bearing'was removed, and the change in stiffness was 

seen to decrease by 77.5%. This value is very uncertain since it was 

noticed that the model was unstable with 3 supports. In general if 

different structural changes were applied to the model the situation 

would not improve, since the structure was too stiff, and this situation 

was not improved by the increase in tonsional stiffness caused by the 

vibrator mechanism. Hence a more flexible structure is required. 

Finite element studies : The above numerical studies have shown the 

following deficiency in the dynamic numerical model. 

i) The comparison between the finite element model and the measured 

natural frequencies, table 7.2 is satisfactory for the lower 

frequencies, but there is little correlation found for the higher 

frequencies. 

ii) Since most of the changes were associated with boundary 

conditions, the changes could not be modelled correctly. 



iii) Because of (ii) above the method described in section one of this 

thesis produced results which would introduce another level of 

uncertainty. The method given in section one was carried out so 
that additional information on the savings of computer time when 

restart analysis is used, could be determined. 

Hence the computer model constructed was too unsophisticated for the 

model changes, but in this study a 2-D plate bending approach was 
followed, since this was the approach of Structral Monitoring Limited. 

It has been found that the structural changes applied to the above 
dynamic numerical model could not be modelled correctly i. e. 
translational degrees of freedom. A 3-D model could possibily be used, 
but by using such models, there would be an increase in computer cost by 

more than twofold. It was however noted that any structural change, if 

small, does not have much effect on natural frequencies above the 6th 

mode and therefore by limiting the computer study to say 6 modes, 

computer costs would be contained. Another approach would be to use a 

mixed finite element formulation i. e. generally a 2-D model with points 

of interest i. e. the supports being modelled in 3-D. 

In general the study carried out in this chapter has showen a number of 

points. 

The measured frequencies showed a number of trends i. e. 

i) If bending modes show an increase in stiffness then some form of 
bearing fixity has occurred. 

ii) If there is a reduction of the torsional and cross bending modes 
them some form of loss of shear connection has occurred. 

iii) If bending modes show a decrease with an associated torsional 

stiffness increase, i. e. a small decrease in torsional natural 
frequencies, then some form of differential displacement of 

pinned bearing has occurred. 

The above trends denotes that the method shows signs of working, and 
hence merits further investigation. 



229 

The calculated frequencies showed a number of trends i. e. 

i) If there is a shift in all frequencies and it is noted that the 

decrease is greatest in torsional modes, then some reduction in 

shear connection has accurred. 

ii) If there is large decrease in bending modes associated with a 

smaller decrease in torsional modes, then there has been a 

reduction in bearings vertical stiffness. 

iii) If the shifts in frequencies are limited to the lower ones i. e. 
1st and 2nd, with the greatest effect on the torsional modes then 

some form of boundary fixity has accurred. 

This study showed that this field needs much further investigation into 

the modelling of structural changes. 
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M00E 
NUM3ER 

FREQUENCY 
(HZ) 

1 41 22 

2 50.27 

3 122.6 

4 145.0 

5 206.7 

6 221.3 

7 223.3 

3 238.9 

9 282.5 

10 325.6 

11 343.7 

12 361.5 

13 367.3 

14 387.6 

15 390.4 

16 400.5 

17 40 2.2 

13 446.0 

19 473.0 

20 481.9 

TABLE 7.1 BRIDGE FINITE ELEMENT MODEL 
--------- NATURAL FREQUENCIES (HZ) 



231 

MODE COMPUTER 
FREQUENCY 

COMPUTER 
MODE SHAPE 

MEASURED 
FREQUENCY 

MEASURED 
MODE SHAPE 

1 41.22 lst SENDING 41.2 1st BENDING 

2 56.27 1st TORSION 60.7 1"st TORSION 

3 122.6 2nd BENDING ---- 

4 1+5.0 2nd TORSION 148.2 2nd TORSION 

5 206.7 3rd BENDING ---- 

6 221.3 1st CROSS BEND. 221.6 1st CROSS BEND. 

7 228.8 2nd CROSS BEND. ---- 

a 238.9 3rd TORSION ---- 

9 232.5 4th SENDING 279.5 

10 325.6 4th TORSION 331.8 3rd TORSION 

11 343.7 5th BENDING ---- 

12 361.5 3rd CROSS BEND. ---- 

13 367.3 4th CROSS BEND. ---- ---- 

14 337.6 5th TORSION ---- 

15 390.4 5th CROSS BEND. ---- ---- 

16 400.6 6th BENDING ---- 

17 402.2 6th TORSION ---- 

13 446.0 7th BENDING ---- 

19 473.0 7th TORSION ---- 

20 431.9 6th CROSS BEND. ---- ---- 

TA3LE 7.2 COMPARSION BETWEEN COMPUTED AND MEASURED RESPONSE 
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CHANGE 
NUMBER 

CHANGE* 

1 PINNED END -FIX ROTATION 

2 ROLLER END -FIX TRANSLATION 

3 ROLLER END -FIX TRANSLATION AND ROTATION 

4 ROLLER END -FIX ROTATION 

5 FIX ALL BOUNDARY CONDITIONS 

6 DIFFERENTIAL DISPLACEMENT OF ONE PINNED END BY 1mm 

7 DIFFERENTIAL DISPLACEMENT OF ONE PINNED ENO BY 2mm 

$ DIFFERENTIAL DISPLACEMENT OF ONE PINNED ENO BY 3mm 

9 DIFFERENTIAL DISPLACEMENT OF ONE ROLLER END 3Y 1mm 

13 DIFFERENTIAL DISPLACEMENT OF ONE ROLLER END BY 2mm 

11 DIFFERENTIAL DISPLACEMENT OF ONE ROLLER END 3Y 3mm 

12 REMOVE 50: OF SMEAR CONNECTORS OF ONE BE AM 

13 REMOVE 50Z OF SHEAR CONNECTORS OF BOTH BEAMS 

TABLE 7.3 TABLE OF MODEL CHANGES 
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DISPLACEMENT DIAL DAIL DAIL AVERAGE 
GAUGE GAUGE GAUGE 

1 2 3 

1mm 0.7% -5.3% -2.8% -2.6% 

2mm 0.2% -3.27. -2.9Z -2.0% 

3mm -0.17. -3.2% -0.4% -2.2% 

-VE DENOTES DECREASE IN STIFFNESS 

TABLE 7.5 VARIATION OF STIFFNESS ACROSS 3RIDGE DUE TO 
--------- OIFFERENTAL DISPLACEMENT OF A PINNED BEARING 
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DEFECT 
NUMBER 

DEFECT 

1 INTRODUCE ROTATIONAL 
STIFFNESS OF 1.005 
AT ONE OF THE PINNED 
ENDS 

2 ditto 1.000 
3 ditto 1. OE15 
4 ditto 1. OEZO 
5 ditto 1.0E25 
6 ditto 1. OE30 

7 INTRODUCE ROTATIONAL 
STIFFNESS OF 1. OE05 
AT ONE OF THE ROLLER 
ENDS 

8 ditto 1. OE10 
9 ditto 1.0E15 
10 ditto 1.0=_20 
11 ditto 1. OE25 
12 ditto 1.0E30 

13 FIX ALL B OUNDARY COND ITIONS 

14 VERTICAL STIFFNESS 1.0E05 
OF ONE OF THE PINNED 
ENDS 

15 ditto 1. OE10 
15 ditto 1. OE15 
17 ditto 1.0E20 
13 ditto 1. OE25 
19 ditto 1. OE30 

20 VERTERAL STIFFNESS 1 . 0;: 05 
OF ONE OF THE ROLLER 
ENDS 

21 ditto 1.000 
22 ditto 1.0E15 
23 ditto 1.0220 
24 ditto 1. OE25 
25 ditto 1.0E30 

ditto 
26 REDUCE SH EAR CONNECTO RS 

IN ONE OF THE BEAMS 

27 REDUCE SH EAR CONNECTO RS 
IN 50TH BEAMS 

TABLE 7.7 COMPUTER MODEL CHANGES 
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CHANGE 
NUMBER 

CHANGE PERCENTAGE 

1 ROTATIONAL 
STIFFNESS OF 1.0E05 7.2% 
AT ONE OF THE PINNED 
ENDS 

2 ditto 1. OE10 25.1% 
3 ditto 1 . 0EE15 25.1 
4 ditto 1.0E20 25.1% 
5 ditto 1. OE25 25.1% 
6 ditto 1.0E30 25.1% 

25.1 % 
7 ROTATIONAL 

STIFFNESS OF 1. OE05 6.7% 
AT ONE OF THE ROLLER 
ENDS 

8 ditto 1. OE10 23'. 9 
9 ditto 1. OE15 23.9 
10 ditto 1. OE20 23.9 
11 ditto 1. OE25 23.9 
12 ditto 1. OE30 23.9 

13 FIX ALL BOUNDARY CONDITIONS 105.6% 

14 VERTICAL STIFFNESS 1. OE05 7.9% 
OF ONE OF THE PINNED 
ENDS 

15 ditto 1.0-=10 0.9% 
15 ditto 1. OE15 0.0% 
17 ditto 1. OE20 0.0% 
13 ditto 1. OE25 0.0% 
19 ditto 1.0E30 0.0% 

20 VERTERAL STIFFNESS 1.0E05 11.9Z% 
OF ONE OF THE ROLLER 
ENDS 

21 ditto 1. O_10 0.0% 
22 ditto 1. OE15 0.0%: 
23 ditto 1.0E20 0.0% 
24 ditto 1. OE25 0.0% 
25 ditto 1.0E30 0.0% 

ditto 0.0% 
26 REDUCE SHEAR CONNECTORS 19.3%: 

IN ONE OF THE BEAMS 

27 REDUCE SHEAR CONNECTORS 
IN BOTH BEAMS 34.7% 

TA3LE 7.9 EFFECTS ON STIFFNESS DUE TO STRUCTURE CHANGES 
--------- IN THE MODEL BRIDGE FINITE-ELEMENT MODEL- 
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MODE 
1 

MODE 
2 

INCREASE 
IN 

STIFFNESS 

PINNED. 
ROTATIONAL 
STIFFNESS 
1. O E10N/mm2 10.8% 12.1% 25.1 

PINNED 
ROTATIONAL 
STIFFNESS 
1.0E5 N/mm2 3.8% 2.5% 7.2:: 

ROLLER 
ROTATIONAL 
STIFFNESS 
1. OE10N/mm2 11.2% 12.9% 23.9% 

ROLLER 
ROTATIONAL 
STIFFNESS 
1.3E5 N/mm2 4.0% 2.7% 6.7' 

TABLE 7.14 INCREASE IN CERTAIN CALCULATED NATURAL 
---------- FREQUENCIES FOR FIXITY CF ROTATIONAL 

DEGREES OF FREEDOM 
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FIGURE 7.2 Mode Shapes 
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FIGURE 7.2 (cont) 
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FIGURE 7.2 (cont) 
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CHAPTER 8 CONCLUSION 

As stated in the introduction to this thesis the aim of this research was 
to produce a simple and cheaper method of calculating and measuring the 

response of bridge decks to traffic flow over a period of time, to detect 
if any structural changes have occurred in the structural stiffness or 
mass. 

The first objective, section one of this thesis, was to produce a simple 

and accurate method of solving the equations of motion of free vibration, 
the generalised eigenvalue problem, (i. e. equation 3.150). A number of 

methods were investigated based on the rate of change of the eigenvalue 

problem, and the reduced matrices produced by the subspace iteration 

method, and these methods are outlined in Chapter 3. One method proved 
to be very successful and is given by equations 4.2,4.4 and the 
implementation of these equations into the finte element system FLASH is 

given in Section 4.5. 

Five examples were used to test the methods stability and suitabilities 
to predict the change in natural frequency for a varied number of 

structural changes in stiffness and mass. The results of these studies 

are summarised by five figures, i. e. Figures 5.3,5.5,5.6,5.9 and 5.10. 

In general it was concluded that if a structural change in stiffness 

and/or mass was less than 40%, the method developed produced errors of 
less than 5%. 

One important factor of the method described in section 4.5 is that only 
the structural changes in stiffness and/or mass are worked on, and the 

only data input required by the program are the structural changes. The 

above two points produce great savings in computer computations, and the 

results of the savings are summarized in Table 5.15 

The second objective, section two of this thesis was to develop a simple, 

cheap and accurate method of measuring the natural frequencies of bridge 

decks, and to test the developed method capabilities against a model 
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bridge in which a number of different structural changes were applied. 
The first two of these objectives were achieved, I believe, and the 

method is based on using the simple fast fourier transform technique. 

The summary of the method developed is given in Chapter 6 Section 6.6. 

The accuracy of the method could be in doubt because of the results of 
the studies of the physical structural changes applied to the model 
bridge as described in Cahpter 7. The reasons for this doubt could be: 

i) There was no consistency in the number of natural frequencies 

recorded for each applied structural change. 

ii) The magnitude of the structural changes was possibly too low. 

One interesting point illustrated by the results, was that the method 

showed that different types of structural changes affected different 

modes of response by different accö nts i. e. if differential displacement .., C 

of a pinned end has occurred then the bending modes show a decrease with 

an associated small decrease in torsional stiffness modes. 

8.1 Future Work 

Before the method of vibration monitoring can be applied successfully in 

practice, more research has to be carried out. The further research 

could be: 

i) To induce larger changes into the model bridge to the level 

recommended by Structral Monitoring Limited or to construct a 
larger model bridge structure in which larger strctural changes 

could be applied, i. e. a more flexible structure. 

ii) To induce structural changes to a real bridge structure. 

iii) To carry out a pilot study on a real bridge structure to see if 

any structural changes occur due to wear and tear. 

iv) To carry out a detailel study into how to model small structural 

changes in finite dynamic models. 
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From the computer studies, if engineers are interested in determining the 

response of structures resulting from small changes in structural 

properties, this can only be achieved by resolving the complete equations 

of motion, and dynamic finite element analyses fall into three areas. 

i) free vibration 
ii) model methods of forced vibration 
iii) direct inti ätion schemes 

ýý. 

The above problem has been resolved and is discussed in this thesis, but 

only at present for free vibration problems. 

The solution to the second case, model methods of forced vibration, is 

first based on the calculation of the structural eigenvalues and 

eigenvectors. The eigenproblem is solved so that the "n" coupled 

equations of motion defining the structure can be uncoupled to "n" single 

equations of motion i. e. model superposition. Then the "n" single 

equations of motion are solved by the appropriate method, e. g. seismic 

analysis, steady state analysis and transient analysis, but the major 

part of the solution procedure is in calculating the structural 

eigenvalues and eigenvectors. Hence the method given in section 4.5 may 
be extended into the field of forced vibration without much complication. 

One example of the forced vibration method in which this method would be 

useful is in the field of seismic (earthquake) transient analysis. That 

is, as the earthquake passes, parts of the structure become non-linear, 
i. e. changes in the structural stiffness occur, and hence the eigenvalues 

change so that the response of the structure can be calculated much more 

effectively. 
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APPENDIX 

Al Theory of Frequency Extraction 

In this section is given briefly methods of frequency extraction 

of random signals. These methods can be split into 3 types of 
analysis. 

a) Fourier Transform 

b) Fast Fourier Transform 

c) Maximum Entropy Method 

Each method will be given in order, and finally the method of 

windowing used in the fast fourier transform will be described. 

A1.1 Fourier Transform 

Any random signal x(t) can always be expressed as an infinite 

trigometric series (i. e. Fourier Series) of the form 

x(t) = ao + al cos -Irt + a2 cos 4Tt +..... 

(1) 

+ bl sin 
2+ b2 sin 

4 71t 
+..... 

or in more compact notation 

o. o 

x(t) = ao += ak cos 
2 Tkt 

+ bk sin 
2 mkt (2) 

T 

Where T is the period of the random signal. 

ao, ak änd bk are constants and are known as FOURIER COEFFICIENTS 

and are given by 
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T/2 

ao =Tfx (t ) dt 

-T/2 

(3) 

T/2 

ak =Tfx (t) cos 
2 7Tkt dt (4) 

-T/2 

j/2 
bk =ý x (t) sin 2 Tkt dt 

-T/2 

(5) 

It can be show that if the t axis is adjusted so that ao =0 

Hence equation (2) becomes 

ao 

x(t) _ (ak cos 
2 7kt + bk sin 

2 Tkt ) (6) 
k=1 

Where the remaining coefficients ak and bk will be in general all 
different and their values may be illustrated graphically, see 
figure (Al). 

The horizontal axis is chosen to represent frequency and the 

location of the kth coefficient is 

^//- 
T (7) 

which is the frequency of the kth harmonic. The spacing between 

adjacent harmonics is 

aCJ = 
2? t 

T ($) 

As the period T increases the frequency spacing decreases and 
becomes small, and will in fact reduce to zero. Hence x(t) can 

no longer be represented as a periodic function, so it can not be 
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analysed as discrete frequency components. But the same ideas 

can be applied, hence the FOURIER SERIES becomes a FOURIER 

INTEGRAL and the FOURIER COEFFICIENTS becomes continuous 

functions of frequencies called FOURIER TRANSFORMS. 

Since the continous time series x(t) is not known, but only 

equally spaced samples are available, so the DISCRETE FOURIER 

TRANSFORMS (DFT) need to be applied. If using complex notation 

equations (4) and (5) can be combined, such that 

Xk = ak -i bk 

Hence 

(9)" 

T -i (2 V kt) 

Xk 
f 

x(t) eT dt (10) 
0 

Suppose that this continuous time series is represented by the 

discrete series (xr) r=0.1.2...... (N-1) 

where t= rn and a= T/N. The integral in equation (10) may be 

replaced, approximately, by summation i. e. 

Xk 

N-1 -i (27Tk)ro 

Xr eTp (11) 
r=o 

This amounts to assuming that the total area under the time 

series curve is given by the sum of each strip. Hence 

substituting 

T= NA into (11) gives 

N-1 -i (2 ?l kr) 

Xk =NT Xr eT 
r=o 

(12) 

which may be regarded as an approximate formula for calculating 

the coefficients of the fourier series given in equation 1. 
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- A1.2 The Fast Fourier Transform 

The fast fourier transform (FFT) is a computer algorithm for calculating 

the discrete fourier transform (DFT). In the discrete transform N2 

computer operation are required to calculate the full sequence xk but the 

FFT reduces the number of operations to N 1092 N. 

Hence the FFT offers an enormous reduction in computer operations and an 

increase in accuracy since fewer operations, produce fewer round-off 

errors. 

The FFT works by partioning the full sequence (xr) into a number of 

shorter sequences. Instead of calculating the DFT of the original 

sequence, only the DFT'S of the shorter sequences , are calculated. The 

FFT then combines these together in an ingenious way to yield the full 

DFT of (xr) . 

Suppose that (xr) r=0,1,2, .... (N-1) is the sequence shown in figure 

A2 where N is an even number and that this is partitioned into two 

shorter sequences (Yr) and (ý) as shown in figure AZ. 

where Yr =x 2r 

ýr =x 2r+1 

r=0,1,2,..... (N/2 -1) (13) 

The DFT'S of these two shorter sequencies are Yk and Zk where from 

equation (12) 

1 
N/2 -1 -i 2 71' kr 

Yk =ý 
T 5r e NT2 

r=0 

and 

N/2 -1 -i 2 'W kr 
: ii 

, ýr 
ý 

Zk = -N7-2 
r=0 

(14) 
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Now returning to the DFTof the original sequence (xr) the summation is 

rearranged into separate sums similar to those accurring in (14). 

First the old and even terms in (xr) sequence are separated to obtain 

N-1 -i 27rk 
ý Xk =1N Xr eN 

r=0 

N/2 -1 -i 2 Vr (2r )k N/2-1 

x2r eN +7- x2r +1e 
r=o 

Then substituting from (13) 

(12) 

-i 2? ý(2r + 1)k 
N (15) 

N/2-1 -i 2 7f rk -i2 77k ^'/2-ý 
Xk -N(E Yr e 

N72 +eN 
T- '/ e N/Z 

r=o r =o 

from which it can be seen that by comparing equations (16) with (13) gives 

(2 n k) 

Xk =2 (Yk +eN Zk) 

for k=0,1,2, ..... (N/2 - 1) 

(17) 

The DFT of the original sequence can therefore be obtained directly from 

the DFT's of the two half-sequences Yk and Zk according to the above 

equation (17). This is the FFT method. If the original number of 

samples N is the sequence (xr) is a power of 2 then the half-sequence 

(Yr) and (jr) may themselves be partitioned into quarter-sequences and so 

on, for more information see reference (21). 

A1.3 The Maximum Entropy Method (MEM) 

This method provides smooth, highly resolved response spectra from short 

time histories and was the method of frequency extraction used by 

Structural Monitoring Limited in their bridge deck studies. But the 

method is very complex to use, and involves large amounts of computer 
time. For discussion of the method see reference 7. 



A1.4 Pra-cti cal Application of FFT 

Windowing : this phenomenom is a practical form of taking a length of 

random signal before analysis. There are a number of forms of windowing, 

and the Hewlett Packard 3582A spectrum analysis has three types of 

windowing function, which produce different results. 

a. The FLAT TOP is optimized for minimum amplitude uncertainly. The 
frequency resolution is correspondingly by poorer than the other 

windowing functions. 

b. The UNIFORM is the result of using no time domain window 

weighting. it is'poorest in amplitude uncertainty, but is best 

in frequency certainty. 

c. The HANNING is a traditional "window" function. It offers a 

compromise between the FLAT TOP and UNIFORM functions. 

Since the Hewlett Packard spectrum analyser is a duel channel analyser, 
there are a number of functions which combine the two channels. 

a. Transfer functions : this function decides the results of each 
FFT of the two channels to produce Hk. 

i. e. Hk = 
Yk (18) 
Xk 

b. Coherence : For the duel channels, it represents the fraction of 
the system output power directly related to the imput. 

When one analysis is carried out, the question arise as to how consequent 

windows are added together, and why. The method used in this research 

was to take the square root of the sum of the squares. A number of 

windows need to be combined to smooth out small inconsistencies in the 

random signals. 
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ak 

i 

2? / '27f' ' 2'7" 
fi TT 

I 
bk 

2? 1' 27t 27r 
TTT 

Frequency of harmonic G=27fk 
T 

Frequency of harmonic A=2nk 
T 

FIGURE Al GRAPHICAL REPRESENTATION OF FOURIER COEFFICIENTS 
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FIGURE A2 PARTITIONING THE SEQUENCES ý xrl INTO TWO 
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DYNAMIC REANALYSIS 
JPA Burns, BSc(Eng), 

Atkins Research and Development, 
(formerly University of Glasgow) and 

DR Green, BSc(Eng), MSc, PhD, CEng, MlStructE, 
Department of Civil Engineering, Glasgow University 

This paper will describe algorithms by which the dynamic reanalysis of structures can be carried out 
with a minimum preparation of data and at minimum computer costs. These techniques allow the designer 
to study, on an interactive basis, those parameters in a large structural idealisation which affect the 
dynamic response. The work has practical significance in monitoring structures through response to 
random excitation for changes in structural performance, and interactive design of structures where the 
influence of properties on the dyanamic response is required, i. e. dynamic sensitivity analysis. 

The method is based on the Subspace Iteration Method developed by Bathe and Wilson in conjunctionwithucr{c 
carried out by Fox and Kapoor and is a two stage process. (Refs. 1,2). 

The first stage of the method is to carry out a complete dynamic analysis of the structure using 
subspace iteration. The working matrices from this first analysis are saved to be operated on later 
by the second stage analysis associated with changes in the original structure. These changes can 
be for example, changes in boundary conditions, elements properties (stiffness or mass) and/or removing 
or including more elements. Since only the changes to the original system need be described, data 
definition and solution for this reanalysis is such that it can be carried out on an interactive 
basis. 

This method of analysis has been incorporated into the general purpose civil engineering computer 
analysis program FLASH. Numerical results and examples will be presented to show the limits on changes 
in structural properties that are possible before a complete reanalysis of the structure is required and 
to illustrate the practical application of the technique. 

INTRODUCTION 

This paper describes alogorithms by which 
dynamic reanalysis of structures can be carried 
out with minimum preparation of data and at 
minimum computer costs. The method proposed is 
based on the subspace iteration method developed 
by Bathe and Wilson in conjunction with work 
carried out by Fox and Kapoor and is a two 

stage process (Refs. 1,2). 

PROBLEM DEFINITION 

The equation of motion for any structural system 
can be written as: 

Mii=Cü+Ku=F (1) 
in which M, C, F, are mass, damping and stiffness 
matrices, of the system respectively, and u, ü, ü 

are the system vectors of displacement, velocity 
and acceleration respectively, and finally F is 
the applied structural forces. 

If only the free vibration of the system are 
considered equation (1) can be written as: 

Mü+Ku=0 (2) 

The solution of the above differential equation 
is obtained by substituting 

u=0 sinw(t - to) (3) 

to produce the generalised eigenvalue problem: 

KO = w= Mo (a) 

in which the eigenvalues (w) gives the natural 
frequencies (fi) and the corresponding eigen- 
vectors (0) gives the vibration mode shapes 

PROBLEM SOLUTION 

In order to solve equation (4) for the p lowest 
solutions it is written as: 

K© = IM© R2 i5) 

where the columns in m, are the M-orthonormaliz-ld 
eigenvectors 01,4,2 .mp and n2 is a 
diagonal matrix containing the eigenvalues W1, 
Wi . . """""", w2,. There are a number of methods 
to solve equation (5) but the method which is 
normally used is subspace iteration (Ref. 1). 
The specific idea used in the solution is that 
the eigenvectors form an M-orthonormal basis of 
the p-dimensional least dominant subspace of the 
operations K and M. 

In the solutions q linearly independent vectors 
are iterated simultaneously where q<P. In the 
kth iteration the vectors span the q-dimensional 
subspace Ek+l and the "best" eigenvalues and 
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eigenvectors approximation are calculated using 
the Jacobi diagonalization method (Ref. 3). 

If Xi is defined as the starting iteration 
vectors, then the subspace iteration algorithm 
is defined as follows: 

For k=1,2 , ....... iterating from Ek to Ek+l 

KXk+l = 14Xk (6) 

The projected matrices of K and M on Ek+1 are 
found: 

KXk+1 = Yk 

Kk+l = X+k+l Yk 

Yk+l ° 'Oýk+l 

Mk+l = XLk+1 Yk+l 

(7) 

(8) 

(9) 

(10) 

The projected eigensystem (equation (8) and (9)) 
are solved using the Jacobi diagonalization 
method. 

Kk+1 Qk+1 = Mk+1 Qk+l n2k+1 

Hence 

n2k+1 " n2, Xk+1 ýý as kým 

(11) 

provided the starting iteration vectors X1 are 
not orthogonal to one of the required eigen- 

-vectors. 

All the solution methods have one disadvantage 
in that for any reasonable sized structure the 
computer time and hence cost is large. 

REANALYSIS 

Design engineers often would like to carry out 
dynamic sensitivity analysis but this is very 
costly. One method of reanalysis implied by 
Fox and Kapoor is based on the rate of change 
of equation (4) (Ref. 2). Rewriting equation (4) 
for ith solution: 

KOi - XiM6i =0 (14) 

(K - XjM)gi =0 (15) 

If: Fi = (K -X M) (16) 

It follows that, 

Fmi =0 (17) 

Premultiplication of equation (17) by "Ti gives: 

OT 
l 

FýDl =0 (18) 

Differentiating equation (18) with respect to 
any disturbance dj yields: 

i+ OiFi, jOi + miFiOi, ý =Q (19) 

The first and third terms of equation (19) are 
zero owing to the symmetry of Fi and equation 
(17) and hence: 

miT Fi, j mi =0 (20) 

If equation 16 is differentiated with respect to 
Sj; 

Fi, j = K, j - li M, j - ai1i M 

By combining equation (20) and (21) and using 
M-orthonormal of the eigenvectors gives: 

(21) 

ai, j = OT 
i 

[K, j - Xi M, j I Oi (22) 

A method is proposed which involves the use of 
subspace iteration and equation (22) and is a two 
stage process. The first stage of the method 
is to carry out a complete dynamic analysis of 
the structure using subspace iteration. After 
the analysis vectors Yi and Xi (from equation 
(6) - (10)) are saved to be operated on later in 
the second stage of the analysis. 

The second stage is based on projecting the 
changed matrices Mj and K, j into the subspaces 
of M and K and solving these matrices using 
equation (22). 

In mathematical form: 

Rewriting equation (7) 

KX=Y 

where the columns in X are X1, X2, ... Xp 

and Y are Y11Y2, ..... YP 

(23) 

If changes to stiffness matrix (SK) are induced, 
changes are caused in X, hence equation (22) 
becomes: 

(K + 6K)(X + 6X) =Y (24) 

KX + 6KX + KtX + 6K dX =Y (25) 

Since KX =Y and neglecting second order terms 
equation (25) becomes: 

K6X + 6KX =0 (26) 

6X = -K-15KX (27) 

Hence, 6KREDUCE = 6XTY (28) 

Rewriting equation (9), 

Y=MX 

where the columns in Y are Yi, Y2. ..... Yp 

and X are Xi, X=, ..... Yp 

(29) 

If changes are induced in the mass matrix ('M) 

l3? 
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changes are caused in Y also, hence equation 
(29) becomes: 

Y+dY="(td+6M)X 

Y+dY=MX+ dMX 

since Y= MX equation (31) becomes: 

dY = dMX 

Hence, 6MREDUCE = XTdY 

If a form of equation (22) is applied to 
equations (28) and (33) the following methods 
are produced. 

a. Changes to stiffness matrix only. 

i multiple SK by X; tKX (34) 

ii solve K6X =- SKX (35) 

(decomposition of K has already been carried 
out in the full analysis) 

iii calculate 6KREDUCE = SXT MOLD 

iv calculate the change in eigenvalues 

dai = QiTSKREDUCE Qi 

b. Changes to mass only 

i calculate 6Y = 6MX 

ii calculate 6MREDUCE = XT6Y (39) 

iii calculate the change in eigenvalue 

dai = [QiTdMREDUCE Qi]* - it 

c. Changes to both stiffness and mass matrices. 
Steps (a) and (b) are carried out and the 
results from equations (37) and (40) are 
added together. This is done for numerical 
stability. 

This method has the advantage over just 
equation (22) in that the projected matrices 
have all the properties of the eigenvalues 
under consideration, so changes in stiffness or 
mass with this method have a much more accurate 
effect on the eigenvalues, whereas equation 
(22) deals with the full matrices. 

COMPUTER IMPLEMENTATION 

This method has been incorporated into the 
general purpose civil engineering computer 
analysis program FLASH (Ref. 4). On the 
restart analysis the only data input is the 
changed structural properties; for example 
changes in boundary conditions, some or all 
element properties of stiffness or mass. 

The only restriction of changes in the 
idealisation is that the orientation of the 
degrees of freedom should not change. 

From these changes in idealisation, only the 
changes in the stiffness and mass matrices are 
generated in order to produce new Eigenvalues 
and hence natural frequencies. (30) 

To illustrate the application of the technique 
two numerical examples are given. 

(31) 

NUMERICAL EXAMPLES (32) 

Example 1: Skew Isotropic Slab (33) 

The slab given in figure 1 was analysed using 72 
quadrilateral plate bending, hybrid finite 
elements with consistent mass formulation, with 
3 degrees of freedom (Ui, Rx, Ry), giving a 
total number of. degrees of freedom of 216. For 
this computer model the first ten natural 
frequencies were calculated using subspace 
iteration and are given in table 1. 

i under restart mode using the new method 
(NEW). 

A study of the effect of a 10% change in Young's 
modulus was carried out for 2,8,18,32,50,72 
elements. This grow of change was carried out 
from joint 1 and was analysed twice. 

(36) 

ii complete subspace iteration analysis (FULL) (37) 

and an error analysis was carried out as follows: 

(38) 
% ERROR = 

fi(FULL) 
- 

fi(NEW) 
fi(FULL) 

(41) 

with the envelope of the results given in figure 
2. Figure d gives an example of the savings in data 
preparation. 

Finally figure 3 shows the percentage computer 
time saving with respect to the number of 
changed elements. 

(40) 

Example 2: Beam Element Problem 

The beam given in figure 5 was analysed using 12 
shell beam element, with consistent mass 
formulation and 6 degrees of freedom (Ux, Uy, Uzi 
Rx, R. R. ) giving a total number of degrees of 
freedom of 72. For this computer model the 
first ten natural frequencies were calculated 
using subspace iteration and are given in table 2. 

A study of the effects of one boundary condition 
was carried out, at joint 1. In the original 
analysis six springs of stiffness 1. OE10 NM were 
used to model the boundary conditions at joint 1, 

and the effect of continuously halving the 
springs stiffness on the beam's natural 
frequencies was studied. Since this is only a 
local effect only four of the natural frequencies 
were affected. As in example 1 an error analysis 
was carried out and the results are given in 
figure 6. Similar savings in data preparation 
to the previous example occur. 

Since in this study only four degrees of freedom 

were effected, and the reanalysis time was 
"constant" and table 3 gives the percentage 
computer time savings. 
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CONCLUSION NUMBER NATURAL FREQUENCY 

This paper describes a method of carrying out 
dynamic reanalysis which can study overall 
effects on a structure (example 1) or just 
local effects (example 2) with great saving in 
computer time AND data preparation, since only 
the changed structural matrices are generated. 

When localised changes are made in a 
structural idealisation the natural frequencies 
are affected in a localised way also. Example 
2 shows that this localised response is 
correctly modelled and the method can be used 
in general for dynamic sensitivity analysis. 

For example, in the solution of Inelastic 
Seismic Response Problems local changes occur 
in the stiffness matrix within each time 
increment. The dynamic sensitivity approach 
can be used here and would result in major 
reduction in solution time. 
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NUMBER NATURAL FREQUENCY 

1 0.836638 
2 0.986545 
3 2.371438 
4 3.468227 
5 4.547184 
6 5.609784 
7 7.550049 
8 8.089236 
9 10.090280 

10 10.471880 

TABLE 1. NATURAL FREQUENCIES FOR SKEW SLAB. 
0.6m 

l. i 11it! Slfi f+,.!, 111t f1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3.749775 
4.730255 
6.431323 
7.866933 
9.302883 

10.168750 
12.652850 
14.380870 
16.524640 
17.723680 

TABLE 2. NATURAL FREQUENCY FOR BEAM ELEMENT 
PROBLEM. 

OPERATION % REDUCTION IN TIME 

DATA INPUT 

STIFFNESS MATRIX 
GENERATION 

SOLUTION 

TOTAL 

40.5 

44.8 

84.8 

78.7 

TABLE 3. PERCENTAGE COMPUTER TIME SAVING FOR 
BEAM ELEMENT PROBLEM. 

BOUNDARY CCNOITICNS -SIMPLY SUPPORTED 

E 
0 v ö 

YOUNG'S MODULUS : 75E& Nm 

POISSON'S RATIO " 0.215 

THICXNESS   0.12 m 

DENSITY " 2"4E3 Kg/ ml 

DIAGRAM: SKEW ISOTRCPIC SLAB ýarrr 
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Fig. 2. ENVELOPE OF ERRORS FOR A 10% CHANGE IN YOUNG'S 
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BEGIN 
SKEW ISOTROPIC SCAB F9.4. EXAMPLE DATA INPUT FOR DYNAMIC 
PLATE 91 72 72 EIGENVALUES DYNAMIC 10 
MATRIX 7 13 JOINT 11 7 COOD 0.0 PLUS 10.0 ANO -6.929 4.0 

REANALYSIS 
ISOTROPIC 75.0E9 0.215 1.2 TYPE 3 TO 72 
ISOTROPIC 67.5E9 0.215 1.2 TYPE I TO 2 
MASS 2"4E3 TYPE I TO 72 
s 
MATRIX 12 6 ELEMENT 1 JOINT 2981 

TYPE 1 72 ELEMENT I TO 72 

a 
NFF JOINT 1 T0 7 
N FF JOINT 85 TO 91 
  

U 
DYNAMIC PRINT 10 RESTART 
I 
S 

RESTART 
0 

ISOTROPIC 75. OE8 0.215 1.2 TYPE I TO 2 

U 
U 
a 
" 

w 

w 
a 

DATA INPUT FOR FULL ANALYSIS OF SKEW SLAB DATA INPUT FOR RESTART ANALYSIS OF SKEW SLAB 
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JOINT 1 
tb SI'ttli`iJ fVfW(Vrr fYVMVFF 

STIFFNFSS 1"a E10 It 
ý----ý------- -. ýý GQOm ýý 

ý"ýOm ýý 5"00m 

3n"Smm I 
ý% T 3Mmm 

-a ta"6mm 570.2mm 

r---, -T 31-4mm 

SECTION F 

610"305.238 Kg UB 

iNNNN r- 

I 
4-4- 

V . Vy. Vt, RX, Ry. Rt 
N DENOTES NOT FREE 
F DENOTES FREE 

51 FREQUENCY 

6T-" FREQUENCY 

f-° FREQUENCY 

99X FREQUENCY 

% CHANGE IN SPRING STIFFNESS 
60 70 60 

Pa. 6. ERRORS IN EIGENVALUES FOR CHANGE IN SPRING STIFFNESS 
IN JOINT 1 OF A BEAM 

Fig. S. DIAGRAM : BEAM ELEMENT PROBLEM 

YOUNG'S MODULUS = 210ERNm 

SHEAR MODULUS = 81 E9 Nm 

DENSITY z 77E3 Kg/m3 

BOUNDARY CONDITIONS 

GLASGOW 
UNi' SITY 
LlBkni(Y 

. 


