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ABSTRACT 

The Lagrangian perturbation method for the NLS is revisited in the form of an equiv- 

alent direct problem. The analogy can be extended to arbitrarily perturbed systems. 
It is then possible to provide first order perturbation expansions for the fundamental 

soliton. The case of the damped NLS is considered and shown to fully comply with 
IST predictions. 

Subsequently the problem of NLS initial condition not corresponding to an exact 

soliton is examined. There are two issues that need to be considered. The location of 
the soliton solution and the modelling of the continuum. 

The location of the soliton solution is handled by considering the integrals of motion 

of the NLS. The improvement arises by the inclusion of the contributions due to the 

continuum. The results are compared with numerical calculations and are proved to 
be satisfactory provided that the initial pulse shape does not depart greatly from the 
Asech(z) functional form. 

The propagation problem is handled by considering the evolution of the soliton and 
the continuum separately and recombining them at the required time. Two cases are 

considered: the far field pattern and the position where the peak of the soliton lies. For 

the former the recombination of continuum with the soliton is achieved with the help of 
the inverse part of the IST. For the peak position a Bäcklund transform is considered. 
Results from both regimes are compared with numerical results and shown to agree 

satisfactorily. 
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1. INTRODUCTION 

The past two decades have been marked by an unprecedented increase in the capacity 
demand of telecommunication channels. This demand, driven mainly by the growth 

of computer networking and the need for the transmission of video information over 

public telephony channels, has led to the adoption of optical fibre as the propagation 

medium. This process has been facilitated by the advent of the low loss fibre in the 

late seventies. Nowadays the inter-metropolitan network being currently laid is solely 
fibre-optic. 

The fibre as a medium provides three low loss windows situated at 0.85 pm , 1.3 

µm and 1.55 µm. Modern telecommunication systems employ only the latter two 

windows. Apart from loss, the other limiting factor in optical fibre links is dispersion. 

The geometry of the waveguide, as well as the intrinsic properties of its bulk material, 
impose a frequency dependence on the group velocity. This leads to the broadening of 
transmitted pulses, with obvious effects on the quality of the transmitted pulse-train. 

The 1.55 µm transmission window, in addition to the fact that it presents the lowest 

losses of all three, exhibits anomalous group velocity dispersion. This means that the 

group velocity decreases with increasing wavelength. An effect that can be used to 

limit the dispersion induced broadening, for this type of dispersion, is the Kerr effect, 
ie the intensity induced change of the refractive index. Given sufficiently high optical 

powers, it is possible to produce pulses having these two effects balancing each other. 
Under these condition pulse broadening does not occur for large propagation distances. 

This type of behaviour, in optical fibres, was predicted by Hasegawa and Tappert in 

1973 [HT73]. 

The experimental demonstration of this theoretical prediction came much later in 

1980 [MSG80]. This experimental demonstration has prompted more research into the 

possibility of achieving ever larger channel capacities benefiting from the Kerr effect. 
Nowadays, repeated experiments point to the feasibility of transmission rates of the 

order of 20 Gb/s over transatlantic distances [N+95a] [N+95b] [LBR+95] [RCD+95] 

-extensive review in [HW96]. During the last few years an increase in the experimental 

activity motivated by the interest of the major telecommunication companies indicates 

that nonlinear optical communications are on the verge of being applied commercially. 
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But let's return to the 1973 paper. The main result of Hasegawa and Tappert 
is that the envelope of a wave propagating in an optical fibre obeys the NonLinear 

Schrödinger (NLS) equation. The latter, belongs to a class of nonlinear integrable 

equations solvable by the inverse scattering method [ZS72]. This type of equation 

corresponds to a conservative, Hamiltonian system. 
A particularly interesting property is the exhibition of soliton solutions. Solitons 

are robust, localised wave-packets which tend to conserve their properties (energy, mo- 

mentum etc. ) regardless of the presence of radiation in their vicinity. This property, 

attributed to the integrability of the governing nonlinear differential equation, makes 
them particularly attractive to optical communication systems. It is possible to prove, 
that starting from an arbitrary pulse shape, whose area is larger than a certain min- 
imum, and given sufficient propagation distance, after shedding some of its radiation 

away (continum) the emerging pulse is a soliton. In this context these localised waves 

emerge as "natural" carriers of information in the optical fibre. 

From the mathematical point of view, the initial value problem corresponding to the 
NLS can be completely solved with the inverse scattering transform. This fact does 

not mean that modeling propagation in an optical fibre is a trivial problem. First, 

even though the solution method for the NLS exists, the result comes in closed form 

only in very few cases. Second, the NLS is an idealisation. In real fibres a multitude of 

phenomena, other than second order dispersion and Kerr nonlinearity, are present. The 

result is that propagation equations, in the regimes of interest, are perturbed versions 

of the NLS. In general, it is not possible to produce an inverse scattering type solution 
to the initial value problem in these cases. It is for these reasons that a multitude of 

perturbation and numerical schemes have emerged during the last twenty years. 
These approximation schemes are required to tackle three types of problems: that 

of non-soliton initial conditions, that of perturbed evolution equation or a combination 

of both. The central problem here is to predict the key features of emerging pulses 

given an injected pulse-train. 
In contrast with linear fibres, a propagating wavepacket will not only be affected 

by the characteristics of the link but by radiation in its vicinity. A famous example 

of this is Gordon-Haus noise [GH86], whereby an amplified soliton incorporates some 

of the spontaneous emission due to the amplifier. The soliton central frequency shifts, 
thus affecting its group velocity and eventually its position. 

Analytic perturbation techniques have mainly focused in the description of soliton 

characteristics under the influence of a governing perturbed equations. Relatively little 

work has been done in the field of describing the main characteristics of the continuum. 
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This type of radiation is not important on its own, but in conjunction with nonlinearity 

can affect the characteristics of propagating soliton pulses. The changes brought about 

are small , 
but given the fact that the main field of application of solitons is ultralong 

links, their accumulation can lead to serious degradation of the signal quality. 
The objective of this thesis is to address the continuum problem. Of course one 

can always resort to numerical simulation in order to address the propagation issues 

in the presence of radiation. It is not our purpose here to make statements as to the 

comparative use of analytical calculations and numerical computing. The purpose of 
this choice can be summarised by the commonplace statement that analytical calcula- 
tion allow for the interpretation of physical processes occuring during propagation and 
their usefulness is more in the direction of providing insight rather than exact figures. 

The description of the continuum is not simple. Unlike the soliton whose evolution can 
be described with a limited number of dynamical variables, dispersive radiation has an 
infinite number of such degrees. Furthermore, in order to achieve a successful pertur- 
bation expansion we need to know the contribution of the discrete (soliton) modes as 

well as the continuous ones ( radiation). This problem, again, is not a trivial one to 

solve even though mathematical tools for its solution exist (IST). 

As far as organisation of the thesis is concerned, it is divided in 6 chapters and an 
introduction. In the second chapter we will be introducing some definitions used later. 

The derivative expansion method will be described and so will the variational method 
in the solution of differential equations. 

The derivative expansion method will be used in chapter three where the governing 

equation for light propagation in a fibre will be derived from Maxwell' s equations. 
In the process we will be examining the main physical phenomena involved in optical 

waveguiding. 
Having derived the equations describing the evolution of the propagating pulse 

envelope we will review some of the available solution methods in the fourth chapter. 
Namely we will be looking at the inverse scattering transform solution of the N LS 

and some of the mathematical properties associated with it. The main perturbation 

methods will be outlined and compared. 
The fifth chapter will be devoted to the Lagrangian perturbation method in the 

form suggested by Anderson and Lisak, namely by predetermining the solution. We will 

give a description of the method and look for links with other mainstream perturbation 

methods. The shortcomings of the method will be pointed out. 
In the sixth chapter an attempt is made to combine this method with structural 

information of the NLS system to provide information on the evolution of the charac- 
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teristics of a pulse under non-soliton initial conditions. 

11 

Finally the results will be reviewed and suggestions for improvements and further 

work will be made in the seventh and final chapter. 



2. MATHEMATICAL METHODS 

2.1 Introduction 

In this chapter we will be addressing some of the mathematical methods that are 

going to be used throughout this work. Mathematical problems do not always give 

exact solutions in closed forms, or, even if this occurs, the final outcome is extremely 

complicated and does not allow physical interpretation or simple calculations. In these 

cases we are forced to use either approximations or numerical methods. The latter, 

although offering nowadays a very efficient analysis tool, do not allow for the derivation 

of analytic formulae. The only alternative open to us then, should we be looking for 

analytic results, is that of approximations, among which asymptotic expansions are 

predominant. 
Asymptotic methods are first of all perturbation methods. This means that they 

can be applied in the specific case where an equation is prevented from being solved by 

the presence of a "small" term. The "smallness" of the term is usually quantified by the 

presence of an appropriate parameter. This area of mathematics has been extensively 

studied during the past few decades leading to numerous techniques [Nay73] [JK82] 

[BMS76] [Whi74]. 

The technique that we will be mainly using is called the derivative expansion 

method, and belongs to a greater class of multiple scales expansions. In the next 

section we will be discussing the use of asymptotic analysis. Some definitions that are 

needed will be introduced at the beginning. 

The other part of this chapter will be a discussion of the variational method. Ac- 

cording to the latter it is possible to give the solution of a problem by optimising an 

appropriate quantity. The basic formulas will be given in section 2.3 . Furthermore 

we will make the appropriate generalisations so that we will be able to combine the 

derivative expansion procedure with the variational method. Lastly a brief description 

of the approximate method due to Rayleigh and Ritz will be given, although we will 
be dealing with this method in details at a later stage. [MF53], [Sag6l], [Sta68]. 
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2.2 Asymptotic methods 

2.2.1 Some definitions 

In order to allow for simpler expressions we will be using the Landau symbols 0 and 

o. 

Definition 1: [Sir7l] Let 0 and 0 be defined in a common region S of the complex 

plane. Then: 

= O(0) if 3A>0 : -01<A VzES 
0 

In practice the symbol 0 will be used here in a much less restricted fashion as the 
following definition will indicate. 

Definition 2: [Sir7l] If the functions O(x) and '(x) are defined in a common domain S 

and xo E S, where the bar denotes the closure then we write: 

O(x) = 0('(x)) as x -+ Xo (2.1) 

if 

lim 
OW 

< 00 
X- XO xES 

low 

Accordingly the symbol o is defined. 

Definition 3: [Sir7l] If the functions O(x) and O(x) are defined in a common domain S 

and xo E S, where the bar denotes the closure then we write: 

O(x) = o('(x)) as x -+ xo (2.2) 

if 

lim 
Ox 

=0 
X- Xo xES O(X ) 

These definitions can be readily extended to functions of many variables. In this 

case if the prerequisites of relations (2.1,2.2) are fulfilled, irrespective of the values of 
the remaining independent variables, then the corresponding definitions are said to be 

holding uniformly. 
During the rest of this work we will be dealing with differential problems where 

a perturbation term is present. This term will be quantified by a small parameter, 

represented for clarity, by a lowercase greek letter. In order to emphasize the difference 

between this parameter (E usually) and the other independent variables of the functions 

that we will encounter, it will appear explicitly, while the others may not. 
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Definition 4: [JK82] A sequence of functions {0, 
ß(E)} involving a parameter f is called 

an asymptotic sequence as 6 -+ CO if 4n+1 = o(On) as f -+ co for every n>0 

Definition 5: [JK82] Assume that we have an asymptotic sequence {q5n(E)} and a func- 
tion f (x; E) which is approximated by the series: 

N 
E On (6) fn (x) as c -} co 

n=0 

such that: 
N 

f (x; e) =E On (IC) fn (X) + o(ON(c)) as c -+ co (2.3) 
n=0 

Then this expression is called an asymptotic approximation to (N+l) terms of the 
function f (x; E) as c -+ co with respect to the asymptotic sequence {0n(E)} 

If the relation above holds for every N>0 the series in (2.3) is called an asymptotic 

expansion of f (x; E) as c -+ co. We will be concerned mainly with a type of asymp- 
totic expansions called asymptotic power series occuring when c,,, (E) = (E - co)'. For 

simplicity, problems will be scaled so that co = 0. Expansion (2.3) becomes then: 

N 

f (x; E) = En fn (X) + o(ON(E)) as E -+ 0 (2.4) 
n-0 

Relations (2.3,2.4) can be easily generalised for functions depending on more than 

two variables. Contrary to the usual convergent series, asymptotic expansions are usu- 

ally divergent and are not generally unique. 
Operations on asymptotic series [Geo95] : The operations of addition, multiplication 
by a scalar and integration of asymptotic series can be performed on a term by term 
basis. It is not always possible to differentiate asymptotic series or multiply them term 

wise, but these are possible for asymptotic power series, where the two operations are 

executed as if we had a usual convergent series. In the analysis of problems with asymp- 
totic series we do not need to consider an infinite amount of terms, we usually limit 

ourselves to the consideration of the properties of the first few. The main consideration 
is to determine the regions where expansion (2.4) converges uniformly in x. Expan- 

sions where we have uniform convergence throughout the domain of the independent 

variables are called regular. We will be more interested in expansions where the above 

statement does not hold. This type of asymptotic expansion is called singular. 
To conclude this part we introduce the notion of the variational derivative. Let 

us consider a function u analytical in its domain of definition which is the real axis. 
We consider a functional F depending on this function and expressed as the integral 
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of a quantity F1 over the x axis. We now have for the variation of F with respect to 

changes in u: 

SF(u) = F(u + Su) - F(u) = 
00 F1 

tu(x) dx + O(Su2) 
-00 Su(x) (2.5) 

The functional 
sb 

is the variational derivative of F with respect to u. If we assume 
that the function and all its derivatives vanish whenever Jxj -+ oo we can perform 
integration by parts on (2.5) by which: 

6F 
_ 

öF 
_d 

OF 
+ 

d2 öF 
+ (2.6) Su(x) äu(x) dx ä(u (x))., dx2 a(u(x))xx 

The x subscripts indicate differentiation with respect to x. 

2.2.2 The derivative expansion method 

Let us start by considering a simple example [San65]. Suppose that we have a physical 

quantity, given by a function f whose temporal evolution is described by the differential 

problem: 
-f 

(t) = -E f (t) 
,f 

(0) =1, E>1 (2.7) 
dt 

where c«1. This problem has an exact solution f (t) = e-". Let us now assume that 

an observer whose clock runs relatively "fast" monitors our physical quantity f. The 

presence of the small parameter c in the exponent will mean that, for this observer, 
the function will change very slowly. His first approximation will thus come naturally 
in the form: 

. f(t)-1 + ... 
However, if he keeps track of the function for a sufficiently large interval, he will notice 
a small decrease. Subsequently he will change from the original approximation to a 

more "accurate" one: 
f (t) ^' 1-Et -}- ... 

The new approximation will yield better results for short time periods. Nevertheless for 

t= the approximated function becomes zero and for a much larger time it becomes 

negative, which, as we know from the exact solution, is erroneous. The problem with 
the linear approximation is that given a sufficient time interval it will lead to large 

deviations from the function it is approximating. The same will happen to the next 

order correction (EZ 2) although at a somewhat later time. 

Mathematically speaking, the mistake that our observer made was to assume that 

the solution of (2.7) can be expressed as a power series in E. Let us now suppose 
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f (t) 

exp (-t) 

-------- 1-t 

Time (t) 
1-t+t^2 

.ý .ý .ý .ý .ý 
.ý .ý .ý 

Fig. 2.1: Exponentially decaying function, approximated linearly and quadratically 

that the same problem was viewed from the point of view of a second observer whose 

clock is running at a much "slower" time t' =Et. The function f will now look like 

t' f (t') =c-. For this observer the rate of change of the function is large enough not to 

allow approximation. Thus for large period no expansions would be allowed. However 

if he was to monitor the function for a very short period he would be approximating 
it Ihv a Taylor expansion in powers of t' =Et: 

fýt)= 1-Et + 
ýE2t2+... 

In the problem described above there were two time scales. It is possible, for a more 

complicated problem, to encounter N time scales. The idea behind the so called multi- 

ple srai e. s expansions is to combine the readings of n independent observers in order to 

come up with a more suggestive description than the one offered by the previously out - 
lined procedure. The derivative expansion method is a systematic way of dealing wit h 

t his specific problem. In order to understand the mechanisms leading to the extract ion 

of asymptotic solutions we will follow the customary method of using examples, as it 

is much more suggestive and does not require heavy algebraic calculations. We will he 
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using the equation of the damped linear harmonic oscillator [Nay73]: 

-f 
(t) +2c-d f (t) +f (t) =0 dt2 dt (2.8) 

complemented by a set of initial conditions and with c«1. The exact solution of this 

equation is: 

f(tý=ae-Et cos(V/1 - C2 t +ý) (2.9) 
Let us proceed in the same way as with the previous example. If we had an observer 

measuring the solution (2.9) he would be able to adjust his clock either by referencing 
it to the oscillation, or to the much smaller rate of decay of the amplitude of the 

oscillation. 

-... 
f (t) 

Time (t) 

Fig. 2.2: Exponential decaying oscillation, the dashed line represents the amplitude 

When attempting to find asymptotic solutions to (2.8) the first step is to assume 

that the solution f (t) can be expressed as a power series in c: 

f(t) = fO(t) +E f1(t) + E2 f2(t) + 
... 

(2.10) 

Straightforward perturbation theory would require substitution of (2.10) into (2.8), 

collection of terms in powers of c and equating the coefficients of the expansion with 

zero. However the derivative expansion method introduces one more expansion in the 
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problem. It is assumed that the independent variable, t here, is, in its turn. a function 

of N other independent variables t,,. This effectively extends the domain over which 
the problem (2.8) is defined to an N-Dimensional real space. For the purpose of the 

solution only one trajectory in this space needs to be considered, the one where: 

to=önt (2.11) 

The value of 5 should be derived from the characteristics of the problem in hand. Here 

the choice is S=E. 

The introduction of the new variables requires a change in the differential operators: 

daa 2a d=ato+ýati+ýat2+... ý2.12ý 
Relations (2.10,2.12) are substituted into (2.8) and the resulting expansion is rewritten 

as a power series in E. By expanding the exact solution in Taylor series, we can see, 
that in order to include all main tendencies of the solution, we need expansions at least 

to 0(c2). Accordingly, we will be limiting the analysis to the first three terms of the 

expansion above. The requirement that all coefficients are equal to zero, independently, 

leads to the following system of equations: 

0(i): 
a2 
atö 

fo + fo =0 (2.13) 

O(E): 

(2.14) 
a 

fý + fr = -2 
a 

fo -2 
a2 

A 
at2 o ato ato al 

O(f2) : 
a2 a a2 a2 a2 a 
äto 

f2 +f2=-2f ato atl 
f, - ati 

fo -2 ato ate 
fo -2 atl 

fo (2.15) 

The general solution of (2.13) is: 

fo(to, ti, t2) = foo(ti, t2) eit° + Joo(ti, t2) e-i to (2.16) 

where the bar denotes complex conjugation. (2.16) is substituted into (eq. 2.14) to 

give: 
Z a2 

fi +fi = -2i 
(foo+ a 

foo etto +2i foo+ foo e-sto 
ato at 1 at, 

The qualitative difference due to the adoption of the derivative expansion is the pres- 

ence of the time derivative terms on the right hand side of the equation above. The 
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general solution is: 

fi(to, t17t2) = fii(ti, t2)ettO + fii(ti, t2)e- t0 
- to 

(100 
+a at 

f0 e"o - 

to 
(too 

+a foo e-t t0 (2.17) 
ati 

Particular attention should be paid to the last two terms on the right hand side of 
(2.17): they increase with to, leading to the breakdown of the approximation for to 

sufficiently large. This type of term is referred to as secular [JK82]. Their suppression 
is essential in order to construct estimates valid for large times. 

We now notice that fo appears in (2.13) differentiated with respect to to and in 

(2.14) differentiated with respect to both to and t1. It is clear that these equations 
must be compatible in the sense that when we take time derivatives of fo we would be 

able to change the order of differentiation with respect to the two variables: to and t1. 
Based on the arguments of these two paragraphs, we may prove [San65] that sup- 

pression of the secular term can only occur if: 

. 
foo +a atl 

foo =0 (2.18) 

which results in: 

f1(to, t1, t2) = fll (tl, t2) et 
to +f ll(tl, t2) e-: 

to (2.19) 

foo(t1, t2) = fooo(t2) e-tl (2.20) 

These two are, in their turn, substituted in (2.15). The general solution of the equation 
that will be generated will contain a secular term (linearly increasing with to). The 

requirement that this term should be suppressed leads to: 

2i aa (fii+_fii) 
= 

(fooo_2ifooo) 
e-" (2.21) 

12 

The general solution of (2.21) for f il will contain a secular term arising from the term 

on the right hand side. This is clear by a mere inspection. The coefficient of e-t' is 

a constant with respect to the variable t1. In the general solution this will mean the 

presence of a term of the type tl e". Although this term is bounded in the limit 

tl -+ oo it will exhibit near linear growth up to time which is an undesired feature. 

Hence we will require: 
(f_2if») 

=0 at2 
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giving, together with (2.21): 

f2(to, t1, t2) _ 
fll(tl, t2) _ 

fooo(t2) _ 

i t0 -i to f22(tl, t2) e+ f22(tl, t2) e 

f111(t2) e- 
t2 

co e-i 
t2/2 

20 

(2.22) 
(2.23) 

(2.24) 

This completes the expansion part of the problem. We now have to construct the 

solution. To this end (2.16,2.20,2.24) are combined to yield: 

f0(t0, t1, t2) = 
(co 11 + e-t 

(to- 
2) e-tl 

By comparing (2.19,2.23) with their counterparts for fo we detect that the solutions 
for f, follow the same pattern as those of fo. The findings of the third order equations 

would have consolidated this observation which will allow us to absorb the contribution 
from fl, f2 into the constant that appears in the zero order solution. This analogy in the 

solutions of fo, fi and f2 is not an intrinsic property of the method. It just occurs here 

because the problem that we are dealing with is linear. Consequently after reinstating 
the initial time scale with the help of t,,, = En t the solution of (2.8) can be written as: 

f (t) = 
(ce«t_2 2) + c- e-ti 

(t-E2 2) 
e-Et + 0(f3) 

which by substituting c= co e'00 will give: 

2 

f (t) =2 co e-E t cos 1-2t+ 00+ O(E3) (2.25) 

To derive this solution we have taken the expansion up to order E2. We therefore expect 
it to hold for time scales up to O(E ). By comparing (2.25) with the exact solution 
(2.9) we will notice that the frequency of the oscillation has been expanded up to the E2 
term while the exponential term has been left untouched. We notice thus a selectivity 
in the parameters that are expanded. This is due to the introduction of additional 
degrees of freedom in the form of the 2 scales tl and t2. 

In the example analysed here we introduced "stretched" time scales. There is 

nothing that would have prevented us from using "compressed" scales: t_n = t-n with 

nEZ should we need to do so. Similarly, choices of the type: to = n/Nt where N is a 

rational are valid. 
The point made in the previous paragraph is that the derivative expansion method 

imposes no restriction as to the choice of the parameter with respect to which the 

independent variable is expanded. It is the problem that should dictate which scales 

are to be introduced. As a matter of fact the problem dictates much more than this: 
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the method employed. Procedures such as the one exposed above cannot be applied 
to any problem with equally good results. It will fail in some cases [Rubia]. This 
does not diminish its usefulness, it merely indicates that the application of asymptotic 
methods, however general they might be, calls for caution. 

Let us consider the problem [JK82]: 

(t +E f(t)) d 
. f(t) + f(t) =o dt (2.26) 

1 

whose solution is: f (t) _-E 
(()2 

+ (E +f (1)) f (1) 2. Attempting to solve this 
by using the derivative expansion method is futile. We do not have a rule allowing us 
to assign a particular scale to the t variable appearing and even if we could bypass this 

problem it would be impossible to remove the singularity at t=0. 
Let us now try and generalise: 

" We have considered ordinary differential equations. Partial differential equations 
do not present any problem: the other independent variables are treated in the 

same way as time in the examples above. 

" More than one physical phenomenon. We have considered normalised differential 

equations where the small parameter characterises one of the "stretched" scales. 
It is possible to have more than one "small" parameter. In this case it is impor- 

tant to know the order relation between them before proceeding to the explicit 

expansions. 

" Degrees of freedom introduced. In (2.11) the parameter S was used. This hap- 

pened in order to indicate that for the problem (2.8) we have two degrees of 
freedom regarding the expansion. In general the number of degrees of freedom in 

the expansion exceeds the number of independent variables by one. To picture 

the implications of the last two statements consider the problem: 

d22 
f(t) +20df (t) +f (t) +Yf (t)2 =0 (2.27) 

dt dt 

with 0, 'y « 1. This is a nonlinear counterpart of (2.8). From inspection we notice 

that damping effects are important on a time scale O(ä) while nonlinear effects 

will be important on the time scale O(, 
ý) 

(provided that the initial condition 
is of order 0(1) magnitude). Order relations between 3 and -y depend on the 

physical instance of the problem and we cannot intervene. Our choice for E and 
S on the other hand will depend on the situation that we wish to approximate. 
For example weak nonlinearity would indicate a choice O(ýýý n) 

,n being 

rational smaller than unity, while a balance would call for n=1. 
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To conclude the section let us outline the derivative expansion procedure as applied to 
differential problems: 

9 The equation describing the physical problem is normalised and the perturbing 

terms identified. 

" The number of independent coordinates is increased via definitions of the type 

(2.11). 

" Expansions of the type (2.10,2.12) are introduced. The initial or the boundary 

conditions have to be altered in order to fit into the new extended domain of 
definition. The expansions defined above are substituted into the initial prob- 
lem and the resulting equation has its terms rearranged in powers of the small 

expansion parameter. Each of the coefficients of this expansion must be equal 

to zero independently. This is a consequence of the independence of the original 

equation on the specific choice of the expansion parameter. 

" Equations arising from the previous step are solved starting from the one at lowest 

order. It is important, during this solution process, to suppress all secular terms. 

This supplies further conditions, which allow the calculation of the integration 

constants. 

" The initial independent variables are restored into the solutions resulting from 

the execution of the previous step. 

2.3 Variational methods 

2.3.1 General 

We will now discuss the variational approach to the solution of differential equations 
[LL76] [Wan95] [MS91]. To introduce the principles of the approach let us take a simple 

example [LL76]. Consider an unknown function f (t) which together with its first order 

time derivatives defines the integral : 

df (t) 
t) fS= tb dt L( 

.f 
(t) 7 dt 

Q 
(2.28) 

It is customary, in mechanics, to call this integral action and the function L Lagrangian. 

We will assume that the form of the Lagrangian function is given. For simplicity, we 

have assumed that the Lagrangian depends on the function f and its first order time 

derivative. Generalisations will be treated later. We now try to find the function f (t) 
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which will make the action an extremum ( minimum or maximum) within the closed 
interval [ta, tb]. Let us assume, without affecting the generality of the problem, that 
for the function sought the action is minimal. Thus a change from f (t) to: 

.f 
(t) + Sf (t) (2.29) 

by a function Sf (t) which remains small within the interval [ti, t2] will lead to an 
increase in the action integral. At the endpoints, the value of the function f (t) is fixed. 
So: 

Sf (ta) = Sf (tb) =0 (2.30) 

The substitution of the changed function (2.29) in the action integral will lead to its 
increase from the minimum value by the quantity: 

tb f dt L(f (t) +Sf (t), 
to 

d (1(t) + 81(t)) 
dt ,df 

(t)it) f 
tQ 

tb dt L( 
.f 

(t) 
dt 

The first term is expanded in Taylor series with respect to Sf. The requisite for the 

action to be minimal is that the first order terms, in this expansion, are zero. After 

performing integration by parts we obtain: 
tb 

tb 

is = 
ýL 

if +f dt 8f 
äL d äL 

(2.31) 
dt 

[af 
to a 

af 9f 

The dot is denoting differentiation with respect to time. The first term of the right 
hand side of (2.31) is zero by virtue of (2.30) and the second must vanish identically 

for all values of Sf. This can be achieved only if the integrand vanishes. We therefore 

conclude that the requirement for the minimisation (or maximisation) of the action is 

equivalent to: 
aLdaL 
af dt of 

(2.32) 

Equations of this type are referred to as Euler-Lagrange equations. Let us now reca- 

pitulate. We started with two assumptions: 

1. The action integral of a function (Lagrangian), which depends on another function(f) 

is minimum ( or maximum). 

2. The function f is fixed at the two endpoints of the action integral 

These two are equivalent to (2.32). The latter is a differential equation. This equiva- 

lence suggests an alternative method in solving a boundary value problem: to associate 

with it an action optimisation problem. Its solution will be the solution of the initial 

boundary value problem. Unfortunately, a major difficulty here lies in finding the 
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Lagrangian function corresponding to the equation that needs to be solved. For this 

reason, it is very scarce to try to solve a boundary value problem by transforming it 
into an action optimisation one. Nevertheless the equivalence between these two is a 

very useful tool in the analysis of physical systems. 
Three possible generalisations are of interest to us: 

" The Lagrangian depends on higher order derivatives. 

The dependence of the Lagrangian on the nth order derivative will lead to the 

presence of a term: 

aL dn6 f 
where f 

dnf (t) 
af (n) dtn dtn 

in the first order expansion of the action integral. In this case the integration by 

parts that was used in the derivation of ( 2.31) has to be repeated n times. By 

making use of (2.30) the final outcome is a term 

do aL n if 

-1 dtn 5f(n) 
in the integrand of (2.31). Equivalently it is possible to rewrite the Euler- 

Lagrange equation in the form: 

1: dj aL N (-1)3 O 
j-0 dtj afW 

(2.33) 

where N denotes the maximum derivative order, of the function f, present in the 

Lagrangian. 

" Dependence of the Lagrangian on more than one function. 

In this case an Euler-Lagrange equation has to be derived for every function fk(t) 

that appears in the Lagrangian. The outcome is a system of equations: 

Nk 
y-1' 

dj aL 
=0 fork=1... K (2.34) 

j_O 
( dtv af ( k3 ) 

where K denotes the number of independent functions that appear in the La- 

grangian and Nk the maximum derivative order of fk. 

" The functions fj that appear in the Lagrangian depend on more than one variable 
tl 

1 
t2, ... ' 

to 

In this case the definition of the action has to be altered: 
(tl)bl (tn)bn 

S= 
ýt l )°1 

f(t2)b2 
t2)°2 """ dtn """ dtz dtl L 

ftnýon 
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by introducing a multiple integral that ranges through all the independent vari- 
ables. Similar alterations occur throughout the analysis to lead to Euler-Lagrange 

equations of the form: 

(N1, N2,..., Nn) n ÖJ' aL 
(-1)(ji+j2+... +3n) I 

atj8 -0 for k=1... K (2.35) 
ar j 

(jlJ2,..., in)=(0,0,..., 0) s_1 3 
ký) - 

with the summation ranging all combinations of the indices j3. K and N$ have 

the same significance as in ( 2.34). 

2.3.2 Rayleigh-Ritz method 

As explained in the previous section solving a boundary value problem using 
the variational approach is not often feasible. However there exists an approxi- 

mate solution method applicable to this case exactly: the Rayleigh-Ritz method 
[Sag6l]. Let us assume that we have to solve a differential equation of the type 

(2.33). As explained in the previous section, this is equivalent to minimising the 

action that corresponds to the Lagrangian that appears in (2.33). Instead of 
looking for the minimum of the action over all possible functions the search is 

limited into a space defined by a set of functions q, which must comply with the 

boundary conditions. This space is known as the Ritz manifold. 

The type of solution that we are seeking can be expressed as a linear combination 

of the base functions q$ 
f ci Qi 

E=L 

(2.36) 

with ci parameters that are to be calculated. The consequence of (2.36) is that 

after performing the integration the definition of the action involves, we end up 

with a function of the n parameters ci: 

S(Cl, C2,... 'Cn) 

Then the Euler-Lagrange equations take the form: 

a 
S(cl, c2,..., cn) =0 for s=1... n (2.37) 

acs 

which is the algebraic minimisation problem in n dimensions. It can be demon- 

strated [Sta68] that solving this problem is equivalent to projecting eq. (2.33) 

into the Ritz manifold and looking for solutions belonging to it. 
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In the traditional application of the method an infinite number of base functions 

is introduced aiming at determining the solution of the initial problem with ar- 
bitrary precision. This is not that easy when dealing with nonlinear differential 

equations. The Ritz method will be used on a different basis explained at a later 

stage. However one point must be emphasised in the case where the solution is 

sought in a finite-dimensional Ritz manifold. There is a degree of arbitrariness in 

the choice of the space in question. Although the solution will be the best one in 

the given manifold, there is no guarantee that the solution in the reduced space 
is a good representation of the reality. 



3. OPTICAL FIBRES 

3.1 Propagation medium description 

The propagation medium that we are interested in is step-index fibres. This is the 

simplest form of fibre and it consists [Gow84] of a cylindrical central region of radius r 

called core surrounded by a layer, called cladding. The radius of the outer surface of 

the cladding is much larger than r (typically 60[im) and for simplicity we will take it 

to he infinite. The refractive index of the cladding (n2) is manufactured to be smaller 

than that of the core (nj) [SL91]. This allows for rays propagating inside the core to 

be totally reflected by the core-cladding interface. This total internal reflection is the 

physical mechanism that enables guiding of optical waves within a fibre. To describe 

Y 

fibre properties with respect to guiding, two parameters are used [Agr89] the relative 

difference in refractive indices between core(ni) and cladding(n2): 
I11 - 712 

111 

which is typically of t lic order of 10-3 and the normalised frequency: 
1 

' 2,1' (u 
- 12Iýý 

A0 

with Acs being the free spare «VaVelc'iigt h of the propagating wave. 1 givvices a measure 

of the number of guided modes wit hin the fibre. Vor V<2.40i only one guided mode 
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is allowed [Gow84]. In this study we are interested in single mode fibres. A typical 

commercial core radius for such a fibre is 2-4µm [Agr89] (common wavelengths between 

1.3 and 1.6 µm 
The material used to fabricate optical fibres is silica glass (amorphous Si02) ap- 

propriately doped in order to generate the refractive index differences [Gow84] needed 
for guidance. Ideally, a fibre is a cylindrical structure which remains unchanged as we 

move along its axis. We will assume that the fibres we consider exhibit both rotational 

and translational symmetry. 
The geometry of the device indicates that either Cartesian or cylindrical coordinates 

have to be used. It is customary [Agr89] [Gow84] to take the z axis of the coordinate 

system to be parallel to the axis of the fibre. 

Apart from the preferred direction, indicated by the geometry no other direction 

should be singled out. This means that we will assume that the bulk media is isotropic. 

The implications of this assumption will be seen later, when considering the response 

of the media to the Electric field. 

3.2 Maxwell's equations 

The propagation of radiation in an optical waveguide from a macroscopic point of view 
is described by the Maxwell equations: 

VxE = -aB (3.1) 
at 

VxH = 
aD 

+J (3.2) 
at 

VD =p (3.3) 

V"H=0 (3.4) 

where boldface characters designate vectorial quantities, E(r, t) is the electric field, 

H(r, t) the magnetic field 
, 

D(r, t) the electric displacement B(r, t) the magnetic dis- 

placement, J(r, t) the current density and p(r, t) is the charge density. The functions 

depend on four independent variables: time (t) and three space coordinates designated 

for simplicity by the vector r. For the case of fibre propagation no free charges are 

present and we set J=0, p=0 [Agr89]. 

The electric and magnetic displacements are vectors describing macroscopic re- 

sponse of the material to the electric and magnetic fields respectively. Since in optics 

we are concerned with non magnetic media [BC90], we set: 

B=poH 
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where µo is the free space permeability. The electric displacement is rewritten with the 
help of the constitutive relation as [Kar94a] : 

D= EoE+P (3.5) 

where P(r, t) is the media polarisation and e0 is the free space permitivity. By taking 

the external product of V with (3.1), and using (3.2), together with the two definitions 

above we have: 

VxVxE= -2 
a2 

2E-µo 
a2 

2P 
(3.6) 

at at 
where c is the speed of light in the vacuum. This equation comprises both electric field 

and polarisation. The latter originates because of the former [She84] and describes the 

response of the media fully. Unfortunately (3.6) can seldom be solved exactly and we 
have to resort to simplifications. 

3.3 Polarisation 

The first aim, in the task of simplifying (3.6), is to express the polarisation in terms of 
the electric field. When the latter is sufficiently weak the polarisation can be expressed 

as [B1o65], [BC90]: 

P= p(°) + p(l) + p(2) + ... 
(3.7) 

The superscript denotes the order of the term with respect to the electric field. Thus 

P(°) is a static polarisation of the media, P(') depends on the electric field linearly, 

p(2) quadratically and so on. The zero order term would imply the presence of charges 

in the media and is neglected forthwith. 

As already mentioned the polarisation is a macroscopic response of the medium 

to the existing electric field. When looking at the medium microscopically we have 

an electric field that induces responses from individual atoms. The response of the 

medium at a certain point, will come from the superposition of the responses of the 

neighbouring atoms. In that sense polarisation, at a certain point in space, will depend 

on the electric field of the surrounding volume. For our analysis we will assume that the 

size of this region is minute. Effectively this amounts to assuming that the polarisation 

at a certain point in space depends on the electric field at the same point only. 

By introducing the standard exponential Fourier transform to the problem [Erd54]: 

00 
F(w) = 

I. f(t)e-" c dt 

00 
1(t) =12f (t)e' "t dw 

ýý 
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the nth order polarisation appearing in(3.7) can be expressed as[BC90]: 

(n)(tl 
= ED 

00 
dw1 

... 
00 

lýWn X(n)(-�,; wl1 ... 1Wn) 
1 E(W1) 

... Ei (Wn) eiý`'Q t (3.8) 

00 
l00 

where w0. = w1 + ... + wn. X(") is a tensor of order n+1 and is called the nth-order 
susceptibility. The operator I denotes the tensorial product between the the nth order 
susceptibility tensor and the Fourier transformed 3-dimensional electric field vectors 
E(w). The nth-order susceptibility is defined as: 

n 00 
X(n) (-W ' W1 W)= 

f-0000 
dT dT R(n) (T T) exp -1 Wj Tj oý ý"""n1"'n 1ý n 

oo 

(3.9) 

with R(n) (Tl, 
... , Tn) a real tensor of rank n+1 called nth-order polarisation response 

function. The dimensionality of the susceptibility and the polarisation response func- 

tion become obvious when one considers the vectors that they relate. As an example, 
the nth order polarisation, which has 3 components, is given in relation to n electric 
fields, which have 3 components each. Thus each component of the polarisation can 
be affected by n3 permutations of the different electric field components. The total 

number of components that the nth order response function must have is thus 3n+1 
Let us now consider how this applies to the case of the isotropic material that the 

fibre is made of. First of all the linear susceptibility tensor will have all its off -diagonal 
elements equal to zero and all the diagonal equal [Kar94a]. It can thus be expressed 
as: 

1 
Xi j 

(-W; w) = 

Isotropy imposes the requirement that all even order susceptibilities vanish [BC90] X(2) 
will be equal to zero. The lowest order nonlinear susceptibility will be the third order 

one X(3). From the 81 components of the x(3) tensor it can be proved that only 21 

are nonzero [BC90] [She84]. The next nonzero susceptibility will be the fifth order one 

which will not be considered here. 

Under these conditions, (3.7) will be rewritten for the case of the optical fibre: 

00 
P(t) = Co dw X(') (-w; w) E(w) exp (i w t) + 

E0 dwl dw2 dÄ-03 X(3)(-Wo; w1, w2, W3) E(wi) E(w2) E(w3) exp(i wQ t) 
1-<o, oo f 

00 

foo 

= P, (t) + Pnl(t) (3.10) 

The first term of the right hand side of the first equality is the linear part of the polar- 
isation denoted by P1(t) and the other term is the nonlinear polarisation symbolised 

by P,,, (t). 
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3.3.1 Refractive index 

31 

The refractive index is a quantity widely used to describe optical properties of materials. 
For the linear case its definition is: 

I 

ni(w) = Re (1 + x'(-w; w)) 2 

with XM the first order susceptibility and Re a function returning the real part of its 

argument. In the general case it is a tensor with the same dimensionality as the linear 

susceptibility and depending on the frequency of the propagating wave. 
Extension to nonlinear cases is not really that easy since the refractive index involves 

only one wave, while the nonlinear susceptibilities address the interaction of more than 

one wave. For some limited cases though, such as self phase modulation, cross phase 

modulation or stimulated Raman scattering [BC90], it is possible to use the refractive 

index formalism by introducing a nonlinear refraction coefficient. This is of course 
done on a case-specific basis. As an example, the self phase modulation phenomenon 
in a bulk isotropic medium would allow the introduction of a quantity bn altering the 

linear refractive index and defined as: 

Sn = 
ý(Re 

c(w)) - ni(W) 

where E(w) is defined as: 

E(w) =1+ X(1)(-w; w) +3 X(3)(-w; w, -w, w) JE l' 
4 

(3.11) 

The fraction in front of the nonlinear susceptibility is there to account for degeneracy 

introduced when dropping the vector equations [BC90]. 

3.4 Quasi-monochromatic condition 

Equation (3.10) in combination with (3.6) gives a complete description of the propa- 

gation of the electric field within the fibre. However the presence of the integration 

operators in (3.10) makes them difficult to use. The next step in the simplification 

procedure will come from the adoption of the quasi-monochromatic description of the 

electric field. According to this description [BC90] [KH87], the electric field is rewritten 

as a superposition of quasi-monochromatic wave-packets: 

E(t) = Ewe (t) e-'('j 
t-kj r) 

w, 

(3.12) 

where kj is the wave-vector corresponding to w3 . 
It is assumed that Eu,, (t) varies slowly 

with time: 
aE(,, (t) 

at 
I 

(3.13) 
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Condition (3.13) implies that the frequency spread of the wave-packet around its central 
frequency is small. For a pulse at around 1.5 µrn, and assuming a relatively smooth 
temporal profile, it is possible to use the quasi-monochromatic approach for time widths 

of the range of 100 fs for the envelope [Agr89]. 

3.4.1 Linear polarisation 

The adoption of the quasi-monochromatic approach suggests a way to achieve simpli- 
fication of (3.10). Since the electric field will be a superposition of wave-packets each 

of which has a low spread around a central frequency -w, - it is possible to expand 
the susceptibilities that appear in the integrals of (3.10) in Taylor series around this 

specific frequency. In the rest of this thesis we will denote as linear polarisation the 

part of the polarisation that depends linearly on the electric field ( PM in 3.7) and 

as nonlinear the part of the polarisation which exhibits a nonlinear dependence on the 

electric field (P(2) and higher in 3.7). For the linear polarisation we will have: 

Pi(t) = x")(-W7lW7) 
f' 

E(w) e"' dw + 

00 

[ax(')(-w; w)] (w + wj) E(w) e'wt dw -- + 
aw .ý 

00 

00 w=-wý 

1 1a2x(1_w; w1 (W+W)2 E(w)etdw+... 

0W2 
f°° 

00 w=-w, 

(3.14) 

which by making use of the properties of the exponential Fourier transform [Erd54] 

together with (3.12) will give: 

Pi(t) = x(1)(- ý) 
()- 

axW (-W; W) aEw (t) 
-i wt_ Wý; W' Ewe te twit 

-Z aW at e 

w=-wý 

e-twý t+ (3.15) 1 [02x(')(_w; w)' a Ew, (i) 

2 OW2 ate 
w=-w, 

where the spatial dependence has been omitted for simplicity. It is for the same reasons 

that only one quasi-monochromatic component of the electric field has been considered. 

3.4.2 Nonlinear polarisation 

It is possible to proceed in a similar way in the treatment of the nonlinear polarisation 

in (3.10). The nonlinear polarisation at frequency wQ = wi + w2 + w3 is determined 

by the tensorial product of the third order susceptibility with the three electric fields 

at frequencies wl, w2 and w3. Within the frame of the quasi-monochromatic approach 
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and in order to give a suggestive formula rather than an exact one we will take three 

electric wave-packets centered at frequencies -(wl)o, -(w2)o and -(w3)o respectively. 
Furthermore, we will assume that wj= (w1 )o + (w2)0 + (w3)o and introduce the notation 
[Kod85b] [KH87] : 

X(3)(-wj; (w1)0, (w2)0, (w3)0) = X(123) 

a 
X(3)l-w7i w11 

(3) (w2)0, (w3)0) - X(j23) 

822X(3)(-W7 
(3) (W2)01 (L'03)0) =X ÖWl 

Iwo=-(wý 

)o (12 3) 

a2 
_ aW1aW2X(3) `-W 7W1iW2i 

(W3)0/Iwi=-(wi)o, 

w2=-(w2)o 
X(123) 

The corresponding component of the nonlinear polarisation becomes, in this case: 

Pnl(wo) = X(123): E(wl)o(t) E(w2)0(t) E(w3)0(t) exp(-iwo t) - 

Z X(i 23: 

OE(LL)1)0 (t) 
E, (w2)0 (t) E(w3)0 (t) exp(-i wo t) - (> at 

ix (1 
23)' E(,, )o (t) 

aE(112)o (t) 
E(w3)0 (t) exp(-i wo t) - ( at 

. (3) aE(W3)o (t) Z X(323): E(,, ), ) 
(t) E(, 

2)0(t) at exp(-iwo t) - 

1 
X( 

(3) 
3' 

02E('1)o (t) 
E(w2)0 (t) E(w3)o (t) exp(-i wo t) - 2) ate 

X(3 . 
aE(w2)0 (t) aE(LI, 

2)0 
(t) 

E( 
(i ý 3) at at w3)o 

(t) exp(-i wo t) + 

(3.16) 

It is important, before moving on, to comment on the expansions (3.15) and (3.16), 

with reference to the discussion on expansions in the previous chapter. A Taylor series 
was taken of the susceptibilities around a central frequency. This was done in the hope 

that we would be able to use a limited number of terms to give an accurate description of 
the polarisations. The prerequisite for such an approach to be valid is that the function 

expanded does not exhibit very fast variations. This is true only when we are looking 

at the function in a spectral area where no resonances are present. This statement is 

true for the linear polarisation but does not always hold for the nonlinear polarisation. 
In the latter case, the polarisation has to be substituted directly from (3.10) [BDOS92] 

[BW89] [MC90] [Gor86]. For the moment we will retain the Taylor series approach 
for the derivation of the equations describing the electric field propagation, but will 

consider the issue again after the derivation of a first set of equations. 
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3.5 Linear propagation of light in optical fibres 

At this point we will make a digression to consider the linear propagation problem, 
which although not relevant to our purposes, is useful in introducing quantities and 
notions used later, in the nonlinear case. 

The vector operator identity: 

VxVx=V(V" -V2 
will be used in (3.6) to give: 

2 a2 
V (V"E)-V2E-- -2 

aE-yo a2Pl 
(3.17) 

at2 at 
We will be considering a planar wave propagation. In this case the wave does not 

extend spectrally beyond its central frequency. We can thus neglect all but the first 

term in (3.15): 

Pit) = X(1)(-w,; w) E(t) (3.18) 

where the electric field has been restored to its form before the adoption of the quasi- 

monochromatic condition. This does not affect the equation since the plane wave is a 

stricter condition than the quasi-monochromatic one. 
Substitution of the constitutive relation (3.5) along with (3.18) into the electric 

displacement equation (3.3) will give: 

Eo 
(x'(-wj; 

wi)) 17 -E+ co 
(Vx(1)(_wa; 

wj)) -E=0 

The second term in the left hand side of this equation is neglected. This is called 
the weak guidance approximation [SL91] [Mar91] and is the rule when treating the 

linear propagation in fibres. The weak guidance approximation is justified when the 

0 parameter, introduced in section 3.1, is very small, an assumption which is true in 

most applications. The weak guidance condition leads thus to 

V"E=o, 

and by virtue of the latter relation to the vanishing of the second term in the left hand 

side of (3.17). From the physical point of view the previous approximation means that 

the longitudinal component of the electric field is being neglected [SL91]. 

The longitudinal translation invariance of the fibre allows us to look for solutions 
in the form of a product of two functions, one of which depends on the longitudinal 

coordinate (z) and the other on the transverse ones: 

E(r, t) = q(z, t) UT(t) 
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where the T subscripts denotes the dependence on the transverse coordinates. 
For plane waves the form of q is the well known exponential: 

q'(z t) = ezpz-iL, 

with w the circular frequency and 0 the propagation constant. The substitution of the 
last two equations into (3.17) will give [Kar94a]: 

2 
v2 ei i0 z-i tUW1 (1) 

,O z-i t 
T+ e2 +X (-wý; wý)) ei UT =0 (3.19) 

It is this equation that demonstrates how the weak guidance condition has simplified 

matters. When the V2 operator in the left hand side is put into either its Cartesian or 
its cylindrical form, (3.19) will be decoupled into two equations: one for the longitudi- 

nal components and one for the transverse. In the case of single mode fibres only one 

solution with 0 real will be allowed by the boundary conditions at the core-cladding 
interface. This is the fundamental guided mode. In reality if we take a perfect cylin- 
drical fibre this mode has associated with it a second order degeneracy with respect to 

polarisation of the electric field. For the rest of our discussion we will assume that this 

degeneracy is lifted. In practice this can be achieved with the introduction of ellipticity 
in the core [Kod85b] and the fibres are called polarisation preserving. The velocity of 

a wavefront will be equal to the phase velocity of the mode: 

Vph (3.20) 

A more useful quantity is the group velocity which gives the velocity at which energy 
is traveling within the waveguide. The formula giving the group velocity is [Gow84] : 

&A) w dvph 
v9= =vph 1-vPh 

&-0 
(3.21) 

The group velocity depends generally on the circular frequency and thus the wavelength 
in the vacuum, which is the traditional measure used in optics. This dependence is due 

to two reasons: the dependence of the linear susceptibility on the frequency, and the 

dependence of the guided wave wavenumber on the geometry of the fibre and thus on 

the frequency of the light propagating in it. The first phenomenon is called chromatic 

or material dispersion and the second intra-mode or waveguide dispersion [Gow84]. 

Dispersion effects in fibres are quantified by the group-velocity dispersion parameter: 

d2 d11d v9 ß2= ß= Zv v2 dw 99 

in which the major contribution comes from the waveguide dispersion [Agr89]. X32 

becomes zero at a certain wavelength AD called the zero dispersion wavelength. For 
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longer wavelengths than AD, 02 will become negative and light is said to propagate 
in the anomalous dispersion regime. By this we mean that shorter wavelengths travel 
faster than longer ones. The contrary occurs in the normal dispersion regime occuring 
for wavelengths shorter than AD. In the case of a pulse that is made of components 
at different wavelengths a walk-off between them will be observed due to the presence 
of dispersion. This basically is due to the difference in the group velocities of the 

components. When considering pulse trains the effect is detrimental in the sense that 

pulses tend to broaden thus overlapping with adjacent ones. 
The function UT, which describes the transverse properties of the electric field on 

the frequency, is only slightly perturbed by the frequency dependence of the suscepti- 
bility. Thus for the case of the propagating pulse used above, UT is taken to be the 

same for all components, as they are assumed to be very close in the frequency domain. 
To conclude this section let us consider the amount of power that is driven by a 

mode. To this end the Poynting vector P is introduced and its projection along the 

propagation direction z is taken [SL91]: 

HdA (3.22) P= Re (fA Ex 

where the bar above a quantity denotes complex conjugation, z is the unit vector along 
the z axis, A,,, is the infinite cross section along which we are measuring the power flow, 

P is the power going through the cross section in question and Re indicates that only 
the real part of the integral in (3.22) is considered. The magnetic field is calculated 
from the electric field with the help of Maxwell's equations. The power inside the core 

of the fibre can be calculated by integrating over the cross section of the core. The 

form of the magnetic field, by the translation invariance argument will be in the form: 

H(r, t) = e:, oz-'wtVT(t) 

where WT(t) depends on the transverse coordinates. Within the frame of the weak 

guidance approximation, use of the Maxwell equations will yield: 

WT(t) = nl 
90 UT(t) (tio) 

where nl is the refractive index of the core [SL91]. 

Substitution of this relation in the power flow definition (3.22), together with the 

use of the vector identity: 

Ax (B x C) =(A"C) B-(A"B) C 
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will give: 

3. 

PU =l ni-° UT " UT dA (3.23) 2 Igo (L00 
It should be recalled that UT is a vector function that has transverse components 
only. The dot product in the right hand side provides a useful way for normalising 
propagation related quantities and will be used in the nonlinear analysis. 

3.6 Multiple scales expansion: Considerations 

We will now proceed to the consideration of the nonlinear problem. The first step is 

to identify our problem correctly. We are interested in describing the propagation of 

a short pulse through a fibre. Using the same argument as in the linear case we will 

assume that the field can be modeled as a sum of components each of which is written 

as a product of two functions, one depending on the transverse coordinates and the 

other on the longitudinal ones: 

E(w; ) = Q(ý; )(z, t) U(T )) 

The function Q(z, t) will contain the information regarding the envelope of the wave 

and its temporal evolution, and the function UT the transverse profile of the electric 
field across the fibre cross section. The central frequency of the wave-packet under 

consideration is -wj J. The presence of the frequency parameter, as a superscript, 

singles out the waves with different central frequencies. The quasi-monochromatic 

condition imposes a specific form for the electric field (3.12) as a plane wave with a 

slowly varying envelope. Taking this into account, the electric field can be written in 

the form of an expansion: 

00 00 
E(r, t) _ f" Eµ(r, t) _ cµ q(w; ) (z, t) U(") ei k; "'i t (3.24) 

µ=1 JA=1 .i (c') 

E is a small parameter characterising the asymptotic expansion and needs to be con- 

nected to the physics of the problem. The problem that we will be treating will regard 
the description of the propagation of a single wave-packet at a certain central frequency. 

Since, however, nonlinearities are present, we expect that generation of higher harmon- 

ics will occur. In that sense the presence of the central frequency as a parameter helps 

1 The Fourier transform definitions that we have used have exponents of different signs from the 

ones used in optics [BC90]. The implication of this definition is that the plane wave exp (i kx- iw t) 

has central frequency -w, in our formalism, instead of w, which would have been the case following 

the usual conventions. 
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in the identification of each of the components. The adoption of the derivative expan- 
sion method calls for the expansion in asymptotic series of the independent parameters. 
The independent parameters in the fibre propagation problem are four: time and the 
three space coordinates. Since we focus on the description of propagation phenomena 
we will be considering the introduction of multiple coordinates in the manner explained 
in the previous chapter, for time and the longitudinal space coordinate. Subsequently 
it is assumed that instead of time the coordinates t, = Sn t are introduced and instead 

of z the coordinates z.,, = -y' z are introduced. The parameters ry and 8 will be left 

undefined at this stage. The consequence of these extensions is that the time and 
z-derivatives must be substituted by: 

a-a +ý +8 a +... (3.25) at atp at, at2 

a-a+ 
-y 

a+ 
y2 

a+... 
(3.26) az azo äz1 az2 

The three expansions that we have adopted have led us to the introduction of three 

small parameters (-y, S and c) that need to be connected between them and with the 

physical instance with order relations. As explained we will be considering short pulses. 
The shortness of the pulse can be quantified by a non-dimensional parameter of the 
type: 

TC=O(Ow) 
T Wi 

where TT is the period of the carrier wave and 7- is some measure of the time duration 

of the pulse such as the FWHM. The second equality involves the frequency extent 

of the wave-packet Ow and its central frequency -w?. The second parameter can be 

easily associated with the expansions (3.15) and (3.16) for the polarisations as well as 
with the expansion of all quantities, slowly varying in the frequency (like UT )). 

Other parameters can be introduced in the description of the system in terms of 
asymptotic series by considering the physical effects that arise during propagation. 
First of all, associated with the linear polarisation, is the absorption. In general, the 

low absorption window of a fibre is used. This means wavelengths around 1.55 µm 

where the loss coefficient is in the region of 0.2 dB/km [Gow84]. Considering the low 

value of the absorption coefficient we will neglect absorption in deriving the equations 
describing propagation. The effect of loss will be introduced a posteriori in the final 

equations. 
The second effect associated with the linear polarisation is material dispersion: the 

change of the real part of the refractive index with the wavelength. As explained in 

section 3.5 this is due to the combined optical properties of the bulk material as well 
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as the waveguide. In the discussion in section 3.5 only second order dispersion was 
considered. This means that a change in wavelength was assumed to affect the velocity 
of the corresponding wave in a linear way. It is possible, under certain conditions, to 
have quadratic dependence of the velocity on the wavelength. In this case the dispersion 
is third order [WCL90] [WMCL86] [WMCL87] [Kar93], [KRWM94] [YW94] [DD194] 
[AK95] [E1g93] [E1g92] [KZ90]. Third order dispersion is described by the parameter: 

d ß3= 
dW3 

In the same fashion it is possible to proceed to higher order dispersion [HK90] 

[KH94b] [Kar94b]. In the analysis here, we will assume that the dispersion properties 

of the fibre and the spectral extent of the propagating pulse are selected in such a 
fashion that all dispersion effects can be scaled with the same parameter which we 
denote as E. In this fashion, the second order dispersion is O(f2) 

, the third order 
dispersion is 0(E3) and accordingly for higher orders. 

Turning to effects due to the nonlinear susceptibility, a small parameter is intro- 
duced by considering the nonlinearity. The X(3) nonlinear susceptibility gives rise to a 

multitude of nonlinear phenomena. We are interested here in phenomena that involve 

the self-interaction of a wave-packet. Such phenomena are by definition phase matched 
[BC90]. This means that the wavefronts of all waves involved in the interaction will 
travel at the same velocity. Such a phenomenon is, first of all, self-phase modulation 
[BC90] [SC78] [FT93] [Agr89] [WLHA94] [DB83]. Here the refractive index of the prop- 

agation medium is altered proportionally to the intensity of the field that propagates 
in it. The phenomenon is usually quantified by rewriting the refractive index of the 

medium as the sum of a linear refractive index and a part that depends on the square 

of the propagating electric field: 

n=no+n21E121 (3.27) 

where the parameter n2, called the Kerr coefficient, arises by taking the change in the 

refractive index as discussed in section 3.3.1 and expanding in Maclaurin series when 
the nonlinearity is small [BC90]. A parameter quantifying the process can be easily 

obtained now as the ratio: 
n2 IE12 

no 
(3.28) 

where no is the linear refractive index of the fibre. We will be considering weak non- 

linearity. To make this assumption explicit we take nonlinear effects to be important 

at scale O(f2). 
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In addition to self phase modulation we expect that the nonlinear response of the 
medium on the wave will not be instantaneous. For sufficiently long pulses this effect 
can be neglected, but for short ones we expect the appearance of new nonlinear effects 
due to the delay in the response. In the frequency domain this translates to the 

statement that we expect that there is a dependence of the nonlinear susceptibility on 
the frequency. As far as the real part of the susceptibility is concerned, we will assume 
that the first order nonlinear dispersion term will appear at order O(E3), the second 

order nonlinear dispersion at order 0(e4 ) and accordingly for higher order dispersion 

terms. 

The treatment of the imaginary part of the susceptibility will be deferred for dis- 

cussion after derivation of the basic set of equations. The effect that is connected 
to it is the stimulated Raman scattering, which is initiated by the pulse itself [LB92] 

[LBS92] [MC90] [BW89] [KN91a] [KN92] [NKKY92] [KN91b] [BDOS92] [GDK+87] 

[Gor86] [HN94] [DK92] [MM86]. 

Except for the effects due to the wave itself or the fibre additional physical ef- 
fects can be introduced either by considering interactions with other co-propagating 

electro-magnetic waves [LHD90] [KKN92a] [KKN92b], or acoustical waves [DLPP92] 

[DVPP92]. Finally, the introduction of more complex propagation devices will, of 

course, affect the equations [Kiv93] [KW94] [BDW88]. 

Before proceeding to substitutions in the wave equation we need to establish rela- 

tions between the different expansions introduced so far. 

First of all let us deal with the parameters y and S appearing in the series expansions 

of the independent variables z and t. Since we have taken as a comparison measure 

the linear dispersive effects we anticipate a choice: 

O(J) = o(y) = o(E) 
leading to the adoption of the expansions: 

aaa2a+3.29 
... () at = ato + gat, +E at2 

aaa2a+3.30) 
äz = azo + azl + az2 ... ( 

The multiple scales are now introduced in the electric field expansion(3.24), where 

by changing the order of the summation we obtain: 

E(r, t) => El'l e` k3 z°-` w3 to where (3.31) 
j 
00 

Eýl = E`` (q(zi, z2,. .., tl, t2, ... 
) UTýý (3.32) 

µ=1 
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The slow variation of the envelope function is clearly incorporated in that qUi depends 

on the slow scales. The exponent [j] has substituted w3 for reasons of compactness. 
The function UT1 is independent of z and t. Nevertheless it depends on the central 
frequency of the electromagnetic wave. This indicates that it should be treated in 
the same fashion as the others dependent on the frequency variables: by expansion in 
Taylor series around the central frequency. In addition to this we have to allow for the 

effect of the nonlinearity on the modes. Thus, we allow one more degree of freedom 
for the mode profile function to account for this dependency. Bearing in mind these 

remarks and the independence of qLl from the frequency, the form of the electric field 
becomes: 

E(r, t) _ Eý) ei k; zo-: W; to 

with: 

(3.33) 

ýý 
a2 a2 °O 

A ý7ý ý7] E-1 
-Z at aWl 2 at2 a2Wl 

+... E 
(q(zi, 

z2,. .. �tj, 
t2,.. 

. 
)) 

µ 

uT, 
µ 

The superscript [j] indicates that the differentials are evaluated at frequency w= -wj 
and the partial derivatives in time are defined in (3.29) above. 

3.7 Multiple scales expansion: Equations 

Although the weak guidance approximation will be used in the nonlinear analysis we 

will refrain from using it explicitly yet. The operator V can be written as: 

V= VT +z 
a 

öz 

where the first term of the right hand side comprises all transverse components of the 

differential operator and i is the unit vector along the z axis. By making use of this 

expansion we will have: 

a2 
VXVX=VTXVTX + XVTX 

a 
+VTX Xa +zxzx 

a2 
(3.34) 

az äz äz 

Now we rewrite (3.15) in the same notation as that used in the case of the nonlinear 

polarisation and substitute it along with (3.16), (3.34) and (3.33) into (3.6). The wave 

equation for the wave-packet at central frequency -w.; will be: 
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VT X VT X EUI ei 
kj zo-iwf to X VT X 

ZXv EU] et 
k; 'o-i w; to +zxzx OT X äz 

12 aat 

22+ 
X(j)) Eýj] eik; zo-iw; to 

- 

i v(1) 

aEU]\t/ 

eik; zo-iw; to 
- n, (j) at 

1 
X(1) 

a2EUI (t) 

eik; zo-iwjto + ... 
2 U) ate 

" EEil et 
k-, zp -i w' to 

öz 
a2 
y2 E[jl ei 

kj zp -i wj to 
= öz 

X(12 3): E[1°] E[2°] E[3o] e-i wj t°+i (kj+Akj) zo 
_ 

X(3) : 
_E[10] 

E[2o] E [30] 
e-i cýj toi- i (kj +Okj ) z° 

_ (123) It 

x(3) : E[b01 
aE[2o] 

E[3° e2'" to+i (k, +"lk, ) zo 
- (123)' Rt 

(3) : E', [10] E, [20] 
OE[3o] 

e-i w, to +i (k, +ok; ) z° _ 
X(123)' 

at 

1 
X(3) : 

02E[10] 
E[2°] E[3°] e-zw t°+i(k; +ok3)z° _ 2(i23)* at2 

X(3) : 
9E[10] aE[20] 

E[3°] e-i w, to+i (k; +Ok, ) z° 
(12 3)' at at 

(3.35) 

where the nonlinear terms 2 span all possible combinations that will yield a sum fre- 

quency wj _ (w1)o+(w2)o+(w3)o and Oki = (kl)o+(k2)0+(k3)0-k is a phase-mismatch 
term [BC90] due to the nonlinear dependence of the wavenumber on the frequency. For 

the nonlinear phenomena that we are considering Oki is zero. 
In order to proceed from (3.35) we need to introduce some type of expansion of 

the independent parameters The usual procedure is to adopt the reductive perturba- 
tion method [Kod85b] [KH92] [KH87] [HF93] [Pot89] [KH94a]. In this analysis the 
derivative expansion method will be used as explained in the previous section, however 

due to the complexity of (3.35) a minor alteration to the standard procedure will be 

introduced. Namely, when it comes to higher order temporal or spatial derivatives 

instead of introducing the expansions (3.29) and (3.30) explicitly the expansion will be 

implicit. As an example the second order time derivative will be: 

d2 
_ 

a2 a2 a2 a2 
dt2 at0 +2 

atoatI 
+ E2 äti +2 atoat2 

+ ... 

02 02 a2 + ate (o) ate (1) ate (2) ... 
2 Nonlinear here indicates terms where X(3) and its derivatives appear. 
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Let us now focus on the linear part of (3.35). We define the vector operators: 

Lý{vTxvTx+ikj[xvTx+vTx]_ (0) - 
w2 

-xx2(l+x) 
} (3.36) 

C2 
LU' 

- 

(-2)n an G7] an 
+ 

an U] an 
L U' (". 3 / (1) 

n! 3Wn 

I 

atn t ökn lýzn i() 

3", ý 

The superscripts [j] are indicative of the central frequency of the electric field on 

which the operators are applied, and the subscripts (1) denote which order expansions 
in terms of the derivative expansion method are considered. The operator 01) is of 

course zero order. Further to these operators we assign a name to the differential 

operator appearing due to the quasi-monochromatic condition: 

aa cri 1 a2 92 [i] Dý' = 1- Z ät awl -2 ate a2w 
ý +... (3.38) 

with the derivatives being evaluated at the central frequency -wj. 
With the help of the operators just defined it is possible to rewrite (3.35) in the 

shape: 

(L)+fLl)+c2(L +L2ý1ý} +... 
l (EqU])+62gU])+... l (UU]oiUU] 

T+... 
l 

= 1(2) 

D[lo] D[22 ] D[30] 
(w10 + w22 + w3o )2 

C2 1,2,3 

X(123): UT [lo] UT [2o] U [3o] (E 
q(1)] + ... 

l (E 
q(1)) +... ) (cq([3o1)) + ... 

l (3.39) 

The summation in the right hand side ranges over all possible combinations of frequen- 

cies that will give a sum equal to wj. The next step is to equate all coefficients of the 

expansion of (3.39) in powers of c to zero. For the first order we have: 

L(0 q(1) UT'o =0 (3.40) 

This equation is the linear wave equation for the quasi-monochromatic wave. We have 

already discussed it under the assumptions of monomodality, polarisation preservation 

in the fibre and weak guidance. The solutions of (3.40) may be forward or backward 

propagating within the fibre, depending on the sign of the phase velocity. In the case of 

non absorbing waveguides it is customary to select modes in such a way that a forward 

propagating mode at frequency -wi is equal to the complex conjugate of a backward 

propagating mode at the same frequency [SL91]. This convention will be kept here. 

The next order equation will be linear as well and will have the form: 

L(ýOl) qý )U/)0+L()q(1)UT, 1 +Lý'ý1)qý) T, 
o -0 (3.41) 
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The first term of the left hand side is, similarly to (3.40), algebraic. Since U/)0 is a 
solution of the wave equation, the first term is removed. The third term is differential 

with respect to ti and z1. Thus: 

Löl qfä] UTlo=0 O (2) (3.42) 

-i w Ill L öl u ]0 a- ä 
(1) -ia 

ý'l LL" UU 8äz1) 
1+L 

of q[jl UUII =0 i9k 

(3.43) 

where use was made of the definition of the operators L (3.37). If the inner product 
defined in (3.23) is introduced and symbolised with: 

I 

V"WdA =(V, W) 

then multiplication from left of (3.43) with ÜT10 together with (3.40) will yield: 

a+ 
vg 

a 
Q[1] =o (3.44) 

ät(1) äZ(1) ) 
where v9 is the group velocity defined as: 

ä 
(U['] 

L[ ] Uff] ä (üb, 
LI U-1 T, 0 ý () 0) (0) T, 0 

}=-(. 

v9 äk äw 
(3.45) 

The derivative with respect to k is taken at the point kj and the derivative with respect 
to w at the point -wj. The term Ll(jol) q(l) UT I1 

must vanish withthe multiplication. If 

this does not happen the resulting differential equation will be of the form: 

a+ 
v9 

a+ 
ct qU] (at(l) ) az (1) 

with ct a real constant. The solution of this equation is an exponential. This of course, 

will lead to instability. Thus we require ct to vanish. The implication is that UTI1 

should be a mode. However, since the fibre is single mode than it cannot be a guided 

one. 
At order E3 (3.39) will give: 

Li(jol) qý3)U/)0+LO, ) q2]) UT]1+L(ID ]ýqg])UT)2+LU(l)qýý)UT)1+Llll)qýý)UTýO+ 

1'5(2)4(1, 
) 

U? 
', 0 

+ L2(2)9(1]) UT]0 X(123): UT10 UT, 
0 

UT, 
O (j(1)) q(1)) q(1)) (3.46) 

1,2,3 

The summation has the usual significance (w3 = w10 + w20 + w3. ). The new element in 

(3.46) is the presence of the nonlinear term. This presence exactly introduces coupling 
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between different harmonics. For example the choice w10 - w20 = w30 = w;; would mean 
that the nonlinear term would produce the third harmonic of the signals. However, in 
(3.46) we are interested in the contribution of the nonlinearity at -wi 
achieved by taking the combinations (w10 

, w2o , w30) to be: 

Lo 
A 

(Wjý 

-wi , Wj 

This can be 

In the case of the fibre without optical losses, that we are considering, the electric 
field of a guided mode at frequency w is the complex conjugate of that at -w. The 

contribution of the nonlinear part at frequency -w; will thus become: 

2 

C2 

lq([j]1)12 Q(1)wo 

where 

WO = X(3 x,,, 3): 
UT, 

0 
UM 

T, 0 
UM 

T, 0 + X(. 
7) ý, J): 

UT, 
0 

UT, 
0 

UM 
T, 0 + X(. 

7,. 7, -ý): 
UT, 

0 
UTl0 U[T]0 

with the bar denoting complex conjugation of a quantity. 
The secularity condition for (3.46) 3 will lead to a decomposition giving the following 

set of conditions: 

Ll)qýl)UTýo-0, Loff)qý])UTý1 -0 Lod q1ý UTý2=0 (3.47) -OO 
Lý'11)q[2) UT]o =0 (3.48) 

Li (2)q(1) UT, o + L2 (2)q(1) UT, o + Li (i)q(i) UT, 1 -2 Iq(1) q(1)Wo (3.49) 

The simplification of (3.49) occurs in four steps: 

" The equation is left-multiplied with LTT, o (or UT, 1) and integrated over the cross 

section of the fibre. 
3 Implementation of secularity condition occurs here in as follows: The first step is to single out the 

two terms in (3.46) where L old 
acts on the zero and first order mode profile function. These are equal 

to zero according to the arguments laid in the previous order analysis. In a similar fashion we require 
UTlo to be a mode in order to avoid instabilities arising from its presence. The remaining terms have 

both low order corrections and their dependence on higher order time and space coordinates. The 

terms comprising q()) can be viewed as driving fields for the second order correction, independent of 
the coordinates on which the latter depends and must be zero to avoid secularities. Thus, we equate 

all terms containing the first order correction to zero producing (3.49) 
. 

Equation (3.48) follows. 
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" The operators L are substituted from their definition (3.37). 

" The equation that will arise from the previous step will involve the term 

a2 
at2 (2) 

46 

The time variable that appears here is the one appearing in (3.44). It is eliminated 
with the help of (3.44) in favour of the space derivative at the same order. 

" The relation 
da dw a= aa 

alp + dk A aw A+v9 aw 
is used with dk being the group velocity defined in (3.45). 

After following this procedure the projection of equation (3.49) on Ü 10 takes the form: 

_a 0 , L]qU]o 
(UUI 

(c) 
) 

at 

where 

,a 
1dv9 92 

+ v9 z (2) 
+2 dk az2 (2» 

_2 wo) Ul j [j] 12 

V- Vg -ý 

a (ü)0, L 
0') gg])UTlQ) 

aW 
a (ü, 

LI ua 
(ü]0, 

L'I u' ' 
(0) T, 1 

} 
(o) T, 1 

) 

"ý- Ok aW - v91 
This equation can be rewritten as: 

a q(1) a q( 
]) 

U] 2 [il 
=0 Z at 

+2 hl 
az2 

+ no Iq(1)I Q(1) 

(2) 

where 

= t2 - 
z2 

' 
hl = 

dv9 

' no = WO 
Wý ül 

0, 
L Ul0 (ü, 

c2 () 
9 

(3.50) 

(3.51) 

hl quantifies the second order dispersion acting on the wave envelope and no the 

nonlinearity. The inner product between ÜTI0 and the term comprising the higher 

order mode profile appears as a perturbation of the group velocity, where use is made 

of teh group velocity relation derived at the previous order. The only coupling allowed 
between modes will be through the nonlinear term. The coupling to this mode will 
be calculated by taking the inner product of (3.49) with UT11. Equation (3.51) is a 

generic equation most commonly seen in its normalised form (hi =1 and no = 1) 
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[FT87] [Agr89] [AS81]. It is an exactly solvable nonlinear equation called Non Linear 
Schrödinger Equation (NLS). 

At order O (E4) we will have: 

L(ý)q(3)UT, 1+L(0)q(2)UT, 2+L(0)q( 
)U 

T, 3+L(1)g3l)UT, o 
+I'(l)q() T, 

1+L()q() 
T, 

2+L(2)q(1)UT, 1 
qljl )UT, 0+L1(1)g(3)UT, 0+L1(2)q(2)UT, 0+L2(2)q(2)UT, 0+ 

L1 
(3)q(lil ) 

UT, 
0 + L2(3)q() UT, 

o T L3(3)q(1) UT, 
0 

X(123). UT, Ö U[2o] U[3o] q(81) q(82) q(33) - 
81+32+-93=4 1,2,3 

3y (W1 
'+' W2 + w3)2 (3) [lo] [20] [30] 

a 
[lo] [2o] [30] 

ZE 
aWn C2 

X(123). UT, 
O 

UT, 
O 

UT, 
O ätnq(1) 

q(1) q(1) 3.52) 

n=1 1,2,3 

The variable t, appearing in the derivative of the last term of the right hand side of this 

equation is not related to the multiple scales introduced earlier. It merely denotes that 

the time derivative operator has to correspond to the electric field whose w derivative is 

taken at the earlier part of this term. The analysis for the fourth order equation (3.52) 

is similar to that for the previous orders. The secularity conditions for the higher order 

corrections qU 
I) 

with m>1 will give the equations like the ones derived at previous 

orders. The condition for q(iý) will be: 

LU13 qU] UT)0 + L2 ]3 
q[1] U[Tl0 + L3 ]3 

)q 
U] UUT, 

O 
]+L 2] 

q 
1] UTI1 = OOOOO 

-2 

3a (Wl W2 + w3)2 
X(123): 'UT1Ö 

U[T, Ö U[T, Ö a 
q[io] q[io] q[io] 3.53) 

awn C2 
( atn () () () 

n-1 1,2,3 

In order to bring this equation to a simpler form the same procedure as the one used 
to derive the NLS will be used, with the additional use of (3.50) to tackle the time 

derivatives at order 0(f2). The final outcome will be: 

Oa q(l) 1 a2 q(j) i a3 Q'ýl 22a q[i] aq 
(1) 

Zý) -ý- hi2)+ h2 3) +no l Q())) q )+Z nl 
(q])) ý) +z n2 Iq( l)I2 (1) 

-0 
a2 az 3. az az az (3.54) 

where e, hi and no have been defined previously when the NLS was introduced. The 

remaining constants are defined as: 

d2 v' 
dk2 

ý1 = 
(üi0' 

ýDnýk Wo 
a 

(ü]0, L Ö1 UOl 
c)/ 
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and 
-1 

n2 = 
(ü0 

, 
(Dp)k 

c 

(w2)2 
WD 

a 
(ü0, L (0 

ý) Uo 

To simplify the notation the operators (Dn)k, and (Dp)k, had to be defined. These 

are the usual total derivative operators with respect to k;, acting to their right but 

they are selective with respect to which quantities they affect when they act on the 

nonlinear term. Subscript p indicates a derivative acting on quantities dependent on 

-kj and the subscript n the same derivative acting on quantities dependent on kk. 
Equation (3.54) appears in [Kod85b] for the first time and also in [Pot89]. It may be 

referred to as a perturbed NLS, although this name is much more general, used in all 
equations of the form of a small perturbing term added to the NLS. Three new terms 

make their appearance in (3.54) with reference to (3.51). One of them is linear and 
the other two nonlinear. The linear one describes the effect of the third order linear 
dispersion. The other two are nonlinear dispersions arising, partly, from the frequency 

dependence of the third order susceptibility (shock terms). It is possible, following 

this line of approach, to generate formal expressions for even higher order equations. 
However the PNLS and its extensions, discussed in the next section are sufficient in 

most cases. 

3.8 Perturbed NLS 

Having derived a basic set of equations describing the propagation of pulses in a non- 
linear fibre to different accuracies we now wish to generalise these equations in order 
to describe phenomena that have been omitted, as discussed in section 3.6. The first 

generalisation will have to address the problem of the imaginary parts of the sus- 

ceptibilities. This matter is relatively straightforward in that the exact forms of the 

susceptibilities can be substituted in the equations derived so far, and the appropriate 
terms kept. 

As far as the absorption is concerned, modern fibres exhibit a spectral window 

of approximate width 0.1 µm with relatively flat absorption, centered at 1.55 µm 
[Lin89]. For our discussion it is sufficient to consider absorption to be constant. The 

contribution to the equations would originate from the first order equation in the form 

of a term: 

ia (Cýj L1' [ý]l (v[ý] 
U[j] `ý'j Im 

(X(1) 
OW T'0 ' (0) Q(1)/ T, 0 T, 0/ 

C2 
(j) / 

appearing in the left hand side of the equations (3.51) or (3.54)(as in [HK95]). The 

function Im gives the imaginary part of its argument. The introduction of devices 
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that would affect the waveguiding properties of the fibre such as frequency dependent 
filters can be modeled by altering the form of the susceptibility to emulate the newly 
introduced devices. The constants with which the linear terms would be multiplied 
would depend on the device properties. 

Higher order linear derivative terms arise by extending the multiple scales expansion 
to the next orders. Nevertheless the functional form of these terms can be inferred by 

an inspection of the NLS (3.51) and perturbed NLS (3.54) introduced in the previous 
section. The nth order dispersion term appearing in the left hand side of equations 
normalised as (3.54) is: 

(_ Zn do-1 vg 
an qUJ) l 

n! dkn-1 aZn 
For the imaginary part of the nonlinear susceptibility the situation is more com- 

plicated than its linear counterpart. It is possible to proceed to a straightforward 

substitution of the nonlinear susceptibility in its complex form. The perturbed NLS 
(3.54) would then remain exactly in the same functional form, with the constants nj 

and n2 in: 

i nl q 
U] q(1) 

+i n2 qU] 2 q(1) C 
()) az 

l q(, ) 
I 

äz 

becoming complex quantities instead of real. The imaginary parts of these two terms 

could be re-expressed in the form of a term modeling the stimulated Raman scattering 

mentioned in section 3.6 as in [GB91] [KH92] [Pot89] [HK95] having a 

aI q(1]) 12 
ti] 

az q(1) 

dependence on the envelope function and a self-steepening term [CJ84] [GB91]: 

(IQ( ])I2q(l)/ 

äz 

However this description is not the best for the Raman scattering which arises from 

resonant interaction between the electromagnetic field and the propagation medium 
[BC90] In order to provide a better description the alternative approach is to assume 

that the imaginary part of the nonlinear susceptibility is not expanded according to 

the quasi-monochromatic expansions but is modeled by a delayed response function 

whose parameters are defined in order to fit the Raman gain spectrum [LB92] [HN94] 

[MC90]. The functional form of the resulting term is: 

q(1) ft dt' f(t - t') I q(]) 2(t') 
00 
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Other higher order nonlinear terms can be introduced by proceeding in the multiple 

scales analysis, done in the previous chapter. The fifth order would introduce a quintic 
term as well as a term arising from the cascading of the third order nonlinearities. 
Further to the expansion higher order terms can arise from the adoption of more 

complex structures for the guiding media [CC94] [DA94] [Her92] or interactions [Moo93] 

[SAA96] [AAS96]. 

A multitude of other physical situations can be incorporated within the framework 

just defined. It is not our task here to cover them all. We will only comment that the 

common denominator of almost all approaches is the use of the NLS equation together 

with some perturbing terms added to it. In the next chapter we will examine the 

solution methods that are available to us when dealing with the initial value problem 

of the general perturbed NLS 



4. THE EVOLUTION EQUATIONS 

4.1 Introduction 

In the previous chapter a set of equations was introduced to describe the evolution 

of the Electric field of a traveling Electromagnetic wave within a fibre. The present 

chapter will be devoted to examining the solution methods for these equations. Broadly 

speaking we can classify solution methods in two categories: 

" Numerical methods 

9 Analytical methods 

In this study we will be only considering analytical solution methods. The motivation 
behind this selection is, as mentioned earlier, that although analytical methods tend 

to be more difficult to implement, if they can be implemented, and are less exact, they 

provide information regarding the dynamics of the systems in a clear fashion. 

Apart from the low order approximations to the temporal evolution of the electric 
field, discussed in the previous chapter, all equations of order equal to or higher than 

the NLS, are nonlinear partial differential equations (PDE). The propagation problem 
that we wish to solve is, in mathematical terminology, the initial value problem for 

these equations. Unfortunately this problem is, generally, insoluble for the class of 

nonlinear PDE's. However there exist a number of exceptions to this rule and the NLS 

is one of them. 
In this chapter we will be discussing the basic properties of the NLS as well as its 

solution method. Based on this knowledge we will then review some of the perturbation 

techniques pertinent to our problem. 

4.2 Non Linear Schrödinger equation 

4.2.1 Solutions of the NLS 

The NLS equation (3.51) describes the evolution of a pulse envelope under the influence 

of dispersion and weak nonlinearity. The coefficient of the dispersion term in (3.51) 
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can take positive or negative values depending on the group velocity dispersion regime 
in the spectral region that we are considering. 

The NLS equation is special in that it has associated with it some extraordinary 

properties. Firstly it can support soliton solutions. The latter concept, introduced 
by Zabusky and Kruskal [ZD65], designates solitary waves which have the property of 

passing through one another without suffering deformation due to the collisions. This 

particle-like behaviour prompted the use of the word soliton. 
Depending on the dispersion regime two types of solitons can be supported: bright 

solitons occuring when the coefficient of the dispersion term is positive or dark solitons 

when the coefficient is negative [Has89]. We will be treating only the first type of 

solitons which have the form of a bright pulse in a dark background. For these pulses 
to survive we require positive coefficient for the second order derivative term in the 

NLS. This translates into anomalous dispersion for the propagation medium. 
Subsequently we renormalise equation (3.51) to the form that we will be using 

henceforth: 
a lag 
äq +2 az2q + Igl2q =o (4.1) 

with q= q(t, z) a complex function that depends on space (z) and the delayed time 

variable (t). To formulate the initial value problem we need to supplement equation 
(4.1) with an initial condition: 

4'(tß z) It=o = qo(z) 

Further to the definition of the initial condition we supply a set of boundary conditions: 

q(t, z) -+ 0 as IzI-+ 00 

sufficiently rapidly. This is referred to as the rapidly decreasing [FT87] set of boundary 

conditions and is the type of problem that we will be considering. 
In addition to the soliton solutions the NLS can support solutions in the form of 

dispersive waves. The interaction of these solutions with the soliton solutions results in 

phase changes and spatial translations only. The simplest soliton solution of the N LS 

has the form: 

q(t, z) =v sech(Q) exp(i pz+i 9(t)) (4.2) 

with a=v (z - e(t)), e(t) t and 9(t) _? 2JA2 t and will be referred to as the 

fundamental soliton solution. 
This extraordinary type of solution prompted more research on the NLS and equa- 

tions with similar properties [Lax68] [AKNS73] [ZS72] and its mathematical properties 
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which led to the implementation of a solution method called Inverse scattering trans- 
form method. 

The NLS equation has an infinite number of conserved quantities [ZS i 2] . This 

property is referred to as integrability [HK95]. The form of these quantities can be 

derived from the implementation of the inverse scattering transform and will be seen 
in the next section. 

Furthermore the NLS has associated with it a Hamiltonian structure [FT87] [NMPZ84]. 

An elementary discussion of this matter can start along the lines of the discussion in 

section 2.3. Our starting point is the usual NLS (4.1). A Lagrangian density function, 

corresponding to the NLS, is then defined in the form: 

C(4I 4)=i4't-qqt) _ 
gz4z +q24' 

222 
(4.3) 

The subscripts t and z denote partial differentiation with respect to time and space 

respectively. The Euler-Lagrange equations that can be derived from this Lagrangian 

density are the normalised NLS equation and its conjugate. The next step is to asso- 

ciate to the solution qa momentum, defined by the formula: 

p[q] Sqt 
(4.4) 

with the derivation appearing in the footnote 1 The reader is reminded that the action 
is the integral of £ from the initial to the final time. Further to this we introduce 

a Hamiltonian function depending on the q and p pair and its complex conjugates 
[NMPZ84] [HK95]: 

22 
(4.5) 

The Hamiltonian will generally depend on both coordinate (q) and momentum(p). Let 

us now consider the space where q and p are coordinates. The true world coordinate 

z becomes now labels, i. e q(zi) is a certain coordinate and so is q(z2) and so on. The 

newly defined space is infinite dimensional. Each point of this space corresponds to a 

state of the physical system. The temporal evolution of the system will be described 

by a certain curve in this space. We need the equations describing the evolution of 

1 We assume that the configuration space is spanned by two sets of coordinates q(z, t) =q and 

q(z, t) = q. The momentum, as defined above will have to depend on q and q and not their time 

derivatives. To remove this dependence the first term of the Lagrangian is rewritten as , C(q, q) = 

i99c -i 
5IgI) 

-+4. The integral of (lql2)t in space (z) is 0 as will be seen later in the section 
22 

where the integrals of motion are defined. From this and the expression for the Lagrangian both the 

Hamiltonian and the definition of the momentum follow easily. 



4. The Evolution Equations 
. 54 

these variables along this curve. The latter can be found in numerous mechanics books 
[LL76]. In the case in hand the equations of motion are: 

8W 

Pt 4t=Z (4.6) Sq Sq 
87-i 671 

qt = Sý[Q] = qt =-z Si (4.7) 

And similarly for the complex conjugate coordinates. The variational derivative ap- 
pearing above is: 

SIH 00 do 
V Vn U 

Su (-1)n dzn au where unz = az' and u=q, p 
n=O 

It can be easily seen that the equations of motion are a restatement of the NLS. The 
Poisson bracket [FT87] between two functionals of q and q is introduced in the following 
form: 

0 SA JA, B} =i0 ' 
f (- 0_ 

- 
JA 
- 

SB 
dz 

4' S 4 S- 4 4 
(4.8) 

This structure is non-degenerate and can help establish an algebra of the observables 
A and B. Furthermore it can be proved that the temporal variation of observable A is: 

dA 
_ dt - {7l, A} (4.9) 

The Hamiltonian picture however goes much beyond these simple relations . 
As 

mentioned above the Hamiltonian will generally depend on both q and p. However it 

is possible to introduce an invertible transform of these coordinates into a new set (P 

and Q). This particular set has the following properties: 

" Equations (4.6) and (4.7) remain invariant under the substitution p -- P, q -+ Q 

and 

" The Hamiltonian acquires a simple form depending on half the coordinates only 

The latter has the effect of simplifying greatly the equations of motion, since half of 

the coordinates do not exhibit temporal variation. 
Furthermore it turns out that these new coordinates are closely related to the 

scattering data which we will introduce in the next section [FT87]. 

4.2.2 The Inverse scattering transform 

We will now discuss the application of the Inverse Scattering Transform (IST) in the 

solution of the initial value problem for the NLS (4.1) introduced by Zakharov and 
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Shabat [ZS72]. The discussion here has the purpose of outlining the method and fixing 
the notation needed for the perturbation theory. The IST theory in full detail can be 
found elsewhere [Lam80] [FT87] [NMPZ84]. The solution of the NLS begins with the 
observation that (4.1) is the compatibility condition for the following linear system of 
equations [KH92] [FT87] : 

aF= 
U(z, t, F (4.10) az 

aF=V 
(z, t, F (4.11) 

at 
where 

F- 
(02 2( iq 

and V 
Z(2+ IQI2 Z(Q- 2Qz 

' ZQ 2( Z(q+ ZQz 
2ý2 - 2IQI2 

By compatibility condition we mean that 

a2Fa2F 
at az az at 

should hold for any value of the eigenvalue C. 
This observation suggests the following way of solving the NLS: 

1. Direct problem: The problem (4.10) is solved for q(0, z) yielding a set of data 

that fully describes the solutions of the equation for the given q. 

2. Time evolution: This set of data is propagated through time using information 

arising from (4.11). 

3. Inverse problem: The time propagated set of data is used to reconstruct the 
function q. This is the inverse of the problem encountered in the first step. 

q(O, z) 
Direct problem 

Inverse problem 
q(t, z) 

S(0) 

Evolution in time 

S(t) 

Let us now consider these steps one by one. 
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Direct transform 

Two solutions of (4.10) are defined 4_ (01,02)' and _ (01 
, 02)t, where the super- 

script t denotes the transpose matrix. These solutions have the following asymptotic 
values for real C=ý: 

1 
0(z; e) -3 e-tez as z -4 -oo (4.1? ) 

(°)e 
W(z; e) ---> 1' 

Zz as z -3 oo (4.13) 

Along with this pair of solutions a second pair is defined: 

p_ 
02 

and _2 
-01 

(-0, ) 
These four solutions are called Jost solutions [DEGM82]. The solution space of problem 
(4.10) is two-dimensional. We take the pair ' and '' to be the base for the solution 

space. It is now possible to express the solutions 4 and ý in terms of these two: 

ý(z; ý) = a(e)1'(z, )+ b() 1J/(z, ) 

The coefficients a(e) and b(ý) are given: 

a(e) =W (ý(z; ý)ý ý(z, )) _ (ýý 2-ý ý2)( ) 
b(e) 

_ -W 
(ý(z; ý)ý ý(zý )) 

_ 
(ý1 

1+ 
ýZ'Y2)( ) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

The function W is called the Wronskian and is defined as the determinant of its argu- 

ments. It is easy to prove that the Wronskian of two solutions of (4.10) corresponding 

to the same eigenvalue is independent of x. 
Before proceeding let us have a closer look at (4.14). While ' is defined asymptoti- 

cally at -oo the other two are defined at oo and moreover is a plane wave moving in 

the same direction as while 1 moves in the other direction. We have thus a situation 

closely reminiscent of the scattering problem in quantum mechanics. By dividing with 

a(e) everywhere in equation (4.14) and rearranging we have: 

'v e) 
b(e) 

IP e) +1 e(Z; e) 
a(e) a(e) 

(4.18) 

The coefficient b(ý)/a(ý) is the reflection coefficient in the scattering problem and 

the coefficient 1/a(ý) is the transmission coefficient. The knowledge of the reflection 

coefficient describes the scattering problem (4.10) fully on the real line [DEGM82]. 
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We next look for the bound states of the problem which are associated with soliton 
solutions. For this purpose the functions ýD, 1 and a are analytically extended into 
the upper half plane in ' (Im( > 0). As ( oo they tend to (1,0)t exp(-i (x). 
(0,1)t exp(i ( x) and 1 respectively. 

We are interested in locating the discrete set of values of ( in the upper half plane, 
that make the coefficient a(() equal to 0. For these points (4.14) is rewritten as: 

ýD(z; () = b,,, T (z; () With n=I... N (4.19) 

N is the number of such points. This equation indicates that will decay in both limits 

of positive and negative infinity. The values (n with n=1... N are called bound state 
eigenvalues [New85] 

We now define the set of scattering data [KH92] for time t=0 to be the set made 
of the variables: 

S(0) 
b(e) 

for ý real, {(n, 
bn 

} for n= 11 2, 
... 

N] (4.20) 
a(e) an 

with ä,,, denoting the derivative of a(() with respect to ( at the point (,. The definition 

of the scattering data at the initial point in time completes the forward scattering 
transform. 

Time evolution of the scattering data 

The scattering transform solution method relies on the fact that the connection between 

the function q and the scattering data is a one-to-one mapping. In the previous step 

we defined this data. In order to reconstruct the function q at a certain time we need 
to propagate the scattering data to that point in time. To achieve this use is made of 
(4.11) for large Iz to derive the particularly simple equations [New85] : 

b(e, t) 
_ 

b(e, 0) 
e2 2t (4.21) 

a(e, t) a(e, 0) 
bn(t) 

_ 
bn(0) 

e2i (nt (4.22) 
än(t) än(0) 
(n (t) = (n(0) (4.23) 

With the help of these relations the scattering data are propagated in time to give the 

set: 
S(t) 

a (C, t) 
for C real, {(n, 

anb"((t) 
} for n= 1,2,.. . N] (4.24) 

We denote the analytic continuation of the coefficient a(e) in the upper half plane 
by a((). It can be proved that a(() is independent of time [ZS72]. This observation 
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leads to the discovery of an infinite set of conserved quantities Cfz for the NLS [HK95]: 

00 
(2 2)n Cn =f . ý'n(z) dz (4.25) 

00 

with .7 given by the recursion relation: 

1 n-1 

-',: 
'n + 

-TI 
Tn- 

1, F1 =I q1 
2 ýn+1 

=qazq 
1=1 

and the integration being along the z axis. The first three conserved quantities can 
be brought into a symmetrical form. Their physical significance can be easily deduced: 

00 

mass 
fI 

g12dz 
0<0 
00 

momentum 
f-, 

( X) 

iq q- qdq dz 
2 dz dz 

00 
energy JIdgI2-1q14) 

dz 

00 

Mass corresponds, in physical terms, to the number of photons. Relevant to the 
discussion regarding the Hamiltonian reformulation of the NLS model is the energy 
which is exactly the Hamiltonian function introduced there ( section 4.2.1). 

Inverse Scattering Transform 

The final step in the solution method is the inversion of the mapping introduced in 

the first step. Namely, we wish to use the set of scattering data at time t (4.24) to 

reconstruct the function q(x, t). To achieve this we consider equation (4.18). The 

functions and a extend analytically into the upper half c plane (Im(() > 0), the 

function ' extends analytically to the lower half plane (Im(() > 0) [New85] and the 

reflection coefficient can only be defined on the real line (Im(() = 0). After analytically 

extending and rearranging (4.18) we have: 

I 
ý(z; () = ý(z; C) + 

b() 
W(z, () 

Q(C) Q(C) 
(4.26) 

which indicates that a function (4ý a-1), analytical in the upper half plane, except for 

a number of poles at (_ (' is constructed from a function which is analytic at the 

lower half plane (%ý) and a "smooth" function defined on the real axis. This is the 

Riemann-Hilbert problem [New85] [FT87]. 
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Equation (4.26) is divided by (' -C and integrated, leading to the following set of 
linear integral equations [KH92]: 

2 (-01) 
1N_ ei 

(ýn-ý) t 

O 
e-týz +ý do 

ýn 
'I1(ZI (n) 

n =l 

1 a( ) e= (ýý- z 
+27ri T(z; e')de' (4.27) 

02 e(Z; (n) =_ 
(Z; (n) 

-yý1 

1N 6m 
ei 

«m-(; n) t 

= 
() 

0 
e- 

. (nz 
+Z amýn 

_ 
ým 

ý(Z; (m) 

m=l 

1 
b(S) 

et 
(4-Cn) z 

+"f_W (z; e) de (4.28) 
21 oo e ýn 

which are both linear integral equations. The function q is then recovered in the form: 

N b 
q(z) = -2 

n 
e-z 

ýn z 02 (Z; (n) 
- 

n=1 
an 

1 °° b(ý) 
e-'bz ý2(z; e) d 

i; 

f- 

co ä 
(4.29) 

During derivation it was assumed that the zeros a,,, are simple. The solution at time t 

consists of two parts. The first term on the right hand side of (4.29) is the discrete part. 
It is associated with the soliton solutions to the NLS. The second term is a background 

radiation term corresponding to the dispersive radiation that is allowed to propagate. 

4.3 Perturbation methods 

4.3.1 Adiabatic perturbation theory 

In the previous section we introduced the exact solution method for the NLS using 

the inverse scattering transform. However, we are interested in a much broader set of 

perturbed NLS equations which are not exactly solvable. We thus need to introduce 

some form of perturbation theory. The equation that we want to solve has the general 

form: 2 

Za q+ 
1a2 

q+ I g12q =E R(q, q) (4.30) 
at 2 öz 

The operator R appearing in the right hand side is, in the general case, a nonlinear 

differential operator acting on q and its complex conjugate. 
The simplest situation that we are required to describe is that of the single soliton 

(4.2), propagating under perturbation. 
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A first approach is to start with an assumption that the solution of (4.30) can be 

represented in the form: 

q(t, z) = qs(t, z) + oq(t, z) 
where q8 is the one soliton solution "content" of the propagating field and Oq is a 
deviation from q3. This form of solution when substituted in equation (4.30) (4.1) will 
give the following relation for Aq: 

-i 
äQq= 1 ö2 

20q+21g3204'+990q-ER(4s, qs) (4.31) at 2 öz 

with the bar denoting complex conjugation. 
To solve this equation an approach would be to introduce an adjoint problem which 

would help projecting out excitations [GH86] [HL90] [HW96]. Let us try to define this 

problem based on the unperturbed form of (4.31). The presence of the two excitation 
terms containing q8 will lead to the violation of the conservation of mass requirement. 
Mass here denotes the integral over z of the square of the absolute value of the solu- 
tion (see section 4.2.2). In order to rectify this we introduce the adjoint problem of 
(4.31) setting the condition that its solution, Oq, corresponding to Oq, satisfies mass 

conservation. The mathematical expression for this comes in the form: 

d 
Re foooo dz Oq Oq =0 

The next step is to make make an estimation of Aq. We notice that the soliton q3 is 

expressed by an equation of the type (4.2). We can now incorporate into Oq the variation 

of the constant parameters v, p, ý, 0. By taking the appropriate Taylor expansions we 

obtain up to first order: 

Oq=Ovf, +0y. fj, +08fe+Aý. fý+Aq, (4.32) 

Oq, is the higher order correction. The functions f,,, f,, & fe are derivatives of the 

soliton solution q3 with respect to the corresponding subscript at time t=0. Clearly 

this expression can be seen as the projection on the space with coordinates the four 

functions f,,, f,,, & fo. Furthermore we have the inner product defined by the conser- 

vation of mass. We only need to determine the projection coefficients. 

Similarly the solutions to the adjoint problem are found, and turn out to be or- 

thonormal to the set of functions f,, fµ, f, fB. In order to model the effect of back- 

ground radiation, if this is wished, a noise term s(t, z) is added to the right hand side of 

(4.31). The perturbation (4.32) is now substituted into the governing equation (4.31) 

with the noise term. The equation that arises is left-multiplied by each of the adjoint 
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functions fv, fg,, j, To to give the following equations of motion [HW96]: 

d 
AV = Sv(t) (4.33) dt 

a 
0p = S.. (t) (4.34) dt 

d_ 
dt 

Aµ + Se(t) (4.35) 

d 
09 = Ov + se(t) (4.36) dt 

(4.37) 

for the case of v=1, µ=0, ý(0) = 0,0(0) = 0. The source terms in the right hand 

sides are defined as: 

e-Zt/2 (s(t, z) - 
Sp(t) 

= Re [f_i dz 

Under the assumption that dispersive radiation generation is not excessive and the 

change in the soliton parameters is gradual, large changes in the soliton parameters 

are allowed. 
This first perturbation expansion is based on the assumption that the distortion 

of the soliton shape can be modeled by altering the soliton parameters at the slower 
time scale. The generic name for this kind of perturbation expansion is adiabatic 

perturbation theory. 
The region of validity of the adiabatic perturbation theory is of the order t= 

O(E-1). In order to proceed to better approximations we need to calculate the first 

order corrections to the fundamental solution. To achieve this two possible alternatives 

are open to us: 

" Direct perturbation methods or 

" IST-based perturbation theory. 

4.3.2 Direct perturbation method 

There are several versions of the direct perturbation problem [G081] [0P71] [KA81]. 

The starting point is the perturbed NLS (4.30). It is assumed that the perturbation 

introduces a slow time scale in the problem. This slow scale is symbolised by 7= Et 

The solution to this perturbed NLS is assumed to be in the form: 

q=qo+Eql+... 

where each of the functions qt, i=1, ... depends on a set of "fast" variables 01,02, 

and a set of "slow" variables pl i P2..... The adjectives fast and slow denote dependence 
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on t and rr respectively. To picture this allocation of variables, in the example of the 

single soliton solution (4.2) a possible choice would be: 91 = 0', 02 =pz+9 and pl = v, 

P2=µ 
Subsequently the solution is substituted in the equation to be solved. To leading 

order the result is the NLS equation for qo. At the next order we have: 

a £(ä8ý qo) qi = R(4o, 40) -ia 4'o (4.38) 

The left hand side of this equation is the linearised NLS. The first term in the right 
hand side is the perturbation term while the second term arises from the fact that we 

allowed the parameters of the soliton to be modulated at the slow time scale. The next 

step is to assume that the function ql can be decomposed into: 

41 = (ý1+201)exp(i9+iµz) 

where 01 and &1 are real functions. This solution is substituted into (4.38) and after 

the separation of real and imaginary parts we will have two equations: 

£RO1 = Re 
[R(o, 

qo) -za qo (4.39) 
aT 

£r0, = Im R(qo, Qo) -ia 90 (4.40) 
aT 

where the left hand sides of these two equations are the real and the imaginary part 

of the linearised equation, respectively. The solution of the homogeneous part of the 

above system of equations comes from the differentiation of the fundamental soliton 

with respect to the two fast variables 01 and 02 defined earlier. The final step before 

solving the inhomogeneous system is to introduce secularity conditions. The latter 

appear as orthogonality conditions between the solution of the homogeneous system 

and the inhomogeneous term of the full equation: 

a qo Re R(qo, o) -i qo dz =0 (4.41) 

.% aT aQ 
°° a 4.42 J qo Im R(qo, 4b) -ia qo dz =0() 

with the coordinates defined at the beginning of this section. 

Extension of this approach into higher orders is straightforward [G081]. However 

a major drawback of the theory is that the formulas that arise are not uniformly valid 

throughout space z. To construct uniformly valid expansions one needs to consider 

radiative effects as well. The latter do not give localised solutions, like the ones that 

the secularity condition forces us to adopt. 
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A way to include radiation into the picture [KA81] is to take matched expansions at 
first order. This means that the solutions obtained previously are expanded for large Q. 
Subsequently equations (4.39) and (4.40) are taken at large a, where all localised terms 

vanish. The equations arising from the previous step are solved with the boundary 

conditions found earlier. Alternatively, matching can be achieved by just retaining 
the solutions that would yield functional forms compatible to the original localised 

solutions expanded for large a [WCL90]. 

A different approach is to map the problem defined by the linearised NLS into 

a linear dispersive problem [Gor92], using a Bäcklund type transform. Although this 

result arises from the IST, it is self contained in that IST is not used in the perturbation 
calculations. The idea itself is that equation: 

ä q, - + 
ä2 qr + 21 sech(o, ) 12 q,. + sech2(,, ) e2 rµ Z+ieqr =0 (4.43) 

at 2 öz2 

is solved for: 

qr 
a2 f 

-ý 2ry 
of 

-7 
2f + sech2(or) e21 Az+i 0f (4.44) 

ä2z 8z 

The function -y is defined as -[qý'(ögo)/(äz)] and qo is the fundamental soliton solution 
to the NLS. The function f is the solution for the linear dispersive problem: 

Z 
of 1 a2f 

at +2 äz2 
(4.45) 

This approach was later on generalised [E1g93] [EBK95] for perturbed NLS prob- 
lems. The problem in adopting such an approach is that finding the direct transform 

for the initial radiation is not trivial. 

Having seen the direct method approach to the perturbation problem, we will now 

attempt to see things from the IST point of view. 

4.3.3 IST perturbation theory 

IST theory provides a natural way of solving the initial value problem of nonlinear 

PDE's. It is thus natural to seek solutions of the perturbed NLS within its framework. 

There are two possibilities. A limited number of equations can be solved by deriving a 

new set of matrices U and V satisfying (4.10), (4.11) and whose compatibility condition: 

Ut-Uz+[U, V)=0 (4.46) 

( zero curvature representation [FT87] ) is equivalent to the equation in hand. This 

approach has been successfully applied to a number of problems in the past ( [MT+93] 
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[SS91] [KC78] [CHL91] for example). However these are isolated cases where the coeffi- 
cients of the terms involved into the equations have certain ratios. The global problem 
is dealt with by a perturbation expansion of the IST. This approach was first introduced 
in the seventies [Kau76] [Kau90] [Kau91] [KM78a], [Kar79] [KM78b] and extensively 
reviewed in [KM89]. 

Let us start with a brief description of how the method works. First of all the 
presence of the perturbing term will modify the zero curvature representation to: 

Ut 
- 

Uz + [UV] 
= G= ER+2 (t cr3 (4.47) 

The subscripts t and z in the expression denote partial differentiation with respect to 
the variable while 

0 R- 
R(q, 

and 0 

1 

Qa = 
1 

It is assumed that from the pair of equations (4.10), (4.11) the first one remains valid 

while the second no longer stands. This implies that we can still use the existing set 

of Jost functions to describe evolution in the scattering space, although this evolution 

will differ from the trivial NLS one. To formulate IST perturbation theory we need the 

evolution of the spectral parameters. This can be calculated through differentiation 

of(4.10) with respect to time, use of the condition (4.47) and solution of the resulting 

problem. 
We will not go into the details of this particular calculations (they can be found in 

the literature [Lam80], [KM78a], [DP91] ). Instead we will use the Hamiltonian formal- 

ism to express the particular problem. The purpose is twofold: First we demonstrate 

that the Hamiltonian formalism can help removing much of the bulk of calculations 

needed in IST related theories and secondly to create the background for the introduc- 

tion of an "averaged Hamiltonian" perturbation method in the next chapter. 
Our starting point is again equation (4.30). We will take the Hamiltonian of the 

unperturbed problem to be Ho. Let us now assume that it is possible to write a 

Hamiltonian functional for the perturbed problem in the form: 

H=Ho+AH 

Equations (4.6) and (4.7) is now rewritten in the form: 

1 
6Ho 

+i 
SOH 

(4.48) 9t = 6Q 6q 

. 
6Ho 

. 
_OH 

9t + (4.49) 
99 
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A direct comparison with (4.30) will give the following functional relations: 
SOH 

Sq =ER, 
5OH 

=ER Sq (4.50) 

As mentioned earlier it is possible to determine the temporal behaviour of observ- 
ables by considering their Poisson bracket with the Hamiltonian (eq. 4.9). In order to 
fully describe the time propagation of the scattering data we need the evolution of the 

coefficients a(() and b(() connecting the Jost functions. 

Let us now calculate the variation of s(() where s can be either a orb : 

d 
s(() _ {Ho, s(ý)} + {OH, s(ý)} dt 

(4.51) 

The contribution of the perturbation is the second term of the right hand side. We 

now use the definition of the Poisson bracket (4.8) to get: 

s(ý) _ {Ho, s«)} +z 
SOH Ss(() 

- 
8OH 6s(() 

dz (4.52) 
dt 6q(z) S (z) 8 (z) S9(z) 

At this point the z coordinate is introduced explicitly in order to avoid confusion 
for the remaining analysis. To simplify this expression we have to make use of the 

set of equations (4.50). Furthermore we have to calculate the variational derivative of 

s(C). The latter is calculated by making use of formulas (4.16) and (4.17). Let us start 

with a((): 

(JID(y; () 
Sq(z) , ID (y; +W 

(ý(Y; 
()' 

Sq(z) 
(4.53) 

Sq(z) 
W 

In order to calculate the variational derivative of lb and 1P we will take the variational 
derivative of equation (4.10) with respect to q(z). Thus: 

d 6F(y) 
_ 

ýF(y) U(y, t, () 
F(y) (4.54) 

dy 64(z) 
U(yl tic) Sq(z) + 6q(z) 

with: 6U(y, t, () 
_0i 

8(y - z) 
Sq(z) 00 

For the Jost function 1 which is defined through its asymptotic behaviour in the vicinity 

of negative infinity we expect to have one more condition for the variational derivative. 

Namely: 
ýý(y) 

=0 for y<z (4.55) 
Sq(z) 

Similarly for ' we have the condition: 

ST(y) 
=0 for z<y (4.56) 

Sq(z) 
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The solution can be constructed by taking variation of constants. Its substitution into 
(4.53) will lead to: 

Ja« 

Sq(z) 
The subscripts correspond to the component of the Jost solution. 
thought for the remaining variational derivatives will give: 

Ja«} 
= Jq(z) 

i 41(z; C) i(z; () 

Sb«) 

Sq(z) - -i 02(z; () 02(z; () 

Sb«) 
=1 01 (z; C) i (z, () S-q 

(4.57) 
A similar line of 

(4.58) 

(4.59) 

(4.60) 

These formulas are used in order to evaluate the Poisson brackets (4.52). The 

resulting time derivatives are exactly as in [KM78a]: 

a 
a(() =iE a(() a+(ýý ý) + b(() a((, ý) (4.61) 

at a 
b(C) _ -2 i C2 b(() +i c- [a(() 

a((, C) - b(() a+((, (4.62) 

where ( is complex, the bar denotes complex conjugation and: 

(4.63) 

(4.64) 

and R the matrix introduced in equation (4.47). The analysis from this point onward 
is straightforward. The changes in the discrete spectrum are described by alterations 
of the discrete eigenvalues as well as the normalisation coefficients. To calculate the 

change in the eigenvalues the total differential of a(() is considered around its zero. 
For the normalisation coefficient the difficulty arising from the appearance of ý(() is 

overcome by the consideration of the c derivatives instead [Kau76]. The variations 

of the discrete spectrum correspond to the adiabatic perturbation theory. For the 

continuous spectrum the eigenvalues are constant with time and the variation of the 

reflection coefficient is directly calculated from (4.61) and (4.62) [Lam80]. 

In order to reconstruct the solution equations (4.27) and (4.28) need to be expanded 

with the introduction of higher orders in c for both scattering data and Jost functions 

[DP91]. 
Extension to higher orders in c is achieved by considering the changes of the Jost 

functions as well [DP91]. 
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It can be proved [NMPZ84], that the pairs of functions: 

n(A) =1 1n 
12, 

O(A) = arg(b(A)) (-x. 65) 
'r la(A)1 

for the continuous spectrum and 

Nk =2 Ak 1 4% = ln(1/bk) 
, k=1,2 

... (4.66) 

for the discrete constitute canonical pairs of action-angle type variables. The Hamil- 

tonian of the NLS when transformed in these variables is expressed as: 

Ho =3E (Nk - Ný3) +4 
00 

A2n(A)dA (4.67) 
k -O° 

Unfortunately perturbation terms will involve all coordinates, thus destroying the ac- 
tion angle character of the coordinate above. From this point the choice of the optimal 

coordinates in the scattering phase space depends solely on the functional form of the 

perturbation. 
The use of the Hamiltonian formalism in the expression of an IST perturbation 

theory does not add any new element. It is not expected to do so. The only benefit 

that it provides is more transparency into the calculations related to the temporal vari- 

ation of the spectral parameters. The use of Hamiltonians would seem to be reducing 

the spectrum of perturbations envisaged to purely Hamiltonian ones. At first order, 
however we do not envisage alterations from the analysis which has just preceded. This 

is because equations (4.50) are valid to first order, regardless of the character of the 

perturbation. 
The use of the Riemann formalism for the inverse problem ([DP91]) instead of the 

traditional Gelfand-Levitan-Marchenko ([KM78a]) approach provides more simplifica- 

tion since integral equations are substituted by purely algebraic ones. 

4.3.4 Alternative approaches 

In addition to the well established analyses above, there are several other approaches. 

Most prominent among them is the Lagrangian method, which is going to be analysed 

extensively in the next chapter. Perturbation techniques can also be based on the 

Hamiltonian, in the time-space domain [BA94] [Bla9l], at least to the adiabatic level. 

A different approach, applicable to conservative systems, is to try and transform 

the perturbed equation into a solvable one [HK95] [Kod85a]. The main point is that 

if we have an equation perturbed from an integrable one to order O(E), which can be 

expressed in the Hamiltonian formalism, it is possible to find a transform that connects 
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the solution of the equation in question to an integrable one. The idea was suggested 
by Kodama. The details can be found elsewhere [Kod85a]. Here we will only give the 
results of the application of the theory to the perturbed equation (3.54) written here: 

1 
igt+2qzz+IqI2q=iE (ßiqzzz +ß2 (q2q) +ß3q (q2)) (4.68) 

If q is a solution then it is possible to define a function 01 with the following property: 
When the function v(t, z) is a solution of the equation 

11 
Z Vt +2 vzz +Iv I2v 

= ß1 (vzzz 
+ 61 V I2VZ) 

, 
(4.69) 

then the function 

q=exp(4P "V)v=V+Eo1[v, v]+0(f2) (4.70) 

with 

01[vý vý =2 
(3ßi 

- 
02 vz +1 601 

- 202 
- 

ß3) vz Iv(Z') I2dz' 
2 00 

is a solution of (4.68). The equation (4.69) is integrable with the means of the IST 
(Hirota equation [Hir73], [MT+93]) 

Regarding the radiation emitted due to possible resonances further to the IST and 
the approach due to Gordon 

, 
both explained earlier, it is possible to use linearisation 

in the frequency domain [KZ90] [Kar93]. An alternative technique, valid for the funda- 

mental soliton at least, was developed by Karpman [Kar93] [Kar94b]. In this approach 
the space variable is extended to the complex domain. The solution of the fundamental 

unperturbed equation is assumed to be defined over the complex plane. The remaining 

steps are: 

" The linearised perturbed equation is taken and solved with a WKB approxima- 
tion, leading to the first order radiative solution. 

" The fundamental solution is rewritten in a fashion that resembles the WKB 

solutions functionally. It is then possible to locate a quantity of the soliton 

solution that is analogous to the wavelength of the radiation. The set of the 

points at which these two are equal is identified. 

" The full solution (fundamental and first order) is integrated over a contour that 

passes above the point of the set just defined that is nearest to the real axis. 
By making use of the transformation of the fundamental solution into radiation 
it is possible to obtain expressions for the radiation similar, up to a constant, 

with the corresponding quasi-numerical solutions of the problem in hand [KZ90] 

[WMCL86]. 
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4.4 Considerations 

Having introduced some of the perturbation schemes available we should now establish 
some connection of the mathematical notation to the physical reality. In the previ- 
ous chapter (3.6 )a parameter c was introduced as the ratio of the propagating pulse 
bandwidth to the central frequency. Subsequently the set of equations describing pulse 
propagation was derived as a power series in E. The nth order equation in that power 
series would be valid up to distances O(Ao E-n) = O(E-n). In real applications the 

c parameter is approximately 10-4 [HW96] [HW96], giving a region of the order of 
thousands of kilometers where the NLS is valid. However, there is a tendency for the 

narrowing of the used pulses. A reduction by one order in epsilon (10-4) will lead to 
the reduction of the region of validity of the NLS to kilometers. It is for such cases 
that the use of perturbed NLS equations is needed. 

By far the most popular procedure is the adiabatic perturbation. It has two main 

advantages over the other procedures: 
First it is easy to implement. The equations describing adiabatic propagation can 

be derived by the consideration of the Integrals of motion, or by the Hamiltonian 

picture or from the procedures outlined in section 4.3. No knowledge of IST is required 

and they can be applied in almost any situation. 
Secondly, when the correct choice of time varying parameters is made, it provides 

a clear, identifiable picture of the motion, since as was explained earlier the individual 

solitons are treated as particles with a position and a momentum to characterise them. 

However, one should always keep in mind that the adiabatic theory is only a first 

approach, valid for small time intervals and most important, neglecting the effects of 

radiation due to the perturbing term. It is thus important that adiabatic theory is 

used with caution, in this respect. 
Regarding higher order perturbation methods, the direct method has the advantage 

of not introducing complex mathematical problems into the dynamics of the perturbed 

equation like the IST does. Secondly it is better than IST in describing localised 

solution deformations in that the amount of calculations is small and relatively easy 

to perform. By contrast the solution of the same problem with IST perturbation 

theory involves lengthy integrations even for functionally simple perturbations. On the 

other hand IST gives a full picture of radiation unlike direct methods. To describe 

radiation with direct methods, specific considerations have to be introduced for each 

spectral area where dispersive radiation can arise. The subsequent calculations are all 

but simple [KZ90] [WMCL86]. Furthermore the application of the direct method is 
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obscure when the initial conditions do not correspond to a unique asymptotic solution. 
For example the treatment of the NLS with initial condition A sech(z), A#1 is 

relatively easy with IST since we know the parameters of the asymptotic solution 
while being highly problematic for the any direct method unless some way is devised 

to predict the asymptotic solution [KS95]. 

The only reservations regarding IST are the following: IST perturbation "attaches" 

a perturbed problem to a specific equation, the NLS. However there is no guarantee 
that the perturbed equation has the same dynamics as the NLS. The latter is asso- 

ciated with a compatibility problem for two-dimensional functions. It is possible to 
define compatibility problems in more dimensions and generate higher order integrable 

equations. An IST perturbation scheme can be defined for each of these equations It is 

not possible to determine beforehand which of them has dynamics most closely related 
to the equation examined so as to use the corresponding perturbation scheme. 

Another point that should be made is that the IST perturbation procedure in- 

troduced earlier does not predict the generation of new discrete eigenvalues or the 

destruction of existing ones. We cannot therefore predict whether a new soliton is 

formed (or one is destroyed). 

We have seen, in this chapter, a brief description of some of the analytical tools 
in the description of pulse propagation. We have seen an exact method and some 

approximate ones, their advantages and disadvantages. We left out an alternative 

method based on the Lagrangian of the equation to be solved. This method will be 

covered in detail in the next chapter. 



5. THE LAGRANGIAN PERTURBATION METHOD 

5.1 Introduction 

The Lagrangian method was introduced [BLA79] [AL83] to provide a simple alterna- 
tive in the determination of the equations for the soliton parameters in the adiabatic 

approximation. The starting point, of the initial version, is the Lagrangian density 

(4.3) associated with the NLS. For the perturbed problem one has to produce a suit- 

able Lagrangian density [AL86] [H+93] [Des94] or transform the existing one in order 
to include the perturbation in the constants associated with the already existing terms 

[And83]. Let us assume that the differential equation to be solved has the form: 

M(q, q) =0 (5.1) 

where M is one of the nonlinear differential operators appearing in chapter 3. The 

nonlinear differential operator M is acting on a function q and its complex conjugate. 
The function q depends on time (propagation variable ) and space. Following the 

scheme of section 2.3, the PDE (5.1) is expressed as a Lagrangian optimisation problem: 

S= ftdt' f dzr(q, (5.2) 
_ 

For the rapidly decreasing case, that we have been dealing with, the points b_, b+ 

correspond to -oo and oo respectively. Nevertheless we leave them here undefined for 

reasons that will be explained later. In the case of the NLS the Lagrangian density C 

is given by equation (4.3). 

The next step, in this analysis, is to select a trial function (ansatz) for the solution of 

the problem and substitute it in the Lagrangian density. This trial function will have 

a predetermined z dependence. The only flexibility that we allow is through some, 

suitably chosen parameters Ai, i=1... N which are assumed to be functions of time. 

The determination of the temporal evolution of these parameters is the final target. 

This step is the most crucial in the whole method. The choice of a specific profile 

makes it impossible to predict changes in the pulse shape (or the phase dependence on 

z). 
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From this point onwards the analysis is very similar to the traditional Rayleigh-Ritz 

method outlined in section 2.3.2. Namely after substitution of the trial function in the 
Lagrangian a reduced problem is defined: 

dt' L(Ai(t'), t') 
0 

(5.3) 

where the function L comes about from integration throughout space of the original 
Lagrangian: 

L(AZ(t), t) =f dz L(q(z; A(t)), ü(z; A(t))) (5.4) 
_ 

The function L(Ai(t'), t') is a reduced Lagrangian depending on time only. The final 

step is to find the Euler-Lagrange equations corresponding to problem (5.3). This will 
lead to a set of quasi-linear ordinary differential equations, whose solution describes 

adiabatic propagation. By the term quasi-linear it is meant that the differential equa- 
tion will be linear with respect to the derivatives. However the coefficients of the 

equations need not be linear in the unknown functions. 

The most important shortcoming of the method is, as described earlier, the commit- 

ment to a specific shape for the solution. It is exactly for this reason that the method 

should be applied with extreme care as pointed out in [AAPC93] [KMS95]. This is 

particularly true when the perturbation theory is only applied up to the adiabatic level 

as will be seen from the example that follows. 

We will attempt to consider, using the variational method, the NLS initial value 

problem where the initial pulse profile is of the form A sech(x) with A<1.5 We will 

take a trial function [ALR88a]: 

q= a(t) sech( 
z) 

et z2 b(t) +i G(t) 
W(t) 

(5.5) 

which is substituted into the Lagrangian (4.3). After carrying out the integration (5.4) 

we will have the optimisation problem (5.3) with L given by: 

L- -a(t)2 +2 
a(t)4 w(t) 

- 
7r2 a(t)2 b(t)2 w(t)3 

- 
7.2 a(t)2 w(t)3 Y(t) 

-2 a(t)2 w(t) O'(t) 

3w(t) 336 
(5.6) 

Subsequently, the Euler-Lagrange equations of this Lagrangian are calculated. If we 

define the conserved quantity "mass" (see section 4.2.2) to be equal to 2M then we can 

prove that the Euler equations can be reduced to a Newton equation for the motion of 

a particle with coordinate y(t) in a potential well U(y(t)): 

Y(t) +dU=0 (5.7) 
dtv dy 
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with U= 
2 (1 -2M2y(t)) and y(t) = a(t)-2 M4 .2 y(t)2 

For initial values at the bottom of the potential well the one soliton solution is recov- 
ered. However if the initial point is different from the potential minimum oscillation 
of the pulse parameters will occur. The circular frequency of this oscillation, for small 
deviations from the potential minimum is approximately wo =2M /7r. By taking the 

exact theoretical predictions [SY74] it can be found that both frequency and mean 
values of the oscillation are wrong [KS95] [KMS95]. Furthermore the chirp parameter 
b will take positive values in one half period and negative for the other , indicating 

alternation of the direction of motion of the dispersive radiation. 
To understand the reason for this collapse we have to look at the physical picture. 

The initial condition in hand corresponds to one soliton and an amount of background 

radiation. From IST theory these two are decoupled and propagate independently. 

The trial function is a single pulse, localised in space. We thus expect a good agree- 

ment between the exact picture and the Lagrangian approximation method when some 
degrees of freedom are introduced to account for the non localised part of the initial 

radiation. However the emerging adiabatic solution is built on the implicit assumption 
that all initial radiation is reshaped and transformed into a propagating soliton. This 

type of solution, cannot exist as we can easily see (by direct substitution). 

5.2 Euler-Lagrange Equations 

Having stressed the importance of the correct selection of an ansatz we return to the set 

of equations (5.3) and (5.4). There are two main difficulties in reaching the form (5.3). 

The first one is to formulate the Lagrangian function that corresponds to equation 
(5.1). The second problem is of computational nature: It is often not possible to 

derive exact analytical expressions for the integral (5.4). 

The purpose of this section is to tackle the first problem. Namely we will see 

that, in the rapidly decreasing case, the formulation of a Lagrangian function is not 

a prerequisite for the derivation of the Euler- Lagrange equations. To achieve this we 

need formulas for the variational derivatives of L(A; (t), t) in (5.3) with respect to the 

functions A;, i=1... N. 

Before doing this let us introduce some notation. According to the analysis in sec- 

tion 2.3, equation (5.1) can be re-expressed as a variational derivative of the Lagrangian 

L with respect to the function q: 

ý9 i_o j=0 dz dtv 0-(ßz,; t) 
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where 
an+m 

q(nz, 
mt) = aZ 

Vtm 

This variational derivative involves derivation in both time and space. Since our prob- 
lem involves functions Ai that depend on time solely, we will need a second variational 
derivative operator, defined in the z direction: 

S (z) 

1: 
d'ý a 

Sf 
ý-lýý 

dz äf. 
ý_O ýz 

(5.9) 

where f an arbitrary function and the subscript jz denotes derivation with respect to 

z, j times. Making use of this definition it is possible to write (5.8) in the form: 

j=o dti s jt 
(5.10) 

The functions q and q depend, in their turn, on the functions Ai. The differentiation 

of functionals of the former two functions with respect to At will involve application 

of the chain rule. In order to make the formulas used more compact we introduce a 

vector q defined as: 
4= (q, q, q, ...,, 4'zß qzxý ... 

) 5.11) 

as well as a corresponding vector derivative: 

o_ aaaaaa 
xz 

,.., ý, ýx, ,. 
(5.12) 

q aq, (9q_, ' aQ 
zz 

To complete the algebra needed, we will introduce a dot product between vectors 

in the usual form: 
(ai, a2, ... 

) " (bi, b2, 
... 

) _ ai bi (5.13) 

In order to calculate the Euler-Lagrange equations we need the variational derivative 

of L in (5.3) with respect to the function Aj: 

bL ,. m d, * 
SE dtr. 

L 
3 K=U 

where the subscript nt denotes differentiation rc times with respect to time. The index 

i takes all values between 0 and the maximum time derivative order in L, designated 

by 'm. Next, use is made of the definition of L in (5.4). After switching the order 

between summation and integration we have: 

A Km dK 

=f dz E (-1)K - L(A, )K JA, 
_ K-o 

dtc- 
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But we already know that the Lagrangian L depends on (A, ),, 
t through the function q 

and its complex conjugate. By making use of definitions (5.11), (5.12) and (5.13) the 

relation above is rewritten as: 
SL 

+ 
KM Km dK 

=f dz EZ (-1)K ýýgat)(aý)Ktý 
" Vq L (5.14) 

JAS 
_ k-o A=O 

dt 

The limits of the A summation should in fact be reduced to n<A< Km, since for 

A<n, the terms in the A series are zero. However this choice of limits will not have 

any effect as these terms will be eliminated by the identity: 

[ýgat)(Aý)Kt] 
- 4(a-ýc[()t)(A)] (5.15) 

proved in the appendix at the end of this chapter. This identity and the product rule 
formula for the lath order derivative: 

dk f(t)9(t) = dtk 
j=0 

, 
fjt9(k-j)t 

will be substituted into (5.14) in order to get: 

QL 
6+ Km Km K [(_)t)(A)] 

- Vq 
t 

Lµ t SA 6_ 
dz ON 

rc=o A=O µ=o 
µ 

In order to simplify this equation we must use the identity: 

(-lßµ 
µ=v (; ) 

µ= (-1)L 
v 

with v<rk 

(5.16) 

(5.17) 

(5.18) 

also proven in the appendix. The symbol 5,, � is the Kronecker delta. After substitution 

of (5.18) in (5.17) and the interchange between integration and summation we will have: 

A-E (-1)1 
6+ 

ýAj A=O b 
dz ((A, 

)) " Vq,, 
t 
Lac (5.19) 

The final step will come from the explicit substitution of the components of the dot 

product in the integrand of (5.19) and the use of integration by parts on the resulting 

formula. By taking these steps and performing some straightforward algebra we reach 

the following result: 
b+ 

JL "'" im 6La t 
_E (-1) A ()_+ (A, )(_l)Z + 

6Ai=1 1)z ýq(iZ ate b9(iz, ate b_ 
Km b+ 8La t 

(z) 
_ 

6La t 
(Z) 

5.20 (-1)' dz QA + Qq 
(' 

_o -' 
ýQat 

A' 
ýqat 

where i, is the order of highest z derivative in the Lagrangian function L. 
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For the rapidly decreasing case the limits b_ and b+ tend to negative and positive 
infinity, respectively. Furthermore the solution, at these points, vanishes together with 
all its z derivatives. we thus expect the first term on the right hand side of (5.20) to 
vanish. To simplify things further equation (5.10) and its complex conjugate are used 
in (5.20) to give: 

00 , [M(q, )A. + . 
Ai[ (4,4') qA, 

] dz =0 (5.21) 

Equation (5.21) completes the proof of the statement at the beginning of this section. 
Before using it in the perturbation theory of (5.1) a couple of comments must be made. 

In the "orthodox" Rayleigh-Ritz method, briefly introduced in section 2.3.2, the idea 

was to introduce a sufficient number of functions - solutions to the problem - whose 
superposition would lead to a sufficiently accurate description of the exact solution. 
This, of course, cannot be achieved exactly in nonlinear problems as we can no longer 

rely on the superposition principle. However equation (5.21) indicates that we are 
assuming that our solution lives in a manifold with coordinates the functions qA,. In 

order to define it we fix the free varying parameters in a way that makes the result of 
the substitution of the trial function into equation (5.1) orthogonal to this space. We 

can now see why the choice of the parameters is crucial to the whole approximation 

process: missing out degrees of freedom that are important means not only that the 

solution is inaccurate, at best, but we do not have any means of quantifying the size of 
the error we are making. A possible solution to this problem will come by introducing 

progressively more degrees of freedom as we will attempt to do in the next section. 
Secondly we have seen that no assumptions have been made as to the from of the 

Lagrangian. Thus, the need for the explicit formulation of the Lagrangian density 

function is substituted by an existence condition. The usefulness of this lies in prob- 
lems where the definition of a Lagrangian is not as straightforward. As such we can 

classify, first of all, nonconservative problems, where alternative methods have to be 

used ([And83]). In cases like this instead of going through the Lagrangian approach, 

as described in the previous section it is possible to adopt the direct version expressed 
by (5.21). 

5.3 Direct perturbation expansion 

The appearance of equation (5.1) and its complex conjugate, in (5.21) suggests that we 

can implement a Rayleigh-Ritz version the use of of the direct perturbation method. 

The standard solution method is to solve the zero order problem, then substitute the 

solutions to the first order problem and determine the corrections and work recursively 
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for higher orders. Instead of doing this, the set of functions is predetermined and 
substituted into the equations. The task we have to fulfill is to find the conditions 
under which this set of functions will be a solution to the system under consideration. 

Let us see how this statement applies. We will first assume that the left hand side 
of equation (5.1) corresponds to the superposition of an operator that we can solve 
exactly and a small perturbation characterised by a parameter E: 

(0) (q, q) + E? Z(q, 4) (5.22) 

The perturbation method will be applied in the usual fashion: 

First we introduce a trial function which, we assume, can be expanded in powers 

of E: 

q= go(z, t)+Egi(z, t)+62Q2(z, t)+... (5.23) 

The functions qj, i=1,2.... are trial functions that depend on time through sets of 
time dependent functions A() with i=1,2, 

... and v= = 1,2, ... , 
Ni and Ni is the 

number of new functions of this type for each qj. Since the trial functions at a certain 

order are determined from the ones at the previous order it is assumed that the ql will 
depend on the set of AM as well as from the set made of A(°). Similar considerations 
hold for higher orders. Substitution of the trial functions into the original operator will 
lead to an expansion of the type: 

M(o)(go, lo) +E 4'i " Vq0 M(o) + ((41)to + (4'o)c1) ' Vgoto M(o) + 

((4'i)toto +2 (go)ut, ) " Vgototo 
. 
M(o) + ... +1 (qo, 4'0)) + O(f2) (5.24) 

The dot product and the vectors associated with it are defined in equations (5.11), 

(5.12) and (5.13). For reasons of simplicity we will avoid doing the full scale expansion 

but will limit the study in the first order. 
The second step in the solution is to introduce multiple scaling in the time domain. 

The slow scales introduced are designated by tE =EV and their introduction alters 

the form of temporal derivatives as described by equation (2.12). The time dependent 

functions Aj(') are now assumed to depend on multiple variables t1: 

Aj(m) = 44m) (t0, t1, 
... 

) 

A further degree of freedom is introduced by expanding the functions Aim) in multiple 

orders: 
Aim) = Aýmt0) +E A('"'1) + f2 �(m, 2) + 

... 

In order to proceed further we need to incorporate these two assumptions into 

the operator (5.24). The only alterations will occur in the time derivative terms. 
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There we must take under consideration the dependence of the trial function q on time 
through the trial functions Aim). Thus the derivative operator with respect to t, will 
be rewritten as: 

mN aA(k, º) 1: 1: aE 
EI ' (5.25) 

ötn k=0 j=1 1=0 atn äAýk'o) 

with n= 01 17 ... and m defined by the function qm on which the differentiation operator 
is acting. Similar expressions can be derived for the higher order derivatives although 
they are not useful in the NLS case. In order to derive the differential equations 
describing the temporal evolution we need to use (5.21) together with the equations 
derived above. The term (q )Aj(m) 

appearing in (5.21) should be expanded as: 

(g0), 
4(o'o) 

+C 
[(qo)o, 

1+ 
(Q1)A(lo) + 0(f2) 

3i 

The appearance of the first term in the square bracket stems from the application of 

the variational derivation on the action. The minimisation condition appears as the 

product of the Euler Equation with the variation of the function with respect to which 

the variational derivative is taken. This is introduced here by the presence of the first 

term of the square bracket in that order instead of the fundamental. 

After straightforward substitution into (5.21) the fundamental order Euler equation 

for Aj(°) will be: 

00 [(M(o)(qo, 
o)) (go)A(o, o) + (M(o)(o, qo)) (go)A(o, o dz =0 (5.26) 

-00 
After considering all possible j's a system of No ordinary differential equations will 

be formed. Its solution will determine the temporal behaviour of the trial function 

qo. What should be pointed out at this point is that the solution of the system(5.26) 

will not necessarily make the trial function qo a solution of the unperturbed equation 

corresponding to (5.22). In the next order we have the system of equations: 
f 00 [() V 40 M (o) +) to -O (40) to M (o) +.. .] (qo) cA s1)dz+ J 

(Ql 

00 

00 [(x(4'0,40)) + (4'o)t1 V(qo), 
oM(o) 

+ ... 
] (go)A(s, 1) dz + 

f FM(o)(go, qo)] 
[(q1)As1) 

+ (go)A(s�) dz + c. c. =0 (5.27) 

00 3> 

where c. c. stands for complex conjugate and s takes the values 0 and 1. The separation 

was made here in such a way so that the first term includes the linearisation of the 

operator M and the second includes the remaining perturbation effects. The third term 

comprises driving effects arising from the fact that the ansatz that we have considered 

may not be a solution of the unperturbed system in hand. In the system of equations 

(5.27) two types of AJ's appear: 
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1. First those that are introduced for the first time (s = 1). To derive the Euler 

equations corresponding to these functions only the third integral and its complex 
conjugate needs to be used since (qo) is independent of Aý(1'k). The Euler equations 
will be conditions on the functions derived in the previous order. They are 
trivially valid only if the trial function qo is a solution to the unperturbed problem 
corresponding to (5.22). 

2. The remaining Ad's (s=0) have been introduced in the previous order. Their 
Euler equations will involve all terms above except possibly the last integral. 
Their behaviour at time scale to is known from the previous order. The task here 

is to determine their behaviour in time scale tl as well as imposing compatibility 
conditions on the Ad's of the previous category. 

The Euler-Lagrange equations associated with variational derivation of the s=1 
functions are: 

00 

o) dz =0 (5.28) 
[M(o)(qo, 

o) (ql)A(' o) + M(o)(4o, qo(41). 4(�o) 
-00 

These are just Ni algebraic equations imposed on the functions Aj(°'°) and Aj(1'°) 

The equations arising from variation of the s=0 functions will comprise secular 
terms. These, basically are all terms that are completely independent of the parameters 
Aj("0). Such terms come about from: 

00 "0 [oofl 
+ (g^o)tl - V(eo)to M(o) + ..., 

(go)A(o, o) + M(o)(qo, 4'0) (4'o)A(o 1) dz 
-00 (5.29) 

and its complex conjugate. In order to ensure that no secularities will occur they have 

to be equated to zero independently. This gives us a set of No secularity conditions. We 

can easily see that these equations determine the behaviour of the constants appearing 

in the fundamental solution in time scales tl. In fact these equations together with the 

fundamental order ones form the adiabatic approximation. 

Bearing in mind (5.29) and (5.27) we are able to define a third system of No differ- 

ential equations which will yield the behaviour of the Aj("°) parameters in time scales 

to: 

00 [(q, ) 'X90 (0) + (9i )to " ý(qo)ýo M (o) + ..., 
(go)A(oPo) dz + 

00 [M(o)(qo,? Jo)] (9i)A(o, o) dz + c. c. =0 (5.30) 

This step completes the analysis in the first order. If the trial functions qo and ql are 

selected to be exact solutions to the fundamental and linearised equation respectively 
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this last system of equations is true trivially. Extension to higher orders follows along 
the same principles. 

The last question that has remained unanswered is that of the trial functions. As 
in the version described at the beginning of this chapter there are no universal guide- 
lines. However by examining equation (5.28) we notice that unless the first order trial 
function is a superposition of the derivatives of qo with respect to the Aý°'°) functions 

new orthogonality conditions will be introduced. This will lead to the creation of an 
overdetermined system of equations relating different Aj(°'°) and thus convergence to a 
solution at the fundamental order. 

Secondly the equations at higher orders (5.30) are linearised. This, of course means 
that we can adopt a trial function in the form of a superposition of solutions of the 
linearised equations. But even if we do not so we will be limited by the practical need 
to be able to perform the integrations analytically. Classes of functions that allow such 
manipulation are usually derivatives of the fundamental solution and products of the 
function with powers of z( The reader should bear in mind that these approaches 
describe perturbations of the fundamental single soliton). 

To conclude this section, what we demonstrated here is not some new perturbation 

scheme. This approach is well established and relatively old [0P71] [G081]. What we 

saw is that within the framework of the Lagrangian approach to perturbation theory 

we were able to reconstruct the direct perturbation method. The benefits of starting 
this are two: 

First the secularity conditions arise naturally, once we identify which functions are 
involved where. This is not true for the conventional direct method, since the identifi- 

cation of the secularity condition comes from the solution of the linearised problem. 
Secondly, we do not need to perform a perturbation expansion around the zero order 

solution. Condition (5.28) together with a selection of a first order approximation in a 
functional form linearly independent from the first order derivatives of the fundamental 

function with respect to Aj(°'°) will force a better approximation at the fundamental 

order. This approach does not constitute a solution of the propagation problem when 

initial conditions do not correspond to an exact solution. This is obvious since we 

cannot, without recurring to IST, find the correct initial conditions for radiation and 

solitary pulse and we have made no provisions for the former since the functions are 

implicitly considered as localised. 

Finally, all the shortcomings of the direct expansion method are present here as 

well. This is expected from the fact that we merely restated the direct perturbation 

method in a fashion that makes computations more straightforward 
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5.4 Example: The damped 'LS 

In order to illustrate the use of the previous approach we will attempt to apply the 

principles discussed in the two earlier sections with an example; that of the damped 
NLS equation: 

a 
iä q+ 

1 ö2q+Iq12q+17q=0 
(5.31) 

ät 2 äx 

This equation cannot be directly treated with the Lagrangian method since we cannot 
find any Lagrangian whose minimisation will lead to equation (eq. 5.31). It is possible 
to treat the problem indirectly by transforming the solution q so that damping becomes 

incorporated to the coefficient of the nonlinear term of the NLS ([And83]). Let us now 
try to approach this problem from the viewpoint exposed in the previous two sections. 
We are looking for the adiabatic changes of the soliton parameters as well as the 

stationary changes in the shape of the fundamental order solution. 

Let us assume that the fundamental order solution qo is: 

4'o = 2n(t)sech (2n(t) (x - e(t))) ei2m(t) (x-e(t))+i8(t) (5.32) 

and leave Q1, q2 undefined for the time being. 

If we assume that the damping term is a perturbation quantified by the small 

parameter y then we have to adopt a power series expansion in y for all of the parame- 

ters of the problem. To apply our method let us introduce multiple scales: to, ti, t2, ."" 

where tl =y to, """ and expand the governing equation (eq. 5.31) in multiple orders: 

M=Mo+y. M1+... 

a1 a2 Z atO to +2 
ax2 qo + IQo12go + 

aa 
_l 

a2 _ at qo +z qo +Z ato 4'1 +2 5ý2 qi + 2l go ý2 qi + gö4i + 0(Y2) =0 
i 

(5.33) 

We will restrict the analysis to the first order correction. For ql we assume the form 

ql =f (t, x) qo with f (t, x) needing to be determined. We will address this problem 

immediately after solving the zero order equations, which correspond to the NLS equa- 

tion as can be easily seen from (eq. 5.33). The solution is easily found by using (eq. 

5.26) or even the straightforward Lagrangian method. The solution is: 

dn=0 
dto 
dm=0 

dto 
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de 
dto 2m 

d9= 
2(m2 + n2) (5.34) dto 

These relations guarantee that the zero order part of (5.33) is identically zero. Now. 

since we are looking for changes of shape of the fundamental solution. The choice of ql 
made in the previous paragraph makes this clear. Thus f (x, t) is an envelope modifying 
function due to the perturbation. It should thus have the same properties as its "gen- 

erator", i. e imaginary and symmetric (since iqo has an envelope with these properties). 
From the discussion in the previous section we look for forms for qi by differentiating 

qo with respect to n, m, ý, 0. From the functions arising we deduce that a possible se- 
lection could be: f (t, x) =i [a(t) + 2n(t) b(t)[x - e(t)] tanh(2n(t) (x - ý(t)) )] Instead 

of this, however we will consider a slightly different envelope function: 

f ýtý x) =2 
[a(t) + 4n(t)2 b(t)[x - e(t)]21 

The reason for this selection is that we wish to compare the results of the application 
of our formulas to the already existing analytic approach due to Karpman and Maslov 
([KM78a]). 

Having introduced qi we will move to the equations that would have been derived 

from the first order (in -y) Lagrangian. As explained in the previous section the equation 
for this order (eq. 5.27) can be decomposed into a set of multiple equations. 

Assuming that A represents one of n, m, 0, ý the first order equations will read: 

°O 
_aa1 

02 

(qo)A Z atl qo +z qo +i 
ato qi +2 

aX2 qi +2 Igoý2qi +q6 qi dx -}- c. c. =0 
00 

( 

(5.35) 

The term in the square bracket is the linearised equation where the forcing term is the 

content of the first bracket. The latter is the behaviour of the soliton parameters in 

time scale tl. In order to avoid secularities this behaviour should be decoupled from the 

linearised first order equation, which is the second parenthesis of the square bracket. 

To become more concrete let us evaluate the first order equations: 

aý=0 
(5.36) 

at, 
4 

atl n+ 8n=0 (5.37) 

8a (m n) + 16mn =0 (5.38) 
at, 

2 8m 
ae_4 ä0+7 

b_4 a=0 (5.39) 
at 1 at 13 ato ato 
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where we notice that the last equation has mixed time scale derivatives. Secularity- will 
arise if the terms containing ti derivatives do not evaluate to zero. Thus, the first two 
terms of (eq. 5.39) need to be equated to zero independently. Thus we arrive at the 
following result: 

aý=0 

at l 
(5.40) 

a0=0 

at, 
(5.41) 

a 
m=0 ati 

(5.42) 

a 
at, n= -2n (5.43) 

a(to, tip .. 
7r 2 

.)= 12 
b(to, ti,... ) + c(ti, t2, ... ) (5.44) 

To determine a and b we need to do the calculations at order O(-y2). From zero and 
first order dependencies we notice that m remains a constant to order O(-y). We can 
thus without affecting approximations to first order set it equal to zero. The result is 

that ý is a constant which we choose to be zero. Let us now consider the situation at 

order 0(-y'). The equations at this order will arise from integration of terms of the 

form: 
(4o)A M2 + (41)A 

M1 + C. C. 

where c. c. stands for complex conjugate, M= stands for the ith order term in expansion 
(5.33 and A is one of the unknown temporal functions. The first term in the expression 

above will only lead to setting conditions for the to behaviour of the temporal functions 

characterising q2 and the tl behaviour of the functions a and b. The complete to 

behaviour of the latter two can be deduced from considering just the integrals of: 

(4i)A M1 + c. c. 

In our case A is one of n, 0, b. Thus, we derive three equations: 

8n - 32 b n3 =0 (5.45) 

27r 2 (1oc+37r2b' nb=0 (5.46) 
15 ato 

2 (4bn2 - 1) (90c - 150b7r2 + 30cßr2 + 13b7r4) 
=0 (5.47) 

135 

These relations are all valid simultaneously if b= 
412 + c(tl, "" "). Thus the form of ql 

is: 
1 ßr2 

ql = zy4n2 12 
+4n2x2 + CQo (5.48) 
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The latter, (apart from the presence of c) is exactly the same as that predicted by IST 
treatment of the problem ([KM78a]). 

5.5 Connection of the optimisation problem with observables 

Let us now return to equation (5.21) and concentrate on the NLS family of equations. 
In those equations there is only a first order derivation with respect to the evolution 
parameter (time). If we separate this term and group the rest in a generic nonlinear 
differential operator J1/(q, q) then these equations acquire the general form: 

iqt +N(q, R') =0 (5.49) 

When this formula is substituted into (5.21) and the integrals are regrouped, in a way 
as to distinguish terms involving time derivatives from the rest we will have: 

00 2 [qtqA; 
-4tgA; 

] dz + [A((q, ). +V(Q, q)9A, 
] dz =0 (5.50) 

The first term of (5.50) suggests that we can associate with the variable Aj a quantity 

whose temporal variation is described by (5.50). To see this clearly let us introduce 

observables into the analysis. 
By observables we designate real valued functionals of the solutions of equation 

(5.49). For the rapidly decreasing case we can define a class of observables in the form: 

00 

y=f Fdz 
00 

with F depending on functions q, q and their derivatives. 

Bearing in mind this dependence on q and 4 the temporal evolution of the observable 

qF dz 
a00 tf at 'V 

where equations (5.11), (5.12) and (5.13) were used. By making use of the rapidly 

decreasing boundary condition defined in section 4.2.1 and integration by parts the 

above is reduced to: 
ä. f c°° ögNSF+ a-q SF 

dz (5.51) 
ý at 00 at q aq 

The resemblance, in shape, of (5.51) and the first term of (5.50) is obvious. By 

comparing the two terms it is possible to connect the quantities Aj and F by introducing 

the set of equations: 

i qA, 
6F (5.52) 

qAl 
bF (3.53) 
6q 
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by virtue of which (5.50) acquires the form: 

a. F 00 at + [N(q, 
q)A, +Jf(4, q)gA, ] dz =0 (5.54) 

The point made by the introduction of (5.50) is that there is a connection between the 

variational method and the perturbation approaches involving the study of the tem- 

poral propagation of the invariants of the NLS. The equation describing the temporal 

propagation of an observable J is the Euler equation corresponding to a parameter A; 

connected with the observable through the set of transformations (5.52) and (5.53). 

We will return to this type of transform shortly, when developing a Hamiltonian 

aspect of the Lagrangian method, but before this let us insist on (5.50). This equation 

corresponds to the integration in space of the following type of equation which is 

strongly reminiscent of a conservation law[Whi74] [JK82]: 

aF 19P at 
+ 

az 
+ c(z, t) =0 (5.55) 

It is now tempting to continue the analogy by defining F as the density, P the associated 
flux and c == 

[N(q, q) qAj + J'(q, q) qA; 
] 
" 

Because we run the integration from -oo 
to +oo under the rapidly decreasing boundary conditions, the flux P did not appear 

in (5.54). However the flux term appears explicitly in (5.20): 

Km im 
(JL, \ t_ vLiýt 

P=E (-1)A 
[(A3) 

(i-1)z S+ 

(UAj)(i-1)z 
ý- 

. 

What prevents (5.55) from looking exactly like a conservation law is the presence of 

the function c(z, t) in the right hand side. On the vast majority of the problems handled 

we are looking at effects associated with localised pulses. It is then reasonable to assume 

that we can select some appropriate observables whose Euler-Lagrange equations will 

have the function c(z, t) localised in space ( for example number of photons , energy 

etc). This assumption implies that c(z, t) is now a source term. Let us assume for 

example that c(z, t) is considerable in the area surrounding the origin of the z axis. 

We now introduce a boundary layer at z=a>0 with the requirement that: 

{f00 c(z, t) dz ] 
«1 [f±: c(z, t)dz] 

(5.56) 

In this case equations like (5.55) can be treated as conservation laws in the locality of 

z=a. The error introduced is determined by the ratio (5.56). 
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5.6 Ritz method and Hamiltonian formalism 

In the previous section the main subject was the temporal behaviour of observables 
and how this is connected to the selection of the trial function. In the process we 
implicitly introduced a Hamiltonian view of the problem in hand. Let us now clarify 
this connection. 

The starting point is the Lagrangian of our problem. Again we will separate the 
temporal part from the rest thus rewriting it as: 

L=i (4qt-q4t)+Lý 

where L1 represents the remaining terms. When the trial function is substituted into 

the Lagrangian the first term is rewritten in terms of the derivatives of the new unknown 
functions Aj, j=1... N. After the spatial integration step we have: 

N 00 
L=i ýf ýqqA, 

- qqA, ) dz (A, )t+ f L1 dz (5.57) 
j=1 00 00 

In this equation the way to associate a momentum with a certain variable A; is to 

consider the definition [LL76]: 

A Pi = =2 
f00 

a(A, )t 
(? 

iqA3 -q 4A, 
) dz (5.58) 

The momentum, pj, just defined obeys equations (5.52) and (5.53), as can be easily 

verified. It is thus equal, up to a constant to the observable F defined through them. 

The idea here is to assume that the newly introduced momenta are independent func- 

tions. The total number of coordinates, thus doubles (A, and pj). The space spanned 

by these coordinates is called phase space. The introduction of the trial function, how- 

ever, imposes an upper limit to the dimensionality of the phase space: the number of 

independent Ad's. This means that the momenta defined in (5.58) are, in their turn 

functions of the variables Aj. The next step, in the Hamiltonian reformulation, is to 

define the Hamiltonian function. The latter is connected to the Lagrangian with the 

formula: 
H=Epj(Aj)t-L=- f00 Lidz 

i 00 

by virtue of which the Lagrangian is rewritten as: 

L=ýpj(Aj)c-H (5.59) 

In the case of the NLS equation the Hamiltonian will be the third invariant (energy). 

We now need to take the Euler Lagrange equations of this function. However as 
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mentioned above there can be only N linearly independent functions in the set of 2 
.V functions: {A1, A2,. 

.., 
AN, pi, ... , pN}. Let us assume that a number k, with /c < 4V/2. 

of functions Aj will be related to the momenta of an equal number of parameters . 4, -. 
For those it is possible to perform a transform and reexpress the Lagrangian (5.59) in 
terms of the set: {A1, A2, 

... , 
Ak, pl, ... , Pk, A2 k+l, ... AN}. From the first 2k variables 

we will have the Euler equations: 

(p; )t 
M 
5A; (5.60) 

(Aj)t = 
SH 

(5.61) Jpj 

These are exactly the Hamiltonian equations of motion. For the remaining A;, however 
it is not possible to reproduce this elegant representation. The Euler Equation for 

. 
4, 

with 2k + l< n< N will be: 

(pn)t - (A,, )t 
äpn 

-- 
SH 

äAn SAn (5.62) 

These are generally first order quasi linear differential equations. They can be equiva- 
lently expressed, though, as a set of algebraic conditions between the unknown functions 

Aj which ensure solvability. This can be understood from the following argument. Let 

us suppose that the first term of the reduced Lagrangian (5.57) can be grouped into m 
having each the time derivative of a different function. There are two possible cases. If 

2m<N then the number of parameters that we can associate with momenta is k=m 

and the remaining N-2k parameters appear only in the Hamiltonian. Their Euler 

equations then are algebraic. If 2m>N, then the we have to set k=N- in, the 

limiting factor now being the momenta. In this case the left hand side of the differential 

equation (5.62) will be a linear combination of the left hand sides of the "Hamiltonian" 

equations (5.60) and (5.61). This will not be so for the corresponding right hand sides. 

This will lead again to algebraic equations, in order to ensure compatibility. The pres- 

ence of the algebraic conditions indicates that we are facing a problem of motion with 

constraints. 
The imposition of a fully "Hamiltonian" picture comes only by introducing enough 

variables to ensure that the condition 2k=N is fulfilled. When this is the case we no- 

tice that the algorithm introduced at the beginning of this chapter is fully incorporated 

into the Hamiltonian formalism. Namely: a trial function is selected having an even 

number of parameters which are allowed to vary with time. With the help of (5.58) the 

unknowns Aj are transformed into Ak - Pk pairs. Substitution of the transformed trial 

function into the Hamiltonian H and integration throughout the z domain will lead to 
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the definition of a new reduced Hamiltonian H. The final step is to apply Hamilton's 

equations of motion with the new Hamiltonian. 

5.7 Appendix: proofs of relations used 

Relation: 

(-1)µ µ= (-1)" with v<r, (5.63) 
µ=v /l v 

is proved in the following way. Since vG #c we rewrite µ=v+r and r, =v+s. Now 

the combinations appearing in the sum are: 

(v+s (v+r'\ (v+s)! (v+s)! S! (v+s'\ s (v+r) 

v (s-r)! v! r! S! V! (s-r)! r! vr 

It is then possible to rewrite the sum in (5.63) as: 

(-1)v v+ss (-1)s s 

v r=o r 
(5.64) 

To complete the proof we only need to evaluate the sum. Take the binomial expansion: 

sS 
r1+ z)s => (Z)r 

r=0 r 

with z= -1. The latter is zero when s#0 and equal to 1 when s=0. This completes 

the proof. 



6. SOLITONS UNDER PERTURBATIONS 

6.1 The initial value problem 

6.1.1 General 

When considering perturbations, there are two main types of problem: that of per- 
turbed equations and that of perturbed initial conditions. The former has an extensive 
bibliographic covering as seen in the previous chapters. On the other hand very little 

analytical work has been carried out with respect to the second problem ([MF96] and 
references therein). 

The main concern in NLS related initial values problems is the determination of 
the emerging soliton. The latter is fully described by the discrete spectrum in the 

scattering domain. In the IST framework this particular problem amounts to solving 

the direct scattering problem for the given set of initial conditions. In the general case 

this can be achieved either by approximation methods [BN94] [Lew85] or by numerical 

evaluation [B092] [Kau77]. 

A different approach in determining the soliton content of an initial condition would 
involve the use of the integrals of motion associated with the NLS equation. Along 

those lines are the problem described at the beginning of the previous chapter as well 

as the approach in [KS95] and [LSH72]. To make the discussion more concrete let us 

select the following initial value problem: 

qo(0, z) = Asech(z) (6.1) 

whose direct problem can be solved exactly [SY74] and is functionally close to the 

envelope of the fundamental soliton. Qualitatively both approaches [AL83] and [KS95] 

are the same: it is assumed that the radiation content of the initial condition has negli- 

gible contribution to the first and third integral of motion of the NLS, respectively (see 

4.2.2). Assuming that the emerging fundamental soliton takes the form: n sech(n z), 

its amplitude is predicted to be n= A2 and n= Al (-1 + 2A 2 )Trespectively. Since 

both approaches neglect radiation it is expected that they give their worst agreement 

in the area close to soliton cutoff. This can be seen clearly in (fig. 6.1). A better 

prediction using the first integral of motion can be achieved by the use of empirical 
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n 

A 

90 

Fig. 6.1: Emerging soliton amplitude (n) vs initial amplitude (A). Solid line is IST prediction 
[SY74], dotted line is prediction based on energy integral and dashed line according 
to mass integral. 

arguments [ALR88b]. This does not reduce the disagreement close to cutoff. Obviously 

the situation in this region is unsatisfactory. If the integrals of motion are to be used 

as estimates the contribution of the dispersive radiation has to be calculated. From 

numerical simulations it can be seen that the dispersive radiation emanating from the 

initial condition 6.1 is a smooth pedestal extending away from the soliton core (fig. 

6.2) Let us now remove the soliton and propagate just the dispersive radiation part 

corresponding to this initial condition. It can be noticed that the two shapes are 

within the limits of perturbation (fig. 6.3) A further comparison of the arguments of 

the two solutions will reveal that they are both quadratically chirped with coefficients 

very close to each other. The difference in the phases is again within the perturbation 
limit (fig. 6.4). This close relation between the radiation parts prompts us to consider 

connections between the two. This will be achieved with the use of IST. 

6.1.2 IST considerations 

We have already decided on the methodology that we will be using. Let us see what can 

be achieved in our problem. We are looking primarily to determine the contribution 

of the dispersive radiation part to the integrals of motion. From IST theory we know 

u. ý u. i 1.2 1.4 
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Fig. 6.2: Absolute value of the numerically calculated solution for A=1.3, time is 57r 
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Fig. 6.3: Comparison of the envelopes of the 5 ir propagated initial conditions 1.3sech(z) 

(continuous curve) and 0.3sech(z) (dashed curve). 

that the contribution of the continuous part of the spectrum is independent from that 

of the discrete. This contribution to the kth integral of motion is [NMPZ84]: 

Cr, k=2i )k-1 
Foo ýk-i n(ý) dý with (6.2) 

where ' is the eigenvalue of the z part of the AKNS pair (4.10)and the canonical 

variables describing dispersive radiation are: 

n( 
1 

In 
1 

and 4(e; A) = arg(b(ý; A)) (6.3) 
7r 

( 

la(ý; A)I2 
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Fig. 6.4: Phase difference between the 57r propagated initial conditions 1.3sech(z) and 
0.3sech(z) 

with a and b the coefficients connecting different Jost solutions (4.14) For the initial 

value problem (6.1) the coefficients a and b are given by [SY74]: 
r(-i ý+1 )2 

a ýA) r(_i +A+ 2)r( 

2 

iý -A+ ) 
(6.4) 

2 
b(e; A) =i sin(ir A) sech(7r ) (6.5) 

By making use of the shift property of the gamma function [WW27]: 

F(z + 1) = zr(z) 

we have: 
A+l+iý 

a(ý A+ 1) -- -A+2-i a(e; A) (6.6) 

It is obvious that the increase of A by unity only affects the phase of a(e; A) and adds a 

7r phase to b(e; A). By inspection we see that the canonical variable n(e), appearing in 

the integrals of motion is insensitive to the increase of A by unity. Thus we can safely 

conclude that in terms of IST theory and for this specific initial value problem the 

dispersive radiation part of the initial condition (6.1) when 0.5 <A<1.5 contributes 

to the integrals of motion equivalently to the initial condition (A - 1) sech(. ) 

The next step is to try to connect the two fields in the z-t domain. To this end 

we need the expression used for the reconstruction of the radiation from the scattering 
data (4.29). After complex conjugation, the part corresponding to the continuous part 

of the scattering domain spectrum will be: 

It; 
A) = .1 

00 b( A) 
e`{Z b2(z; e; A)e2iC2tde (6.7) 

z oo a(e , 
A) 7r 

f 
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where B and a are defined above and: 

02(z; e; A) _ (1 - tanh(z))-tß/2 (1 + tanh(z))=4/2 F -A, A; -i e+1 
(1 - tanh(z)) 

2' 2 

[SY74] and F is the hypergeometric function. We are interested in the behaviour of 
this radiation away from the origin, where the soliton lies. Since the NLS equation 
is invariant with respect to space inversion we only need to consider the positive z 
semiaxis. 

Away from the origin we can do the following approximations: 

(1 - tanh(z)) -ý 2, -2z 

(1 + tanh(z)) -4 2 

and by Taylor expansion around the origin: 

1 (1 - tanh(z)) F 
(_AA; 

-i ý+2,2,., l 
A2 

e2z 
(1_je) 

2 
; zý 1 

Thus for z away from the origin we have: 

ý(z't; A) 1 b(e; A) 
e2ie22t de (6.8) 

00 a(e, A) 
J°° 

The dependence of this relation on A is purely located at the reflection coefficient b/a. 
By increasing A by unity and avoiding the poles of the r function (A =± 2) we have 
from (6.6) and (6.5): 

b(ý; A+ 1) 
_ 

b(ý; A) 
exp 

(_2i 
tan-' (6.9) 

a(ý; A+ 1) a(e; A) 
(A1/2)) 

Now for the initial condition envisaged the reflection coefficient has contribution to the 

integral (6.8) around the origin of the ý axis. This fact together with the presence of 

the quadratic term in ý in the exponential prompts us to take the Taylor expansion of 

the inverse tangent function in (6.9). By combining the result of this expansion with 
(6.9) and (6.8) we have: 

q(z, t; A+ 1) = 4'(z - (1 + A)-i 
ý t; A) 

1 °° b(ý; A) 
e2iý(z-(2+a)-1) ezit2 t dý 

2i 7r 
f 

oo aA 
(6.10) 

Clearly the difference is a phase translation depending on A. Comparison of numerical 

results is given in figure (fig. 6.5) where very good agreement can be observed. For 

the phases of the solution the situations remains in the same order of magnitude as in 

(fig. 6.4) 
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Fig. 6.5: Same as (fig. 6.3) with the data for 0.3sech(z) translated to the right by (0.3 + 
1/2)-i = 1.25 (dotted line). 
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Fig. 6.6: Same as (fig. 6.4) depicting the positive semiaxis only and with the data for 

0.3sech(z) translated to the right. 

6.1.3 Calculation of the soliton content 

Let us now take advantage of the first conclusion of the previous section in order 
to determine the soliton content of the initial condition A sech(z). We will base the 

calculation on the first and the third integral of the NLS. The equivalence of the 

dispersive radiation part will allow us to determine the contribution of the latter to 

the integrals of motion using the trial function r sech(z) while the soliton part takes 

0 10 20 30 40 50 
Z 
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the standard form: n sech(n z). The following two equations will arise: 

A2 =n+ r2 
A2 

-2A 
4= r2 -2 r4 - n3 

leading to the solution n=2A-1. Surprisingly this is the exact prediction derived 
from IST considerations [SY74]! 

Let us now try to capitalise on this coincidence. Suppose that instead of (6.1) 

we have an initial condition corresponding to the addition of a small perturbing term 

of order O(E). The continuous spectrum then would itself be affected to the same 

order. The periodicity with respect to the initial amplitude (A -+ A+ 1) observed 
for (6.1) would no longer hold in general [BN94]. However, since we are interested in 

comparing the cases of no asymptotic soliton with first order asymptotic soliton and the 

departures from the scattering data of the previous example are of O(E) it is plausible 

to do calculations assuming that the radiation has the same functional form as the 

initial condition. To test this statement we consider three types of initial conditions: 

Iq(0, z) 1 

Z 

Fig. 6.7: Absolute values of the initial profiles considered. Solid line coresponds to the hy- 

perbolic secant functional form while the dashed corresponds to the gaussian and 

the dotted to the supergaussian functional form. 

" chirped hyperbolic secant: A sech(z) exp(i b z2) 

" chirped gaussian: A exp(ibz2 - wz) and 

" chirped supergaussian pulses: A exp (ibz2 
-; 

) 

-10 -j J Iu 
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Fig. 6.8: Emerging soliton amplitude (n) vs initial amplitude (A) for the chirped hyperbolic 

secant initial condition. Points are numerically calculated values with triangles 

corresponding to b=0.1, squares to b=0.2 and stars to b=0.5. The lines are the 

predicted amplitudes. Small-dashed corresponds to b=0.1, large-dashed to b=0.2 

and dotted to b= 0.5. It is reminded that for b=0 the correct emerging amplitude 

is predicted. 
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Fig. 6.9: Absolute relative error of the predicted emerging soliton amplitude for the chirped 

hyperbolic secant waveform vs the initial amplitude of the pulse. x's correspond to 

b=0.1 and triangles to b=0.2. 

For these three families of initial conditions we calculate the amplitude of the emerging 

soliton first analytically, using the previously described procedure and then numerically 
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using by a standard split-step Fourier transform method [Agr89] [YH83]. 

For the sech initial condition we expect the best agreement since it is functionally 

the closest to the exact case studied. The emerging soliton can be determined by the 
formula: 

n=-1+ 4A2-b2ir2 

Comparison with the numerical results is given in (fig. 6.8). Agreement becomes 

progressively worse as the value of the chirp is increased. The lack of numerical data 
in the area close to cutoff is due to the computational cost of such calculations, since 
the emergence of the pure soliton state occurs at extremely large distances. 

The gaussian initial profile is quite close to the sech one. The periodicity of the 

continuous spectrum, invoked earlier is known not to hold here [BN94]. By performing 

(6.11) 

standard calculations we have a predicted asymptotic amplitude: 

n= 
-6 w+2 vr3- w2 

(3_+A2w2_b2w4) 
(6.12) 

2 V/7-r w2 

For the numerical calculations a value of w=2 was used. As expected the agreement 
between numerical results and those of formula (6.12) are slightly worse than in the 

previous case, but still quite accurate provided that the chirp parameter b takes small 

values. Increase of b leads to a systematic underestimation of the emerging soliton 

amplitude. The third example is functionally remote from the sech profile (fig. 6.7. 

The predicted asymptotic amplitude of the soliton is given by: 

I'(4) 
(2L42w2r()_2b2w4r()_4r())) 

6 -1+ 1-F 
6v 

(6.13) 
w T(4) 

However we notice that the predictions become completely erroneous as the chirp 

parameters increases. The relative success for b=0 is coincidental and can be expected 

for almost any profile by virtue of the area theorem ([Kau77] ). 

Before concluding this section an overview of the method followed should be in- 

cluded. We have started from a case where it happens that the canonical variables 

describing the dispersive radiation demonstrate a periodicity with the amplitude of the 

initial condition. Subsequently it was claimed that although perturbations will destroy 

this property, we can still, for the case of interest, assume that the contribution of the 

radiation to the integrals of motion can be evaluated by assuming that its shape is that 

of the initial pulse profile. This, however does not constitute a proper perturbation 

procedure. In fact the profile of the radiation should be assumed to be in the form of 



6. Solitons under perturbations 

0 

1.75 

1.5 

1.25 

1 

0.75 

0.5 

0.25 

0 

*ý 

j* 

h ýo Z 

* 

0.6 0.8 1 1.2 1.4 

A 

98 

Fig. 6.10: Emerging soliton amplitude (n) vs initial amplitude (A) for the chirped gaussian 
initial condition. Points are numerically calculated values with x's corresponding 
to b=0, triangles to b=0.1, squares to b=0.2 and stars to b=0.5. The lines are the 

predicted amplitudes. Solid line corresponds to b=0, small-dashed to b=0.1, large 

dashed to b= 0.2 and dotted line to b=0.5. 
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Fig. 6.11: Absolute relative error of the predicted emerging soliton amplitude for the chirped 

gaussian waveform vs the initial amplitude of the pulse. x's correspond to b=0, 

squares to b=0.1 and triangles to b=0.2. 

the sech pulse that best approaches the profile in hand. The latter, on the other hand, 

raises the problem of defining the criterion of similarity, which would affect simplicity. 

We circumvented this problem by the hypothesis used. The price for that is worse 
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Fig. 6.12: Emerging soliton amplitude (n) vs initial amplitude (A) for the chirped supergaus- 

sian initial condition. Points are numerically calculated values with x's correspond- 
ing to b=0, triangles to b=0.1 and squares to b=0.2. The lines are the predicted 

amplitudes. Solid line corresponds to b=0.1, small-dashed to b=0.2 and dotted to 

b= 0.5. 
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Fig. 6.13: Absolute relative error of the predicted emerging soliton amplitude for the chirped 

supergaussian waveform vs the initial amplitude of the pulse. x's correspond to 

b=0, squares to b=0.1 and triangles to b=0.2. 

agreement with numerical results, which however seems to be small for the case of 

sech and gaussian pulses with small chirp. When, however, the departure from those 

shapes is large, there is no guarantee as to the relevance of the dispersive radiation 
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term included, thus the results follow. 
These can be recapitulated as follows. In the case of unchirped pulses the approach 

of [KS95] is efficient as long as one stays away from the cutoff region. In that area 
the quality of the predicted figures deteriorates rapidly. The approach proposed here 
fills this gap exactly. The comparison with numerical results reveals good agreement 
and a further comparison with the IST predicted cutoff condition [Kiv89] [Bur88] will 
give good agreement at least for the cases studied here. The introduction of chirp 
adds to the perturbation of the continuous spectrum away from the assumed shape 
and thus makes predictions worse. In this case this is demonstrated as a systematic 
underestimation of the amplitude of the emerging soliton. 

6.1.4 Lagrangian treatment of solitonless radiation in the A sech(z) case 

Based on the IST considerations laid out earlier we will attempt to describe the evolu- 
tion process for a pulse with the initial condition A sech(z). Instead however of going 

straight for the data regarding the core of the pulse we will attempt to describe first 

the situation away from the origin. 
While doing the IST analysis it was observed that the tails ( due to dispersive 

radiation ) are slightly perturbed by the presence of a soliton. This radiation behaves 

essentially as would linear radiation. The presence of the nonlinear terms acts as a 

perturbation on the phase. This can be confirmed by looking at the asymptotic form 

of such radiation [KMS95]. But for this type of radiation the ansatz used by Anderson 

[AL83]: 

qr(z, t) = a(t) sech(w(t) z) exp(i e(t) +i b(t) z2) (6.14) 

covers the main features. Our first step towards the description of dispersive radiation 

is to use this ansatz in conjunction with the variational method for initial conditions 

below cutoff (A < 0.5). 

The Lagrangian corresponding to the NLS is: 

L=i (qqt-qqt)-4z q;, +14'14 

After the substitution of the trial function (6.14) into the Lagrangian the result is 

integrated throughout space (z). The average Lagrangian is then: 

-2 7r2 a(t)2 b(t)2 4 a(t)4 
_2 

a(t)2 w(t) 7r2 a(t)2 b'(t) 
_4 

a(t)2 et(t) 
(6.15) L= 

3 w(t)3 
+3 

w(t) 33 w(t)3 w(t) 

The Euler equations can be extracted easily in the form: 

a'(t) =- (a(t)b(t)) (6.16) 
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b'(t) = -2 b(t)2 _2 
a(t)2 w(t)2 

+2 
w(t)4 

(6.17) 
72 72 

e, (t) =5 
a(t)2 -2 w(t)2 

6 (6.13) 

w'(t) = -2 b(t) w(t) (6.19) 

These equations can all be expressed in terms of a Newton type equation [A L83) 
. the 

asymptotic form of which ( for widths much larger than zero) is: 

4 a(0)2 2 w(0)2 1d2 
72 7f2 

+2 
(dt 

ß'(t)-1 =0 

When this equation is solved for the initial conditions w(O) =1 it recreates the correct 
qualitative behaviour: 

7r 7r z z2 
a(0) 

2 sech( 2) exp 
[z 

-+ 
2 1+2a(0) t2 1+2a(0) t 

7r2 +5 a(0)2 7r In(t) 
(6.20) 

12 1 2a 02t2 -f- ()ý 12 VI 
-f 

-2a (0) 

The nonlinear term contributes the logarithm term in the exponent. To assess the ac- 

curacy of the variational approach we need to compare with numerical results. However 

the qualitative features can be inferred. 

We know [KS95] that the Lagrangian method with this particular trial function 

will yield a cutoff amplitude of 
J2)/2 

which is higher than the predicted one. This 

indicates that the nonlinear contribution to the evolution is being underestimated. 
Thus we expect slightly faster decay of the peak of the waveform accompanied by 

a width that is increasing at a higher rate than the correct. The departure from the 

correct propagated initial condition should be more pronounced as the initial amplitude 

a(O) approaches the -correct- cutoff value of 1/2. The overestimation of the dispersion 

term leads to overestimation of the chirp parameter b(t) near the centre of the pulse 

and an underestimation in the regions far from the centre. The differences can be 

visualised in figures (fig. 6.14) and (fig. 6.16). 

The shape of the graph of the phase difference can be easily understood if one con- 

siders the fact that the nonlinearity is stronger near the centre of the pulse and weaker 

as we move along to the wings. From the asymptotic formula (6.20) we notice that 

the logarithm term in the exponent has a constant coefficient instead of the correct Z 

dependent one [KMS95]. Nevertheless if one considers that the value of the b coefficient 

at the same time is approximately 0.1 the perturbation is less than 1 
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Fig. 6.14: Comparison between the envelopes of dispersive radiation with initial profile 
0.3 sech(z) at time 157r. Dotted line is the Lagrangian prediction and continu- 
ous the numerically calculated one. 
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Fig. 6.15: Difference between the two profiles for 0.3 sech(z) appearing in 6.14. 

6.1.5 Dispersive radiation in the presence of fundamental soliton-I 

The far field 

From the IST analysis between case where no soliton and 1 soliton are present we 

have seen that the form of the dispersive radiation is similar but for the presence of 

vvv+vv ý- ------ 
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Fig. 6.16: Difference between the phases (in radians) of dispersive radiation with initial profile 
0.3 sech(z) at time 15 ir. Positive value indicates larger phase of the numerically 
calculated wave. 

some spatial displacement which is related to the amount of dispersive radiation. The 

example that we have considered (0.3 sech(z)) is connected to two initial conditions 
containing one soliton: 1.3sech(z) and 0.7 sech(z). Since we have established a good 
description of the nonsolitonic initial condition with the use of the Lagrangian method 

we expect equally good results for the two initial conditions just laid. Instead of looking 

at the shape this time we will be considering the temporal evolution of the flows related 
to the first three integrals of motion. Unfortunately in order to be able to see the pure 
dispersive radiation content we have to move relatively far from the soliton centre. In 

our case the position z= 25 was selected. For the mass (f Ig12 dz) the corresponding 
flow can be easily calculated from the NLS: 

2_ 
QQ _ M=2(? Qz z 

The result of the comparison can be viewed in figure (fig. 6.17). The result is quite 

good and its quality improves when moving away from the transient regime. However 

the displacement of the evaluation point of the Lagrangian results towards the centre 

of the pulse by the quantity (0.3 + 1/2)-1 = 1.25 results in a clear improvement even 

for the transient (fig. 6.18,6.19 ). 

An analogous treatment is done for the momentum (i f. (q q-, -q qz) dz) where 

the flow is calculated to be: 

P= -lgl4+qz4'z -12 (gzz9+4'zzq) 
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Fig. 6.17: Comparison between mass flows (M) at z= 25 for the numerically computed 
initial condition 0.7 sech(z) ( triangles), 1.3 sech(z) ( x's) the standard Lagrangian 

prediction (dashed line) and the corrected Lagrangian prediction ( continuous line). 
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Fig. 6.18: Relative errors for the mass flow corresponding to the initial condition 0.7 sech(z). 

The triangles correspond to the uncorrected Lagrangian and the x's to the corrected 

one. 

and the comparison between Lagrangian and numerically calculated results can be 

viewed in figures (fig. 6.20,6.21,6.22) 

Finally for the Energy (f_. (qz qz - 1g14) dz) the flow is given by the quantity: 

E=iIg12 (qqz-qq2)+ Z (q,, q, ) 2 
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Fig. 6.19: Relative errors for the mass flow corresponding to the initial condition 1.3 sech(z). 
The triangles correspond to the uncorrected Lagrangian and the x's to the corrected 

one. 
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Fig. 6.20: Comparison between momentum flows (P) at z= 25 for the numerically computed 

initial condition 0. i sech(z) ( triangles), 1.3sech(z) ( x's) the standard Lagrangian 

prediction (dashed line) and the corrected Lagrangian prediction ( continuous line). 

and the results are displayed in figures (fig. 6.23,6.24,6.25). 

In the previous paragraph we attempted. with the example taken, to assess the 

quality of the predictions given by the particular ansatz when applied to the problem 

of radiation due to initial conditions that are not pure soliton ones. We have seen that 

the agreement is good and the use of the displacement calculated by Ill' considerations 
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6. Solitons under perturbations 

0.2 

0.1 

0 

error -0.1 

-0.2 

-0.3 

-0.4 

A0 
A0 

ý 
xýxXXX 

XXXXXXX 

x 
QXXXXXXXX 

X XXXXXXX 

X 

0 20 40 60 80 
t 

106 

Fig. 6.21: Relative errors for the momentum flow corresponding to the initial condition 
0.7 sech(z). The triangles correspond to the uncorrected Lagrangian and the x's 
to the corrected one. 
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Fig. 6.22: Relative errors for the momentum flow corresponding to the initial condition 

1.3 sech(z). The triangles correspond to the uncorrected Lagrangian and the x's 

to the corrected one. 

enhances the agreement. The choice of the particular method of comparison ( flows 

related to integrals of motion) is due to the fact that these quantities are local and not 

defined with respect to the properties at the peak of the pulse as are quantities such as 

FWHM , amplitude e. t. c. In this sense they provide a good description away from the 

soliton location. The distance at which the quantities were sampled is relatively large 
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Fig. 6.23: Comparison between energy flows (E) at z= 25 for the numerically computed 
initial condition 0.7 sech(z) ( triangles), 1.3 sech(s) ( x's) the standard Lagrangian 

prediction (dashed line) and the corrected Lagrangian prediction ( continuous line). 
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The triangles correspond to the uncorrected Lagrangian and the x's to the corrected 

one. 

compared to the FWHM of the emerging soliton ( 7.5 and 3,5 times larger t hall the 

1i \VI I NI point of the emerging solit ons 0. -1 sech(0.4 z) and 1.4 se(, h(l. =1 z) respect iv-ely) It 

is recognised that these dist-ances are abnormally large in real soliton commmnicat ions 

situation when one expects soliton separations of the order of 6 times the FW11\1. I he 

choice was dictated by the need to isolate the dispersive tail effect-, from the soliton 
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Fig. 6.25: Relative errors for the energy flow corresponding to the initial condition 1.3 sech(z). 
The triangles correspond to the uncorrected Lagrangian and the x's to the corrected 
one. 

ones as much as possible. 

6.1.6 Dispersive radiation in the presence of fundamental soliton -II 

Bäcklund transform 

When referring to the core area we usually mean the soliton peak (assuming symmetric 
initial conditions). In order to see how the presence of the soliton affects the radiation at 
the peak position we will be using the Bäcklund transform for the NLS. The transform 

in question connects two solutions of the NLS [Che74], [DB77]. They consist of two 

parts: a temporal and a spatial. Once the spatial is known the temporal can be 

determined from the NLS itself. 

In the case where a soliton (Bsech(Bz)) is added to a solution the spatial part of 

the Bäcklund transform can be derived from the following set of equations [Che74] : 

2Bu(z, t) + (q(z, t) q'(z, t)) u2(z, t) + (q(z, t) q '(z, t)) =0 (6.21) 
2uz(z, t) = (q(z, t) ± q'(z, t)) u2(z, t) + (q(z, t) ±q '(z, t)) (6.22) 

where q and q' are solutions of the NLS and u is a functional of the Jost solutions of 

the associated scattering problem. Let us assume that q' is the continuum radiation 

part and that q is the dressed solution corresponding to radiation q'. Furthermore we 

assume that the continuum radiation is a mere perturbation to the soliton solution. 
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This allows us to perform an expansion of the form: 

q(z, t) = q(°)(z, t) + Eq(l)(z, t) + ... (6.23) 

q '(z, t) = Eq'(1)(z, t) + ... (6.24) 

u(z, t) = u(°)(z, t) + Eu(1)(z, t) + ... (6.25) 

where q(°) = Bsech(Bz)exp(i Bet/2) and substitute into the master equations (eq. 
6.21,6.22). Solution at zero order will yield the form of u(°) = e`B2t/2-BZ which is then 
substituted into the first order equations: 

4nu(1) +2 q(°) u(°) u(1) + (q(1) j q'(')) (u(°))2 + (q(1) q'(1)) =0 (6.26) 
2(u(')) 

z=2 q(°) u(°) u(i) + 
(q(1) i ql(1)) (u(°))2 + 

(q(1) 
q'(1)) (6.27) 

When equation (6.26) is solved for u(1) we get the following solution: 

u(1) 

(q(1) 
9- qF(1)) eiB2t-2Bz + (q(1) 

Qß(1)1 J (6.28) 
2B tanh(Bz) 

We notice that the denominator becomes zero once z is set to zero. Thus the numerator 
of the right hand side of (eq. 6.28) becomes zero at the origin and thus q(') = ±q'(1) 
for z=0. 

The second equation (6.27) will lead to a differential equation connecting the two 

expressions for the radiation. Namely we get the following ordinary differential equa- 
tion: 

cosh(Bz)2 
d (Bz 

sech(Bz) cosech(Bz) f (q(l), -ý 
d (eBz 

coth(Bz) f (q'(1), q'(1))l =0 dz dz 
(6.29) 

with f (a, b) =b (u(0))2 + a. This is a first order ordinary differential equation and is 

solved for the boundary condition q(l) = ±q'(1) for z=0 derived above. 
The evolution equations for the two radiation functions can be directly derived from 

the NLS by substitution of the expansions adopted above. Thus for q'(l) we have: 

all 
=i1 

a2 qýi> öt 2 5z2 

and for q(') : 

(6.30) 

a 
q(1) =z1 

a2 
q(1) +2z jq() 2q() + z(4'(O))24'(1) 6.31) 

at 2 8z2 
The resemblance of the last two with the equations derived in [Gor92] and [E1g93] may 
lead to the conclusion that we are looking at the same transform. However, while the 

equation for q'(') is exact there, here it is only a first approximation. In fact in the 

next section we will be using the NLS as the evolution equation for q'(1) rather that 

the linearised version (eq. 6.30). With these remarks in mind let us proceed to the 

modelling of the peak behaviour. 
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Core area 

In order to acquire a better picture of the soliton-radiation interaction in the particular 
area we ran a numerical simulation of the two initial conditions mentioned in the 

previous subsection ( 0.7 sech(z) and 1.3sech(z)). To isolate the radiation, the soliton 
content of the solution was calculated from IST theory and subtracted from the results 
of the simulation. The remaining dispersive radiation, was compared against the picture 
just described. The quasiperiodicity of the modulation in the central area of the pulse 
was observed indeed. The depth of the modulation was of the order of magnitude of 
the amplitude at the centre as extrapolated by the far field area. 

Furthermore there are instances where the depth of the modulation becomes very 
small and the envelope of the dispersive radiation resembles that in the solitonless case. 
The oscillatory nature of the interaction, with frequency depending on the emerging 

soliton, indicates that the phase of the radiative part (at the centre) is a slowly varying 
temporal function, exactly as in the solitonless case. Furthermore the fact that the 

modulation is of the same order of magnitude as the extrapolated amplitude together 

with the t-'/2 evolution of the latter points to the deduction that after some sufficient 
time the dispersive radiation can be treated as a perturbation on the emerging soliton. 

As far as the soliton peak is concerned we will rely on the condition derived for the 

existence of the Bäcklund transform, namely that at that point the radiation is the same 

regardless of the presence of a soliton. We will make a comparison of the numerical data, 

at the peak position, and the results arising from the straightforward superposition of 

the asymptotically emerging soliton and the dispersive radiation, as described by the 

ansatz (6.14). The time dependent parameters of this pulse are assumed to vary in the 

same fashion as they would were the soliton not present. The quantities compared will 

be the peak amplitude and phase. The initial conditions for the radiation are fixed so 

that the superposition of dispersive radiation and emerging soliton coincides with the 

parameters of the initial pulse, when z is set equal to zero. The governing equation 

for the solitonless radiation is the NLS. Adoption of the linear dispersion relation is 

also possible (no self-phase modulation) but would lead to a divergence of the phase 

by 7r/2. 
The results of these comparisons are summarised in graphs (fig. 6.26 - 6.35) It can 

be seen that the agreement becomes progressively better after the first few periods 

of the observed oscillation. This can be better observed in the the case where the 

initial amplitude approaches soliton generation threshold. We notice that the curves 

describing central amplitude exhibit considerable mismatch at the beginning but im- 

prove at large times. As the dispersive radiation part is reduced ( cases 0.8 sech(z) and 



6. Solitons under perturbations iii 

1.2 sech(z) ) then the agreement between exact and approximate description becomes 
better. 
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Fig. 6.26: Peak amplitude of the radiation corresponding to the initial profile 0.8 sech(z). 
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Fig. 6.27: Difference between the absolute peak value of the numerically propagated 

0.8 sech(z) initial condition and that predicted by the Lagrangian prediction (z=0) 

Before concluding this section we add a note: We have used a result arising from a 

multiple scales expansion. It would seem that this result would hold only for situations 

where the radiation content is very small. However we have witnessed it holding in the 
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Fig. 6.29: Difference between the phase of the numerically propagated 0.8 sech(Z) initial con- 
dition and that predicted by the Lagrangian prediction, at the soliton peak. 

case where the initial amplitude of the Asech pulse is 0.65. This is justified considering 

t'hat' after some time the percentage of dispersive radiation in the core area diiiiinislie 

enough for it to be considered as a perturbation. This validates the multiple scales 

expansion at those times and explains the improvement of the agreement as «VP propa- 

gate in time. In short the description put forward seems to provide a good de cript ion 

in the general case. However this description is pertinent to t his set of data only. For 

example, the sande approach is not going to apply in the case of radiation irnpactinl, 
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1.2sech(z) initial condition and that given by the Lagrangian prediction (z=0) 

on a soliton from one side, since displacement of the centre occurs [h\ISý)ýý] and we 

have no means of calculating it in a simple fashion. 
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Fig. 6.32: Peak phase of the radiation corresponding to the initial profile 1.2 sech(z). Nunier- 
ical simulation 
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Fig. 6.33: Difference between the phase of the numerically propagated 1.2 sech(z) initial con- 
dition and that given by the Lagrangian prediction, at the soliton peak. 

6.2 Discussion 

We have attempted, in this section, to provide a. description of the evoltit ion under 
initial condition that does not correspond to a pure soliton. ('he line of thought followed 

can be slimrnarised as follows. 

The concept, of independence of propagation between soliton and dispersive radia- 

tion is borrowed from IST theory. Using this, in conjunction with the exact properties 
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Fig. 6.34: Peak amplitude of the radiation corresponding to the initial profile 0.65 sech(z). 
Dashed curve arises from numerical simulation. The oscillations at large time are 
due to reflections from the boundaries. 
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Fig. 6.35: Difference between the absolute peak value of the numerically propagated 

0.65 sech(z) initial condition and that given by the Lagrangian prediction (z=0) 
. 

of the IST spectrum related to the A sech(z) initial profile, a perturbation expansion 
is introduced and applied to zero order, in order to calculate the soliton content. 

Subsequently, instead of looking at the central area of the pulse we attempt to 

model the dispersive radiation field, strictly for the case mentioned above. The quality 

of the modelling is evaluated using the fluxes associated with the integrals of motion. 

Finally, the Bäcklund transform of the NLS is introduced in order to connect the 
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dispersive radiation fields in the presence and absence of the fundamental soliton. The 

condition for the existence of the transform at the central point indicates that the two 
fields are equal at that point. An alternative approach, would have been to use a set 
of relations proposed by Gordon [Gor92], in modelling the radiative field for initial 

profiles slightly different from the pure soliton [CPI+93]. 

In all our discussion there is one weak point: the absence of a rigorous theoretical 
justification for the calculation involved in the derivation of the emerging soliton. A 

zero order approach was adopted, instead of a first order one, which would be expected 
to yield better results. The reason for that is the following. We need to define similarity 
between a family of arbitrary initial profile ( sufficiently smooth) and a family of sech 
pulses. Unfortunately similarity would mean that they should have the same emerging 
soliton, which is our initial problem anyway. It is not clear how this can be achieved 
without relying heavily on IST. 

On the other hand we have provided an alternative approach of the problem of 
prediction of soliton content and based on that supplied a description of the propagation 

of the A sech(z) pulse with results closely matched to the numerically evaluated ones. 
The extension of this analysis in the case of initial pulse shapes different to the one 

examined however calls for the introduction of the perturbation theory described above. 



7. CONCLUSIONS 

7.1 General discussion 

Throughout the previous chapters we have tried to illuminate some aspects of the 
perturbative treatment of soliton propagation. We have briefly reviewed the most 
commonly used perturbation methods. The majority of them deals with the propaga- 
tion under a perturbed NLS regime of a pulse whose initial shape is a perfect soliton 
and the target is to describe the characteristics of the asymptotically emerging pulse, if 
there is one. Very little has been done in the direction of the description of soliton and 
background radiation interaction. The main reason for this is the difficulty encoun- 
tered in the description of the propagation of a continuum in the presence of a soliton. 
The degrees of freedom involved are infinite and it is not an easy task determining 

which are the important ones. It is for this reason that treatment of radiation can be 
found in very few references. Even fewer deal with the problem of initial conditions 

containing soliton and radiation. The treatment of such cases relies heavily on numeri- 
cal calculations. Although the latter, mainly because of their accuracy are precious for 

engineering work, they do not provide insight into the physics of the processes involved. 

It is for this reason, the promotion of the understanding of nonlinear waveguiding, that 

analytical descriptions of radiation -soliton interactions is needed. 
The major obstacle, as explained above, is the number of degrees of freedom that 

dispersive radiation has. In order to produce reasonably simple descriptions of the 

dispersive radiation field these have to be reduced. A perturbative method for treating 

systems with limited numbers of degrees of freedom is the Lagrangian perturbation 

method outlined in chapter 5. The most crucial problem is the selection of the ap- 

propriate degrees of freedom. After this is done a problem arises in the handling of 

the integrals associated with the evaluation of the reduced Lagrangian. Of course one 

needs to formulate the Lagrangian density for the problem handled. In that chapter 

we have seen that in order to produce the Euler equations describing the evolution 

of the reduced set of variables this is not really needed and the perturbed equation 

is enough. Furthermore we have seen that Lagrangian method does not constitute a 

separate perturbation method. It can be adjusted in a way reproducing results ex- 
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tracted from other perturbation methods. This is assured by the proper selection of 
the trial functions. Thus adiabatic propagation equations are exactly derived from 
the Lagrangian perturbation method subject to choosing the fundamental soliton as 
a trial function. Furthermore it is possible to increase the degrees of freedom thus 
reproducing the results of direct perturbation theory [0P71]. Although the number of 
computations increases application is straightforward and the method degenerates into 
a classical Rayleigh-Ritz method, since the problem is linear at higher orders. In order 
to look more into the problem of selection of degrees of freedom we have attempted 
to look into how observables ( mass , momentum, etc) can be incorporated into this 
formalism. The result there was a restatement of the Lagrangian into a Hamiltonian 

method where the degrees of freedom where observables and associated transforms. 
Unfortunately we were unable to provide a action-angle formalism similar to the one 
appearing in the Hamiltonian formulation of the NLS problem. 

In the sixth chapter we tried to tackle the non soliton initial value problem for 

the NLS. The integrability of the equation allows us to consider the soliton and the 
dispersive radiation as separate entities. The first problem thus is to determine what 
the soliton content of an initial pulse is. To this end the first and the third integrals 

of motion were used. The calculation involved was simple and did not involve any 

numerics. Its justification was based on the independent contributions of the soliton 

and radiation part to the integrals of motion of the NLS. The agreement with numerical 

and IST results was checked and found to be good provided that the functional form of 
the initial condition was within perturbation limits from the A sech(z) initial condition. 
No assumptions were made regarding the type of perturbation. When the departure 

from the sech shape becomes considerable the formulas give increasingly erroneous 

results. By comparison the asymptotic state can be determined either using WKB 

method or fully numerical ones. In any case, when it comes to slightly perturbed 

shapes, this method seems to provide good quality results without involving complex 

or time consuming calculations as the other methods do. 

The next step is to describe the propagation of dispersive radiation in the presence 

of the soliton. The analysis was confined to the A sech(z), since the approach fol- 

lowed could be rigorously cross-checked with IST methods. To solve the problem, the 

emerging soliton corresponding to the initial condition was calculated. The scattering 

parameters connected with the radiation in the presence of soliton were found to be 

connected to solitonless radiation parameters in a very simple fashion. This allows us 

to propagate the solitonless radiation and then dress it with the asymptotically emerg- 

ing soliton. The effects of the dressing on the far field is a mere spatial displacement 
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depending on the amplitude of the emerging soliton. The solitonless radiation was 
propagated using the Lagrangian method. Although the method does not give exact 
results it provides good agreement as long as the initial condition is away from the 

soliton formation threshold. This was due to the lack of flexibility from the ansatz 
chosen, leading to an underestimation of the nonlinearity. However, away from this 

region we were able to provide a good description of the evolution of the far field in 
the presence of a first order soliton. As far as the peak characteristics -amplitude and 
phase- are concerned we added the contributions of both parts to provide a picture that 

agrees with the numerically propagated exact solution. Overall the semi-analytical de- 

scription provided was found to give good results for an acceptable range of initial 

conditions. Furthermore, the Bäcklund transform introduced provides a tool for full 
description of of the dressed radiation step without having to resort to IST (although 

in this case the transform is derived from the AKNS problem) for computations. 

7.2 Further work 

Having briefly recapitulated the previous chapters we will conclude with some thoughts 

regarding future work that needs to be undertaken. The obvious thing to achieve is 

the generalisation of the results provided for the NLS in the case where a perturbation 

term is present. Since the whole mathematical structure associated with integrability 

is no longer present the first problem is to associate the perturbed problem with the 

appropriate unperturbed one. This, of course, has to be done on the basis of the 

asymptotically emerging solitons. It is possible that an answer on this problem can be 

achieved by the introduction of the appropriate alterations to the integrals of motion 

of the unperturbed equation. 
A second problem that needs to be dealt with, is the provision of a full perturbation 

model based on the Bäcklund transform. Loosely speaking the perturbation procedure 

would be effectuated in three steps: 

1. Stripping of the initial condition from the emerging soliton. 

2. Independent propagation of the soliton and the dispersive radiation. 

3. recombination of the two. 

This procedure is not trivial since the propagation characteristics of the two components 

of the solution cannot be easily calculated. 
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