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Abstract 
 
In the present study, the function and the mechanism of action of RGS4, a member of a 

family of proteins called Regulators of G protein Signalling (RGS) was investigated.   

A C-terminal fluorescent tag on RGS4 confirmed that transiently transfected RGS4 was 

predominantly cytosolic and underwent translocation to the plasma membrane of 

HEK293T cells following co-expression of Gαi1, the α2A-adrenoceptor, or agonist activated 

α2A-adrenoceptor.  This translocation of RGS4 to the plasma membrane was most 

pronounced with the co-expression of the constitutively active GTPase deficient Gαi1
Q204L.   

 

High-affinity GTPase experiments indicated that RGS4S30C had enhanced GAP activity 

towards Gαo1 compared to wild type RGS4.  This approach also demonstrated a 

simultaneous significant decrease in potency of both adrenaline and UK14304 to increase 

α2A-arenoceptor-activated high-affinity GTPase activity of Gαo1 in the presence of RGS4 

and a further significant decrease in potency of both ligands in the presence of RGS4S30C.  

This enhanced GAP activity and observed decrease in agonist potency was also 

transferable to RGS16, an RGS protein closely related to RGS4.  The selectivity of the Gα 

subunit was also investigated.  The enhanced GAP activity and simultaneous significant 

decrease in potency of adrenaline and UK14304 to increase α2A-arenoceptor-activated 

high-affinity GTPase activity of RGS4S30C and RGS16S30C was selective for Gαo1 over 

Gαi1.  RGS4S30K and RGS4S30F also demonstrated higher GAP activity than wild type 

RGS4 but no consensus side chain could be identified that conferred a specific 

enhancement or loss of GAP activity. 

 

The ability to inhibit intracellular calcium release by an activated α1b-adrenoceptor-Gα11 

fusion protein was used in order to investigate the GAP activity of RGS4N88S, RGS4N128A 

and RGS4N88S,N128A.  All three mutants had ablated GAP activity towards Gα11 and 

therefore failed to inhibit intracellular calcium release. 

 

A novel role for the RGS insensitive mutation G188S was also observed when despite 

similar expression, Gα11
G188S significantly reduced agonist-stimulated [35S]GTPγS binding 

compared to wild type Gα11.  

 

RGS4 represents a novel target for pharmaceutical drug development and the study of its 

regulation of signal transduction is an important area of investigation.  These results 

highlight specific areas of RGS4 research with great pharmaceutical potential. 
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AC  adenylyl cyclase  

AH   amphipathic helix 

βCat  β-catenin interacting domain 
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GAIP  Gα-interacting protein   
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GFP  green fluorescent protein  
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GOF  gain-of-function  
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HEK  human embyonic kidney  
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PCR   polymerase chain reaction 

PDEγ  phosphodiesterase γ  

PDZ  PSD-95 Disk-Large ZO-1 

PH  pleckstrin homology domain 

PIP3  phosphatidylinositol 3,4,5-trisphosphate   

PIP2  phosphatidylinositol 4,5-bisphosphate  

PKA  protein kinase A  

PKC  protein kinase C  

PLCβ  phospholipase C β  

PMCA  plasma membrane Ca2+-ATPase 

PP2A  phosphatase 2A 

P. tox  pertussis toxin  

PBS  phosphate-buffered saline 

PTB  phospho-tyrosine binding domain 

PX  phosphatidylinositol binding domain 

PXA   phosphatidylinositol-associated domain 

RBD  rap1/2 - or ras binding domain 

RGS  regulator of G protein signalling  
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1 Chapter 1  

1.1 GPCRs 

Cellular activity is regulated by a variety of receptors.  The largest of these receptor 

families is the G protein coupled receptors (GPCRs).  These are seven transmembrane 

domain receptors that serve to transduce signals from the extracellular to the intracellular 

environment.  GPCRs account for more than 30% of drug targets under investigation by 

the pharmaceutical industry (Klabunde and Hessler, 2002;Fredriksson et al., 2003).  

Ligands for these receptors are highly specific and include hormones, neurotransmitters, 

chemokines, calcium, odorants, taste and light (Pierce et al., 2002).  Over 800 GPCRs have 

been revealed to be encoded by the human genome and are found throughout the body.  As 

such, these receptors serve key regulatory functions for a large number of biological 

processes. 

1.2 G proteins  

GPCRs are associated with guanine nucleotide binding proteins (G proteins).  G proteins 

are heterotrimeric and consist of α, β and γ subunits. To date, there are over 20 different 

Gα proteins encoded by over 16 different genes that are divided into four families;  Gαs 

(Gαs and Gαolf), Gαi, (Gαi1, G αi2, Gαi3, Gαo, Gαz, Gαt-cone, Gαt-rod and Gαgust) Gαq, (Gαq, 

Gα11, Gα14, and Gα16) and Gα12 (Gα12 and Gα13) based on the sequence similarity of the α 

subunit (Cabrera-Vera et al., 2003). 5 different Gβ and 12 different Gγ subunits have also 

been discovered (Neer, 1995;Milligan and Kostenis, 2006).  It is generally accepted that 

ligand binding to the receptor produces G protein activation.  The resulting conformational 

change of the three ‘switch’ regions of the Gα subunit promote the exchange of guanine 

diphosphate (GDP) for guanine triphosphate (GTP) and the dissociation of the Gα subunit 

from the βγ subunits.   Alternatively, Bunemann et al., suggested that the Gα subunit and 

the Gβγ dimer do not physically dissociate during activation of the receptor (Bunemann et 

al., 2003).  Instead, a molecular rearrangement may take place after the GDP to GTP 

exchange, allowing the Gβγ to stay complexed to the Gα subunit.  Whichever 

physiological process takes place, both the Gα subunit and the Gβγ dimer are then active 

and can stimulate or inhibit effector proteins such as adenylyl cylcase, phospholipases and 

a variety of ion channels (Gudermann et al., 1997;McCudden et al., 2005).  Intrinsic 

GTPase activity of the Gα subunit hydrolyses the bound GTP to GDP, resulting in the 
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reassociation of the G protein heterotrimer and prevention of further signalling (Figure 

1.1). 

The Gαi/o subfamily of G proteins are sensitive to treatment with pertussis toxin (P. tox).  

P.tox is one of the major virulence determinants produced by Bordetella pertussis, 

catalysing the transfer of an ADP-ribose group from NAD onto a cysteine residue four 

amino acids from the C-terminal of the Gαi/o subunit (cysteine351) (Lochrie et al., 1985).  

The addition of a bulky side group to the Gαi/o subunit makes the Gα subunit unable to 

contact GPCRs, and renders it inactive. 

Mutating cysteine351 of the P. tox sensitive Gα subunits can confer resistance to P. tox 

treatment.  A hydrophobic residue at position 351 of the Gα subunit is crucial to give 

optimal interactions between GPCRs and G proteins (Bahia et al., 1998).  Mutation to 

other residues, including isoleucine, offers P. tox resistance, and following expression of 

the α2A-adrenoceptor-Gαi1
C351I fusion protein, cells treated with P. tox have inactive 

endogenous Gαi/o proteins and agonist activation reflects only the G protein of interest in 

the experimental system. 

1.3 GPCR desensitisation and internalisation 

Following ligand binding to the GPCR, and G protein activation, GPCRs become 

desensitised and lose cellular activity (Ferguson, 2001).  Short-term desensitisation is 

mediated, in part, by the phosphorylation of residues within the C-terminal tail of GPCRs, 

or within the third extracellular loop of GPCRs with small C-termial tails without potential 

phosphorylation sites, by G protein receptor kinases (GRKs).  Long-term loss of cellular 

sensitivity can involve the down regulation of receptors by protein degradation and 

decreased receptor synthesis.  The C-terminal tail of many GPCRs contain several serine 

and theronine residues that can determine the intracellular trafficking and fate by providing 

phosphorylation sites for several protein kinases (Smith and Scott, 2002). 

There are currently seven GRK family members, and although no consensus site for GRK 

activity has been determined, the presence of acidic amino acids proximal to the 

phosphorylation site favours GRK2 mediated phosphorylation (Chen et al., 1993).  It is 

also known that GRKs preferentially phosphorylate receptors that are in the agonist-

occupied conformation (Luttrell and Lefkowitz, 2002). 



  17 

Phosphorylation of receptors by GRKs increase the affinity of the receptor for arrestins.  

Arrestin binding sterically hinders G protein coupling with the receptor, serving to 

uncouple the receptor from the G protein and target the receptor for endocytosis (Benovic 

et al., 1987).   

Receptor endocytosis is followed by the targeting of the receptor to either recycling 

pathways, for proteasomal degredation or to lysosomes for degradation (Kristiansen, 

2004).  Receptor resensitisation involves receptor dephosphorylation and dissociation from 

its ligand. The time frame over which these events occur for GPCR phosphorylation is 

minutes for receptor internalisation and hours for receptor down regulation. 

1.4 RGS proteins 

The intrinsic GTPase activity of the Gα subunit does not correlate to the physiological rate 

of G protein inactivation.  Discovery of the product of the yeast gene Ssst2 that could 

negatively regulate heterotrimeric G protein signalling indicated that extrinsic factors 

might also regulate the G protein cycle (Dietzel and Kurjan, 1987;Dohlman et al., 1996).  

This regulation of G proteins is not confined to Saccharomyces cerevisiae.  Similar genes 

were identified in the fungal organism Aspergillus nidulans (flbA) (Lee and Adams, 1994), 

and the nematode Caenorhabditis elegans (egl-10) (Koelle and Horvitz, 1996).  These 

regulatory proteins were recognised to share a novel conserved domain and mammalian 

genes have now also been isolated and termed regulators of G protein signalling (RGS) 

proteins.  To date, more than 37 mammalian RGS genes have been named, all containing 

the novel RGS domain (Siderovski and Willard, 2005).  

RGS proteins, termed GAPs due to their ability to enhance the intrinsic GTPase activity, 

regulate GPCR-mediated signalling through their interaction with Gα subunits.  

Biochemical and crystallography experiments revealed that RGS proteins preferentially 

bind to the transition state of the Gα protein that occurs immediately before the hydrolysis 

of GTP. The crystal structure of RGS4 complexed with Gαi1-GDP-AlF4- (a stable mimic of 

Gα-GTP) revealed that the RGS domain forms a nine-alpha-helix bundle that contacts Gαi1 

at three distinct sites (Tesmer et al., 1997;Ross and Wilkie, 2000).  Two surface residues of 

Gαi1 (threonine182 and glycine183) appear essential for high-affinity Gα-RGS interaction, 

although other residues are also important (DiBello et al., 1998;Posner et al., 1999).   
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RGS activity may therefore be used to recycle Gα to increase the concentration of inactive 

Gα that can be reactivated by GPCRs (Zhong et al., 2003).  Thus, RGS proteins increase 

the rate of GTP hydrolysis and consequently inhibit signalling. The discovery of RGS 

proteins shows the importance of model organisms in revealing complex signalling 

mechanisms which can be transferred to more complex mammalian systems. 

1.5 Structure and classification of RGS proteins 

Proteins containing the RGS domain or RGS-like domain have been classified into eight 

sub-families. A or RZ;  B or R4;  C or R7;  D or R12;  E or RA;  F or GEF;  G or GRK 

and H or SNX.  Additionally, D-AKAP2 (dual A kinase anchoring protein 2) and RGS22, 

which contain multiple RGS domains, have not been classified.  Most members of the 

A/RZ or B/R4 subfamily are small, 20-30 kDa proteins that contain short N- and C-

terminal regions flanking the RGS domain.  Members of the C/R7, D/R12, E/RA, F/GEF, 

G/GRK and H/SNX subfamilies (except RGS10) are much longer proteins, commonly up 

to 160 kDa, and contain multiple domains (Figure 1.2). 

RGS21 of the B/R4 sub-family is the smallest known RGS protein consisting of little more 

than an RGS domain (von Buchholtz et al., 2004).  In contrast, RET-RGS1 contains an N-

terminal cysteine rich region and a putative transmembrane region.  This region is likely to 

be involved in membrane targeting and attachment, protein-protein interaction and possible 

integration into the plasma membrane (Faurobert and Hurley, 1997;Jones, 2004).  RGS9-2, 

the longer splice variant of RGS9, has a long C-terminal which functions as an ‘affinity 

adapter’ increasing the affinity of the RGS proteins to Gαo (Martemyanov et al., 2003).  

The shorter splice variant (RGS9-1), does not contain this long C-terminal but instead the 

effector enzyme phosphodiesterase γ (PDEγ) increases the affinity between the RGS 

protein and its retinal-specific G protein target Gαt.   Only the RGS domain seems 

necessary and sufficient to confer GAP activity of RGS proteins but other domains can 

affect RGS proteins by altering the GAP activity, increasing receptor specificity, 

determining the cellular localisation, acting as effector antagonists or influence signal 

transduction mediated by GPCR activation.   

1.5.1 PDZ Domain 

Of the other domains in RGS proteins, the most frequently found is the PSD-95 disk-large 

ZO-1 (PDZ) domain.  This 90 amino acid domain facilitates protein-protein interactions 
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through its highly conserved glycine-leucine-glycine-phenylalanine repeated motif.  Found 

in clusters of multiprotein signalling complexes, the PDZ domain of RGS12 has been 

found to selectively bind the chemokine receptor CXCR2 (Snow et al., 1998b).   

1.5.2 GGL Domain 

The G-protein γ subunit-like (GGL) domain is found in a number of RGS proteins, 

including RGS6, RGS7, RGS9 and RGS11.  It is a 64 amino acid domain with a high 

degree of similarity to the Gγ subunit.  Resembling a Gγ subunit allows this domain to 

form dimers with a number of other G protein subunits.   An RGS9-Gβ5 dimer is thought 

to be involved in the stabilising of the protein complex and subsequently the GAP activity 

of the RGS protein (Snow et al., 1998a). 

1.5.3 GoLoco Domain 

Comparable to RGS domain, the Gαi/o-loco-interacting (GoLoco) domain inhibits G 

protein signalling.  By binding directly to Gα subunits, the 19 amino acid domain stabilises 

the Gα-GDP form of the G protein and prevents GTP from binding.  Acting as a guanine 

nucleotide dissociation inhibitor (GDI), G protein signalling is decreased.  RGS14 contains 

this GoLoco domain, and signalling inhibition of Gαi was attained when this domain was 

present.  However, both the RGS domain and the GoLoco domain are necessary for 

maximum inhibition (Mittal and Linder, 2004). 

1.5.4 DEP Domain 

The importance of the disheveled EGL-10 pleckstrin (DEP) domain was exemplified in the 

discovery that this 70 amino acid domain in RGS7 can bind synaptin.  Synaptin in turn, 

interacts with synaptosomal-associated protein of 25 kDa, a component of 

the soluble N-ethylmaleimide–sensitive factor attachment protein receptor complex, 

suggesting a role for RGS7 in synaptic vesicle exocytosis (Riddle et al., 2005). Synaptin 

has also been discovered to bind to adenylyl cyclase (AC) and perhaps these complexes 

can come together allowing RGS7 to regulate cAMP levels (Chou et al., 2004). 
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1.6 Regulation of RGS proteins 

The large number of RGS proteins and their multiple domains means that the activity of 

these proteins must be tightly regulated to maintain specificity within the cell.  The 

mechanisms for this regulation are complex and developments in this area of research are 

still ongoing.  Little is known about the functional consequences of this regulation but it is 

important that the direct protein-protein interactions within signalling components are 

elucidated for their potential as therapeutic targets. 

1.6.1 Expression of RGS proteins 

The transcripts of several RGS proteins have been shown to be dynamically regulated by 

various signals to offer feedback regulation to GPCR signalling (Ingi et al., 

1998;Kardestuncer et al., 1998;Pepperl et al., 1998).  Dopamine D1 receptor agonists 

increase RGS2 mRNA, whereas dopamine D2 receptor agonists result in a decrease in 

RGS2 mRNA but increase RGS4 mRNA (Taymans et al., 2003).  This suggests that RGS2 

and RGS4 must couple preferentially to D1 and D2 receptors respectively to exert distinct 

functions.  

The activation of the µ- or κ-opioid receptors expressed in PC12 cells can also increase the 

level of RGS4 mRNA.  This regulation of the opioid-signalling pathway could contribute 

to the desensitisation of opioid signalling and is perhaps a valuable area for future study in 

the combat of morphine and cocaine addiction (Nakagawa et al., 2001).  

Differences in expression patterns of RGS proteins in tissues add another layer of 

complexity to regulation of RGS proteins.  Some RGS proteins have ubiquitous 

expression, for example, RGS5 has been detected in heart, skeletal muscle, pericyte and a 

variety of sub-regions within the brain (Wieland and Mittmann, 2003;Li et al., 2004;Jean-

Baptiste et al., 2005a;Jean-Baptiste et al., 2005b). RGS8 however, seems only to be 

expressed in the brain (Moratz et al., 2004;Kurrasch et al., 2004).   

As mentioned previously, RGS9 has two splice variants.  RGS9-1 is expressed 

predominantly in the retina where it regulates rhodopsin signalling (Nagata et al., 2001).  

RGS9-2 is appropriately located in the brain to play its role in opioid signalling. Restricted 

tissue distribution and alternative splicing is therefore also a major factor in conferring 
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specificity of RGS action and together with the regulation of RGS expression levels may 

have a major physiological relevance for future pharmaceutical development. 

1.6.2 RGS localisation 

Differences in expression patterns of RGS proteins may also take place at the subcellular 

level.  Some RGS proteins are compartmentalised with other signalling components to 

further regulate signalling.  Limited subcellular distribution of RGS proteins has been 

shown in a number of instances.  Surprisingly the nucleus of cells, although distant from 

other signalling components, has been reported to be a storage area for some RGS proteins. 

In fact, cytosolic localisation of RGS proteins may actually result from the competition 

between nuclear import and export signals located in the N-terminal of a number of RGS 

proteins (Chatterjee and Fisher, 2000;Heximer et al., 2001).  After PKA phosphorylation at 

its C-terminus, RGS10 translocates to the nucleus, making it unable to facilitate or impede 

signalling (Burgon et al., 2001).  RGS12TS-S is expressed in punctate nuclear foci.  The 

underlying mechanism for this seems unclear, but many tumour suppressor proteins also 

have this expression pattern and for that reason it has been suggested that RGS12 may 

have an important role in cell cycle events (Chatterjee and Fisher, 2000).  The translocation 

of RGS proteins from one cellular compartment to another has been suggested to very 

rapidly.  For RGS protein to have their desired effect, this process must be rapid, to allow 

the RGS protein to be translocated at the plasma membrane immediately after receptor 

activation.  Indeed, translocation of RGS4 from the cytoplasm to the plasma membrane is 

so fast that, to date, no researcher has been able to measure the speed of translocation.  No 

real time footage of translocation has ever been published, although it is widely accepted 

that such footage would be a break through in RGS research.   However, translocation 

from the nucleus to the cytoplasm has been reported to be slower.  RGS14, for example 

translocates from the nucleus to the cytoplasm in less than 30 minutes (Hepler et al., 2005).  

1.6.2.1 Interaction with Gα 

In some cases RGS proteins are preferentially located at the plasma membrane in an ideal 

location to allow interaction with Gα subunits and carry out their function as inhibitors of 

G protein signalling.  In particular, upon G protein activation RGS3 is translocated from 

the cytosol to the plasma membrane (Cheever et al., 2001).  RGS2 and RGS4 also follow 

this translocation pattern; however, the activation of G proteins seems irrelevant.  The G 

protein subtype seems particularly important in the cellular movement of RGS2 and RGS4 
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(Roy et al., 2003).  In HEK293 cells transfected with RGS2, RGS2 translocated to the 

plasma membrane when cells were cotransfected with Gαq or Gαs but not Gαi1.  In contrast, 

RGS4 translocated to the plasma membrane when cotransfected with Gαi1 but not Gαq or 

Gαs (Roy et al., 2003). 

The large number of different RGS proteins quickly ruled out the possibility of one RGS 

protein interacting with only one Gα subtype.  Diverse RGS proteins such as RGS1, RGS4, 

RGS10 and RGS19 all act on both the Gαq and Gαi class of G proteins. However, some 

RGS proteins are only capable of acting as GAPs on very specific Gα subunits.  For 

example, RGSZ2 displays specificity for Gαz subunits (Mao et al., 2004) and RGS2 

appears to preferentially act on Gαq subunits.    

As mentioned previously, the threonine at position 182 in Gαi is particularly important for 

high-affinity Gα-RGS binding.  In fact, this residue is highly conserved among Gαi and 

Gαq but not Gαs.  This may explain the specificity of some RGS proteins.  

Some RGS proteins can discriminate between the two highly related Gαq family subunits, 

Gαq and Gα11.  Using a yeast based assay, Ladds et al., was the first to demonstrate RGS-

Gαq selectivity (Ladds et al., 2007). Despite similar Gα expression levels, RGS16 and 

RGS5 are unable to reduce signalling from Gα11 but are able to reduce signalling from Gαq.  

Gαq and Gα11 share 98% homology and future studies should identify the regions 

responsible for this selective inhibition. 

1.6.2.2 Interaction with GPCRs 

The selective binding and consequent recruitment of RGS proteins to the plasma 

membrane often seems to include the involvement of GPCRs.  Evidence suggests that 

interactions between GPCRs and all subfamilies of RGS proteins exist.  One noteworthy 

study used confocal microscopy to show that RGS2 was translocated to the plasma 

membrane of HEK293 cells in response to transient expression of the angiotensin II AT1 

receptor or the β2-adrenergic receptor.  Similarly, RGS4 was recruited to the plasma 

membrane when the M2 muscarinic receptor was also expressed (Roy et al., 2003).  

Subsequently, investigations have studied the direct binding of RGS proteins to receptors.  

Snow et al., demonstrated that the PDZ binding motif at the C-terminal of RGS12 interacts 

with CXCR2 (Snow et al., 1998b).  A model was proposed in which the RGS12 GAP 
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activity was auto-inhibited.  However, the recruitment of the PDZ domain of RGS12 to the 

receptor stops this inhibition and allows the GAP activity of Gαi/o. As mentioned 

previously, a number of other RGS proteins contain this PDZ domain, and it is likely that 

this will show binding selectivity to other relevant receptors.  

Co-immunoprecipitation studies have also detailed some of the selectivity that exists 

between GPCRs and RGS proteins.  The N-terminus of RGS2 binds to the third 

intracellular loop of the M3 muscarinic receptors.  This binding was also seen for another 

member of the B/R4 family of RGS proteins, RGS16, but not for another member of this 

family, RGS1 (Bernstein et al., 2004).   

Receptor specific inhibition of signalling has also been shown for many RGS proteins.  

Studies in oocyte expression systems have suggested that the N-terminal of RGS8 is 

responsible for its ability to inhibit signalling by either the M1 muscarinic receptor or the 

substance P receptor but not the M3 muscarinic receptor (Saitoh et al., 2002).  In chinese 

hamster ovary (CHO) cells expressing RGS4, RGS10 or RGSZ1, there was effective 

inhibition in response to activation of the 5-HT1A receptor but less effective inhibition 

against the dopmaine D2 receptor despite both receptors coupling via Gαi (Ghavami et al., 

2004).   This phenomenon was also seen by Xu et al., when RGS1 was a 1000-fold more 

potent inhibitor of Gαq/11 intracellular calcium ([Ca2+]i) mobilisation from the muscarinic 

receptors than the cholecystokinin receptors (Xu et al., 1999).  Indeed, this study also 

showed receptor selectivity of RGS4.  In permeabilized rat pancreatic acinar cells, 

cholinergic receptors showed 3- and 10-fold higher apparent affinity to RGS4 than 

bombesin and cholecystokinin receptors (Xu et al., 1999).  Localisation of RGS proteins in 

precise cellular compartments can increase the specificity of an RGS protein for G proteins 

or GPCRs.  The precise mechanisms for this specificity vary but tend to involve regions 

outwith the RGS domain and may often involve other auxiliary proteins. 

1.6.2.3 Oligomeric GPCRs 

It is now generally accepted that GPCRs form dimers or higher order oligomers (Hebert 

and Bouvier, 1998;Park et al., 2004).  Several studies have demonstrated GPCR 

oligomerisation using biochemical and biophysical techniques (Lavoie et al., 2002;Lee et 

al., 2003;Javitch, 2004;Milligan et al., 2004a;Milligan et al., 2004b). Atomic force 

microscopy of native mouse membranes has also observed rhodopsin receptors in an 

oligomeric array of closely packed dimers (Liang et al., 2003;Fotiadis et al., 2003).  This 
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was the first conclusive evidence that receptor dimers exist in native membranes.  Four 

rhodopsin receptors seem to be complexed with two transducin proteins (Park et al., 2004).  

However, the physiological relevance of oligomeric GPCRs and multiple Gα subunits on 

RGS regulation is still unclear.   

RGS14 contains an RGS domain and a GoLoco domain, both of which inhibit G protein 

signalling by binding directly to Gα subunits, perhaps suggesting simultaneous regulation 

of multiple Gα subunits, and an involvement with oligomeric GPCRs.  Hepler et al., 

researched the activity of RGS4 when a truncated form of RGS14 containing the GoLoco 

domain but lacking the RGS domain was present (Hepler et al., 2005).  This mutant 

increased the GAP activity of RGS4 and it has been suggested that the binding of the 

truncated RGS14 to one G protein may increase the affinity of RGS4 to bind to another G 

protein within the signalling complex (Abramow-Newerly et al., 2006).  It could be 

implied that the recruitment of RGS proteins to the plasma membrane would be 

multiplicative unless the binding sites on RGS proteins for all interacting proteins were the 

same.   The main difficulty in this area is testing these hypotheses experimentally but 

suggests new functional implications for the regulation of RGS proteins. 

1.6.2.4 Interaction with effectors 

The interactions of RGS proteins with effectors can clearly influence regulation of signal 

transduction.  The RGS protein can act as an effector antagonist, preventing the interaction 

of Gα and the effector, to reduce signalling.  In contrast, signalling can also be increased 

by the RGS-effector interaction by creating a more stable complex to allow faster 

signalling. 

The effect of Gαs on AC is to increase the level of cyclic AMP. The observation that RGS2 

can physically interact with Gαs (Ko et al., 2001;Roy et al., 2006) but inhibit the rate of 

activation by AC in the absence of Gαs (Sinnarajah et al., 2001) suggested that RGS 

proteins may directly bind to AC.  Evidence now shows that RGS2 binds to the 

cytoplasmic domain of type V AC in cell extracts (Salim et al., 2003) and it has now also 

been demonstrated that RGS2 can translocate to the plasma membrane by expression of 

various AC isoforms (Roy et al., 2006).  The N-terminal domian of RGS2 seems 

particularly important for this interaction but the specific mechanism for this is still 

unclear.  AC type V is abundant in the heart and will undoubtedly prove to be an important 

area for further research (Salim et al., 2003). 
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The rapid inhibition of [Ca2+]i release by RGS proteins is mediated through the interaction 

of RGS proteins with the Gαq subfamily of G proteins. Gαq proteins, when triggered by a 

receptor, activate the plasma membrane bound enzyme phospholipase C β (PLCβ). This 

enzyme reacts on phosphitidylinositol 4,5-bisphosphate (PIP2) in the membrane to release 

inositol 1,4,5-trisphosphate (IP3).  The IP3 generated binds to specific receptors on the 

endoplasmic reticulum, which induce opening of calcium release channels. This quickly 

raises the concentration of Ca2+ ions in the cytosol.  By increasing the GTPase activity of 

Gαq, RGS proteins decrease the inositol signalling of PLCβ and lower the amount of Ca2+ 

ions released into the cytosol.   

However, RGS4 not only binds to activated Gαq, as predicted, but also to Gβγ and PLCβ.  

The affinity of RGS4 for Gβγ is much weaker than for Gαq, but this secondary interaction 

may serve to keep RGS4 localised in the signalling complex and possibly in the correct 

orientation for Gαq rebinding.  PLCβ, similarly to RGS4, has GAP activity for Gαq and the 

primary interaction of PLCβ has been suggested to be competitive with RGS4 interaction 

to Gαq.  Ternary complexes between Gα, Gβγ and PLCβ1 can form, but only at relatively 

high protein concentrations (Dowal et al., 2001).  These interactions may allow RGS4 to 

remain anchored to the signalling complex even in the inactive state and allow rapid 

cycling of activated Gαq. 

1.6.3 Cellular calcium 

As an important second messenger, the cellular concentration of Ca2+ must be regulated for 

proper cell signalling.   There is a very large transmembrane electrochemical gradient of 

Ca2+ driving the entry of the ion into cells and three calcium pumping ATPase systems 

operate to maintain cytosolic [Ca2+] at a low level of about 10-7 M (Lytton et al., 1992).  

These ATPases include the sarco/endoplasmic reticulum ATPases (SERCAs) that 

sequester Ca2+ into internal release compartments, and plasma membrane Ca2+-ATPases 

(PMCAs) located in the surface membrane of cells that extrude Ca2+ against a large 

concentration gradient (Dunham and Glynn, 1961). 

These pumps are powered by the hydrolysis of ATP, with a stoichiometry of two Ca2+ ions 

removed for each molecule of ATP hydrolysed.  PMCAs tightly bind Ca2+ ions (a high 

affinity, with a Km of 100 to 200 nM) but do not remove Ca2+ at a very fast rate (Burette 

and Weinburg, 2006). Thus the PMCA is effective at binding Ca2+ even when its 

concentrations within the cell are very low, thereby ideally suited for maintaining Ca2+. 
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Ca2+/calmodulin binds and further activates the PMCA, increasing the affinity of the 

protein's Ca2+ binding site twenty to thirty times.  Calmodulin also increases the rate at 

which the pump extrudes Ca2+ from the cell, possibly up to ten fold (Carafoli, 1991). 

These PMCAs are in contrast to the sodium-calcium exchangers (NCX), which have a low 

affinity and a high capacity towards Ca2+.  The NCX is an antiporter membrane protein 

which removes Ca2+ from cells using the energy that is stored in the electrochemical 

gradient of Na+ by allowing three Na+ to flow down its gradient across the plasma 

membrane in exchange for the countertransport of  one Ca2+ (Yu and Choi, 1997).   The 

NCX is considered one of the most important cellular mechanisms for removing Ca2+ 

(Dipolo and Beauge, 2006), transporting up to five thousand Ca2+ ions per second (Carafoli 

et al., 2001).   Therefore it requires large concentrations of Ca2+ to be effective, but is 

useful for ridding the cell of large amounts of Ca2+in a short time, as is needed in a neuron 

after an action potential. 

1.6.4 RGS proteins as scaffolding proteins 

The direct and specific binding of RGS proteins to other components of the cellular 

signalling complex also contributes to the regulation and function of RGS proteins.  

Preliminary research indicates that RGS proteins can act as scaffolds to assemble 

signalling complexes.  β-arrestins scaffold the signalling complex between GPCRs and 

related kinases to stabilise the MAPK signalling pathway (Miller and Lefkowitz, 2001).  In 

a similar way, a specific interaction between RGS2 and the α1b-adrenoceptor has been 

shown to include the scaffold, spinophillin (Wang et al., 2005).  A more direct 

involvement of RGS proteins to act as scaffolds for GPCRs came from the ability of Gα-

interacting protein (GAIP) to associate with the dopamine D2 receptor (Jeanneteau et al., 

2004).  This required the interaction of GAIP-interacting protein C terminus (GIPC), a 

protein with a history of acting as a scaffold to many signalling complexes, including TrkA 

nerve growth factor receptors  (De Vries and Farquhar, 2002;Abramow-Newerly et al., 

2006).  RGS19 also interacts with TrkA nerve growth factor receptor and a recent report 

indicated that in PC12 cells, GIPC interacts with the TrkA nerve growth factor receptor 

and RGS19.  All three proteins co-precipitate, indicating that a trimeric complex is 

possible (Lou et al., 2001).  However, to fully understand the stabilising contribution of 

RGS proteins, this area needs further investigation. 
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1.6.5 Post translational modification of RGS proteins 

Direct regulation of RGS proteins can also be obtained by post-translational modifications 

on RGS proteins.  Phosphorylation and palymitoylation have both been shown to be 

powerful regulatory mechanisms of cellular signalling.  These modifications will only take 

place in living cells, stressing the importance of in vivo research to bring together all 

components of the signalling network. 

1.6.5.1 Phosphorylation 

Phosphorylation of RGS proteins can have the most impact on signalling.  The addition or 

removal of a phosphate from an RGS protein has diverse and complicated patterns of 

effect.  The phosphate group can sterically hinder or promote the interaction with other 

proteins in the signalling complex, increasing or decreasing GAP activity (Table 1.2). 

A number of different kinases are responsible for RGS protein phosphorylation.  Protein 

kinase C (PKC) phosphorylation of RGS7 is necessary for its interaction with the 

intracellular scaffold protein, 14-3-3 (Benzing et al., 2000).  The phosphorylation site on 

RGS7, serine434, is within an important region for contact with Gαi.  Phosphorylation of 

this residue allows the RGS proteins to interact with 14-3-3 in place of Gαi, reducing GAP 

activity.  The complexity of the role of phosphorylation was increased when Benzing et al., 

found that this RGS7 phosphorylation is dynamically regulated by at least tumour necrosis 

factor-α (TNF-α), which reduces phosphorylation, allowing uncoupling from 14-3-3 

proteins and increased GAP activity (Benzing et al., 2000). 

Phosphorylation of RGS proteins can also influence positive feedback loops. Addition of 

phosphate to serine53 on RGS16 occurs after α2A-adrenoceptor activation.  Phosphorylation 

reduces GAP activity and further increases α2A-adrenoceptor signalling (Chen et al., 2001).  

Transmembrane tyrosine kinases and second messenger tyrosine kinases have also been 

shown to phosphorylate RGS proteins (Derrien et al., 2003).  Recent studies have 

attempted to unravel this additional complexity for RGS regulation as GPCRs can 

themselves induce phosphorylation of tyrosine kinases (Ogier-Denis et al., 2000).  The 

network of signalling cascades is yet to be fully explored and there still seems to be no 

consistent effects of phosphorylation on RGS regulation. 
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1.6.5.2 Palmitolyation 

The addition of palmitate to RGS proteins also influences regulation (Table 1.3).  

Palmitolyation of N-terminal cysteine residues occurs in a number of RGS proteins, 

including RGS3 (Castro-Fernandez et al., 2002), RGS4 (Srinivasa et al., 1998;Tu et al., 

1999;Bahia et al., 2003;Osterhout et al., 2003) RGS7 (Rose et al., 2000;Takida et al., 

2005), RGS10 (Tu et al., 1999;Castro-Fernandez et al., 2002) and RGS16 (Druey et al., 

1999a).  The post-translational, reversible addition of this fatty acid moiety occurs by thio-

ester bonds and serves to effect the membrane attachment and cellular localisation of the 

modified proteins.  RGS16 is palmitoylated at exposed cysteine residues 2 and 12, 

allowing RGS16 to become bound to the plasma membrane in close proximity to other 

signalling proteins. In this way, it has been suggested that RGS16 can properly regulate 

Gαi and Gαi-linked receptors (Druey et al., 1999b).  The closely related B/R4 RGS protein, 

RGS4, also has exposed cysteine residues at position 2 and 12.  However, RGS4 is also 

palmitolylated at reside 95 (Tu et al., 1999).  Cysteine95 is in the RGS domain and addition 

of palmitate reduces RGS4 binding to G proteins.  Cysteine residues within the RGS 

domain are conserved among a number of RGS subfamilies and palmitoylation represents 

a common way in which post-translational modification can alter both localisation and 

GAP activity of RGS proteins. 

1.7 RGS proteins as therapeutic targets 

RGS proteins associate directly with proteins implicated in a number of diseases and 

consequently, RGS proteins are potential important drug targets of the future (Zhong and 

Neubig, 2001;Neubig and Siderovski, 2002).    

1.7.1 Polymorphisms  

A number of single nucleotide polymorphisms (SNPs) have been identified in RGS 

proteins.  SNPs are a single nucleotide variation in the genome between members of a 

species.  Non-synonymous SNPs in RGS proteins have been suggested to confer a 

protective genotype against tumourigenesis.  For example, a polymorphic variant of RGS6 

confers a reduction in the risk of bladder cancer (Berman et al., 2004).  Functional changes 

in transcript levels, alternative splicing events, and protein translation efficiency that may 

result from the presence of a variant cysteine to threonine allele were investigated.  This 

SNP appears to modulate protein translation and may contribute to the protective 



  29 

phenotype by increasing the level of RGS6 protein.  Further research by the same 

investigators has shown that replacement of a serine with a glycine in PDZ-RhoGEF is 

associated with a reduction in lung cancer among Mexican Americans.  Moreover, a 

combination of this SNP and the SNPs mentioned previously in RGS6 seems to have a 

synergistic interaction (Gu et al., 2006).  Patients with both SNPs had significant reduction 

in risk of lung cancer suggesting a dose-gene dependent effect.   

Many other RGS proteins have also been suggested as key regulators of tumorigenesis.  

For example, RGS14 binds to the Ras-related G proteins, Rap1/2 (Traver et al., 2000). 

RGS12 is a transcriptional repressor, and RGS12 overexpression in select cell lines inhibits 

DNA synthesis (Chatterjee and Fisher, 2002).  RGS3 has been demonstrated to play a role 

in inducing apoptosis (Dulin et al., 2000). Advanced research into the genetic variation and 

ethnic differences of SNPs in this family of proteins may present new insights into 

therapeutic cancer treatments. 

1.7.2 Drug development 

Small molecules which modulate the RGS-Gα interaction have been proposed as novel 

drugs which could be used to treat numerous disease states.  Up to ten individual candidate 

regions that could serve as targets for drugs to alter RGS function exist on RGS proteins 

(Figure 1.2) 

One such drug has already been designed that could inhibit RGS4 from interacting with the 

Gα subunit (Jin et al., 2004;Riddle et al., 2005).  RGS4 over-expression reduced 

ventricular hypertrophy in response to pressure overload (Rogers et al., 1999).  A small 

molecule which blocks the interaction of RGS4 would suggest that despite up-regulation, 

RGS4 would have limited effects on the induction of ventricular hypertrophy.  

Novel drugs could also be designed for use in conjunction with existing drugs which are 

GPCR agonists, to maximise the signalling response.  Potentiating an exogenously 

administered GPCR agonist could suggest a smaller therapeutic dose of the agonist would 

be required, reducing unwanted side effects and tolerance. Specificity of the agonist may 

also be enhanced due to the precise regionalised localisation of RGS proteins.  This type of 

drug design was particularly important in a study which knocked down the levels of 

endogenous RGS2 and RGS9.  Lower levels of RGS2 were found to make morphine less 

potent.  However, reducing the level of RGS9 had the opposite effect, producing pain relief 
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at lower concentrations of morphine thus reducing tolerance and allowing multiple 

treatments (Garzon et al., 2001).  Endogenous RGS9 therefore must facilitate tolerance and 

the potency of morphine.  A small molecule designed to inhibit RGS9 has great therapeutic 

potential in analgesic treatment. 

RGS9 has also been implicated in Parkinson’s disease (Tekumalla, 2001).  Significant 

increase in the levels of RGS9-2 was found in patients suffering from this disease. In 

Parkinson’s disease, dopamine neurons degenerate leading to defective circuitry within the 

brain.  Dopamine D1 and D2 receptors control movement and the equilibrium of these two 

receptors seems to dictate the signalling pathways.  Increasing levels of RGS9-2 

specifically inhibits D2 receptors, critically changing the balance of receptors (Tekumalla, 

2001).  Keeping the receptor signalling steady by use of a compound targeted towards 

RGS9-2 may prevent the progression of this disease. An RGS inhibitor might also be more 

specific than a D2 agonist due to the highly specific localisation of RGS9-2  in the caudate 

putamen (Gold et al., 1997).  The distinct subcellular localisation and expression pattern of 

RGS9-2 represent novel and potentially exciting targets for the development of new 

psychotropic medications.   

Further research is also required into the possibility of using compounds that would 

enhance RGS function, so called RGS agonists.   Blocking interactions with endogenous 

proteins that inhibit RGS function would stimulate GAP activity and inhibit G protein 

signalling.  This could be beneficial in a number of disease states, for example, stimulation 

of RGS1 would block Gαi1 signalling and reduce inflammatory responses.  Blocking Gαq 

signalling through stimulation of the GAP activity of RGS2 could be useful in treating 

hypertension and vascular restenosis.  

1.7.3 Transgenic animals 

Despite over ten years of research, only three RGS knock-out mice have been reported, 

RGS2-/- (Tang et al., 2003), RGS4-/- (Grillet et al., 2005) and RGS9-/- (Chen et al., 2000).  

A novel method of studying the combined role of all endogenous RGS proteins has 

emerged instead. Fu et al., assessed the function of endogenous RGS proteins by using a 

knock-in strategy with a mutant Gα subunit that is unable to bind to RGS proteins (Fu et 

al., 2004).  The point mutation in switch I region of Gαo (
G184S) or Gαi1 (

G183S) blocks the 

interaction with RGS proteins but has been reported to have no effect on the G proteins 

ability to interact with other signalling components.  Introducing these mutant G proteins 
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into embryonic stem cells by gene targeting allowed the function of endogenous RGS 

proteins in intact mice to be measured.  Loss of RGS protein function potently increased 

the heart rate and differential use of both Gαi and Gαo were observed, again suggesting 

novel therapeutic potential for RGS protein regulation in cardiovascular disease. 

Transgenic animals have been engineered with a double mutant approach.  In this way, a 

specific RGS-Gα subunit interaction can be rescued (Wieland et al., 2000).  This has been 

reported for both RGS16 and RGS4 where a lysine to glutamate mutation in both Gαi
 and 

Gαq renders the Gα subunit insensitive to endogenously expressed RGS proteins.  On the 

other hand, glutamate to lysine mutants of interacting RGS proteins were able to restore 

the original signalling.  These mutated proteins are selectively uncoupled from endogenous 

signal transduction at the level of RGS-Gα subunit interaction but are otherwise 

functionally intact. Rescuing mutant pairs may be a helpful tool to analyse RGS-Gα 

subunit interaction in living cells or even transgenic animals.  In view of the fact that drugs 

targeted towards GPCRs can represent up to 30% of the portfolio of many pharmaceutical 

companies, RGS proteins are in a key position to become targeted for drug development. 

1.8 RGS4 

RGS4 is the most extensively researched RGS protein.  In resting cells, RGS4 is a soluble 

hydrophilic protein found in the cytosol.  It was one of the first RGS proteins to be 

discovered and the function of this RGS protein is best understood from yeast.  Early 

studies in S. cerevisiae found that removal of the gene Sst2 made the organism 

supersensitive to G protein directed pheromone responses (Chan and Otte, 1982;Weiner et 

al., 1993;Dohlman et al., 1995).  This discovery was instrumental in detecting the presence 

of mammalian RGS proteins and in fact, mammalian RGS4 has now been shown to be able 

to directly substitute for Sst2p, showing the high level of conservation between RGS 

proteins in yeast and mammals.   

1.8.1 N-terminal of RGS4 

RGS4 has a relatively simple protein architecture.  Apart from the RGS domain the only 

other recognisable domain is an amphipathic α helix at the N-terminal.  The 33 amino acid 

α helix is thought to be involved in the translocation of RGS4 to the cytosolic face of the 

plasma membrane.  In reconstituted systems using purified proteins, the N-terminus of 

RGS4 was found to interact with lipid vesicles (Tu et al., 2001). Conserved cysteine 
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residues in the N-terminal of RGS4 are particularly important for correctly targeting the 

protein within the cell.  RGS4 is cytosolic, however post-translational addition of palmitate 

to cysteines within the N-terminus may target RGS4 to specialised lipid rafts in the plasma 

membrane (Druey et al., 1998;Moffett et al., 2000).  

The lipid raft microdomain in plasma membranes is constituted of many different protein-

lipid interactions thought to be involved in signal transduction.  RGS4 can penetrate the 

inner leaflet of the plasma membrane bilayer and growing evidence suggests that 

phosphatidic acid within the bilayer can also inhibit RGS4 GAP activity. Use of an N-

terminal truncation of RGS4 resulted in loss of both phosphatidic acid binding and lipid-

mediated functional inhibition.  Using single amino acid mutations, it was found that 

lysine20 is responsible for these regulatory properties in reconstituted vesicles (Ouyang et 

al., 2003).  

The specificity of interaction between RGS4 and GPCRs also appears to be determined by 

the N-terminal of RGS4. As mentioned previously, signalling initiated by agonist binding 

to GPCRs bound to Gαq (Berridge, 1993), generates IP3 to trigger Ca2+ release from 

internal stores.  In rat pancreatic acinar cells, RGS4 preferentially inhibits Gαq/11-mediated 

signalling induced by carbachol compared to bombesin and cholecystokinin regardless of 

the identity of the Gαq subunit (Zeng et al., 1998). Further use of an N-terminally truncated 

RGS4 exhibited no receptor selectivity but the ability to distinguish the carbachol activated 

muscarinic receptor was restored by re-addition of this N-terminal domain.  Such 

selectivity suggests intact RGS4 interacts directly or indirectly with receptors, most likely 

through the N-terminal domain (Zeng et al., 1998).   

Removal of the extreme N-terminal methionine of newly synthesized RGS4 can limit 

RGS4 availability.  The cysteine at position 2 is subsequently exposed and becomes the 

target for arginylation.  This allows for subsequent degradation of RGS4 by ubiquitination 

and the 26S proteasome (Davydov and Varshavsky, 2000). Redundant proteins that are 

damaged or no longer required are often targeted by ubiquinitation.  A mouse lacking the 

gene to encode the enzyme that adds arginine to the N-terminal of proteins (Arg-

transferase) died with cardiovascular defects, and the unmodified substrates of this enzyme 

were identified to be RGS proteins.  Given the ability of RGS4 to negatively regulate 

cardiovascular signalling pathways, RGS4 is an important target for consideration.  The 

ubiquitin-dependent N-end rule pathway relates to the half-life of the protein.  The half-life 

of RGS4 is approximately 1 hour but the amount of RGS4 degredaded by these means 
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seems to be dependent on cell type (Davydov and Varshavsky, 2000).  Studies have 

concluded that the regulated degradation of RGS4, RGS5 and RGS16 by the N-end rule 

pathway is important for the correct functioning of the cardio vascular system (Lee et al., 

2005).  The ability of cysteine at postion 2 of RGS4 be a target for both palmitoylation and 

arginylation suggests a conflict between these two systems.  Perhaps palmitoylation not 

only helps target RGS4 to the plasma membrane but inhibits arginylation, promoting 

stability of the protein.   

Indeed, mutation of cysteine2 to valine forms a degradation resistant RGS4.  An epitope-

tagged form of this mutant was used in co-immunoprecipitation studies in CHO cells 

transfected with the G protein-gated inwardly rectifying potassium (GIRK) channel (Jaen 

and Doupnik, 2006).  RGS4C2V readily co-precipitated with GIRK channels.  This 

precipitation was shown to be RGS specific, as the short isofom of RGS3 did not interact 

with any of the GPCR-GIRK channel complexes.  Chimeric RGS4/RGS3 constructs 

indicated that the N-terminal domain of RGS4 is necessary for the GIRK interaction.  The 

N-terminus of RGS4 is therefore also important in the functional activity of the protein.  

The predominant expression of RGS4 is in the brain and heart so this activity may well be 

physiologically relevant in affecting neurotransmitter-mediated inhibitory events in the 

nervous and cardiovascular systems. 

RGS4 has also been found to directly associate with both the µ-opioid and δ-opioid 

receptors (Georgoussi et al., 2006). GST fusion proteins of the C-terminal of both 

receptors were found to associate with recombinant RGS4 in vitro.  Members of the RGS 

family are known to play an essential role in opioid signalling (Smrcka et al., 1991;Rhee, 

1991) but perhaps RGS4 has an undiscovered role in opiate action.  The specific contact 

sites on RGS4 and the dynamics of this interaction are also still unknown.  Perhaps the 

specificity of this interaction is also determined by the N-terminal of RGS4 and will further 

demonstrate that the relatively simple N-terminal of RGS4 is fundamental to the 

effectiveness of the protein to act as a negative regulator of G protein signalling. 

1.8.2 The RGS domain of RGS4  

The RGS domain of RGS4 (residues 58-177) had a normal GAP activity towards Gαo and 

appears to be able to work as a single functioning domain (Srinivasa et al., 1998).  

Forming a bundle of nine α-helices, the domain binds Gαi1 in a cleft consisting of 

conserved amino acids at the ends of helices 4, 7 and 8 and the loops between helices 3 and 
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4 and helices 5 and 6.  Many other residues are important within the RGS domain of RGS4 

for the folding and/or the stability of the protein.  These include a pair of phenylalanine 

residues (phenylalanine79 and phenylalanine168), that when either is substituted with 

alanine, resulted in an insoluble protein when expressed in Escherichia coli. 

Previous studies on the role of RGS proteins on Ca2+ signalling led to the discovery that 

calmodulin (CaM) and phosphatidylinositol (3,4,5)-trisphosphate  (PIP3) antagonise each 

others binding to the RGS domain of RGS4 (Popov et al., 2000). PIP3 binds RGS4 at a site 

within the RGS domain, distinct and opposite to the RGS/Gα contact face and inhibits the 

GAP activity of RGS4.  When complexed with Ca2+, CaM competes with PIP3 for binding 

to RGS4 and removes GAP inhibition and restores activity of the RGS protein.  These data 

suggest a mechanism in which GPCR stimulation of Ca2+ signalling is regulated by 

feedback inhibition (Sierra et al., 2000).  Interestingly, the pre-treatment of cells with the 

detergent methyl-β-cyclodextrin, which depletes the membrane of cholesterol and therefore 

disrupts the lipid rafts, and weakens the interaction of CaM with RGS4 (Ishii et al., 2005).  

Perhaps without lipid rafts, RGS4 and CaM cannot be brought into close proximity, 

reducing the strength and probability of their interaction. 

1.8.3 Endogenous functions of RGS4 

The engineering of Rgs4-/- mutant mice allowed the endogenous role of RGS4 in 

developmental, behavioural and physiological tests to be explored (Grillet et al., 2005).  

Subtle symptoms recorded included lower weight and poorer sensory motor coordination.  

More serious defects were not displayed;  there was no alteration in neuronal 

differentiation or opioid signalling as mutant mice had normal tolerance to pain compared 

to wild type.    Perhaps future studies should compare these knock-out mice with knock-

down animal models. Compensation during development may take place in knock-out 

animals and these future experiments may reveal differences so far undiscovered. 

1.8.3.1 Heart 

It is increasingly clear that RGS4 acts as important negative regulator of both Gαi and Gαq 

signalling.  Little is known about the in vivo role of RGS4, but one study found the 

overexpression of RGS4 mRNA or protein is frequently seen in patients or animals with 

heart dysfunction (Mittmann et al., 2002).  In mouse cardiomyocytes increased levels of 

RGS4 are thought to be associated with a reduction of smooth muscle cells of the large 
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vessels of the heart and coronaries activating a hypertrophic response and left ventricular 

dilation (Rogers et al., 1999).  However, the expression pattern of RGS4 in 

cardiomyocytes is contentious.  Grillet et al., could not detect any RGS4 in the heart 

muscle itself but instead found high levels in the endothelium (Grillet et al., 2005). 

Presumably the previous results seen in patients or animals with heart dysfunction could 

also have displayed this expression pattern (Mittmann et al., 2002).  Differences across 

species may account for these variations but the potential for cardiac therapeutics is low if, 

indeed, there is no expression of RGS4 in the heart itself.  

1.8.3.2 Central Nervous System 

RGS4 has also been speculated to perform physiological roles in the CNS (Gold et al., 

1997;Nomoto et al., 1997;Erdely et al., 2004).  Expression in the cerebral cortex suggested 

regulation of dopamine, serotonin, noradrenaline, glutamate and opioid receptors makes 

RGS4 a candidate gene for the functional modulation of neurotransmission.  Activation of 

opioid receptors by morphine altered the expression of RGS4 in distinct locations within 

the brain (Bishop et al., 2002;Gold et al., 2003).  Factors that control opioid signalling are 

likely to be important to the understanding of drug abuse.  Design of novel central nervous 

system drugs could prove useful in preventing the development of or treatment of drug 

dependence. 

1.8.3.3 Risk Factors for Schizophrenia 

The gene for RGS4 is located on chromosome 1q23 and many psychiatric genetic studies 

have suggested a linkage to schizophrenia (Brzustowicz et al., 2000;Gurling et al., 2001).  

The status of RGS4 as a susceptibility gene for schizophrenia first came from its high 

levels of expression in the cortex of the brain where it could potentially regulate dopamine 

and glutamate signalling.  

Controversy surrounding this linkage analysis still exists, a large scale study did not find 

any linkage between these RGS4 and schizophrenia (Levinson et al., 2002) but it is still 

generally accepted that RGS4 is an interesting candidate gene for schizophrenia. RGS4 is 

not only highly expressed in brain regions implicated in the pathophysiology of 

schizophrenia, but also modulates the function of multiple G protein coupled 

neurotransmitter receptors and can exhibit robust transcriptional changes to stress (Levitt et 

al., 2006).  Expression of RGS4 has been demonstrated to decrease across the cerebral 
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cortex in subjects with schizophrenia.  Importantly, expression of other RGS proteins or 

levels of RGS4 in patients with an alternative major depressive disorder are not altered.  A 

decrease in RGS4 expression may enhance Gαi-mediated signalling, resulting in 

diminished AC activity as is associated with chronic stress.  However, the exact 

Gα subunit regulated by this RGS protein in the brain in vivo remains unclear.  Post-

mortem studies of schizophrenia patients detected no associated polymorphisms in RGS4 

suggesting that the principal explanation of any relationship is the decreased transcription 

level of RGS4 mRNA.  Indeed, in the previous research which confirmed linkage, it was 

the upstream sequence of RGS4 which controls transcription, that linked to the 

schizophrenia gene locus (Chowdari et al., 2002). 

1.9 RGS16 

RGS16, like RGS4 is a member of the B/R4 subfamily.  RGS16 also has an N-terminal 

amphipathic α helix which is a key determinant of membrane localisation of the protein.  

The current model of localisation suggests that RGS16 firsts finds a docking partner at the 

membrane and then undergoes palmitoylation that locks the protein in place (Dunphy and 

Linder, 1998;Wedegaertner, 1998). Mutagenesis of key cysteine residues therefore had 

little effect on overall localisation, but mutation of hydrophobic resides and basic resides 

had a much greater effect on decreasing plasma membrane localisation and activity of 

RGS16 (Chen et al., 1999;Bernstein et al., 2000).  Hiol et al., have suggested that cysteine2 

and cysteine12 of RGS16 are palmitoylated at the plasma membrane, stabilising the protein 

in to lipid rafts (Hiol et al., 2003).  These membrane microdomains, rich in protein 

acyltransferase serve to rotate RGS16 exposing cysteine98, potentially leading to this 

residue being palmitoylated, and subsequently greatly enhancing the functionality of 

RGS16. 

RGS16 is expressed in several tissues including the liver, pituitary, retina and the pineal 

region of the brain (Chen et al., 1996;Chen et al., 1997).  The pineal gland is located deep 

in the midbrain area near many vital structures, including the aqueduct of Sylvius, which 

serves as a passage allowing cerebrospinal fluid to leave the centre of the brain where it is 

first produced.  Several types of tumours are known to originate from the pineal region and 

may often compress this aqueduct, causing the build-up of cerebrospinal fluid in the brain.  

Microarray analysis of differential gene expression patterns in tumours of the pineal region 

found high expression of many genes related to phototranduction in the retina, including 

RGS16 (Fevre-Montange et al., 2006).  The clinical significance of this expression needs 
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further investigation but perhaps implies RGS16 could be a candidate gene for use as a 

molecular marker for identifying patients with pineal region tumours. 

Overexpression of RGS16 has also been found in megakaryocyte differentiation 

(Berthebaud et al., 2005).  In these cells RGS16 negatively regulates CXCR4 signalling, 

and subsequently reduces downstream effectors. RGS18 is also overexpressed in 

megakaryocyte differentiation (Yowe et al., 2001) but RGS16 and RGS18 affect CXCR4 

signalling differently seemingly due to RGS protein specificity of action on receptor and G 

protein subtypes. Experiments using RNAi interference saw reciprocal results (Airoldi et 

al., 2006) and perhaps studies on knock-out mice will further clarify the role of RGS16 in 

megakaryocytes. 

As mentioned previously, RGS16 is a phosphoprotein. Phosphorylation of RGS16 upon 

stimulation of the α2A-adrenoceptor by epinephrine significantly reduced its GAP function 

and consequently its attenuation of the MAPK pathway (Chen et al., 2001). RGS16 can 

also undergo epidermal growth factor receptor-mediated tyrosine phosphorylation on a 

conserved tyrosine residue in the RGS box, tyrosine168, which enhances RGS16 GAP 

activity in single turnover assays (Derrien et al., 2003).  The authors also demonstrated that 

tyrosine177, the only other tyrosine residue in RGS16, was also phosphorylated. 

Phosphorylation has been suggested to induce or prevent RGS16 localisation in lipid rafts 

or perhaps generate a docking site for interaction with novel proteins and regulate the GAP 

activity of RGS16. 

The high homology between RGS16 and RGS4, and the growing knowledge about the 

function of these proteins in vivo and in vitro, prompted the use of these RGS proteins in 

this study.  In particular, RGS16 was employed to deduce if a mutation in RGS4 was RGS 

specific or RGS subtype specific. 

1.10  Methods of studying RGS proteins 

A current challenge is to define the function of individual RGS proteins. Cellular 

mechanisms of RGS proteins are coordinated to regulate a diverse range of cellular 

functions and methods of studying individual endogenous RGS proteins demonstrate RGS 

functions not yet predicted by in vitro assays.   
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1.10.1  Yeast as a model organism 

The presence of multiple RGS proteins and overlapping expression in mammalian cells 

makes investigating the activity of one RGS protein difficult.  Not every RGS protein is 

expressed in every cell, but various combinations are possible and create a multitude of 

signalling pathways (Bockaert and Pin, 1999).  Yeast has a similar signalling pathway to 

mammalian cells but has fewer components.  Yeast have therefore been previously 

characterised to express particular signalling components in isolation (Whiteway et al., 

1989;Cismowski et al., 1999)  

Since the identification of RGS proteins in S. cerevisiae, yeast has been continually used as 

a model organism to study the function of RGS proteins.  The pheromone response 

pathway in yeast is a GPCR mediated signalling pathway that allows signalling between 

the MATa and MATα cells.  The signalling components comprise of a single GPCR (Ste2p 

for MATa and Ste3p for MATα), a Gα protein (Gpa1p), a Gβ protein (Ste4p), a Gγ protein 

(Ste18p) and RGS protein (Sst2p).  Their mammalian counterparts have successfully 

replaced many components in S. cerevisiae.  However, the Gα subunit in S. cerevisiae is 

not equivalent Gα subunit in mammalian cells.  In S. cerevisiae the Gα subunit is a 

negative regulator of signalling and the Gβγ dimer propagates the signal.  Studies 

expressing functional mammalian Gα subunits in yeast have therefore been carried out in 

an alternative yeast, Schizosaccharomyces pombe.  The Gα subunit in this yeast is a 

positive regulator of signalling and the pheromone response pathway in fission yeast has 

been previously modified to provide assays with which to analyse individual GPCR 

signalling pathways (Watson et al., 1999;Didmon et al., 2002).  Sz. pombe mutants without 

Sst2p show a hyperresponsive GPCR response.  Endogenous levels of RGS proteins must 

therefore limit the pheromone response.  Overexpression of RGS proteins in this yeast 

strain show a reduction of this hyperresponsiveness and a reduced ability to desensitise in 

the continued presence of pheromone (Dohlman et al., 1996).  The basal level of RGS 

proteins in yeast is therefore the crucial rate-limiting factor in the yeast signalling pathway. 

1.10.2  Mutagenesis of RGS proteins 

Mutagenesis demonstrates the importance of certain amino acids in proteins.  As 

mentioned previously, the crystal structure of RGS4 complexed with Gαi-GDP-AlF4-, 

highlighted important amino acids at the interface between the RGS protein and the Gα 

subunit.  Mutation of these specific residues within the Gα subunit can alter signalling.  A 
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series of these mutations have been constructed, which are found either to be unable to 

release GDP (Carrillo et al., 2002) or have reduced interaction with RGS (DiBello et al., 

1998).  In addition, mutations of specific amino acids in RGS4, that directly contact the 

Gαi1 have been reported to completely abolish RGS4 GAP activity (Srinivasa et al., 1998).  

The identification and characterisation of a Gα subunit mutant that specifically disrupts the 

interaction with RGS proteins provided a new approach to study the endogenous function 

of RGS proteins (DiBello et al., 1998). As mentioned previously, a single amino acid 

change in the Gα subunit in switch region I can produce a G protein insensitive to RGS 

action.  These RGS-insensitive G proteins can also be used in vitro, to study the 

endogenous function of RGS proteins.  Following agonist activation, the µ-opioid increase 

in [Ca2+]i was less affected when coupled through an RGS-insensitive Gαo as compared to a 

RGS-sensitive protein (Clark et al., 2004). This effect caused by the inability of the RGS-

insensitive protein to bind to Gαo suggests that the GAP activity of RGS proteins provides 

a control that regulates potency and maximal response of agonist activated signalling.  

1.10.3  Experimental methods used 

The complex and diverse structures of RGS proteins allow varied mechanisms of 

regulation and cellular functions.  In this regard, numerous experimental methods are 

commonly used to study this regulation and function.   

1.10.3.1 Adrenoceptors  

The adrenoceptors are the target of many therapeutic agents that regulate the peripheral 

and central nervous system.  The adrenoceptors are GPCRs by which the important 

neurotransmitters, noradrenaline and adrenaline function.  There are nine different 

subtypes of adrenoceptor, classified into two types α and β.  Both α- and β-adrenoceptors 

have now been further subdivided into two subtypes α1, and α2.  These subtypes were at 

first classified by their anatomical location; α1 is found mostly postsynaptically, whilst α2 

although typically sited presynaptically, can also occur postsynaptically. These initial 

subtypes were further divided into α1a, α 1b, and α 1d and α 2A, α 2B, α 2C, and α 2D. This 

knowledge has led to the development of selective agonists and antagonists for each 

subtype (Guimaraes and Moura, 2001).  
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α2-adrenoceptors play a key role in regulating neurotransmitter release in the central and 

peripheral sympathetic nervous systems.  Activation of α2-adrenoceptors on sympathetic 

nerve terminals leads to a reduction in sympathetic tone, with a resultant decrease in heart 

rate and blood pressure. These presynaptic α2-adrenoceptors serve as autoreceptors 

regulating catecholamine release, inhibiting the release of noradrenaline and thus serving 

as an important receptor in the negative feedback control of noradrenaline release.  

Postsynaptic α2 receptors are located on liver cells, platelets, and the smooth muscle of 

blood vessels. Activation of these receptors causes platelet aggregation, and blood vessel 

constriction (Starke, 2001). 

Using genetically engineered mice, the α2A-adrenoceptors appears to be the subtype that 

plays the principal role in response to α2A agonists for the suppression of blood pressure, 

attenuation of pain perception, analgesia, anesthetic sparing, and suppression of 

neurotransmitter release (Limbird, 2003). 

The natural ligand for α2-adrenoceptors, adrenaline, shows no selectivity for the α2 subtype 

of receptors and so for the purpose of this study the α2 selective agonist UK14304 was also 

used to activate this receptor subtype.  The α2A-adrenoceptor couples preferentially to the 

Gαi subfamily of G proteins.  The high G protein cycling of this G protein subtype and 

good transient transfection efficiency makes the α2A-adrenoceptor ideal for using to study 

RGS regulation in the present study. 

α1-adrenoceptors mainly couple through the Gαq subfamily of G proteins (Zhong and 

Minneman, 1999).  Activation of Gαq/11 stimulates PLCβ and subsequently promotes the 

hydrolysis of PIP2 producing IP3 and diacylgylercol (DAG).  IP3 act as second 

messengers to release Ca2+ from internal stores.  DAG synergises with calcium to activate 

PKC which phosphorylates specific target proteins in the cell to change their function.  The 

inhibitory action of RGS proteins on Gαq signalling has previously been investigated.  

Expression of functionally active RGS proteins reduced agonist-stimulated elevation of 

[Ca2+]i and allowed the relative activity of individual RGS proteins on particular receptor 

systems to be investigated (Clark et al., 2004). The previous effectiveness of the α1b-

adrenoceptor to study [Ca2+]i  promoted the use of this receptor subtype in the present study 

to investigate the inhibitory action of RGS proteins. 

α1-adrenoceptors are found in both the central and peripheral nervous system.  In the CNS 

they are found mostly postsynaptically and have an excitatory function.  Peripherally they 
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are responsible for contraction and are situated on vascular and on non-vascular smooth 

muscle. α1-adrenoceptors on vascular smooth muscle are located intrasynaptically and 

function in response to neurotransmitter release.  For non-vascular smooth muscle they can 

be found on the liver, where they cause hepatic glycogenolysis and potassium release. On 

the heart they mediate a positive inotropic effect. Cause relaxation of gastrointestinal 

smooth muscle and decrease salivary secretion (Marshall et al., 1999).  

1.10.3.2 Fusion proteins 

The C-terminus of a GPCR directly fused to the N-terminal of a Gα subunit, has proved 

invaluable in a number of investigations.  In particular, the use of these fusion proteins in 

high-affinity GTPase assays has been invaluable to the understanding of RGS proteins.  A 

fusion protein defines the stoichiometry of 1:1 of receptor and Gα subunit expression and 

ensures the co-localisation of the two signalling proteins.  In addition, preservation of 

interactions between GPCRs, Gα subunits and Gβγ have also been demonstrated for these 

fusion proteins (Wise et al., 1997b;Cavalli et al., 2000;Bertaso et al., 2003).  A number of 

fusion proteins have been used in the present study as a proficient method of investigating 

RGS proteins. 

However, the use of fusion proteins creates an artificially constrained signalling cascade 

and is not physiological relevant.  Internalisation and desensitisation of fusion proteins 

may be different compared to native receptors (Loisel et al., 1999) and investigations using 

this system must be interpreted with caution. 

1.10.3.3 High-affinity GTPase assay 

The fusion of the α2A-adrenoceptor with a P. tox resistant Gαo has been used successfully 

to study the effect on the high-affinity GTPase activity of RGS proteins (Cavalli et al., 

2000). Indeed, fusion proteins allow the direct measurement of regulation of the agonist-

activation of a G protein, preloaded with [γ-32P]GTP, by a GPCR.  Monitoring the release 

of [γ-32P]Pi, the GTPase activity of Gαo
C351I and its regulation by RGS proteins can be 

analysed using basic enzyme kinetics. 

1.10.3.4 Measurement of [Ca
2+

]i 

The α1b-adrenoceptor-Gα11 fusion protein has previously been used effectively to study 

single cell Ca2+ mobilisation (Carrillo et al., 2002).  Activating cells expressing the α1b-
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adrenoceptor-Gα11 fusion protein with agonist causes a rise in [Ca2+]i.  This effect is 

inhibited by the GAP activity of RGS proteins.  Using a Ca2+ sensitive probe, RGS-

mediated inhibition of Gα11-mediated signalling in live cells in real time was assessed and 

the magnitude of signal inhibition by RGS4 was studied. 

 

1.10.3.5  [35
S]GTPγS 

The [35S]GTPγS  binding assay measures the level of G protein activation following 

agonist occupation of a GPCR, by determining the binding of the non-hdrolyzable 

analogue [35S]GTPγS  to the Gα subuit.  The non-hydrolysable γ thiophosphate bond 

allows the radiolabelled Gα to accumulate and be measured. To isolate and enrich the 

[35S]GTPγS-bound α1b-adrenoreceptor-Gα11 fusion protein in the membrane fraction of 

transfected cells, Gα11 in the reactions was solubilised by detergents and 

immunoprecipitated using an anti-G protein antiserum, CQ and then counting the 

radioactivity.   The agonism of the α1b-adrenoceptor-Gα11 fusion protein has been well 

established (Carrillo et al., 2002) and this method was used to measure the G protein 

activation of a previously identified mutant of Gα11 

1.11  Objectives of this study 

The aim of this study was to investigate the role of RGS4 in signal transduction.  To focus 

this general aim, particular areas of current interest were investigated. The areas explored 

were set into three main objectives;   

1. To investigate the cellular localisation of RGS4  

2. To examine the effect of mutating selected residues on the subcellular localisation 

and functional activity of RGS4 

3. To investigate a potential Gα11 RGS-insensitive mutant  
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Figure 1.1 The G protein cycle 

In the absence of stimulation, the Gα subunit is GDP bound and associated with the β and γ 

subunits.  The GPCR either via constitutive activity or in response to binding of an agonist, 

promotes the release of GDP and its replacement with GTP.  Conformational 

rearrangements may result in the dissociation of the Gβγ complex and these components 

can then interact with and regulate effectors.  Intrinsic GTPase activity of the Gα subunit 

hydrolyses the bound GTP to GDP, this activity is accelerated by the GTPase activity of 

RGS proteins.  The resulting reassociation of the G protein heterotrimer completes the 

cycle (taken from Milligan and Kostenis, 2006). 
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Family         Structure Members 

A/RZ 

  
*RGS17 (RGSZ2), RGS19 
(GAIP), RGS20 (RGSZ1), 
RET-RGS 
 

B/R4 
 

RGS1, RGS2, RGS3, 
*RGS4, RGS5, RGS8, 
RSG13, RGS16, RGS18, 
RGS21 

 
C/R7 

 

RGS6, RGS7, RGS9, 
*RGS11 

D/R12 

 

RGS10, *RGS12, RGS14 

E/RA 
 

*Axin, Conductin 

F/GEF 
 

P115-RhoGEF, PDZ-
RhoGEF, *LARG 

G/GRK 
 

GRK1, * GRK2, GRK3, 
GRK4, GRK5, GRK6, 
GRK7 

H/SNX 

 

*SNX13, SNX14, SNX25 

Atypical 

 

*D-AKAP2 
 
*RGS22 

   
 

 

Table 1.1 Classification of RGS proteins 

The RGS families of proteins. A schematic diagram depicting the structural motifs present 

in a representative member (shown by ‘*’) of each of the RGS family is shown.  Individual 

members of each sub-family do not necessarily contain all the motifs of the represented 

member.  Abbreviations used to describe the different domains can be found in the 

Definitions (taken from Jean-Baptiste et al., 2006). 
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RGS 

Protein 

Phosphorylated 

by 

Residue Physiological 

Effect 

Reference 

RGS2 PKC        - < GAP activity (Cunningham et 

al., 2001)  

 PKGI-α Serine 46/64 > GAP activity (Tang et al., 
2003) 

RGS3/4 PKG       - Induces 
translocation from 
cytosol to cell 
membrane 

(Pedram et al., 
2000) 

RGS7  PKCα Serine 434 Promotes the 
binding of 14-3-3 
and decreases 
GAP activity 

(Benzing et al., 
2000) 

RGS9 PKA Serine 427/428 < GAP activity (Balasubramani
an et al., 2001) 

 PKCα/PKCθ Serine 475 Alters subcellular 
localisation 

(Sokal et al., 
2003) 

RGS10 PKA Serine 168 Induces nuclear 
translocation 

(Burgon et al., 
2001) 

RGS14 PKA Serine 258/ 
Threonine 494 

> GDI activity (Hollinger et 

al., 2003) 

RGS16 SRC Tyrosine168 Promotes stability (Derrien et al., 
2003) 

   - Serine 194/53 < GAP activity (Chen et al., 
2001) 

   - Tyrosine 168/177 Tyrosine 168 > 
GAP activity 

(Derrien and 
Druey, 2001) 

RGS18   - Serine 49  (Garcia et al., 
2004) 

RGS19 ERK2 Serine 151 > GAP activity (Ogier-Denis et 

al., 2000) 

Table 1.2 Phosphorylation of RGS proteins 

RGS proteins and the kinase they are phosphorylated by.  If known, the amino acid 

phosphorylated together with the physiological effect of this post-translational 

modification are also shown (taken from Riddle et al., 2005).  
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RGS 

Protein 

Residue Subcellular 

Localisation 

RGS activity Reference 

RGS3 -        -        - (Castro-
Fernandez et al., 
2002) 

RGS4 Cysteine 2/12 No change No change (Srinivasa et al., 
1998) 

 Cysteine 2/12/95        - > and < 
activity* 

(Tu et al., 1999) 

 Cysteine 95        - > activity (Osterhout et al., 
2003) 

RGS7 Cysteine 69 Targets to membrane No change (Rose et al., 
2000) 

 Cysteine 133 Targets to membrane ND (Takida et al., 
2005) 

RGS10 Cysteine 66        - > and < activity (Tu et al., 1999) 

 Cysteine 60        - > activity (Castro-
Fernandez et al., 
2002) 

RGS16 Cysteine 2/12 No change > activity (Druey et al., 
1999c) 

 Cysteine2/12/98 Targets to lipid rafts > activity (Hiol et al., 
2003) 

 Cysteine 98        - > activity (Osterhout et al., 
2003) 

RGS19        - Targets to membrane        - (De Vries et al., 
1996) 

 

Table 1.3 Palmitoylation of RGS proteins 

RGS proteins and the cysteine residues that they are palmitoylated by and the effect on 

RGS activity are shown. * dependent on assay (taken from Riddle et al., 2005). 
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1. RGS/Gα contact site 1 2. RGS/Gα contact site 2 

3. RGS/Gα contact site 3 4. Conserved APC binding groove 

5. PIP3 and Ca2+/CaM binding domains 6. Palmitoylation 

7. Palmitoylation 8. Charged amphipathic helix 

9. Undetermined regions 10. Multiple N- and C-terminal motifs 

 

Figure 1.2 Model of potential targets on RGS proteins for drug action 

Target sites 1-10 include amino acids that are essential for direct RGS/Gα binding  

(1, 2 and 3);  those that mediate RGS binding with other proteins/molecules to 

allosterically regulate RGS/Gα binding (4, 5 and 6);  amino acids required for RGS protein 

membrane attachment (7 and 8);  and those residues that mediate RGS binding to GPCR 

(9) and other regulatory and/or signalling proteins (10) (taken from Hollinger and Hepler, 

2002).  
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2 Materials and Methods 

2.1 Materials 

2.1.1 General reagents, enzymes and kits 

Amersham Pharmacia Biotech UK Ltd., Little Chalfont, Buckinghamshire, UK 

Full range RainbowTM molecular weight markers, protein G, Glutathione Sepharose 4B 

beads 

Amaxa, Gaithersburg, MD, USA 

Cell Line Nucleofector kit V 

BDH, Lutterworth, Leicestershire, UK 

22 mm coverslips, microscope slides 

Chemicon Europe Ltd., Chandlers Ford, UK 

ReBlot plus solution 

Eppendorf, Hamburg, Germany 

96 well deepwell plates 

Fisher Scientific UK Ltd., Loughborough, Leicestershire, UK 

Glacial acetic acid, glycine, HEPES, sucrose, SDS, KH2PO4, Na2HPO4, orthophosphate, 

CaCl2, MnCl2, DTT, bactotryptone, yeast extract, bactoagar, ethylene glycol, methanol, 

isopropanol, ethanol, NaCl, Tris 

Flowgen Bioscience Ltd., Nottingham, UK 

Agarose 

Invitrogen Ltd., Paisley, UK 

NuPage pre-cast 8-12% (w/v) Bis-tris gels, MOPS running buffer, ProLong Gold antifade 

reagent, Image-iT™ LIVE Plasma Membrane labelling kit 

Konica Europe, Hohenbrunn, Germany 
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X-ray film 

Merck Chemicals Ltd., Nottingham, UK 

Nonidet P-40, pansorbin 

New England Biolabs, MA, USA 

Restriction enzymes 

Perkin-Elmer Life Sciences Inc., Boston, MA, USA 

384 well black walled plates, Optiplate white 96 well plates 

Pierce, Perbio Science UK Ltd., Tattenhall, Cheshire, UK 

Supersignal West Pico chemiluminescent substrate 

Promega UK Ltd., Southhampton, UK 

All restriction endonucleases, DNA ligase, Pfu polymerase, Wizard™ Plus SV mini-preps 

Qiagen, Crawley, West Sussex, UK 

Qiaquick PCR purification kit, Qiaquick gel extraction kit, Qiafilter maxi-prep kit 

Roche Diagnostics Ltd., Lewes, East Sussex, UK 

Complete™ EDTA-free protease inhibitor tablets, AppNH 

Sigma-Aldrich Company Ltd., Poole, Dorset, UK 

MgCl2, Tris, EDTA, bromophenol blue, Triton X-100, DMSO, glycerol, Tween 20, 

ethylene glycol, paraformaldehyde, ampicillin, ethidium bromide, ATP, Hoechst No. 

333442, BCA solution A, Pertussis toxin, GTPγS, GDP, Fura-2 AM, CuSO4, RbCl2 

Stratagene, Amsterdam, The Netherlands 

QuikChange site directed mutagenesis kit, XL-1 Blue competent cells 

Thermo Fisher Scientific, Ulm, Germany 

All oligonucleotides used for PCR reactions 
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2.1.2 Tissue culture plasticware and reagents 

Costar, Cambridge, MA., USA 

5 mL, 10 mL and 25 mL pipettes, 75 cm2 vented tissue culture flasks, 6 well plates, 100 

mm dishes 

Invitrogen BV, Groningen, The Netherlands 

Lipofectamine™ transfection reagent, Optimem, L-glutamine (200mM) 

Sigma-Aldrich Company Ltd., Poole, Dorset, UK 

DMEM, 0.25% (w/v) trypsin-EDTA, poly-D-Lysine, new born calf serum, fetal calf serum 

2.1.3 Radiochemicals 

Amersham Pharmacia Biotech UK Ltd., Little Chalfont, Buckinghamshire, UK 

 [γ-32P]GTP, [3H]RS-79948-197 

Perkin-Elmer Life and Analytical Sciences, Beaconsfield, Buckinghamshire, UK 

[3H]prazosin, [35S]GTPγS 

 

2.1.4 Antisera 

Amersham Pharmacia Biotech UK Ltd., Little Chalfont, Buckinghamshire, UK 

Donkey anti-mouse IgG-HRP conjugate, donkey anti-rabbit IgG-HRP conjugate, donkey 

anti-hamster IgG-HRP conjugate, anti-RGS4 antiserum 

A sheep polyclonal anti-GFP antiserum was generated in house. 

2.2 Buffers 

2.2.1 General Buffers 

HEPES Buffer 

130 mM NaCl, 5 mM KCl, 1 mM MgCl2,
 1 mM CaCl2, 20 mM HEPES, 10 mM D-glucose, 

0.01 mM EGTA.  The pH of this solution was adjusted to 7.4 using NaOH. 
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Laemmli Buffer (2x) 

0.4 M DTT, 0.17 M SDS, 40 mM Tris, 5 M urea, 0.01% (w/v) bromophenol blue 

Phosphate Buffered Saline (10x) 

137 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 10.2 mM Na2HPO4, pH 7.4.  The solution 

was autoclaved prior to use. This solution was diluted 1:10 prior to use. 

RIPA Buffer (2x) 

100mM HEPES (pH7.4), 300mM NaCl, 2% (w/v) Triton X-100, 1% (w/v) Na-

deoxycholate, 0.2% (w/v) SDS, stored at 4oC 

Tris-EDTA (TE) Buffer (membrane) 

10 mM Tris, 0.1 mM EDTA, pH 7.4 

Tris-EDTA (TE) Buffer (radioligand binding) 

75 mM Tris, 5 mM EDTA, pH 7.5 

Tris-EDTA-Magnesium (TEM) Buffer (radioligand binding) 

75 mM Tris, 5 mM EDTA, 12.5 mM MgCl2, pH 7.5 

2.2.2 Molecular Biology Solutions 

TAE Buffer (50x) 

40 mM Tris, 1 mM EDTA, 17.5% (w/v) glacial acetic acid.  This solution was diluted 1:50 

prior to use. 

DNA loading buffer 

0.25% (w/v) bromophenol blue, 40% sucrose (w/v) in H20 

LB Media (Luria-Bertani Medium) 

1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, pH 7.4.  Sterilised by 

autoclaving at 126oC. 

Buffer 1 (for preparation of competent bacteria) 
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0.03M C2H3O2K, 0.1M RbCl2, 0.01M CaCl2, 0.05M MnCl2, 15% (w/v) glycerol.  The 

solution was adjusted to pH 5.8 with acetic acid.  The solution was filter sterilised and 

stored at 4°C. 

Buffer 2 (for preparation of competent bacteria) 

10mM MOPS pH 6.5, 0.075M CaCl2, 0.01M RbCl2, 15% (w/v) glycerol.  The pH was 

corrected to pH 6.5 with concentrated HCl.  The solution was filter sterilised and stored at 

4°C. 

2.3 Molecular Biology Protocols 

2.3.1 LB agar plates 

LB was prepared as detailed previously in 2.2.2.  15 g/L of bacto-agar was added to LB 

and autoclaved.  On removal from the autoclave, the bottle was gently inverted to 

distribute the agar throughout the solution.  The mix was cooled to 50°C prior to addition 

of an antibiotic.  The final concentrations of antibiotics used were;  ampicillin – 100 

µg/mL or Zeocin – 50 µg/mL.  The medium was mixed gently and approximately 25 mL 

poured into 10 cm2 petri dishes.  The dishes were left to set at room temperature before 

being stored at 4°C.  Unused plates were disposed of three weeks following preparation. 

2.3.2 Preparation of competent bacteria 

XL-1 blue cells were streaked out onto a minimal agar plate and incubated overnight at 

37°C.  A single colony was selected, inoculated into a 5 mL culture of LB and grown in a 

shaking incubator at 37°C until the optical density at 550 nm was 0.48 – approximately 90 

minutes of incubation.  The culture was then chilled on ice for 5 minutes before being 

centrifuged at 3220 x g for 10 minutes at 4°C.  All traces of LB were removed and then the 

pellet was resuspended in 20 mL of buffer 1 (as detailed above) by gently pipetting.  The 

suspension was incubated on ice for 5 minutes prior to being centrifuged as before.  The 

pellet was resuspended in 2 mL of buffer 2 (as detailed above) by pipetting and the 

suspension incubated on ice for 15 minutes.  The cells were then divided in 220 µL 

aliquots and stored at -80°C until required. 
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2.3.3 Transformation 

An aliquot of competent bacteria was thawed on ice and 50 µL of cells per transformation 

reaction aliquoted into a sterile tube.  Between 1 and 10 µg of DNA was then added to the 

cells and incubated on ice for 15 minutes.  The cells were then subjected to a heat shock at 

42°C for 90 seconds and then returned to ice for 2 minutes.  450 µL of LB was added to 

the cells and the mix incubated for 45 minutes at 37°C in a shaking incubator.  200 µL of 

the mix was plated onto an LB plate containing the appropriate concentration of antibiotic 

and incubated inverted for 12-16 hours at 37°C. 

2.3.4 Preparation of plasmid DNA 

2.3.4.1 Mini-preps 

Mini-prep cDNA was purified from bacterial cultures using the Wizard™ Plus SV 

miniprep kit.  5 mL of bacterial culture was centrifuged at 16,000 x g for 10 minutes and 

the supernatant removed.  The pellet was resuspended in 250 µL of cell resuspension 

buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA, 100 µg/mL Rnase A) immediately 

followed by 250 µL of lysis buffer (0.2 M NaOH, 1% (w/v) SDS).  10 µL of alkaline 

phosphate was added to each sample and incubated for 5 minutes.  350 µL of neutralising 

buffer was then added (4.09 M guanidine hydrochloride, 0.76 M potassium acetate, 2.12 M 

glacial acetic acid, pH 4.2) to precipitate the bacterial chromosomal DNA.  This was 

centrifuged for 10 minutes at 16,000 x g and the supernatant applied to a DNA purification 

column.  The column was centrifuged briefly to bind the DNA and the column washed 

twice in wash buffer (60 mM potassium acetate, 10 mM Tris-HCl, pH 7.4, 60% (w/v) 

ethanol).  DNA was eluted by adding 100 µL sterile water.   

2.3.4.2 Maxi-preps 

The Qiagen Qiafilter kit was used to produce larger scale DNA samples.  As detailed 

previously, 5 mL of bacterial culture was grown overnight and this culture was used to 

inoculate a 100 mL LB culture.  This was incubated for 16-18 hours at 37°C in a shaking 

incubator.  Bacteria were pelleted by centrifugation for 30 minutes at 3220 x g at 4°C.  The 

pellet was then resuspended in 10 mL of chilled buffer P1 (50 mM Tris-HCl pH 8.0, 10 

mM EDTA, 100 µg/mL Rnase A) by vortexing and the cells lysed by adding 10 mL of 
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buffer P2 (200 mM NaOH, 1% (w/v) SDS) and incubating for 10 minutes at room 

temperature.  10 mL of buffer P3 (3.0 M potassium acetate, pH 5.5) was added to 

neutralise the reaction and the solution immediately applied to a Qiafilter cartridge.  This 

was left for 10 minutes at room temperature to incubate.  During this time a Qiagen tip 500 

was equilibrated by adding 10 mL of buffer QBT (750 mM NaCl, 50 mM MOPS, pH 7.0, 

15% (w/v) isopropanol).  The plunger was then inserted into the cartridge and the lysate 

filtered into the equilibrated tip.  The column was washed with 60 mL of buffer QC (1.0 M 

NaCl, 50 mM MOPS pH 7.0, 15% (w/v) isopropanol).  The DNA was eluted by adding 15 

mL of buffer QF (1.25 M NaCl, 50 mM Tris-HCl pH 8.0, 15% (w/v) isopropanol).  The 

DNA was precipitated by the addition of 10.5 mL isopropanol and the mixture centrifuged 

at 12,000 x g for 30 minutes at 4°C.  The pellet was washed in 5 mL of room temperature 

70% (w/v) ethanol and again centrifuged for 15 minutes at 12,000 x g for 30 minutes at 

4°C.  The supernatant was carefully removed and the pellet allowed to air dry prior to 

being re-suspended in 1 mL of sterile water. 

2.3.5 DNA quantification 

Quantification of DNA samples prepared was performed by examining the absorbance of a 

1:200 dilution of sample at 260nm.  A A260 of 1 unit was taken to correspond to 50 µg/mL 

of double stranded DNA. 

2.3.6 Digestion of DNA with restriction endonucleases 

Restriction digests of DNA were performed in order to prepare for sub-cloning of 

polymerase chain reaction (PCR) fragments or to ensure the successful ligation of a 

construct.  Digests were prepared in a final volume of 20 µL using restriction enzymes as 

directed for each individual enzyme.  Reactions were incubated at 37°C for a minimum of 

1 hour before being examined using DNA gel electrophoresis. 

2.3.7 DNA gel electrophoresis 

Digested DNA samples were examined using gel electrophoresis to ensure correct ligation 

of a construct.  This method was also used to isolate a plasmid vector.  Samples were 

mixed with 2x loading buffer.  A 1% (w/v) agarose gel was prepared by mixing agarose 

with 1x TAE buffer and heating until the agarose had melted.  2.5 µg/mL ethidium 

bromide was added to the gel and then poured into horizontal gel tanks.  The gel was left to 
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set and then 1x TAE buffer added.  The samples were then loaded onto the gel and were 

run for 20 to 40 minutes under a voltage of 50 to 100V then visualised under ultraviolet 

light.  The sizes of the fragments were assessed by comparison with a 1Kb ladder. 

2.3.8 DNA purification from agarose gels 

DNA was purified from the gel by excising the band of interest and using the Qiaquick gel 

extraction kit in accordance with the manufacturer’s instructions.  Briefly, the DNA-gel 

fragment was dissolved in buffer QG by heating to 50°C.  One gel volume of isopropanol 

was added to the mix and the solution transferred to a Qiaquick column.  The DNA was 

bound to a column by centrifugation.  The sample was washed using buffer PE 

supplemented with ethanol and then eluted from the column using sterile water. 

2.3.9 Alkaline phosphatase treatment of plasmid vectors 

The 5’ phosphate group from plasmid vectors was removed by incubation of 200 ng of 

digested vector with 2 units of alkaline phosphatase for 1 hour at 37°C.  The treated 

plasmid was then isolated from the reaction mixture by agarose gel electrophoresis and gel 

extraction as described previously. 

2.3.10  DNA ligations 

Constructs were generated by ligating digested PCR fragments into plasmid vector using 

T4 DNA ligase.  For each construct a ratio of 1:3 and 1:6 of vector to PCR product was 

used in a volume of 20 µL.  1 µL of  ligase was used with 2 µL of ligase buffer and the 

reaction incubated at 4°C for least 16 hours.  The ligation reactions were transformed as 

detailed in section 2.3.3. 

2.3.11  Polymerase Chain Reaction 

PCR reactions were established in a volume of 50 µL containing 10 ng of template DNA, 

0.2 mM dNTPs (dATP, dCTP, dGTP, dTTP), 25 pM of sense and anti-sense 

oligonucleotide primers, 1x Pfu polymerase buffer and 1 unit of Pfu polymerase.  

Reactions were carried out on an Eppendorf gradient Thermocycler.  PCR cycles used 

were;  
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1. Preheating   95°C  5 minutes 

2. Denaturation  95°C  1 minute 

3. Annealing  50-60°C  1 minute 

4. Extension  72°C  3 minutes  

Repeat from step 2/    29 × 

5. End   72°C  10 minutes 

6. Hold    4°C 

 

The annealing temperatures were determined depending on the Tm of the primers used for 

each PCR. 

2.3.12  QuikChange Mutagenesis PCR 

The QuikChange site-directed mutagenesis PCR reactions were established in a volume of 

50 µL containing: 50 ng DNA template, 15 pM of both forward and reverse primers, 0.2 

mM dNTPs  and 2.5 units of Pfu DNA polymerase.  Reactions were cycled 30 times in an 

Eppendorf gradient Thermocycler system. PCR cycles used were;  

 Cycle 1:  95oC for 30 seconds 

 Cycles 2-30:  95oC for 30 seconds,  

50oC for 1 minute  

68oC for 1 minute per kbp of plasmid length 

The product was treated with 1µl DpnI restriction enzyme and incubated for 60 minutes at 

37oC.  The digested mutated DNA and control were then transformed following the 

protocol described in section 2.3.3. 

2.4 Generation of constructs 

Wild-type human RGS4 was used as a PCR template for all RGS4 constructs. 

2.4.1 RGS4-GFP
2
 

Primers were designed to amplify RGS4 and remove the stop codon;   
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Sense 5’ -GGA TCC GCC ACC ATG TAT CCC TAC GAC GTC CCC GAT TAT GCG 

TGC AAA GGG CTT GCA GGT CTG CC-3’  

Anti-sense 5’ -AAA TCT AGA GGC ACA CTG AGG GAC CAG GG- 3’ 

The BamHI and XbaI sites present in the sense and anti-sense primers respectively are 

shown underlined.  The amplified fragment was digested and ligated into pcDNA3.  This 

construct was then digested with KpnI and ApaI and ligated in frame with GFP2 into the 

vector pGFP2-N1. 

2.4.2 GST-RGS4-GFP
2
 

Primers were designed to amplify RGS4-GFP2
;    

Sense 5’ -GGA TCC GCC ACC ATG TAT CCC TAC GAC GTC CCC GAT TAT GCG 

TGC AAA GGG CTT GCA GGT CTG CC- 3’ 

Anti-sense 5’ -TTT TCC TTT TGC GGC CG CTT ACT TGT ACA GCT CGT CCA TGC 

CGA GAG T- 3’ 

The BamHI and NotI sites present in the sense and anti-sense primers respectively are 

shown underlined.  The amplified fragment was digested and ligated downstream of GST 

into the vector pGEX-6P1.  

2.4.3 RGS4-eYFP in pcDNA3 

Primers were designed to amplify RGS4 and remove the stop codon;  

Sense 5’ -GGA TCC GCC ACC ATG TAT CCC TAC GAC GTC CCC GAT TAT GCG 

TGC AAA GGG CTT GCA GGT CTG CC- 3’   

Anti-sense 5’ -AAA TCT AGA GGC ACA CTG AGG GAC CAG GG- 3’   

The BamHI and XbaI sites present in the sense and anti-sense primers respectively are 

shown underlined.  The amplified fragment was digested and ligated upstream and in 

frame with eYFP into the vector pcDNA3. 
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2.4.4 RGS4
N88S

-e-YFP 

Primers were designed to amplify RGS4N88S and remove the stop codon;  

Sense 5’ -GGA TCC GCC ACC ATG TAT CCC TAC GAC GTC CCC GAT TAT GCG 

TGC AAA GGG CTT GCA GGT CTG CC- 3’   

Anti-sense 5’ -AAA TCT AGA GGC ACA CTG AGG GAC CAG GG- 3’  

The BamHI and XbaI sites present in the sense and anti-sense primers respectively are 

shown underlined.  The amplified fragment was digested and ligated upstream and in 

frame with eYFP into the vector pcDNA3. 

2.4.5 RGS4
N128A

-eYFP 

Primers were designed to amplify RGS4N128A and remove the stop codon;  

Sense 5’ -GGA TCC GCC ACC ATG TAT CCC TAC GAC GTC CCC GAT TAT GCG 

TGC AAA GGG CTT GCA GGT CTG CC- 3’   

Anti-sense 5’ -AAA TCT AGA GGC ACA CTG AGG GAC CAG GG- 3’  

The BamHI and XbaI sites present in the sense and anti-sense primers respectively are 

shown underlined.  The amplified fragment was digested and ligated upstream and in 

frame with eYFP into the vector pcDNA3. 

2.4.6 RGS4
N88SN128A

-eYFP 

Primers were designed to amplify RGS4N88SN128A and remove the stop codon;  

Sense 5’ -GGA TCC GCC ACC ATG TAT CCC TAC GAC GTC CCC GAT TAT GCG 

TGC AAA GGG CTT GCA GGT CTG CC- 3’ 

Anti-sense 5’ -AAA TCT AGA GGC ACA CTG AGG GAC CAG GG- 3’ 
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The BamHI and XbaI sites present in the sense and anti-sense primers respectively are 

shown underlined.  The amplified fragment was digested and ligated upstream and in 

frame with eYFP into the vector pcDNA3. 

2.4.7 TRHR-1-Gαααα11
G188S

 

Primers were designed to amplify rat TRHR-1 and remove the stop codon;  

Sense 5’ -AAA GGT ACC ATG GAG AAT GAA ACC GTC AGT- 3’   

Anti-sense 5’ -AAA GGT ACC TGT TTT CTC CTG TTT GGC- 3’ 

 The KpnI sites present in the sense and anti-sense primers respectively are shown 

underlined.  The amplified fragment was digested and ligated upstream and in frame with 

Gα11
G188S into the vector pcDNA3. 

2.4.8 GST-RGS4
S30C

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30C mutation in GST-RGS4 in the vector pGEX-6P1;  

Sense 5’ -GGT TTC CTG CAA AAA TGT CAT TCC TGT GAA CAC AAT TCT TCC- 

3’  

Anti-sense 5’ -GGA AGA ATT GTG TTC ACA GGA ATC ACA TTT TTG CAG CAG 

GAA ACC- 3’   

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21 competent cells.  

2.4.9  RGS4
S30C

-eYFP  

Primers were designed to amplify RGS4S30C and remove the stop codon;  

Sense 5’ -GGA TCC GCC ACC ATG TAT CCC TAC GAC GTC CCC GAT TAT GCG 

TGC AAA GGG CTT GCA GGT CTG CC- 3’  
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 Anti-sense 5’ -AAA TCT AGA GGC ACA CTG AGG GAC CAG GG- 3’  

The BamHI and XbaI sites present in the sense and anti-sense primers respectively are 

shown underlined.  The amplified fragment was digested and ligated upstream and in 

frame with eYFP into the vector pcDNA3. 

2.4.10  GST-RGS4
S30A

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30A mutation in GST-RGS4 in the vector pGEX-6P1;  

Sense 5’ -GGT TTC CTG CAA AAA GCT GAT TCC TGT GAA CAC- 3’   

Anti-sense 5’ -GTG TTC ACA GGA ATC AGC TTT TTG CAG CAG GAA ACC- 3’  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21competent cells.  

2.4.11  RGS4
S30A 

– eYFP 

Primers described in section 2.4.11 were designed to synthesise two complimentary 

oligonucleotides containing the S30A mutation in RGS4-eYFP in the vector pcDNA3.  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into XL1- competent cells.  

2.4.12  GST-RGS4
S30E

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30E mutation in GST-RGS4 in the vector pGEX-6P1;  

Sense 5’ -GGT TTC CTG CAA AAA GAG GAT TCC TGT GAA CAC- 3’   

Anti-sense 5’ -GTG TTC ACA GGA ATC AGC TTT TTG CAG CAG GAA ACC- 3’  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21competent cells.  
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2.4.13  RGS4
S30E 

–eYFP 

Primers described in section 2.4.12 were designed to synthesise two complimentary 

oligonucleotides containing the S30E mutation in RGS4-eYFP in the vector pcDNA3.  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into XL1-blue competent cells.  

2.4.14  GST-RGS4
S30F

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30F mutation in GST-RGS4 in the vector pGEX-6P1;  

Sense 5’ -GGT TTC CTG CTG CAA AAA TTC GAT TCC TGT GAA CAC AAT TCT 

TCC- 3’   

Anti-sense 5’ –GGA AGA ATT GTG TTC ACA GGA ATC AAG TTT TTG CAG CAG 

GAA ACC- 3’  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21competent cells.  

2.4.15  RGS4
S30F 

–eYFP 

Primers described in section 2.4.15 were designed to synthesise two complimentary 

oligonucleotides containing the S30F mutation in RGS4-eYFP in the vector pcDNA3.  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into XL1-Blue competent cells.  

2.4.16  GST-RGS4
S30K

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30K mutation in GST-RGS4 in the vector pGEX-6P1;  

Sense 5’ -GGT TTC CTG CTG CAA AAA AAA GAT TCC TGT GAA CAC AAT TCT 

TCC- 3’   
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Anti-sense 5’ –GGA AGA ATT GTG TTC ACA GGA ATC TTT TTT TTG CAG CAG 

GAA ACC- 3’  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21 competent cells.  

2.4.17  RGS4
S30K 

–eYFP 

Primers described in section 2.4.17 were designed to synthesise two complimentary 

oligonucleotides containing the S30K mutation in RGS4-eYFP in the vector pcDNA3.  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into XL1-Blue competent cells.  

2.4.18  GST-RGS4
S30P

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30P mutation in GST-RGS4 in the vector pGEX-6P1;  

Sense 5’ -GGT TTC CTG CTG CAA AAA CCT GAT TCC TGT GAA CAC AAT TCT 

TCC- 3’   

Anti-sense 5’ –GGA AGA GTG TTC ACA GGA ATC GGA TTT TTG CAG CAG GAA 

ACC- 3’  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21competent cells. 

2.4.19  RGS4
S30P 

–eYFP 

Primers described in section 2.4.19 were designed to synthesise two complimentary 

oligonucleotides containing the S30P mutation in RGS4-eYFP in the vector pcDNA3.  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into XL1-Blue competent cells.  
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2.4.20  GST-RGS4
S30M

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30M mutation in GST-RGS4 in the vector pGEX-6P1;  

Sense 5’ -GGT TTC CTG CAA AAA ATG GAT TCC TGT GAA CAC AAT TCT TCC- 

3’   

Anti-sense 5’ –GGA AGA ATT GTG TTC ACA GGA ATC TAC TTT TTG CAG CAG 

GAA ACC- 3’  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21competent cells.  

2.4.21 RGS4
S30M 

–eYFP 

Primers described in section 2.4.20 were designed to synthesise two complimentary 

oligonucleotides containing the S30M mutation in RGS4-eYFP in the vector pcDNA3.  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into XL1-Blue competent cells.  

2.4.22  GST-RGS16
S30C

 

Primers were designed to synthesise two complimentary oligonucleotides containing the 
S30C mutation in GST-RGS16 in the vector pGEX-6P1;  

Sense 5’ - CTT TCT TCA CAA ATG TGA GCT GGG CTG- 3’   

Anti-sense 5’ –CGC AGC CCA GCT CAC ATT TGT GAA GAA AG- 3’  

Following temperature cycling the product was treated with DpnI to digest parental DNA 

and transformed into BL21competent cells.  
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2.5 Cell culture 

2.5.1 Cell maintenance 

2.5.1.1 Human Embyonic Kidney Cells (HEK293T) 

HEK293T cells were grown in 75 cm2 flasks in Dulbecco’s modified Eagle’s medium 

containing 10% (w/v) newborn calf serum and 2 mM L-glutamine.  The cells were 

maintained in a humidified incubator of 95% air / 5% CO2 at 37°C. 

2.5.1.2 EF88 cells 

EF88 cells were grown in 75 cm2 flasks in Dulbecco’s modified Eagle’s medium 

containing 10% (w/v) fetal calf serum and 2 mM L-glutamine.  The cells were maintained 

in a humidified incubator of 95% air / 5% CO2 at 37°C. 

2.5.2 Cell subculture 

Once confluent, cells were sub-cultured by the addition of sterile 0.25% (w/v) trypsin-

EDTA solution.  The medium was removed from the flask and 2 mL of trypsin solution 

added.  The flask was gently rotated to cover the monolayer and replaced in the incubator 

for 3 minutes.  Once the cells had detached, 3 mL of fresh medium was added to the flask 

and the cells resuspended by gently pipetting.  The cells were then subcultured into either 

75 cm2 flasks to maintain the cell line or 10 cm2 dishes for transfection. 

2.5.3 Transient transfection of HEK293T cells 

Transfection of HEK293T cells was performed when the cells had reached 60-70% 

confluency.  Plasmid DNA was transfected using Lipofectamine in accordance with the 

manufacturer’s instructions.  Plasmid DNA was diluted to 0.1 µg/µL and the volume 

adjusted corresponding to the amount of DNA to be transfected and was transferred to a 15 

mL tissue culture tube.  A volume of Optimem was added in order to bring the volume in 

the tube to 600 µL.  A mix of Lipofectamine and Optimem was prepared in the ratio of 20 

µL Lipofectamine and 580 µL Optimem for each sample.  600 µL of this mix was gently 

added to the DNA mix and incubated for 30 minutes.  During this time the cells were 

washed with Optimem.  Following the incubation period, 4.8 mL of Optimem was added 
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to the sample tubes and the mix transferred onto the cells.  The cells were returned to the 

incubator for 4-5 hours before removing the transfection mix and replacing with fresh 

media.  The media was changed 24 hours later and the cells harvested approximately 36 

hours post-transfection.  A similar protocol was used for transfection in a 6-well plate, 

however, the ratio of Lipofectamine to Optimem was 1:29. 

2.5.4 Pertussis toxin treatment 

P. tox is secreted by Bordella pertussis. This toxin catalyses the addition of ADP-ribose to 

the α subunit of Gi and prevents receptor activation of the G protein. Transiently 

transfected cells were treated with P. tox (25 ng/ml) for 16 to 18 hours prior to harvesting.  

2.5.5 Transient transfection of EF88 cells 

Transient transfection of EF88 cells was performed using the cell line nucleofection kit V 

when cells were in their logarithmic growth phase.  1x106 cells per nucleofection were 

resuspended in 100 µL room temperature Nucleofector Solution. This suspension was 

mixed with 1-5 µg plasmid DNA.  The sample was transferred into a cuvette and inserted 

into an Amaxa nucleofector and programme 20 selected.  500 µL of pre-warmed medium 

was added to the cuvette and transferred to 6 well plates containing 1.5 mL medium.  Cells 

were incubated in a humidified incubator with 95% air / 5% CO2 at 37°C.  Cells were used 

24 hours post nucleofection. 

2.5.6 Cell harvesting 

Transfected cells were harvested 36 hours post-transfection.  The media was removed and 

the cells washed 3 times in 1x PBS.  Cells were scraped off the dish in 5 mL of 1x PBS 

using a cell scraper and transferred to a 15 mL centrifuge tube.  The dish was washed again 

in 5 mL 1x PBS to remove additional cells before centrifuging the harvested cells for 5 

minutes at 201 x g at 4ºC.  The PBS was removed and the cell pellet frozen at -80ºC 
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2.6 Protein biochemistry and other methods of analysis 

2.6.1 Cell membrane preparation 

Cell pellets from transfected cells were thawed and resuspended in 1 mL of TE 

(membrane) buffer.  The cells were homogenised using 40 strokes of a glass on Teflon 

homogeniser.  The cells were centrifuged at 1500 x g for 10 minutes in order to separate 

any unbroken cells and nuclei at 4ºC.  The supernatant was removed and passed through a 

25 gauge needle 10 times before being transferred to ultra-centrifuge tubes and subjected 

to centrifugation at 50,000 x g for 30 minutes using a Beckman Optima TLX 

Ultracentrifuge (Palo Alto, CA).  The supernatant was discarded and the pellet resuspended 

in 200 µL of TE buffer using a 25 gauge needle, passing through 10 times to ensure an 

even suspension.  The protein concentration was assessed using a BCA assay (see below 

2.6.2) and membranes diluted to 1 µg/µL and stored at – 80 ºC until required. 

2.6.2 BCA protein quantification 

Protein concentration of membrane preparations was assessed using a Bicinhoninic acid 

(BCA) assay.  This assay utilises BCA and copper sulphate solutions in which peptide 

bonds reduce the Cu2+ ions to Cu+ ions in correlation with protein concentration initiating a 

colour change caused by BCA binding reduced Cu+.  This coloured solution has an 

absorption maximum of 562 nm, allowing quantification of the protein concentration.  A 

standard curve is also established using standard BSA solutions allowing the 

concentrations of unknown samples to be established.  Solutions used consisted of;  

reagent A – bicinchoninic acid solution and reagent B –  4% (w/v)CuSO4.  1 part reagent A 

was mixed with 49 parts reagent B and 200 µL of this solution was added to 10 µL of 

protein standard or unknown sample in a 96 well ELISA plate.  The assay was incubated at 

37ºC for 25 minutes before reading the absorbance. 

2.6.3 SDS-PAGE and western blotting 

Protein samples were resolved using SDS-PAGE.  Precast Novex Bis-tris gels were used at 

4-12% (w/v) acrylamide concentration.  NuPage MOPS running buffer was used for 

electrophoresis using the Xcell Surelock mini-cell gel tank apparatus.  The gels were run at 

200V for approximately 45 minutes.  The proteins were transferred onto nitrocellulose 
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membrane using the XCell II blot module apparatus.  The membrane and components of 

the transfer apparatus were soaked in transfer buffer (0.2 M glycine, 25 mM Tris and 20% 

(w/v) methanol) before initiating transfer.  Proteins were transferred at 30V for 

approximately 1 hour.  Efficient transfer was investigated by staining with Ponceau stain 

(0.1% (w/v) Ponceau S, 3% (w/v) trichloroacetic acid).  In order to block non-specific 

binding sites, membranes were incubated in 5% (w/v) low fat milk, 0.1% (w/v) Tween 

20/PBS (w/v) solution at room temperature on a rotating shaker for 2 hours.  The 

membrane was incubated with primary antibody overnight in 5% (w/v) low fat milk, 0.1% 

(w/v) Tween 20/PBS solution at 4ºC.  Approximately 16 hours later the membrane was 

washed three times with 0.1% (w/v) Tween 20/PBS for 5 minutes each wash.  The 

secondary antibody which was horseradish peroxidase linked was incubated again in 5% 

(w/v) low fat milk, 0.1% (w/v) Tween 20/PBS solution for 1 hour at room temperature.  

Again the membrane was washed three times in 0.1% (w/v) Tween 20/PBS for 5 minutes 

each wash prior to application of ECL solution and developing of the blot.  The 

membranes were exposed to blue Kodak film and developed using an X-Omat machine.   

2.6.4 Purification of GST-tagged proteins 

The cloning vector PGEX-6P1containing the appropriate cDNA fused to glutathione S-

transferase were transformed in BL21 bacteria and the bacteria  were grown up until 

reaching an optical density at 600 nm of 1.0. Cell pellets were lysed by resuspending in 20 

mL of 1x PBS (with protease inhibitors) containing 0.5 mg/mL lysozyme followed by 

incubation at 4°C with rotation for 1 hour. The resuspended cells were sonicated for 1 

minute each on ice. DTT was added to a final concentration of 5 mM and Triton X-100 (as 

a 10% (w/v) stock) to a final concentration of 1% (w/v). The lysates were then incubated at 

4°C with rotation for 1 hour, and the insoluble material was removed by centrifugation at 

12,000 x g for 15 minutes at 4°C. 500 µL of a suspension of washed (three times with 10 

volumes of 1x PBS with protease inhibitors) glutathione Sepharose 4B beads was added to 

each cleared lysate and incubated at 4°C overnight with rotation. The lysates were spun at 

500 x g for 5 minutes at 4°C, and the supernatant was removed from the pellet of 

glutathione Sepharose beads. The beads were washed three times with 10 mL of 1x PBS 

with protease inhibitors, and the GST fusion proteins were eluted with 5 x 1.5 mL of 

glutathione solution (10 mM concentration of reduced glutathione in 50 mM Tris-HCl, pH 

8.0). The eluted proteins were analyzed by SDS-PAGE and BCA protein assay before 

being dialyzed against three changes of 1x PBS containing 5% (w/v) glycerol at 4°C over 2 

days before storage at -80°C.  
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2.6.5 Fixed cell samples 

Cells grown on coverslips were transiently transfected and washed three times with ice-

cold 1x PBS.  Cells were fixed for 10 minutes at room temperature using 4% (w/v) 

paraformaldehyde in PBS/5% (w/v) sucrose solution.  The cells were washed a further 

three times in ice-cold 1x PBS prior to being fixed onto microscope slides with 40% (w/v) 

glycerol in PBS. 

2.7 Assays 

2.7.1 Radioligand binding 

2.7.1.1 [
3
H]prasozin binding 

The expression of α1b-adrenoceptor was assessed using [3H]prasozin. This was performed 

in 96 well deepwell plates in triplicate. Total binding was initiated by adding 2 µg protein 

to 50µL [3H]prasozin (4 nM-0.05 nM) and 100µL TEM.  Non-specific binding was 

initiated by adding 2 µg protein, to 50 µL [3H]prasozin (4 nM-0.05 nM), 50 µL 100 µM 

phentolamine and 50 µL TEM.  Reactions were incubated for 40 minutes at 25°C. Bound 

ligand was separated from free by vacuum filtration through GF/B filters. The filters were 

pretreated with 0.3% (w/v) polyethyleneimine in TEM and washed three times with cold 

TE. Bound ligand was estimated by liquid scintillation spectroscopy. The specific binding 

was calculated by subtracting non-specific binding from total binding. Data were analysed 

using GraphPad Prism software (San Diego, CA). Saturation data were fitted to non-linear 

regression curves. 

2.7.1.2  [
3
H]RS-79948-197 binding 

The expression of α2a-adrenoceptor was assessed using [3H]RS-79948-197.  This was 

performed in 96 deepwell plates in triplicate. Total binding was initiated by adding by 1 µg 

protein to 50 µL [3H]RS-79948-197 (5 nM-0.05 nM) and 100 µL TEM.  Non-specific 

binding was initiated by adding 2 µg protein, to 50 µL [3H]RS79948-197 (4 nM-0.05 nM), 

50 µL 100 µM idozoxan and 50 µL TEM.  The same protocol as 2.7.1.1 was followed 

except that the samples were incubated for 30 minutes at 30°C. 
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2.7.2  High-affinity GTPase assay 

This assay was used to measure release of  32Pi from [γ-32P]GTP.  The reaction mixture 

contained 0.5 µM [γ-32P]GTP (≈50,000cpm), 1 mM AppNH, 1 mM ATP, 1 mM ouabain, 

10 mM creatine phosphate, 5 units creatine phosphokinase, 100 mM NaCl, 5 mM MgCl2, 2 

mM DTT, 0.1 mM EDTA, 12.5 mM Tris-HCl and 50 µM GTP.  50 µL of assay mix was 

added to deep well plates with 2 µg of protein, 1 µM purified GST-RGS protein and the 

final volume adjusted to 100 µL with dH2O.  Basal rate was determined in the same 

conditions but in the presence of 100 µM GTP.  The reaction was initiated by transferring 

the block to a 37°C water bath for 30 minutes.  Once the incubation was complete the 

blocks were immersed in an ice bath and 0.9 mL of 20 mM phosphoric acid (pH 2.3) 

containing 5% (w/v) activated charcoal was added.  After centrifugation for 10 minutes at 

3220 x g, radioactivity was measured in 300 µL of the supernatant using a Packard 

Topcount NXT™ microplate scintillation counter.  All assays were performed on at least 

three membrane preparations derived from different transient transfections. Data expressed 

as the mean ±  standard error of the mean (SEM). 

High affinity GTPase assays were plotted to determine the Km and Vmax of RGS4.  Km and 

Vmax are determined by incubating the RGS4 with varying concentrations of substrate 

(GTP) and plotting the results as a graph of rate of reaction (V) against concentration of 

substrate ([S]), which will normally yield a hyperbolic curve, as shown in Figure 3.3. 

The relationship of this curve is defined by the Michaelis-Menten equation: 

v = Vmax / (1 + (Km/[S])) 

It can be difficult to fit the best hyperbola through the experimental points, and difficult to 

determine Vmax with any precision by estimating the limit of the hyperbola at infinite 

substrate concentration. A number of ways of re-arranging the Michaelis-Menten equation 

have been devised to obtain linear relationships which permit more precise fitting to the 

experimental points, and estimation of the values of Km and Vmax. 

The Eadie-Hofstee plot rearranges the Michaelis-Menten equation as: 

v = Vmax - Km x v / [S] 
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plotting v against v / [S] to give a straight line as in Figure 3.4.  In this graph, the y 

intercept is the Vmax , the gradient is the -Km , and the x intercept is the Vmax / Km.  This plot 

overcomes the problem of uneven spacing of points, and undue weight given to points at 

low concentrations of substrate. However, it has the disadvantage that V, which is a 

dependent variable, is used on both axes, and hence errors in measuring the rate of reaction 

are multiplied, resulting in lower precision of the estimates of Km and Vmax. 

2.7.3  [
35

S]GTPγγγγS binding assay 

[35S]GTPγS binding experiments were initiated by the addition of membranes containing 

between 50 and 100 fmol of receptor-G protein fusion construct to an assay buffer (20 mM 

HEPES pH 7.4, 3 mM MgCl2, 100 mM NaCl, 1 µM GDP, 0.2 mM ascorbic acid, 50 nCi 

[35S]GTPγS) containing the indicated concentrations of receptor ligands. Non-specific 

binding was determined in the same conditions but in the presence of 100 µM GTPγS. 

Reactions were incubated for 15 minutes at 30°C and were terminated by the addition of 

0.5 mL of ice-cold buffer, containing 20 mM HEPES pH 7.4, 3 mM MgCl2 and 100 mM 

NaCl. The samples were centrifuged at 16,000 × g for 15 minutes at 4°C, and the resulting 

pellets were resuspended in solubilisation buffer (100 mM Tris, 200 mM NaCl, 1 mM 

EDTA, 1.25% (w/v) Nonidet P-40) plus 0.2% (w/v) SDS. Samples were precleared with 

Pansorbin followed by immunoprecipitation with an antiserum directed towards the C-

terminal of the G protein. Finally, the immunocomplexes were washed twice with 

solubilisation buffer, and bound [35S]GTPγS estimated by liquid-scintillation spectrometry. 

2.7.4  [Ca
2+

]i imaging 

2.7.4.1 Single cell [Ca
2+

]i imaging 

Transfected cells were loaded with the Ca2+sensitive dye Fura-2 by incubation for 20 

minutes at 37°C under reduced light in growth medium containing the dye's membrane-

permeant acetoxymethyl ester form (1.5 µM). Loaded cells were transferred to HEPES 

buffer and illuminated with an ultra high point intensity 75-watt xenon arc lamp 

(Optosource, Cairn Research, Faversham, Kent, UK) and subsequently imaged using a 

Nikon Diaphot inverted microscope equipped with a Nikon 40× oil immersion Fluor 

objective lens (NA=1.3) and a monochromator (Optoscan, Cairn Research), which was 

used to alternate the excitation wavelength between 340/380 nm and to control the 

excitation band pass (340 nm band pass=10 nm;  380 nm band pass=8 nm). Fura-2 
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fluorescence emission at 510 nm was monitored using a high resolution interline-transfer 

cooled digital CCD camera (Roper Scientific/Photometrics, Tucson, AZ). MetaFluor 

imaging software (version 4.6.8, Universal Imaging Corp., Downing, PA) was used for 

control of the monochromator, CCD camera, and for processing of the cell image data. 

Sequential images (2×2 binning) were collected every 2 seconds;  exposure to excitation 

light was 100ms/image.  Agonist was added after 60 seconds for 60 seconds using a 

perfusion system.  Sequential images were collected for a total of five minutes and 

MetaFluor software was used for analysis.  Pooled average ratio values measured from 

single cells were expressed as the mean ± SEM of at least 10 cells. 

2.7.5 Fluorescence microscopy 

2.7.5.1 Multiple fluorescence imaging  

Paraformaldehyde fixed HEK293T cells, expressing the appropriate fusion protein were 

imaged using an inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), 

oil-immersion Plan Fluor Apochromat lens and a CCD camera. Fluorescence excitation 

light was generated by an ultra high point intensity 75-watt xenon arc lamp coupled to a 

computer controlled Optoscan monochromator.  

To visualize the plasma membrane, cells were treated, (as specified by the manufacturer), 

with the reagents in the Image-iT™ plasma membrane and nuclear labelling kit, in which 

the plasma membrane is specifically labelled with wheat germ agglutinin (WGA)-Alexa 

Fluor 594 (red) and nuclei are stained simultaneously with Hoechst 33342 (blue).  The 

monochromator was set to 360/10, 500/8 nm and 575/12 nm for the sequential excitation 

of Hoechst, eYFP and WGA-Alexa Fluor 594 respectively. Hoechst, eYFP and Alexa 

Fluor 594 excitation light was reflected through the objective lens using the following 

single pass dichroics: 400DCLP for Hoechst, Q515LP for eYFP and Q595LP for Alexa 

Fluor 594. Hoechst, eYFP and fluorescence emission was controlled via a high-speed 

filterwheel device (Prior Instruments, MA, USA) containing the following emitters: 

HQ480/40 nm for Hoechst;  HQ535/30 nm for eYFP, and HQ645/75 nm for WGA-Alexa 

Fluor 594. Using these filter sets, the fluorophores were easily separated with no bleed 

through. Sequential 12 bit images, (2 x 2 binning, 200-400 milli-second exposure/image), 

were collected using a CCD camera operated in 12-bit mode. Computer control of all 

electronic hardware and camera acquisition was achieved using Metamorph software.  
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2.7.5.2 Multiple fluorescence analysis 

The plasma membrane was identified and segmented into pixels by treating the cells with 

the membrane marker WGA-Alexa Fluor 594. Images were deconvolved using an iterative 

and constrained algorithm (Autodeblur software, version 9.3.6, Autoquant Imaging, 

Watervliet, NY).  Surface and cytosolic masks were created and superimposed. Expressed 

RGS-eYFP fluorescence pixel intensity values located at the plasma membrane and 

cytoplasm of the cell were quantified from each generated mask and were expressed as a 

percentage of the total eYFP intensity. The number of cells analysed from each 

experimental group was 3 and the statistical significance of any difference between mean 

values was determined using a Student's t test.



  73 

3   Chapter 3 

3.1 Introduction 

The intracellular localisation of RGS proteins is crucial for their regulatory action.  A 

commonly used fluorescent tag was introduced to RGS4 in order to investigate this 

localisation.  It was particularly important to establish that the presence of this fluorescent 

protein did not interfere with functional activity of RGS4.  

Green fluorescent protein (GFP) has become a valuable tool in the study of cellular 

localisation of proteins (Cubitt et al., 1995;Baumann et al., 1998).  GFP is an auto-

fluorescent protein of 27 kDa from the jellyfish Aequoria victoria.  Fusing the protein of 

interest to GFP allows direct visualisation of the protein in living cells without the need for 

immunocytochemistry. Several modified variants of GFP with distinct spectral properties 

have been isolated (Htun et al., 1996;Stauber et al., 1998).  One such variant, GFP2, was 

originally developed to maximally absorb the energy released by the oxidation of the 

substrate DeepBlueC by Renilla luciferase for use in Bioluminescence Resonance Energy 

Transfer2 (Packard Bioscience), a methodology widely used to study protein-protein 

interactions (Jensen et al., 2002;Ramsay et al., 2002).    

A red-shifted variant of GFP that has also been widely used in research is enhanced yellow 

fluorescent protein (eYFP). The spectral properties of eYFP allow a stronger fluorescence 

emission compared to wild-type GFP (Baumann et al., 1998).  Both GFP2 and eYFP were 

individually ligated to the C-terminal of RGS4.   

The pGEX glutathione S-transferase (GST) system has been used extensively for high-

level expression of recombinant proteins (Smith and Johnson, 1988;Frangioni and Neel, 

1993). This previously successful strategy was therefore employed to produce recombinant 

RGS4 proteins.  RGS4 and RGS4-GFP2 were inserted into the multiple cloning site of the 

pGEX plasmid, fusing the N-terminus of the predicted protein to GST.  GST, from the 

parasite Schistosoma japonicium, is a 26 kDa enzyme which binds reversibly but with high 

affinity to glutathione, allowing recombinant GST-RGS4 or GST-RGS4-GFP2 to be 

purified.   

Functional activity of the recombinant RGS proteins was measured in high-affinity 

GTPase assays.  Such GTPase activity can be successfully measured by the use of fusion 
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proteins between GPCRs and G protein α subunits.  In addition, the use of G protein α 

subunits mutationally modified to be resistant to P. tox-catalysed ADP-ribosylation (C351I in 

Gαo1) allows the GTPase activity of the exogenous GPCR and G protein to be measured in 

isolation (Moon et al., 2001). The 1:1 stoichiometry of the GPCR to the Gα subunit in such 

fusion proteins permits ligand binding to determine the precise expression level of not only 

the receptor but also of the G protein.  The expression level and the measured GTPase 

activity allow the calculation of the turnover number of the G protein.  It has previously 

been published that transient expression of the α2A-adrenoceptor fused to Gαo1
C351I in cells 

with the subsequent addition of a recombinant RGS protein to cell membrane preparations, 

results in a concentration-dependent increase in the high-affinity GTPase activity (Bahia et 

al., 1998;Cavalli et al., 2000). Using this methodology the functional activity of 

fluorescently modified, recombinant RGS4 was compared to wild-type. 

Studies on the distribution patterns of RGS proteins have revealed diverse patterns of 

cellular localisation (Chatterjee and Fisher, 2000).  However, RGS proteins must 

ultimately localise near or at the plasma membrane in close proximity to G proteins to 

produce their effects as a GAP.  RGS4 has been reported to be located in the cytoplasm 

then translocated to the plasma membrane indirectly by G protein activation or by directly 

binding to G proteins at the plasma membrane.  Translocation of RGS4 to the plasma 

membrane has also been reported by co-expression of specific G proteins, or 

corresponding receptors that activate these specific G proteins (Roy et al., 2003).  

Defective G proteins, apparently unable to interact with RGS proteins, have also been 

reported conflictingly to be both able (Druey et al., 1998) and unable (Roy et al., 2003) to 

translocate RGS4 to the plasma membrane.  Following expression, immunoblotting and 

microscopy were used to study the intracellular localisation of RGS4-eYFP in the presence 

and absence of other co-expressed proteins. 

The aim of this chapter was to investigate the cellular localisation of transiently expressed 

RGS4 in HEK293T cells.  Confirmation that a fluorescent tag tethered to the C-terminal of 

RGS4 did not affect function was crucial before the levels of protein expression and the 

cellular localisation of RGS4 were investigated. 
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3.2 Results 

3.2.1 Purification of recombinant RGS4 and RGS4-GFP
2
 

Purified recombinant GST-fused proteins were resolved by SDS-PAGE and stained with 

Coomassie Blue.  Figure 3.1 shows similar induction and elution of purified (A) GST-

RGS4 and (B) GST-RGS4-GFP2.  Quantitative evaluation of the pooled, eluted GST-fused 

proteins allowed determination of the concentration of each purified protein.  

3.2.2 Functional activity of recombinant RGS4 and RGS4-GFP
2
 

In order to ensure that a C-terminal fluorescent tag on RGS4 did not disrupt the GAP 

activity of this RGS protein, it was important to compare the functional activity of the 

recombinant proteins.  Activity of GST-RGS4 and GST-RSG4-GFP2 were compared using 

high-affinity GTPase assays. A fusion protein, in which the C-terminus of the porcine α2A-

adrenoceptor and the N-terminus of rat Gαo1, with a P. tox-insensitive mutation, were 

linked in frame was expressed in HEK293T cells.  Cells were pre-treated for 16 hours with 

an amount of P. tox (25 ng/mL) sufficient to cause ADP-ribosylation of endogenous P. tox-

sensitive G proteins (Wise et al., 1997b). The amount of transiently expressed α2A-

adrenoceptor-Gαo1
C351I fusion protein was routinely determined by performing saturation, 

specific binding studies using the α2-adrenoceptor antagonist [3H]RS-79948-197 (Figure 

3.2). Levels of expression of the receptor-G protein varied between individual 

transfections, although typically were between 10-20 pmol/mg of membrane protein. 

High-affinity GTPase activity was then measured at a range of GTP concentrations in 

membranes of these cells (Figure 3.3).  Basal and adrenaline-stimulated (100 µM) GTPase 

activity were measured in the presence and absence of purified, recombinant RGS4 (1 

µM).  Non-linear regression analysis showed that in the absence of RGS4, adrenaline-

stimulated high-affinity GTPase was greater than basal activity. However, in the presence 

of RGS4 there was a strong enhancement of adrenaline-stimulated activity.   

To estimate the kinetic parameters (Km and Vmax) for RGS4, linear regression analysis was 

applied to determine the linear correlation between V and V/[GTP].  In this Eadie-Hofstee 

transformation (Figure 3.4), V is the rate of GTPase activity;  Vmax represents the 

maximum rate of GTPase activity and Km is the affinity constant of GTP (the slope of the 

line).  Analysis of basal and adrenaline-stimulated GTPase activity showed that the effect 
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of adrenaline was to increase the Vmax without altering the Km for GTP (Table 3.1).  

However, addition of recombinant RGS4 (1 µM) to transfected membranes significantly 

increased adrenaline-stimulated Vmax of the α2A-adrenoceptor-Gαo1
C351I fusion protein and 

the Km for GTP (p<0.05).  These studies, as has been noted previously (Cavalli et al., 

2000), clearly show that RGS4 functioned as a GAP for the receptor-activated G protein as 

is reflected by an effect on both Vmax and Km.   

It should be noted however, that when assaying the relative increase in both Vmax and the 

Km for GTP of GST-RGS4, a more suitable experiment to show that the presence of RGS4 

was solely responsible for the increase in Vmax and Km would have been the addition of 

purified GST.  The control used here, no addition of a GST fusion protein, does not rule 

out the possibility that the presence of GST is somehow responsible for any differences in 

Vmax and Km . 

With knowledge of the levels of expression of the α2A-adrenoceptor-Gαo1
C351I fusion 

protein from [3H]RS-79948-197 binding studies, adrenaline-stimulated GTPase turnover 

number was calculated to significantly increase from 2.3  ±  0.5 minute-1 to 10.2  ± 1.2 

minute-1 in the presence of 1 µM RGS4 (mean ± SEM, from three individual experiments, 

p<0.05). 

Following purification of recombinant RGS4-GFP2, the GAP activity of this protein (0.8 

µM) was directly compared to wild-type recombinant RGS4 (0.8 µM).  Using 0.5 µM GTP 

as substrate, addition of a maximally effective concentration of the α2A-adrenoceptor 

agonist adrenaline (100 µM) (Carr et al., 1998) caused a parallel increase in high-affinity 

GTPase activity for both RGS4 and RGS4-GFP2 (Figure 3.5).  Importantly, the turnover 

number for each GST-fusion proteins was not significantly different from each other 

(Figure 3.6) (p>0.05).  These studies indicate that GFP2 attached to the C-terminus of 

RGS4 does not affect the GAP activity. 

3.2.3 Intracellular localisation of RGS4  

The intracellular localisation of RGS4 was examined by transfection of HEK293T cells 

with C-terminally eYFP-tagged RGS4. Figure 3.7 shows microscope images of cells 

transiently expressing RGS4-eYFP.  The blue colour (A) represents Hoechst 33342 DNA 

staining that was used to identify the nuclei in these cells. The green colour (B) represents 

eYFP fluorescence from expressed RGS4-eYFP.  The red colour (C) represents Wheat 
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Germ Agglutinin (WGA) -Alexa Fluor 594 used to label the plasma membrane.  To 

identify any RGS4-eYFP localised at the plasma membrane, an overlay image is also 

shown (D).  In these overlay images a yellow colour represents RGS4-eYFP that is co-

localised with WGA-Alexa Fluor 594 at the plasma membrane.  These images clearly 

demonstrate that the vast majority of transiently transfected RGS4-eYFP in HEK293T 

cells is localised within the cytoplasm.   

These images were then used to compare the percentage redistribution of transiently 

expressed RGS4-eYFP fluorescence at the plasma membrane versus the cytoplasm. Images 

were deconvolved and the surface and cytosolic masks were created and superimposed. 

Total fluorescence pixel intensity values corresponding to eYFP located at the membrane 

and cytoplasm of the cell were quantified and were expressed as a percentage of the total 

fluorescent eYFP intensity.  This comparison confirmed that RGS4 in HEK293T cells is 

localised predominantly within the cytoplasm.  Figure 3.7(E) illustrates a significant 

difference (p<0.05) between fluorescence intensity of RGS4-eYFP within the cytoplasm 

(83.7 ± 2.0 %) compared to fluorescence intensity of RGS4-eYFP at the plasma membrane 

(16.3 ± 2.0%).  Using an antiserum specifically raised against RGS4, an immunoblot 

further demonstrated the predominant cytoplasmic localisation of transiently expressed 

RGS4-eYFP in HEK293T cells (Figure 3.7 (F)).   

3.2.4 Effect of G proteins on intracellular localisation of RGS4 

HEK293T cells endogenously express many G proteins including a number of P. tox-

sensitive subtypes such as Gαi1.  However, over-expressing exogenous Gαi1 has previously 

been shown to promote the translocation of RGS4 from the cytoplasm to the plasma 

membrane (Roy et al., 2003).  In this study, microscopy and immunoblotting of transiently 

co-transfected RGS4-eYFP and Gαi1 in HEK293T cells were used to confirm data by Roy 

et al., (2003) (Figure 3.8).  The overlay image of cells co-expressing both RGS4-eYFP and 

Gαi1 illustrates that over-expressing exogenous Gαi1 promotes the translocation RGS4-

eYFP from the cytoplasm to the plasma membrane in HEK293T cells. 

Figure 3.8 (D) shows the comparison of percentage eYFP fluorescence of transiently 

expressed RGS4-eYFP at the plasma membrane (38.6 ± 3.1%) and in the cytoplasm (61.4 

± 3.1 %) in the presence of exogenous Gαi1.  When compared to HEK293T cells 

transiently transfected with RGS4-eYFP alone (Figure 3.7 (E)), over-expression of Gαi1 in 

HEK293T cells was sufficient to cause translocation of ~22% of RGS4-eYFP to the 
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plasma membrane.  Immunoblots using an antiserum raised against GFP, which also 

detects YFP, allowed comparison of RGS4-eYFP expression in both membrane and 

cytosolic fractions of HEK293T cells transiently co-transfected with Gαi1 (Figure 3.8(E)).  

When compared to the immunblot of HEK293T cells transiently transfected with RGS4-

eYFP alone, over-expression of exogenous Gαi1 clearly resulted in a translocation of 

RGS4-eYFP from the cytoplasm to the plasma membrane. 

Previous studies have shown that constitutively active forms of Gαi2 cause RGS4 to 

become localised at the plasma membrane (Druey et al., 1998;Roy et al., 2003).  The 

conservation of residues between Gαi2 and Gαi1 allowed the constitutive mutation to be 

transferred.  Figure 3.9 (A-E) shows transiently co-transfected RGS4-eYFP and the 

constitutively active G protein, Gαi1
Q204L, in HEK293T cells.  The co-localisation of 

RGS4-eYFP and WGA-Alexa Fluor 594 in the overlay image (Figure 3.9 (C)) illustrates 

that expression of Gαi1
Q204L promotes the translocation RGS4-eYFP from the cytoplasm to 

the plasma membrane in HEK293T cells.  In the presence of Gαi1
Q204L the percentage of 

RGS4-eYFP fluorescence at the plasma membrane was 57.3 ± 6.4% compared to RGS4-

eYFP fluorescence within the cytoplasm, 42.7 ± 6.4%.  Interestingly, the constitutively 

active G protein mutation increased the percentage of RGS4-eYFP fluorescence at the 

plasma membrane compared to wild-type Gαi1.  Figure 3.9 (E) shows an immunoblot of 

membrane and cytosolic fractions of HEK293T cells transiently co-transfected with RGS4-

eYFP and Gαi1
Q204L

.  Expression of Gαi1
Q204L resulted in translocation of RGS4-eYFP to 

the plasma membrane.  Again, the constitutively active G protein mutation increased the 

translocation of RGS4-eYFP to the plasma membrane compared to wild-type Gαi1  

It was thought perhaps that a greater expression of transiently transfected Gαi1
Q204L 

compared to Gαi1 could be responsible for the constitutively active G protein increasing the 

translocation of RGS4-eYFP to the plasma membrane.  Loading an equal volume of cell 

lysates transiently expressing Gαi1 (lane 2) or Gαi1
Q204L (lane 3), Figure 3.10 shows a 

greater intensity of the Gαi1 band compared to Gαi1
Q204L.  This suggests that the 

constitutively active G protein is expressed at lower levels when directly compared to 

expression of wild-type Gαi1.  The increased expression of Gαi1
Q204L is therefore not 

responsible for the increased translocation of RGS4-eYFP to the plasma membrane.  

Instead, properties of the constitutively active G protein must influence the translocation.  

Activation of Gαi1 by receptor is therefore not required for translocation of RGS4-eYFP 

from the cytoplasm to the plasma membrane in HEK293T cells, however constitutive 

activity of Gαi1 causes the translocation of RGS4-eYFP to be more distinct. 
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3.2.5 Effect of receptors on cellular localisation of RGS4 

It has been reported that that co-transfection of both RGS4-GFP and the M2 muscarinic 

receptor promotes translocation of RGS4 to the plasma membrane (Roy et al., 2003).  

Receptors assist G protein activation and therefore may modulate RGS-G protein 

interaction.  The Gαi1 coupled, α2A-adrenoceptor was therefore co-transfected with RGS4-

eYFP in HEK293T cells and microscopy and immunoblotting were used to study the effect 

of the α2A-adrenoceptor expression on the cellular localisation of RGS4-eYFP (Figure 

3.11).  Microscopy images illustrate that RGS4-eYFP becomes localised to the plasma 

membrane in the presence of the α2A-adrenoceptor, in a similar pattern to the effect of the 

cognate G protein (Figure 3.11 (A), (B), (C)).  The majority of RGS4-eYFP fluorescence 

was still localised (p<0.05) within the cytosol (76.6 ± 2.4 %) (Figure 3.11 (D)).  However, 

~ 7% of total RGS4-eYFP was still translocated from the cytosol to the plasma membrane 

in the presence of the α2A-adrenoceptor when the percentage fluorescence of co-expressed 

RGS4-eYFP and the α2A-adrenoceptor (23.4 ± 2.4 %) were compared to RGS4-eYFP 

transfected alone (16.27 ± 2.05 %).  (Figure 3.11 (E)) clearly shows that there is an 

increase in RGS4-eYFP at the plasma membrane in the presence of the receptor.  RGS4-

eYFP is translocated from the cytosol to the plasma membrane in the presence of the α2A-

adrenoceptor but this translocation in HEK293T cells appears to be less than in the 

presence of Gαi1 (Figure 3.8 (D)).  This pattern of RGS4-eYFP translocation was also 

reflected in immunoblots of membrane and cytosolic cell lysate fractions.  Following co-

transfection of RGS4-eYFP and the α2A-adrenoceptor, immunoblots (Figure 3.11 (E)) 

showed an increase in the intensity RGS4-eYFP located in the membrane compared to 

when RGS4-eYFP was transfected alone (Figure 3.7 (F)) but less than when compared to 

co-transfection of RGS4-eYFP and Gαi1 (Figure 3.8 (E)).   

Agonist activation of the α2A-adrenoceptor with UK14304 (100 µM) was hypothesised to 

further activate the receptor and therefore cause a greater percentage translocation of 

RGS4-eYFP to the plasma membrane (Figure 3.12).  However, the overlay image (Figure 

3.12 (C)) showed no further co-localisation of RGS4-eYFP and the WGA-Alexa Fluor 

594-labelled plasma membrane marker.  Similarly, the percentage fluorescence showed no 

difference compared to unstimulated cells transfected with RGS4-eYFP and the α2A-

adrenoceptor; cytosolic RGS4-eYFP (22.4 ± 1.9%) and plasma membrane associated 

RGS4-eYFP (77.6 ± 1.9%).  The immunoblots also showed comparable intensity of the 

RGS4-eYFP in the membrane and cytosolic HEK293T cell lysates in agonist-activated 
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α2A-adrenoceptor (Figure 3.12 (E)) and unstimulated α2A-adrenoceptor expressing cells 

(Figure 3.11 (E)).  Agonist-stimulation of the α2A-adrenoceptor did not further increase 

RGS4-eYFP translocation to the plasma membrane. 

These immunblots showing the relative fractions of RGS4 in the membrane and cytosolic 

fractions were not stripped and reprobed with appropriate marker proteins.  Reprobing with 

an antibody raised against a defined membrane and cytosolic protein would have more 

clearly defined the fractions as “membrane” or “cytosol” to show no cross contamination 

of samples. 

Measuring RGS4-eYFP fluorescence in HEK293T cell membranes further compared the 

effects of co-transfection of G protein, receptor and activated receptor on the cellular 

localisation of RGS4-eYFP.  Figure 3.13 shows the co-transfection of Gαi1 has the greatest 

percentage effect (235.4 ± 20.7%) on RGS4-eYFP translocation to the plasma membrane.  

The presence of the α2A-adrenoceptor or UK14304 (100µM) stimulated α2A-adrenoceptor 

translocated RGS4-eYFP to the plasma membrane to a similar degree; 169.9 ± 10.0%, 

152.8 ± 12.3% respectively. 

Again, however, with retrospect, it can be noted that a parallel data set to that of Figure 

3.13 should have been included, whereby eYFP was expressed with the indicated 

receptor/G protein.  This set of experiments would have conclusively shown that RGS4 

was solely responsible for the increase translocation of the fluorescent protein. 
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Figure 3.1 Coomassie Blue staining for purified GST-RGS4 and GST-RGS4-GFP
2
  

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding (A) GST-RGS4 or 

(B) GST-RGS4-GFP2.  GST-fused proteins were induced and purified and equal volumes 

of each induced fraction or purified elution fraction were resolved by SDS-PAGE and 

stained with Coomassie Blue. Induced cell lysates of BL21 bacteria before addition of 

glutathione sepharose beads (lane 1). Induced cell lysates of BL21 bacteria after incubation 

with glutathione sepharose beads (lane 2). Elution 1 (lane 3). Elution 2 (lane 4). Elution 3 

(lane 5). Elution 4 (lane 6). 
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Figure 3.2 Specific binding of [
3
H]RS-79948-197  to the α2A-adrenoceptor-Gαo1

C351I
 

fusion protein   

HEK293T cells were transfected to express the α2A-adrenoceptor-Gαo1
C351I fusion protein.  

Cells were treated with P.tox (25 ng/ml for 16 hours) and then membranes were prepared.  

Expression levels of the α2A-adrenoceptor-Gαo1
C351I fusion protein were detected by the 

binding of 0.00-3.4 nM [3H]RS-79948-197 to 1 µg of membranes.  Non-specific binding 

was determined in the presence of 100 µM idozoxan in parallel assays.   Data shown are 

from triplicate determinations (mean ± SEM.) and are representative of six individual 

experiments performed. 
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Figure 3.3 GTPase activity in cell membranes expressing the α2A-adrenoceptor-

Gαo1
C351I

 fusion protein in the presence and absence of GST-RGS4 

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and then membranes 

prepared.  High-affinity GTPase activity in the absence (filled) or presence of 100 µM 

adrenaline (open) was measured at various concentrations of GTP in the presence (circles) 

or absence (squares) of GST-RGS4.  Data shown are from triplicate determinations and are 

representative of three individual experiments performed. 
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Figure 3.4  Kinetic analysis of GTPase activity in cell membranes expressing the α2A-

adrenoceptor-Gααααo1
C351I

 fusion protein in the presence and absence of GST-RGS4 

Data generated from Figure 3.3 shown in Eadie-Hofstee transformation to show Km and 

Vmax.  High-affinity GTPase activity in the absence (filled) or presence of 100 µM 

adrenaline (open) was measured at various concentrations of GTP in the presence (circles) 

or absence (squares) of GST-RGS4.  Data shown are from triplicate determinations and are 

representative of three individual experiments performed. 
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Vmax 

(pmol/mg/min) 

Km 

(nM) 

Basal 
7 ± 1 137 ± 49 No RGS 

+ Adrenaline 

(100 µM) 

36 ± 1 * 136 ± 7 

Basal 
15 ± 1 325 ± 52 + 1 µM RGS4 

+ Adrenaline 

(100 µM) 

233 ± 13 *, ** 843 ± 61*, ** 

 

 

Table 3.1 Enzyme kinetics of GAP activity of RGS4  

Data generated from Figure 3.4 are tabulated for comparison of enzyme kinetic results.  

Values of Vmax and Km are compared in the presence and absence of adrenaline (100 µM) 

and presence or absence of RGS4 (1 µM) in cell membranes expressing the α2A-

adrenoceptor-Gαo1
C351I fusion protein.  Data shown are mean ± SEM from three individual 

experiments. * Denotes significantly different from absence of agonist, p<0.05. ** Denotes 

significantly different from adrenaline-stimulated kinetics in absence of 1 µM RGS4, 

p<0.01. 
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Figure 3.5 Comparison of GAP activity of GST-RGS4 and GST-RGS4-GFP
2
  

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P.tox (25 ng/ml for 16 hours) and then membranes 

prepared.  High-affinity GTPase activity (at 0.5 µM GTP) in the presence of 0.8 µM GST-

RGS4 or presence of 0.8 µM GST-RGS4-GFP2 was measured in the absence (open bar) or 

presence of 100 µM adrenaline (filled bar). Data shown are mean ± SEM of three 

individual experiments performed. 
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Figure 3.6 Comparison of turnover number of Gαo1 in the presence of GST-RGS4 or 

GST-RGS4-GFP
2
  

The turnover number of Gαo1 in the presence of GST-RGS4 (open bar) or GST-RGS4-

GFP2 (filled bar) is shown.  The turnover number was calculated from expression level of 

the α2A-adrenoceptor-Gαo1
C351I fusion protein and the high-affinity GTPase activity of the 

GST fusion protein in these membranes.  Data shown are mean ± SEM. of three individual 

experiments performed. 
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Figure 3.7 The cellular localisation of RGS4-eYFP   

HEK293T cells grown on coverslips were transiently transfected with RGS4-eYFP and 

visualised with (A) Hoechst 33342 nuclei staining (blue) (B) RGS4-eYFP (green) or (C) 

WGA-Alexa Fluor 594 plasma membrane staining kit (red).  Images were colour combined 

to create merged images (D).  Results shown are of a single experiment and are 

representative of three experiments performed. 

(E) HEK293T transfected cells were also measured for RGS4-eYFP fluorescence intensity 

at the plasma membrane (open bar) and cytoplasm (closed bar). Images were deconvolved 

using an iterative and constrained algorithm.  Surface and cytosolic masks were created 

and superimposed and fluorescence pixel intensity values corresponding to RGS4-eYFP 

located at the plasma membrane and cytoplasm of the cell were quantified from each 

generated mask. Fluorescence was expressed as a percentage of the total RGS4-eYFP 

intensity using a mean of 3 cells ± SEM. Statistical significance was determined using a 

Student’s t test, * p<0.01. 

(F) Cells transiently transfected with RGS4-GFP2 were separated into membrane (lane 1) 

and cytosolic (lane 2) fractions, resolved by SDS-PAGE and immunoblotted with an anti-

RGS4 antiserum.  Results shown are of a single experiment and are representative of three 

experiments performed. 
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Figure 3.8 The cellular localisation of RGS4-eYFP when co-expressed with Gαi1   

RGS4-eYFP is translocated to the plasma membrane when transiently co-transfected with 

Gαi1.  (A) HEK293T cells grown on coverslips transiently transfected with RGS4-eYFP 

and Gαi1.  (B) HEK293T cells grown on coverslips transiently transfected with RGS4-

eYFP and Gαi1 with WGA-Alexa Fluor 594 plasma membrane staining kit.  Images colour 

combined to create merged images (C).  Results shown are of a single experiment and are 

representative of three experiments performed. 

(D) HEK293T cells co-transfected with both RGS4-eYFP and Gαi1 were also measured for 

RGS4-eYFP fluorescence intensity at the plasma membrane (open bar) and cytoplasm 

(closed bar). Images were deconvolved using an iterative and constrained algorithm.  

Surface and cytosolic masks were created and superimposed and fluorescence pixel 

intensity values corresponding to RGS4-eYFP located at the plasma membrane and 

cytoplasm of the cell were quantified from each generated mask. Fluorescence was 

expressed as a percentage of the total RGS4-eYFP intensity using a mean of 3 

cells ± SEM. Statistical significance was determined using a Student’s t test, * p<0.01. 

(E) HEK293T cells transiently transfected with RGS4-eYFP and Gαi1
 were separated into 

membrane (lane 1) and cytosolic (lane 2) fractions and resolved by SDS-PAGE and 

immunoblotted with an anti-GFP antiserum.  Results shown are of a single experiment and 

are representative of three experiments performed. 
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Figure 3.9  The cellular localisation of RGS4-eYFP when co-expressed with Gαi1
Q204L 

RGS4-eYFP is translocated to the plasma membrane when transiently co-transfected with 

Gαi1
Q204L.  (A) HEK293T cells grown on coverslips transiently transfected with RGS4-

eYFP and Gαi1
Q204L.  (B) HEK293T cells grown on coverslips transiently transfected with 

RGS4-eYFP and Gαi1
Q204L with WGA-Alexa Fluor 594 plasma membrane staining kit.  

Images colour combined to create merged images (C).  Results shown are of a single 

experiment and are representative of three experiments performed. 

(D) HEK293T cells co-transfected with both RGS4-eYFP and Gαi1
Q204L were also 

measured for RGS4-eYFP fluorescence intensity at the plasma membrane (open bar) and 

cytoplasm (closed bar). Images were deconvolved using an iterative and constrained 

algorithm.  Surface and cytosolic masks were created and superimposed and fluorescence 

pixel intensity values corresponding to RGS4-eYFP located at the plasma membrane and 

cytoplasm of the cell were quantified from each generated mask. Fluorescence was 

expressed as a percentage of the total RGS4-eYFP intensity using a mean of 3 

cells ± SEM. Statistical significance was determined using a Student’s t test, * p<0.01. 

(E) HEK293T cells were transiently co-transfected with RGS4-GFP2 and Gαi1
Q204L.  

Membrane (lane 1) and cytosolic (lane 2) fractions were separated and resolved by SDS-

PAGE and then immunoblotted with an anti-GFP antiserum.  Results shown are of a single 

experiment and are representative of three experiments performed. 
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Figure 3.10 Expression and immunological detection of Gαi1 and Gαi1
Q204L

  

HEK293T cells were transfected to transiently express Gαi1 (lane 2) or Gαi1
Q204L (lane 3).  

Untransfected HEK293T cell lysates were included as a control (lane1). Cell lysates were 

resolved by SDS-PAGE and then immunoblotted with an antiserum that identifies Gαi1.  

Results shown are of a single experiment and are representative of three experiments 

performed. 
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Figure 3.11 The cellular localisation of RGS4-eYFP when co-expressed with the α2A-

adrenoceptor   

RGS4-eYFP is translocated to the plasma membrane when transiently co-transfected with 

RGS4-eYFP and α2A-adrenoceptor.  (A) HEK293T cells grown on coverslips transiently 

transfected with RGS4-eYFP and α2A-adrenoceptor.  (B) HEK293T cells grown on 

coverslips transiently transfected with RGS4-eYFP and α2A-adrenoceptor with WGA-

Alexa Fluor 594 plasma membrane staining kit.  Images colour combined to create merged 

images (C).  Results shown are of a single experiment, representative of three experiments 

performed. 

(D) HEK293T cells co-transfected with both RGS4-eYFP and the α2A-adrenoceptor were 

also measured for RGS4-eYFP fluorescence intensity at the plasma membrane (open bar) 

and cytoplasm (closed bar). Images were deconvolved using an iterative and constrained 

algorithm.  Surface and cytosolic masks were created and superimposed and fluorescence 

pixel intensity values corresponding to RGS4-eYFP located at the plasma membrane and 

cytoplasm of the cell were quantified from each generated mask. Fluorescence was 

expressed as a percentage of the total RGS4-eYFP intensity using a mean of 3 

cells ± SEM. Statistical significance was determined using a Student’s t test, * p<0.05. 

(E) HEK293T cells were transiently co-transfected with RGS4-eYFP and the α2A-

adrenoceptor.  Membrane (lane 1) and cytosolic (lane 2) fractions were separated and 

resolved by SDS-PAGE and then immunoblotted with an anti-GFP antiserum.  Results 

shown are of a single experiment, representative of three experiments performed. 

  

 

 

 

 

 



   97 

  

(A)    (B)    (C)    

 

 

 

 

 

(D)   

 

 

 

 

 

 

 

(E) 

 

 

 

Mr (x10-3) 

50505050

    1.           2. 

RGS4-eYFP + αααα2A-adrenoceptor

+ UK14304

 Membrane  Cytosol

0

10

20

30

40

50

60

70

80

90

100

%
 F

lu
o

re
s
c
e
n

c
e
 i

n
te

n
s
it

y

 



   98 

Figure 3.12 The cellular localisation of RGS4-eYFP when co-expressed with the α2A-

adrenoceptor and stimulated with UK14304   

RGS4-eYFP is translocated to the plasma membrane when transiently co-transfected with 

the α2A-adrenoceptor then stimulated with UK14304 (100 µM) for 30 minutes.  (A) 

HEK293T cells were grown on coverslips and transiently transfected with both RGS4-

eYFP and the α2A-adrenoceptor then subsequently stimulated with UK14304 (100 µM) for 

30 minutes.  (B) HEK293T cells grown on coverslips, transiently transfected with both 

RGS4-eYFP and the α2A-adrenoceptor were stimulated with UK14304 (100 µM) for 30 

minutes, with WGA-Alexa Fluor 594-labelled plasma membrane staining kit.  Images 

colour combined to create merged images (C). 

(D) HEK293T cells transiently transfected with RGS4-eYFP and the α2A-adrenoceptor then 

subsequently stimulated with UK14304 (100 µM) for 30 minutes were measured for 

RGS4-eYFP fluorescence intensity at the plasma membrane (open bar) and cytoplasm 

(closed bar). Images were deconvolved using an iterative and constrained algorithm.  

Surface and cytosolic masks were created and superimposed and fluorescence pixel 

intensity values corresponding to RGS4-eYFP located at the plasma membrane and 

cytoplasm of the cell were quantified from each generated mask. Fluorescence was 

expressed as a percentage of the total RGS4-eYFP intensity using a mean of 3 

cells ± SEM. Statistical significance was determined using a Student’s t test, * p<0.05. 

(E) HEK293T cells transiently transfected with RGS4-eYFP and the α2A-adrenoceptor then 

subsequently stimulated with UK14304 (100 µM) for 30 minutes were separated into 

membrane (lane 1) and cytosolic (lane 2) fractions and resolved by SDS-PAGE and 

immunoblotted with an anti-GFP antiserum.  Results shown are of a single experiment and 

are representative of three experiments performed. 
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Figure 3.13 Comparison of percentage RGS4-eYFP fluorescence at the plasma 

membrane 

HEK293T cells were transiently transfected to express RGS4-eYFP, RGS4-eYFP co-

transfected with Gαi1 , RGS4-eYFP co-transfected with the α2A-adrenoceptor or RGS4-

eYFP co-transfected with the α2A-adrenoceptor and stimulated with 100 µM UK14304 for 

30 minutes.  The membrane fraction of these cells was measured for eYFP fluorescence 

and expressed as a percentage compared to RGS4-eYFP (defined as 100%).  Data shown 

are from triplicate determinations (mean ± SEM.) and are representative of three 

experiments performed. 
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3.3 Discussion 

The introduction of N- and C-terminal modifications on RGS4 could potentially impair 

function or cellular localisation of the protein.  The in vitro function of several B/R4 RGS 

proteins, including RGS4, appears to be uncompromised by the addition of an N-terminal 

tag (Berman et al., 1996b;Chen et al., 1997).    Similarly, the addition of a C-terminal tag 

has also been shown to have no effect on the functionality or the localisation of RGS4 

(Chatterjee and Fisher, 2000).  In this study, addition of GFP2 to the C-terminal of RGS4 

did not change the GAP activity of the protein compared to wild-type RGS4. 

High-affinity GTPase assays measure the rate of GTP hydrolysis to GDP (McKenzie and 

Milligan, 1990;Wise et al., 1997a;Wise et al., 1997b).  G proteins fused to the C-terminal 

of GPCRs were first used in high-affinity GTPase assays by Wise et al., (1997a). The 

expression of such fusion proteins defines a 1:1 stoichiometry of receptor and G protein.  

Each receptor is in equivalent proximity to the G protein and furthermore, receptor-G 

protein fusion proteins function effectively as agonist-activated GTPases.  The α2A-

adrenoceptor-Gαo1
C351I fusion protein has previously been used to characterise RGS4 

GTPase activity (Cavalli et al., 2000;Bahia et al., 2003).  A mutagenic alteration in the G 

protein four amino acids from the C terminal at a conserved cysteine residue (C35Il in Gαo1) 

defines that the G protein cannot be ADP-ribosylated and therefore becomes resistant to P. 

tox treatment.  P. tox catalyses ADP-ribosylation on a sensitive G protein α subunit, 

therefore making it unable to exchange GDP for GTP in response to receptor stimulation.  

Thus, P. tox treatment abolishes signalling through the endogenous pool of inhibitory G 

proteins.  G protein families endogenously expressed in HEK293T cells such as, Gαs, Gαq 

and Gα12, which are not sensitive to P. tox, produce too limited a signal to be detected with 

the high-affinity GTPase assay.  The expression of the α2A-adrenoceptor-Gαo1
C351I fusion 

protein and P. tox treatment of cells therefore allows the GTPase signal to be attributed 

solely to the α2A-adrenoceptor-Gαo1
C351I fusion protein.  

To study the enzyme kinetics of the high-affinity GTPase assay, various concentrations of 

GTP acting as a substrate on the α2A-adrenoceptor-Gαo1
C351I fusion protein can be used 

(Cavalli et al., 2000;Bahia et al., 2003).  Such a successful strategy was also employed in 

this study.  As expected, in the absence of recombinant RGS4, the rate of GTPase activity 

was increased by adrenaline but did not alter the Km.  RGS family members act 

catalytically;  relatively small amounts of RGS protein can substantially increase the Km 

and the Vmax of GTP hydrolysis.  It could therefore be deduced by the lack of alteration of 
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Km in the absence of added RGS4, that the endogenous levels of RGS proteins present in 

the HEK293T cell membrane preparation are low.   

Addition of recombinant RGS4 to the high-affinity GTPase assay resulted in an increase in 

both Vmax and the Km for GTP as anticipated by the basic catalytic mechanism of RGS 

function .  As such a  single concentration of GTP was initially sufficient to demonstrate 

that the fluorescently modified RGS4 was functionally comparable to wild-type.  Further 

investigations using various concentrations of GTP acting as a substrate on the α2A-

adrenoceptor-Gαo1
C351I fusion protein allowed the determination of the turnover number of 

RGS4-GFP2 and showed that addition of GFP2 to the C-terminal of RGS4 did not change 

the GAP activity of the protein compared to wild-type RGS4. 

RGS proteins have been reported to physically interact with Gα subunits, stabilising the 

transition state conformation of the G protein and increasing the intrinsic GTPase activity 

(Berman et al., 1996b).  RGS4 is thought to be recruited from cytosol to the plasma 

membrane by Gα subunits particularly those of the Gαi and Gαq subfamilies (Druey et al., 

1998;Srinivasa et al., 1998).  The cytoplasmic localisation of RGS4 allows access to the 

inner face of the plasma membrane to interact with G proteins and receptors and effectors.  

However, the mechanisms of plasma membrane association are still uncertain.   

The present results sought to clarify the cellular localisation and trafficking of RGS4 in 

mammalian cells.  Many studies have observed that transiently transfected RGS4 is 

localised in the cytoplasm (Druey et al., 1998;Chatterjee and Fisher, 2000).  As mentioned 

previously, the N-terminus of RGS4 is extremely important for cellular localisation.  

Indeed, a sequence element at the N-terminus of the RGS domain has been identified to 

cause cytoplasmic retention of RGS4.  A retroviral-like sequence has been shown to 

mediate nuclear-cytoplasmic export of RGS4 by interaction with the exportin-1-RanGTP 

complex (Chatterjee and Fisher, 2000).  However, it was noticed in the present study that 

although the vast majority of RGS4-eYFP is cytoplasmic, a relatively small proportion of 

RGS4-eYFP is membrane associated at any given time (Figure 3.7).   

Previously, it has been shown that the presence of melatonin causes nuclear exclusion of 

the androgen receptor.  The generally accepted mechanism for this nuclear exclusion 

involves the Gαi mediated increase of intracellular cyclic guanosine monophosphate 

(cGMP) concentrations, calcium entry into the cell and protein kinase C (PKC) activation.   

Importantly, this mechanism also leads to the enhanced cytoplasmic distribution of RGS2 
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and RGS10 in prostate carcinoma cells.  It was also discovered that in these cells stably 

expressing the androgen receptor, RGS4 surprisingly accumulated in the nucleus and 

showed no recruitment from the cytoplasm to the plasma membrane in the presence of 

melatonin (Rimler et al., 2006).  This has lead to speculation that in addition to the 

regulation of membrane bound G proteins, RGS4 may perhaps have other undiscovered 

regulatory functions including modulating the intensity and the duration of signal 

transduction.   

Numerous studies have provided evidence that RGS proteins interact directly with Gα 

subunits. In a yeast two-hybrid screen, GAIP was found to interact specifically with 

members of the Gαi subfamily, Gαi1, Gαi2, Gαi3, Gαiz, and Gαo (De Vries and Farquhar, 

2002).  A co-immunoprecipitation study found that RGS2 binds Gαs protein in vitro 

(Tseng and Zhang, 1998).   It has been demonstrated that RGS3 binds to Gαq, but not Gαs 

(Neill et al., 1997) and that RGS1 and RGS4 interacts with Gαi, but not Gαs (Watson et al., 

1996;Berman et al., 1996b).  However, recent studies failed to prove binding between 

RGS2 and Gαs in vivo (Chen et al., 1997;Heximer et al., 1997) despite the understanding 

that RGS2 is recruited to the plasma membrane after co-expression of Gαs (Roy et al., 

2006) and inhibits cAMP signalling (Sinnarajah et al., 2001). Thus, the interaction between 

RGS and heterotrimeric G proteins may possibly be cell specific and further investigation 

is required.  

The RGS-Gα protein interaction may also be increased by receptors (Ingi et al., 1998;Zeng 

et al., 1998;Xu et al., 1999).  GPCRs could influence RGS orientation, promoting 

localisation at the plasma membrane (Hollinger and Hepler, 2002), or perhaps expression 

of GPCRs could induce a greater pool of endogenous RGS proteins (Druey et al., 

1996;Tseng and Zhang, 1998).  Importantly, a recent study found that RGS2 binds 

selectively to the third intracellular loop of the M1 muscarinic receptor (Bernstein et al., 

2004) and to the third intracellular loop of the α1a-adrenoceptor (Hague et al., 2005). There 

is a high degree of selectivity of interactions between RGS proteins and receptors but to 

date no corresponding binding regions have been identified (Zeng et al., 1998).  It may be 

reasoned that the selectivity of RGS proteins for receptors must regulate very specific 

physiological responses.  In this study, cytoplamsic RGS4 was recruited to the plasma 

membrane following co-expression with the α2A-adrenoceptor in HEK293T cells. No 

further recruitment of RGS4 to the plasma membrane was observed when the α2A-

adrenoceptor was stimulated with agonist.  Endogenous G proteins in HEK293T cells are 

perhaps sufficiently activated by presence of the receptor, or are able to serve as better 
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RGS targets when coupled to receptors enabling the RGS4-eYFP to be translocated to the 

plasma membrane in the absence of agonist.  This translocation of RGS4-eYFP in the 

presence of the α2A-adrenoceptor suggested that further study using cells transfected with 

the α2A-adrenoceptor and over expressing exogenous Gαi was not required.  Perhaps 

further investigation may reveal that there is a simple physical association between the 

RGS4 and the α2A-adrenoceptor, which allows RGS4-eYFP to be translocated to the 

plasma membrane. 

Mutation of glutamic acid 204 of Gαi1 to leucine abolishes the hydrolysis of GTP to GDP 

on the Gα protein. Glutamic acid 204  stabilises the negative charge on the phosphate 

leaving group in the transition state of the reaction complex and orientates the attacking 

water molecule to allow GTP hydrolysis (Graziano and Gilman, 1989).  The expression of 

the constitutively active Gαi2 mutant (Gαi2
Q205L) showed translocation of cytosolic RGS4 to 

the plasma membrane (Druey et al., 1998). Constitutively activated forms of the G protein, 

Gαq (Gαq
Q209L and Gαq

R183C) have also been researched and co-expression with RGS4 also 

show the translocation of RGS4 to the plasma membrane (Heximer et al., 2001;Roy et al., 

2003).  The use of constitutively active G proteins was also used in the present study.  The 

corresponding constitutively active mutant of the Gαi1 G protein (Gαi1
Q204L) showed 

increased recruitment of RGS4 to the plasma membrane compared to wild-type Gαi1.  This 

was not caused by a higher expression of Gαi1
Q204L compared to Gαi1 suggesting that the 

conformation of the constitutively active G protein is more favourable for the recruitment 

of RGS4-eYFP to the plasma membrane.  

The data shown in this chapter confirm that the over-expression of exogenous Gαi1 recruits 

RGS4-eYFP to the plasma membrane in HEK293T cells.  When a cognate receptor that 

activates this G protein was co-transfected in place of the G protein, corresponding patterns 

of translocation were observed.  The ability of a transfected receptor, unstimulated by 

agonist, to increase levels of RGS4 at the plasma membrane implies that RGS4 is recruited 

to the plasma membrane almost certainly in response to an increased number of RGS4 

protein binding targets.  However, more RGS binding sites at the plasma membrane may 

be sufficient to trigger translocation of RGS4 in intact cells, spontaneously activating 

endogenous G proteins to cause RGS4 translocation.  The transient transfection of RGS4-

eYFP may have concealed any differences in cellular translocation patterns.  Perhaps 

future technical advances and investigation on endogenous RGS4 will reveal currently 

unrecognised localisation patterns of RGS proteins.  
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4 Chapter 4 

4.1 Introduction 

Previously, a deletion of the fission yeast S. pombe RGS gene, rgs1, produced an increased 

sensitivity of pheromone signalling as measured by pheromone-dependent transcription 

(Watson et al., 1999).  In fact, loss of rgs1 not only made the yeast cells more sensitive to 

pheromone stimulation but also increased production of the reporter gene, β-galactosidase, 

in the absence of mating factor. These changes were due to the loss of rgs1, as they were 

overcome by expression of an exogenous Rgs1p (Didmon et al., 2002).  It was reasoned 

that if such loss-of-function mutations in yeast amplify pheromone signalling, gain-of-

function (GOF) mutations that block signalling could also be obtained.  Thus, a GOF 

mutation in an RGS gene would be anticipated to increase RGS activity to further inhibit 

cellular signalling. Indeed, RGS GOF mutations were detected in S. cervisiae by growth on 

plates containing very high (normally lethal) concentrations of α-factor (6 µM) (Dohlman 

et al., 1995).   

The simplicity of the yeast pheromone signalling cascade has allowed large scale screens 

to identify RGS GOF mutants.  Sz. pombe consists of three main signalling components, a 

GPCR, a Gα subunit and a single RGS protein.  The use of a Sz. pombe screen to identify 

RGS4 mutants by Hill et al., (personal communication) was the first description of a GOF 

mutant in a mammalian RGS.  RGS4S30C showed decreased production of β-galactosidase 

and decreased sensitivity of pheromone signalling.  Residue 30 in RGS4 is located in the 

N-terminal domain of RGS4.  Traditionally, the RGS box was thought to exclusively 

confer GAP activity to RGS proteins.  It was therefore initially surprising that mutation of 

a single amino acid, especially in the N-terminal domain of RGS4, decreased sensitivity of 

pheromone signalling and pheromone-dependent transcription.   

A series of deletion mutants have previously been used to define particular regions of 

RGS4 that confer specific functions (Zeng et al., 1998).  RGS4 is most easily split into 

three such deletion mutants, allowing functions to be attributed to the RGS box, the 

flanking N-terminal, or C-terminal domains.  Clearly, all three domains must work 

cooperatively to regulate selective inhibition of G protein signalling but findings have 

shown that the flanking regions of RGS4 were essential for optimal GAP activity in 

receptor-G protein signalling.  In particular, it was shown that the N-terminal domain of 
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RGS4 is essential for high potency inhibition of G protein signalling and receptor 

selectivity.   

Further studies of the N-terminal of RGS4 used a 33 amino acid N-terminal peptide of 

RGS4 (P1-33).  This peptide was shown to effectively inhibit Gαq-mediated Ca2+ signalling.  

Importantly, this inhibition was selective for the M3 muscarinic receptor over the 

cholecytokinin receptor (Zeng et al., 1998).  The N-terminus of RGS4 may therefore help 

position RGS4 between the receptor and the G protein optimally positioning the RGS box 

for effective GAP activity. 

RGS4 has been implicated in regulating a number of signalling pathways.  A mammalian 

GOF mutant in RGS4 could therefore produce new insights into the physiological 

relevance of RGS4.  The aim of the studies in this chapter was to investigate RGS4S30C in 

vitro and in intact mammalian cells.  High-affinity GTPase assays measured the sensitivity 

of the mutant to agonist and moreover, the rate of GTPase activity.  The cellular 

localisation of RGS4S30C was also investigated.  Importantly, the ability of the GOF 

mutation to be transferred into another member of the B/R4 RGS family, RGS16, and the 

selectivity of these RGS proteins for different Gα subtypes was also studied.  The G 

protein selectivity, potency and GAP activity of other selected residue 30, RGS4 mutants 

were also investigated. 

4.2 Results 

4.2.1 Identification of RGS4 mutants 

Mutations within the RGS4 open reading frame resulting in increased activity were 

identified by Hill et al., (personal communication).  A previously identified Sz.  pombe 

yeast strain (JY731) was employed which incorporates a pheromone-inducible reporter, 

sxa2>ura4, but lacks the endogenous RGS protein, Rgs1p (Didmon et al., 2002).  

Signalling responses were assayed utilising agar plates containing 5-fluoro-orotic acid 

(FOA) and varying concentrations of the yeast pheromone, P-factor. Exposure of the ura4 

reporter strain to P-factor results in pheromone-dependent production of orotidine 5’-

monophosphate decarboxylase (Ura4). Ura4 subsequently converts FOA into a toxic 

product, killing signalling cells (Boeke et al., 1984).   GOF mutants were isolated by 

identifying yeast colonies capable of reducing signalling of the strain JY731, permitting 

growth at 10 nM of P-factor.  A further round of selection was carried out on agar plates 
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lacking uracil but containing 1 µM of P-factor.  This second round of selection eliminated 

any false positives colonies, e.g. colonies that contained spontaneous mutations in the ura4 

gene rendering the Ura4 protein inactive. 25 such RGS4 GOF mutant plasmids were 

identified in this yeast-based screen.  Sequence analysis showed that mutations included 

point mutations, base pair deletions and or duplications of the open reading frame.  The 

most abundant of the mutants was a serine to cysteine mutation at residue 30 (RGS4S30C).  

This specific mutation was remade by site-directed mutagenesis in both pcDNA3 and 

pGEX6-P1 vectors.  Residue 30 in RGS4 was subsequently mutated to alanine, glutamic 

acid, lysine, methionine, phenylalanine or proline.  For comparison, these amino acid 

structures are shown in Figure 4.1 

Figure 4.2 shows SDS-PAGE gels of purified GST-fused recombinant (A) RGS4 and (B) 

RGS4S30C stained with Coomassie Blue.  Similar induction and purification of each protein 

is shown at around 50 kDa.  Quantitative evaluation of the pooled eluted proteins using the 

BCA assay allowed the concentration of each eluted protein to be determined. 

4.2.2 Functional activity of RGS4
S30C

  

High-affinity GTPase assays were used to compare the functional activity of RGS4S30C and 

wild-type RGS4. The GTPase activity of the Gαo1 subunit was determined following 

transient expression of the α2A-adrenoceptor-Gαo1
C351I fusion protein in HEK293T cells as 

before (Chapter 3 Section 3.3), and it was therefore important to establish if the presence 

of either RGS protein disrupted the binding of adrenaline to the α2A-adrenoceptor. 

The α2A-adrenoceptor-Gαo1
C351I fusion protein was transiently expressed in HEK293T cells 

and cells were pre-treated with P. tox (25 ng/ml, 16 hours) before membranes were 

prepared.  2 µg of membranes transiently expressing the α2A-adrenoceptor-Gαo1
C351I fusion 

protein were used to compare the ability of adrenaline to compete with [3H]RS-79948-197 

for binding to α2A-adrenoceptor in the absence of an RGS protein or in the presence of 1 

µM GST-RGS4 or 1 µM GST-RGS4S30C (Figure 4.3).  The total [3H]RS-79948-197 bound 

specifically in the absence of RGS protein was represented as 100%.  The presence of 

either RGS protein did not alter the affinity of adrenaline for α2A-adrenoceptor (Figure 

4.4). 

These membranes expressing the α2A-adrenoceptor-Gαo1
C351I fusion protein were 

challenged with varying concentrations of adrenaline (1 mM – 0.1 nM) in the absence of 
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RGS protein or in the presence of 1 µM GST-RGS4 or 1 µM GST-RGS4S30C, and high-

affinity GTPase activity measured (Figure 4.5).  The intrinsic rate of Gαo1 GTPase activity 

(in the absence of RGS protein) was stimulated in a concentration-dependent manner with  

pEC50 7.18 ± 0.07.  The presence of GST-RGS4 did not significantly increase the basal 

high-affinity GTPase activity but increased the maximal adrenaline-stimulated GTPase 

activity of Gαo1 and significantly decreased the potency of adrenaline to stimulate high-

affinity GTPase activity (pEC50 6.72 ± 0.08, p<0.01) (Figure 4.6). 

The addition of purified GST-RGS4S30C to HEK293T membranes expressing the α2A-

adrenoceptor-Gαo1Cys351Ile fusion protein resulted in an increase in the basal GTPase 

activity (p<0.05) and a larger increase in the maximal adrenaline stimulated GTPase 

activity of Gαo1 than was produced by addition of purified GST-RGS4.  The potency of 

adrenaline was further significantly decreased (pEC50 6.46 ± 0.11, p<0.01) (Figure 4.6).  

This decrease in pEC50 is consistent with an increase in activity of the RGS.    

A similar pattern of increased GTPase activity by GST-RGS4S30C was also seen when the 

α2A-adrenoceptor-Gαo1
C351I fusion protein expressing membranes were challenged with the 

α2-adrenoceptor selective agonist UK14304 (Figure 4.7).  The intrinsic rate of Gαo1 

GTPase activity (in the absence of RGS protein) was stimulated in a concentration 

dependent manner with pEC50 7.71 ± 0.15.  The presence of GST-RGS4 did not 

significantly increase the basal high-affinity GTPase activity but increased the maximal 

UK14304 stimulated GTPase activity of Gαo1 and significantly decreased the potency of 

UK14304 to stimulate high-affinity GTPase activity (pEC50 7.23 ± 0.12, p<0.01).  

Compared to addition of wild-type RGS4, addition of purified RGS4S30C resulted in a 

larger increase in the maximal UK14304-stimulated GTPase activity of Gαo1 and the 

potency of UK14304 was further significantly decreased (pEC50 6.76 ± 0.18, p<0.01) 

(Figure 4.8).  The enhanced high-affinity GTPase activity of Gαo1 by RGS4S30C seen is 

therefore not restricted to the action of a single ligand. 

In contrast, when the G protein fused to α2A-adrenoceptor was replaced with Gαi1, addition 

of purified GST-RGS4 displayed little capacity to increase the high-affinity GTPase 

activity and GST-RGS4S30C did not act as a GOF mutant (Figure 4.9). Furthermore, 

comparison of the addition of purified RGS4S30C and addition of purified wild-type RGS4, 

shows no difference in the potency of adrenaline-stimulated GTPase activity of Gαi1 

(Figure 4.10) (p>0.05).  This indicates that RGS4 is G protein selective and this selectivity 

is preserved in RGS4S30C. 
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From the increase in functional activity of Gαo1 produced by the presence of RGS4S30C, it 

was thought necessary to examine the effect this mutated RGS protein had on the activity 

of downstream signalling.  Expression of the α1b-adrenoceptor-Gα11 fusion protein elevates 

intracellular Ca2+ in response to the α-adenoceptor agonist phenylephrine (Stevens et al., 

2001).  This effect was inhibited by the co-expression of an RGS protein and therefore, co-

expression of a more active RGS protein might be able to further inhibit [Ca2+]i release.  

The stop codon of RGS4 and RGS4S30C were removed and both proteins were 

independently fused in-frame to eYFP.  The presence of this fluorescent tag allowed 

detection of cells positively transfected with these proteins.  Co-expression of the α1b-

adrenoceptor-Gα11 fusion protein and RGS4-eYFP resulted in a decrease in the maximal 

extent of agonist mediated elevation of [Ca2+]i compared to expression of α1b-adrenoceptor-

Gα11 fusion protein alone.  However, expression of RGS4S30C-eYFP did not result in any 

further inhibition in extent or alter the kinetics of the signalling response compared to 

RGS4 (Figure 4.11). 

4.2.3 Functional activity of RGS16
S30C

 

Sequence alignment of RGS proteins in the B/R4 subfamily revealed that the serine residue 

at position 30 in RGS4 was conserved in RGS2, RGS8 and RGS16 (Figure 4.12).  To 

determine if the GOF mutation present in RGS4 was transposable to RGS16, high-affinity 

GTPase assays were performed as before.  It was observed that the potency for adrenaline 

on the addition of purified GST-RGS16 was pEC50 5.68 ± 0.3 (Figure 4.14).  Addition of 

purified GST-RGS16S30C increased the maximal adrenaline stimulated GTPase activity of 

Gαo1 and significantly decreased the potency for adrenaline compared to GST-RGS16 

(pEC50 5.39 ± 0.36, p<0.01) (Figure 4.14).  Importantly, however, there was no difference 

in the GTPase activity (Figure 4.15) or the potency for adrenaline (Figure 4.16) when α2A-

adrenoceptor was fused to Gαi1 (p>0.05).  In addition to altering the potency for 

adrenaline, addition of purified GST-RGS16S30C increased the basal GTPase activity of 

α2A-adrenoceptor-Gαo1 but not of α2A-adrenoceptor-Gαi1.  This increase in basal activity 

did not seem to be agonist mediated, as the increase was apparent even without the 

presence of adrenaline.  Thus, the RGS4S30C mutation is transposable between the B/R4 

subfamily to preserve the enhanced Gαo1 activity and G protein selectivity. 
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4.2.4 Expression of RGS4
S30C

–eYFP 

The effect of the RGS4S30C mutation on expression was determined.  RGS4-eYFP and 

RGS4S30C-eYFP were transiently expressed in HEK293T cells and cell lysates were 

separated by SDS-PAGE and expression levels detected with an antiserum directed against 

GFP (Figure 4.17).  Bands corresponding to RGS4-eYFP (lane 2) and RGS4 S30C-eYFP 

(lane 3) were of comparable intensity indicating similar expression of the two proteins.  

Cell lysates of vector alone transfected cells were included as a control (lane 1). Increased 

expression of RGS4S30C is therefore not responsible for the GOF properties of RGS4S30C. 

4.2.5 Localisation of RGS4
S30C

 –eYFP 

It was hypothesised that a change in the subcellular localisation of RGS4S30C may enhance 

the activity of RGS4.  Increased localisation of RGS4S30C-eYFP at the plasma membrane 

compared to RGS4-eYFP might allow the mutated protein to be in closer proximity to 

other signalling complexes located at the plasma membrane subsequently enhancing the 

apparent activity of the RGS protein.  The subcellular localisation of transiently expressed 

RGS4S30C-eYFP in HEK293T cells was visualised by microscopy (Figure 4.18).  Panel (A) 

demonstrates that analogous to RGS4-eYFP, RGS4S30C-eYFP was predominantly 

cytosolic.  This was confirmed by pixel by pixel analysis of the distribution of eYFP 

fluorescence intensity (Figure 4.19).  The RGS4S30C mutation did not affect RGS4 

localisation. 

As before (Chapter 3, Section 3.5 and Section 3.6), the intracellular localisation of 

RGS4S30C-eYFP was examined by co-expression of other signalling proteins (Figure 4.18).  

RGS4S30C-eYFP co-expressed with Gαi1 (Figure 4.18 (B)), the α2A-adrenoceptor (Figure 

4.18 (C)), or the α2A-adrenoceptor stimulated with UK14304 for 30 minutes (Figure 4.18 

(D)).  All these conditions show the translocation of RGS4S30C-eYFP to the plasma 

membrane.  No obvious difference between RGS4 and RGS4S30C translocation could be 

detected using this methodology. 

The subcellular localisation and translocation pattern of RGS4S30C was also confirmed by 

determining the percentage fluorescence of RGS4S30C-eYFP in the plasma membrane of 

the transfected HEK293T cells.  Percentage fluorescence of RGS4S30C-eYFP in the plasma 

membrane (defined as 100%) was directly compared to the percentage fluorescence of 

RGS4S30C-eYFP co-expressed with other signalling proteins, Gαi1, α2A-adrenoceptor, or 
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agonist stimulated α2A-adrenoceptor (Figure 4.20). The co-expression with other signalling 

proteins all increased the percentage fluorescence of RGS4S30C-eYFP in the plasma 

membrane. In a similar pattern to RGS4-eYFP (Chapter 3, Section 1.6), RGS4S30C-eYFP 

co-transfected with Gαi1 had the greatest percentage effect (188 ± 12%) on RGS4S30C-

eYFP translocation to the plasma membrane.  The presence of the α2A-adrenoceptor or the 

α2A-adrenoceptor stimulated by UK14304 (100 µM) both translocated RGS4-eYFP to the 

plasma membrane, 161 ± 81% and 157 ± 33% respectively.  This further confirmed that 

the RGS4S30C mutation did not affect localisation as the percentage fluorescence of 

RGS4S30C-eYFP in the plasma membrane was not different from the translocation of 

RGS4-eYFP. 

4.2.6 Importance of residue 30 in RGS4 

The presence of serine 30 in RGS4 is clearly important for wild-type functioning of RGS4 

and mutating this residue to cysteine increases the activity of this protein.  To assess what 

other amino acid side chains did to the function of this protein, residue 30 was mutated to 

various other amino acids including;  alanine, glutamic acid, lysine, methionine, 

phenylalanine, or proline. 

4.2.6.1 Purification of GST-RGS4
S30X

 

All RGS4S30X mutations (where X denotes one of the above amino acids) fused to GST 

were made by PCR based site-directed mutagenesis. SDS-PAGE gels of induced and 

purified recombinant GST-fused proteins stained with Coomassie Blue are shown, 

RGS4S30A (Figure 4.21), RGS4S30E (Figure 4.22), RGS4S30K (Figure 4.33), RGS4S30M 

(Figure 4.24), RGS4S30F (Figure 4.25), RGS4S30P (Figure 4.26).  Similar induction and 

purification of each GST fused protein is shown.  The exact protein concentration of each 

eluted protein was routinely determined using the BCA assay. 

4.2.6.2 Functional activity of RGS4
S30X

 

The ability of GST-RGS4S30X mutants to increase the high-affinity GTPase activity of the 

α2A-adrenoceptor-Gαo1Cys351Ile fusion protein challenged with varying concentrations of 

adrenaline (1 mM – 0.1 nM) was determined.  All assays were done in the absence of RGS 

protein or addition of purified RGS4 or RGS4S30X: RGS4S30A (Figure 4.27), RGS4S30E 

(Figure 4.29), RGS4S30K (Figure 4.31), RGS4S30M (Figure 4.33), RGS4S30F (Figure 4.35), 
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RGS4S30P (Figure 4.37).  The maximal adrenaline stimulated GTPase activity of Gαo1 of 

each mutant demonstrated that RGS4S30A, RGS4S30F and RGS4S30K all showed a significant 

increases in high-affinity GTPase activity compared to wild-type RGS4 (p<0.01).  

Addition of purified RGS4S30E   had no effect on the maximal adrenaline-stimulated 

GTPase activity of Gαo1 compared to wild-type RGS4 and, interestingly, the addition of 

either RGS4S30M or RGS4S30P both decreased the maximal adrenaline-stimulated high-

affinity GTPase activity of Gαo1 compared to wild-type RGS4. 

The ability of these mutants to change the value of Vmax has also been considered. 

However, to do this, all high-affinity GTPase graphs were normalised and high-affinity 

GTPase activity expressed as a percentage.  This analysis disguised differences in basal 

activity and it was thought not to show a true representation of the effect of the mutation 

on high-affinity GTPase activity. 

The potency of adrenaline to stimulate high-affinity GTPase activity of the α2A-

adrenoceptor-Gαo1Cys351Ile fusion protein was significantly decreased for RGS4S30A 

compared to wild-type RGS4 (RGS4 pEC50 6.81 ± 0.06, RGS4S30A pEC50 6.36 ± 0.20, 

p<0.01) (Figure 4.28), RGS4S30F (RGS4 pEC50 6.48 ± 0.05, RGS4S30A pEC50 6.11 ± 0.24, 

p<0.01) (Figure 4.36) and RGS4S30K (RGS4 pEC50 6.48 ± 0.05, RGS4S30A pEC50 6.21 ± 

0.04, p<0.01) (Figure 4.32).  See Table 4.1 for summary and statistics. Surprisingly, the 

addition of purified RGS4S30M to the membranes expressing the α2A-adrenoceptor-

Gαo1Cys351Ile fusion protein although decreasing the maximum GTPase activity, increased 

the pEC50 (Figure 4.34).  In contrast RGS4S30P (Figure 4.38) decreased the GTPase activity 

of Gαo1 but did not affect the pEC50.  The calculated pEC50 values for each assay are 

shown in Table 4.1.  Student’s t tests were performed to compare the significance of the 

pEC50 values compared to WT RGS4.  From these results, RGS4S30C and RGS4S30F 

(p<0.05), RGS4S30Aand RGS4S30K  (p<0.005) were shown to significantly decrease the pEC50 

value compared to wild-type RGS4.  These GOF mutants increase the maximal activity of 

Gαo1 and increase the concentration of adrenaline required to produce half maximal 

GTPase activity.   

It should be noted however, that there may be some limitations to the statistical analyis.  

The experiments performed to produce the date in Table 4.1 for RGS4S30K , RGS4S30FM , 

RGS4S30F and RGS4S30P  were done using the same wild type controls.  The data presented 

here may not be as significantly different, as reported here. 
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4.2.6.3 Expression of RGS4
S30X

 –eYFP 

All RGS4S30X mutations were C-terminally tagged with eYFP in pcDNA3.  HEK293T cells 

were transfected with constructs containing RGS4-eYFP, RGS4S30A-eYFP or RGS4S30E-

eYFP. To determine expression levels, cell lysates were separated by SDS-PAGE and 

detected using an antiserum directed against GFP.  Relative expressions of RGS4-eYFP 

mutants (lane 3) were compared to RGS4-eYFP (lane 2) and vector only control (lane 1).  

RGS4S30A (Figure 4.39), RGS4S30E (Figure 4.40) show bands equal intensity of mutant 

RGS4 and wild-type RGS4 indicating equivalent expression of the two proteins. 

4.2.6.4 Localisation of RGS4
S30X

 –eYFP 

To determine the cellular localisation of RGS4S30X of HEK293T cells transiently 

expressing RGS4S30A-eYFP (Figure 4.41), RGS4S30E-eYFP (Figure 4.42), RGS4S30K-eYFP 

(Figure 4.43), RGS4S30M-eYFP (Figure 4.44), RGS4S30F-eYFP (Figure 4.45), RGS4S30P-

eYFP (Figure 4.46) were visualised by microscopy.  Panel (A) shows all RGS4S30X-eYFP 

mutants were localised predominantly within the cytoplasm.  As before, the intracellular 

localisation of all mutants was examined by co-expression of (B) Gαi1, (C) α2A-

adrenoceptor or (D) α2A-adrenoceptor and stimulated with UK14304 for 30 minutes.  The 

yellow co-localisation of RGS4S30X-eYFP with WGA-Alexa Fluor 594-labelled membrane 

staining in image (iv) in panels (B), (C) and (D) suggest that co-expression with other 

signalling proteins translocates all RGS4S30X-eYFP to the plasma membrane.  It was 

demonstrated that all of the tested RGS4S30X mutations did not vary the cellular localisation 

of the protein compared to wild-type RGS4. 



   113 

 

                                                                                                                                                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Amino acids selected for substitution of serine 30 in RGS4 

Serine 30 in RGS4 was selected for site directed mutagenesis.  An amino acid with side 

chain (X) is shown where X is serine, cysteine, alanine, glutamic acid, lysine, methionine, 

phenylalanine or proline. 
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Figure 4.2 Coomassie Blue staining of purified GST-RGS4 and GST-RGS4
S30C

 

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding (A) GST-RGS4 or 

(B) GST-RGS4S30C.  GST-fused proteins were induced and purified and equal volumes of 

each fraction were resolved by SDS-PAGE and stained with Coomassie Blue. Cell lysates 

of BL21 before addition of glutathione sepharose beads (lane 1), cell lysates of BL21after 

over-night incubation with glutathione sepharose beads (lane 2), elution 1 (lane 3), elution 

2 (lane 4), elution 3 (lane 5), elution 4 (lane 6). 
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Figure 4.3  The ability of adrenaline to compete with [
3
H]RS-79948-197  for binding 

to the αααα2A-adrenoceptor-Gααααo1
C351I

 fusion protein in the presence and absence of RGS4 

or RGS4
S30C

 

HEK293T cells were transfected to express the α2A-adrenoceptor-Gαo1
C351I fusion protein.  

Cells were treated with P. tox (25 ng/ml for 16 hours) then membranes were prepared.  The 

ability of adrenaline (1 mM - 1 nM) to compete with 0.5 nM [3H]RS-79948-197 was 

determined in the absence (black) or presence of 1 µM GST-RGS4 (red) or 1 µM GST-

RGS4S30C (blue).   Data shown are from triplicate determinations (mean ± SEM) and are 

representative of three individual experiments performed. 
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Figure 4.4 Comparison of GST-RGS4 or GST-RGS4
S30C

 on the ability of adrenaline 

to compete with [
3
H]RS-79948-197 for binding to the α2A-adrenoceptor-Gαo1

C351I
 

fusion protein    

The ability of adrenaline to compete with 0.5 nM [3H]RS-79948-197 was determined in the 

absence (black) or presence of 1 µM GST-RGS4 (red) or 1 µM GST-RGS4S30C (blue).   

The IC50 results from Figure 4.3 are presented for comparison of results.  Results shown 

are mean ± SEM. from three individual experiments performed.   

 

 

 

 

 

0

1

2

3

4

5

6

7

p
IC

5
0



   117 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 

fusion protein in the presence and absence of GST-RGS4 or GST-RGS4
S30C

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline (0.1 nM – 1 mM) to 

stimulate high-affinity GTPase activity was then measured in the absence (black) or 

presence of 1 µM GST-RGS4 (red) or 1 µM GST-RGS4S30C (blue) using 0.5 µM 

[γ32P]GTP.  Data shown are from quadruplicate determinations (mean ± SEM) and are 

representative of three individual experiments performed. 
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Figure 4.6 Comparison of GST-RGS4 or GST-RGS4
S30C

 on pEC50 values of 

adrenaline to stimulate the GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 fusion 

protein  

The pEC50 results from Figure 4.5 are presented for comparison. The pEC50 in the absence 

of RGS protein (black), presence of GST-RGS4 (red) or presence of GST-RGS4S30C (blue) 

are mean ± SEM. from three individual experiments performed.  * denotes significantly 

different from the α2A-adrenoceptor-Gαo1
C351I fusion protein and ** denotes significantly 

different from the α2A-adrenoceptor-Gαo1
C351I fusion protein + 1 µM GST-RGS4 (p<0.01).   
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Figure 4.7 UK14304-stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 

fusion protein in the presence and absence of GST-RGS4 or GST-RGS4
S30C

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of UK14304 to stimulate high-affinity 

GTPase activity was then measured in the absence (black) and presence of 1 µM GST-

RGS4 (red) or 1 µM GST-RGS4S30C (blue) using 0.5 µM [γ32P]GTP.  Data shown are from 

quadruplicate determinations (mean ± SEM) and are representative of three individual 

experiments performed. 
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Figure 4.8 Comparison of GST-RGS4 or GST-RGS4
S30C

 on pEC50 values of UK14304 

to stimulate the GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 fusion protein    

The pEC50 results from Figure 4.7 are presented for comparison. The pEC50 in the absence 

of RGS protein (black), presence of GST-RGS4 (red) or presence of GST-RGS4S30C (blue) 

are mean ± SEM. from three individual experiments performed.  * denotes significantly 

different from the α2A-adrenoceptor-Gαo1
C351I fusion protein and ** denotes significantly 

different from the α2A-adrenoceptor-Gαo1
C351I fusion protein + 1 µM GST-RGS4 (p<0.01). 
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Figure 4.9 Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαi1
C351I

 

fusion protein in the presence and absence of GST-RGS4 or GST-RGS4
S30C

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαi1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured in the absence (black) or presence of 100 nM GST-

RGS4 (red) or 100 nM GST-RGS4S30C (blue) using 0.5 µM [γ32P]GTP.  Data shown are 

from quadruplicate determinations (mean ± SEM) and are representative of three 

individual experiments performed. 
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Figure 4.10 Comparison of GST-RGS4 or GST-RGS4
S30C

 on pEC50 values of 

adrenaline to stimulate the GTPase activity of the α2A-adrenoceptor-Gαi1
C351I

 fusion 

protein  

The pEC50 results from Figure 4.9 are presented for comparison. The pEC50 in the absence 

of RGS protein (black), presence of GST-RGS4 (red) or presence of GST-RGS4S30C (blue) 

are mean ± SEM. from three individual experiments. Results are mean ± SEM. for three 

individual experiments performed.  * denotes significantly different from the α2A-

adrenoceptor-Gαi1Cys351Ile fusion protein (p<0.01). 
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Figure 4.11 Phenylephrine-stimulated elevation of [Ca
2+

]i  in cells expressing the α1b-

adrenoceptor-Gα11 fusion protein, in the presence and absence of RGS4-eYFP 

RGS4
S30C

-eYFP   

HEK293T cells were transfected to express the α1b-adrenoceptor-Gα11 fusion protein 

(black line), α1b-adrenoceptor-Gα11 fusion protein + RGS4-eYFP (red line) or α1b-

adrenoceptor-Gα11 fusion protein + RGS4S30C-eYFP (blue line).  Cells were loaded with 

Fura-2 and intracellular [Ca2+] levels imaged before and after 3 µM phenylephrine was 

perfused over the cells for 60 seconds.  Data represents means ± SEM. from 54 α1b-

adrenoceptor-Gα11), 25 α1b-adrenoceptor-Gα11 + RGS4-eYFP) and 23 α1b-adrenoceptor-

Gα11 + RGS4S30C-eYFP) cells from 3 individual experiments performed. 
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Figure 4.12 Comparison of serine 30 in the B/R4 subfamily of RGS proteins 

The serine 30 residue in RGS4 is conserved amongst members of the B/R4 family.  The N-

terminal region of the protein sequence of four members of the B/R4 family of RGS 

proteins is compared.  Amino acid sequences of RGS2, RGS4, RGS8 and RGS16 are 

denoted using single-letter code.  Sequences were aligned using MultAlin version 5.4.1. 

with symbol comparison table blosum62, gap weight 12 and gap length weight 2 (Corpet, 

1988).  Gaps introduced to maximise alignment are indicated by -. The conserved serine 

residue is highlighted in black and the start of the predicted RGS domain is highlighted in 

grey. 
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Figure 4.13  Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 

fusion protein in the presence and absence of GST-RGS16 or GST-RGS16
S30C

  

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured in the absence (black) or presence of 100 nM GST-

RGS16 (orange) or 100 nM GST-RGS16S30C (green) using 0.5 µM [γ32P]GTP.  Data 

shown are from quadruplicate determinations (mean ± SEM) and are representative of 

three individual experiments performed. 
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Figure 4.14 Comparison of GST-RGS16 or GST-RGS16
S30C

 on pEC50 values of 

adrenaline to stimulate the GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 fusion 

protein  

The pEC50 results from Figure 4.13 are presented for comparison of results.  The pEC50 in 

the absence (black) or presence of 100 nM GST-RGS16 (orange) or 100 nM GST-

RGS4S30C (green) are mean ± SEM. from three individual experiments performed.  * 

denotes significantly different from the α2A-adrenoceptor-Gαo1
C351I fusion protein and ** 

denotes significantly different from the α2A-adrenoceptor-Gαo1
C351I fusion protein + 1 µM 

GST-RGS16 (p<0.01). 
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Figure 4.15 Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαi1
C351I

 

fusion protein in the absence and presence of GST-RGS16 or GST-RGS16
S30C

  

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαi1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured in the absence (black) or presence of 100 nM GST-

RGS16 (orange) or 100 nM GST-RGS16S30C (green) using 0.5 µM [γ32P]GTP. Data shown 

are from quadruplicate determinations (mean ± SEM) and are representative of three 

individual experiments performed. 
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Figure 4.16 Comparison of GST-RGS16 or GST-RGS16
S30C

 on pEC50 values of 

adreanline to stimulate the GTPase activity of the α2A-adrenoceptor-Gαi1
C351I

 fusion 

protein  

The pEC50 results from Figure 4.15 are presented for comparison of results. The pEC50 in 

the absence (balck) or presence of 100 nM GST-RGS16 (orange) or 100 nM GST-

RGS16S30C (green) are mean ± SEM. for three individual experiments performed.   
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Figure 4.17 Expression and immunological detection of RGS4-eYFP and RGS4
 S30C

-

eYFP 

HEK293T cells were transiently transfected to express RGS4-eYFP (lane 2) or RGS4S30C-

eYFP (lane 3).  HEK293T cells transfected with pcDNA3 were included as a control (lane 

1).  Cell lysates were resolved by SDS-PAGE and then immunoblotted with anti-GFP 

antiserum.  Results shown are of a single experiment and are representative of three 

experiments performed. 
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(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

(C)  (i)             (ii)           (iii)            (iv) 

 

 

 

(D)  (i)             (ii)           (iii)            (iv) 
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Figure 4.18  The cellular localisation of RGS4
S30C

-eYFP 

HEK293T cells grown on coverslips were transiently transfected with (A) RGS4S30C-eYFP 

(B) RGS4S30C-eYFP co-transfected with Gαi1  (C) RGS4S30C-eYFP co-transfected with the 

α2A-adrenoceptor or (D) RGS4S30C-eYFP co-transfected with the α2A-adrenoceptor and 

stimulated with 100 µM UK14304 for 30 minutes.  Images were generated using an 

inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan 

Fluor Apochromat lens and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 

33342 nuclei staining (blue) (ii) RGS4S30C-eYFP (green) or (iii) WGA-Alexa Fluor 594 
membrane staining (red) (iv) merged images.  Results shown are of a single experiment 

and are representative of three experiments performed. 
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Figure 4.19 Percentage plasma membrane and cytosolic localisation of RGS4
S30C

-

eYFP fluorescence  

HEK293T transfected cells were examined for RGS4-eYFP fluorescence or RGS4S30C-

eYFP intensity at the plasma membrane (open bars) and in the cytoplasm (closed bars). 

Images were deconvolved using an iterative and constrained algorithm (Chapter 2, Section 

2.7.5).  Surface and cytosolic masks were created and superimposed and fluorescence pixel 

intensity values corresponding to eYFP located at the plasma membrane and cytoplasm of 

the cell were quantified from each generated mask. Fluorescence was expressed as a 

percentage of the total fluorescence intensity using a mean of three cells ± SEM.  
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Figure 4.20 Comparison of percentage RGS4-eYFP
 S30C

 fluorescence at the plasma 

membrane 

HEK293T cells were transiently transfected to express RGS4S30C-eYFP, RGS4S30C-eYFP 

co-transfected with Gαi1, RGS4S30C-eYFP co-transfected with the α2A-adrenoceptor or 

RGS4S30C-eYFP co-transfected with the α2A-adrenoceptor and stimulated with 100 µM 

UK14304 for 30 minutes.  The membrane fraction was measured for total RGS4S30C-eYFP 

(defined as 100%) and compared to the percentage eYFP fluorescence of RGS4S30C-eYFP 

co-expressed with other signalling proteins.  Data shown are from triplicate determinations 

(mean ± SEM.) and are representative of three experiments performed. 
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Figure 4.21 Coomassie Blue staining for purified GST-RGS4
S30A

 

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding GST-RGS4S30A.  

GST-fused protein was induced and purified and equal volumes of each fraction were 

resolved by SDS-PAGE and stained with Coomassie Blue.  Induced cell lysates of 

BL21bacteria before addition of glutathione sepharose beads (lane 1), induced cell lysates 

of BL21after incubation with glutathione sepharose beads (lane 2), elution 1 (lane 3), 

elution 2 (lane 4), elution 3 (lane 5), elution 4 (lane 6). 
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Figure 4.22 Coomassie Blue staining for purified GST-RGS4
S30E

 

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding GST-RGS4S30E.  

GST-fused protein was induced and purified and equal volumes of each fraction were 

resolved by SDS-PAGE and stained with Coomassie Blue.  Induced soluble clarified 

extract of BL21 bacteria before addition of glutathione sepharose beads (lane 1), induced 

soluble clarified extract of BL21 bacteria after incubation with glutathione sepharose beads 

(lane 2), elution 1 (lane 3), elution 2 (lane 4), elution 3 (lane 5), elution 4 (lane 6). 
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Figure 4.23 Coomassie Blue staining for purified GST-RGS4
S30K

 

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding GST-RGS4S30K.  

GST-fused protein was induced and purified and equal volumes of each fraction were 

resolved by SDS-PAGE and stained with Coomassie Blue Marker (lane 1), crude bacterial 

lysate (lane 2), soluble clarified extract before incubation with glutathione sepharose beads 

(lane 3), soluble clarified extract after incubation with glutathione sepharose beads (lane 

4), elution 1 (lane 5), elution 2 (lane 6), elution 3 (lane 7), elution 4 (lane 8). 
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Figure 4.24 Coomassie Blue staining for purified GST-RGS4
S30M

 

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding GST-RGS4S30M.  

GST-fused protein was induced and purified and equal volumes of each fraction were 

resolved by SDS-PAGE and stained with Coomassie Blue Marker (lane 1), crude bacterial 

lysate (lane 2), soluble clarified extract before incubation with glutathione sepharose beads 

(lane 3), soluble clarified extract after incubation with glutathione sepharose beads (lane 

4), elution 1 (lane 5), elution 2 (lane 6), elution 3 (lane 7), elution 4 (lane 8). 
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Figure 4.25 Coomassie Blue staining for purified GST-RGS4
S30F

  

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding GST-RGS4S30F.  

GST-fused protein was induced and purified and equal volumes of each fraction were 

resolved by SDS-PAGE and stained with Coomassie Blue Marker (lane 1), crude bacterial 

lysate (lane 2), soluble clarified extract before incubation with glutathione sepharose beads 

(lane 3), soluble clarified extract after incubation with glutathione sepharose beads (lane 

4), elution 1 (lane 5), elution 2 (lane 6), elution 3 (lane 7), elution 4 (lane 8). 
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Figure 4.26 Coomassie Blue staining for purified GST-RGS4
S30P

 

BL21 bacteria were transformed with the plasmid pGEX 6P-1 encoding GST-RGS4S30P.  

GST-fused protein was induced and purified and equal volumes of each fraction were 

resolved by SDS-PAGE and stained with Coomassie Blue Marker (lane 1), crude bacterial 

lysate (lane 2), soluble clarified extract before incubation with glutathione sepharose beads 

(lane 3), soluble clarified extract after incubation with glutathione sepharose beads (lane 

4), elution 1 (lane 5), elution 2 (lane 6), elution 3 (lane 7), elution 4 (lane 8). 
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Figure 4.27 Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-RGS4 or GST-RGS4
S30A 

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured in presence of 1 µM GST-RGS4 (red) or 1 µM GST-

RGS4S30A (purple) using 0.5 µM [γ32P]GTP.  Data shown are from quadruplicate 

determinations (mean ± SEM) and are representative of three individual experiments 

performed. 
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Figure 4.28 Comparison of pEC50 values of adrenaline to stimulate the GTPase 

activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-

RGS4
S30A

  

The results from Figure 4.27 are presented in graphical form for comparison of results. The 

pEC50 in the presence of GST-RGS4 (red) or presence of GST-RGS4S30A (purple) are mean 

± SEM. from three individual experiments performed. * denotes significantly different 

from the α2A-adrenoceptor-Gαo1
C351I fusion protein + 1 µM GST-RGS4 (p<0.05).   
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Figure 4.29 Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 

fusion protein in the presence of GST-RGS4
S30E 

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured in presence of 1 µM GST-RGS4 (red) or 1 µM GST-

RGS4S30E (green) using 0.5 µM [γ32P]GTP.  Data shown are from quadruplicate 

determinations (mean ± SEM) and are representative of three individual experiments 

performed. 
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Figure 4.30 Comparison of pEC50 values of adrenaline to stimulate the GTPase 

activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-

RGS4
S30E

    

The results from Figure 4.29 are presented in graphical form for comparison of results.  

The pEC50 in the presence of GST-RGS4 (red) or presence of GST-RGS4S30E (green) are 

mean ± SEM. from three individual experiments performed. 
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Figure 4.31 Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 

fusion protein in the presence of GST-RGS4
S30K

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured presence of 100 nM GST-RGS4 (red) or 100 nM GST-

RGS4S30K (mustard) using 0.5 µM [γ32P]GTP.  Data shown are from quadruplicate 

determinations (mean ± SEM) and are representative of three individual experiments 

performed. 
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Figure 4.32 Comparison of pEC50 values of adrenaline to stimulate the GTPase 

activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-

RGS4
S30K

    

The pEC50 results from Figure 4.31are presented for comparison of results.  The pEC50 in 

the presence of 100 nM GST-RGS4 (red) or 100 nM GST-RGS4S30K (mustard) are mean ± 

SEM. from three individual experiments performed.  * denotes significantly different from 

α2A-adrenoceptor-Gαo1
C351I fusion protein + 100 nM GST-RGS4 (p<0.05). 
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Figure 4.33 Adrenaline-stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 

fusion protein in the presence of GST-RGS4
S30M

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured presence of 100 nM GST-RGS4 (red) or 100 nM GST-

RGS4S30M (pink) using 0.5 µM [γ32P]GTP.  Data shown are from quadruplicate 

determinations (mean ± SEM) and are representative of three individual experiments 

performed. 
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Figure 4.34 Comparison of pEC50 values of adrenaline to stimulate the GTPase 

activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-

RGS4
S30M

    

The pEC50 results from Figure 4.33 are presented for comparison of results.  The pEC50 in 

the presence of 100 nM GST-RGS4 (red) or 100 nM GST-RGS4S30M (pink) are mean ± 

SEM. from three individual experiments performed.   
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Figure 4.35 Adrenaline stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-RGS4
S30F

   

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured presence of 100 nM GST-RGS4 (red) or 100 nM GST-

RGS4S30F (navy) using 0.5 µM [γ32P]GTP.  Data shown are from quadruplicate 

determinations (mean ± SEM) and are representative of three individual experiments 

performed. 
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Figure 4.36 Comparison of pEC50 values of adrenaline to stimulate the GTPase 

activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-

RGS4
S30F

 

The pEC50 results from Figure 4.35 are presented in for comparison of results.  The pEC50 

in the presence of 100 nM GST-RGS4 (red) or 100 nM GST-RGS4S30F (navy) are mean ± 

SEM. from three individual experiments performed.  Where ** denotes significantly 

different from the α2A-adrenoceptor-Gαo1
C351I fusion protein + 100 nM GST-RGS4 

(p<0.01) 
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Figure 4.37 Adrenaline stimulated GTPase activity of the α2A-adrenoceptor-Gαo1
C351I

 

fusion protein in the presence of GST-RGS4
S30P

 

HEK293T cells were transiently transfected to express the α2A-adrenoceptor-Gαo1
C351I 

fusion protein.  Cells were treated with P. tox (25 ng/ml for 16 hours) and membranes were 

prepared.  The capacity of varying concentrations of adrenaline to stimulate high-affinity 

GTPase activity was then measured presence of 100 nM GST-RGS4 (red) or 100 nM GST-

RGS4S30P (brown) using 0.5 µM [γ32P]GTP.  Data shown are from quadruplicate 

determinations (mean ± SEM) and are representative of three individual experiments 

performed. 

 

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2
0

10

20

30

40

50

Adrenaline [Log M]

G
T

P
 h

y
d

ro
ly

s
is

 (
p

m
o

l/
m

g
/m

in
)



   151 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38 Comparison of pEC50 values of adrenaline to stimulate the GTPase 

activity of the α2A-adrenoceptor-Gαo1
C351I 

fusion protein in the presence of GST-

RGS4
S30P

    

The pEC50 results from Figure 4.37 are presented for comparison of results.  The pEC50 in 

the presence of 100 nM GST-RGS4 (red) or 100 nM GST-RGS4S30P (brown) are mean ± 

SEM. from three individual experiments performed.   
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pEC50 

 

Amino acid at position 30 

 

Wild-Type RGS4 

 

Mutant 

 

C 

 

6.72 ± 0.08 

 

6.46 ± 0.11* 

 

A 

 

6.80 ± 0.06 

 

6.36 ± 0.2 ** 

 

E 

 

6.80 ± 0.06 

 

6.74 ± 0.09 

 

K 

 

6.48 ± 0.05 

 

6.21 ± 0.04 ** 

 

M 

 

6.48 ± 0.05 

 

6.87 ± 0.17 ** 

 

F 

 

6.48 ± 0.05 

 

6.11 ± 0.24* 

 

P 

 

6.48 ± 0.05 

 

6.45 ± 0.18 

 

Table 4.1 Comparison of pEC50 values in RGS4 serine 30 mutants 

The comparison of pEC50 values for high-affinity adrenaline-stimulated activation of the 

α2A-adrenoceptor-Gαo1
C351I

 for each serine 30 mutant compared to wild-type RGS4.  Data 

shown are the means of three independent experiments ± SEM.  Statistical significance 

was determined using a Student’s t test, * represents p<0.05 and ** represents p<0.005.  It 

should be noted that results for K, M, F and P wild-type controls were produced from the 

same experiment. 
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Figure 4.39 Expression and immunological detection of RGS4-eYFP and RGS4
S30A

 -

eYFP 

HEK293T cells were transiently transfected to express RGS4-eYFP (lane 2) or RGS4S30A-

eYFP (lane 3).  HEK293T cells transfected with pcDNA3 were included as a control (lane 

1).  Cell lysates were resolved by SDS-PAGE and then immunoblotted with anti-GFP 

antiserum.  Results shown are from a single experiment and are representative of three 

experiments performed. 
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Figure 4.40 Expression and immunological detection of RGS4-eYFP and RGS4
 S30E

 -

eYFP 

HEK293T cells were transiently transfected to express RGS4-eYFP (lane 2) or RGS4S30E-

eYFP (lane 3).  HEK293T cells transfected with pcDNA3 were included as a control (lane 

1).  Cell lysates were resolved by SDS-PAGE and then immunoblotted with anti-GFP 

antiserum.  Results shown are from a single experiment and are representative of three 

experiments performed. 
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(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

(C)  (i)             (ii)           (iii)            (iv) 

 

 

 

(D)  (i)             (ii)           (iii)            (iv) 
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Figure 4.41 The cellular localisation of RGS4
S30A

-eYFP 

HEK293T cells grown on coverslips were transiently transfected with (A) RGS4S30A-eYFP 

(B) RGS4S30A-eYFP co-transfected with Gαi1  (C) RGS4S30A-eYFP co-transfected with the 

α2A-adrenoceptor or (D) RGS4S30A-eYFP co-transfected with the α2A-adrenoceptor and 

stimulated with 100 µM UK14304 for 30 minutes.  Images were generated using an 

inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan 

Fluor Apochromat lens and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 

33342 nuclei staining (blue) (ii) RGS4S30A-eYFP (green) or (iii) WGA-Alexa Fluor 594 
membrane staining (red) (iv) merged images.  Results shown are from a single experiment 

and are representative of three experiments performed. 

 

 

 

 

 

 

 

 

 

 

 

 



   157 

 

(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

(C)  (i)             (ii)           (iii)            (iv) 

 

 

 

(D)  (i)             (ii)           (iii)            (iv) 
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Figure 4.42 The cellular localisation of RGS4
S30E

-eYFP 

HEK293T cells grown on coverslips were transiently transfected with (A) RGS4S30E-eYFP 

(B) RGS4S30E-eYFP co-transfected with Gαi1  (C) RGS4S30E-eYFP co-transfected with the 

α2A-adrenoceptor or (D) RGS4S30E-eYFP co-transfected with the α2A-adrenoceptor and 

stimulated with 100 µM UK14304 for 30 minutes.  Images were generated using an 

inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan 

Fluor Apochromat lens and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 

33342 nuclei staining (blue) (ii) RGS4S30E-eYFP (green) or (iii) WGA-Alexa Fluor 594 
membrane staining (red) (iv) merged images.  Results shown are from a single experiment 

and are representative of three experiments performed. 
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(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

(C)  (i)             (ii)           (iii)            (iv) 

 

 

 

(D)  (i)             (ii)           (iii)            (iv) 
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Figure 4.43 The cellular localisation of RGS4
S30K

-eYFP 

HEK293T cells grown on coverslips were transiently transfected with (A) RGS4S30K-eYFP 

(B) RGS4S30K-eYFP co-transfected with Gαi1  (C) RGS4S30K-eYFP co-transfected with the 

α2A-adrenoceptor or (D) RGS4S30K-eYFP co-transfected with the α2A-adrenoceptor and 

stimulated with 100 µM UK14304 for 30 minutes.  Images were generated using an 

inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan 

Fluor Apochromat lens and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 

33342 nuclei staining (blue) (ii) RGS4S30K-eYFP (green) or (iii) WGA-Alexa Fluor 594 
membrane staining (red) (iv) merged images.  Results shown are from a single experiment 

and are representative of three experiments performed. 
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(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

(C)  (i)             (ii)           (iii)            (iv) 

 

 

 

(D)  (i)             (ii)           (iii)            (iv) 
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Figure 4.44 The cellular localisation of RGS4
S30M

-eYFP 

HEK293T cells grown on coverslips were transiently transfected with (A) RGS4S30M-eYFP 

(B) RGS4S30M-eYFP co-transfected with Gαi1  (C) RGS4S30M-eYFP co-transfected with the 

α2A-adrenoceptor or (D) RGS4S30M-eYFP co-transfected with the α2A-adrenoceptor and 

stimulated with 100 µM UK14304 for 30 minutes.  Images were generated using an 

inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan 

Fluor Apochromat lens and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 

33342 nuclei staining (blue) (ii) RGS4S30M-eYFP (green) or (iii) WGA-Alexa Fluor 594 
membrane staining (red) (iv) merged images.  Results shown are from a single experiment 

and are representative of three experiments performed. 
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(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

(C)  (i)             (ii)           (iii)            (iv) 

 

 

 

(D)  (i)             (ii)           (iii)            (iv) 
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Figure 4.45 The cellular localisation of RGS4
S30F

-eYFP 

HEK293T cells grown on coverslips were transiently transfected with (A) RGS4S30F-eYFP 

(B) RGS4S30F-eYFP co-transfected with Gαi1  (C) RGS4S30F-eYFP co-transfected with the 

α2A-adrenoceptor or (D) RGS4S30F-eYFP co-transfected with the α2A-adrenoceptor and 

stimulated with 100 µM UK14304 for 30 minutes.  Images were generated using an 

inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan 

Fluor Apochromat lens and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 

33342 nuclei staining (blue) (ii) RGS4S30F-eYFP (green) or (iii) WGA-Alexa Fluor 594 
membrane staining (red) (iv) merged images.  Results shown are from a single experiment 

and are representative of three experiments performed. 
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(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

(C)  (i)             (ii)           (iii)            (iv) 

 

 

 

(D)  (i)             (ii)           (iii)            (iv) 
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Figure 4.46 The cellular localisation of RGS4
S30P

-eYFP 

HEK293T cells grown on coverslips were transiently transfected with (A) RGS4S30P-eYFP 

(B) RGS4S30P-eYFP co-transfected with Gαi1  (C) RGS4S30P-eYFP co-transfected with the 

α2A-adrenoceptor or (D) RGS4S30P-eYFP co-transfected with the α2A-adrenoceptor and 

stimulated with 100 µM UK14304 for 30 minutes.  Images were generated using an 

inverted Nikon TE2000-E microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan 

Fluor Apochromat lens and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 

33342 nuclei staining (blue) (ii) RGS4S30P-eYFP (green) or (iii) WGA-Alexa Fluor 594 
membrane staining (red) (iv) merged images.  Results shown are from a single experiment 

and are representative of three experiments performed. 
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4.3 Discussion 

In this study, the GOF properties of RGS4S30C, initially identified in a yeast based screen, 

are confirmed in an in vitro high-affinity GTPase assay.  RGS4S30C demonstrated an 

enhanced α2A-adrenoceptor-activated increase in high-affinity GTPase activity of Gαo1 

compared to wild-type RGS4.  This increased GTPase activity was accompanied by a 

concurrent decrease in the potency of the adrenoceptor agonists adrenaline and UK14304 

to stimulate high-affinity GTPase activity compared to wild-type RGS4.  This serine 

residue is conserved in other members of the B/R4 family of RGS proteins and the 

conversion of serine 30 to cysteine in RGS16 also demonstrated an increase in high-

affinity GTPase activity and decrease in agonist potency compared to wild-type RGS16.  

These results suggest that the conserved serine residue in the B/R4 subfamily of RGS 

proteins is important for the GAP activity of these proteins.  Interestingly, the only other 

GOF mutation identified in an RGS protein was identified in S. cerevisiae and was also 

located in the N terminus of this protein at position 20 (SST2P20L) (Dohlman et al., 1995).  

Serine 30 in RGS4 is positioned in the N-terminal amphipathic helix suggesting perhaps 

that this residue could be implicated in the ability of RGS4 to directly interact with GPCRs 

(Srinivasa et al., 1998;Riddle et al., 2005;Itoh et al., 2006).  The N-terminus, and in 

particular, residue 30 may help correctly position RGS4 at the receptor where it can 

optimally inactivate the G protein α subunit via the GAP activity of the RGS domain.  

Mutation of this residue may serve to change the orientation of RGS4 and subsequently the 

GAP activity of the RGS domain. 

To compare the GTPase activity of the RGS proteins studied, GST-RGS proteins were 

expressed and purified using previously published techniques (Hoffmann et al., 2001).  A 

high-affinity GTPase assay using a fixed concentration of agonist (100 µM) and increasing 

concentrations of RGS4 revealed that addition of 1 µM purified RGS4, as previously used 

by Cavalli et al., (Cavalli et al., 2000) gave sufficient activity to effectively measure 

enhanced GTPase activity of the G protein. Purification of RGS16 and RGS16S30C 

however, was experimentally more difficult than RGS4.  In this study, maximal GTPase 

activity of RGS4 and RGS16 are never directly compared, therefore it was possible to 

lower the concentration of purified RGS16 added to high-affinity GTPase assays to 100 

nM.  In the current studies, 10 µL of each purified RGS protein was manually added to 

each assay plate, perhaps future experiments could make use of an automated liquid 

handling device to precisely transfer a smaller volume of purified RGS protein from a 



   168 

microplate to the assay plate allowing the final concentration of difficult to purify RGS 

proteins to be increased and perhaps ultimately enabling total assay volume to be reduced.  

In addition to an increase in the maximal high-affinity GTPase activity of Gαo1, both RGS4 

and RGS16 caused a simultaneous significant decrease in potency of the adrenoceptor 

agonist.  These observed decreases in potency are in accordance with other published 

results for the addition of RGS proteins to high-affinity GTPase assays (Ward and 

Milligan, 1999;Cavalli et al., 2000).  Hoffmann et al., compared the capacity of RGS16, 

RGS1 and GAIP to regulate GTP hydrolysis by Gαo1 following its activation by a range of 

agonists at the α2A-adrenoceptor (Hoffmann et al., 2001).  RGS16 was the most active 

RGS protein and concomitantly reduced the potency of adrenaline (pEC50 6.0 ± 0.1). 

Marked differences of the three different RGS proteins to alter the efficacy and the potency 

of the α2A-adrenoceptor-Gαo1 following agonist activation provided evidence that RGS 

proteins must interact with receptors.  If the RGS proteins were to interact only with the G 

proteins the agonist binding site would remain unchanged and no effect would be expected 

in the potency of the agonist 

In this study, the potency of adrenaline to stimulate the α2A-adrenoceptor high-affinity 

GTPase activity of Gαo1 on addition of purified RGS16 (pEC50 5.68 ± 0.3) was lower on 

the addition of RGS4 (pEC50 6.72 ± 0.08).  This perhaps provides yet further evidence for 

the selective interactions between RGS protein and GPCRs.  RGS4 and RGS16 must 

interact with the α2A-adrenoceptor, altering the conformation of the receptor.  These closely 

related RGS proteins do not function equally and the specificity of the interaction is 

perhaps fundamental to the GAP activity of the RGS protein and the ability to control 

biological functions. Indeed, previous evidence has suggested regions of RGS proteins 

outwith the RGS domain are particularly important for the selective interaction with 

GPCRs.  Interactions between RGS proteins and GPCRs are thought to be promoted 

through the N-terminal of the RGS protein.  Co-immunoprecipitation studies have 

demonstrated that the N-terminus of RGS2 binds to the third intracellular loop of the M3 

muscarinic receptors.  This binding was also seen for another member of the B/R4 family 

of RGS proteins, RGS16, but not for a further member of this family, RGS1 (Bernstein et 

al., 2004).  Also of interest are previous studies in an oocyte expression system which have 

suggested that the N-terminal of RGS8 is responsible for its ability to inhibit signalling by 

either the M1 muscarinic receptors or the substance P receptors but not the M3 muscarinic 

receptors (Itoh et al., 2006).  It is therefore conceivable that perhaps residues within the N-
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terminal of RGS4 and RGS16, are important for the alteration in potency of adrenaline to 

stimulate the α2A-adrenoceptor high-affinity GTPase activity of Gαo1. 

High-affinity GTPase assays using the α2A-adrenoceptor-Gαi1 fusion protein revealed that 

the GTPase enhancing activity of RGS4 and RGS16 are selective for Gαo1 over Gαi1.  

Addition of purified RGS4 or RGS16 to high-affinity GTPase assays did not increase 

maximal GTPase activity for Gαi1, but did, however, decrease the potency for adrenaline to 

stimulate high-affinity GTPase activity.  These conflicting results could suggest that the 

Gαi1 protein is working at maximal capacity in this assay system, and presence of 

additional exogenous RGS proteins interacts with the α2A-adrenoceptor but cannot further 

increase this maximal GTPase activity.  However, it has previously been established that 

the B/R4 subfamily of RGS proteins show selectivity for Gαo1 over Gαi1 (Cavalli et al., 

2000;Riddle et al., 2005), so perhaps, both RGS4 and RGS16 can interact with the α2A-

adrenoceptor but are not able to act as  efficient GAP proteins for Gαi1.   

Previously, residues involved in RGS4-Gα interaction were identified by examining the 

crystal structure of the RGS domain of RGS4 complexed with Gαi1 (Tesmer et al., 1997). 

Due to the globular nature of the N-terminal of RGS4, this region could not be crystallised 

and residues identified in the RGS-Gαi1 interaction were all within the RGS-fold of RGS4.  

Residues important for Gα selectivity within the N-terminus of RGS4 may have been 

unwittingly overlooked.  Future advances in crystallisation may allow the crystallisation of 

the full-length of RGS4-Gαo1 and reveal resides within the N-terminus important for this 

interaction.   

In this study, addition of purified RGS4S30C or RGS16S30C to high-affinity GTPase assays 

did not increase maximal GTPase activity for Gαi1.  However, RGS4S30C and RGS16S30C 

decreased the potency for adrenaline to stimulate high-affinity GTPase activity compared 

to basal activity.  This decrease in potency, unlike Gαo1, was not significantly different to 

the wild-type RGS protein.  These results suggest that, like their equivalent wild-type 

counterparts, these RGS proteins interact with the α2A-adrenoceptor and alter the 

conformation of the receptor despite the Gα subunit fused to the C-terminal.  RGS4 and 

RGS16 are also known to selectively interact with Gαi2 (Cavalli et al., 2000;Hoffmann et 

al., 2001). It would now be of interest to investigate the α2A-adrenoceptor-Gαi2 high-

affinity GTPase activity to reveal further selectivity of the B/R4 subfamily of RGS proteins 

using high-affinity GTPase assays.   
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An increase in the membrane attachment of RGS4S30C in HEK293T cells would orientate 

the mutated RGS protein in closer proximity to G proteins and therefore could be 

responsible for the enhanced GTPase activity of the protein.  Mutation of residue 30 to 

cysteine may have allowed palmitoylation of this residue.  Palmitoylation is the post-

translational, reversible addition of palmitate to cysteine residues that can alter both 

subcellular localisation and GAP activity of the modified protein.  Indeed, palmitolyation 

of cysteine residues at position 2 and 12 and 95 of RGS4 have already been reported (Tu et 

al., 1999).  It may therefore be plausible that further palmitolyation of cysteine at residue 

30 of RGS4 could also occur.  The cytosolic and membrane localisation of RGS4S30C was 

comparable to wild-type RGS4 in both unstimulated and stimulated cells.  However, the 

cellular localisation of RGS4S30C co-expressed with G proteins was conducted using Gαi1.  

At this point, high-affinity GTPase results in this study show selectivity for Gαo1 over Gαi1, 

and it would therefore be of more interest if Gαo1 had been selected for co-expression and 

perhaps future localisation studies of RGS4 should take this into account.   

It was also conceivable that an increase in the level of cellular expression of RGS4S30C 

compared to wild-type RGS4 was responsible for the GOF properties of the mutant.  

However, detection of cell lysates transiently expressing RGS4-eYFP or RGS4S30C-eYFP 

with an antiserum directed against GFP showed bands of equal intensity suggesting equal 

levels of expression of the two proteins.  However, the transient over-expression of both 

RGS4-eYFP and RGS4S30C-eYFP could perhaps have concealed any differences in 

subcellular localisation or expression levels of the RGS4S30C mutant.    

This transient over-expression of RGS4-eYFP or RGS4S30C-eYFP could also have 

concealed differences in the inhibition of single cell [Ca2+]i mobilisation from agonist 

activated HEK293T cells transiently expressing the α1b-adrenoceptor-Gα11 fusion protein.  

Addition of phenylephrine to these cells transiently expressing the α1b-adrenoceptor-Gα11 

fusion protein and RGS4S30C-eYFP did not demonstrate any further inhibition or change in 

the kinetics of the downstream signalling response compared to cells expressing the α1b-

adrenoceptor-Gα11 fusion protein and wild-type RGS4-eYFP.  The transient expression of 

the eYFP tagged RGS protein routinely allowed individual cells to be selected for analysis 

that were the most highly fluorescent and therefore cells that were unequivocally 

expressing the RGS4 protein.  It is therefore reasonable to suggest that the inhibition of 

[Ca2+]i release by RGS4 was near maximum capacity for the system and identification of 

further inhibition by an RGS4 GOF mutation would be difficult to detect.   
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Mutating serine 30 to a range of other amino acids established the importance of this 

particular residue on the effect on the α2A-adrenoceptor-activated high-affinity GTPase 

activity.  Amino acids were selected for mutational analysis by the properties of their side 

chains.  The mutation of serine 30 to alanine, lysine, or phenylalanine resulted in a similar 

increase in α2A-adrenoceptor-Gαo1 activated high-affinity GTPase activity to RGS4S30C.  As 

predicted for GOF mutants, all the mutants also caused a concomitant decrease in potency 

of the adrenoceptor agonist adrenaline.  It is interesting to note that RGS4S30F and 

RGS4S30K were also the most active mutants in Sz. pombe (Hill et al., personal 

communication).  As amino acids other than cysteine also diplay GOF activity, it is 

therefore unlikely that palmitoylation is responsible for the increase in RGS activity.  Other 

chemical properties shared by all GOF mutants are more likely to be responsible.  

Crucially, the hydroxyl group of serine at position 30 seems to be important to maintain 

wild-type activity of RGS4.  Future experiments mutating residue 30 to tyrosine or 

threonine would allow further examination of this hypothesis.  

Interestingly, conversion of residue 30 to glutamic acid or proline decreased the activity of 

RGS4 against Gαo1 in high-affinity GTPase assays. Surprisingly, both of these mutants 

demonstrated no alteration in the potency of adrenaline to stimulate high-affinity GTPase 

activity. This perhaps suggests that the presence of glutamic acid or proline alters the 

conformation of the RGS amphiphatic helix such that the RGS now no longer interacts 

with α2A-adrenoceptor.  The side chain dimensions of the two most active mutants, 

phenylalanine and lysine, are comparably large.  However, the amino acids cysteine and 

alanine at position 30 in RGS4 also demonstrated GOF properties, but the dimensions of 

these amino acids are not bigger than the least active, proline.  It is, therefore, most likely 

that chemical properties of the side chains are contributing to the GTPase activity 

alterations.  However, noticeable differences in the chemical properties between the most 

active mutants and least active RGS4S30X mutants are difficult to detect.   

It has been determined that two members of the B/R4 subfamily of RGS proteins, RGS5 

and RGS18 contain proline at the amino acid corresponding to residue 30 in RGS4.  Since 

RGS4S30P resulted in a reduction in RGS activity, it would be interesting to compare 

RGS5P30S and RGS18P30S with RGS4S30P and further elucidate the role of proline in the 

orientation and interaction of Gα subunits with RGS proteins. 

Despite serine 30 being outwith the predicted RGS domain in RGS4 and RGS16, mutation 

of this residue can directly affect its ability to enhance GTPase activity.  This discovery 
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may have many future therapeutic implications as alterations in RGS signalling play a role 

in many disease states.  An RGS GOF mutation could be used directly to decrease a 

signalling pathway or current small molecule inhibitors (Ingi et al., 1998) could be tested 

to examine their ability to inhibit the enhanced RGS activity of these mutants. The 

specificity of both RGS4 and RGS16 for Gαo1 is an important aspect of future therapeutics.  

This selectivity allows novel inhibitors to be designed to act on selective Gαo1 signalling 

pathways of interest. 

This study describes the GOF properties of RGS4S30C in a α2A-adrenoceptor high-affinity 

GTPase assay. Mutation of a single amino acid in the N-terminus of this protein to enhance 

the RGS activity was transposed to another B/R4 family member, RGS16. The 

demonstrated Gα selectivity of both wild-type and mutant proteins has important future 

therapeutic implications for many signalling pathways regulated by RGS proteins. 
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5 Chapter 5 

5.1 Introduction 

RGS proteins increase the intrinsic rate of GTP hydrolysis on Gα subunits.  It has been 

suggested that RGS proteins increase this hydrolysis by at least 40-fold by stabilising the 

transition state of the GTPase complex (Watson et al., 1996;Druey and Kehrl, 1997).  The 

highly conserved nine-helix bundle of the RGS domain is predicted to directly contact the 

Gα subunit at three switch regions.  These switch regions undergo a conformational change 

during the GTPase cycle and specific amino acids within the RGS domain have been 

identified that, through non-covalent interactions, contribute to stabilising this 

conformational change. 

Biochemical studies have shown that RGS proteins have little or no affinity for Gα-GDP 

complexes, and therefore do not alter the rate of GDP release.  Instead, RGS proteins bind 

to the GTP-bound forms of Gα subunits and stimulate GTP hydrolysis.  Interestingly, RGS 

proteins had higher affinity for Gαi1 bound to GDP and AlF4
-, a complex proposed to 

mimic the transition state of the GTPase reaction, indicating that RGS proteins act by 

stabilising the transition state (Watson et al., 1996;Berman et al., 1996b). The Ras family 

are also weak GTPases and data from p120GAP binding to, and accelerating the GTP 

hydrolysis of p21ras, provided evidence that p120GAP introduced residues into the Ras 

active site that directly participate in the catalysis of GTP hydrolysis (Gideon et al., 

1992;Mittal et al., 1996;Scheffzek et al., 1996).  Crystallisation of RGS4 complexed with 

Gαi1 bound to GDP, AlF4
- and Mg2+, showed only the RGS domain of RGS4 visible in the 

crystal.  However, due to the highly conserved nature of the RGS domain, the data from 

the crystallisation revealed features important for all members of the RGS family (Tesmer 

et al., 1997).  In contrast to the Ras family proteins, RGS proteins show no structural 

similarity to p120GAP, and appear not to contribute catalytical residues to the stimulation 

of GTP hydrolysis. 

Mutagenesis of residues identified from the crystallisation complex has revealed residues 

essential for normal function of RGS4.  In particular, asparagine128 has been suggested as a 

key amino acid for the GAP action of RGS4.  It has been demonstrated that RGS4N128A and 

RGS4N88S,N128A have impaired GAP activity against the α2A-adrenoceptor-Gαo1 fusion 

protein (Bahia et al., 2003).  Interestingly, it was also shown that RGS4N88S was both able 
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(Cavalli et al., 2000) and unable (Bahia et al., 2003) to act as an effective GAP for Gαo1.  

The aim of this chapter was to investigate these RGS4 mutants using western blotting, 

microscopy and agonist-activated [Ca2+]i mobilisation.   By adding eYFP to the C-terminal 

of RGS4N88S, RGS4N128A and RGS4N88S,N128A, these techniques were used to examine the 

GAP activity of these RGS4 mutants against Gα11. 

5.2 Results 

Mutations previously introduced into RGS4 to explore the functionality of the protein as a 

GAP, were C-terminally tagged with eYFP.  This fluorescent tag was introduced to RGS4 

in which asparagine residues 88 and 128 were mutated to serine and alanine respectively.  

In addition, eYFP was also introduced to the C-terminal of RGS4N88S and RGS4N128A to 

investigate the importance of each single mutation.  Figure 5.1 shows the structure of these 

amino acids for comparison. 

5.2.1 Expression of aspargine RGS4 mutants 

To investigate the effect of mutating residues 88 and 128 in RGS4 on the expression level 

of the protein, RGS4-eYFP and RGS4N88S,N128A-eYFP were individually transiently 

expressed in HEK293T cells and cell lysates were separated by SDS-PAGE (Figure 5.2).  

HEK293T cells transfected with pcDNA3 were included as a control (lane 1).  Proteins 

were detected by western blotting using an anti-GFP antiserum that recognises eYFP.  

Bands corresponding to RGS4-eYFP (lane 2) and RGS4N88S,N128A-eYFP (lane3) at ~50kDa 

were of comparable intensity indicating equal expression of the two proteins.  No 

immunoreactivity was observed at ~50kDa in the control sample.  However, 

immunoreactivity of a non-specific protein in all lanes at ~70kDa demonstrates equal 

loading of all three protein samples. 

This protocol was repeated to investigate the expression level of RGS4N88S-eYFP.  Bands 

of equal intensity corresponding to RGS4-eYFP and RGS4N88S-eYFP were observed 

suggesting equivalent expression of the two proteins by HEK293T cells (Figure 5.3).  As 

observed previously, no immunoreactivity at ~50kDa, the predicted molecular weight for 

an eYFP-tagged RGS4, was observed in lane 1 in which cells were transfected only with 

pcDNA3.  Again, a non-specific band at ~70kDa was observed in all three samples, 

suggesting identical total protein concentrations were present. 
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This protocol was again repeated to compare the expression levels of RGS4N128A-eYFP to 

wild-type RGS4-eYFP.  Cell lysates of transfected HEK293T cells separated by SDS-

PAGE and immunoblotted by an anti-GFP antiserum demonstrated equal expression of 

both the wild-type and the mutant RGS4 protein (Figure 5.4). 

5.2.2 Functional activity of asparagine RGS4 mutants 

As previously described, following expression of the α1b-adrenoceptor-Gα11 fusion protein, 

agonist activation causes an elevation in [Ca2+]i (Chapter 5, Section 1.22) (Stevens et al., 

2001).  In HEK293T cells, Gα11 activates PLCβ which in turn hydrolyses PIP2 and 

produces IP3 and DAG, leading to activation of downstream effector molecules and a rise 

in [Ca2+]i.  The amplification of this signal is limited by the return of the Gα subunit to the 

inactive GDP-bound state by GTPase activity.  Therefore, increasing the rate of GTP 

hydrolysis by the GAP action of RGS proteins should further limit this amplification.  

Expression of RGS4 with a fluorescent tag attached allows the visual identification of cells 

positively transfected with RGS4.  Expression of RGS4-eYFP negatively regulates [Ca2+]i 

mobilisation by agonist-stimulated α1b-adrenoceptor-Gα11 fusion protein (Figure 5.5).   

The co-expression of the α1b-adrenoceptor-Gα11 fusion protein with an RGS mutant that 

has impaired GAP activity would be anticipated to limit the effect on [Ca2+]i mobilisation.  

Indeed, co-expression of RGS4N88S-eYFP, RGS4N128A-eYFP and RGS4N88S,N128A-eYFP 

with the α1b-adrenoceptor-Gα11 fusion protein had no effect on agonist-mediated elevation 

of [Ca2+]i (Figure 5.6). 

The consistency of these results was demonstrated by repeating this protocol using the 

thyrotropin-releasing hormone receptor (TRHR-1)-Gα11 fusion protein.  Co-expression of 

this receptor-G protein fusion with RGS4-eYFP also demonstrated reduced amplification 

of [Ca2+]i (Figure 5.7).  However, co-expression of RGS4N88S-eYFP, RGS4N128A-eYFP and 

RGS4N88S,N128A-eYFP with the TRHR-1-Gα11 fusion protein did not affect the maximal 

[Ca2+]i mobilisation,  suggesting that all three RGS4 mutants have ablated GAP activity 

with no additive effect following expression of the double mutant (Figure 5.8). 
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Figure 5.1 Amino acids selected for substitution of asparagine 88 and 128 in RGS4 

Asparagine residues in RGS4 were selected for site directed mutagenesis.  Asparagine at 

position at 88 was mutated to serine and asparagine at position 128 was mutated to alanine 

to produce three constructs, RGS4N88S-eYFP, RGS4N128A-eYFP and RGS4N88S,N128A-eYFP. 
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Figure 5.2 Expression and immunological detection of RGS4-eYFP and 

RGS4
N88S,N128A

-eYFP 

HEK293T cells were transiently transfected to express RGS4-eYFP (lane 2) or 

RGS4N88S,N128A-eYFP (lane 3).  HEK293T cells transfected with pcDNA3 were included as 

a control (lane 1).  Cell lysates were resolved by SDS-PAGE and then immunoblotted with 

anti-GFP antiserum.  Results shown are of a single experiment and are representative of 

three experiments performed. 
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Figure 5.3 Expression and immunological detection of RGS4-eYFP and RGS4
N88S

-

eYFP 

HEK293T cells were transiently transfected to express RGS4-eYFP (lane 2) or RGS4N88S-

eYFP (lane 3).  HEK293T cells transfected with pcDNA3 were included as a control (lane 

1).  Cell lysates were resolved by SDS-PAGE and then immunoblotted with anti-GFP 

antiserum.  Results shown are of a single experiment and are representative of three 

experiments performed. 
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Figure 5.4 Expression and immunological detection of RGS4-eYFP and RGS4
N128A

-

eYFP 

HEK293T cells were transiently transfected to express RGS4-eYFP (lane 2) or RGS4N128A-

eYFP (lane 3).  HEK293T cells transfected with pcDNA3 were included as a control (lane 

1).  Cell lysates were resolved by SDS-PAGE and then immunoblotted with anti-GFP 

antiserum.  Results shown are of a single experiment and are representative of three 

experiments performed. 
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Figure 5.5 RGS4-eYFP reduces phenylephrine stimulation of [Ca
2+

]i  via the α1b-

adrenoceptor-Gα11
 
 fusion protein  

HEK293T cells were transfected to express the α1b-adrenoceptor-Gα11 fusion protein 

(black line) or the α1b-adrenoceptor-Gα11
 fusion protein and RGS4-eYFP (green line).  

Cells were loaded with Fura-2/AM and [Ca2+]i levels imaged before and after 3 µM 

phenylephrine was perfused over the cells for 60 seconds.  Data represents means ± SEM. 

from 15 (α1b-adrenoceptor-Gα11), and 17 (α1b-adrenoceptor-Gα11
 and RGS4-eYFP) cells 

from 3 individual experiments performed. 
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Figure 5.6 Mutation of asparagine 88 or 128 in RGS4 eliminates GAP activity against 

phenylephrine-stimulation of [Ca
2+

]i  via the α1b-adrenoceptor-Gα11
 
fusion protein 

HEK293T cells were transfected to express the α1b-adrenoceptor-Gα11 fusion protein 

(black line), the α1b-adrenoceptor-Gα11
 fusion protein and RGS4N88S-eYFP (pink), the α1b-

adrenoceptor-Gα11
 fusion protein and RGS4N128A-eYFP (orange), or the α1b-adrenoceptor-

Gα11
 fusion protein and RGS4N88S,N128A-eYFP (brown).  Cells were loaded with Fura-

2/AM and [Ca2+]i levels imaged before and after 3 µM phenylephrine was perfused over 

the cells for 60 seconds.  Data represents means ± SEM. from 15 (α1b-adrenoceptor-Gα11), 

27 (α1b-adrenoceptor-Gα11
 and RGS4N88S-eYFP), 9 (α1b-adrenoceptor-Gα11

 and 

RGS4N128A-eYFP), and 20 (α1b-adrenoceptor-Gα11
 and RGS4N88S,N128A-eYFP) cells from 3 

individual experiments performed. 
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Figure 5.7 RGS4-GFP
2
 reduces TRH stimulation of [Ca

2+
]i  via theTRHR–1-Gα11  

fusion protein 

HEK293T cells were transfected to express the TRHR-1-Gα11 fusion protein (black line) 

or the TRHR-1 and RGS4-GFP2 (green line).  Cells were loaded with Fura-2/AM and 

[Ca2+]i levels imaged before and after 10 µM thyrotropin-releasing hormone (TRH) was 

perfused over the cells for 60 seconds.  Data represents means ± SEM. from 12 (TRHR-1) 

and 9 (TRHR-1and RGS4-GFP2) cells from 3 individual experiments performed. 
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Figure 5.8 Mutation of asparagine  88 or 128 in RGS4 elimanes GAP activity against 

TRH stimulation of [Ca
2+

]i  via  the TRHR–1-Gα11  fusion protein   

HEK293T cells were transfected to express the TRHR-1 (black line), the TRHR-1 and 

RGS4N88S-eYFP (pink line), the TRHR-1 and RGS4N128A-eYFP (orange line), or the 

TRHR-1 and RGS4N88S,N128A-eYFP (brown) line.  Cells were loaded with Fura-2/AM and 

[Ca2+]i levels imaged before and after 10 µM TRH was perfused over the cells for 60 

seconds.  Data represents means ± SEM. from 12 (TRHR-1), 13 (TRHR-1and RGS4N88S-

eYFP), 17 (TRHR-1and RGS4N128S-eYFP), 15 (TRHR-1and RGS4N88S,N128A-eYFP) cells 

from 3 individual experiments performed. 
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5.3 Discussion 

Mutational analysis of RGS proteins previously identified specific amino acids important 

for the GAP activity of these proteins.  Changing specific single amino acids at the Gαi1-

RGS4 binding interface can result in impaired GAP activity of RGS4.  The structure of 

RGS4-Gαi1 complexed in the transition state suggests that RGS4 could stimulate GTP 

hydrolysis by contributing to the overall stability of the transition state complex.   

The importance of asparagine88 and asparagine128 to the GAP activity of RGS4 has 

previously been reported and was further investigated in this study.  Mutation of both 

residue 88 and residue 128 to serine and alanine respectively, resulted in ablated GAP 

activity RGS4 towards Gα11, a previously unknown detail.  In addition, the importance of 

each individual mutation was also studied.  Both RGS4N88S and RGS4N128A demonstrated 

ablated GAP activity, showing there was no additive effect of the double mutant.  These 

RGS4 mutants were selected for use in this study due to their previous successful 

application to show impaired GAP activity.  However, no previous study has demonstrated 

the use of these RGS4 mutants towards Gα11. 

Introduction of a mutation can often cause an alteration in expression of the protein.  

However, no differences in protein size or expression levels were observed among the 

aspragine RGS4 mutant proteins.  This suggests that the impaired GAP activity of the 

RGS4 mutants was caused by disruption of the binding interface between the Gα subunit 

and RGS4. 

Structural data shows that the three switch regions of Gαi1 interact with the most highly 

conserved regions of RGS4 (Tesmer et al., 1997). Threonine182 of switch region I interacts 

exclusively with seven highly conserved residues of RGS4, including asparagine88.  It 

could therefore be anticipated that when asparagine88 was mutated to serine, the loss of an 

amide and a carbonyl group would disrupt the interaction between switch region I and 

RGS4, causing impaired GAP activity.  A previous study has investigated the mutation of 

asparagine88 to alanine (Srinivasa et al., 1998).  The alanine substitution also demonstrated 

diminished GAP activity of RGS4 and was proposed to disrupt the binding pocket in 

RGS4 in which theronine182 of the G protein binds.  In this way, serine at position 88 in 

RGS4 would also cause a change in the amino acid side chains contributing to the binding 

pocket, and a loss of hydrogen bonding to the Gα subunit.  Further evidence has also 

suggested that asparagine88 interacts co-operatively with the neighbouring amino acid, 
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glutamic acid77.  A double mutant in which both these amino acids were mutated to alanine 

had a much stronger defect in GAP activity than either single mutation (Srinivasa et al., 

1998).   However, a study using a RGS4N88S fused in-frame to the α-adrenoceptor 

demonstrated that this fusion protein was both able to stimulate and then deactivate Gαo1 

(Bahia et al., 2003).  In the present study, asparagine88 was functionally important in the 

regulation of [Ca2+]i amplification.  RGS4N88S demonstrated a loss of GAP activity by the 

inability to inhibit signalling by activated Gα11 in HEK293T cells.  It could therefore be 

reasoned that aspargine88 of RGS4 also interacts with the equivalent theronine in Gα11, 

Gα11
T186. 

Also in switch region I, lysine180 of Gαi1 forms extensive van der Waals contacts with 

asparagine128 of RGS4.  Although a transient, weak electrical attraction of one atom for 

another, a number of van der Waals forces can provide an important component of protein 

structure.  The force arises from the transient attraction between the nucleus of one atom 

and the electron cloud of a neighbouring atom. When asparagine is mutated to alanine, the 

loss of a carbonyl group and a hydroxyl group could be anticipated to affect the spatial 

distance between the molecules.  The attraction between atoms can only operate over a 

short distance and if two atoms move closer together then severe repulsion between the 

two nuclei of the atoms can occur. If the atoms move further apart the weak attractions will 

be broken. The presence of alanine at position 128 could therefore disrupt this bonding and 

reduce the contact of RGS4 and Gαi1, weakening the ability of RGS4 to stabilise the 

transition state of the GTPase cycle. 

Switch region I and II of Gαi1 also interact with asparagine128 in RGS4 (Tesmer et al., 

1997).  The importance of asparagine128 to the function of RGS4 is highlighted by the 

almost complete conservation of this residue within the RGS family.  The only natural 

substitution is for serine in some RGS proteins such as GAIP (Vries et al., 1995;Berman et 

al., 1996b;Popov et al., 1997;Posner et al., 1999).  Natochin et al., mutated aspargine128 in 

RGS4 to serine to and demonstrated that serine proves to be the best substitution for 

asparagine in regards to preserving the GAP activity of the protein (Natochin et al., 1998).  

Asparagine128 is the only RGS4 residue that projects into the active site of Gαi1 and 

together with its location at the binding interface and interaction with three Gαi1 residues at 

the active site (glutamine204, glutamic acid207 and lysine180) further underline the 

importance of asparagine128 to the GAP activity of RGS4. 
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Previous results from mutating asparagine128 in RGS4 to several other amino acids have 

indicated that some GAP activity of RGS4 can be retained (Natochin et al., 1998).   

However, all results using RGS4N128A suggested that the alanine mutant had low GAP 

activity (Natochin et al., 1998;Srinivasa et al., 1998;Posner et al., 1999;Bahia et al., 2003). 

Although now disputed (Srinivasa et al., 1998), asparagine128 has previously been 

suggested to be critical in orientating and polarising a hydrolytic water molecule in the 

transition state of GTP hydrolysis (Posner et al., 1999).  Replacing asparagine128 with the 

hydrophobic amino acid alanine would prevent any interaction with a water molecule and 

the RGS protein would be unable to stabilise conformational changes in the GTPase cycle. 

This study demonstrated that RGS4N88S,N128A displayed loss of GAP activity towards Gα11. 

Both RGS4N88S and RGS4N128A also displayed no functional GAP activity towards Gα11 

with no apparent change in GAP activity following expression of a single asparagine 

mutation.  Following transfection, single cells were selected that were fluorescent, a 

marker for cells positively transfected with RGS4-eYFP.  In a field of view, cells 

invariably show a range of fluorescence expression and to allow reliable comparison 

between mutants, only the brightest fluorescent cells were selected.  It is possible, 

therefore, that in using agonist-activated [Ca2+]i amplification to measure GAP activity, 

small differences in GAP activity between mutants may have been concealed. It would 

perhaps been hypothesised that RGS4N88S and RGS4N128A could have retained some GAP 

activity, compared to the double mutant.  As previously mentioned, structural and 

functional data suggest that RGS4 stimulates GTP hydrolysis by stabilising the transition 

state conformation.  The additive effect of disrupting two areas of the binding interface 

between RGS4 and Gα11 would be anticipated to further impair the GAP activity of RGS4.  

However, these single amino acid mutations seem able to totally disrupt the GAP activity 

of the protein, perhaps being sufficient to achieve a global conformational change of the 

complex. 

Finally, the identity of Gα subtype may play a role in determining the GAP activity of RGS 

proteins.   The loss of GAP activity of the asparagine RGS4 mutants in this study is 

consistent with other studies, when the Gα substrate was Gαo and Gαi1 (Druey and Kehrl, 

1997;Bahia et al., 2003).  The amino acids of Gα subunit proposed to be involved in 

binding to residues 88 and 128 of RGS4 are highly conserved, although Posner et al., 

demonstrated RGS4N128F differentially decreased the GAP activity towards Gαi1 compared 

to Gαq.  This mutation was suppressed by mutating the residue in Gαi to that found in Gαq 

(K180P) (Posner et al., 1999).  The identity of the Gα subunit may alter the function of 
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asparagine128 and perhaps comparing the agonist-activated [Ca2+]i mobilisation by the α1b-

adrenoceptor fused to Gαq would have been informative. 

The lifetime of the RGS-Gα complexes determines the GAP activity of RGS proteins for 

plasma membrane-associated heterotrimeric G proteins and determines the signal strength 

and regulates activity of effectors.  Certainly, RGS4 may also interact with the receptor and 

the Gβγ subunit to further stabilise the signalling complex but the total loss of all GAP 

activity in such mutant RGS proteins could prove useful in future drug discovery.  Small 

molecules which inhibit RGS-Gα interaction have been proposed as novel drugs which 

could be used to treat numerous disease states.  As such, the model of these mutant 

aspargine resides in RGS4 could be crucial to novel drug development. 
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6 Chapter 6 

6.1 Introduction 

Genetic and biochemical studies have demonstrated that RGS proteins interact directly 

with Gα subunits (Berman et al., 1996b). This physical association allows RGS proteins to 

increase the rate of hydrolysis of GTP to GDP on the Gα subunit and negatively regulate 

signalling. Multiple RGS proteins are known to interact with each Gα subtype and 

establishing the contribution of endogenous RGS proteins to signal transduction in vivo 

was initially thought to require construction of specific knockout mutants. However, the 

identification and characterisation of a Gα subunit mutant that specifically disrupts the 

interaction with RGS proteins provided a new approach to study the endogenous function 

of RGS proteins (DiBello et al., 1998). A single amino acid change in the Gα subunit 

produced a G protein insensitive to RGS action.   

This point mutation in the Gα subunit was originally identified in S. cervisiae in a screen 

for yeast strains that were supersensitive to pheromone.  One such strain had a single 

glycine to serine mutation in the yeast Gα subunit, Gpa1, which escaped regulation by the 

RGS protein, Sst2.  This glycine residue was shown to be conserved in the mammalian Gα 

subunits and subsequent studies have shown that the corresponding mutation in Gαq, Gαi1 

and Gαo also produces RGS-insensitivity. These mutant Gα subunits have become 

important tools for studying the endogenous role of RGS proteins. Indeed, with multiple 

RGS proteins being able to interact with each Gα subtype, inactivating every one of these 

endogenous RGS proteins would be difficult.  Instead, the use of a single mutant Gα 

subunit can be used to ascertain the combined role of endogenous RGS proteins on the 

function of a particular Gα subunit. 

Transient over-expression of RGS proteins, or more usually, epitope-tagged RGS proteins, 

produces an unnatural system and could lead to invalid conclusions.  However, most 

previous studies have used transient over-expression to determine RGS function and 

overcome the low natural abundance of endogenous RGS proteins.  As an alternative, 

transiently expressing a Gα subunit insensitive to RGS proteins could elucidate 

endogenous RGS function.  This study determines if the previously identified RGS-

insensitive mutation can be effectively transferred into Gα11.  Gαq and Gα11 share 98% 

homology and examination of mammalian Gαq
G188S in cells co-transfected with the 5HT2C 
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receptor has previously revealed that, compared to wild-type mammalian Gαq, the response 

of Gαq
G188S was not inhibited by RGS7 (DiBello et al., 1998).  However, it has now been 

determined that some RGS proteins can discriminate between the two highly related Gαq 

family subunits (Ladds et al., 2007) and the aim of this study was to investigate signal 

transduction of a potentially RGS-insensitive Gα11 (Gα11
G188S

). 

Agonist-activation of receptors linked to the Gαq subfamily of G proteins produce 

amplification of the second messenger, calcium.  The intracellular Ca2+ response produced 

in single cells was used to investigate the role of Gα11
G188S

.  Thus, the use of mouse 

embryonic fibroblast cells (EF88) derived from a combined Gαq and Gα11 knockout mouse 

was crucial in this study.  The Gα11
G188S protein was fused in-frame to the C-terminal of 

the α1b-adrenoceptor.   Following agonist occupation, the rise in [Ca2+]i mediated by a wild-

type α1b-adrenoceptor-Gα11 fusion protein (Stevens et al., 2001) was compared to the rise 

in [Ca2+]i mediated by the α1b-adrenoceptor-Gα11
G188S fusion protein in EF88 cells.  The 

generality of agonist-activated [Ca2+]i mediated by Gα11
G188S  was demonstrated by 

transferring the G188S mutation to the Gα11 protein fused in-frame to the C-terminal of the 

TRHR-1.  The level of [Ca2+]i produced upon activation of the TRHR-1-Gα11
G188S fusion 

protein was then compared to the wild-type TRHR-1-Gα11 fusion protein. 

Biochemical studies have previously suggested that the RGS-insensitive Gα subunits 

display a reduced affinity for RGS4 (Lan et al., 1998). G proteins, unable to be regulated 

by RGS proteins, have also been reported conflictingly to be both able (Druey et al., 1998) 

and unable (Roy et al., 2003) to translocate RGS4 to the plasma membrane.  Both the α1b-

adrenoceptor and the TRHR-1-G protein fusion proteins were used to study the subcellular 

localisation of RGS4-eYFP in receptor-activated HEK293T cells. 

The [35S]GTPγS binding assay was used to measure the level of G protein activation of 

Gα11
G188S

.   The binding of the non-hydrolysable analogue [35S]GTPγS  to the Gα subunit 

of the α1b-adrenoceptor-Gα11 fusion protein was compared to the α1b-adrenoceptor-

Gα11
G188S fusion protein.  The only reported effect of the RGS-insensitive mutation is to 

prevent RGS action on Gα.  However, using these methods, additional novel roles for the 

RGS insensitive mutation, G188S in Gα11 became apparent. 
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6.2 Results 

6.2.1 Translocation of RGS4 in the presence Gα11
G188S

 

The intracellular translocation of RGS4 was previously examined in this study by 

transfection of HEK293T cells with C-terminally eYFP-tagged RGS4 (Chapter 3, Section 

3.2.3). In agreement with previous studies, the vast majority of transiently transfected 

RGS4-eYFP in HEK293T cells was localised within the cytoplasm (Druey et al., 

1998;Chatterjee and Fisher, 2000).  It was also demonstrated that over-expressing agonist 

activated receptor promoted the translocation RGS4-eYFP from the cytoplasm to the 

plasma membrane in HEK293T cells (Chapter 3, Section 3.2.5).  

In order to investigate the subcellular localisation of RGS4 in the presence of an agonist-

activated receptor fused to an RGS-insensitive G protein, HEK293T cells were transiently 

co-transfected with either (A) the α1b-adrenoceptor-Gα11 fusion protein and RGS4-eYFP or 

(B) the α1b-adrenoceptor-Gα11
G188S fusion protein and RGS4-eYFP (Figure 6.1).  Using 

microscopy, the localisation of RGS4-eYFP in fixed cell samples was determined.  As 

before, the blue colour (i) represents Hoechst 33342 DNA staining that was used to 

identify the nuclei in these cells. The green colour (ii) represents eYFP fluorescence from 

expressed RGS4-eYFP and the red colour (iii) represents WGA-Alexa Fluor 594 used to 

label the plasma membrane.  To identify any RGS4-eYFP localised at the plasma 

membrane, an overlay image is also shown (iv).  In these overlay images yellow colour 

represents any RGS4-eYFP that is co-localised with WGA-Alexa Fluor 594 at the plasma 

membrane.  Figure 6.1 demonstrates that some RGS4-eYFP in HEK293T cells transiently 

co-transfected with the α1b-adrenoceptor-Gα11 fusion protein and stimulated with 100 µM 

phenylephrine, was located at the plasma membrane.  In contrast, RGS4-eYFP in 

HEK293T cells transiently co-transfected with the α1b-adrenoceptor-Gα11
 G188S

 fusion 

protein and stimulated with 100 µM phenylephrine, was predominantly localised within the 

cytoplasm.  Agonist activation of the α1b-adrenoceptor-Gα11
 G188S

 fusion protein therefore 

did not promote detectable translocation of RGS4-eYFP in HEK293T cells. 

The subcellular localisation and translocation pattern of RGS4-eYFP co-expressed with 

Gα11
G188S was also confirmed by determining the percentage fluorescence of RGS4-eYFP 

in the plasma membrane of these co-transfected HEK293T cells (Figure 6.2).  The 

percentage of RGS4-eYFP fluorescence in the plasma membrane of cells co-transfected 

with the α1b-adrenoceptor-Gα11 fusion protein (defined as 100%) was directly compared to 
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the percentage of RGS4-eYFP fluorescence in the plasma membrane of these cells 

stimulated with 100 µM phenylephrine. In these cells, agonist-stimulation translocated 

RGS4-eYFP to the plasma membrane (159 ± 2%). In contrast, agonist-stimulation did not 

translocate RGS4-eYFP to the plasma membrane when cells were co-transfected with the 

α1b-adrenoceptor-Gα11
G188S

 fusion protein (100 ± 1%).  This further confirmed that the 

predicted RGS-insensitive Gα11 mutation must indeed directly influence the interaction of 

the Gα subunit and RGS4. 

A similar pattern of RGS4-eYFP translocation was demonstrated when HEK293T cells 

were transiently co-transfected with the TRHR-1-Gα11 fusion protein and challenged with 

the TRHR-1 selective agonist TRH (Figure 6.3).  Microscopy revealed that RGS4-eYFP 

was still predominantly localised in the cytoplasm in cells co-transfected with the TRHR-

1-Gα11
G188S

 fusion protein and stimulated with TRH (Figure 6.3(B)).  In contrast, the 

presence of the agonist-stimulated TRHR-1-Gα11 fusion protein showed co-localisation of 

RGS4-eYFP and the plasma membrane marker WGA-Alexa Fluor 594 (Figure 6.3 (A)).  

As before, the percentage of RGS4-eYFP fluorescence in the plasma membrane in cells co-

transfected with the TRHR-1-Gα11 fusion protein or the TRHR-1-Gα11
G188S

 fusion protein 

was also examined (Figure 6.4).  The TRHR-1-Gα11
G188S

 fusion protein did not translocate 

RGS4-eYFP to the plasma membrane.  The direct effect of the predicted RGS-insensitive 

Gα11 mutation on the interaction to RGS4 is therefore not restricted to the action of a single 

receptor. 

6.2.2 [
35

S]GTPγS binding to the α1b-adrenoceptor-Gα11
G188S

 fusion 

protein 

In order to investigate the expression levels of the α1b-adrenoceptor-Gα11
G188S fusion 

protein, membranes transiently expressing the α1b-adrenoceptor-Gα11 fusion proteins, were 

subjected to radioligand binding.  Specific binding of the α1b-adrenoceptor antagonist 

[3H]prasozin  was determined by subtracting the level of binding observed in the presence 

of the non-specific antagonist phentolamine (100 µM) (Figure 6.5).  Levels of expression 

(Bmax) of the receptor-G protein fusion proteins varied between individual transfections, 

but importantly the affinity (Kd) of the α1b-adrenoceptor-Gα11 (0.54 ± 0.01 nM) and of the 

α1b-adrenoceptor-Gα11
G188S (0.49 ± 0.01 nM) for [3H]prasozin was not affected by the G188S 

mutation in Gα11.   
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From these binding studies, HEK293T cell membranes with equivalent amounts of each 

transfected fusion protein were added to [35S]GTPγS binding assays.  A maximally 

effective concentration of phenylephrine increased the level of bound [35S]GTPγS to the 

α1b-adrenoceptor-Gα11 fusion protein.  However, the specific effectiveness of 

phenylephrine to stimulate [35S]GTPγS binding to the α1b-adrenoceptor-Gα11
G188S fusion 

protein was significantly reduced by 90.2 ± 0.85 % (p<0.01) (Figure 6.6).  Employing a 

range of concentrations of phenylephrine revealed that this difference could be attributed to 

the efficacy of the G protein to bind [35S]GTPγS, as the reduction in the ability of 

phenylephrine to stimulate [35S]GTPγS binding to the α1b-adrenoceptor-Gα11
G188S

  fusion 

protein was not accompanied by a reduction in potency of the agonist (Figure 6.7).  The 

pEC50 of phenylephrine for the α1b-adrenoceptor-Gα11 fusion protein (pEC50 6.14 ± 0.09) 

and the α1b-adrenoceptor-Gα11
G188S (pEC50 6.35 ± 0.06) remained unchanged (p>0.05) 

(Figure 6.7 (B)). 

Binding of [35S]GTPγS  to the α1b-adrenoceptor-Gα11  fusion protein was determined by 

immunoprecipitation with an antiserum (CQ) which identifies the C-terminal decapeptide 

of Gα11.  To ensure that the reduction in the effectiveness of phenylephrine to stimulate 

[35S]GTPγS binding on the α1b-adrenoceptor-Gα11
G188S fusion protein was not due to the 

antiserum CQ being unable to recognise the mutated G protein, membranes expressing 

equal levels of receptor-Gα protein fusion, used in the [35S]GTPγS  binding assay, were 

treated with N-Glycosidase F, separated by SDS-PAGE and detected with the antiserum, 

CQ (Figure 6.8).  Previously, western blot analyses of the α1b-adrenoceptor-Gα11 fusion 

demonstrated distinct doublets (at approximately 90 kDa and 110 kDa) that probably 

reflected differential glycosylation of the receptor (Liu et al., 2002).  Pre-treatment of 

membranes with N-Glycosidase F released all common classes of N-glycans from the 

protein backbone and produced a single comparable band for each fusion protein.  Bands 

corresponding to α1b-adrenoceptor-Gα11 (lane 1) and α1b-adrenoceptor-Gα11
G188S (lane 2) 

were of comparable intensity, indicating similar reactivity of the two fusion proteins to the 

antiserum CQ.  Decreased reactivity to the antiserum CQ of the α1b-adrenoceptor-Gα11
G188S 

fusion protein is therefore not responsible for the reduction in the effectiveness of 

phenylephrine to stimulate [35S]GTPγS binding. 
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6.2.3 Intracellular Ca
2+

 mobilisation following expression of the α1b-

adrenoceptor-Gα11
G188S

 fusion protein 

To investigate the effect of Gα11
G188S on downstream signalling, the ability of the α1b-

adrenoceptor-Gα11 fusion protein and the α1b-adrenoceptor-Gα11
G188S fusion protein to 

elevate [Ca2+]i in response to phenylephrine was compared.  To investigate the effect of the 

mutated Gα11 subunit it was imperative to use a cell line with no endogenous wild-type 

Gα11.  Presence of any wild-type Gα11 would produce a response that could not be 

exclusively attributed to the presence of a mutation.  To verify the constitutive knockout of 

endogenous Gαq and Gα11 in EF88 cells, cell lysates of EF88 cells were separated by SDS-

PAGE and probed with the antiserum CQ (Figure 6.9 (lane3)).  As a positive control, EF88 

cells transfected with Gα11 (lane1) or Gα11
G188S (lane2) were included.  Bands 

corresponding to Gα11 at ~37 kDa in lane 1 and lane 2, but not in lane 3 confirmed that no 

endogenous Gαq/Gα11 are expressed in EF88 cells and that the transfection of cells was 

effective.  This immunoblot also further confirms the reactivity of the RGS-insensitive Gα 

subunit with the antiserum CQ. 

Thus, the EF88 cells used in this study do not express endogenous Gαq/Gα11 and, when 

introduced transiently, both the Gα11 and the Gα11
G188S proteins were equally expressed by 

these cells.  The effect of the G188S mutation in Gα11 on the activity of downstream 

signalling could now be investigated.  Expression of RGS4 with GFP2 fused to the C 

terminal, allowed the identification of positively transfected fibroblasts.  Following co-

transfection of the α1b-adrenoceptor-Gα11 fusion protein and RGS4-GFP2, there was a 

decrease in the maximal agonist-mediated elevation of [Ca2+]i compared to expression of 

the α1b-adrenoceptor-Gα11 fusion protein alone (Figure 6.10).  The α1b-adrenoceptor-

Gα11
G188S fusion protein was transfected as before and compared to EF88 cells co-

transfected with the α1b-adrenoceptor-Gα11
G188S fusion protein (Figure 6.11).  Surprisingly, 

expression of the α1b-adrenoceptor-Gα11
G188S fusion protein almost eliminated the agonist-

mediated elevation of [Ca2+]i.  Co-expression of RGS4-GFP2 did not alter the [Ca2+]i. 

mobilisation in these cells. 

The [Ca2+]i  response in EF88 cells transiently transfected with the TRHR-1-Gα11
G188S

 

fusion protein and stimulated with TRH (10 µM) also demonstrated virtually no [Ca2+]i  

mobilisation compared to the agonist activated wild-type TRHR-1-Gα11 fusion protein 

(Figure 6.12).  The reduction in [Ca2+]i  elevation of the G188S mutation in Gα11 is not 

restricted to the action of the α1b-adrenoceptor. 
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(A)  (i)              (ii)            (iii)            (iv) 

 

 

 

 

(B)  (i)                (ii)              (iii)            (iv) 

 

 

 

 

Figure 6.1 The cellular localisation of RGS4-eYFP co-expressed with the αααα1b-

adrenoceptor-Gαααα11 fusion protein or the α1b-adrenoceptor-Gα11
G188S

 fusion protein 

and stimulated with phenylephrine 

HEK293T cells grown on coverslips were transiently co-transfected with (A) RGS4-eYFP 

and the α1b-adrenoceptor-Gα11 and stimulated with 100 µM phenylephrine for 30 minutes 

or  (B)  RGS4-eYFP and α1b-adrenoceptor-Gα11
 G188S

  and stimulated with 100 µM 

phenylephrine for 30 minutes.  Images were generated using an inverted Nikon TE2000-E 

microscope equipped with a 60 x, (NA=1.4), oil-immersion Plan Fluor Apochromat lens 

and a cooled digital Cool Snap-HQ CCD camera. (i) Hoechst 33342 nuclei staining (blue) 

(ii) RGS4-eYFP (green) or (iii) WGA-Alexa Fluor 594 membrane staining (red) (iv) 

merged images.  Results shown are of a single experiment and are representative of three 

individual experiments performed. 
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Figure 6.2 Comparison of percentage RGS4-eYFP fluorescence at the plasma 

membrane when co-expressed with the α1b-adrenoceptor-Gα11 fusion protein or the 

αααα1b-adrenoceptor-Gαααα11
G188S 

fusion protein  

HEK293T cells were transiently transfected to express RGS4-eYFP and co-transfected 

with the α1b-adrenoceptor-Gα11 fusion protein or the α1b-adrenoceptor-Gα11
G188S fusion 

proteins and stimulated with 100 µM phenylephrine for 30 minutes.  The membrane 

fraction of cells co-expressing the fusion proteins was measured for total RGS4-eYFP 

fluorescence (defined as 100%) and compared to cells not stimulated with phenylephrine.  

Data shown are from triplicate determinations (mean ± SEM.) and are representative of 

three experiments performed. 
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(A)  (i)             (ii)           (iii)            (iv) 

 

 

 

(B)  (i)             (ii)           (iii)            (iv) 

 

 

 

 

Figure 6.3 The cellular localisation of RGS4-eYFP co-expressed with the TRHR-1-

Gα11 fusion protein or the TRHR-1-Gα11
G188S

 fusion protein and stimulated with TRH 

HEK293T cells grown on coverslips were transiently co-transfected with (A) RGS4-eYFP 

and the TRHR-1-Gα11 fusion protein and stimulated with 10 µM TRH for 30 minutes  or  

(B) RGS4-eYFP and  the TRHR-1-Gα11
G188S

  fusion protein and stimulated with 10 µM 

TRH 30 minutes.  Images were generated using an inverted Nikon TE2000-E microscope 

equipped with a 60 x, (NA=1.4), oil-immersion Plan Fluor Apochromat lens and a cooled 

digital Cool Snap-HQ CCD camera. (i) Hoechst 33342 nuclei staining (blue) (ii) RGS4-

eYFP (green) or (iii) WGA-Alexa Fluor 594 membrane staining (red) (iv) merged images.  

Results shown are of a single experiment and are representative of three experiments 

performed. 
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Figure 6.4 Comparison of percentage RGS4-eYFP fluorescence at the plasma 

membrane when co-expressed with the TRHR-1-Gα11 fusion protein or the TRHR-1-

Gα11
 G188S

 fusion protein 

HEK293T cells were transiently transfected to express RGS4-eYFP and co-transfected 

with the TRHR-1 -Gα11 fusion protein or the TRHR-1-Gα11
G188S fusion protein and 

stimulated with 10 µM TRH for 30 minutes.  The membrane fraction of cells co-expressing 

the fusion protein was measured for RGS4-eYFP fluorescence (defined as 100%) and 

compared to cells not stimulated with TRH.  Data shown are from triplicate determinations 

(mean ± SEM, very small and therefore cannot be seen.) and are representative of three 

experiments performed. 
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(A) 

 

 

 

 

 

 

(B) 

 

 

 

 

 

Figure 6.5  Binding of [
3
H]prasozin to the α1b-adrenoceptor-Gα11 fusion protein or the 

α1b-adrenoceptor-Gα11
G188S

 fusion protein 

HEK293T cells were transfected to express (A) the α1b-adrenoceptor-Gα11 fusion protein 

or (B) the α1b-adrenoceptor-Gα11
G188S fusion protein.   2 µg of each membrane preparation 

was used to measure the binding (blue) of [3H]prasozin (0-3.4 nM).  Non-specific binding 

(red) was determined in the presence of phentolamine (100 µM).  Data shown are from 

triplicate determinations (mean ± SEM.) and are representative of three individual 

experiments performed. 
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Figure 6.6 Maximally effective concentration of phenylephrine-stimulated 

[
35

S]GTPγγγγS binding to the α1b-adrenoceptor-Gα11 fusion protein or the α1b-

adrenoceptor-Gα11
G188S

 fusion protein  

Membranes expressing 90 fmol of the α1b-adrenoceptor-Gα11 fusion protein (left) or the 

α1b-adrenoceptor-Gα11
G188S

  fusion protein (right) were added to [35S]GTPγS binding assays 

in the absence (filled bars) or presence of a single concentration of phenylephrine (100 

µM) (open bars).  Prior to scintillation counting samples were subsequently 

immunoprecipitated with an anti-Gαq/11 antiserum CQ.  Data shown are from triplicate 

determinations (mean ± SEM.) and are representative of three individual experiments 

performed. 

 

 

 

αααα1b-adrenoceptor-Gαααα11 αααα1b-adrenoceptor-Gαααα11
G188S

0

500

1000

1500

2000

2500

3000

[3
5
S

]G
T

P
γγ γγ
S

 B
o

u
n

d
, 

D
P

M



   200 

 

 

 

(A) 

 

 

 

 

 

 

 

 

(B)  

 

 

 

 

 

 

-10 -9 -8 -7 -6 -5 -4 -3 -2
0

500

1000

1500

2000

2500

3000

3500

 log [Phenylephrine] M

[3
5
S

]G
T

P
γγ γγ
S

 B
o

u
n

d
, 

D
P

M

 

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

p
E

C
5
0



   201 

 

Figure 6.7 A range of concentrations of phenylephrine-stimulated [
35

S]GTPγγγγS 

binding to the α1b-adrenoceptor-Gα11 fusion protein or the α1b-adrenoceptor-

Gα11
G188S

 fusion protein
 

(A) Membranes expressing 90 fmol of the α1b-adrenoceptor-Gα11 fusion protein (filled 

symbols) or the α1b-adrenoceptor- Gα11
G188S

  fusion protein (open symbols) were added to 

[35S]GTPγS binding assays in the presence of a range of concentrations of phenylephrine 

(3 nM – 3 mM).  Samples were subsequently immunoprecipitated with an anti-Gαq/11 

antiserum and counted.  Data shown are from triplicate determinations (mean ± SEM.) and 

are representative of three individual experiments performed. 

(B) The potency of phenylephrine to stimulate [35S]GTPγS binding in the α1b-

adrenoceptor-Gα11
G188S

  fusion protein compared to the wild-type fusion protein.  pEC50 of 

phenylephrine for the α1b-adrenoceptor- Gα11 fusion protein (pEC50 6.14 ± 0.09) and the 

α1b-adrenoceptor-Gα11
G188S  (pEC50 6.35 ± 0.06) remains unchanged (p>0.05).  Data shown 

are mean ± SEM of three individual experiments performed. 
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Figure 6.8 Expression and immunological detection of the α1b-adrenoceptor-Gα11 

fusion protein and the α1b-adrenoceptor-Gα11
G188S 

fusion protein  

HEK293T cells were transfected to transiently express the α1b-adrenoceptor-Gα11 fusion 

protein (lane 1) or the α1b-adrenoceptor- Gα11
G188S fusion protein (lane 2).  Cell 

membranes containing 90 fmol of fusion protein, as calculated from [3H]prazosin binding 

studies,  were treated with N-glycosidase F and resolved by SDS-PAGE and then 

immunoblotted with an anti-Gαq/11 antiserum CQ.  Results shown are of a single 

experiment and are representative of three individual experiments performed. 
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Figure 6.9 Expression and immunological detection of Gα11 and Gα11
G188S

  

EF88 cells were transfected, using the Amaxa nucleofection kit, to transiently express 

Gα11 (lane 1) or Gα11
G188S (lane 2). EF88 cells transfected with pcDNA3 were included as 

a control (lane 3).  Cell lysates were resolved by SDS-PAGE and then immunoblotted with 

the anti-Gαq/11 antiserum CQ.  Results shown are of a single experiment and are 

representative of three individual experiments performed. 
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Figure 6.10 RGS4-GFP
2
 reduces phenylephrine-stimulated [Ca

2+
]i  from the α1b-

adrenoceptor-Gα11  fusion protein   

EF88 cells were transfected to express the α1b-adrenoceptor-Gα11 fusion protein (black) or 

the α1b-adrenoceptor-Gα11
 fusion protein and RGS4-GFP (blue).  Cells were loaded with 

Fura-2/AM and [Ca2+]i levels imaged before and after 3 µM phenylephrine was perfused 

over the cells for 60 seconds.  Data represents means ± SEM. from 13 (α1b-adrenoceptor-

Gα11) and 11 (α1b-adrenoceptor-Gα11
 and RGS4-GFP2) cells from 3 individual 

experiments. 
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Figure 6.11 Mutation of glycine 188 of Gα11 prevents phenylephrine-stimulated 

[Ca
2+

]i  from the α1b-adrenoceptor fusion protein 

EF88 cells were nucleofected to express the α1b-adrenoceptor-Gα11
G188S fusion protein 

(green) or the α1b-adrenoceptor-Gα11
G188S fusion protein and RGS4-GFP (red).  Cells were 

loaded with Fura-2/AM and [Ca2+]i levels imaged before and after 3 µM phenylephrine 

was perfused over the cells for 60 seconds.  Data represents means ± SEM. from 17 (α1b-

adrenoceptor-Gα11
G188S) and 8 (α1b-adrenoceptor-Gα11

G188S and RGS4-GFP) cells from 3 

individual experiments. 
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Figure 6.12 Mutation of glycine 188 of Gα11 prevents TRH stimulated [Ca
2+

]i  from 

the TRHR- Gα11 fusion protein 

EF88 cells were transfected to transiently express the TRHR-1-Gα11
 fusion protein (black) 

or the TRHR-1-Gα11
G188S fusion protein (grey).  Cells were loaded with Fura-2/AM and 

[Ca2+]i levels imaged before and after 10 µM TRH was perfused over the cells for 60 

seconds. Green fluorescent protein was co-expressed as a marker of positively transfected 

cells.  Data represents means ± SEM. from 19 (TRHR-1-Gα11
G188S) and 15 (TRHR-1-

Gα11
G188S) cells from 3 individual experiments. 
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Figure 6.13 Structure of Gαi1-RGS4 complex and modelling of the glycine to serine 

mutation in Gαi1 

(A) The ribbon structure of Gαi1-RGS4.  Gα is shown in green, and RGS4 is shown in 

blue.  The position of Gαi1
G183 (corresponds to Gα11

G188) is indicated by the space filled 

atoms. (B) The Connolly diagram of the switch region I of wild-type Gαi1-RGS4 complex.  

Residues in Gαi1 (glycine 183, theronine 182) and RGS4 (glutamic acid 83) are indicated.  

(C) Switch region I with Gαi1
G183S substitution.  In this area, the hydroxyl group of serine is 

less than 1 Å from the backbone of the carbonyl of the glutamic acid 83 of RGS4 (taken 

from DiBello et al., 1998). 
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6.3 Discussion 

The specific functions of endogenous RGS proteins have, in the past, been poorly defined.  

However, a single point mutation in Gα subunits, has been suggested to render the mutant 

Gα protein insensitive to RGS proteins, without a change in GDP release, GTPγS binding 

or intrinsic GTP hydrolysis (Berman et al., 2004).  The structure of RGS4 complexed with 

Gαi1, revealed the residue producing RGS-insensitivity (G183S in Gαi1) indicated steric and 

electrostatic interactions between this residue and RGS4 (Figure 6.13) (Tesmer et al., 

1997;DiBello et al., 1998).  This mutation was transferred into Gα11 and investigated in the 

present study.  Results from RGS-insensitive and –sensitive Gα11 subunits fused to GPCRs 

demonstrated that this mutation in Gα11 must also affect other components of signal 

transduction. 

Unlike the constitutively active Gα subunit (Gαi1
Q204L, Chapter 3 Section 3.2.4), the effects 

of RGS-insensitive mutations are still under control of receptors to enhance the overall 

efficacy of the G protein cycle in a more physiological pattern. The physiological roles of 

some RGS proteins (including RGS1, RGS2, RGS4 and RGS9) have been investigated 

using RGS knockouts.  For example, the engineering of Rgs2-/- mutant mice allowed the 

endogenous role of RGS2 in developmental, behavioural and physiological tests to be 

explored.  Symptoms recorded included only subtle behavioural and immunological 

differences, although subsequently, these mutant mice were found to be severely 

hypertensive (Heximer et al., 2003).  The RGS4 knockout was also initially reported to 

have only subtle differences.  Mutant mice displayed lower weight and poorer sensory 

motor coordination.  Surprisingly, more serious defects were never displayed. There was 

no alteration in neuronal differentiation or opioid signalling as mutant mice had normal 

tolerance to pain compared to wild-type (Grillet et al., 2005).  Perhaps future studies 

should compare these knockout mice with knockdown animal models. Compensation 

during development may take place in knockout animals and these future experiments may 

reveal differences so far undiscovered.   

Perhaps standard knockout or knockdown strategies targeted towards a single RGS would 

also underestimate the overall function of RGS proteins. The use of the RGS-insensitive 

Gα subunits could therefore determine the full contribution of RGS proteins mediated by a 

particular Gα subunit.  Most of what is known about endogenous RGS proteins has been 

learned through the use of RGS-insensitive mutants of Gαi/o (Chen and Lambert, 

2000;Jeong and Ikeda, 2000).  In this way, endogenous RGS proteins have been shown to 
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have a negative effect on signalling and show that the GAP activity of RGS proteins 

provides a control that regulates potency and maximal response of agonist-activated 

signalling.  Few studies have applied this strategy to Gαq/11-mediated signalling, as the 

GTPase activity of Gαq/11 proteins can be accelerated not only by RGS proteins but also by 

the effector molecule PLCβ.  RGS proteins could negatively regulate Gαq/11 signals by 

serving as effector antagonists, competing with PLCβ for binding to active G-proteins 

(Hepler et al., 1997).  Thus, it is not clear to what extent RGS proteins are essential for 

terminating transient Gαq/11-mediated signals and it is important to consider the possibility 

that the RGS-insensitive mutation introduced to Gαq/11 may have caused an altered kinetic 

response of PLCβ. 

In the present work, the α1b-adrenoceptor-Gα11 fusion protein was used as a starting point 

to explore the effects of the presumed RGS-insensitive mutation on Gα11 on cell signalling 

in response to agonist (Stevens et al., 2001;Fu et al., 2004).  It has previously been 

demonstrated that the α1b-adrenoreceptor-Gα11 fusion protein is able to bind [35S]GTPγS in 

response to phenylephrine (Carrillo et al., 2002). Mutations frequently alter the expression 

levels of a polypeptide, and therefore the use of receptor-G protein fusion constructs 

allowed the expression levels of not only the receptor but also of the Gα subunit to be 

determined.  Expression of each fusion construct was determined by [3H]prasozin assays to 

allow the same amount of each construct to be added to [35S]GTPγS binding studies.  Both 

fusion proteins bound the [3H]prazosin with the same high-affinity.   

To isolate and enrich the [35S]GTPγS-bound 
α1b-adrenoreceptor-Gα11 fusion proteins, after 

incubating [35S]GTPγS with the membrane fraction of transfected cells, Gα11 in the 

reactions was solubilised by detergents and immunoprecipitated using an anti-Gαq/11 

antiserum, CQ and counting the radioactivity.  In concert with [35S]GTPγS binding studies, 

membrane preparations were also separated by SDS-PAGE and immunoblotted with the 

anti-Gαq/11 antiserum to confirm that equivalent number of expressed receptor-G-protein 

fusion proteins were present in the assay, and also, despite the G188S mutation, that the anti-

Gαq/11 antiserum was equally effective in identifying each fusion protein  

It was therefore of considerable interest to note that the α1b-adrenoceptor-Gα11
G188S fusion 

protein displayed reduced ability to bind to [35S]GTPγS in response to the α1-adrenoceptor 

agonist, phenylephrine.  GTPγS is a poorly-hydrolysed analogue of GTP, and therefore any 

alteration in [35S]GTPγS binding is independent of GAP activity of RGS proteins on the 

Gα subunit.  The RGS-insensitive mutant in this assay was anticipated to have no effect on 
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[35S]GTPγS binding compared to the wild-type fusion protein.  It therefore appears that the 
G188S mutation in Gα11 reduces the ability of [35S]GTPγS to bind to Gα11.  However, some 

previous biochemical studies have suggested that the equivalent RGS-insensitive mutation 

preserves the kinetics of GTPγS binding in Gαo and Gαi (Lan et al., 1998).  The structural 

data for GTPγS binding to Gα11 is not available but differences in GTPγS binding between 

Gαq and Gαi/o may be understandable due to the differences in their primary structure.  

Therefore, it is reasonable to conclude that the G188S mutation in Gα11 could reduce the 

ability of [35S]GTPγS to bind to Gα11.  

Boutet-Robinet et al., (Boutet-Robinet et al., 2003) investigated the role of endogenous 

RGS proteins on dopaminergic D2S receptor signalling in Chinese hamster ovary cells 

using a RGS- and P.tox-insenstive Gαo protein.  Dopamine-mediated [35S]GTPγS binding 

in these cells was attenuated by more that 60% compared to cells co-expressing the D2S 

receptor and the wild-type P.tox-insensitive Gαo protein.  It was reasoned that if Lan et al., 

(Lan et al., 1998) were correct in reporting that the RGS-insensitive mutation does not 

modify GTP binding characteristics of the Gα subunit, the observed decrease in coupling 

was likely due to RGS proteins increasing the pool of Gαo proteins available for this 

activation.  As in the present study, the use of a fusion protein between the GPCR and the 

G protein α subunit would give a 1:1 stoichiometry of the GPCR to the Gα subunit.  

Experiments using D2S receptor fused in-frame to the N-terminal of either Gαo or Gαo
G184S 

would validate the interpretation of these results. 

More recently, Shi et al., (Shi et al., 2006) investigated the effects of over-expression of 

RGS-insensitive Gαq on 5HT2A receptor signalling in transgenic rats.  GTPγS-stimulated 

PLC activity was higher in rats over-expressing wild-type Gαq compared to Gαq
G188S.  

Importantly, these researchers also speculated that the point mutation on Gαq (
G188S) might 

reduce the ability of GTPγS to bind and activate the PLC.  However, it was also suggested 

that RGS proteins might favour G protein cycling by allowing the activation and 

deactivation of the G protein without receptor dissociation.  Therefore, the absence of RGS 

binding in these transgenic rats may lead to a decrease in G protein signalling and 

ultimately a decrease in receptor mediated GTPγS loading (Ross and Wilkie, 2000).  

Downstream signal transduction was also investigated in the present study to demonstrate 

the effect of the predicted RGS-insensitive Gα11 subunit on agonist-mediated elevated 

[Ca2+]i.  The co-expression of RGS4 with the α1b-adrenoceptor-Gα11 fusion protein in EF88 

cells reduced agonist-stimulated [Ca2+]i.  Absence of RGS activity on Gα11
G188S was 
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hypothesised to have a positive effect on Gα subunit activation and increase agonist-

mediated [Ca2+]i.  However, compared to the wild-type fusion protein, phenylephrine-

stimulated [Ca2+]i  was diminished in EF88 cells expressing the α1b-adrenoceptor-Gα11
G188S 

fusion protein.  A similar result was observed in EF88 cells expressing the TRHR-1R-

Gα11
G188S fusion protein, indicating a genuine effect of Gα11

G188S to abolish agonist-

mediated [Ca2+]i signalling.  

In EF88 cells the agonist-mediated elevation of [Ca2+]i is a measure of Gβγ release and 

function (Stevens et al., 2001).  Co-expression of α-transducin, which is an effective Gβγ 

sequestering agent, resulted in blocking of the agonist activated elevation of [Ca2+]i (Liu et 

al., 2002).  It could therefore be speculated that Gα11
G188S has a reduced ability to release 

Gβγ.  Expression of a Gα mutant with a deficiency in Gβγ release would result in a 

construct unable to elevation [Ca2+]i in EF88 cells.  Indeed, the reduced binding of 

[35S]GTPγS to Gα11
G188S in the present study could also be due to the reduced ability of the 

mutated Gα subunit to release Gβγ.  If Gα11
G188S was less able to release the Gβγ subunit, 

then binding of GTPγS would also subsequently be reduced. 

Mutant forms of Gα11 have previously been demonstrated to poorly elevate [Ca2+]i in EF88 

cells (Liu et al., 2002). Mutations of the corresponding residues in Gαq had already been 

inferred to lack the capacity to bind Gβγ effectively (Evanko et al., 2000).  Lui et al., 

therefore used co-immunoprecipitation studies, and clearly showed that the α1b-

adrenoceptor fused to the wild-type Gα11 subunit associated with co-expressed β1, but only 

small amounts of β1 were present along with the mutant Gα11 containing-fusion proteins. It 

was reasoned that this alteration was a reflection of the reduced effectiveness of Gβγ 

binding to the mutant Gα11 (Liu et al., 2002).  Fusion proteins containing a mutation in the 

α1b-adrenoceptor, which generated constitutive activity of the receptor, with reduced ability 

to bind [35S]GTPγS have also been described (Carrillo et al., 2002).  This mutant was 

reasoned to be unable to adopt the conformational change required to dissociate the G 

protein subunits.  It now therefore seems essential to conduct co-immunoprecipitation 

studies using the α1b-adrenoceptor-Gα11
G188S to quantify the amount of co-expressed β1 

associated with the mutant Gα subunit.  The results of this study would elucidate if indeed 

Gα11
G188S had a reduced ability to bind Gβγ or more likely, infer an inability of the mutant 

to dissociate Gβγ. 

Alternatively, the observed reduction of agonist-stimulated [Ca2+]i following expression of 

the adrenoceptor-Gα11
G188S fusion protein or the TRHR-1R-Gα11

G188S fusion protein is 
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perhaps due to an decreased availability of free Gβγ.  If RGS proteins and Gβγ cannot bind 

to the Gα subunit at the same time, then the RGS-insensitive mutation would presumably 

lead to less free Gβγ to elevate [Ca2+]i .  Co-expression of the Gβγ complex with the 

mutant Gα11 containing-fusion protein would perhaps give sufficient Gβγ to allow [Ca2+]i  

mobilisation in EF88 cells.  No increase in agonist-stimulated [Ca2+]i would suggest that 

Gα11
G188S has good interactions with endogenous Gβγ and that the mutant fusion protein 

has lost the ability to dissociate the Gβγ complex.  However, a resultant increase in 

agonist-stimulated [Ca2+]i would suggest that a reduction in available Gβγ is responsible 

for the observed reduction in agonist-stimulated [Ca2+]i. 

PLCβ not only mediates agonist-stimulated [Ca2+]i but is also a GAP for the Gαq subfamily 

of Gα subunits.  RGS4 can act as a receptor shield for Gαq (Hepler et al., 1997) and 

binding of RGS4 to Gα11 could interfere with the GAP activities of PLCβ, and have a 

positive effect on Gα protein activation.  If indeed RGS4 is endogenously expressed in 

EF88 cells, the transient expression of the α1b-adrenoceptor-Gα11
G188S fusion protein might 

have no interaction with RGS4 but allow PLCβ to interact with the fusion protein without 

restraint.  The Gα subunit would be subjected to maximal GAP activity from PLCβ and 

abolish second messenger signalling.  Indeed, biochemical characterisation demonstrated 

that GαqG188S responds to the GAP activity of PLCβ, but does not respond to the GAP 

activity of RGS4 (Clark and Lambert, 2006).   

Multifunctional protein complexes comprising of receptor, G protein and RGS protein 

have also been described (Ross and Wilkie, 2000).  Direct and specific binding of RGS 

proteins to Gα subunits and other components of the cellular signalling complex can 

contribute to signal transduction.  Preliminary research indicates that RGS proteins can act 

as scaffolds to assemble signalling complexes.  Perhaps the absence of RGS binding to the 

RGS-insensitive Gα subunits could abolish the scaffolding properties of RGS proteins and 

reduce signalling.  A specific interaction between RGS2 and the α1b-adrenoceptor has been 

shown to include the scaffold, spinophillin (Wang et al., 2005).  It is perhaps such an 

interaction which is prevented in RGS-insensitive Gα mutants and abolishes the rise in 

[Ca2+]i. 

The PDZ domain of RGS12 has been found to selectively bind the chemokine receptor 

CXCR2 (Snow et al., 1998b).  A number of other RGS proteins contain this PDZ domain 

and are likely to show binding selectivity to other relevant receptors and it could be 

presumed that RGS proteins with multiple domains would provide the best scaffolding 
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properties.  It has also been suggested that RGS proteins form stable complexes with 

inactive G proteins to form quaternary complex (Benians et al., 2005).  Although many 

RGS proteins show affinity for Gα11, the precise RGS proteins in EF88 cells remains 

unknown.  Total RNA prepared from cells was subject to reverse transcription-PCR using 

RGS specific primers that were tested by amplifying RGS cDNA plasmids as a positive 

control (data not shown).  Despite the presence of mRNA for the positive control 

(glyceraldehyde-3-phosphate dehydrogenase), available primers specific for RGS3, RGS4 

and RGS7 did not identify endogenous expression of any of these RGS proteins in EF88 

cells.  Despite these results, it is possible to assume that these RGS proteins, and others, are 

expressed in EF88 cells but at undetectable levels.   

The localisation of RGS4-eYFP in cells expressing the RGS-insensitive fusion proteins 

suggest that the mutation in Gα11, as previously predicted prevents RGS4 from binding to 

the Gα subunit and subsequently prevents RGS4 from translocating from the cytoplasm to 

the plasma membrane.  In this study, HEK293T cells are used because EF88 cells are 

difficult to transfect and yield minimal protein for determining the percentage fluorescence 

of RGS4-eYFP in the plasma membrane.  As mentioned previously, the RGS-insensitive 

Gα subunit mutations are under the control of receptors to enhance the overall efficacy of 

the G protein cycle.  Agonist-stimulation, therefore, promoted RGS4 to bind to the active 

conformation of the G protein at the plasma membrane.  Presence of the RGS-insensitive 

Gα subunit perhaps did not allow RGS4 to bind, reducing the presence of RGS4 at the 

plasma membrane.  Biochemical studies have shown that a Gαi1-RGS-insensitive mutant 

does not bind to RGS4 (Lan et al., 1998). The RGS-insensitive mutation is predicted to be 

in the switch region I of Gαi1 and provide a substantial contribution to the buried surface 

area between the Gα subuit and RGS4 (DiBello et al., 1998).  Introduction of the 

hydromethyl side chain of serine would sterically hinder the formation of a tight complex 

between Gαi1 and RGS4 (Lan et al., 1998) suggesting that RGS4 would not be translocated 

to the plasma membrane in the presence of agonist-activated RGS-insensitive Gαi1.   

The use of RGS-insensitive Gα subunits provide novel insights into subtype-selective 

signalling by Gα subunits.  Other approaches, such as expression of constitutively active 

Gα subunits, will not reveal key functions mediated by Gβγ release. In addition, any non-

GAP effects must consequently involve the G188S mutation site.  The results from this study 

suggest that introduction of serine at position 188 in Gα11 may well disrupt G protein 

activation, Gβγ binding or release, effector antagonism and/or RGS scaffolding properties.  

The inability to identify which RGS proteins are responsible for these differences is a 
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limitation in this present study but RGS-insensitive mutants will prove useful tools in 

future investigations into the role of endogenous RGS proteins.
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7 Final Discussion 

RGS proteins modulate G protein mediated signalling pathways by acting as GAPs for Gαi, 

Gαq, and Gα12 heterotrimeric G proteins.  Often comprising of a diverse combination of 

signalling domains, RGS proteins are regulated by a variety of assorted mechanisms. 

Discovering how specific RGS proteins modulate signal transduction remains vitally 

important, as pathological conditions have been linked to abnormal RGS expression. 

Pharmaceutical intervention of RGS activity may therefore impact the treatment of these 

conditions (Mittmann et al., 2002).  The precise role of RGS4, one of the most extensively 

studied RGS proteins, is still uncertain in the face of complex biochemical activity and 

overlapping patterns of expression.   

In this study, the first objective was to investigate the subcellular localisation of RGS4. 

This was done using several techniques including microscopy, immunoblotting, and 

fluorescence analysis.  Each technique demonstrated that transiently expressed RGS4 is 

located within the cytosol of HEK293T cells.  Co-expression of Gαi1, or the α2A-

adrenoceptor, or agonist-activated α2A-adrenoceptor, clearly translocated transiently 

expressed RGS4 from the cytosol to the plasma membrane.  Previous studies investigating 

the cellular localisation of RGS4 proteins also demonstrated that RGS4 could be recruited 

to the plasma membrane by the incorporation of a specific Gαi- or Gαq-associated 

signalling partner (Druey et al., 1998;Roy et al., 2003).  Unlike other RGS proteins such as 

RGS9-2, which has been reported to be largely membrane associated (Song et al., 2006) 

and RGS2 which has been reported to localise in the nucleus (Heximer et al., 2001), the 

majority of transfected RGS4 was found in the cytoplasm of HEK293T cells.  

The transfection of RGS proteins is typically conducted in order to overcome the low 

natural abundance of endogenous RGS proteins.  However, substantial differences between 

endogenous RGS4 and heterologously over-expressed RGS4 have been suggested 

(Krumins et al., 2004).  An alternative start site for synthesis of RGS4 from methionine 19 

has previously been predicted (Davydov and Varshavsky, 2000).  RGS4 lacking the first 18 

amino acids is typically produced by in vitro translation and in contrast, the longer full 

length form of RGS4 is expressed endogenously in tissue or cultured cells.  As previously 

mentioned, the N-terminal of RGS4 is particularly important to the subcellular localisation 

of RGS4.  Therefore, it is perhaps not surprising that Krumins et al., found endogenous full 

length RGS4 predominantly in the membrane fraction of cells. Endogenous RGS4 at the 

plasma membrane would seem reasonable to preclude the necessity for translocation in 
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physiological systems.  The physiological relevance of the differences between the 

transcription and localisation of endogenous and transfected RGS proteins therefore needs 

to be carefully considered. 

In this study, it was noticed that a relatively small portion of RGS4-eYFP was membrane 

associated at any given time.  This most likely reflects the transient over-expression of 

RGS4.  Over-expression of RGS4 could flood the cell’s cytoplasm and subsequently 

transfected RGS4 is pushed to the plasma membrane. Alternatively, the RGS4 could 

perhaps be recruited to the plasma membrane by the endogenous pool of Gα subunits in 

HEK293T cells.  It was also noticed that on co-expression of Gαi, or indeed any of the 

other signalling proteins that were co-expressed, a proportion of RGS4 is always left 

residing in the cytosol.  Again, this is most likely due to the transient over-expression of 

RGS4 and possibly the saturation of RGS4 binding sites at the plasma membrane.     The 

amount of RGS4 cDNA transfected was initially optimised but perhaps re-visiting this area 

and modulating the level of expression of RGS4 and the relative co-expression levels of 

Gα subunits and GPCRs would now allow this concept to be further explored.  When Roy 

et al., (2003) decreased the amount of receptor cDNA co-transfected with RGS-GFP to a 

level at which RGS-GFP did not significantly localise to the plasma membrane, addition of 

agonist also failed to recruit RGS4-GFP to the plasma membrane (Roy et al., 2003).  This 

reinforces that a careful approach is needed to work out the precise transfection ratio of 

RGS and signalling proteins. 

RGS proteins have been reported to physically interact with the transition state 

conformation of Gα subunits (Tesmer et al., 1997).  Localisation of RGS4 by a protein 

partner has therefore been most clearly demonstrated by studies transiently expressing a 

constitutively active GTPase-deficient Gα subunit.  Constitutively active Gα subunits are 

locked in an active state and are transition state models of Gα subunits.  RGS proteins are 

therefore predicted to bind to these proteins but are unable to modulate intrinsic GTPase 

activity.  Over-expression of the constitutively active GTPase-deficient Gαi2 (Gαi2
Q205L) 

showed the recruitment of the majority of the cytosolic RGS4 to the membrane surface 

(Druey et al., 1998).  Data from the current study, using the constitutively active Gαi1 

(Gαi1
Q204L), was consistent with this hypothesis and indicated that RGS4 can be cytosolic 

and then be recruited to the plasma membrane in the presence of a constitutively active 

Gαi1 subunit.  RGS proteins must still bind to the constitutively active Gα subunit, moving 

between different signalling complexes on the plasma membrane depending on the 

availability of interaction sites.  RGS8 translocates to the plasma membrane from the 
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nucleus on co-expression of Gαo. Co-expression with a constitutively active Gαo also 

resulted in the translocation of RGS8 protein to the plasma membrane (Masuho et al., 

2004). Thus, the expression of a GTPase deficient Gα subunit still recruits RGS proteins 

and furthermore, even the over-expression of a Gα subunit in the inactive state can 

translocate transfected RGS4 to the plasma membrane.  Gα subunits in the inactive state 

are perhaps momentarily activated, in constant transition between inactive and active 

conformation, thus in the active state able to irreversibly bind RGS4 and cause its 

translocation to the plasma membrane.   

The confirmation of an N-terminal GOF mutant in a mammalian RGS by Hill et al., 

(personal communication) was carried out using an in vitro high-affinity GTPase assay.  

RGS4S30C enhanced the α2A-adrenoceptor-activated increase in high-affinity GTPase 

activity of Gαo1 despite equal expression and comparable subcellular localisation compared 

to wild type RGS4.  Serine30 is conserved in many other members of the B/R4 family of 

RGS proteins and the conversion of this residue to cysteine in RGS16 also demonstrated a 

significant increase in high-affinity GTPase activity of Gαo1.  The conserved serine30 

residue in the B/R4 subfamily of RGS proteins must be important for the GAP activity of 

these proteins. The N-terminus, and in particular, residue 30 may help correctly position 

RGS4 at the receptor where it can optimally inactivate the Gα subunit via the GAP activity 

of the RGS domain.  Mutation of this residue may serve to change the orientation of RGS4 

and subsequently the GAP activity of the RGS domain.  

The observed simultaneous significant decrease in potency of adrenaline to increase α2A-

adrenoceptor-activated high-affinity GTPase activity of Gαo1 in the presence of RGS4 or 

RGS16 demonstrated that these RGS proteins must interact with the α2A-adrenoceptor.  If 

the RGS proteins were to interact only with the G proteins the agonist binding site on the 

receptor would remain unchanged and no change would be expected in the potency of the 

agonist.  In accordance with other published results (Ward and Milligan, 1999;Cavalli et 

al., 2000), the potency of adrenaline to stimulate the α2A-adrenoceptor high-affinity 

GTPase activity of Gαo1 on addition of purified RGS16 was lower than on the addition of 

RGS4 .  This perhaps provides yet further evidence for the selective interactions between 

RGS proteins and GPCRs.  RGS4 and RGS16 must interact and alter the conformation of 

the α2A-adrenoceptor in a different way.  These closely related RGS proteins do not 

function equally and the specificity of the interaction is perhaps fundamental to the GAP 

activity of the RGS protein and the ability to control biological functions. 
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The GOF enhancing GAP activity of RGS4S30C and RGS16S30C are selective for Gαo1 over 

Gαi1.  The addition of purified RGS4 or RGS16 did, however, decrease the potency for 

adrenaline to stimulate high-affinity GTPase activity of Gαi1, suggesting the validity of the 

assay and the ability of the RGS proteins to perform.  However, the potency for adrenaline 

to stimulate high-affinity GTPase activity of Gαi1 was not further decreased by RGS4S30C 

or RGS16S30C.  It has previously been established that the B/R4 subfamily of RGS proteins 

show selectivity for Gαo1 over Gαi1 (Cavalli et al., 2000;Riddle et al., 2005).  It is probable 

that both RGS4 and RGS16 interact with the α2A-adrenoceptor but are not able to act as 

efficient GAPs for Gαi1.   

The subcellular localisation of RGS4S30C-eYFP in the presence of exogenous Gαi1, the α2A-

adrenoceptor or agonist-activated α2A-adrenoceptor was also investigated.  Despite similar 

expression levels when compared to wild type RGS4-eYFP, as monitored by 

immunological detection with an anti-GFP antibody, no difference in subcellular 

localisation was detected in this study.  The knowledge of the selectivity of RGSS30C to 

enhance the GAP activity of Gαo1, indicates that an important next step would be to study 

the subcellular localisation of RGS4S30C-eYFP in the presence of exogenous Gαo1. 

The subsequent mutation of residue 30 of RGS4 to a range of other amino acids revealed 

that RGS4S30K and RGS4S30F were the most active and RGS4S30P was the least active of the 

mutants that were studied.  No consensus side chain was identified that conferred a specific 

enhancement or loss of GTPase activity.  Both RGS5 and RGS18 contain a proline at 

residue 30.  Preliminary results suggest that RGS5P30S is also GOF (Hill et al., personal 

communication) and it would now be of great interest to investigate the GAP activity of 

RGS18P30S.  Clearly, it is also now important to mutate residue 30 of RGS4 to threonine 

and tyrosine to identify if the hydroxyl side chain at position 30 in RGS4 is crucial to 

maintain wild type GAP activity.   

The N-terminal of RGS4 is particularly important for the membrane localisation of the 

protein.  Using a peptide corresponding to the first 33 residues of RGS4 in yeast provided 

direct evidence for the localisation of RGS4 to a signalling complex to be determined 

solely by the N-terminal domain (Bernstein et al., 2000).  Site-directed mutagenesis of 

hydrophobic and basic residues within the N-terminal domain of RGS4 also revealed that 

the GAP activity of RGS4 is strongly correlated with the ability of the protein to bind to 

anionic liposomes and the tendency of an N-terminal peptide to adopt an α-helical 

conformation (Bernstein et al., 2000). In addition, extensive mutational analysis of RGS16 
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has demonstrated that the N-terminal of RGS16 plays a critical role in membrane 

association and also may be important for the biological function of RGS16 (Chen et al., 

1999). Secondary structure analysis suggested that there may be two putative α-helices in 

the N-terminal of RGS16.  The first α-helix (amino acids 1-6) was not relevant for 

biological activity, however, the rest of the N-terminus (amino acids 7-32), which consists 

of predominantly the second putative α-helix from amino acids 12-30, has been defined as 

the core membrane-association domain. This membrane-targeting domain for RGS16, is 

likely shared by RGS4 and circular dichroism spectroscopy data directly demonstrated that 

amino acid substitutions within residues 12-30 profoundly affect α-helical structure 

(Bernstein et al., 2000).  However, in the current study it was demonstrated that the 

subcellular localisation of RGS4S30X-eYFP was not different to wild type RGS4.  This 

suggests that residue 30 in RGS4, although important for modulating the GAP activity of 

the protein, is not important for targeting RGS4 to the plasma membrane. Perhaps 

gathering circular dichroism spectroscopy data for RGS4S30X would reveal changes in 

secondary structure for different mutants and confirm that mutation of residue 30 of RGS4 

alters the helical structure of the protein serving to alter the orientation of the protein and 

subsequently the GAP activity of the RGS domain.   

It has previously been suggested that the receptor and not the G protein dictate the function 

of RGS proteins.  Indeed, the translocation of RGS4 and RGS4S30X to the plasma 

membrane in the presence of the α2A-adrenoceptor would support this suggestion. The 

significant reduction in potency of adrenaline of RGS4 and RGS16 to enhance the high-

affinity GTPase activity of the activated α2A-adrenoceptor-Gαo1 would also agree with this 

hypothesis. It could be envisaged in live cells, endogenous RGS proteins would not be free 

to find any G proteins, but instead the receptors would orientate the RGS protein at the 

plasma membrane and dictate specificity.  However, the current findings suggest that 

RGS4 has selectivity for Gαo1 over Gαi1 on activation of the same receptor, the α2A-

adrenoceptor, perhaps against suggesting that the α2A-adrenoceptor orientates RGS4 in a 

more advantageous position to interact with Gαo1.   

Interaction of RGS proteins with receptors may occur within lipid rafts or caveolae, 

specialised microdomains that may well modulate signalling events.  Indeed, the pre-

treatment of cells with the detergent methyl-β-cyclodextrin to deplete the membrane of 

cholesterol and disrupt such lipid rafts, weakens the interactions with RGS4 (Ishii et al., 

2005).  Compartmentalisation of several signal transduction pathways and proteins occurs 

in lipid rafts (Shaul and Anderson, 1998;Simons and Toomre, 2000;Brown and London, 
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2000) and disruption of these lipid rafts can prevent signalling in many of these pathways 

(Miura et al., 2001).  RGS9 in a complex with Gβ5 translocates to lipid rafts after 

activation of photoreceptor outer segments by illumination (Nair et al., 2002).  However, 

the lipid raft localisation was not critical for the GAP activity of RGS16 but may be 

necessary for palmitoylation of an internal residue (Hiol et al., 2003).  To investigate the 

potential interaction of RGS4 with the α2A-adrenoceptor, specific residues involved in the 

interaction would first have to become apparent, but would allow further investigation into 

the involvement of lipid rafts in the regulation of RGS proteins 

From functional data (Srinivasa et al., 1998) and structural data (Tesmer et al., 1997) the 

principle function of asparagine128 of RGS4 is to bind and stabilise switch region I and II 

of Gα subunits and to contribute to the overall stability of the RGS-Gα transition state 

complex. Evidence showed that RGS4 stimulates GTP hydrolysis primarily, if not 

exclusively by binding and stabilising the transition state conformation of Gα subunits. 

Correspondingly, in the present study, RGS4N128A had ablated GAP activity towards Gα11. 

RGS4N88S also had ablated GAP activity towards Gα11, demonstrating that no single residue 

seemed to exclusively catalyse GTP hydrolysis.  The double mutant (RGS4N88S,N128A) also 

had ablated GAP activity towards Gα11 and any additive effect of GAP ablation was 

concealed due to the complete ablation of GAP activity with each single mutation.  No 

further inhibition of [Ca2+]i mobilisation with the disruption of two binding interactions 

along the RGS4-Gα11 binding interface was possible.  The complete ablation of GAP 

activity suggests that each single mutation was sufficient at causing a global conformation 

change and ablating GAP activity of the protein.  The lack of modulation of [Ca2+]i 

signalling by these GAP impaired RGS4 mutants suggests that the catalysis of GTPase 

activity is the dominant mechanism by which RGS4 regulates Ca2+ signalling. 

Single cells positively transfected with RGS4 were selected for use in the [Ca2+]i 

mobilisation assays by using RGS4-eYFP fusion proteins.  Only fluorescent cells and thus 

those cells expressing RGS4 were selected.  The brightest fluorescent cells were selected 

for analysis but in this way over-expression of RGS protein may have obscured small 

differences in RGS GAP activity amongst the RGS4 mutants.  Perhaps employing a 

different strategy, selecting cells with the least fluorescence in a field of view and therefore 

a lower expression of RGS4, would reveal differences in the GAP activity of these 

mutants. It is also noteworthy that the GAP activity of the fluorescently-tagged RGS4 and 

untagged RGS4 were previously shown to be identical.  This is consistent with other 
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studies in which RGS4 has been similarly tagged without consequence (Berman et al., 

1996a;Chen et al., 1997) 

It has previously been demonstrated that RGS4N128A caused severe defects in binding to 

Gαi2 (Srinivasa et al., 1998). To this end, the subcellular localisation of these GAP 

defected mutants would also have been worthy of investigation.  Asparagine 128 is the 

only RGS4 residue that projects into the active site of Gαi1 and together with its location at 

the binding interface and interaction with three Gαi1 residues at the active site 

(glutamine204, glutamate 207 and lysine180) further underlines the importance of 

asparagine128 to the GAP activity of RGS4.  Co-immunoprecipitation studies may provide 

further evidence that these GAP defective mutants have reduced binding to the transition 

state of Gαi1.  In addition, co-immunoprecipitation studies could elucidate the binding of 

these GAP defective mutants to Gα11. 

The third and final objective of this study was to investigate a potential RGS-insensitive 

Gα11 mutant.  A point mutation originally identified in yeast, has been shown to be RGS-

insensitive in Gαq, Gαi1 and Gαo.  This mutation was introduced to Gα11 (Gα11
G188S) and 

receptor- Gα11
G188S fusion proteins failed to translocate RGS4 to the plasma membrane.  

Moreover, agonist-activation of the fusion proteins also failed to translocate RGS4 to the 

plasma membrane suggesting that indeed Gα11
G188S cannot bind and subsequently 

translocate RGS4 to the plasma membrane.  However, fusion proteins have been reported 

not to be localised in lipid rafts (Hiol et al., 2003).  As mentioned previously, association 

of RGS4 in lipid rafts might be involved in the physical regulation of the protein (Ishii et 

al., 2005). The inability of the fusion protein to associate with the lipid rafts may therefore 

affect the translocation of RGS4.  Future translocation studies using Gα11
G188S should 

perhaps consider the use of separate receptors and Gα subunits.   

Despite this shortcoming, the present results are consistent with the finding that, RGS-

insensitive Gα subunits do not promote RGS association with the plasma membrane.  

RGS7 belongs to a subfamily of RGS proteins that exist as dimers with the Gβ5 subunit. 

When expressed in HEK293 cells, Gβ5-RGS7 was found to be cytoplasmic and soluble. 

Expression of Gαo promoted a strong redistribution of Gβ5-RGS7 to the plasma 

membrane.  The constitutively active mutant Gαo
R179C, like wild type Gαo, strongly 

recruited Gβ5-RGS7 to plasma membrane, however, RGS-insensitive Gαo
G184S was 

defective in the ability to promote plasma membrane localization of Gβ5-RGS7 (Takida et 

al., 2005).  It has also been demonstrated that RGS-insensitive Gα subunits containing an 
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additional point mutation that conferred constitutive activity to the G proteins did not 

promote RGS4-GFP association with the plasma membrane  (Gαi2
Q205L/G184S, 

Gαq
Q209L/G188S) (Roy et al., 2003).  It has been further implied that RGS4-GFP binds 

directly to G proteins in the plasma membrane and that the recruitment of RGS proteins to 

the plasma membrane is not caused by events that occur after G protein activation. Agents 

that promote events downstream of G protein activation did not alter RGS localization 

(Roy et al., 2003). The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (which mimic 

events down-stream of Gαq), forskolin (which bypasses Gαs to
 directly activate AC), and 

the tyrosine phosphatase inhibitor vanadate failed to promote RGS4 translocation to the 

plasma membrane in HEK293T cells.  Further use of these agents may be informative 

about the signal transduction pathway following Gα11 activation and RGS4 translocation.  

RGS-insensitive mutations have been reported to only have an effect on RGS binding (Lan 

et al., 1998).  In the present study, however, Gα11
G188S had significantly reduced agonist-

stimulated [35S]GTPγS binding compared to wild type Gα11.  A subsequent review of the 

literature uncovered two additional independent reports that the RGS-insensitive mutation 

attenuated [35S]GTPγS binding (Boutet-Robinet et al., 2003;Shi et al., 2006).  Boutenet-

Robinet et al., reasoned that the reduction in [35S]GTPγS binding by the RGS-insensitive 

Gα subunit was caused by RGS proteins increasing the pool of endogenous Gαo proteins 

available for interaction with the activated receptor.  An RGS-insensitive Gα subunit 

would not be able to bind RGS protein and subsequently not be able to increase the pool of 

endogenous Gα subunits and increase G protein signalling. However, this reasoning has 

been contradicted by the present study.  Using an equivalent number of the α1b-

adrenoceptor-Gα11 fusion protein and the α1b-adrenoceptor-Gα11
G188S fusion protein, as 

established by [3H]prasozin binding, made it clear that the endogenous pool of Gα subunits 

in HEK293T cells would be having a the same effect with both the RGS-sensitive and -

insensitive Gα11.  The reduction in [35S]GTPγS binding to the RGS-insensitive Gα subunit 

was therefore not caused by availability of action of endogenous G proteins. 

Shi and co-workers suggested that GTPγS-stimulated PLC activity was lower in rats over-

expressing the Gαq
G188S compared to its wild type counterpart because RGS proteins favour 

G protein cycling (Shi et al., 2006). The absence of RGS proteins may lead to a decrease in 

G protein signalling and a decrease in receptor mediated GTPγS loading (Ross and Wilkie, 

2000). This hypothesis may also be true for the present study but is difficult to prove and 

investigating other possibilities about the properties of Gα11
G188S would be less 

problematic.  
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It has been well established that co-expression of RGS4 reduces agonist-stimulated 

mobilisation of [Ca2+]i (Tovey and Willars, 2004).  In the present study, single-cell imaging 

techniques demonstrated that RGS4 inhibited both the magnitude and rate of the 

immediate, agonist-induced generation of [Ca2+]i.  In EF88 cells expressing the α1b-

adrenoceptor-Gα11
G188S fusion protein or the TRHR-1-Gα11

G188S fusion protein, agonist-

induced generation of [Ca2+]i was ablated.  In EF88 cells the agonist-mediated elevation of 

[Ca2+]i is a measure of Gβγ release and function (Stevens et al., 2001).  The predicted 

RGS-insensitive mutation in Gα11 may therefore also have a deficiency in Gβγ release.  It 

could also be reasoned that the reduced binding of [35S]GTPγS was also due to a reduced 

ability of the mutant Gα subunit to release Gβγ and subsequently bind [35S]GTPγS.  The 

expression of α-transducin to sequester free Gβγ would investigate this new hypothesis. 

The ability of RGS4 to bind to Gα11
G188S is clearly an important future experiment.  Co-

immunoprecipitation studies using the predicted RGS-insensitive and –sensitive Gα11 

subunits would determine if RGS4 interacted with this mutant Gα subunit.  Future studies 

could also transfer the predicted RGS-insensitive mutation into Gαq.  Gαq and Gα11 share 

98% homology but RGS5 and RGS16 can discriminate between the two highly related Gαq 

family subunits (Ladds et al., 2007).   

When the N-terminal of RGS4 targets the protein to particular GPCRs, RGS4 can occupy a 

position that can prevent coupling between Gαq/11 and PLCβ (Zeng et al., 1998). RGS 

proteins could therefore act as negative regulators of Gαq/11 signalling by serving as 

effector antagonists, competing with PLCβ for binding to active G proteins (Hepler et al., 

1997).  Thus, it is not clear to what extent RGS proteins are essential for terminating 

transient Gαq/11-mediated signals and it is important to consider the possibility that the 

RGS-insensitive mutation introduced into Gαq/11 may have caused an altered kinetic 

response of PLCβ.  A recent study used over-expression of constitutively active Gαq 

protein to investigate the functional importance of GTPase activation to mediate the 

inhibitory effect of RGS proteins.  Cells were transiently transfected with either the M3 

muscarinic receptor or Gαq
Q209L

.  Comparing the inhibitory effect of RGS proteins 

demonstrated that RGS5 and RGS16 did not exert any inhibitory effect when they were 

unable to act as a GAP, whereas RGS2 and RGS3 markedly blunted Gαq-mediated 

signalling even in the absence of GAP, suggesting that other mechanisms, such as effector 

antagonism, are sufficient to mediate their inhibitory effect (Anger et al., 2004).  Future 

Ca2+ signalling experiments in EF88 could also use the over-expression of constitutively 
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active Gαq/11.  Any observed differences in kinetics or amplitude of [Ca2+]i could be 

attributed to the effector antagonism properties of endogenous RGS4.    

Alternatively, the observed reduction of agonist-stimulated [Ca2+]i release following 

expression of the α1b-adrenoceptor-Gα11
G188S fusion protein or the TRHR-1-Gα11

G188S 

fusion protein is perhaps due to an decreased availability of free Gβγ.  If RGS proteins and 

Gβγ cannot bind to the Gα subunit at the same time, then the RGS-insensitive mutation 

would presumably lead to less free Gβγ to elevate [Ca2+]i .  Co-expression of the Gβγ 

complex with the mutant Gα11 containing-fusion protein would perhaps give sufficient Gβγ 

to allow [Ca2+]i  mobilisation in EF88 cells.   

The predicted RGS-insensitive mutant has great potential to more fully understand the 

specific functions of endogenous RGS proteins. However, the specific RGS proteins 

endogenously expressed in HEK293T cells and EF88 cells remain unclear, most likely due 

to very low expression.  Others too have also experienced difficulty in detecting 

endogenous RGS proteins.  Immunoblotting of COS, murine neuro-2A neuroblastoma, and 

NG108 neuroblastoma/glioma cells, with a specific anti-RGS4 antiserum failed to identify 

endogenous RGS4.  A PCR-based screen was performed to "semi quantitatively" examine 

the level of RGS4 mRNA in various cell types. Strong signals were obtained for rat PC12M 

and human AtT-20 cells but little or no signal was produced from murine neuro-2A 

neuroblastoma, rat pituitary GH3, rat RBL-2H3, rat C6 glioma, CHO, or NG108 

neuroblastoma/glioma cells (Krumins et al., 2004).  Perhaps future studies carrying out 

RGS RNA interference, the specific knock-down of mRNA, with rat PC12M or human 

AtT-20 cells would allow the role of endogenous RGS proteins to be determined in these 

cells. 

The current study has attempted to further elucidate the function of RGS4 in signal 

transduction.  Future studies will undoubtedly uncover as yet unidentified mechanisms of 

regulation and functions for this complex protein.  For example, the recent discovery of an 

Arabidopsis protein (AtRGS1) containing both a GPCR and a RGS domain within the 

same protein is an exciting breakthrough (McCudden et al., 2005).  Perhaps by having 

conjoined guanine nucleotide exchange factors and GAP capabilities, the AtRGS1 forms a 

precisely controlled signalling complex.  Alternatively, an agonist (or an inverse agonist) 

could regulate the activity of the RGS domain or the membrane spanning N-terminal 

GPCR domain may simply anchor the protein to the membrane.   
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The translocation of RGS4 from the cytoplasm to the plasma membrane will always be of 

particular interest.  Electron microscopy has previously been used to study RGS 

localisation (Druey et al., 1998;Fischer et al., 1999;Hiol et al., 2003) but there have been 

no reports recording the real-time live images of  translocating RGS4.  Efforts to assess 

this are beyond the scope of the current study but new advances in high-resolution electron 

microscopy to visualise the macromolecular arrangements in cells and improved methods 

for rapid freezing to capture transient processes may improve the understanding of RGS4 

translocation.  The ability to dynamically define the 3-D locations of signalling 

components will be central to unravelling the function and regulation of RGS4.  

At the next level of investigation, a capillary electrophoresis assay could be employed to 

further compare the functional activity of RGS mutants.  Capillary electrophoresis using a 

fluorescent, hydrolysable GTP analogue to detect GPCR-stimulated G protein GTPase 

activity in cell membranes expressing the α2A adrenoreceptor-Gαo1 fusion protein has 

recently been described (Jameson et al., 2007). Separation of fluorescent GTP from 

fluorescent GDP by capillary electrophoresis can show the accumulation of product or 

substrate and hence, the relative GTPase activity of the G protein.  Addition of RGS 

mutants would allow the comparison of agonist-stimulated substrate levels and the 

development of a high throughput method of investigating the GAP activity of RGS 

mutants. 

Polymorphisms in RGS4 loci have been linked to schizophrenia in humans (Chowdari et 

al., 2002). Remarkably, RGS4 expression levels are also modulated by cocaine and 

morphine in brain regions known to be involved in drug behaviour (Bishop et al., 2002). It 

will be extremely interesting to determine whether small molecules designed to inhibit 

RGS4 from interacting with the Gα subunit (Jin et al., 2004) will be directly involved in 

regulating drug sensitivity and physiological processes in mammalian tissues.  If RGS 

proteins were unrestrictedly active, they would completely suppress G protein mediated 

cell signalling. Therefore, it is important to understand how the activity of RGS proteins 

are regulated.  RGS4 is considered the prototypical member of the B/R4 subfamily and 

therefore discoveries about candidate regions that could serve as targets for drugs to alter 

RGS function may be transferred to a number of related RGS proteins.  The GOF mutants 

in RGS4 could be used directly to decrease signalling and current small molecule 

inhibitors (Ingi et al., 1998) could be tested to examine their ability to inhibit the enhanced 

RGS activity of these mutants.   
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It will be important in future investigations to determine whether conservation of distinct 

regulatory and functional properties exists in various RGS proteins.  The expression of 

RGS proteins is, in many cases, considerably more restricted than that of most G proteins 

or GPCRs.  RGS proteins therefore represent novel and potentially exciting targets for the 

development of new pharmaceuticals. RGS proteins and the regulation of signal 

transduction will certainly remain an intensely studied area of investigation. 
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9 Additional Material 

The following paper was published as a result of the studies carried out for this thesis. 


