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Abstract

Over the past decade Bayesian methodology has gained in popularity because

of the development of very powerful computational algorithms known as Markov

chain Monte Carlo (MCMC). The idea of MCMC was first introduced by Metropo-

lis et al. (1953) as a simulation method of energy levels of atoms in a crystalline

structure. Later on, Hastings (1970) applied the idea to statistical problems.

Since then, MCMC methods have been used to integrate complex and high di-

mensional functions as well as sample from complex and highly structured real

life models. The main idea is to draw a sample from the distribution of interest

by running a Markov chain for a long time while an accept/reject mechanism is

used to correct the arbitrary proposal mechanism and simulate from the invariant

distribution of interest. Then, the unknown normalising constant, the posterior

expectation or the marginal distribution can be estimated.

Several MCMC techniques have been developed through the years, such as

the Metropolis-Hastings algorithm (Hastings (1970)), the Gibbs sampler (Geman

and Geman (1984), Gelfand and Smith (1990)), adaptive Monte Carlo methods

(Gilks et al. (1994), Gilks et al. (1995), Gilks et al. (1998), Tierney and Mira

(1999), Liu et al. (2001), Warns (2001)). The most widely used MCMC meth-

ods simulate a single chain that is approximately distributed from a stationary
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distribution for long time. Population Monte Carlo methods such as the pinball

sampler (Robert and Mengersen (2003)), the Adaptive Direction Sampling (ADS)

- snooker sampler (Gilks et al. (1994)), the Real parameter Evolutionary Monte

Carlo algorithm (Liang and Wong (2001)) and the tempered transition method

(Neal (1996)) simulate a collection of chains instead of a single one that may be

trapped under a single mode depending on the starting position of the chain.

In the first part of this thesis, sampling techniques of unknown target distribu-

tions are considered. Two new population MCMC samplers, the simplex sampler

and tempered simplex sampler, are presented. The simplex sampler is based on

the Nelder and Mead (1965) simplex method and performs well in cases of highly

correlated target distributions. In the case of a multi-modal target distribution,

another population MCMC sampler, the tempered simplex sampler, is introduced

to sample efficiently from them. The tempered simplex sampler uses the simplex

sampler to improve mixing under the modes as well as a tempering ladder to

explore the sampling space without getting trapped under a single mode.

In the second part of this thesis, model selection problems are considered. In

general, model selection is a significant problem in statistics. The aim is to choose

which model out of a number of possible ones best describes the data. From a

Bayesian point of view, a prior distribution is used to describe the prior beliefs for

each model. Then, the posterior model probabilities quantitatively discriminate

between competing models providing a more informative comparison of models.

In addition, obtaining posterior model probabilities also permits model averaging

of parameters. Unfortunately, the posterior model probability requires knowledge

of the marginal likelihood which, in most cases, cannot be estimated precisely

because it is not analytically tractable.
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Several techniques have been introduced in the literature attempting estima-

tion of the unknown posterior model probabilities, see for instance the expo-

nentiated Bayesian information criterion known as BIC (Schwarz (1978), Kass

and Raftery (1995), Kass and Wasserman (1995), Raftery (1996)), the Laplace

approximation (Tierney and Kadane (1986)), the Laplace-Metropolis estima-

tor (Lewis and Raftery (1997)), the power posterior method (Friel and Pettitt

(2008)). Additional methods for obtaining posterior model probabilities also

include, for example, birth-death process (Stephens (2000)), Carlin and Chib’s

method (Carlin and Chib (1995)) and MCMCMC (Markov chain Monte Carlo

model composition - for graphical models) (Madigan and York (1997)).

Reversible Jump Markov Chain Monte Carlo (RJMCMC) (Green (1995),

Richardson and Green (1997)) is another approach to Bayesian model selection

problems. It is used to explore the sampling space that consists of several models

of different dimension. Thus, a crucial choice for the performance of the algo-

rithm is to choose the right proposal mechanism. Hence, various methods have

been proposed in the literature to choose the proposal mechanism (Al-Awadhi

et al. (2004), Brooks and Ehlers (2008), Brooks et al. (2003), Dellaportas et al.

(2002)). Here, the aim is to create an automatic RJMCMC algorithm so that no

tuning is necessary and for this reason, the performance of the algorithm does

not depend on the skills of the user. Therefore, the full-conditional posterior

distribution of the parameters is used as the proposal distribution to simulate

the proposed parameter vector. Then, one has to decide whether to condition on

all, some or none of the common parameters between the current and proposed

model. It turns out that the best strategy is to implement block updates so that

the proposed parameter vector is generated from the posterior distribution of the
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parameters.

Unfortunately, in most cases the posterior distribution of the parameters is

intractable. For this reason, deterministic approximations are used to estimate

it in a one-off sampler. Moreover, it can also be shown that the posterior model

probabilities can be approximated off-line. Hence, these approximations to the

posterior model probabilities can be used as the proposal distribution to change

the model dimension inside the RJMCMC algorithm. Therefore, the mixing of

the algorithm is improved as the models with higher posterior probability are

proposed more often. Furthermore, it may be worthwhile to investigate whether

the RJMCMC algorithm improves any bad approximations to the posterior model

probabilities.

Chapter 1 provides an introduction to population MCMC and RJMCMC

methods and motivates the thesis.

Chapter 2 introduces a new population MCMC sampler, the simplex sampler

which is designed to sample from highly correlated target distributions.

Chapter 3 introduces another population MCMC sampler, the tempered

simplex sampler that is designed to sample efficiently from multi-modal target

distributions.

Chapter 4 describes the construction of automatic proposal distributions to

simulate the proposed parameter vector inside the RJMCMC algorithm.

Chapter 5 describes the construction of automatic proposal distributions to

change the model dimension inside the RJMCMC algorithm.

Chapter 6 summarises the research in the thesis and provides areas of pos-

sible future research.
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Chapter 1

Introduction

This thesis consists of two different parts. In the first part, two new population

Markov chain Monte Carlo (MCMC) samplers are introduced. The first sampler,

named the simplex sampler is based on the Nelder and Mead (1965) simplex

method and samples efficiently from highly correlated target distributions while

the second one, named the tempered simplex sampler, uses a tempering ladder

and, in addition, samples efficiently from multi-modal targets. In the second part,

Reversible jump Markov chain Monte Carlo (RJMCMC) methods are considered

in model selection problems. The aim is to improve the proposal mechanism of

RJMCMC by constructing automatic proposal distributions that do not depend

on the skills of the user since no tuning is necessary. First, a proposal distribution

to generate the proposed parameter vector is suggested considering the number of

parameters to be updated in the proposed state. Then, an independent proposal

distribution is also used to change the model dimension so that each of the models

is visited with the correct frequency.

The two main ideas of the thesis can be brought together by using population
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CHAPTER 1. INTRODUCTION 2

MCMC techniques inside the RJMCMC algorithm. Hence, the target for future

research is to follow the work of Jasra et al. (2007a,b) and to consider variable

selection problems and use the RJMCMC algorithm to explore the sampling space

while a population of chains is used instead of just a single one. For instance, a

population of Markov chains may visit each of the several models and every time

a jump is proposed to a new one, the current population of the chains could be

used to choose the proposed model as well as to explore the current one.

In the following text, a quick introduction is given to several population

MCMC techniques. Then, the main idea of the simplex sampler and temper-

ing simplex sampler is presented. In addition, an introduction to model selection

problems is made and some of the already existing techniques are considered.

Then, our contribution to improving the proposal mechanism of the RJMCMC

algorithm by constructing automatic proposal distributions, is presented.

In Bayesian inference the unknown parameters θ are treated as random vari-

ables and a prior distribution p(θ) is used to express the beliefs about them

prior to seeing the data y. Then, the information that the data provide through

the likelihood L(y|θ) is combined with the prior distribution of the parameters

through Bayes’ rule so that

π(θ|y) =
p(θ)L(y|θ)∫

θ

p(θ)L(y|θ)dθ

where
∫

θ

p(θ)L(y|θ)dθ is the normalising constant. See, for example, Gilks et al.

(1996), Cappé and Robert (2000), Robert and Casella (2004) for a discussion of

standard MCMC methods and implementation issues.



CHAPTER 1. INTRODUCTION 3

Bayesian methodology has been widely used thanks to MCMC algorithms.

Metropolis et al. (1953) first introduced the MCMC idea in physics as a sim-

ulation method of energy levels of atoms in a crystalline structure. Later on,

Hastings (1970) applied the idea to statistical problems and since then, MCMC

methods have been used to integrate complex and high dimensional functions and

sample from complex and highly structured real life models. The MCMC meth-

ods simulate a sample from the target distribution by running a Markov chain for

sufficient time using an accept/reject mechanism to correct the arbitrary proposal

mechanism. Then, this sample can be used to evaluate the unknown normalising

constant, the posterior expectation or the marginal distribution.

The main idea of MCMC sampling is very simple. Suppose that the distri-

bution of interest π(x) with x ∈ A ⊆ IRn is known up to a normalising constant

and it is impossible to sample directly from it because π(·) is too complex. For

this reason, an aperiodic and irreducible Markov chain is constructed with state

space A and stationary distribution π(·). If the chain runs for sufficient time,

the simulated values are considered to be a representative sample from the target

distribution after disregarding an initial phase. Hence, this sample can be used

to summarise the distribution of interest.

It is not always easy to construct a Markov chain with the desired proper-

ties. For this reason, the user should be very careful with the implementation

of the MCMC algorithms. One of the most important choices is the transition

mechanism of the chain. Any irreducible and aperiodic chain has a stationary

distribution where at time t the transition kernel K will converge to the actual

target distribution as time t → ∞ so that πK = π (Robert and Casella (2004)).

For instance, given an observation xt at time t that comes from the distribution of
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interest so that xt ∼ π(xt) then at time t+1 another observation x′ is simulated

as x′ ∼ q(xt,x′) where q(·, ·) is the proposal distribution. Thus, the proposed

move is accepted with probability min
{

1, π(x′)
π(xt)

q(x′,xt)
q(xt,x′)

}
or it is rejected with

probability 1−min
{

1, π(x′)
π(xt)

q(x′,xt)
q(xt,x′)

}
. If the proposed move is accepted then the

new state of the chain is xt+1 = x′ otherwise, the chain stays where it currently

is so that xt+1 = xt. If the process runs for sufficiently long enough, then eventu-

ally, the obtained sample, after considering an initial phase, is an approximation

to the distribution of interest π(·).

Moreover, it is essential for a Markov chain to be time reversible so that

π(xt)K(xt,xt+1) = π(xt+1)K(xt+1,xt)

which implies that the chain runs forward and backward in time. Any transi-

tion kernel, K, that satisfies the above equation will converge to the stationary

distribution π(·).

Furthermore, there are a few issues that one should consider when MCMC

methods are used, like the choice of the transition mechanism, the choice of the

initial state, the number of chains to be used and the number of iteration for

the initial transient phase. For an irreducible chain, the starting state does not

affect stationarity because the chain will forget the initial state and will eventually

converge to the stationary distribution. However, a good starting position for the

chain may possibly lead to better mixing and faster convergence resulting in a

shorter initial transient phase. The initial transient phase or burn in defines how

many iterations should be used until the chain reaches the stationary distribution.

In practice, a pilot run is used to define the number of iterations. Another issue
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may be the number of chains to be used, i.e one long chain or several shorter ones.

One long chain should ensure that the stationary distribution is reached, but it

may not fully explore the posterior distribution. Whereas for several shorter

chains, there is the issue of having to discard the burn-in of each chain. Thus,

The number of samples from the posterior distribution is reduced compared to a

single long chain.

Standard MCMC methods simulate a single component which is accepted or

rejected with the usual Metropolis rule. If the candidate component lands in a

lower probability area, it is likely to be rejected and the chain stays where it

currently is. Thus, the mixing of the chain may be slow if a lot of rejections take

place. Tierney and Mira (1999) show that it is possible to propose a second can-

didate component that takes into account the first rejection step at the current

state. Then, the second candidate is accepted or rejected with probability that

also takes into account the first rejection. The procedure can be continued until

a new candidate is accepted. Therefore, the mixing is improved because the ac-

ceptance probability increases and the algorithm explores efficiently the sampling

space. Then again, there are some disadvantages with the implementation of the

method such as the complexity of the MCMC updating step and the additional

computational effort that is needed every time that the proposed move is rejected

and another one is applied given that rejection.

Population MCMC methods (Gilks et al. (1994), Gilks et al. (1995), Gilks

et al. (1998), Liu et al. (2001), Warns (2001), Robert and Mengersen (2003)) run

various Markov chains in parallel that interact with each other at the current

state to propose the new one. In the following text, some of these techniques

are presented. The main idea of the pinball sampler (Robert and Mengersen
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(2003)) is to use a collection of Markov chains to explore the sampling space by

producing iid samples. Here, the candidate components tend not to be proposed

in areas where other components already exist. For this reason, a pseudo reference

distribution is introduced as the product of the actual target distribution and

some exponential terms. These exponential terms cause a repulsive effect around

the other components thanks to zero probability areas (holes) that are created

around the current components preventing in this way, the candidate ones from

landing close to them. Consequently, the components are not likely to be gathered

under one mode. The candidate components are accepted or rejected with the

usual Metropolis-Hastings rule.

The candidate component may be rejected if it lands in a low probability area

or it may be too close to one of the other current components. For this reason, it

may be reasonable to propose another component further away than the already

rejected one and then, estimate the new acceptance probability which takes into

account the first rejection. If the second candidate is also rejected then another

move can be implemented by taking into account the previous rejection. Here,

the main difference with the Tierney and Mira (1999) algorithm is that the move

does not only depend on the previous moves but it also depends on the other

components.

Parallel Tempering (Geyer (1991)) is another population MCMC method that

uses a temperature ladder. Here, different states are exchanged between differ-

ent temperatures. Hence, the algorithm does not get trapped under a single

maximum and explores the distribution of interest.

Adaptive Direction Sampling (Gilks et al. (1994)) uses also a collection of

chains to sample from the unknown target distribution while the proposed moves
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take into account the local state of the chain. A special case of Adaptive Di-

rection Sampling is the snooker algorithm. Assume that one of the components,

called the current component is chosen to be moved. Then, another one named

the anchor component is used to define the direction of the movement. The

direction of the movement is through the line joining the current and anchor

component following Figure 1.1. The candidate component is simulated from an

current point

anchor point

(a)

anchor point

new point

(b)

Figure 1.1: (a) A new point is sampled from an adjusted full-conditional
distribution along the line which joins the current and the anchor point. (b)

The proposed state.

adjusted full-conditional distribution along this line. If the process is repeated

for sufficient time, the points will eventually traverse the whole sampling space

and gather under high probability areas. The main disadvantage of Adaptive

Direction Sampling is that it can not deal with discrete distributions.

Our intention is to design a new population MCMC algorithm, the simplex

sampler, that is based on ideas of the Nelder and Mead (1965) simplex method.

The simplex method is a deterministic optimisation algorithm which finds a local



CHAPTER 1. INTRODUCTION 8

maximum of a target function using three different type of moves, the so called

reflection, expansion and contraction moves. Based on this algorithm, the simplex

sampler consists of several chains that run in parallel and interact using three

different stochastic instead of deterministic moves, the reflection, expansion and

contraction moves as well as a Metropolis-Hastings update.

The simplex sampler samples efficiently from highly correlated target distri-

butions. However, when the distribution of interest is multi-modal, the sampler

does not sample with the correct frequency under the modes or it gets trapped

under a local maximum unable to explore the whole sampling area. The problem

is simply that the simplex method of the Nelder and Mead (1965) is an optimi-

sation algorithm and for this reason, the simplex sampler tends to sample under

a local maximum by design, unwilling to search for another one.

The tempered simplex sampler is designed to overcome this problem. The

tempered simplex sampler is another new population MCMC sampler that aims

to sample from multi-modal distributions. The tempered simplex sampler uses

a population of chains that interact applying the simplex sampler and regarding

a tempering ladder that allows sampling between several intermediate tempera-

tures. Hence, the tempered simplex sampler uses the good mixing of the simplex

sampler in cases of highly correlated distributions, while it also uses a temper-

ing ladder that allows the sampler to explore the sampling area without getting

trapped under a single maxima.

Model selection is a significant problem in statistics. It aims to find which

of the M1, . . . , MN possible models describes best data y, where each of the Mk

possible models is defined by a parameter vector θk. From a Bayesian point of
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view, the prior beliefs about the models are expressed through the prior distri-

butions for each model such as p(M1), . . . , p(MN) and for the parameters within

each of them through p(θ1|M1), . . . , p(θN |MN ). Then, using Bayes’ formula, the

posterior distribution of the parameters conditioned on model Mk is

π(θk|y, Mk) =
L(y|θk, Mk)p(θk|Mk)∫

θk

L(y|θk, Mk)p(θk|Mk)dθk

where the normalising constant is p(y|Mk) =
∫
θk

L(y|θk, Mk)p(θk|Mk)dθk and

L(y|θk, Mk) is the likelihood of model Mk. Then, using Bayes’ theorem the

posterior model probability for each model Mk is

π(Mk|y) =
p(y|Mk)p(Mk)
N∑
k=1

p(y|Mk)p(Mk)

. (1.1)

The posterior model probability requires knowledge of the marginal likelihood

p(y|Mk). The marginal likelihood is the predictive probability of the data or, in

other words, it is the predictive probability conditional on model Mk. It is not

always feasible to achieve a precise estimation of the above integral as in most

cases it is not analytically tractable. Several methods have been proposed in the

literature to estimate the posterior model probabilities, see for example Green

(1995), Carlin and Chib (1995), Godsill (2001), Sisson (2005).

In a Bayesian approach to the model selection problem, the Bayes factor is

widely used since it provides evidence in favour of model Mk compared with

model Mk′ , (Jeffreys (1935), Jeffreys (1961), Kass and Raftery (1995), Lavine

and Schervish (1999)). The Bayes factor is estimated as the ratio of the marginal
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likelihood of model Mk to the marginal likelihood of model Mk′ so that

Bk,k′ =
p(y|Mk)

p(y|Mk′)
.

Using formula (1.1), the Bayes Factor can also be expressed as the ratio of the

posterior model odds to the prior odds,

Bk,k′ =
π(Mk|y)

π(Mk′ |y)

/
p(Mk)

p(Mk′)
.

In general, if Bk,k′ > 1 then model Mk is supported more by the data than

model Mk′. However, if Bk,k′ < 1, model Mk′ is supported more by the data under

consideration. Jeffreys (1961) grouped the interpretation of Bk,k′ according to the

strength of evidence, see Table 1.1

Bk,k′ log10(Bk,k′) Evidence against H0

1 to 3.2 0 to 1/2 Barely worth mentioning
3.2 to 10 1/2 to 1 Substantial
10 to 32 1 to 3/2 Strong
32 to 100 3/2 to 2 Very strong

> 100 > 2 Decisive

Table 1.1: Interpretation of Bk,k′ according to the strength of evidence against
H0, i.e model Mk is supported more by the data than model Mk′ .

Meng and Wong (1996) try to evaluate the Bayes factors using the bridge

sampling identity. Several other methods to estimate the Bayes factor using

MCMC methods have also been proposed, see Meng and Wong (1996), Chen and

Shao (1997b), Chen and Shao (1997a), Gelman and Meng (1998), Han and Carlin

(2001), Meng and Schilling (2002), Green et al. (2003), Bartolucci et al. (2006),
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Gramacy et al. (2009).

Moreover, a popular approximation to the posterior model probabilities is the

exponentiated Bayesian information criterion, BIC (Kass and Raftery (1995),

Kass and Wasserman (1995), Raftery (1996)). Schwarz (1978) proved that the

BIC is a logarithmic approximation to the Bayes factor when model Mk is com-

pared to the model under the null hypothesis. The BIC gives a penalty to models

that include many parameters avoiding overfitting and it is independent of the

choice of the prior distribution. Thus, the BIC for model Mk is estimated as

BICk = log L(y|θ̂k, Mk) −
1

2
d log n

where log L(y|θ̂k, Mk) is the maximum of the log likelihood, d is the dimension

of model Mk and n is the sample size. Then, the posterior model probability is

approximated by

π(Mk|y) ∝ exp {BICk}.

Tierney and Kadane (1986) used the Laplace approximation to evaluate the

marginal likelihood so that

p(y|Mk) ≈ (2π)d/2|H|1/2p(θ̂k|Mk)L(y|θ̂k, Mk)

where θ̂k is the value of the parameter vector at which the intractable distribution

takes its maximum value and H equals the negative of the inverse Hessian matrix

of the intractable distribution at θ̂k.

Lewis and Raftery (1997) estimate the Bayes factors through posterior simu-

lation using the Laplace-Metropolis estimator. Here, the Laplace method is used
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to approximate the intractable marginal likelihood. However, it is not always

easy to evaluate the Laplace parameter values analytically. In this case, they

suggest to use the Metropolis-Hastings algorithm to estimate them.

Friel and Pettitt (2008) use ideas from path sampling to estimate the marginal

likelihood. A power posterior distribution is defined to be proportional to the

product of the prior and the likelihood raised to a power T where T ∈ [0, 1]

so that π(θk|y, Mk) ∝ Ly|θk, Mk)
Tp(θk). Then, a sample is drawn from the

power posterior distribution and it is used to estimate the intractable marginal

likelihood.

Reversible Jump Markov Chain Monte Carlo (Green (1995), Carlin and Chib

(1995), Richardson and Green (1997), Godsill (2001), Green and Mira (2001),

Sisson (2005)) is an extension of the Metropolis-Hastings algorithm and it can be

used as another approach to the Bayesian model selection problem. It is used to

explore the sampling space that consists of several models of different dimension.

The algorithm performs in two steps. First, a fixed dimensional move allows

exploration of the current model while a jumping move makes changes to dimen-

sionality. Moreover, crucial to the performance of the algorithm is the choice of

the proposal mechanism. Therefore, various methods have been proposed on how

to choose the proposal mechanism of the RJMCMC algorithm.

Brooks et al. (2003) choose the proposal mechanism in an automatic way by

optimising the acceptance probability based on the choice of the proposal distri-

bution. Here, the aim is to choose the parameters of the proposal distribution

so that every time a move is proposed to a new model, it will be accepted more

often because various models will be visited more often and the mixing will be

improved.
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Brooks and Ehlers (2008) consider jumping proposal distributions for autore-

gressive time series models. They construct efficient sampling steps using the

Brooks et al. (2003) method. It is also shown that applying the Brooks et al.

(2003) method is similar to using the full-conditional posterior distribution of

the parameters as the jump proposal distribution. Three different schemes are

considered. In the first scheme, when a jump step is proposed to a new model,

the proposed parameter vector is defined by adding or deleting parameter values

from the current parameter vector to match the proposed model dimension. In

the second scheme, some of the current parameter values are retained while the

rest of them are updated together with the new ones. Finally, in the third scheme

the whole proposed parameter vector is updated. They conclude that the last

two schemes may give better efficient sample size but they are computationally

more expensive since block updates are implemented. For this reason, the first

scheme is concluded to be the best strategy.

Dellaportas et al. (2002) assume a Normal proposal distribution with mean

and covariance matrix estimated in an off-line step. In the off-line step, a long

Markov chain runs for the saturated model where all parameters are presented.

In the on-line step, when a jump is proposed to a new model, the proposed

parameter vector is generated from the full-conditional posterior distribution of

the parameters. The mean and covariance matrix of the full-conditional posterior

distribution are evaluated using the estimated mean and covariance matrix of the

saturated model that has already been calculated in the off-line step.

In the case of a multi-modal target distribution when the proposals land

away from the modes, they have almost no chance to be accepted. Furthermore,

when the multi-modal target distribution is not analytically tractable, it is almost
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impossible to design proposal steps that allow jumps between different modes. Al-

Awadhi et al. (2004) overcome this problem by introducing a secondary Markov

chain to modify the proposed moves. The basic idea is to use the RJMCMC

algorithm to propose a new value and then move it closer to a mode before the

accept/reject decision is taken. Here, irreducibility holds in each step.

Our target is to create an automatic RJMCMC algorithm so that no tuning

is necessary and for this reason, the performance of the algorithm does not de-

pend on the skills of the user, as well as to improve the proposal mechanism of

the RJMCMC. In our analyses, the full-conditional posterior distribution of the

parameters is used as the proposal distribution. Then, three different updating

schemes are considered to generate the proposed parameter vector depending on

how many of the common parameter values are conditioned on between the pro-

posed and the current model. One might choose to condition on all, some or

none of the common parameters. It turns out that the best strategy is when the

proposed parameter vector is simulated conditioning on none of the common pa-

rameter values. In this case, the proposal distribution is the posterior one which

is assumed to be tractable.

Unfortunately, the posterior distribution of the parameters is intractable in

most cases. Hence, it has to be estimated quite fast and accurately before the

proposed parameter vector is drawn from it. Therefore, stochastic methods may

not be suitable to estimate it because that will be too computationally expen-

sive and time consuming. For this reason, deterministic approximations like the

Laplace approximation or the BIC are used to estimate the intractable posterior

distribution of the parameters in an off-line step. Then, these estimates are used

to approximate the posterior model probabilities in an also off-line step. Thus,
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the approximated posterior model probabilities and the approximated posterior

distribution of the parameters can be used as the proposal distribution inside the

RJMCMC algorithm. The estimated posterior model probabilities can be used

as an independent proposal to change the model dimension and the estimated

posterior distribution of the parameters as a proposal distribution to draw the

new parameter vector respectively.

The motivation is to improve the mixing of the RJMCMC algorithm by effi-

ciently choosing the proposal distribution to make changes to model dimension.

Hence, models with large posterior probability mass will be visited more fre-

quently compared to models with smaller posterior probability mass. Thus, it

is expected that the models are visited with the correct frequency. Moreover,

it will be worthwhile to see whether the RJMCMC algorithm improves any bad

approximations to the posterior model probabilities.

The future work involves the construction of a RJMCMC algorithm that

consists of a selection of Markov chains defined on different dimensional models,

following the work of Jasra et al. (2007a) and Jasra et al. (2007b). Hence, a

population of several Markov chains could be used to choose the proposed model

as well as to explore the current visited ones. The Markov chains have no memory

and for this reason, one can not learn from the already rejected steps. Thus, if a

population of Markov chains visits each of the possible models then, the proposed

model may be chosen using that information.



Chapter 2

The simplex sampler

Usual Markov chain Monte Carlo (MCMC) methods like the Metropolis-Hastings

algorithm (Hastings (1970)) and the Gibbs sampler (Geman and Geman (1984),

Gelfand and Smith (1990)) use a single Markov chain to sample efficiently from

the target distribution but there are a few cases where they lead to poor perfor-

mances. If the variables are highly correlated then the methods may give highly

correlated output and result in slow mixing of the Markov chain. Likewise, if the

target distribution is multi-modal then the chain may get trapped under a single

local maxima and consequently, be unable to traverse the whole sampling space,

see Figure 2.1.

Moreover, the proposal mechanism has to be chosen carefully since it influ-

ences the performance of the algorithm. Suppose that the Metropolis-Hastings

algorithm is used with a Gaussian proposal distribution. Then, the variance of

the Gaussian distribution has to be tuned carefully as different values of the pro-

posal variance may lead to different performances. If the proposal steps are not

large enough then the Markov chain may get trapped under a local maxima or

16
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(a) (b)

Figure 2.1: (a) In the Gibbs sampler case, the proposed moves are proposed
in co-ordinate directions. If the variables are highly correlated, the mixing of
the chain is slow. (b) In the case of a multi-modal target, it might not be easy

to travel between the modes for instance, to move from area A to area B.

it may traverse slowly the sampling space resulting in slow mixing. Conversely,

if the proposal steps are too large, the proposals are likely to land in regions of

lower probability mass. In this case, the ratio of the target probability at the

proposed configuration to the target probability at the current configuration will

be very small and for this reason, the rejection probability will be too high. Thus,

the chain may remain at a particular area for a long time resulting in slow mixing

and give a high correlated sample. Furthermore, the algorithm performs better

if the proposal density matches the shape of the target distribution but in most

cases, this is impossible since the distribution of interest is not known.

Population MCMC methods use more than one Markov chain to explore the



CHAPTER 2. THE SIMPLEX SAMPLER 18

sampling space. The chains run in parallel and interact with each other in var-

ious ways (Gilks et al. (1994), Neal (1996), Liang and Wong (2001)). Hence, a

population of chains explores the current state and defines the proposed one.

Our aim is to introduce a new population MCMC sampler, the simplex sam-

pler, designed to overcome the problem of highly correlated and multi-modal

target distributions. The simplex sampler uses a proposal mechanism similar to

the deterministic simplex method of Nelder and Mead (1965) for function opti-

misation. The different type of moves are now stochastic using an accept/reject

mechanism to correct the arbitrary distribution. The sampler consists of three dif-

ferent updating moves, the so called reflection, expansion and contraction moves

as well as a Metropolis-Hastings update. The idea is simple and easy to imple-

ment. In designed moves, detailed balance is preserved at each step in such a

way that there is always a positive probability that enables the chain to move

from the proposed state back to the current one and ensures convergence to the

stationary distribution.

The work which is described in this chapter was carried out independently of

Strens et al. (2002). Strens et al. (2002) also introduced a population MCMC

sampler based on the Nelder and Mead (1965) simplex method. Our simplex sam-

pler is more developed, includes more move types and it is tested more rigorously

on challenging examples.

In the following text, the simplex method of Nelder and Mead (1965) is pre-

sented together with some of the existing techniques. Then, the proposal mecha-

nism of the simplex sampler is introduced. The sampler is also tested on different

examples and its performance is compared to the performance of some of the ex-

isting techniques. Finally, a discussion is included outlining the advantages and
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disadvantages of the sampler.

2.1 Simplex method for function minimisation

Nelder and Mead (1965) introduced a deterministic minimization algorithm, the

simplex method. The simplex method is designed to find a local minimum of

an n dimensional function. Hence, the simplex is defined as a polytope of n + 1

vertices in n dimensional space. For instance, the simplex is a line segment in one

dimension, a triangle in two dimensions, a tetrahedron in three dimensions, etc.

The local minimum is reached by comparing the function values of each of the

vertices of the simplex and replacing the vertex with the highest function value

by another one with smaller function value. The simplex method achieves the

minimum by implementing three different types of move, the so called reflection,

expansion and contraction moves.

Suppose that one is interested in the minimum of an n-dimensional function.

Then, the current simplex is defined as {x1, . . . ,xn+1} where each xi ∈ ℜn, for

i = 1, . . . , n+1. Let yi denote the function value at xi and let yh be the maximum

value of all function values of the vertices of the simplex so that yh = maxi yi.

Likewise, let yℓ be the minimum value of all function values so that yℓ = mini yi.

Every time, the vertex with the highest function value, say xc, is chosen to be

reflected through the centroid of the simplex according to the following equation

x∗ = (1 + α)x̄− αxc

where x∗ is the reflected vertex, α is a positive constant which is called the
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reflection coefficient and x̄ is the centroid of the simplex. If a two dimensional

function is assumed then the reflected point is on the line joining the point with

the highest target function value and the centroid of the simplex on the far side

of the centroid from xc, see Figure 2.2. Notice that the distance from x∗ to the

centroid is equal to α times the distance from the centroid to the current vertex

xc, that is |x∗ − x̄| = α|x̄− xc|.

current simplex

(a)

centroid

proposed simplex

(b)

Figure 2.2: (a) Simplex in the current state. The point with the lower target
probability is going to be moved. (b) Move the point through the line joining

the current point and the centroid in a deterministic way.

If the reflection has produced a vertex with smaller function value than yh

then xc is replaced by x∗ and the process is started again with the new simplex.

If a new minimum has been produced then x∗ is expanded to x∗∗ according to

the following equation

x∗∗ = γx∗ + (1 − γ)x̄

where γ is the expansion coefficient and it should be greater than one. The

expansion coefficient determines how far away from the centroid, x∗ is expanded
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to x∗∗. The distance from x∗∗ to x̄ is equal to γ times the distance from x∗ to

x̄, that is |x∗∗ − x̄| = γ|x∗ − x̄|.

If x∗∗ has smaller target value than the maximum one then xc is replaced

by x∗∗. Otherwise, the expansion move has failed so xc is replaced by x∗. If a

new maximum is produced then a new vertex, say x′
c, is defined to be either the

old one, xc, or the reflected, x∗, depending on which of the two has the lower

function value. Then, it is expanded to x∗∗∗ according to the following formula

x∗∗∗ = βx′
c + (1 − β)x̄

where β is the contraction coefficient and takes values between 0 and 1. The

contraction coefficient β also defines how far way from x′
c, x

∗∗∗ is going to be.

The distance from x∗∗∗ to x̄ is equal to β times the distance from x′
c to x̄, that is

|x∗∗∗ − x̄| = β|x′
c − x̄|. The contracted x∗∗∗ replaces x′

c and the process restarts

again unless the constructed x∗∗∗ is worse than the better of x′
c and x∗. In this

case, each point is transformed as (xi +xℓ)/2 and then, the process is restarted.

The procedure is stopped when a local minimum is achieved, for instance, when

the points are too close to each other or when the standard error of the function

is less than a predefined small value.

Here, the values of α, β and γ are defined at the beginning of the algorithm.

Standard value for the reflection coefficient α is 1, for the contraction coefficient,

β, is 1/2 and for the expansion coefficient, γ, is 2.
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2.2 Markov chain Monte Carlo techniques

2.2.1 Metropolis-Hastings algorithm

The idea of Markov chain Monte Carlo (MCMC) was first introduced by Metropo-

lis et al. (1953) as a simulation method of energy levels of atoms in a crystalline

structure. Hastings (1970) was the first to apply the idea to statistical problems.

Since then, MCMC methods have been widely used to integrate complex and high

dimensional functions as well as to sample from complex and highly structured

real life models.

Assume that π(·) is a complex and high dimensional distribution so that

it is not possible to simulate directly from it. For this reason, the proposal

distribution q(·, ·) is used to draw a sample from π(·) using an accept/reject

mechanism. Simulation from q(·, ·) should be possible and straightforward. Thus,

the proposal distribution q(xt,y) is the probability of moving from the current

state, xt, to the proposed one, y, at time t where x ∈ IRn. At time t, a candidate

component y is simulated from q(xt,y) and it is accepted with probability

α(xt,y) = min

{
1,

π(y)

π(xt)

q(y,xt)

q(xt,y)

}
. (2.1)

If the candidate component is accepted with probability given in (2.1), the next

state of the chain becomes xt+1 = y. Otherwise, the candidate component is

rejected and the Markov chain stays where it currently is so that xt+1 = xt. If

the Markov chain is run long enough, i.e the chain has reached the stationary

distribution, realisations of the chain can be regarded as a dependent sample



CHAPTER 2. THE SIMPLEX SAMPLER 23

from the posterior distribution π(·). The algorithmic version of the Metropolis-

Hastings method can be seen in Algorithm 1.

The choice of the proposal distribution is crucial for the performance of the

algorithm since it explores the intractable distribution and it should ensure that

irreducibility holds at each step. The mixing of the chain also depends on the

proposal distribution. If the proposed move is accepted more often then the chain

results in fast mixing otherwise, the chain results in slow mixing. For instance, if a

Normal proposal distribution is used then the variance of the Normal distribution

must be carefully tuned. If the proposed steps are too large, it is possible that the

chain may remain stuck at a particular area for a long time since the proposed

moves may be rejected and the chain results in slow mixing. Then again, if the

proposed steps are too small, the chain tends to make small changes and for this

reason, it moves inefficiently. In practice, the proposal variance is chosen on the

basis of a pilot run. One way is to tune the algorithm according to the acceptance

probability since acceptance probability values between 20% and 40% imply that

the algorithm has been tuned efficiently (Gelman et al. (1996)).

In general, the algorithm may result in poor performance when the parameters

are highly correlated since it may give a highly correlated output. In the case of

a multi-modal target distribution, the chain may get trapped under a mode and

for this reason, it does not traverse the whole sampling space especially, when

the modes are well separated from each other.
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Algorithm 1 Metropolis - Hastings algorithm

At time t, the current state of the chain is xt.

1. Propose the new state of the chain y such as y ∼ q(xt,y).

2. Calculate the acceptance probability α(xt,y).

• Accept y with probability α(xt,y) given in (2.1) and set xt+1 = y or

• reject y with probability 1 − α(xt,y) and set xt+1 = xt.

3. Return to step 1.

2.2.2 Gibbs sampler

The Gibbs sampler was introduced by Geman and Geman (1984). It is a special

case of the single-component Metropolis-Hastings algorithm (Hastings (1970)).

Suppose that π(·) is the intractable target distribution and at the current state

t, the chain is xt = (xt1, . . . , x
t
n). Thus, at time t + 1 the ith component is simu-

lated from the full-conditional distribution π(xt+1
i |xt+1

1 , . . . , xt+1
i−1, x

t
i+1, . . . , x

t
n). If

the algorithm runs for a long time the simulated values {(xi1, . . . , xin)}Ni=k+1 are

considered to be a representative sample from the target distribution π(·), where

k is the burn in and N is the total number of iterations. The algorithmic version

of the Gibbs sampler can be seen in Algorithm 2.

The Gibbs sampler is typically used when the posterior conditional distribu-

tion is of standard form, and hence generally easy to sample from. In general,

the sampler is easy to implement and most of the time, it performs quite well

in practice. However, there are cases where the performance of the algorithm is

not so good. For instance, if the components are highly correlated, the algorithm

converges slowly and gives a highly correlated output.
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Algorithm 2 Gibbs sampler

At time t, the current state of the chain is xt = (xt1, . . . , x
t
n).

1. Simulate xt+1
1 from the conditional distribution π(xt+1

1 |xt2, . . . , xtn).

2. Simulate xt+1
2 from the conditional distribution π(xt+1

2 |xt+1
1 , xt2, . . . , x

t
n).

...

3. Simulate xt+1
i from the conditional distribution

π(xt+1
i |xt+1

1 , . . . , xt+1
i−1, x

t
i+1, . . . , x

t
n).

...

4. Simulate xt+1
n from the conditional distribution π(xt+1

n |xt+1
1 , . . . , xt+1

n−1).

5. Return to step 1.

2.2.3 Population Markov chain Monte Carlo

Usual MCMC methods simulate a single Markov chain xi with stationary dis-

tribution exactly equal to the posterior distribution of interest πi(·) on space

X . The general idea in population MCMC methods is to use a collection of

chains x = (x1, . . . ,xn) instead of a single one xi that can be trapped under a

single mode, depending on the starting position of the chain. Here, the target

distribution is

π(x) =
n∏

i=1

πi(xi) (2.2)

on space X n.

Hence, at the current state, a population of different chains x is used to pro-

pose a new one, y = (y1, . . . ,yn). One can either accept each of the proposed

components, yi, individually or the whole collection of them, y, globally. The
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latter approach suffers from the problem of dimensionality. Therefore, it is rec-

ommended to propose a new component, yi, at each time because the average

acceptance probability decreases with the number of components.

2.2.4 Real-Parameter Evolutionary Monte Carlo

The Real-parameter Evolutionary Monte Carlo method of Liang and Wong (2001)

is a population MCMC based algorithm. The method borrows the learning ability

of genetic algorithms and the fast mixing of parallel tempering. At time t, the

current state consists of a collection xt = (x1, . . . ,xn), with xi ∈ IRd so that

xi = (βi1, . . . ,β
i
d) and a temperature ladder T = (T1, . . . , Tn), with T1 = 0 ≤ T2 ≤

. . . ≤ Tn = 1. The distribution of interest is defined by replacing πi(xi) = πTi(xi)

in (2.2) so that

π(xt) =
n∏

i=1

π(xi)
Ti

Thus, when the temperature value Ti is close to zero then the distribution π(·)Ti

is similar to the uniform one while when Ti takes the value one, the tempered

distribution, π(·)Ti, is the actual target one. The rest of the temperature values

correspond to different tempered distributions. The main idea is that movement

in tempered distributions is easier than movement in the target distribution.

Therefore, proposing to swap values from tempered to target distributions should

promote mixing.

Three different types of move are implemented, the so called mutation, crossover

and exchange operators. In the mutation operator, one of the components xi is

chosen at the current state and a new one yi is generated under the same tem-

pered distribution π(·)Ti by adding a random vector ei to the current one such
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as yi = xi + ei. Then, the proposed move is accepted with probability

αm = min

{
1,

π(yi)
Ti

π(xi)Ti

}

and the new state of the Markov chain is xt+1 = (x1, . . . ,xi−1,yi,xi+1, . . . ,xn) or

it is rejected with probability 1 − αm and the chain stays where it currently is,

so that xt+1 = (x1, . . . ,xn).

In the crossover operator, a pair of components is randomly selected from the

current population and two candidate components are generated by implementing

a real crossover or a snooker crossover move. The real crossover operator chooses

one component xi = (βi1, . . . ,β
i
d) under temperature Ti and another one xj =

(βj1, . . . ,β
j
d) under temperature Tj to propose two new candidate components in

the following way. First, a crossover point c is chosen from {1, . . . , d} and then,

two new candidate components are generated as

yi = (βi1, . . . ,β
i
c−1,β

j
c, . . . ,β

j
d)

and

yj = (βj1, . . . ,β
j
c−1,β

i
c, . . . ,β

i
d).

The proposed move is accepted with probability

αc = min

{
1,

π(yi)
Ti

π(xi)Ti

π(yj)
Tj

π(xj)Tj

}

otherwise, it is rejected and the chain stays where it currently is.

The snooker crossover operator is based on ideas from the snooker sampler
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of Gilks et al. (1994). Here, the component xi is randomly chosen from the

current population under temperature Ti and the other component xj is chosen

either randomly or with probability proportional to its Boltzmann weight under

temperature Tj. Thus, the candidate component is generated by first calculating

e =
xj−xi

|xj−xi|
and then setting yi = xi + re where the random variable r ∈

(−∞, +∞) and it is sampled from the density

f(r) ∝| r|d−1π(yi).

Notice that the density f(r) is usually not known in closed form. In this case,

standard MCMC methods like Metropolis-Hastings algorithm can be used to

draw the r value from it.

The proposed move is accepted or rejected with the usual Metropolis rule.

The algorithm proceeds by applying the mutation operator with probability pm,

the real crossover with probability (1 − pm)/2 and the snooker crossover with

probability (1 − pm)/2. The probability pm is called the mutation rate.

The exchange operator swaps points under different temperatures. Suppose

that the current state is defined as xt = (x1, . . . ,xi, . . . ,xj , . . . ,xn) and that

component xi is chosen under temperature Ti to be exchanged with another

component xj under temperature Tj . Thus, the components xi and xj are ex-

changed by randomly selecting i from 1, . . . , n and then setting j = i ± 1 with

probability p(j = i + 1) = p(j = i − 1) = 0.5 for i = 2, . . . , n − 1, p(j = 2) = 1

for i = 1 and p(j = n − 1) = 1 for i = n. Then, the proposed configuration
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y = (x1, . . . ,xj, . . . ,xi, . . . ,xn) is accepted with probability

αe = min

{
1,

π(xj)
Ti

π(xi)Ti

π(xi)
Tj

π(xj)Tj

}

or equivalently,

αe = min

{
1,

(
π(xi)

π(xj)

)Tj−Ti
}

.

Otherwise, the proposed configuration is rejected and the chain stays where it

currently is, so that xt+1 = xt. Notice that when the different temperature

values are close then the difference Tj − Ti tends to zero. Thus, the acceptance

probability for the exchange move, αe, is almost equal to one. For this reason,

the proposed move tends to be accepted more often.

The Real-parameter Evolutionary Monte Carlo method performs very well

most of the time even though there are a lot of parameters that have to be tuned

depending on the skills of the user. The tuning also influences the mixing of the

algorithm. The number of the intermediate temperatures has to be defined and

the way to draw the r value. Another issue is that different tempered distributions

are used to sample from the distribution of interest but only the sample under

temperature one which corresponds to the target distribution, is stored. The

method is quite complex to implement and for this reason, it requires a skillful

user.

2.2.5 Tempered Transitions Method

Neal (1996) suggests to sample from multimodal distributions using the tempered

transitions method. The method is based on simulated tempering, (Geyer and
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Thompson (1995)) and uses π1(·), . . . , πn(·) distributions in order to sample from

the distribution of interest π(·). A transition probability Q̂i(x
t,xt+1) is used

to move from the current state xt to the proposed one xt+1 and Q̌i(x
t+1,xt) is

used to move from the proposed state xt+1 to the current one xtso that detailed

balance is presented at each step, that is

π(xt)Q̂i(x
t,xt+1) = π(xt+1)Q̌i(x

t+1,xt).

Notice that if Q̂i consists of several sub-transitions such as Q̂i = S1 · · ·Sk then

Q̌i = Sk · · ·S1. The method finds a candidate state by applying the transition

probabilities in turn, i.e Q̂1 . . . Q̂nQ̌n . . . Q̌1. Then, the candidate state is accepted

or rejected based on the intermediate acceptance probabilities.

Assume that the current state is xt = x̂0 then, the candidate state is x̌0

estimated as follows

Generate x̂1 from x̂0 using Q̂1

Generate x̂2 from x̂1 using Q̂2

. . .

Generate x̄n from x̂n−1 using Q̂n

Generate x̌n−1 from x̄n using Q̌n

. . .

Generate x̌1 from x̌2 using Q̌2

Generate x̌0 from x̌1 using Q̌1
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The candidate state x̌0 is accepted with probability

αe = min

{
1,

n−1∏

i=1

πi+1(x̂i)

πi(x̂i)

πi(x̌i)

πi+1(x̌i)

}

and the next state of the chain is xt+1 = x̌0 otherwise, it is rejected and the next

state of the chain is xt+1 = x̂0. It should be mentioned that a crucial choice for

the performance of the algorithm is the number of intermediate distributions to

be used and how these are defined.

2.3 Proposal mechanism of the simplex sampler

The proposal mechanism of the simplex sampler consists of three different types

of move, the reflection, expansion and contraction moves. The reflection move is

the core of the simplex sampler while the expansion and contraction moves tend

to keep the shape of the simplex stable so that the algorithm does not lose its

local ability. A Metropolis-Hastings move is also used to update the vertices of

the simplex. All designed moves promote good mixing. At each sweep, each of

the designed moves can be applied in turn or a kernel of them can be used. The

algorithmic version of the sampler is presented in Algorithm 3.

2.3.1 Reflection move

Suppose that at the current state, the simplex is defined as xt = (x1, . . . ,xn). The

proposal mechanism of the simplex sampler proceeds by first choosing one of the

components of the simplex with some probability. The chosen component or the

current component, xc, tends to be the one with the smallest target probability
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compared to the rest of the population. The current component is chosen with

discrete probability density function ℓt(i), for i = 1, . . . , n with

ℓt(i) ∝ 1 − π(xi)
n∑
i=1

π(xi)

so that

ℓt(i) =
P (xi)
n∑
j=1

P (xj)
(2.3)

where P (xi) is defined as

P (xi) = 1 − π(xi)
n∑
j=1

π(xj)
.

Then, the candidate component, y, is reflected through the line joining the cen-

troid of the current population, x̄t, and the current component, xc, see Figure

2.3, so that

y = (1 + α) x̄t − αxc (2.4)

where α is the reflection coefficient which determines how far away from the

centroid the new candidate component is.

The absolute value of the reflection coefficient, |α|, is defined by equation 2.4.

The sign of alpha is positive when the xc and y are on different sides of x̄t while

it is negative when they are on the same side of x̄t. When α = 0 then y = x̄t, i.e

they are on either side of x̄t.
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current point

centroid

(a)

current point

proposed sim
plex

proposed point

(b)

Figure 2.3: (a) Simplex in the current state. The centroid is estimated and
the current point is chosen. (b) A new point is reflected through the line joining
the current point and the centroid of the simplex. The proposed simplex will

be accepted or rejected with the usual Metropolis-Hastings rule.

Hence, different α values determine different candidate components. Accord-

ing to equation (2.4), if α = 0 then y = x̄t meaning that the candidate compo-

nent is the centroid of the simplex at the current state. Likewise, if α = −1 then

y = xc implying that the candidate component is the current one. In addition, if

α > 1, the candidate component is proposed uphill of the simplex while if α < −1

then it is proposed downhill of the simplex, see Figure 2.4.

The simplex method of Nelder and Mead (1965) is a local optimisation algo-

rithm. For this reason, the components of the simplex tend to be proposed uphill

most of the time. Thus, the sampler may get trapped under a local maxima

unable to traverse the whole sampling surface. Therefore, α values less than −1

ensure that the sampler proposes candidate components downhill and explores

the whole sampling space without getting trapped under a local maxima. Notice

also that when α = 0.5, the proposed component is on the line (or Hyper plane)
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centroid

proposed point

(a)

current point

proposed point

(b)

proposed point

current point

(c)

current point

proposed point

(d)

Figure 2.4: (a) For α = 0 the proposed component is the centroid. (b) For
α = −1 the proposed component is the current component. (c) For α > 1 the
candidate component is proposed uphill of the simplex. (d) For α < −1 the

candidate component is proposed downhill of the simplex
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joining the other vertices of the simplex. For this reason, this value should be

avoided as the sampler may collapse if the simplex consists of only three compo-

nents.

The proposal mechanism of the simplex sampler uses the current configuration

of the Markov chain to propose the new one. Then, the proposed component y

is accepted with probability

αref (xc,y) = min

{
1,

π(y)

π(xc)

q(y,xc)

q(xc,y)

}
(2.5)

where q(·, ·) is the proposal distribution. The proposal distribution q(xc,y) is

defined as the probability of choosing xtc as the current component and proposing

y to be the candidate one. Hence, q(xc,y) = ℓt(c)pα(α) where pα(α) is the

probability of choosing the value α for the reflection coefficient from the pα(·)

distribution. A good choice of the proposal distribution to choose the reflection

coefficient, α, value is important for the mixing of the algorithm. If the proposed

component is accepted more often, i.e it is proposed to a higher probability area,

then the mixing of the chain is better and the target distribution is explored

faster. Experimentation showed that a N(1, 22) is a good choice of the proposal

distribution to draw the reflection coefficient value.

If the candidate component is accepted with probability αref (xc,y) then the

next state of the Markov chain is

xt+1 = {x1, . . . ,xc−1,y,xc+1, . . . ,xn}.

Otherwise, the chain stays where it currently is so that xt+1 = xt. The procedure
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is repeated for sufficient time to ensure convergence to the stationary distribution.

In all designed moves, detailed balance is preserved at each step. Thus, there

is always a positive probability that enables the proposed component to move

back from the proposed state to the current one and ensures convergence to

the stationary distribution. For this reason, the proposal distribution q(y,xc) is

defined as q(y,xc) = ℓt+1(c)pα(α
∗) where ℓt+1(c) is the probability of choosing the

candidate component y as the one to be reflected and pα(α
∗) is the probability of

generating the α∗ value from pα(·). The reflection coefficient for the reverse move,

α∗, ensures that the chain moves from the proposed state back to the current one.

Thus, irreducibility holds at each step of the reflection move and for this reason,

the chain runs forward and backward in time.

The reflection coefficient α∗ is estimated according to the following formula

xc = (1 + α∗)x̄t+1 − α∗y

xc = x̄t+1 + α∗(x̄t+1 − y)

(xc − x̄t+1) = α∗(x̄t+1 − y)

so that

|α∗| =
||xc − x̄t+1||
||x̄t+1 − y||

where ||xc − x̄t+1|| is the euclidean distance between the current component, xc,

and the centroid of the simplex at the proposed state, x̄t+1. The sign of α∗ is

defined so that detailed balanced holds and the Markov chain runs forward and
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backward in time at each step.

2.3.2 Expansion and Contraction moves

The vertices of the simplex may be far apart or too close to each other. In

this case, the simplex sampler loses its local ability and performs poorly. For

this reason, two additional moves are introduced, the expansion and contraction

moves to keep the shape of the simplex stable. In the contraction and expansion

moves each of the components of the simplex is updated according to the following

formula

yi = β(xi − x̄t) + x̄t, for i = 1, . . . , n.

The expansion/contraction coefficient β is drawn from some distribution pβ(.).

Notice that β is defined as the ratio of the distance between the candidate com-

ponent, yi, and the centroid of the simplex at the current state, x̄t, and the

distance of the component to be updated, xi, and x̄t, that is

β =
||yi − x̄t||
||xi − x̄t||

.

If β takes a value less than one then a contraction move is proposed while if β is

greater than one, an expansion move is proposed, see Figure 2.5. The shape of

the simplex stays unchanged when the coefficient β takes values close to unity.

The proposal distribution to choose the expansion/contraction coefficient value is

important for the mixing of the chain. Experimentation showed that a Ga(1, 2)

is a good choice of the proposal distribution to draw the β value.

The designed expansion and contraction moves ensure that the chain moves
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proposed simplex

current simplex

(a)

current simplex

proposed simplex

(b)

Figure 2.5: (a) The vertices are too far away so the simplex is contracted.
(b) The vertices are too close to each other so the simplex is expanded.

from the proposed configuration back to the current one by defining β∗. Hence,

β∗ is the expansion/contraction coefficient for the reverse move which ensures

that the chain traverses forwards and backwards in time. The coefficient β∗ is

evaluated as

xi = β∗(yi − x̄t+1) + x̄t+1

so that

β∗ =
||xi − x̄t+1||
||yi − x̄t+1|| .

Hence, β∗ is the ratio of the distance between the component to be updated in

the current state, xi, and the centroid of the simplex in the proposed state, x̄t+1,

versus the distance between the proposed component, yi, and x̄t+1.
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The proposed configuration y = (y1, . . . ,yn) is accepted with probability

αexp/con
(
xt,y

)
= min

{
1,

π(y)pβ(β
∗)

π(xt)pβ(β)

}
(2.6)

and the new state of the simplex is xt+1 = y. Otherwise, it is rejected and the

chain stays where it currently is.

2.3.3 Metropolis-Hastings move

A Metropolis-Hastings move is carried out to update each of the vertices of the

simplex. Hence, each of the components of the simplex is generated from yi ∼

N(xi, σ
2Id), for i = 1, . . . , n where σ2 is the proposal variance. Here, small values

of σ2 lead to small changes of the simplex and for this reason, the proposed moves

tend to be accepted more often. In this case, the acceptance probability is

αmh
(
xt,y

)
= min

{
1,

π(y)

π(xt)

}
. (2.7)

Here, it should be mentioned that depending on the dimensionality of the

problem, one can use a single update or a global one. If the dimension is big

then global updates will not be accepted as often resulting in slow mixing. In

this case, single updates are recommended.

2.3.4 Relation between the reflection coefficients α and α∗

In general, if three points a, b and c are in the same line then the distance between

points a and c can be defined as ||a, c|| = ||a, b|| + ||b, c||, for a ≤ b ≤ c. Hence,
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the reflection coefficient α is

α =
||y − x̄t||
||x̄t − xc||

α + 1 =
||y − x̄t|| + ||x̄t − xc||

||x̄t − xc||

α + 1 =
||y − xc||
||x̄t − xc||

||y − xc|| = (α + 1)||x̄t − xc|| (2.8)

and the reflection coefficient α∗ is

α∗ =
||xc − x̄t+1||
||x̄t+1 − y||

α∗ + 1 =
||xc − x̄t+1|| + ||x̄t+1 − y||

||x̄t+1 − y||

α∗ + 1 =
||xc − y||
||x̄t+1 − y|| . (2.9)

Thus, inserting equation (2.8) in equation (2.9), the relationship between α and

α∗ can be defined as

α∗ + 1 =
(α + 1)||x̄t − xc||

||x̄t+1 − y||

α∗ = α
||x̄t − xc||
||x̄t+1 − y|| +

||x̄t − xc||
||x̄t+1 − y|| − 1.
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Algorithm 3 Simplex sampler

Assume that at time t, the current configuration of the simplex is xt =

{x1, . . . ,xn}, for xi ∈ IRd and the target distribution is π(·) given in (2.2).

Reflection move:

1. Choose the current component xc of the simplex with probability ℓt(c) given

in (2.3).

2. Calculate the centroid of the simplex x̄t.

3. Draw the reflection coefficient α from some distribution pα(·) .

4. Calculate the proposed component as y = (1 + α) x̄t − αxc.

5. Accept the proposed component with probability αref(xc,y) given in (2.5)

and set xt+1 = {x1, . . . ,y, . . . ,xn} otherwise, set xt+1 = xt.

Expansion and Contraction move:

1. Calculate the centroid of the simplex x̄t.

2. Draw the expansion/contraction coefficient β from some distribution pβ(·).

3. Calculate the proposed simplex as yi = β(xi − x̄t) + x̄t, for i = 1, . . . , n.

4. Accept the proposed simplex with probability αexp/con(x
t,y) given in (2.6)

and set xt+1 = y otherwise, set xt+1 = xt.

Metropolis - Hastings update:

1. Draw the proposed simplex as y ∼ N(xt, σ2Id), where σ2 is the proposal

variance.

2. Accept the proposed configuration with probability αmh(x
t,y) given in (2.7)

and set xt+1 = y or otherwise, set xt+1 = xt.
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2.4 Examples

In this section, the simplex sampler is tested on different examples and its per-

formance is compared to the Metropolis-Hastings (M-H) algorithm (Hastings

(1970)), Real-parameter Evolutionary Monte Carlo (EMC) algorithm (Liang and

Wong (2001)) and tempered transitions method (Neal (1996)).

For each of the different methods, the mean estimates and their standard

deviation (std), the standard errors, the bias of the estimates and the Monte

Carlo standard error are evaluated. The standard error (ste) is estimated as

ste = std/
√

N , where N is the sample size from the MCMC algorithm. The bias

of the estimates is calculated as |E(θ̂) − θ|, which is the absolute value of the

difference between the estimated posterior expectation, E(θ̂), and the parameter

values, θ. The Monte Carlo standard error (MCste) is evaluated as the standard

error of the average estimates divided by the square root of the sample size.

In addition, the integrated autocorrelation (IA) is calculated using the method

proposed by Sokal (1997). Then, using the measure of integrated autocorrelation,

the efficient sample size (ESS) is defined as N
/
(IA t) where N is the sample

size generated from the MCMC algorithm and t is the computation time to

execute the algorithm. Thus, high values of efficient sample size give a measure

of performance of the algorithm which accounts for both computational time and

number of MCMC draws.

In the following examples, the proposal parameter values are chosen based on

the acceptance probability. Acceptance probability values between 0.20 and 0.40

may indicate that the algorithm converges to the distribution of interest (Gel-

man et al. (1996)). The Real-parameter Evolutionary Monte Carlo algorithm
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and tempered transition method use ten different temperatures that are equally

spaced in [0, 1]. Notice that only one out of the ten is the temperature of interest.

Consequently, at the end of each sweep only the sample under temperature one

is stored while the rest of them are disregarded. In order to make the algorithms

comparable, the total number of parameter updating steps was kept constant as

each algorithm will typically have a different number of updating steps within

each iteration of the Markov chain, accounting for the different number of up-

dating steps per MCMC iteration.

2.4.1 Mixture of two Normal distributions

The first example is a simple mixture problem which for badly designed algo-

rithms can result in poor performance. Consider the mixture of two Normal

distributions such as

f(x) = wN(x; µ1, σ
2) + (1 − w)N(x; µ2, σ

2)

The parameters w and σ are known while µ1 and µ2 are assumed unknown. Thus,

the prior beliefs about the means are expressed through a Normal distribution

such as p(µ1, µ2) = N(µ1|θ, σ2/λ)N(µ2|θ, σ2/λ). Then, the target distribution

is the posterior which is defined as π(µ1, µ2|x) ∝ L (x|µ1, µ2) p (µ1, µ2) where

L (x|µ1, µ2) is the likelihood.

Ten different data sets are generated consisting of 100 responses each from the

mixture 0.2N(0, 1) + 0.8N(2, 1) so that w = 0.2, µ1 = 0, µ2 = 2 and σ = 1. The

parameters of the prior distribution are θ = 1 and λ = 0.1. The contour plot of the

above mixture is presented in Figure 2.6(a). It is obvious that the coordinates are
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highly correlated and consequently, the Metropolis-Hastings algorithm is likely

to suffer from slow mixing. The initial position of the chain is chosen under two

different schemes. First, the initial position of the chain is chosen under the tails

of the posterior distribution. The aim is to figure out how fast the algorithm can

escape and sample under the whole sampling area. Then, the initial position of

the chain is also randomly selected for each data set.

For the simplex sampler case, the simplex is defined by three vertices in the

two-dimensional space. The reflection coefficient is drawn from a Normal dis-

tribution, N(0, 42), and the expansion/contraction coefficient is generated from

a Gamma distribution, Ga(1, 2), with mean 2 and variance 4. A Metropolis-

Hastings move is carried out to update the vertices of the simplex using a Normal

proposal distribution, N(0, 0.12).

For the Real-parameter Evolutionary Monte Carlo algorithm, a Normal pro-

posal distribution, N(0, 0.12), is used in the mutation operator and the Metropolis-

Hastings algorithm is applied in the snooker crossover operator considering a

Normal proposal distribution, N(0, 0.12) and ten iterations in total. Liang and

Wong (2001) mention that even one iteration may be enough to draw the r value.

Here, the mutation probability is 0.20.

For the tempered transition method, the transition probability is N(0, 1) us-

ing 100 different iterations under each temperature. The tempered transitions

method stores only the sample under temperature one. The simplex sampler runs

for 90, 000 iterations regarding the first 10, 000 as burn in.

The contour plot of the posterior distribution on the log scale is presented in

Figure 2.6. From the contour plot, it seems that there is high correlation between

the variables. Here, the starting position of the chain is chosen under the tails.
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(a) (b)

(c) (d)

Figure 2.6: (a) Contour plot of the target distribution in log scale. (b)
Metropolis-Hastings algorithm with proposal variance 0.1. It fails to sample
from the actual target values. (c) Metropolis-Hastings algorithm with proposal
variance 1. It converges to the actual target values but the mixing of the chain
is poor. (d) The simplex sampler converges from the beginning to the actual

target values.
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Different proposal variances are used for the Metropolis-Hastings algorithm, see

Figure 2.6. When the proposal variance is 0.1, the Metropolis-Hastings algo-

rithm fails to converge to the actual target values even though the acceptance

probability is around 0.35. Increasing the proposal variance to 1, the algorithm

samples the actual target values but then the acceptance probability is less than

1% which results in slow mixing of the chain. If one chooses to increase the

number of iterations then it is possible to get better estimates. The acceptance

probabilities for the simplex sampler are 0.36 for the reflection move, 0.43 for

the expansion/contraction move and 0.33 for the Metropolis-Hastings update.

Usually, the proposal variance is tuned according to the acceptance ratio. Ac-

cording to Gelman et al. (1996) acceptance probability values between 0.20 and

0.40 indicate that the algorithm has been tuned effectively.

Next, the initial position of the chain is randomly chosen for each data set.

The algorithms give in general quite good estimates of the unknown parameter

values. The estimations together with their standard deviations and standard

errors are presented in Table 2.1. In this case, the actual posterior means are

µ1 = 0.2524 and µ2 = 1.8263. The simplex sampler gives more accurately esti-

mates of the posterior means compared to the other methods. The tempered tran-

sitions method estimates the posterior means more accurately compared to the

Metropolis-Hastings and Real-parameter Evolutionary Monte Carlo algorithm.

The standard deviation and standard error of the estimates is similar to

each method and for this reason, the simplex sampler has an advantage since

it gives more accurate estimates. Moreover, the simplex sampler gives also less

biased estimates compared to the other methods, see Table 2.2. Then again, the

Metropolis-Hastings algorithm has the most biased estimates. The Monte Carlo
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simplex sampler M-H EMC tempered transitions
Target µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2

Mean 0.2576 1.8291 -0.1463 1.8639 0.3856 1.7967 0.1337 1.8499
Std 0.5998 0.1926 0.5480 0.1743 0.8035 0.2532 0.4770 0.1591
Ste 0.0012 0.0004 0.0011 0.0004 0.0016 0.0005 0.0010 0.0003

Table 2.1: Mean, standard deviation and standard error for the estimated pa-
rameters for the mixture of two Normal distributions using each of the different

methods.

standard error is very small meaning that the estimates of each method are sim-

ilar between the different simulated data sets, see Table 2.3. Table 2.4 presents

the integrated autocorrelation and efficient sample size for each of the different

methods. The integrated autocorrelation for the Metropolis-Hastings algorithm

is the biggest one. Then again, the tempered transitions method gives the smaller

integrated autocorrelation. The efficient sample size is similar for each method

indicating that the computational time for the tempered transitions method and

the Real-parameter Evolutionary Monte Carlo algorithm is higher compared to

the simplex sampler one. In conclusion, the simplex sampler performs better.

Method µ1 µ2 Average
simplex sampler 0.0052 0.2297 0.1175

M-H 0.3987 0.1949 0.2968
EMC 0.1332 0.2621 0.1977

tempered transitions 0.1187 0.2089 0.1638

Table 2.2: Bias of the estimated posterior means using each of the different
methods for the mixture of two Normal distributions.

The acceptance probabilities for the simplex sampler are 0.3794 for the re-

flection move, 0.4227 for the expansion/contraction move and 0.3471 for the
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Method µ1 µ2 Average
simplex sampler 0.0012 0.0003 0.0008

M-H 0.0009 0.0002 0.0006
EMC 0.0012 0.0003 0.0007

tempered transitions 0.0016 0.0001 0.0009

Table 2.3: Monte Carlo standard error using each of the different methods
for the mixture of two Normal distributions.

Methods IA ESS N time
simplex sampler 514 0.52 36,333 135,94

M-H 617 0.73 1,000,000 2220,20
EMC 224 0.46 28,572 277,29

Tempered transitions 113 0.82 50,000 539,61

Table 2.4: Integrated autocorrelation, efficient sample size, number of itera-
tions and time for the mixture of two Normal distributions using each of the

different methods.

Metropolis-Hastings update. The acceptance probability for the Metropolis-

Hastings algorithm is 0.3523 and for the tempered transitions method is 0.4576.

The acceptance probabilities for the Real-parameter Evolutionary Monte Carlo

algorithm are 0.5287 for the mutation operator, 0.4594 for the real crossover

operator, 0.3023 for the snooker crossover and 0.7396 for the exchange move.

2.4.2 Autoregressive model of order three

The next example is an autoregressive process of order three with unknown pa-

rameter values and residual variance. The autoregressive process is modeled as

xt =

3∑

i=1

αixt−1 + ǫt,
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where the residual ǫt follow a Normal distribution, N(0, σ2
ǫ ).

Each process is generated with parameters α1 = 0.5, α2 = 0.3333, α3 =

−0.1667 and σ2
ǫ = 1. Ten different data sets are generated according to the

above process where each of them contains 500 observations. A randomly selected

data set is presented in Figure 2.7. A Normal prior distribution is assumed for

the autoregressive coefficients, i.e αi ∼ N(0, 1), for i = 1, 2, 3 and a Gamma

distribution for the variance of the residual, i.e σ2
ǫ ∼ Ga(1, 1).

0 50 100 150 200 250 300 350 400 450 500
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−2

−1

0

1

2

3

4

iterations

x t

Autocorrelation process of order three

Figure 2.7: Autocorrelation process of order three for a randomly selected
data set.

In this case, the full-conditional posterior distributions are tractable and

therefore, Gibbs updates (Geman and Geman (1984)) are implemented instead

of Metropolis-Hastings ones. Thus, the performance of the simplex sampler is

compared to the Gibbs sampler one instead.

Here, the simplex is defined by five vertices in four dimensional space. The re-

flection coefficient value is simulated from a N(0, 42) while the expansion/contraction

coefficient is drawn from a Ga(1, 2). Moreover, for the Real-parameter Evolu-

tionary Monte Carlo algorithm, in the mutation operator a Normal proposal
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distribution, N(0, 0.12), is considered and in the snooker crossover operator, the

Metropolis-Hastings algorithm. The Metropolis-Hastings algorithm uses a Nor-

mal proposal distribution, N(0, 0.12). The mutation probability is 0.20. Further-

more, for the tempered transitions method, the transition probability is N(0, 1)

using 100 different iterations under each temperature. The simplex sampler runs

for 90, 000 iterations regarding the first 10, 000 as burn in.

The estimated parameter values together with their standard deviation are

presented in Table 2.5. All methods give quite good estimates of the parame-

ter values. The standard deviation is similar for each method apart from the

Real-parameter Evolutionary Monte Carlo algorithm which has higher standard

deviation compared to the other ones. This may imply that the algorithm should

be ran for longer time or it needs a longer burn in.

The bias of the estimates, the Monte Carlo standard error across the dif-

ferent data sets, the integrated autocorrelation and the efficient sample size are

presented in Table 2.6. The bias is similar to all methods. Hence, the autore-

gressive coefficients and the residual error are estimated quite well. Moreover,

the Monte Carlo standard error is small for all methods meaning that the vari-

ous estimates do not differ a lot between the different simulated data sets. The

simplex sampler has the highest efficient sample size followed by the Gibbs sam-

pler, the Real-parameter Evolutionary Monte Carlo algorithm and the tempered

transition method. Hence, the simplex sampler is more efficient and uses less

computational power to provide a better efficient sample size.

The acceptance probabilities for the simplex sampler are 0.2623 for the re-

flection move and 0.3860 for the expansion/contraction move. The acceptance

probability for the tempered transitions method is 0.9249 which might explain
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why the efficient sample size is quite small and the integrated autocorrelation

time is quite high. The Real-parameter Evolutionary Monte Carlo algorithm is

0.1555 for the mutation operator, 0.1623 for the real crossover operator, 0.2355

for the snooker crossover and 0.3160 for the exchange move. Hence, the mixing

of the methods is quite good.

True parameter values 0.5 0.3333 -0.1667 1

simplex sampler
mean 0.5224 0.3367 -0.1822 0.9747
std 0.0433 0.0474 0.0439 0.0619

Gibbs sampler
mean 0.5324 0.3167 -0.1822 0.9744
std 0.0443 0.0483 0.0443 0.0619

EMC
mean 0.5308 0.3088 -0.1775 0.9867
std 0.3546 0.3943 0.3592 0.3822

Tempered transitions
mean 0.5602 0.3076 -0.2154 0.9095
std 0.0431 0.0472 0.0427 0.0560

Table 2.5: Estimated parameter values and standard deviations for the au-
toregressive example using each of the different methods.

Method Bias MCste IA ESS N time
simplex sampler 0.0166 0.0008 12 37 36,333 81,83

Gibbs 0.0225 0.0008 22 34 1,000,000 1336,84
EMC 0.0198 0.0009 55 3 28,572 173,16

tempered transitions 0.0563 0.0008 50 3 50,000 333,33

Table 2.6: Bias, Monte Carlo standard error across the different data sets,
integrated autocorrelation, efficient sample size, number of iterations and time

for the estimated parameters using each of the different techniques.
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2.4.3 Linear Regression Problem

A linear regression model with unknown parameters is considered next. Ten dif-

ferent data sets are simulated where each of them consists of 100 independent ob-

servations. The relationship between the predictor variables, x = (xi1, xi2, . . . , xi10)

and the response, yi, is given below

yi =
10∑

k=1

βkxik + ǫi

for i = 1, . . . , 100, where the residual ǫi follow a Normal distribution, N(0, 2.52).

For each data set, the predictor variables are generated from a multivariate Nor-

mal distribution, Nn(0, Σ), with 0 = (0, . . . , 0) and Σ =




1

0.9

. . .
0.9

1


.

The prior distribution for the parameter β is assumed to be N(0, 102I). Thus,

the distribution of interest is the posterior one, π(β|x,y) ∝ L (y|x,β) p (β) where

L (y|x,β) is the likelihood.

In this case, the simplex is defined by eleven vertices in the ten dimen-

sional space. The reflection coefficient is drawn from a N(0, 42), while the ex-

pansion/contraction coefficient is generated from a Ga(1, 2). The Metropolis-

Hastings move uses a N(0, 0.12) distribution to update each of the components

of the simplex. Moreover, the Real-parameter Evolutionary Monte Carlo algo-

rithm uses a N(0, 0.12) distribution for the mutation operator and the Metropolis-

Hastings algorithm in the snooker crossover operator. The Metropolis-Hastings

algorithm uses a N(0, 0.12) proposal distribution. The mutation probability is

0.20. Likewise, for the tempered transitions method a N(0, 1) proposal distribu-

tion is considered with 100 different iterations under each temperature.
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In the case of the Real-parameter Evolutionary Monte Carlo algorithm and the

tempered transitions method, only the sample under the temperature of interest

is stored at the end of each sweep using extra computational power. The simplex

sampler runs for 90, 000 iterations regarding the first 10, 000 as burn in.

All methods give quite good estimates of the parameter values but the simplex

sampler gives the best estimates, see Table 2.7. The standard deviation for the

simplex sampler and the Real-parameter Evolutionary Monte Carlo algorithm is

smaller compared to the other ones. The standard error of the estimates is also

very small for each method.

The bias of the estimates, the Monte Carlo standard error across the different

data sets, the integrated autocorrelation time and the efficient sample size can

be seen in Table 2.8. The simplex sampler gives the smallest bias to the esti-

mates. Moreover, the Monte Carlo standard error across the different data sets

is quite small for each method. The simplex sampler gives similar integrated au-

tocorrelation to the tempered transitions method, while the Metropolis-Hastings

algorithm gives the highest integrated autocorrelation. In addition, the simplex

sampler gives the highest efficient sample size, with the tempered transitions

method having the next highest one. The simplex sampler is the most efficient

of the other methods because it gives less bias estimates while it also uses less

computational time.

The acceptance probabilities for the simplex sampler are 0.3474 for the re-

flection move, 0.4243 for the expansion/contraction move and 0.3741 for the

Metropolis-Hastings update. The acceptance probability for the tempered tran-

sitions method is 0.1905 while for the Real-parameter Evolutionary Monte Carlo
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algorithm is 0.263 for the mutation operator, 0.3583 for the real crossover oper-

ator, 0.2193 for the snooker crossover and 0.7656 for the exchange move. Thus,

the methods result in good mixing according to their acceptance probabilities.

True 1 0.5 -0.5 0 0 0 0 0 0 0

Simplex sampler
Mean 0.9463 0.4730 -0.5402 -0.0354 -0.1442 -0.1357 0.3282 -0.0953 0.0511 0.0123
Std 0.3886 0.4803 0.4201 0.4389 0.4567 0.4627 0.4764 0.4740 0.4523 0.4342
stde 0.0008 0.0010 0.0009 0.0009 0.0009 0.0009 0.0009 0.0010 0.0009 0.0009

M-H
Mean 0.9188 0.3810 -0.2303 -0.0313 -0.0145 -0.2549 0.1746 -0.0226 0.0307 -0.0725
Std 0.4851 0.6211 0.6649 0.6666 0.6151 0.4629 0.4842 0.6176 0.4632 0.6676
stde 0.0010 0.0013 0.0014 0.0014 0.0013 0.0009 0.0010 0.0013 0.0009 0.0014

EMC
Mean 0.9110 0.3950 -0.2334 -0.0384 -0.0156 -0.2651 0.1729 -0.0180 0.0331 -0.0758
Std 0.2031 0.2422 0.2145 0.2146 0.2376 0.2278 0.2390 0.2322 0.2301 0.2321
stde 0.0004 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Tempered transitions
Mean 0.9451 0.3526 -0.6445 -0.0318 -0.1445 -0.2345 0.3356 -0.0895 0.0519 0.0189
Std 0.5905 0.7376 0.6383 0.6587 0.6996 0.6987 0.7174 0.7099 0.6908 0.6516
stde 0.0012 0.0015 0.0013 0.0013 0.0014 0.0014 0.0015 0.0014 0.0014 0.0013

Table 2.7: Estimated parameter values together with their standard deviation
and standard error for the linear regression model.

Method Bias MCste IA ESS N time
simplex sampler 0.0923 0.0002 278 3.20 36,333 40,84

M-H 0.1071 0.0003 1592 0.94 1,000,000 668,23
EMC 0.1079 0.0002 400 0.86 28,570 83,06

tempered transitions 0.1253 0.0002 250 1.23 50,000 162,60

Table 2.8: Bias, Monte Carlo error across the different data sets, integrated
autocorrelation, efficient sample size, number of iterations and time for the

linear regression example using each of the different methods.



CHAPTER 2. THE SIMPLEX SAMPLER 55

2.4.4 A Bimodal example

The target distribution in this case is a mixture of two five-dimensional Normal

distributions described in Liang and Wong (2001). The distribution of interest is

defined as

π(x) = 1/3N5(x; 0, I5) + 2/3N5(x; 5, I5)

where x ∈ IR5, 0 = (0, . . . , 0) and I5 is the identity matrix.

The simplex is defined by six vertices in five-dimensional space. The reflec-

tion coefficient is drawn from a Normal distribution such as N(0, 42) and the

expansion/contraction coefficient is generated from a Gamma distribution that is

Ga(1, 2). A Metropolis-Hastings move is carried out to update the vertices of the

simplex using a Normal proposal distribution, N(0, 1). The proposal parameter

values are again chosen based on the acceptance probability.

In addition, for the Real-parameter Evolutionary Monte Carlo algorithm a

N(0, 0.12) distribution is used in the mutation operator and the Metropolis-

Hastings algorithm in the snooker crossover operator with a N(0, 1) proposal

distribution. The mutation probability is again 0.20. Furthermore, the tempered

transitions method uses a N(0, 1) proposal distribution and 100 iterations under

each temperature. The simplex sampler runs for 90, 000 iterations regarding the

first 10, 000 as burn in.

The algorithms should sample under the two modes with the correct frequency

to get a representative sample. The simplex sampler does not sample with the

correct frequency under the modes even though, it does not get trapped under

a single one, see Figure 2.8. The reason is that the simplex method of Nelder

and Mead (1965) is an optimization algorithm that aims to find a local maxima.
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Hence, the simplex sampler tends, by design, to sample under a single local

maxima unwilling to search for another one. The Metropolis-Hastings algorithm

also does not traverse the whole sampling space and gets trapped under a single

mode, see Figure 2.8 .

The tempered transitions method and Real-parameter Evolutionary Monte

Carlo algorithm sample under both modes, see Figure 2.9. The tempered transi-

tion method samples with better frequency under both modes compared to the

Real-parameter Evolutionary Monte Carlo algorithm. Hence, in the case of a

multi-modal target distribution, it may be useful to assume a tempering vector

in order to sample from the distribution of interest without being trapped under

a single maxima.

The efficient sample size and integrated autocorrelation are presented in Table

2.9. The tempered transition method gives the smaller integrated autocorrelation.

The simplex sampler has the highest efficient sample size while the tempered

transitions method and the Real-parameter Evolutionary Monte Carlo algorithm

give a fairly similar but lower efficient sample size.

The Metropolis-Hastings algorithm do not traverse the whole sampling space

and gets trapped under a single maximum. The overall mixing for the Metropolis-

Hastings algorithm seems to be poor even though the mixing within mode appears

to be quite good. The simplex sampler tends to spend more time sampling under

one mode and for this reason, the posterior density estimate of the bimodal

distribution is poor.

Thus, the acceptance probabilities are 0.2755 for the simplex sampler, 0.3142

for the Metropolis-Hastings, 0.3214 for the Real-parameter Evolutionary Monte

Carlo algorithm and finally, 0.1954 for the tempered transitions method.
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Figure 2.8: (a) Histogram and (b) trace plot for the simplex sampler. (c)
Histogram and (d) trace plot for the Metropolis-Hastings algorithm.
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Figure 2.9: (a) Histogram and (b) trace plot for the tempered transitions
method. (c) Histogram and (d) trace plot for the Real-parameter Evolutionary

Monte Carlo method.
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Methods IA ESS
simplex sampler 53 11

EMC 45 5
tempered transitions 31 7

Table 2.9: Integrated autocorrelation and efficient sample size for the bimodal
example using each of the different methods.

2.4.5 Mixture of twenty Normal distributions

A mixture of twenty bivariate Normal distributions is used to test the performance

of the algorithms as presented in Liang and Wong (2001). The distribution of

interest is multi-modal and it is described by high and essentially zero probability

areas. The modes are well separated from each other, see Figure 2.10. Therefore,

(a) (b)

Figure 2.10: (a) Contour plot and (b) plot for the mixture of twenty Normal
distributions.

it is a challenge for the algorithms to jump between the different modes and
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explore the whole sampling space. The distribution of interest, π(x), is described

in the formula below.

π(x) =
1

2πσ2

20∑

i=1

wi exp

(
− 1

2σ2
(x − µi)

′

(x − µi)

)

where σ = 0.1, w1 = . . . = w20 = 0.05 and µ1, µ2, . . . , µ20 are known.

The simplex is defined by three vertices in two-dimensional space. The reflec-

tion coefficient value is simulated from a N(0, 42), and the expansion/contraction

coefficient is drawn from a Ga(1, 2). The Metropolis-Hastings move uses a Nor-

mal proposal distribution, N(0, 22), to update each of the components of the

simplex. Moreover, the Real-parameter Evolutionary Monte Carlo algorithm uses

a N(0, 0.12) proposal distribution in the mutation operator and the Metropolis-

Hastings algorithm in the snooker crossover operator. For the Metropolis-Hastings

algorithm, a N(0, 22) proposal distribution is considered. The mutation prob-

ability is 0.20. Furthermore, the tempered transitions method uses a N(0, 1)

transition probability and 100 iterations under each temperature.

In the Real-parameter Evolutionary Monte Carlo algorithm and tempered

transitions method, only one out of the ten is the temperature of interest. The

simplex sampler runs for 100, 000 iterations regarding the first 10, 000 as burn in.

In order to make the algorithms comparable, the total number of iterations for

each algorithm was kept constant accounting for the different number of iterations

per sweep of each algorithm.

The Metropolis-Hastings algorithm and the simplex sampler seem to get

trapped under the modes without being able to escape and explore the whole sam-

pling space. However, the tempered transitions method and the Real-parameter
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Evolutionary Monte Carlo algorithm seem to be able to traverse the whole sam-

pling space and visit all modes without getting trapped under a single one, see

Figure 2.11.

This is an extreme example where there are high and low probability areas

connected by essentially zero probability mass, it is perhaps unrealistic. Never-

theless, in the case of a single Markov chain like Metropolis-Hastings algorithm,

it is easy to get trapped under a local maxima. On the other hand, population

MCMC techniques do not get trapped so easily because they run several MCMC

chains in parallel allowing them to interact in order to propose the new state

of the Markov chain. But then, the simplex sampler though is based on ideas

of a local optimization algorithm and for this reason, it does not escape easily

from one maxima to search for another one. Nevertheless, the performance of

the algorithm is good for highly correlated distributions.

2.5 Discussion

The simplex sampler generally performed better than the Metropolis-Hastings

algorithm in the considered examples. In general, population MCMC methods

are more powerful than standard MCMC ones that use only one chain to sample

from the distribution of interest, especially when the target is multi-modal or the

variables are highly correlated. Therefore it could be postulated that population

MCMC techniques are in general more powerful because they use more than one

chain to sample from the target distribution using at every sweep, the current

state to define the proposed one.

If the variables are highly correlated then the simplex sampler performs quite
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Figure 2.11: (a) Metropolis-Hastings algorithm, (b) simplex sampler, (c) tem-
pered transitions method and (d) Real-parameter Evolutionary Monte Carlo

algorithm for the mixture of the twenty Normal distributions.
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well. In most cases, it gives more accurate and less biased estimations to the

parameter values. Furthermore, for most population MCMC algorithm, there is

no objective way to decide the number of chains to be used to sample from the

distribution of interest in order to promote mixing. For this reason, the choice is

left to the skills of the user. In the simplex sampler case, if the target distribution

is defined in IRd, then d + 1 vertices are used to define the simplex sampler, and

hence d + 1 Markov chains to be run.

On the other hand, the Real-parameter Evolutionary Monte Carlo algorithm

and tempered transitions methods use a temperature ladder to define the interme-

diate distributions to sample from. Thus, they move from “cooler” distributions

to the target one without getting trapped under a local maxima. Then again, all

these intermediate distributions are disregarded at the end of each sweep using a

lot of computational power. There is also another issue with their implementa-

tion. In particular, the number of intermediate distributions should be consider

for sampling from the distribution of interest, which has to be tuned by the user

depending on his skills. Then again, the simplex sampler stores and uses every

chain that is considered to sample from the distribution of interest since it does

not consider any intermediate tempered distributions. Thus, no computational

power is wasted and the sampler performs efficiently especially when there is

strong correlation between the variables.

However, the simplex sampler does not sample efficiently from multi-modal

target distributions. In this case, the simplex sampler gets trapped under a single

local maximum without being able to escape and search for another one or if it

doesn’t get trapped, it does not sample with the correct frequency under each

mode. The problem is that the simplex method of Nelder and Mead (1965) is
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a local optimization technique and for this reason, the simplex sampler tends to

spend more time sampling under a single local maximum unwilling to search for

another one.

In conclusion, the simplex sampler performs well when the parameters are

highly correlated since it gives more accurate and less biased estimates. It also

has the advantage of using all iterations without disregarding any of them. On

the other hand, when the distribution of interest is multi-modal then for the

reasons described above, it tends to get trapped under a single local maxima or

not sampling under each mode with the correct frequency. Therefore, Chapter

3 introduces a new population MCMC sampler, the tempered simplex sampler,

where a tempering ladder is used to overcome the multi-modal problem and allow

the sampler to move efficiently between the different modes. Hence, instead of

having only one Markov chain under each tempering ladder, several of them are

used. The Markov chains run in parallel and interact with each other using the

simplex sampler idea.



Chapter 3

Tempered simplex sampler

The simplex sampler introduced in Chapter 2 performs well when the parameters

of the distribution of interest are strongly correlated. In these cases, it samples

better than usual MCMC methods like the Metropolis-Hastings algorithm and

also has an advantage on tempering techniques like the Real-parameter Evolu-

tionary Monte Carlo algorithm and the tempered transitions method because it

does not discard any of the Markov chains at intermediate temperatures and for

this reason, it represents a more economical use of computational resources.

Nevertheless, when the target distribution is multi-modal, the simplex sampler

fails to sample efficiently from the distribution of interest as it samples under

a local maxima unwilling to move to another one. The problem is related to

the fact that the simplex sampler is based on ideas of the simplex method of

Nelder and Mead (1965) which is a local optimization technique. Therefore, it

is not easy for the sampler to escape the currently visited local maximum and

search for another one. However, techniques that use a tempering ladder like the

Real-parameter Evolutionary Monte Carlo algorithm and tempered transitions

65
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method tend not to get trapped under a single local maximum and they are

able to explore the whole sample space because they sample from intermediate

tempered distributions.

Therefore, the main idea of this chapter is to create a new population MCMC

sampler, the tempered simplex sampler, using a tempering ladder that will sample

efficiently from multi-modal target distributions. Usual tempering methods use a

population of chains, one for each temperature to explore the target distribution.

In the tempered simplex sampler case, a whole population of chains is considered

under each temperature and not just a single one. Thus, a population of chains

is exchanged under different temperatures. First, the chains interact by apply-

ing the simplex sampler idea to explore the distribution of interest under each

temperature. Then, these populations of chains are exchanged under different

temperatures. In the following section, the proposal mechanism of the tempered

simplex sampler is introduced. Conclusions are made on its performance com-

pared to the one of the Real-parameter Evolutionary Monte Carlo algorithm and

the tempered transitions method using different multi-modal examples.

3.1 Proposal mechanism of the tempered sim-

plex sampler

Assume that π(·) is a d dimensional distribution of interest and the current popu-

lation is defined as X = (x1, . . . ,xn) where each of the different sub populations

xi consists of m different vertices so that xi = (xi1, . . . ,xim), with xij ∈ IRd

with i = 1, . . . , n and j = 1, . . . , m. The temperature ladder is defined as
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T = (T1, . . . , Tn) with T ∈ [0, 1] and each of the Ti being equally spaced from

each other. Thus, each of the xi is defined under temperature Ti so that the

distribution of interest is

π(X) =

n∏

i=1

πTi(xi).

and

πTi(xi) =
m∏

j=1

πTi(xij).

The sampler traverses the whole sampling space without getting trapped un-

der a local maxima thanks to the tempering ladder. The main idea is to start

sampling from distributions that are similar to a uniform distribution and then,

slowly increasing the tempering parameter values and eventually sample from

the distribution of interest, see Figure 3.1. At the end of each sweep, only the

values that correspond to the distribution of interest are stored and the rest of

them are discarded. This may be computationally expensive but, it produces

a representative sample from the distribution of interest because the tempering

parameter allows the chains to traverse the whole sampling space without getting

trapped under a local maxima. Then again, it is not necessary to discard all of

the sampled values when the temperature is not equal to 1, importance sampling

can be used instead Gramacy et al. (2009).

The tempered simplex sampler consists of two steps. First, each of the popu-

lations xi is updated under each tempering ladder Ti using the simplex sampler.

Hence, there are m different chains that run in parallel and interact with each

other under temperature Ti using the simplex sampler to propose the new state.

Then, the different populations say xi and xl are chosen to be exchanged under
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(a) (b) (c)

Figure 3.1: (a) Target distribution at temperature 0.0013. (b) Target distri-
bution at temperature 0.1895. (c) The actual target distribution at tempera-

ture 1.

different temperatures say Ti and Tl so that the chains also interact under differ-

ent temperatures. The two steps of the sampler are described in detail below.

3.1.1 First step: Updating the simplex within each tem-

perature.

In the first step of the tempered simplex sampler, the chains within each tem-

perature interact with each other. The simplex sampler is applied to each sub

population xi under temperature Ti. Thus, under each temperature the simplex

consists of m different vertices in d dimensional space and the distribution of

interest is

πTi(xi) =

m∏

j=1

πTi(xij).

Three different types of move are carried out, the reflection, expansion/contraction

move and a Metropolis-Hastings update. Similar to the simplex sampler case, the
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core of the tempered simplex sampler is the reflection move. The other moves

are used to update the shape of the simplex. Hence, at each sweep, one can carry

out all of the designed moves in turn or use a distribution of them.

3.1.1.1 Reflection move

In the reflection move, the current vertex, xic given in (3.1) is chosen with prob-

ability ℓi(c) which is inversely proportional to its target probability. Hence, the

probability ℓi(j) is evaluated as

ℓi(j) =
P (xij)
m∑
z=1

P (xiz)
, (3.1)

where P (xij) is defined as

P (xij) = 1 − πTi(xij)
m∑
z=1

πTi(xiz)
.

Then, the euclidean distance between the current vertex xic and each vertex

xij for j 6= c is calculated. The two vertices that are relatively close to the current

one define the current simplex. Hence, the vertices are chosen with probability

φri(j) =

m∑
z=1

d(xiz,xic) − d(xij ,xic)

m∑
z=1

d(xiz,xic)

where d(xij ,xic) =
√

(xij − xic)2 = |xij − xic| is the euclidean distance between

the current vertex, xic, and each vertex xij. Assume now that the vertices xik and

xir are chosen with probability φri(k) and φri(r) respectively. Then, the current
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simplex is defined as x = {xic,xik,xir} and the reflection move is carried out as

described in section 2.3.1. Hence, the centroid of the current simplex is evaluated

and the candidate vertex yic is proposed through the line joining the current

vertex and the centroid of the simplex. The proposed vertex yic is accepted with

probability

αref (xic,yic) = min

{
1,

πTi(yic)

πTi(xic)

q(yic,xic)

q(xic,yic)

}
.

The proposal distribution q(xic,yic) is evaluated as the probability of choosing

vertex xic as the current one and proposing yic to be the candidate one. Hence,

q(xic,yic) = ℓi(c)φri(k)φri(r)pα(α) where pα(α) is the probability of choosing the

value α for the reflection coefficient from the proposal distribution pα(·).

If the candidate component is accepted with probability αref (xic,yic) then

the current vertex xic is replaced by yic otherwise, the proposed move is rejected

with probability 1−αref (xic,yic) and the Markov chain stays where it currently

is, see Figure 3.2.

Current component

Current component

Figure 3.2: Reflection move of the tempered simplex sampler.
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In addition, detailed balance is preserved throughout each step and for this

reason, the Markov chain should be able to move from the proposed state back

to the current one. Hence, the proposal distribution q(yic,xic) is defined as the

probability of moving from the proposed vertex, yic, to the current one, xic. It is

evaluated as q(yic,xic) = ℓ∗i (c)φ
∗
ri(k)φ∗

ri(r)pα(α
∗) where ℓ∗i (c) is the probability of

choosing yic as the current vertex in the proposed state, φ∗
ri(k) and φ∗

ri(r) are the

probabilities of choosing vertices xik and xir respectively to define the simplex

for the reverse move. Hence, the probability of choosing the jth vertex in the

proposed state is

φ∗
ri(j) =

m∑
z=1

d(xiz,yic) − d(xij,yic)

m∑
z=1

d(xiz,yic)
.

Finally, pα(α
∗) is the probability of choosing the α∗ value from the pα(·) distri-

bution which ensures that the chain moves from vertex yic back to vertex xic.

When the tempered simplex sampler is applied, it depends on the skills of the

user to decide how many vertices are going to be updated under temperature Ti.

For instance, one may choose to update one, more than one or all of the vertices

of the xi population. It is obvious that the more vertices are updated the better

the mixing of the sampler will be considering also the computational power that

is used.

3.1.1.2 Expansion/Contraction move

It is possible for the vertices of the simplex to be far apart or too close to each

other, which results in inefficiently sampling because the sampler loses its local

ability. For this reason, every time a vertex is chosen another two are selected
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to define the current simplex depending on how far away or how close they are

from the chosen one.

For instance, suppose that one of the xij vertices is randomly selected, say

xil, then an expansion or contraction move will be applied. If an expansion move

is carried out then two more vertices, say xik and xir that are relatively close to

xil are selected. The vertices are chosen with probability

φi(j) =

m∑
z=1

d(xiz,xil) − d(xij,xil)

m∑
z=1

d(xiz,xil)
,

for j = l or j = r. On the other hand, if a contraction move is carried out then

the vertices, say xik and xir that are relatively far away from xil are selected

with probability

φi(j) =
d(xij ,xil)
m∑
z=1

d(xiz,xil)
,

for j = k or j = l. Hence, assume that the current simplex is defined as x =

{xic,xik,xir}. Then, the proposed expansion or contraction move is implemented

as described in section 2.3.2. The proposed move is accepted with probability

αexp/con (x,y) = min

{
1,

πTi(y)q(y,x)

πTi(x)q(x,y)

}
, (3.2)

where q(x,y) is the probability of moving from the current simplex, x, to the

proposed one, y. Hence, the proposal probability q(x,y) = νi(c)φi(k)φi(r)pβ(β)

where νi(c) is the probability of selecting vertex xic, φi(k) and φi(r) are the

probabilities of choosing xik and xir respectively and pβ(β) is the probability
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of choosing the contraction/expansion coefficient β from the pβ(·) distribution.

Note that the probability of carrying out an expansion or contraction move is 0.5

and consequently, it disappears in the acceptance probability given in (3.2).

The proposal probability q(y,x) ensures that the chain is able to move from

the proposed state back to the current one and for this reason, detailed balance is

preserved at each step of the expansion and contraction moves. Hence, the pro-

posal probability q(y,x) = ν∗
i (l)φ

∗
i (k)φ∗

i (r)pβ(β
∗), where ν∗

i (l) is the probability

of choosing vertex yil from the proposed population, φ∗
i (k) and φ∗

i (r) are the prob-

abilities of selecting vertices yik and yir respectively, after choosing vertex yil to

define the simplex in the proposed state. Finally, β∗ is the contraction/expansion

coefficient value for the reverse move.

3.1.1.3 Metropolis-Hastings update

Here, every vertex of the xi population is updated under each temperature Ti us-

ing a Metropolis-Hastings update. Hence, each of the components of the simplex

is generated as yij ∼ N(xij , σ
2) under temperature Ti where σ2 is the proposal

variance. The acceptance probability for the Metropolis-Hastings update is given

in the following formula (3.3)

αmh
(
xij ,yij

)
= min

{
1,

πTi(yij)

πTi(xij)

}
. (3.3)
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3.1.2 Second step: Exchange simplexes between different

temperatures.

Different simplexes are exchanged under different temperatures in order to pro-

mote mixing and avoid getting trapped under a single mode. Assume that the

population of Markov chains xi under temperature Ti is chosen to be exchanged

with another population xl under temperature Tl. Then, set the proposed pop-

ulation yi = xl under temperature Ti and yl = xi under temperature Tl. Thus,

the proposed move is accepted with probability

αe = min

{
1,

π(xl)
Ti

π(xi)Ti

π(xi)
Tl

π(xl)Tl

}

or equivalently,

αe = min

{
1,

(
π(xi)

π(xl)

)Tl−Ti
}

. (3.4)

If the proposed move is accepted with probability αe given in (3.4) then the

next state is yi under temperature Ti and yl under temperature Tl. Otherwise,

it is rejected with probability 1−αe and the chain stays where it currently is, i.e

at the next state of the chain, the population xi is under temperature Ti and the

population xl is under temperature Tl.

The populations are exchanged by randomly selecting i from 1, . . . , n and

then setting l = i ± 1 with probability p(j = i + 1) = p(j = i − 1) = 0.5 for

i = 2, . . . , n − 1, p(j = 2) = 1 for i = 1 and p(j = n − 1) = 1 for i = n. One can

choose each of the xi populations in turn to be exchanged or randomly select a

few of them.

When the exchange move is applied, it works best if the chosen populations
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have similar temperature values because there are more chances for the proposed

move to be accepted, i.e if Ti ≈ Tj then
(
π(xi)
π(xl)

)Tl−Ti

≈ 1. This characteristic is

important in the efficiency of the sampler.

The algorithmic version of the tempered simplex sampler is given Algorithm

in 4.

Algorithm 4 Tempered simplex sampler

At the current state a population X = (x1, . . . ,xn) is defined under a tempera-
ture ladder T = (T1, . . . , Tn) with T1 = 0 ≤ T2 ≤ . . . ≤ Tn = 1.

STEP A: Each population xi = (xi1, . . . ,xim), with xij ∈ IRd, explores the
target distribution within temperature Ti.

Each of the different chains in the population, xi, interacts with each other
using the simplex sampler.

(i) Apply a reflection move.

(ii) Apply an expansion/contraction move.

(iii) Apply a Metropolis-Hastings move.

STEP B: Exchange the population xi under temperature Ti with another pop-
ulation xl under temperature Tl.

1. Set yi = xl under temperature Ti and yl = xi under temperature Tl.

2. Estimate the acceptance probability probability αe given in (3.4).

3. Accept the proposed move with probability αe and the new population is
X = (x1, . . . ,yi, . . . ,yl, . . . ,xn) or reject it with probability 1−αe and the
chain stays where it currently is, so that X = (x1, . . . ,xi, . . . ,xl, . . . ,xn).

* Store only the population that corresponds to the distribution of interest at
the end of each sweep.

* Repeat the procedure for an sufficiently long time.



CHAPTER 3. TEMPERED SIMPLEX SAMPLER 76

3.2 Examples

In this section, only multi-modal target distributions are considered because of

their characteristics such as large areas of zero probability. Hence, it is a chal-

lenge for the sampler to jump between the modes. The performance of the tem-

pered simplex sampler is compared to the Real-parameter Evolutionary Monte

Carlo algorithm (Liang and Wong (2001)) and tempered transitions method (Neal

(1996)) through, the integrated autocorrelation (IA) and the efficient sample size

(ESS). The integrated autocorrelation is calculated using the method proposed

by Sokal (1997). Then, the efficient sample size is evaluated as N
/
(IAt), where

N is the sample size generated from the MCMC algorithm and t is the computa-

tion time to execute the algorithm. Thus, high values of the efficient sample size

give a measure of the performance of the algorithm which accounts for both the

computational time and the number of MCMC draws. Moreover, the coverage

probability under each mode is estimated and compared to the true one.

In the following examples, the algorithms run for 1, 000, 000 iterations in total

using a burn in of 20, 000 iterations. The computational cost was kept equal. The

parameter values of the proposal distribution are chosen based on the acceptance

probabilities. Here, the tempered simplex sampler uses ten populations under

ten different temperatures that are equally spaced in [0, 1]. Likewise, the Real-

parameter Evolutionary Monte Carlo algorithm and the tempered transitions

method use ten different temperatures equally spaced in [0, 1].
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3.2.1 Mixture of twenty Normal distributions

In the first example, the distribution of interest is a mixture of twenty Normal

distributions described by high and low probability areas. This example was also

explored in section 2.4.5. Here, the modes are well separated from each other as

shown in Figure 3.3(a). The challenge for the algorithms is to visit each mode

and traverse the whole sampling space while they also spend the right amount of

time sampling under each mode.

For the tempered simplex sampler, the simplex sampler is implemented by

drawing the reflection coefficient value from a Normal distribution N(0, 42), the

expansion/contraction coefficient value is simulated from a Gamma distribution

Ga(1, 2) and for the Metropolis-Hastings update, a Normal proposal distribution

N(0, 0.12) is used. Moreover, the Real-parameter Evolutionary Monte Carlo al-

gorithm uses a N(0, 0.12) as the proposal distribution in the mutation operator

and the Metropolis-Hastings algorithm in the snooker crossover operator. The

Metropolis-Hastings algorithm uses a N(0, 0.12). Here, the mutation probability

is 0.20. Furthermore, for the tempered transitions method a N(0, 1) proposal

distribution is used considering 100 iterations under each temperature.

As it turns out, all the different methods explore the entire sampling space

without getting trapped under a single maxima, see Figure 3.3. Hence, the

tempering ladder enables the methods to sample efficiently from multi-modal

target distributions. Then again, no significant difference can be seen between

the different methods following Figure 3.3. For this reason, the proportion of

realisations from the Markov chain under each mode is counted and compared to

the target one to test whether the algorithms sample with the correct frequency
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under each mode.
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Figure 3.3: (a)Mixture of twenty Normal distributions (b) tempered simplex
sampler (c) tempered transitions method and (d) Real-parameter Evolutionary

Monte Carlo algorithm for the mixture of twenty Normal distributions.
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Table 3.1 indicates which coordinates define the chosen modes that are pre-

sented in Table 3.2. The coverage of these modes is presented in Table 3.2. It

Modes A B C D
x-axis ∈ [8,9] [1,3] [0,2] [8,9]
y-axis ∈ [1,2] [0,1] [2,3] [9,10]

Table 3.1: Evaluation of the modes presented in Table 3.2

seems that the tempered simplex sampler and the tempered transitions method

perform better than the Real-parameter Evolutionary Monte Carlo algorithm.

The tempered simplex sampler gives slightly better proportions than the tem-

pered transitions method. However, the Real-parameter Evolutionary Monte

Carlo algorithm has the worst proportion compared to the other methods.

Modes A B C D
true 5% 15% 5% 10%

tempered simplex sampler 4.81% 14.18% 5.03% 10.57 %
EMC 1.17% 7.82% 5.33% 8.24%

tempered transitions 2.48% 16.48% 6.88% 3.68%

Table 3.2: Percentage of observations under different modes using the differ-
ent methods.

The integrated autocorrelation and the efficient sample size are presented in

Table 3.3. The tempered simplex sampler gives the smallest integrated auto-

correlation while the Real-parameter Evolutionary Monte Carlo algorithm and

tempered transitions method have the biggest integrated autocorrelation. The

tempered simplex sampler on the other hand, has the biggest efficient sample

size. Hence, the tempered simplex sampler is more efficient compared to the

other methods.
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Methods IA ESS N time
tempered simplex sampler 60 17 32,260 31.63

EMC 90 5 28,572 63,49
tempered transitions 67 6 50,000 124,38

Table 3.3: Integrated autocorrelation, efficient sample size, number of iter-
ations and time for the mixture of twenty normal distributions using each of

the different methods.

The total acceptance probability for the tempered simplex sampler is 0.3923,

for the Real-parameter Evolutionary Monte Carlo algorithm is 0.4059 and for

the tempered transitions method is 0.6015. The acceptance probabilities for the

between temperature moves are 0.6143 for the tempered simplex sampler, 0.5378

for the Real-parameter Evolutionary Monte Carlo algorithm and 0.730 for the

tempered transitions method.

3.2.2 Mixture of four bivariate Normal distributions

The next target is a mixture of four bivariate Normal distributions defined as

π(x) = w1N(x; µ1, Σ1) + w2N(x; µ2, Σ1) + w3N(x; µ3, Σ2) + w4N(x; µ4, Σ2)

where x ∈ IR2, wi = 0.25, for i = 1, . . . , 4, µ1 = [0, 0], µ2 = [−10,−10], µ3 =

[0,−10], µ4 = [−10, 0], Σ1 =




1

0.9

0.9

1


 and Σ2 =




1

−0.99

−0.99

1


.

The contour plot and density plot of the target distribution are presented in

Figure 3.4. The distribution of interest consists of high and low probability areas

with highly correlated components. Hence, the aim is to find out how efficiently

the algorithms sample under these high correlated modes.
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Mixture of four Normal distributions
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Figure 3.4: (a) Contour plot and (b) density plot for the mixture of the four
Normal distributions.

The tempered simplex sampler is implemented by drawing the reflection co-

efficient value from a N(0, 42), the expansion/contraction coefficient value is sim-

ulated from a Ga(1, 2). The Metropolis-Hastings update uses a N(0, 1). For the

Real-parameter Evolutionary Monte Carlo algorithm, a N(0, 1) is used for the the

mutation operator and in the snooker crossover operator. The mutation proba-

bility is 0.20. For the tempered transitions method, the transition probability is

N(0, 1) using 100 different iterations under each temperature.

The different techniques visit all modes and they sample efficiently from the

target distribution following Figure 3.5. However, the tempered simplex sam-

pler samples more efficiently under the modes compared to the other algorithms.

It seems that it may be worthwhile to use a population of chains under each

temperature to sample from the target distribution. In the tempered simplex

sampler case, the sampler uses the good mixing of the simplex sampler for high
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correlated targets and also the ability to sample from the distribution of interest

using different intermediate tempered distributions for multi-modal targets.

(a)
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Figure 3.5: (a)Tempered simplex sampler, (b) Real-parameter Evolutionary
Monte Carlo algorithm and (c) tempered transitions method for the mixture

of four Normal distributions.

In order to quantify the differences between the techniques, the coverage under

each mode is estimated. Each of the modes is selected and the percentage of

observations under them is evaluated. Table 3.4 presents the coordinates that

are used to define the modes in Table 3.5. It seems that the tempered simplex

sampler performs better than the other methods and samples more efficiently

under the modes following Table 3.5.

Modes A B C D
x-axis ∈ [-5,5] [-15,-5] [-15,-5] [-5,5]
y-axis ∈ [-15,-5] [-15,-5] [-5,5] [-5,5]

Table 3.4: Evaluation of the modes presented in Table 3.5.

The tempered simplex sampler has the smallest integrated autocorrelation

and the highest efficient sample size following Table 3.6. Therefore, it seems that
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Modes A B C D
target 25% 25% 25% 25%

tempered simplex sampler 26.68% 22.72% 26.30% 24.31 %
EMC 28.73% 51.34% 14.41% 5.52%

tempered transitions 32.67% 20.44% 24.36% 22.54%

Table 3.5: Percentage of observations under each mode for the mixture of
four Normal distributions using the different methods.

the tempered simplex sampler is sampling more efficiently than the other two

methods.

Methods IA ESS N time
tempered simplex sampler 41 24 32,260 32,78

EMC 66 6 28,572 72,15
tempered transitions 54 7 50,000 132,27

Table 3.6: Integrated autocorrelation, efficient sample size, number of itera-
tions and time for the mixture of four normal distributions using each of the

different methods.

The acceptance probability for the tempered simplex sampler is 0.3845, for

the Real-parameter Evolutionary Monte Carlo algorithm is 0.7823 and for the

tempered transitions method is 0.8763 in total.

3.2.3 Mixture of five bivariate Normal distributions

Here, a mixture of five bivariate Normal distributions is considered. The distri-

bution of interest is given in the following formula.

π(x) = w1N(x; µ1, Σ1)+w2N(x; µ2, Σ2)+w3N(x; µ3, Σ1)+w4N(x; µ4, Σ2)+w5N(x; µ5, Σ)
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for x ∈ IR2, where wi = 0.20, for i = 1, . . . , 5, µ1 = [0, 0], µ2 = [−10,−10], µ3 =

[0,−10], µ4 = [−10, 0], µ5 = [−5, 5], Σ1 =




1

0.9

0.9

1


, Σ2 =




1

−0.99

−0.99

1




and Σ3 =




1

0.5

0.5

1


.

The contour plot and density plot for the mixture of five Normal distributions

is presented in Figure 3.6. There are high and low probability areas where the

covariates under the four of the modes are highly correlated, while for one of

them they are not so strongly correlated. Once more, the aim is to find out how

well the algorithms sample under each of the modes and whether the different

correlation structures can be picked up by the sampling methods.

Mixture of five Normal distributions

−15 −10 −5 0 5
−15

−10

−5

0

5

(a) (b)

Figure 3.6: (a) Contour plot and (b) density plot for the mixture of five
dimensional Normal distributions.

Thus, the tempered simplex sampler is implemented by drawing the reflec-

tion coefficient value from a N(0, 42) and the expansion/contraction coefficient



CHAPTER 3. TEMPERED SIMPLEX SAMPLER 85

from a Ga(1, 2) while the Metropolis-Hastings update uses a N(0, 1). The Real-

parameter Evolutionary Monte Carlo algorithm uses a N(0, 1) for the the mu-

tation operator. In the snooker crossover operator, the Metropolis-Hastings al-

gorithm is used with a N(0, 1) proposal distribution. The mutation probability

is again 0.20. For the tempered transitions method, the transition probability is

N(0, 1) and 100 iterations are used under each temperature.

The different methods traverse the whole sample space and sample from each

mode without getting trapped under a single one, see Figure 3.7. Nevertheless, it

is not easy to draw conclusions based on the plots. For this reason, the coverage

under the modes is estimated in order to compare the different methods.

(a)
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−15
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−5

0

5
EMC

(b)
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−15

−10

−5

0
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(c)

Figure 3.7: (a) Tempered simplex sampler (b) Real-parameter Evolutionary
Monte Carlo and (c) tempered transitions method for the mixture of the five

bivariate Normal distributions.

Table 3.7 presents the way that each of the modes was evaluated before being

presented in Table 3.8. Notice that mode E is estimated as the area which is not

covered by the other modes. The tempered simplex sampler estimates the area

under each mode very well. Then again, the Real-parameter Evolutionary Monte
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Modes A B C D
x-axis ∈ [-3,5] [-15,-7] [-15,-8] [-3,2.5]
y-axis ∈ [-2,5] [-3,5] [-15,8] [-15,-7]

Table 3.7: Evaluation of the modes presented in Table 3.5.

Carlo algorithm does not estimate as well the area under each mode.

Modes A B C D E
true 20% 20% 20% 20% 20%

tempering simplex sampler 18.90% 21.20% 17.99% 20.41 % 21.50 %
EMC 17.58% 16.21% 22.28% 17.41% 25.02%

tempered transitions 18.59% 20.06% 22.51% 18.37% 20.47%

Table 3.8: Percentage of observations under each mode for the mixture of
five Normal distributions using the different methods.

The integrated autocorrelation and the efficient sample size are calculated and

presented in Table 3.9. The tempered simplex sampler has the largest efficient

sample size, and the Real-parameter Evolutionary Monte Carlo algorithm gives

the smallest one. Thus, the tempered simplex sampler performs better than the

other methods.

Methods IA ESS N time
tempering simplex sampler 77 13 32,260 32,23

EMC 87 5 28,572 65,68
tempered transitions 59 7 50,000 121,06

Table 3.9: Integrated autocorrelation, efficient sample size, number of itera-
tions and time for the mixture of five normal distributions using each of the

different methods.

In this example, the acceptance probability for the tempered simplex sampler
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is 0.3453, for the Real-parameter Evolutionary Monte Carlo algorithm is 0.4162

and for the tempered transitions method is 0.3945 in total. Thus, the acceptance

probabilities indicate that the algorithms have been tuned efficiently.

3.2.4 Mixture of two ten-dimensional Bimodal distribu-

tions

The last example is a mixture of two ten-dimensional bimodal distributions aim-

ing to test the performance of the algorithms when a high dimensional target is

considered. If the dimension is high then the algorithm becomes more compu-

tationally expensive. Thus, the distribution of interest is given in the following

formula:

π(x) = 1/3N10(x; 0, I10) + 2/3N10(x; 5, I10)

where 0 = (0, . . . , 0), 5 = (5, . . . , 5) and I10 is the identity matrix. In this case,

the modes are well separated, see Figure 3.8(a).

Hence, the tempered simplex sampler is implemented by drawing the reflec-

tion coefficient value from a N(0, 42) and the expansion/contraction coefficient

from a Ga(1, 2) while the Metropolis-Hastings update uses a N(0, 1). The Real-

parameter Evolutionary Monte Carlo algorithm uses a N(0, 1) for the the mu-

tation operator and the Metropolis-Hastings algorithm for the snooker crossover

operator. The Metropolis-Hastings algorithm is used with a N(0, 1) proposal

distribution. Here, the mutation probability is 0.20. In the case of the tempered

transitions method, a N(0, 1) proposal distribution is used and 100 iterations.

In Figure 3.8, a randomly selected variable is presented because the rest of

the variables are similar to the presented ones. It seems that the algorithms
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sample under both modes with the correct frequency. Thus, the tempered simplex

sampler does not get trapped under a single one.

The integrated autocorrelation and efficient sample size are also evaluated

and presented in Table 3.10. The tempered simplex sampler gives the higher effi-

cient sample size compared to the other methods, while the tempered transitions

method has the smallest one. The reason may be that the tempered transitions

method has very small acceptance probability resulting in slow mixing of the

chain and a highly correlated output. Therefore, the integrated autocorrelation

for the tempered transition method is the largest one.

Methods IA ESS N time
tempering simplex sampler 4106 0.24 32,260 32,74

EMC 5002 0.09 28,572 63,47
tempered transitions 5459 0.07 50,000 130,84

Table 3.10: Integrated autocorrelation, efficient sample size, number of iter-
ations and time for the mixture of the two bimodal ten-dimensional Normal

distributions using each of the different methods.

In this case, the acceptance probability for the tempered simplex sampler is

0.4949, for the Real-parameter Evolutionary Monte Carlo algorithm is 0.5754 and

for the tempered transitions method is 0.0245 in total. Notice that the acceptance

probability for the tempered transitions method is very low. Hence, the algorithm

does not mix well resulting in slow mixing of the chain.
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Figure 3.8: (a) Target distribution (b) tempered simplex sampler (c) Real-
parameter Evolutionary Monte Carlo and (d) tempered transitions method for

the mixture of the two bimodal ten-dimensional Normal distributions.
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3.3 Discussion

Usual MCMC methods use a single Markov chain to explore the sampling area

and for this reason, they may not perform so well in the case of highly correlated or

multi-modal target distributions. For this reason, population MCMC algorithms

use several Markov chains that run in parallel and interact in various ways in

order to traverse the sampling space. The simplex sampler performs well in the

case of highly correlated target distributions but it tends to be trapped under

a single maxima. For this reason, the tempered simplex sampler is designed to

overcome this problem.

Regular tempering methods use a population of chains one for each temper-

ature. On the other hand, the tempered simplex sampler uses a population of

chains for each temperature. Hence, the tempered simplex sampler uses the idea

of the simplex sampler to explore the sampling space under each temperature

while a population of chains is exchanged under different temperatures. Thus,

the tempered simplex sampler uses the good mixing ability of the simplex sam-

pler in the cases of highly correlated target distributions and the good mixing

of the tempering methods that are able to traverse the entire sampling space

without being trapped under a single maxima. For this reason, the mixing of the

tempered simplex sampler is better compared to the simplex sampler described

in Chapter 2.

The performance of the tempered simplex sampler is compared to that of the

Real-parameter Evolutionary Monte Carlo algorithm and the tempered transi-

tions method. The mixing of the tempered simplex sampler is better than the
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Real-parameter Evolutionary Monte Carlo algorithm and the tempered transi-

tions method in the considered examples. Moreover, the Real-parameter Evolu-

tionary Monte Carlo algorithm does not perform as well as the tempered simplex

sampler or the tempered transitions method. Furthermore, the tempered simplex

sampler gives better efficient sample size in most of the examples.

In the case of a high dimensional target distribution, the tempered simplex

sampler performs again better and gives the highest efficient sampling size. More-

over, for the specific example that is was examined, the tempered transitions

method has very small acceptance probability resulting in slow mixing of the

chain. For this reason, the efficient sample size was very small.

The tempered simplex sampler is computationally very intensive particularly

for high dimensional cases. The sampler is much easier to be tuned compared to

the Real-parameter Evolutionary Monte Carlo algorithm. When the target is a

multi-modal distribution, then there is no natural way to define the simplex. In

this case, the number of vertices depends on the complexity of the target.

In conclusion, the tempered simplex sampler samples efficiently from multi-

modal distributions. It mixes well under the modes and also traverse the whole

sampling area. In future work, the aim is to try different ways of exchanging the

population of the several Markov chains under different temperatures. One may

be able to use the the tempered transitions method by considering a population

of Markov chains under each temperature and not just a single Markov chain.



Chapter 4

Automatic RJMCMC for

variable selection - tractable

posterior distribution

Variable selection is an important problem in statistics. Given a collection of

variables, the question is, which variables best describe the data y. Hence, the

aim is to find a model that contains enough variables to explain the data and

yet is sufficiently parsimonious to avoid over-fitting. Consider the setting of a

variable selection problem where there are N possible covariates to choose from.

In this case, there are 2N posssible models. Thus, for even a small number of

covariates, the total number of possible models can be considerably large and

this presents an enormous problem.

Suppose that θ = (θ1, . . . , θN ) is the parameter vector for the saturated model.

If the ith predictor variable is excluded from the model then the corresponding

component of the parameter vector is θi = 0 while if the ith covariate is included

92
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then θi 6= 0. A vector of latent binary variables γ = (γ1, . . . , γN) can therefore

be used to denote whether a particular variable is included or excluded from

the model. Thus, if θi = 0, then γi = 0 meaning that the ith covariate is not

included in the model while if γi = 1 then the ith covariate is included in the

model. Hence, each model is characterised by different γ binary vectors.

4.1 Reversible Jump Markov chain Monte Carlo

Reversible jump Markov chain Monte Carlo (RJMCMC) introduced by Green

(1995) is an extension of the Metropolis-Hastings algorithm for stationary distri-

butions of variable dimension. RJMCMC has been successfully applied in a wide

variety of settings, including the challenging problem of determining the number

of components in a finite mixture (Richardson and Green (1997)) and determining

the number of states in a hidden Markov model (Robert et al. (2000)). RJM-

CMC usually considers of a selection of move types, some of which explore the

parameter space within a model, and others which propose changes to the dimen-

sionality of the model. Thus, the chain explores both the model and parameter

space. Assume that the sampling space consists a collection of Λ possible models

where each model Mγ is described by an unknown parameter vector θγ . The

model dimension may vary from model to model. The target distribution is the

posterior given by the following formula:

π(Mγ , θγ |y) ∝ L(y|θγ , Mγ) p(θγ |Mγ) p(Mγ), (4.1)
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where L(y|Mγ , θγ) is the likelihood of the data y described by model Mγ ,

p(θγ |Mγ) is the prior density for parameters θγ within model Mγ and p(Mγ)

indicates the prior probability of model Mγ .

At each iteration of the Markov chain, the sample space is explored by first

applying regular Markov chain Monte Carlo methods such as the Metropolis-

Hastings algorithm or the Gibbs sampler to explore within a model and then by

proposing to change the dimension of the model. Suppose that at the current

state, the Markov chain visits model Mγ with parameter vector θγ and a jump

is proposed to a different dimensional model Mγ ′ with parameter vector θγ ′ .

First generate a vector v from some proposal distribution qγ ,γ ′(·) and then the

proposed parameter vector is chosen as (θγ ′,v′) = fγ ,γ ′(θγ ,v) where fγ ,γ ′(·, ·)

is some deterministic invertible function. For the reverse move, a vector v′ is

generated from some proposal distribution qγ ′,γ(·) where dim(θγ) + dim(v) =

dim(θγ ′) + dim(v′). The proposed jump is either accepted as the new state

of the Markov chain with probability Aγ ,γ ′(θγ , θγ ′) where Aγ ,γ ′(θγ , θγ ′) =

min (1, A), with

A =
π(Mγ ′, θγ ′ |y)

π(Mγ , θγ |y)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

qγ ′,γ(v′)

qγ ,γ′(v)

∣∣∣∣
∂fγ ,γ′(θγ ,v)

∂fγ ′,γ(θγ ′ ,v′)

∣∣∣∣ (4.2)

or rejected with probability 1−Aγ ,γ′(θγ , θγ ′) and the Markov chain remains at

model Mγ .

Here, p(Mγ → Mγ ′) is the probability of proposing a jump from model Mγ to

model Mγ ′. The last term of equation (4.2) is the Jacobian for the transformation

of the parameter vector θγ to parameter vector θγ ′ .

In the case where models are nested or the interpretation of the parameters
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is similar between different models, a popular approach to define the proposed

parameter vector is to add or delete parameters in the current one. Hence,

the jumps are deterministic in one direction, in this case. Every time that a

higher dimensional jump is proposed, the new parameter vector is estimated as

θγ ′ = fγ ,γ ′(θk,v) where v is generated from qγ ,γ′(·) and dim(θγ) + dim(v) =

dim(θγ ′). The acceptance probability is Aγ ,γ ′(θγ , θγ ′) = min (1, A), with

A =
π(Mγ ′, θγ ′ |y)

π(Mγ , θγ |y)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

1

qγ ,γ ′(v)

∣∣∣∣
∂fγ ,γ ′(θγ ,v)

∂(θγ ,v)

∣∣∣∣ .

The reverse move to a smaller dimensional space involves moving from θγ ′ to

(θγ ,v) and the acceptance probability is equal to min (1, A).

RJMCMC allows the parameters of the proposed model to depend on the

parameters in the current model in a general way through the function fγ ,γ′(·, ·).

The problem of choosing fγ ,γ ′(·, ·) involves choosing the structural aspect of the

proposal mechanism as Peter Green addresses in a discussion of Brooks et al.

(2003). He suggests that this is often the difficult and crucial part in implementing

RJMCMC.

If the function fγ ,γ′(·, ·) is the identity matrix then the Jacobian term in

formula (4.2) is one. In this case, the full parameter vector θγ ′ is sampled from

a proposal distribution qγ ,γ ′(·) and the acceptance probability is

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

π(Mγ ′, θγ ′ |y)

π(Mγ , θγ |y)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

qγ ′,γ(θγ)

qγ ,γ ′(θγ ′)

)
.
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4.2 Proposal distribution of the parameters -

Different updating schemes

Depending on the structure of the problem, it is probable that some of the models

will have variables in common. For instance, if the models are nested then it

may be reasonable to assume that the interpretation of the parameters between

different models may be the same meaning that the parameter values are similar

between different models. On the other hand, considering regression problems, it

may not be so natural to assume that the parameters have the same interpretation

between different models.

In this chapter, it is assumed that the posterior distribution of the parameters

in each model is of a standard form. In this case, our strategy is to use the full-

conditional posterior distribution of the parameters as a proposal distribution.

Thus, assume that model Mγ is indicated by the parameter vector γ. When a

jump is proposed from model Mγ to model Mγ ′ then the proposed parameter

vector is generated from the full-conditional posterior distribution of the param-

eters of model Mγ ′. Our primary question of interest is to decide whether it is

better to condition on one, some or all of the parameters that are in common to

both models.

It is assumed that the posterior distribution of the parameters is of standard

form, and the marginal likelihood is available, since the posterior model prob-

abilities are calculated exactly, and these estimates are compared to estimates

gathered using the RJMCMC algorithm.

Assume that at the current state, model Mγ is visited with parameter vector

θγ and a jump is proposed to model Mγ ′ with parameter vector θγ ′ . Let ψ
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indicate which variables are in common between models Mγ and Mγ ′ so that

ψ = {i : γi = γ′
i = 1, 1 ≤ i ≤ N}. Suppose that ψ is not the empty set

and let ψ′ be a non-empty subset of ψ which denotes the parameter values that

are conditioned on. Hence, θψ′ is a collection of θi parameters for which the

corresponding variables are common in both the current and proposed models so

that θψ′ = {θi : i ∈ ψ′}.

To illustrate this, consider the following situation. Suppose that we are in

a variable selection setting with data y and a selection of explanatory vari-

ables x1, x2, x3, x4, x5. Suppose that the Markov chain visits model Mγ , where

γ = (1, 1, 1, 0, 1) and with parameter vector θγ = (θ1, θ2, θ3, θ5). Further-

more, suppose that a move is proposed to model Mγ ′ , with γ ′ = (1, 1, 0, 1, 1).

Hence, ψ = {1, 2, 5} and this indicates that variables x1, x2 and x5 are com-

mon to model Mγ and Mγ ′ . Our interest is to decide which, if any of the

corresponding parameters, θ1, θ2 and θ5 to condition on in our proposal distri-

bution. For example, suppose that we choose to update parameters θ1 and θ5

as well as the newly introduced parameter θ4. Therefore, the proposal distribu-

tion q(θ∗γ ′|θγ) is the full-conditional posterior distribution, π(θ∗1, θ
∗
4, θ

∗
5|θ2, Mγ ′),

so that θγ ′ = (θ∗1, θ2, θ
∗
4, θ

∗
5). In general, let ψ′ ⊆ ψ denote the variables from

among the collection of variables that are in common with Mγ and Mγ ′ that are

chosen to condition on. Three different strategies are considered depending on

the ψ′ choice so that

ψ′ =






ψ, Scheme A

∅, Scheme C

otherwise, Scheme B
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4.2.1 Scheme A: Condition on all common variables

Brooks and Ehlers (2008) used the second order method of Brooks et al. (2003)

for the autoregressive model choice in the difficult problem of choosing the model

order. It turns out that in this case, the optimal proposal distribution is the

full-conditional posterior distribution of the parameters. For a linear regression

variable selection problem, it can be proven that the proposal distribution which

is estimated with the second order method of Brooks et al. (2003) is also the

full-conditional posterior distribution of the parameters when only the newly

introduced parameters are generated from it and the other parameters retain the

current parameter values in the proposed model.

Thus, when the models are nested or the interpretation of the parameters does

not change between models, it might be reasonable to generate only the newly in-

troduced parameters v and retain the common parameter values in the proposed

state. This is actually the most popular choice in the implementation of the RJM-

CMC algorithm. Hence, the vector v is drawn from the full-conditional posterior

distribution qγ ,γ′(v) = π(v|θψ,y, Mγ ′) where dim(v) + dim(θγ) = dim(θγ ′).

In this case, the acceptance probability is given by the following formula:

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

π(θγ ′ , Mγ ′ |y)

π(θγ , Mγ |y)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

1

qγ ,γ′(v)

)
.

Here, the proposed parameter vector v is generated by conditioning on the

current state of the chain, i.e the current parameters θγ . In the case of nested

models like the autoregressive model choice, the jumping move is deterministic in

one direction. Hence, if a jump is proposed to a higher dimension then only the

newly introduced parameters v are added in the current parameter vector θγ to
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match the proposed dimension. On the other hand, when a jump is proposed to

a lower dimension then some of the current parameter values are deleted for the

same reason.

Scheme A is the most popular choice to generate the proposed parameter

vector inside the RJMCMC algorithm even though, it does not seem to be the

best strategy. For instance, consider the data set that appears in Figure 4.1.

One might want to decide which of the two models, the constant or the two

dimensional linear model, describes the data better. Suppose that the RJMCMC

algorithm is used to find out the best model. At the current state of the Markov

chain, model K1 is visited with parameters θ1 = a and a jump is proposed to

model K2 with parameter vector θ2 = (a∗, b∗). If the current parameter values

are retained in the proposed state of the Markov chain such that a∗ = a, the

best model may never be visited. Then again, if both parameters are updated in

the proposed state, then there may be a better chance of finding the best model.

Hence, retaining the current parameters in the proposed state may not always

be a good strategy. It seems that proposing a totally new parameter vector or

adjusting the current parameters after generating the new ones may be a better

choice.

4.2.2 Scheme B: Condition on some subset of the common

variables

Following the previous section, it may be reasonable to update some of the current

parameters together with the newly introduced ones conditioning on some subset

of the common variables. Thus, assume that at the current state model Mγ is
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Figure 4.1: (a) Current state of the Markov chain, y = a. (b) Proposed
state of the Markov chain, y = a + b∗x, when the current parameter value a is
retained in the proposed state. (c) One of the possible proposed states of the
Markov chain, y = a∗ + b∗x, when the full parameter vector is updated in the

proposed state.

visited with parameters θγ and a jump is proposed to model Mγ ′ with parameters

θγ ′ . Recall that ψ consists of all the common variables, while ψ′ is a subset

of ψ. Then, θψ′ is the parameter vector of all the common variables to be

conditioned on such as θψ′ = {θi : i ∈ ψ′}. Hence, a subset of some common

variables is generated together with the newly introduced ones conditioning on

θψ
′ . In this case, the proposal distribution is qγ ,γ′(v) = π(v|θψ′ ,y, Mγ ′) where

dim(v) + dim(θψ′) = dim(θγ ′) and the acceptance probability is

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

π(Mγ ′ , θγ ′|y)

π(Mγ , θγ |y)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

qγ ′,γ(θψ′)

qγ ,γ ′(v)

)
(4.3)

Unfortunately, there is no natural way to lead the choice of how many and which

of the common variables should be conditioned on. Hence, there is no obvious
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way to choose ψ′. Therefore, the elements of ψ′ are randomly chosen each time.

4.2.3 Scheme C: Condition on no common variables

In this scheme, the full parameter vector is updated in the proposed state of the

Markov chain conditioning on no common parameter values. For this reason, the

proposal mechanism is independent of the current state. The proposal distri-

bution is now the posterior distribution of model Mγ ′ , qγ ,γ ′(·) = π(v|y, Mγ ′),

where dim(v) = dim(θγ ′) and the acceptance probability is

Aγ ,γ′(θγ , θγ ′) = min

(
1,

π(Mγ ′ , θγ ′|y)

π(Mγ , θγ |y)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

π(θγ |y, Mγ)

π(θγ ′|y, Mγ ′)

)
.

Notice that the joint posterior model probability is proportional to the like-

lihood times the prior distribution of the parameters and the prior distribution

for the model so that π(Mγ , θγ |y) ∝ ℓ(y|θγ , Mγ)p(θγ |Mγ)p(Mγ). Hence, the

acceptance probability takes the following form:

Aγ ,γ ′(θγ ,θγ ′) = min

(
1,

ℓ(y|θγ ′ ,Mγ ′)p(θγ′ |Mγ ′)p(Mγ ′)

ℓ(y|θγ ,Mγ)p(θγ |Mγ)p(Mγ)

p(Mγ ′ → Mγ)

p(Mγ → Mγ′)

π(θγ |y,Mγ)

π(θγ ′ |y,Mγ ′)

)
.

Furthermore, the marginal likelihood of the data assuming model Mγ is

p(y|Mγ) = ℓ(y|θγ , Mγ) p(θγ |Mγ)
/
π(θγ |y, Mγ).

Therefore, the acceptance probability can be written as

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

p(y|Mγ ′)

p(y|Mγ)

p(Mγ ′)

p(Mγ)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

)
.
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Moreover, the posterior model probability is p(Mγ |y) ∝ p(y|Mγ)p(Mγ) so that

the acceptance probability is defined as

Aγ ,γ′(θγ , θγ ′) = min

(
1,

p(Mγ ′ |y)

p(Mγ |y)

p(Mγ ′ → Mγ)

p(Mγ → Mγ ′)

)
. (4.4)

Hence, the acceptance probability given in (4.4) is independent of the current

parameter vector θγ or the proposed one θγ ′ . It is the ratio of the posterior

model probability for model Mγ ′ to the posterior model probability for model

Mγ multiplied by the ratio of the probability to jump from model Mγ ′ to model

Mγ versus the probability for the reverse move. When the probability of moving

from model Mγ ′ to model Mγ equals the probability of moving from model Mγ to

model Mγ ′ , that is p(Mγ ′ → Mγ) = p(Mγ → Mγ ′), the acceptance probability

for Scheme C reduces to the odds ratio of the posterior model probability of

model Mγ to model Mγ ′, i.e

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

p(Mγ ′ |y)

p(Mγ |y)

)
.

Suppose that at the current state, model Mγ is visited with parameter vector

θγ . Then, at each iteration the proposal mechanism of the RJMCMC algorithm

using each of the updating schemes is described in Algorithm 5.

If the full-conditional posterior distribution of the parameters has a tractable

form then it is straightforward to generate the proposed parameter vector from

it and for this reason, no tuning is necessary. In the next section, a normal linear

regression model is used to test the performance of the algorithm applying each
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Algorithm 5 Proposal mechanism of RJMCMC

Jump move: Change in dimension

1. Choose the proposed model Mγ ′ using a local proposal distribution that
jumps up or down one or more dimensions.

If Scheme A: Generate the proposed parameter vector θγ ′ so that θγ ′ =
(θγ ,v), where v ∼ π(v|θψ,y, Mγ ′).

If Scheme B: Generate the proposed parameter vector θγ ′ so that θγ ′ =
(θγ ,v), where v ∼ π(v|θψ′,y, Mγ ′).

If Scheme C: Generate the proposed parameter vector θγ ′ so that θγ ′ ∼
π(θγ ′|y, Mγ ′).

2. Accept or reject the proposed move with the corresponding probability
Aγ ,γ ′(θγ , θγ ′).

Exchange move: No change in dimension

1. Choose a model of the same dimension, Mk where dim(θk) = dim(θγ).

2. If Scheme A: Generate the proposed parameter vector θk so that θk =
(θγ ,v), where v ∼ π(v|θψ,y, Mk).

If Scheme B: Generate the proposed parameter vector θk so that θk =
(θγ ,v), where v ∼ π(v|θψ′,y, Mk).

If Scheme C: Generate the proposed parameter vector θk so that θk ∼
π(θk|y, Mk).

3. Accept or reject the proposed move with the corresponding probability
Aγ ,k(θγ , θk).

Gibbs updates: No change in dimension

If Scheme A or Scheme B: Single component updates using the full-
conditional posterior distribution of the parameters.

If Scheme C: Block updates using the posterior distribution of the parameters.
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of the three different updating schemes since the marginal likelihoods, p(y|Mk),

are tractable. For this reason, the actual posterior model probabilities are known

and can be compared to the estimated posterior model probabilities using the

RJMCMC algorithm for each of the three different updating schemes. Then,

conclusions can be made on the performance of the three different algorithms.

An autoregressive example is also used to test the performance of the algo-

rithm. Here, the full-conditional posterior distribution of the parameters is also

tractable but the marginal likelihood, p(y|Mk), is not known in closed form. In

this case, the power posterior method of Friel and Pettitt (2008) is used to es-

timate the posterior model probabilities. The posterior model probabilities are

estimated very accurately using the power posterior method by running a very

long Markov chain. Then, they are compared to the ones estimated with the

RJMCMC algorithm using each of the three updating schemes. Therefore, con-

clusions can be made on the performance of the different RJMCMC algorithms.

4.3 Examples

4.3.1 Linear regression model choice

In this section, the performance of the RJMCMC algorithm using each of the

updating schemes is tested on a linear regression problem. This is a teaching

example since the marginal likelihoods are known in closed form. Thus, the pos-

terior model probabilities are also tractable and there is no need for the RJMCMC

algorithm to be implemented. On the other hand, the estimated posterior model

probabilities with the RJMCMC method can be compared to the actual target
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ones. Then, conclusions can be made on the performance of the algorithms and

consequently, it can be decided which of the different updating schemes is best.

Consider a variable selection problem where y = (y1, . . . , yn)
T is a collection

of n observed responses and xi = (xi1, . . . , xip)
T is the p × 1 vector of predictors

for yi, with i = 1, . . . , n. X is a n× p matrix where its ith row is xTi . Hence, the

Normal linear regression model is given in the following formula

y = Xβ + ǫ

where β = (β0, . . . , βp)
T is a p×1 vector of unknown parameters and the residuals

ǫ are Normally distributed according to Nn(0,
1
τ
In) where τ is the precision of the

residual and In is the identity matrix.

In Bayesian variable selection problems, a prior distribution is used to describe

the prior beliefs about the vector of unknown parameters β. Notice that if the

component of the parameter vector βj = 0 then it is implied that the jth predictor

variable is not included in the model. On the other hand, when βj 6= 0 then the

jth predictor variable is included in the model. A vector of latent binary variables

γ = (γ1, . . . , γn) indicates which variable is included or excluded from the model.

Thus, each of the components of the binary vector is γj = 0 when βj = 0 which

implies that the jth predictor variable is not included in the model and γj = 1,

otherwise. There are various models indicated by different γ values depending

on whether the jth predictor variable is used to estimate the mean of y or not.

Given a vector γ, the corresponding parameter vector βγ is obtained by

extracting the non-zero components of β. For this reason, βγ is a subset of β.

Likewise, Xγ includes all columns of X that correspond to γi = 1. Assume that
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for known γ values, y is defined as

y = Xγ βγ + ǫ.

The conjugate prior on βγ is denoted by p(βγ |τ, Mγ) and the conjugate prior

on τ is p(τ |Mγ). The marginal likelihood is

p(y|Mγ) =

∫ ∫
p(βγ |τ, Mγ)p(τ |Mγ)dβγdτ

and the prior distribution for the unknown parameters is

p(βγ , τ, Mγ) = p(βγ |τ, Mγ)p(τ |Mγ)p(Mγ).

Following Bernardo and Smith (1994), it is assumed that the prior distri-

bution for the parameter vector βγ , p(βγ |τ, Mγ), is Np(0, τ−1Ip) and for the

precision τ , p(τ |Mγ), is Ga(a, b−1) so that the prior distribution for the pa-

rameters within model Mγ is a Normal-Gamma defined as p(βγ , τ |Mγ) =

p(βγ |τ, Mγ)p(τ |Mγ) = NpGa(0, τ−1, Ip, a, b−1). The prior distribution for each

model Mγ , p(Mγ), is a Uniform distribution. Hence, the data y are modelled as

y ∼ Nn(Xγ βγ , τ−1In).

The likelihood is thus given by

L(y|Xγ , βγ , τ, Mγ) =
1

|τ−1In|
1
2 (2 π)

n
2

exp

{
−τ

2

(
y − Xγ βγ

)′ (
y − Xγ βγ

)}
.
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The priors are

p(βγ |τ, Mγ) =
1

|τ−1Ip|
1
2 (2 π)

p
2

exp
{
−τ

2
β′
γβγ

}

and

p(τ |Mγ) =
τa−1

1
ba

Γ(a)
exp{−τb}.

The posterior probability of the parameters is then

π(βγ , τ |y,Xγ , Mγ) ∝ L(y|Xγ , βγ , τ, Mγ) p(βγ , τ |Mγ)

∝ τa−1+ n
2
+ p

2 exp
{
−τ

2

(
y′ − β′

γX′
γ

)(
y − Xγβγ

)
−

τ

2
β′
γβγ − τ b

}

= τa+
n
2
+ p

2
−1 exp

{
−τ

2

[
y′y − y′Xγβγ − β′

γX′
γy+

β′
γX′

γXγβγ + β′
γβγ + 2b

]}
.

= τa+
n
2
+ p

2
−1 exp

{
−τ

2

[
β′
γ

(
X′
γXγ + Ip

)
βγ−

β′
γX′

γy − y′Xγβγ + y′y + 2b
]}

. (4.5)

In general, it can be written that if z ∼ Nn(µ, Σ) then

f(z|µ, Σ) =
1

|Σ| 12 (2 π)
n
2

exp

{
−1

2
(z − µ)′ Σ−1 (z − µ)

}

=
1

|Σ| 12 (2 π)
n
2

exp

{
−1

2
(z′ − µ′) Σ−1 (z − µ)

}

=
1

|Σ| 12 (2 π)
n
2

exp

{
−1

2

(
z′Σ−1z − z′Σ−1µ− µ′Σ−1z + µ′Σ−1µ

)}
. (4.6)
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From (4.5) and (4.6), the posterior probability can be written as

π(βγ , τ |y,Xγ , Mγ) ∝ τa+
n
2
+ p

2
−1 exp

{
−τ

2

[(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)
−

µ∗Σ
−1
∗ µ∗ + y′y + 2b

]}

∝ τ
p
2 exp

{
−τ

2

(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)}

τa+
n
2
−1 exp

{
−τ

[
y′y − µ∗Σ

−1
∗ µ∗

2
+ b

]}

where µ∗ = Σ∗(Xγ
′y), Σ∗ = (Xγ

′Xγ + Ip)
−1, a∗ = a + n

2
and b∗ = 1

2
(y′y −

µ
′

∗Σ
−1
∗ µ∗) + b.

Hence, the posterior probability of the parameters is a Normal-Gamma dis-

tribution

π(βγ , τ |y,Xγ , Mγ) = NpGa(µ∗, Σ∗, a∗, b∗).

Then, the posterior distribution can be written as

π(βγ , τ |y,Xγ , Mγ) =
p(βγ , τ) ℓ(y|Xγ , βγ , τ, Mγ)

p(y|Mγ)
.

Therefore, the marginal likelihood appears as

p(y|Mγ) =
p(βγ |τ) p(τ) ℓ(y|Xγ , βγ , τ, Mγ)

π(βγ , τ |y,Xγ , Mγ)

=

baτa−1

τ−p/2|Ip|1/2(2π)p/2Γ(a)τ−n/2(2π)n/2

τa∗−1ba∗∗
|τ−1Σ∗|1/2(2π)p/2Γ(a∗)

exp {q}

=
baτa−1τ−p/2|Σ∗|1/2(2π)p/2Γ(a∗)

τ−p/2|Ip|1/2(2π)p/2Γ(a)τ−n/2(2π)n/2τa∗−1ba∗∗
exp {q}.
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Recall that a∗ is defined as a∗ = a + n
2
. Hence, the marginal likelihood is

π(y|Mγ) =
ba|Σ∗|1/2Γ(a∗)

|Ip|1/2Γ(a)(2π)n/2ba∗∗
exp {q}

where the exponential term, exp {q}, is

exp {q} = exp

{
−τ

[
b − b∗ +

1

2

[
β′
γβγ +

(
y − Xγ βγ

)′ (
y − Xγ βγ

)
−

(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)]]}

= exp

{
−τ

[
b − b∗ +

1

2

[
β′
γβγ + (y′ − β′

γX′
γ)(y − Xγβγ)−

(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)]]}

= exp

{
−τ

[
b − b∗ +

1

2

[
β′
γβγ + y′y − β′

γX′
γy − y′Xγβγ+

β′
γX′

γXγβγ −
(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)]]}

= exp

{
−τ

[
b − b∗ +

1

2

[
β′
γ(Ip + X′

γXγ)βγ + y′y − β′
γX′

γy−

y′Xγβγ −
(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)]]
.

}

From equation (4.6), µ∗ = Σ∗(Xγ
′y) and Σ∗ = (Xγ

′Xγ + Ip)
−1. If these are
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replaced in the above equation, the exponential term then becomes

exp {q} = exp

{
−τ

[
b − b∗ +

1

2

[
β′
γΣ−1

∗ βγ + y′y − β′
γΣ−1

∗ µ∗ − µ′
∗Σ

−1
∗ βγ−

(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)]]}

= exp

{
−τ

[
b − b∗ +

1

2

[(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)
+ y′y − µ′

∗Σ
−1
∗ µ∗−

(
βγ − µ∗

)′
Σ−1

∗

(
βγ − µ∗

)]]}

= exp

{
−τ

[
b − b∗ +

1

2

[
y′y − µ′

∗Σ
−1
∗ µ∗

]]}

= exp {−τ [b − b∗ + b∗ − b]}

= exp {0}

= 1.

Notice that b∗ = 1
2
(y′y − µ′

∗Σ
−1
∗ µ∗) + b so that q is zero and for this reason,

exp {q} = 1. Hence, the marginal likelihood takes the following form

p(y|Mγ) =
baΓ(a∗)|Σ∗|1/2

ba∗∗ Γ(a)|Ip|1/2(2π)n/2
. (4.7)

Therefore, the marginal likelihood, given in (4.7), is available in closed form.

In this case, everything is tractable and for this reason, the estimated posterior

model probabilities,

π(Mγ |y) =
p(Mγ) p(y|Mγ)∑
γ

p(Mγ) p(y|Mγ)
,
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that are calculated using the RJMCMC algorithm can then be compared to the

exact target posterior model probabilities. Thus, this example can teach us how

well the algorithm performs and which of the three strategies is best.

Three different types of move are used inside the RJMCMC in order to im-

prove mixing. The first type of move jumps between models of different dimension

changing dimensionality. Then, a fixed dimension move, called the exchange move

is applied between models of the same dimension. In the exchange move, some

of the variables in the current model are exchanged with some of the variables

that are not included in the current model. For instance, if the model indicator

of the current model is γ = (1, 0, 0, 0, 1, 1, 1) then the model indicator of the

proposed model may be γ ′ = (1, 1, 0, 0, 1, 0, 1). Hence, variable x6 is proposed to

be exchanged with variable x2. The proposed parameter vector for the exchange

move is also generated from the full-conditional posterior distribution of the pa-

rameters according to each of the different updating schemes. The third type of

move is also a fixed dimensional move that explores the current model and up-

dates the current parameters using MCMC methods like the Metropolis-Hastings

algorithm or the Gibbs sampler.

4.3.1.1 Proposal distributions for each of the updating schemes

It has already been shown that the full-conditional posterior distribution of the

parameters is a Normal-Gamma distribution

π(βγ , τ |y,Xγ , Mγ) = NGa(µ∗, Σ∗, a∗, b∗) (4.8)
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where µ∗ = Σ∗Xγ
′y, Σ∗ = (Xγ

′IpXγ + Ip)
−1, a∗ = a + n

2
and b∗ = 1

2
(y′Iny −

µ
′

∗Σ
−1
∗ µ∗)+b. In the first scheme, scheme A, only the newly introduced parameter

values v are generated from the full-conditional posterior distribution given in

(4.9) while the common parameter values are retained in the proposed state.

π(·|βψ, τ,y, Mγ ′) ∼ N




n∑
i=1

yixim −
n∑
i=1

xim
∑m

j 6=m xijβj

n∑
i=1

x2
im + 1

,
τ−1

n∑
i=1

x2
im + 1


 . (4.9)

In the second scheme, scheme B, some of the common parameter values are

retained in the proposed state of the Markov chain while the rest of them together

with the new parameter values v are generated from the full-conditional posterior

distribution given in (4.10).

π(βφ|βψ′ , τ,y,Xγ ′) ∼ N

(
µ̄,

1

τ
Σ̄

)
(4.10)

where βψ′ = {βi : i ∈ ψ′} are the common parameter values that are conditioned

on with dim(βγ ′) = dim(βφ)+dim(βψ′) and φ indicates which parameter values

are going to be updated so that γ ′ = φ ∪ψ′.

If the posterior mean µ∗ and covariance matrix Σ∗ of model Mγ ′ can be

partitioned as

µ∗ = (µφ,µψ′)

and

Σ∗ =




λφ,φ λφ,ψ′

λψ′

,φ λψ′

,ψ
′


 .

where µφ corresponds to posterior mean values of the parameters to be updated
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and µψ′ to the posterior mean values of the parameters that are conditioned on,

then µ̄ = µφ−λ−1

φ,φ
λφ,ψ′(βψ′ −µψ′) and Σ̄ = λφ,φ−λφ,ψ′λ−1

ψ
′

,ψ
′λψ′

,φ. Fi-

nally, in the third scheme, scheme C, the proposed parameter vector is generated

from the posterior distribution of the parameters given in (4.8).

The performance of each of the algorithms is tested on 20 different simulated

data sets where the response y is modeled as y = Xβ + ǫ. Each of the rows

of the covariance matrix X is drawn from a N(0, Σℓ), for ℓ = 1, 2, 3. When

the covariance matrix Σ1 =




1

0

. . .
0

1


, each of the data sets consists of

uncorrelated predictive variables while when Σ2 =




1

0.5

. . .
0.5

1


, it is the

case of correlated predictive variables and when Σ3 =




1

0.8

. . .
0.8

1


, it is the

case of highly correlated predictive variables. The different degrees of covariance

are used to test the performance of the algorithms in different structures of data.

The error ǫ is normally distributed so that ǫ ∼ Nn(0, 1/2.52In) and the parameter

vector β is randomly generated for each data set from a N(0.5, 0.12). Ten possible

variables are considered and for this reason, the model space consists of 210−1 =

1, 023 possible models. Here, the posterior model probabilities are known in

closed form.

The RJMCMC algorithm is implemented in the following way. 40% of the time

Gibbs updates are applied to update parameter values within different models

since the full-conditional posterior distributions are tractable. Then, 20% of the

time, the exchange move is implemented in order to promote mixing. Finally, the



CHAPTER 4. RJMCMC - TRACTABLE POSTERIOR DISTRIBUTION 114

remainder of the time, a jump move is used to make changes to dimensionality

and thus, visiting models of different dimensions. Hence, the proposed parameter

vector is generated according to one of the updating schemes. Note that no tuning

is necessary since the proposal distribution is tractable and it is straightforward

to generate the proposed parameter vector from it. An automatic algorithm has

the advantage that its performance does not depend on the skills of the user.

The algorithms run for 500, 000 iterations regarding the first 100, 000 as burn

in. The estimated posterior model probabilities using the RJMCMC output are

compared to the target ones through the following comparison criteria.

4.3.1.2 Comparison Criteria

Suppose that p = {p1, . . . , pn} is the target distribution and q = {q1, . . . , qn}

is the estimated discrete distribution. Then the following metrics measure how

different the estimated discrete distribution q and the true one are (Boone et al.

(2005), Cripps et al. (2006)). For each data set the DL1 and DL2 metrics are

weighted over the target distribution and they are calculated as

DL1(p, q) =

[
∑

i

(qi − pi)
2 pi

]1/2

and

DL2(p, q) =
∑

i

|qi − pi|pi.

The weighted distances DL1 and DL2 take values between [0, 1]. If the estimated

distribution is a good approximation to the target one, the distance values are
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close to zero. However, poor approximations to the target distribution give dis-

tance values close to one. A non-weighted metric, the Hellinger distance, DH , is

also used. It is estimated as

DH(p, q) =

[
2 − 2

∑

i

[qipi]
1/2

]1/2

.

The Hellinger distance takes values between [0, 2]. Likewise, if the approximation

to the target distribution is good, the Hellinger distance value is close to zero.

On the other hand, if the estimated distribution is a poor approximation to the

target one then the Hellinger distance takes values close to two.

Hence, if the estimated posterior model probabilities for each of the updating

schemes are a good approximation to the target ones then each of the distances

is close to zero. From Figure 4.2 and Figure 4.3, it seems that the three different

updating Schemes give good approximations to the target distribution. Figure

4.2 indicates that Scheme C gives slightly better approximations compared to

Scheme A and Scheme B. On the other hand, Scheme A and Scheme B seem to

perform in a similar way. Recall that the weighted metrics give more importance

to the target distribution while the Hellinger distance does not. In Figure 4.3,

Scheme A and Scheme B still perform on a similar level while it is clear that

Scheme C gives better approximations to the posterior model probabilities as the

distance scores are closer to zero compared to the other two updating methods.

Therefore, Scheme C appears to be the best strategy according to the metric

distances.

Scheme C is sampling most directly from the posterior distribution over model
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Figure 4.2: (a) Weighted distance for each of the updating schemes using
uncorrelated data, (b) correlated data and (c) highly correlated data.
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Figure 4.3: (a) Hellinger distance for each of the updating schemes using
uncorrelated data, (b) correlated data and (c) highly correlated data.
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space since the acceptance probability of the Reversible jump move is simply the

ratio of posterior model probabilities of the proposed and current models. Thus,

the method could be regarded as a Markov chain searching over model space

alone since the parameters have been essentially integrated out. Thus, Scheme C

should provide an idea of the efficiency of the proposed updating algorithm, i.e

how model space is explored in terms of adding or removing a single parameter

and the exchange steps.

The most probable models are presented for a randomly selected sample fol-

lowing Table 4.1, Table 4.2 and Table 4.3.

The schemes generally find the most probable models in the correct order and

the Bayes factors appear to be estimated quite accurately. Longer simulations

would appear to be necessary to ensure convergence of the posterior model proba-

bilities to their correct values. This may be as a result of slow mixing over models

with very low probability, particularly with a reasonably large number of possi-

ble models (currently 1023). Scheme C seems to be the best strategy compared

to the other ones. When Scheme C is implemented, block updates are used to

propose the new parameter vector. In this case, the acceptance probability does

not depend on the dimension of the parameter vector since it is proportional to

the Bayes factor and for this reason, the estimated posterior model probabilities

are expected to be better. Nevertheless, Scheme A and Scheme B also give good

estimates and most of the time they find the most probable models in the correct

order.

For Table 4.1, Table 4.2 and Table 4.3, the target posterior model probabilities

are calculated together with the estimated posterior model probabilities using the

RJMCMC algorithms for uncorrelated, correlated and highly correlated predictor
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variables. The Bayes factor is also evaluated for each of the data sets that are

described in Table 4.1, Table 4.2 and Table 4.3. The three most probable models

are compared using the Bayes factor, see Table 4.4 for uncorrelated, correlated

and highly correlated data. In general, Scheme C gives better estimates to the

Bayes factor compared of the other two updating schemes.

The acceptance probabilities for the exchange and jump move using each of

the different scenarios are shown in Table 4.5. Looking at Scheme A and Scheme

B, it appears that the acceptance probability decreases as the correlation in the

predictors increases. On the other hand, for Scheme C the acceptance probability

increases when the correlation between the data increases. The probability mass

may be concentrated in just a few models for uncorrelated data, while, when

the correlation between the data increases, the probability mass may be spread

over more models. Hence, if the predictors are highly correlated, when a jump

is proposed to a new model, there may be a higher probability that the jump

will be accepted. This may be the reason why the acceptance probability for

Scheme C increases together with the correlation of the predictors. Then again,

Scheme A and Scheme B seem to be influenced by the structure of the data

since as the correlation increases the proposed jumps are not accepted as often.

However, it would be expected that the proposed jump steps would be accepted

more frequently as the probability mass is spread over to different models.

In conclusion, this is just a teaching example since there is no need to use the

RJMCMC algorithm to estimate the posterior model probabilities for a relatively

small number of models because they are known in closed form. However, one

can learn a lot from the performance of the algorithms because the estimated

posterior model probabilities within the RJMCMC algorithm can be compared
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True Model Scheme A Scheme B Scheme C
0.0625 x9 0.1238 0.1370 0.1186
0.0518 x4 0.1032 0.1133 0.0956
0.0436 x10 0.0831 0.0952 0.0855
0.0340 x6 0.0744 0.0768 0.0664
0.0334 x1 0.0709 0.0747 0.0662
0.0309 x8 0.0679 0.0668 0.0624
0.0291 x5 0.0591 0.0640 0.0571
0.0252 x9, x10 0.0124 0.0121 0.0143
0.0252 x7 0.0564 0.0553 0.0517
0.0227 x3 0.0528 0.0503 0.0488
0.0199 x2 0.0466 0.0418 0.0422
0.0194 x4, x9 0.0101 0.0097 0.0112
0.0157 x4, x10 0.0081 0.0080 0.0085
0.0144 x1, x9 0.0078 0.0068 0.0084
0.0111 x8, x9 0.0063 0.0053 0.0069
0.0109 x6, x9 0.0063 0.0053 0.0068
0.0104 x5, x9 0.0052 0.0052 0.0064
0.0102 x4, x6 0.0058 0.0051 0.0056
0.0100 x7, x9 0.0056 0.0054 0.0063
0.0097 x4, x5 0.0052 0.0049 0.0061
0.0097 x4, x9, x10 0.0020 0.0018 0.0022
0.0095 x5, x10 0.0050 0.0045 0.0058
0.0093 x1, x4 0.0049 0.0042 0.0055
0.0092 x4, x8 0.0055 0.0047 0.0057
0.4722 Rest 0.1718 0.1419 0.2059

Table 4.1: Posterior model probabilities for each of the updating Schemes
using uncorrelated predictive variables.
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True Model Scheme A Scheme B Scheme C
0.1582 x4, x5 0.3128 0.3006 0.2517
0.0523 x2, x4, x5 0.0356 0.0372 0.0941
0.0491 x4, x5, x6 0.0377 0.0372 0.0339
0.0370 x3, x4, x5 0.0260 0.0282 0.0273
0.0336 x4, x5, x7 0.0270 0.0270 0.0227
0.0312 x4, x5, x9 0.0214 0.0252 0.0216
0.0306 x4, x5, x8 0.0215 0.0235 0.0223
0.0277 x1, x4, x5 0.0218 0.0219 0.0220
0.0261 x4, x5, x10 0.0207 0.0206 0.0201
0.0236 x3, x4, x5, x6 0.0109 0.0117 0.0100
0.0141 x2, x3, x4, x5 0.0069 0.0072 0.0063
0.0135 x2, x4, x5, x6 0.0056 0.0055 0.0057
0.0131 x4, x5, x6, x9 0.0049 0.0055 0.0064
0.0127 x1, x4, x5, x6 0.0067 0.0056 0.0067
0.0110 x3, x4, x5, x7 0.0053 0.0055 0.0051
0.0109 x2, x4, x5, x10 0.0049 0.0050 0.0057
0.0104 x2, x4, x5, x9 0.0043 0.0044 0.0052
0.0103 x1, x2, x4, x5 0.0050 0.0048 0.0056
0.0102 x2, x4, x5, x8 0.0047 0.0051 0.0050
0.0101 x2, x4, x5, x7 0.0044 0.0045 0.0048
0.0101 x4, x5, x6, x8 0.0050 0.0053 0.0053
0.0095 x4, x5, x6, x7 0.0055 0.0048 0.0047
0.0090 x5 0.1005 0.1057 0.0680
0.0083 x4, x5, x6, x10 0.0043 0.0041 0.0046
0.3773 Rest 0.2966 0.2940 0.3952

Table 4.2: Posterior model probabilities for each of the updating Schemes
using correlated predictive variables.
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True Model Scheme A Scheme B Scheme C
0.0465 x1, x7 0.1184 0.0981 0.0648
0.0246 x2, x7 0.0422 0.0522 0.0367
0.0223 x1, x5, x7 0.0186 0.0187 0.0334
0.0205 x1, x6, x7 0.0193 0.0179 0.0132
0.0205 x1, x7, x10 0.0184 0.0178 0.0129
0.0203 x1, x2, x7 0.0130 0.0160 0.0131
0.0151 x1, x7, x8 0.0123 0.0119 0.0099
0.0136 x1, x4, x7 0.0103 0.0109 0.0091
0.0126 x1, x6 0.0320 0.0298 0.0200
0.0120 x1, x4, x6, x7 0.0059 0.0053 0.0053
0.0110 x1, x5 0.0219 0.0226 0.0175
0.0097 x1, x3, x7 0.0079 0.0078 0.0057
0.0094 x1, x7, x9 0.0087 0.0085 0.0071
0.0086 x2, x7, x10 0.0062 0.0076 0.0065
0.0084 x2, x5, x7 0.0069 0.0076 0.0058
0.0078 x2, x6, x7 0.0060 0.0067 0.0061
0.0074 x1, x7, x8 0.0063 0.0054 0.0049
0.0074 x1, x10 0.0183 0.0157 0.0125
0.0074 x1, x2, x5, x7 0.0025 0.0033 0.0036
0.0073 x1, x4, x7, x10 0.0038 0.0033 0.0035
0.0072 x1, x5, x7, x10 0.0042 0.0040 0.0036
0.0069 x6, x7 0.0184 0.0158 0.0120
0.0068 x1, x5, x6, x7 0.0043 0.0032 0.0035
0.0068 x1, x5, x6 0.0063 0.0052 0.0051
0.6802 Rest 0.5879 0.6047 0.7041

Table 4.3: Posterior model probabilities for each of the updating Schemes
using highly correlated predictive variables.
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Bayes Factor True Scheme A Scheme B Scheme C

Uncorrelated Data
B1,2 1.2072 1.2005 1.2409 1.2092
B2,3 1.1881 1.2418 1.1182 1.1903

Correlated Data
B1,2 3.0234 8.7898 8.0893 2.6748
B2,3 1.0661 0.9450 0.9995 1.0060

High Correlated Data
B1,2 1.8923 2.8052 1.8793 1.7655
B2,3 1.1035 2.2747 2.7860 1.0988

Table 4.4: Bayes Factor values for the three most probable models presented
in Table 4.1, Table 4.2 and Table 4.3.

Data Uncorrelated Correlated High Correlated
Accept prob, jump exch total jump exch total jump exch total
Scheme A 0.2130 0.4222 0.2827 0.2020 0.2306 0.2116 0.1812 0.1962 0.1862
Scheme B 0.2112 0.4621 0.2948 0.2311 0.3264 0.2629 0.2198 0.3022 0.2473
Scheme C 0.2571 0.4814 0.3318 0.3347 0.4168 0.3621 0.3385 0.4017 0.3596

Table 4.5: Acceptance probabilities for the exchange and jump moves using
uncorrelated, correlated and highly correlated predictive variables for each of
the updating schemes. The total acceptance probabilities set are also pre-

sented.

to the true ones. It seems that using the full-conditional posterior distribution

of the parameters within the model as the proposal distribution to generate the

proposed parameter vector may be the best strategy since the estimated posterior

model probabilities are very close to the true ones especially when Scheme C is

applied. When Scheme C is used, the acceptance ratio is independent of the

parameter values and proportional to the Bayes factor for the proposed model

versus the current one since it is assumed that each of the candidate models

has the same probability of being selected. Thus, when the whole proposed
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parameter vector is generated from the posterior distribution of the parameters

within the model, the approximated posterior model probabilities are closer to

the target ones compared to the other methods. Hence, we believe that applying

Gibbs updates inside the RJMCMC algorithm is a good strategy, especially when

block updates are implemented inside the RJMCMC algorithm regarding a linear

regression variable selection problem.

4.3.2 Autoregressive model choice

The performance of each of the updating schemes is also gauged using an au-

toregressive time series model choice problem. Suppose that data x1, . . . , xN are

simulated from an autoregressive process of unknown order. Thus, model Mk

corresponds to the kth order autoregressive process which is modelled as

xt =
k∑

i=1

αixt−i + ǫt

where t = k + 1, . . . , N and ǫ ∼ N(0, 1/τ), with τ representing the precision

of the residual. A uniform prior is assumed for k while within model Mk, an

independent prior is assumed for each of the coefficients so that αi ∼ N(0, 1/τα)

and a Gamma distribution for the precision τ that is τ ∼ G(a, b). Thus, the prior

distributions are

p(τ) =
1

baΓ(a)
τa−1 exp

{
−τ

b

}

∝ τa−1 exp
{
−τ

b

}
,



CHAPTER 4. RJMCMC - TRACTABLE POSTERIOR DISTRIBUTION 124

and

p(α) =

k∏

i=1

( τα
2π

)1/2

exp
{
−τα

2
α2
i

}

∝ exp

{
−τα

2

k∑

i=1

α2
i

}
.

The likelihood of the data x for model Mk is

L(x|α, τ, Mk) =
N∏

t=k+1

( τ

2π

)1/2

exp



−τ

2

(
xt −

k∑

i=1

αixt−i

)2




∝ τ
N−k

2 exp



−τ

2

N∑

t=k+1

(
xt −

k∑

i=1

αixt−i

)2


.

Then, the posterior distribution within model is arrived at by using Bayes’ The-

orem

π(α, τ, Mk|x) ∝ L(x|α, τ, Mk)p(α)p(τ)

∝ τ
N−k

2 exp




−τ

2

N∑

t=k+1

(
xt −

k∑

i=1

αixt−i

)2



 exp

{
−τα

2

k∑

i=1

α2
i

}

τa−1 exp
{
−τ

b

}

= τ
N−k

2
+a−1 exp




−τ

2

N∑

t=k+1

(
xt −

k∑

i=1

αixt−i

)2

− τα
2

k∑

i=1

α2
i −

τ

b




.

Thus, the full-conditional posterior probabilities are defined as

π(τ |α,x, Mk) ∝ τ
N−k

2
+a−1 exp



−τ


1

2

N∑

t=k+1

(
xt −

k∑

i=1

αixt−i

)2

+
1

b
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Therefore,

τ |α,x, Mk ∼ G




N − k

2
+ a,

1

1
2

N∑
t=k+1

(
xt −

k∑
i=1

αixt−i

)2

+ 1
b


 .

Likewise, the full-conditional posterior distribution for each of the autoregressive

coefficients is

π(αi|τ,x, Mk) ∝ exp



−τ

2

N∑

t=k+1

(
xt −

k∑

i=1

αixt−i

)2

− τα
2

k∑

i=1

α2
i





= exp




−τ

2

N∑

t=k+1


−2xtαixt−i +

(
k∑

i=1

αixt−i

)2

− τα

2
α2
i




. (4.11)

Notice that,

(
k∑

i=1

αixt−i

)2

=


αixt−i +

k∑

j=1
j 6=i

αjxt−j




2

= α2
ix

2
t−i + 2αixt−i

k∑

j=1
j 6=i

αjxt−j +




k∑

j=1
j 6=i

αjxt−j




2

∝ α2
ix

2
t−i + 2αixt−i

k∑

j=1
j 6=i

αjxt−j (4.12)
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If we use (4.12) in equation (4.11), the full-conditional posterior distribution of

coefficient αi is

π(αi|τ,x, Mk) ∝ exp




−τ

2

N∑

t=k+1


−2xtαixt−i + α2

ix
2
t−i + 2αixt−i

k∑

j=1
j 6=i

αjxt−j


− τα

2
α2
i





∝ exp
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2
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−2ταi
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xtxt−i + α2
i τ
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Hence,

αi|τ,α\i,x,Mk ∼ N




τ
N∑

t=k+1

xtxt−i − τ
N∑

t=k+1

xt−i
k∑
j=1
j 6=i

αjxt−j

τ
N∑

t=k+1

x2
t−i + τα

,
1

τ
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t=k+1

x2
t−i + τα




.

In this case, the full-conditional posterior densities of the parameters are

tractable. Thus, it is straightforward to draw the proposed parameter vector

from them. Unfortunately, the marginal likelihood is not known in closed form.

The power posterior method of Friel and Pettitt (2008) is used to estimate the

marginal likelihood for each model by running a very long Markov chain. Then,
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these estimates are used in turn to approximate the posterior model probabili-

ties. However, to estimate accurately the posterior model probabilities requires

a large computational time. Clearly, both the power posterior and RJMCMC

methods give estimates of the posterior model probabilities. However, consider-

ably more computational time is given to the power posterior method, so that

it may be viewed as a benchmark against which to compare the RJMCMC es-

timates. Hence, the posterior model probabilities that are estimated using the

RJMCMC algorithm may be compared to the good estimates found using the

power posterior method. For this reason, conclusions can be made on the perfor-

mance of the algorithm using each of the updating schemes. The power posterior

method is described below.

4.3.2.1 Marginal likelihood estimation using power posterior

Friel and Pettitt (2008) estimate the intractable marginal likelihood using path

integration. The marginal likelihood is calculated based on samples from the so

called power posterior distribution π(θ|y, T ). The power posterior is proportional

to the prior distribution of the parameters p(θ) times the likelihood raised to a

power T , L(y|θ)T so that π(θ|y, T ) ∝ L(y|θ)Tπ(θ|y, T ) where T is a tempering

parameter and takes values in [0, 1]. Then, the normalising constant for π(θ|y, T )

is z(y|T ) =
∫

θ

L(y|θ)Tp(θ)dθ so that

π(θ|y, T ) =
L(y|θ)Tp(θ)

z(y|T )
.

Notice that for T = 0, the marginal likelihood is z(y|T = 0) =
∫

θ

p(θ)dθ = 1
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and for T = 1, it is z(y|T = 1) =
∫

θ

L(y|θ)p(θ)dθ = p(y) which is the marginal

likelihood of the data. Thus, z(y|T = 1) is the integral of interest. It is shown

in Friel and Pettitt (2008) that

log p(y) =

1∫

0

Eθ|y,T [log L(y|θ)] dT. (4.13)

Thus, the marginal likelihood is the integral over the temperature T of half

the mean deviance, where the expectation is taken with respect to the power

posterior. In practice, this integral is approximated by discretising the integral

at points Ti ∈ [0, 1] and different chains are sampled from the power posterior at

temperature Ti then a sample is drawn from Eθ|y,Ti
[log L(y|θ)]. Hence, the log

marginal likelihood is approximated as

log p(y) ≈
n−1∑

i=0

(Ti+1 − Ti)
Eθ|y,Ti+1

[log L(y|θ)] + Eθ|y,Ti
[log L(y|θ)]

2
.

The partition is often chosen as Ti = (i/n)c, where n is the number of points in

the tempering scale in [0, 1] and c > 1. This choice provides a better approxima-

tion to the integral through using quadrature.

The power posterior method described earlier on is now applied to an au-

toregressive model of order k. The first step is to estimate the power posterior
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distribution such as

π(α, τ |x, T, Mk) ∝ L(x|α)Tp(α)p(τ)

∝ τT
N−k

2 exp



−Tτ
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N∑

t=k+1

(
xt −

k∑

i=1

αixt−i

)2
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α2
i

}

τa−1 exp
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2
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(
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− τα
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α2
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b



.

Thus, the full-conditional posterior distribution of the precision τ is

π(τ |α,x, T, Mk) ∝ τ
T (N−k)

2
+a−1 exp




−τ


T

2

N∑

t=k+1

(
xt −

k∑

i=1

αixt−i

)2

+
1

b









and therefore,

τ |α,x, T, Mk ∼ G




T (N − k)

2
+ a,

1

T
2

N∑
t=k+1

(
xt −

k∑
i=1

αixt−i

)2

+ 1
b


 .

Likewise the full-conditional posterior distribution for each of the ith coefficients
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is

π(αi|τ,x, T, Mk) ∝ exp



−Tτ
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Hence, the posterior full-conditional distribution of the parameter αi is

αi|τ,x, T,Mk ∼ N




Tτ
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xtxt−i − Tτ
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We simulate 20 different data sets from an autoregressive time series model

of order three to test the performance of the three different algorithms. Each

of the data sets consists of 100 responses. The coefficient values are randomly

chosen from a Uniform distribution U(−1, 1) and the error is Normally distributed

as ǫ ∼ N(0, 1) for the first data set while in the second data set the error is

distributed as ǫ ∼ N(0, 22). Then, it is assumed that the prior distribution

for the precision τ is Gamma with shape and scale one. Two different prior

distributions for the coefficients are used, a N(0, 22) and a N(0, 1). Each of the

20 different data sets is similar to the ones that are presented in Figure 4.4.
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Figure 4.4: Autoregressive process of order three with error ǫ ∼ N(0, 1) and
with error ǫ ∼ N(0, 4).

The actual posterior model probabilities are not known in closed form and

for this reason, the power posterior method of Friel and Pettitt (2008) is used

to estimate them by running the Markov chain for sufficiently long time. Then,

these estimates are considered as the “true” posterior model probabilities. For

the power posterior method, the Gibbs sampler samples from the power posterior
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distribution since in this case, the full-conditional posterior distributions are avail-

able. We run 10, 000 Gibbs updates for each temperature while the tempering

scale is partitioned as Ti = (i/55)3 where i = 1, . . . , 55. In total, 550, 000 itera-

tions are used to estimate the marginal likelihood for each model. The expected

log power posterior values for a randomly selected model versus the temperature

t are shown in Figure 4.5. Notice that Figure 4.5 is similar for each model and

each data set using either of the two different priors. It also indicates that the

algorithm converges to the actual target values. An informative prior will always

give a less steep curve.

Hence, the posterior model probabilities that are estimated using the RJM-

CMC output for each of the three different updating schemes are compared to

the posterior model probabilities that are calculated using the power posterior

method. Then, conclusions on the performance of the algorithm can be made.

The RJMCMC algorithm runs for 105, 000 iterations regarding the first 5, 000 as

burn in. It is assumed that the maximum order of the process is 10 and for this

reason, there are ten possible models. Notice that having a fairly small number

of models allows us to compute the posterior model probabilities using the power

posterior method. Otherwise, it will be computationally impossible to approx-

imate them. The acceptance probabilities for each of the different schemes are

presented in Table 4.6. It seems that Scheme C gives the higher acceptance ratio

compared to the other updating schemes.

The estimated posterior model probabilities are compared to the target ones

through the metrics that were described in section 4.3.1.2. Figure 4.6 presents the

weighted distance between the estimated posterior model probabilities and the

target ones. In general, the estimated posterior model probabilities are a good
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Figure 4.5: Expected values of the log power posterior versus temperature T
for each data set using the different priors.

Data First data set Second data set
Accept Prob Non informative prior Informative prior Non informative prior Informative prior
Scheme A 0.1813 0.1472 0.0877 0.1164
Scheme B 0.2578 0.2502 0.1213 0.1834
Scheme C 0.3386 0.3879 0.1612 0.2631

Table 4.6: Acceptance probabilities for each data set using different priors.
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approximation to the target ones when the distance is close to zero. The Hellinger

distance has also been transformed to take values in [0, 1]. From the boxplots,

the three different updating schemes give good approximations to the posterior

model probabilities although Scheme C gives slightly better approximations. In
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Figure 4.6: Weighted distance for each data set using different priors.

Figure 4.7, the Hellinger distance is presented. In general, all the schemes are

good approximations to the target distribution but again Scheme C gives slightly

better estimations compared to the other two. Scheme B also approximates quite



CHAPTER 4. RJMCMC - TRACTABLE POSTERIOR DISTRIBUTION 135

well the posterior model probabilities.
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Figure 4.7: Hellinger distance for each data set using different priors.

The Bayes factor is estimated to compare the two most probable models of a

randomly selected data set. Thus, in Table 4.7, the posterior model probabilities

of the two most probable models are compared using informative and non infor-

mative priors and the estimated Bayes factor is compared to the target one. In

this case, the models are nested and even though, both Scheme A and Scheme B
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give good approximations to the posterior model probabilities, Scheme C approx-

imates the Bayes factor better. Hence, it may be worthwhile to implement block

updates inside the RJMCMC algorithm in an autoregressive time series variable

selection problem.

Bayes Factor Target Scheme A Scheme B Scheme C

First data set
B1,2 1.1208 1.3066 0.6972 1.1080
B1,2 1.0986 2.3574 1.5443 1.3468

Second data set
B1,2 0.7270 1.0693 0.2490 0.7259
B1,2 1.0626 3.8048 2.5362 1.5467

Table 4.7: Bayes Factor values for the two most probable models when an
informative and an non-informative prior is used respectively.

4.4 Discussion

Chapter 4 considered variable selection problems in linear regression and autore-

gression model problems. It is suggested that it may be worthwhile to use the

full-conditional posterior distribution of the parameters as the proposal distri-

bution to generate the new parameter vector inside the RJMCMC algorithm.

Hence, Gibbs updates are proposed inside the RJMCMC algorithm. Then, the

full-conditional posterior distribution conditions on all, some or none of the com-

mon variables to propose the new parameter vector.

If the models are nested then according to Scheme A only the newly intro-

duced parameter vector is simulated from the full-conditional posterior distribu-

tion conditioning on the current parameter values. Brooks and Ehlers (2008)
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used the second order method of Brooks et al. (2003) for an autoregressive model

choice and they show that the best proposal distribution inside the RJMCMC

algorithm is the full-conditional posterior distribution of the parameters. Recall

that the method of Brooks et al. (2003) assumes a Normal proposal distribution

where parameter values are chosen by maximizing the acceptance probability.

Even though Scheme A is the most popular strategy when the RJMCMC

algorithm is applied, it is not always the best one. It turns out that for these

specific examples that were examined, Scheme C is the best strategy. Accord-

ing to Scheme C, the entire proposed parameter vector is generated from the

posterior distribution of the parameters without retaining any of the current pa-

rameter values in the proposed model. Hence, the best proposal distribution is

the posterior distribution of the parameters within that model. In this case, the

acceptance probability is shown to be proportional to the posterior model proba-

bility odds when jumps between different models happen with equal probability.

In this case, it is also proportional to the Bayes factor of the proposed model to

the current one. For this reason, it is independent of the parameter values and

the dimension of the parameter vector. Consequently the mixing of the algorithm

is better.

For the autoregressive model choice problem, when the models are nested,

Scheme C and Scheme B approximate well the posterior model probabilities while

Scheme C gives slightly better approximations to the Bayes factor compared to

Scheme B. If the models are not nested, see the linear regression variable selection

case, then Scheme C appears to be the best strategy because it approximates

better the posterior model probabilities and the Bayes factors.
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Here, we have considered cases where the posterior distribution of the param-

eters is tractable. In most examples, the posterior distribution of the parameters

is not known in closed form and for this reason, it has to be estimated. Routine

MCMC methods could be used to approximate the intractable posterior distri-

bution but this would be too computationally expensive and time consuming

especially when the approximation is used inside the proposal mechanism of the

RJMCMC algorithm. Therefore, Chapter 5 aims to overcome this problem and

considers cases where the posterior distribution of the parameters is intractable.



Chapter 5

Automatic RJMCMC for

variable selection - intractable

posterior distribution

In Chapter 4, it was concluded in a Reversible jump Markov chain Monte Carlo

(RJMCMC) variable selection problem, that the best strategy when updating

within a model is to update the whole proposed parameter vector from the pos-

terior distribution of the parameters within that model if this is possible. Unfor-

tunately, the posterior distribution of the parameters is not always tractable. Our

approach here is to find a tractable approximation to the within model posterior

distribution, and to use this tractable approximation as a proposal distribution.

Thus, analytical approximations such as the Laplace approximation are consid-

ered to estimate the posterior distribution of the parameters within a model.

The choice of the proposal distribution to change the model dimension is very

crucial. If only local jumps up or down of one or more dimensions are proposed

139
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then the RJMCMC algorithm potentially needs to run for a long time in order

to visit all possible models, especially if the sampling space is large. Typically

for variable selection problems and for model selection problems, more generally,

most of the posterior mass is distributed over a small subset of the models under

consideration. Therefore, in such situations, a naive RJMCMC sampler which

proposes random jumps to neighbouring models will be frequently rejected and

consequently the Markov chain will not have good mixing properties. In practice,

it is difficult to guide the Markov chain to propose models with high posterior

probability.

Here, the model space is discrete and typically some of the models have high

probability mass while most of them have low. Unfortunately, there is no natural

way to determine which of them are more probable a priori. Moreover, the

Markov property does not allow us to look back at previously visited models and

learn from them. Then again, it is feasible to approximate the posterior model

probabilities using the Bayesian information criterion (BIC) (Schwarz (1978)) or

the Laplace approximation (Tierney and Kadane (1986), Tierney et al. (1989),

Lewis and Raftery (1997)) for a relatively small number of parameters. Then,

these estimated posterior model probabilities can be used as an independent

proposal distribution inside the proposal mechanism of the RJMCMC algorithm

to make changes to model dimension.
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5.1 Proposal mechanism of RJMCMC

5.1.1 Strategy A: RJMCMC and the Laplace approxima-

tion

The Laplace approximation (Tierney and Kadane (1986), Tierney et al. (1989),

Lewis and Raftery (1997)) is a Taylor series expansion to the intractable distri-

bution which in this case, is the posterior distribution of the parameters within

model Mγ . Here, the posterior distribution of the parameters within model

Mγ is approximated by a multivariate Normal distribution with mean µ and

covariance matrix Σ. The parameter vector µ equals the parameter values

that maximize the posterior distribution within each model Mγ , that is µ =

arg maxθγ
π(θγ |y, Mγ). The covariance matrix Σ is related to the Hessian ma-

trix of the posterior distribution of the parameters within model Mγ so that

Σ = −
(

∂2

∂θ2
γ

π(θγ |y, Mγ)

)−1

.

The Laplace approximation is relatively easy to implement. One has only to

evaluate the location and the scale of the multivariate Normal distribution and

then draw the new parameter vector from it. When the Laplace approximation is

used inside the RJMCMC algorithm, the algorithm still performs in an automatic

way even though the posterior distribution of the parameters within model Mγ

is not known in closed form.

The estimated posterior distribution of the parameters within model Mγ ,

π̂(θγ |y, Mγ) is used to approximate the posterior model probability π̂(Mγ |y)

in the following way. The posterior distribution of the parameters within model
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Mγ can be written as

π(θγ |y, Mγ) =
L(y|θγ , Mγ)p(θγ |Mγ)

π(y|Mγ)
(5.1)

where L(y|θγ , Mγ) is the likelihood, p(θγ |Mγ) is the prior distribution for the

parameters within model Mγ and π(y|Mγ) is the marginal likelihood. From

equation (5.1), the marginal likelihood can be defined as

π(y|Mγ) =
L(y|θγ , Mγ)p(θγ |Mγ)

π(θγ |y, Mγ)
. (5.2)

In fact, this is exactly the identity used in Chib (1995), to estimate π(y|Mγ). Our

approximation results from replacing π(θγ |y, Mγ) in (5.2) with π̂(θγ |y, Mγ)

and further by evaluating the right hand side of (5.2) at θ̂γ that is the maximum

of π̂(θγ |y, Mγ). The marginal likelihood approximation is then

π(y|Mγ) ≈ π̂(y|Mγ) =
ℓ(y|θ̂γ , Mγ)p(θ̂γ |Mγ)

π̂(θ̂γ |y, Mγ)
.

The posterior model probabilities are now approximated by

π(Mγ |y) ≈ π̂(Mγ |y) =
π̂(y|Mγ)p(Mγ)∑
i

π̂(y|Mi)p(Mi)

where p(Mγ) is the prior probability of model Mγ . The estimated posterior

model probabilities are then used inside the proposal mechanism of the RJMCMC

algorithm to propose changes to dimension of the model. Notice that in this case,

the algorithm still performs in an automatic way since no tuning is necessary.
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5.1.2 Strategy B: RJMCMC and the BIC approximation

The posterior model probability, π̂(Mγ |y), can also be approximated using the

Bayesian information criterion (BIC)(Schwarz (1978)). First, estimate the BIC

for each model.

BICMγ = ℓ(y|θ̃γ , Mγ) − 1

2
d log n

where ℓ(y|θ̃γ , Mγ) is the maximized log likelihood at θ̃γ , the parameter vector

θ̃γ = max
θγ

ℓ(y|θγ , Mγ), d is the dimension of model Mγ and n is the sample

size. Then, the posterior model probabilities are approximated as

π(Mγ |y) ≈ π̂(Mγ |y) =
exp {BICMγ}P (Mγ)
∑

exp {BICMk
}P (Mk)

.

The approximated posterior model probabilities, π̂(Mγ |y), are now used as

an independent proposal distribution in the model updating step. As before,

the posterior distribution of the parameters is assumed to be approximated by

a Normal distribution, N(θ̃γ , Σ), with mean equal to the parameter values that

maximize the log likelihood and covariance matrix Σ = σ2I, where I is the identity

matrix.

The proposal parameter value, σ2, has to be tuned and it should be relatively

large reflecting the uncertainty. In this case, the algorithm does not perform in

a completely automatic way since the variance of the proposal distribution of

the parameters has to be tuned. Moreover, one should also take into account

that if an independent proposal distribution is used then the algorithm could

perform very poorly if the parameters are highly correlated since the parameters

are simulated independently of each other in the proposal move; or the posterior
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variance of the parameters are substantially different since the proposal variance

is assumed to be the same over all parameters. One could also use a covariance

matrix estimated via a pilot run and use the posterior variance and covariance

of the parameters in the proposal distribution.

5.1.3 Acceptance probability

In both Strategy A and Strategy B, the main approach is to propose moves be-

tween the joint model and the parameter space as follows. Suppose that the

Markov chain is currently visiting model Mγ with parameter vector θγ . First,

a proposed model Mγ ′ is selected with probability π̂(Mγ ′ |y), and then the pa-

rameter vector, θγ ′ within this model is simulated from the estimated posterior

distribution of the parameters within model Mγ ′, π̂(θγ ′ |y, Mγ ′). The overall

proposed probability is therefore,

q(θγ , θγ ′) = π̂(Mγ ′ |y)π̂(θγ ′|y, Mγ ′).

This proposed distribution can be considered as an approximation to the joint

model and parameter distribution

π(θγ ′, Mγ ′|y) ≈ π̂(θγ ′ , Mγ ′|y) = π̂(Mγ ′ |y)π̂(θγ ′|y, Mγ ′).

Hence, the proposed move is accepted with probability

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

π(θγ ′ , Mγ ′|y)

π(θγ , Mγ |y)

q(θγ ′, θγ)

q(θγ , θγ ′)

)
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or equivalently,

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

π(θγ ′ , Mγ ′ |y)

π(θγ , Mγ |y)

π̂(Mγ |y)

π̂(Mγ ′|y)

π̂(θγ |y, Mγ)

π̂(θγ ′|y, Mγ ′)

)
.

Notice that the acceptance probability reduces to

Aγ ,γ ′(θγ , θγ ′) = min

(
1,

π(θγ ′, Mγ ′ |y)

π(θγ , Mγ |y)

π̂(θγ , Mγ |y)

π̂(θγ ′ , Mγ ′|y)

)
. (5.3)

Hence, the above acceptance probability will be close to one when the proposal

distribution to change the model dimension, π̂(Mγ ′ |y), is a good approximation

to the actual posterior model probability, π(Mγ |y), and the proposal distribution

of the parameters, π̂(θγ |y, Mγ), is also a good approximation to the posterior

distribution of the parameters within model Mγ , π(θγ |y, Mγ).

The method of Brooks et al. (2003) aims to automate the RJMCMC algo-

rithm by choosing automatically the parameters from the proposal distribution.

They consider a Taylor series expansion of the acceptance probability using the

first, second or higher order expansions. Then, they choose the parameters of the

proposal distribution that maximize the acceptance probability. In our method,

one has to find a good approximation to the posterior distribution and the poste-

rior model probabilities in order to achieve the maximum acceptance probability.

If a poor approximation to the posterior model probability is made, then the

RJMCMC algorithm should correct these approximations and give better esti-

mates to the posterior model probabilities. Thus, it seems to be a good strategy

to draw the proposed parameter vector from the approximated posterior distri-

bution of the parameters as well as to choose the proposed model according to
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the approximated posterior model probabilities.

The method performs in two steps. First, the posterior distributions within

each model and the posterior model probabilities are estimated in an off-line

step using the Laplace or the BIC approximation. Then, in the on-line step

the RJMCMC algorithm uses these approximations in its proposal mechanisms

to generate the proposed parameter vector and propose changes to the model

dimension. There is a potential danger in using π̂(Mγ |y) as the proposal distri-

bution to jump between models. If this approximation is poor and incorrectly

places close to zero probability on any model Mγ , then the sampler will very

rarely propose jumps to these models and this may adversely effect the mixing

of the chain. Therefore, in the model jumping step, it is considered a mixture of

an independent proposal, π̂(Mγ |y) and a local proposal to models neighbouring

the current model for example, only propose to move to models that differ by a

single parameter. The proposed RJMCMC algorithm is described in Algorithm

6.

5.2 Examples

5.2.1 Logistic regression model choice

Here, a logistic regression model is used to test the performance of the algorithms

because the posterior model probabilities and the posterior distribution of the

parameters within a model are of a non-standard form. Therefore, they have

to be approximated before they are used as the proposal distribution inside the

RJMCMC algorithm. The performance of the algorithm depends on how well
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Algorithm 6 Proposal mechanism of RJMCMC

STEP 1: Off-line

For each model Mγ estimate:

(i) the posterior distribution of the parameters π̂(θ|y, Mγ)

(i) the posterior model probabilities π̂(Mγ |y)

using Strategy A, see section 5.1.1 or Strategy B, see section 5.1.2.

STEP 2: On-line

At each iteration:

1. Within model updates:

Within model Mγ , θγ is proposed from π̂(θγ |y, Mγ).

2. Jump move:

(i) Propose to move from model Mγ to model Mγ ′ . A mixture proposal
distribution is used where the proposed model is chosen either ac-
cording to an independent proposal distribution, π̂(Mγ ′|y) or to a
local proposal distribution where jumps up or down of one or more
dimensions are implemented.

(ii) θγ ′ is proposed from π̂(θγ ′|y, Mγ ′).

(iii) Accept or reject with probability Aγ ,γ ′(θγ , θγ ′) given in (5.3).

the posterior distribution of the parameters within model Mγ , π(θγ |y, Mγ), and

the posterior model probabilities, π(Mγ |y) are approximated. When the above

distributions are close enough to the target ones, then the acceptance probability

should be close to one.

Here, the power posterior method of Friel and Pettitt (2008) is used to get

very accurate estimates of the posterior model probabilities by running a very
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long Markov chain. In this way, these estimated posterior model probabilities are

used as a benchmark to compare the performance of the RJMCMC algorithm

using the approximated posterior model probabilities.

Consider the following logistic regression model

p(y = ±1|x, θ) = δ(yθTx) =
1

1 + exp(−yθTx)
,

where y is the binary response, x is a collection of possible explanatory variables

and θ is the parameter vector. Note that if y = 1 then

p(y = 1|x, θ) = δ(θTx) =
exp(θTx)

1 + exp(θTx)

while if y = −1 then

p(y = −1|x, θ) = δ(−θTx) =
1

1 + exp(θTx)
= 1 − δ(θTx).

Given a data set (X,y) = [(x1, y1) , . . . , (xN , yN)], assume that one wants to

find out which of the explanatory variables X describes better the binary response

y. The likelihood function of each model Mγ can be written as

L(y|Xγ , θγ , Mγ) =

n∏

i=1

1

1 + exp(−yiθ
T
γxi)

and the log-likelihood function is

ℓ(y|Xγ , θγ , Mγ) = −
n∑

i=1

log (1 + exp(−yiθ
T
γxi)),
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where Xγ is a collection of explanatory variables, xi, that corresponds to model

Mγ and θγ is the parameter vector of model Mγ .

Here, two different prior distributions are used leading to two different anal-

yses. In the first scenario, a Normal prior is assumed for θγ while in the second

one, a double exponential (or Laplace) prior is used. In this case, the Laplace

approximation may not be so accurate. The aim is to find out whether it is

worthwhile to use Strategy A or Strategy B to approximate the posterior model

probabilities and if the RJMCMC algorithm improves the already estimated pos-

terior model probabilities.

5.2.1.1 Normal Prior Distribution

Within model Mγ , the prior beliefs about the parameter vector θγ are expressed

through a Normal distribution that is p(θγ |Mγ) = N(0, λ−1I), where I is the

identity matrix and λ ∈ IR. Thus, the log-posterior distribution within model

Mγ is

log(π(θγ |y,Xγ , Mγ)) ∝ ℓ(y|Xγ , θγ , Mγ) + log(p(θγ |Mγ))

∝ −
n∑

i=1

log(1 + exp(−yiθ
T
γxi)) −

λ

2
θTγθγ . (5.4)

Unfortunately, the posterior distribution of the parameters within model Mγ

described in (5.4) is not known in closed form. Therefore, according to Strategy

A, the Laplace approximation is used to approximate it. A Normal distribution

is assumed for the intractable posterior distribution of the parameters within

model Mγ , N(θγ |θ̂γ ,−H−1) where θ̂γ is the parameter vector that maximizes

the log-posterior distribution of the parameters within model Mγ and H is the
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Hessian matrix estimated as described below. The first derivatives of the log

posterior distribution is

∂ log π(θγ |y,Xγ , Mγ)

∂θγ
= −

n∑

i=1

exp(−yiθ
T
γxi)

1 + exp(−yiθ
T
γxi)

(−yixi) − λθγ

=

n∑

i=1

(1 − δ(yiθ
T
γxi))yixi − λθγ .

Note that

∂δ(yiθ
T
γxi)

∂θTγ
= −

exp(−yiθ
T
γxi)(−yixi)

[1 + exp(−yiθ
T
γxi)]

2

=
exp(−yiθ

T
γxi)yixi

[1 + exp(−yiθ
T
γxi)]

2

= δ(yiθ
T
γxi)(1 − δ(yiθ

T
γxi))yixi.

Therefore, the Hessian matrix is

H =
∂2 log π(θγ |y,Xγ , Mγ)

∂θγ∂θTγ

=
n∑

i=1

∂

∂θTγ
δ(yiθ

T
γxi) − λI

= −
n∑

i=1

δ(yiθ
T
γxi)(1 − δ(yiθ

T
γxi))yixi(yixi)

T − λI.

If y = 1, then the Hessian matrix takes the following form

H = −
n∑

i=1

δ(θTγxi)(1 − δ(θTγxi))xix
T
i − λI,
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while if y = −1, then the Hessian matrix is

H = −
n∑

i=1

δ(−θTγxi)(1 − δ(−θTγxi))xixTi − λI

= −
n∑

i=1

(1 − δ(θTγxi))(1 − 1 + δ(θTγxi))xix
T
i − λI.

We may write the Hessian matrix as

H = −XγAXT
γ − λI

where the matrix A is diagonal with aii = δ(θTγxi)(1 − δ(θTγxi)). One way to

calculate θ̂γ is by using the Newton-Raphson method. The Newton-Raphson

method is an optimization algorithm which finds out a local maximum. The

local maximum is achieved by estimating the new parameter vector given the old

one as

θγnew
= θγold

− H−1∂ℓ(θγ)

∂θγold

= θγold
+ (XγAXT

γ + λI)−1
n∑

i=1

(1 − δ(yiθ
T
γold

xi))yixi − λθγold

= (XγAXT
γ + λI)−1

[
(XγAXT

γ + λI)θγold
+

n∑

i=1

(1 − δ(yiθ
T
γold

xi))yixi − λθγold

]

= (XγAXT
γ + λI)−1

[
XγAXT

γθγold
+ λθγold

+

n∑

i=1

(1 − δ(yiθ
T
γold

xi))yixi − λθγold

]

= (XγAXT
γ + λI)−1

[
XγAXT

γθγold
+

n∑

i=1

(1 − δ(yiθ
T
γold

xi))yixi

]
.
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Notice that

(XγA)

[
(XγA)−1

n∑

i=1

(1 − δ(yiθ
T
γxi))yixi

]
= (XγA)

[
A−1X−1

γ

n∑

i=1

(1 − δ(yiθ
T
γxi))yixi

]

= XγA
1 − δ(yiθ

T
γxi))yi

aii
.

Hence,

θnew = (XγAXT
γ + λI)−1XγA

[
XT
γθγold

+
1 − δ(yiθ

T
γold

xi)yi

aii

]

= (XγAXT
γ + λI)−1XγAz,

where

zi = XT
γθγold

+
1 − δ(yiθ

T
γold

xi)yi

aii
.

The process is repeated long enough until no changes to the new parameter vector

are observed.

5.2.1.2 Double exponential (or Laplace) Prior Distribution

Assume that within model Mγ the parameter vector θγ ∼ Laplace(µ, b), with

location parameter µ = 0 and shape parameter b, then the prior distribution of

the parameters is

p(θγ |µ = 0, b) =

(
1

2b

)p
exp

{
−

p∑

i=1

|θi|
b

}
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where p is the dimension of the parameter vector θγ and the components of θγ

are independent. The log-prior distribution is

log p(θγ |µ = 0, b) = −p log(2b) −
p∑

i=1

|θi|
b

.

The log-posterior distribution is then

log(π(θγ |y,Xγ , Mγ)) ∝ ℓ(y|Xγ , θγ , Mγ) + log(p(θγ |µ, b))

∝ −
n∑

i=1

log(1 + exp(−yiθ
T
γxi)) − p log(2b) −

p∑

i=1

|θi|
b

.

(5.5)

The above posterior distribution is not known in closed form and for this reason,

the Laplace approximation is used to approximate it so that

(θγ |y,Xγ , Mγ) ∼ N(θγ ; θ̂γ ,−H−1),

where θ̂γ = max
θγ

log π(θγ |y,Xγ , Mγ). Hence, the first derivatives of the log

posterior distribution are given by

∂ log π(θγ |y,Xγ , Mγ)

∂θγ
= −

n∑

i=1

exp(−yiθ
T
γxi)

1 + exp(−yiθ
T
γxi)

(−yixi) −
1

b

=

n∑

i=1

(1 − δ(yiθ
T
γxi))yixi −

1

b
.
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The second order derivative of the posterior distribution is

H =
∂2 log π(θγ |y,Xγ , Mγ)

∂θγ∂θTγ

=

n∑

i=1

∂

∂θTγ
δ(yiθ

T
γxi)

= −
n∑

i=1

δ(yiθ
T
γxi)(1 − δ(yiθ

T
γxi))yixi(yixi)

T .

Thus, the Hessian matrix is

H = −XγAXT
γ

where aii = δ(θTγxi)(1 − δ(θTγxi)).

Here, the Newton-Raphson method is also applied to estimate the parameter

vector that maximizes the posterior distribution. For Strategy B, the simplex

method of Nelder and Mead (1965) is used to find the maximum of the log

likelihood. The method that was simplest to implement in each case was chosen

to find the maximum.

The performance of the algorithm is tested on twenty different simulated data

sets that each consist of twenty responses and three explanatory variables. Each

of the predictor variables is generated from a multivariate Normal distribution

N(1, I20) where 1 = (1, . . . , 1) and I20 is the identity matrix. The parameter

vector is drawn from a multivariate Normal distribution, N3(0, 4I3), for each

data set.

Two different scenarios are examined depending on the choice of the proposal

distribution. In the first scenario, a Normal prior distribution is assumed to
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describe the prior beliefs about the parameters, N3(0, 1/λI3), where λ = 0.1. In

the second scenario, three different double exponential priors are used, a non-

informative, p(·|µ = 0, b = 20), a less informative, p(·|µ = 0, b = 2) and a more

informative, p(·|µ = 0, b = 0.5), see Figure 5.1.
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Figure 5.1: (a) Non-informative double exponential prior with µ = 0 and
b = 20. (b) Less informative double exponential prior with µ = 0 and b = 2.

(c) Informative double exponential prior with µ = 0 and b = 0.5.

Every time the posterior model probabilities are estimated using the Laplace

approximation, the BIC approximation, Strategy A, Strategy B and the vanilla

RJMCMC. In the vanilla RJMCMC, the proposal jump steps are drawn from

the local proposal distribution and the newly introduced parameters are updated

while the rest of them are retained in the proposed state. The newly introduced

ones are generated from N(0, 1). For Strategy B, the proposal variance, σ2, is

100.

Two different moves are implemented inside the RJMCMC algorithm in order

to promote mixing. First, the parameters are updated in the current state of the

Markov chain using the approximated posterior distribution of the parameters



CHAPTER 5. RJMCMC - INTRACTABLE POSTERIOR DISTRIBUTION 156

within model. Then, a jump is used to propose changes to the model dimension.

The proposal distribution to change the model dimension uses the independent

proposal distribution 90% of the time and the remaining 10% of the time a local

proposal to move to a model differing by ±1 dimension. Each of the RJMCMC

algorithms runs for 200, 000 iterations regarding the first 100, 000 as burn in.

The power posterior method runs for a big number of iterations so that the

posterior model probabilities can be used a benchmark to compare to the esti-

mated posterior model probabilities from the RJMCMC algorithms. Here, the

power posterior algorithm runs using the Metropolis-Hastings algorithm to sam-

ple from the power posterior for each of the data sets applying 50, 000 iterations

within each temperature with proposal variance 5. The temperature vector is de-

fined as ti = (i/55)3 for i = 1, . . . , 55. The power posterior method converges to

the target values according to Figure 5.2 which is similar for each of the different

models.

The weighted and Hellinger distances are calculated in Figure 5.3 and Figure

5.4 respectively. The distance is estimated between the approximated posterior

model probabilities and the accurate ones estimated with the power posterior

method. The Hellinger distance is not a weighted metric while the weighted

distance is weighted over the true posterior model probabilities. The distances

take values close to zero if the approximation is good and values close to one

if the approximation is poor, see section 4.3.1.2 for more details. The Hellinger

distance has also been transformed to take values in [0, 1].

The Laplace approximation seems to give better approximations to the pos-

terior model probabilities compared to the BIC one which is what Boone et al.
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Figure 5.2: Expected values of the logarithmic version of the power posterior
for each temperature t using (a) a Normal prior (b) a non-informative double
exponential prior with µ = 0 and b = 20 (c) a less informative double expo-
nential prior with µ = 0 and b = 2 (d) an informative double exponential prior

with µ = 0 and b = 0.5.

(2005) suggested. The Laplace approximation uses a Normal distribution to ap-

proximate the posterior distribution of the parameters within model and even
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Figure 5.3: Weighted distance for each of the different scenarios using (a) a
Normal prior (b) a non-informative double exponential prior with µ = 0 and
b = 20 (c) a less informative double exponential prior with µ = 0 and b = 2

(d) an informative double exponential prior with µ = 0 and b = 0.5.

in cases where the target can not be approximated by a Normal distribution,

the Laplace approximation still performs quite well in practice, especially if the

sample size is large. When a Normal prior is applied, the approximations are
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Figure 5.4: Hellinger distance for each of the different scenarios using (a) a
Normal prior (b) a non-informative double exponential prior with µ = 0 and
b = 20 (c) a less informative double exponential prior with µ = 0 and b = 2

(d) an informative double exponential prior with µ = 0 and b = 0.5.

quite close to the target ones compared to cases where a double exponential prior

is used. However, in the case of a non-informative double exponential prior, the

Laplace approximations are not as good as the BIC ones. Notice also that the
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BIC approximations estimate the posterior model probabilities by maximizing the

log-likelihood. The RJMCMC algorithm seems to improve the posterior model

probabilities when Strategy A or Strategy B is used. Moreover, the vanilla RJM-

CMC gives quite poor estimates of the posterior model probabilities following

Figure 5.2 and Figure 5.4.

In the case of a Normal prior distribution, Strategy A and Strategy B im-

prove slightly the estimates of the posterior model probabilities. The Laplace

approximation also gives better approximations compared to the BIC method.

Here, the estimations for each method seem to vary more when compared to the

double exponential prior. Then, when a non-informative prior is used the Laplace

approximation gives almost as good estimates as the BIC approximation. Then

again, the RJMCMC algorithm using Strategy A and Strategy B improves these

estimations. Moreover, the vanilla RJMCMC algorithm gives quite poor esti-

mates. When a less informative and an informative prior is used, the Laplace

approximation performs better than the BIC one. Once more, the RJMCMC

algorithms using Strategy A and Strategy B slightly improves these estimates

while the vanilla RJMCMC once more gives poor estimates of the posterior model

probabilities.

Hence, it may be reasonable to use Strategy A or Strategy B since the es-

timated posterior model probabilities are slightly better when compared to the

ones of the other methods especially the ones estimated using the vanilla RJM-

CMC. Overall, Strategy A performs better than Strategy B because of the more

accurate estimations provided by the Laplace approximation. Recall that the

mixing is better when the estimated posterior model probability and the esti-

mated posterior distribution of the parameters within the model are close to the
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target ones because the acceptance probability is maximized. The question is

whether it is worthwhile to use the estimated posterior model probabilities inside

the RJMCMC algorithms. The RJMCMC algorithm seems to improve any bad

approximations but when these approximations are good then it does not seem to

contribute anything extra to them. Hence, in this case, the estimated posterior

model probabilities do not improve much inside the RJMCMC algorithm.

The acceptance probabilities for each of the RJMCMC algorithms are pre-

sented in Table 5.1. It seems that the proposal jumps are accepted more often

when the independent proposal is applied. The acceptance probability for the

vanilla RJMCMC is less than 1% for each different scenario which implies that

the mixing of the chain is very slow.

5.2.2 Real data example

The next example is a real data set presented in Davison (2003). Table 5.2

presents the data of 53 patients with prostate cancer. There are five binary

explanatory variables in total. The age in years which takes the value zero if it is

less than 60, otherwise it takes the value one. The stage measures the seriousness

of the tumour, the grade measures the pathology of the tumour and the xray is

zero for less serious cases and it is one for more serious cases. Finally, the level

of serum acid phosphatase takes the value zero if it is less than 0.6 otherwise,

it takes the value one. The response, nodal involvement, indicates whether the

cancer has spread to neighbouring lymph nodes.

The first row of Table 5.2 means that there was a nodal involvement for

five out of six patients aged less than 60 that also had high levels of the other
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Moves RJMCMC - LA RJMCMC - BIC
Normal prior

exchange 0.4307 0.2326
independent prop 0.2950 0.1992

local prop 0.2727 0.1644
Total 0.3617 0.2144

Non-informative prior

exchange 0.2087 0.4921
independent prop 0.7092 0.1320

local prop 0.3525 0.190
Total 0.4411 0.2972

Less informative prior

exchange 0.3147 0.4679
local jump 0.4504 0.110

independent jump 0.7230 0.1259
Total 0.5052 0.2961

Informative prior

exchange 0.4281 0.4747
local jump 0.6931 0.1020

independent jump 0.4812 0.1200
Total 0.5500 0.2964

Table 5.1: Acceptance probabilities for each of the different strategies using
each of the different priors.

explanatory variables. It should be noticed that a case is an individual patient

and not a row of the table. The aim is to find out which of the five binary

explanatory variables are useful to predict nodal involvement. Hence, since each

of the explanatory variables may or may not be included in a model, there are

25 − 1 = 31 possible models to choose from.

A diffuse Normal prior, N(0, 1002), is used to express the prior beliefs about

the parameter values. The RJMCMC algorithms run for 500, 000 iterations using

the first 100, 000 as burn in. The algorithms run 20 times using different starting
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m r age stage grade xray acid
6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0

2 1 0 1 0 0 1
2 1 0 0 1 0 0
1 1 1 1 1 1 1
1 1 1 1 0 1 1
1 1 1 0 1 1 1
1 1 1 0 0 1 1
1 0 1 0 1 0 0
1 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 0 1 0 1 0

1 1 0 0 1 0 1
1 0 0 0 0 1 1
1 0 0 0 0 1 0

Table 5.2: Data on nodal involvement of Miller et al. (1980).
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positions. The proposal variance for the RJMCMC using Strategy B is again

σ2 = 100.

The power posterior method uses 60 different temperatures and the Metropolis-

Hastings algorithm runs for 50, 000 iterations within each temperature in order to

sample from the power posterior with proposal variance one. In total, 3, 000, 000

iterations were produced and such a long MCMC implementation should give

very accurate estimates of the posterior model probabilities with which to use as

a benchmark to compare the other various methods. The algorithm converges to

the true posterior model probabilities according to Figure 5.5 .
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Figure 5.5: Expected log posterior over different temperature values for the
real data.

The posterior model probabilities are estimated for each model applying the

Laplace and BIC approximation as well as the RJMCMC using Strategy A, Strat-

egy B and also the vanilla RJMCMC. The estimated posterior model probabilities
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for each method are compared to the power posterior ones using the weighted

and Hellinger distances, see Table 5.4. It seems it is beneficial to use Strategy

A or Strategy B as the posterior model probabilities are approximated better

comparing to the vanilla method. Then again, these strategies give similar es-

timates to the posterior model probabilities comparing to the Laplace and BIC

approximations. Therefore, it is arguable whether the extra efforts of using the

BIC or Laplace approximation inside RJMCMC is actually worthwhile.

Distance RJMCMC - LA LA RJMCMC - BIC BIC Vanilla
Hellinger 0.3938 0.3968 0.4258 0.4390 0.6983
Weighted 0.1318 0.1399 0.1131 0.1228 0.1713

Table 5.3: Distance values for each method.

The acceptance probability for each of the RJMCMC algorithms can be seen

in Table 5.4. Notice that the acceptance probability is less than 1% for the vanilla

RJMCMC meaning that the mixing of the algorithm is poor. When Strategy A

or Strategy B is used inside the RJMCMC algorithm, the mixing is improved

as shown by the acceptance probability around 0.40 for Strategy A and 0.24

for Strategy B. Notice also that the acceptance probability for the independent

proposal distribution is much higher compared to the local proposal distribution.
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Accept prob RJMCMC - LA RJMCMC - BIC
exchange 0.500 0.3766
local jump 0.1621 0.1086

independent jump 0.3164 0.1646
Total 0.4005 0.2404

Table 5.4: Acceptance probabilities for each of the different methods.

5.3 Discussion

Following Chapter 4, a reasonable strategy to update the parameter values within

a model in a variable selection problem considering Normal-Gamma linear mod-

els, is to draw the proposed parameter values from the tractable posterior distri-

bution of the parameters within each model. If the posterior distribution of the

parameters is tractable then it is straightforward to generate the proposed pa-

rameter vector. On the other hand, if it is intractable then it has to be estimated

before the proposed parameter vector is drawn from it. The approximation has to

be fast and accurate. Unfortunately, usual Markov chain Monte Carlo methods

might not be efficiently applied here as they are too time consuming and com-

putationally expensive especially if they are used inside the proposal mechanism

of the RJMCMC algorithm. Thus, deterministic approximations should be used

instead.

Moreover, when a jump is proposed to a new model, then a uniform proposal

distribution is usually assumed for each model in a neighbourhood of the current

model, i.e each such model is proposed with the same probability. Even though

this strategy is the most popular, it may not be a good choice. Given that the

sampling space is discrete, the posterior probability mass may be concentrated
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in a few models. Thus, if a model with high probability mass in visited and a

jump is proposed to another model with lower probability mass then the proposed

jump is more likely to be rejected. In order to improve the proposal mechanism

of the RJMCMC algorithm, a more informative proposal distribution is used to

change the model dimension. For instance, if there was a prior knowledge on how

the posterior model probability mass is spread between the models then most

of the time, jumps should be proposed to models with higher posterior model

probability and less of the time to models with lower posterior mass. Hence, it

is important for the mixing of the algorithm to jump and explore the proposed

models with the correct frequency.

Thus, the Laplace approximation can be used to estimate the intractable

posterior distribution of the parameters in a deterministic way. It is easy to

implement, fast and most of the time very accurate. The Laplace approximation

assumes a Normal distribution to the intractable distribution. Hence, when the

intractable distribution is similar to a Normal distribution the approximation is

quite accurate. Then again, if the intractable distribution is not similar to a

Normal one but the sample size is large then the Laplace approximation still

performs quite well in practice. Hence, the Laplace approximation can be used

to estimate the posterior distribution of the parameters as well as the posterior

model probabilities when the sampling space is not large. Thus, these estimates

can be used as an independent prior inside the proposal mechanism of RJMCMC

to change the model dimension.

So, two different distributions are used to change the model dimension, a lo-

cal and an independent one. The local distribution changes the model dimension
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by applying jumps up and down by one or more dimensions while the indepen-

dent one uses the estimated posterior model probabilities to choose the proposed

model. The local distribution is used to avoid cases where the approximation

to the posterior model probabilities is not very good or the estimated posterior

model probabilities are close to zero. In this way, each model will be eventually

explored.

Moreover, if the approximated posterior model probabilities and the approx-

imated posterior distribution of the parameters are good approximations to the

target ones inside the RJMCMC algorithm then the acceptance probability is

almost one. Thus, the proposed jumps are more likely to be accepted improving

the mixing of the RJMCMC algorithm.

Furthermore, the posterior model probabilities and the posterior distribution

of the parameters are estimated using the Laplace and the BIC approximation.

When these estimates are used inside the proposal mechanism of the RJMCMC

algorithm then the performance of the algorithm improves compared to the vanilla

one because the mixing of the algorithm is better. Then again, the estimated pos-

terior model probabilities with the RJMCMC method do not improve much inside

the RJMCMC. Hence, it is arguable whether the RJMCMC improves the already

estimated posterior model probabilities with the Laplace and BIC approximation.

Rue et al. (2009) use various types of approximations, for instance the Laplace

approximation, to the posterior distribution and the marginal posterior distri-

bution for a big sampling space. This paper generally agrees that deterministic

approximations to the posterior are preferable to MCMC approximations for cer-

tain classes of statistical model, and the results of our analysis concur with this

view.
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The methods proposed here can only be applied when it is possible to individ-

ually fit each model to the data. When the sampling space is big then it might be

difficult to implement these ideas. For this reason, other techniques have to be

developed. For instance, a population of MCMC chains could be used to guide

the proposed jump of the RJMCMC. The number of chains that is visiting each

model does not have to be constant for each of the possible models. These ideas

are discussed further in Chapter 6.



Chapter 6

Conclusions and Future Research

This chapter will state, summarise and discuss the conclusions that can be drawn

from the work presented in this thesis. Also, some possible extensions of this

work will be considered. This thesis concerns aspects of population Markov

chain Monte Carlo (MCMC) and Reversible jump Markov chain Monte Carlo

(RJMCMC) methods.

Chapter 1 explained the motivation of the thesis and reviewed some of the

different attempts that have been made by different authors in order to solve

existing problems on each of these two aspects. A small introduction is also

made to the contribution of our research to solve these problems and possible

connection between the two different aspects that will involve our future work

motivating the thesis.

Chapter 2 explained the disadvantages of the usual MCMC algorithms that

use only one chain to explore the sampling space and motivated the use of pop-

ulation MCMC algorithms which use several Markov chains to sample from the

170
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target distribution. Then, a new population MCMC sampler, the simplex sam-

pler was introduced to sample from highly correlated target distributions. The

simplex sampler uses a population of Markov chains which interact with each

other and is based on the Nelder and Mead (1965) simplex method. The mixing

of the simplex sampler is quite good when the distribution of interest has highly

correlated parameters. However, when the target distribution is multi-modal the

sampler tends to get trapped under a local maxima unable to traverse the whole

sampling space.

Chapter 3 introduced a new population MCMC sampler, the tempered sim-

plex sampler, which samples from multi-modal distributions using a tempering

ladder. The sampler considers a population of several Markov chains under each

temperature and uses the simplex sampler to explore each of the intermediate

tempered distributions while it exchanges different populations of Markov chains

under different temperatures. In this way, the tempered simplex sampler borrows

the good mixing of the simplex sampler in cases of highly correlated target dis-

tributions and the good mixing of the tempering methods when a multi-modal

target distribution is considered.

Chapter 4 motivated the significance of the choice of a good proposal distri-

bution for the RJMCMC algorithm. It was suggested to use the full-conditional

posterior distribution of the parameters as the proposal distribution to generate

the proposed parameter vector. There are several proposal distributions depend-

ing on how many of the common parameters between the proposed and the cur-

rent model are conditioned on. These may be conditioned on none, some or all

of the common parameters. It was concluded that the best strategy is to use the

posterior distribution of the parameters as the proposal distribution so that none
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of the common parameter values is conditioned or retained in the proposed state.

Chapter 4 considered cases that the posterior distribution of the parameters is

tractable.

Furthermore, Chapter 5 considered cases where the posterior distribution of

the parameters is intractable. For this reason, deterministic approximations are

used to estimate it before the proposed parameter vector is drawn from it in

an off-line step. Then, it was shown that these approximations can be used to

estimate the posterior model probabilities also in an off-line step. Thus, the

main idea was to use these approximations to the posterior model probabilities

as an independent proposal distribution inside the proposal mechanism of the

RJMCMC algorithm to choose the proposed model. Then, the models tended to

be visited with the correct frequency so that models with higher posterior model

probability are visited more often. When these approximations were used inside

the RJMCMC algorithm, the mixing of the algorithm was better compared to the

vanilla one. Then again, the estimated posterior probabilities with the RJMCMC

algorithm do not differ much from the ones estimated with the Laplace and the

BIC approximation. Hence, it is questionable whether the RJMCMC algorithm

improves any good approximations to the posterior model probabilities.

In future, the aim is to create population MCMC algorithms that aim to

sample from multi-modal target distributions considering a population of Markov

chains under each temperature ladder, for instance, using a population of Markov

chains has visited and not just a single one when the tempered transitions method

is applied. Then, the new sampler can use the good mixing of population MCMC

algorithms as well as the good mixing of the tempered transitions method.

The aim is to connect these two different aspects. Our intention is to construct
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a new RJMCMC algorithm based on a population of Markov chains and not just

a single one. Then, the population of Markov chains can be used to choose the

proposed model. It is known that Markov chains have no memory and for this

reason, it is not possible to go back and learn from previous rejections. For this

reason, a population of Markov chains can be used to explore each of the possible

models and then, these chains can also be used to choose the model to jump to.
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