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Abstract

The gyroplane represents the first successful rotorcraft design and it paved the
way for the development of the helicopter during the 1940s. Gyroplane rotors are
not powered in flight and work in autorotative regime and hence the characteristics
of a helicopter rotor during powered flight and a rotor in autorotation differ sig-
nificantly. Gyroplanes in the UK have been involved in number of fatal accidents
during the last two decades. Despite several research projects focused on gyroplane
flight dynamics, the cause of some of gyroplane accidents still remains unclear. The
aeroelastic behaviour of autorotating rotors is a relatively unexplored problem and
it has not yet been investigated as possible cause of the accidents.

A mathematical model was created to simulate aeroelastic behaviour of rotors in
autorotation. The model can investigate couplings between blade teeter, bending,
torsion and rotor speed using a finite element model combined with a blade element
method and a dynamic inflow model. A set of ’McCutcheon’ rotor blades was sub-
jected to a series of experiments, yielding baseline input parameters for the model.
The model was validated against published results of modal analysis of helicopter
rotor blades, experimental flight measurements and other data published in open
literature.

Effect of selected rotor design parameters on performance and stability of autoro-
tating rotors was analyzed. Results of the model suggest that steady autorotative
flight is not possible for excessive values of blade fixed incidence angle or geometric
twist of the blade, leading to an aeromechanical instability. Negative values of these
parameters lead to rotor over-speed, loss of rotor thrust and increase in vehicle speed
of descent. The simulations have shown that moderate values of blade geometric
twist applied to the inboard region of the blade together with blade tip mass can
improve stability of a rotor in autorotation.

A significant part of the research was focused on investigation of the effect of dif-
ferent values of torsional and flexural stiffness, and the relative chord-wise positions
of blade elastic axis and centre of mass on rotor stability during autorotation. The
results obtained from the model demonstrate an interesting and unique character-
istic of the autorotative regime. Coupled flap-twist-rotor speed oscillations of the
rotor occur if the torsional stiffness of the blade is lower than a critical value and if
the blade centre of mass is aft of the blade elastic axis. The new type of aeroelastic
instability is specific to autorotating rotors and differs from both helicopter rotor
flutter and fixed-wing flutter. An extra degree of freedom in rotor speed does not
alter flutter onset point significantly and hence this instability can be classified as
pitch-flap flutter, with the stability boundary of a hyperbolic shape. However, vari-
ation of rotor speed in response to coupled flexural and torsional dynamics of the
rotor blades changes behaviour of the rotor during the instability. The coupling of
rotor teeter, blade torsion and rotor speed with vehicle speed of descent results in a
combined flutter and divergence instability.



The investigation aeroelastic behaviour of rotors in autorotation has shown that
although autorotation has strong autostabilizing character, catastrophic aeroelastic
instability can occur. Aeroelastic instability of this type has not been previously de-
scribed in open literature. The instability can be initiated by incorrect mass balance
of the rotor blades together with their insufficient torsional stiffness. Alternatively,
unsuitable rotor geometry causing excessive blade incidence can prevent the rotor
from entering steady autorotation. Hence a rotor in autorotation with unsuitable
design of rotor blades can encounter an aeroelastic instability even if it is correctly
mass balanced.



Notation and Nomenclature

Roman Symbols

a Offset of the pitch axis from half-chord, in half-chords, a =
yEA − b

b
; Vector

of additional forcing terms

a0 Area of blade cross-section [m2]

ax Horizontal acceleration of the rotor hub [ms−2]

ay Lateral acceleration of the rotor hub [ms−2]

az Vertical acceleration of the rotor hub [ms−2]

A Rotor disc area, A = πR2 [m2]

[AG] Generalized aerodynamic forcing matrix

Āi i-th coefficient of the characteristic equation

b Half-chord, b =
c

2
[m]

c Local value of rotor blade chord length [m]; Damping coefficient

ccrit Critical damping coefficient

cD Local blade drag coefficient

cL Local blade lift coefficient

cLα Lift curve slope, cLα ≈ 2π [1/rad]

cT Rotor thrust coefficient, cT =
T

ρπΩ2R4
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cβ Flap damping coefficient [Nms/rad]

cθ Torsional damping coefficient [Nms/rad]

cξ Chord-wise bending damping coefficient [Nms/rad]

C0 Apparent mass factor, C0 = 1 or 0.64 for Pitt-Peters dynamic inflow model,

depending on blade twist

[C] Damping matrix

D Rotor blade drag [N]; Dissipation function of the blade [J]

EI Blade flexural stiffness [Nm2]

f Rotor thrust coefficient based on descending velocity

{f} Forcing vector

F Rotor thrust coefficient based on resultant velocity

FG Lagrange’s generalized forcing [N or N.m]

GJ Blade torsional stiffness [Nm2/rad]

h International Standard Atmosphere (ISA) altitude [m]; Rotor blade plunge

[m]

ḣ Plunge velocity [m/s]

H Rotor in-plane force (H-force) [N]

Hi i-th blade flexural (Hamiltonian) shape function

ix Polar mass radius of gyration around span-wise axis (x-axis), ix =
√

Qx

m

Ix Mass moment of inertia about pitch axis [kgm2]

Jy Second (or area) moment of inertia about flapping axis [m4]

Jz Moment of inertia about axis of rotation [m4]
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k Reduced frequency

kx Induced velocity longitudinal weighting factor

kx Polar area radius of gyration around span-wise axis (x-axis), kx =
√

Px

a0

ky Induced velocity lateral weighting factor

kβ Equivalent flexural stiffness, kβ =
EIf
r

[Nm/rad]

kθ Equivalent torsional stiffness, kθ =
GJ

r
[Nm/rad]

kξ Equivalent chord-wise bending stiffness, kξ =
EIc
r

[Nm/rad]

[K] Stiffness matrix

li Length of i-th rotor blade element, li = ri+1 − ri [m]

L Rotor blade lift [N]

m Mass [kg]

M Mach number; Total blade mass [kg]

[M ] Mass matrix

Mȳ Rotor blade pitching moment at chord-wise station ȳ [Nm]

Mβ,A Aerodynamic forcing moment of blade flapping motion (flat-wise bending)

[Nm]

Mθ,A Aerodynamic forcing moment of blade torsion (induced twist) [Nm]

MΩ,A Aerodynamic forcing moment of blade rotation [Nm]

Mξ,A Aerodynamic forcing moment of blade lag-wise (edge-wise) bending [Nm]

Nb Number of rotor blades

Nelem Number of blade span-wise elements
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Px Polar area moment of inertia around span-wise axis (x-axis), Px =
∫

y2 +

z2 da0

q Torsional loading per length [N]

q̄ Dynamic pressure, q̄ =
ρV 2

2
[Pa]

qG Lagrange’s generalized coordinate [m or rad]

Q Rotor torque [Nm]

Qx Polar mass moment of inertia around span-wise axis (x-axis), Qx =
∫

y2 +

z2 dm

r Blade radial (span-wise) coordinate [m]; Position vector of a blade

ri Span-wise coordinate of i-th rotor blade node, li = ri+1 − ri [m]

R Blade span (rotor radius) [m]

Ru Universal gas constant, R = 287.053 [Jkg−1K−1]

Re Reynolds number

Si i-th blade torsional shape function

t Time [s]; Blade thrust per length [N/m]

T Rotor thrust [N]; Kinetic energy [J]; Temperature ISA, T = 288.15 (1 − 0.0065h)

[K]

[T ] Transformation matrix relating rotating and non-rotating systems of coordi-

nates

um Mass flow parameter

U Inflow speed [m/s]; Strain and potential energy of the blade [J]

Up Vertical component of inflow speed [m/s]

Ur Radial component of inflow speed [m/s]
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Ut Tangential component of inflow speed [m/s]

vh Mean induced velocity at hover, vh =

√

T

2ρA
= ΩR

√

cT
2

[m/s]

vi Inflow speed [m/s]

vi0 Induced velocity at the rotor disc centre, vi0 =
ΩRcT

2
√

µ2 + λ2
[m/s]

vic Longitudinal component of induced velocity [m/s]

vis Lateral component of induced velocity [m/s]

vt Total velocity at the rotor disc centre [m/s]

V Free-stream velocity [m/s]

Vd Speed of descent [m/s]

Vh Horizontal speed [m/s]

Vx Component of free-stream velocity parallel to rotor disc longitudinal axis,

Vx = Vh cos ι− Vd sin ι [m/s]

Vy Component of free-stream velocity parallel to rotor disc lateral axis [m/s]

Vz Component of free-stream velocity perpendicular to the rotor disc plane, Vz =

Vh sin ι+ Vd cos ι [m/s]

w Flexural displacement of a blade span-wise element in direction perpendicular

to its longitudinal axis [m]

ŵ Weighting (test) function

wP Flexural displacement of a blade span-wise element in direction z-axis of the

global rotating system of coordinates [m]

x Dimensionless span-wise coordinate, x =
r

R

y Chord-wise coordinate [m]

ȳ Dimensionless chord-wise coordinate, ȳ =
y

c
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yCG Chord-wise position of blade centre of gravity [m]

yEA Local chord-wise position of elastic axis [m]

yg Offset of elastic axis from centre of gravity [m]

Greek Symbols

α Steady angle of attack [rad]

α̇ Rate of change of angle of attack [rad/s]

α̂ Parameter of mass matrix of blade bending FEM

αdiv Angle of attack corresponding to first signs of drag divergence [rad]

αD Angle of attack of the rotor disc [rad]

αL Angle of attack corresponding to first signs of stall [rad]

αq Quasi-steady angle of attack [rad]

αx Parameter of exponential shape function

β Rotor blade flapping angle [rad]

ǫA Blade aerodynamic twist, ǫA = α0T − α0R [rad]

ǫG Blade geometric twist [rad]

φ Inflow angle [rad]

Φ Rotor blade eigenvector (mode shape)

γ Angle of climb/descent of the vehicle [rad]

ι Rotor disc longitudinal tilt [rad]

ιL Rotor disc lateral tilt [rad]

κ Poisson ratio, κ = 1.4 for air
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λ Inflow ratio, λ =
Vd − vi

ΩR

λi Induced inflow ratio, λi =
vi

ΩR

[Λ] Dynamic inflow static gain matrix

µ̂ Blade weight per length [kg/m]

µ Advance ratio, µ =
VH
ΩR

µv Dynamic viscosity, µv = (17.06 + 0.0484 (T − 273.15)) 10−6 [kgm−1s−1]

µx Advance ratio defined parallel to rotor disc plane, µx =

√

Vx + Vy

ΩR

µz Advance ratio defined perpendicular to rotor disc plane, µz =
Vz
ΩR

= λ− λi

ω Rotor blade eigenfrequency [rad/s]

θ̇ Angular velocity of blade torsion (induced twist) [rad/s]

θ Rotor blade torsional angle (induced twist) [rad]

ϑ Slope of rotor blade longitudinal axis [rad]

ρ Air density, ρ0 = 1.225 (1 + 2, 25577.10−5h)
4.25577

[kgm−3]

[τ ] Time constant matrix

Ω Rotor speed [rad/s]

χ Wake skew angle, χ ≈ arctan
µx
λ

[rad]

ξ Rotor blade lag angle (chord-wise bending) [rad]

ψ Azimuth [rad]

ζ Damping ratio, ζ =
c

ccrit

Superscripts

BX X-th term of differential equation of blade bending (flapping)
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RX X-th term of differential equation of blade rotation

TX X-th term of differential equation of blade torsion

Subscripts

1rav Value averaged over one revolution

R A matrix reduced using modal orthogonality

tot Total value for whole rotor

Other Symbols

˙ First time derivative

¨ Second time derivative

Acronyms

BEM Blade element method

CAA UK Civil Aviation Authority UK

CFD Computational fluid dynamics

DE Differential equation

DoF Degree(s) of Freedom

FEA Finite element analysis

FEM Finite element method

ISA International Standard Atmosphere

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

R.A.E. Royal aircraft establishment

RASCAL Rotorcraft Aeromechanic Simulation for Control Analysis

viii



SAR Search and Rescue

UAV Unmanned Aerial Vehicle

VTM Vorticity transport model
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1. INTRODUCTION

Chapter 1

Introduction

1.1 Background

Helicopters have always played special role in the world aviation - capable of unique

flight regimes and manoeuvres, they can perform tasks that no other existing type

of aircraft can fulfill. Helicopters evolved from gyroplanes, another type of rotor-

craft, in 1920’s. Helicopters represent the majority of all operational rotary wing

aircraft today while gyroplanes are relatively rare to spot and virtually none are in

commercial use.

Although they are outnumbered by helicopters today, gyroplanes were once very

popular. Invented and tailored by pioneer Juan de la Cierva, gyroplanes were the

only rotorcraft in operation during first few decades of the last century and hence

became the first successful rotorcraft design. Juan de la Cierva developed gyroplane

design in order to avoid poor low-speed handling qualities of fixed wing aircraft and

catastrophic consequences of wing stall in low altitude [7]. Many technical features

originally developed by designers of gyroplanes can be found in modern helicopters

such as a flap hinge and a lead/lag hinge, leading to a fully articulated rotor hub [7].

Although modern gyroplanes are much smaller and lighter than Cierva’s models,

the basic features as developed by Cierva remain unchanged.
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1. INTRODUCTION

A gyroplane is an aircraft with a free rotating rotor that generates majority of

the lifting force. Gyroplane rotors are working in autorotation (windmilling regime)

when the rotor is driven by aerodynamic forces generated by the airflow passing

through the rotor disc. The rotor is usually pre-rotated before take-off in order to

shorten the take-off distance. A typical gyroplane rotor has fixed blade pitch, i.e.

there is no collective or cyclic pitch control. Lateral and longitudinal tilt of the

whole rotor hub is used instead, and it is applied by the pilot through mechanical

linkages from the control stick. It is often the case that rotor tilt is sufficient for

pitch and roll control of a gyroplane - some light gyroplane models have no hori-

zontal stabilizers, however, a vertical stabilizer and a rudder are still necessary for

vehicle yaw control. Deflections of the rudder are usually controlled with the aid of

pedals.

Piston engines in combination with fixed-pitch propellers are used for the propul-

sion of the majority of gyroplanes. While tractor configurations prevailed in early

gyroplane designs including all Cierva’s models, modern light gyroplanes use pusher

propulsion systems. Generally, a two-bladed teetering rotor is used in modern gy-

roplanes as it represents simple and effective main rotor configuration. Early gyro-

planes were equipped with three or four-bladed main rotors and flapping hinges, first

developed by Cierva for his gyroplane designs [12]. Figure 1.1 shows comparison of

a typical modern gyroplane with Cierva’s most successful design, the C.30.

Dynamics of a gyroplane rotor is relatively complex and some of features of the

rotor can potentially reduce its aeroelastic stability. Gyroplane rotor blades are

flexible in bending, although they are quite stiff in torsion. Centrifugal stiffening

acting on the rotor blades is variable as rotor speed changes during maneuvers. Ro-

tor blades of many modern gyroplanes are manufactured in modest conditions and

often are not mass balanced. The gyroplane hub often includes an offset of its centre

of rotation from the axis of longitudinal tilt of the rotor disc (see figure 1.2). This

design feature was first introduced by Dr Igor Bensen in order to increase longi-
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Figure 1.1: Cierva C.30A, most successful Cierva’s design (left), compared with
an example of a modern light gyroplane design, VPM M16. Reproduced from [1]
and [2], respectively.

tudinal stability of the vehicle. Flexibility of long rotor control linkages can also

affect aeroelastic behaviour of the rotor. Reflex camber airfoils that generate high

values of the pitching moment coefficient are often used in gyroplane rotor design.

Figure 1.2 shows rotor layout of a modern light gyroplane. Some of the features of

the design could contribute to development of an aeroelastic instability of the rotor

- e.g. variable rotor speed, flexible control linkages, use of reflex camber airfoils and

offset of the rotor hub pitch hinge from rotor axis of rotation.

Figure 1.2: Typical rotor layout of a modern light gyroplane.

Early gyroplanes suffered of higher drag and lower flight speeds than conven-

tional aircraft and were not capable of vertical take-off [12]. Later Cierva’s designs

as C.30 were able to perform a jump take-off, but Cierva did not manage to gather
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1. INTRODUCTION

the amount of money that was necessary for further development of his designs. He

was the main driving force of the evolution of the gyroplane and this momentum

disappeared when he died in an aircraft accident in 1936. Despite being proclaimed

as the safest flying machines with best handling qualities, gyroplanes experienced

sudden regression. Competition got much tougher due to arrival of first helicopter

models. Enormous amounts of money were invested in development of a helicopter

during Second World War, with the Sikorsky Co. awarded a grant to develop models

V.S.300 and VS-316 that led to Sikorsky R-3, the first operational helicopter.

Domination of helicopters continued for the next sixty years despite several re-

search projects focused on flight in autorotation. The main advantage of helicopters

against gyroplanes was and still is their ability to hover. In the contrast to he-

licopters, the torque of gyroplane rotor does not come from an engine but from

aerodynamic forces generated by airflow passing through the rotor disc. That is

why hovering flight is an impossible task for gyroplane. Hovering flight is especially

useful for search and rescue (SAR) operations and fast deployment of armed forces.

Since military customers played a key role in aeronautical development during the

major part of the second half of 20th century, gyroplanes were overshadowed by he-

licopters. There were only a few significant investments into gyroplane technology

since then. A handful of experimental gyroplanes or compound rotorcraft (gyro-

copters or gyrodynes) were partially successful (McDonnell XV-1, Fairey Rotodyne

or Kamov Ka-22 and few others) but all efforts to re-introduce gyroplanes in large

scale were unsuccessful. Many projects were ceased because technology required by

the design was not mature enough at the time - this is especially true in case of

Fairey Rotodyne (see Figure 1.3).

However, several limitations that are inherent to helicopters were identified dur-

ing their evolution and operational use. The maximum speed of horizontal flight of a

helicopter is restricted by compressibility effects on advancing side of the rotor disc

and by reverse flow (and dynamic stall) on the retreating side of the disc. Since the
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Figure 1.3: Fairey Rotodyne. Reproduced from [3]

main rotor represents the only source of forward thrust of conventional helicopters,

they are less efficient in forward flight than fixed wing aircraft. Despite significant

progress in rotor aerodynamics and structural dynamics, some of these problems

remained unsolved.

Many of these shortcomings are not present in gyroplanes. Forward flight per-

formance of a rotor in autorotation is less degraded by compressibility effects and

dynamic stall since rotor speed and also rotor loading is lower. This is partly given

by the fact that the rotor doesn’t have to produce propulsive force during the flight

and is used solely for the generation of lift. Gyroplanes also offer a flight perfor-

mance that combines speed and efficiency of fixed-wing aircraft with the capability

for extremely short take-off, vertical landing and low-speed flight similar to heli-

copters [7]. Gyroplanes are of much simpler design and therefore they are lighter,

more reliable and require less maintenance than helicopters. Hence gyroplanes can

be used as low-cost alternative of helicopters or VTOL replacement of conventional

fixed-wing aircraft. The concept of a gyroplane may be especially suitable for a role

of reconnaissance or combat UAVs.
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The progress in aerospace technology that was achieved during past thirty years

may indicate that it is the time for revival of gyroplane design. There is hope that

application of new technologies can remove shortcomings of the concept and that

gyroplanes can successfully compete with both helicopters and fixed wing aircraft.

The need for higher speeds, better flight performance and rising cost of fuel have

drawn the attention of several aerospace manufacturers back to gyroplanes. Carter

Aviation Technologies (CAT), a US-based aerospace company has developed the

CarterCopter, a demonstrator of an advanced gyroplane design (see Figure 1.4).

CarterCopter became the first rotorcraft in aviation history to break the µ = 1

barrier (i.e. achieved rotor advance ratio equal to one). This technology demon-

strator was also recognized by US Army as a possible solution for its HeavyLift

initiative [14]. Unfortunately, CarterCopter’s only prototype suffered several acci-

dents and was severely damaged in a crash in summer 2005 [15]. Test flights of

the vehicle did not resume after this incident even though the CarterCopter was re-

pairable. New technologies and knowledge gained during the programme are being

used within new design projects at CAT.

Figure 1.4: CarterCopter technology demonstrator built by Carter Aviation Tech-
nologies, Inc., USA. Reproduced from [4]

Groen Brothers Aviation (GBA) is another American company that specialize

in design and manufacturing of gyroplanes and are developers of the Hawk IV (see

Figure 1.5), the only turboshaft-powered gyroplane. GBA Hawk IV was successfully
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deployed as security monitoring aircraft during the Winter Olympic Games in Salt

Lake City in 2002. GBA was awarded a contract with US Defence Advanced Re-

search Project Agency (DARPA) and is working on a project of compound aircraft

that will utilize some features of gyroplane design into a demonstrator of high-speed

VTOL aircraft. Current interest in the concept suggests that gyroplanes are being

seriously considered as candidates for the next generation of VTOL category aircraft.

Figure 1.5: Groen Brothers Aviation Hawk 4 gyroplane is powered by a turboprop
engine. Reproduced from [5]

A self-launched version of the CQ-10A Snow Goose cargo UAV represents one

of the first gyroplane UAVs. It uses a pre-rotated main rotor in combination with a

pusher propeller and is capable of jump take-off. The vehicle is being used by the

US special forces (see figure 1.6).

Although use of gyroplanes for commercial purposes was extremely limited ever

after Second World War, they remained quite popular among amateur pilots. Inter-

est in gyroplanes as recreational vehicles grew even stronger during last few decades.

Availability of gyroplanes kits together with simplicity of the design and low opera-

tional costs helped to increase the number of gyroplanes in USA, Australia and also

in Europe. Some of small manufacturers of light gyroplanes became quite success-

ful - for example Wing Commander Ken Wallis [16], Dr. Igor Bensen and Vittorio

Magni [17]. Many light gyroplanes were and still are manufactured by relatively

small companies with only limited access to the latest technologies.

7



1. INTRODUCTION

Figure 1.6: MMIST CQ-10A Snow Goose UAV in a gyroplane configuration. Re-
produced from [6]

Figure 1.7: Wing Commander Ken Wallis and one of his gyroplanes.

Unfortunately, light gyroplanes in the UK were involved in a series of fatal acci-

dents between 1989 and 1991 and the accident rate remained very high throughout

1990’s [2; 18; 19] - see figure 1.8.

Between 1992 and 2001, number of accidents dropped (see figure 1.9) but the

fact that there are less than 100 gyroplanes registered in the UK gave average rate
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Figure 1.8: A comparison of accident rates of different types of aircraft. Reproduced
from CAP 735 CAA Aviation Safety review.

of fatalities of 109 per million flight hours [2; 18].

Figure 1.9: Time history of the number of gyroplane accidents within UK. Repro-
duced from CAP 735 CAA Aviation Safety review.

Following the conclusions of the Air Accidents Investigation Branch (AAIB),

decision was made to review the British Civil Airworthiness Requirements for gy-

roplanes (BCAR Section T). Very little data on gyroplane flight mechanics and

handling qualities were available in the literature at the time. UK Civil Aviation

Authority (CAA UK) contracted the Department of Aerospace Engineering, Univer-

sity of Glasgow to investigate aerodynamics and flight mechanics of the gyroplane.
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Several research projects were undertaken, most of them dealing with aerodynamics

and flight handling qualities of gyroplanes. Wind tunnel measurements of a typi-

cal light gyroplane in several different configurations were performed and the data

were used as an input into an advanced gyroplane flight dynamics simulator [20].

The generic rotorcraft mathematical model RASCAL was modified for this pur-

pose [2; 21]. The resulting model was then verified with the aid of two sets of flight

test data obtained during flight trials. Flight measurements were carried out with

the aid of Montgomerie-Parson gyroplane (UK registration G-UNIV) that is owned

by the Department of Aerospace Engineering, University of Glasgow. G-UNIV can

be described as typical modern light gyroplane and thus it was well suited for the

job. Results of the research project were recognized internationally and rebutted an

argument that many of fatal accidents were caused by modifications of pod or tail

plane of the gyroplane [2; 8; 18; 22].

Figure 1.10: University of Glasgow Montgomerie-Parsons gyroplane (G-UNIV)

This research work carried out at the University of Glasgow represented signifi-

cant contribution in the field of gyroplane aerodynamics and flight mechanics. The

causes of most of the accidents in the UK were determined, and mostly they were

attributed to poor pilot handling or maintenance related component failure. Often,

however, one of the features of the accidents reported by witnesses or revealed by
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post-accident inspection was mechanical failure of the rotor blades (e.g. delamina-

tion of composite blade structure), which could be attributed to the occurrence of

an aeroelastic instability [2; 18]. There is a suspicion that rotor speed dropped to

zero or to a very low value during some of the fatal accidents. In some cases, inves-

tigation revealed the presence of large forces in controls that the pilot was not able

to cope with [18; 19]. One of the main driving forces in undertaking this research

is that virtually no research work investigating coupled bending-torsion-rotorspeed

rotor dynamics or aeroelastic stability of rotors in autorotation was published to

the date. Since rotor aeroelastic instability was identified as a possible cause of

some of the accidents, decision was made to gain more knowledge on aeroelasticity

of autorotating rotors. After all, Cierva had to deal with aeroelastic problems on

his gyroplanes and aeroelasticty has caused troubles in rotorcraft design and devel-

opment ever since then - see figure 1.11.

Figure 1.11: Snapshots of blade deflections during aeroelastic instability of a gy-
roplane rotor. Reproduced from a footage of the Australian Civil Aviation Safety
Authority (CASA).

Cierva’s problems with excessive torsion of rotor blades forced designers of the

first modern helicopters to use symmetrical (uncambered) airfoils. Better under-

standing of helicopter rotor dynamics allowed use of cambered, high-performance

airfoils in later generations of helicopter designs. Excessive torsion of rotor blades

was avoided with the aid of stiffer rotor blades and amended arrangement of blade

hinges (e.g. δ3 kinematic coupling).
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Since the speed of gyroplane rotors is not mechanically restricted, it depends

on aerodynamic loading of the rotor. Reflex camber airfoils are used in the design

of modern gyroplane rotors as they generate positive (nose-up) pitching moment

that reduces rotor torque and hence decreases aerodynamic loading. This allows

establishing of a balance between rotor speed and span-wise distribution of blade

incidence.

Since both hub layout and the aerodynamic properties of modern autogyro rotors

are different from those used in helicopters, aeromechanical behaviour of a gyroplane

rotor and a helicopter rotor differ as well. Nevertheless, current British airworthiness

requirements (BCAR Section T) for blade mass balance to avoid pitch-flap flutter

are the same as for helicopters. This dissertation investigates unstable modes of

rotors in autorotation with focus on gyroplane rotors. The author’s thesis is that

the gyroplanes display some unique aeroelastic behaviour due to different rotor de-

sign and its windmilling mode of operation. Since the aeroelastic instability that

can occur in an autorotating rotor is essentially a pitch-flap flutter coupled with

variable rotor speed, the current BCAR-T mass balance guidelines are satisfactory.

However, similar aeroelastic instability can be initiated by stall of the rotor blades

or reduction of rotor speed during an extreme maneuver. Hence BCAR-T might

need to be expanded in order to include these new findings.

1.2 Aims and Objectives

The aim of this research work was to investigate aeroelastic behaviour of gyroplane

rotors with focus on hazardous rotor configurations and flight regimes. The re-

sults of the work are also fully applicable to helicopter rotors in autorotation. A

mathematical model had to be created during the research project since no suitable

modelling tools were available. In order to fulfil the aim of the research project,
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following objectives had to be met.

i) Literature survey was carried out at the very beginning of the research project

in order to gain more knowledge on aeromechanics of autorotating rotors and find

out how much research work was published to the date. Revision of available litera-

ture also provided summary of theoretical principles and modelling techniques that

were suitable for the current research project that can be found in the Chapter 2 of

this work.

ii) Development of a stand-alone mathematical model of the aeroelastic behaviour

of a rotor in autorotation represented a major part of the research project. A sim-

plified version of the model was developed during the initial phase of the project

in order to test the proposed model structure and modelling techniques. The first

generation of the ’Aeroelastic Model of a Rotor in Autorotation’ code (AMRA) was

developed in the SIMULINK computer package. Work on the first generation of the

model helped to verify functionality of all model components and define convenient

configurations for each of them. Development of the early versions of the model also

clearly showed the need for more powerful and flexible computing environment.

Completion of the first generation of AMRA paved the way for evolution of a

more comprehensive and detailed version of the model that would meet any future

requirements of the project. The second generation of the model is coded in the

MATLAB programming language (M) and uses a more sophisticated model of the

rotor blade structural dynamics based on a finite element method approach. The

model was gradually tailored to suit the needs of the research, which allowed study

of the influence of the fidelity of individual components of the model on its overall

performance. It consists of three main blocks - a model of the blade aerodynamics,

a model of the blade structural dynamics and dynamic inflow model. Chapter 3 of

this work contains a review of the analytical methods used in the model. The open

architecture of the model made it easy to modify and to expand gradually during the
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research project. AMRA was designed to be generic so that it is possible to switch

between several different configurations of model blocks - see table 1.1. Hence the

model could be easily used for prediction of stability of new or modified gyroplane

rotor configurations as it is shown in the Chapter 6.

Table 1.1: An overview of the main building blocks of AMRA model

BLOCK OUTPUT DESCRIPTION

AERODYNAMICS Aerodynamic forcing Incompressible quasi-steady OR

Unsteady Blade Element Method (incompressible);

Enhanced polynomial fit of blade aerodynamic properties

(compressibility and non-linear aerodynamics included)

INFLOW Rotor induced velocity Glauert’s semi-empirical inflow model OR

Modified Peters-HaQuang dynamic inflow model

(1DoF OR 3DoF)

ROTOR DYNAMICS Dynamic behaviour of Model of rotor blade dynamics using

rotor blades equivalent spring stiffness OR

slender beam FEM (1D)

iii) The physical properties of a gyroplane rotor blade represent crucial input

parameters of the model. The majority of light gyroplane rotor blades are manu-

factured in relatively modest conditions and hence their physical properties are not

well documented. A pair of McCutcheon rotor blades was subjected to a series of

experimental measurements in order to determine basic physical properties of typi-

cal gyroplane rotor blades. These experimental measurements played important role

in the project since virtually no data on properties of the type of rotor blades had

been published to the date. Thorough description of the experiments along with

the measured data can be found in Chapter 4. The data were used as input param-

eters for the AMRA model and also played important role in validation of the model.

iv) To gain confidence about its accuracy, the aeroelastic model had to be verified

before it was used for research purposes. As it can be seen in Chapter 5, functional-

ity of all components of the AMRA mathematical model was tested throughout its

development. The aerodynamic block and dynamic inflow model were verified with
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the aid of data from flight measurements carried out by NACA (today’s NASA) in

1950’s and other data from open literature. Main part of model verification work was

focused on the structural dynamics block of the model since it represents its most

complex component. Predictions of static deflections in both torsion and bending

were validated against analytical results. Predictions of blade dynamic behaviour

were verified with the aid of both experimental data and predictions of similar, val-

idated models. Results of the model of rotor blade teeter were compared against

G-UNIV flight test data.

Once verified, the AMRA model was used for modelling of aeroelastic behavior

and flight performance of rotors in autorotation.

v) A series of parametric studies was performed in order to investigate the ef-

fect of selected blade design parameters on performance and stability of a rotor in

autorotation. Chapter 6 of this work summarizes the results of these parametric

studies.

vi) The effect of complexity of the model of blade structural dynamics on fidelity

of the whole aeroelastic model was also investigated. The study helped to identify

necessary level of modelling required to achieve valid solutions. The outcomes of

the study are described in Chapter 5 of this work.

vii) The major part of the research work was focused on determination of an

aeroelastic stability boundary for autorotating rotors with focus on gyroplane ro-

tors. Detailed analysis of aeroelastic behaviour of rotors in autorotation as predicted

by the AMRA can be found in Chapter 7.

Results of the simulations helped to identify rotor configurations that might have

catastrophic consequences. Hence it was possible to formulate basic design criteria

for gyroplane blades. The gyroplane community will be advised on conclusions of
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this work and safety issues closely connected with aeroelastic behaviour of gyroplane

rotors by UK CAA, sponsors of the research.

1.3 Modelling Techniques

As the mathematical modelling efforts form a major part of this thesis, it is worth-

while giving some over-arching description of the background philosophy of the

model development, and some detail of the modelling techniques used. The AMRA

model allows investigation of rotor blade aeroelastic behaviour both in time-marching

regime and in the frequency domain. AMRA can use several different integration

schemes but classical rectangular or trapezoidal rules were found to be sufficient

and relatively fast. The model has an open architecture and modular programming

philosophy was used where possible, i.e. there is single data array that is shared

and modified by individual model blocks. This configuration of the model allows

easy modifications and expansion of the model and makes it relatively generic. Each

rotor blade is modelled individually in the model and it is possible to choose either

hingeless, teetering or bearingless rotor configuration. A comparison of different

rotor hub designs can be found in figure 1.12.

The aerodynamic block of the model can use quasi-steady aerodynamics or

Theodorsen theory of unsteady aerodynamics to compute aerodynamic loading of

each rotor blade. Incorporation of Theodorsen’s theory improves fidelity of the

model for high values of reduced frequency. Aerodynamic coefficients of individual

blade cross-sections are calculated with the aid of modified Prouty’s polynomial ap-

proximation of aerofoil aerodynamic characteristics. This approach allows inclusion

of both stall (non-linear aerodynamics) and compressibility effects. A simple form

of the tip loss factor was employed to account for 3D flow effects at the tip of each

rotor blade.
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Figure 1.12: Comparison of different rotorcraft hub designs. Reproduced from Leish-
man [7].

Special care had to be taken when modelling structural dynamics of gyroplane

blades. Flight trials of Cierva C.30 proved that gyroplane rotor blades have to cope

with significant deflections in twist and bending [23]. Flexibility of gyroplane blades

can affect rotor behaviour significantly since the rotor torque of a gyroplane rotor

blade is generated solely by the aerodynamic forces. Consequently a gyroplane ro-

tor may experience significant changes of rotor speed and corresponding centrifugal

stiffening. Extensive elastic deformation of rotor blades can result in catastrophic

decrement of rotor speed and loss of lift.

The Lagrange’s equation is used for derivation of blade equations of motion and

is solved with the help of two different methods. The first one uses equivalent spring

stiffness approach (i.e. ’rigid’ blade model) and it is especially useful for analysis

of rotor blade teetering motion or blade rotation. The finite element method rep-

resents second modelling method used in the structural block of AMRA. FEM is

significantly more complex but also much more accurate than ’rigid’ rotor blade

model using equivalent blade stiffness. The AMRA model gives an option to select

which method is to be used so that the more complicated (and hence slower) FEM

method can be used only where it is necessary. Since the rotor speed of a gyroplane
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rotor can change dramatically, the method of assumed modes (modal approxima-

tion) that is widely used in helicopter aeroelastic models is not suitable. Hence the

direct form of the finite element method had to be used instead. Slender beam theory

is used for formulation of 1-D FEM model of blade coupled bending-torsion-rotation.

The Peters-HaQuang dynamic inflow model modified by Houston and Brown

was used for calculation of induced velocity of the rotor. This method is well val-

idated and several relevant publications can be found in open literature [24]. The

AMRA model can also use semi-empirical inflow model based on results of experi-

mental flight measurements of gyroplane flight mechanics [25]. However, this type

of inflow model is of limited use and it is less refined than the dynamic inflow model.

1.4 Structure of the Thesis

The pattern of chapters of this work follows individual stages of the research project.

A literature survey that can be found in the following chapter describes and anal-

yses the research work done to date in the field of aerodynamics and aeroelasticity

of gyroplane rotors and rotors in autorotation. Most relevant publications dealing

with helicopter aerodynamics and aeroelasticity are included in the review also.

Chapter 3 outlines the modelling techniques used in the AMRA model and a

separate section is dedicated to each of model blocks. A summary of the mathe-

matical modelling of rotor blade aerodynamics is followed by description of model

of blade structural dynamics and dynamic inflow model.

Experimental measurements of physical properties of a typical light gyroplane

rotor blade are described in the fourth chapter. Span-wise distributions of blade

mass, torsional stiffness, flexural stiffness, position of centre of gravity and position

of elastic axis were determined during the experiments and the data are provided in
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the chapter also.

The fifth chapter of this work shows how the model was verified and presents

details on validation of individual blocks of the AMRA model. Although verification

of the aerodynamic block of AMRA is presented, the main part of the chapter is fo-

cused on verification of the model of rotor blade structural dynamics. Experimental

measurements, analytical results and predictions of other validated predictive tools

are used for verifications of the AMRA model.

The next part of the thesis deals with actual results of AMRA simulations. Out-

comes of the parametric studies are included in the sixth chapter and aeroelastic

behaviour of different configurations of gyroplane rotors is discussed in the seventh

chapter. Stability boundaries estimated by the model using time-marching approach

are compared with results of eigenvalue analysis. Analysis of data obtained with the

aid of the model yields basic design guidelines for light gyroplane rotor blades.

Outcomes of the research work are discussed in the concluding chapter. The

goals achieved during the project are contrasted with initial aims and objectives of

the work too. Rotor blade design parameters that have the strongest influence on

the performance and aeroelastic stability of rotors in autorotation are reviewed. The

shape of the aeroelastic stability boundary of a gyroplane rotor that was identified

with the aid of AMRA is contrasted with a typical pitch-flap flutter stability bound-

ary of helicopter rotors. Recommendations for rotor design and testing are given

based on the results of the parametric studies and on the fact that the effect of the

extra degree of freedom in rotation on flutter onset was found to be negligible. Brief

overview of possible future work and further development of the model is also given

in the final chapter.
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Chapter 2

Literature Review

Although tremendous progress has been made in the field of aerodynamics and

aeroelasticity of helicopter rotors during last sixty years, many problems remain to

be solved. Thanks to the high complexity of the rotor flow field and the complicated

dynamics of helicopter rotor blades, some problems could not be solved until recent

times when the required computational tools were accessible.

Helicopter forward flight features harmonic variation of both inflow speed and

inflow angles and high oscillatory loading [11; 12; 26; 27]. The value of the Mach

number of the inflow is dependent on span-wise position and azimuth and can reach

transonic values toward the tip at the advancing side of the rotor disc. Since ro-

tor blade moves against direction of flight at the retreating side of the rotor disc,

a reverse flow region is formed at the inboard part of rotor blades with the pos-

sibility of dynamic stall further outboard. The existence of at least two blade tip

vortices and their interaction with the rotor blades results in complex rotor wake

and high vibratory loads. Rotorcraft blades are subjected to harmonic loading and

high centrifugal forces, and coupled pitch-flap-lag degrees of freedom of the rotor

blades yield complex equations of motion. Rotor blades can suffer a whole range of

aeroelastic and aeromechanic instabilities, from classical bending-torsion flutter and

stall flutter to pitch-flap-lag instability and ground resonance. This makes rotorcraft

engineering perhaps the most challenging discipline of aerospace engineering.
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Since the gyroplane represents the first operational type of rotorcraft, some of the

oldest research works on rotary wing aircraft are investigating physics of autorotat-

ing rotors. Some of the analytic methods developed specifically for gyroplanes were

later used in helicopter design. Rotorcraft research has made remarkable progress

since then and computational tools used by pioneers of rotorcraft engineering can’t

be compared with capabilities of modern computers. Hence it is remarkable that

many of mathematical tools and theories that originated many decades ago are still

broadly used and are still considered to be sufficiently accurate.

2.1 Review of Relevant Research on Helicopter Ro-

tor Aerodynamics and Dynamics

2.1.1 Aerodynamics of Helicopter Rotors

Some of first research works dealing with rotorcraft aerodynamics used theories de-

veloped for analysis of aerodynamics of propellers or fixed wing aircraft such as the

blade element method or momentum theory (also known as actuator disc theory).

Glauert [28] applied his expertise in propeller aerodynamics [29] in the modelling

of gyroplane rotors. His work led to simple but powerful tools suitable for applica-

tion in rotorcraft aerodynamics. Both momentum theory and blade element theory

(BEM, sometimes also referred to as the blade strip analysis) are described in detail

in this work. Although both BEM and momentum theory represent relatively simple

tools, they proved to be efficient, fast and relatively accurate and are still very pop-

ular. The combination of blade element method and quasi-steady aerodynamics has

been successfully used in many studies on rotorcraft aeromechanics since the early

days of rotary wing aviation [9; 12; 27; 30; 31]. Rotor blade tip loss can be included

in BEM with the aid of tip loss factors that were introduced by Prandtl and later
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by Goldstein and Lock [12; 27]. Prandtl’s tip loss function represents more complex

representation of tip loss effect and it is dependent on rotor disc inflow angle [27].

Despite the possibility of the tip loss modelling, the ability of BEM to cap-

ture 3D aerodynamic effects is very limited. This together with the need to input

detailed aerodynamic data of blade cross-sections, represents major drawbacks of

BEM [12; 27]. Hence BEM is suitable for tasks that require short computational

time and where detailed modelling of 3D flow is not necessary. The use of more

comprehensive methods such as panel methods or finite volume methods for mod-

elling of rotor blade aerodynamic loading results in more accurate predictions of the

effects of 3D airflow but it significantly increases model complexity. This is espe-

cially true in case of rotorcraft aeroelastic models that deal with solutions of complex

systems of blade equations of motion. That is why use of complicated CFD aerody-

namic models in simulation of rotor blade aeroelastic behaviour is usually avoided

if possible as it would cause dramatic increase in computational time. Simplified

aerodynamic models as BEM or momentum theory are still used in many modern

rotorcraft models as VTM [32], RASCAL [33] and many others.

Compressibility effects play important role in the aerodynamics of rotor blades

as aerodynamic characteristics of blade sections change with Mach number and the

airflow can become transonic in the blade tip region [12; 26; 27]. Airflow compress-

ibility also has significant implications for rotor blade aeroelastic behaviour [26].

It can be seen from the work of Prouty [8], Carpenter [10] and Racisz [34] that

Mach number influences lift curve slope of the linear part of the lift curve as well as

the maximum lift coefficient and stall angle. Compressibility effects can not be ne-

glected if Mach number exceeds value of 0.3. The effect of increasing Mach number

on aerodynamic characteristics of an airfoil can be seen in figure 2.1.

Since blade sections may operate at very high angles of attack at the retreating

side of rotor disc, effects of blade stall should be captured by an aerodynamic model

22



2. LITERATURE REVIEW

Figure 2.1: Change of NACA 0012 lift and drag curve with Mach number. Reprinted
from Prouty [8].

Figure 2.2: Change of lift curve slope of NACA 0012 with Mach number; reprinted
from Prouty [8]

too. Hence use of linear aerodynamics (i.e. using assumption of linear lift-curve

slope) is often not sufficient and may not result in correct predictions of blade aero-

dynamic loading. Look-up tables including non-linear aerodynamic data of blade

sections for different Mach numbers represents the simplest way to incorporate stall

and compressibility effects into a simplified aerodynamic model of rotor blades (e.g.

BEM).
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Polynomial fit of blade aerodynamic data can be used as a more elegant alterna-

tive to look-up tables [12]. Different forms of this method were developed by Prouty

[8], Beddoes and others [12]. Approximation of lift, drag and moment curves of

blade sections with the aid of polynomial or exponential functions of α and M al-

lows to capture aerodynamic characteristics of the blade for the full range of angles

of attack. However, experimental data from aerodynamic tunnel tests for the given

airfoil and for sufficient range of angles of attack have to be obtained first. Unfor-

tunately, such data are extremely scarce and only few works can be found in open

literature [12; 35]. High angle of attack wind tunnel measurements of NACA0012

airfoil is the most commonly found experimental data [13; 36]. The amount of sim-

ilar experimental data describing aerodynamic characteristics of cambered airfoils

is extremely limited [37]. There are no open literature publications containing high

angle of attack aerodynamic characteristics of reflex camber airfoils that are often

used in modern gyroplanes. These airfoils are also widely used in tail-less aircraft

design as reflex camber eliminates nose-down pitching moment that is present in

any cambered airfoil. Although a comprehensive CFD evaluation of NACA 8-H-12

airfoil was performed in WHL (today’s Augusta-Westland Helicopters) by A. Brock-

lehurst, only internal technical report was issued and no data were published in open

literature.

Quasi-steady formulation of blade aerodynamics becomes insufficient if values

of reduced frequency exceed a critical value (k ≥ 0.05) [11; 12]. Theodorsen’s the-

ory [38] and other work based on his research became widely used for modelling

of unsteady aerodynamics. Theodorsen included both non-circulatory effects from

flow acceleration and circulatory effects in his equations of unsteady aerodynamics

and introduced the so-called Theodorsen’s function C(k) [11; 12; 26]. Theodorsen’s

theory was later extended by Loewy, Sears, Wagner and others in order to in-

clude the effects of time history of unsteady airflow into the consideration [12; 26].

Theodorsen’s theory is a frequency domain theory and hence it is less convenient for
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analysis of rotor blade aeroelastic stability, these new time-domain methods soon

became relatively popular [26].

Blade dynamic stall might occur on the border of the reverse flow region at the

retreating side of a rotor disc. Dynamic stall causes excessive rotor loading and

vibrations and represents a major limitation in performance of modern rotorcraft.

Dynamic stall of rotor blades can result in blade stall flutter, a single degree of free-

dom instability in blade torsion that is characterised by limit cycle oscillations in

blade angle of attack [12; 26]. A large number of studies were performed in order to

investigate the phenomena of dynamic stall and several semi-empirical dynamic stall

models were developed. Dynamic stall models such as the ONERA dynamic stall

model and Leishman-Beddoes model were successfully used in many studies [26; 39].

Semi-empirical dynamic stall models require much shorter computational times than

CFD and are also considerably simpler. However, since empirical coefficients derived

from experimental wind tunnel data are used in these models, their use is limited to

airfoil shapes for which the data are available. Hence, only advanced CFD models

are capable of purely analytical modelling of stall flutter [12]. Since modern light

gyroplanes are capable of relatively low flight speeds and their rotor blades are rel-

atively stiff in torsion, occurrence of dynamic stall and stall flutter is unlikely. No

publications dealing with modelling of stall flutter of gyroplane rotors can be found

in open literature.

Values of rotor induced velocity have to be predicted correctly in order to obtain

realistic span-wise distribution of the values of rotor blade inflow angle. Induced ve-

locity is generated when the kinetic energy of rotor blades is transfered to air passing

through the rotor disc and results in acceleration of the airflow. Higher speeds of the

airflow lead to decrease of dynamic pressure downstream, and that in turn causes

wake contraction [12; 27]. Leishman [12] and Bramwell [27] give concise overviews

of rotorcraft inflow models developed to date. The majority of inflow models are

based on the approximation of induced velocity distribution that was first proposed
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by Glauert [28]. Classical estimation of induced velocity of hovering rotors based

on momentum theory can be modified in order to capture inflow during forward

flight [9; 25; 40]. Momentum theory uses a relation between velocity of descent

and induced velocity based on the classical form of Bernoulli’s equation [9; 12; 25].

Glauert [28] employed analytical prediction of the induced velocity of a rotor in

hover in combination with weighting factors to account for the harmonic change of

rotor blade aerodynamic loading during forward flight.

Great progress has been achieved in the field of inflow modelling since the early

times of rotary wing aviation. Many different analytical models of helicopter rotor

inflow emerged during the last sixty years. Many of them proved to be relatively

accurate and were widely used for the modelling of helicopter aerodynamics. Refine-

ment of the basic Glauert’s inflow model resulted in several simple inflow models.

Based on research of Coleman et al. [41], works of Drees [42], Payne [43] and Pitt

and Peters [44] are considered to be most widely used. Mangler and Squire inflow

model [12; 27] uses Fourier series to approximate the shape of induced velocity distri-

bution over the rotor disc. Two types of loading, Type 1 (elliptic, high-speed loading)

and Type 3 are combined with the aid of weighting factors by the method [12]. Inflow

modelling was revolutionized in 1980’s when first dynamic inflow models emerged.

These models capture unsteady global wake effects that can be easily applied to

entire rotor [12]. Dynamic inflow models developed by Pitt and Peters, Gaonkar

and Peters, Peters and HaQuang and Peters and He represent the most up-to-date

inflow models. Chen [40] provides a comprehensive survey of most modern dynamic

inflow models (excluding 15-state Peters-He model [45; 46]).

2.1.2 Dynamics of Helicopter Rotors

Problems of structural dynamics and aeroelasticity of helicopter rotors are consid-

ered to be relatively well understood. Major progress in the field of helicopter rotor

dynamics was achieved during last three decades of the 20th century thanks to
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improvements in performance of modern computers and application of finite ele-

ment analysis. Comprehensive summaries of up-to-date status of rotorcraft aeroe-

lasticity is given by Friedmann [47] and Friedmann and Hodges [26]. The books of

Bramwell [27] and Bielawa [11] also give detailed and extensive overview of the topic.

Friedmann and Hodges [26] show that many different analytical methods have been

developed in the field of rotor blade dynamics. Ranging from simple but elegant

Lagrange’s equations to computationally intensive but generic and powerful finite

element analysis. The problem of rotor blade dynamics can be split into two major

phases - formulation of blade equations of motion and their solution.

Compared to wings of conventional (fixed-wing) aircraft, rotorcraft blades are

subjected to higher oscillatory loads and their dynamic characteristics are generally

more complicated due to couplings of blade flexible deformations with blade rota-

tion. While the offset of the elastic axis from the aerodynamic centre is often used

as an important parameter in the aeroelastic analysis of fixed wing aircraft, offset

of centre of gravity from the elastic axis plays the most important role in analysis of

rotor blade aeroelastic stability [26]. Rotor blades are subjected to harmonic forcing

caused by aerodynamic forces and centrifugal forces generated by blade rotation.

Centrifugal forces are dependent upon rotor blade radius and cause additional blade

stiffening. Coriolis forces are caused by combination of blade rotation and blade

deformations and affect dynamic stability of rotor blades. Since rotational effects

play important role in rotor blade dynamics and can not be neglected, extra terms

have to be added into the equations of motion [27; 48; 49].

Blade degrees of freedom are mutually coupled, which has significant effects on

blade dynamics. Hence equations of motion of a rotor blade have to be coupled

too in order to describe blade behaviour correctly. Houbolt and Brooks [50] give

derivations of combined equations of motion of bending and torsion of a rotor blade

modelled as a slender beam. Aeroelastic equations of a helicopter rotor undergo-

ing torsion and both flap-wise and chord-wise bending can be found in Kaza and
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Kvaternik [39]. Ordering schemes can be applied to equations of motion to remove

terms that are negligible [26]. Simplified and linearized forms of combined differ-

ential equations of blade bending and torsion can be found in open literature [11; 27].

Rotor blade dynamics can be described with the aid of the Newtonian approach

which is, however, quite simplistic and can be quite problematic to apply to complex

dynamics of rotor blades [11]. Equations of rotor blade dynamics can be obtained

more conveniently via the extended form of Euler’s equations of motion of a lumped

mass [27]. However, so-called energy methods represent the most convenient way

of derivation of equations of motion. Energy methods are based on the principle of

virtual work and the principle of minimum potential energy [11; 27; 48]. Lagrange’s

equation is one of the most comprehensive and elegant examples of application of

these principles. It can be applied even to complex dynamic systems and allows

derivation of equations of motion via differentiation of expressions defining the ki-

netic and potential energy of a dynamic system. This can be done in an automated

manner and hence Lagrange’s equation is especially powerful in combination with

modern mathematical software capable of symbolic expression manipulation, e.g.

MATLAB, Mathematica or Maple.

Since aspect ratios of rotorcraft blades are high, they can be regarded as slen-

der beams. Hence several simplifying assumptions can be made without significant

effect on the predictive capabilities of the resulting analytical tools. Modelling of

rotor blades as flexible, infinitely thin beams or a series of lumped masses is suffi-

cient for many problems. Since the magnitude of blade loading due to rotation is

dependent on span-wise position along the blade, rotor blades have to be discretized

spatially. Discretization based on global or local (finite element) methods can be

used, depending on method of solution of the equations of motion [26]. This yields

a set of non-linear differential equations of motion.

Although it is possible to obtain an exact solution of the equations of motion
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for a continuous system, applicability of this approach is extremely limited and in

many cases solution is not possible at all [11; 48]. Simplifying assumptions have

to be applied as approximate methods usually represent the only possible way of

solving the blade equations of motion [48]. Global methods of solution of rotor

blade equations of motion were widely used before the emergence of finite element

analysis. These techniques solve blade equations of motion globally, i.e. over whole

blade. But equations of motion of a rotor blade can become extremely complex,

especially if more degrees of freedom are considered and appropriately coupled. As

a result, use of global methods is limited only to relatively simple blade geometries

and they still can be quite challenging to implement.

Simplified methods of solution of the blade equations of motion yield inaccurate

predictions of blade dynamic behaviour. The assumption of perfectly rigid blades

(i.e. blades with zero flexibility) results in significant simplification of the prob-

lem and perhaps represents the most primitive technique of modelling rotor blade

motion. It is equivalent of using a single spring stiffness for each blade degree of

freedom. Only one equation of motion has to be solved for each degree of freedom

and blade geometry and physical properties can be integrated along blade span.

This style of solution of the equations of motion is of limited use as it captures

only zero-th (rigid) modes of blade motion [11; 27]. Hence accurate prediction of

the blade dynamics is not possible and only rough estimates of blade deflections in

torsion, flap-wise bending and chord-wise bending can be obtained. However, this

approach can be conveniently used for problems where the assumption of a perfectly

rigid blade is appropriate, e.g. modelling of blade rotation and teetering motion. It

is also sufficient for fundamental flight dynamics modelling since the frequencies of

vehicle body oscillations are much lower than natural frequencies of the rotor blades.

It can be presumed that the dynamics of a rotor blade can be described by a

finite number of degrees of freedom and a finite number of modes. Although in re-

ality infinite number of modes could be used to describe dynamics of a rotor blade,

29



2. LITERATURE REVIEW

sufficient approximation can be made with the aid of several dominant modes. The

method of assumed modes belongs to the group of global methods and represents a

fairly popular way of solving the DE of motion of rotor blades. A series of func-

tions (mode shapes) are used for the first approximation of blade shape. Lagrange’s

method and the Raleigh-Ritz method are some of the most popular members of

the family of methods of assumed modes. They allow estimation of modal shapes

and corresponding modal frequencies. These methods are based on the fact that a

function that satisfies both boundary conditions and differential equation of blade

bending is a function that gives stationary value to Lagrangian of the blade [48]. A

finite series of approximation functions (modal shapes) that also satisfy boundary

conditions is assumed and substituted into the Lagrangian. The resulting system of

equations is obtained using the condition of orthogonality of modes and it is essen-

tially identical for both methods. Hence, mode shapes and modal frequencies can

be calculated. Raleigh-Ritz method can be applied to broader range of problems

than Lagrange’s method (e.g. static equilibrium) [27; 48].

Galerkin’s method is another method that is based on energy considerations and

it represents perhaps most popular global method. It is widely used as it can be

used in the case of non-linear or non-conservative problems that both Lagrange’s and

Raleigh-Ritz methods can not solve [27]. In Galerkin’s method, an approximation

function is substituted into the differential equation of blade motion. If n different

mode shapes and frequencies are considered, it is transformed into a system of n

differential equations [27].

Today the vast majority of practical problems are solved with the aid of local

methods (i.e. finite element analysis). The finite element method (FEM) is a nu-

merical method that gained high popularity during last few decades. It belongs to

the group of so-called methods of lumped parameters and it originated in 1960’s

when world scientific community re-discovered a half-forgotten paper by Courant

from 1943 [51–53]. FEM represents a powerful method of solution of differential
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equations that, thanks to its universality, can be used for a wide range of applica-

tions. FEM also gave rise to Finite Volume Methods that are commonly used in

Computational Fluid Dynamics (CFD) and other applications (e.g. thermodynam-

ics etc.). In FEM, the rotor blade (or any other structure) is divided into a finite

number of domains (i.e. elements) and a separate differential equation of motion is

solved on each of these finite elements [27; 49]. Methods of weighed residuals are

often used for solution of FEM problems. These methods use combination of trial

functions and weighting (test) functions to approximate exact solution of differen-

tial equations. The collocation method, the least squares method and the Galerkin

method are the most widely used types of methods of weighted residuals. These

methods differ in the manner of definition of the weighting function [49].

Weak formulation of the methods of weighted residuals is used for FEM mod-

elling. Piecewise continuous trial functions are defined at each domain (i.e. element)

and blade equations of motion are solved simultaneously at each element [49]. This

approach makes FEM a very robust and universal way of modelling structural dy-

namics. Modelling of blade torsional dynamics requires one degree of freedom (i.e.

blade torsion) and linear or quadratic trial functions can be applied. Two degrees of

freedom, blade local translation and blade slope together with cubic (Hamiltonian)

trial functions are needed for modelling of both flap-wise and chord-wise bending of

the blade [26; 49].

2.2 Review of Research on Aerodynamics and Dy-

namics of Rotors in Autorotation

2.2.1 Aerodynamics of Rotors in Autorotation

A review of research work that has been done on gyroplanes to date is given by

Leishman [12]. The paper gives comprehensive overview of both theoretical and

experimental research on gyroplanes from the very origins of rotary wing aviation
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until recent days. It shows clearly that research on gyroplanes virtually ceased after

helicopters came into the service. Hence certain aspects of gyroplane aeromechanics

still remain relatively unexplored. In contrast to gyroplanes, the physics of heli-

copter rotors is relatively well understood and large number of publications can be

found in the open literature. The need to use up-to-date analytical methods used in

helicopter aerodynamics for modelling of gyroplane rotors emerged recently due to

increased interest in this type of vehicle. If appropriately modified, modern analyt-

ical methods of helicopter aerodynamics and aeroelasticity can be used for analysis

of gyroplane rotors.

A series of experimental flight measurements of gyroplane rotors and helicopter

rotors in autorotation were carried out by NACA in USA and R.A.E. in the UK

before Second World War [7; 9; 30; 54]. Data obtained during these measurements

helped in the understanding of the physics of autorotation and validation of theoret-

ical analysis of aerodynamics and flight mechanics of rotors in autorotation. Unfor-

tunately, experimental measurements have shown that classical momentum theory

is invalid for the windmilling regime of rotor operation (see Fig.2.3) [9; 12; 25].

Figure 2.3: Relation of induced velocity and speed of descent as predicted by mo-
mentum theory. Reproduced from Gessow [9]
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Hence the classical form of the momentum theory can not be used to describe

the aerodynamics of autorotation. It is possible to assume that during autorotation,

induced velocity is equal to speed of descent. This is known as ideal autorotation [27]

and it can be used for estimation of basic parameters of autorotative regime of a

rotor. However, it is of limited use and can not be coupled with BEM as the result-

ing vertical component of inflow velocity (Vd − vi) is always zero. A few specialized

inflow models were developed for rotors flying in autorotative regime. Glauert [28]

showed that the combination of momentum theory, blade element theory and an

empirical method of induced velocity calculation can be used. The relationship be-

tween vertical component of inflow velocity and speed of descent is captured with the

aid of data from experimental flight measurements and wind tunnel data. Glauert’s

semi-empirical inflow model was later used and improved with the aid of new ex-

perimental data in NACA [31; 55].

Wheatley [56] showed that a combination of the blade element method with

Glauert’s semi-empirical inflow model can yield satisfactory predictions of perfor-

mance of a rotor in autorotation. This type of simplified aerodynamic model of

a rotor in autorotation was commonly used in NACA before and after the Second

World War. Wheatley and Bioletti [30] describe in detail coupling of this type of

aerodynamic model with a simple model of blade flapping dynamics. Nikolsky and

Seckel [31] employed essentially identical methods to estimate the performance of

a helicopter rotor in axial autorotative descent. The effects of blade twist and in-

clusion of blade section stall are studied also. Another research work of Wheatley

[55] uses the same principles of rotorcraft aerodynamics to investigate dynamics of

blade feathering in autorotation. This research report is of great significance as it

investigates the effects of blade pitch angle and sectional drag coefficients on overall

rotor performance.

Since rotor torque is generated purely by aerodynamic forces during autorota-

tion, stable autorotative flight is not possible if aerodynamic angles of attack along
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the blade are too high. Hence blade fixed incidence and induced twist (i.e. torsional

deflections) are of great importance in autorotating rotors. A graphical method that

allows estimation of the critical value of rotor blade pitch was first introduced by

Vimperis [7]. Vimperis diagram is shown in figure 2.4.

Figure 2.4: Vimperis diagram; reproduced from Leishman [7]

Sissingh [57] investigates blade flapping motion as well as the effect of differ-

ent blade planform shapes on rotor performance. Quasi-steady aerodynamics using

both rate of induced twist and flapping rate is applied to estimate rotor blade inflow

angles and inflow velocities. Hufton et al. [23] applied a very similar approach to

to study the aeroelastic behaviour of a gyroplane rotor. Agreement of the author’s

predictions with experimental measurements clearly shows that relatively accurate

predictions can be obtained with the aid of simplified models of blade aerodynamics

and dynamics.

The majority of recent research work on aerodynamics of gyroplane rotors has

been done at the Department of Aerospace Engineering, University of Glasgow un-
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der CAA UK research contracts. Wind tunnel measurements of scaled model of a

light gyroplane were carried out for several different flight configurations. More de-

tails on the research programme and results of the experimental measurements were

published by Coton et al. [22]. Aerodynamic characteristics and stability deriva-

tives obtained during the measurements were used for modelling of gyroplane flight

dynamics. Houston [20] describes validation of modified advanced model of rotor-

craft flight dynamics RASCAL [21] and the outcomes of subsequent simulations are

presented in Houston [33]. A CFD model of rotorcraft aerodynamics based on vor-

ticity transport model (VTM, see [32]) was coupled with RASCAL model in order

to include the effect of rotor wake. Peters-HaQuang dynamic inflow model was also

modified by Houston and Brown to allow modelling of inflow of a rotor in autorota-

tive flight regime [24]. This type of inflow model is more suitable for modelling of

gyroplane rotor inflow than semi-empirical inflow models as it is more generic and it

can capture a perturbational inflow (unsteady wake effects) [26]. More details on the

research work can be found in Houston and Brown [24]. Studies of gyroplane flight

dynamics carried out at the University of Glasgow were summarized by Thomson

et al. [18]. Investigation of gyroplane flight dynamics revealed that gyroplanes are

rather less sensitive to changes in configuration of horizontal stabilizer or the vehi-

cle pod. However, the position of centre of gravity above the engine thrust line was

found to be destabilizing, causing unstable phugoid mode with relatively high period

of oscillation. Results of simulations of gyroplane flight dynamics also showed that

dynamic stability characteristics of gyroplanes resemble a mix of stability charac-

teristics of fixed wing aircraft and helicopters.

2.2.2 Dynamics of Rotors in Autorotation

The development of early gyroplane designs revealed that their rotors can suffer

of high torsional and flexural deformations thanks to variable centrifugal stiffening.

Despite these problems very little work was done in the field of aeroelastic modelling

of rotors in autorotation as Leishman [12] shows in his paper. This is especially true
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if considering the modelling of coupled bending-torsion of rotor blades (e.g. mod-

elling of classical flutter). Again, the aeroelastic behaviour of helicopter rotor blades

is much better understood and documented than in case of gyroplanes. In contrast

to helicopter rotors, rotor speed represents additional degree of freedom of a gyro-

plane rotor. Gyroplane rotor blades can experience large changes of rotorspeed in

relatively short time and their dynamic behaviour can be significantly different from

behaviour of helicopter rotor due to varying centrifugal stiffening.

Several research works on the dynamics of flapping and bending motion of ro-

tor blades during autorotation were published since the early days of rotary wing

aviation. Cierva’s technical works on rotor blade dynamics led to development of

flapping and lead/lag hinges that were later adopted by many helicopter designs [12].

In contrast to a typical articulated helicopter rotor, early Cierva’s rotor blades had a

very small flap hinge offset in order to minimize bending moments transfered to the

rotor hub. The work of Hufton et al. [23] represents one of the few research works

dealing with dynamics of coupled bending-torsion of autorotating rotors. Simple

thin beam theory is used for development of dynamic equations of motion of Cierva

C.30 rotor blades. Predictions obtained from the mathematical model are compared

with experimental flight measurements carried out by R.A.E. Estimated values of

blade deflections in torsion and bending were in good agreement with experimental

data from flight trials of a C.30 gyroplane. However, this work merely shows the

development of a simple aeroelastic model of a C.30 rotor and its validation and it

does not investigate aeroelastic behaviour and stability of the rotor any further.

More recently, Somov and Polyntsev [58] published a paper on the modelling of

bending and flapping motion of an A-002 gyroplane rotor. The blade dynamics are

modelled with the aid of blade bending modes obtained from a commercial FEA

computer package. This approach to the problem is questionable as the method of

assumed modes is not suitable for the modelling of the stability of a gyroplane rotor.

Direct solution of the differential equations of blade motion with the aid of the finite
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element method would probably be more suitable. Only blade degrees of freedom

in rotation and flapping/bending are modelled, which severely limits capabilities of

the model. Blade torsion and its coupling with rotor bending significantly affects

the aerodynamics and dynamics of rotor blades as it plays key role in rotor classical

flutter (bending-torsion flutter) [11; 27]. Since stall flutter is essentially a single

degree of freedom instability in blade torsion, it requires a model of blade torsion

too. It can be shown that rotor aeroelastic stability analysis can yield misleading

results if blade torsional dynamics is not captured by the model [26].

Rezgui et al. [59] present a study of aeromechanic stability of a teetering ro-

tor in autorotation. Rezgui uses bifurcation analysis to predict the rotor stability

boundary. Bifurcation methods are a powerful tool for stability analysis of complex

dynamic systems. However, bifurcation requires a set of linearized blade equations

of motion and hence does not allow use of more than two coupled degrees of freedom.

Rezgui considers degrees of freedom in teeter and rotation and therefore his model

can not capture coupled bending-torsion of rotor blades.

2.2.3 Experimental Measurements of Rotors in Autorotation

As already mentioned in this chapter, an extensive programme of flight tests was

performed by the Royal Aeronautical Establishment (RAE) in the 1920’s that led

to formulation of basics of rotorcraft analytical tools. A similar series of research

projects was undertaken by NACA one decade later. These experimental measure-

ments were aimed at investigating the aerodynamics and performance of gyroplanes

and later (after Second World War), attention was drawn to the behaviour of heli-

copters in the autorotative flight regime.

Characteristic span-wise distribution of blade torque is established during steady

vertical descent in autorotation (see Fig. 2.5). It can be seen from Fig. 2.5 that

outboard part of a blade in autorotation generates negative torque during torque
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equilibrium. This negative torque is cancelled out by positive torque produced by

the inboard part of the blade.

Figure 2.5: Span-wise distribution of blade torque that occurs during steady descent
in autorotation; reproduced from Leishman [7]

Flight tests of gyroplanes also showed that the speed of descent and coefficient

of resultant force in autorotation depend on the angle of attack of the rotor disc.

Empirical formula was derived from flight test data giving an estimation of the value

of speed of descent in axial autorotative flight [7; 12].

Vd ≈ 1.212

√

T

A
(2.1)

The formula shown in equation 2.1 applies for zero or very small values of blade

fixed angle of incidence. Rotor aerodynamic efficiency can be significantly lower for

higher fixed angles of blade incidence and steady autorotation is not possible for val-

ues of fixed incidence higher than the critical value. Speed of descent during steady

axial flight in autorotation is between 10m/s and 12 m/s for rotors with small fixed

38



2. LITERATURE REVIEW

incidence [7; 12]. The maximum possible fixed angle of incidence of a rotor blade

in autorotation can be estimated with the help of the Vimperis diagram that was

developed with the aid of experimental data and is shown in figure 2.4 [7; 12].

Flight tests of gyroplanes revealed that the resultant force coefficient (cR) repre-

sents an important aerodynamic characteristic of autorotating rotors. The resultant

force of a rotor can be understood as drag force generated by the rotor disc. Ex-

perimental data show that resultant force coefficient is strongly dependent on rotor

disc angle of incidence and that its value lies around 1.2 for rotor angle of incidence

higher than 30 degrees [12]. This value of cR is nearly identical to the drag coeffi-

cient of a circular disc or closed hemisphere. During axial autorotative flight a rotor

acts like a bluff body with the attendant turbulent downstream wake and resultant

force produced by the rotor is equivalent to resultant force of a parachute of similar

size [7; 12].

Figure 2.6: Dependence of cR on rotor disc angle of attack; reproduced from Leish-
man [7]

As mentioned earlier, experimental flight measurements showed that there is a

strong relationship between speed of descent and rotor disc incidence angle. Fig-

ure 2.7 shows relationship between forward speed and speed of descent during flight
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in autorotation as obtained from flight trials of two different gyroplane models [7; 12].

The value of induced velocity in hover can be estimated using momentum theory.

Figure 2.7: Dependence of dimensionless speed of descent on dimensionless forward
speed; reproduced from Leishman [7]

During forward flight, the rotor blades are subjected to significant harmonic forc-

ing that is dependent on blade azimuth. This causes a large amount of vibration

which is transmitted to the fuselage via the rotor hub. The main purpose of flap

and lag hinges used in helicopter design is to reduce vibration levels during forward

flight. The majority of modern gyroplanes use two-bladed teetering rotors that are

much simpler.

Following a series of aeroelastic problems involving a C.30 gyroplane that was

fitted with cambered airfoils, several research projects were started to obtain exper-

imental measurements of the aerodynamic behaviour of gyroplane blades. Experi-

mental flight measurements and wind tunnel experiments, focused on determination

of blade motion and blade loading, were carried out in R.A.E. and NACA before

Second World War. The data were compared with theoretical results and hence

helped to validate modelling tools used by NASA and R.A.E. [7; 23; 60–67]. Data

from flight trials of a Cierva C.30 gyroplane describing flapping, torsion and in-plane
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motion of rotor blades can be found in Hufton et al. [23]. This work also compares

measured blade motion with analytical predictions and contains experimental data

on aerodynamics and flight mechanics of the gyroplane. Wheatley [60] compares

analytical predictions of gyroplane rotor induced twist with experimental measure-

ments. He concludes that the assumption of linear variation of torsional deflection

along the blade span is sufficient for accurate modelling of blade induced twist. An-

other publication of Wheatley [68] deals with in-plane (chord-wise) vibrations of a

gyroplane rotor. Both theoretical and experimental investigations of the problem

were carried out and revealed that chord-wise vibrations of the gyroplane rotor (i.e.

variation of rotor speed) were predominantly caused by rotor flapping motion. Blade

flapping motion changes angular moment of inertia of rotor blades, which results in

rotor speed oscillations. The effect of aerodynamic loads and blade chord-wise flex-

ibility on rotor in-plane vibrations were found to be negligible.

Bailey Jr. and Gustafson [62] investigate the region of stalled flow that occurs

on gyroplane blades during forward flight. Comparison of experimental observations

with predictions of blade stall made with the aid of the blade element method is

given in the paper. The authors conclude that the simplified aerodynamic model of

a gyroplane rotor predicts shape and location of the stalled region well, although

it underpredicts its area. Experimental data also showed that the stalled region

is large enough to affect rotor aerodynamic efficiency and rotor blade dynamics if

the tip-speed ratio is high enough. Wheatley published the results of several flight

tests and wind tunnel measurements of KD-1, PAA-1 and Pitcairn PCA-2 gyro-

planes in Wheatley and Bioletti [30]; Wheatley [56, 60, 61, 68]; Wheatley and Hood

[69]; Wheatley and Bioletti [70]; Wheatley [71]. Apart from many other parameters,

gyroplane lift-to-drag ratios, glide angles and pressure distributions along the blade

span were measured. Some of these experimental measurements were performed to

compare aerodynamic characteristics of gyroplane rotors with and without the in-

fluence of the fuselage [7; 30; 56]. Several remarkable conclusions are made in these

technical reports. Although the aerodynamic efficiency of the complete gyroplane
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was found to be poor (
L

D
≤ 4.5), values of lift-to-drag ratio of the rotor alone were

equivalent to aerodynamic efficiency of modern helicopter rotors [12]. Wheatley and

Bioletti [30] conclude that this is caused by the excessive size of the hub used in the

rotor wind tunnel model. As it can be seen from Figure 2.8, values of aerodynamic

efficiency of gyroplane rotors remain relatively high even for very high advance ra-

tios while
L

D
of helicopter rotors decrease rapidly due to compressibility effects and

retreating blade stall [7; 12]. Experimental measurements carried out by Wheat-

ley and Bioletti [30] also showed that the pitch settings are the critical parameter

that determines rotor characteristics. The same authors suggest in [69] that cam-

bered rotor blades cause reduction of rotor blade induced twist due to their negative

pitching moment coefficient. The study also surprisingly reveals that reduction of

blade area in the root region decreases rotor aerodynamic efficiency significantly.

A NACA Technical Report of Wheatley and Bioletti [70] describes full-scale wind

tunnel tests of a Pitcairn PCA-2 gyroplane. It concludes that the change of aero-

dynamic characteristics of the rotor with rotor speed and thrust is caused by blade

twist proportional to rotor thrust.

Figure 2.8: Comparison of aerodynamic efficiencies of gyroplane rotors and two
versions of a helicopter rotor; reproduced from Leishman [7]

Experimental measurements of control stick vibrations of a YG-1B gyroplane
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can be found in Bailey Jr. [72]. Since the YG-1B is equipped with a three-bladed

rotor, the most important component of control stick force had frequency of 3Ω.

It was also discovered that control stick vibrations are negligible for lower advance

ratios (below µ = 0.2). Bennett published technical memoranda [63] and [64] on

high-speed flight and vertical descent of a gyroplane. Blade element theory in con-

junction with Glauert’s semi-empirical inflow model is used in these research works.

Problems caused by cambered airfoil sections and insufficient performance of

reflex-camber airfoils forced manufactures of rotary wing aircraft to switch back

to symmetrical airfoil sections. It took some time before high-performance, cam-

bered airfoils were used in helicopter rotor blades again [7]. Further development

of reflex-camber airfoils led to their wider use in gyroplane blade design. Aerody-

namic characteristics of modern reflex-camber airfoils for low angles of attack can be

found in Stivers and Rice [37]. A comparison of the aerodynamic characteristics of

a NASA 8-H-12 reflex-camber airfoil, NACA 0012 airfoil and a derivative of 8-H-12

airfoil as used in modern light gyroplanes have shown that both NASA 8-H-12 and

the modern gyroplane airfoil have positive pitching moment coefficient for low an-

gles of attack. The main function of reflex camber was to eliminate the nose-down

pitching moment of classical cambered airfoils in order to avoid blade torsion and

loss of lift.

However, reflex camber airfoils do not produce very small pitching moments as

one would expect - some airfoils from NACA reflex-camber ’H’ family generate rel-

atively high values of cM . Stivers concludes that NACA 8-H-12 is perhaps the most

suitable for helicopter blade design since it produces lower values of pitching mo-

ment than majority of other reflex camber airfoils. Results of CFD computations

also indicate that reflex camber airfoils have worse high Mach number performance

than similar symmetrical airfoils (e.g. NACA 0012). A conclusion can be made

that it is more than desirable to investigate the aeroelastic behaviour of gyroplane

rotors equipped with reflex camber airfoils, especially during high speed flight as
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they might encounter high aerodynamic torsional moment. However, present lack

of high angle of attack aerodynamic data severely limits capabilities of the resulting

aeroelastic model.

A number of research works containing experimental data on aeromechanical

behaviour of gyroplanes have been published recently. Wind tunnel tests of scaled

model of a gyroplane performed during CAA UK funded research were carried out

for several different configurations of the model, e.g. tail-on/tail-off, pod-on/pod-

off etc [22]. A series of flight tests of University of Glasgow Montgomerie-Parsons

gyroplane (G-UNIV) were also funded by CAA UK and resulted in several sets of

data, including values of rotorspeed, blade teeter angle, blade azimuth, airspeed and

altitude. Some of the results of the flight trials were published by Thomson et al.

[18] and Bagiev et al. [73].

2.2.4 Summary

Although helicopter aeroelasticity is considered to be well understood, aeroelastic

behaviour of rotors in autorotation is very much unexplored. Several open literature

references dealing with the topic can be found but they study either steady-state

deformations of the rotor blades or consider insufficient number of degrees of free-

dom for pitch-flap flutter to occur. However, publications focused on aerodynamics

and flight performance of rotors in autorotation are available and can prove to be

useful during development and verification of an aeroelastic model. A high number

of technical reports on aeroelastics and structural dynamics of helicopter rotors can

be found in open literature and can be used for design and verification of a model

of blade structural dynamics.

A conclusion can be made that an investigation of coupled pitch-flap-rotation of

rotors of autorotation would represent a new contribution in the field of rotorcraft

aeroelasticity. Predictive tools developed for aeroelastic modelling of helicopter ro-

tors are mature and well validated. Modification of these tools for modelling of
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autorotating rotors should be relatively straightforward.
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Chapter 3

Mathematical Modelling of Rotors in

Autorotation

Predictive tools used in rotorcraft aeroelasticity contain an aerodynamic model of the

rotor coupled with a model of blade structural dynamics. This chapter gives details

of the modelling tools that were used in the AMRA model. First of all, description of

unsteady model of gyroplane rotor aerodynamics is presented. The model is based

on blade element theory and captures both compressibility effects and non-linear

aerodynamic characteristics of a typical rotorcraft blade section. Improvements of

Prouty’s polynomial description of aerodynamic characteristics of NACA 0012 air-

foil properties are shown, along with a new approximation of NACA 0012 cM − α

curve. The section dealing with gyroplane rotor aerodynamics is concluded with

brief description of the rotor aerodynamic forcing and modified Peters-HaQuang

dynamic inflow model used in AMRA.

The following section is focused on the modelling of rotor blade structural dy-

namics and it shows a derivation of the full nonlinear equations of motion of coupled

bending-torsion-rotation of gyroplane rotor blades. Both the finite element model of

coupled torsion-bending, and the modelling of blade structural dynamics with the

aid of equivalent spring stiffness are described.
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There are several substantial differences between the aeromechanical behaviour

of a helicopter rotor and a rotor in autorotation. Contrary to the helicopter rotor in

powered flight, an autorotating rotor works in the wind-milling regime, and kinetic

energy from the airflow is transformed into aerodynamic forcing of the rotor. Hence,

the direction of the airflow through the rotor disc in autorotation is opposite to the

direction of inflow during typical flight regimes of helicopter rotors (see Figure 3.1).

Figure 3.1: Comparison of inflow of a helicopter rotor and gyroplane rotor. Repro-
duced from Leishman [7]

Torque and thrust of the rotor are generated exclusively by the flow through the

rotor disc during autorotation, which means that the value of rotor speed is depen-

dent on the aerodynamic properties of the rotor blades. This also makes rotor speed

directly dependent on the free-stream velocity of the vehicle, since the distribution

of inflow speed over the rotor disc is dependent on values of the free-stream velocity

and the rotor speed. Helicopter rotors work rather differently as constant rotational

speed is maintained with the aid of the engine torque. Hence rotor speed does not

depend upon free-stream velocity, and change of forward speed or rate of descent
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have less significant influence on rotor performance.

3.1 Modelling of Aerodynamics of Rotors in Au-

torotation

In general, analytical methods required for modelling of the aerodynamics of autoro-

tating rotors are similar to those developed for helicopter rotors in powered flight.

However, several modifications have to be made in the blade element aerodynamic

model of a helicopter rotor in order to reflect different character of the aerodynamics

of a rotor in autorotation.

As with helicopter rotor blades, rotor blades in autorotation are subjected to high

vibratory loading for most of the time. The blades are also highly flexible. Structural

loading can reach even higher values than in the case of helicopters since the blades

can experience significant fluctuation of centrifugal stiffening due to decrease of

rotor speed. Additional components of aerodynamic angle of attack that are caused

by blade oscillatory motion have to be considered. This can be done with the

aid of the quasi-steady or the unsteady (Theodorsen’s) aerodynamic theory. The

airflow around a rotor blade can be considered quasi-steady if the reduced frequency

of blade motion is lower than 0.05 [11; 12; 38]. Reduced frequency is defined as

follows [11; 12; 38]

k =
ωc

2V
(3.1)

Classical formulations of quasi-steady lift and pitching moment coefficients of

oscillating wing section are shown in Appendix A1 [11; 12].

Vertical displacement of local blade sections wP is more consistent with the rotor

coordinate system and rotor blade dynamics that were used in this work and in the
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AMRA model (see equation 3.2).

ẇP = −ḣ = ẇ cosϑ (3.2)

The coordinate system used in the AMRA model is shown in figure 3.2.

Figure 3.2: The layout and orientation of the system of coordinates of a rotor in
autorotation used in the AMRA model

Hence the classical formulations of quasi-steady lift and moment coefficients gen-

erated by a blade section (see equation A1-1) has to be rewritten in order to be

consistent with the coordinate system orientation of the model (shown in figure

3.2).

cL = cLα

(

α +
1

Ωr

(

−ẇP +

(

3c

4
− yEA

)

θ̇

))

cM, c
4

= −π
8

θ̇c

Ωr

(3.3)

The terms on the right-hand side of equation 3.3 represent sum of steady angle of
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attack and quasi-steady angle of attack caused by airfoil motion. Hence the equation

can be written in a simpler form

cL = cLα (α+ αq) (3.4)

Corresponding forms of Theodorsen’s equations of unsteady aerodynamics are

cL = cLαC(k) (α + αq) +
ccLα
4Ωr



θ̇ − ẅP
Ωr

−

(

yEA − c

2

)

θ̈

Ωr



 (3.5)

cM, c
2

=
cLα
2
C(k)

(

3

2
− 2yEA

c

)

(α + αq) −
cLα

4Ω2r2

[

(

yEA − c

2

)

ẅP +

(

9

c2
+ yEA (yEA − c)

)

θ̈

]

− cLα
4

(

3c

4
− yEA

)

θ̇

Ωr

(3.6)

Local values of vertical and horizontal components of the inflow velocity (U)

have to be calculated in order to determine aerodynamic angle of attack of any

blade section. The inflow velocity can be resolved into three components (Up, Ut,

Ur). Vertical component of inflow velocity Up describes air speed of the flow in di-

rection perpendicular to the rotor disc, Ut is parallel with the rotor disc plane and

perpendicular to the longitudinal axis of the blade and Ur is parallel with both rotor

disc plane and the blade axis.

Aerodynamic angle of attack of a blade section in autorotation is

α = θ + φ = θ + arctan

(

Up
Ut

)

(3.7)

In forward flight, however, value of Ut can be negative in the reverse flow region

of the rotor disc. In order to capture the reverse flow, the definition of inflow angle
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has to be modified (see Fig. 3.3). This can be easily achieved in the manner shown

in Bielawa [11] and Wheatley [56]. Alternatively, the value of the inflow velocity

can be calculated as

φRF =















φ if Ut ≥ 0

φ+ π if Ut < 0

(3.8)

Figure 3.3: Calculation of inflow angle with the aid of components of inflow velocity

The inflow velocity is a function of angle of attack of the rotor disc that is

given by a sum of incidence angle of the rotor disc ι (i.e. angle between the rotor

disc plane and the horizontal plane) and pitch angle of the vehicle (see equation 3.9).

αD = ι+ γ

γ = arctan

(

VD
VH

) (3.9)

Referring to figure 3.4, analytical expressions of individual components of the

inflow velocity of a gyroplane rotor can be formulated, including the effect of longi-
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Figure 3.4: A sketch of aerodynamics of a rotor blade in autorotation

tudinal and lateral rotor disc tilt (ι and ιL)

Up = −vi + Vd cos (β − ι cosψ) − Vh
(

sin (β − ι cosψ) cosψ − sin ι sin2ψ
)

− Vs

(

sin
(

β − ιL cos
(

ψ +
π

2

))

cos
(

ψ +
π

2

)

− sin ιL sin
2
(

ψ +
π

2

))

+

(

3c

4
− yEA

)

θ̇ − β̇r

(3.10)

Horizontal (or tangential) component of the inflow velocity is then

Ut = Ωr cosβ + (Vh cos ι− Vd sin ι) sinψ + Vs cos ιL sin
(

ψ +
π

2

)

(3.11)

The radial component of the inflow velocity is often neglected since it does not

contribute to inflow angle that is defined as perpendicular to the leading edge of a

blade. However, it is useful for calculation of rotor disc drag [12].

Ur = Vh cos (β − ι cosψ) cosψ + Vd sin (β − ι cosψ)

+ Vs cos
(

β − ιL cos
(

ψ +
π

2

))

cos
(

ψ +
π

2

)

(3.12)
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Equations 3.10, 3.11 and 3.12 can be used to model the aerodynamics of a gyro-

plane rotor in both axial and forward flight as long as the coordinate system of the

model of blade structural dynamics is equivalent to that shown in figure 3.2. This

system of equations represents modified form of inflow equations of a helicopter ro-

tor. Note that if the rotor disc incidence angle is zero, the flapping angle is assumed

to be very small and some modifications are made, these three equations are reduced

to

Up = ΩR

(

λ− µβ cosψ − x

Ω
β̇ +

3c

4
− yEA

Ω
θ̇

)

Ut = ΩR (x+ µ sinψ)

Ur = ΩR (µ cosψ − λβ)

(3.13)

The equations above represent the classical form of rotor inflow equations that

have been broadly used for aerodynamic analysis of helicopter rotors in autorota-

tion [12; 27; 55–57].

Once aerodynamic angles of attack of each blade element are calculated, they

can be used for estimation of the aerodynamic loading of the rotor blades. In order

to achieve this, relationships between the aerodynamic angle of attack of blade sec-

tions and lift, drag and pitching moment coefficients have to defined. This can be

done in several possible ways, depending on desired accuracy of estimation of blade

aerodynamic loading.

Lift curve slope in equation 3.3 can be assumed to be constant in order to simplify

the calculations and to save some computational time. However, the assumption of

linear lift curve does not allow capturing of both blade stall and the compressibility

effects.

Mach number and Reynolds number determine aerodynamic characteristics of
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rotor blades. It can be seen from the work of Prouty [8], Carpenter [10] and Racisz

[34] that Mach number influences slope of the linear part of lift curve, maximum lift

coefficient and stall angle of an aerofoil.

Although typical value of rotor speed of a rotor in steady autorotation is around

40rad/s, values of up to 100rad/s have to be captured by the model in order to

study aeroelastic stability of a rotor in autorotation [31; 74]. Both angle of attack

and Mach number of the flow vary widely along a rotorcraft blade due to the change

of tangential component of the inflow speed. The angle of attack reaches values of up

to πrad both in autorotative forward flight and axial descent. Despite these facts,

many studies of aerodynamics of autorotating rotors published in open literature

use the assumption of linear lift curve and compressibility effects are neglected by

some authors also. The range of flow Mach numbers and angles of attack that are

common in gyroplane rotors are shown in figures 3.5 and 3.6.

Figure 3.5: Range of Mach numbers and angles of attack that occur at the root
region, three quarter radius and the tip region of a typical gyroplane rotor blade.
Computed by AMRA for advance ratio of 0.1.

In order to make sure that predictions of the model will be accurate, compress-

ibility effects and nonlinear aerodynamics of rotor cross-sections were included in
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Figure 3.6: Range of Mach numbers and angles of attack that occur at three quarter
radius and the tip region of a typical gyroplane rotor blade. Computed by AMRA
for advance ratio of 0.1.

AMRA model.

It can be shown that the values of Reynolds number and Mach number are re-

lated. Hence it is convenient to express aerodynamic characteristics of a rotor blade

as functions of angle of attack and Mach number of the inflow rather than angle of

attack and Reynolds number [12]. This can be done by tabulating of the data and

incorporation of look-up tables in the calculation which also allows incorporation of

compressibility effects into the calculation as lift, drag and moment coefficients can

be tabulated for several values of Mach number.

It is more convenient to express the aerodynamic characteristics of the blade

airfoil as polynomial functions of angle of attack and Mach number. At least two

different polynomials have to be used; the first polynomial is used for the area of

angles of attack between α = -25deg and α = 25deg. The outboard sections of

rotor blades (which generate a major part of the rotor forcing) operate in this range

of angles of attack most of the time, and hence an approximation of this part of

the lift and drag curves should be more accurate. The trend of both lift and drag
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curves outside this region can be approximated with the aid of simple trigonometric

functions.

3.1.1 Modified Prouty’s Polynomial Approximation of an Air-

foil Lift Curve

It was shown by Prouty [8] that it is possible to obtain the full-range angle of attack

aerodynamic data of an airfoil with the aid of numerical approximation. Prouty uses

NACA 0012 airfoil in his book [8] as an example. This type of airfoil was widely

used in the field of rotorcraft aerodynamics and an ample amount of experimental

data are available for this airfoil. Prouty’s empirical equations were derived from

the data published by Carpenter [10]. The full-range AOA aerodynamic data for

the same airfoil are also available at [13].

Unfortunately, aerodynamic characteristics of reflex camber airfoils that are typ-

ically used in gyroplane rotor blade design are not available. Since wind tunnel

measurements of NACA 8-H-12 airfoil would require excessive amount of funding,

well documented NACA 0012 airfoil was used instead. When available, aerodynamic

data of a reflex camber airfoil can be easily added to AMRA thanks to open archi-

tecture of the model.

In general, the change of slope of lift-curve linear region is governed by Prandtl-

Glauert’s correction [8]. Prouty [8] showed that better results are obtained if a

semi-empirical form of compressibility correction is used (see equation A2-1).

As it can be seen in the figure 2.2, the trend of the relation between lift-curve

slope and Mach number changes radically for Mach numbers higher that M = 0.7.

This area is not beyond the region of operation of gyroplane rotors (see figures 3.5

and 2.2). Prouty [8] defines the angle of attack αL that represents the upper limit

of the linear part of lift curve, i.e. airfoil shows first signs of stall at α ≈ αL. This
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parameter represents an aerodynamic characteristic of an airfoil and it can be esti-

mated with the help of the equation A2-2. Comparison of Prouty’s predictions of

values of αL with the wind tunnel data of NACA 0012 airfoil published by Carpenter

[10] are shown in figure 3.7.

Figure 3.7: Comparison of Prouty’s approximation of αL with wind tunnel data

The original form of Prouty’s polynomial approximation is shown in greater de-

tail in Appendix A2. Due to the use of simple approximations, Prouty’s polynomial

fit of NACA 0012 lift curve is not accurate, especially for M < 0.75, which is the

range of Mach numbers that mainly occurs in gyroplane rotors (see figure 2.1). This

might be also partly caused by the fact that the validation of the method is done

only for three different values of Mach number [8].

Prouty uses coefficients C5 and C6 to capture non-linear character of lift curve

slope for α > αL. More information on the use of these coefficients can be found in

in Appendix A2.

C5 =
cLααcLmax − cLmax

(αcLmax − αL)
C6

(3.14)
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C6 = C7 + C8M (3.15)

The results of Prouty’s approach were enhanced by modification of equations 3.14

and 3.15. In the contrast to Prouty’s method, constants C5 and C6 were treated

as independent variables. Analysis of a polynomial approximation of NACA 0012

lift curve showed that it is more convenient to use a non-linear dependence of the

parameters C5 and C6 on Mach number. As it can be seen from the figures 3.8

and 3.9, trends of these approximations are consistent with experimental data pub-

lished by Prouty [8], Carpenter [10] and in [13]. Equation 3.16 shows the amended

expressions of the coefficients C5 and C6.

C5 = −0.4375M5 + 3.492M4 − 5.3304M3 + 3.4269M2 − 1.0074M + 0.12334

C6 = 67.0833M5 − 152.8561M4 + 143.6822M3 − 72.3092M2 + 18.6842M + 0.2004

(3.16)

Figure 3.8: Dependence of coefficient C5 on the value of Mach number

The improvements of Prouty’s polynomial fit of lift curve of NACA 0012 air-

foil result in a better agreement with the lift curves obtained during wind tunnel

measurements of rotor lift [10]. Comparison of data published by Carpenter [10]
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Figure 3.9: Dependence of coefficient C6 on the value of Mach number

with results of the original and the enhanced Prouty’s approximation method are

shown in Chapter 5 of this work (see figures 5.1 - 5.2). A comparison of the same

experimental data with outcomes the original Prouty’s polynomial fit can be also

found in Fig. 2.1.

It is also shown in Chapter 5 that agreement between the original Prouty’s

method and the experimental data is sufficient for the rest of the range of angles of

attack. Hence Prouty’s method was used in the AMRA model without any modifi-

cations for this region of the lift curve slope.

3.1.2 Modified Prouty’s Polynomial Approximation of an Air-

foil Drag Curve

The polynomial fit of a drag curve described by Prouty [8] is based on piece-wise

approximation of the curve with the aid of several types of mathematical functions.

For values of angle of attack below the drag divergence (i.e. α < αdiv), the drag

curve of a typical airfoil can be approximated with the aid of a simple polynomial.
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Wind tunnel measurements showed that the drag coefficient during the reverse

flow (α ≈ 180deg) is considerably higher than for zero angle of attack and that the

drag divergence is more severe too [12]. Prouty’s method of polynomial fit of airfoil

drag curve was enhanced in order to capture the effect of reverse flow. Again, the

experimental data from [13] and Carpenter [10] were used.

cD1 = 1.03 − 1.02 cos 2α

cD2 =5.0885−1.7192·103α+2.4138·101α2
−1.8027·10−1α3+7.5522·10−4α4

−1.6828·10−6α5+1.5582·10−9α6

cD,revf =















cD1 if cD2 ≥ cD1

cD2 if cD1 ≥ cD2

(3.17)

In contrast to the polynomial fit of NACA 0012 lift curve, Prouty’s method

gives relatively accurate approximation of drag curve of NACA 0012 airfoil for a

wide range of Mach numbers and the full range of angles of attack. Hence the

improvement of the polynomial fit in the reverse flow region of the drag curve rep-

resents the only modification of the method. A more detailed description of the

original Prouty’s approach is provided in Appendix A2.

Verification of the values of drag coefficient obtained by the method for both low

and high angles of attack is given in Chapter 5 (figures 5.3 and 5.4).

3.1.3 Polynomial Approximation of an Airfoil Moment Curve

Since Prouty [8] describes only a polynomial fit of the moment curves of cambered

airfoils, a polynomial approximation of moment curve of NACA 0012 airfoil was de-

veloped with the aid of wind tunnel data published in [13], Bielawa [11] and Leish-

man [12]. For angles of attack below the stall, moment curve of NACA 0012 can be

expressed in the following way
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cM,α<20deg(α,M) = M0 +M1α +M2α
2 +M3α

3 +M4α
4 +M5α

5 (3.18)

Coefficients of the polynomial M0, . . . , M5 are functions of Mach number and

they can be generated with the aid of look-up tables. Values of these coefficients

are shown in Appendix A2.

In a similar way to the approximation of lift and drag curves, the effect of Mach

number on moment curve of NACA 0012 can be neglected for angles of attack above

stall [7; 8]. The wind tunnel data available from [13] were used for development of

appropriate polynomials that provide sufficient fit. Approximation of moment curve

of NACA 0012 that was used in the AMRA model is

cM,α>20deg =















0.08 + 0.4 sin (0.4α1.8) if 20deg ≤ α ≤ 166deg

0.4 sin (0.898α2.5) if 166deg < α ≤ 180deg

(3.19)

Again, verification of the values of moment coefficient obtained by the method

for both low and high angles of attack is given in Chapter 5 (figures 5.5 and 5.4).

3.1.4 Aerodynamic Forcing of an Autorotating Rotor Blade

Once aerodynamic coefficients at all span-wise stations are obtained, the aerody-

namic forces and moments generated by the blade elements can be calculated.

Lift and drag force and pitching moment at quarter-chord generated by an arbi-

trary element of the rotor blade of width dr are shown in their standard formula-

tions [7; 11; 27].
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dL =
1

2
cLρcU

2dr

dD =
1

2
cDρcU

2dr

dM c
4

=
1

2
cM, c

4
ρc2U2dr

(3.20)

Lifting force is perpendicular to the direction of inflow velocity and drag force

vector is perpendicular to the vector of lift force. Local values of inflow angle and

angle of attack have to be used to obtain forcing moments of the blade. Elementary

rotor thrust and in-plane force (frequently called H-force) are defined by the following

equations [7; 11; 27]

dT = dL cosφ+ dD sinφ

dH = dL sinφ− dD cos φ
(3.21)

Numerical integration has to be used in an aerodynamic model based on the

blade element method. This approach is both simple and accurate, especially if a

high number of span-wise elements is used. Hence numerical integration is especially

useful in computer-aided modelling of rotor aerodynamics. Arbitrary span-wise dis-

tributions of blade properties and flow conditions can be easily captured and the

full form of blade aerodynamic equations can be used also.

Mψ,A = Q =

Nelem
∑

i=1

rdH

Mβ,A =

Nelem
∑

i=1

rdT

Mθ,A =

Nelem
∑

i=1

[

(

dL cosα + dD sinα
)

(

yEA − c

4

)

+ dM c
4

]

(3.22)

More detailed formulations of equations 3.22 can be found in Appendix A1 (equa-
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tions A1-11 - A1-13).

3.2 Modelling of the Inflow of a Rotor in Autorota-

tion

Many inflow models used for the modelling of helicopter aerodynamics are based on

momentum theory. According to momentum theory (sometimes also called actuator

disc theory), the speed of descent and the induced velocity are related and their re-

lationship is based on the classical form of Bernoulli’s equation [9; 25]. The theory

predicts that the induced velocity of a rotor in hover is [9; 25; 40]

vh =

√

T

2ρA
= ΩR

√

cT
2

(3.23)

Unfortunately, experimental measurements have shown that the momentum the-

ory is invalid for the region of −2 ≤ Vc
vH

≤ 0 [9; 12; 25]. Since this flight regime is

typical for autorotating rotors (see Fig. 2.7), momentum theory can not be used for

modelling of the inflow of autorotating rotors.

Glauert [28] showed in the beginning of the last century that a combination of the

momentum theory, the blade element theory and an empirical method of induced ve-

locity calculation can be used instead of pure momentum theory. Glauert’s method

was enhanced with the aid of experimental measurements twenty years later [9; 31].

It utilizes basic theory of rotor aerodynamics to calculate the inflow ratio of the

rotor. This semi-empirical inflow model is described in more detail in Appendix A3.

Many different inflow models were developed during last sixty years. Leishman

[12] gives a nice summary of inflow models developed to the date. Many of inflow

models are based on the approximation of induced velocity distribution that was

first proposed by Glauert [12; 28].
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vi = vi0 (1 + kxx cosψ + kyx sinψ) (3.24)

Dynamic inflow models developed by Pitt and Peters, Gaonkar and Peters, Pe-

ters and HaQuang and Peters and He represent the most up-to-date inflow models.

Modern three-state dynamic inflow models are defined in the following form [33; 40]

[τ ]











v̇i0

v̇is

v̇ic











+











vi0

vis

vic











= [Λ]











Ttot,1rav

Ltot,1rav

Mtot,1rav











(3.25)

Peters - HaQuang dynamic inflow model was modified by Houston and Brown [24]

in order to capture the inflow of a rotor in autorotation. The model was used in the

AMRA model and it is described in greater detail in Appendix A3. Although full 3-

DoF dynamic model was incorporated into the AMRA code, in practice a simplified

version was used. From the system of equations 3.25, only the first equation is used

in the simulation as the remaining two components of the induced velocity can be

neglected. This modification decreases computing time and reduces complexity of

the model. The equation below shows formula for the rate of change of vertical

component of induced velocity.

v̇i0 = −
3C0

(

2πρR2vi0

√

V 2
x + V 2

y + V 2
z −

√
2Vz

√

T

πρR2
+

√

T

2πρR2
− T

)

8ρR3
(3.26)

The equation 3.24 then becomes

vi =

∫

v̇i0dt (3.27)

There are several reasons for such simplification. First of all, results obtained

with the aid of the full modified Peters-HaQuang model and its simplified version
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are very similar. Hence reduction of the dynamic inflow model increases speed of

simulations. Comparison of predicted values of induced velocity during low speed

forward flight (µ=0.1) is shown in figures 3.10 and comparison of other aeromechan-

ical parameters can be found in table 3.1.

Figure 3.10: A comparison of the values of induced velocity obtained with the aid
of full modified Peters-HaQuang dynamic inflow model and its simplified (1 DoF)
version.

Table 3.1: Comparison of predictions of different versions of Peters-HaQuang dy-
namic inflow model

Model VD [m/s] VH [m/s] Ω [rad/s]
1 DoF 5.09 20 53.2
3 DoF 5.846 20 53.05

Distribution of induced velocity over the rotor disc predicted by full version of

the dynamic inflow model is depicted in figure 3.11.

The main reason for not using the full dynamic inflow model is the fact that high

values of wake skew angle can result in singularity in both time matrix and static

gain matrix if sine and cosine components of induced velocity are considered (see

equation A3-9 and A3-10) [33]. It follows that high values of wake skew angle can

65



3. MATHEMATICAL MODELLING OF ROTORS IN AUTOROTATION

Figure 3.11: Distribution of induced velocity over the rotor disc during one revolu-
tion as predicted by full (3DoF) Peters-HaQuang model

result in unrealistically high values of vic and vis. It is clear that high wake skew

angles can easily occur during modelling of gyroplane rotor aeroelastics when the

rotor might experience a wide range of values of thrust, forward speed and speed

descent.

3.3 Modelling of Rotor Blade Structural Dynamics

A model of rotor blade dynamics is the key component of any model of rotorcraft

aeroelastics. As it was shown in the introduction to this work, many different ap-

proaches can be used for development of structural dynamics model of a rotor blade.

Lagrange’s method of derivation of the equations of motion in combination with a

simple finite element model of a slender beam was used in the AMRA model. This

section describes the theoretical background and general arrangement of the AMRA

blade dynamics model.

Since a typical modern gyroplane rotor uses teetering hinge instead of flap hinges

and does not have any lag hinges, the equations of motion are simpler than for a

conventional helicopter. On the other hand, rotor speed represents an additional
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degree of freedom for autorotating rotors and hence one extra equation of motion

is required. The results of the AMRA model are also fully applicable to teetering,

hingeless or bearingless helicopter rotors in autorotation. The extended form of Eu-

ler’s equations of motion (see equation A4-1) of a rigid blade can provide a good

estimate of rotor blade dynamic behaviour [27].

3.3.1 Derivation of Full, Non-Linear Blade Equations of Mo-

tion

Lagrange’s method is an elegant way of obtaining the equations of motion of com-

plex physical systems and hence it is useful for the modelling of the dynamics of

rotor blades. The method can be automated with the aid of a symbolic mathe-

matical software, which results in a powerful and versatile tool. Depending on the

type of generalized coordinate, corresponding generalized forcing is either a force or

a moment. Lagrange’s method was used in the AMRA code for derivation of full

equations of rotor blade motion. While a slender beam FEM model was used for

solution of equations of blade torsion and bending, simple equivalent spring stiffness

models were used for simulation of rotor teeter, blade rotation and also for optional

simplified models of ’rigid blade’ torsion and flap. Lagrange’s equations of motion

of a rotor blade that has degrees of freedom in flap, torsion and rotation are shown

below.

d

dt

(

∂T

∂β̇

)

− ∂T

∂β
+
∂U

∂β
+
∂D

∂β̇
= Mβ,A

d

dt

(

∂T

∂θ̇

)

− ∂T

∂θ
+
∂U

∂θ
+
∂D

∂θ̇
= Mθ,A

d

dt

(

∂T

∂Ω

)

− ∂T

∂ψ
+
∂U

∂ψ
+
∂D

∂Ω
= Mψ,A

(3.28)

In Lagrange’s method, the definition of kinetic and potential energies along with
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external forcing is all that is needed for derivation of the equations of motion of any

rigid body or multi-body system. This can be easily done in the case of lumped

mass if the position vector of the mass is known. The position vector of an arbitrary

point on a rotor blade in a non-rotating system of coordinates can be obtained by

transformation of corresponding position vector in rotating frame of reference [11; 27]

rT = [T ] r0 (3.29)

Coordinate transformation has to be used for derivation of the equations of mo-

tion of rotating systems. Rotational speed is source of a significant amount of blade

forcing that is dominant during rotor operation. Hence it is crucial to consider all

rotational terms in correct form and get the transformation of coordinates right.

Figure 3.12 shows centrifugal forces acting on a gyroplane rotor.

Figure 3.12: Centrifugal forces acting on a rotating slender beam

The coordinate transformation and derivation of rotor blade equations of motion

are described in detail in Appendix A4. The transformation matrix is a function of

the Euler angles that define mutual position of the rotating and the non-rotating

frame of reference. In the case of a gyroplane rotor blade, coordinate transforma-
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tion has to be done for flap, pitch and rotation, resulting in three transformation

matrices. The final transformation matrix [T ] can be obtained by cascade multipli-

cation of these matrices [11]. Figure 3.2 shows the coordinate system used in the

AMRA model. The corresponding transformation matrix is shown in equation A4-6.

The time derivative of the blade position vector can be used for calculation of

blade kinetic energy since

T =
1

2
mṙṙ (3.30)

Since rotor speed of a rotor in autorotation can very with time, Coriolis theorem

has to be used for description of time derivative of blade position vector.

ṙ = ṙT + Ω × rT (3.31)

Typical locations of blade centre of gravity, blade elastic axis and blade aerody-

namic centre are shown in figure 3.13.

Figure 3.13: Positions of centre of gravity (CG), blade elastic axis (EA) and blade
aerodynamic centre (AC) along the chord of a typical rotorcraft blade
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The kinetic energy of a rotor blade can be expressed in terms of the time deriva-

tive of the position vector of the blade centre of gravity [11; 27]. Since gyroplane

rotor blades do not have lag hinges and their chord-wise stiffness is relatively high,

chord-wise bending of gyroplane rotor blades can be neglected [68]. Hence a model

of blade chord-wise bending was included in AMRA model but it was not used dur-

ing the research work. Following the equation A4-8, the kinetic energy of a blade

element can be expressed as

T =
m

2

[

β̇2r2 − β̇2y2
g + Ω2y2

g + Ω2 cos2 βr2 − β̇2y2
g cos2 θ + θ̇2y2

g cos2 β

− Ω2y2
g cos2 β + Ω2y2

g cos2 θ cos2 β + 2β̇θ̇ygr cos θ + 2Ωβ̇y2
g sin θ cos θ cos β

+ 2Ωβ̇ygr sin β cos θ − 2Ω2ygr sin β cosβ cos θ − 2Ωθ̇ygr sin β cos β

+ 2Ωθ̇y2
g sin β

]

(3.32)

Substitution of the equation 3.32 into the first equation of the system of equa-

tions A4-3 results in the equation of motion of blade flapping. This equation is

used in AMRA for modelling of blade flat-wise bending and in a modified form for

simulation of rotor teeter.

m
[

(r2 + y2
g sin2 θ)β̈B1 + rygθ̈ cos θB2 − Ω2r2 cos β sin βB3 − Ω2ryg sin θB4

+ rygΩ̇ sin β cos θB5 + y2
gΩ̇ sin θ cos θ cosβB6 + 2y2

g β̇θ̇ cos θ sin θB7

− 2rygΩθ̇ sin β sin θB8 − 2y2
gΩθ̇ sin2 θ cosβB9 − rygθ̇

2 sin θB11

− y2
gΩ

2 cosβ sin β sin2 θB12 + 2rygΩ
2 sin θ cos2 βB14 + rg cosβB15

]

+ kββ
B16 + cββ̇

B17 = MB18
β,A

(3.33)

The term B3 in the equation above represents flat-wise stiffening due to the cen-

trifugal force and the term B4 is the inertial force caused by the centrifugal force in

presence of a torsional deflection θ [11].
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The equation of blade torsion is

m
[

(i2x + y2
g)θ̈

T1 + rygβ̈ cos θT2 + Ω2ryg cos θ cosβ sin βT3 + Ω2y2
g sin θ cos θ cos2 βT4

− rygΩ̇ cos β sin θT5 + y2
gΩ̇ sin βT6 − y2

g β̇
2 cos θ sin θT7 + 2rygΩβ̇ sin β sin θT8

+ 2y2
gΩβ̇ sin2 θ cosβT9 + ygg cos θT10

]

+ kθθ
T11 + cθθ̇

T12 − σk2
xθ
T13 = MT13

θ,A

(3.34)

The term T3 represents a torsional moment caused by flat-wise bending of the

blade and corresponding inclination of elastic axis. Finally, the term T4 is stabiliz-

ing propeller moment (tennis racquet effect) resulting from a force couple that con-

sists of two chord-wise components of radially aligned centrifugal forces [11]. Since

Lagrangian derivation of blade equations of motion does not capture the effect of in-

ternal structure of blade on its dynamics, several terms were added to the equations.

For example, the term T13 in the equation 3.34 is bifilar stiffening that is caused

by non-parallel alignment of tensile filaments of blade structure has to be included

in the equations of motion [11]. Rotor blades are modeled as infinitely thin rods

coincident with the axis of inertia and lie in distance yg from elastic axis. Hence, a

singularity can occur in the solution of blade torsional dynamics if the axis of inertia

is located close to the elastic axis (yg → 0). In order to avoid this, the moment of

inertia of blade cross-section about its centre of mass ix was introduced into the

equation 3.34.

Finally, the equation of blade rotation is
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m
[

(r2 cos2 β − y2
g cos2 β sin2 θ − 2ryg sin β cosβ sin θ + y2

g)Ω̇
R1

+ y2
g θ̈ sin βR2 − rygθ̈ cosβ sin θR3 + y2

g β̈ sin θ cos θ cosβR4 + rygβ̈ sin β cos θR5

− y2
g β̇

2 sin θ cos θ sin βR6 + ygrβ̇
2 cos θ cosβR7 − 2r2Ωβ̇ sin β cosβR8

+ 2y2
gΩβ̇ sin2 θ sin β cosβR9 − 4ygrΩβ̇ cos2 β sin θR11 + 2ygrΩβ̇ sin θR12

+ 2y2
g β̇θ̇ cosβ cos2 θR13 − ygrθ̇

2 cos θ cosβR14 − 2y2
gΩθ̇ sin θ cos θ cos2 βR15

− 2ygrΩθ̇ sin β cosβ cos θR16
]

= MR17
ψ,A

(3.35)

The resulting non-linear system of equations describes dynamics of rotation, tor-

sion and bending/flapping of a rotor blade. Linearized and simplified forms of the

equations 3.33 and 3.34 were published in open literature [11].

Linearized forms of the coupled DEs of blade bending and torsion can also be

found in open literature. Houbolt and Brooks [50] give derivations of the equations

of motion of combined bending-torsion of a slender beam. Aeroelastic equations of a

helicopter rotor undergoing torsion and both flap-wise and chord-wise bending can

be found in Kaza and Kvaternik [39] and Bielawa [11].

3.3.2 Linearization of Equations of Motion of Autorotating

Rotor Blade

The equations of rotor blade motion 3.33 - 3.35 can be linearized if flexural and

torsional deflections of the blade are considered to be small. Derivation of linearized

blade equations of motion can be found in Appendix A5. The final form of the

linearized equations of motion is shown in equations A5-1 - A5-3. All terms in these

equations are marked in the same manner as in the equations 3.33 - 3.35 in order to

allow for comparison of linearized and full non-linear sets of equations of motion.
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Aerodynamic forcing moments can be derived from the equations A1-16 - A1-18

and are given in equations A5-8 - A5-10. The equations of blade aerodynamic forcing

have to be linearized. If the system of equations of motion is linearized around the

rotor speed, the rotational equation of motion has to be dropped. This results in a

system of two differential equations of motion that can be written in a matrix form.

[M ]{q̈} + [C]{q̇} + [K]{q} = [A]{q̇} + [B]{q} (3.36)

Since pitch-flap flutter is caused by destabilizing coupling between blade torsion

and blade flap (teeter), these degrees of freedom are retained. Hence the generalized

coordinates are

{q} = [β θ]T (3.37)

Linearization of the equations of motion for other combination of degrees of free-

dom (i.e. rotor speed - torsion or rotor speed - flap (teeter)) are not presented since

investigation performed with the aid of the time-marching model did not reveal any

instabilities for these sets of generalized coordinates.

Small terms are left out during the linearization process, which leads to further

simplification of the equations. The inflow angle can also be neglected as the blade

torsion θ represents a change of the angle of attack from the steady state [27]. A

non-dimensional form of an analytical model of coupled flapping-torsion of a heli-

copter rotor blade can be found in Bramwell [27]. The aerodynamic forcing can be

expressed in different form if Theodorsen’s equations modified for use in frequency

domain are used (see equations A1-9 - A1-10). This approach is used in the p-

method and k-method of pitch-flap flutter analysis.

Aerodynamic forcing from the opposite rotor blade has to be included in the case

of aerodynamic forcing in flap of a two-bladed teetering rotor. Hence, the forcing

terms become
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MA,β,T1 = MA,β,1 −MA,β,2 (3.38)

The following assumptions can be made in order to develop an expression for

aerodynamic forcing in teeter. Structural damping of flapping motion of a teetering

rigid rotor can be neglected as aerodynamic damping of blade flapping motion is

high. Torsional motion of each rotor blade is assumed to be unaffected by torsion

of the opposite blade.

β̇2 = −β̇1

cβ ≈ 0
(3.39)

Resulting system of equations of motion of a single blade of a teetering rotor in

autorotation can be written in the following form

[Mt] =





2r2mB1E 2mryB2E
g

mryT2E
g

(

my2
g + i2x

)T1E



 (3.40)

[Kt] =





2kB16E
β − 2mΩ2r2,B3E m[−Ω2ryB4E

g + 2rΩ2yB14E
g ]

mΩ2ryT3E
g kT11E

θ +mΩ2y2,T4E
g



 (3.41)

[Ct] =





0 0

0 cT12E
θ



 (3.42)

[At] =
1

6
ρcΩR3









−2cLα 2cLα

(

3c

4
− yEA

)

3c

2R

(

yEA
c

− 1

4

)

cLα
3c

2R

(

yEA
c

− 1

4

)

cLα

(

3c

4
− yEA

)









(3.43)

[Bt] =
1

8
ρcΩ2R4







0 2cLα

0
4c

3R

(

yEA
c

− 1

4

)

(cLα + δ0)






(3.44)
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Linearized equations of motion of flapping and torsion of an isolated autorotating

hingeless rotor blade are shown in Appendix A5.

3.3.3 Eigenvalue Analysis of Linearized Equations of Motion

of Autorotating Rigid Rotor Blade

For the purpose of an eigenvalue analysis, following substitution has to be made [11]

β = β̄eλt

θ = θ̄eλt
(3.45)

Substitution of the equation 3.45 into the linearized equations of motion results

in following eigenvalue problem [11]

det





Mββλ
2+(Cββ−Aββ)λ+(Kββ−Bββ) Mβθλ

2+(Cβθ−Aβθ)λ+(Kηθ−Bβθ)

Mθβλ
2+(Cθβ−Aθβ)λ+(Kθβ−Bθβ) Mθθλ

2+(Cθθ−Aθθ)λ+(Kθθ−Bθθ)



 = 0 (3.46)

The equation 3.46 can be expressed in the form of a polynomial of fourth order

that represents the characteristic equation of the system

Ā4λ
4 + Ā3λ

3 + Ā2λ
2 + Ā1λ+ Ā0 = 0 (3.47)

Individual coefficients of the characteristic equation are derived in Appendix A5.

Conditions of stability of the systems are shown in the equation 3.48 [11]

Ā4, Ā3, Ā2, Ā1, Ā0 > 0

or

Ā3Ā2Ā1 − Ā2
3Ā0 − Ā2

1Ā4 > 0

(3.48)

At the stability boundary, the real part of the root of the characteristic equation
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is equal to zero and it holds that [11]

λ = iω (3.49)

It follows from the equation 3.47 that

ω2 =
Ā1

Ā3

(3.50)

3.3.4 Eigenvalue Analysis of Linearized Blade Equations Us-

ing FEM Formulation

This method of aeroelastic analysis is often referred to as k-method [75; 76]. In

contrast to the eigenanalysis of linearized equations of motion of a rigid blade, eige-

nanalysis performed with the aid of FEM allows to compute high number of blade

eigen-frequencies and mode shapes.

Assuming blade motion to be harmonic as in equation 3.45, blade natural fre-

quencies {ω} and mode shapes [Φ] can be obtained by solving of the following

eigenvalue problem [75; 76]

(

−ω2 [M ] + [K]
)

{q} = 0 (3.51)

Once blade mode shapes are known, size of the system of equations of motion

can be reduced significantly using principle of orthogonality of modes. Using a sub-

set of shapes of the most significant modes of the blade [ΦR], system matrices are

modified as follows
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[MR] = [ΦR]T [M ] [ΦR]

[CR] = [ΦR]T [C] [ΦR]

[AGR] = [ΦR]T [AG] [ΦR]

[KR] = [ΦR]T [K] [ΦR]

(3.52)

The system of blade equations of motion is simplified and hence easier to solve.

It can be solved for the values of damping {g} that has to be added to the system

in order to make corresponding blade mode neutrally stable. If resulting values of

this artificial damping are negative, the blade is stable for the given aerodynamic

and inertial forcing. Using ω = 2kV
c

and re-multiplying reduced blade equations of

motion by
1

1 + ig
, the final form of blade equations of motion is [48; 75; 76]

(

p2
[

M̂R

]

+ [KR] + [CR]
)

{ξ} = 0

[

M̂R

]

=
k2

b2
[MR] +

ρ

2
[AGR]

p = pr + pi i

g ≈ pi

(3.53)

3.3.5 Solution of Differential Equations of Blade Motion with

the Aid of Finite Element Method

The finite element method represents a numerical method that is by far most pop-

ular in the field of structural dynamics. The method of weighed residuals is one

of the most convenient ways of solution of FEM problems. Using this method, a

trial function that represents first approximation of the solution of the ODE has to

be chosen. This approximate solution of the ODE can be either a function that is

globally continuous in the domain (so-called strong formulation of the problem) or

a function that is piece-wise continuous in the domain (weak formulation).
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It can be very difficult to find approximations of an exact solution of an ODE

that would be globally continuous and reasonably accurate at the same time. The

weak formulation of the method of weighted residuals makes a selection of a trial

function much easier since it uses piece-wise continuous trial functions. The trial

function is defined by different functions on each sub-domain that are continuous

on this sub-domain. The finite element method uses the weak formulation of the

method of weighted residuals and finite elements are sub-domains on which individ-

ual components of the piece-wise continuous trial functions are defined.

The selected trial function is then substituted into the ODE and the residual

is computed. The residual is not equal to zero for all coordinates within the do-

main since the trial function is not the exact solution of the ODE. In the next step,

unknown constants of the trial function are determined. In order to achieve the

best approximation of the exact solution, test functions (or weighting functions),

are chosen and the weighted average of the residual over the domain of the problem

is set to be zero. The number of test functions has to be equal to the number of

unknown coefficients of the trial function [49].

The weak formulation of the differential equation of blade torsion can be written

as [49]

Nelem
∑

i=1





ri+1
∫

ri

(

∂ŵi
∂r

GJi
∂θi
∂r

+ ŵiix,iθ̈i − ŵiqi

)

dr



 = 0 (3.54)

Unlike solution of DE of blade bending, the solution of DE of blade torsion does

not necessarily require shape functions of higher order. Linear trial functions are

sufficient for reasonably accurate solution of the problem. Hence, torsional deflection

along i-th element of the blade can be expressed in the following manner [49]

θ = S1θi + S2θi+1 (3.55)
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where S1 and S2 are shape functions.

Using Galerkin method, the test function (weighting function) on i-th element

of the blade is [49]

ŵi =
∂θ

∂θi
= S1

ŵi+1 =
∂θ

∂θi+1
= S2

(3.56)

Use of Galerkin’s formulation of finite element method for modelling of blade

dynamics in torsion results in a system of differential equations that can be written

in a matrix form [11; 27; 49]

[M ]{θ̈} + [C]{θ̇} + [K]{θ} + {f} = 0 (3.57)

Mass matrix, damping matrix, stiffness matrix and forcing vector of i-th blade

element {q} are [49]

[Mi] =

ri+1
∫

ri

{Si}T ix,i{Si}dr

[Ki] = [Ci] =

ri+1
∫

ri

{S ′

i}TGJi{S ′

i}dr

{fi} = −
ri+1
∫

ri

q{Si}Tdr

(3.58)

Individual element matrices and the forcing vectors have to be assembled into

the global matrices and the global forcing vector. This procedure is clearly described

in Kwon and Bang [49]. If time-marching simulation is used, generalized coordinates

and their first time derivatives (i.e. deflections and rates) that were computed in the

previous time step are used for calculation of corresponding accelerations. Hence

the matrix equation 3.57 reduces to
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[M ]{θ̈i} = −{fF,j} (3.59)

where {fF,i} is modified forcing vector of the system of equations at j-th time

step

{fF,j} = {fj} + {cj} + {kj}

{cj} = [C]{θ̇j−1}

{kj} = [K]{θj−1}

(3.60)

In order to include the effects of blade rotation and couplings of rotor speed

with the other blade degrees of freedom, additional terms have to be included in the

differential equation of blade torsion. The corresponding DE is given by the equation

3.34. Since AMRA is a time-marching simulation, time derivatives of zeroth and

first order of blade generalized coordinates have to be obtained from the previous

time step. Hence the terms 3-6, 8 and 9 from the equation 3.34 are included in the

forcing vector of the equation 3.59 [49]. Modified forcing vector is shown below.

{fFA,j} = {fF,j} + {aj} (3.61)

If a represents the sum of additional terms at i-th beam element, then the vector

{ai} can be calculated as follows

{aj} =

ri+1
∫

ri

a(tj){Hi}Tdr (3.62)

Several different forms of shape functions can be used to solve the problem of

blade torsion. Linear shape function is the most simple type of shape function that

is applicable to the problem of torsional dynamics [49].
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S1 =
ri+1 − r

ri+1 − ri
=
ri+1 − r

li

S2 =
r − ri
ri+1 − ri

=
r − ri−1

li

(3.63)

Using equation 3.58, the stiffness matrix of i-th blade element is [49]

[Ki] = GJ







−1

li

−1

li−1

li

1

li






(3.64)

the element mass matrix is [49]

[Mi] = ix,i







li
3

li
6

li
6

li
3






(3.65)

and the forcing vector of the i-th blade element is

{fi} = fi
{ li

2

li
2

}T
(3.66)

The equation 3.65 shows so-called consistent form of the element mass matrix.

Since solving of the matrix equation of blade motion requires inversion of the mass

matrix, use of a consistent mass matrix decreases speed of computations. Hence the

use of the diagonally lumped form of the mass matrix is more convenient

[Mi] = ix,i







li
2

0

0
li
2






(3.67)

During the development of the AMRA model it was discovered that the dynamic

FEM model of rotor blade torsion using linear shape functions could be less stable.

Use of a FEM model with shape functions of higher order and diagonal (lumped)

mass matrix removed this shortfall in the model. Other possible forms of shape

functions are of higher order, cubic shape functions and square cosine shape func-

tions being the simplest of them. Shape functions of higher order and corresponding

finite element matrices are shown in Appendix A6.
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Figure 3.14 shows comparison of different types of shape functions.

Figure 3.14: Comparison of different types of shape functions for FEM modeling of
rotor blade torsion

The weak formulation of the differential equation of blade bending can be written

as [49]

Nelem
∑

i=1





ri+1
∫

ri

(

∂2ŵi
∂r2

EIi
∂2wi
∂r2

+ ŵiµ̂iẅi − ŵiti

)

dr



 = 0 (3.68)

Unlike FEM modeling of rotor blade torsion, modeling of blade bending requires

nodes with two degrees of freedom. The first degree of freedom represents blade

vertical deflection and the second one is the slope of blade longitudinal axis. The

vector of coordinates on i-th element of the blade is then

{qG} =
{

wi ϑi wi+1 ϑi+1

}T
(3.69)

Hence, more complex shape functions have to be used in order to describe the

distribution of the two degrees of freedom over a blade element. Hamiltonian shape

functions are mostly used in finite element models of beam bending (see equa-

tion 3.70). This form of shape functions is based on the cubic shape function de-
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scribed in the previous section (see the equation A6-1) [49]. Other types of shape

functions can be used too, for example Legendre shape functions [77].

H1 = 1 − 3

(

r − ri
li

)2

+ 2

(

r − ri
li

)3

H2 = r − ri − 2

(

(r − ri)
2

li

)

+

(

(r − ri)
3

l2i

)

H3 = 1 −H1 = 3

(

ri+1 − r

li

)2

− 2

(

ri+1 − r

li

)3

H4 = −(ri+1 − r)2

li
+

(ri+1 − r)3

l2i

(3.70)

Figure 3.15: Hamiltonian shape functions for FEM modeling of blade bending

Application of Hamiltonian shape functions results in the following forms of

stiffness matrix, damping matrix consistent mass matrix and forcing vector [49; 77]
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[Mi] =

ri+1
∫

ri

{Hi}T ix,i{Hi}dr

[Ci] =

ri+1
∫

ri

{H ′

i}T cθ,i{H ′

i}dr

[Ki] =

ri+1
∫

ri

{H ′′

i }TGJi{H ′′

i }dr

{fi} = −
ri+1
∫

ri

q{Hi}Tdr

(3.71)

[Ki] =
EI

l3i



















12 6li −12 6li

6li 4l2i −6li 2l2i

−12 −6li 12 −6li

6li 2l2i −6li 4l2i



















(3.72)

[Ci] =
cβ

30li



















36 3li −36 3li

3li 4l2i −3li −l2i
−36 −3li 36 −3li

3li −l2i −3li 4l2i



















(3.73)

[Mi] = µi
li

420



















156 22li 54 −13li

22li 4l2i 13li −3l2i

54 13li 156 −22li

−13li −3l2i −22li 4l2i



















(3.74)

{fi} =
fi
12

{

6li l2i 6li − l2i
}T

(3.75)

Again, diagonal form of the mass matrix is more convenient for dynamic FEM

analysis.
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[Mi] = µili



















1

2
0 0 0

0 α̂l2i 0 0

0 0
1

2
0

0 0 0 α̂l2i



















(3.76)

The parameter α̂ has to be positive number smaller than
1

50
. Kwon and Bang

[49] recommends α̂ =
1

78
.

Mathematical models described within this chapter and in Appendices of this

work were used in the AMRA model for modelling of aeroelastic behaviour of autoro-

tating rotors and a major part of the work was focused on modelling of gyroplane

rotors. Since the physical properties of light gyroplane rotor blades are not well

documented and published, series of experimental measurements were carried out in

order to obtain input parameters for the model of structural dynamics of a typical

gyroplane rotor. An overview of these experiments and their results can be found

in the following chapter (Chapter 4).

Individual components of AMRA model were verified and results of AMRA model

were validated with the aid of both experimental results and prediction of validated

analytical models. Validation and testing of the model and its components is shown

in detail in the Chapter 5 of this work.

3.3.6 Capabilities of the AMRA Model

Since AMRA was designed with the open architecture approach in mind, it allows

use of various combinations of different mathematical models (i.e. building blocks

of the AMRA model). The model can perform computations in both time domain

(time-marching simulations) and frequency domain (eigen-analysis).

The list of different models that are incorporated in AMRA is shown below.
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A) Aerodynamics of the blade

• Quasi-steady model of rotor blade aerodynamics (can’t predict compressibility

effects) - time domain

• Unsteady model of rotor blade aerodynamics - Theodorsen’s lift deficiency

function with optional Wagner function - time domain (can’t predict com-

pressibility effects)

• Frequency domain formulation of Theodorsen’s theory of unsteady aerody-

namics (can’t predict compressibility effects)

• Polynomial approximation of NACA 0012 aerodynamic characteristics (cL, cD

and cM) - includes both compressibility effects and non-linear aerodynamics

• Polynomial approximation of flat plate aerodynamic characteristics (cL, cD

and cM) - includes both compressibility effects and non-linear aerodynamics

• Different types of blade tip loss functions

B) Inflow modelling

• Semi-empirical inflow model of a rotor in autorotation - Glauert’s model com-

bined with several sets of experimental data (can’t capture unsteady wake

effects)

• Peters - HaQuang dynamic inflow model modified for autorotative flight - 1D

(unsteady wake effects captured)

• Peters - HaQuang dynamic inflow model modified for autorotative flight - 3D

(unsteady wake effects captured)

C) Structural dynamics

• FEM model of rotor blade coupled torsion/bending/chord-wise bending com-

bined with ’rigid blade’ models of blade teeter and rotation (chord-wise bend-

ing degree of freedom was locked)
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• Equivalent spring stiffness model of rotor blade coupled torsion/bending/chord-

wise bending combined with ’rigid blade’ models of blade teeter and rotation

(chord-wise bending degree of freedom was locked)

• Eigen-analysis of FEM model of coupled torsion/bending/chord-wise bending

- classical k-method (chord-wise bending degree of freedom was locked)

D) Vehicle body dynamics

• A simple model of vehicle flight mechanics - prediction of speed of descent only

(forward speed fixed)
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Chapter 4

Estimation and Experimental

Measurements of Blade Physical

Properties

Since the majority of gyroplane rotor blades are manufactured by small private

companies, it is relatively difficult to get any information on structural properties

of these blades. A pair of blades from the Montgomerie-Parsons gyroplane were

subjected to a series of experiments in order to assess their physical properties and

mass distribution. Data gathered during the experiments were used as input values

of the simulations and also for validation of the model of rotor blade dynamics.

4.1 Experimental Measurements of the Physical Prop-

erties of McCutcheon Rotor Blades

One of the two McCutcheon rotor blades was cut up into 20 sections and each was

measured and weighed so as to ascertain span-wise mass distribution of the blade.

Chord-wise position of centre of gravity was also estimated for each blade element

from the arrangement of internal structure of blade cross-sections (i.e. position and

size of the spar, thickness of the skin and distribution of potential filling material).
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It was found that both mass distribution and chord-wise positions of CG are mainly

given by span-wise distribution of the main blade spar. Span-wise distributions

of blade mass per length that was obtained from the experiments is shown in the

Fig. 4.1.

Figure 4.1: Span-wise distribution of mass of McCutcheon rotor blade

Experimental measurements accomplished with the aid of the second Montgomerie-

Parsons gyroplane rotor blade were focused on structural properties of the blades.

Torsional stiffness and chord-wise positions of elastic axis of the blade were mea-

sured at three span-wise stations. Span-wise positions of these stations were x =

0.25 (quarter-span), x = 0.5 (half-span) and x = 0.75. The rotor blade was firmly

fixed at the root and an outboard clamp was attached at the appropriate span-wise

station. The arrangement of the experiment is shown in the Fig. 4.2.

The outboard clamp was used for loading of the blade with a torsional moment.

Constant weight was used and loading moment was altered by shifting of the weight

along the clamp arm. Consequent measurements of blade angular deflections al-
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Figure 4.2: Layout of the experiment aimed at measurements of blade stiffness and
EA position

lowed calculation of corresponding torsional stiffness.

GJ =
Mθ

θ
r (4.1)

Angular deflections of the blade in pitch were determined with the aid of a

calibrated angle measuring instrument that was fixed to the upper surface of the

clamp. Measurements were carried out for different values of torque at each span-

wise station to increase higher accuracy of stiffness estimation. The method used

for estimation of blade torsional stiffness of the blade is depicted in the Fig. 4.3.

Torsional stiffness was determined for each span-wise station of the blade (see

the table 4.1).

Measurements of the first flexural natural frequency of the blade were used to

estimate flexural stiffness of the blade. Using the slender beam theory, flexural stiff-

ness can be calculated if a value of beam natural frequency, beam mass distribution

and beam geometry are known [75].
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Figure 4.3: A sketch showing determination of blade stiffness from experimental
data

Table 4.1: Results of experimental measurements of McCutcheon blade torsional
stiffness and EA location

Span-wise station [1] 0.25 0.5 0.75
Location of EA [%c] 35.5 25.3 27.24

GJ [N ·m2/rad] 1534 1443 1409

f =
1

T
=
Ncycles

t

ω = 2πf

EI ≈ ω2
i

αil

Nelem
∑

j=1

(

mjl
4
j

)

(4.2)

Data gathered during the experiment are shown in the table below. The resulting

estimated value of flexural stiffness is EI = 1166.2N ·m2. The values of torsional

and flexural stiffness obtained during the experimental measurements are of correct

magnitude compared to data published in open literature [11; 78].

Figure 4.4 shows span-wise distributions of chord-wise positions of the elastic

axis and the axis of inertia that were obtained experimentally. Note that blade elas-

91



4. ESTIMATION AND EXPERIMENTAL MEASUREMENTS OF BLADE

PHYSICAL PROPERTIES

Table 4.2: Results of experimental measurements of McCutcheon blade flexural
natural frequency

Ncycles [1] t [s] T [s] f [Hz] ω [rad/s]
60 47.63 0.79383 1.2597 7.915
60 47.62 0.7937 1.2599 7.9167
60 47.67 0.7945 1.25865 7.9084

tic axis is located ahead of blade axis of inertia at the outboard part of the blade and

hence pitch-flap flutter is possible. The rotor blade is not compliant with BCAR-T

regulations that require blade centre of gravity ahead of its quarter-chord.

Figure 4.4: Span-wise distributions of EA, CG and AC of McCutcheon rotor blade

Span-wise distributions of torsional and flexural stiffness can be found in the

Fig. 4.5.

The first natural frequency in torsion of the blade was determined experimentally

as well. The blade was clamped at the root and forced to oscillate in torsion. The

motion of the blade tip was recorded with the aid of high-speed camera; figure 4.6

shows layout of the experiment. The footage from the high-speed camera was trans-
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Figure 4.5: Span-wise distributions of torsional and flexural stiffness of McCutcheon
rotor blade

formed into a time history of blade torsion. Resulting data were then processed with

the aid of a spectral analysis tool, yielding estimation of frequency of the torsional

oscillations. The first torsional frequency of McCutcheon rotor blade was estimated

to be f1T = 34.8Hz. This value agrees with torsional stiffness of the blade that was

determined experimentally [75; 76].

Figure 4.6: Experimental measurement of first natural frequency in torsion of Mc-
Cutcheon rotor blade
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4.2 Numerical Estimation of Moments of Inertia of

McCutcheon Rotor Blade

A mathematical model of blade cross-section was created in order to estimate blade

torsional mass moment of inertia and blade area moments of inertia. Torsional mo-

ment of inertia is an important input parameter of the model of blade dynamics.

Since each blade element is modelled as a lumped mass, the model might exhibit

singularities if the elastic axis is coincident with the centre of gravity. Addition

of torsional mass moment of inertia into the equation of blade torsion solves this

problem.

The structure of blade cross-section was discretized into a large number of ele-

ments and appropriate value of density was allocated to each of the elements. That

allowed much more accurate estimation of blade mass moment of inertia in torsion

and position of the centre of gravity than lumped mass approach and also made the

inclusion of the contribution of blade skin possible. The figure 4.7 shows the values

of blade mass moment of inertia per blade length for different positions of elastic

axis as estimated by several different methods.

Results of the model were validated against experimental data. Both position

of CG and mass per length of the blade are in good agreement with the values ob-

tained during experimental measurements. Span-wise distribution of blade mass per

length that was predicted by the model is compared with the results of experimen-

tal measurements in the Fig. 4.1. The figure 4.8 shows a comparison of the internal

structure of the blade with the model of blade cross-section.
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Figure 4.7: Values of mass moment of inertia in torsion of McCutcheon blade as
estimated by several different methods

Figure 4.8: Comparison of a model of McCutcheon blade model with the real internal
structure of the blade
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Chapter 5

Verification and Validation of the

AMRA Model

The main objective of the verification of the AMRA model was to make sure that all

components of the model work correctly. The FEM model of blade dynamics rep-

resents the key block of AMRA and it is also by far the most complex component

of the model. Hence extra care was taken during its testing and validation. Values

of teetering angle predicted by the AMRA model were validated against G-UNIV

flight data [74]. Predictions of the torsional and flexural frequencies were verified

with the aid of results of several validated mathematical models.

Predictions of the torsional frequency of McCutcheon rotor blades were validated

against the data gathered during experimental measurements of blade structural

properties. Experimental data gathered during flight measurements of gyroplanes

and published in the open literature were also used for validation of complete AMRA

model [7].

5.1 Validation of the BEM Aerodynamic Model

Since the amended polynomial approximation of aerodynamic characteristics of

NACA 0012 was developed specifically for the AMRA model, it had to be vali-
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dated against experimental wind tunnel data. Figure 5.1 shows comparison of the

values of lift coefficient as obtained with the aid of the improved Prouty’s method

with experimental data from Carpenter [10] and outcomes of the original form of

Prouty’s approximation. It can be seen that amended definition of coefficients C5

and C6 improves estimation of stall behaviour of the airfoil significantly for wide

range of Mach numbers.

Figure 5.1: Comparison of the enhanced Prouty’s approximation of NACA 0012 lift
curve with experimental data published by Carpenter [10] in the low angle-of-attack
region

It was shown by the experimental measurements that the lift coefficient gener-

ated by an airfoil at high angles of attack (α ≥ 20deg) is a weak function of Mach

number. Figure 5.2 depicts comparison of the values of NACA 0012 lift coefficient as

obtained by polynomial approximation and data published in Sheldahl and Klimas

[35]. Note that the behaviour of the airfoil during reverse flow is captured very well.

Figure 5.3 demonstrates that the values of NACA 0012 drag coefficient obtained

with the aid of the Prouty’s method for low angles of attack are consistent with

experimental data available in open literature.

Again, since drag coefficient of an airfoil at the angle of attack much higher than
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Figure 5.2: Comparison of the enhanced Prouty’s approximation of NACA 0012 lift
curve with experimental data published by Carpenter [10]

Figure 5.3: Comparison of the Prouty’s approximation of NACA 0012 drag curve
with experimental data published by Carpenter [10] in the low angle-of-attack region

the drag divergence angle does not depend on Mach number of the flow, figure 5.4

shows comparison of the polynomial fit and experimental data data for one Mach

number only.
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Figure 5.4: Comparison of the enhanced Prouty’s approximation of NACA 0012
drag curve with experimental data published by Carpenter [10]

Figures 5.5 and 5.6 show comparison of the values of NACA 0012 moment coef-

ficient obtained with the aid of the polynomial fit and corresponding experimental

data for low angles of attack as published in Bielawa [11] and Leishman [12]. The

data published in [12] originate from the wind tunnel research of Wood [79].

Figure 5.5: Comparison of polynomial fit of NACA 0012 moment curve with exper-
imental data published by Bielawa [11] and Leishman [12]
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Figure 5.6 depicts comparison of the values of polynomial approximation of

NACA 0012 moment coefficient and data published in Sheldahl and Klimas [35].

Figure 5.6: Comparison of newly formulated polynomial approximation of NACA
0012 moment curve with experimental data published by Carpenter [10] and [13]

5.2 Verification of the FEM Model of Blade Torsion

Predictions of static deflections in torsion made by the AMRA model were verified

by analytical estimations of beam tip deflections. According to the St Venant theory

of torsion, relationship between torsional deflection of a beam, torsional loading and

beam torsional stiffness is

∂θ

∂L
=

M

GJ

θ =
M

GJ
L

(5.1)

Beams of several different lengths and various values of torsional stiffness that

were loaded statically by a torsional moment at the tip were computed by the AMRA
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FEM model of blade torsion. The results were then compared with analytical es-

timations of beam tip deflections. As it can be seen from figure 5.7, predictions of

the model are in agreement with theoretical results.

Figure 5.7: Comparison of estimations of torsional deformation of slender beam
under static load of the FEM model of blade torsion with analytical results

The shape of the first torsional mode predicted by the FEM model was compared

with the first torsional mode shape that was published in open literature [11] (see

figure 5.8). The depicted mode is a rotating mode and the effect of the racquet

moment can be observed towards the tip. The model gives very good agreement

with the published data, especially in the case of an impulse load at the tip of a

rotating blade and no aerodynamic loading. Span-wise distribution of blade tor-

sion computed for forward flight (i.e. aerodynamic loading is present) is affected

by span-wise distribution of blade aerodynamic loading and its harmonic character.

Contributions of higher torsional modes are also more pronounced since tip impulse

loading excites mainly the first torsional mode of the blade.

Figure 5.9 shows a comparison of the torsional mode shapes of the blade as pre-

dicted by AMRA with mode shapes obtained analytically [75].

Table 5.1 compares the values of non-rotating natural frequencies in torsion of
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Figure 5.8: Comparison of the first torsional mode shape computed by AMRA and
data from the open literature [11].

Figure 5.9: Comparison of the torsional mode shapes of McCutcheon blade com-
puted by the AMRA and analytical results

McCutcheon rotor blades computed by AMRA with analytical results derived from

the value of blade stiffness that was determined experimentally (see Chapter 4).

Figure 5.10 shows a comparison of the first five non-rotating natural frequencies in

torsion for different values of torsional stiffness as predicted by AMRA and by the

theory [75].
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Table 5.1: A comparison of the values of non-rotating torsional natural frequency
of McCutcheon rotor blades as estimated by AMRA with analytical results

i ωiT [rad/s] AMRA ωiT [rad/s] Theory [75] ωiT [rad/s] Experiment
1 201.586 211.6 218.66
2 588.14 655.96 -
3 983.9 1093.28 -

Figure 5.10: A comparison of torsional natural frequencies predicted by the AMRA
with analytical results

Verification of predictions of the first torsional and flexural natural frequencies

represented the next stage of AMRA testing. The data obtained during experimen-

tal measurements of physical properties of McCutcheon rotor blade were plotted in

a Southwell plot along with corresponding values estimated by the model (see fig-

ure 5.11). As can be seen from the figure 5.11, the first natural frequency in torsion

is under-predicted by AMRA. This discrepancy can be explained by low number of

span-wise stations where the position of EA and torsional stiffness were measured.

Errors in the measurements of blade physical properties together with the use of

simplified slender beam FEM model of blade torsional dynamics might have caused

less accurate prediction of the torsional natural frequency too.
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Figure 5.11: The Southwell plot of McCutcheon rotor blade showing the result of
experimental measurements and predictions of AMRA

A comprehensive dataset of physical properties of Aérospatiale SA330 Puma he-

licopter rotor blades and results of several advanced mathematical models published

in Bousman et al. [78] were also used for verification of the model of blade struc-

tural dynamics. A Southwell plot of the Puma helicopter rotor blade that includes

comparison between results of the AMRA model and the aforementioned models for

Ω

Ω0
= 1 can be found in figure 5.12.

Figure 5.12: Southwell plot of the Aérospatiale SA330 Puma helicopter rotor blade

Estimation of the first natural frequency in torsion for a range of rotor speeds
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are in very good agreement with results of METAR/R85 model [78; 80]. Predic-

tions of both AMRA and METAR/R85 differ from the results of CAMRAD and

RAE/WHL models [78; 81–83]. This is caused by the fact that both CAMRAD

and RAE/WHL computations were carried out for finite values of control system

stiffness, whereas METAR/R85 and AMRA assume infinite stiffness of the control

system. Taking these differences into account, Bousman et al. [78] describes predic-

tions of modal frequencies obtained with the aid of METAR/R85, CAMRAD and

RAE/WHL models as consistent. Hence predictions of the first natural frequency

in torsion of the Puma rotor blades of the AMRA model can be considered to be

in very good agreement with both published shake tests of similar rotor blades and

results of other models of rotorcraft blade dynamics.

5.3 Verification of the FEM Model of Blade Bend-

ing

The coupled FEM model of blade torsion and bending was verified in a similar

manner as the FEM model of blade torsion. Flexural deflections of rotor blades

loaded both statically and dynamically were computed by AMRA and compared

with analytical predictions, experimental measurements and the results of other

mathematical models.

According to the classical theory of beam bending, blade vertical displacement

and gradient of longitudinal blade axis can be calculated as shown in equation 5.2

w =
Fr3

3EI
∂w

∂x
=
Fr2

2EI

(5.2)

Beams of several different lengths and various values of flexural stiffness that
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were loaded statically by a single force at the tip were considered in this verification

exercise. Predictions of static bending as obtained from the AMRA model are in

good agreement with analytical predictions. The values of blade vertical displace-

ment obtained from the model are roughly 5% lower than the analytical predictions.

Relative deviation of values of the blade gradient is roughly 6% and these values do

not change with loading, blade flexural stiffness or blade length.

Figure 5.13: Comparison of the values of flexural vertical displacements and blade
longitudinal gradients obtained from AMRA with corresponding analytical predic-
tions

Figure 5.14 shows comparison of the bending mode shapes of a McCutcheon

blade as predicted by AMRA with mode shapes obtained analytically [75].

Table 5.2 compares the values of non-rotating natural frequencies in bending of

McCutcheon rotor blades computed by AMRA with analytical results based on the

value of blade flexural stiffness that was determined experimentally (see Chapter

4). Figure 5.15 shows comparison of first five non-rotating natural frequencies in

bending of homogeneous slender beams of different relative masses as predicted by

AMRA and by the theory [75].

The ability of AMRA to predict rotor blade flexural dynamics was tested with

the aid of the data published in Bousman et al. [78] and experimental measurements

of McCutcheon rotor blade properties. It can be seen from figure 5.16 that there is

a good agreement between the results of AMRA and the results of other models of
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Figure 5.14: A comparison of bending mode shapes of McCutcheon blade computed
by the AMRA with analytical results

Table 5.2: A comparison of the values of non-rotating flexural natural frequency of
McCutcheon rotor blades as estimated by AMRA with analytical results

i ωiF [rad/s] AMRA ωiF [rad/s] Theory [75] ωiF [rad/s] Experiment
1 7.15 7.52 7.9
2 44.84 51.34 -
3 125.54 143.74 -

rotor blade structural dynamics.

The conclusion can be made that both static and dynamic behaviour of AMRA

structural dynamics block was verified and that the model gives realistic estimations

of both rotor blade torsion and bending.

5.4 Validation of Model of Rotor Teeter

Data gathered during CAA UK sponsored series of flight tests of the University of

Glasgow Montgomerie-Parsons gyroplane (G-UNIV) (see Fig. 1.10) were used for
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Figure 5.15: A comparison of bending natural frequencies predicted by the AMRA
with analytical results

Figure 5.16: Comparison of the first two flapping natural frequencies of Aérospatiale
SA330 Puma helicopter rotor blade computed by AMRA and other mathematical
models

validation of the model of blade teeter that is included in AMRA.

AMRA uses NACA 0012 airfoil that has different aerodynamic characteristics in

comparison with NACA 8-H-12 used in McCutcheon rotor blades. Since a database

of non-linear aerodynamic characteristics of the latter was not available for a wide

range of angles of attack, validation of the teeter model was performed for Mc-

Cutcheon rotor blades with NACA 0012 sections. In order to reach similar flight
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conditions during the simulations (especially rotor speed and speed of descent), ro-

tor speed was set to mean value of rotor speed measured during the flight tests.

Equilibrium rotor speed is higher if NACA 0012 is used instead of NACA 8-H-12

sections and hence predictions of the values of teeter angle would be affected by

higher centrifugal stiffening. Two different regimes of steady level flight were chosen

for the validation. Predictions of the model were found to be in a good agreement

with the values of teeter angles measured during the flight trials. Table 5.3 and

figures 5.17 and 5.18 show the results of validation of the model of rotor teeter.

Table 5.3: Comparison of predictions of rotor blade teeter and G-UNIV experimental
data

CASE VH [m/s] Ω [rad/s] β G-UNIV [rad] β AMRA [rad]
A 14 38 0.031 0.026
B 27 41 0.058 0.056

Figure 5.17: Comparison of predictions of rotor teeter and G-UNIV experimental
data - case A
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Figure 5.18: Comparison of predictions of rotor teeter and G-UNIV experimental
data - case B

5.5 Verification of AMRA Predictions of Gyroplane

Flight Mechanics and Performance

Once the model of blade structural dynamics that is used in AMRA model was

validated, it was necessary to make sure that the complete model, i.e. the model of

rotor aerodynamics coupled with the model of blade structural dynamics and the

dynamic inflow model, works properly. This was done by comparison of AMRA

results with the results of flight test measurements and wind tunnel data.

Steady axial flight in autorotation is characterized by torque equilibrium. The

values of the horizontal component of lift at the inboard part of the blade are higher

than the corresponding values of horizontal components of drag force during torque

equilibrium. Hence positive torque generated by the inboard part of the rotor and it

is in balance with negative torque generated by the outboard part of the rotor. This

results in zero value of the total torque [7; 12]. Thrust-weight equilibrium represents

the second essential condition of steady flight in autorotation. The total thrust of

the rotor has to be in balance with the weight of the vehicle during steady autoro-

tative vertical descent [7; 12]. The value of total rotor torque oscillates around the

zero value during forward flight in autorotation due to harmonic variation of inflow
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conditions. The total thrust is also a function of azimuth if forward speed of flight

is not zero but the average value of rotor thrust is equal to the weight of the vehicle

if steady flight is reached.

Both rotor thrust in axial flight and the average value of rotor thrust in the case

of forward flight in autorotation converge towards the value of M.g. Similarly, total

rotor torque approaches zero value once steady flight in autorotation is achieved.

Results of AMRA simulation of axial flight in autorotation of Montgomerie-Parsons

gyroplane of weight M=400kg (i.e. M · g= 3922.6 N, 1961.3N per blade) are shown

in figure 5.19. It can be seen from the figure 5.19 that the model predicts the basic

characteristics of a rotor in axial flight in autorotation correctly. Tests of the AMRA

model confirmed that the value of total rotor aerodynamic torque converges towards

zero and total rotor thrust converges towards M.g and the solution does not change

with the length of time step.

Figure 5.19: Results of AMRA simulation of axial flight in autorotation

A characteristic shape of the span-wise distribution of blade torque for a rotor in

the autorotative regime is observed. The inboard part of the blade generates posi-

tive torque and the outboard part of the blade generates negative torque. In steady

autorotation, the total value of torque generated by the blade is zero. Figure 5.20

shows span-wise distribution of torque obtained from the simulation. A sketch of

torque distribution over the rotor disc as published in the open literature is depicted
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in figure 2.5.

Figure 5.20: Span-wise distribution of rotor torque during autorotative vertical de-
scent as predicted by AMRA

Since flow conditions of rotor blades vary with azimuth during autorotative for-

ward flight, the torque generated by rotor blades changes with azimuth too. A rotor

blade produces negative values of torque at the advancing side of the rotor disc and

positive torque is generated at the retreating side of the rotor disc (but outside the

reverse flow stall region). As it can be seen in figure 5.21, results of the AMRA

model agrees with these findings.

In the case of vertical descent in autorotation, the value of rotor speed stabi-

lizes when the torque equilibrium is reached. If the value of rotor speed is higher

than the steady value for given rotor configuration, negative torque is produced by

the rotor due to higher drag generated by the outboard parts of the rotor blades.

This is caused by lower value of inflow angle at the blade tip region that causes

small positive or negative values of the horizontal component of blade lift (see equa-

tion 3.21). Similarly, if the rotor speed is lower than the equilibrium value, the rotor

is accelerated due to positive torque generated by the blades. The final value of

the rotor speed during steady flight in autorotation (i.e. during torque equilibrium)
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Figure 5.21: A qualitative comparison of distribution of torque generated by rotor
blade over the rotor disc as predicted by the model and a qualitative sketch of torque
distribution reproduced in open literature [12]

is not dependent upon the initial value of rotor speed, as long as it is higher than

the critical value and the rotor is in the same, stable configuration. This behaviour

can be observed in the results from the AMRA model. Figure 5.22 shows behaviour

of gyroplane rotor pre-rotated to several different rotor speeds as predicted by the

model. Again, the results of the model do not change with the length of time step.

The Vimperis diagram shown in figure 2.4 suggests that the range of blade fixed

incidence in which a rotor can achieve steady autorotation is limited. The maxi-

mum value of aerodynamic angle of attack of a blade section is given by the value of

angle of attack of the drag divergence. Figure 5.23 shows predictions of behaviour

of an autorotating rotor in vertical descent for different values of fixed incidence.

No experimental data are available but it can be seen from the figure that AMRA

predicts reasonable trends.

Blade tip mass is commonly used in gyroplane design to increase rotor speed sta-

bility. Increased rotor moment of inertia leads to higher values of kinetic energy of

the rotor during flight, which makes the rotor more resistant to destabilising effects

of disturbances in rotor torque. Figure 5.24 depicts predictions of values of rotor

speed during steady autorotative descent for different values of additional blade tip
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Figure 5.22: The effect of different initial values of rotor speed on the equilibrium
value of rotor speed

Figure 5.23: The effect of blade fixed angle of incidence on the steady value of rotor
speed of a gyroplane rotor during axial autorotative flight as predicted by AMRA

mass. Again, no experimental data are available but the AMRA model gives a trend

that agrees with real behaviour of gyroplane rotors.

Flight tests of rotors in autorotation showed that the value of flight speed of

an autorotating rotor depends on the angle of attack of the rotor disc. It was also
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Figure 5.24: The effect of blade tip mass on the steady value of rotor speed of a
gyroplane rotor during axial autorotative flight as predicted by AMRA

determined that speed of descent for αD = 90deg (i.e. during axial flight in au-

torotation) lies between 10m/s and 12m/s. Values of speed of descent predicted by

AMRA agree with the results of experimental flight measurements that were carried

out by RAE and NACA [7; 23; 56]. Comparison of the results of the flight test and

outcomes of the model are summarized in figure 5.25.

Figure 5.25: Comparison of values of dimensionless flight speed for a range of rotor
disc angles of attack as determined during flight tests and predicted by AMRA
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Experimental flight measurements also showed that resultant force coefficient cR

of a typical rotor during steady flight at large rotor disc angles of attack (αD >

30deg) is about 1.25 [7]. It is important to realize that the majority of gyroplane

rotors have very small or zero fixed blade angle of incidence (i.e. collective pitch

settings). The value of cR is different for non-zero blade angles of incidence. Fig-

ure 5.26 shows the comparison of flight test data with the results of the AMRA

simulation.

Figure 5.26: Comparison of values of resultant force coefficient for a range of rotor
disc angles of attack as determined during flight tests and predicted by AMRA

The model also predicts correctly both speed of descent and forward flight speed

for different flight regimes as it is shown in figure 5.27.

5.6 The Effect of Level of Complexity of the Blade

Dynamic Model

Several different versions of the blade structural model were used for computation of

the performance of the rotor. The aim of this study was to identify the configuration
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Figure 5.27: Comparison of the relationship between speed of descent and horizontal
speed of a gyroplane as determined during flight tests and predicted by AMRA

of the model required for accurate prediction of rotor aeroelastic behaviour. The

open architecture of the AMRA model allowed use of either a model of blade struc-

tural dynamics using equivalent spring stiffness (’rigid blade’ models) or a model

based on finite element method for modelling of rotor dynamics in torsion and

bending. Alternatively, a combination of FEM model and simplified ’rigid blade’

model could be used (e.g. equivalent spring stiffness model for blade bending and

FEM for blade torsion etc.). All presented results were computed using FEM model

of coupled torsion-bending of the rotor blades unless stated otherwise.

Results from the AMRA model show that the model is sensitive to the accu-

racy of modelling of blade torsional dynamics. Use of the equivalent spring stiffness

model for modelling of blade torsional dynamics results in significantly different es-

timations of both blade deflections and rotor behaviour (see figure 5.28). Use of the

simplified blade dynamic model results in 10% increment in the value of rotor speed

during torque equilibrium since span-wise distribution of blade torsional deflection

strongly affects prediction of blade aerodynamic loading. This significantly changes
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the aeroelastic behaviour of the rotor as the increment of rotor speed leads to higher

values of blade centrifugal stiffening.

On the other hand, differences in complexity of the model of blade bending/teeter

seem to have only minor effect on predictions of performance of the rotor. Figure

5.28 shows a comparison of span-wise distributions of torsional deflections and verti-

cal flexural displacements of a rotor blade in vertical autorotative descent computed

for several different levels of complexity of rotor structural model.

Figure 5.28: Results of AMRA simulation of axial flight in autorotation

It can be seen from figure 5.28 that the FEM dynamic model predicts that both

the first bending (teeter) and first torsional modes are dominant during steady au-

torotative axial flight. Note that blade deflections in flap predicted by simplified

rigid blade model represent very good approximation of the first teeter mode.

Since the inflow of rotors in steady axial autorotative flight is homogeneous, vi-

bratory loading of rotor blades is not present or is negligible [7; 11; 27]. In contrast

to axial flight regime, inflow velocity during forward flight reaches high values at

the advancing side of the rotor disc and it drops significantly at the retreating side

of the rotor. Hence the values of aerodynamic forces and moments generated by a

rotor in steady autorotation oscillate around their equilibrium value (see Fig. 5.29).

This results in a harmonic character of blade motion during steady forward flight in
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autorotation. Fluctuation of rotor forcing occurs during forward autorotative flight

and the performance of the rotor is also affected by compressibility effects and blade

dynamic stall. These phenomena might have a de-stabilizing effect on aeroelastic

behaviour of the rotor.

Figure 5.29: Span-wise distribution of blade torque during autorotative forward
flight for different values of blade azimuth.

Comparisons of time histories of blade torsion and bending during one rotor

revolution for different configurations of the blade structural dynamic model are

depicted in figure 5.30.

Figure 5.30 shows that use of simplified model of blade torsional dynamics results

in different predictions of amplitudes of blade torsion and that it also gives different

trends of blade torsion during one revolution. This is given by the fact that the

equivalent spring stiffness model can only capture the zero-th (rigid) mode of blade

motion. It also can be seen from figure 5.30 that the amplitude of blade flapping

motion predicted by the rigid blade torsional model is significantly lower. This is

caused by higher rotor speed due to lower blade torsional deflections and correspond-

ing higher centrifugal stiffening. However, the trend of blade flapping motion is very
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Figure 5.30: Rotor blade motion in flap and torsion in autorotative forward flight
during one revolution

similar to the predictions of FEM model of blade structural dynamics if FEM model

of blade torsion is used. This can be explained by dominance of the first flexural

mode due to significant influence of centrifugal stiffening and aerodynamic damping

on flapping motion of rotor blades. Aerodynamic damping of a rotor blade in flap

(teeter) is proportional to β̇r and hence flapping and teetering motion is relatively

highly damped. Aerodynamic damping and centrifugal stiffening of blade torsion

are much lower since they are typically proportional to θ̇yg (and yg << r for major

part of the rotor span) [11; 27].

Distributions of blade torsional deflections and vertical flexural displacements as

predicted by AMRA for autorotative forward flight are depicted in figures 5.31 and

5.32.

It can be seen from figures 5.31 and 5.32 that AMRA predicts that the first

modes are dominant in both torsion and flapping motion of a rotor blade during

forward autorotative flight.

The results presented in this section demonstrate that accurate modelling of

blade torsion is crucial for simulation of aeroelastics of autorotating rotors. Use

of a FEM model of blade torsional dynamics is required for accurate estimation

of blade span-wise distribution of angle of attack. Alternatively, an enhanced rigid

blade model of blade torsion could be used, perhaps with the aid of prescribed mode
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Figure 5.31: Distribution of blade torsional deflection and vertical displacement in
bending obtained with the aid of AMRA

Figure 5.32: Span-wise distribution of blade torsional deflection and vertical flexural
displacement in bending at four azimuthal stations as obtained with the aid of
AMRA

shape. The resulting model would, however, be still able to capture only the first

blade torsional mode, which would lead to inaccurate estimations of blade dynam-

ics. As shown above, the use of a FEM model of blade bending further increases

accuracy of the model but the difference is much smaller than in case of modelling

of blade torsion.

The results of the AMRA model show that any future studies of aeromechanics

of autorotating rotors should consider torsional degree of freedom and use at least

simple FEM model of blade torsion. Some present studies dealing with performance

and stability of rotors in autorotation could be extended in order to include blade
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torsion [58; 59].

5.7 Summary

Verification of AMRA has shown that the model gives good predictions of aerome-

chanical behaviour of autorotating rotors. Although direct validation of the model

was not possible (since no data describing aeroelastic behaviour of an autorotating

rotor are available), verification of basic functionality of the model and its individual

components was accomplished.

The model gives very good estimations of span-wise distributions of blade aero-

dynamic coefficients thanks to use of polynomial interpretation of aerodynamic wind

tunnel data. AMRA can work across a full range of angles of attack and takes into

account compressibility effects below stall. Accurate modelling of blade aerodynam-

ics is, however, possible only for NACA 0012 airfoils and additional experimental

data are required in order to switch to different type of blade section. It should also

be noted that although the polynomial approximation of airfoil aerodynamic char-

acteristics accounts for compressibility effects, both the theory quasi-steady aerody-

namics and Theodorsen theory are inherently incompressible. Hence the model has

limited capability to predict unsteady aerodynamic loading for high values of Mach

number. The model is also not capable of modelling of stall flutter since it does not

contain a dynamic stall model.

The model of blade structural dynamics included in AMRA is capable of pre-

diction of rotor blade dynamics both in the time domain (time-marching model)

and in the frequency domain (eigen-analysis). It was shown in this chapter that the

model gives a good estimation of blade steady-state deflections and blade dynamics.

However, capabilities of this block of the AMRA model are limited since it is based

on 1D FEM model of a slender beam. Hence it is less accurate than more complex
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mathematical models of blade structural dynamics (e.g. 3D FEM packages - AN-

SYS, PATRAN/NASTRAN, ABAQUS etc.) and its accuracy decreases for higher

modes of blade motion. AMRA gives good predictions of both rotational speed and

rotor teeter. Again, this applies only for rotor blades using NACA 0012 sections

unless extra aerodynamic empirical data are added to the model.

Comparison of results from AMRA with data from experimental flight measure-

ments showed that the model predicts overall flight performance and aerodynamics

of rotors in autorotation well for a wide range of advance ratios. The AMRA model

also exhibits basic qualitative features that were observed in autorotating rotors as

torque equilibrium, weight-thrust equilibrium, a specific shape of span-wise distri-

bution of aerodynamic torque and change of equilibrium rotor speed with blade tip

mass.

The effect of different configurations of a model of blade structural dynamics on

fidelity of the aeroelastic model of a rotor in autorotation was also investigated. The

influence of accuracy of the model of rotor blade torsion on predictive performance

of AMRA model was found to be strong. Configurations of the blade structural

model that give unsatisfactory predictions of rotor behaviour during autorotation

were identified. The results of AMRA simulations indicated what simplifications of

the blade dynamic model are possible without significant degradation of its capabil-

ities.

The comparison of the results obtained with the aid of different configurations

of the model of blade structural dynamics show that

• Correct modelling of blade torsion during autorotation is absolutely essential

• Results of a model of a rotor in autorotation that does not contain an accurate

model of blade torsion can be misleading thanks to coupling of blade torsion,

flapping and rotor speed
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• Finite element method model of blade torsion is required

• Fidelity of the model of blade flapping motion has much smaller effect on the

results of the simulation

• Both FEM and equivalent spring stiffness model of blade flapping predict rotor

behaviour well

Since a model of gyroplane flight dynamics is not included in AMRA, the model

can be only used for modelling of steady axial or forward flight in autorotation (i.e.

it is not capable of modelling of rotor aeroelastic behaviour during maneuvers).
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Chapter 6

The Influence of Basic Design

Parameters on the Stability of

Rotors in Autorotation

A series of parametric studies was performed in order to investigate the influence of

selected rotor blade design parameters on the performance of an autorotating rotor.

Both axial descent in autorotation and autorotative forward flight were investigated.

Author believes that a systematic study of the influence of blade design parameters

on performance and aeroelastic stability of a rotor in autorotation has not been

performed before. No relevant publications can be found in open literature. All

presented results were computed using FEM model of coupled torsion-bending of

the rotor blades unless stated otherwise.

The studies were focused on the following rotor blade design parameters:

• Blade fixed incidence angle

• Blade geometric twist

• Blade tip mass
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The AMRA model was used to estimate aeroelastic behaviour of a rotor in au-

torotation for a range of values of these design parameters. Although blade torsional

stiffness has also very strong influence on the behaviour of a rotor in autorotation,

torsional and flexural stiffness of rotor blades are considered to be constant in this

chapter and equal to the values determined experimentally (see Chapter 4). Blade

axis of inertia was set to lie ahead of the blade elastic axis in order to avoid oc-

currence of pitch-flap flutter. The following chapter of this work (Chapter 7) is

dedicated to a study of the influence of blade structural properties on aeroelastic

stability of gyroplane rotors and an investigation of the rotor flutter boundary.

Since rotor torque during autorotation is generated solely by aerodynamic forces,

the performance of an autorotating rotor is very sensitive to changes of blade span-

wise distribution of angle of attack. If blade angles of attack are too high, torque

equilibrium can not be achieved due to excessive values of the blade drag. Hence

those of rotor design parameters that significantly affect span-wise distribution of

blade angle of attack have a strong effect on the stability of flight in autorotation.

The same trend can be observed in the results from AMRA, which was as a lead

during the selection of the blade design parameters that would be used in the study.

Blade fixed incidence and geometric twist strongly affect blade aerodynamic angle of

attack and hence have the most pronounced effect on the aeromechanical behaviour

of autorotating rotors.

The last design parameter studied in this chapter, a blade tip mass, was chosen

because it is frequently used in gyroplane rotor blade design to increase aerome-

chanic stability of the rotor. The concept of blade tip mass is straightforward - once

the rotor is pre-rotated to certain rotational speed, the high moment of inertia of

the rotor causes higher value of equilibrium rotor speed. Steady autorotative flight

can not be achieved if rotor speed is too low - if rotor speed drops below the criti-

cal value, a positive value of total rotor aerodynamic torque is not reached. Hence
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higher value of equilibrium rotor speed increases the stability of the rotor since more

severe reduction of rotor speed would be needed in order to reach its critical value.

Due to higher blade moment of inertia, more energy has to be extracted from the

airflow in order to reach dangerously low values of rotor speed.

This behaviour of autorotating rotors imposes some limitations on the flight en-

velopes of rotors in autorotation since reduction of rotor speed below the critical

value would have catastrophic consequences. Severe restrictions on negative load

factor manoeuvres are required to prevent such decrease of rotor speed. Significant

drop of rotor speed caused by negative inflow into the rotor disc could make steady

flight impossible. Influence of manouvres on the stability of gyroplane rotors was not

investigated in this work and simulations were focused on the relationship between

the critical rotor speed and rotor blade design parameters.

6.1 Blade Fixed Incidence Angle

Theoretical works on aerodynamics of autorotating rotors and experimental mea-

surements during flight in autorotation reveal that the range of incidence angle of a

rotor blade section for which steady autorotation can be achieved is limited [7; 12].

A parametric study investigating the effect of fixed incidence angle on aeroelastic

behaviour of rotors in autorotation was performed with the aid of the AMRA model.

Very little relevant information is available in open literature. The outcomes of the

study can be used as a basic lead during rotor blade design or preparation of emer-

gency landing procedures of helicopters.

The results obtained from the AMRA model correlate with conclusions of ex-

perimental measurements. Magnitude of the critical value of fixed incidence angle

agrees with the critical value of local incidence angle of a blade section in autorota-

tion as obtained from Vimperis diagram - see figure 2.4. Figure 6.1 shows change of
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the equilibrium rotor speed of a typical light gyroplane with fixed incidence of the

rotor blades.

Figure 6.1: The effect of blade fixed angle of incidence on rotor speed of a rotor in
autorotative flight as predicted by AMRA

Figure 6.1 also shows that use of simplified rigid blade dynamic model of rotor

blades results in different predictions of equilibrium rotor speed. As it was shown in

Chapter 5, use of equivalent spring stiffness causes under-prediction of the torsional

deformations of the outboard part of the blade. Hence the critical value of fixed

incidence angle is over-predicted.

Figure 6.2 shows the effect of fixed incidence angle on resultant force coefficient

of a typical gyroplane rotor as predicted by AMRA. It can be seen from the figure

that maximum cR is about 1.25, which correlates with results of experimental flight

measurements - see Chapter 5. It can also be seen from figure 6.2 that the use of

an equivalent spring stiffness model of a rotor in autorotation results in prediction

of significantly higher values of cR for high values of blade fixed angle of incidence.

The simulations have shown that blade fixed incidence angle has significant effect

on the value of rotor induced velocity. Figure 6.3 shows that the effect is especially

pronounced during axial flight in autorotation.
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Figure 6.2: The effect of blade fixed angle of incidence on rotor resultant force
coefficient during autorotative flight

Figure 6.3: The effect of blade fixed angle of incidence on rotor induced velocity
during autorotative flight

Since high fixed incidence angles cause increase of blade drag, the inboard (driv-

ing) region of the blade has to produce higher aerodynamic torque to keep up with

the outer (driven) part of the blade - see figure 6.4.

The inboard part of the blade becomes partially stalled if blade fixed angle is

high, while drag produced by the tip region of the blade would still increase with
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Figure 6.4: A comparison of distribution of aerodynamic torque over the rotor disc
during forward flight in autorotation as predicted by the model for zero fixed angle
of incidence (left) and fixed angle of incidence approaching the critical value

fixed angle of incidence (see figure 6.5). It can be seen in figure 6.5 that a small

increment of blade drag at the tip region results in significant drop in aerodynamic

torque due to much higher values of inflow speed in the outboard part of the blade.

Figure 6.5: The effect of blade fixed angle of incidence on span-wise distribution of
blade aerodynamic torque during axial autorotative flight

Exceeding of the critical value of fixed incidence angle in both forward and axial
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flight results in a rapid drop in rotor speed and increase in speed of descent. The re-

sults of the simulations suggest that high values of blade fixed incidence angle would

have catastrophic consequences. Figure 6.6 shows a comparison of rotor instability

caused by excessive blade fixed angle of incidence as it occurs during vertical descent

and forward flight in autorotation. It can be seen from the figure that a critical value

of blade fixed incidence during axial flight results in an aeroelastic instability that

resembles aeroelastic divergence and does not include blade torsional oscillations.

This type of aeroelastic instability is similar to stall flutter of rotorcraft blades

and it is also predicted by the model for blades with a single degree of freedom

in torsion (i.e. degrees of freedom in bending and teeter are locked). The insta-

bility is primarily caused by nonlinearity of rotor blade stall and does not require

de-stabilizing coupling of blade torsion and flap. Hence it can’t be avoided by mass-

balancing of the rotor blades. A similar aeroelastic behaviour of rotor blades might

be observed in case of incorrect collective pitch settings or failure of the pitch change

mechanism of a helicopter rotor during emergency landing in autorotation.

Figure 6.6: Example of an aeroelastic instability during flight in autorotation caused
by high blade fixed incidence angle as predicted by AMRA

While the critical value of blade fixed incidence during forward flight was esti-

mated to be lower than 0.15rad, the AMRA model predicted that steady autorotative

axial flight would be still possible for fixed incidence angles up to 0.2rad. This can

be explained by unsteady rotor inflow that occurs during forward flight. It can be
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seen from figure 6.7 that fluctuation of blade angle of attack that occurs if blade

fixed angle of incidence is high causes high aerodynamic loading of the blade. That

results in increased blade oscillations in torsion that leads to increased blade drag

and negative mean value of blade aerodynamic torque.

Figure 6.7: Values of aerodynamic torque and blade torsional deflections of a gyro-
plane blade estimated by AMRA for different values of fixed incidence angle

The simulations showed that the rotor over-speeds, if blade fixed incidence angle

is negative and torque equilibrium is established. However, the speed of descent of

an autorotating rotor with negative blade fixed incidence angle is very high due to

insufficient rotor thrust (see figure 6.8).

If blade fixed incidence is too low, the outer blade region produces less thrust

due to low local values of inflow angle. Hence equilibrium between gravitational

force and rotor thrust is established after speed of descent and rotor speed are in-

creased. As a consequence, the inboard part of rotor blades produces significantly

higher portion of total rotor thrust and torque (see figure 6.9).

An increase in speed of descent and rotor speed causes incremental changes of

values of blade inflow speed and blade drag coefficient and thus help to compensate

for loss of blade lift coefficient due to negative blade fixed incidence (see 6.10).

Hence practical use of negative fixed incidence angle is limited as it would re-
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Figure 6.8: The effect of blade fixed angle of incidence on speed of descent during
autorotative flight

Figure 6.9: The effect of blade fixed angle of incidence on span-wise thrust distri-
bution during autorotative axial flight

quire higher longitudinal rotor tilt (backward tilt of the rotor hub) in forward flight

in order to keep speed of descent of the vehicle low. This would increase required

thrust of the engine and specific fuel consumption of the vehicle.
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Figure 6.10: Change of rotor blade span-wise distributions of angle of attack and
lift coefficient

6.2 Blade Geometric Twist

Another parametric study performed with the aid of the AMRA model was focused

on the effect of linear span-wise distribution of blade geometric twist on performance

and stability of rotors in autorotation. Geometric twist is widely used both in fixed

wing and rotary wing aircraft - it helps to avoid stall of wing tips and consequent loss

of lateral control at high angles of attack (especially in wings with high taper ratio

or high sweep). High values of geometric twist (values higher than 60 degrees are

not unusual) are used in aircraft propellers in order to obtain ideal flow conditions

at all propeller span-wise stations. This is also the reason why moderate geometric

twist (up to 20 degrees) is often used in helicopter rotor design.

Only little information is available on the effect of rotor blade geometric twist

on behaviour of autorotating rotors. In contrast to helicopter rotor blades, blades

of modern gyroplanes have usually no geometric twist. Two different types of blade

twist distribution were used; one with zero twist at the blade root and maximum

value of twist at the blade tip and another with zero twist at the blade tip and

maximum value of twist at the root. The former type of blade twist distribution

will be further referred to as ’tip twist’ while the latter will be called simply ’root

twist’.
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Computations carried out with the aid of the AMRA model have shown that

the tip twist has similar effect as blade fixed incidence. Figure 6.11 shows that the

critical value of tip twist roughly agrees with the critical value of fixed incidence

angle.

Figure 6.11: The effect of blade geometric twist at the tip region on rotor equilibrium
rotor speed during autorotative flight

Again, the highest value of rotor resultant force coefficient and hence lower speed

of descent is achieved for values of the tip twist just below the critical value. Negative

values of tip twist result in higher rotor speed but lower resultant force coefficient

and higher speed of descent.

Figure 6.12: Change of speed of descent and rotor resultant force coefficient with
the value of blade geometric twist at the tip
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Positive values of tip twist increase rotor resultant force coefficient but decrease

equilibrium rotor speed, decreasing the stability of autorotation. Stability of autoro-

tation is increased if the value of tip twist is negative at the price of rise of speed

of descent. The tip blade region is characterised by high values of inflow speed and

hence it generates the majority of blade aerodynamic forcing. Hence the changing

of blade incidence in the tip region causes significant increase of blade drag, which

makes reaching torque equilibrium more difficult. Aeroelastic instability predicted

for very high values of tip geometric twist is very similar to the instability described

in the section dedicated to fixed incidence angle.

Parametric studies carried out for geometric twist applied to the inboard region

of a rotor blade have shown that it has much less drastic effect on rotor performance

than both blade fixed angle of incidence and tip geometric twist. As it can be seen

from figure 6.13 steady autorotation was predicted for a wide range of values of root

geometric twist - in fact no aeroelastic instability was observed.

Figure 6.13: The effect of blade geometric twist at the root region on rotor equilib-
rium rotor speed during autorotative flight

Figure 6.14 shows that the application of negative root geometric twist can in-

crease the equilibrium rotor speed without causing significant drop in the resultant

force coefficient. This can be used for the improvement of the stability of rotors
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during autorotative flight regime since higher rotor speed makes the rotor stiffer

and less prone to the destabilizing effects of uneven inflow (i.e. gusts, turbulent flow

or maneuvers). Similarly, use of positive geometric twist at the blade root allows

reasonable increment of rotor cR (i.e. reduction of speed of descent) without signif-

icant reduction of the value of the equilibrium rotor speed below the safe level.

Figure 6.14: Change of speed of descent and rotor resultant force coefficient with
the value of blade geometric twist at the root

Values of inflow speed in the inboard region of a rotor blade are lower and there-

fore it generates smaller portion of aerodynamic forces than the outboard part.

Hence the effect of change of blade root twist on magnitudes of aerodynamic forces

and moments generated by the rotor is much smaller than in case of fixed blade

incidence or tip geometric twist. A change of angle of attack at the blade root also

causes a much lower increment of overall blade drag than an equivalent change of

angle of attack at the tip region. This can be seen from figure 6.15 - change of

blade root twist results in a moderate change of induced velocity that is strongly

dependent on the value of rotor thrust.

Since the inboard part of the blade is the ’driving’ region producing positive

aerodynamic torque necessary for rotor equilibrium and it works at high angles of

attack, application of negative root geometric twist can have positive effect as it

would reduce or entirely avoid stall in this blade region [7; 12].

It can be concluded that negative values of geometric twist applied to the in-
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Figure 6.15: The effect of blade root geometric twist on rotor induced velocity during
autorotative flight

board parts of gyroplane blades can positively affect stability of autorotation in both

axial and forward flight (see figure 6.16). This design solution can be conveniently

combined with a moderate value of blade tip mass that would further increase equi-

librium rotor speed and also make rotor speed less sensitive to disturbances in rotor

inflow.

Performance and stability of rotors in autorotation might be also improved with

the aid of control devices, e.g. trailing edge flaps. Trailing edge flaps can be used in

helicopter rotor design and many research studies dealing with flapped rotor blades

can be found in open literature. Majority of studies focus on application of trailing

edge flaps in the outboard blade region. Helicopter rotor blade design equipped with

inboard flaps was suggested by Gagliardi [84]. This rotor design could use inboard

trailing edge flaps for enhancement of rotor stability during autorotative flight in-

stead of the inboard geometric twist of the rotor blades.
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Figure 6.16: The effect of blade geometric twist at the root region on blade span-wise
distribution of aerodynamic angle of attack during autorotative flight

6.3 The Critical Rotor Speed and Blade Tip Mass

Simulations carried out with the aid of AMRA showed that autorotation has a self-

stabilizing character provided that rotor speed is high enough and the rotor is in a

stable configuration. The computations were carried out for several different mag-

nitudes of disturbance in blade torsional deflection to study the ability of a rotor

in autorotation to recover from sudden drop of rotor speed. A decrease of rotor

speed during flight in autorotation can be caused by change of rotor disc inflow, e.g.

gust, blade-vortex interaction, turbulent flow or manoeuvres (especially manoeuvres

leading to negative rotor inflow). The increment of geometric twist at the blade tip

was used for the simulation of disturbances in blade torsional deflection. A linear

change of geometric twist along the blade span was used. Both negative and posi-

tive change of blade geometric twist angle were studied. Figure 6.17 shows a basic

shape of the geometric twist input used in the study. It can be seen from the figure

that the length of fixed incidence angle inputs was exaggerated in order to reach

the critical value of rotor speed (i.e. minimum value of rotor speed at which steady

autorotative flight is possible in given flight conditions).
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Figure 6.17: The shape of step increment of blade twist used to study the effect of
step change of rotor blade torsional deflection

Figure 6.18 depicts clearly auto-stabilizing capability of rotors in autorotative

flight. Steady autorotation is recovered even if the magnitude of torsional distur-

bance is relatively high.

The results show that the rotor is not able to reach steady autorotation if the

value of the rotor speed drops below a limit value (see figure 6.18). Flow conditions

along the blade do not allow generation of positive torque if the rotor speed is too

low. This is why the majority of modern gyroplane designs use pre-rotation of the

rotor. High torsional deflection of rotor blades leads to significant decrease of rotor

speed that results in stall of a large part of the blade. Steady autorotation is not

re-established since the lift drops and drag increases considerably behind the stall

point, resulting in decrease of rotor thrust and increment of speed of descent. That

leads to further increase of inflow angle and expansion of the stalled area of the

blade. Hence the conditions needed for recovery of stable autorotation (i.e. positive

aerodynamic torque generated by the blade) cannot be established and the speed of

descent will reach values that would have catastrophic consequences in operation.
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Figure 6.18: The effect of step increment of blade twist on rotor speed of a gyroplane
rotor

Since the critical value of rotor speed depends on flow conditions along the blade

span, it does not remain constant for a given rotor design and changes with flight

conditions and weight of the vehicle. The critical value of rotor speed is around

15 rad/s for a light gyroplane in a configuration similar to Montgomerie-Parsons

gyroplane equipped with McCutcheon rotor blades during steady vertical descent

(i.e. VD ≈ 12m/s). The simulations have suggested that the value of critical rotor

speed is a weak function of horizontal speed of the vehicle and that it is strongly

affected by the value of speed of descent of the vehicle. In order to assure the highest

possible stability during autorotation, the critical rotor speed during a typical flight

regime should be as low as possible. The equilibrium rotor speed in steady flight

should not approach the critical value.

Blade tip mass is used to avoid low values of the rotor speed. The addition of

the tip mass also increases centrifugal stiffening of the blade and hence increases the

effective blade stiffness. Modelling of rotor performance for several different values

of blade tip mass was undertaken to establish sensitivity of the autorotative state to
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changes in blade moment of inertia. A concentrated mass representing the blade tip

mass was placed at blade tip local elastic axis in order not to affect blade aeroelastic

stability. The outcome of the simulations is shown in figure 6.19. It can be seen that

the AMRA model predicts that the tip mass would increase rotor speed as expected.

The computations also showed that the addition of the tip mass causes only a small

increase of equilibrium speed of descent; an extra 8kg of tip mass (i.e. increment

of blade mass by 61%) changes equilibrium speed of descent by 1m/s during axial

descent (i.e. increase of VD by approximately 7%).

However, further computations carried out with the aid of AMRA show that

the addition of blade tip mass not only increases the equilibrium rotor speed but

also increases the value of the critical rotor speed. This is a logical consequence of

higher rotor moment of inertia (higher change of aerodynamic torque is needed to

increase of rotor speed from a given value) and also the result of a slight change of

equilibrium speed of descent. As can be seen from figure 6.19, the gradient of change

of critical rotor speed with blade tip mass is lower than in case of equilibrium rotor

speed.

Figure 6.19: The effect of blade tip mass on rotor speed of a rotor in autorotation

Hence use of excessive values of blade tip mass does not seem to be convenient
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as it might increase the value of critical rotor speed. Significant increment of rotor

moment of inertia might also increase the time needed for recovery of rotor speed

in case it decreases during flight. Results from AMRA suggest that the use of

moderate values of blade tip mass in combination with negative geometric twist in

blade inboard sections should keep the value of critical rotor speed constant and

increase equilibrium rotor speed.

6.4 Concluding Remarks

The parametric studies carried out with the aid of the AMRA model showed the

influence of selected rotor blade design parameters on performance and stability of

autorotating rotors. The results demonstrate the key role of blade incidence in aero-

dynamics of rotors in autorotation. Although the rotor blades used in the studies

were mass balanced (i.e. torsion-flap flutter was not possible), some geometries re-

sulted in an aeroelastic instability. This instability is similar to divergence in vertical

descent and has oscillatory character in forward flight (and resembles stall flutter).

The study of the effect of blade fixed angle of attack lead to the following con-

clusions

• Excessive values of blade fixed angle of incidence results in an aeroelastic

instability in blade torsion

• Rotor speed decreases and rotor resultant force coefficient grows with increas-

ing blade fixed angle of incidence until the critical value is reached

• Negative values of fixed of angle of incidence result in an increment of rotor

speed but also in significant increment speed of descent

The main findings that resulted from the simulations of the effect of a linear

variation of blade geometric twist are
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• Geometric twist applied to the outboard region of the blade has very similar

effect to blade fixed angle of incidence (including appearance of an aeroelastic

instability in blade torsion)

• Geometric twist applied to the inboard region of the blade causes smaller

change of rotor speed and speed of descent

• Negative values of inboard geometric twist can increase rotor stability by mod-

eration of blade stall

Investigation of the value of the critical rotor speed and the effect of blade tip

mass have shown that

• Steady autorotation is not possible if the value of rotor speed is lower than

the critical value

• The critical value of rotor speed depends on the properties of the rotor and

also on rotor flow conditions and configuration of the vehicle

• The value of critical rotor speed at typical flight conditions should not approach

the value of equilibrium rotor speed

• The use of blade tip mass increases equilibrium rotor speed and hence improves

the stability of a rotor in autorotation

• Application of tip mass also causes moderate increment of the critical rotor

speed
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Chapter 7

Aeroelastic Stability of Rotors in

Autorotation

According to the theory of aeroelasticity, classical pitch-flap flutter of a rotor blade

section will occur when the blade centre of gravity is located aft of pitch axis of the

section and the torsional stiffness, or blade pitch stiffness, is low enough. If blade CG

is located aft of EA, an acceleration of the blade in flap will lead to acceleration in

torsion in the same direction, i.e positive (upwards) blade flap would result in blade

nose-up motion and negative blade flap leads to nose-down torsion. This is obviously

destabilizing the blade dynamics since higher blade incidence results in higher aero-

dynamic loading and thus flapping acceleration is further increased [11; 48; 75; 76].

In helicopter rotors, a lag degree of freedom can also be involved in this rotor blade

instability, leading to rotor pitch-flap-lag instability. This is caused by higher blade

drag due to high values of blade torsional deflection and also by low aerodynamic

damping of lag motion [47].

Unlike helicopter rotors in powered flight, rotors in autorotation can experience

significant variations in rotor speed due to changing flow conditions of the rotor

blades. A decrease of rotor speed causes a drop in centrifugal stiffness of the rotor

blades and the resulting higher deflections in flap and twist generate more drag.

This cause further reduction in rotor speed. It is clear that the thrust and torque of
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the rotor are functions of rotor speed and the distribution of local values of angle of

attack along the blade span. The results of the model have shown that blade tor-

sion has dominant influence on aeromechanical behaviour of a rotor in autorotation.

The AMRA model has also shown that the extra degree of freedom in rotor speed

has significant effect on the character of an aeroelastic instability of an autorotating

rotor, although it does not change the point of its onset. Predicted behaviour of

autorotating rotors during aeroelastic instability is unique thanks to variable rotor

speed. A series of parametric studies were carried out with the aid of the model and

published in open literature [85; 86] - see the previous chapter of this work. To the

knowledge of the author, a similar research was not undertaken and published to

date.

Pitch-flap flutter and pitch-flap-lag instability were investigated extensively in

the field of helicopter rotor aeroelasticity and aeroelastic behaviour of helicopter

rotors in powered flight is well understood [26; 47]. However, little is known about

behaviour of autorotating rotors during an aeroelastic instability. It was noted in

Chapter 2 that virtually no publications can be found dealing with modelling of

coupled pitch-flap motion of rotors in autorotation. However, several publications

provide experimental data on rotor blade motion during autorotative flight.

Hence a major part of the research work was dedicated to investigation of rotor

stability in coupled bending-torsion-rotation motion. Experimental flight measure-

ments showed that the influence of blade flat-wise bending on dynamics of gyroplane

rotor is negligible [68]. Since rotor speed of autorotating rotors is not fixed and it

can adjust to the aerodynamic forcing acting on the blades, the influence of lag

degree of freedom is not so strong and can be neglected [68]. Gyroplane rotors do

not use lag hinges and flat-wise bending stiffness of gyroplane rotor blades is very

high due to their lower aspect ratio and high thickness. Hence degree of freedom

in flat-wise bending was not considered in this study. Influence of flexibility of the

hub control bars on aeroelastic stability of a rotor was not considered due to time
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constraints of this dissertation. This feature is typical for gyroplane rotors and it

can affect rotor aeroelastic behaviour if stiffness of the control bars is low enough.

AMRA simulations were carried out for various values of blade stiffness, chord-wise

positions of centre of gravity and elastic axis.

Both time-marching aeroelastic simulations and eigenanalysis of gyroplane rotors

(i.e. modelling in the frequency domain) were performed. Although aeroelastic com-

putations in the frequency domain are much faster than time-marching simulations,

they require significant simplification of both blade equations of motion and aero-

dynamic forcing terms (see Chapter 3). Analysis in the time domain allows using

full non-linear equations of motion and inclusion of both non-linear aerodynamics

and compressibility effects. Hence it is convenient to compare and possibly cross-

validate the results of time-marching simulations and eigenanalysis. The results of

time marching AMRA simulations were compared with the results of eigenanalysis

of linearized blade equations of motion that was also carried out with the aid of the

AMRA model.

7.1 Torsional Aeroelastic Stability Boundary of an

Autorotating Rotor

As was shown in the previous chapters of this work, the axial flight in autorotation

is characteristic by steady values of blade states and aerodynamic loading if tor-

sional equilibrium is achieved and the rotor inflow is homogeneous. Blade motion

becomes oscillatory with increasing value of forward speed. It was shown in the

chapter dedicated to model validation (Chapter 5) that the AMRA model describes

well all major features of aerodynamics of a rotor in both autorotative axial and

forward flight [85; 86].

According to the classical theory of aeroelasticity, pitch-flap flutter stability
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boundaries of rotor blades have a hyperbolic shape. Same results were obtained

during eigenanalysis of autorotating rotors. Two different types of eigenanalysis

were performed and comparison of their results is given in figure 7.1. Eigenanalysis

of the equivalent spring stiffness model of a rotor blade is less complex of the two

since it assumes rigid rotor blades and a uniform span-wise distribution of blade

properties. Dimensionless form of the analysis is given in Bramwell [27] and identi-

cal results were obtained for its dimensional form given in Chapter 3. Eigenanalysis

of the FEM model of a rotor blade included in AMRA was also carried out. It

allows non-uniform span-wise distribution of rotor blade properties and is capable

of capturing higher modes of blade motion. It can be seen from the figure that

’stiffer’ model (i.e. eigenanalysis of the rigid blade equations of motion) predicts

higher aeroelastic stability, which is quite an intuitive outcome. Note that variable

blade rotational speed was not included in the models since the blade equations of

motion were linearized around rotor speed.

Figure 7.1: Comparison of aeroelastic stability boundaries obtained from two dif-
ferent frequency domain models of an autorotating rotor. Elastic axis of the rotor
blades lies at 32% chord.

In order to include variable rotor speed into modelling of aeroelastic stability of

an autorotating rotor, time-marching AMRA simulations were carried out for EA at

32%c, different chord-wise locations of CG and various values of torsional stiffness.
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Blade fixed angle of incidence was set to 0.04rad for simulations of both axial flight

and forward flight unless stated otherwise.

The results of the simulations have revealed that low torsional stiffness of the

blade leads to an aeroelastic instability that comes through as coupled rotor speed-

pitch-flap flutter oscillations. These oscillations result in catastrophic decrease of

rotor speed. This is a demonstration of strong rotor speed-pitch-flap coupling that

exists only during autorotation. Decrease of the rotor speed reduces centrifugal

stiffness of the rotor and the resulting higher deflections in flap and twist generate

more drag and cause further drop in rotor speed and increment of speed of descent.

It is shown in figure 7.2 that a general trend of decreasing rotor speed can be visible

from time history of both blade flap and torsion.

Figure 7.2: Aeroelastic instability during axial flight in autorotation

These oscillations result in catastrophic decrease of rotor speed as it is shown in

figure 7.3. As can be seen in figure 7.3, the reduction of rotor speed from a steady

value to zero takes only few seconds. Speed of descent increases to an unacceptable

value during this time since low rotor speed leads to reduction of rotor thrust.

This type of flutter time history seems to be unique for rotors in autorotation

since it differs from both helicopter rotor flutter and flutter of a fixed wing. This is

the first time this type of aerolastic stability has been identified. Pitch-flap flutter

149



7. AEROELASTIC STABILITY OF ROTORS IN AUTOROTATION

Figure 7.3: Catastrophic decrease of rotor speed during aeroelastic instability during
autorotative vertical descent

of a rotor in autorotation has not been previously modelled and no similar results

are published in open literature, to the knowledge of the author.

Although rotor oscillations die out with decreasing rotor speed, the high value of

speed of descent of the vehicle caused by low thrust generated by the rotor does not

allow re-establishing of rotor torque equilibrium. High values of speed of descent

simply result in stall of rotor blades due to dramatic increase of inflow angles. Sim-

ilar instability can be observed if speed of descent is kept constant; the rotor is able

to recover just to enter another round out of pitch-flap oscillations. This scenario

is, however, purely theoretical since the rotor is the only lifting surface of a gyroplane.

Figure 7.4 shows aeroelastic stability boundary of an autorotating rotor as pre-

dicted by AMRA.

The fact that the character of the aeroelastic instability during autorotation

seems to be unique does not necessarily mean that the resulting aeroelastic stability

boundary will significantly differ from stability boundary of identical rotor for con-

stant value of rotor speed. Hence the values of critical torsional stiffness obtained
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Figure 7.4: Torsional stability boundary of an autorotating rotor in axial flight as
predicted by the AMRA model

for variable rotor speed had to be compared with the values computed for constant

rotational speed.

The AMRA model was used to compute the values of the critical torsional stiff-

ness of a typical gyroplane rotor with degrees of freedom in torsion and flap. The

value of rotational speed was fixed at the equilibrium values that were computed

by the model for variable rotor speed. The results of the study suggest that the

the effect of degree of freedom in rotation on the shape of rotor aeroelastic stability

boundary is not significant and hence the instability represents a special case of

pitch-flap flutter. The values of the critical torsional stiffness are virtually identical

to the values obtained from eigenanalysis of the AMRA FEM model (see above).

The aeroelastic stability boundary predicted by AMRA is very similar to pitch-flap

flutter boundaries of helicopter rotors that have hyperbolic shape if small oscilla-

tions are assumed. Figure 7.5 shows that the values of critical torsional stiffness

predicted for fixed rotor speed are very similar to the values obtained for variable

rotor speed.

Hence blade equations of motion linearized around rotor speed or modelling in
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Figure 7.5: The effect of degree of freedom in rotation on the shape of blade torsional
stability boundary.

the frequency domain (eigen-analysis) can be used for prediction of the aeroelas-

tic stability of autorotating rotors. Degrees of freedom of torsion and flap seem

to affect the shape of the aeroelastic stability boundary of rotors in autorotation

more significantly (see figure 7.28). Although the degree of freedom in rotation

does not have a strong effect on the onset of the aeroelastic instability in autorota-

tion, it strongly affects aeromechanical behaviour of the rotor during this instability.

Couplings of the rotor speed with the other blade degrees of freedom and vehicle

speed of descent have auto-stabilizing character for stable rotor configuration but

they lead to a catastrophic increase of speed of descent during aeroelastic instability.

Lower values of blade torsional stiffness lead to higher torsional and flexural de-

flections even if the blade is in a stable configuration. The resulting higher values of

blade drag cause a drop in rotor speed - see figures 7.6 and 7.7. This can lead to an

aeroelastic instability even if the rotor blades are well balanced (i.e. CG is ahead of

EA) since it increases the possibility of reaching the critical rotor speed for which

torque equilibrium is not possible (see Chapter 6).

Predictions of aeroelastic behaviour of the rotor remain similar if different levels
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Figure 7.6: A comparison of the values of equilibrium rotor speed during autorotative
vertical descent; computed for different span-wise positions of blade CG and varying
blade torsional stiffness

Figure 7.7: A comparison of the values of equilibrium blade torsional and flapping
deflections during autorotative vertical descent; computed for different span-wise
positions of blade CG and varying blade torsional stiffness

of complexity of the model of blade structural dynamics are used. It is shown in

figure 7.8 that the aeroelastic instability predicted by the model using equivalent

spring stiffness approach has very similar character to the instability predicted with

the aid of full FEM model.

Simulations for various values of torsional stiffness, chord-wise positions of centre

of gravity (CG) and chord-wise positions of elastic axis (EA) of a gyroplane rotor

in forward flight were also performed. Computations carried out with the aid of the

AMRA model have shown that the rotor suffers of aeroelastic instability if CG lies

aft EA and the value of blade torsional stiffness is lower than the critical value.

153



7. AEROELASTIC STABILITY OF ROTORS IN AUTOROTATION

Figure 7.8: Comparison of an aeroelastic instability during axial flight in autorota-
tion as predicted by the AMRA using equivalent spring stiffness (left) and coupled
torsion-bending FEM model of blade dynamics.

As it can be seen from figure 7.9, the main features of the aeroelastic instability

remained the same - excessive torsional deflections lead to significant reduction of

rotor speed from a steady value that takes only few seconds. Speed of descent in-

creases dramatically during this time as rotor thrust is significantly reduced due to

reduction of rotor speed and the presence of blade oscillations. Stall of rotor blades

caused by very high values of inflow angle makes recovery without pre-rotation im-

possible.

Figure 7.9: Comparison of an aeroelastic instability during forward flight in autoro-
tation as predicted by the AMRA using equivalent spring stiffness (left) and coupled
torsion-bending FEM model of blade dynamics.

Since the majority of rotor parameters in forward autorotative flight have har-
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monic behaviour, some of the results are presented in the form of boundaries of their

trends. This approach allows comparison of multiple data sets in one plot.

Figure 7.10: A comparison of the values of equilibrium rotor speed during autoro-
tative forward flight; computed for different span-wise positions of blade CG and
varying blade torsional stiffness

Figure 7.11: A comparison of the values of equilibrium blade torsional and flap-
ping deflections during autorotative forward flight; computed for different span-wise
positions of blade CG and varying blade torsional stiffness

Results of the AMRA simulations obtained for different levels of complexity of

the model of blade structural dynamics are showed in figure 7.9. Again, comparison

of predictions obtained with different blade structural models is given to demonstrate

that the character of the instability does not change with fidelity of the model. The

results of computations executed with the aid of FEM model of coupled bending-

torsion of rotor blades are consistent with the results obtained from the blade model
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using equivalent spring stiffness approach. Both configurations of the model predict

very similar aeroelastic instability that takes place if torsional stiffness of the blade

is lower than the critical value.

However, lower values of both blade torsion and bending are predicted if the

spring stiffness approach is used instead of FE analysis. While simplification of the

model of blade bending have only a minor effect on the results of the simulation,

use of equivalent spring stiffness instead of FEA for the modelling of blade torsion

seems to have a more pronounced effect. Application of FEM model of blade tor-

sional dynamics results in a more realistic estimation of span-wise distribution of

blade torsion that is characterised by higher tip deflections than is predicted by the

equivalent spring stiffness model. The FEM approach also allows the capture of

higher modes of blade motion.

The comparison of resulting stability boundaries given in figure 7.12 shows that

fidelity of the model of blade torsional dynamics has a major effect on the shape of

the aeroelastic stability boundary.

Although the simplified version of the AMRA model predicts different stability

boundary for axial and forward flight, identical values of the critical blade torsional

stiffness were obtained with the aid of full FEM model of blade dynamics. The

resulting aeroelastic stability boundary can be found in figure 7.13.
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Figure 7.12: Torsional stability boundaries of gyroplane rotor in forward flight as
predicted by different versions of AMRA

Figure 7.13: Stability boundary of a rotor in autorotation
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7.2 The Effect of Blade Fixed Angle of Incidence on

Rotor Aeroelastic Stability

It was shown in the previous chapters of this work that blade fixed incidence angle

has a major effect on stability of rotors in autorotation. Hence a study was carried

out in order to investigate the influence of blade fixed angle of incidence on the

shape of aeroelastic stability boundary of an autorotating rotor.

A comparison of torsional stability boundaries computed for two different values

of fixed angle of incidence of the rotor blades is shown in figure 7.14.

Figure 7.14: A comparison of torsional stability boundaries for two different values
of blade fixed angle of incidence.

It can be seen from the figure that even relatively small increments of blade

fixed angle of incidence affect the values of the critical blade torsional stiffness. The

out-of-plane bending stiffness of the blade is increased by the higher blade fixed

incidence angle but flexural motion of the blade is strongly affected by centrifugal

forcing that provides additional stiffening regardless the value of fixed angle of inci-

dence. Blade torsional stiffness, however, is not affected by the change of blade fixed

angle of incidence and the effect of centrifugal loading on blade torsional dynamics
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is much smaller too.

As was shown in Chapter 6 of this work, an increment of blade fixed angle of

incidence leads to lower equilibrium rotor speed. This has a negative effect on rotor

stability since effective stiffness of rotor blades is decreased. This effect is demon-

strated in figure 7.15.

Figure 7.15: A comparison of the values of equilibrium rotor speed for two different
values of blade fixed angle of incidence, varying chord-wise positions of CG and
typical values of torsional stiffness (GJ=1500N.m/rad)

Results of another parametric study carried out with the aid of AMRA suggests

that increased value of blade fixed angle of incidence might cause higher blade vibra-

tory loading during forward flight in autorotation as it results in lower equilibrium

rotor speed and higher inflow angles. Hence a larger portion of the blade span passes

through the stall each rotor revolution, which results in more profound harmonic

vibrations of the blade.
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Figure 7.16: A comparison of the values of equilibrium blade torsional and flapping
deflections for two different values of blade fixed angle of incidence, varying chord-
wise positions of CG and typical values of torsional stiffness (GJ=1500N.m/rad)
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7.3 The Effect of Chord-Wise Position of Blade Elas-

tic Axis on Rotor Aeroelastic Stability

An extensive study on aeroelastic stability of a gyroplane rotor for various span-wise

positions of blade CG and EA and different values of blade torsional rigidity was

carried out. Since a high number of individual simulations was required, a simplified

model of blade structural dynamics using equivalent spring stiffness was used. The

results of parametric studies have shown that the chord-wise position of CG has

much stronger effect on stability of autorotation than chord-wise position of EA.

The aeroelastic stability boundaries that were computed for different chord-wise lo-

cations of CG and EA of a rotor in autorotation can be found in figure 7.17.

Figure 7.17: The effect of elastic axis position on stability of a rotor in autorotative
flight.

The results of the simulations have shown that although aeroelastic stability is

driven mainly by the value of CG-EA offset and blade torsional stiffness, it is also

affected by the offset of aerodynamic centre (AC) from blade elastic axis. It can be

seen in figure 7.17 that increase of this offset is de-stabilizing. This behaviour can

be explained by the fact that the AC-EA offset represents the arm of aerodynamic

torsional moment.
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The figure also shows that the results of the time-marching configuration of

AMRA model are in a good agreement with predictions of eigen-analysis carried out

with the aid of the model in frequency domain.

7.4 The Effect of the Value of Blade Zero-Lift Pitch-

ing Moment Coefficient on Rotor Aeroelastic

Stability

The majority of modern light gyroplanes use rotor blade airfoils with reflex camber.

Reflex camber airfoils generate positive pitching moment (nose-up) for low angles

of attack. This feature is unique for this type of airfoil - symmetrical airfoils do not

generate any pitching moment if not stalled and classical cambered airfoils generate

negative values of pitching moment. Reflex camber airfoils are often used in tail-less

aircraft design due to their auto-stabilizing properties.

Positive values of blade pitching moment that are achieved for a wide range of

angles of attack below stall can be used in gyroplane design to avoid over-speeding

of the rotor and the rise of speed of descent. This can be deduced from the results

presented in the Chapter 6 of this work. Parametric studies carried out with the aid

of AMRA showed that a negative blade twist applied to the outboard blade region

causes significant increase of rotor speed and speed of descent.

Rotor over-speed is dangerous due to possible occurrence of vehicle control prob-

lems and excessive centrifugal loading. Since the effect of different values of zero-lift

pitch moment coefficient (cm0) on stability of rotors in autorotation was not clear,

the AMRA model was used for prediction of stability of rotor blades with different

values of cm0.
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Figures 7.18 and 7.19 show that the use of reflex camber airfoils (i.e. positive

values of blade pitching moment) have de-stabilizing character. The results show

that stability of the rotor is reduced even if the blades are in a stable configuration

(i.e. CG ahead of EA; all results are computed for EA at 32% chord). Negative

values of cm0, on the other hand, have a stabilizing character. Higher values of

equilibrium rotor speed lead to high centrifugal loading and thus to higher effective

stiffness of the blade.

Figure 7.18: The effect of positive values of cm0 on the values of equilibrium rotor
speed for different positions of blade CG.

Figure 7.20 gives a comparison of aeroelastic stability boundaries of gyroplane

rotor blades that use symmetrical, cambered and reflex-camber airfoils.

It is apparent that positive values of cm0 increase the probability of loss of aero-

dynamic torque equilibrium. It can be seen from figure 7.20 that the AMRA model

predicts that use of reflex camber airfoils increases the values of critical torsional

stiffness significantly. The figure also shows that the new values of critical torsional

stiffness are relatively close to the values obtained during experimental measure-

ments of physical properties of McCutcheon gyroplane blades (see Chapter 4). Ro-

tor blades for light gyroplanes are being manufactured in modest conditions, which

163



7. AEROELASTIC STABILITY OF ROTORS IN AUTOROTATION

Figure 7.19: The effect of negative values of cm0 on the values of equilibrium rotor
speed for different positions of blade CG.

Figure 7.20: The effect of different values of cm0 on the shape of blade torsional
stability boundary.

leads to a high scatter of blade properties. The majority if not all of them also use

rotor blades equipped with reflex-camber airfoils.

The UK Civil Aviation Authority has identified loss of rotor speed and excessive

values of control forces as the key factors in some of gyroplane accidents. The results

presented above suggest that these accidents might be caused by combination of

rotor blades with unsuitable structural properties (e.g. low torsional stiffness or EA

ahead of CG) and use of reflex camber airfoils.
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7.5 The Effect of Rotor Disc Tilt Hinge Offset on

Rotor Aeroelastic Stability

An offset of rotor longitudinal tilt hinge and rotor disc centre of rotation (that is

usually coincident with rotor teeter hinge) is often used in rotor hub design of mod-

ern light gyroplanes. Figure 7.21 shows layout of such hub design, namely the hub

of the Montgomerie-Parson light gyroplane.

Figure 7.21: Rotor hinge offset in a typical modern light gyroplane rotor design

This arrangement results in harmonic change of EA-CG offset if blade pitch

around the point of its root attachment and finite stiffness of gyroplane controls are

assumed. The change of CG-EA offset length with blade azimuth is then

yg = yEA,h − yCG = ypivot + ∆yhinge sinψ − yCG (7.1)

Alternatively, a linear variation of the chord-wise position of blade elastic axis

from the blade root attachment position at the blade root to the ’natural’ position

of EA given by the blade structure at the blade tip can be assumed. Equation 7.1

then changes to

yg = yEA,h − yCG = yEA
r

R
+ (ypivot + ∆yhinge sinψ)

(

1 − r

R

)

− yCG (7.2)
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Figure 7.22 shows that a rotor hub with hinge offset can potentially decrease

aeroelastic stability of the rotor since it causes change of the position of blade EA

with blade azimuth. Hence the aeroelastic stability boundary of each rotor blade

also changes shape with azimuthal position.

Figure 7.22: Change of CG-EA offset of a gyroplane rotor with non-zero hinge offset.
In the figure on the left, the blades are assumed to pitch around the root attachment
only. Linear change of elastic axis between root attachment at the root and natural
elastic axis is assumed in the right-hand side figure.

The effect of rotor hinge offset on the aeroelastic stability of a gyroplane rotor

was investigated with the aid of the AMRA model. Since AMRA did not contain a

model of the dynamics of the vehicle control system, an assumption was made that

the effective value of control system stiffness is similar to the torsional stiffness of

the blades. Results of the simulations suggest that harmonic changes of EA position

alone does not have any major effect on aeroelastic stability of the rotor. It can be

seen from figure 7.23 that the equilibrium values of rotor speed are not affected by

rotor hinge offset.

Figure 7.24 compares aeroelastic stability boundary of gyroplane rotors with zero

hinge offset and with negative hinge offset (i.e. rotor longitudinal tilt hinge is ahead

of rotor pivot point).

One possible explanation of this is that the aeroelastic instability does not have

enough time to develop since the blade enters more stable configuration every revolu-

tion, after having gone through a region of lower aeroelastic stability (see figure 7.22).
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Figure 7.23: The effect of rotor hinge offset on the values of equilibrium rotor speed
for different positions of blade CG. Computed for ∆yh = −0.1c.

Figure 7.24: The effect of rotor hinge offset on the shape of blade torsional stability
boundary. Computed for ∆yh = −0.1c.

A conclusion can be made that the hinge offset alone does not cause significant

change of rotor stability. However, it is likely that the control system stiffness of a

typical light gyroplane has a major effect on aeroelastic stability of the rotor. Low

control system stiffness might decrease rotor stability even if the rotor has no hinge

offset since the root attachment of many of modern gyroplanes is located at blade

quarter-chord. As was shown in this work, it is likely that chord-wise position of
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centre of gravity of many gyroplane blades lies aft 25% chord. It is recommended

that control system stiffness should be determined and included in future models of

gyroplane rotor aeroelastics.

7.6 The Effect of Flexural Stiffness on Rotor Aeroe-

lastic Stability

The results obtained with the aid of AMRA suggest that variation of blade flex-

ural stiffness within a realistic and practical range of values has a minor effect on

rotor aeroelastic stability. Figure 7.25 shows the variation of the equilibrium rota-

tional speed and critical torsional stiffness with blade flexural stiffness as predicted

by AMRA time-marching and frequency domain models. Results of the parametric

study confirm that lower fidelity of the model of blade flap does not have significant

significant effect on predictions of the aeroelastic model.

Figure 7.25: Dependence of the value of equilibrium rotor speed and critical torsional
stiffness upon blade flexural stiffness of an autorotating rotor.

The simulations also showed that a change of blade flexural stiffness does not

affect the shape of blade torsional stability boundary even if blade flexural stiffness

is very low (see figure 7.26). This can be explained by high centrifugal stiffening

present during rotor operation and high aerodynamic damping of the blade teetering

motion. The magnitude of the additional blade stiffening due to centrifugal forces

is usually much higher than structural stiffness alone and hence even very low blade
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flexural stiffness does not have significant effect on rotor stability during operation

at nominal rotor speed. However, the values of blade flexural stiffness have to be

kept within a practical range of values since very flexible rotor blades would make

operation of the vehicle impossible.

Figure 7.26: Single degree of freedom aeroelastic instability in torsion of a rotor in
vertical descent in autorotation.

The simulations carried out with the aid of the AMRA model indicated that a

single degree of freedom instability can be encountered if blade flexural stiffness is

very high and the torsional stiffness is low. Figure 7.27 shows that the instability is

very similar to pure divergence if the rotor is in axial autorotative flight (i.e. if the

inflow speed into the rotor disc does not change with blade azimuth).

Although the values of the critical torsional stiffness are much lower than in the

case of torsion-flap flutter, the reduction of rotor speed is slower. The figure also

shows that a steady value of rotor speed seems to be maintained in the forward

flight regime. This stabilising effect of the forward flight regime might be caused

by a combination of stall of the blades at the retreating side of the rotor disc and

aerodynamic coupling between the rotor speed and blade torsion. Contrary to ax-

ial flight in autorotation, the forward flight regime might allow reaching of torque

equilibrium thanks to varying flow conditions across the rotor disc.
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Figure 7.27: Single degree of freedom aeroelastic instability in torsion of a rotor in
vertical descent in autorotation and autorotative forward flight.

Since the value of the critical torsional stiffness of blade divergence is much lower

than in the case of torsion-flap flutter, very high values of blade flexural stiffness

would have stabilizing character. Figure 7.28 shows that very high blade flexural

stiffness increases the equilibrium rotor speed during autorotation. However, this

approach is not practically applicable since it would result in excessive weight of the

blade structure and also the use of extremely expensive materials and manufactur-

ing techniques. It can also be seen from the figure that the value of the equilibrium

rotor speed during autorotation remains constant if blade torsional stiffness is very

high. This is given by the fact that flapping motion has much smaller effect on the

local values of blade angle of attack than torsion and that it is strongly damped by

aerodynamic forces.

7.7 Summary

A new form of pitch-flap flutter was predicted to occur in autorotating rotors by the

AMRA model. This aeroelastic instability is characterized by coupled oscillations in

torsion, teeter and rotor speed and results in catastrophic reduction of rotor speed.

Further investigation revealed that the point of onset of the flutter of rotors in au-

torotation is not significantly affected by extra degree of freedom in rotation. The
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Figure 7.28: The change of the equilibrium rotor speed with blade torsional stiffness
of a typical gyroplane rotor, a gyroplane rotor with infinitely high torsional stiffness
and a gyroplane rotor with infinitely high flexural stiffness.

shape of torsional stability boundary of autorotating rotors is hence similar to that

of helicopter rotors.

However, variable rotor speed has strong effect on the character and time history

of the instability. Especially coupling of rotor speed with blade torsion is significant,

resulting in change of the values of blade critical torsional stiffness with fixed angle

of incidence of the rotor blades. A similar form of aeroelastic instability of rotors

in autorotation was also predicted for mass balanced rotors with excessive blade

fixed incidence (see Chapter 6) and it was shown that a single-degree of freedom

instability in torsion might occur for very low values of torsional stiffness.

Simulations performed with the aid of AMRA identified rotor blade design pa-

rameters that are critical for aeroelastic stability of rotors in autorotation. These

parameters and their effects are

• Torsional stiffness of rotor blades - higher stiffness delays flutter onset (i.e. it

is stabilizing)
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• The offset of blade elastic axis from blade axis of inertia - elastic axis ahead

of centre of gravity is stabilizing

• The value of moment coefficient generated by rotor blade sections at moderate

angles of incidence - positive values are destabilizing

• Blade fixed angle of incidence - positive values are destabilizing, negative values

cause increase of speed of vertical component of flight speed

A large positive value of aerodynamic pitching moment coefficient generated

by rotor blades that is typical for modern gyroplane rotors was found to be de-

stabilizing. Similarly, positive values of blade fixed incidence angle increase the

value of blade critical torsional stiffness. Hence pitch-flap flutter is unlikely to occur

as long as the values of these two design parameters are kept low and blade axis of

inertia lies ahead of blade elastic axis.

Some other rotor blade design parameters influence rotor stability but their ef-

fect is not significant for realistic values of these parameters (see below).

• The offset of the elastic axis from blade aerodynamic centre

• The offset of rotor disc longitudinal hinge (pitch control hinge) from the axis

of rotation of the rotor

• Blade flexural stiffness
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Chapter 8

Conclusions

Gyroplane accidents that occurred during last few decades have drawn attention to

gyroplane aeromechanics and handling qualities. The aeroelastic behaviour of au-

torotating rotors is relatively unexplored and only few publications on the topic are

available in open literature. No research studies focused on coupled pitch-flap-rotor

speed dynamics of autorotating rotors and determination of their flutter stability

boundary are available in open literature. Similarly, analysis of the effect of different

rotor blade design parameters on performance of autorotating rotors can’t be found

in open literature. Hence an original research work had to be carried out in order

to assess the role that rotor design and aeroelastic behaviour might play in recent

gyroplane accidents.

The aim of this research work was to investigate aeroelastic behaviour of gyro-

plane rotors and identify possible hazardous rotor configurations or modes of oper-

ation. An aeromechanical model of a rotor in autorotation AMRA was developed

and used for prediction of rotor aerodynamic performance and aeroelastic behaviour.

The model was successfully implemented in MATLAB, making it easy to use and

portable. The AMRA model is based on a combination of blade element theory with

unsteady aerodynamics, a dynamic inflow model, a dynamic finite element model of

blade coupled torsion-bending and a ’rigid’ blade structural model of blade teeter

and rotation. A frequency domain model was also developed, allowing prediction
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of blade natural frequencies and mode shapes. Hence AMRA represents relatively

versatile tool for modelling of aerodynamics and aeroelasticity of autorotating rotors.

In order to obtain input parameters for the structural model of the blade, a series

of experimental measurements were carried out to determine the physical properties

of a typical gyroplane blade. All input data required for the model were obtained

from the experiments, i.e. blade mass distribution, position of elastic axis, span-

wise distribution of CG locations and the values of torsional and flexural stiffness

were measured. Resulting data are relatively rare since no information on physi-

cal properties of gyroplane rotors can be found in open literature. The results of

the experimental measurements confirmed that the physical properties of gyroplane

rotors can vary widely along the blade span. This is given by the fact that many

gyroplane rotor blades are manufactured by small companies in relatively modest

conditions and variation of blade physical properties is not always checked. Blade

centre of gravity laying aft of blade elastic axis along a major part of the blade was

perhaps the most surprising outcome of the experiments. McCutcheon rotor blades

were found to be relatively stiff in torsion and flat-wise bending but very flexible in

flap-wise bending.

The fidelity of the AMRA model was assessed with the aid of both the theory of

aeroelasticity, experimental measurements and results of other validated predictive

tools. Verification of basic functionality and accuracy of all model components for

modelling of both axial descent and forward flight in autorotation was performed, de-

spite limited amount of available data. More comprehensive verification of the model

would require additional experimental measurements that would be relatively com-

plex and expensive. Predictions of the model were found to be in a good agreement

with the data used during the verification, although capabilities of the structural

blade model are limited as it is based on a simplified FEM model using slender beam

theory. It is likely that fidelity of the model, and especially modelling of blade tor-

sional dynamics, would be further improved if a 2D (flat plate) FEM model of rotor
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blade was used. Aerodynamic characteristics of a reflex camber airfoil (preferably

the NACA 8-H-12) for a full range of angles of attack and Mach numbers should be

added to the aerodynamic once available. A comprehensive database of airfoil aero-

dynamic properties is used in the model that takes into account both compressibility

effects and non-linear character of blade aerodynamic properties at higher angles of

attack. However, predictive capabilities of the model at higher Mach numbers is

limited since neither the theory of quazi-steady aerodynamics, nor Theodorsen’s

theory can capture compressibility effects.

Once verified, the AMRA model was used for modelling of performance and

aeroelastic stability of autorotating rotors. The simulations have shown that au-

torotation is a complex aeromechanical process with an auto-stabilizing character.

Coupling of blade torsional and flapping motion with the rotor speed drives the

rotor toward torque equilibrium. This equilibrium is reached on condition that the

rotor speed is higher than the critical value of rotor speed. Critical rotor speed in

autorotation depends not only upon the configuration of the rotor and the vehicle

but also on its flight regime and flight conditions. This is given by strong coupling

between the rotor speed and vehicle fligth mechanics. The concept of critical rotor

speed is one of the most important features of this work. Virtually no published

work is dealing with this problem, although the approach becomes clear once a

mathematical model of an autorotating rotor is coupled with a model of vehicle

flight mechanics. The coupling between rotor performance and vehicle flight states

is unique for autorotative flight in autorotation since the pilot is not able to control

rotor speed directly. Once the rotor speed drops below the critical value, torque

equilibrium cannot be reached without change of vehicle flight conditions or rotor

pre-rotation as growing speed of descent causes rotor blade stall. The author be-

lieves that a similar study has not been published in open literature.

A series of parametric studies were performed to investigate the effect of variation

of selected rotor blade design parameters on performance and stability of a rotor
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during autorotation. The results of the studies have shown that the parameters

that affect span-wise distribution of blade angle of attack have by far the strongest

influence on the performance of rotors in autorotation. This is caused by a strong

aerodynamic coupling between blade torsion and rotor speed and thus blade tor-

sional dynamics plays the key role during flight in autorotation. Analysis of this

kind is unique and no comparable publications can be found in open literature.

The outcomes of AMRA model suggest that positive values of blade fixed inci-

dence angle and blade geometric twist has adverse effect on performance of a rotor

during autorotative flight, especially if applied to the outboard portion of the ro-

tor blades. Excessive values of these design parameters cause generation of high

amounts of blade drag at the outboard part of the blade and reduction of aerody-

namic torque generated by the inboard region of the blade due to blade stall.

Very low positive or zero fixed blade incidence angle and moderate amount of

blade tip mass seem to be beneficial for performance of a rotor in autorotation. The

results of the model confirmed that addition of a blade tip mass increases equilib-

rium rotor speed and hence improves stability of autorotation. Application of rotor

blade tip mass is often used within amateur gyroplane pilots to increase rotor sta-

bility. The blade tip mass can be also used for mass balancing of the rotor blades

(i.e. moving blade CG ahead of its elastic axis). However, increase of the value of

equilibrium rotor speed with increasing blade tip mass was found to be rather low.

Moreover, it was predicted by the model that the critical value of rotor speed in-

creases with growing blade tip mass. Hence it can be concluded that only moderate

amounts of blade tip mass should be used.

The model showed that negative values of blade outboard twist lead to rotor

over-speed, loss of thrust and hence cause lower aerodynamic efficiency (gliding ra-

tio) of the rotor. Moderate values of negative blade geometric twist applied to the

blade inboard region, however, seem to improve rotor behaviour as they lead to
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lower values of angle of attack of the inboard part of the blade. Hence stall of in-

board blade sections is postponed and the ability of rotor blades to generate positive

aerodynamic torque is improved. It can be concluded that zero value of blade fixed

incidence together with moderate negative geometric twist in the inboard part of

the blade and sensible application of blade tip mass will result in high stability and

good performance of a rotor in autorotation. Since rotor blades of modern gyro-

planes are not twisted, use of negative geometric twist of the rotor blade inboard

region represents a novel design solution.

A study of the effect of the level of complexity of the blade structural model on

predictions of the aeroelastic model (a sensitivity analysis) was carried out. Results

of the AMRA simulations have shown that modelling of rotor blade torsion has a

major effect on the fidelity of an aeroelastic model of a rotor in autorotation. The

use of an equivalent spring stiffness model for the simulation of blade flexural dy-

namics was found sufficient to achieve fidelity comparable to a full coupled FEM

model.

Modelling of blade torsional dynamics was found to be the key element of the

model and it was shown that incorrect or misleading results will be obtained if an

accurate model of blade torsion is not used. Hence the FEM model of blade dy-

namics should be used at least for modelling of blade torsional dynamics during

autorotative flight. A simplified model of blade flexural dynamics can be used. This

feature of an aeroelastic model of a rotor in autorotation seems to be unique since

the effect of accuracy of prediction of blade torsion is not so significant in helicopter

aeroelasticity. Again, this is caused by the fact that blade torsion has strong effect on

the value of rotor speed during autorotation and hence strongly affects the amount

of centrifugal forcing present. Hence the outcomes of the study are compatible with

findings gathered during the parametric studies of autorotating rotors. Similar fi-

delity study focused on gyroplane aeroelasticity is not available in open literature

and the influence of blade torsion on performance of autorotating rotors is clearly
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not appreciated enough. This is demonstrated by the fact that the torsional degree

of freedom of the rotor blades is ignored in a number of research works dealing with

stability of autorotating rotors.

An aeroelastic instability in coupled blade pitch-bending-rotation was predicted

for blade axis of inertia located aft of the blade elastic axis and low values of blade

torsional stiffness. Occurrence of a type of flutter that is unique for autorotating

rotors was predicted by the model both during axial descent in autorotation and

during autorotative forward flight. This aeroelastic instability is driven by blade

pitch-bending-rotor speed coupling and differs from both flutter of a helicopter rotor

and flutter of a fixed wing. The instability results in catastrophic decrease of the

rotor speed and significant increase of speed of descent. It is likely that this the first

time that this unique flutter phenomenon has been identified and explained since

no relevant information can be found in open literature.

The simulations have shown that the additional degree of freedom in rotation

does not have a strong effect on the shape of the aeroelastic stability boundary.

Hence the shape of stability boundary predicted using full, non-linear form of blade

equations of motion is essentially identical to the stability boundary predicted by

eigenanalysis of equations of motion linearized around rotor speed. However, the

coupling of rotor speed with other degrees of freedom of the rotor blades and vehicle

flight mechanics strongly affects the character of the aeroelastic instability. Remov-

ing of a blade degree of freedom in either torsion or teeter leads to a significant

increment in rotor stability since pitch-flap coupling is not present. The same result

is obtained if flight mechanics of the vehicle are ignored (i.e. if horizontal speed and

especially speed of descent are kept constant). However, a single degree of freedom

instability in torsion can be encountered if blade torsional stiffness is very low. This

instability is very similar to aeroelastic divergence if forward speed is low. If not

coupled with rotor torsion, blade flexural dynamics proved to have a minor effect

on aerodynamics and aeroelastic stability of autorotating rotors.

178



8. CONCLUSIONS

The effect of the use of cambered and reflex camber airfoils in gyroplane rotor

design was also investigated. Although a comparison of aerodynamics of reflex cam-

ber airfoils with other types of airfoils was carried out and published in the past,

no publications are available comparing performance and stability of autorotating

rotors equipped with different types of airfoils. The model predicted that the values

of critical torsional stiffness are increased significantly if reflex camber airfoils are

used. This outcome is given by the fact that positive values of pitching moment

generated by reflex camber airfoils are destabilizing due to excessive nose-up tor-

sion of the rotor blades. Higher torsional deflections of the rotor blades result in

lower equilibrium rotor speed and hence reduce centrifugal stiffening of the blades.

Reflex camber airfoils are used in rotor blade design of majority of modern light

gyroplanes. Since use of cambered airfoils might lead to rotor over-speed, high-

performance symmetrical airfoils or amended reflex camber airfoils generating lower

pitching moments should be used in gyroplane rotor design.

The influence of rotor disc tilt hinge offset from the rotor pivot point on rotor

aeroelastic stability was also studied. This design feature is present in a number of

light gyroplane designs. Although the hinge offset causes variation of blade elastic

axis position with azimuth, the model did not predict any significant effect on the

shape of rotor stability boundary. However, further research is required in order to

fully understand the effect of the design feature on rotor stability since a model of

flexible gyroplane control system was not included in the study.

The author is not aware of any published research work that would provide de-

tailed performance analysis of rotors in autorotation. No publications on modelling

of pitch-flap-rotor speed dynamics are available and a number of phenomena pre-

dicted by the AMRA model were not previously described in any open literature

entry. Apart from identifying the unique flutter phenomenon caused by extra degree

of freedom in rotation, the strong aeromechanic coupling between blade torsion and
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rotor speed was studied in detail for the first time. Hence the present work repre-

sents a novel contribution to the field of rotorcraft aeroelasticity.

A detailed description of the influence of various design parameters on stability

of autorotating rotors given in this work can be used in preliminary rotor design

or as a guidance during rotor blade modifications. Information on the character of

the aeroelastic instability in autorotation can help to enhance existing airworthiness

regulations (e.g. BCAR-T).

The author also hopes that this thesis will trigger further investigation of aerodyan-

mics and aeroelastic behaviour of autorotating rotors. Study of the effects of aeroe-

lastic instability of a rotor in autorotation on flight dynamics of a light gyroplane,

research of rotor aeroelastics using more comprehensive aerodynamic model (dy-

namic stall model and reflex camber airfoil aerodynamic data) or investigation of

functionality of rotor blade trailing edge flaps during autorotative flight can be used

as an example.
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APPENDIX A1. Quasi-steady and Unsteady Aero-

dynamics of a Rotor Blade

Quasi-steady Aerodynamics

A classical formulations of quasi-steady lift and moment coefficient as given

in Leishman [7] are

cL = 2π

[

α+
ḣ

V
+ b

(

1

2
− a

)

α̇

V

]

(A1-1)

cM, c
4

= −π
4

α̇b

V
(A1-2)

Unsteady Aerodynamics

Theodorsen’s lift deficiency function C(k) is defined with the aid of Bessel func-

tions

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(A1-3)

Alternatively, Theodorsen’s function can be approximated by a simple polyno-

mial

C(k) ≈ 1 − 0.165

1 − 0.0455i

k

− 0.335

1 − 0.3i

k

(A1-4)

In the time domain, Theodorsen’s theory gives following formulations of lift and

moment coefficient of an oscillating airfoil

cL = 2πC(k)

[

α +
ḣ

V
+ b

(

1

2
− a

)

α̇

V

]

+ πb

[

α̇

V
+

ḧ

V 2
− abα̈

V 2

]

(A1-5)
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cM, c
2

= πC(k)

(

1

2
+ a

)

[

α+
ḣ

V
+ b

(

1

2
− a

)

α̇

V

]

+
π

2

[

abḧ

V 2
− b2

V 2

(

1

8
+ a2

)

α̈

]

− π

2

[(

1

2
− a

)

bα̇

V

]

(A1-6)

Since the equations A1-5 and A1-6 still contain the quasi-steady terms, they can

be written in a simplified form

cL = 2π
(

C(k) (α + αq) +
αu
2

)

(A1-7)

cM, c
2

= πC(k)

(

1

2
− a

)

(α + αq) + cM,u − cM,c (A1-8)

Use of Theodorsen’s theory is especially convenient in the frequency domain.

Assuming harmonic motion of an airfoil in pitch and plunge h = h0 e
iωt and α =

α0 e
iωt and using substitution ω = 2kV

c
, equations A1-7 and A1-8 become

cL = 2πC(k)

[

α +
hik

b
+

(

1

2
− a

)

αik

]

+ π

[

ikα− hk2

b
+ αak2

]

(A1-9)

cM, c
2

= πC(k)

(

1

2
+ a

) [

α+
hik

b
+

(

1

2
− a

)

αik

]

+
π

2

[

−hak
2

b
+

(

1

8
+ a2

)

αk2

]

− π

2

(

1

2
− a

)

αik

(A1-10)

Blade Aerodynamic Forcing

Using numerical integration, aerodynamic forcing moments can be expressed in

a form that can be used for a blade element model of an autorotating rotor
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Mψ,A =

Nelem
∑

i=1

[

1

2
ρciΩ

2r3
i [cLα,i sin φi (αi + αq,i) − cD,i cos φi] ∆ri

]

(A1-11)

Mβ,A =

Nelem
∑

i=1

[

1

2
ρciΩ

2r3
i [cLα,i (αi + αq,i) cosφi + cD,i sinφi] ∆ri

]

(A1-12)

Mθ,A =

Nelem
∑

i=1

[

1

2
ρc2iΩ

2r2
i

[(

yEA,i
ci

− 1

4

)

(cLα,i (αi + αq,i) cosαi + cD sinαi) + cM,i

]

∆ri

]

(A1-13)

Rotor pitching moment and rotor rolling moment are defined as follows [27]

LR =

Nb
∑

1

{

R
∫

0

rsinψdT
}

(A1-14)

MR =

Nb
∑

1

{

R
∫

0

−rcosψdT
}

(A1-15)

Blade aerodynamic forcing moments derived with the aid of analytical integra-

tion (i.e. homogeneous span-wise distributions of blade geometry and aerodynamic

properties are assumed) are [7; 27]

Mψ,A =
1

8
ρcΩ2R4

[

cLαφ

(

α +
4

3
αq

)

− cD

]

(A1-16)

Mβ,A =
1

8
ρcΩ2R4

[

cLα

(

α +
4

3
αq

)

+ φcD

]

(A1-17)

Mθ,A =
1

6
ρc2Ω2R3

[(

yEA
c

− 1

4

) (

cLα

(

α +
3

2
αq

)

cosα + cD sinα

)

+ cM

]

(A1-18)

The equations can be used in a simplified analytical model of autorotating rotor
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blade aerodynamics and are also essential for linear stability analysis of rotor blades.

APPENDIX A2. Polynomial Approximation of Ro-

tor Blade Aerodynamic Characteristics

Prouty’s polynomial approximation of NACA 0012 lift curve

Prouty’s amended compressibility correction

cLα =
C1√

1 −M2
+ C2M (A2-1)

For NACA 0012, C1 = 0.1deg−1 and C2 = −0.01deg−1. Prouty assumes that for a

low speed airflow, the slope of linear part of NACA 0012 lift curve is cLα = 5.73rad−1.

αL = C3 + C4M (A2-2)

For NACA 0012, C3 = 15deg and C4 = −16deg.

Hence, for values of angle of attack lower than αL (linear part of lift-curve) and

above αL, values of lift coefficient of the airfoil can be estimated as follows

cL = cLαα

cL = cLαα− C5 (α− αL)C6

(A2-3)

Prouty [8] suggests that dependence of the coefficient C6 on Mach number is

linear (see equation 3.15) and that for NACA 0012, the values of coefficients of the

linear equation are C7 = 2.05 and C8 = −0.95. Further, the coefficient C5 can be

calculated with the aid of equation 3.14.

Exponent C6 can be obtained by plotting the difference between the linear values

of the lift coefficient and measured non-linear lift coefficient (cLα0α−cL) against the
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difference of the actual angle of attack and αL with both axis in logarithmic scale

(see the figure A2-1). The slope of linear interpolation of points plotted for certain

Mach number is the desired coefficient C6 [8].

Figure A2-1: The difference between linear lift-curve lift coefficient and measured
non-linear lift coefficient plotted against α− αL. The plot uses logarithmic scale.

Prouty’s polynomial approximation of NACA 0012 drag

curve

Angle of attack of drag divergence can be computed as

αdiv = D1 +D2M (A2-4)

For NACA 0012 airfoil, angle of attack of the drag divergence is αdiv = 17 −

23.4M [8]. For Mach numbers lower than M=0.1, Prouty [8] gives following form of

the polynomial (values of α are in degrees)

cD,inc = 0.081 +
(

−350α+ 369α2 − 63.3α3 + 3.66α4
)

10−6 (A2-5)

Wind tunnel data published at [13] and by Carpenter [10] were used for refine-

ment of this polynomial. The resulting enhanced approximation of drag coefficient
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is shown below.

cD,inc = 0.081 − 6.03688 · 10−5α + 1.64211 · 10−4α2 − 5.21562 · 10−6α3 (A2-6)

If Mach number is higher than 0.1 and α < αD (i.e. airfoil is below drag diver-

gence), additional terms have to be used in order to capture the effects of compress-

ibility

cD,comp = cD,inc +D3 (α− αD)D4 (A2-7)

Values of the coefficients D3 and D4 that were obtained from experimental mea-

surements of NACA 0012 are dependent upon Mach number [8]. Using average

values of these coefficients, the equation A2-7 has following form

cD,comp = cD,inc + 0.00066 (α− (17 − 23.4M))2.54 (A2-8)

Prouty [8] uses a single form of fitting curve for the rest of range of angles of

attack (i.e. for α > 20deg) and assumes that drag coefficient of the airfoil during

reverse flow is not significantly different from drag coefficient for α ≈ 0

cD,α>20deg = 1.03 − 1.02cos(2α) (A2-9)

Polynomial approximation of NACA 0012 moment curve

Tabulated coefficients of polynomial approximation of pitching moment curve of

the NACA 0012 airfoil
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Table A2-1: Values of coefficients of polynomial approximation of NACA 0012 mo-
ment curve

M 0th order 1st order [rad−1] 2nd order [rad−2]
0.3 −5.319 · 10−5 −3.425 · 10−1 1.5213 · 101

0.4 −3.434 · 10−4 −6.751 · 10−2 6.622
0.5 −3.414 · 10−4 2.759 · 10−1 −9.262
0.6 5.178 · 10−4 −2.515 · 10−1 4.961
0.7 −4.5 · 10−4 −1.438 · 10−1 8.832
0.75 −1.146 · 10−4 −1.667 · 10−2 5.486
0.8 −3.335 · 10−3 3.307 −1.309 · 102

0.9 5.056 · 10−3 3.073 −9.636 · 101

M 3rd order [rad−3] 4th order [rad−4] 5th order [rad−5]
0.3 −1.875 · 102 9.468 · 102 −1.666 · 103

0.4 −1.195 · 102 8.375 · 102 −1.904 · 103

0.5 9.859 · 101 −2.442 · 102 −1.843 · 102

0.6 1.065 · 101 −1.564 · 102 0
0.7 −6.319 · 101 0 0
0.75 −1.139 · 102 0 0
0.8 1.59 · 103 −7.082 · 103 0
0.9 0 0 0

APPENDIX A3. Inflow Modelling in Autorotating

Rotors

Modified Glauert’s Semi-empirical Inflow Model

Two main conditions have to be fulfilled during a steady axial flight in autorota-

tion - rotor thrust has to be in balance with the weight of the vehicle and the overall

torque generated by the flow through the rotor disc has to be zero [31; 55].

T = Mg

Q = 0
(A3-1)

The thrust equation can be consequently used for calculation of rotor speed.

The inflow ratio can be computed once rotor speed is calculated with the aid of

the zero aerodynamic torque condition. An analytical or empirical relation between
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the vertical component of inflow velocity Up and the speed of descent Vd can be

used to estimate the rate of descent of a rotor in autorotation. This is equivalent

to the relationship of thrust coefficient based on resultant air velocity F and thrust

coefficient based on descending velocity f [31].

F =
T

2πR2ρU2
p

f =
T

2πR2ρV 2
d

f

F
=

(

Up
Vd

)2

(A3-2)

Several experimental measurements were carried out to determine the relation-

ship between
1

f
and

1

F
[31; 55] and some of them are summarised in figure A3-1

Figure A3-1: Different versions of the F-curve, graphical interpretation of the rela-
tionship between vertical component of inflow velocity and speed of descent

Nikolsky and Seckel [31] also gives an analytical approximation of relationship

between
1

f
and

1

F
(see figure A3-1).

1

f
= 2 ±K

1

F
(A3-3)

|K| ∈ 〈1, 2〉 (A3-4)
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A positive value of K corresponds to the windmill brake-state (i.e. the upper

branch of F-curve) and a negative K indicates that the rotor is in the vortex ring

state (VRS; the lower branch of F-curve) [31].

Rotor inflow ratio can be calculated as

λ =

−cLαEθ
4

+

√

(

cLαEθ

4

)2

+ 4
(cLαE

3
− cDE

2

)

(

cDE
4

+
2Q

NBρΩ2R4cE

)

2cLαE
3

− cDE

(A3-5)

Once the inflow ratio is calculated, the inflow speed can be obtained with the

help of the following equations

λD =

√

1

f

T

2πρΩ2R4

vi = ΩR (λD − λ)

(A3-6)

Some of the data sets obtained during the experimental measurements of a rotor

in autorotative flight suggest that Glauert’s linear approximation of the F-curve can

be improved or replaced with a more accurate approximation. The lower branch

of full-scale thrust experimental measurements that were published by Castles and

Gray [25] can be approximated with the aid of a linear function

(

1

f

)

L

= 3 − 2

F
(A3-7)

Polynomial fits of both the upper and the lower branches of the F-curve are
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(

1

f

)

U

=

(

2.2
1

F

)0.7

+ 3

(

1

f

)

L

= −0.3207

(

1

F

)4

− 1.846

(

1

F

)3

− 2.5336

(

1

F

)2

− 1.1336

(

1

F

)

+ 2.8834

(A3-8)

Table A3-1 shows predictions of rotor induced velocity and vehicle speed of

descent in axial flight obtained with the help of different empirical F-curves (see

figure A3-1).

Table A3-1: Comparison of outcomes of the semi-empirical inflow model for three
different versions of the F-curve

F-Curve VD [m/s] vi [m/s] Ω [rad/s]
Glauert 10.5 8.25 48.15

Georgia Institute of Technology 12 8.65 48.15
NACA TN 942 11.0 9.64 48.15

Modified Peters-HaQuang Dynamic Inflow Model

Time matrix and dynamic inflow static gain matrix can be written in the follow-

ing forms

[τ ] =





















4R

3πvtC0
0

−R tan
χ

2
12um

0
64R

45um (1 + cosχ)
0

5R tan
χ

2
8vt

0
64R cosχ

45um (1 + cosχ)





















(A3-9)

[Λ] =
1

ρπR3





















R

2vt
0

15π tan
χ

2
64um

0
−4

um (1 + cosχ)
0

15π tan
χ

2
64vt

0
−4 cosχ

um (1 + cosχ)





















(A3-10)
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Total velocity at the rotor disc centre is [24]

vt =
√

V 2
x + V 2

y + (Vz − vh)
2 (A3-11)

The mass flow parameter is defined as [24]

um =
V 2
x + V 2

y + (2vh − Vz) (vh − Vz)

vt

vh =

√

T

2ρA

(A3-12)

The wake skew angle can be calculated with the aid of the following equation [24]

χ = tan−1
(

√

V 2
x + V 2

y

vh − Vz

)

(A3-13)

Total induced velocity at azimuth angle ψ and radial station x is then [24]

vi = vi0 + vicx cosψ + visx sinψ (A3-14)

APPENDIX A4. Rotor Blade Structural Dynamics

Euler equations of motion

ixθ̈ − (Jy − Jz) β̇Ω = Mθ,A

Jyβ̈ − (Jz − ix) θ̇Ω +MbyCGaz = Mβ,A

JzΩ̇ − (ix − Jy) β̇θ̇ −MbyCGay = Mψ,A

(A4-1)

Lagrange’s Method

In general, Lagrange’s equation has the following form [11; 27]

d

dt

(

∂T

∂q̇G

)

− ∂T

∂qG
+
∂U

∂qG
+
∂D

∂q̇G
= FG (A4-2)
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For one degree of freedom problem, differential equation of motion can be written

in the following form [11; 27]

mq̈G + cq̇G + kqG = FG (A4-3)

The above equation can be modified in order to obtain more useful form of the

equation above [11]

q̈G + 2ζωN q̇G + ω2
NqG =

FG
m

ζ =
c

ccrit

ωN =

√

k

m

(A4-4)

The figure A4-1 depicts the principle of coordinate transformation. Coordinate

system x1y1z1 was created by rotation of the original system x0y0z0 around z axis.

Figure A4-1: An example of transformation of coordinates from rotating frame of
reference to non-rotating one
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As the figure A4-1 shows, the relation between new and old coordinates of point

P are given by [11]

xP1 = xP0 cosα + yP0 sinα

yP1 = yP0 cosα− xP0 sinα

zP1 = zP0

(A4-5)

Resulting transformation matrix is

[T ] =











cos (ψ+ξ) cos β − cos (ψ+ξ) sin θ sinβ−sin (ψ+ξ) cos θ − cos (ψ+ξ) cos θ sinβ+sin (ψ+ξ) sin θ

sin (ψ+ξ) cos β − sin (ψ+ξ) sin θ sinβ+cos (ψ+ξ) cos θ − sin (ψ+ξ) cos θ sinβ−cos (ψ+ξ) sin θ

sinβ sin θ cos β cos θ cos β











(A4-6)

If all blade hinge offsets are considered to be negligible, position vector of an

arbitrary point of blade axis of inertia is

r0 = [r yg 0]

yg = yEA − yCG

(A4-7)

If the blade element method is used for calculation of blade aerodynamic forcing,

it is convenient to calculate blade kinetic energy by summation of kinetic energies

of individual blade elements. Blade elements can be modeled as uniform, infinitely

thin beams or lumped masses and an assumption can be made that blade physical

properties are constant along each blade element.

T =

Nelem
∑

i=1

{

1

2
mi (ṙi · ṙi)

}

(A4-8)

The potential energy of a rotor blade consists of an elastic component and a

gravitational component.
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U = Ue + Ug (A4-9)

Elastic component of potential energy represents the strain energy due to a

deformation of blade structure.

Ue =
1

2

(

kββ
2 + kθθ

2 + kξξ
2
)

(A4-10)

The effect of gravitational forces on rotor blade dynamics is usually neglected

since centrifugal forces acting on a blade are much bigger. Gravitational component

of potential energy of i-th blade element can be expressed as follows

Ug = mg (r + r sin β + (yg + r sin ξ) sin θ) (A4-11)

Figure A4-2 shows the way gravitational component of rotor blade potential

energy can be calculated.

Figure A4-2: Potential energy of a rotor blade due to gravitational force

A dissipation function can be understood as a measure of amount of damping

that is present in a physical system. For a rotor blade, the dissipation function can

be written in the following form

D =
1

2

(

cββ̇
2 + cθθ̇

2 + cξ ξ̇
2
)

(A4-12)
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APPENDIX A5. Linearization of Blade Equations

of Motion and Eigenvalue Analysis

Neglecting small terms, the final form of the linearized equations of blade motion is

m
[

r2β̈B1 + rygθ̈
B2 − Ω2r2βB3 − Ω2rygθ

B4 + rygΩ̇β
B5 + y2

gΩ̇θ
B6 + 2rygΩ

2θB14

+ rgB15
]

+ kββ
B16 + cββ̇

B17 = MB18
β,A (A5-1)

m
[

y2
g θ̈
T1 + rygβ̈

T2 + Ω2rygβ
T3 + Ω2y2

gθ
T4 − rygΩ̇θ

T5 + y2
gΩ̇β

T6 + ygg
T10

]

+ kθθ
T11

+ cθθ̇
T12 = MT13

θ,A (A5-2)

m(r2 + y2
g)Ω̇

R1 = MR17
ψ,A (A5-3)

Aerodynamic forcing moments can be derived from the equations A1-16 - A1-18.

Blade torsional deflection, the inflow angle and the angle of attack were assumed to

be small.

Mψ,A =
1

8
ρcΩ2R4

[

cLαφ

(

α +
4

3
αq

)

− cD

]

(A5-4)

Mβ,A =
1

8
ρcΩ2R4

[

cLα

(

α +
4

3
αq

)

+ φcD

]

(A5-5)

Mθ,A =
1

6
ρc2Ω2R3

[(

yEA
c

− 1

4

) (

cLα

(

α +
3

2
αq

)

+ cDα

)

+ cM

]

(A5-6)

The following simplified expression of the blade drag coefficient can be adopted
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cD ≈ δ0 + δ1α+ δ2α
2 (A5-7)

The equations of aerodynamic forcing then become

Mψ,A =
1

8
ρcΩ2R4cLαφα+

1

6
ρcΩR3cLαφ

(

−β̇ +

(

3c

4
− yEA

)

θ̇

)

−1

8
ρcΩ2R4

(

δ0 + δ1α+ δ2α
2
)

(A5-8)

Mβ,A =
1

8
ρcΩ2R4cLαα+

1

6
ρcΩR3cLα

(

−β̇ +

(

3c

4
− yEA

)

θ̇

)

+
1

8
ρcΩ2R4φ

(

δ0 + δ1α + δ2α
2
)

(A5-9)

Mθ,A =
1

6
ρc2Ω2R3

(

yEA
c

− 1

4

)

cLαα +
1

4
ρc2ΩR2

(

yEA
c

− 1

4

)

cLα

(

−β̇ +

(

3c

4
− yEA

)

θ̇

)

+
1

6
ρc2Ω2R3

(

yEA
c

− 1

4

)

(

δ0 + δ1α + δ2α
2
)

α +
1

6
ρc2Ω2R3cM

(A5-10)

Resulting system of equations of motion of a single cantilever blade of a rotor in

autorotation can be written in the following form

[M ] =





r2mB1E mryB2E
g

mryT2E
g

(

my2
g + ix

)T1E



 (A5-11)

[K] =





kB16E
β −mΩ2r2,B3E m[−Ω2ryB4E

g + 2rΩ2yB14E
g ]

mΩ2ryT3E
g kT11E

θ +mΩ2y2,T4E
g



 (A5-12)

[C] =





cB17E
β 0

0 cT12E
θ



 (A5-13)
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[A] =
1

6
ρcΩR3









−cLα cLα

(

3c

4
− yEA

)

3c

2R

(

yEA
c

− 1

4

)

cLα
3c

2R

(

yEA
c

− 1

4

)

cLα

(

3c

4
− yEA

)









(A5-14)

[B] =
1

8
ρcΩ2R4







0 cLα

0
4c

3R

(

yEA
c

− 1

4

)

(cLα + δ0)






(A5-15)

Following equation 3.46, individual coefficients of the characteristic equation of

the blade are

Ā4 = MββMθθ −MθβMβθ (A5-16)

Ā3 = Mββ (Cθθ − Aθθ) +Mθθ (Cββ − Aββ)−Mβθ (Cθβ −Aθβ)−Mθβ (Cβθ − Aβθ)

(A5-17)

Ā2 = Mββ (Kθθ −Bθθ) + (Cββ − Aββ) (Cθθ −Aθθ) +Mθθ (Kββ − Bββ)

−Mβθ (Kθβ − Bθβ) − (Cβθ −Aβθ) (Cθβ −Aθβ) −Mθβ (Kβθ − Bβθ) (A5-18)

Ā1 = (Cββ −Aββ) (Kθθ − Bθθ) + (Kββ − Bββ) (Cθθ − Aθθ)

− (Cβθ − Aβθ) (Kθβ −Bθβ) − (Kβθ − Bβθ) (Cθβ − Aθβ) (A5-19)

Ā0 = (Kββ − Bββ) (Kθθ −Bθθ) − (Kβθ − Bβθ) (Kθβ −Bθβ) (A5-20)
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APPENDIX A6. Application of the Finite Element

method

Cubic shape function is defined as follows [49].

S1 = 3

(

ri+1 − r

li

)2

− 2

(

ri+1 − r

li

)3

S2 = 1 − S1 = 3

(

r − ri
li

)2

− 2

(

r − ri
li

)3
(A6-1)

Corresponding mass and stiffness matrices and the forcing vector are

[Ki] = GJ







6

5li

−6

5li−6

5li

6

5li






(A6-2)

[Mi] = ix,i







13li
35

9li
70

9li
70

13li
35






(A6-3)

{fi} = fi

{ li
2
li
2

}

(A6-4)

Behaviour of the cubic shape function is very similar to behaviour of square

cosine shape function (see figure 3.14).

S1 = cos2

(

π

2
(ri+1 − r)

li

)

S2 = 1 − S1 = cos2

(

π

2
(r − ri)

li

)

(A6-5)

Corresponding mass and stiffness matrices and forcing vector are

[Ki] = GJ







π2

8li

−π2

8li
−π2

8li

π2

8li






(A6-6)
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[Mi] = ix,i







3li
8

li
8

li
8

3li
8






(A6-7)

{fi} = fi

{ li
2
li
2

}

(A6-8)

The quartic shape function is defined as follows.

S1 = 6

(

ri+1 − r

li

)2

− 8

(

ri+1 − r

li

)3

+ 3

(

ri+1 − r

li

)4

S2 = 1 − S1

(A6-9)

Application of the quartic shape functions leads to

[Ki] = GJ







48

35li

−36

35li−36

35li

48

35li






(A6-10)

[Mi] = ix,i







17li
35

17li
70

17li
70

17li
35






(A6-11)

{fi} = fi

{ 3li
5
3li
5

}

(A6-12)

Gaussian shape function is another type of shape function and its definition can

be found below.

S1 =
e
−9

(ri+1 − r

li

)

− e−9

1 − e−9

S2 = 1 − S1

(A6-13)

The exponential shape function is similar to the Gaussian type of shape function

but it is more generic. It is identical with Gaussian shape function for αx →
1

3
.
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S1 = e
−

(ri+1 − r

li

)

/αx

S2 = 1 − S1

(A6-14)
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