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Abstract 

Protozoan parasites of the genus Leishmania are the causative agents of a 

complex of diseases referred to as leishmaniasis. Leishmania have a digenetic life 

cycle that involves a sand fly vector (promastigote stage) and a mammalian host 

(amastigote stage). The parasites reside within very different environmental niches 

in the two different hosts, and therefore must be able to adapt their energy 

metabolism to the available carbon and nitrogen sources. 

Lipoic acid (LA) is a multifaceted molecule, and plays an important role as a water- 

and fat-soluble antioxidant. LA is also an essential cofactor of the α-ketoacid 

dehydrogenase complexes (α-KADHs) and of the glycine cleavage complex 

(GCC). The α-KADHs include the pyruvate dehydrogenase (PDH), branched-chain 

α-ketoacid dehydrogenase (BCKDH) and α-ketoglutarate dehydrogenase (α-

KGDH), each of which is integral to cellular energy metabolism. In some 

organisms, LA can be acquired through salvage and biosynthesis pathways, and 

yet others only encode enzymes that permit one of the two pathways. Lipoylation 

of the PDH has been demonstrated in a parasite related to Leishmania called 

Trypanosoma brucei; however there have not been any investigations into the 

enzymes involved in LA metabolism in either Leishmania or Trypanosoma brucei.  

In silico analyses identified genes encoding for proteins involved in both LA 

biosynthesis and salvage (lipoic acid synthase (LIPA), octanoyl-[acyl carrier 

protein]: protein N-octanoyltransferase (LIPB) and lipoate protein ligase (LPLA), 

respectively), and it was predicted that all three proteins possess mitochondrial 

targeting peptides. Targeting of these proteins to the mitochondrion was verified 

by a green fluorescence protein (GFP) reporter system, and by subcellular pre-

fractionation using digitonin followed by western blotting. Functionality of L. major 

putative LIPA, LIPB and LPLA genes was determined by showing that the genes 

complemented the no-growth phenotype of bacteria deficient in either lipA or lipB 

genes on minimal medium. 

Bioinformatics analyses also showed that L. major possesses genes encoding all 

of the subunits comprising the different α-KADHs and the GCC, and the subunits 

were predicted to possess mitochondrial targeting peptides. Western blotting of 

promastigote protein with an antibody recognising protein-bound LA (α-LA 
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antibody) identified four proteins, which based upon predicted molecular sizes, 

correspond to the lipoylated transacylase subunits of the three α-KADHs and the 

H-protein of the GCC. Interestingly, the lipoylation pattern changes throughout 

promastigote growth in vitro, with α-KGDH being lipoylated throughout 

promastigote life while PDH and BCKDH are not lipoylated and presumably not 

active in metacyclic promastigotes. These findings indicate that modification of α-

KADHs and the GCC by lipoylation is a dynamic process, possibly reflecting 

adaptations in the parasite’s energy metabolism during their developmental cycle. 

Three approaches were taken to study the relative importance of the LA 

biosynthesis and salvage pathways in L. major promastigotes. First, LA analogues 

8’ bromooctanoic acid (8-BOA) and octanoic acid (OA) were tested for their effects 

on growth in L. major maintained in lipid-depleted medium. The IC50 for 8-BOA 

was relatively high when compared to that determined in other organisms, 

suggesting that LA biosynthesis can compensate for a decrease in LA salvage in 

medium deficient in LA. Second, attempts to replace either LIPA or LPLA genes 

with selectable markers were unsuccessful. LPLA could however, be knocked-out 

when an extra copy of the gene was introduced into the parasite’s genome. These 

data suggest that both LA acquisition pathways might be essential for 

promastigote growth and development. Third, overexpression of C-terminal His-

tagged versions of LIPB (LIPB-His), LPLA (LPLA-His) and a LPLA active site 

mutant, LPLAH118A (LPLAH118A-His), resulted in slow-growth phenotypes. 

Overexpression of LIPB-His and LPLAH118A-His resulted in lipoylation of the PDH 

and BCKDH in metacyclic promastigotes, which is not observed in wild-type 

metacyclic promastigotes. It is hypothesised that LA biosynthesis and salvage 

enzymes could have differential substrate-specificities in L. major. 

A number of avenues require further investigation, including the mechanism that 

permits a relatively rapid turnover of lipoylated protein, and whether lipoylation 

patterns differ depending upon the carbon sources that are provided in the growth 

medium. Also, it will be interesting to determine whether LIPB and LPLA have 

intrinsic substrate-specificities, and whether this is sufficient to explain the fact that 

both LIPA and LPLA are essential in the promastigote stage in vitro. 
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1 Introduction 

1.1 Leishmania 

1.1.1 Aetiology 

The leishmaniases describe a spectrum of zoonotic diseases that are caused by 

obligate intracellular protozoa of the genus Leishmania (family Trypanosomatidae, 

order Kinetoplastida), which are transmitted to a vertebrate host through the bite of 

an infected sandfly (Herwaldt, 1999). Leishmaniasis is a complex of diseases, 

which are classified into four clinical forms: 

i. Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis, and 

results in cutaneous sores, which are localised to the vector bite site. It is caused 

mainly by Leishmania major, Leishmania tropica and Leishmania aethiopica in the 

Old World, and by Leishmania mexicana complex species, Leishmania 

guyanensis and Leishmania panamensis in the New World. The lesions caused by 

infection with these species generally self-heal within a few months after the onset 

of symptoms, without the need for drug intervention (Desjeux, 2004). 

ii. Diffuse cutaneous leishmaniasis (DCL) is a more extensive and chronic form of 

CL; the sores that form are non-ulcerative (Herwaldt, 1999) and do not self-heal, 

due to an inefficient cell-mediated immune response (Desjeux, 2004). It is caused 

by L. aethiopica in the Old World and by L. mexicana complex species (most 

notably, by Leishmania amazonensis) in the New World. 

iii. Mucocutaneous leishmaniasis (MCL) is another type of CL defined by the 

development of sores on the naso-oropharyngeal mucosal membranes, which 

result in severe disfigurement (Herwaldt, 1999). It is caused by Leishmania 

braziliensis subspecies. 

iv. Visceral leishmaniasis (VL), commonly referred to as kala azar, is the most 

severe form of the disease; symptoms include fever, extreme weight loss, 

anaemia, hepatosplenomegaly, pancytopenia and hypergammaglobulinaemia. 

The primary species responsible for VL in the Old Word is Leishmania donovani, 
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particularly on the Indian subcontinent and Eastern Africa. In the Mediterranean 

and the New World, Leishmania infantum is the principal cause of VL. 

Humans are susceptible to infection from approximately 20 species of Leishmania, 

and leishmaniasis is endemic to 88 countries on four continents 

(http://www.who.int/leishmaniasis/burden/en/), as illustrated in Figure 1.1. 

 

Figure 1.1 Global distribution of cutaneous and vis ceral leishmaniasis 
Maps showing the global distribution of cutaneous (A) and visceral (B) leishmaniasis. Maps were 
taken from http://www.who.int/leishmaniasis/leishmaniasis_maps/en/index.html. 
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1.1.2 Life cycle 

Leishmania require two hosts to complete their life cycle; the definitive female, 

haematophagous sandfly vector (subfamily Phlebotominae) and the mammalian 

host (including dogs and humans). 

When a sandfly bites an infected mammal it acquires a bloodmeal containing 

Leishmania amastigotes. In order to survive within the sandfly midgut, these 

amastigotes must differentiate into the promastigote form. Species of the 

subgenus Leishmania are suprapylarian parasites, restricted to the midgut of the 

sandfly, whereas species belonging to the Viannia subgenus from the New World 

are peripylarian parasites, entering the hindgut before migrating towards the 

midgut (Kamhawi, 2006). Studies of L. mexicana in its sandfly host Lutzomyia 

longipalpis have illustrated the existence of at least six different promastigote sub-

types (Rogers et al., 2002). Firstly, amastigotes ingested within the bloodmeal 

differentiate into procyclic promastigotes, which then develop into nectomonad 

promastigotes, then into leptomonad promastigotes and finally into metacyclic 

promastigotes, which are the mammal-infective form (see Figure 1.2). The two 

other promastigote sub-types observed are haptomonad promastigotes and 

paramastigotes, yet the precursors of these have not been determined (Kamhawi, 

2006; Rogers et al., 2002). Of the six promastigote sub-types, only the procyclic 

promastigotes (in the abdominal midgut) and leptomonad promastigotes (in the 

thoracic midgut and foregut) are replicative (Gossage et al., 2003). 

In the sandfly vector, the time taken for ingested amastigotes to develop into 

metacyclic promastigotes ranges from six to nine days, depending upon the 

species of Leishmania (Kamhawi, 2006). The mode of transmission of metacyclic 

promastigotes into the mammalian host is via regurgitation. The cause of this 

regurgitation is the promastigote secretory gel (PSG), which is secreted by the 

parasites into the thoracic midgut to form a PSG plug, which in turn forces open 

the stomodeal valve where metacyclic promastigotes accumulate (Rogers et al., 

2002; Stierhof et al., 1999) (see Figure 1.2). Upon regurgitation by the sandfly, 

approximately 1000 metacyclic promastigotes are inoculated into the mammalian 

host, most of which were derived from just behind the stomodeal valve. 

Interestingly, the PSG plug is also transmitted into the mammalian host, and the 

main component of this plug, filamentous proteophosphoglycan (fPPG), has been 

shown to aid disease progression (Rogers et al., 2002; Stierhof et al., 1999). 
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A lot of focus has recently been on the events that proceed as metacyclic 

promastigotes enter the mammalian host. These experiments have illustrated that 

even though amastigote development is restricted to the phagolysosomal 

compartment of macrophages, polymorphonuclear neutrophil granulocytes (PMN) 

appear to be key in establishing infection (Nauseef, 2007; Peters et al., 2008; 

Segal, 2005; van Zandbergen et al., 2004). An interesting theory has been 

proposed, whereby PMNs act as a 'Trojan horse' vehicle for Leishmania infection 

of macrophages. It was demonstrated that metacyclic promastigotes are 

phagocytosed by PMNs, and that PMNs do not kill the internalised parasites by 

the oxidative burst (Laufs et al., 2002; Muller et al., 2001; van Zandbergen et al., 

2004). Additionally, the phagocytosed metacyclic promastigotes do not multiply or 

differentiate into amastigotes inside PMNs (Laufs et al., 2002; Muller et al., 2001; 

van Zandbergen et al., 2004). The 'Trojan horse' theory was proposed because it 

was observed in vitro that infected PMNs are phagocytosed by macrophages (van 

Zandbergen et al., 2004). However, recent in situ mouse data show that PMNs 

undergoing apoptosis in fact release their parasite load, which is then in turn 

phagocytosed by macrophages (Peters et al., 2008). Thus, the current hypothesis 

is concurrent with the idea that PMNs are essential to establishment of Leishmania 

infection, however the results do not indicate that PMNs act as 'Trojan horses'; 

instead, parasites exposed to the internal milieu of PMNs are conferred 

subsequent resistance somehow after being internalised by macrophages (Peters 

et al., 2008). 

After being phagocytosed by macrophages, Leishmania metacyclic promastigotes 

reside within the acidic phagolysosomal compartment (or parasitophorous vacuole 

(PV)), and prevent the fusion of the phagolysosome with the lysosome (Bogdan & 

Rollinghoff, 1999). It is in the PV that metacyclic promastigotes differentiate into 

the amastigote form, and the nature of the PV niche varies, depending upon the 

species of Leishmania (Handman & Bullen, 2002; Rittig & Bogdan, 2000). 

Amastigotes are aflagellate and round-oval in shape with a diameter of 4 µm 

(Herwaldt, 1999) (see Figure 1.2). Amastigotes multiply within the PV and are 

released and subsequently infect further macrophages, although the exact 

mechanism of amastigote escape from macrophages is not fully understood. 
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Figure 1.2 Digenetic life cycle of Leishmania 
A, Schematic representation of a Leishmania-infected sandfly, indicating time-dependent 
appearance of distinct morphological forms. The promastigote secretory gel (PSG) fills the thoracic 
midgut, and in doing so holds open the stomodeal valve. (Image taken from (Kamhawi, 2006) with 
permission from Elsevier.) B, The life cycle of Leishmania is initiated by the uptake of amastigotes 
in a bloodmeal from the mammalian host by the sandfly vector. Amastigotes differentiate into 
promastigotes, which migrate to the proboscis, where the promastigotes are inoculated into the 
mammalian host upon taking another bloodmeal. The promastigotes are ultimately phagocytosed 
by macrophages, where they multiply within the phagolysosomal compartment. Amastigotes are 
released and then the free amastigotes are taken up by another macrophage. (Image taken from 
http://commons.wikimedia.org/wiki/File:Leishmaniasis_life_cycle_diagram_en.svg.) 

1.1.3 Ultrastructure of Leishmania 

Leishmania belong to the order Kinetoplastida, the members of which each 

possess a unique organelle called the kinetoplast, comprising the mitochondrial 

DNA. Similar to Leishmania, other kinetoplastids such as species within the genus 

Trypanosoma, have complex digenetic life cycles. Kinetoplastid species have 

adapted in various ways to the very different environments found within the fly and 

mammalian hosts. Trypanosoma brucei for example, has evolved to derive its 
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nutrition from mammalian blood, and as such bears a flagellum and has adapted 

to the problem of immune recognition by varying the antigen type (variable surface 

glycoprotein (VSG)) presented on its plasma membrane (Donelson, 2003). 

Leishmania however, have evolved to survive and replicate within the acidic 

environment of the macrophage phagolysosome. Amastigotes are small in length 

(4 µm) and amotile (aflagellate). By contrast, promastigotes have long thin cell 

bodies that are 5-20 µm in length, and possess a flagellum up to 20 µm in length. 

As such, a large amount of cellular remodelling is required in the process of 

promastigote-to-amastigote differentiation (Besteiro et al., 2006; Clayton et al., 

1995) (see Figure 1.3). This involves rearrangement of the array of cross-linked 

subpellicular microtubules that are located underneath the plasma membrane 

(McConville et al., 2002), which govern the characteristic shapes of Leishmania 

promastigotes and amastigotes. 

1.1.3.1 Plasma membrane 

Leishmania synthesise a family of glycoconjugates that are either attached to the 

extracellular face of the plasma membrane or secreted from the cell. The base 

molecule of these glycolipids is phosphoglycan (PG), and important members of 

this family include membrane-bound lipophosphoglycan (LPG) and 

proteophosphoglycan (PPG) (Beverley & Turco, 1998; Ilg et al., 1999; McConville 

& Ferguson, 1993). These molecules make up a thick glycocalyx in procyclic 

promastigotes, however metacyclic promastigotes and amastigotes possess a 

much thinner layer. It was demonstrated that LPG is essential for survival of L. 

major within the sandfly (Sacks et al., 2000) and for infection of macrophages and 

mice (Spath et al., 2000). Interestingly, LPG does not seem to be essential for L. 

mexicana infection of macrophages or mice (Ilg et al., 2001). It is not apparent 

whether the contrasting results observed for L. major and L. mexicana are intrinsic 

to using mouse as a model, or whether the two species indeed do use different 

surface glycoconjugates to survive within the mammalian host (Turco et al., 2001). 

1.1.3.2 Flagellar pocket 

In kinetoplastids, endocytosis and exocytosis are restricted to a single portion of 

the plasma membrane at the anterior of the cell called the flagellar pocket. The 

flagellar pocket is a specialised invagination of the plasma membrane, and is the 
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only region in the cell that is not subtended by microtubules which make up the 

cytoskeletal network (Clayton et al., 1995; Overath et al., 1997) (see Figure 1.3). 

1.1.3.3 Flagellum 

Leishmania promastigotes possess a single flagellum, which is derived from one 

of the two basal bodies located within the kinetoplast (see Figure 1.3). The 

flagellum consists of a classical 9+2 microtubule double axoneme and the 

trypanosomatid-specific paraflagellar rod (Bastin et al., 2000) (see Figure 1.3). 

In Leishmania promastigotes, the flagellum has several roles: the first and most 

obvious is to enable promastigotes to migrate from the sandfly midgut towards the 

stomodeal valve. L. mexicana promastigotes were shown to swim at a velocity of 

29.5 ± 5.9 µm sec-1 in culture conditions (Santrich et al., 1997). The flagellum 

length varies between different promastigote sub-types, and metacyclics possess 

the greatest flagellum-to-cell body ratio and are highly motile. It has been shown 

that Leishmania are able to use positive chemotaxic cues including sugar and 

saliva (Barros et al., 2006; Charlab et al., 1995). The flagellum has also been 

shown to be involved in anchoring promastigotes to the sandfly gut epithelium 

(Wakid & Bates, 2004). Interestingly, the promastigote plasma membrane 

glycolipid, LPG, is important for interactions of promastigotes with the gut in 

certain sandfly species, but not others. It was discovered that LPG is essential for 

the attachment of L. major promastigotes in the specific vector Phlebotomus 

papatasi, however LPG was not essential for adherence of promastigotes in the 

permissive vectors Phlebotomus arabicus or Lutzomyia longipalpis (Myskova et 

al., 2007). 

1.1.3.4 Kinetoplast 

The kinetoplast is a disc-shaped sub-structure located within the mitochondrion, 

which contains kinetoplast DNA (kDNA). kDNA accounts for 10-20 % of the total 

cellular DNA content, and can be observed by microscopy using DAPI stain 

(Bastin et al., 2000). kDNA is found in the form of a few dozen maxicircles and 

thousand of minicircles. The maxicircles have some functions of higher eukaryote 

mitochondrial DNA. The minicircles encode guide RNAs, which carry out the post-

transcriptional editing of maxicircle RNA species by extensive uridylate insertions 

(Liu et al., 2005). 
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1.1.3.5 Mitochondrion 

Leishmania possess a single mitochondrion, which is large and stretches 

throughout most of the cell body (Bienen et al., 1981; Coombs et al., 1986). In 

terms of structure, the mitochondrion in Leishmania is similar to that found in other 

eukaryotes; it consists of outer and inner membranes and tubular cristae. The 

Leishmania mitochondrion is structurally similar in both promastigote and 

amastigote forms, whereas the T. brucei mitochondrion lacks extensive tubular 

cristae in the mammalian blood stream form stage, and has greatly reduced 

activity (Bienen et al., 1981).  

1.1.3.6 Glycosomes 

Glycosomes are spherical shaped peroxisome-like organelles with a diameter of 

approximately 0.7 µm (Michels et al., 2006). A key feature of these organelles is 

the compartmentalisation of the first seven enzymes involved in glycolysis; 

interestingly, the enzymes involved in net production of adenosine triphosphate 

(ATP) are located in the cytosol (see Figure 1.4). In other organisms in which all 

glycolytic enzymes are localised to the cytosol, two ATP-dependent kinases 

hexokinase (HXK) and phosphofructokinase (PFK) are negatively regulated by 

intermediate metabolites of glycolysis. This has been shown to be essential in 

yeast, since removal of inhibition results in uncontrolled glycolysis and build-up of 

unacceptably high levels of hexose phosphate glycolytic intermediates (Thevelein 

& Hohmann, 1995). In T. brucei, regulation of HXK and PFK has not been 

practically demonstrated. Indeed, systems biology modelling and practical data 

have illustrated that the reason for glycosomal compartmentalisation is to prevent 

a 'lethal turbo charge of glycolysis'; it seems therefore that T. brucei, and possibly 

other kinetoplastids, have evolved a glycolytic system that has no need for 

regulation of HXK and PFK enzymes (Haanstra et al., 2008). 
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Figure 1.3 Schematic representation of the ultrastr ucture of Leishmania promastigotes and 
amastigotes 
Promastigote on left and amastigote on right. Organelles are labelled. (Image taken from (Besteiro 
et al., 2007) with permission from Elsevier.) 

1.1.4 Chemotherapies 

There is currently no vaccine against leishmaniasis and the drugs currently 

available to treat leishmaniasis are the pentavalent antimonials, that is, sodium 

stibogluconate (Pentostam) and meglumine antimonate (Glucantime); 

amphotericin B; pentamidine amd miltefosine (Croft and Coombs, 2003). Aside 

from miltefosine, all of the other drugs require parenteral administration, which 

results in a long period of hospitalisation. The drugs also have a range of side 

effects and drug resistance is increasing (Croft et al., 2005; Murray et al., 2005; 

Sundar et al., 2000). 
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In the treatment of visceral leishmaniasis, the pentavalent antimonials have been 

the first-line treatment for over 60 years (Croft and Coombs, 2003).  Antimonials 

can give rise to severe toxic side effects, including cardiac arrhythmia and 

pancreatitis.  Levels of resistance to these drugs have been reported to be very 

high in endemic regions, particularly in Bihar, India (Sundar and Rai, 2002).  

Pentamidine is highly toxic, and as such has generally only been used as a 

second-line therapy after ineffective antimonial treatment, and resistance to 

pentamidine treatment has been reported in India (Sundar and Rai, 2002).  In 

some areas of Bihar, Amphotericin B has replaced antimonials as the first-line 

treatment Amphotericin B is highly effective at treating antimony-resistant cases, 

but is toxic, with nephrotoxicity and first-dose anaphylaxis reported.  The lipid 

formulation, AmBisome, has much reduced toxicity, but its high cost has limited its 

use in developing countries until recently (Chappuis et al., 2007). 

Miltefosine has been used to treat visceral leishmaniasis in India since 2002 

(Davies et al., 2003).  Miltefosine has been shown to be safe for both adults and 

children in India and although gastrointestinal side effects are common, these do 

not generally prevent completion of treatment (Sundar et al., 2002). It has not 

however, been established whether miltefosine will be as effective against L. 

infantum/chagasi as it is against L. donovani (Croft and Coombs, 2003).  

As discussed in Section 1.1.1, cutaneous leishmaniasis often self-heals; as such, 

drug treatment is not always necessary, and is normally only used if there is a risk 

of mucocutaneous leishmaniasis.  For patients with disfiguring lesions or diffuse or 

mucocutaneous leishmaniasis, treatment with pentavalent antimonials is the most 

common route of action (Davies et al., 2003).  It is known that there is a difference 

in the susceptibility of different Leishmania species to pentavalent antimonials; L. 

donovani and L. braziliensis are more sensitive compared to L. major, L. tropica 

and L. mexicana (Croft et al., 2002).  Pentamidine is used to treat cutaneous and 

mucocutaneous leishmaniasis (Sundar and Rai, 2002), and amphotericin B is 

often used as a first-line treatment for travellers (Schwartz et al., 2006).   

Miltefosine is effective against L. panamensis, less so against L. mexicana, and 

shows a large variation in its efficacy against L. braziliensis (Soto et al., 2004; Soto 

et al., 2007).  Miltefosine has also been tested against Old World cutaneous 

species and found to give similar cure levels as antimonials (Mohebali et al., 2007).   
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1.2 Energy metabolism in Leishmania and other 

trypanosomatids 

1.2.1 Introduction to energy metabolism 

The production of the energy storage compound ATP is essential for active cellular 

function. There are two methods by which organisms generally produce ATP; 

substrate-level phosphorylation and oxidative phosphorylation. Substrate-level 

phosphorylation is defined as the catalysis of phosphoryl transfer from a reactive 

intermediate to adenosine diphosphate (ADP), resulting in ATP (Nelson & Cox, 

2000). For example, as illustrated in Figure 1.4, succinate dehydrogenase (SDH) 

catalyses the breakage of the high-energy thioester bond between succiante and 

Coenzyme A (CoA), and in the process itself becomes phosphorylated. SDH then 

transfers the phosphoryl-group to ADP to produce ATP and succinate (Nelson & 

Cox, 2000). Oxidative phosphorylation describes an aerobic process (respiration) 

whereby certain nutrients (for example glucose) are completely oxidised to CO2 

and H2O (Nelson & Cox, 2000). In the process, electrons of oxidised intermediates 

are transferred to electron acceptors such as NAD+ and FAD+. In eukaryotes, 

electrons are fed through the electron transport chain, which is located in the inner 

mitochondrial membrane; the result is the generation of a transmembrane 

potential and ultimately the production of ATP from the phosphorylation of ADP, 

and  the generation of H2O from the reduction of O2 (Nelson & Cox, 2000). 

Organisms have adapted their energy metabolisms in different ways, depending 

upon the nutrients that are available to them as well as the aerobic conditions. 

Parasites, on the other hand, especially those with multiple hosts within their life 

cycle, may have also been restricted to certain microenvironments within each 

host, based on the metabolic machinery that they encode. In terms of energy 

metabolism in trypanosomatids, most work has been carried out on T. brucei (for 

review see (Bringaud et al., 2006)), and although there are some studies with 

regards to Leishmania promastigote energy metabolism, there are still many 

questions remaining, especially in terms of amastigote energy metabolism (for 

review see (Opperdoes & Coombs, 2007)). The aim of this section is to summarise 

what is known about the nutritional requirements of Leishmania with reference to 

other trypanosomatids (mainly T. brucei), and to give an appreciation of how these 
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organisms have adapted to cope with their digenetic life cycles on a metabolic 

level. 

1.2.2 Nutrition in the fly vector 

Trypanosomatids are exposed for part of their life cycles to different compartments 

within their permissive haematophagous fly vectors. Whereas Leishmania 

promastigotes are restricted to the fly midgut (with the exception of the braziliensis 

complex of Leishmania), trypanosomes also invade the fly hindgut and salivary 

glands. In conjunction with differential geographical locations within the fly vector, 

the sandfly differs from the vectors of trypanosomes in its feeding habits. For 

example, it has been shown that the tsetse fly (the vector of T. brucei) relies upon 

amino acids for energy generation during flight (Bursell, 1960; Bursell, 1963). 

Notably, it was shown that proline is the principal amino acid used as a carbon 

source, and that proline is partially oxidised via glutamate to alanine (Bursell, 

1967). However, sandflies have been reported to feed primarily on nectar and as 

such Leishmania promastigotes in the midgut are thought to have a sugar-rich diet 

(Schlein, 1986), and Leishmania encode glycosidases to digest complex 

polysaccharides (Jacobson & Schlein, 2001; Jacobson et al., 2001). Interestingly 

however, in vitro studies indicate that T. brucei procyclic form (PCF) preferentially 

use glucose as an energy source when grown in the presence of both glucose and 

proline (Hellemond et al., 2005; Lamour et al., 2005; van Weelden et al., 2003; van 

Weelden et al., 2005), yet Leishmania promastigotes preferentially use amino 

acids (Cazzulo et al., 1985). Nevertheless, in the absence of glucose in the 

medium, proline has been shown to be the principle carbon source for T. brucei 

PCF (Lamour et al., 2005). It is also generally accepted that proline is an important 

carbon source for energy generation in Leishmania in the sandfly (for review see 

(Bringaud et al., 2006). 

1.2.3 Parasite energy metabolism in the fly vector 

Although there are likely to be differences between energy metabolism in T. brucei 

PCF and Leishmania promastigotes, T. brucei has been used as a model for 

trypanosomatid energy metabolism in the fly stage, primarily due to the fact that 

this organism is amenable to RNA interference (RNAi), whereas this technique 

has not been successfully applied in Leishmania. As will be discussed in Section 

6.3.3.3, gene replacement in Leishmania can be a lengthy and unsuccessful tactic 
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to study certain genes, and RNAi sometimes permits a more subtle dissection of 

molecular pathways. As such, this section will have a bias towards T. brucei. 

In Leishmania promastigotes and trypanosomatid PCF, energy generation 

involves both glycolysis and mitochondrial metabolism. As described in Section 

1.1.3.6, the ATP-expending reactions of glycolysis occur in peroxisome-like 

organelles called glycosomes (see Figure 1.3), and the later ATP-yielding 

reactions of glycolysis occur in the cytosol (see Figure 1.4) (Michels et al., 2006). 

The end-product of glycolysis – pyruvate – can be decarboxylated to produce 

acetyl-CoA via the mitochondrial pyruvate dehydrogenase complex (PDH). In 

yeast, mammals and bacteria, under aerobic conditions acetyl-CoA is completely 

oxidised through the tricarboxylic acid (TCA) cycle to CO2, H2O and ATP. The TCA 

cycle generates energy through substrate-level phosphorylation (via succinate 

dehydrogenase; SDH) and through oxidative phosphorylation, feeding reducing 

equivalents in the form of NADH and FADH2 into the electron transport chain. 

Trypanosomatids seem to be an exception, since acetyl-CoA is not used in the 

TCA cycle (Coustou et al., 2008; van Weelden et al., 2003), but is instead 

converted to acetate by a two-enzyme cycle involving acetate: succinate CoA 

transferase (ASCT) and succinyl-CoA synthetase (SCS), with concomitant ATP 

production (see Figure 1.4) (Van Hellemond et al., 1998). Such partial 

fermentation occurs even in the presence of oxygen, and as such is referred to as 

aerobic fermentation (for review see (Bringaud et al., 2006)). Acetate is not the 

only end-product of aerobic fermentation; others include succinate and alanine, 

and to a lesser extent pyruvate, lactate and ethanol (see Figure 1.4) (for review 

see (Bringaud et al., 2006)). 

It has been shown that in the absence of high concentrations of glucose, T. brucei 

PCF cultured in vitro rely upon proline as a carbon source. When cultured in 

glucose-depleted/proline-containing conditions, the major end products excreted 

by PCF are alanine (64.2 %) and glutamate (28.2 %) (Coustou et al., 2008). 

Coustou et al. (2008) propose a metabolic pathway, whereby proline is oxidised 

via glutamate to α-ketoglutarate, which is then fed into the TCA cycle through the 

action of the α-ketoglutarate dehydrogenase complex (α-KGDH) to produce 

succinyl-CoA, and ultimately malate. Malate is converted into pyruvate, which is 

subsequently transaminated with glutamate by alanine aminotransferase (ALAT) 

to produce alanine. The authors make the potentially intriguing observation that 

proline metabolism in T. brucei PCF mimics that which occurs in the tsetse fly 
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flight muscle, in that alanine is the principal end-product (Bursell, 1967; Coustou et 

al., 2008). Interestingly, under glucose-depleted/proline-containing conditions, the 

electron transport chain was shown to be essential. Leishmania promastigotes, 

however, are semi-tolerant to anoxic conditions, and although they do not 

proliferate in the absence of oxygen, they do persist. Indeed, after 40 h of anoxia, 

replenishing the oxygen supply permits a release of the metabolic arrest such that 

Leishmania promastigotes proliferate again (Van Hellemond & Tielens, 1997; Van 

Hellemond et al., 1997). The slowing of promastigote motility during hypoxic 

conditions in the sandfly is hypothesised to be important for the simple reason that 

a reduction in energy expenditure will allow the parasites to persist for longer (Van 

Hellemond & Tielens, 1997). T. brucei PCF are completely intolerant of anaerobic 

conditions, and start dying after a few days of anoxia (van Weelden et al., 2003). 

In comparison to T. brucei, little is known in Leishmania promastigotes with 

regards to the relative levels of contribution of glucose and proline in energy 

metabolism. However, one study illustrates that a L. mexicana promastigote 

mutant line, which lacks three genes that are integral to glucose transport, is able 

to establish an infection in L. longipalpis sandflies, albeit less efficiently 

(Burchmore et al., 2003). However, the mutant line is unable to replicate within 

macrophages in the mammalian host (see Section 1.2.5) (Rodriguez-Contreras et 

al., 2007). Another study illustrated that gluconeogenesis is essential for L. major 

promastigotes in the absence of glucose, since a mutant line lacking the gene 

encoding the important gluconeogenesis enzyme fructose 1,6-bisphosphatase 

(FBP) is unable to proliferate on glucose-depleted/glycerol-containing medium 

(see Figure 1.4) (Naderer et al., 2006). It was also demonstrated that acetyl-CoA 

derived from β-oxidation of fatty acids (FAs) is not a gluconeogenic substrate in 

promastigotes (Naderer et al., 2006). This was expected to be the case, since 

analysis of the L. major genome indicates that this parasite lacks the glyoxylate 

cycle genes encoding isocitrate lyase (ICL) and malate synthase (MLS), and as 

such is unable to convert acetyl-CoA into malate, and subsequently oxaloacetate, 

which is used in gluconeogenesis (Ivens et al., 2005). Instead, in conditions of low 

glucose concentration, amino acids have been shown to be used for 

gluconeogenesis (Burchmore et al., 2003). Overall, in promastigotes it is likely that 

glucose plays an important role as a substrate for the pentose phosphate pathway 

(PPP) to generate precursors for DNA and RNA biosynthesis (Maugeri et al., 

2003), and is also likely to be used for the production of carbohydrate, such as 
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β1,2-mannan reserve oligosaccharides (see Figure 1.4) (Ralton et al., 2003). 

However, in terms of Leishmania energy metabolism, proline is thought to be more 

important than glucose (see Figure 1.4) (Opperdoes & Coombs, 2007). 
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Figure 1.4 The pathways of core metabolism in L. major 
Figure shows reactions taking place in the glycosome, that are involved in carbohydrate 
metabolism, and in the mitochondrion, with its tricarboxylic acid cycle, and the flux of metabolites 
between these two organelles. Boxed metabolites are substrates (grey) or end products (black) of 
metabolism. Thick arrows represent major metabolite fluxes. Pathways in blue are thought to be 
more important in promastigotes and pathways in red are thought to be more important in the 
amastigote. Abbreviations: Fru, fructose; GAP, glyceraldehyde 3 phosphate; Glc, glucose; H-5-P, 
hexose 5-phosphate; Man, mannose; PEP, phosphoenolpyruvate; PGA, phosphoglyceric acid; 
PPP, pentose-phosphate pathway. Enzymes: 1, hexokinase; 2, phosphoglucose isomerase; 3, 
phosphofructokinase;4, fructosebisphosphate aldolase; 5, triosephosphate isomerase; 6, 
glyceraldehyde-3-phosphate dehydrogenase; 7, phosphoglycerate kinase; 8, glycerol-3-phosphate 
dehydrogenase; 9, glycerol kinase; 10, adenylate kinase; 11, glucosamine-6-phosphate 
deaminase; 12, mannose-6-phosphate isomerase; 13, phosphomannomutase; 14, GDP-mannose 
pyrophosphorylase; 15, phosphoglycerate mutase; 16, enolase; 17, pyruvate kinase; 18, 
phosphoenolpyruvate carboxykinase; 19, malate dehydrogenase; 20, fumarate hydratase; 21, 
NADH-dependent fumarate reductase; 22, malic enzyme; 23, alanine aminotransferase; 24, 
aspartate aminotransferase; 25, pyruvate phosphate dikinase; 26, citrate synthase; 27, 2-
ketoglutarate dehydrogenase; 28, succinyl-CoA ligase; 29, succinate dehydrogenase; 30, acetate–
succinate CoA transferase; 31, pyruvate dehydrogenase; 32, citrate lyase; 33, acetyl-CoA 
synthetase; 34, proline oxidation pathway; 35, threonine oxidation pathway; 36, ribulokinase; 37, 
ribokinase; 38, xylulokinase; 39, amylase-like protein; 40, sucrase-like protein. (Image taken from 
(Opperdoes & Coombs, 2007) with permission from Elsevier.) 
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1.2.4 Nutrition in the mammalian host 

In the mammalian host (human), Leishmania amastigotes and Trypanosoma cruzi 

amastigotes have an intracellular life style, whereas T. brucei BSF lives in the 

blood. T. cruzi trypomastigotes infect a variety of cell types, including 

cardiomyocytes, and once within the cell, trypomastigotes differentiate into 

amastigotes, which multiply in the cytosol. Both T. cruzi and T. brucei thus inhabit 

hexose sugar-rich environments. 

Leishmania amastigotes reside within the acidic phagolysomal compartment of 

macrophages, which is also referred to as the PV. In fact, different species of 

Leishmania are known to infect different populations of macrophages, and the 

morphology of the phagolysosome differs depending upon the species of 

Leishmania (Antoine et al., 2004). For example, L. mexicana induce spacious 

vacuoles, rather than tight-fitting phagolysosomes found in L. major infections 

(Russell et al., 1992). Interestingly, aside from the Gram-negative bacterium 

Coxiella burnetii (Voth & Heinzen, 2007), no other microbial pathogen is known to 

replicate within the phagolysosomal compartment. Unlike the hexose-rich cytosolic 

compartment that T. cruzi inhabits, the phagolysosome lumen is hexose-poor, and 

the main carbon sources for energy generation are thought to come from host 

amino acids and FAs (Bringaud et al., 2006; McConville et al., 2007; Naderer & 

McConville, 2008; Opperdoes & Coombs, 2007). Lastly, there is some evidence to 

suggest that the metabolic and activation status of the infected macrophage has a 

significant influence upon amastigote growth (Gordon, 2003; Sacks & Anderson, 

2004).  

1.2.5 Parasite energy metabolism in the mammalian h ost 

Given the very different tissue-specificities of the different trypanosomatids, it is 

not surprising that their energy metabolism differs much more drastically than in 

the fly host. T. brucei BSF lacks most of the mitochondrial enzymes found in the 

PCF and completely relies upon glycolysis for energy generation (Bakker et al., 

2000; Fairlamb & Opperdoes, 1986). 

Leishmania amastigotes acquire energy via β-oxidation of FAs (see Figure 1.4) 

(Hart & Coombs, 1982). It is thought that the acetyl-CoA produced from β-

oxidation is fed into a fully functional TCA cycle (Hart & Coombs, 1982), however 
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this needs reanalysis given that trypanosomatid promastigotes and PCF do not 

fully oxidise acetyl-CoA via the TCA cycle (Opperdoes & Coombs, 2007). A recent 

proteomic study highlighted the fact that during the in vitro differentiation of L. 

donovani metacyclic promastigotes into amastigotes, enzymes involved in the 

glycosomal-restricted portion of glycolysis are down-regulated, whereas key 

enzymes involved in β-oxidation of FAs were significantly up-regulated 

(Rosenzweig et al., 2008). The authors also reported increases in the levels of 

TCA cycle enzymes and of enzymes involved in the catabolism of amino acids 

(Rosenzweig et al., 2008). 

Despite the fact that the phagolysosomal compartment is hexose-poor, an L. 

mexicana mutant lacking three glucose transporters is unable to proliferate when 

inoculated into mice (Burchmore et al., 2003). It was shown that the mutant 

promastigotes are taken up by host macrophages and differentiate into 

amastigotes, yet do not persist (Rodriguez-Contreras et al., 2007). To further 

strengthen the case that glucose uptake is essential for L. mexicana amastigote 

development, a reversion of this mutant line has been reported, in which an 

alternative hexose transporter has been amplified on a circular extrachromosomal 

element (Feng et al., 2009b). This naturally occurring selection for an up-

regulation of an alternative hexose transporter reverted the avirulent phenotype of 

the glucose transporter mutant in mice, thus highlighting the importance of 

hexoses like glucose for amastigote survival and replication (Feng et al., 2009b). 

On the other hand, gluconeogenesis has been reported to be essential for the 

survival of L. major within macrophage phagolysosomes (Naderer et al., 2006). If 

the uptake of hexoses is also essential to L. major amastigote fitness, it would 

appear that gluconeogenesis is not sufficient to provide enough hexose for PPP or 

for carbohydrate biosynthesis (or for other purposes), and that uptake of even 

small concentrations of hexoses in the hexose-poor PV niche is critical for the 

survival of the amastigote stage. 

1.3 Production of fatty acids 

Leishmania have a very robust energy metabolism, with the capacity to partially 

oxidise sugars, amino acids and FAs in order to generate energy (see Section 

1.2). Key to several of the important enzymes within the TCA cycle is the molecule 

lipoic acid (LA), which is the topic of this thesis. LA can be synthesised from FAs 
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(see Section 1.4.3), and as such the aim of this section is to give an appreciation 

of the different systems that exist in trypanosomatids to produce FAs. 

FAs are carboxylic acids with unbranched aliphatic tails that are either saturated or 

unsaturated. The process of FA synthesis involves the extension of a ‘primer’ FA 

building block by addition of a 2 carbon (2C) FA unit. FAs are bound to either acyl 

carrier protein (ACP) or to CoA. ACP and CoA are covalently modified with a 4'-

phosphopantetheine group (Magnuson et al., 1993). FAs are bound to ACP and 

CoA through a thioester linkage with the 4'-phosphopantetheine group. One cycle 

of 2C addition requires four steps; condensation, reduction, dehydration and 

reduction. These steps are catalysed by either type I or type II fatty acid synthase 

(FAS). The type I FAS is found in mammals and yeast, is localised to the cytosol, 

and arranges its different catalytic activities on separate domains spanning either 

one or two polypeptide chains (Smith, 1994). The type II FAS occurs in plants and 

bacteria, and each catalytic activity is associated with an individual polypeptide 

chain (Rock & Jackowski, 2002; White et al., 2005). Recent data indicate that 

mammals (Witkowski et al., 2007) and yeast (Hiltunen et al., 2005) also contain a 

mitochondrial type II FAS, which is not merely a relict of the endosymbiont, but is 

essential to respiration and cellular fitness in mammals (Feng et al., 2009a) and 

yeast (Brody et al., 1997; Schonauer et al., 2008; Sulo & Martin, 1993). In both 

type I and type II FAS, the growing acyl chain is esterified to ACP (White et al., 

2005). 

In addition to de novo biosynthesis of FAs via type I or type II FAS, a set of 

elongase enzymes also exist, whose role in mammals and yeast is to elongate 

long-chain FAs (C14-18) to make very long-chain FAs (C20 or longer).  

1.3.1 Endoplasmic reticulum elongase system 

Elongase enzymes carry out the same four condensation, reduction, dehydration 

and reduction reactions that are catalysed by FAS (Leonard et al., 2004). Unlike 

FAS, elongases (ELOs) are localised to the endoplasmic reticulum (ER) and are 

membrane-bound (Moon et al., 2001; Oh et al., 1997; Toke & Martin, 1996). 

Another difference is that the growing acyl chain is esterified to CoA instead of to 

ACP. In yeast and mammals, ELOs incrementally increase the length of an acyl 

chain using malonyl-CoA as the 2C donor (Leonard et al., 2004). Multiple 

elongase systems exist (Cinti et al., 1992), each with different chain length 
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specificity, in order to permit the production of various types of polyunsaturated 

fatty acids (PUFAs). 

In T. brucei, a membrane-associated FA synthesis was discovered in a cell-free 

system (Morita et al., 2000), which was interesting for several reasons. Firstly, a 

soluble mitochondrial type II FAS had been predicted (and since shown to be 

active) (Stephens et al., 2007), and as such it was peculiar that FA synthesis was 

associated with the membrane fraction. Secondly, whereas malonyl-CoA or acetyl-

CoA were expected to serve as a primer for FA synthesis, only butyryl-CoA 

worked as a primer (Morita et al., 2000). Thirdly, knock-down of ACP by RNAi had 

no effect on bulk FA synthesis in the cell-free system (Lee et al., 2006). 

It was recently shown that the membrane-associated FA synthesis in T. brucei is 

due to the action of ELO 1-4. However, unlike yeast and mammalian ELOs, T. 

brucei ELO1 and ELO2 were shown to primarily synthesise myristate (C14) de 

novo from a butyryl-CoA primer in T. brucei BSF (Lee et al., 2006). The authors 

also identified 13 potential ELOs in the L. major genome and five potential ELOs in 

the T. cruzi genome. Preliminary data from the cell-free system illustrated that like 

T. brucei, both L. major and T. cruzi possess membrane-associated FA synthesis 

activity (Lee et al., 2006). So far, T. brucei is the only organism that has been 

experimentally shown to have adopted the microsomal ELO system for the 

purpose of de novo FA synthesis (Lee et al., 2006; Lee et al., 2007). 

1.3.2 Mitochondrial type II FAS 

Type II FAS uses ACP to extend an acyl chain, using acetyl-CoA (1C) as a primer 

and malonyl-CoA as the 2C donor (for review see (White et al., 2005)). Acetyl-CoA 

can be derived from the glycolytic product pyruvate via the action of mitochondrial 

pyruvate dehydrogenase. Alternatively, the amino acid threonine can be converted 

to pyruvate via threonine dehydrogenase, and an intermediate in this pathway can 

undergo thiolysis with CoA to produce acetyl-CoA and glycine. 

The first enzyme involved in type II FAS is acetyl-CoA carboxylase (ACC), which is 

a biotin-dependent enzyme that catalyses the conversion of acetyl-CoA to 

malonyl-CoA. The malonyl-moiety is subsequently transferred onto ACP by 

malonyl-CoA: ACP transferase. The addition of malonyl-ACP to a growing acyl 

chain is catalysed by the sequential action of four enzymes. Firstly, condensation 
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of acetyl-CoA/acetyl-ACP and malonyl-CoA to form 3-ketoacyl-ACP is catalysed 

by 3-ketoacyl-ACP synthase. Next, 3-ketoacyl-ACP is reduced to 3-hydroxyacyl-

ACP by 3-ketoacyl: ACP-reductase. The dehydration reaction producing trans-2-

enoyl-ACP is catalyzed by 3-hydroxyacyl thioester dehydratase. Lastly, trans-2-

enoyl-ACP is reduced by 2-enoyl thioester reductase to produce the acyl-ACP 

molecule that has been extended by two carbon atoms. The acyl-ACP species can 

then be used as a substrate by ketoacyl-ACP synthase and the type II FAS cycle 

continues. 

Interestingly, it has been noted in fungi (Wada et al., 1997), plants (Wada et al., 

1997), yeast (Brody et al., 1997; Schonauer et al., 2008) and mammals (Feng et 

al., 2009a; Witkowski et al., 2007) that the principal end product of type II FAS is 

the 8 carbon (8C) FA octanoyl-ACP (see Section 1.4.3). Type II FAS also 

produces FA chains up to myristate (14C) in Neurospora crassa (Mikolajczyk & 

Brody, 1990), up to palmitate (16C) in T. brucei (Stephens et al., 2007) and up to 

stearate (18C) in plants (Gueguen et al., 2000), however much less is known with 

regards to the role of acyl-chains longer than 8C. 

The trypanosomatids T. brucei, T. cruzi and L. major all possess genes that 

potentially encode all components of a type II FAS (Lee et al., 2007; Stephens et 

al., 2007). Research on T. brucei has shown that all components of type II FAS 

are localised to the mitochondrion (Autio et al., 2008a; Stephens et al., 2007). T. 

brucei mitochondrial type II FAS is essential, since RNAi of ACP causes cell death 

in PCF and BSF parasites (Guler et al., 2008; Stephens et al., 2007). It was shown 

that T. brucei RNAi resulted in a significant decrease in LA (Stephens et al., 2007). 

However, the principal cause of a decrease in parasite fitness was found to be due 

to a significant decrease in the production of certain phospholipids, resulting in 

altered mitochondrial ultrastructure, mitochondrial membrane potential, and 

ultimately a decrease in cytochrome-mediated respiration (Guler et al., 2008). 

A recent surge of publications have received much attention recently, since they 

illustrate that type II FAS in fungi, yeast, mammals, plants and T. brucei is pivotal 

to cellular survival. As will be discussed in Section 6.3.3.3, evidence is 

accumulating that one of the main functions of type II FAS is to produce octanoyl-

ACP, which is the precursor of LA (Hiltunen et al., 2009). 
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1.4 Lipoic acid 

LA (6,8-thioctic acid or 1,2-dithiolane-3-pentanoic acid) was first isolated from 

bovine liver in 1951 (Reed et al., 1951). LA is an eight-carbon fatty acid with two 

sulphur atoms linked to carbons 6 and 8 that form a disulphide 1,2-dithiolane ring 

in the oxidised form (see Figure 1.5), which can be reduced to form dihydrolipoic 

acid (DHLA) (Atmaca, 2004). R-LA is the naturally occurring enantiomer of LA, 

and from now on will simply be referred to as LA. From bacteria to mammals, LA is 

an essential cofactor in several multienzyme complexes that are involved in key 

metabolic processes (Perham, 2000). Additionally, LA is a potent antioxidant, and 

there have been a plethora of recent studies into the potential therapeutic 

applications of LA (Estrada et al., 1996) (Beitner, 2003) (Hager et al., 2001). LA 

can be synthesised from the type II FAS product octanoyl-ACP (see Sections 1.3.2 

and 1.4.3), or can be salvaged from the external milieu (see Section 1.4.3.2). 

 

Figure 1.5 Schematic representations of LA and DHLA  
Diagrams showing the structure of the oxidised form (A) and reduced form, DHLA (B) of LA. 

1.4.1 Antioxidant properties of the lipoic acid/dih ydrolipoic acid 

redox pair 

An antioxidant is defined by several criteria, which include specificity of free radical 

quenching, metal chelating activity, interactions with other antioxidants, and effects 

on gene expression. Additional criteria that are important when considering 

therapeutic applications are bioavailability, concentration and solubility. Vitamin E, 

for example, is soluble only in the lipid phase and its main role is to quench lipid 

peroxyl radicals (Burton & Ingold, 1981). On the other hand, the LA/DHLA redox 
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pair fulfil most of the above criteria, and for this reason have been described as a 

'universal antioxidant' (Kagan et al., 1992).  

The LA/DHLA redox pair has a redox potential of -0.32 V (Searls & Sanadi, 1960); 

as a comparison, the redox potential of the glutathione (GSH)/glutathione 

disulphide (GSSG) pair is -0.24 V (Scott et al., 1963). This low electronegativity 

means that DHLA is a very strong reductant. As well as being able to reduce 

GSSG to GSH (Jocelyn, 1967), DHLA is an antioxidant of ascorbate (vitamin C), 

and due to its solubility in lipid as well as water (Roy & Packer, 1998), DHLA can 

also reduce lipid-soluble tocopherol (vitamin E) (Podda et al., 1994; Rosenberg & 

Culik, 1959). 

In addition to the recycling of antioxidants as described above, LA is able to 

scavenge hydroxyl radicals (Scott et al., 1994; Suzuki et al., 1991), hypochlorous 

acid (Haenen & Bast, 1991) and singlet oxygen (Devasagayam et al., 1991). 

DHLA is able to scavenge hypochlorous acid (Haenen & Bast, 1991), and unlike 

LA, DHLA is also an effective buffer of peroxyl radicals (Kagan et al., 1992; Suzuki 

et al., 1993). DHLA, but not LA, is also able to chelate redox active metal ions 

such as iron, thus minimising the production of highly reactive hydroxyl radicals 

through the Fenton reaction (Suh et al., 2004). 

Given the important nature of LA/DHLA as an antioxidant, much attention has 

recently been focused on understanding whether this thiol could be of therapeutic 

usefulness. It was, for example, demonstrated that LA has beneficial effects in the 

treatment of diabetes type 1 and type 2, which are both associated with elevated 

levels of oxidative stress. In both type 1 and type 2 diabetes, the problem is a lack 

of insulin-mediated glucose uptake into cells. Insulin is ordinarily made within β 

cells of the pancreas, however type 1 diabetes is an autoimmune disease that 

results in the destruction of these insulin-generating β cells. The main problem 

associated with type 2 diabetes is resistance to insulin. In vitro, it has been 

demonstrated that LA stimulated glucose uptake into muscle cells in a manner 

similar to that induced by insulin (Estrada et al., 1996). In a study whereby 74 

patients with type 2 diabetes were administered 600 mg LA or 'placebo' once, 

twice or three times daily for four weeks, patients that received LA had a 

significant increase in insulin-stimulated glucose uptake compared to the placebo 

control (Jacob et al., 1999). 
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In terms of therapeutic applications, LA/DHLA is also being tested for its 

protective/regenerative potential in other diseases, such as cataract (Maitra et al., 

1995) and Alzheimer's disease (Hager et al., 2001), as well as gaining the 

attention of cosmetologists and dermatologists (Beitner, 2003). 

In addition to its role as an antioxidant, LA has also been shown to affect 

transcription of certain genes, by regulating redox-sensitive transcription factors 

present in the cytosol. For example, LA is known to inhibit the translocation of the 

transcription factor NF-κB from the cytosol to the nucleus (Zhang & Frei, 2001). 

More recent data indicate the intriguing observation that LA is directly or indirectly 

involved in RNA processing in yeast (Schonauer et al., 2008) and vertebrate (Autio 

et al., 2008b) mitochondria, marking an evolutionarily conserved intersection of 

positive feedback loops between type II FAS and RNA processing. 

Overall, LA is a multifaceted molecule, with roles as an antioxidant and as a 

signalling molecule. The focus of this thesis however, is on the role of LA in energy 

metabolism, in which it acts as a cofactor for four enzyme complexes, with each 

playing a key role in either substrate level/oxidative phosphorylation or in the 

creation of C1 units for folate metabolism. 

1.4.2 Role of LA in energy metabolism 

1.4.2.1 α-Ketoacid dehydrogenase complexes 

LA plays a key role in energy metabolism, since it acts as an essential cofactor of 

α-KADH complexes (α-KADHs) (Perham, 2000). α-KADHs consist of multimers of 

three proteins that are strongly (but not covalently) associated; a substrate-specific 

α-ketoacid decarboxylase (E1), an acyltransferase (E2) and a dihydrolipoamide 

dehydrogenase (E3) (see Figure 1.6). Mammals (De Marcucci & Lindsay, 1985) 

and yeast (Maeng et al., 1994) also encode a protein that is structurally-similar to 

E2, called E3 binding protein (E3BP). Three types of KADHs are found in 

eukaryotes; pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (α-

KGDH) and branched-chain α-ketoacid dehydrogenase (BCKDH). These 

multienzyme complexes can be up to 10 MDa in size. Recent data indicate that 

the BCKDH may even exist as a part of an even larger supramolecular complex 
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with the branched-chain aminotransferase (BCAT), referred to as the branched-

chain amino acid metabolon (BCAA metabolon) (Islam et al., 2007).  

α-KADHs catalyse the conversion of α-ketoacid, NAD+ and coenzyme A (CoA) 

into CO2, NADH and acyl-CoA (see Figure 1.6). The substrate-specific E1 subunit 

contains a thiamine pyrophosphate (TPP) cofactor, and catalyses the 

decarboxylation of an α-ketoacid, generating CO2 and an acyl-TPP moiety, which 

remains bound to the E1 subunit. The E2 subunit contains the LA cofactor, which 

is covalently bound via an amide linkage to the N6-amino group of a specific lysine 

residue of the E2 subunit. The lipoamide acts as a swinging arm in the E2-

catalysed transfer of the acyl group from acyl-TPP to coenzyme A to form acyl-

CoA (see Figure 1.6). The high-energy acyl-CoA thioester is either fed into the 

TCA cycle or used as a precursor in fatty acid biosynthesis. The last step in the 

reaction is the re-oxidation of dihydrolipoamide by the FAD-containing E3 subunit, 

which results in lipoamide and NADH (see Figure 1.6) (Perham, 1991; Perham, 

2000; Reed & Hackert, 1990). The reduced NADH derived from the reaction can 

be used in the electron-transport chain with production of ATP (Voet & Voet, 

2005). 
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Figure 1.6 Reaction mechanism of αααα-KADHs 
1, The E1 subunit catalyses the decarboxylation of an α-ketoacid to form an acyl group, in a TPP-
dependent manner. The E2 subunit catalyses transfer of the acyl group (2) onto a CoA receptor (3) 
to form acyl CoA, and in the process the lipoyl-moiety becomes reduced. The E3 subunit catalyses 
the oxidation of the lipoyl-group (4), with the electron acceptor being NAD+ (5). Abbreviations: TPP, 
thiamin diphosphate; LipS2 and Lip(SH) 2, lipoyl moiety and its reduced form. (Image taken from 
(Reed & Hackert, 1990) with permission from Elsevier.) 

In every α-KADH, the E2 components are assembled into either a cubic (24-mer) 

or a dodecahedral (60-mer) inner core, around which E1 and E3 components bind 

(Perham, 1991; Perham, 2000; Reed & Hackert, 1990). The E2 protein consists of 

three structurally- and functionally distinct domains. The N-terminal portion is the 

lipoyl-domain, which contains the signature lysine residue that is post-

translationally modified by LA. Depending upon the species and the α-KADH, 

there may be up to three lipoyl-domains, each spanning approximately 80 amino 

acid residues (Packman et al., 1984). However, the reason for the existence of 

more than one lipoyl-domain is not fully understood, since computer modelling 

(Hackert et al., 1983a; Hackert et al., 1983b) and experimental evidence (Allen et 

al., 1989; Guest et al., 1985) indicate that only one lipoyl-domain is required for 

optimal α-KADH activity. The lipoyl-domain is followed by a subunit-binding 

domain, which confers binding of E1 and E3 subunits to the E2 core. 

Nevertheless, the PDH E2 subunit in mammals (De Marcucci & Lindsay, 1985) 

and some yeast (Maeng et al., 1994) (but not bacteria) is not able to bind E3 

directly, and instead requires the accessory E3BP; E3 binds to E3BP and is 
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inserted into the E2p scaffold (Sanderson et al., 1996a; Sanderson et al., 1996b). 

After the subunit-binding domain is the C-terminal catalytic domain, which 

catalyses the transfer of the acyl-moiety from the E1 subunit onto the CoA 

acceptor, to produce acyl-CoA (see Figure 1.6). 

The three domains that comprise the E2 subunit are separated by linker regions, 

which are approximately 20-30 amino acids in length, and are typically rich in 

amino acids alanine and proline, which gives these structures flexibility (Packman 

et al., 1984; Perham et al., 1981). These flexible linkers permit the lipoyl-domain to 

act as a 'swinging domain', shuttling reaction intermediates between E1, E2 and 

E3 subunits (Fries et al., 2007; Green et al., 1992; Perham et al., 1981; Perham, 

1991; Reed & Hackert, 1990).  

The role of the E1 subunit is to confer substrate-specificity to the α-KADH, and 

requires TPP and Mg2+ cofactors for activity (see Figure 1.6). The E3 protein is a 

flavoprotein, which is responsible for the re-oxidation of dihydrolipoamide to 

lipoamide (see Figure 1.6). In most organisms, the E3 protein is shared between 

different complexes (Bourguignon et al., 1996). The situation is different in 

organisms that possess α-KADHs localised to different organelles, such as plants 

and P. falciparum; in such cases more than one E3 protein exists, in order to serve 

α-KADHs in an organellar-specific manner (Lutziger & Oliver, 2000; McMillan et 

al., 2005). 

The PDH catalyses the oxidative decarboxylation of pyruvate to acetyl-CoA (see 

Figure 1.7). The enzyme complex is generally found in the mitochondrion, where it 

forms the link between glycolysis and the TCA cycle. Plants possess an additional 

PDH enzyme complex, which is present in the plastid, where it provides acetyl-

CoA and NADH for fatty acid biosynthesis (Mooney et al., 2002). 

The BCKDH complex catalyses the oxidative decarboxylation of branched-chain 

α-ketoacids, namely 2-ketoisocaproate, 2-keto-3-methylvalerate and 2-

ketoisovalerate (derived from leucine, isoleucine and valine, respectively) to form 

an acyl-group (isovaleryl, 2-methylbutyryl or isobutyryl, respectively), in a TPP-

dependent process (Massey et al., 1976) (see Figure 1.7). Eventually, the acyl-

CoA products can be converted to acetyl-CoA and/or succinyl-CoA for usage in 

the TCA cycle (Anderson et al., 1998). 
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The α-KGDH is also found in the mitochondrion, where it catalyses the oxidative 

decarboxylation of α-ketoglutarate to succinyl-CoA. The production of succinyl-

CoA is another branch point into the TCA cycle, other than acetyl-CoA. In 

Leishmania and T. brucei insect stage forms, proline (and glutamine) is thought to 

be a key carbon source. Proline is ultimately catabolised to α-ketoglutarate, which 

is fed into the TCA cycle through the action of the α-KGDH (see Figure 1.7). As 

such, α-KGDH is likely to be a key enzyme in Leishmania energy metabolism. 

 

Figure 1.7 Schematic representation of the reaction s catalysed by different αααα-KADHs 
This figure is based upon the information presented in Figure 1.4, and highlights the relevance of 
the different α-KADHs in mitochondrial energy metabolism. Abbreviations: Glu, glutamate. 

1.4.2.2 Glycine cleavage complex 

LA is also an essential cofactor of the glycine cleavage complex (GCC). The GCC 

consists of multiple copies of four protein subunits; a decarboxylase (P-protein), an 

aminomethyltransferase (T-protein), a dihydrolipoamide dehydrogenase (L-

protein) and a carrier protein (H-protein). The GCC is present in the mitochondria, 
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plastids and cytosol of plant photosynthetic cells, and in the mitochondria of 

mammals (Cossins & Chen, 1997; Douce et al., 2001). 

The GCC catalyses the oxidative decarboxylation and deamination of glycine, 

generating CO2, NH3, NADH and N5,N10-methylene tetrahydrofolate (5,10-CH2-

THF) (see Figure 1.8 for reaction mechanism). C1 units provided by 5,10-CH2-THF 

are used by folate coenzymes to synthesise essential cellular compounds, 

including pyrimidines and mitochondrial protein (Appling, 1991). 

The P-protein catalyses the decarboxylation of glycine and the reductive 

methylamination of lipoamide, which is covalently attached to the H-protein. The T-

protein is a THF-dependent enzyme, and catalyses the transfer of methylene to 

THF and the subsequent release of NH3. The H-protein then reacts with the L-

protein, the dihydrolipoamide dehydrogenase described above, to oxidise the 

dihydrolipoamide, with NAD+ as the final electron acceptor. The released 5,10-

CH2-THF reacts with another glycine molecule, resulting in the formation of serine, 

a reaction that is catalysed by serine hydroxymethyltransferase (SHMT) (Douce et 

al., 2001). 

The GCC and α-KADH share similar mechanisms of action, most relevant of which 

is the parallel between α-KADH E2 subunits and GCC H-protein. Like the E2 

subunit, the H-protein is lipoylated, and the bound LA shuttles reaction 

intermediates between different catalytic subunits, itself being reduced and 

oxidised. Nevertheless, whereas the E2 subunit bears catalytic activity, the H-

protein does not, and is just a carrier protein. 
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Figure 1.8 Reaction mechanism of the GCC 
Outline of the reactions involved in oxidative decarboxylation and deamination of glycine in plant 
mitochondria. P-, H-, T- and L- are the protein components of the glycine-decarboxylase 
multienzyme system. The key enzyme in the entire sequence of reactions is the lipoamide-
containing H-protein, which undergoes a cycle of reductive methylamination (catalysed by the P-
protein), methylamine transfer (catalysed by the T-protein) and electron transfer (catalysed by the 
L-protein). SHMT: serine hydroxymethyltransferase involved in the conversion of CH2–THF to THF 
at the expense of a second molecule of glycine. Note that the methylamine moiety deriving from 
glycine is passed to the distal sulphur of the dithiolane ring. Hmet, Hred and Hox: methylaminated, 
reduced and oxidized forms of the H protein, respectively. (Image taken from (Douce et al., 2001) 
with permission from Elsevier.) 

1.4.3 LA metabolism 

As discussed in Section 1.4.2, LA is an essential cofactor of α-KADHs and the 

GCC. LA is ligated to the E2 subunits of α-KADHs and to the H-protein of the GCC 

in a process referred to as lipoylation. Specifically, LA is attached to the ε-amino 

group of a strictly conserved lysine residue of apoproteins (Douce et al., 2001; 

Reche & Perham, 1999). 

Two pathways exist to carry out lipoylation of α-KADHs and the GCC (see Figure 

1.9). Firstly, LA can be synthesised de novo, which necessitates the sequential 

action of two enzymes; octanoyl-[acyl carrier protein]: protein N-

octanoyltransferase (LipB) covalently attaches ACP to the apoproteins (Cronan et 

al., 2005; Zhao et al., 2005). The octanoyl-ACP used as a precursor for LA 
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synthesis is provided by mitochondrial type II FAS, as discussed in Section 1.3.2 

(Gueguen et al., 2000; Jordan & Cronan, 1997b; Miller et al., 2000). Following 

ligation of OA to the apoprotein, two sulphurs are inserted at carbon positions six 

and eight, to form the lipoyl-arm. This reaction is catalysed by lipoic acid synthase 

(LipA), an S-adenosyl-methionine (SAM)-dependent, [Fe-S] cluster-containing 

enzyme (Cicchillo & Booker, 2005; Miller et al., 2000; Zhao et al., 2003). LA can 

also be salvaged from the environment, and scavenged LA is ligated directly to the 

enzyme complexes by either of the two known salvage pathways. Salvage of LA in 

E. coli requires just one enzyme, lipoate protein ligase (LplA) (Morris et al., 1994; 

Reed et al., 1994), which catalyses the formation of an activated intermediate, 

lipoyl-AMP, and the subsequent transfer of the lipoyl moiety to the apoprotein. The 

mammalian system necessitates the sequential action of two enzymes for 

activation and transfer of LA to the apoprotein; medium-chain acetyl-CoA 

synthetase 1 (ACSM1) (Fujiwara et al., 2001) and lipoyltransferase (LT) (Fujiwara 

et al., 1997a; Fujiwara et al., 1999), respectively. 

 

Figure 1.9 Schematic representation of LA metabolis m pathways 
LA can be acquired through biosynthesis or salvage pathways. In the biosynthesis pathway, 
octanoyl-ACP from mitochondrial type II FAS is used a substrate for LipB, which transfers the 
octanoyl-moiety to the E2 subunit of a α-KADH or to the H-protein of the GCC. LipA catalyses the 
insertion of two sulphur atoms into the octanoyl-moiety to form the lipoyl-moiety. LA is salvaged by 
bacteria and mammals in an ATP-dependent reaction. In E. coli, one enzyme – LplA – catalyses 
the activation of LA to form lipoyl-AMP, and the subsequent transfer of the lipoyl-moiety to the apo-
E2-protein or apo-H-protein. In mammals, salvage of LA necessitates the sequential action of two 
enzymes; lipoate-activating enzyme (medium-chain acyl-CoA synthetase) catalyses the activation 
of LA and lipoyltransferase catalyses the transfer of the lipoyl-moiety to the apo-E2-protein or apo-
H-protein. 
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1.4.3.1 LIPA 

LipA catalyses the production of LA from OA by inserting two sulphur atoms at 

carbon position six and eight (see Figure 1.9). As described in Section 1.3.2, 

octanoyl-ACP is provided by mitochondrial type II FAS. In E. coli, it was 

demonstrated that LipA has significantly higher preference for the apoprotein-

bound octanoyl-moiety (octanoamide) as a substrate rather than free octanoyl-

ACP (Zhao et al., 2003). LipA is a member of the radical SAM superfamily, which 

use SAM and a specialised [4Fe-4S]+ cluster to cleave non-activated carbon 

hydrogen (C-H) bonds (Hayden et al., 1992; Miller et al., 2000; Reed & Cronan, 

1993; Sofia et al., 2001). All members of this superfamily possess a strictly 

conserved Cx3Cx2C motif; the three cysteine residues within this motif nucleate 

three of the Fe atoms within the [4Fe-4S]+ cluster, and the fourth Fe atom is bound 

to SAM (Frey et al., 2008). Radical SAM enzymes catalyse the reductive cleavage 

of SAM to produce [4Fe-4S] 2+-Met and a 5'-deoxyadenosyl radical (5'-dA●). 5'-dA● 

abstracts hydrogen atoms linked to non-activated carbon hydrogen (C-H) bonds. 

In the case of LipA, the 5'-dA● abstracts hydrogen atoms linked to C6 and C8 of 

octanoamide, forming C6- and C8 alkyl radicals (Douglas et al., 2006). It was 

established that the production of one molecule of lipoamide from octanoamide 

requires two SAM molecules (Cicchillo et al., 2004a). Interestingly, LipA also 

possesses a second LipA -specific cysteine-rich motif Cx4Cx5C (Cicchillo & 

Booker, 2005; Frey et al., 2008). A second [4Fe-4S]+ cluster is bound to this motif; 

the C6 and C8 alkyl radicals formed from hydrogen abstraction by the action of 5'-

dA● attack µ-sulphido atoms attached to the Cx4Cx5C cluster, and the final result is 

production of a lipoyl-group (Booker et al., 2007; Cicchillo et al., 2004b) (see 

Figure 1.9). 

LipA shares some mechanistic features with biotin synthase (BioB). LA 

metabolism and biotin metabolism are closely related in terms of reaction 

mechanisms carried out by the respective enzymes (Reche, 2000). Biotin is an 

essential cofactor of several enzyme complexes including acetyl-CoA carboxylase 

and pyruvate carboxylase (Nikolau et al., 2003; Pacheco-Alvarez et al., 2002). 

Mammals are not able to synthesise biotin, and as such rely upon uptake of this 

vitamin, which is synthesised in bacteria, plants and some fungi. BioB belongs to 

the radical SAM superfamily and catalyses the generation of biotin from 

desthiobiotin (Lotierzo et al., 2005; Sofia et al., 2001). During this reaction, two C-
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H bonds are cleaved and one sulphur atom is inserted. Similar to LipA, BioB 

requires two SAM molecules to form one molecule of biotin (Shaw et al., 1998). 

The protein also contains a second cysteine-rich motif (Ugulava et al., 2001a), 

which binds to a [2Fe-2S]+ cluster that contributes a sulphur atom to the formation 

of biotin (Jarrett, 2005; Ugulava et al., 2001b). 

1.4.3.2 Octanoic acid and lipoic acid transferases 

The enzymes LipB and LplA possess a moderate degree of similarity on the amino 

acid sequence level to biotin protein ligase (BPL) (Reche, 2000). LipB, LplA and 

BPL all possess a strictly conserved lysine residue that was thought to be involved 

in the transfer of LA/biotin to the ε-amino group of a conserved lysine residue on 

the apoprotein, and this was indeed shown to be the case for LplA and BPL 

(Bagautdinov et al., 2005; McManus et al., 2005). 

However, the reaction catalysed by LipB differs in several respects from those 

carried out by LplA and BPL. Firstly, E. coli LipB (EcLipB) uses ACP-bound OA or 

LA as substrate and is unable to transfer free OA or LA to apo-E2 or apo-H-protein 

(Jordan & Cronan, 1997b; Jordan & Cronan, 2003) (see Figure 1.9). Although 

EcLipB is able to transfer lipoyl-ACP as well as octanoyl-ACP, the fact that E. coli 

LipA (EcLipA) has a significantly higher preference for protein-bound octanoamide 

(Zhao et al., 2003) dictates that the substrate of LipB under physiological 

conditions is likely to be octanoyl-ACP. Secondly, unlike LplA and BPL, EcLipB 

was shown to catalyse octanoylation of apoproteins in a two-step manner, 

whereby octanoyl-ACP is covalently attached to LipB as an acyl-intermediate 

before being transferred to the apo-lipoyl-domain (Zhao et al., 2005). Crystal 

structure data of LipB from Mycobacterium tuberculosis has revealed the nature of 

this two-step reaction, and indicates that M. tuberculosis LipB (MtLipB) is a 

cysteine-lysine acyltransferase (Ma et al., 2006). In the first step of catalysis, 

octanoyl-ACP forms a thioester linkage with a conserved cysteine residue in 

MtLipB, and the conserved lysine residue in LipB activates the ε-amino group of 

the target lysine residue in the apoprotein by deprotonation (Ma et al., 2006). In 

the second step, MtLipB catalyses the nucleophilic attack of the activated ε-amino 

group of the target (apoprotein) lysine residue; the result is cleavage of the 

thioester linkage between the octanoyl-moiety and MtLipB, and the formation of an 

amide bond between the octanoyl-moiety and the apoprotein (Ma et al., 2006). 
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The reaction mechanisms of LplA and BPL are similar to one another, yet very 

different to that of LipB. E. coli LplA (EcLplA) is able to use octanoyl-ACP or lipoyl-

ACP as substrates, which is based on evidence that an E. coli line lacking the lipB 

gene is able to proliferate (albeit poorly) without the provision of exogenous LA 

(Jordan & Cronan, 2003). Free LA is the optimal substrate for EcLplA (Green et 

al., 1995; Jordan & Cronan, 2003), and the lipoylation reaction occurs in two steps. 

The first step involves activation of LA by ATP to form the lipoyl-AMP intermediate, 

and the release of pyrophosphate (PPi). Subsequently, the activated intermediate 

is ligated onto the ε-amino group of the target lysine residue in the apoprotein 

(Fujiwara et al., 2005; Kim do et al., 2005; McManus et al., 2005) (see Figure 1.9). 

In mammals, salvage of LA necessitates the sequential action of two enzymes. 

The first step is activation of LA by ATP or guanosine triphosphate (GTP) to form 

lipoyl-AMP or lipoyl-GMP (Fujiwara et al., 2007), respectively, which is carried out 

by a lipoic acid activating enzyme that was shown to be the ACSM (Fujiwara et al., 

2001). Secondly, the lipoyl-AMP intermediate is ligated to apoproteins by LT 

(Fujiwara et al., 1997a; Fujiwara et al., 1999; Fujiwara et al., 2007). 

LplA, BPL and LT share a conserved mechanism of ligation of the lipoyl/biotinoyl-

moiety to apoproteins from a tightly-bound acyl-adenylate intermediate (Fujiwara 

et al., 2005; Fujiwara et al., 2007; Kim do et al., 2005; McManus et al., 2005; 

Reche & Perham, 1999; Reche, 2000; Wilson et al., 1992). Nevertheless, LT is 

unable to catalyse the first step in the reaction carried out by LplA; LA activation 

(Fujiwara et al., 2007). Crystal structure data of EcLplA (Fujiwara et al., 2005), the 

archaebacterium Thermoplasma acidophilum LplA (Kim do et al., 2005; McManus 

et al., 2005), E. coli BPL (Wilson et al., 1992) and Bos taurus LT (BtLT) (Fujiwara 

et al., 2007) have helped to better understand how the similarities between these 

enzymes contribute to common modes of action, and how the differences between 

these enzymes permit substrate specificity (Kim do et al., 2005; McManus et al., 

2005). The N-terminal domains of EcLplA, TaLplA and BtLT were shown to 

possess three highly conserved sequence motifs, which contain key residues 

involved in the formation of the lipoyl-AMP binding pocket (see Figure 3.4) 

(Fujiwara et al., 2005; Fujiwara et al., 2007; Kim do et al., 2005; McManus et al., 

2005). LA is bound within a hydrophobic cavity, and it is believed that the binding 

and activation of LA with ATP occurs at the same site, since no large 

conformational changes were observed after LA binding and activation, and ATP 

was located in the same position as AMP (Fujiwara et al., 2007; Kim do et al., 
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2005). A conserved lysine residue is present in EcLplA, TaLplA and BtLT, which 

directly interacts with the carboxyl-group of LA (Fujiwara et al., 2005; Fujiwara et 

al., 2007; Kim do et al., 2005; McManus et al., 2005). 

Based on size, two types of LplA were uncovered; a shorter form found in T. 

acidophilum (circa 260-270 amino acids) (Kim do et al., 2005; McManus et al., 

2005) and a longer form found in E. coli (circa 330-340 amino acids) (Fujiwara et 

al., 2005). Of the two structural reports on T. acidophilum LplA (TaLplA) (Kim do et 

al., 2005; McManus et al., 2005), one of them illustrated that recombinant TaLplA 

is able to activate LA, yet is unable to ligate it to a lipoate-acceptor protein 

(McManus et al., 2005). Interestingly, T. acidophilum possesses the conserved N-

terminal domain that has been shown to be involved in activation of LA, yet 

completely lacks the C-terminal domain found in EcLplA (McManus et al., 2005), 

thus explaining why it is considerably shorter than EcLplA. The authors 

hypothesised that salvage of LA in T. acidophilum necessitates the sequential 

action of two enzymes, in a similar fashion to LT (McManus et al., 2005). 

Unlike TaLplA however, BtLT does not lack a C-terminal domain, and is unable to 

catalyse the activation of LA (Fujiwara et al., 2007). As discussed above, the N-

terminal domain of LplA has been shown to be important in binding and activation 

of LA (Fujiwara et al., 2005; McManus et al., 2005), and given that the LT N-

terminal domain contains conserved motifs that permit the binding of lipoyl-AMP 

(Fujiwara et al., 2007), one might expect BtLT to have the capacity to activate LA. 

Interestingly, upon protein purification of recombinant BtLT, LA was bound within 

the active site, yet LA has never been reported to be bound to purified 

recombinant EcLplA or TaLplA (Fujiwara et al., 2007). The authors that solved the 

BtLT crystal structure hypothesise that the reason BtLT is unable to activate LA is 

due to its C-terminal domain (Fujiwara et al., 2007). The C-terminal domain of 

BtLT has the same overall fold as that of EcLplA, but importantly, they are rotated 

by approximately 180° relative to each other (Fujiw ara et al., 2007). Both EcLplA 

and BtLT proteins possess a loop linking beta strand 12 and alpha helix 6 (β12-α6 

loop, or the 'adenylate binding loop'), and this loop is unordered in EcLplA. In BtLT 

however, the C-terminal domain anchors the adenylate binding loop to the active 

site, which restricts access of ATP to the active site (Fujiwara et al., 2007). 

Given that LplA/LT and BPL enzymes catalyse the post-translational ligation of LA 

or biotin, respectively, to certain apoproteins, the question arises as to how this 
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event is so specific. An interesting study showed that a single point mutation 

introduced into the active site of EcBPL resulted in promiscuous biotin addition 

(biotinylation) to lysine residues on proteins that were not ordinarily biotinylated 

(Choi-Rhee et al., 2004; Cronan, 2005). The most likely explanation for this 

"promiscuous biotinylation" was found to be due to the activated biotin 

intermediate (biotinoyl-AMP) escaping more easily from the active site of mutant 

EcBPL and biotinylating lysine residues on non-specific substrates by chemical 

(not enzymatic) acylation, in a concentration-dependent manner (Choi-Rhee et al., 

2004; Cronan, 2005). 

In order to avoid lipoylation/biotinylation of the wrong proteins, activated lipoyl-

AMP and biotinoyl-AMP intermediates are bound tightly to the active site of 

LplA/LT and BPL, respectively. Also, the exact positioning of the target lysine 

residue on the apoprotein is pivotal to being recognised by lipoylating/biotinylating 

enzymes (Reche et al., 1998; Wallis & Perham, 1994). The target lysine residue is 

located within a lipoyl-domain or biotinoyl-domain, whereby it is found in the 

DKA/V motif or MKM motif, respectively. However, the most important factor in 

LplA/LT and BPL substrate specificity is the subtle structural differences found 

between the lipoyl/biotinoyl domains (Jones & Perham, 2008).  

1.5 Aims of project 

a. Determine whether genes coding for subunits of α-KADHs and of the GCC are 

present within the L. major genome, and subsequent in silico analyses of the 

predicted proteins. 

b. Assess whether α-KADH E2 subunits and the H-protein of the GCC are 

lipoylated in vivo. 

c. Determine whether genes coding for enzymes involved in LA metabolism are 

present within the L. major genome, and subsequent in silico analyses of the 

predicted proteins. 

d. Assess whether the proteins predicted to be involved in LA metabolism are 

functional. 
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e. Confirmation that the proteins predicted to be involved in LA metabolism 

localise to the mitochondrion. 

f. Attempt gene replacement of one gene from the LA biosynthesis pathway and 

one from the LA salvage pathway, in order to gain an insight into the level of 

redundancy between the two metabolic pathways. 

This thesis is divided into three results chapters covering points a-d (Chapter 3), 

points e-f for the LA salvage pathway (Chapter 4) and points e-f for the LA 

biosynthesis pathway (Chapter 5). The results and their implications relative to 

published work will be discussed in Chapter 6. 
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2 Materials and Methods 

2.1 Biological and chemical reagents 

General chemicals were purchased from either Sigma or Fisher Scientific. 

Abgene   2x Reddymix 
BD Biosciences  α-His-tag monoclonal antibody 
Bio-Rad Precision plus all blue standards, Bradford protein 

assay reagent, econo-columns 
Biosera Lipid-containing- and lipid-depleted foetal calf serum 

(FCS) 
Calbiochem   α-Lipoic acid polyclonal antibody 
Eurogentec Custom DNA oligonucleotides, custom polyclonal 

antibody production 
Fisher Scientific  10x phosphate buffered saline (PBS) 
GE Healthcare Alk phos direct Southern blot kit, N+ membrane, ECL 

films 
IBA α-Strep-tag monoclonal antibody, strep-tactin 

sepharose, d-desthiobiotin, strep-tactin regeneration 
buffer 

ICN Biomedicals Inc. R-lipoic acid 
Invitrogen Accuprime Pfx supermix, zero blunt cloning kit, 

chemically-competent TOP10 E. coli, sybr safe, low 
melting point agarose, HOMEM medium 

Melford Ampicillin, carbenicillin, isopropyl-β-D-
thiogalactopyranoside (IPTG), dithiothreitol (DTT) 

Millipore  Immobilon western detection kit, Centricon Plus-20 
centrifugal filter device 

Molecular Probes  Mitotracker CMXRos 
New England Biolabs All restriction endonucleases, 1 kb DNA ladder 
Novagen Bugbuster protein extraction reagent, benzonase 

nuclease, chemically-competent E. coli BLR (DE3) 
cells 

PAA     G418, puromycin, hygromycin 
Promega α-Mouse IgG (HRP-conjugated) antibody, α-rabbit IgG 

(HRP-conjugated) antibody 
Qiagen Qiaprep spin DNA miniprep kit, Qiaquick gel extraction 

kit, hi-speed maxi kit, Qiaamp DNA mini kit 
Roche    Rapid ligation kit 
Sigma Acrylamide 30 %, Ponceau-S solution, L-polylysine, 

bovine serum albumin (BSA), lysozyme, 
phenylmethylsulfonylfluoride (PMSF), pepstatin A, E-
64, 1, 10-phenanthroline, 4' -6-diamidino-2-
phenylindole dihydrochloride (DAPI), tetracycline 
hydrochloride, digitonin, peanut agglutinin, propidium 
iodide 

Stratagene Quickchange lightning mutagenesis kit 
Schleicher Schuell  Protran nitrocellulose membrane 
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Thermo Scientific Restore western blot stripping buffer, aminolink 
coupling resin, IgG binding buffer, IgG elution buffer 

Upstate   Mouse α-T. brucei EF1α antibody 

2.1.1 Buffers, solutions and media 

General buffers 

1x PBS 140 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, 1.8 mM 
KH2PO4, pH 7.4 

1x TAE    40 mM Tris-acetate, 1 mM EDTA, pH 8.0 

DNA analyses 

DNA loading dye 0.25 % (w/v) bromophenol blue, 0.25 % (w/v) orange-
G, 40 % (w/v) sucrose 

Depurination solution 0.25 N HCl 
Denaturation solution 1.5 M NaCl and 0.5 M NaOH 
20x SSC   0.3 M tri-sodium citrate, 3 M NaCl, pH 7.0 

Protein analyses 

6x loading buffer   62.5 mM Tris/HCl pH 6.8, 2% (w/v) SDS, 10% (v/v) 
glycerol, 0.001% (w/v) bromophenol blue, 5% (v/v) 2-
mercaptoethanol 

1x running buffer  25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS 
1x MOPS buffer  50 mM 3-[N-morpholino] propane sulphonic acid, 50 

mM Tris, 3.5 mM SDS, 1 mM EDTA 
Coomassie stain  40 % (v/v) methanol, 10 % (v/v) acetic acid, 0.1 % (w/v) 

coomassie brilliant blue R-250 
Destain    20 % (v/v) methanol, 10% (v/v) acetic acid 
Towbin transfer buffer  25 mM Tris, 192 mM glycine, 20 % (v/v) methanol 
Buffer W   100 mM Tris-HCl, 150 mM NaCl, pH 8.0 
Buffer E 100 mM Tris-HCl, 150 mM NaCl, 2.5 mM desthibiotin, 

pH 8.0 
Quenching buffer 1 M Tris-HCl, pH 7.4 
Wash buffer 1 M NaCl 
Neutralisation buffer  1 M Tris-HCl, pH 9.0 

Bacteria culture  

Luria-Bertani (LB) medium 10 g L-1 tryptone, 5 g L-1 yeast extract, 5 g L-1 NaCl 
(add 15 g L-1 agar for LB plates) 

M9 minimal medium 10x M9 salt stock: 58 g L-1 Na2HPO4, 30 g L-1 
Na2HPO4, 5 g L-1 NaCl, 10 g L-1 NH4Cl 
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Working solution: 1x M9 salts, 0.2% (w/v) glucose, 1 
mM MgSO4, 0.001 % (w/v) thiamine (add 15 g L-1 agar 
for M9 plates) 

Ampicillin    100 mg ml-1 in ddH20; stored at -20°C 
Carbenicillin    100 mg ml-1 in ddH20; stored at -20°C 
Kanamycin    50 mg ml-1 in ddH20; stored at -20°C 
Tetracycline   5 mg ml-1 in ethanol; stored at -20°C 
TfbI 100 mM RbCl, 50 mM MnCl2-4H2O, 30 mM KNa, 10 

mM CaCl2-2H2O, 15 % glycerol 
TfbII 10 mM MOPS, 10 mM RbCl, 75 mM CaCl2-2H2O, 15 % 

glycerol 

L. major culture 

HOMEM + 10 % FCS: Modified eagle's medium supplemented with 10 % 
heat-inactivated FCS (Berens et al., 1976). HOMEM is 
purchased from GIBCO (Invitrogen), and FCS from 
Biosera 

Electroporation buffer 120 mM KCl, 0.15 mM CaCl2, 10 mM K2HPO4, 25 mM 
HEPES, 2 mM EDTA, 2 mM MgCl2, pH 7.6 

Freezing solution 30 % (v/v) glycerol in FCS 
TELT buffer 50 mM Tris-HCl, 62.5 mM EDTA; 2.5 M LiCl; 4% (v/v) 

Triton X-100, pH 8.0 
Lysis buffer 0.25 M sucrose, 0.25 % Triton x-100, 10 mM EDTA, 10 

µM EDTA, 10 µM E-64, 2 µM 1, 10-phenanthroline, 4 
µM pepstain A, 1 mM PMSF 

TSE buffer 0.025 M Tris-HCl, 0.25 M Sucrose, 1 mM EDTA, 10 µM 
E-64, 2 µM 1, 10 phenanthroline, 2 µM Pepstatin A, 1 
mM PMSF, 0.3 – 5.0 mg ml-1 digitonin, pH 7.4 

 

2.1.2 Bacteria strains 

TOP10 (Invitrogen) 
F– mcrA∆(mrr-hsdRMS-mcrBC) ø 80lacZ∆M15∆lacX74 recA1 arcD139 ∆(arcleu)  
7697 galU galK rpsL (StrR) endA1 nubG 
 
BLR(DE3) (Novagen) 
F– ompT hsdSB(rB- mB-) gal dcm (DE3) ∆(srl-recA)306::Tn10 (TetR) 
 
XL10-Gold ultracompetent (Stratagene) 
Tetr ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 
relA1 lac Hte [F’ proAB lacIqZ∆M15 Tn10 (Tetr) Amy Camr]a 
 
KER184 (lipB–) (Vanden Boom et al., 1991) 
F– rpsL lipB182::Tn1000dKn 
 
KER176 (lipA–) (Vanden Boom et al., 1991) 
F– rpsL lipA150::Tn1000dKn 
 



Chapter 2  41 

 

2.1.3 L. major strain 

MHOM/IL/80/Friedlin 

2.1.4 Oligonucleotide primers 

2.1.4.1 For transfection in L. major 

Lm1  GCGCATCGATATGCTGCGCTGCTGCTCTGC (ClaI) 
Lm2  GCGCACCGGTTCACGCAATCGCAGTACCTGCG (AgeI) 
Lm3  GCGCAAGCTTGTTGTGTGTTCGCTGGCAGCG (HindIII) 
Lm4  GCGCGTCGACGCTGACGTTCACGAG (SalI) 
Lm5  GCGCCCCGGGAGAGGAGGTGCATGTGCAATGAGC (SmaI) 
Lm6  GCGCAGATCTCAAGGGTGCGCGCCTATCTC (BglII) 
Lm13  GCGCATCGATATGTGGCAGACTGTCGTGCG (ClaI) 
Lm14  GCGCACCGGTTTAGGTCGCGATGTCGAAC (AgeI) 
Lm15  GCGCAAGCTTCGACTTCCTCGGCTCCCAGC (HindIII) 
Lm16  GCGCGTCGACGGTTGCACACGATCCAGTTGC (SalI) 
Lm17  GCGCCCCGGGTCCGTCGAGCCTTCGCGTCG (SmaI) 
Lm18  GCGCAGATCTCGTAGGGGGGAGGAGTTGCC (BglII) 
Lm19  GCGCCATATGCTGCGCTGCTGCTCTGCTCTG (NdeI)   
Lm20  GCGCGGTACCCGCAATCGCAGTACCTGCGTTG (KpnI) 
Lm21  GCGCGGTACCGGGCGTTGAAATGCCTGCAG (KpnI) 
Lm22  GCGCCATATGAAGGCATTTTTCATCGGCAAAC (NdeI) 
Lm23  GCGCCATATGTGGCAGACTGTCGTGCGGCG (NdeI) 
Lm24  GCGCAGATCTGGTCGCGATGTCGAACACATT (BglII) 
Lm64  GTGCCGTTTTCGCAGACGAGGG 
Lm65  CCCTCGTCTGCGAAAACGGCAC 
 
2.1.4.2 For recombinant protein expression 

Lm25  ATGGTAGGTCTCAAATGCTGCGCTGCTGCTCTGCTCTG 
Lm26  ATGGTAGGTCTCAAATGTCTGCTCTGATGTGCCCGACG 
Lm27  ATGGTAGGTCTCAAATGCCGGTTGCTGCTGCTGCCGC 
Lm28  ATGGTAGGTCTCAAATGCAGTCGGACAAGACGGGCATG 
Lm29  ATGGTAGGTCTCAGCGCTCGCAATCGCAGTACCTGCGTTG 
Lm30  ATGGTAGGTCTCAAATGAAGGCATTTTTCATCGGCAAACGC 
Lm31  ATGGTAGGTCTCAAATGAGTGTGCGCCGCGGCGCG 
Lm32  ATGGTAGGTCTCAAATGGGCGCGTCGAAGCTGCCGC 
Lm33  ATGGTAGGTCTCAGCGCTGGGCGTTGAAATGCCTGCAGTG 
Lm34  ATGGTAGGTCTCAAATGTGGCAGACTGTCGTGCGGCG 
Lm35  ATGGTAGGTCTCAAATGCCCACGTCCCTCGCAGCCTT 
Lm36  ATGGTAGGTCTCAAATGGACTCGAACCTTGTCGTCGCTG 
Lm37  ATGGTAGGTCTCAGCGCTGGTCGCGATGTCGAACACATTC 
 

All primers used for PCR of DNA fragments to be used in recombinant protein 

expression contain directional BsaI restriction endonuclease sites.  
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2.1.5 Antibodies 

1ary antibody Animal Clonality Dilution Source Reference

α-Lipoic acid Rabbit Polyclonal 1/6,000 Calbiochem Gunther et al.  (2007)
α-Strep-tag Mouse Monoclonal 1/7,500 IBA N/A
α-His-tag(6x) Mouse Monoclonal 1/10,000 BD Biosciences N/A
α-GFP Mouse Monoclonal 1/5,000 Roche N/A
α-Lm LIPA Rabbit Polyclonal 1/20 Ryan Bissett (Eurogentec) N/A
α-Lm LIPB Rabbit Polyclonal 1/1000 Ryan Bissett (Eurogentec) N/A
α-Lm CS Rabbit Polyclonal 1/7,500 Dr Rod Williams N/A
α-Tb EF1α Mouse Polyclonal 1/10,000 Upstate Besteiro et al.  (2008)
α-Lm HASPB Rabbit Polyclonal 1/4,000 Prof. Debbie Smith Flinn et al.  (1994)

2ary antibody Animal Clonality Dilution Source Reference

α-Mouse (H + L), HRP Goat Polyclonal 1/10,000 Promega N/A
α-Rabbit (H + L), HRP Goat Polyclonal 1/10,000 Promega N/A  

Table 2.1 Primary and secondary antibodies and thei r dilutions 
Table of all primary and secondary antibodies used in this thesis. The 'Animal' field indicates the 
origin of the antibodies. 'Lm' and 'Tb' indicate that the antigens used for antibody production are of 
L. major or T. brucei origin. 'HRP' is an abbreviation for 'horseradish peroxidise', to which 
secondary antibodies are conjugated. 'N/A' is an acronym for 'not applicable.'  

2.2 L. major cell culture 

2.2.1 L. major promastigote culture 

L. major cultures were initiated by purification of amastigotes from a BALB/c 

mouse by Mrs Denise Candlish (University of Glasgow) and differentiated into 

promastigotes by inoculation into HOMEM medium supplemented with 10 % (v/v) 

heat-inactivated FCS, which will be referred to as HOMEM + 10 % FCS. In order 

to maintain L. major promastigotes, cultures were incubated at 25 °C an d sub-

passaged to a density of 105 parasites ml-1 on a weekly basis. 

Parasite numbers were determined by transferring the parasites into 1 % 

formaldehyde in PBS, and counting them using a Neubauer haemocytometer with 

an objective magnification of 400 x on an inverted light microscope (Zeiss Wetzlar, 

Germany). Growth rates through promastigote development were examined by 

determining parasite numbers daily for up to 120 h, starting from a parasite density 

of 5 x 105 cells ml-1.  
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When necessary, antibiotics were added to transgenic promastigote cell lines as 

follows: G418 at 10- or 50 µg ml-1; hygromycin B at 50 µg ml-1; neurseothricin at 75 

µg ml-1; puromycin at 100 µg ml-1.  

Stabilates of parasites were generated by transferring 500 µl of exponentially 

growing cells into 500 µl of 30 % glycerol (v/v) in FCS and transferring the mixture 

into – 80 ºC for 24 h before the stabilate was transferred into liquid nitrogen for 

long-term storage. 

2.2.2 Isolation of concentrated L. major metacyclic promastigotes 

Isolation of metacyclic promastigotes was carried out based upon a negative 

selection (of procyclic promastigotes) protocol described by Sacks (Sacks et al., 

1985). Briefly, L. major stationary culture promastigotes were incubated with sterile 

peanut agglutinin dissolved in PBS, pH 7.2 at a concentration of 100 µg ml-1 and 

incubated for 30 min at room temperature. The parasites were then centrifuged for 

5 min at 100 g at room temperature in order to fractionate non-metacyclic 

promastigotes (pellet fraction) from metacyclic promastigotes (supernatant 

fraction). 

2.2.3 Harvest, lysis and fractionation of parasites  

2.2.3.1 Isolation of genomic DNA from L. major 

Genomic DNA (gDNA) was isolated from parasites by one of two methods. For 

PCR analyses, gDNA was isolated by phenol-chloroform extraction (as described 

in (Sambrook et al., 1989)) after lysis with TELT buffer (see Section 2.1.1). For 

Southern blotting, gDNA was isolated using the QIAamp DNA mini kit according to 

instructions provided by the manufacturer (Qiagen). 

2.2.3.2 Isolation of protein from L. major 

Protein was extracted from parasites by cell lysis in lysis buffer (see Section 

2.1.1). Soluble- and pellet fractions were separated by centrifugation for 30 min at 

13,000 rpm (Fisher Scientific accuSpin MicoR with 24-plate motor) at 4 °C. The 

protein concentration in the soluble fraction was determined using the Bradford 
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method with BSA as a standard (Bradford, 1976). Then, 6x sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) loading dye was added 

and aliquots were denatured at 100 ºC for 5 min before the samples were stored 

at – 20 °C. 

2.2.3.3 Cellular pre-fractionation 

Parasites were permeabilised with increasing quantities of digitonin in order to pre-

fractionate (or concentrate) different organelles. Previous digitonin-titration 

experiments in L. mexicana showed that cytosolic-, glycosomal- or mitochondrial 

protein markers could be detected by western blotting (see Section 2.5.3) when 

cells were treated with 0.3 mg ml-1, 1.5 mg ml-1 or 3.0 mg ml-1 to 5.0 mg ml-1 

digitonin, respectively (Leroux et al., 2006). The same digitonin concentrations 

were used here. Briefly, 2 x 109 stationary phase parasites were harvested by 

centrifugation for 15 min at 1000 g at room temperature. Cells were washed twice 

at room temperature in TSE buffer (TSEB) (see Section 2.1.1) (Leroux et al., 

2006). Cells were then resuspended in 200 µl TSEB supplemented with the lowest 

concentration of digitonin (dissolved in sterile water) and incubated for 5 min at 

room temperature. 40 µl of 0.3 M sucrose was added to the cells, which were then 

centrifuged for 10 min at 18,000 g at 4 °C. The pellet fraction was subsequently 

treated in the same way as described above except the second lowest 

concentration of digitonin was added. Soluble fractions from each digitonin-titration 

step were used to extract soluble protein for SDS-PAGE and western blotting. 

2.2.4 Targeted gene replacement in L. major 

Gene replacement by double homologous recombination is the method of choice 

for gene knockout studies in L. major (Cruz & Beverley, 1990; Cruz et al., 1991). 

The plasmids used consist of an antibiotic resistance gene (for selection of 

transgenic parasites), flanked by regions of DNA specific to the gene under study. 

The knockout plasmid is linearised either side of the flanking regions of the target 

gene to give rise to the knockout cassette, which is then introduced into 

Leishmania by electroporation (see Section 2.2.8). The fact that Leishmania is a 

diploid organism means that two rounds of homologous recombination with 

different selectable markers are necessary in order to ablate both endogenous 

alleles of the gene (Cruz & Beverley, 1990; Cruz et al., 1991).  
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2.2.4.1 Gene knockout 

In order to create an L. major LIPA (LmjLIPA) gene knockout construct, the 534 bp 

5' flanking region (using primer pairs Lm3-Lm4) and the 550 bp 3' flanking region 

(using primer pairs Lm5-Lm6) were cloned into plasmid into pGL158 (see Figure 

2.1 and Section 2.1.4.1) to give rise to LIPA-SAT. The LPLA-SAT gene knockout 

construct was created by cloning the 516 bp 5' flanking region (using primer pairs 

Lm15-Lm16) and the 545 bp 3' flanking region (using primer pairs Lm17-Lm18) 

into the pGL158 plasmid (see Figure 2.1 and Section 2.1.4.1). In both cases, 5' 

and 3' flanking regions were cloned into pGL158 by directional cloning with 

HindIII/SalI and SmaI/BglII, respectively (see Section 2.4.2). 

The pGL158 plasmid contains the neurseothricin-resistance gene; streptothricin-

acetyl-transferase (SAT) (Joshi et al., 1995). LIPA-HYG and LPLA-HYG were 

generated by replacing the SpeI/BamHI cassette containing the neurseothricin-

resistance gene with a SpeI/BamHI cassette containing the hygromycin-resistance 

gene; hygromycin B phosphotransferase (HYG) (Cruz et al., 1991), which was 

derived from plasmid pGL345 (see Figure 2.2).  

Knockout cassettes were created by HindIII/BglII linearisation of knockout 

constructs; the cassettes were gel purified, precipitated into a smaller volume and 

then transfected into parasites (see Section 2.2.8).  
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Figure 2.1 pGL158 plasmid 
The pGL158 plasmid contains the following features: 5' of gene, the 5' FR of the gene of interest; 3' 
of gene, the 3' FR of the gene of interest; SAT, streptothricin acetyltransferase gene conferring 
resistance to neurseothricin; Amp, ampicillin-resistance gene. Restriction endonucleases are 
illustrated, and numbers in brackets mark the cut sites of the restriction endonucleases. 

 

Figure 2.2 pGL345 plasmid 
The pGL345 plasmid contains the following features: 5' of gene, the 5' FR of the gene of interest; 3' 
of gene, the 3' FR of the gene of interest; SAT, streptothricin acetyltransferase gene conferring 
resistance to neurseothricin; Amp, ampicillin-resistance gene. Restriction endonucleases are 
illustrated, and numbers in brackets mark the cut sites of the restriction endonucleases. 
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2.2.5 Re-expression of the target gene 

In order to assess the functionality of genes in Leishmania, it is necessary to 

create a parasite line re-expressing the gene of interest, before or after ablating 

the endogenous gene copies. The pGL631 (or pRB vector) (see Figure 2.3) was 

chosen for this purpose, which is designed to replace (knock-in) one of the twelve 

copies of the 18S SSU ribosomal rRNA (rRNA) gene (Misslitz et al., 2000). 

Additionally, a re-expression construct that integrates is more likely to mimic 

expression levels of the endogenous gene, compared to the (typically) very high 

expression/over-expression observed from episomal expression constructs (see 

Section 5.4.1). 

The pRB vector (see Figure 2.3) contains DNA sequences corresponding to 5' and 

3' regions within the 18S SSU rRNA gene, in order to permit replacement of one of 

the 12 18S SSU rRNA gene copies by homologous recombination (Misslitz et al., 

2000). The puromycin resistance gene, puromycin N-acetyltransferase (PAC) 

(Freedman & Beverley, 1993), is upstream of the intergenic region of the L. 

mexicana cysteine peptidase B 2.8 (CPB 2.8) gene, in order to permit high 

expression of the resistance marker if the transfected line is to be used in 

amastigotes (Misslitz et al., 2000). In the pRB vector, open reading frames (ORFs) 

to be expressed in parasites are located downstream of a splice acceptor site 

(SAS), which is necessary in order to permit trans-splicing of the pre-messenger 

RNA (mRNA) into monocistronic units (Agabian, 1990). 

LIPA-pRB and LPLA-pRB re-expressor constructs were created by directional 

cloning of the respective ORFs into the pRB vector, using ClaI/AgeI. The LIPA and 

LPLA genes were amplified from L. major gDNA using primer pairs Lm1-Lm2 and 

Lm13-Lm14, respectively (see Section 2.1.4.1), and then cloned into plasmid pRB 

(also referred to as pGL631) (see Figure 2.3).  

Knockout cassettes were created by PacI/PmeI linearisation of knockout 

constructs; the cassettes were gel purified, precipitated into a smaller volume and 

then transfected into parasites (see Section 2.2.8).  
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Figure 2.3 pGL631 (pRB) plasmid 
The pGL631/pRB plasmid contains the following features: 5' 18S SSU, the 5' FR of the 18S SSU 
locus; SL, splice leader sequence; PAS, polyadenylation site; SAS, splice acceptor site; 5' CPB 
2.8, intergenic region of the L. mexicana cysteine peptidase B 2.8 (CPB 2.8) gene; PAC, puromycin 
N-acetyltransferase gene conferring resistance to puromycin; 3' 18S SSU, the 3' FR of the 18S 
SSU locus; Amp, ampicillin-resistance gene. Restriction endonucleases are illustrated, and 
numbers in brackets mark the cut sites of the restriction endonucleases. The gene of interest to be 
expressed in L. major is directionally cloned into pGL631 using ClaI and AgeI restriction sites. 

2.2.6 Episomal gene expression in L. major 

Stable extrachromosomal expression of genes in Leishmania is possible using a 

series of expression vectors, named pNUS vectors, which have been designed for 

the trypanosomatids Crithidia and Leishmania (Tetaud et al., 2002). These vectors 

contain a rRNA promoter, intergenic sequences from the Crithidia fasciculata (C. 

fasciculata) phosphoglycerate kinase (PGK) locus at the 5' and 3 ends of the 

target gene, and the 3' untranslated sequence of the C. fasciculata glutathionyl-

spermidine synthetase (GSPS) locus 3' to the antibiotic resistance gene. Two 

variations of the vectors were used in this thesis: pGL1132 adds a C-terminal 

green-fluorescent protein (GFP)-tag to the insert gene (see Figure 2.4), and 

pGL1137 adds a C-terminal His6x-tag (see Figure 2.5). The antibiotic resistance 

gene used in all studies was neomycin phosphotransferase (NEO), which confers 

resistance to neomycin (Curotto de Lafaille et al., 1992). 

In order to create LIPA-GFP and LPLA-GFP constructs, full-length LIPA and LPLA 

genes lacking their stop codons, were amplified from L. major gDNA using primer 
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pairs Lm19-Lm20 and Lm23-Lm24 (see Section 2.1.4.1), and cloned into plasmid 

pGL1132 (see Figure 2.4). The LIPB-His construct was created by amplifying the 

full-length LIPB gene lacking its stop codons from L. major gDNA using primer pair 

Lm21-Lm22 (see Section 2.1.4.1), and cloning into plasmid pGL1137 (see Figure 

2.5). The LPLA-His construct was created by excision (NdeI/BglII digest) of the 

LPLA gene from pGL1132, and sub-cloning into NdeI/BglII-digested pGL1137. The 

LPLAH118A-His construct was created by site-directed mutagenesis PCR (see 

Section 2.4.1.3), using the LPLA-His construct as a DNA template.  

 

Figure 2.4 pGL1132 plasmid 
The pGL1132 plasmid contains the following features: 5' PGKB, the 5'FR of the C. fasciculata 
phosphoglycerate kinase B (PGKB) gene; GFP, GFP gene; 3' PGKB, the 3'FR of the C. fasciculata 
phosphoglycerate kinase A (PGKA) gene; 3' GSPS, the 3'FR of the C. fasciculata glutathionyl-
spermidine synthetase (GSPS) gene; NEO, neomycin phosphotransferase gene conferring 
resistance to G418; Amp, ampicillin-resistance gene. Restriction endonucleases are illustrated, and 
numbers in brackets mark the cut sites of the restriction endonucleases. The gene of interest to be 
expressed in L. major is directionally cloned into pGL631 using NdeI and KpnI (or BglII) restriction 
sites. 
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Figure 2.5 pGL1137 plasmid 
The pGL1137 plasmid contains the following features: 5' PGKB, the 5'FR of the C. fasciculata 
phosphoglycerate kinase B (PGKB) gene; GFP, GFP gene; 3' PGKB, the 3'FR of the C. fasciculata 
phosphoglycerate kinase A (PGKA) gene; 3' GSPS, the 3'FR of the C. fasciculata glutathionyl-
spermidine synthetase (GSPS) gene; NEO, neomycin phosphotransferase gene conferring 
resistance to G418; Amp, ampicillin-resistance gene. Restriction endonucleases are illustrated, and 
numbers in brackets mark the cut sites of the restriction endonucleases. The gene of interest to be 
expressed in L. major is directionally cloned into pGL631 using NdeI and KpnI (or BglII) restriction 
sites. 

2.2.7  Resistance markers 

In order to select for transgenic Leishmania parasites, six resistance markers have 

been developed, four of which were used in this thesis (see Table 2.2). 

Gene Protein Antibiotic Reference
NEO Neomycin phosphotransferase G418 Cruz et al.  (1990)
SAT Streptothricin acetyltransferase Neurseothricin Joshi et al.  (1995)
PAC Puromycin N -acetyltransferase Puromycin Freedman & Beverley (1993)
HYG Hygromycin B phosphotransferase Hygromycin B Cruz et al.  (1991)  

Table 2.2 Antibiotic resistance genes used for gene tic manipulation of Leishmania 

 
2.2.8 Transfection of L. major 

For constructs designed to integrate into the L. major genome, 100 µg of plasmid 

was digested with the appropriate restriction enzymes (HindIII/BglII for knockout 

plasmids and PacI/PmeI for pRB plasmids). The knock-out cassettes were 

separated by gel electrophoresis, gel-extracted and –purified, and then 

precipitated with ethanol according to standard procedures (Sambrook et al., 
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1989) before resuspension in 15 µl sterile water, with a final DNA concentration of 

about 1 – 2 µg µl-1. For ectopic constructs, 20 µg of circular plasmid was used for 

transfections, in a final volume of 15 µl.  

For transfections, mid-log phase (at a density of 8 x 106 – 1 x 107 parasites ml-1) 

promastigote cultures were used. Each transfection necessitated 5 x 107 cells and 

10 – 20 µg of purified plasmid/linear DNA in 15 µl sterile water. Two different 

transfection methods were used. The first is using the protocol developed by 

Robinson and Beverley (Robinson & Beverley, 2003). Briefly, cells were counted 

and the appropriate number centrifuged for 10 min at 1,000 g at 4 °C and washed 

with electroporation buffer (EPB: 120 mM KCl, 015 mM CaCl2, 10 mM K2HPO4, 25 

mM HEPES, 2 mM EDTA, 2 mM MgCl2 at pH 7.6). Cells were resuspended in 500 

µl EPB to a concentration of 1 x 108 parasites ml-1, and added to 15 µl of 

appropriate plasmid/linear DNA in an ice-cold 4 mm gap cuvette (Gene Pulse, Bio-

Rad, Hemel Hempstead, UK) and incubated on ice for 10 min. The cuvette was 

exposed to two electroporation pulses at 25 µF, 1.5 kV (3.75 kV cm-1), pausing 10 

sec between pulses, using a Bio-Rad Gene Pulser II machine.  

The second method was only used for transfection of integration cassettes. Briefly, 

cells were counted and the appropriate number centrifuged for 10 min at 1,000 g 

at 4 °C and resuspended in Nucleofactor Solution fr om the Amaxa Human T Cell 

Nucleofactor Kit (Amaxa AG, Cologne, Germany) to give 5 x 107 cells 100 µl-1. The 

resuspended cells were mixed with 15 µl linear DNA in the cuvette from the 

Nuclefeofactor kit. Program U-033 was used to electroporate the cells using the 

Amaxa Nucleofactor Device.  

In both methods, electroporated cells were incubated on ice for 10 min before 

transferring into a flask containing 10 ml HOMEM + 10 % FCS. Drug selection and 

cloning (of integrative constructs) was commenced the following day. In order to 

generate a population of cells for ectopic expression of a plasmid, the appropriate 

antibiotic(s) was added directly to the flask of cells.  

2.2.9 Cloning of L. major by limiting dilution 

In order to generate clones, three dilutions of the transfected cells were made (1/6, 

1/72 and 1/864) in HOMEM + 10 % FCS including appropriate antibiotic(s), and 
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plated in 96-well plates. After approximately 2–3 weeks of incubation, plates 

containing ≤ 10 wells with parasite growth (equating to ≤ 0.1 parasite well-1) were 

used for further analysis; the clones were sub-passaged into 3 ml HOMEM + 10 % 

FCS in 12-well plates and incubated until parasite density was sufficient to extract 

gDNA. 2 ml of the clonal cultures were used for gDNA extraction and PCR to 

screen for knock-out/knock-in cassette integration and/or for the presence of the 

endogenous gene. The remaining 1 ml of clonal culture with the desired genotype 

was sub-passaged into 10 ml HOMEM + 10 % FCS with appropriate drugs, and 

once parasite density was high enough, stabilates were made and gDNA was 

extracted for Southern blot analysis. 

2.2.10 Fluorescence microscopy 

Sub-cellular localisation of LIPA-GFP and LPLA-GFP fusion proteins expressed in 

L. major was determined by fluorescence microscopy using an AxioScop-2 mot 

plus microscope (Zeiss) equipped with a Hamamatsu C4742-95 CCD camera. 

Preparation of cells to be analysed involved adding 10 µg ml-1 DAPI to 10 ml of 

mid-log phase culture and immediately centrifuging for 1 minute at 1000 g at room 

temperature. Cells were washed twice with 20 ml PBS, and to the second wash 1 

nM Mitotracker CMXRos was added. Finally, pelleted cells were resuspended in 

20 µl PBS and loaded on a microscope slide with cover slip sealed with nail 

varnish to avoid drying-out of specimen.  

Images were captured at 100x magnification using differential interference contrast 

(DIC) microscopy. The GFP-fusion proteins were observed using the fluorescent 

filter FITC (λexcitation = 494 nm and λemission = 518 nm). The mitochondrion was 

selectively stained using Mitotracker CMXRos (Invitrogen), and was visualised 

using the fluorescent filter for rhodamine (λexcitation = 570 nm and λemission = 590 

nm). The nucleus and kinetoplast DNA of parasites were visualised using DAPI 

(Sigma) and the fluorescent filter for DAPI (λexcitation = 345 nm and λemission = 458 

nm). 

2.2.11 Cell viability assay 

The alamar blue assay was employed in order to determine the 

leishmanicidal/leishmanistatic effects of a compound on Leishmania cells. 
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Metabolising parasites reduce resazurin (alamar blue) and the fluorescence can 

be detected; the higher the level of fluorescence, the less effect the compound has 

at that specific concentration. 

Promastigotes were cultured in the appropriate medium to a density of 5 x 106 ml-1 

and then diluted to 2 x 106 ml-1 in medium. In a 96-well plate, 100 µl of neat 

compounds (lipoid acid, octanoic acid or 8’ bromooctanoic acid) dissolved in 100 

% EtOH were added to wells in the first columns; each treatment was carried out 

in duplicate and a negative solvent (EtOH) control included in order to normalise 

the data; the concentration of the EtOH solvent control was the same as the 

concentration of EtOH in the well containing the most concentrated of each 

compound, which was 0.5 % EtOH. 100 µl medium was added to each well, and 

then serial dilutions of drug were carried out along rows. 100 µl of cells at a density 

of 2 x 106 ml-1 were added to each well, thus giving a final density of 1 x 106 

parasites ml-1. Plates were incubated at 25 °C for 120 h. After the incubation 

period, 20 µl resazurin was added to each well (to a final concentration of 12.5 µg 

ml-1), followed by further incubation for 48 h at 25 °C. Plates were then read using 

an LS 55 luminescence spectrometer with λemission = 535 nm and λexcitation = 620 

nm. All data were normalised against respective column negative controls and 

expressed as bar charts using the software Prism.  

2.3 Bioinformatics 

2.3.1 Identifying genes in the L. major genome 

Genes were identified in the L. major GeneDB database 

(http://www.genedb.org/genedb/leish/) by performing TBLASTN searches using 

known protein sequences from Escherichia coli or H. sapiens. Predicted 

translations of the sequences identified were queried back against the 

SWISSPROT protein database at NCBI using BLASTP 

(http://www.ncbi.nlm.nih.gov/blast).  
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2.3.2 Multiple sequence alignments 

Protein sequence analyses were performed using VECTOR NTI Suite (Invitrogen), 

and sequence alignments carried out using the program ClustalW (Thompson et 

al., 1994). 

2.3.3 Subcellular localisation predictions 

Predictions of N-terminal targeting sequences were performed using TARGETP 

(http://www.cbs.dtu.dk/services/TargetP) (Emanuelsson et al., 2000) and 

MITOPROT (http://mips.biochem.mpg.de/cgi-bin/proj/medgen/mitofilter) (Claros & 

Vincens, 1996). 

Based on predicted mitochondrial targeting peptides, different N-terminal truncated 

constructs of the three genes (LIPA, LIPB and LPLA) were created for expression 

in E. coli (see Section 2.5.6). 

2.4 Methods in molecular biology 

2.4.1 Polymerase chain reaction 

2.4.1.1 AccuPrime Pfx SuperMix 

L. major genes/flanking regions were amplified from L. major gDNA using 

AccuPrime Pfx SuperMix (Invitrogen), which contains 1.1 mM MgSO4, 330 µM 

deoxyribonucleotide triphosphate (dNTPs) and 22 U ml-1 Pfx DNA polymerase. 

Polymerase chain reaction (PCR) was set up using 100 ng gDNA and 10 µM of 

each primer. The final volume per PCR reaction was 25 µl and PCR was carried 

out under the following conditions: 

Initial denaturation  95 °C, 5 min 

30 cycles of: 

Denaturation   95 °C, 15 sec 
Annealing   primer-specific temperature, 30 sec 
Elongation   68 °C, 2 min kb -1 amplified  
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Final elongation  68 °C, 10 min 

The PCR products were analysed on a 1 % agarose gel containg Sybr Safe at a 

1/10,000 dilution, and fragments of the expected size were cloned into pCR-

BluntII-TOPO using the Zero Blunt TOPO PCR cloning kit (Invitrogen).  

2.4.1.2 ReddyMix PCR Master Mix 

In order to screen for bacterial clones possessing the desired insert in plasmid, 

and for L. major clones having correct knockout cassette integration (and for the 

presence/absence of the endogenous gene), PCR was carried out using 

ReddyMix PCR Master Mix (Thermo Scientific). Individual PCR reactions contain 

0.625 U of ThermoPrime Taq DNA polymerase, 1.5 mM MgCl2 and 0.2 mM of 

each of the four dNTPs. The PCR was set up using bacterial colony/up to 100 ng 

gDNA and 10 µM of each primer. The final volume per PCR reaction was 10 µl 

and PCR was carried out under the following conditions: 

Initial denaturation  95 °C, 5 min 

30 cycles of: 

Denaturation   95 °C, 15 sec 
Annealing   primer-specific temperature, 30 sec 
Elongation   72 °C, 2 min kb -1 amplified  

Final elongation  72 °C, 10 min 

The PCR products were analysed on a 1 % agarose gel. 

2.4.1.3 Site-directed mutagenesis PCR 

Site-directed mutagenesis was used to introduce three point mutations into LPLA 

in order to produce the mutant LPLAH118A. The LPLA-His construct (see Section 

2.2.6) was used as a DNA template for mutagenesis PCR using primer pair Lm64-

Lm65 (see Section 2.1.4.1). PCR was carried out using the QuickChange 

Lightning Site-Directed Mutagenesis Kit (Stratagene). The reaction contained 50 

ng of plasmid DNA, 125 ng of each primer, 1x reaction buffer, 1.5 µl of 

QuickSolution reagent, 1 µl of dNTP mix and 1 µl of 'QuickChange Lightning' DNA 
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polymerase (provided with kit). The PCR was carried out under the following 

conditions: 

Initial denaturation  95 °C, 2 min 

18 cycles of: 

Denaturation   95 °C, 20 sec 
Annealing   69 °C, 10 sec 
Elongation   68 °C, 4 min (for 7.8 kb plasmid)  

Final elongation  68 °C, 5 min 

2 µl of the provided DpnI enzyme (Stratagene) was added to the finished PCR 

reaction, and incubated at 37 °C for 5 min in order  to degrade methylated 

(plasmid) DNA. The PCR products were then transformed into XL-10 

Ultracompetent bacteria (Stratagene). Bacterial colonies containing the plasmid 

with insert were verified by restriction digestion and then mutagenesis of the LPLA 

insert was confirmed by sequencing (Dundee Sequencing Centre). The LPLAH118A-

His construct (see Section 2.2.6) was then transfected into WT parasites to create 

the WT[LPLAH118A-His] line.  

2.4.2 Cloning techniques 

2.4.2.1 TOPO cloning of PCR products 

In order to facilitate the cloning of PCR products into their destination vectors, 

inserts were firstly ligated into an intermediate vector. Given that PCR products 

amplified with Pfx polymerase have blunt ends, the Zero Blunt TOPO PCR cloning 

kit containing the vector pCR-BluntII-TOPO was chosen for intermediate vector 

cloning (see Figure 2.6). Ligations were carried out according to instructions 

provided by the manufacturer (Invitrogen) and 1 µl of the ligation transformed into 

TOP10 cells (see Section 2.1.2). 
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Figure 2.6 Vector map of pCR-BluntII-TOPO 
This figure displays the important features of the pCR-Blunt II-TOPO plasmid, which was used to 
clone PCR products amplified with polymerases with proofreading abilities. The plasmid contains 
the kanamycin resistance cassette (KanR; 795 bp) for selection in E. coli. The topoisomerase I is 
covalently bound to the TOPO binding sites. After cloning, the generated construct was analysed 
by diagnostic digests using the EcoRI restriction sites shown, and the sequence of the cloned PCR 
product was verified by sequencing using the primers M13F and M13R. 

2.4.2.2 Sub-cloning into destination plasmids 

Bacterial clones containing TOPO plasmid with the correct insert (as determined 

by colony PCR (see Section 2.4.1.2) or by restriction endonuclease digest (see 

Section 2.4.6) were used in subsequent cloning steps, after verification of the 

correct DNA sequence (see Section 2.4.9). The insert was isolated from the TOPO 

plasmid using the appropriate restriction endonucleases (see Section 2.4.6). The 

destination plasmid was linearised using the same restriction enzymes and the 

DNA fragments were separated by agarose gel electrophoresis (see Section 

2.4.10). The digested insert and destination plasmid were excised from the gel and 

purified using the Qiagen Gel Extraction kit as per manufacturer’s instructions. The 

insert was then ligated into the destination plasmid using the Rapid DNA Ligation 

kit, according to instructions provided by the manufacturer (Roche). A molar 

vector: insert ratio of 1: 3 was used in the ligation reactions. 10 µl of the ligation 

reactions were transformed into competent TOP10 E. coli and plated on LB-plates 

containing the appropriate antibiotics. Individual colonies were analysed by DNA 

plasmid miniprep (see Section 2.4.5) and restriction endonuclease digestion (see 

Section 2.4.6). Plasmids containing the correct insert size were analysed by DNA 

sequencing (see Section 2.4.9). 
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2.4.3 Preparation of chemically-competent bacteria 

Competent bacteria used during this work were either bought from Invitrogen 

(TOP10), Novagen (BLR (DE3)) or Stratagene (XL10-Gold Ultracompetent) (see 

Section 2.1.2), or were made chemically competent. Briefly, a 5 ml overnight 

culture of the appropriate E. coli strain was set up and then used to inoculate 200 

ml LB-medium with the appropriate (if necessary at all) antibiotics. The culture was 

grown at 37 °C at 220 rpm until OD 600 reached 0.6. The culture was transferred 

into a sterile centrifuge tube and incubated for 15 min at 4 °C. The cells were then 

pelleted for 10 min at 6,000 g at 4 °C. The pellet was resuspended in 30 ml of ic e-

cold TfbI buffer (100 mM RbCl, 50 mM MnCl2-4H2O, 30 mM KNa, 10 mM CaCl2-

2H2O and 15 % glycerol) and incubated at 4 °C for 30 m in. The cells were then 

centrifuged for 5 min at 6,000 g at 4 °C and resuspended in 6 ml of ice-cold TfbII 

buffer (10 mM MOPS, 10 mM RbCl, 75 mM CaCl2-2H2O and 15 % glycerol). 

Aliquots of competent cells were snap frozen in dry ice and immediately 

transferred to – 80 °C for storage. 

2.4.4 Transformation of competent bacteria 

Chemically-competent E. coli were used to transform plasmid DNA and ligation 

reactions. The bacteria were removed from storage at – 80 °C and thawed on ice 

for 10 min. The DNA (1 µl of 1/10 diluted miniprep plasmid DNA or 10 µl of 

ligation) was added to the bacteria and then incubated on ice for 30 min. Heat 

shock was carried out for 45 sec at 42 °C and then the bacteria were kept on ice 

for 10 min. 250 µl LB was added to the bacteria, which were then incubated for 30 

min to 1 h shaking at 37 °C at 250 rpm. Finally, th e cells were pelleted and 

resuspended in 50 µl LB and plated onto agar plates supplemented with the 

appropriate antibiotic (see Section 2.1.1).  

2.4.5 Plasmid DNA isolation from bacteria 

Plasmid DNA was isolated from E. coli by one of two methods, depending upon 

the amount of DNA required. In order to purify small amounts of DNA to screen for 

correct insert ligation into a plasmid, 5 ml LB with the appropriate antibiotics was 

inoculated with a single bacterial colony overnight at 37 °C at 250 rpm. The 

bacteria were pelleted and DNA purification carried out using the Qiaprep Spin 
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Miniprep kit according to manufacturer's instructions (Qiagen). Large quantities of 

DNA to be used in transfection of Leishmania were isolated using a similar silica 

column-based method, but using a higher volume of culture (250 ml) and the Hi-

Speed Plasmid Maxi kit (Qiagen). DNA was precipitated into a volume of 500 µl 

using the QiaPrecipitator module (Qiagen), and the concentration determined by 

spectrophotometric means (see Section 2.4.8).  

DNA obtained from miniprep and maxiprep protocols was subjected to restriction 

endonuclease digestion (see Section 2.4.6) in order to determine/verify that the 

plasmid contained the correct insert in the correct orientation.  

2.4.6 Restriction endonuclease digestion 

Restriction endonuclease digestion was routinely carried out on miniprep DNA in 

order to verify the correct cloning of an insert into an intermediate/destination 

vector. Unless stated otherwise, 3 µl of miniprep DNA was digested with 1 U of 

restriction enzyme in the appropriate buffer (NEB). Reactions were typically 

incubated for 2 h at 37 °C (or 50 °C for BsaI). Restriction patterns were visualised 

by mixing with 6xDNA loading dye and subjection to agarose (1 % w/v) 

electrophoresis (see Section 2.4.10) 

2.4.7 Ethanol precipitation of gDNA 

DNA was precipitated using 0.1 volumes of 3 M Na-acetate pH 5.2 and three 

volumes of ice-cold ethanol. Additionally, 1 µl of glycogen (20 mg ml-1 stock) was 

added in order to visualise the DNA pellet throughout centrifugation steps. The 

mixture was incubated for 20 min at – 80 °C and the n the precipitated DNA 

pelleted at 13,000 rpm (Fisher Scientific accuSpin MicoR with 24-plate motor) at 4 

°C for 30 min. The DNA was washed with ice-cold 70 % (v/v) ethanol, and then 

allowed to air-dry (under a sterile hood if the DNA was to be used for transfections 

in Leishmania). Finally, the DNA was re-suspended in water or an appropriate 

buffer. 

2.4.8 Determining DNA concentration 

DNA concentration was measured using a UV-spectrophotometer (Shimadzu) at 

OD260 nm. OD260 nm = 1 corresponded to 50 µg ml-1 for double-stranded DNA. DNA 
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purity was determined by calculating the ratio of DNA (OD260 nm) to protein (OD280 

nm). 

2.4.9 DNA sequencing 

DNA sequencing was carried out externally by the Dundee Sequencing Centre 

(www.dnaseq.co.uk) using Applied Biosystems Big-Dye Ver 3.1 chemistry on an 

Applied Biosystems model 3730 automated capillary DNA sequencer. It was 

necessary to provide 200 – 300 ng of DNA template, along with 3.2 pmoles of 

sequencing primer, per sequencing reaction. 

2.4.10 Agarose gel electrophoresis 

DNA quantity and quality was routinely examined by agarose gel electrophoresis 

using the Sub-Cell GT system (Bio-Rad). 1 % (w/v) agarose was dissolved in 1x 

TAE buffer by boiling the mixture in a microwave. SYBR safe (Invitrogen) DNA 

stain was added at 1/10,000 and the agarose poured into gel trays with the 

appropriate size comb. The DNA samples were mixed with 6x DNA loading dye 

and electrophoresis was performed at 100 V in 1x TAE buffer until DNA fragments 

were sufficiently separated. 1 kb DNA ladder (NEB) was run alongside DNA 

samples to permit size determination of the bands visualised by UV illumination at 

302 nm or 365 nm using the Gel Doc XR system (Bio-Rad). 

2.4.11 Southern blot analysis 

In order to analyse the genotypes of genetically-manipulated parasite lines, firstly 

their gDNA was isolated (see Section 2.2.3.1), and then subjected to diagnostic 

digests with NruI overnight at 37 °C. Fully-digested gDNA was separ ated on a 0.8 

% agarose gel overnight at 20 V. The DNA was transferred onto positively-

charged nylon membrane Hybond-N+ (GE Healthcare). For the transfer the 

membrane was placed on the VacuGene XL apparatus (GE Healthcare) and was 

covered with 0.25 N HCl depurination- (0.25 N HCl), denaturation- (1.5 M NaCl 

and 0.5 M NaOH) and transfer (20x  SSC) solutions were incubated on the gel for 

30 min, 30 min and 1 h, respectively. DNA was subsequently cross-linked to the 

membrane. Blocking, probe-making, hybridisation, washing and detection steps 

were all carried out using the AlkPhos Direct Kit according to instructions provided 

by the manufacturer (GE Healthcare). Pre-hybridisation-, hybridisation- and 
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primary wash steps were carried out at 61 °C and th e probes used recognised L. 

major LIPA and LPLA genes and HYG and SAT genes. LIPA- and LPLA gene 

probes were made using full-length LIPA and LPLA genes amplified from L. major 

gDNA using primer pairs Lm1-Lm2 and Lm13-Lm14, respectively (see Section 

2.1.4.1). HYG and SAT gene probes were derived from digesting (BamHI/SpeI) 

HYG and SAT genes from plasmids pGL435 and pGL158, respectively (see 

Figure 2.1 and Figure 2.2). The gene fragments were gel extracted and purified 

(see Section 2.4.2.2) and then used to make probes. 

2.5 Biochemical methods 

2.5.1 SDS-PAGE 

Proteins were separated by SDS-PAGE (Laemmli, 1970). The NuPAGE 

electrophoresis system (Invitrogen) was used with either 4 – 12 % Novex Bis-Tris 

pre-cast gels or with non-gradient polyacrylamide gels. Gradient gels were utilised 

for the analyses of parasite extract whereas non-gradient polyacrylamide gels 

were used for examining purity of recombinant protein. In non-gradient gels, the 

running gel consisted of 6 ml running gel buffer (375 mM Tris pH 8.9, 0.1 % (w/v) 

SDS, 10 – 15 % (v/v) acrylamide) which was polymerised by addition of 5 ml 

N,N,N’,N’-Tetramethylethylenediamine (TEMED) and 25 µl ammonium 

persulphate (APS) (10 mg ml-1 stock). The gel was poured into empty plastic 

cassettes (Invitrogen) and allowed to set. The stacking gel, consisting of 2 ml 

stacking gel buffer (122 mM Tris pH 6.7, 0.1 % (w/v) SDS and 5 % (v/v) 

acrylamide) was poured on top of the running gel and an appropriate comb was 

placed in the stacking gel. Protein samples were prepared while the stacking gel 

was in the process of setting. 10 µg parasite extract or 1 µg recombinant protein 

was mixed with 6x loading buffer and denatured at 100 °C for 5 min. The samples 

were loaded and the non-gradient polyacrylamide gels were run in 1x running 

buffer (25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS) and pre-cast gels in 1x 

MOPS buffer (Invitrogen) at 40 mA (200 V maximum). Following electrophoresis, 

gels were either stained with Coomassie blue (see Section 2.5.2) or were 

analysed by western blotting (see Section 2.5.3). 
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2.5.2 Coomassie blue staining 

Coomassie blue staining was carried out in order to determine the purity of elution 

fractions from protein purification (see Section 2.5.6). After SDS-PAGE (see 

Section 2.5.1), the gel was removed from the cassette and covered with 

Coomassie blue stain (40 % (v/v) methanol, 10 % (v/v) acetic acid, 0.1 % (w/v) 

and coomassie brilliant blue R-250) for at least 1 h at room temperature. For 

destaining, the Coomassie blue solution was removed and the gel was incubated 

in destain solution (20 % (v/v) methanol and 10% (v/v) acetic acid) for at least 1 h, 

changing the destain solution two times in the process. 

2.5.3 Western blotting 

Proteins were transferred from gel to membrane using the Trans-Blot SD Semi-

Dry Electrophoretic Transfer Cell (Bio-Rad) for 1 h at 20 V at room temperature. 

Ponceau-S (reversible) staining was used to visualise equal loading in all lanes, 

before continuing the experiment. Blots were blocked for 1 h in 5 % (w/v) milk in 

PBS (5 % MPBS) at room temperature, followed by incubation with primary, and 

secondary antibodies, in 2 % (w/v) MPBS with 0.1 % (v/v) Tween-20 (2 % 

MPBST). In between primary- and secondary antibody incubations, and after the 

secondary antibody step, blots were washed 3 x 10 min in PBS containing 0.1 % 

(v/v) Tween-20 (PBST). Detection of secondary antibody (linked to horseradish 

peroxidase)-bound protein was carried out using Immobilon Western Blot 

Detection Kit (Millipore) for 5 min at room temperature. The resulting 

chemiluminescence was detected on autoradiography film (Kodak). 

Quantification of western blot band density was carried out by using a ChemiDoc 

XRS machine (Bio-Rad) to detect chemiluminescence signal generated by 

western blotting. Subsequently, Quantity One software (Bio-Rad) was used to 

determine band density. A standard curve was produced with band intensity as a 

function of the quantity of recombinant protein, in order to determine the quantity 

of a specific protein in promastigote protein lysate. 

2.5.4 Determining protein concentration  

The protein concentration of parasite extract and recombinant protein was 

determined by the Bradford assay (Bradford, 1976), using the Bio-Rad protein 
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assay reagent. The absorbance of a protein solution mixed with Bradford reagent 

(Bio-Rad) was measured at 595 nm and the protein concentration was determined 

relative to a standard curve of known BSA concentrations. 

2.5.5 Estimation of protein molecular mass 

After SDS-PAGE and Coomassie staining or western blotting, a standard curve 

was made by calculating the relative mobility (Rf) of standard proteins and then 

logging the values. The values were used to construct a standard curve, which 

was used to calculate the molecular mass of bands of an unknown size. 

2.5.6 Expression and purification of proteins with a Strep-tag 

2.5.6.1 Cloning of expression constructs 

In order to express L. major LIPA, LIPB and LPLA in E. coli, different truncated 

versions of the genes were cloned into the vector pASK-IBA3 (see Figure 2.7 and 

Section 2.3.3), which adds a C-terminal Strep-tag to the translated transgene. The 

Strep-tag is a stretch of 8 amino acids that specifically binds to a modified version 

of streptavidin called Strep-Tactin, and as such a recombinant protein bearing a 

Strep-tag can be purified by affinity chromatography using Strep-Tactin resin 

(IBA). 

The genes of interest were cloned into pASK-IBA3 by directional BsaI cloning (see 

Section 2.1.4.2). Table 2.3 highlights the primers used in order to amplify the 

different versions of LIPA, LIPB and LPLA by PCR, and the size of the N-terminal 

truncation. N-terminal truncations were based upon targeting predictions made by 

MitoProt and/or TargetP software as well as by alignments with E. coli 

homologues (see Sections 2.3.3 and 3.4). PCR fragments were cloned into the 

intermediate vector pCR-BluntII-TOPO (see Section 2.4.2.1), and correct 

sequences were verified by DNA sequencing (see Section 2.4.9). DNA inserts 

were then sub-cloned into pASK-IBA3 by directional BsaI cloning; correct ligation 

of insert into vector was confirmed via XbaI/HindIII double digest and restriction 

digest analysis by agarose electrophoresis (see Sections 2.4.6 and 2.4.10). The 

nomenclature of the final constructs will be referred to as the name of the DNA 

fragment (see Table 2.3) followed by IBA3 (representing vector pASK-IBA3).  
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Name of DNA fragment Primer pairs used in PCR Size of  PCR fragment (kbp)

LIPAFL Lm25-Lm29 1.250

LIPAT1 Lm26-Lm29 1.235

LIPAT2 Lm27-Lm29 1.193

LIPAT3 Lm28-Lm29 1.067

LIPBFL Lm30-Lm33 0.791

LIPBT1 Lm31-Lm33 0.704

LIPBT2 Lm32-Lm33 0.689

LPLAFL Lm34-Lm37 1.535

LPLAT1 Lm35-Lm37 1.499

LPLAT2 Lm36-Lm37 1.430  

Table 2.3 Cloning genes into pASK-IBA3 for protein expression 
Table providing information about the cloning of full-length (FL) and N-terminally truncated versions 
(T1-T3) of LIPA, LIPB and LPLA to be used in protein expression trials. All primers in this table 
have BsaI restriction sites (see Section 2.1.4.2). 

2.5.6.2 Trial protein expression 

In order to determine the most yielding conditions for expression of recombinant 

proteins, trial expressions were carried out. Variables included: full-length or N-

terminally truncated expression construct (see Section 2.5.6.1); temperature of 

incubation after induction of protein expression (15 °C, 30 °C or 37 °C); length of 

incubation after induction of protein expression (1 h, 2 h, 3 h or overnight). Briefly, 

5 ml of LB supplemented with appropriate antibiotic(s) was inoculated with a single 

colony from a transformation with a protein expression construct and incubated 

overnight at 37 °C at 250 rpm. This starter culture  was diluted 1/100 into 50 ml LB 

with appropriate antibiotics and incubated at 37 °C  at 250 rpm until OD600 nm = 

0.6. Protein expression from the expression construct was then induced (with 

anhydrotetracycline (ATc) for pASK-IBA3 constructs (see Section 2.5.6.3). Post-

induction, cultures incubated at different temperatures and for different lengths of 

time were centrifuged at for 1 min at 13,000 rpm (Eppendorf microcentrifuge with 

F45-24-11 rotor) at room temperature, the supernatant was discarded and the 

pellet was resuspended in 100 µl BugBuster Protein Extraction Reagent 

(Novagen). 0.5 µl benzonase (Novagen) was also included in order to degrade 

DNA. The mixture was incubated at 4 °C with constan t shaking. After 15 min, the 

mixture was centrifuged for 15 min at 13,000 rpm (Fisher Scientific accuSpin 

MicroR with 24-place rotor) at 4 °C. The supernatan t was transferred into a fresh 
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tube, and the pellet was resuspended in 100 µl PBS. For analyses, 5 µl of the 

pellet fractions and 10 µl of the supernatant fractions were separated by SDS-

PAGE (see Section 2.5.1) and evaluated by western blotting using specific 

antibodies against the protein-tag (see Table 2.1). 

2.5.6.3 Protein purification 

Trial expressions indicated that of all the constructs tested, LIPAT3-IBA3, LIPBFL-

IBA3 and LPLAT2-IBA3 resulted in the production of the highest level of the 

respective proteins, LIPAT3-Strep, LIPBFL-Strep and LPLAT2-Strep. The expression 

of these constructs in BLR (DE3) cells was carried out as described in Section 

2.5.6.2. The plasmid contains the ampicillin-resistance gene (AMP) to allow 

selection of the transfected plasmid with ampicillin. At optical density (OD)600 nm = 

0.6, the expression of recombinant protein was induced by addition of 200 ng ml-1 

ATc. The protein was expressed at optimal conditions, which were determined 

previously using the BugBuster protein extraction kit (see Section 2.5.6.2), and 

which are outlined for LPLA, LIPB and LIPA in Section 3.5. After the optimal time 

of expression, the culture was centrifuged for 15 min at 6,000 g at 4 °C. The 

bacterial pellet was resuspended in a small volume of chilled buffer W (100 mM 

Tris-HCl (pH 8.0), 150 mM NaCl). The resuspended pellet was stored at – 20 °C 

with protease inhibitors at the same concentration as used in L. major lysis buffer 

(see Section 2.1.1).  

For purification, the pellet was thawed and 50 mg ml-1 lysozyme was added. The 

pellet was incubated for 30 min on ice. Additional protease inhibitors were added 

(at the same concentrations as above). Bacterial cells were lysed using the One 

Shot Cell Disrupter (Constant Systems) at 15 kPsi. Disrupted bacteria were 

centrifuged for 30 min at 20,000 rpm (Beckman J2-H5 centrifuge with a JA- 20 

rotor) at 4 °C. The cleared lysate was subsequently  filtered through a 0.4 µm 

disposable filter unit (Satorius) in order to remove any remaining particulate 

matter. Affinity chromatography with Strep-Tactin Sepharose (IBA) was used to 

purify Strep-tagged recombinant protein, according to instructions provided by the 

manufacturer. Briefly, 2 ml Strep-Tactin slurry was transferred to an Econo-Pac 

column (Bio-Rad) to give a column volume (CV) of 1 ml Strep-Tactin Sepahorse. 

The sepharose was equilibrated with two CV of buffer W. The cleared lysate was 

then added to the column and allowed to pass through by gravity flow. The column 
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was then washed with five CV of buffer W. Cleared lysate, flow-through and wash 

fractions were retained for analysis by SDS-PAGE and Coomassie blue staining. 

Elution of recombinant protein was carried out with buffer E (buffer W with 2.5 mM 

desthiobiotin), and six fractions were collected. The protein concentration of each 

elution fraction was determined by Bradford assay (see Section 2.5.4). Finally, 

SDS-PAGE (see Section 2.5.1) of all samples taken during the purification and 

elution fractions was carried out and analysed by Coomassie blue staining (see 

Section 2.5.2) or western blotting with α-Strep-tag antibody (see Section 2.5.3). 

 

Figure 2.7 pASK-IBA3 plasmid 
The pASk-IBA3 plasmid contains the following features: Tet promoter, anhydrotetracycline-
inducible promoter; Amp, ampicillin-resistance gene; Tet repressor, repressor of Tet promoter. 
Restriction endonucleases are illustrated, and numbers in brackets mark the cut sites of the 
restriction endonucleases. The gene of interest to be expressed in E. coli is directionally cloned into 
pASK-IBA3 using BsaI restriction sites. 

2.5.7 Antibody production and purification 

Rabbit polyclonal antibodies were raised against recombinant LIPAT3-Strep, 

LIPBFL-Strep and LPLAT2-Strep proteins, by Eurogentec (Belgium), following their 

standard immunization protocols. 400 µg of each antigen was subjected to SDS-

PAGE and Coomassie blue staining, the band excised and injected into rabbit; two 

rabbits were inoculated per antigen.  

Antibodies specific to the recombinant proteins were purified from antisera by 

affinity chromatography purification using AminoLink Coupling resin, according to 

instructions provided by the manufacturer (Thermo Scientific). Briefly, 1 mg of 
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recombinant protein used to inoculate rabbits for antibody production was dialysed 

into 1 ml PBS using a Centricon Plus-20 centrifugal filter device (Millipore), in 

order to dilute out any amines from the elution fraction. The protein was then 

covalently linked to 2 ml AminoLink Coupling slurry (1 ml CV of resin) by treatment 

with cyanoborohydride. Any remaining binding sites were blocked by treatment 

with a quenching buffer (1 M Tris-HCl, pH 7.4). The covalently bound protein was 

then washed with wash buffer (1 M NaCl) and equilibrated with 5 CV of Protein A 

IgG binding buffer. 5 ml of antiserum to be purified was added to 2.5 ml Protein A 

IgG binding buffer before transferring the mixture to the prepared column. The 

column was washed with 20 ml Protein A IgG binding buffer. Ten 500 µl elutions 

were carried out with Protein A IgG elution buffer into tubes containing 25 µl of 

neutralisation buffer (1 M Tris-HCl, pH 9.0).  

2.6 DNA content analysis 

Fluorescence activated cell sorting (FACS) analysis was used in order to 

determine the DNA content of transgenic parasites. Mid-log promastigotes were 

centrifuged for 5 min at 1,000 g at 4 °C, washed with PBS and then resuspended 

in 1 ml of 70 % (v/v) methanol in PBS. Fixation in methanol was carried out at 4 °C 

for at least 1 h to overnight. Prior to analysis, the cells were washed once in PBS 

and then resuspended in 1 ml of PBS containing 10 µg ml-1 propidium iodide and 

10 µg ml-1 RNAse A, and DNA labeling was carried out at 37 °C for 1 h in a light-

protected box. 

FACS analysis was carried out with a Becton Dickinson FACSCalibur, using the 

FL2-A (fluorescence intensity at 585/642 nm, note λemission propidium iodide = 620 

nm under an λexcitation = 488 nm (blue, Uniphase Argon Ion Laser)), the Forward 

Scatter (FSC, relative cell size) and the Side Scatter detectors (SSC, cell 

granulometry or internal complexity). For each sample, at least 10,000 events 

(cells) were counted. Data was interpreted with CellQuestPro software (BD 

Bioscience).  

2.7 Statistical analyses 

All graphs and statistical analyses were carried out using the program Prism 3.0 

(GraphPad), unless otherwise stated. All experiments with statistical data attached 
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were carried out in duplicate, and one-way ANOVA with Tukey post-test used to 

determine the significance of results; p-values < 0.05 were considered to be 

significant.  

2.8 Functionality assays 

As discussed in Section 2.5.6, full-length- and different truncated versions of LIPA, 

LIPB and LPLA were cloned into pASK-IBA3, in order to test for the optimal 

expression construct for recombinant protein purification. In order to determine 

whether the different constructs encoded functional proteins, LIPA-IBA3 constructs 

were transformed into the lipA deficient E. coli strain KER176 (Vanden Boom et 

al., 1991), and LIPB-IBA3 and LPLA-IBA3 constructs were transformed into the 

lipB deficient E. coli strain KER184 (Vanden Boom et al., 1991). Functionality was 

assessed by whether the constructs would complement the growth defect of the 

bacterial lines when grown on minimal medium (see Section 2.1.1). Both cell lines 

were grown on M9 minimal plates containing 100 mg ml-1 ampicillin (to select for 

the construct), 50 mg ml-1 kanamycin (to select for the transgenic cell line) and 200 

ng ml-1 ATc (to induce recombinant protein expression) and without- or with 

supplementation of 10 µM LA. 
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3 In silico and functionality studies 

3.1 Introduction 

In all organisms, α-KADHs and the GCC are intricately linked to energy 

metabolism (Perham, 2000) and (Douce et al., 2001). LA is an essential 

component of these complexes, covalently linked to the acyl transferase subunits 

of α-KADHs and to the H-protein of the GCC. The post-translational event that 

transfers LA to apoproteins is referred to as lipoylation. Two pathways exist to 

carry out lipoylation; LA biosynthesis and LA salvage. Biosynthesis enzymes LIPA 

and LIPB have been studied to varying degrees in E. coli (Jordan & Cronan, 

1997a; Reed & Cronan, 1993), M. tuberculosis (Sassetti et al., 2003), P. 

falciparum (Wrenger & Muller, 2004), T. gondii (Thomsen-Zieger et al., 2003), A. 

thaliana (Yasuno & Wada, 2002) and H. sapiens (Morikawa et al., 2001). Salvage 

of LA in E. coli requires just one enzyme, LPLA (Morris et al., 1994; Reed et al., 

1994), which catalyses the formation of an activated intermediate, lipoyl-AMP, and 

the subsequent transfer of the lipoyl moiety to the apoprotein. The mammalian 

system necessitates the sequential action of two enzymes for activation and 

transfer of LA to the apoprotein; ACSM1 (Fujiwara et al., 2001) and LT (Fujiwara 

et al., 1997a; Fujiwara et al., 1999), respectively. 

In this chapter, an in silico approach was employed in order to identify and analyse 

potential components comprising α-KADHs, the GCC and the enzymes involved in 

LA acquisition and ligation in L. major. The next aim was to determine whether 

lipoylation of the acyl transferase and H-protein subunits occurs in L. major 

promastigotes. Subsequently, the genes encoding L. major LIPA, LIPB and LPLA 

were heterologously expressed in E. coli deficient in either lipA or lipB, in order to 

ascertain whether L. major encodes active lipoylating machinery. Finally, the 

effects of LA analogues on promastigote growth and lipoylation were studied. 

3.2 Sequence analyses of lipoylated protein complex es 

In order to identify potential homologues of α-KADH subunits and subunits of the 

GCC, the L. major genome database was searched by TBLASTN using H. sapiens 

and E. coli amino acid sequences as queries (as described in Section 2.3). 

Potential homologues of α-KADH subunits were identified (see Table 3.1): 
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1. Four genes encoding the α-ketoglutarate dehydrogenase (α-KGDH) 

complex; two α-ketoglutarate dehydrogenase isoenzymes (designated E1k-

A and E1k-B) and one succinyl transferase (E2k). 

2. Four genes encoding the pyruvate dehydrogenase (PDH) complex; two 

pyruvate dehydrogenase heteromers (E1p-α and E1p-β) and one acetyl 

transferase (E2p). 

3. Four genes encoding the branched-chain α-ketoacid dehydrogenase 

(BCKDH) complex; two branched-chain dehydrogenase heteromers (E1b-α 

and E1b-β) and one branched-chain transacylase (E2b). 

4. One gene encoding the lipoamide dehydrogenase subunit (LipDH), which is 

presumably common to all α-KADHs. 

In addition, potential homologues of components of the GCC were identified (see 

Table 3.1): 

1. One lipoyl-domain protein (H-protein). 

2. One glycine dehydrogenase (P-protein). 

3. Two aminomethyl transferase isoenzymes (T-protein-A and T-protein-B). 

4. One gene encoding the LipDH subunit, which is presumably the same as 

that used by α-KADHs. 

 



   

 

Predicted Sizes (kDa) Systematic Name Targeting Predictions (%) Identity of  L. major to other species (%) 
Subunit E. coli H. sapiens L. major L. major Mitoprot Target P H. sapiens E. coli

E1p 99.7 (AAC73225) N/A N/A N/A N/A N/A N/A N/A
E1p-αααα N/A 43.3 (NP_000275) 42.9 LmjF18.1380 79 MT 47 MT 43 N/A
E1p-ββββ N/A 39.2 (NP_000916) 37.9 LmjF25.1710 99 MT 87 MT 57 N/A

E1k 105.1 (ACB01934) 115.9 (NP_002532) N/A N/A N/A N/A N/A N/A
E1k-like N/A 114.5 (NP_060715) N/A N/A N/A N/A N/A N/A
E1k-A N/A N/A 114.4 LmjF36.3470 97 MT 92 MT 35 33
E1k-B N/A N/A 112.7 LmjF27.0880 95 MT 78 MT 34 (36  to LmE1k -A) 32

E1b-αααα N/A 50.5 (NP_000700) 53.3 LmjF21.1430 80 MT 85 MT 36 N/A
E1b-ββββ N/A 43.1 (NP_000047) 40 LmjF35.0050 84 MT 73 MT 49 N/A

P-protein 104.4 (AAC75941) 112.7 (NP_000161) 108.5 LmjF26.0030 95 MT 86 MT 47 46

E2p 66.1 (AAC73226) 68.9 (NP_001922) 48.7 LmjF36.2660 86 MT 52 MT 24 18
62 SP

E2p-like N/A 54.1 (NP_001128496) 46.1 LmjF21.0550 61 MT 5 MT 15 to Hs  pE2 N/A
85 SP 16 to Hs  E3BP**

E2k 44 (AAA23898) 48.6 (NP_001924) 41.7 LmjF28.2420 96 MT 78 MT 38 39

E2b N/A 53.5 (NP_001909) 50.2 LmjF05.0180 100 MT 92 MT 41 N/A

H-protein 13.8 (AAC75942) 18.9 (NP_004474) 15.2 LmjF35.4720 76 MT 50 MT 36 37

LipDH 50.7 (AAC73227) 54.2 (NP_000099) 50.6 LmjF32.3310 9 MT (ATG start) 21 MT (ATG start) 47 38
16 SP, 57 OT (ATG start)

23 MT (GTG start) 83 MT (GTG start)*

T-protein 40.1 (AAC75943) 43.9 (NP_000472) N/A N/A N/A N/A N/A N/A
T-protein A N/A N/A 43.2 LmjF36.3800 17 MT 12 MT 29 38

25 SP, 38 OT
T-protein B N/A N/A 41.3 LmjF36.3810 17 MT 12 MT 29 39

25 SP, 38 OT  
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Table 3.1 Sequence analyses of subunits of  L. major αααα-KADHs and of the GCC 
L. major homologues of subunits of α-KADHs and of the GCC were identified as described in 
Section 2.3. Red subunits are those which catalyse the oxidative decarboxylation of substrates. 
Blue subunits are those that carry out transferase reactions. The green subunit is common to both 
α-KADHs and the GCC and catalyses the re-oxidation of dihydrolipoic acid (DHLA) to oxidised LA. 
In the 'Protein Size' column, accession numbers of E. coli and H. sapiens proteins are shown in 
brackets. Mitochondrial targeting predictions were carried out by analysing L. major protein 
sequences with MitoProt or TargetP. The results obtained indicate the percent likelihood of 
mitochondrial targeting (MT). Some proteins were predicted to possess signal peptides (SP), or an 
alternative processing type (OT). The mitochondrial targeting for the LipDH subunit was 
unexpectedly low. However, by starting the ORF at a GTG 75 bp upstream of the predicted ATG 
start, the likelihood of mitochondrial targeting was significantly increased (*). Amino acid sequence 
identity of L. major α-KADH- and GCC subunits to E. coli and H. sapiens homologues was 
determined using Vector NTI (see Section 2.3). In the case of the L. major E2p-like protein, in 
addition to aligning with H. sapiens E2p, an alignment was also performed with the human E3 
binding protein (E3BP) (**). 

3.2.1 αααα-Ketoglutarate dehydrogenase ( αααα-KGDH) complex  

3.2.1.1 α-Ketoglutarate dehydrogenase isoenzymes (E1k-A and E1k-

B)  

The E1k subunit of the α-KGDH complex catalyses the oxidative decarboxylation 

of α-ketoglutarate to form CO2 and a succinyl group, in a TPP-dependent manner 

(Perham, 1991; Perham, 2000). Whereas the PDH E1 (E1p) and BCKDH E1 (E1b) 

subunits in most organisms studied tend to form heterotetramers, E1k proteins are 

active as homodimers. Recent in silico analyses indicate that mammalian species 

such as H. sapiens and M. musculus possess an E1k isoenzyme, E1k-like (E1kL) 

(Bunik & Degtyarev, 2008). H. sapiens E1k (HsE1k) and E1kL (HsE1kL) share 75 

% sequence identity. Experimental evidence has shown HsE1kL to have different 

kinetic properties from HsE1k, and different tissue specificity (Bunik et al., 2008). 

L. major encodes two potential E1k proteins, LmjE1k-A and LmjE1k-B (see Table 

3.1). The genes are located on chromosomes 36 and 27, respectively (see Table 

3.1). LmjE1k-A and LmjE1k-B are predicted to be 114.4 kDa and 112.7 kDa, 

respectively, and as such are both similar in size to HsE1k (115.9 kDa) and 

HsE1kL (114.5 kDa). Unlike the high sequence identity shared between HsE1k 

and HsE1kL (75 %), LmjE1k-A shares only 36 % identity to LmjE1k-B, and both 

have similar identities to HsE1k (35 % and 34 %, respectively) and E. coli E1k 

(EcE1k) proteins (33 % and 32 %, respectively) (see Table 3.1 and Appendix 

Figure 7.1 and Table 7.1). The two potential LmjE1k isoenzymes are predicted to 

be mitochondrial by prediction programmes MitoProt (95 % and 75 % confidence 
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levels, respectively) and TargetP (78 % and 92 % confidence levels, respectively) 

(see Table 3.1). 

The fact that H. sapiens possesses the functional E1k isoenzyme E1kL has been 

discussed two paragraphs above. In human, in silico analyses resulted in the 

identification of another E1k-like protein named dehydrogenase E1 and 

transketolase domain-containing 1 (HsDHTDK1) protein (Bunik & Degtyarev, 

2008). HsDHTDK1 lacks three conserved motifs that are required for Ca2+ 

activation, and in this sense is more similar to bacterial E1k proteins (Bunik & 

Degtyarev, 2008). ClustalW alignment of LmjE1k-A and LmjE1k-B with different 

vertebrate E1k, E1kL and DHTDK1 proteins revealed some potentially interesting 

differences (see Appendix Figure 7.1). Firstly, LmjE1k-A and LmjE1k-B possess 

most of the required motifs for α-ketoacid dehydrogenase activity, such as lipoyl-

domain-binding motifs and TPP-binding motifs (see Appendix Figure 7.1). 

However, LmjE1k-A and LmjE1k-B lack all three conserved motifs required for 

binding of Ca2+. In addition, as for DHTDK1, LmjE1k-A and LmjE1k-B have altered 

α-ketoglutarate substrate binding motifs (see Appendix Figure 7.1). Bunik et al. 

(2008a) discuss this phenomenon in the context of DHTDK1, and hypothesise that 

DHTDK1 could use substrates other than α-ketoglutarate, such as glyoxylate. 

3.2.1.2 Succinyl transferase subunit (E2k) 

The E2k subunit of the α-KGDH complex catalyses the transfer of the succinyl 

group from E1k onto CoA, in a LA-dependent manner (Perham, 1991; Perham, 

2000). In all α-KADHs, the E2 components are assembled into either a cubic (24-

mer) or a dodecahedral (60-mer) inner core, around which E1 and E3 components 

bind. 

Bioinformatics analyses indicate that L. major possesses a single E2k gene 

encoding the succinyl transferase, LmjE2k. LmjE2k has a relatively high sequence 

identity to H. sapiens E2k (HsE2k) (38 %) and E. coli E2k (EcE2k) (39 %) (see 

Table 3.1). LmjE2k is predicted to be mitochondrial by prediction programmes 

MitoProt and TargetP (96 % and 78 % confidence levels, respectively) (see Table 

3.1). 

ClustalW alignment with H. sapiens and E. coli homologues illustrates that LmjE2k 

has a single lipoyl-domain at the N-terminus. However, the strictly conserved motif 
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42TDK44 in EcE2k is 64SDK66 in LmjE2k (see Appendix Figure 7.7), and this is the 

same for all other trypanosomatid species with sequenced genomes available (L. 

infantum, L. braziliensis, T. brucei and T. cruzi). This seemingly kinetoplastid-

specific anomaly could be of significance given that the Thr42 residue of the 
42TDK44 motif has been shown to be very important in the reductive succinylation 

of the E2k-bound lipoyl moiety by E1k (Jones & Perham, 2008). On the other 

hand, threonine and serine are similar residues in that both are polar and 

uncharged, and as such may be interchangeable. 

LmjE2k has the conserved 358DHRxxDG364 motif at the C-terminus (see Appendix 

Figure 7.7), the His359 of which is required for succinyl transferase catalytic activity 

(Reed & Hackert, 1990). 

However, unlike bacterial and mammalian E2k and E2b proteins, LmjE2k lacks a 

strictly conserved Arg140 residue (Ciszak et al., 2006) that permits binding to both 

E1 and E3 proteins, and instead has Lys141, which given its similarity in size and 

charge to arginine, may fulfil a similar role (see Appendix Figure 7.9). 

3.2.2  Pyruvate dehydrogenase (PDH) complex 

3.2.2.1 Pyruvate dehydrogenase subunits (E1p-α and E1p-β) 

The E1p subunit of the PDH complex catalyses the oxidative decarboxylation of 

pyruvate to form CO2 and an acetyl group in a TPP-dependent manner (Perham, 

1991; Perham, 2000). Eukaryotic E1p subunits (Wexler et al., 1991) and those 

from gram-positive bacteria such as Bacillus species (Lessard & Perham, 1994) 

are comprised of heterotetramers, whereas E1p subunits from gram-negative 

bacteria such as E. coli are homodimers (de Kok et al., 1998). 

Searching the L. major genome for homologues resulted in the identification of two 

genes, the products of which have been designated LmjE1p-α and LmjE1p-β (see 

Table 3.1). LmjE1p-α and LmjE1p-β are predicted to be 42.9 kDa and 37.9 kDa, 

respectively, and are therefore more similar in size to H. sapiens E1p-α (HsE1p-α) 

and H. sapiens E1p-β (HsE1p-β) (43.2 kDa and 39.2 kDa, respectively) than to the 

single E. coli E1p (EcE1p) (99.7 kDa) (see Table 3.1). This information (combined 

with that provided below) is in accordance with LmjE1p-α and LmjE1p-β forming 
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heteromers. Both L. major E1p proteins have high identities to the respective 

HsE1p-α and HsE1p-β subunits (43 % and 57 %, respectively) (see Table 3.1 and 

Appendix Figure 7.2 and Figure 7.3). Both proteins are predicted to be 

mitochondrial by MitoProt and TargetP programmes, with confidence values of 79 

% and 47 % respectively, for LmjE1p-α, and 99 % and 87 % respectively, for 

LmjE1p-β (see Table 3.1). 

ClustalW alignment of LmjE1p-α and LmjE1p-β with mammalian homologues 

revealed that some of the amino acids within conserved motifs are different in L. 

major E1p proteins, however the overall conservation is high. For example, the 

conserved motif in E1p-α proteins involved in interacting with the thiamine 

diphosphate (TPP) cofactor, catalysing the decarboxylation of pyruvate, and 

interacting with the lipoyl-domain of the E2p subunit (285TYRY(H/g)GHSMSDPG298 

in HsE1p-α) is instead 276CYRYMGHSMSDPD289 in LmjE1p-α (see Appendix 

Figure 7.2). Another example is a motif found in E1p-β proteins that is involved in 

binding the lipoyl-domain of the E2p subunit (109EFM(T/s)FNFSMQAID121 in 

HsE1p-α), which is instead 101EFMTFNFAMQAID113 in LmjE1p-β (see Appendix 

Figure 7.3). The significance of such differences remains unknown, yet they could 

reflect subtle species-specific adaptations to different substrates for example. 

3.2.2.2 Acetyl transferase (E2p) and E3-binding protein (E3BP) 

subunits 

The E2p subunit of the α-PDH complex catalyses the transfer of the acetyl group 

from E1p onto the acceptor protein coenzyme A (CoA), in a LA-dependent manner 

(Perham, 1991; Perham, 2000). In all α-KADHs, the E2 components are 

assembled into either a cubic (24-mer) or a dodecahedral (60-mer) inner core, 

around which E1 and E3 components bind. Mammals (De Marcucci & Lindsay, 

1985) and some yeast (Maeng et al., 1994) (but not bacteria) also encode a 

structurally similar protein, E3-bindng protein (E3BP). In these organisms, the E2p 

subunit cannot bind the E3 subunit directly. As such, E3 binds to E3BP and is 

inserted into the E2p scaffold (Sanderson et al., 1996a; Sanderson et al., 1996b). 

Querying the L. major genome with H. sapiens E2p (HsE2p) and E. coli E2p 

(EcE2p) protein sequences resulted in the identification of a single LmjE2p-

encoding gene, and a gene encoding an E2p-like protein (LmjE2pL). The 
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predicted size of LmjE2p is 48.7 kDa, which is 20 kDa smaller than the HsE2p and 

EcE2p proteins (see Table 3.1). The size discrepancy can be explained by 20 kDa 

N-terminal extensions in HsE2p and EcE2p proteins compared to LmjE2p (see 

Appendix Figure 7.8). The large N-terminal extensions in EcE2p and HsE2p 

consist of two additional lipoyl-domains (L1 and L2 lipoyl-domains) (Guest et al., 

1985). LmjE2p has 24 % and 18 % sequence identity to HsE2p and EcE2p 

proteins, respectively (see Table 3.1). Subcellular targeting prediction programmes 

give different results with regards to LmjE2p subcellular localisation; MitoProt 

predicts mitochondrial targeting (86 % confidence level), yet TargetP predicts with 

only moderate confidence that LmjE2p is mitochondrial (52 % confidence level) 

and with higher confidence (62 %) that LmjE2p possesses a secretory signal 

peptide (see Table 3.1). Given that E2p is integral to the formation and function of 

the PDH complex, one would expect LmjE2p to be mitochondrial, and indeed 

evidence is provided that this is probably the case in L. major (see Section 5.4.1). 

LmjE2p possesses a single lipoyl-domain with the motif 60TDKA63, as well as the 

C-terminal motif 619DHRxxDG625; the former is involved in binding LA and the latter 

is integral to the transfer of the acetyl group from the E1p subunit to a CoA 

acceptor protein (see Appendix Figure 7.8) (Reed & Hackert, 1990). 

As mentioned, a second gene that shares some homology to LmjE2p, LmjE2pL, is 

predicted in the L. major genome (see Table 3.1). The most obvious candidate for 

the LmjE2pL protein would be the E3BP. Human and yeast E3BP have 

reasonable sequence identities to their respective E2p proteins (30 % and 20 %, 

respectively). Similarly, LmjE2p and LmjE2pL share 18 % amino acid sequence 

identity. The sequence identities of LmjE2pL to HsE2p and HsE3BP are low (15 % 

and 16 %, respectively) (see Table 3.1). As for LmjE2p, the mitochondrial targeting 

prediction by MitoProt is reasonably high (61 % confidence level), whereas 

TargetP predicts with high confidence (85 %) that LmjE2pL has a secretory signal 

sequence (see Table 3.1).  

In yeast and humans, E3BP has the conserved 80TDKA83 motif (HsE3BP 

numbering), the Lys82 of which can be lipoylated by lipoyl transferases (Sanderson 

et al., 1996b). LmjE2pL also possesses the conserved 51TDKA54 motif, and 

possibly a second functional motif 177TDKA180 (see Appendix Figure 7.8). Yeast 

and human E3BP do not possess acetyl transferase activity, since the strictly 

conserved His620 residue within the motif 619DHRxxDG625 (HsE2p numbering), is 

instead Ser460 (HsE3BP numbering) (Neagle et al., 1989). LmjE2pL also lacks this 
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histidine residue and the motif is instead 366YKSxxDT372 (with bold residues 

representing those residues that are not conserved in LmjE2pL) (see Appendix 

Figure 7.8). The H. sapiens PDH (HsPDH) complex requires E3BP to insert E3 

into the E2p scaffold, since HsE2p only has the capacity to interact with E1 and 

E3BP (Ciszak et al., 2006). Interestingly, LmjE2p has Val175 and Arg177 residues 

(see Appendix Figure 7.9), which could permit binding of both E1 and E3 subunits 

according to predictions made by Cizak et al. (2006). However, LmjE2pL does not 

possess the strictly conserved 170SPAxRNxxE178 motif, or the Pro192 and Ile195 

residues (see Appendix Figure 7.9) that have been shown in HsE3BP to make 

important contacts with the E3 subunit (Ciszak et al., 2006). As such, although in 

silico analyses generally infer that LmjE2pL may be E3BP, experimental evidence 

would be required to confirm the localisation of LmjE2pL, as well as the nature of 

its interactions with other subunits of the PDH complex. 

3.2.3 Branched chain αααα-ketoacid dehydrogenase (BCKDH) 

3.2.3.1 Branched chain ketoacid dehydrogenase subunits (E1b-α and 

E1b-β) 

The E1b subunit of the BCKDH complex catalyses the oxidative decarboxylation of 

branched-chain α-ketoacids 2-ketoisocaproate, 2-keto-3-methylvalerate and 2-

ketoisovalerate (derived from leucine, isoleucine and valine, respectively) to form 

CO2 and an acyl group (isovaleryl, 2-methylbutyryl or isobutyryl, respectively), in a 

TPP-dependent process (Massey et al., 1976). E1b subunits in human (Aevarsson 

et al., 2000) and gram-negative bacterium Pseudomonas putida (Aevarsson et al., 

1999) are heterotetrameric. 

Searching the L. major genome for homologues resulted in the identification of two 

genes, LmjE1b-α and LmjE1b-β (see Table 3.1). LmjE1b-α and LmjE1b-β are 

predicted to be 53.3 kDa and 40.0 kDa, respectively, and are therefore similar in 

size to H. sapiens E1p-α (HsE1p-α) and E1p-β (HsE1p-β) (50.5 kDa and 43.1 

kDa, respectively) (see Table 3.1). This information (combined with that provided 

below) is in accordance with LmjE1b-α and LmjE1b-β forming heteromers. Both L. 

major E1b proteins have high identities to the respective HsE1b-α and HsE1b-β 

subunits (36 % and 49 %, respectively) (see Table 3.1 and Appendix Figure 7.4 

and Figure 7.5). Both proteins are predicted to be mitochondrial by MitoProt and 
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TargetP programmes, with confidence values of 80 % and 84 %, respectively, for 

LmjE1b-α, and 85 % and 73 %, respectively, for LmjE1b-β (see Table 3.1). 

ClustalW alignment of LmjE1b-α and LmjE1b-β with mammalian homologues 

revealed that some of the amino acids within conserved motifs of LmjE1b-β are 

different to those found in mammalian E1b-β proteins; however, the overall 

conservation is high. For example, the conserved motif in E1b-β proteins involved 

in interacting with the TPP cofactor (146E[I/m]QF149 in HsE1b-β) is instead 
123EVQF126 in LmjE1b-β (see Appendix Figure 7.5). The significance of such 

differences remains unknown. 

3.2.3.2 Branched-chain transacylase subunit (E2b) 

The E2b subunit of the BCKDH complex catalyses the transfer of the acyl group 

(either isovaleryl, 2-methylbutyryl or isobutyryl) from E1b onto the acceptor protein 

CoA, in a LA-dependent manner (Perham, 1991; Perham, 2000). In all α-KADHs, 

the E2 components are assembled into either a cubic (24-mer) or a dodecahedral 

(60-mer) inner core, around which E1 and E3 components bind.  

Bioinformatics analyses indicate that L. major possesses a single gene encoding 

the branched-chain transacylase, LmjE2b. LmjE2b has a relatively high sequence 

identity to H. sapiens E2b (HsE2b) (40 %) (see Table 3.1). LmjE2b is predicted to 

be mitochondrial by prediction programmes MitoProt and TargetP (100 % and 92 

% confidence levels, respectively) (see Table 3.1). 

ClustalW alignment with mammalian homologues illustrates that LmjE2b has a 

single lipoyl-domain at the N-terminus, with the diagnostic motif 86SDKA89, the 

Lys88 of which is lipoylated by lipoyl transferases (see Appendix Figure 7.10). 

LmjE2b is likely to be catalytically active, given that the 446DHRxxDG452 motif is 

present, the His447 of which is required for acyl transferase catalytic activity (Reed 

& Hackert, 1990). 

However, unlike bacterial and mammalian E2k and E2b proteins, LmjE2k lacks a 

conserved Arg199 residue (Ciszak et al., 2006) that permits binding to both E1 and 

E3 proteins, and instead has Lys297, which given its similarity in size and charge to 

arginine, may fulfil a similar role (see Appendix Figure 7.9). 
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3.2.4 Glycine cleavage complex (GCC) 

3.2.4.1 Lipoyl-domain subunit (H-protein) 

In the GCC, H-protein is monomeric (Nakai et al., 2003a; Pares et al., 1994), 

unlike the E2 subunits of α-KADHs, which form 24-mers or 60-mers (Perham, 

1991; Reed & Hackert, 1990). However, 27 H-protein monomers are found within 

the GCC of Pisum satisvum (PsGCC) (Oliver et al., 1990). Similarly to E2 

subunits, H-protein possesses a lipoyl-domain which binds LA and acts as a 

"swinging arm" domain that permits access of each catalytic subunit in turn, to the 

essential lipoyl moiety. Nevertheless, unlike E2 subunits, H-protein bears no 

catalytic activity (Macherel et al., 1992). 

Bioinformatics analyses indicate that L. major encodes a single lipoyl-domain 

protein, LmjH-protein. LmjH-protein has a reasonable sequence identity to H. 

sapiens H-protein (HsH-protein) (36 %) and E. coli H-protein (EcH-protein) (37 %) 

(see Table 3.1). LmjH-protein is predicted to be mitochondrial by prediction 

programmes MitoProt and TargetP (76 % and 50 % confidence levels, 

respectively) (see Table 3.1). 

ClustalW alignments with mammalian homologues reveals that LmjH-protein 

possesses the motif 76SVKA79, the strictly conserved Lys78 of which becomes 

lipoylated by lipoyl transferases (see Appendix Figure 7.11). Additionally, strongly 

conserved negatively-charged residues Glu48, Asp52 and Glu75 that make contacts 

with P-protein and T-protein (Nakai et al., 2003a) are present, however one 

glutamate residue is instead Asn81 (see Appendix Figure 7.11). 

3.2.4.2 Glycine dehydrogenase subunit (P-protein) 

The P-protein subunit of the GCC complex is a pyridoxal 5'-phosphate (PLP)-

dependent enzyme that catalyses the oxidative decarboxylation of glycine to form 

CO2 and aminomethylated H-protein (Douce et al., 2001). Eukaryotic P-proteins 

(for example, human) (Kume et al., 1991) and some prokaryotic P-proteins (for 

example, E. coli) (Okamura-Ikeda et al., 1993) occur as homodimers, whereas 

most prokaryotic P-proteins typically form heterotetramer P-protein complexes (for 

example, Thermus thermophilus) (Nakai et al., 2003b). In the PsGCC two 
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homodimers of P-protein are necessary and sufficient for glycine decarboxylase 

activity (Oliver et al., 1990). 

The L. major genome possesses one gene encoding LmjP-protein. The L. major 

homologue has relatively high sequence identity to E. coli P-protein (EcP-protein) 

(46 %) and H. sapiens protein (HsP-protein) (47 %) (see Table 3.1). LmjP-protein 

is predicted to be mitochondrial by MitoProt and TargetP, with confidence levels of 

95 % and 86 %, respectively (see Table 3.1). The mitochondrial localisation of 

LmjP-protein has been verified experimentally in L. major promastigotes by over-

expression of an LmjP-protein-GFP reporter construct (Scott et al., 2008). 

LmjP-protein contains all of the residues known to be important in lining the active 

site (such as the 541PLGSCTMKLN550 motif), and for interaction with lipoamide 

(Gln354 and His638) (see Appendix Figure 7.6). The only potentially important 

differences are two changes in residues involved in binding H-protein, whereby 

LmjP-protein has Lys357 instead of Arg326, and at another position has Arg360 

instead of Lys329 (see Appendix Figure 7.6). However, the most important factor 

involved in binding H-protein is thought to be the positive charge within this motif 

(Nakai et al., 2005), and the changes just outlined would keep the charge the 

same as that found in EcP-protein and HsP-protein. Indirect evidence has proven 

that LmjP-protein (and as such the GCC in L. major) is active (Scott et al., 2008); 

inactivation of the LmjP-protein gene in promastigotes resulted in a significant loss 

of [2-14C] glycine incorporation into DNA, which is ordinarily derived from 5,10-

methylene-tetrahydofolate (5,10-CH2-THF) produced via the GCC (Scott et al., 

2008). 

3.2.4.3 Aminomethyl transferase subunit isoenzymes (T-protein-A and 

T-protein-B) 

The T-protein subunit of the GCC complex catalyses the transfer of the methylene 

group (CH2) from aminomethylated H-protein to a tetrahydrofolate (THF) acceptor, 

to produce 5,10-CH2-THF and ammonia (NH3) (Douce et al., 2001). T-protein is a 

monomeric protein, and forms a 1:1 ratio with H-protein (Okamura-Ikeda et al., 

1993). A total of 9 T-protein monomers have been determined for the PsGCC 

(Oliver et al., 1990). 
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Searching the L. major genome revealed two potential T-protein genes, which are 

arranged in tandem on chromosome 36. The GCC studied in all other organisms 

involves one T-protein. As such, it is possible that there is an 

annotation/sequencing mistake in the L. major genome project. However, L. 

infantum has two predicted T-protein genes, yet L. braziliensis has only one, which 

potentially indicates that a gene duplication event occurred in L. major and L. 

infantum but not in L. braziliensis. The two L. major T-proteins, LmjT-protein-A and 

LmjT-protein-B, are identical, except that LmjT-protein-A has a C-terminal 

extension of 17 amino acids, which is not present in either the human or E. coli 

homologues. The two L. major homologues share moderate sequence identity to 

E. coli T-protein (EcT-protein) (29 %) and H. sapiens T-protein (HsT-protein) (38 

%) (see Table 3.1). Given that both LmjT-protein-A and LmjT-protein-B are 

identical apart from the terminal 17 amino acids, they possess exactly the same N-

terminal sequences involved in subcellular targeting. Mitochondrial targeting 

predictions by MitoProt and TargetP are poor (17 % and 12 %, respectively) (see 

Table 3.1). However, given the experimentally-proven mitochondrial localisation 

and function of LmjP-protein (Scott et al., 2008), one would certainly expect LmjT-

protein (isoform A or B) to also be mitochondrial. 

Both LmjT-protein-A and LmjT-protein-B possess the conserved motifs (Lee et al., 

2004) involved in binding H-protein, such as the 195GYTGExGxE203 motif (see 

Appendix Figure 7.12). Additionally, the 225GLGARDx2RxEAx3LYG244 motif that 

surrounds the aliphatic portion of LA, is present in LmjT-protein-A and LmjT-

protein-B (see Appendix Figure 7.12). Lastly, LmjT-protein-A and LmjT-protein-B 

possess the conserved motif 318Gx2TSGx2SPxL329 that makes key contacts with 

the T-protein cofactor, THF (see Appendix Figure 7.12). 

3.2.5 Dihydrolipoamide dehydrogenase subunit (LipDH ) 

Most eukaryotic organisms and bacteria possess a single gene encoding lipDH. 

The LipDH protein is a subunit of α-KADHs (E3 subunit) and the GCC (L-protein) 

(Perham, 2000). In both complexes, the role of LipDH is to re-oxidise DHLA to LA 

with the concomitant generation of reduced NADH, in a process that requires the 

cofactor flavin adenine dinucleotide (FAD). Eukaryotic (for example, human) 

(Ciszak et al., 2006) and prokaryotic (for example, Azotobacter vinelandii) (Mattevi 

et al., 1991) LipDH proteins form tightly-bound homodimers. One L-protein dimer 

is associated with the GCC (Oliver et al., 1990), whereas α-KADHs require 12 
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copies of E3. Unlike in the α-KGDH and BCKDH complexes (and the PDH 

complex in bacteria), where E3 homodimers directly bind to the E2 scaffold, 

interaction of E3 with E2p in the mammalian PDH complex requires E3BP. There 

is a 1:1 stoichiometry of E3 homodimer binding to E3BP monomer, and 12 E3BP 

monomers bind to E2p (Ciszak et al., 2006).   

Querying the L. major genome with H. sapiens LipDH (HsLipDH) and E. coli LipDH 

(EcLipDH) proteins resulted in four significant hits. Analysis of all four L. major 

predicted proteins revealed that only one – LmjF32.3310 – possessed all motifs 

diagnostic of LipDH enzymes (see Appendix Figure 7.13). LmjLipDH has relatively 

high sequence identity to human and E. coli LipDH homologues (47 % and 38 %, 

respectively). However, the confidence of mitochondrial targeting is very low if one 

assumes the open reading frame of the gene to begin at a classical ATG codon (9 

% for MitoProt and 21 % for TargetP) (see Table 3.1). If the ORF is presumed to 

start at a GTG codon that is 75 bp upstream of the ATG start codon, the resulting 

protein is predicted to be mitochondrial with higher confidence values (23 % for 

MitoProt and 83 % for TargetP) (see Table 3.1). Nevertheless, I was not able to 

identify any studies indicating that GTG is a valid start codon in Leishmania. Given 

the high degree of confidence in mitochondrial localisation predicted by MitoProt 

and TargetP for the majority of components of the α-KADHs and GCC in L. major, 

combined with the experimental evidence showing LmjP-protein to be 

mitochondrial (Scott et al., 2008), one would expect LmjLipDH to be mitochondrial 

also.  

ClustalW alignment of LmjLipDH with HsLipDH and EcLipDH proteins revealed 

that LmjLipDH possesses all motifs diagnostic of LipDH enzymes. Firstly, 

LmjLipDH possesses the 43GxGx2G
48 motif, which is involved in binding of the 

pyrophosphate moiety of FAD (see Appendix Figure 7.13) (Mattevi et al., 1991). 

Secondly, the redox active 75CLNVGC80 motif is present in LmjLipDH (see 

Appendix Figure 7.13) (Thorpe & Williams, 1976). Thirdly, LmjLipDH has the 

conserved glycine-rich 215GxGxIGxEx3Vx4G
231 motif, which is important in binding 

NADH (see Appendix Figure 7.13) (Mattevi et al., 1992). Lastly, LmjLipDH 

possesses the acid/base catalyst motif 480HPTx2E
485, which is an integral 

component of the active site (see Appendix Figure 7.13). 



Chapter 3  83 

 

3.2.6 αααα-KADH kinases and phosphatases 

In mammals, but not lower eukaryotes such as yeast or prokaryotes, α-KADH 

complex activities are regulated by specific mitochondrial kinases and 

phosphatases.  

3.2.6.1 α-KADH kinases 

In human, four highly homologous isoforms of PDH kinase (PDK-1–4), and one 

BCKDH kinase (BCKDK) have been identified, although the α-KGDH complex has 

no known associated kinases or phosphatases. PDK forms homodimers, whereas 

BCKDK is more stable in a tetrameric formation (Machius et al., 2001; Wynn et al., 

2000). PDK and BCKDK are mitochondrial serine kinases belonging to the 

ATPase/kinase superfamily (Bowker-Kinley & Popov, 1999; Dutta & Inouye, 2000), 

and are distantly related to the protein histidine kinase (PHK) family (Koretke et al., 

2000). 

PDK and BCKDK down-regulate the activity of their respective α-KADHs by 

phosphorylating specific serine residues on E1 subunits (Roche et al., 2001; 

Roche & Hiromasa, 2007). It has been shown that α-KADH kinases bind to the 

lipoyl-domain of E2p (specifically to the second lipoyl-domain, L2) and E2b 

subunits (Bao et al., 2004; Roche et al., 2003; Wynn et al., 2000), and that the 

level of phosphorylation of E1 subunits is dependent upon the lipoylation state of 

the lipoyl-domain (Roche & Hiromasa, 2007). 

In order to identify potential homologues of α-KADH kinases, the L. major genome 

database was queried with H. sapiens PDK-1-4 and BCKDK protein sequences. In 

total, two potential genes encoding PDK/BCKDK were identified; PDH kinase 

(lipoamide) (LmjF24.0010) and a phosphoprotein-like protein (LmjF20.0280) (see 

Table 3.2). For simplicity, the genes and gene products will be referred to as 

LmjF24.0010 and LmjF20.0280. LmjF24.0010 (50.9 kDa) and LmjF20.0280 (55.2 

kDa) predicted proteins are larger than H. sapiens PDK-1-4 (49.2 kDa, 46.2 kDa, 

46.9 kDa and 46.5 kDa, respectively) and BCKDK (46.4 kDa) (see Table 3.2). 

LmjF20.0280 protein has higher sequence identity (20 – 22 %) to the five human 

α-KADH kinases than does LmjF24.0010 protein (15 – 17 %) (see Table 3.2). 

Mitochondrial targeting predictions for LmjF20.0280 and LmjF24.0010 proteins by 
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MitoProt and Target P are high (92 % and 82 % compared to 83 % and 48 %, 

respectively) (see Table 3.2). 

ClustalW alignment of the LmjF20.0280 protein with the five human α-KADH 

kinases revealed that LmjF20.0280 possesses the strictly conserved N-, G1- and 

G2 boxes (see Appendix Figure 7.14), which constitute the ATP domain that is 

characteristic of the ATPase/kinase superfamily (Bilwes et al., 1999). However, the 

F-box, which is present in all human α-KADH kinases (Bowker-Kinley & Popov, 

1999; Wynn et al., 2000), is not found in the LmjF20.0280 protein. LmjF24.0010 

lacks strictly conserved residues comprising the N-, G1- and G2 boxes; Asp364 

instead of Asn (N box), Ala404 instead of glycine (G1 box) and 438SxPxR442 instead 

of GxGxG (G2 box) (see Appendix Figure 7.15). As such, contrary to the current 

GeneDB annotation of LmjF24.0010 as the PDH kinase, it is more likely, based on 

the conservation of ATP-binding motifs, that LmjF20.0280 is a PDH/BCKDH 

kinase. 

However, compared to human PDK-1-4, both LmjF20.0280 and LmjF24.0010 

proteins completely lack the C-terminal portion containing the motif 
416EAxDWx2PSxEP427 (see Appendix Figure 7.14 and Figure 7.15), which is 

involved in binding the L2 domain of the PDH E2 (Kato et al., 2005). Interestingly, 

human BCKDK also lacks the C-terminal tail that is found in all four PDK isoforms 

(Kato et al., 2005). Unfortunately, structural information is not available with 

regards to how human BCKDK binds to the lipoyl-domain of E2b. As such, the key 

residues involved are not known, and therefore it is not possible to predict whether 

LmjF20.0280 may be a BCKDH kinase. 

 



 

 

Predicted sizes (kDa) Systematic Name (GeneDB) Targeting Predictions Identity (%) to H. sapiens
Subunit H. sapiens L. major L. major Mitoprot Target P PDK-1 PDK-2 PDK-3 PDK-4 BCKDK

PDK-1 49.2 (NP_002601) N/A N/A N/A N/A N/A 64 62 61 27
PDK-2 46.2 (NP_002602) N/A N/A N/A N/A 64 N/A 65 63 25
PDK-3 46.9 (NP_005382) N/A N/A N/A N/A 62 65 N/A 61 23
PDK-4 46.5 (NP_002603) N/A N/A N/A N/A 61 63 61 N/A 24
BCKDK 46.4 (NP_005872) N/A N/A N/A N/A 27 25 23 24 N/A
Phosphoprotein-like N/A 50.9 LmjF20.0280 92 % MT 82 % MT 22 21 21 20 21
PDH (lipoamide) kinase N/A 55.2 LmjF24.0010 83 % MT 48 % MT, 79 % SP 16 15 15 15 17  
 

Table 3.2 Sequence analyses of potential L. major PDH/BCKDH kinases 
Predicted L. major homologues of subunits of PDK/BCKDK were identified as described in Section2.3. Red proteins are those which have been identified in human. Blue 
proteins are predicted L. major homologues of the human kinases. In the 'Protein Size' column, accession numbers of H. sapiens proteins are shown in brackets. 
Mitochondrial targeting predictions were carried out by analysing L. major protein sequences with MitoProt or TargetP. The results obtained indicate the percent likelihood 
of mitochondrial targeting (MT). Some proteins were predicted to possess signal peptides (SP). Sequence identities shared between human PDK/BCKDK proteins and L. 
major predicted kinases were determined using Vector NTI (See Section2.3). ‘N/A’ is an acronym for ‘non applicable’.  
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3.2.6.2 α-KADH phosphatases  

In human, two PDH phosphatases (PDP) exist; each shares the same regulatory 

subunit (PDPr), but differs in the catalytic subunit (PDP-1c or PDP-2c) (Huang et 

al., 1998; Lawson et al., 1993; Lawson et al., 1997; Teague et al., 1982). BCKDH 

phosphatase (BCKDP or PTMP) activity was first documented in 1984 (Damuni et 

al., 1984; Damuni & Reed, 1987), yet only recently has the human BCKDP been 

cloned and partially characterised; although only one isoform of the catalytic 

subunit has been identified, and no regulatory subunit is known (Joshi et al., 

2007). The role of PDP and BCKDP is to catalyse the dephosphorylation of their 

respective enzyme complexes, and as such to repress the down-regulation 

imposed upon PDH and BCKDH by PDK and BCKDK, respectively. Based upon 

some strictly conserved motifs and the crystal structure of PDP-1c (Vassylyev & 

Symersky, 2007), PDP-1c, PDP-2c and BCKDP are related to the PPM family of 

serine/threonine phosphatases, whose defining member is PP2C (Barford et al., 

1998; Bork et al., 1996). Although the sequence identities shared between human 

PP2C-1/PP2C-2 and PDP-1c/PDP-2c/BCKDP are low (21 – 24 %), 10/11 of the 

sequence motifs characteristic of PP2C enzymes are conserved. Information is 

available with regards to the binding of PDP-1c to the L2 domain of E2p 

(Vassylyev & Symersky, 2007); however the residues involved are not conserved 

in BCKDP. As such, no structural data exists describing the mode of BCKDP 

substrate binding and catalysis. 

In order to identify potential homologues of α-KADH phosphatases, the L. major 

genome database was queried with H. sapiens PDP-1c, PDP-2c, PDPr and 

BCKDP protein sequences. Interestingly, significant hits were not obtained from 

BLAST analysis with PDP subunit sequences. However, querying with the human 

BCKDP sequence retrieved seven significant hits from L. major GeneDB 

(LmjF34.2510, LmjF30.0380, LmjF36.0530, LmjF25.0750, LmjF32.1690, 

LmjF15.0170 and LmjF27.2320) (see Table 3.3). The seven predicted proteins are 

all PP2C-like or PP2C-putative, which infers that some of the residues involved in 

PP2C activity are conserved in these proteins. Although overall sequence 

identities to PDP-1c, PDP-2c and BCKDP are low (7 – 20 %), the predicted 

proteins have a high degree of conservation within the 10/11 domains known to be 

important in the functioning of PP2C and PP2C-like enzymes (data not shown) 

(Barford et al., 1998; Bork et al., 1996), and catalytically-important residues are 
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conserved. Mitochondrial targeting predictions vary, although confidence values 

are high for LmjF30.0380 and LmjF32.1690 (see Table 3.3).



 

 

Predicted sizes (kDa) Systematic Name (GeneDB) Targeting Predictions Identity (%) to H. sapiens
Subunit H. sapiens L. major L. major Mitoprot Target P PDP-1c PDP-2c BCKDP

PDP-1c 61.0 kDa (NP_060914) N/A N/A N/A N/A N/A 47 15
PDP-2c 60.0 kDa (NP_065837) N/A N/A N/A N/A 47 N/A 17
PDPr 99.4 kDa (NP_060460) N/A N/A N/A N/A N/A N/A N/A
BCKDP 41.0 kDa (NP_689755) N/A N/A N/A N/A 15 17 N/A
PP2C-like N/A 29.8* LmjF34.2510 0 % MT 4 % MT, 92 % OT 12 10 16

N/A 47.7** 0 % MT 9 % MT, 88 % OT 13 11 15
PP2C-putative N/A 41.7* LmjF30.0380 86 % MT 35 % MT, 56 % OT 10 9 16

N/A 64.6** 99 % MT 88 % MT 12 9 15
PP2C-like N/A 32.6 LmjF36.0530 3 % MT 11 % MT, 88 % OT 10 10 20
PP2C-putative N/A 45 LmjF25.0750 41 % MT 21 %, 79 % OT 12 7 11
PP2C-putative N/A 68.3 LmjF32.1690 97 % MT 24 % MT, 71 % SP 15 11 12
PP2C-putative N/A 44.3 LmjF15.0170 40 % MT 24 % MT, 84 % OT 14 12 19
PP2C-like N/A 34.4* LmjF27.2320 45 % MT 20 % MT, 81 % OT 13 11 17

N/A 45.7** 0 % MT 6 % MT, 94 % SP 17 13 17  

Table 3.3 Sequence analyses of potential L. major PDH/BCKDH phosphatases 
Predicted L. major homologues of subunits of PDP/BCKDP were identified as described in Section2.3. Red proteins are those which have been identified in human. Blue 
proteins are predicted L. major homologues of the human phosphatases. In the 'Protein Size' column, accession numbers of H. sapiens proteins are shown in brackets. 
Three of the L. major genes predicted by GeneDB do not correlate with ORFs predicted by Vector NTI. In such cases, translated protein from GeneDB predictions (*) as 
well as translated protein from Vector NTI predictions (**) were analysed. A possible explanation for these size discrepancies is that the predicted ATG start codon 
provided by GeneDB is wrong, and is in fact located further upstream. Mitochondrial targeting predictions were carried out by analysing L. major protein sequences with 
MitoProt or TargetP. The results obtained indicate the percent likelihood of mitochondrial targeting (MT). Some proteins were predicted to possess signal peptides (SP), or 
an alternative processing type (OT). Sequence identities shared between human PDP/BCKDP proteins and L. major predicted phosphatases were determined using 
Vector NTI (See Section2.3). ‘N/A’ is an acronym for ‘non applicable’. 
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3.3 Lipoylation patterns in L. major 

The in silico analyses discussed in Section 3.2 indicate that L. major encodes 

machinery to form functional α-KADHs and the GCC. In addition, it was 

determined that the E2 subunits of α-KADHs and the H-protein of the GCC all 

have one lipoyl-domain at their N-termini. Lipoylation of the E2 subunits and H-

protein is essential for activity of these complexes. Therefore, in order to address 

the question as to whether α-KADHs and the GCC were potentially active in L. 

major, protein lysates of promastigotes and amastigotes were probed by western 

blot with a polyclonal antibody that specifically detects protein-bound LA. This 

assay has previously been used successfully in other organisms, for example, T. 

gondii and P. falciparum (Allary et al., 2007; Crawford et al., 2006; Gunther et al., 

2007). 

In order to correlate promastigote growth phase with lipoylation pattern, wild-type 

parasites were cultured in standard HOMEM + 10 % FCS medium and growth 

readings were taken every 24 h (see Figure 3.1A), and soluble protein was 

harvested every 24 h during 48–120 h growth (see Figure 3.1B). In order to 

analyse the lipoylation pattern in amastigotes, lesions from two mice infected with 

L. major were isolated and amastigotes purified (isolations carried out by Mrs 

Denise Candlish, University of Glasgow) and soluble protein was extracted, as 

described in Section 2.2.3.2. Western blotting with α-LA antibody, which detects 

protein-bound LA, resulted in just four prominent bands in promastigotes. The 

observed band sizes (calculations are described in Section 2.5.5) are 14.4 kDa, 

40.6 kDa and 47.3 kDa (see Figure 3.1B), which combined with predicted sizes 

after cleavage of mitochondrial targeting peptides (see Table 3.4), correlates well 

with the predicted sizes of LmjH-protein (15.2 kDa), LmjE2k (41.7 kDa) and 

LmjE2p (48.7 kDa). The 55 kDa band does not correlate with the predicted size of 

LmjE2b (50.2 kDa), although this band will be referred to as LmjE2b henceforth as 

it is the only remaining protein that has the capacity to be lipoylated (see Section 

6.2.3).  

The banding patterns observed in each of the two amastigote protein lysates are 

similar to one another, and share some similarities with those observed in 

promastigotes (see Figure 3.1C). The 47.8 kDa band most likely corresponds to 

the LmjE2p (which is 47.3 kDa in the promastigote blot), although a band larger 
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than 50 kDa (assumedly corresponding to LmjE2b) is not present in amastigote 

protein lysates (see Figure 3.1C). One of two bands (39.4 kDa and 41.4 kDa) 

could be LmjE2k (which is 40.6 kDa in the promastigote blot). Although the nature 

of the second band is not clear, it could correspond to the LmjE2pL protein (similar 

to the human E3BP), since sequence analyses identified LmjE2pL as possessing 

at least one lipoyl-domain (see Section 3.2.2.2). Two bands of 15.5 kDa and 13.4 

kDa are similar in size to the 14.4 kDa band observed in promastigote lysates, 

which most likely corresponds to LmjH-protein (see Table 3.4). It should also be 

noted that the protocol for isolating L. major amastigotes from an infected mouse 

is such that the final amastigote preparation contains some contamination with 

mouse proteins. On the other hand, none of the expected band sizes of mouse α-

KADH E2 subunits (see Table 3.4) are observed in Figure 3.1C; suggesting that all 

lipoylated proteins observed are derived from L. major.  

Figure 3.1 shows that during exponential growth (48 h) promastigotes primarily 

lipoylate E2k. Also, lipoylation of H-protein is very low. During early (72 – 96 h) 

and late-stationary phase (120 h), lipoylation of all three α-KADH E2 subunits and 

H-protein is apparent. Metacyclic promastigotes purified from mixed promastigote 

cultures have a similar lipoylation pattern to exponential growth phase parasites; 

only E2k being lipoylated to an appreciable extent. This indicates that metacyclic 

promastigotes are metabolically different from procyclic promastigotes. The 

consistent lipoylation of E2k throughout the 120 h time course indicates that α-

ketoglutarate (derived from proline or glutamine) is an important carbon source for 

energy production, and most likely represents an important entry point into the 

tricarboxylic acid (TCA) cycle. Pyruvate and branched-chain α-ketoacids could be 

important during stationary phase, whereas metacyclic promastigotes apparently 

do not require BCKDH or PDH activity. Lipoylation of H-protein follows a similar 

pattern to that of E2b and E2p, potentially indicating that production of one-carbon 

CH2 units via the GCC is important only at specific times during promastigote 

development. In fact, it has been experimentally determined that the GCC is not 

essential in L. major promastigotes grown in a similar medium to HOMEM + 10 % 

FCS (importantly, with the same glycine and serine concentrations) (Scott et al., 

2008). In terms of amastigotes, the lipoylation profile is not as clear, although if the 

bands predicted to be E2p and E2k are correct, the lipoylation intensities of these 

two proteins are similar, which is in contrast to the situation observed in 

promastigotes.  
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Figure 3.1 Lipoylation of αααα-KADH E2 subunits and H-protein of GCC in L. major 
promastigotes and amastigotes 
A, In order to observe lipoylation patterns in promastigotes, cultures were initiated with starting 
densities of 5 x 105 parasites ml-1. Growth readings were taken every twenty-four hours to produce 
a growth curve. B, Approximately 1 x 108 cells were harvested from the cultures at time points from 
48 – 120 h. Cells were lysed, and the protein concentration of soluble fractions determined by 
Bradford assay. At 120 h, in addition to preparing soluble protein from mixed cultures, metacyclic 
promastigotes were purified from the cultures using peanut agglutinin negative selection, and 
soluble protein isolated. 10 µg protein from each time point was loaded on a 4 – 12 % SDS-PAGE 
gradient gel. Western blotting was carried out with α -LA antibody at 1/6,000 and α-cysteine 
synthase (α-CS) antibody to assess loading, at 1/5,000. Each time point was carried out in 
duplicate. C, Western blot of 30 µg of two different amastigote protein lysates using α-LA antibody 
at 1/6,000. Observed band sizes (shown in brackets) were calculated as described in Section 
2.5.5. Predicted (full-length) sizes of E2k, E2p and E2b are 41.7 kDa, 48.7 kDa and 50.2 kDa, 
respectively. The predicted size of full-length H-protein is 15.2 kDa (see Table 3.1). 

  



 

 

 

Table 3.4 Predicted- and proven molecular masses of  αααα-KADH E2 subunits and the H-protein of the GCC in L. major, H. sapiens and M. musculus 
Predicted (full-length, FL) protein sequences of human (Hs), M. musculus (Mm) and L. major (Lmj) α-KADH E2 proteins and the H-protein of the GCC were obtained as 
described in Section 2.3. Predicted cleavage sites for mitochondrial transit were made by MitoProt and TargetP, and the subsequent processed protein sizes were 
recorded. Where possible, the proven molecular weights of the different apoproteins are given, along with the associated authors who published the data. The proven sizes 
for L. major are based upon α-LA antibody-probed western blots, and the range of potential sizes given are based upon results obtained from western blots of both 
promastigote and amastigote protein lysates with α-LA antibody (see Figure 3.1B and C). The presence of a lipoylated E2pL protein (which could be E3BP) in amastigotes 
is questionable, and as such is marked with '?' after the calculated protein size. 

 

Predicted protein sizes (kDa)  
Lipoylated protein  Species Accession number FL MitoProt TargetP Proven size (kDa) Reference

Lm LmjF35.4720 15.2 13.1 13.1 13.4 - 15.5 This work (western blots with α -LA antibody)
H-protein Mm NP_080848 18.6 12.3 14.7 N/A N/A

Hs NP_004474 18.9 12.3 16.8 N/A N/A

Lm LmjF28.2420 41.7 39.9 33.4 39.4 - 41.4 This work (western blots with  α -LA antibody) 
E2k Mm NP_084501 49.0 43.8 41.6 N/A N/A

Hs NP_001924 48.8 41.9 34.8 48 Migliaccio et al. (1998)

Lm LmjF36.2660 48.7 45.9 45.7 47.3 - 47.8 This work (western blots with  α -LA antibody) 
E2p Mm NP_663589 67.9 66.6 58.8 67 Nakagome et al. (2007)

Hs NP_001922 69.0 N/A 59.6 70 Yeaman et al.  (1988), Migliaccio et al. (1998)  

Lm LmjF05.0180 50.2 44.3 39.8 55 This work (western blots with α -LA antibody)
E2b Mm NP_034152 53.2 46.8 49.7 N/A N/A

Hs NP_001909 53.5 46.3 50.9 52 Migliaccio et al. (1998)

Lm LmjF21.0550 46.1 N/A 37.9 39.4 - 41.4? This work (western blots with α -LA antibody)
E3BP/E2p-L Mm NP_780303 54.0 50.0 49.0 N/A N/A

Hs NP_001128496 51.5 49.8 N/A 50 Jilka et al . (1996)
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3.4 Sequence analyses of lipoylating proteins 

Given that lipoylation of α-KADHs and the GCC occurs in promastigotes, the next 

question to be addressed was whether lipoylating proteins are found within the L. 

major genome. Potential homologues for biosynthesis enzymes LIPB and LIPA 

and the salvage enzyme LPLA were identified (as described in Section 2.3) (see 

Table 3.5).  

3.4.1 LIPB 

LIPB catalyses the first step involved in the biosynthesis of LA from octanoyl-acyl 

carrier protein; the transfer of an octanoyl-group from a phosphopantetheine-

bound cofactor of ACP onto E2- and H-protein apoproteins to form E2/H-protein-

octanoamide.   

Searching the L. major genome revealed the presence of three potential genes 

encoding LIPB (LmjLIPB); LmjF36.3080, LmjF07.1060 and LmjF31.1070. 

LmjF07.1060 is most likely to be LPLA (LmjLPLA) (see Section 3.4.3), 

LmjF31.1070 is most similar to biotin protein ligase (bpl), and LmjF36.3080 is the 

most likely candidate for LmjLIPB. LmjLIPB (29.5 kDa) is similar in size to H. 

sapiens LIPB (HsLIPB) (25.2 kDa) and E. coli LIPB (EcLIPB) (23.9 kDa) (see 

Table 3.5). Compared to HsLIPB and EcLIPB, LmjLIPB (and T. brucei LIPB 

(TbLIPB)) has a circa 20 amino acid C-terminal extension (see Figure 3.2). Both 

HsLIPB and LmjLIPB (and TbLIPB) have approximately 5-10 amino acid N-

terminal extensions, which contain targeting signals for mitochondrial transit (see 

Figure 3.2). LmjLIPB has reasonable sequence identity to HsLIPB (21 %) and 

EcLIPB (21 %). LmjLIPB is predicted to be mitochondrial by MitoProt and TargetP 

programmes, with confidence values of 60 % and 82 %, respectively (see Table 

3.5). 

The crystal structure of M. tuberculosis LIPB (MtLIPB) complexed with decanoic 

acid (DA) highlighted residues that are important in the binding of DA/octanoic acid 

(OA) to form the LIPB-DA/OA intermediate (Ma et al., 2006). ClustalW alignment 

of LmjLIPB with MtLIPB, HsLIPB and EcLIPB illustrated the presence of strictly 

conserved residues in LmjLIPB (see Figure 3.2). Firstly, residues that form a 

hydrophobic tunnel for binding of the aliphatic portion of DA/OA in MtLIPB (Ma et 
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al., 2006) are conserved in LmjLIPB. For example, the motif 80RGGx2TxHx7Y
95 is 

present, although the importance of Tyr95 is questionable given that in HsLIPB the 

residue is instead His100 (see Figure 3.2). Most importantly, LmjLIPB possesses 

the strictly conserved Lys157 and Cys191 residues (see Figure 3.2). In MtLIPB, 

Cys176 (Cys191 in LmjLIPB) has been shown to form an essential covalent thioether 

linkage with the C3 atom of DA/OA, producing the LIPB-DA/OA intermediate (Ma 

et al., 2006). Importantly, LPLA enzymes lack this Cys residue, and this is indeed 

also the case for the predicted LmjLPLA (see Section 3.4.3). The Lys142 residue in 

MtLIPB (Lys157 in LmjLIPB) is conserved in all biotin protein ligases (BPL), LPLA 

and LIPB proteins (Reche, 2000). However, the role of the invariable lysine 

residues is thought to differ in LIPB and LPLA enzymes (Ma et al., 2006). 

 
Mt_LIPB         ---MTG-SIR-SKLSAIDVRQLGTVDYRTAWQLQRELADARVAGGADTLLLLEHPA--VY 53 
Hs_LIPB         ---MRQPAVRLVRLGRVPYAELLGLQDRWLRRLQAEPGIEAPSGTEAGALLLCEPAGPVY 57 
Lmj_LIPB        ---MKAFFIGKREYRRVLSLQETIFNAKIARQVSVRRGASKLPLLPDVVILVEHST-PVY 56 
Tb_LIPB         MNGMRAYNLGSRRYHDVLRLQEAIFRKKIDRQMRYIRGDKSARLIPNVVLLVEHSS-PVY 59 
Ec_LIPB         -----------MYQDKILVRQLGLQPYEPISQAMHEFTDTRDDSTLDEIWLVEHYP--VF 47 
                                :   :      .   :                  *: . .  *: 
 
Mt_LIPB         TAGRR-----TETHERPIDGTPVVDTDRGGKITWHGPGQLVGYPIIGLAEP--------- 99 
Hs_LIPB         TAGLRGGLTPEETARLRALGAEVRVTGRGGLATFHGPGQLLCHPVLDLRRLG-------- 109 
Lmj_LIPB        TIGRRD----TTHGLPPHCSIDVVKTRRGGGITYHGPGQLTMYPIANIQLLWKDCTAE-K 111 
Tb_LIPB         TIGRRD----TSNGIKAGCAAEVVKTRRGGGVTFHGPGQVTMYPIVNVQVLWKQCTASDK 115 
Ec_LIPB         TQGQAG----KAEHILMPGDIPVIQSDRGGQVTYHGPGQQVMYVLLNLKRRK-------- 95 
                * *                   *  : ***  *:*****   : : .:             
 
Mt_LIPB         --LDVVNYVRRLEESLIQVCADLGLHAGRVDGR--SGVWLPGRPARKVAAIGVRVSRATT 155 
Hs_LIPB         --LRLRMHVASLEACAVRLCELQGLQDARARPPPYTGVWLDDR---KICAIGVRCGRHIT 164 
Lmj_LIPB        PRSPIEWFSWALEEAMIQTAAMYHIPTHRFKTGVWADQYKDIPA-QKLGAVGLQLGSWVS 170 
Tb_LIPB         PRSPIEWFSSVLEQAMINVAGEYNIPAHRGRVGVWSDSWGDVAP-RKMGFVGLQLGNWVS 174 
Ec_LIPB         --LGVRELVTLLEQTVVNTLAELGIEAHPRADAP--GVYVGEK---KICSLGLRIRRGCS 148 
                    :      **   :.      :           . :       *:  :*::     : 
 
Mt_LIPB         LHGFALNCDCDLAAFTAIVPCGISDAAVTSLSAELGRTVTVDEVRATVAAAVCAALDGVL 215 
Hs_LIPB         SHGLALNCSTDLTWFEHIVPCGLVGTGVTSLSKELQRHVTVEEVMPPFLVAFKEIYKCTL 224 
Lmj_LIPB        MHGAGLNVASDLHFFDDIIMCELPDRRATSLSNEMQHRGVAESPPLVQATAPVLLQKFIE 230 
Tb_LIPB         MHGAGLNVSNNLLYFNDIVMCEMPNEAATSLVEELRLRGLSGAEPTPHVIAPRLLHHFLL 234 
Ec_LIPB         FHGLALNVNMDLSPFLRINPCGYAGMEMAKISQWKPEATTNNIAPRLLENILALLNNPDF 208 
                 ** .**   :*  *  *  *   .   :.:                         .    
 
Mt_LIPB         PVGDRVPSHAVPSPL--------------------                          230 
Hs_LIPB         ISED--------SPN--------------------                          231 
Lmj_LIPB        SLHQQPSCAAPQLVDLSADADWHERVIDTAGISTP                          265 
Tb_LIPB         SMQQQESVVNTELVDLSIDGSWERSILCELE----                          265 
Ec_LIPB         EYITA------------------------------                          213 
                                                 

 

Figure 3.2 LIPB protein alignment 
ClustalW alignment of L. major LIPB (LmjLIPB) (accession number LmjF36.3080) with homologues 
in T. brucei (TbLIPB) (accession number Tb11.01.1160), H. sapiens (HsLIPB) (accession number 
A6NK58), E. coli (EcLIPB) (accession number AAC73731) and M. tuberculosis (MtLIPB) 
(accession number CAA94273) was carried out. The alignment indicates identical residues (*), 
conserved residues (:) and homologous residues (.). Red residues highlight the strictly conserved 
lysine and Cys residues that comprise the catalytic dyad within the active site of LIPB enzymes (Ma 
et al., 2006). Blue residues are those that are involved in binding decanoic acid in MtLIPB (Ma et 
al., 2006). Green residues highlight residues in HsLIPB that are not conserved in other species. 
MitoProt programme predicts the targeting peptide for mitochondrial transit as being 34 amino 
acids (green arrow, LIPBT1) (see Section 3.5.2). 
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3.4.2 LIPA 

LIPA is an [4Fe – 4S] + cluster-containing protein that catalyses the second step 

involved in the biosynthesis of LA; via a radical S-adenosylmethionine (SAM)-

dependent mechanism LIPA catalyses the replacement of two hydrogen atoms 

with sulphur atoms, at positions C6 and C8 of octanoamide-E2/H-protein, to form 

lipoamide-E2/H-protein (Booker et al., 2007). 

Searching the L. major genome revealed the presence of one potential gene 

encoding LIPA (LmjLIPA). LmjLIPA (45.9 kDa) is similar in size to H. sapiens LIPA 

(HsLIPA) (41.9 kDa), yet 10 kDa larger than the E. coli homologue (EcLIPA) (36.1 

kDa) (see Table 3.5). Compared to HsLIPA and EcLIPA, LmjLIPA has a circa 17 

amino acid C-terminal extension that is rich in hydrophobic amino acids alanine 

and glycine (see Figure 3.3). Both HsLIPA and LmjLIPA (and TbLIPA) have 

approximately 40 amino acid N-terminal extensions, which contain targeting 

signals for mitochondrial transit (see Figure 3.3 and Section 5.2). LmjLIPA has 

reasonable sequence identity to HsLIPA (40 %) and EcLIPA (33 %). LmjLIPA is 

predicted to be mitochondrial by MitoProt and TargetP programmes, with 

confidence values of 75 % and 54 %, respectively (see Table 3.5). 

ClustalW alignment of LmjLIPA with human and bacterial homologues indicates 

that LmjLIPA possesses two motifs that are integral to its function: 133Cx4Cx5C
144 

and 165Cx3Cx2C
172 (see Figure 3.3 and Section 1.4.3.1). The Cx3Cx2C motif is 

present in all radical S-adenosylmethionine (SAM) proteins. The cysteine residues 

nucleate a [4Fe – 4S] + cluster, which binds SAM. LIPA catalyses the reductive 

cleavage of SAM to produce [4Fe – 4S] 2+-Met and the 5'-deoxyadenosyl radical 

(5'-dA●). 5'-dA● abstracts hydrogen atoms linked to C6 and C8, of the octanoyl 

substrate (Douglas et al., 2006). The motif Cx4Cx5C is specific to LIPA enzymes. 

After hydrogen abstraction by 5'-dA●, C6- and C8 alkyl radicals are formed, which 

attack µ-sulphido atoms attached to the Cx4Cx5C cluster; the final result is 

production of a lipoyl-group (Cicchillo et al., 2004b).  
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Tb_LIPA         MFQRWSFALCR--------PIVAAAQVSQQQVPPSEEPRNESGAANPPLVKEEFLRQFRE 52 
Lmj_LIPA        MLRCCSALMCPTAVPSRVSPVAAAAAADIAGSSESTVSLVADVDKKNSQYKQIFLERFRK 60 
Hs_LIPA         MSLRCGDAARTLG------PRVFGRYFCSPVRPLSSLP----DKKKELLQNGPDL--FVS 50 
Ec_LIPA         ------------------------------------------------MSKPIVMERGVK 12 
                                                                  :   :.   . 
 
Tb_LIPA         RLANDKTGRNSLEGFLDLPENLPPTAASIGPLKRGKEPLPPWLKLKVPMGASRQPRFNKI 112 
Lmj_LIPA        KLQSDKTGMNNLESFVELPEGVAPSAASIGPIKRGSEPLPPWIKLKVPKGMTHRPRFNRI 120 
Hs_LIPA         GDLADRSTWDEYKGNLKRQK---------GERLR----LPPWLKTEIPMGKN----YNKL 93 
Ec_LIPA         YRDADKMALIPVKNVATERE----------ALLR----KPEWMKIKLPADSTR---IQGI 55 
                    *:      :.     :             *     * *:* ::* . .     : : 
 
Tb_LIPA         RRNMREKRLATVCEEAKCPNIGECWGGGDEEGDGTATATIMVMGAHCTRGCRFCSVMTSR 172 
Lmj_LIPA        RRSMREKNLSTVCEEAKCPNIGECWGGSDEEG--TATATIMVMGSHCTRGCRFCSVLTSR 178 
Hs_LIPA         KNTLRNLNLHTVCEEARCPNIGECWGGGEYAT---ATATIMLMGDTCTRGCRFCSVKTAR 150 
Ec_LIPA         KAAMRKNGLHSVCEEASCPNLAECFNHG--------TATFMILGAICTRRCPFCDVAHGR 107 
                :  :*:  * :***** ***:.**:. .        ***:*::*  *** * **.*  .* 
 
Tb_LIPA         TPPPLDPEEPRKTADAVADMGVEYIVMTMVDRDDLADGGAAHVVRCVTAVKERNPGLLLE 232 
Lmj_LIPA        RPPPLDPEEPEKVAAAVHEMGVDYIVMTMVDRDDLPDGGASHVCCCIHTIKKKNPELMLE 238 
Hs_LIPA         NPPPLDASEPYNTAKAIAEWGLDYVVLTSVDRDDMPDGGAEHIAKTVSYLKERNPKILVE 210 
Ec_LIPA         -PVAPDANEPVKLAQTIADMALRYVVITSVDRDDLRDGGAQHFADCITAIREKSPQIKIE 166 
                 * . *..** : * :: : .: *:*:* *****: **** *.   :  ::::.* : :* 
 
Tb_LIPA         ALVGDFHGDLK-LVEMVAGSPLNVYAHNIECVERITPNVRDRRASYRQSLKVLEHVNNFT 291 
Lmj_LIPA        ALVGDFHGDLK-LVEQLAVTPLSVYAHNIECVERITPRVRDRRASYRQSLQTLEHVTKWT 297 
Hs_LIPA         CLTPDFRGDLK-AIEKVALSGLDVYAHNVETVPELQSKVRDPRVNFDQSLRVLKHAKKVQ 269 
Ec_LIPA         TLVPDFRGRMDRALDILTATPPDVFNHNLENVPRIYRQVR-PGADYNWSLKLLERFKEAH 225 
                 *. **:* :.  :: :: :  .*: **:* * .:  .**   ..:  **: *:: .:   
 
Tb_LIPA         KGAMLTKSSIMLGLGEKEEEVRQTLRDLRTAGVSAVTLGQYLQPSRTRLKVSRYAHPKEF 351 
Lmj_LIPA        NGNMLTKSSIMLGLGEEEAEVRQTLRDLRTAGVSAVTLGQYLQPSHTRLKVSRYAHPKEF 357 
Hs_LIPA         P-DVISKTSIMLGLGENDEQVYATMKALREADVDCLTLGQYMQPTRRHLKVEEYITPEKF 328 
Ec_LIPA         P-EIPTKSGLMVGLGETNEEIIEVMRDLRRHGVTMLTLGQYLQPSRHHLPVQRYVSPDEF 284 
                   : :*:.:*:**** : ::  .:: **  .*  :*****:**:: :* *..*  *.:* 
 
Tb_LIPA         EMWEKEALDMGFLYCASGPMVRSSYRAGEYYIKNILKQRETVEAPSVSDGGNEPKDSE-- 409 
Lmj_LIPA        EMWEKEAMDMGFLYCASGPMVRSSYRAGEYYIKNILKQRQSAEGGKAAAAATAVNAGTAI 417 
Hs_LIPA         KYWEKVGNELGFHYTASGPLVRSSYKAGEFFLKNLVAKRKTKDL---------------- 372 
Ec_LIPA         DEMKAEALAMGFTHAACGPFVRSSYHA------DLQAKGMEVK----------------- 321 
                .  :  .  :** : *.**:*****:*      ::  :    .                  
 
Tb_LIPA         - 
Lmj_LIPA        A                  418 
Hs_LIPA         - 
Ec_LIPA         -                  
 

 

Figure 3.3 LIPA protein alignment 
ClustalW alignment of L. major LIPA (LmjLIPA) (accession number LmjF19.0350) with homologues 
in T. brucei (TbLIPA) (accession number Tb10.61.1530), H. sapiens (HsLIPA) (accession number 
NP_006850) and E. coli (EcLIPA) (accession number AAC73729) was carried out. The alignment 
indicates identical residues (*), conserved residues (:) and homologous residues (.). Red residues 
highlight strictly conserved Cys residues that belong to the Cx4Cx5C motif that is specific to LIPA 
enzymes (Cicchillo et al., 2004b). Blue residues represent strictly conserved Cys residues 
belonging to the Cx3Cx2C motif, which is specific to radical SAM proteins (Cicchillo et al., 2004b). 
Bold letters represent strictly conserved residues and 'x' represents any amino acid. TargetP and 
MitoProt programmes predict the targeting peptide for mitochondrial transit as being five amino 
acids (black arrow, LIPAT1) and 15 amino acids (green arrow, LIPAT2), respectively. However, in 
order to produce soluble recombinant protein, an N-terminal 62 amino acid truncated version of 
LIPA was constructed (purple arrow, LIPAT3) (see Section 3.5.1). 

 



 

 

Predicted Sizes (kDa) Systematic Name (GeneDB) Target ing Predictions Identity (%) to other species
Enzyme E. coli H. sapiens L. major L. major Mitoprot Target P H. sapiens E. coli

LIPA 36.1 (AAC73729) 41.9 (NP_006850) 45.9 LmjF19.0350 75 % MT 54 % MT 40 33

LIPB 23.9 (AAC73731) 25.2 (A6NK58) 29.5 LmjF36.3080 60 % MT 82 % MT 21 21

LPLA 37.9 (AAC77339) 42.5 (LT) (NP_057013) 55.2 LmjF07.1060 63 % MT 76 % MT 26 (LT)* 29*  

Table 3.5 Sequence analyses of lipoic acid synthase  (LIPA) and lipoyl/octanoyl transferase (LIPB and L PLA) proteins 
L. major homologues of LIPA, LIPB and LPLA were identified as described in Section 2.3. In the 'Protein Size' column, accession numbers of E. coli and H. sapiens 
proteins are shown in brackets. Mitochondrial targeting predictions were carried out by analysing L. major protein sequences with MitoProt or TargetP. The results obtained 
indicate the percent likelihood of mitochondrial targeting (MT). Amino acid sequence identity of L. major LIPA, LIPB and LPLA proteins to E. coli and H. sapiens 
homologues was determined using Vector NTI. In the case of LPLA sequence identities, only the N-termini of L. major LPLA (1-222 amino acids), E. coli LPLA (1-182) and 
H. sapiens LT (1-250) were aligned(*).  
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3.4.3 LPLA 

As described in Section 1.4.3.2, salvage of LA in most bacteria, plants and 

protozoans requires one enzyme, LPLA, whereas mammals necessitate the 

sequential action of two enzymes, ACSM1 and LT (see Table 3.5). Crystal 

structure data indicate that E. coli LPLA (EcLPLA) (Fujiwara et al., 2005), T. 

acidophilum LPLA (TaLPLA) (Kim do et al., 2005; McManus et al., 2005) and B. 

taurus LT (BtLT) (Fujiwara et al., 2007) have relatively high sequence identities in 

their N-terminal domains, especially within the hydrophobic lipoyl-AMP binding 

site. However, unlike EcLPLA, TaLPLA and BtLT cannot activate LA with ATP to 

form lipoyl-AMP. TaLPLA completely lacks a C-terminal domain, and it is proposed 

that another enzyme may be required to catalyse the activation of LA to lipoyl-

AMP (McManus et al., 2005). In contrast, BtLT possesses a C-terminal domain 

with similar folds to that of EcLPLA, however the domain is shifted 180° relative t o 

the C-terminal domain of EcLPLA (Fujiwara et al., 2007). The authors hypothesise 

that the more ordered conformation of the BtLT C-terminal domain results in 

stabilisation of the adenylate-binding loop, which consequently increases the 

binding affinity for LA, yet excludes the bulkier ATP (Fujiwara et al., 2007). The 

steric exclusion of ATP is the current hypothesis as to why LT cannot activate LA, 

and yet the less bulky lipoyl-AMP can enter the active site and be ligated to the 

apoprotein. 

Searching the L. major genome resulted in the discovery of three potential 

lipoate/biotin protein ligases, LmjF36.3080, LmjF07.1060 and LmjF31.1070. As 

mentioned in Section 3.4.1, LmjF36.3080 most likely corresponds to the LmjLIPB 

gene, LmjF31.1070 corresponds to the LmjBPL gene, and LmjF07.1060 could 

encode LmjLPLA or LmjLT. The predicted LmjF07.1060 protein is 55.2 kDa, and 

as such is substantially larger than EcLPLA (37.9 kDa) and H. sapiens LT (HsLT) 

(42.5 kDa) (see Table 3.5). Both LmjF07.1060 and HsLT have approximately 37 

amino acid N-terminal extensions compared to EcLPLA, which contain residues 

involved in mitochondrial targeting (see Figure 3.4 and Table 3.5). However, 

LmjF07.1060 has a C-terminus that is 137 amino acids longer than that of 

EcLPLA, and 127 amino acids longer than that of HsLT (see Figure 3.5). The 

LmjF07.1060 protein is predicted to be mitochondrial by MitoProt and TargetP 

(with confidence values of 63 % and 76 %, respectively) (see Table 3.5). In order 

to analyse sequence identities, only the N-terminal domains of LPLA proteins were 
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aligned (see Figure 3.4), since inter-species sequence variation within LPLA C-

terminal domains is common. Firstly, EcLPLA and LmjF07.1060 share 25 % and 

26 % sequence identity, respectively, with HsLT (see Table 3.5). LmjF07.1060 has 

29 % sequence identity to E. coli LPLA (see Table 3.5). 

ClustalW alignment of the N-termini of putative trypanosomatid LPLA proteins, 

EcLPLA, BtLT and HsLT were carried out in order to determine whether 

LmjF07.1060 is most likely to be LPLA or LT. The key motif 
108RRx2GGGxV(F/Y)HD119 that forms the lipoyl-AMP binding pocket in all LPLA 

and LT proteins (Kim do et al., 2005; McManus et al., 2005) is conserved in 

LmjF07.1060 and all other trypanosomatid homologues (see Figure 3.4). 

Additionally, the invariant (Fujiwara et al., 2007; Reche, 2000) Lys172 is present in 

LmjF07.1060 and all other trypanosomatid homologues (see Figure 3.4). Lastly, in 

EcLPLA, the motif 177GITSVR182 which has been shown to bind to LA is instead 
217SVGSVR222 in LmjF07.1060, and is similar in other trypanosomatid putative 

LPLA proteins. In HsLT and BtLT the motifs are instead 204ATASIPS210 and 
204ATASTPA210, respectively. Although the trypanosomatid motifs share more 

sequence identity and similarity to the EcLPLA motif than to the HsLT and BtLT 

motif, it is not possible to categorically label LmjF07.1060 as LPLA instead of LT. 

It is apparent that alignment of the N-termini does not result in an obvious 

conclusion as to whether LmjF07.1060 is LPLA or LT, since lipoyl-AMP binding 

and transferase functions that are shared by LPLA and LT appears to be a highly 

conserved property of their N-termini (Fujiwara et al., 2007; Reche, 2000). The 

recent analysis of the structure of BtLT infers that although the C-terminal domains 

of EcLPLA and BtLT have the same overall fold, they are rotated approximately 

180° relative to one another, which is thought to permit LPLA but not LT, to 

accommodate ATP and thus activate LA (Fujiwara et al., 2007). Unfortunately, 

since trypanosomatid C-terminal domains are 120 – 140 residues longer than the 

C-terminal domains of EcLPLA and HsLT and BtLT proteins (see Figure 3.5), 

modelling the LmjLPLA C-terminal domain was not an option. BLAST analyses 

indicate that the C-terminal extensions of trypanosomatid putative LPLA proteins 

have no known homologues, although they share approximately 22 % to one 

another (see Figure 3.5). 
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Lmj_LPLA        MWQTVVRRYRLQPT-SLAAFLESNCMVAKPPTAALHSDSNLVVAETNSLSIFENLAAEES 59 
Li_LPLA         MWQTVVQRYRLQPT-SLATFLESNCMVAKPPTAALHSGSNLVVAETNSLSIFENLAAEES 59 
Lb_LPLA         MWQTLRQRYRLQPT-SLAAFLESNCTVSKSPTAALHRNSSLVVAETNSLCIFENLVAEES 59 
Tb_LPLA         ---MRAARLSLRPTISLLDFVNRHGASIRS-DRLLSDKQRSVALISNSDVIYDNLATEEA 56 
Tc_LPLA         --MMRRMGWCLCPTTTLFSFLTRHATATHS-ERQLTEARASVALVSNSRCIFENLAVEEA 57 
Hs_LT           ----------MLIPFSMKNCFQLLCNCQVPAAGFKKTVKNGLILQSISNDVYQNLAVEDW 50 
Bt_LT           ----------MLIPFSMKNCFQLLCNLKVPAAGFKNTVKSGLILQSISNDVYHNLAVEDW 50 
Ec_LPLA         -------------------------------------MSTLRLLISDSYDPWFNLAVEEC 23 
                                                             : *   : **..*:  
 
Lmj_LPLA        LIRGLSLDTKQRLLLFYVNRPCVVVGRNQNIFQEVSLRRAAADGVCVARRASGGGAVFHD 119 
Li_LPLA         LIRGLSLDTKQRLLLFYVNRPCVVVGRNQNIFQEVSLRRAAADGVCLARRASGGGAVFHD 119 
Lb_LPLA         LARGLSLDKTQRLLLFYVNRPCVVVGRNQNLFQEVALRRAAADGVSVARRASGGGAVFHD 119 
Tb_LPLA         LLRGVVLRRQEALLLMYVNKPCVVVGRNQNIFSEVALRAAHHDGVSIARRNSGGGAVYHD 116 
Tc_LPLA         LLRGVILPPGQQLLFSYVNRPCVVIGRNQNYLQEVAVSAARRDGVPIARRSSGGGAVYHD 117 
Hs_LT           IHDHMNLEGKP-ILFFWQNSPSVVIGRHQNPWQECNLNLMREEGIKLARRRSGGGTVYHD 109 
Bt_LT           IHDHMNLEGKP-VLFLWRNSPTVVIGRHQNPWQECNLNLMREEGVKLARRRSGGGTVYHD 109 
Ec_LPLA         IFRQMPATQR--VLFLWRNADTVVIGRAQNPWKECNTRRMEEDNVRLARRSSGGGAVFHD 81 
                :   :       :*: : *   **:** **  .*        :.: :*** ****:*:** 
 
Lmj_LPLA        EGNLCFSFITHRTRYAPEKTIQLVRLGLCASYAIDPARLTTTGRHDLFLD----GRKITG 175 
Li_LPLA         EGNLCFSFLTHRTCYAPEKTIQLVRLGLCASYAIDPARLTTTGRHDLFLD----GRKITG 175 
Lb_LPLA         EGNLCLCFITHRTRYAPEKTIQLIRLGLCVNYAIDPARLTTTRRHDLFLD----GKKITG 175 
Tb_LPLA         LGNVSFSVFTHRDTYEPKRSIQLLRWHLCREFGIGPERITTTKRHDLFLD----EMKITG 172 
Tc_LPLA         TGNVCFSFFTHRSAYHPERTIEIIRLFLCCAFDICPERLTTTFRHDLFLD----RKKITG 173 
Hs_LT           MGNINLTFFTTKKKYDRMENLKLIVRALNAVQPQ--LDVQATKRFDLLL---DGQFKISG 164 
Bt_LT           MGNINLTFFTTKKKYDRMENLKLVVRALKAVHPH--LDVQATKRFDLLL---DGQFKISG 164 
Ec_LPLA         LGNTCFTFMAGKPEYDKTISTSIVLNALNALG----VSAEASGRNDLVVKTVEGDRKVSG 137 
                 **  : .:: :  *    . .::   *            :: * **.:       *::* 
 
Lmj_LPLA        SAMRVQRDIAYHHCTLLVDTPHASVGRYLRPEGDYVAFKTSSVGSVRS             223 
Li_LPLA         SAMRVQRDIAYHHCTLLVDTTHASVSRYLRPEGDYVAFETSSVGSVRS             223 
Lb_LPLA         SAMRVQREIAYHHCTLLVDTPLASLGRYLHPEGEYVAFKTSSVGSVRS             223 
Tb_LPLA         SAMRVQRDIACHHFTLLVSSSGSRLGKYLKREGDYISFTTAAVGSVRS             220 
Tc_LPLA         SAMRVQRDIACHHCTLLVKSCSERLSAYLQPEGQYVFFTTSSIGSVRS             221 
Hs_LT           TASKIGRTTAYHHCTLLCSTDGTFLSSLLKS--PYQGIRSNATASIPS             210 
Bt_LT           TASKIGRNAAYHHCTLLCGTDGTFLSSLLKS--PYQGIRSNATASTPA             210 
Ec_LPLA         SAYRETKDRGFHHGTLLLNADLSRLANYLNP--DKKKLAAKGITSVRS             183 
                :* :  :  . ** ***  :    :.  *.       : : .  *  : 

 

Figure 3.4 Alignment of LPLA and LT N-terminal domains 
ClustalW alignment of the N-terminal domains of L. major LPLA (LmjLPLA) (accession number 
LmjF07.1060) was carried out with homologues in L. infantum (LiLPLA) (accession 
LinJ07_V3.1230), L. braziliensis (LbLPLA) (accession LbrM07_V2.1130), T. brucei (TbLPLA) 
(accession Tb927.8.630), T. cruzi (TcLPLA) (accession unknown) and E. coli (EcLPLA) (accession 
number AAC77339), and with H. sapiens LT (HsLT) (accession number NP_057013) and B. taurus 
LT (BtLT) (accession number NP_77720) (see Table 3.5 also). Only the N-terminal domains were 
aligned, since trypanosomatid LPLA C-termini are considerably longer than LPLA and LT in other 
organisms. The alignment indicates identical residues (*), conserved residues (:) and homologous 
residues (.). Red residues represent the most highly conserved amino acids within the 
RRx2GGGxV(F/Y)HD motif of a disordered loop, which forms the hydrophobic pocket in which the 
lipoyl-domain of lipoyl-AMP is buried (Kim do et al., 2005). In E. coli LPLA, LA binds to the motif 
177GITSVR182 (green letters), within a second disordered loop (McManus et al., 2005). A lysine 
residue strictly conserved in all LPLA, BPL and LT enzymes is highlighted in blue (Kim do et al., 
2005). Bold letters represent strictly conserved residues, 'x' represents any amino acid, and 'h' 
represents any hydrophobic amino acid. The targeting peptide for mitochondrial transit is predicted 
by programme TargetP as being 12 amino acids (green arrow, LPLAT1). However, in order to 
produce soluble recombinant protein, an N-terminal 36 amino acid truncated version of LPLA was 
constructed (purple arrow, LPLAT2) (see section 3.5.3). 
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Lmj_LPLA        SPVTSLAESGCIADGP---------GAVAALKGNMADFFLAEGDRVLNAATPWELDAVEL 51 
Li_LPLA         SPVTSLAESGCIAGGP---------GAVAALKRNMADFFLAEGDRVLDAATPWELDAVKL 51 
Lb_LPLA         SPVTTLAESVHIASGQ---------GAMASLKRNMAEFFLTEGDRVLEAAAPWELDVREL 51 
Tb_LPLA         SRTTTLKEAGVLTDSASADP-------VNFILRSMAGFFVEHSWDILAHKAPWETNPLNF 53 
Tc_LPLA         SSVTTLQMAGVLPEGYCSDENINGEDVVHCTQRSLADFFVRHVGVITAHSAPWEIDPSIF 60 
                * .*:*  :  :. .            :     .:* **: .   :    :*** :   : 
 
Lmj_LPLA        R-------QRFTTARHRCANAPLFALDVVGAVAADMPFIEREGRQPARGDAATLGEAVHK 104 
Li_LPLA         R-------QSFATSRHRCENAPLFALDVVGAVAADMPFFEGEGRRPTRGDAATLGEAVRK 104 
Lb_LPLA         R-------QSFATARHCCADTPLFSLDVVGAVAADMSFIEGEGRRAASGDLATLGEAVHK 104 
Tb_LPLA         G--DNVDTVESKRTRECRETAAVFTLDTTKAIADGTVMIDGENRRPCAGASKTVREECVR 111 
Tc_LPLA         LSKRNEETKGSEEKTLHPSNESVFLLDVVGALRENTRIVDGEGRRPAAGSSKTVLEEVDR 120 
                                     .:* **.. *:  .  :.: *.*:.  *   *: *   : 
 
Lmj_LPLA        AASKEWAYAMPTFTSTVFLSDSELRRRLKTLSVRQHVALLCSLAEEELLAVLQRCVLEGS 164 
Li_LPLA         TASKDWAYAMPSFTSTVLLSGSELRRRLKTLSMWQDVASLCSLAEEELLAVLQRCVLEGS 164 
Lb_LPLA         AASKDWAYAMPAFTSTVLLSSGELQRRLQALSVWPDVVRLSSLAEEQLLAALQQCVFADL 164 
Tb_LPLA         LQSLGWLFNMPKFETRVAITLADILASEETFSKHAALP---PSLIAWLLQSCTRVDIITL 168 
Tc_LPLA         LRSADWMFSMPKFTTCVAVTAKDLLAWENDTIVRSCVP---PGVVTYLMQGRTRFDITTV 177 
                  *  * : ** * : * ::  ::    :       :    .     *:    :  :    
 
Lmj_LPLA        EGPEAVAG-TEAGLHLVTTVEHRLVTSVVVRRVAPTTATASAVAPSSASSGGWVQRYLSA 223 
Li_LPLA         EGLEEVAAGTEAGLHLITTVEHRLVTSVVVRRAASTTSTASAVAPSSGSSGGWVQRCLSA 224 
Lb_LPLA         VGCGEVVAETEVGLHLLTTVEHRLVTSVTVRRAPSTDAATRAVAPLGGYSGGWVERYLSA 224 
Tb_LPLA         IENRRVTSITAYWIKQGEPAPEQPWFSCLLRYLVEGRYVDNVFADMGG------KCSVLA 222 
Tc_LPLA         VECRHITKLTACWAENAAGDVDEMWCAAILRVLLEGVRVDDPTVDVSE------ENAVLV 231 
                     :.  *    .      ..   :  :*       .    .  .       :  : . 
 
Lmj_LPLA        LLVGHPCDAAIEGLECVGDTTAVVQGLVHEAGSLCPDLPDAVG--DAALLMVARVLLDVW 281 
Li_LPLA         LLVGQPCDAAVEGLERTGDTTAVMQGLVHEAGSLCLDLPDLAG--DAALLMVTRVLLDVW 282 
Lb_LPLA         LLVGHACDAAVEGLESLGDITAVVQGLLHETGSLCPELPDVAR--DAALLMVARVLLNVW 282 
Tb_LPLA         AAIDLECSQIISGLPAIISQLSAGGSRNGEAVGSVISLAEERERSHDVIQRFLQAVLDVW 282 
Tc_LPLA         AALQLECRSLMDGMPLSAREENIACDENGSG-----SLDEQ-----SALLLFMRAVLSVW 281 
                  :   *   :.*:           .   .      .* :       .:  . :.:*.** 
 
Lmj_LPLA        RDKNVFDIAT--                                                 291 
Li_LPLA         RDKNVFDIAT--                                                 292 
Lb_LPLA         RDKNVFDLSR--                                                 292 
Tb_LPLA         RRKNVFYPISY-                                                 293 
Tc_LPLA         RVKNVFIPVISQ                                                 293 
                * ****                    

 

Figure 3.5 Alignment of trypanosomatid LPLA C-terminal domains  
ClustalW alignment of the N-terminal domains of L. major LPLA (LmjLPLA) with homologues in L. 
infantum (LiLPLA) (accession LinJ07_V3.1230), L. braziliensis (LbLPLA) (accession 
LbrM07_V2.1130), T. brucei (TbLPLA) (accession Tb927.8.630) and T. cruzi (TcLPLA) (accession 
unknown) was carried out. Only the C-termini of trypanosomatid LPLA proteins were aligned as 
they are circa 120-140 residues longer than the C-termini of EcLPLA and BtLT. The alignment 
indicates identical residues (*), conserved residues (:) and homologous residues (.). 

3.5 Expression and functionality of lipoylating pro teins 

In order to determine whether the lipoylating proteins identified in silico were 

functional, and in order to produce polyclonal antibodies against these proteins, it 

was necessary to clone the genes for LIPA, LIPB and LPLA into a protein 

expression plasmid – pASK-IBA3 – adding a Strep-tag to the 3' end.  

Expression of eukaryotic proteins in E. coli lines can be difficult, especially if the 

genes in question have hydrophobic targeting sequences. All three L. major 
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lipoylating proteins were predicted to be mitochondrial by MitoProt and TargetP 

(see Table 3.5), and the programs predicted the number of amino acids 

comprising the potential targeting peptide. Based on these predictions, constructs 

were made corresponding to full-length genes or truncated versions (see arrows in 

Figure 3.2, Figure 3.3 and Figure 3.4). All proteins were successfully expressed, 

purified and polyclonal antibodies generated (see Section 3.5.4). 

3.5.1 LIPA  

3.5.1.1 Cloning and expression of LIPA 

DNA of full-length (FL) LIPA and three 5' truncated versions (T1, T2 and T3) (see 

Figure 3.3) were cloned into the pASK-IBA3 plasmid, resulting in constructs 

LIPAFLIBA3, LIPAT1IBA3, LIPAT2IBA3 and LIPAT3IBA3, as described in Section 

2.5.6.1 (see Figure 3.6A for LIPAT3IBA3 cloning). Constructs encoding LIPAT1 and 

LIPAT2 result in LIPA proteins that are truncated at the N-terminus by 5 amino 

acids and 15 amino acids (see Figure 3.3); the respective constructs were 

designed as such based upon the mitochondrial targeting peptide cleavage sites 

predicted by TargetP and MitoProt, respectively. The LIPAT3 construct was 

designed such that the LIPAT3 protein would be truncated by 63 amino acids at the 

N-terminus (see Figure 3.3). The rationale was that LIPAT3 would lack all of the 

associated hydrophobic targeting sequence and as such possibly be expressed to 

a higher degree in the soluble fraction. Relative to the predicted start of the 

EcLIPA protein, LIPAT3 lacks 14 amino acids (see Figure 3.3). However, the aim 

was to purify soluble protein and not to characterise the LmjLIPA enzyme, and as 

such this truncation was deemed acceptable. 

Trial expressions identified that the optimal conditions for protein expression were 

using the LIPAT3IBA3 construct in BLR (DE3) E. coli, shaking at 37 °C 250 rpm for 

one hour, post induction. LIPAFLIBA3, LIPAT1IBA3 and LIPAT2IBA3 constructs 

expressed in the same E. coli line did not result in the production of sufficient 

quantities of soluble protein for protein purification at any of the conditions tested 

(see Section 2.5.6.2) (data not included). 

Purification of LIPAT3-Strep protein via affinity chromatography on a Strep-tactin 

column was subsequently carried out. SDS-PAGE analysis resulted in the 

identification of a band potentially corresponding to LIPAT3-Strep (40.6 kDa) in 
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elution fractions two, three and four (see Figure 3.6B). In addition, contaminating 

bands were observed at approximately 60 kDa and 65 kDa, which were 

consistently co-purified with LIPAT3-Strep. Western blotting with α-Strep antibody 

confirmed the circa 40 kDa band to be LIPAT3-Strep, and some cross-reactivity is 

observed in elution fraction 3 (see Figure 3.6C). 

 

Figure 3.6 Cloning, expression and purification of LIPA 
A, LIPAT3 (see Figure 3.3) was amplified from gDNA with primer pair Lm28-29 (see Section 2.1.4). 
The insert was cloned into expression vector pASK-IBA3, generating construct LIPAT3IBA3 (I). 
Correct cloning was verified by XbaI / HindIII digest, releasing a 1.1 kb insert corresponding to 
LIPAT3, and vector backbone of 3.1 kb (II). B, LIPAT3IBA3 was expressed in E. coli BLR (DE3) cells, 
and LIPAT3-Strep protein purified via affinity chromatography on a Strep-tactin column. 10 µl of 
fractions collected during purification were subjected to 10 % SDS-PAGE and stained with 
Coomassie-blue. C, Western blotting with α-Strep antibody at 1/7,500 on elution fractions 2 – 4 
verifies the 40.6 kDa band as purified LIPAT3-Strep. 

3.5.1.2 Functionality of LIPA 

An E. coli line lacking the endogenous lipA gene (KER176) was transformed with 

LIPAT1IBA3, LIPAT2IBA3 or LIPAT3IBA3 constructs, or uncut plasmid pASK-IBA3 

(negative control). All were plated on minimal medium without- or with 

supplementation of 10 µM LA. In the presence of LA, growth was apparent in all 
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cases. Without LA, growth was only supported by the LIPAT1IBA3 construct (see 

Figure 3.7). 

 

Figure 3.7 Functionality of LIPA 
Functionality of L. major LIPA was assessed by complementation of lipA deficient bacteria, 
KER176 (Reed & Cronan, 1993). Bacteria were transformed with LIPAT1IBA3 (1), LIPAT2IBA3 (2), 
LIPAT3IBA3 (3) (see Figure 3.3) or pASK-IBA3 uncut plasmid negative control (4), and plated on 
minimal medium without- or with supplementation of 10 µM LA. Plates were incubated at 37 °C for 
48 – 72 h and growth recorded by photographing plates. 

3.5.2 LIPB 

3.5.2.1 Cloning and expression of LIPB 

DNA of full-length (FL) LIPB and one 5' truncated version (T1) (see Figure 3.2) 

were cloned into pASK-IBA3 plasmid, resulting in constructs LIPBFLIBA3 and 

LIPBT1IBA3, as described in Section 2.5.6.1 (see Figure 3.8A for LIPBFLIBA3 

cloning). The construct encoding LIPBT1-Strep results in LIPB protein that is 

truncated at the N-terminus by 34 amino acids (see Figure 3.2); the construct was 

designed as such based upon the mitochondrial targeting peptide cleavage site 

predicted by MitoProt. TargetP did not predict a cleavage site which explains why 

only one truncated construct was designed. 

Trial expressions identified the optimal conditions for protein expression with the 

LIPBFLIBA3 construct in BLR (DE3) E. coli cells, shaking at 37 °C 250 rpm for two 

hours, post induction. Expression of LIPBT1IBA3 was not tested, since it was 

possible to express a relatively high level of soluble LIPBFL-Strep protein.  

Subsequently, LIPBFL-Strep protein was purified via affinity chromatography on a 

Strep-tactin column. SDS-PAGE analysis resulted in the identification of a band 

potentially corresponding to LIPBFL-Strep (30.7 kDa) in elution fractions three, four 



Chapter 3  105 

 

and five (see Figure 3.8B). In addition, a contaminating band was observed at 

approximately 60 kDa, which was consistently co-purified with LIPBFL-Strep. The 

contaminant was excised from a Coomassie-Blue-stained SDS-PAGE and shown 

by tandem MS / MS analysis to be the E. coli GroEL large subunit (accession 

number AAC77103) (Dr R. Burchmore, University of Glasgow). Western blotting 

with α-Strep antibody confirmed the 30 kDa band to be LIPBFL-Strep (see Figure 

3.8C). An additional cross-reacting band is apparent at circa 48 kDa, although the 

nature of the band is unknown. 

 

Figure 3.8 Cloning, expression and purification of LIPB 
A, LIPBFL (see Figure 3.2) was amplified from gDNA with primer pair Lm30-33 (see Section 2.1.4). 
The insert was cloned into expression vector pASK-IBA3, generating construct LIPBFLIBA3 (I). 
Correct cloning was verified by XbaI/HindIII digest, releasing a 0.9 kb insert corresponding to 
LIPBFL, and vector backbone of 3.1 kb (II). B, LIPBFLIBA3 was expressed in E. coli BLR (DE3) cells, 
and LIPBFL-Strep protein purified via affinity chromatography on a Strep-tactin column. 10 µl of 
fractions collected during purification were subjected to 10 % SDS-PAGE and stained with 
Coomassie-blue. C, Western blotting with α-Strep antibody at 1/7,500 on elution fractions 3 – 5 
verifies the 31 kDa band as purified LIPBFL-Strep. 
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3.5.3 LPLA 

3.5.3.1 Cloning and expression of LPLA 

DNA of full-length (FL) LPLA and two 5' truncated versions (T1 and T2) (see 

Figure 3.4) were cloned into pASK-IBA3 plasmid, resulting in constructs 

LPLAFLIBA3, LPLAT1IBA3 and LPLAT2IBA3, as described in Section 2.5.6.1 (see 

Figure 3.9A for LPLAT2IBA3 cloning). Constructs encoding LPLAT1Strep and 

LPLAT2Strep result in LPLA proteins that are truncated at the N-terminus by 12 

amino acids and 36 amino acids (see Figure 3.4); the respective constructs were 

designed as such based upon the mitochondrial targeting peptide cleavage site 

predicted by TargetP and to align with the start of EcLPLA, respectively.  

Trial expressions identified the optimal conditions for protein expression with the 

LPLAT2IBA3 construct in BLR (DE3) E. coli cells, shaking at 15 °C 250 rpm 

overnight, post induction. Under all conditions tested (see Section 2.5.6.2), 

LPLAFLIBA3 and LPLAT1IBA3 constructs did not produce soluble protein to the 

same degree as did the LPLAT2IBA3 construct (data not shown). 

Purification of LPLAT2-Strep protein via affinity chromatography on a Strep-tactin 

column was subsequently carried out. SDS-PAGE analysis resulted in the 

identification of a band potentially corresponding to LPLAT2-Strep (52.4 kDa) in 

elution fractions three and four (see Figure 3.9B). In addition, contaminating bands 

were observed at approximately 60 and 65 kDa, which were consistently co-

purified with LPLAT2-Strep. Western blotting with α-Strep antibody confirmed the 

circa 52 kDa band to be LPLAT2-Strep (see Figure 3.9C). 
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Figure 3.9 Cloning, expression and purification of LPLA 
A, LPLAT2 (see Figure 3.4) was amplified from gDNA with primer pair Lm36-37 (see Section2.1.4). 
The insert was cloned into expression vector pASK-IBA3, generating construct LPLAT2IBA3 (I). 
Correct cloning was verified by XbaI/HindIII digest, releasing a 1.5 kb insert corresponding to 
LPLAT2, and vector backbone of 3.1 kb (II). B, LPLAT2IBA3 was expressed in E. coli BLR (DE3) 
cells, and LPLAT2-Strep protein purified via affinity chromatography on a Strep-tactin column. 10 µl 
of fractions collected during purification were subjected to 10 % SDS-PAGE and stained with 
Coomassie-blue. C, Western blotting with α-Strep antibody at 1/7,500 on elution fractions 3 – 4 
verifies the 52 kDa band as purified LPLAT2-Strep. 

3.5.3.2 Functionality of LIPB and LPLA 

In order to test the functionality of L. major LIPB and LPLA enzymes, the E. coli 

line KER184 which lacks the endogenous lipB gene, was transformed with 

LIPBFLIBA3, LPLAT1IBA3, LPLAT2IBA3 or P. falciparum LPLA1FLIBA3 (positive 

control) constructs, or uncut plasmid pASK-IBA3 (negative control) (see Figure 

3.10). All were plated on minimal medium without- or with supplementation of 10 

µM LA. 

Growth was supported in all cases except with LPLAT2IBA3. Growth of 

LPLAT1IBA3 was considerably lower than that of P. falciparum LPLA1FLIBA3 

positive control. LIPBFLIBA3 complemented growth of KER184 in the absence of 

LA to a higher extent than did LPLAT1IBA3. As explained in Section 3.5.3.1, under 

all conditions tested, expression of the LPLAT2IBA3 construct produced more 

soluble protein than did LPLAFLIBA3 or LPLAT1IBA3. Although expression was not 

analysed in KER184 cells, a possible explanation for the unexpected results with 
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regards to complementation of KER184 is that LPLAT2-Strep protein is non-

functional and overexpression is toxic to E. coli. In contrast, LPLAT1-Strep is likely 

to be at least partially functional because it supports colony growth of KER184 E. 

coli in LA-depleted medium (see Figure 3.10). Potential reasons why LPLAT1-Strep 

may be functional yet LPLAT2-Strep is toxic to KER184 cell growth will be 

discussed in Section 6.3.3.1. 

 

Figure 3.10 Functionality of LIPB and LPLA 
Functionalities of L. major LIPB and LPLA were assessed by complementation of LIPB deficient 
bacteria, KER184 (Morris et al., 1995). Bacteria were transformed with LIPBFLIBA3 (1) (see Figure 
3.2), LPLAT1IBA3 (2), LPLAT2IBA3 (3) (see Figure 3.4), P. falciparum LPLA1FLIBA3 positive control 
(4) or pASK-IBA3 uncut plasmid negative control (5), and plated on minimal medium without- or 
with supplementation of 10 µM LA. Plates were incubated at 37 °C for 48 – 72 h and growth 
recorded by photographing plates. 

3.5.4 Polyclonal antibody generation and purificati on 

Two rabbits were inoculated with SDS-PAGE-purified LIPAT3-Strep, LIPBFL-Strep 

or LPLAT2-Strep antigen (see Sections 2.5.6 and 2.5.7). Western blotting with the 

antisera resulted in extensive background signal, however it was possible to 

discern which antisera recognised the appropriate antigen. In all cases, the 

antisera also detected co-purified contaminants from the recombinant protein 

elution fractions. It was possible to purify specific antibodies raised against LIPAT3-

Strep and LIPBFL-Strep antigens from the antisera. Unfortunately, the yield of α-

LmjLPLA antibodies was poor. Albeit multiple attempts to purify α-LmjLPLA 

antibodies from the two antisera, it was not possible to reliably use the antibodies 

for western blot analysis of recombinant protein or L. major protein lysate. 
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3.5.4.1 Purification of α-LmjLIPA antibodies  

α-LmjLIPA antibodies were purified from the antiserum via a two-step procedure. 

Firstly, α-LmjLIPA antibodies were separated from antibodies recognising 

contaminating proteins in the purified LIPAT3-Strep elution fractions, by incubating 

5 ml of α-LmjLIPA antiserum on agarose beads cross-linked to LPLAT2-Strep 

recombinant protein. Given that the contaminants in LPLAT2-Strep purification 

were the same size (and thus probably the same proteins) as those in LIPAT3-

Strep purification, the rationale was that contaminating antibodies in α-LIPA 

antiserum would bind to the column, whereas α-LmjLIPA-specific antibodies would 

be collected in the flow-through. 

Subsequently, α-LmjLIPA antibodies were purified using a LIPAT3-Strep 

recombinant protein column. Proteins in the antiserum that resulted in high 

background in western blots would be lost in the flow-through fraction, and then α-

LmjLIPA-specific antibodies could be eluted from the column (see Figure 3.11). 

 

Figure 3.11 Purification of αααα-LmjLIPA antibodies from αααα-LmjLIPA antiserum 
In order to purify α-LmjLIPA antibodies from α-LmjLIPA antiserum, two affinity chromatography 
steps were carried out. Purified recombinant LIPAT3-Strep was subjected to SDS-PAGE and then 
stained with Coomassie Blue. The overall yield of the elution fraction shown is 0.2 µg µl-1, and 10 µl 
was loaded on the gel. LIPAT3-Strep band is barely visible, and as such it was not possible to 
determine the quantity loaded. The same quantity of material was used for western blot analyses. 
Western blotting with α-LmjLIPA antiserum before purification was carried out at 1/20,000 (lane 1). 
After two rounds of purification, western blotting was carried using α-LmjLIPA antibody at 1/500 
(lane 2). 
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3.5.4.2 Purification of α-LmjLIPB antibodies 

Two rabbits were inoculated with the SDS-PAGE-purified antigen (see Sections 

2.5.6 and 2.5.7). One of the two antisera was found to recognise LIPBFL-Strep 

recombinant protein by western blotting, although the background signal was high. 

α-LmjLIPB antibodies were purified from the antiserum using a LIPBFL-Strep 

recombinant protein column. Compounds in the antiserum that resulted in high 

background in western blot were lost in the flow-through fraction, and then α-

LmjLIPB-specific antibodies were eluted from the column (see Figure 3.12).  

 

Figure 3.12 Purification of αααα-LmLIPB antibodies from αααα-LmLIPB antiserum 
In order to purify α-LmjLIPB antibodies from α-LmjLIPB antiserum, one affinity chromatography 
step was carried out. Purified recombinant LIPBFL-Strep was subjected to SDS-PAGE and then 
stained with Coomassie Blue. The overall yield of the elution fraction shown is 0.2 µg µl-1, and 10 µl 
was loaded on the gel, and since LIPBFL-Strep corresponds to approximately 1/3 of the total 
protein, 666 ng of LIPBFL-Strep protein is present in 10 µl of the elution fraction. The same quantity 
of material was used for western blot analyses. Western blotting with α-LmjLIPB antiserum before 
purification was carried out at 1/50,000 (lane 1). After one round of purification, western blotting 
was carried using α-LmjLIPB antibody at 1/1,000 (lane 2). 

3.6 Effects of LA analogues on promastigotes 

Having established that L. major possesses active lipoylating enzymes, and that α-

KADH and GCC components are lipoylated throughout promastigote development, 

I next determined the effect of LA analogues on promastigote cell growth and 

lipoylation patterns. The analogues octanoic acid (OA) and 8'-bromooctanoic acid 

(8-BOA) were used, since data has already been published in other parasites – T. 

gondii and P. falciparum – with regards to their effects on growth and lipoylation 

patterns (Allary et al., 2007; Crawford et al., 2006). In these experiments, parasites 
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were grown in lipid-depleted medium in order to minimise competition of 

exogenous LA with LA analogues. 

The hypothesis was that a lower concentration of 8-BOA than OA would be 

required to detrimentally affect parasite growth, and that addition of just 1 µM LA 

would rescue the phenotype, as is the case in T. gondii and P. falciparum (Allary 

et al., 2007; Crawford et al., 2006). The rationale behind this result is that 

octanoylation of apoproteins is a natural cellular process ordinarily catalysed by 

LIPB, and the octanoyl-moiety can be converted to an active lipoyl-group by the 

action of LIPA. However, 8-BOA is an analogue of LA which when ligated to 

apoproteins, renders them inactive. The toxicity of a similar LA analogue, 

selenolipoic acid (SeLA), has been demonstrated in E. coli (Fujiwara et al., 1997b; 

Jordan & Cronan, 2002; Morris et al., 1994; Reed et al., 1994). 

In order to remain consistent with previously published data, L. major 

promastigotes were grown in lipid-depleted medium for two sub-passages 

(equating to 1/100 dilution of lipids from the original HOMEM + 10 % FCS medium) 

before adding LA analogues alone or with 1 µM LA supplementation. Alamar blue 

assays were carried out in order to determine the effects of LA analogues on L. 

major promastigote growth. 
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Figure 3.13 Growth and lipoylation patterns of prom astigotes incubated with different 
concentrations of LA analogues 
Alamar blue assay was used in order to determine the effect of LA analogues, OA (A) and 8-BOA 
(B and C), on promastigote cell growth. Fluorescence at OD590nm was recorded and all values 
normalised against negative EtOH (solvent) controls to give percentage growth relative to the 
control. D, In order to determine the effect of LA analogues on lipoylation patterns, promastigotes 
were grown in lipid-depleted medium, and supplemented with either 10 µM LA or 10 µM 8-BOA. 
Stationary phase promastigotes (120 h) were lysed and the soluble protein fraction isolated. 10 µg 
of each lysate was subjected to SDS-PAGE. Western blotting was carried out using α-LA antibody 
at 1/6,000 and α-CS antibody to assess loading, at 1/5,000. Lane 1 represents a typical lipoylation 
pattern at 120 h growth in normal HOMEM + 10 % FCS medium (see Figure 3.1B lane 4, for 
derivation of lane 1 in the current figure). 

Figure 3.13A demonstrates that OA concentrations up to 150 µM do not affect 

promastigote growth. 300 µM OA reduces growth to 16 % relative to the negative 

control. In T. gondii, the IC50 for OA is approximately 500 µM, yet 1 µM LA 

completely restored growth to wild-type levels (Crawford et al., 2006). In L. major, 

1 µM LA does not alleviate the effects of 300 µM OA (Figure 3.13A). Addition of 
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LA or 8-BOA to the growth medium did not cause an alteration in lipoylation 

intensity/patterns (Figure 3.13D), and as such it is difficult to discern whether these 

compounds are not efficiently taken up, or whether parasites rely on biosynthesis 

of LA and as such do not incorporate LA or 8-BOA into α-KADHs or the GCC. 

Figure 3.13B & C illustrate that the IC50 for 8-BOA is 90.5 µM (± 9.2 µM) and the 

IC50 for 8-BOA with 1 µM LA supplementation is 92.3 µM (± 10.8 µM). These 

values are relatively high, compared to those published for T. gondii, whereby 10 

µM 8-BOA inhibits cell growth by 95 %, and 1 µM LA is sufficient to completely 

rescue the growth defect (Crawford et al., 2006). In P. falciparum red blood cell 

stage, 8-BOA at 25 µM – 400 µM results in growth defects, and addition of 2 µM 

LA significantly rescued the phenotype (Allary et al., 2007). Possible explanations 

for the discrepancy between the results observed in T. gondii and P. falciparum 

versus L. major will be discussed in Section 6.3.3.2. 

3.7 Summary 

• In silico searches show that L. major possesses all potential components of α-

KADHs and the GCC, although some potentially interesting differences are 

apparent. 

• Lipoylation of α-KADH E2-subunits and H-protein occurs during promastigote 

growth, and lipoylation patterns are consistent throughout: E2k is predominantly 

lipoylated, and during stationary phase E2p, E2b and H-protein become 

lipoylated. Purified metacyclic promastigotes only lipoylate E2k. Amastigotes 

may possess lipoylated E2p, E2k, H-protein and not E2b. 

• L. major has genes corresponding to LIPA and LIPB from the LA biosynthesis 

pathway, and both contain motifs that are pivotal to activity of these enzymes. 

• L. major has a gene for LPLA from the salvage pathway. The LmjLPLA protein 

possesses all of the key motifs within the N-terminus that are required for 

transferase activity; however these motifs are also conserved in the mammalian 

LT enzyme. LmjLPLA has a circa 140 amino acid C-terminal extension relative 

to the C-terminal domains of EcLPLA and mammalian LT enzymes, the nature 

of which is unclear.   
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• L. major LIPA, LIPB and LPLA were cloned into expression construct pASK-

IBA3, and the proteins were expressed and purified. 

• Antibodies were generated for all three proteins, and α-LmjLIPA and α-LmjLIPB 

antibodies were successfully purified for use in western blot analyses. 

• The functionality of lipoylating genes from L. major was tested by functional 

complementation of E. coli lacking lipA (KER176) or lipB (KER184) genes. 

LmjLIPA, LmjLIPB and LmjLPLA rescued bacterial growth. LmjLPLA did not 

complement KER184 bacteria as efficiently as did the PfLPLA1 positive control, 

perhaps indicating that LmjLPLA does not utilise octanoyl-ACP as efficiently as 

does PfLPLA1, and it could also be due to the extended C-terminal extension 

not found in E. coli. 

• In lipid-depleted medium, analogues of LA – OA and 8-BOA – affected L. major 

promastigote cell growth at higher concentrations than those published for T. 

gondii and P. falciparum, and supplementation with 1 µM LA did not rescue the 

growth phenotype. Addition of 10 µM LA or 8-BOA did not cause an alteration in 

lipoylation patterns. 
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4 Genetic manipulation of LPLA 

4.1 Introduction 

L. major encodes a putative LPLA enzyme, which was shown to be functional by 

complementation of E. coli deficient in lipB, as described in Section 3.4.3. In the 

study reported in this chapter, the aims were to determine the subcellular 

localisation of LPLA and the role that LPLA plays in L. major. The former question 

was addressed by expressing a LPLA-green fluorescent protein (GFP) fusion 

protein in promastigotes, and establishing the subcellular localisation of LPLA-

GFP by live cell fluorescence microscopy. In order to elucidate the function of 

LPLA in promastigotes, attempts were made to ablate both gene copies by 

homologous recombination. Additionally, wild-type LPLA and an active site mutant 

of LPLA were ectopically expressed in promastigotes, with the aim of perturbing 

the normal balance of lipoylation, to investigate whether this results in a decrease 

in parasite fitness. 

4.2 Localisation of LPLA 

To generate a L. major line expressing a C-terminal fusion protein of LPLA with 

GFP, the full-length LPLA gene was amplified by PCR using primer pair Lm23-24 

(see Section 2.1.4). The resulting 1.5 kb fragment was digested with NdeI/BglII 

before cloning into NdeI/BglII-digested pGL1132 vector (Tetaud et al., 2002) to 

yield construct LPLA-GFP (see Figure 4.1A). The destination vector pGL1132 

contains the required control elements that allow constitutive expression of the 

proteins in L. major as well as the neomycin phosphotransferase (NEO) selectable 

marker (see Section 2.2.6) (Cruz & Beverley, 1990; Tetaud et al., 2002). The 

LPLA-GFP construct was transfected into wild-type promastigotes (WT) to give 

rise to the WT[LPLA-GFP] line, which was grown in the presence of 50 µg ml-1 

G418 to select for parasites that possess ectopic copies of the LPLA-GFP plasmid 

(see Section 2.2.8). 

In order to verify that the LPLA-GFP fusion protein is expressed in the WT[LPLA-

GFP] line, western blotting with α-GFP monoclonal antibody was carried out. 

Figure 4.1B shows that a 79.5 kDa band is found in the WT[LPLA-GFP] line but 

not in wild-type, which corresponds to the LPLA-GFP fusion protein. The size of 
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LPLA after processing of its target peptide can be calculated by subtraction of the 

known size of GFP (27.1 kDa) from that observed for the LPLA-GFP band (79.5 

kDa), which equals 52.4 kDa. This is an intermediate between the LPLAT1 (53.7 

kDa) and LPLAT2 (50.3 kDa) constructs created for expression in E. coli (see 

Sections 3.4.3 and 3.5.3). The calculated size of the T. brucei elongation factor 1-

α (TbEF1-α) loading control was 52.4 kDa, which is in accordance with previously 

published data that reported TbEF1-α to be 53 kDa (Kaur & Ruben, 1994). 

Fluorescence microscopy to detect the LPLA-GFP reporter, in combination with 

Mitotracker CMXRos mitochondrial stain, revealed that LPLA-GFP is a 

mitochondrial protein (see Figure 4.1C). This result is in accordance with 

subcellular targeting predictions using MitoProt and TargetP (see Section 3.4.3).  
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Figure 4.1 Subcellular localisation of LPLA-GFP 
A, The LPLA gene (see Section 3.4.3) was amplified from gDNA with primer pair Lm23-24 (see 
Section 2.1.4). The insert was cloned into expression vector pGL1132, generating construct LPLA-
GFP (I). Correct cloning was verified by NdeI/BglII digest, releasing a 1.54 kb insert corresponding 
to LPLA, and vector backbone of 6.96 kb (II). B, The LPLA-GFP construct was expressed in 
promastigotes to give rise to the WT[LPLA-GFP] line, and expression verified by western blotting of 
10 µg wild-type protein lysate and 10 µg LPLA-GFP protein lysate with α-GFP antibody at 1/5,000. 
Equal loading was verified by probing with α-TbEF1-α antibody at 1/10,000.The calculated sizes of 
LPLA-GFP and TbEF1-α are 79.5 kDa and 52.4 kDa, respectively (see Section 2.5.5) for method 
of calculating molecular sizes from SDS-PAGE). C, The mitochondrion of WT[LPLA-GFP] 
promastigotes was stained with Mitotracker CMXRos, and images of live cells were attained by 
fluorescence microscopy with DIC (for phase), FITC (for LPLA-GFP), rhodamine (for Mitotracker) 
or DAPI filters. 

4.3 Knockout studies  

In order to study the in vivo role of LPLA, a gene replacement strategy was 

employed. Knockout cassettes LPLA-SAT and LPLA-HYG were generated and 

transfected into promastigotes, as described in Sections 2.2.4–2.2.9.  
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Figure 4.2 is representative of the results obtained from LPLA knockout attempts, 

a summary of which is provided in Table 4.1. Two independent heterozygous lines 

for LPLA – ∆lplAHYG/LPLA and ∆lplASAT/LPLA – were created by replacement of 

one LPLA allele with either LPLA-HYG or LPLA-SAT constructs, respectively. 

Based on growth data generated in duplicate, ∆lplAHYG/LPLA and ∆lplASAT/LPLA 

lines reached significantly lower cell densities at stationary phase than did the 

wild-type control (see Figure 4.3). 

Subsequently, attempts were made to replace the remaining LPLA allele in 

∆lplAHYG/LPLA and ∆lplASAT/LPLA lines. ∆lplAHYG/LPLA was transfected with the 

LPLA-SAT knockout cassette on three independent occasions (see Table 4.1); a 

total of nine clones proliferated during the first cloning step in 96-well plates. 

However, upon sub-passaging into fresh medium, all nine clones failed to grow, 

and no genotypic data were retrieved. 

On the other hand, three independent transfections of ∆lplASAT/LPLA with the 

LPLA-HYG knockout cassette resulted in viable clones. Correct integration of the 

second knockout cassette was achieved for 30/63 clones analysed (see Table 

4.1). However, as indicated by Southern blot analysis of one such clone, 

∆lplASAT/lplAHYG/LPLA, the endogenous gene is still present (see Figure 4.2, lane 

4). In fact, as shown by FACS analysis (Figure 4.4) the ∆lplASAT/lplAHYG/LPLA line 

is tetraploid, meaning that non-dividing cells possess four copies of each 

chromosome, instead of the normal two copies in diploid cells. This indicates that 

the double integrant ∆lplASAT/lplAHYG/LPLA still possesses two copies of the 

endogenous LPLA allele, despite having correct integration of LPLA-SAT and 

LPLA-HYG knockout cassettes. This is the case for all clones isolated, as 

determined by PCR (data not shown). It can be determined that for 

∆lplASAT/lplAHYG/LPLA, genome duplication must have occurred during the 

selection process for LPLA-HYG integration, since the parent line, ∆lplASAT/LPLA, 

is diploid (see Figure 4.4). In addition, LPLA ∆lplASAT/lplAHYG/LPLA seems to have 

growth defects compared to wild-type, including slower logarithmic development, 

and premature entry into stationary phase (see Figure 4.3). 

In order to provide more convincing evidence that LPLA is an essential/very 

important gene, a complementation construct, LPLA-pRB, was generated and 

transfected into ∆lplASAT/LPLA and ∆lplAHYG/LPLA lines to give rise to 
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∆lplASAT/LPLA::PrRNALPLA and ∆lplAHYG/LPLA::PrRNALPLA lines, respectively (see 

Sections 2.2.4–2.2.9). Clones were tested for LPLA-pRB integration by Southern 

blot analysis. The pRB construct is designed to integrate into any of the six 18S 

SSU rRNA gene copies present on chromosome 27 (Misslitz et al., 2000). 

Therefore, depending upon the site of LPLA-pRB integration, a Southern blot 

probed with a LPLA gene probe on NruI-digested gDNA would result in a band 

size of 8.4 kb, 6.3 kb, 6.4 kb, 9.0 kb, 7.4 kb or 5.5 kb (see Figure 4.2B). Figure 

4.2C shows a 6.3 kb/6.4 kb band for ∆lplAHYG/LPLA::PrRNALPLA. However, the 

band size for ∆lplASAT/LPLA::PrRNALPLA is larger than 9 kb. In this case, LPLA-

pRB could have integrated non-specifically into the L. major genome. Alternatively, 

LPLA-pRB could have integrated correctly, and subsequently duplicated within the 

18S SSU rRNA locus, resulting in a band size double that of 5.5 kb or 6.3 kb/6.4 

kb. However, the nature of the > 9 kb band was not investigated further. 

Finally, ∆lplASAT/LPLA::PrRNALPLA and ∆lplAHYG/LPLA::PrRNALPLA lines were 

transfected with LPLA-HYG or LPLA-SAT knockout cassettes, respectively, in 

order to create null mutants of the endogenous LPLA allele (∆lplA::PrRNALPLA). 

Analysis of a total of 43 clones from both transfections (see Table 4.1) revealed 

only one endogenous gene knockout, whereas the remaining clones retained the 

LPLA gene. Figure 4.2C shows one clone with gene ablation, 

∆lplASAT/lplAHYG::PrRNALPLA. Another clone has correct second-round integration 

but still retains at least one endogenous gene copy 

(∆lplAHYG/lplASAT/LPLA::PrRNALPLA). These results indicate that replacement of the 

LPLA allele is possible when LPLA is ectopically expressed. 
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Figure 4.2 Knockout attempts of LPLA gene, and complementation to permit gene ablation 
A, Schematic representation of the endogenous LPLA locus (I), and the locus after LPLA-SAT (II) 
or LPLA-HYG (III) integration. B, Complementation of a knockout necessitated replacement of one 
of the six 18S SSU rRNA gene copies (I) with the LPLA gene, under puromycin selection (II). Sizes 
in kb represent the expected band sizes to be observed by Southern blot (C). *Depending upon 
which of the six 18S SSU rRNA gene copies is replaced by the LPLA re-expressor, NruI-digested 
gDNA and Southern blot with LPLA gene probe may yield either 8.4 kb, 6.3 kb, 6.4 kb, 9 kb, 7.4 kb 
or 5.5 kb bands. C, Southern blot of 2 µg gDNA digested with NruI and probed with HYG-, SAT- 
and LPLA gene probes, with expected bands shown in A and B. 'LPLA-re-expressor' represents 
LPLA-pRB integration into the 18S SSU rRNA locus. 
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Figure 4.3 Growth of LPLA knockout mutants  
Growth analysis of different LPLA knockout mutants was carried out by diluting all cultures to 5 x 
105 parasites ml-1, and recording parasite density circa every 24 h. All lines were cultured in 
duplicate. A, Average and standard deviation values were calculated for each line at individual time 
points. Values were normalised to wild-type values and plotted as a bar chart. One-way ANOVA 
with Tukey post-tests were performed at each time point. Values that are significantly different from 
wild-type values (p-value < 0.05) are depicted with the '*' symbol. B, Growth of parasite lines 
represented by a line graph with logarithmic Y-axis. 

 

Figure 4.4 Ploidy of LPLA knockout mutants 
FACS was used in order to determine the ploidy of different LPLA knockout mutants. Cells were 
fixed in 70 % methanol and incubated with propidium iodide. Incorporation of propidium iodide into 
DNA was detected with a Becton Dickinson FACS Calibur using FL2-A (detecting fluorescence 
emissions between 585 – 642 nm). Data were interpreted using the CellQuestPro software. 
Histograms show cell count relative to FL2 fluorescence (arbitrary units). Peaks at 200-, 400- and 
800 FL2 arbitrary units represent diploid, tetraploid and octaploid DNA contents, respectively. 
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Total numbers analysed
Transfections Clones Transfections Integration Gene knockout
∆lplA HYG/LPLA  + LPLA- SAT 9* 3 N/A N/A

∆lplA SAT/LPLA  + LPLA- HYG 63 3 30/63 0/63

∆lplA HYG/LPLA ::P rRNA LPLA  + LPLA- SAT 23 2 2/2 0/23

∆lplA SAT/LPLA ::P rRNA LPLA  + LPLA- HYG 20 2 3/3 1/20  

Table 4.1 Summary table of LPLA knockout attempts 
The information provided illustrates the total number of second round knockout attempts on LPLA 
heterozygotes, and those carried out using heterozygotes re-expressing LPLA within the 18S SSU 
rRNA locus. All values were obtained through PCR-based knockout screens. *Only nine clones 
were attained from three transfections of ∆lplAHYG/LPLA + LPLA-SAT, and all were non-viable after 
sub-passaging into larger volumes of HOMEM + 10 % FCS. As such, gDNA was not attained from 
these lines, and therefore, integration or gene knockout determination is not applicable (N/A). 

4.4 Overexpression of LPLA-His 

Given that it was not possible to study the function of LPLA by gene knockout, an 

alternative approach was taken; LPLA-His expression/overexpression in 

promastigotes. Wild-type LPLA (LPLA) and LPLA containing a single point 

mutation resulting in a H118A amino acid mutation (LPLAH118A), were sub-cloned 

into the pGL1137 plasmid from the pGL1132 plasmid (see Section 4.2). When 

expressed in L. major, the constructs result in the translation of LPLA proteins with 

C-terminal 6x His-tags (see Section 2.2.6). The reason for expressing LPLA-His 

proteins instead of untagged versions was in order to be able to detect ectopic 

protein expression, since (as explained in Section 3.5.4) antibodies that detect 

LmjLPLA were not available. 

As discussed in Section 3.4.3, LPLA is a member of a larger family encompassing 

LPLA, LT and BPL proteins, all of which share a structurally- and catalytically 

similar N-terminal domain (Fujiwara et al., 2005; Fujiwara et al., 2007; Kim do et 

al., 2005; McManus et al., 2005; Wilson et al., 1992). The rationale for introducing 

the mutation LPLAH118A was based on the fact that in all LPLA and LT proteins 

His118 (LmjLPLA numbering) is one of the key residues involved in forming the 

hydrophobic crevice to which the lipoyl-AMP intermediate binds, and is found 

within the strictly conserved 108RRx2GGGxV(F/Y)HD119 motif (see Figure 3.4) 

(Fujiwara et al., 2005; Kim do et al., 2005; McManus et al., 2005). Specifically, the 

side-chain of His118 is thought to form van der Waals interactions with the lipoyl-

moiety of the lipoyl-AMP intermediate (Fujiwara et al., 2007). Published data 

highlight the importance of the ATP-binding pocket in E. coli BPL (EcBPL) (Choi-

Rhee et al., 2004; Cronan, 2005; Kwon & Beckett, 2000; Reche, 2000; Wilson et 
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al., 1992). EcLplA and EcBPL enzymes operate in a similar fashion; via a two-step 

biotin/LA activation and transfer mechanism (see Section 3.4.3) (Fujiwara et al., 

2005; Wilson et al., 1992). Ordinarily in E. coli, the post-translational ligation of 

biotin (biotinylation) is highly specific to a single apoprotein, biotin carboxyl carrier 

protein (BCCP) (Beckett & Matthews, 1997; Cronan, 1989). However, a mutant 

within the ATP-binding domain, EcBPLR118G, biotinylates substrates other than 

BCCP (Choi-Rhee et al., 2004; Cronan, 2005). The most likely explanation for this 

"promiscuous biotinylation" was found to be due to the activated biotin 

intermediate (biotinoyl-AMP) escaping more easily from the EcBPLR118G active site 

and  biotinylating lysine residues on non-specific substrates by chemical (not 

enzymatic) acylation, in a concentration-dependent manner (of both enzyme and 

substrate) (Choi-Rhee et al., 2004; Cronan, 2005). Given that LplA and BPL 

enzymes share a similar mechanism of catalysis, the question was asked as to 

whether ectopic expression of LPLAH118A in L. major promastigotes would result in 

growth and/or lipoylation pattern phenotypes. 

WT[LPLA-His] and WT[LPLAH118A-His] lines were analysed by determining 

parasite growth rates relative to those of wild-type and WT[uncut pGL1137] 

negative controls. In addition, soluble protein was isolated during logarithmic 

growth and stationary phase and western blotting carried out with α-His-, α-LA-, α-

HASPB- and α-LmjLIPA antibodies, and α-cysteine synthease (α-CS) antibody to 

verify equal loading. At the final time point in stationary phase, in addition to 

harvesting mixed promastigotes, metacyclic promastigotes were isolated by a 

peanut agglutination protocol (see Section 2.2.2). All parasite lines were cultured 

in duplicate, and each experiment was independently repeated. Repetitions 

yielded very similar results; a representative set of which are shown. 

Firstly, LPLA-His expressing lines grown on 10 µg ml-1 or 50 µg ml-1 G418 drug 

selection pressures exhibited growth phenotypes; relative to the WT[uncut 

pGL1137] negative control, LPLA-His expressing lines enter stationary phase at a 

significantly earlier density (p<0.05) (see Figure 4.5). In terms of growth, both 

LPLA-His lines exhibit similar phenotypes, irrespective of G418 concentration (see 

Figure 4.5). Secondly, western blot analyses show that LPLA-His and LPLAH118A-

His proteins are expressed at similar levels, irrespective of whether the mutant 

lines were cultured in the presence of 10 µg ml-1 or 50 µg ml-1 G418 drug selection 

pressure (see Figure 4.6). The calculated molecular size of LPLA-His and 
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LPLAH118A-His proteins from SDS-PAGE was 56.1 kDa (see Section 2.5.5 for basis 

of calculations). Given that the LPLA proteins are fused to a His-tag that is 3.1 

kDa, the actual molecular size of the two proteins is 53.0 kDa (56.1 kDa minus 3.1 

kDa), which is similar to the predicted size of processed LPLA from the LPLA-GFP 

fusion protein (52.4 kDa) (see Section 4.2). It is likely therefore that the wild-type 

LPLA-His and mutant LPLA-His proteins are N-terminally processed for 

mitochondrial transit. Based on the sizes of LPLA calculated from LPLA-GFP (see 

Section 4.2) and LPLA-His data, it can be estimated that the mitochondrial 

targeting peptide for LPLA is between 19 – 24 amino acids, instead of 12 amino 

acids (LPLAT1) predicted by TargetP or 36 amino acids (LPLAT2) (see Figure 3.4 

for LPLA alignment). 
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Figure 4.5 Growth of LPLA-His expressing lines 
Growth analysis of LPLA-His expressing lines was carried out by diluting all cultures to 5 x 105 
parasites ml-1, and recording parasite density circa every 24 h. All lines were cultured in duplicate. 
WT[uncut pGL1137], WT[LPLA-His] and WT[LPLAH118A-His] lines were maintained on 10 µg ml-1 (A 
& B) or 50 µg ml-1 (C & D) G418 drug pressure. A & C, Average and standard deviation values 
were calculated for each parasite line at individual time points. Values were normalised to wild-type 
and plotted as a bar chart. One-way ANOVA with Tukey post-tests were performed at each time 
point, with uncut pGL1137 values as control. Values that are significantly different from uncut 
pGL1137 values (p-value < 0.05) are depicted with the '*' symbol. B, Growth of parasite lines 
represented by a line graph with logarithmic Y-axis. 
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Figure 4.6 Protein expression levels of LPLA-His ex pressing lines 
10 µg soluble protein samples from wild-type, WT[LPLA-His] and WT[LPLAH118A-His] lines 
maintained on 10 µg ml-1 or 50 µg ml-1 G418 drug pressure, from 96 h growth (see Figure 4.5), 
were subjected to SDS-PAGE and western blot analysis with α-HIS antibody at 1/10,000. The two 
blots were subsequently stripped of antibody and re-probed with α-CS antibody at 1/7,500 in order 
to check for equal loading. All lines were grown in duplicate, and both replicates are tested by 
western blot. The calculated size for both LPLA-His and LPLAH118A-His is 56.1 kDa (see Section 
2.5.5 for method of calculating molecular sizes from SDS-PAGE). 

As illustrated in Section 3.3, the lipoylation patterns of α-KADH E2 subunits and 

the H-protein of the GCC can be traced, in a repeatable way, throughout 

promastigote development in vitro. As such, the question was asked as to whether 

lipoylation patterns would be affected in WT[LPLA-His] and/or WT[LPLAH118A-His] 

lines. G418 concentration has no obvious effect on lipoylation pattern; as such, a 

representative set of data are shown, and the protein used for western blotting 

was derived from mutant lines grown in the presence of 50 µg ml-1 G418. Figure 

4.7 shows lipoylation patterns of wild-type and WT[uncut pGL1137] negative 

control lines, and WT[LPLA-His] and WT[LPLAH118A-His] lines. Protein loading is 

comparable in all lanes of each blot, lipoylation patterns of replicate treatments are 

consistent, and lipoylation patterns of the WT[uncut pGL1137] control are similar 

to those in wild-type. Figure 4.7 shows that the lipoylation pattern in WT[LPLA-His] 

is comparable to that in the WT[uncut pGL1137] line. The only difference between 

lipoylation patterns in these two lines compared to wild-type is that E2k, E2p and 

E2b are lipoylated in wild-type at 116 h mixed promastigote culture, yet only E2k is 

lipoylated in WT[LPLA-His] and WT[uncut pGL1137] lines (see Figure 4.7). 

In contrast, lipoylation of all three α-KADH E2 subunits and H-protein is up-

regulated in the WT[LPLAH118A-His] line at all time points. A very large increase in 
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lipoylation of the H-protein is apparent at all time points except in purified 

metacyclic promastigotes. This is in contrast to LPLA-His expression (see Figure 

4.7) and LIPB-His expression (see Section 5.4.2), which do not result in an 

increase in H-protein lipoylation relative to the control lines. Perhaps the most 

intriguing finding is that metacyclic promastigotes in the WT[LPLAH118A-His] line 

possess lipoylated E2k, E2p and E2b subunits, whereas all other lines only have 

lipoylated E2k and H-protein (see Figure 4.7). 

 

Figure 4.7 Lipoylation patterns of LPLA-His express ing lines  
Approximately 1 e8 cells were lysed at four different time points from cultures maintained on 50 µg 
ml-1 G418 drug pressure (see Figure 4.5). Soluble protein was harvested and subjected to SDS-
PAGE. Western blots were carried out with α-LA antibody at 1/6,000 to determine lipoylation 
patterns, and with α-CS antibody at 1/7,500 to check for equal loading. All lines were grown in 
duplicate, and both replicates are tested by western blot. 

Purified metacyclic promastigotes at the 116 h time point from wild-type and LPLA-

His expressing lines grown on different G418 selection pressures were tested by 
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western blotting for a metacyclic-specific marker, hydrophilic acylated surface 

protein  (HASPB, kind gift from Professor D.F. Smith) (Flinn et al., 1994). Figure 

4.8 shows that LPLA-His expressing lines have significantly less HASPB protein 

than does the wild-type control (p<0.05), suggesting that LPLA-His expression 

could affect metacyclogenesis. A possible explanation is that since LPLA-His 

expressing lines enter stationary phase at an earlier time point (see Figure 4.5), 

and that this time point is most correlated to the production of HASPB-positive 

metacyclic promastigotes, 116 h was not a suitable time to probe LPLA-His and 

LPLAH118A-His protein lysates with α-HASPB antibody. This option was ruled out 

by western blotting with α-HASPB antibody at all time points, which revealed that 

levels of HASPB expression are consistently lower in LPLA-His expressing lines 

compared to wild-type (data not shown). 

 

Figure 4.8 Metacyclogenesis of LPLA-His expressing lines 
A, 10 µg soluble protein of metacyclic promastigotes (at 116 h time point) purified from LPLA-His 
expressing lines maintained on 10 µg ml-1 or 50 µg ml-1 G418 drug pressure, was subjected to 
SDS-PAGE. Western blotting was subsequently carried out with α-HASPB antibody at 1/4,000 and 
α-CS antibody at 1/7,500, to assess loading. All lines were grown in duplicate, and both replicates 
are tested by western blot. B, Band areas (shown in A) were determined using Scion Image 
program, averages and standard deviations were calculated and a bar chart plotted. Subsequently, 
one-way ANOVA with a Tukey post-test was performed to determine whether band areas in 
WT[LPLA-His] and WT[LPLAH118A-His] lines were significantly different from those in wild-type, 
where p-value < 0.05 is indicated by the '*' symbol. 
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In order to determine whether expression of LPLA-His and LPLAH118A-His proteins 

resulted in up-regulation of the LA biosynthesis pathway, western blotting was 

carried out using the α-LmjLIPA antibody (see Section 3.5.4.1). Given that the 

most notable differences in lipoylation pattern (with regards to the WT[LPLAH118A-

His] line) were observed in metacyclic promastigotes (see Figure 4.7), only protein 

lysates from this time point were probed with α-LmjLIPA by western blotting. 

Figure 4.9 shows that in all parasite lines, a band of 45.8 kDa is apparent. The fact 

that this band corresponds to LIPA is corroborated by the fact that western blotting 

with α-LmjLIPA antibody on protein lysate from the WT[LIPA-GFP] line reveals a 

45.3 kDa band, which is most likely to represent degradation of LIPA-GFP into 

LIPA and GFP (see Figure 5.1). According to prediction programmes TargetP and 

MitoProt, the expected molecular size of LIPA after cleavage of the N-terminal 

mitochondrial targeting peptide is 44.1 kDa (LIPAT1) or 45.5 kDa (LIPAT2), 

respectively (see Section 3.4.2). The average of the bands observed at 45.3 kDa 

and 45.8 kDa gives 45.5 kDa, which would be in line with the prediction made by 

MitoProt. Figure 4.9 shows that LIPA band intensity is similar in wild-type and 

WT[LPLA-His] lines, yet perhaps lower in the WT[LPLAH118A-His] line. However, 

the level of CS protein in protein lysates from the WT[LPLAH118A-His] line is lower 

than in the other two lines, and as such it is probable that the level of LIPA protein 

is similar in all lanes. This implies that any phenotypes, such as alterations in 

lipoylation patterns, are probably due to expression of LPLA-His/LPLAH118A-His 

proteins and not because of up-regulation of LA biosynthesis. 

 

Figure 4.9 LIPA expression levels in LPLA-His expre ssing lines 
Western blotting of protein lysates of purified metacyclic promastigotes from the 116 h time point 
(only lines grown on 50 µg ml-1 G418 selection pressure) using α-LmjLIPA antibodies at 1/20 to 
determine LIPA expression levels in LPLA-His expressing lines relative to the wild-type control. 
Blots were also probed with α-CS antibody at 1/7,500 to check for equal loading. All lines were 
grown in duplicate, and both replicates are tested by western blot. 
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4.5 Summary 

• LPLA-GFP is a mitochondrial protein, as shown by fluorescence microscopy in 

which LPLA-GFP (FITC filter) and Mitotracker CMXRos (Rhodamine filter) 

overlay. 

• LPLA is essential/very important to promastigote survival, since 0/72 clones from 

six independent transfections resulted in gene ablation. 

• Both LPLA alleles can be replaced, although all clones with double allele 

replacement still possessed at least one copy of the endogenous LPLA gene; 

apparently achieved by the parasites becoming tetraploid. 

• A permissive knockout strategy using an integrating LPLA re-expressor 

construct allowed complete gene replacement. The LPLA knockout with re-

expressor grew significantly slower than wild-type and entered stationary phase 

at a substantially lower cell density. 

• Expression of C-terminally His-tagged LPLA and active site mutant LPLAH118A 

resulted in the onset of stationary phase markedly earlier than in control lines. 

• The lipoylation pattern in WT[LPLA-His] was very similar to the usual wild-type 

pattern, whereas expression of LPLAH118A-His resulted in higher lipoylation of all 

three α-KADH E2 subunits and the H-protein of the GCC at all time points. 

Intriguingly, metacyclic promastigotes in the WT[LPLAH118A-His] line lipoylated 

E2p and E2b in addition to E2k and H-protein, which was not observed in wild-

type, WT[uncut pGL1137] or WT[LPLA-His] lines. 

• Expression of LPLA-His or LPLAH118A-His resulted in the isolation of a lower 

proportion of HASPB-positive non-procyclic promastigotes, suggesting that 

LPLA-His expression could affect metacyclogenesis. 

• There is no noticeable increase in LIPA protein in LPLA-His expressing lines 

relative to the wild-type control, indicating that the changes in lipoylation patterns 

observed in the WT[LPLAH118A-His] line are most likely a result of LPLAH118A-His 

expression and not due to up-regulation of LA biosynthesis. This increase in 
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lipoylation could be due to promiscuous lipoylation of the LPLAH118A-His mutant 

enzyme. 
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5 Biosynthesis of lipoic acid 

5.1 Introduction 

L. major encodes putative LIPA and LIPB enzymes, which were shown to be 

active by functional complementation of E. coli deficient in lipA and lipB, 

respectively, as described in Section 3.5. In the study reported in this chapter, the 

aims were to determine the sub-cellular localisations of LIPA and LIPB and to 

discern the roles that each plays in L. major. The former question was addressed 

by expressing a LIPA-GFP fusion protein in promastigotes, and establishing the 

sub-cellular localisation of LIPA-GFP by live cell fluorescence microscopy. An 

alternative approach was taken to determine the sub-cellular localisation of LIPB, 

which involved a pre-fractionation technique using digitonin titration. In order to 

elucidate the function of LIPA in promastigotes, attempts were made to ablate both 

gene copies by homologous recombination. In order to study the function of LIPB, 

wild-type LIPB with a C-terminal His-tag was ectopically expressed in 

promastigotes, with the aim of perturbing the normal balance of lipoylation, which 

would perhaps incite a decrease in parasite fitness. 

5.2 Localisation of LIPA 

To generate a L. major line expressing a C-terminal fusion protein of LIPA with 

GFP, the full length LIPA gene was amplified by PCR using primer pair Lm19-20 

(see Section 2.1.4). The resulting 1.3 kb fragment was digested with NdeI/KpnI 

before cloning into NdeI/KpnI digested pGL1132 vector (Tetaud et al., 2002) to 

yield the construct LIPA-GFP (see Figure 5.1A). The destination vector pGL1132 

contains the required control elements that allow constitutive expression of the 

proteins in L. major as well as the neomycin phosphotransferase (NEO) selectable 

marker (see Sections 2.2.6 and 2.2.7) (Cruz & Beverley, 1990; Tetaud et al., 

2002). The LIPA-GFP construct was transfected into wild-type to give rise to the 

WT[LIPA-GFP] line, which was grown in the presence of 10 µg ml-1 G418 to select 

for parasites that possess ectopic copies of the LIPA-GFP plasmid (see Section 

2.2.7). It is interesting to note that unlike the WT[LPLA-GFP] line, which grew 

efficiently when selecting with 50 µg ml-1 G418 (see Section 4.2), the WT[LIPA-

GFP] line was only able to proliferate when the concentration of G418 was 
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lowered to 10 µg ml-1; suggesting that expression of LIPA-GFP is not as well 

tolerated as that of LPLA-GFP. 

In order to verify that the LIPA-GFP fusion protein was expressed in the WT[LIPA-

GFP] line, western blotting with α-GFP monoclonal antibody and with α-LmjLIPA 

antibody was carried out. Figure 5.1B shows that both antibodies recognised a 

band with a calculated molecular size of 72.2 kDa. Unlike in the WT[LPLA-GFP] 

line where no GFP degradation was apparent, a clear 26.9 kDa band was 

detected in WT[LIPA-GFP] protein lysate using α-GFP antibody, with an expected 

GFP band size of 27.1 kDa (see Figure 5.1B). Probing WT[LIPA-GFP] protein 

lysate with α-LmjLIPA antibody resulted in a 45.3 kDa band on a western blot. 

Probing wild-type protein lysate with α-LmjLIPA antibody resulted in the 

recognition of a 45.8 kDa band (see Section 4.4, Figure 4.9). According to 

prediction programmes TargetP and MitoProt, the expected molecular size of 

LmjLIPA after cleavage of the N-terminal mitochondrial targeting peptide would be 

45.5 kDa (LmjLIPAT1) or 44.1 kDa (LmjLIPAT2), respectively (see Section 3.4.2). 

The average of the bands observed at 45.3 kDa and 45.8 kDa is 45.5 kDa, which 

would be in line with the prediction made by TargetP, and would equate to a 

targeting peptide of five amino acids. 

Fluorescence microscopy to detect the LIPA-GFP reporter, in combination with 

Mitotracker CMXRos mitochondrial stain, revealed that LIPA-GFP is a 

mitochondrial protein (see Figure 5.1C). This result is in accordance with sub-

cellular targeting predictions using MitoProt and TargetP (see Section 3.4.2). 
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Figure 5.1 Sub-cellular localisation of LIPA-GFP  
A, The LIPA gene (see Section 3.4.2) was amplified from gDNA with primer pair Lm19-20 (see 
Section 2.1.4). The insert was cloned into expression vector pGL1132, generating construct LIPA-
GFP (I). Correct cloning was verified by NdeI/KpnI digest, releasing a 1.26 kb insert corresponding 
to LIPA, and vector backbone of 6.94 kb (II). B, The LIPA-GFP construct was expressed in 
promastigotes to give rise to the WT[LIPA-GFP] line, and expression verified by western blotting of 
10 µg LIPA-GFP protein lysate with α-GFP antibody at 1/5,000 or α-LmjLIPA antibody at 1/20. 
Equal loading was verified by probing with α-CS antibody at 1/7,500. The band observed for LIPA-
GFP has a calculated size of 72.2 kDa. The calculated sizes of LIPA and GFP are 45.3 kDa and 
26.9 kDa, respectively (see Section 2.5.5 for method of calculating molecular weights from SDS-
PAGE). C, The mitochondrion of WT[LIPA-GFP] promastigotes was stained with Mitotracker 
CMXRos, and images of live cells were attained by fluorescence microscopy with DIC (for phase), 
FITC (for LIPA-GFP), rhodamine (for Mitotracker) or DAPI filters. 
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5.3 Knockout studies of LIPA 

In order to study the in vivo role of LIPA, a gene replacement strategy was 

employed. Knockout cassettes LIPA-SAT and LIPA-HYG were generated, and 

LIPA-SAT was transfected into promastigotes, as described in Section 2.2.4. 

Figure 5.2 is representative of the results obtained from LIPA knockout attempts, a 

summary of which is provided in Table 5.1. Two independent heterozygous lines 

for LIPA (∆lipASAT/LIPA) were created by replacement of one LIPA allele with the 

LIPA-SAT knockout cassette (see Figure 5.2C, lane 2 for one of the two 

heterozygotes). Based on growth data generated in duplicate from one of the 

heterozygous lines (other heterozygote exhibits the same phenotype; data not 

shown), ∆lipASAT/LIPA reached a significantly lower cell density at stationary phase 

than did the wild-type control (see Figure 5.3) 

Attempts were made to replace the remaining LIPA allele with the LIPA-HYG 

knockout cassette, and in all three transfections carried out 10 µM LA was 

included in the medium at all steps of the selection process. Therefore, if LA 

salvage and LA biosynthesis pathways are redundant, the theory was that 

supplementation with LA could permit LIPA gene ablation. In total, 61 clones from 

three independent transfections of ∆lipASAT/LIPA lines transfected with the LIPA-

HYG knockout cassette were analysed by PCR for the presence of the gene and 

for LIPA-HYG integration. 33/61 clones had correct LIPA-HYG integration yet 0/61 

had gene knockout (See Table 5.1, PCR data not shown). Southern blot analysis 

of one such double integrant (∆lipASAT/lipAHYG/LIPA) with LIPA, SAT and HYG 

gene probes showed that this clone indeed has LIPA-SAT and LIPA-HYG 

integration, and still possesses the endogenous gene (see Figure 5.2, lane 3). 

This clone was analysed by FACS, which illustrated that ∆lipASAT/lipAHYG/LIPA is 

tetraploid, meaning that non-dividing cells possess four copies of each 

chromosome, instead of the normal two copies in diploid cells (see Figure 5.4). In 

addition, ∆lipASAT/lipAHYG/LIPA seems to have growth defects compared to wild-

type, including slower logarithmic development, and premature entry into 

stationary phase (see Figure 5.3). 

In order to provide more convincing evidence that LIPA is an essential/very 

important gene, a complementation construct, LIPA-pRB, was generated and 
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transfected into one of the two ∆lipASAT/LIPA lines to give rise to the 

∆lipASAT/LIPA::PrRNALIPA line (see Sections 2.2.4-2.2.9). As discussed in Section 

4.3, the pRB construct is designed to integrate into any of the six 18S SSU rRNA 

gene copies present on chromosome 27 (Misslitz et al., 2000). Therefore, 

depending upon the site of LIPA-pRB integration, a Southern blot probed with a 

LIPA gene probe on NruI-digested gDNA would result in a band size of 13.2 kb, 

11.0 kb, 11.2 kb, 13.8 kb, 12.2 kb or 10.3 kb (see Figure 5.2B). Figure 5.2C (lane 

4) shows that Southern blotting with LIPA gene probe on NruI-digested gDNA from 

the ∆lipASAT/LIPA::PrRNALIPA line resulted in a band size >10 kb. It is not possible 

to interpret which of the six 18S SSU rRNA gene copies has been replaced by 

LIPA-pRB integration, since the DNA ladder does not surpass 10 kb. 

Subsequently, two independent transfections were carried out in order to attempt 

the replacement of the remaining endogenous LIPA allele in the 

∆lipASAT/LIPA::PrRNALIPA line, with the LIPA-HYG knockout cassette. A total of 23 

clones were analysed by PCR for the presence of the endogenous LIPA gene as 

well as for integration of the LIPA-HYG knockout cassette (data not shown); it was 

found that 14/23 clones had correct integration of LIPA-HYG, yet 0/23 clones were 

lacking the endogenous LIPA gene (see Table 5.1). Southern blot analysis 

indicated that one such clone possessed an unexpected band above 10 kb instead 

of the expected band for LIPA-HYG integration (see Figure 5.2C, lane 5). The 

reason why this clone (and presumably other clones) appears to have correct 

LIPA-HYG integration by PCR (using primers amplifying from outside of the 5' FR 

used in the construct to within the HYG gene) and not by Southern blot is unclear. 

         Total numbers analysed
Transfections Clones Transfections Integration Gene knockout
lipA SAT/LIPA  + LIPA -HYG 61 3 33/61 0/61

lipA SAT /LIPA ::P rRNA LIPA + LIPA- HYG 23 2 14/23 0/23  

Table 5.1 Summary table of LIPA knockout attempts 
The information provided illustrates the total number of second round knockout attempts on LIPA 
heterozygotes, and those carried out using heterozygotes re-expressing LIPA within the 18S SSU 
rRNA locus. All values were obtained through PCR-based knockout screens. 
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Figure 5.2 Knockout attempts of LIPA gene, and complementation in an attempt to permit 
gene ablation 
A, Schematic representation of the endogenous LIPA locus (I), and the locus after LIPA-SAT (II) or 
LIPA-HYG (III) integration. B, Complementation of a knockout necessitated replacement of one of 
the six 18S SSU rRNA gene copies (I) with the LIPA gene, under puromycin selection (II). Sizes in 
kb represent the expected band sizes to be observed by Southern blot (C). *Depending upon which 
of the six 18S SSU rRNA gene copies is replaced by the LIPA re-expressor, NruI-digested gDNA 
and Southern blot with LIPA gene probe may yield either 13.2 kb, 11.0 kb, 11.2 kb, 13.8 kb, 12.2 
kb, 10.3 kb bands. C, Southern blot of 2 µg gDNA digested with NruI and probed with HYG-, SAT- 
and LIPA gene probes, with expected bands shown in A and B. 'LPLA-re-expressor' represents 
LPLA-pRB integration into the 18S SSU rRNA locus. The '**' symbol represents an unknown band, 
which could correspond to unexpected LIPA-HYG integration (see text for explanation). 
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Figure 5.3 Growth of LIPA knockout mutants 
Growth analysis of different LIPA knockout mutants was carried out by diluting all cultures to 5 x 
105 parasites ml-1, and recording parasite density circa every 24 h. All lines were cultured in 
duplicate. A, Average and standard deviation values were calculated for each line at individual time 
points. Values were normalised to wild-type values and plotted as a bar chart. One-way ANOVA 
with Tukey post-tests were performed at each time point. Values that are significantly different from 
wild-type values (p-value < 0.05) are depicted with the '*' symbol. B, Growth of parasite lines 
represented by a line graph with logarithmic Y-axis. 

 

Figure 5.4 Ploidy of LIPA knockout mutants 
FACS was used in order to determine the ploidy of different LIPA knockout mutants. Cells were 
fixed in 70 % methanol and incubated with propidium iodide. Incorporation of propidium iodide into 
DNA was detected with a Becton Dickinson FACS Calibur using FL2-A (detecting fluorescence 
emissions between 585 – 642 nm). Data were interpreted using the CellQuestPro software. 
Histograms show cell count relative to FL2 fluorescence (arbitrary units). Peaks at 200-, 400- and 
800 FL2 arbitrary units represent diploid, tetraploid and octaploid DNA contents, respectively. 

5.4 Overexpression of LIPB-His 

5.4.1 Localisation of LIPB-His 

Figure 5.1 illustrates that the LIPA-GFP fusion protein is targeted to the 

mitochondrion, which infers that LIPA is a mitochondrial protein. Given that LipA 

has been shown to be dependent upon the action of LipB in E. coli (Zhao et al., 

2005), and due to the fact that the two proteins co-localise to the apicoplast 
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compartment in P. falciparum (Wrenger & Muller, 2004) and in T. gondii 

(Thomsen-Zieger et al., 2003), it was hypothesised that LmjLIPA and LmjLIPB 

would also be found within the same organelle. In order to determine whether 

LmjLIPB is a mitochondrial protein, an alternative approach to the GFP reporter 

system was adopted; determination of the sub-cellular localisation of a LIPB-His 

fusion protein in promastigotes by cellular pre-fractionation.  

To generate a L. major line expressing a C-terminal fusion protein of LIPB with 

His-tag, the full length LIPB gene was amplified by PCR using primer pair Lm21-

22 (see Section 2.1.4). The resulting 0.8 kb fragment was digested with NdeI/KpnI 

before cloning into NdeI/KpnI digested pGL1137 vector to yield construct LIPB-His 

(see Figure 5.5A). The destination vector pGL1137 is derived from pGL1132, and 

as such contains the required control elements that allow constitutive expression 

of the proteins in L. major as well as the neomycin phosphotransferase (NEO) 

selectable marker (see Section 2.2.6 and 2.2.7) (Cruz & Beverley, 1990; Tetaud et 

al., 2002). The LIPB-His construct was transfected into wild-type to give rise to the 

WT[LIPB-His] line. 

In order to determine the sub-cellular localisation of LIPB, parasites from wild-type 

and WT[LIPB-His] lines were permeabilised with increasing quantities of digitonin 

in order to pre-fractionate (that is, to concentrate) different cellular compartments. 

Previous digitonin-titration experiments in L. mexicana showed that cytosolic-, 

glycosomal- or mitochondrial protein markers could be detected by western blot 

when cells were treated with 0.3 mg ml-1, 1.5 mg ml-1 or 3.0 mg ml-1 to 5.0 mg ml-1 

digitonin, respectively (Leroux et al., 2006). Similar experiments have been 

reported in T. brucei (Coustou et al., 2005; Marche et al., 2000), T. cruzi (Bouvier 

et al., 2006; Maugeri et al., 2003; Miranda et al., 2008), Trypanoplasma borelli (T. 

borelli) (Wiemer et al., 1995) and L. donovani and L. infantum (Foucher et al., 

2006). 

The rationale for using the pre-fractionation technique was in order to obtain a 

semi-pure- and concentrated mitochondrial protein lysate fraction that could be 

probed with α-LmjLIPB antibody. The different protein lysate fractions were also 

probed with α-LA antibody, which served as a mitochondrial protein marker 

control. Figure 5.5B shows that no protein is detected when wild-type protein 

lysate is probed with α-LmjLIPB antibody, indicating that endogenous LmjLIPB is 

either expressed at levels that are undetectable to the α-LmjLIPB antibody, or the 
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protein is not expressed in promastigotes. Figure 5.5B illustrates that the LIPB-His 

protein is detected by the α-LmjLIPB antibody, yet only in fractions in which protein 

was solubilised by 3.0 mg ml-1 or 5.0 mg ml-1 digitonin and not in the 1.5 mg ml-1 

digitonin fraction. As shown in Figure 5.5B, this pattern coincides with that 

observed when WT[LIPB-His] protein lysate is probed with α-LA antibody, 

whereby lipoylated E2k, E2p, E2b and H-protein are concentrated in 3.0 mg ml-1 

and 5.0 mg ml-1 digitonin fractions. There is some leakage of E2k and H-protein 

from cells treated with 1.5 mg ml-1 digitonin. Overall, the results indicate that LIPB-

His is a mitochondrial protein. 
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Figure 5.5 Sub-cellular localisation of LIPB-His in  the WT[ LIPB-His] line 
A, The LIPB gene (see Section 3.4.1) was amplified from gDNA with primer pair Lm21-22 (see 
Section 2.1.4). The insert was cloned into expression vector pGL1137, generating construct LIPB-
His (I). Correct cloning was verified by NdeI/KpnI digest, releasing a 0.8 kb insert corresponding to 
LIPB, and vector backbone of 6.3kb (II). B, The LIPB-His construct was expressed in 
promastigotes to give rise to the WT[LIPB-His] line. In order to determine the sub-cellular 
localisation of LIPB, wild-type and WT[LIPB-His] lines from stationary phase were sequentially 
treated with increasing concentrations of digitonin ([DG]) varying from 1.5 – 5.0 mg ml-1 (see 
Section 2.2.3.3). The three protein lysate fractions for each line were subjected to SDS-PAGE and 
western blotting was carried out using α-LmjLIPB antibody (top panel) at 1/1,000 or α-LA antibody 
(bottom panel) at 1/6,000. LIPB-His was detected in LIPB-His lysate and was calculated to be 33.3 
kDa (see Section 2.5.5 for method of calculating molecular weights from SDS-PAGE). 

LIPB is expected to be expressed in promastigotes given that LIPA was shown to 

be expressed (see Figure 4.9). Given that LIPB is not detected in concentrated 

mitochondrial protein lysate from promastigotes (see Figure 5.5B), combined with 

the knowledge that E. coli LipB is expressed at levels that are undetectable 

(Jordan & Cronan, 2003), an experiment was carried out to determine the 

concentration of LIPB-His protein in the WT[LIPB-His] overexpressing line. 

Quantities of LIPBFL-Strep recombinant protein ranging from 0.2 – 3.2 ng and 10 

µg of WT[LIPB-His] protein lysate were subjected to SDS-PAGE and western 

blotting with α-LmjLIPB antibody (see Figure 5.6A). Band density was measured 



Chapter 5  142 

 

using Quantity One software and a standard curve produced with band intensity as 

a function of quantity of LIPBFL-Strep recombinant protein (as described in Section 

2.5.5) (see Figure 5.6B). Using the standard curve, it was determined that LIPB-

His protein is present at a concentration of 50 pg per µg of WT[LIPB-His] soluble 

protein lysate. This equates to approximately 27,000 copies of LIPB-His 

polypeptide per cell (given that there are 3.7 x 105 cells per 1 µg of soluble protein 

lysate). Considering that E. coli express < 10 copies of LipB per cell (Jordan & 

Cronan, 2003), and that LmjLIPB is not detectable in concentrated promastigote 

mitochondrial protein lysate, it can be concluded that the WT[LIPB-His] line 

drastically overexpresses the LIPB-His protein relative to endogenous LIPB.  

In addition to analysing band density, the molecular sizes of LIPBFL-Strep and 

LIPB-His were calculated (see Section 2.5.5 for method of calculating molecular 

sizes from SDS-PAGE). The molecular sizes of LIPBFL-Strep and LIPB-His are 

30.8 kDa and 32.2 kDa, respectively (see Figure 5.6A). The expected molecular 

size of LIPBFL-Strep is 30.7 kDa, and since the protein will not be processed for 

mitochondrial transit in E. coli, the observed 30.8 kDa band corresponds well to 

the predicted size. The expected molecular size of full-length LIPB-His is 32.3 

kDa, and based on TargetP mitochondrial targeting prediction (see Figure 3.2), the 

size of LIPB-His after cleavage of the mitochondrial targeting peptide would be 

28.8 kDa. The fact that the observed LIPB-His protein is 32.2 kDa indicates that 

the mitochondrial targeting peptide is likely to be considerably shorter than that 

predicted by TargetP. 
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Figure 5.6 Quantification of the level of LIPB-His expression in the WT[ LIPB-His] line 
A, In order to quantify the amount of LIPB-His in the WT[LIPB-His] line, mid-log growth phase 
promastigote cells were harvested and 10 µg of soluble protein lysate subjected to SDS-PAGE. 
Different quantities of recombinant LIPBFL-Strep protein were loaded on the same gel. Western 
blotting was carried out with α-LmjLIPB antibody at 1/1,000 and chemiluminescence signal 
detected using a BioRad ChemiDoc XRS machine. The calculated sizes for LIPB-His and LIPBFL-
Strep are 32.2 kDa and 30.8 kDa, respectively (see Section 2.5.5 for method of calculating 
molecular sizes from SDS-PAGE). B, Band density was measured using the Quantity One software 
program and the linear phase was plotted on a graph. Using the linear equation, the quantity of 
LIPB-His protein in 10 µg of WT[LIPB-His] soluble protein lysate was determined to be 0.5 ng (as 
depicted in A). 

5.4.2 Effects of LIPB-His overexpression on promast igotes 

As discussed in Section 5.4.1, the WT[LIPB-His] line dramatically overexpresses 

the LIPB-His protein, relative to endogenous LmjLIPB expression in wild-type 

promastigotes. The effects of LIPB-His overexpression were analysed by 

employing the same assays used to study the effects of LPLA-His and LPLAH118A-

His expression (see Section 4.4). That is, the WT[LIPB-His] line was analysed by 

determining parasite growth rate relative to those of wild-type and WT[uncut 

pGL1137] controls. In addition, soluble protein was isolated during logarithmic 

growth and stationary phase and western blotting carried out with α-His, α-LA, α-

HASPB and α-LmjLIPA antibodies, and α-CS antibody to verify equal loading. All 

parasite lines were cultured in duplicate, and each experiment was independently 

repeated. Repetitions yielded very similar results; a representative set of which are 

shown. 
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Firstly, whether grown on 10 µg ml-1 or 50 µg ml-1 G418 drug selection pressure, 

the WT[LIPB-His] line exhibited a growth phenotype; relative to the WT[uncut 

pGL1137] control, WT[LIPB-His] entered stationary phase at a significantly earlier 

density (p<0.05) (see Figure 5.7). Secondly, western blot analysis with α-His 

antibody showed that LIPB-His protein expression was not affected by culturing 

parasites in the presence of different concentrations of G418 (see Figure 5.8). 

 

Figure 5.7 Growth of the WT[ LIPB-His] line 
Growth analysis of the LIPB-His over-expressing line was carried out by diluting all cultures to 5 x 
105 parasites ml-1, and recording parasite density circa every 24 h. All lines were cultured in 
duplicate. WT[uncut pGL1137] and WT[LIPB-His] lines were maintained on 10 µg ml-1 (A & B) or 50 
µg ml-1 (C & D) G418 drug pressure. A & C, Average and standard deviation values were 
calculated for each parasite line at individual time points. Values were normalised to wild-type and 
plotted as a bar chart. One-way ANOVA with Tukey post-tests were performed at each time point, 
with uncut pGL1137 values as control. Values that are significantly different from uncut pGL1137 
values (p-value < 0.05) are depicted with the '*' symbol. B, Growth of parasite lines represented by 
a line graph with logarithmic Y-axis. 
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Figure 5.8 LIPB-His expression levels in the WT[ LIPB-His] line 
10 µg soluble protein samples from wild-type or the WT[LIPB-His] line maintained on 10 µg ml-1 or 
50 µg ml-1 G418 drug pressure, from 96 h growth (see Figure 5.7), were subjected to SDS-PAGE 
and western blot analysis with α-HIS antibody at 1/10,000. The blot was subsequently stripped of 
antibody and re-probed with α-CS antibody at 1/7,500 in order to check for equal loading. 

Figure 5.9 illustrates the lipoylation patterns of wild-type and the WT[LIPB-His] 

lines cultured in the presence of 50 µg ml-1 G418 (the lipoylation patterns do not 

differ in LIPB-His overexpressing lines grown in the presence of either 10 µg ml-1 

or 50 µg ml-1 G418, and therefore only the latter data are shown). It should be 

noted that lipoylation of E2p and E2b are not as pronounced as that which is 

normally observed in wild-type parasites during stationary phase (72 h onwards) 

(see Figure 3.1). Throughout promastigote growth, lipoylation patterns in the 

WT[LIPB-His] line are very similar to those observed in the wild-type control. The 

only notable difference is that whereas metacyclic promastigotes in wild-type do 

not possess lipoylated E2p and E2b subunits, lipoylation of these acceptor 

proteins is apparent in WT[LIPB-His] protein lysate (see Figure 5.9), which is 

similar to the phenotype observed in the WT[LPLAH118A-His] line but not in the 

WT[LPLA-His] line (see Section 4.4, Figure 4.7). 
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Figure 5.9 Lipoylation patterns of the WT[ LIPB-His] line 
Approximately 1 e8 cells were lysed at four different time points from cultures maintained on 50 µg 
ml-1 G418 drug pressure. Soluble protein was harvested and subjected to SDS-PAGE. Western 
blots were carried out with α-LA antibody at 1/6,000 to determine lipoylation patterns, and with α-
CS antibody at 1/7,500 to check for equal loading. All lines were grown in duplicate, and both 
replicates are tested by western blot. 

In terms of the capacity to undergo metacyclogenesis as determined by the 

detection of the metacyclic protein marker HASPB at 116 h growth, the WT[LIPB-

His] line grown in the presence of either concentration of G418 showed a marked 

decrease, indicating that metacyclogenesis is possibly impaired (see Figure 5.10). 

A possible explanation is that since the WT[LIPB-His] line enters stationary phase 

at an earlier time point (see Figure 5.7), and this time point is most correlated to 

the production of HASPB-positive metacyclic promastigotes, 116 h was not a 

suitable time point to probe WT[LIPB-His] protein lysates with α-HASPB antibody. 

This possibility was ruled out by western blotting with α-HASPB antibody at all 

time points, which revealed that levels of HASPB expression are consistently 

lower in WT[LIPB-His] lines compared to wild-type (data not shown). 
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Figure 5.10 Metacyclogenesis of the WT[ LIPB-His] line 
A, 10 µg soluble protein from metacyclic promastigotes (at 116 h time point) purified from the LIPB-
His overexpressing line maintained on 10 µg ml-1 or 50 µg ml-1 G418 drug pressure, was subjected 
to SDS-PAGE. Western blotting was subsequently carried out with α-HASPB antibody at 1/4,000 
and with α-CS antibody at 1/7,500, to assess loading. All lines were grown in duplicate, and both 
replicates were tested by western blot. All treatments were carried out in duplicate B, Band areas 
(shown in A) were determined using Scion Image program, averages and standard deviations were 
calculated and a bar chart plotted. Subsequently, one-way ANOVA with a Tukey post-test was 
performed to determine whether band areas in the WT[LIPB-His] line were significantly different 
from those in wild-type, where p-value < 0.05 is indicated by the '*' symbol.  

Given that the WT[LIPB-His] line demonstrates a high overexpression of LIPB-His 

relative to endogenous LIPB, it was hypothesised that LIPA might consequently be 

up-regulated also. In order to test the hypothesis, wild-type and WT[LIPB-His] 

protein lysates from metacyclic promastigotes were probed with α-LmjLIPA 

antibody by western blotting. The reason for using this time point to analyse the 

levels of LIPA protein was due to the fact that the most notably difference in 

lipoylation pattern between the two lines is observed at this point. Figure 5.11 

shows that the level of LIPA protein is not higher in the WT[LIPB-His] line grown 

on 50 µg ml-1 G418 drug selection. This result indicates that the expression levels 

of endogenous LIPA and LIPB are low, and probably tightly regulated, and that 

overexpression of LIPB-His does not result in a concomitant increase in LIPA. 
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Figure 5.11 LIPA expression levels in the WT[ LIPB-His] line 
Western blotting of protein lysates from purified metacyclic promastigotes from the 116 h time point 
(only lines grown on 50 µg ml-1 G418 selection pressure) using α-LmjLIPA antibodies at 1/20 to 
determine LIPA expression levels in the WT[LIPB-His] line relative to the wild-type control. Blots 
were also probed with α-CS antibody at 1/7,500 to check for equal loading. All lines were grown in 
duplicate, and both replicates are tested by western blot. 

5.5 Summary 

• LIPA-GFP is a mitochondrial protein, as shown by fluorescence microscopy in 

which LIPA-GFP (FITC filter) and Mitotracker CMXRos (Rhodamine filter) 

overlay. 

• LIPA is essential/very important to promastigote survival, since none of the 61 

clones from three independent transfections lacked the gene. 

• Both LIPA alleles can be replaced, although all clones with double allele 

replacement still possess at least one copy of the endogenous LIPA gene. 

• A permissive knockout strategy using an integrating LIPA re-expressor construct 

did not lead to gene knockout in any of the 23 clones examined. 

• A LIPB-His fusion protein was shown to localise to the mitochondrial fraction by 

a digitonin pre-fractionation experiment. 

• Endogenous LIPB is expressed at sub-picomolar levels, since it could not be 

detected by western blotting of concentrated mitochondrial soluble protein lysate 

from wild-type parasites with α-LmjLIPB antibody.  

• Overexpression of LIPB-His resulted in the onset of stationary phase markedly 

earlier than in control lines. 
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• The lipoylation pattern in WT[LIPB-His] was very similar to the typical wild-type 

pattern, except that metacyclic promastigotes in the WT[LIPB-His] line lipoylated 

E2p and E2b in addition to E2k and H-protein. 

• Overexpression of LIPB-His resulted in the isolation of a lower proportion of 

HASPB-positive non-procyclic promastigotes, suggesting that LIPB-His 

overexpression could affect metacyclogenesis. 

• There is no noticeable increase in LIPA protein levels in the WT[LIPB-His] line 

relative to the wild-type control. 
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6 Discussion 

6.1 Introduction 

LA metabolism has been most extensively studied in E. coli, and a wealth of data 

have also been generated in other organisms including the bacteria M. 

tuberculosis (Ma et al., 2006; Rachman et al., 2006; Sassetti et al., 2003) and L. 

monocytogenes (Keeney et al., 2007; O'Riordan et al., 2003), the archaebacterium 

T. acidophilum (Kim do et al., 2005; McManus et al., 2005), the mammals H. 

sapiens (Feng et al., 2009a), M. musculus (Morikawa et al., 2001; Yi & Maeda, 

2005; Yi et al., 2009) and B. taurus (Fujiwara et al., 2007; Witkowski et al., 2007), 

the plants A. thaliana (Ewald et al., 2007), Oryza sativa L. (Kang et al., 2007) and 

P. satisvum (Wada et al., 1997), the fungus N. crassa (Wada et al., 1997), the 

yeast S. cerevisiae (Hiltunen et al., 2009) and Kluyveromyces lactis (Chen, 1997), 

and the protozoan parasites P. falciparum (Allary et al., 2007; Gunther et al., 2005; 

Gunther et al., 2007; Gunther et al., 2009a; Gunther et al., 2009b; Wrenger & 

Muller, 2004) and T. gondii (Crawford et al., 2006; Mazumdar et al., 2006; 

Thomsen-Zieger et al., 2003). 

Some of these studies have investigated enzymes involved in LA metabolism, 

whereas others have researched type II FAS, and many have concluded that LA is 

essential for aerobic respiration, mitochondrial genome stability (in eukaryotes) 

and cell survival. The principal aim of this thesis was to investigate LA metabolism 

in L. major, because there is little information regarding the role of the cofactor in 

this or any other trypanosomatid. 

The first aim of this thesis was to identify the components of multienzyme 

complexes that require to be lipoylated for activity, by taking an in silico approach. 

This work was carried out using the L. major genome, the sequence of which is 

available (Ivens et al., 2005) in an online database (GeneDB). Subsequently, 

experimental evidence was gathered to show that these complexes are lipoylated 

in vivo. Furthermore, the question was asked as to which complexes are 

preferentially lipoylated at different stages of the L. major life cycle. After 

establishing that lipoylation of apo-E2 and apo-H-protein occurs, I set out to 

identify the genes involved in LA metabolism in L. major, and again an in silico 

approach was taken to address the question. Subsequently, the function(s) of L. 
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major gene products involved in LA metabolism were studied using several 

assays; namely, complementation of E. coli lines lacking certain genes involved in 

LA metabolism, observing the effect of LA analogues on LA metabolism, as well 

as gene replacement and protein overexpression. The results obtained will be 

discussed in this order below, with reference to published data. 

6.2 αααα-KADHs and the GCC 

6.2.1 In silico predictions 

From bacteria to mammals, α-KADHs are central to energy metabolism (Cronan et 

al., 2005; Mooney et al., 2002; Perham, 2000), and the GCC is important for the 

provision of one-carbon (C1) units, which can be used to synthesise purines, 

thymidylate, serine, methionine and formylmethionyl- transfer RNA (tRNA) 

(Cossins & Chen, 1997; Douce et al., 2001). 

There are a plethora of published data with regards to the α-KADH and GCC 

multienzyme complexes, in terms of subunit compositions and crystal structures. 

These complexes are presumed to exist in Leishmania, based upon biochemical 

evidence, and the first aim of this thesis was to identify genes in the L. major 

genome encoding all of the putative subunits comprising PDH, α-KGDH, BCKDH 

and GCC complexes, and to compare the amino acid sequences of the L. major 

predicted proteins with the known protein sequences in E. coli and H. sapiens (see 

Table 3.1). It should be noted that genes encoding all of the subunits comprising 

the GCC in L. major have previously been identified (Scott et al., 2008), and the 

role of the P-protein was evaluated by a gene disruption strategy. The results 

indicated that the GCC is active in L. major, and that the promastigote and 

amastigote forms lacking the P-protein exhibit a slow growth phenotype (Scott et 

al., 2008). 

Potential genes encoding all of the subunits comprising the three α-KADHs and 

the GCC were identified in the L. major genome. Sequence alignments were 

carried out, and most of the components were found to contain conserved 

residues that have been shown to be important in catalytic activity or in substrate 

binding. Importantly, the PDH E2 (E2p), KGDH E2 (E2k), BCKDH E2 (E2b) and H-

protein from the GCC, all possess lipoyl-domains containing a strictly conserved 
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lysine residue that has been shown to be essential for lipoylation (see Section 

3.2). All of the predicted E2 proteins also contain a strictly conserved histidine 

residue at the C-terminus, which is required for acyltransferase activity. Lastly, all 

of the components of α-KADHs and the GCC were predicted with high confidence 

by TargetP and MitoProt to possess mitochondrial-targeting peptides, which would 

be in line with the fact that these complexes also localise to mitochondria in yeast 

and human. 

Given that the in silico results were explained in depth in Section 3.2, and that one 

would predict that L. major possesses all genes necessary to encode functional 

components of α-KADHs and the GCC, the aim of this section is to highlight the 

potentially interesting differences that were mentioned in Section 3.2. 

Firstly, L. major has genes encoding two potential KGDH E1 (E1k) proteins 

(referred to as LmjE1k-A and LmjE1k-B), whereas E. coli, for example, encodes a 

single E1k, which forms a homodimer (Frank et al., 2007) (see Section 3.2.1.1). 

Interestingly, recent sequence analyses have resulted in the identification of a 

second human E1k, which is referred to as E1k-like (E1k-L) (Bunik & Degtyarev, 

2008). The E1k-L protein shares all motifs characteristic of E1k enzymes (Bunik & 

Degtyarev, 2008), and is the most common isomer in human heart tissue (Bunik et 

al., 2008). In addition, it was shown that another E1k-like protein exists in human – 

dehydrogenase E1 and transketolase domain-containing 1 (DHTDK1) – and is 

more like bacterial E1k enzymes, since it lacks the three pivotal Ca2+-binding 

motifs that are characteristic of vertebrate E1k proteins (Bunik et al., 2008; Lawlis 

& Roche, 1981; Rutter et al., 1989). LmjE1k-A and LmjE1k-B share only 36 % 

sequence identity with each other, and although they contain most of the required 

motifs necessary for E1k activity, such as lipoyl-domain-binding motifs and TPP-

binding motifs, they lack all three conserved motifs required for binding of Ca2+. In 

terms of known motifs involved in α-KGDH activity, it would appear unlikely that 

LmjE1k-A and LmjE1k-B complement one another, and as such LmjE1k-A and 

LmjE1k-B are more likely to be E1k isomers, rather than E1k heteromers that are 

dependent upon one another for full E1k function. This could have implications in 

terms of substrate specificity of the α-KGDH, and it is tempting to hypothesise that 

L. major possesses two E1k subunits that are able to recognise different 

substrates or that the two proteins are expressed in different life cycle/cell cycle 
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stages, although experimental evidence would be required to make any 

conclusions. 

The second potentially interesting observation from in silico analyses regards the 

E2p subunit. Querying the L. major genome database with the E. coli protein 

sequence for E2p resulted in the identification of two potential E2p subunits; 

LmjE2p and LmjE2p-like (LmjE2p-L) (see Section3.2.2.2). It is most likely that the 

annotations provided by GeneDB are correct, since LmjE2p possesses the strictly 

conserved C-terminal histidine residue, whereas LmjE2p-L lacks this residue, and 

as such is unlikely to be catalytically active. Interestingly, both LmjE2p and 

LmjE2p-L possess lipoyl-domains containing the strictly conserved lysine residue, 

which is the target of lipoylation. Notably, LmjE2p has a single lipoyl-domain with 

the conserved lipoylation motif 60TDKA63, and LmjE2p-L potentially has two lipoyl-

domains with lipoylation motifs 80TDKA83 and 177TDKA180. E. coli E2p (EcE2p) and 

H. sapiens E2p (HsE2p) contain three lipoyl-domains (Reed & Hackert, 1990), 

although it has been demonstrated in E. coli that only one is required for activity 

and that lipoylation of all three domains does not increase acyltransferase activity 

(Guest et al., 1985). 

The fact that LmjE2p-L has putative lipoyl-domains and is likely to be catalytically 

inactive indicates that it is most likely to correspond to E3-binding protein (E3BP), 

which is also found in mammals (De Marcucci & Lindsay, 1985) and some yeast 

(Maeng et al., 1994), but not in bacteria. The function of E3BP is to bind to E3, and 

insert E3 into the E2 scaffold, since in these organisms, E3 cannot bind E2 directly 

(Sanderson et al., 1996a; Sanderson et al., 1996b). In terms of the evolutionary 

justification of E3BP, one reason might be to add an extra level of control of the 

PDH, whereby if E3BP is not expressed (or inhibited), E3 will not be able to bind to 

the PDH complex, thus rendering it inactive. Interestingly, in T. brucei BSF, in 

which the mitochondrion is poorly formed and the majority of enzymes involved in 

the TCA cycle are not expressed, E3 has been shown to localise to the inner 

surface of the plasma membrane (Danson et al., 1987). This might appear to be a 

very strange observation, however there are published data implicating E3 and LA 

in the E. coli protein-dependent transport of galactose and maltose (Richarme & 

Heine, 1986), as well as the involvement of dithiols in hexose transport in 3T3-L1 

adipocytes (Frost & Lane, 1985). However, the physiological relevance of the 

observed E3 localisation to the plasma membrane in T. brucei has not been 

investigated further. Another interesting and surprising study in L. major concluded 
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that of the proteins that are potentially secreted/excreted from promastigotes, 

LmjE2p-L is one of them (Chenik et al., 2006). This is possible, given that TargetP 

predicts with high confidence (85 %) that LmjE2p-L possesses a secretory signal 

sequence. Also, MitoProt predicts with low confidence (23 %) that E3 has a 

mitochondrial targeting peptide, although TargetP predicts with high confidence 

that E3 possesses a mitochondrial targeting peptide. Is it possible that E3 and/or 

E3BP are dually-targeted to the mitochondrion and plasma membrane, and if so 

how would these proteins bind to the membrane, and what would be the 

physiological significance? To answer these questions is out of the scope of this 

thesis, yet these are potentially interesting questions which have not been 

addressed at all in recent studies regarding LA and α-KADHs. 

6.2.2 Regulation of αααα-KADHs by phosphorylation 

Mammals encode four PDH kinases (PDK), PDK-1-4 (Roche et al., 2001; Roche & 

Hiromasa, 2007), and one BCKDH kinase (BCKDK) (Machius et al., 2001; Wynn 

et al., 2000), which act on PDH and BCKDH, respectively, to down-regulate 

activity of these complexes. In addition, they also possess two PDH phosphatases 

(PDP), which contain the same regulatory subunit (PDPr) but differ in the catalytic 

subunit (PDP-1c or PDP-2c) (Huang et al., 1998; Lawson et al., 1993; Lawson et 

al., 1997; Teague et al., 1982), as well as a single BCKDH phosphatase (BCKDP 

or PTMP) (Damuni et al., 1984; Damuni & Reed, 1987; Joshi et al., 2007). The 

role of PDP and BCKDP is to catalyse the dephosphorylation of their respective 

enzyme complexes, and as such repress the down-regulation caused by 

phosphorylation of PDH and BCKDH by PDK and BCKDK, respectively. 

Querying the L. major genome database with human PDK and BCKDK protein 

sequences resulted in the identification of two potential PDK/BCKDK proteins, 

which were annotated in GeneDB as PDH kinase (lipoamide) (LmjF24.0010) and a 

phosphoprotein-like protein (LmjF20.0280) (see Table 3.2). Both predicted protein 

sequences, corresponding to LmjF24.0010 and LmjF20.0280 genes, are highly 

likely to contain mitochondrial targeting peptides, as predicted by TargetP and 

MitoProt. The predicted protein sequence of the LmjF20.0280 gene contains the 

strictly conserved N-, G1- and G2 boxes that constitute the ATP-binding domain 

that is a key feature of the ATPase/kinase superfamily (Bilwes et al., 1999). 

However, the protein completely lacks the F-box, which is present in all known 
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human PDK and BCKDK enzymes (Bowker-Kinley & Popov, 1999; Wynn et al., 

2000). The LmjF24.0010 predicted protein lacks strictly conserved residues within 

the N-, G1- and G2 boxes, and as such is unlikely to correspond to PDK, contrary 

to the annotation found in GeneDB. Lastly, both LmjF24.0010 and LmjF20.0280 

predicted proteins lack the C-terminal domain found in PDK, which is involved in 

binding the second lipoyl-domain (L2) of E2p (Kato et al., 2005). Nevertheless, 

BCKDP in humans also lacks this C-terminal portion. In conclusion, of the two 

predicted PDK/BCKDK enzymes in the L. major genome database, it is not 

possible to conclude with any confidence that either acts to phosphorylate either 

the PDH or BCKDH. However, based on sequence comparisons with human PDK 

and BCKDK, it is more likely that LmjF20.0280 has the capacity to phosphorylate 

proteins, and experimental data would be required to show this, as well as the 

specificity of this kinase towards either (or both) of PDH or BCKDH. 

If L. major possesses a kinase(s) to down-regulate certain α-KADHs, it would also 

be necessary to encode a phosphatase(s) that can release this inhibition by 

dephosphorylation of the α-KADH. Querying the L. major genome database with 

human PDP subunits and with BCKDP resulted in the identification of seven 

putative phosphatase genes. The seven corresponding predicted proteins have a 

high degree of conservation within motifs known to be important in members of the 

PPM family (Barford et al., 1998; Bork et al., 1996), which includes mammalian 

PDP and BCKDP. Of the seven predicted proteins, only two – LmjF30.0380 and 

LmjF32.1690 – are predicted with high confidence by TargetP and MitoProt to 

contain mitochondrial targeting peptides (see Section 3.2.6.2). Given that PDH 

and BCKDH are likely to be mitochondrial, these two predicted proteins are the 

best two candidates for being PDP/BCKDP. 

Overall, sequence analyses did not give a clear answer as to whether L. major is 

likely to possess genes encoding kinase(s) and phosphatase(s) that are known in 

mammals to regulate PDH and BCKDH activities. It has been possible however to 

narrow down the potential list of genes that could play this role in L. major, and 

experimental evidence in the form of biochemical characterisation would be 

required to verify whether any of these predicted proteins possess kinase or 

phosphatase activity, and if they do, to what extent they possess α-KADH-

specificity. 
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6.2.3 Lipoylation as a mechanism of regulating αααα-KADHs and the 

GCC 

Bacteria do not possess kinases and phosphatases to regulate activity of α-

KADHs, and also, a kinase (s) and phosphatase (s) that regulates α-KADH activity 

has not been documented. Also, given that mitochondrial proteins typically turn 

over slowly and the half-life of the PDH in rat is one week (Weinberg & Utter, 

1980), there must be a post-translational mechanism other than phosphorylation, 

to regulate α-KADHs. Given that LA is pivotal to activity of α-KADHs, it is likely 

that controlling the relative levels of lipoylation of different α-KADHs is an 

important mechanism to regulate their activities. Indeed, it has been shown in 

human HEK293 T cells that lipoyl-moieties are rapidly turned over (Feng et al., 

2009a). Work in human (Hayakawa & Oizumi, 1988; Oizumi & Hayakawa, 1989), 

rat, Lactobacillus casei (Shirota) (Hayakawa et al., 2006) and Enterococcus 

faecalis (Jiang & Cronan, 2005) has indicated the presence of an amidase enzyme 

called lipoamidase, which catalyses the removal of LA from E2 subunits and H-

protein. It is interesting to note that querying the L. major genome database with 

the E. faecalis lipoamidase protein sequence resulted in the identification of one 

potential homologue; LmjF16.1360. In the L. major genome database, this gene is 

annotated as a hypothetical gene. 

There are surprisingly few published data characterising the differential lipoylation 

intensities of the three α-KADHs and H-protein of the GCC under different stages 

of cell development or in different environmental conditions. The aim of this 

section of my thesis was to determine whether lipoylation patterns of the different 

α-KADHs and GCC change during promastigote growth in vitro, and in the 

amastigote stage, in order to establish whether the analysis of lipoylation patterns 

could be a useful diagnostic tool for studying metabolic responses. 

In order to address this question, western blot analysis was carried out on soluble 

protein extracts from L. major using a polyclonal antibody that recognises protein-

bound LA. This antibody has been used in previous studies in L. monocytogenes 

(O'Riordan et al., 2003), S. cerevisiae (Schonauer et al., 2008), A. thaliana (Ewald 

et al., 2007), P. falciparum (Allary et al., 2007; Gunther et al., 2007), T. gondii 

(Crawford et al., 2006), T. brucei (Stephens et al., 2007) and H. sapiens (Feng et 

al., 2009a). In L. major, a total of four lipoylated protein species were identified. 
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Based on predicted sizes after cleavage of the mitochondrial targeting peptide by 

MitoProt and TargetP, three of the bands were designated as H-protein, E2k, E2p 

and E2b (see Section 3.3). These predictions are not perfect however. For 

example, the molecular mass of the predicted full-length E2b protein is 50.2 kDa, 

and yet the observed molecular mass of the putative E2b is 55 kDa (see Table 

3.4). Also, E2k and E2p-L proteins were predicted to be a similar size after 

cleavage of the mitochondrial targeting peptide. It is much more likely however 

that the observed band of molecular mass 39.1 – 41.4 kDa is E2k and not E2p-L, 

since E2p-L is likely to be catalytically inactive and correspond to E3BP (see 

Section 6.2.1), and there have been no published studies using the α-LA antibody 

that have identified lipoylated E3BP, despite it possessing a lipoyl-domain. One 

possibility is that both proteins are lipoylated, and that the prominent band 

designated as E2k in western blots probed with α-LA antibody (see Figure 3.1) is 

masking a band of a similar size that could represent E2p-L. However, even when 

α-LA western blot films were exposed for less time to minimise the intensity of the 

putative E2k band, a second band was never observed. Nevertheless, in order to 

verify the predictions made above, it would be necessary to immunoprecipitate 

lipoylated proteins from L. major promastigote lysate, and to subsequently carry 

out mass spectrometry analysis. Please note that this is acknowledged as a 

limitation, however from henceforth the four lipoylated proteins will be referred to 

as H-protein, E2k (and not E2p-L), E2p and E2b, and potential reasons will be 

given to justify their differential lipoylation with regards to parasite energy 

metabolism. 

The results generated by western blotting with α-LA antibody illustrated that 

lipoylation patterns change throughout L. major promastigote growth in vitro, and 

that the changes in lipoylation patterns are consistent from one sub-passage to the 

next. Unfortunately, I did not have antibodies recognising E2k, E2k, E2b or H-

protein, and those raised against P. falciparum recombinant E2 proteins did not 

cross-react with L. major soluble protein extract (data not shown). As such, it was 

not possible to correlate lipoylation of E2 subunits with the levels of E2 protein, 

although the half-life of the PDH, for example, has been shown to be one week in 

rat (Weinberg & Utter, 1980). Nevertheless, since lipoylation is required for α-

KADH activity, it is possible to make putative conclusions with regards to the 

relative activities of these different protein complexes at any time point. 
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My results highlight several interesting and notable differences in terms of 

lipoylation intensities in promastigotes. Firstly, the E2k is constitutively lipoylated at 

all time points studied, from early-log growth to late stationary phase (see Figure 

3.1). α-KGDH catalyses the oxidative decarboxylation of α-ketoglutarate, one 

source of which is proline (another sources is glutamine) (see Figure 1.4). Given 

the importance of proline as a carbon source for energy production in the sandfly 

vector (Bringaud et al., 2006), combined with the fact that Leishmania 

promastigotes grown in vitro preferentially use amino acids as an energy source 

(Cazzulo et al., 1985) (see Section 1.2.2), could explain why E2k is highly 

lipoylated throughout promastigote in vitro culture. 

The E2p and E2b subunits are lipoylated during late-log growth and stationary 

phase, although never to the extent to which E2k is lipoylated (see Figure 3.1). 

However, E2p and E2b are not lipoylated in mid-log phase. These results could 

indicate that proline/glutamine is preferentially used as a carbon source, and once 

proline/glutamine becomes depleted (although this was not directly shown), the 

parasites start using additional energy sources. Up-regulation of PDH would allow 

pyruvate from glycolysis to be oxidatively decarboxylated to acetyl-CoA, which 

would most likely be converted to acetate via the ASCT, instead of being fed into 

the TCA cycle (see Section 1.2.3 & Figure 1.4) (Van Hellemond et al., 1998). 

There have not been any studies carried out with regards to the capacity of 

Leishmania to use branched-chain amino acids (BCAAs) as a carbon source, and 

these results are the first to show that a putative E2b is lipoylated, and that the 

BCKDH is thus likely to be active. BCAAs are converted to branched-chain 

ketoacids (BCKAs) by a branched-chain aminotransferase (BCAT), which is 

predicted to be present in the L. major genome database (LmjF27.2030). Genome 

data support the fact that Leishmania cannot synthesise branched-chain amino 

acids (Ivens et al., 2005), and the fact that they are used as an energy source 

could indicate that the parasites make use of exogenously-supplied branched-

chain amino acids as carbon sources. Indeed, in mammals, accumulating data 

suggests that BCKDH activity increases with exercise, as does oxidation of the 

BCAA leucine (Cynober & Harris, 2006; Norton & Layman, 2006). Although the 

midgut of the sandfly is likely to be sugar-rich, there is probably a limited supply of 

sugars as the parasites migrate towards the proboscis, and based on these results 

regarding lipoylation patterns, it could be that Leishmania are very adaptable to 

the carbon sources that they use to acquire energy. Interestingly, although mixed 
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culture promastigotes in late stationary phase lipoylate all three α-KADH E2 

subunits, metacyclic promastigotes purified from the same culture flask only 

lipoylate E2k (see Figure 3.1). It is worth noting that the method used to isolate 

metacyclic promastigotes is a negative selection procedure, whereby peanut lectin 

binds to a specific plasma membrane-bound protein found on procyclic 

promastigotes (which is not found on the plasma membrane of metacyclic 

promastigotes), and as such procyclic promastigotes can be pelleted by low-speed 

centrifugation, whilst metacyclic promastigotes remain in the supernatant fraction. 

The metacyclic promastigote is truly defined by the ability to infect human/mouse 

macrophages, and this assay was not carried out in conjunction with lipoylation 

experiments, nevertheless the term 'metacyclic promastigote' will be used 

henceforth for simplicity. Metacyclic promastigotes are non-dividing. The fact that 

this sub-population of parasites do not lipoylate PDH or BCKDH indicates that they 

do not use acetyl-CoA (derived from pyruvate in glycolysis) or BCAAs as an 

energy source, and must therefore rely upon glycolysis and amino acid oxidation. 

A potential explanation for this observation is that metacyclic promastigotes do not 

expend as much energy as dividing procyclic promastigotes, and as such down-

regulate PDH and BCKDH activities. This is intriguing because it potentially 

implies that lipoylation is a dynamic event, since 24 h beforehand, E2p and E2b 

were lipoylated (although it cannot be ruled out that the E2p and E2b proteins 

themselves are degraded). As mentioned already, L. major potentially encodes a 

lipoamidase which could cleave the amide bond between the lipoyl-moiety and the 

E2 subunit or H-protein. This could add an extra level of control to lipoylation, and 

it would be interesting to overexpress this protein, for example, to show whether it 

results in a decrease in lipoylation of the α-KADH and GCC. 

It would be interesting in future studies to alter the 

proline/glutamine/glucose/threonine concentrations in the growth medium, and to 

determine how this affects lipoylation patterns, and whether the two can be 

correlated. If the lipoylation pattern would be diagnostic of the relative activities of 

different α-KADHs, analysing lipoylation patterns would represent a simple and 

effective method to obtain a global picture of metabolic switching of cells treated 

under different nutritional conditions. For example, detailed molecular studies were 

recently carried out in PCF T. brucei which illustrated that these parasites have the 

capacity to rapidly switch their metabolism in response to the carbon sources 
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available (Coustou et al., 2008); it would be interesting to determine whether 

alterations in lipoylation patterns correlate with such metabolic switches. 

In promastigotes, lipoylation of the H-protein was observed in a pattern that 

mirrored E2p and E2b lipoylation patterns; H-protein was lipoylated during late-log 

growth and stationary phase, yet not during mid-log growth or in metacyclic 

promastigotes. A homozygous disruption of the L. major gene encoding the P-

protein (see Section 3.2.4.2) of the GCC was not lethal in the promastigote stage, 

as long as serine was present in the medium (Scott et al., 2008). The authors of 

this work hypothesise that an enzyme called serine hydroxymethyltransferase 

(SHMT) is able to compensate for the loss of the GCC, since SHMT catalyses the 

reversible conversion of serine and THF (tetrahydrofolate) to glycine and 5,10-

CH2-THF (methylene tetrahydrofolate). Two isoforms of SHMT are found in L. 

major promastigotes that localise to the cytosol and to the mitochondrion (Gagnon 

et al., 2006). The main role of the GCC is to provide C1 units in the form of 5,10-

CH2-THF, which are used by folate coenzymes to synthesise essential cellular 

compounds, including pyrimidines. Since metacyclic promastigotes are non-

dividing, one would hypothesise that these parasites do not require as much 

pyrimidine for DNA synthesis as do procyclic promastigotes, which could partially 

explain why H-protein is not lipoylated in metacyclic promastigotes. Also, given 

that there is redundancy between the GCC and SHMT, perhaps only the SHMT 

need be active in metacyclic promastigotes. 

In order to analyse the lipoylation pattern in the mammal-infective form, 

amastigotes were extracted from a mouse back lesion by dissecting out the lesion, 

crushing the tissue to release amastigotes, centrifuging the sample and then 

collecting the amastigote-containing supernatant fraction (work carried out by 

Denise Candlish, University of Glasgow). This is a crude method of cell isolation, 

and the amastigote-containing fraction inevitably contains host cell proteins. 

Western blotting of amastigote protein lysate with α-LA antibody revealed 

lipoylated proteins that potentially correspond to L. major-specific H-protein, E2k 

and E2p. However, lipoylation of the 55 kDa E2b band was not apparent in 

amastigotes. Interestingly, a lipoylated protein was observed that is of a very 

similar molecular mass to E2k, and I hypothesise that this could represent E2p-L, 

although it could be a cross-reacting mouse E2 subunit. The published molecular 

mass of mouse E2p after cleavage of the mitochondrial targeting peptide is 67 

kDa, and no such band was observed in the α-LA western blot. However, it cannot 
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be ruled out that lipoylated mouse E2p or E2b proteins do not contaminate the 

amastigote sample preparation, and that the bands observed at 41.4 kDa and 47.8 

kDa could represent these contaminating proteins. There are no published data 

regarding the molecular masses of mouse E2k and E2b after removal of the 

mitochondrial targeting peptide. Overall, it is more difficult to make any 

conclusions with regards to the lipoylation status of L. major amastigotes, and 

since L. major promastigotes cannot be differentiated into axenic amastigotes, this 

area remains elusive. 

6.3 Enzymes involved in LA metabolism 

6.3.1 In silico predictions 

Having established that α-KADHs and the GCC are lipoylated in L. major, the next 

step was to identify the enzymes involved in LA metabolism. In all organisms, LA 

can be synthesised from the type II FAS product octanoyl-ACP by LipB and LipA 

(in E. coli and mammals), and/or LA can be salvaged by LplA (in E. coli) or by 

ACSM1 and LT (in mammals).  

Crystal structure data on MtLipB (Ma et al., 2006) and biochemical analysis of 

EcLipB (Zhao et al., 2005) have shown that the LipB-catalysed reaction proceeds 

through an acyl-LipB intermediate, in which the octanoyl-moiety forms a thioester 

bond with the thiol of Cys169 (EcLipB numbering). This residue is only found in 

LipB enzymes, and not in LplA, LT or BPL. The reason for this is because LplA, LT 

and BPL-catalysed reactions proceed through a non-covalently bound acyl-

adenylate intermediate, whereas LipB forms a covalently bound acyl thioester 

intermediate, which requires the thiol group of Cys169. LipB, LplA, LT and BPL 

enzymes share one common residue, Lys135 (EcLipB numbering). In all of these 

enzymes, this residue has been proposed to be important in the transfer of the 

lipoyl-AMP/octanoyl intermediate to the target lysine residue on the lipoyl-domain 

of an apo-E2 or apo-H-protein. In LipB, Lys135 (EcLipB numbering) is essential for 

formation of the octanoyl-LipB intermediate (Ma et al., 2006), potentially by 

activating the octanoyl-moiety for thioester formation with Cys169 (EcLipB 

numbering) (Kim do et al., 2008; Ma et al., 2006). 
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Putative genes encoding LmjLIPB and LmjLPLA were identified in the L. major 

genome database (see Section 3.4). LmjF36.3080 is the most likely candidate for 

LmjLIPB since the predicted gene product possesses the strictly conserved 

cysteine residue that defines LipB enzymes (Cys191 in LmjLIPB). LmjF07.1060 is 

most likely to be LPLA, since the N-terminal domain of the predicted gene product 

has all of the key motifs that are essential for binding LA, ATP and lipoyl-AMP (see 

Section 3.4.3). Recent structural data indicate that despite LPLA and LT being 

similar in terms of amino acid sequence identity within the N-terminal domain, their 

C-terminal domains differ at the structural level, which has very important 

implications in their catalytic qualities. For example, BtLT and HsLT contain the 

motifs that are characteristic of LPLA, however are unable to activate LA due to 

steric hindrance of ATP access to the LA/ATP/lipoyl-AMP binding site, which is 

due to the fact that the C-terminal domain of LT is rotated 180 °C relative t o that of 

LplA (Fujiwara et al., 2007). As such, although LmjF36.3080 has been named 

LmjLPLA, it is possible that this gene in fact encodes LT and not LPLA. The C-

terminal domains of LplA proteins from different organisms share little sequence 

homology. However, it is interesting to note the size difference of LmjLPLA 

compared to LplA proteins in other organisms; LmjLPLA has a C-terminal domain 

that is 137 amino acids longer than that of EcLPLA, and 127 amino acids longer 

than that of HsLT (see Figure 3.5). In fact, this anomalously long C-terminal 

domain is not restricted to LmjLPLA, but is a common feature amongst all 

trypanosomatid putative LPLA proteins. The reason for possessing a significantly 

longer C-terminal domain is not known, and was not investigated during this 

thesis. 

A gene (LmjjF19.0350) that potentially encodes LmjLIPA was also identified in the 

L. major genome database. This predicted protein contains two motifs – 
133Cx4Cx5C

144 and 165Cx3Cx2C
172 (see Figure 3.3) – that are known to be essential 

for the LipA-catalysed insertion of two sulphur atoms into the octanoyl-moiety of 

octanoyl-E2/octanoyl-H-protein (Cicchillo et al., 2004a; Cicchillo et al., 2004b; 

Cicchillo & Booker, 2005; Douglas et al., 2006). 

6.3.2 Localisation of lipoylating enzymes 

All three predicted proteins, LIPB, LIPA and LPLA, were predicted with high 

confidence to contain mitochondrial targeting peptides by TargetP and MitoProt 

(see Section 3.4). Two approaches were taken in order to verify the subcellular 
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localisation of these proteins. Firstly, full-length LIPA-GFP and LPLA-GFP reporter 

constructs were expressed in promastigotes, giving rise to the respective lines 

WT[LIPA-GFP] and WT[LPLA-GFP], and live fluorescence microscopy was carried 

out using Mitotracker CMXRos as a marker for mitochondrial staining. In both 

lines, the green fluorescent fusion protein co-localised with Mitotracker CMXRos 

staining, indicating that LIPA-GFP and LPLA-GFP are mitochondrial. It is likely 

therefore that endogenous LIPA and LPLA proteins are mitochondrial.  

The second approach involved the concentration of various organelles by 

treatment with digitonin, and subsequently probing the soluble protein from these 

different fractions with α-LmjLIPB antibody. In the LIPB-His overexpressing line 

WT[LIPB-His], LIPB-His protein was found primarily in fractions that coincided with 

the highest levels of lipoylated protein. Given that α-KADHs and the GCC are 

predicted with high confidence to be mitochondrial, combined with the fact that 

these complexes are mitochondrial in all other eukaryotes, this was taken as good 

evidence that LIPB-His is mitochondrial. However, endogenous LIPB was not 

detected in any of the fractions when probed with α-LmjLIPB antibody. This was 

the expected result, given that endogenous LipB protein detection by western 

blotting has not been documented in any other organism due to its very low 

expression levels (Jordan & Cronan, 2003; Vaisvila et al., 2000). 

Overall, I experimentally illustrated that the predictions of LIPB, LIPA and LPLA to 

be mitochondrial were correct. The next question to answer would be 'are these 

proteins functional?' 

6.3.3 Functionality of lipoylating enzymes 

6.3.3.1 Bacterial complementation 

In order to determine whether the L. major genes encoding putative enzymes 

involved in LA metabolism were functional, a complementation approach was 

taken. Two E. coli insertion mutant lines were used, KER176 and KER184, which 

contain inactive lipA and lipB genes respectively. These bacteria do not grow on 

minimal medium, unless supplemented with either LA or succinate and acetate 

(Vanden Boom et al., 1991). However, the growth can be rescued to almost 

normal levels when complementing heterologous genes are expressed in these 

bacterial mutants. 
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My results indicate that N-terminally truncated versions of L. major LIPA-Strep 

proteins complement the growth defect of KER176 in the absence of LA, indicating 

that L. major encodes a functional LIPA protein (see Section 3.5.1.2). In addition, 

full-length LIPB-Strep complemented the growth defect of KER184 in the absence 

of LA (see Section 3.5.3.2), and thus it is possible to conclude that both enzymes 

comprising the LA biosynthesis pathway are likely to be functional in L. major.  

When interpreting the complementation results of KER184 E. coli, it is important to 

appreciate that this line is 'leaky', because in the absence of LA a small amount of 

growth is still apparent. The reason for this residual colony formation is that LplA 

can catalyse the ligation of the octanoyl-moiety from octanoyl-ACP to apoproteins, 

albeit much less efficiently than LipB (Morris et al., 1995). Only one of the two N-

terminal truncated versions of LPLA-Strep, LPLAT1-Strep, rescued the growth of 

KER184 in the absence of LA (see Section 3.5.3.2). Interestingly, in the presence 

of exogenous LA, the expression of LPLAT1-Strep resulted in colony formation, 

whereas expression of LPLAT2-Strep resulted in a decrease in colony formation 

relative to the negative control (empty pASK-IBA3 vector) (see Section 3.5.3.2). 

This phenomenon has been observed before, whereby expression of the L. 

monocytogenes LplA1 protein in an E. coli line lacking lipA and lplA (KER131) 

resulted in a reduction in colony formation in the presence of succinate and 

acetate, when compared to the empty vector negative control (Keeney et al., 

2007). The authors did not comment on this result (Keeney et al., 2007), however 

one would interpret the result as signifying that expression of the recombinant L. 

monocytogenes LplA1 in KER131 E. coli has a negative impact upon cell growth in 

the bypass medium. The LPLA complementation results obtained in my thesis 

indicate that not only does LPLAT2-Strep not support growth of KER184, but also 

causes a decrease in cell growth. The difference between LPLAT1-Strep and 

LPLAT2-Strep is that the former has an N-terminal truncation of 12 amino acids, 

whereas the latter has a 36 amino acid N-terminal truncation. One possible 

explanation for the no-growth phenotype is that the shortened N-terminus of 

LPLAT2-Strep renders this protein catalytically inactive, yet still permits the protein 

to bind LA. This sequestration of LA could have a dominant negative effect, 

whereby the inactive LPLAT2-Strep would compete for LA with the endogenous E. 

coli LplA. Indeed, purified recombinant LPLAT2-Strep was never found to be active 

when using P. falciparum E2 subunits and H-protein as apoproteins in an in vitro 

lipoylation assay, and western blotting with α-LA antibody showed that instead of 
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lipoylating apoproteins, instead LPLAT2-Strep was itself strongly lipoylated (data 

not shown). 

6.3.3.2 Effect of LA analogues on parasite growth 

In the presence of 30-50 ng ml-1 of a LA analogue, selenolipoic acid (SeLA), E. coli 

growth is completely inhibited (Reed et al., 1994). The isolation of a spontaneous 

mutant that was resistant to SeLA at concentrations up to 5 µg ml-1 (Reed et al., 

1994) resulted in the identification of the lplA gene, and a single point mutation in 

the LplA protein was attributed to the SeLA resistance phenotype (Morris et al., 

1995). Interestingly, a second mutant was also identified that was resistant to 

SeLA and which could proliferate in the absence of exogenous LA, even after 

ablation of the lipA gene (Morris et al., 1995). Later studies revealed that this 

mutant had a duplication of the segment of the E. coli chromosome containing the 

lipA and lipB genes (Jordan & Cronan, 2002). Therefore, resistance to SeLA in E. 

coli can be attained by relying upon LA biosynthesis, or by reducing LplA activity. 

Since these initial studies, experiments have been carried out using a similar 

analogue, 8-BOA, with the aim of discerning the relative importance of LplA in LA 

metabolism in T. gondii (Crawford et al., 2006) and P. falciparum (Allary et al., 

2007). Another analogue that has been used to study the role of LplA is OA (Allary 

et al., 2007; Crawford et al., 2006; Jordan & Cronan, 2003). Free OA is not used 

by E. coli LipB as substrate for acylation of apo-E2 and apo-H-protein (Jordan & 

Cronan, 2003), since ligation of OA to lipoyl-domains necessitates the thioester 

octanoylation of LipB by OA-ACP (Jordan & Cronan, 2003; Zhao et al., 2005). 

However, E. coli LplA can octanoylate lipoyl-domains using either free OA (in the 

presence of ATP) or OA-ACP, albeit with a significantly reduced efficiency 

compared to the classical lipoylation reaction involving LA and ATP (Jordan & 

Cronan, 2003). Therefore, LplA is the only enzyme capable of catalyzing the 

octanoylation or 8'-bromooctanoylation of E2 and H-protein apoproteins (Allary et 

al., 2007; Crawford et al., 2006; Jordan & Cronan, 2003). As such, any effects 

resulting from OA or 8-BOA treatment (at physiologically-relevant concentrations) 

are attributable to the low efficiency action of LplA.  

8-BOA and OA were used in this thesis in order to understand the importance of 

LPLA in the survival of promastigotes. In accordance with previous studies, the 

parasites used in this experiment were grown in lipid-depleted medium in order to 

minimise competition of LA found in FBS, with exogenously added 8-BOA as a 
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LPLA substrate. Specifically, promastigotes were grown for two sub-passages in 

lipid-depleted medium before starting the alamar blue assay (see Section 3.6), and 

any attempt to culture promastigotes for subsequent sub-passages in lipid-

depleted medium resulted in a reduction of cell growth and by sub-passage five in 

lipid-depleted medium, growth was no longer apparent (data not shown). My 

results indicate that the IC50 for 8-BOA is five to tenfold higher in L. major 

promastigotes than it is in T. gondii and P. falciparum, and the IC50 of OA is similar 

to that in T. gondii. Interestingly, whereas supplementation of 1-2 µM LA in media 

containing the IC50 dose of 8-BOA or OA completely restored growth in T. gondii 

and P. falciparum, addition of 1 µM LA to the media did not positively affect L. 

major promastigotes. 

A possible explanation for the inter-species differences observed could be due to 

the differential compartmentalisation of α-KADH complexes and GCC in T. gondii 

(and P. falciparum) and L. major. Biosynthesis enzymes LipA and LipB lipoylate 

the sole PDH located in the apicoplast (Gunther et al., 2005; Gunther et al., 2007; 

Gunther et al., 2009b; Wrenger & Muller, 2004). Salvage enzyme LplA is 

mitochondrial and is required for lipoylation of E2k, E2b or H-protein (Allary et al., 

2007; Crawford et al., 2006; Gunther et al., 2009b). Therefore, treatment with 8-

BOA and OA specifically impedes LplA-dependent α-KGDH, BCKDH and GCC 

complexes within the mitochondrion of T. gondii and P. falciparum. Lipoylation of 

the apicoplast PDH probably remains unaffected, since LipB does not use 8-BOA 

as a substrate (Crawford et al., 2006). In L. major, it is highly likely that all three α-

KADHs and the GCC are located in the same organelle (see Sections 6.2.1 and 

5.4.1). Therefore, if one hypothesised that L. major promastigotes grown in lipid-

depleted medium rely solely upon biosynthesis of LA, one would expect they be 

resistant to higher concentrations of LA analogues. Indeed, western blotting with 

α-LA antibody indicates that lipoylation patterns are not altered in the presence of 

10 µM 8-BOA. Unlike in T. gondii and P. falciparum, 1 µM LA was not sufficient to 

rescue the growth defects caused by 8-BOA or OA, indicating that the inhibitory 

effects on L. major at high concentrations of 8-BOA and OA are probably 

attributable to interactions of this compound with other pathways operating in L. 

major and therefore cannot be alleviated by addition of LA. An interesting follow-up 

experiment would be to determine the expression levels of LA biosynthesis and LA 

salvage enzymes when promastigotes are incubated with different concentrations 

of LA analogues. If the above theory is correct, LA biosynthesis enzymes would be 
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up-regulated in lipid-depleted medium and LPLA down-regulated, and addition of 

OA or 8-BOA should not affect LIPB or LIPA expression levels under these 

conditions. 

6.3.3.3 Gene replacement in L. major 

The results obtained from LA analogue experiments indicate that in L. major 

promastigotes, LA biosynthesis and salvage pathways might be redundant. In 

order to test this possibility further, a gene replacement strategy was taken, with 

the hypothesis that it would be possible to replace genes encoding either LIPA or 

LPLA. The results were very surprising, since every attempt to replace either gene 

in L. major promastigotes resulted in the duplication of the target gene by genome 

amplification. Leishmania are renowned for their genomic plasticity (Cruz et al., 

1993), and it is known that although Leishmania are mostly diploid, some 

chromosomes are aneuploid, such as chromosome 1 in L. major (Martinez-Calvillo 

et al., 2005; Sunkin et al., 2000). Also, it has been established in attempted 

knockout studies of L. major dihydrofolate reductase-thymidylate synthase (DHFR-

TS) (Cruz et al., 1993), a hypothetical gene (LmjF01.0750) (Martinez-Calvillo et 

al., 2005), L. mexicana cdc2-related kinase 1 (CRK1) (Mottram et al., 1996) and L. 

tarentolae J-binding protein 1 (JBP1) (Genest et al., 2005) that targeting of 

essential genes in Leishmania frequently results in aneuploidy for the 

chromosome in question, tetraploidy, or the creation of ectopic DNA fragments 

called amplicons (Feng et al., 2009b; Genest et al., 2005). 

The efficiency of correct targeting of the LIPA and LPLA genes was high, which 

rules out the possibility of either gene occupying a non-recombinogenic region of 

chromosomal DNA. Indeed, after integration of a stable re-expressing copy of 

LPLA into the 18S SSU RNA locus it was possible to obtain a LPLA null mutant, 

which suggests that the endogenous LPLA gene is essential in promastigotes. 

However, despite the expression of an ectopic copy of LPLA, the growth of the 

LPLA null mutant is significantly slower than that of wild-type at all time points on 

the growth curve. Unfortunately, the immunogenic response raised against 

recombinant LPLA protein in rabbit was poor, and as such the α-LmjLPLA 

polyclonal antibody generated was not useful in western blot analyses, despite 

multiple attempts to purify and concentrate the antibody (data not shown). It is 

therefore not possible to make any conclusions with regards to the expression 

level of LPLA under normal conditions or in the null mutant containing an ectopic 
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copy of LPLA. In terms of LIPA, it was not possible to generate a null mutant, even 

in the presence of an integrated ectopic copy of the gene. It is likely that LIPA is 

essential, however it is not possible to make as firm a conclusion as it is for LPLA. 

The obvious question is, why would both LIPA and LPLA proteins be essential for 

survival of L. major promastigotes? In E. coli, LA biosynthesis and salvage 

pathways are redundant (Morris et al., 1995), and based on the results gained 

from the effect of LA analogue experiments in this thesis, I expected the same to 

be true in L. major. The first possible explanation is that in L. major promastigotes, 

LIPA and LPLA are important but not essential, and that the inability to 

successfully replace both alleles could be due to limitation(s) in the methods used 

to achieve this. For example, promastigotes may be able to survive without 

salvage of LA, yet after replacement of the second LPLA allele, the parasites may 

take some time to up-regulate the biosynthesis pathway. The procedure I followed 

involved incubating transfected parasites for 24 h before cloning. Upon cloning it is 

clear that competition with other parasites is not an issue, however it could be that 

during the 24 h period preceding the initiation of cloning, the LPLA null mutants 

are out-competed/over-grown by parasites with duplicated genomes that do not 

need to switch metabolic pathways to survive. I would argue against this because 

promastigotes do not grow exponentially during the 24 h post transfection (data 

not shown). In terms of the attempted creation of a LIPA null mutant, 10 µM LA 

was included in each step of selection of the second-round allele replacement, yet 

it was still not possible to replace the remaining allele without the parasites 

duplicating their genome. This again provides support for the notion that both LIPA 

and LPLA are essential, since as explained above, if LPLA is important when LA is 

not limiting, replacement of the LIPA gene should be feasible. 

A second possibility to explain the essentiality of both LIPA and LPLA is that only 

one of the two pathways used to acquire LA is active at any one time, and that the 

expression of the genes involved in these pathways is regulated by LA availability 

in the medium. It seems peculiar that if an organism has the genetic capacity to 

encode a compensatory enzyme/set of enzymes to complement a growth defect, it 

would not do so. For example, an ACP knock-down mutant in human HEK293 T 

cells resulted in decreased cell growth and eventually death by 72 h in culture, and 

the principal cause was due to an almost complete loss of protein lipoylation (Feng 

et al., 2009a). This study highlighted the importance of LA biosynthesis in 

lipoylation of α-KADHs and the GCC (Feng et al., 2009a). Also, it has previously 
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been shown in mouse that deletion of lipA has an embryonic-lethal phenotype (Yi 

& Maeda, 2005; Yi et al., 2009), which further emphases the importance of LipA in 

mammals. Nevertheless, in the HEK293 T cell ACP knock-down line, addition of 2 

µM exogenous LA in the growth medium did not rescue growth or result in 

increased lipoylation of α-KADHs and H-protein (Feng et al., 2009a). This result 

argues against the possibility that LA availability in the medium was a limiting 

factor affecting the capacity of LA salvage to compensate for lack of LA 

biosynthesis. Also, in this thesis 10 µM LA was included in the growth medium at 

all steps during the selection of a LIPA null mutant, and yet LA salvage could still 

not compensate for a loss of LIPA protein. This fact thus opposes the theory that 

the LA salvage pathway is 'switched off' in LA-poor conditions. 

A third possibility to explain the essentiality of both LIPA and LPLA is that the 

pathways for LA biosynthesis and salvage are indeed redundant in terms of 

lipoylating α-KADHs and the GCC, yet the enzymes involved could have essential 

roles other than catalysing lipoylation reactions. For example, in E. coli, LipB has a 

surprising additional role as a negative regulator of dam gene expression. The 

dam gene encodes a DNA methyltransferase which transfers methyl groups from 

SAM to adenine residues in the sequence 5'-GATC-3' in double stranded DNA, 

and has a large impact on the chromosome replication, gene expression and 

mismatch repair (Barras & Marinus, 1989). Also, in P. falciparum, an unexpected 

result was obtained whereby LipB null mutants exhibited a faster growth 

phenotype that was mainly due to accelerated progression through the 

intraerythrocytic cell cycle (Gunther et al., 2007). Again, it could be that LipB has a 

role other than octanoylation of the PDH in P. falciparum (although it cannot be 

ruled out that in the P. falciparum LipB null line, increased growth rate is due to an 

increase in myristate production through type II FASI) (Gunther et al., 2007). 

A body of data is also accumulating that implicates LA biosynthesis in 

mitochondrial RNA processing (Hiltunen et al., 2009). In 1993, a screen for 

mutants with altered mitochondrial tRNA precursor/product ratios resulted in the 

identification of the lip5 mutant (Sulo & Martin, 1993). The lip5 mutant had a non-

functional lipA gene and as a result completely lacked lipoylated α-KADHs and 

GCC. Other phenotypes included accumulation of mitochondrial tRNA precursors, 

destabilisation of the mitochondrial genome and poor cell growth, which was not 

rescued by the addition of 2 µM LA (Sulo & Martin, 1993). In S. cerevisiae, 
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mutants in type II FAS genes lack lipoylated α-KADHs and GCC (Schonauer et al., 

2008). It had been hypothesised that the main role of type II FAS is the provision 

of octanoyl-ACP as a substrate for LA biosynthesis (Brody et al., 1997; Hiltunen et 

al., 2009; Wada et al., 1997), however this particular study went a step further to 

show that FASII mutants had similar RNA processing phenotypes to that of the 

lip5 mutant (Schonauer et al., 2008). The authors illustrated that mutants of the 

pdh, α-kgdh and gcc genes did not cause RNA processing phenotypes, and it was 

proposed that biosynthesis of LA is not just involved in lipoylating α-KADHs and 

the GCC, but is also somehow implicated in RNA processing (Schonauer et al., 

2008). Interestingly, a similar phenotype of LA depletion and changes in 

mitochondrial ultrastructure was observed in a T. brucei PCF ACP knock-down 

line (Stephens et al., 2007). A follow-up study subsequently showed that RNAi of 

ACP resulted in malformation of the mitochondrial membrane, and the authors 

concluded that the principle cause of the RNAi phenotype was due to a change in 

phospholipid composition of the mitochondrial membrane (Guler et al., 2008). It 

would be interesting to determine whether RNA processing is also affected in this 

line, and whether LA is also the cause of this phenotype. Unfortunately, it was 

outside the scope of this thesis to investigate the exciting possibility that enzymes 

involved in LA metabolism play key roles in cellular functions other than lipoylation 

of α-KADHs and the GCC. 

A fourth and final possibility to explain the essentiality of both LIPA and LPLA in L. 

major is that the LA biosynthesis and salvage pathways lipoylate their apoproteins 

in a substrate-specific manner. Given that all four apoproteins (H-protein, E2k, E2p 

and E2b) are lipoylated (and assumedly active) during logarithmic growth phase in 

L. major (see Figure 3.1), there is a possibility that three of them are essential to 

parasite survival (excluding the H-protein, which has been shown to be 

dispensable in L. major promastigotes (Scott et al., 2008)). If LA biosynthesis and 

salvage have differential substrate specificities for the α-KADHs, one would then 

expect that these genes be essential to promastigote survival. An interesting 

observation in E. coli is that the lipB null mutant KER184 can grow on any medium 

that bypasses the need for the α-KGDH (for example, on succinate-containing 

medium), however acetate-containing minimal medium is not sufficient to sustain 

growth. This result infers that in the absence of LipB, LplA is not able to sufficiently 

lipoylate the α-KGDH to permit cell growth, yet can lipoylate the PDH enough to 

allow colony formation (Reed & Cronan, 1993). Another interesting study showed 
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that in L. monocytogenes, which encodes two LplA enzymes (LplA1 and LplA2) 

but lacks LA biosynthesis enzymes, LplA1 is essential for intracellular survival of 

the bacterium, and that LplA1 and LplA2 are not redundant (O'Riordan et al., 

2003). This interesting phenomenon was shown to be due to the fact that LplA1 

can use lipoyl-peptides and ATP as substrates for lipoylation, whereas LplA2 

requires free LA and ATP (Keeney et al., 2007). 

6.3.3.4 Ectopic expression of lipoylating enzymes 

Since it was not possible to study the functions of LIPA or LPLA by gene 

replacement, an alternative approach was taken. LIPB-His, LPLA-His and 

LPLAH118A-His constructs were expressed in promastigotes and the effect of 

protein expression was assessed in terms of growth and lipoylation patterns at 

different stages. Unfortunately, it was not possible to express the LIPA-His 

construct in promastigotes, even when the G418 selection pressure was lowered 

to 10 µg ml-1 from the standard 50 µg ml-1 (data not shown). One possible 

explanation is that high ectopic expression of LIPA is not tolerated in 

promastigotes. 

My results indicate that there is a dramatic overexpression of LIPB-His relative to 

endogenous LIPB in the WT[LIPB-His] line, since it was not possible to detect 

endogenous LIPB protein in wild-type promastigotes, whereas in the mutant line 

LIPB was readily detected by the α-His antibody (see Figure 5.5). Expression of 

LPLA-His and LPLAH118A-His is easily detectable in the WT[LPLA-His] and 

WT[LPLAH118A-His] lines using an α-His antibody, respectively (see Figure 4.6). 

The endogenous expression levels of LPLA remain unknown because the 

antibody raised against the recombinant protein proved to be cross-reactive with 

numerous other parasite proteins and no protein of the expected size of LmjLPLA 

was detected in the blots. Growth rates were significantly slower in all three mutant 

lines compared to that observed in the empty vector control line, and this slow-

growth phenotype was observed when G418-resistant lines were grown in the 

presence of either 10 µg ml-1 or 50 µg ml-1 selection pressure (see Figure 4.5 and 

Figure 5.7). The reason why G418-resistant lines were cultured in the presence of 

two different drug concentrations was because it had been shown before in L. 

major that overexpression levels of an ATPase protein VPS4, were correlated with 

the concentration of G418 included in the growth medium (Besteiro et al., 2006). In 
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the experiments carried out in this thesis, expression levels of LIPB-His, LPLA-His 

and LPLAH118A-His did not differ when the mutant lines were grown in the presence 

of either 10 µg ml-1 or 50 µg ml-1 G418 drug selection pressure (see Figure 4.6 and 

Figure 5.8). 

It was hypothesised that the cause of reduced growth rate in the three mutant lines 

would be due to alterations in lipoylation patterns, which could impact on cell 

metabolism and growth. However, the lipoylation patterns in the WT[LIPB-His] and 

WT[LPLA-His] lines were comparable to those observed in the empty vector 

control lines (see Figure 4.7 and Figure 5.9). This potentially indicates that 

overexpression of LIPB-His and LPLA-His interferes with pathways other than 

lipoylation, although investigation of these options was not within the scope of this 

thesis. Interestingly, lipoylation of the H-protein was higher in the WT[LPLAH118A-

His] line at all time points investigated apart from in purified metacyclic 

promastigotes. Also, in WT[LIPB-His] and WT[LPLAH118A-His] lines, but not in the 

WT[LPLA-His] line, E2p and E2b were lipoylated in metacyclic promastigotes (see 

Figure 4.7 and Figure 5.9). I consistently found in multiple independent 

experiments carried out with the wild-type line, that metacyclic promastigotes had 

lipoylated E2k, but I had never observed lipoylation of E2p or E2b (for a 

representative result see Figure 3.1), and as such this was a potentially interesting 

phenotype. Based on sequence alignments with LplA and LT enzymes in other 

organisms whose three-dimensional structures have been determined, the His118 

residue in L. major is likely to be one of the key residues involved in forming the 

hydrophobic crevice to which the lipoyl-AMP intermediate binds (Fujiwara et al., 

2005; Kim do et al., 2005; McManus et al., 2005). As explained in Section 4.4, the 

justification for creating the LPLAH118A-His mutant was based on the published 

observation that an E. coli BPL mutant, EcBPLR118G, biotinylates substrates other 

than BCCP (Choi-Rhee et al., 2004; Cronan, 2005). Given that the EcBPLR118G 

protein also bears a mutation within the ATP-binding domain, I hypothesised that 

the LPLAH118A-His mutant protein would lipoylate substrates other than the 

endogenous substrates of wild-type LPLA. Therefore, one possibility is that 

'promiscuous lipoylation' is the cause of the observed lipoylation of E2p and E2b in 

metacyclic promastigotes in the WT[LPLAH118A-His] line. In addition, the fact that 

expression of LPLA-His does not result in lipoylation of E2p and E2b in metacyclic 

promastigotes suggests that LPLA may not normally lipoylate E2p and E2b. The 

fact that LIPB-His overexpression results in lipoylation of E2p and E2b in 



Chapter 6  173 

 

metacyclic promastigotes is also interesting, and suggests that LIPB may have a 

substrate-specificity for E2p an E2b, and in wild-type metacyclic promastigotes, 

perhaps LIPB is not expressed and as such does not lipoylate E2p and E2b. 

6.4 Conclusions and future directions 

The overall aim of this thesis was to initiate an understanding of LA metabolism in 

L. major. I illustrated that L. major likely possesses genes that encode all subunits 

of the α-KGDH, PDH, BCKDH and GCC. All of the complexes are likely to be 

mitochondrial, although it is noteworthy that the subcellular localisations of the E3 

and E3BP were not entirely predictable. As such, it would be interesting to 

determine the sub-cellular localisation of E3 (and E3BP), and perhaps the protein 

has dual localisation, as has been reported in T. brucei BSF (Danson et al., 1987). 

L. major was shown to possess a functional biosynthesis pathway consisting of 

LIPB and LIPA enzymes. Bacterial complementation studies did not yield a 

satisfactory answer regarding the functionality of LPLA; future studies would focus 

on optimising the expression and purification of LPLA to a high purity, such that it 

could be biochemically characterised. All three enzymes were shown to localise to 

the mitochondrion, which itself reinforces the likelihood that the α-KADH and GCC 

complexes are also localised to this organelle. In E. coli, LA salvage and 

biosynthesis pathways are redundant, and this was hypothesised to be the case in 

L. major also, because similarly to E. coli, both LA metabolism pathways are 

localised to the same organelle. Unexpectedly, LIPA and LPLA appear to have an 

essential function in L. major, since it was not possible to ablate either gene. 

Evidence is accumulating in other organisms that LipA and LipB may have roles 

other than lipoylation of α-KADHs and the GCC. Future work will be aimed at 

unravelling the seemingly complex role(s) that LipA and LipB play in the 

intersection between energy metabolism, type II FAS and mitochondrial RNA 

processing (Hiltunen et al., 2009). Another hypothesis to explain the essentiality of 

LIPA and LPLA in L. major promastigotes is that LA salvage and biosynthesis 

enzymes may have differential substrate specificities. Preliminary results from 

overexpression of different enzymes involved in LA metabolism indicate that this 

could indeed be the case, and it would be of interest to build upon these results by 

determining whether LIPB and LPLA exhibit substrate-specificities for 

octanoylation/lipoylation in vitro. The potential for substrate-specificity between the 
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two different LA metabolic pathways is something that has not been addressed in 

the literature. However, one must pose the question, what is the purpose of having 

a LA salvage pathway when the LA biosynthesis pathway enables the cell to be 

completely self-sufficient? 
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Rn_E1k          -----MFHLRTCAAKLRPLTASQTVKTFSQNKPAAIRTFQQIRCYSAPVAAEP-FLSGTS 54 
Mm_E1k          -----MFHLRTCAAKLRPLTASQTVKTFSQNKPAAIRTFQQIRCYSAPVAAEP-FLSGTS 54 
Hs_E1k          -----MFHLRTCAAKLRPLTASQTVKTFSQNRPAAARTFQQIRCYSAPVAAEP-FLSGTS 54 
Rn_E1kL         -----MSQLRLLLFRLG----PQARKLLATR---DIAAFGGRRRSSGPPTTIPRSRGGVS 48 
Mm_E1kL         -----MSQLRLLPFRLG----PRATKLLATR---AIPVFSGCRRSSGPPTTIPRSRSGVS 48 
Hs_E1kL         -----MSQLRLLPSRLG----VQAARLLAAH---DVPVFGWRSRSSGPPATFPSSKGGGG 48 
Rn_DHTKD1       ------------------------------------------------MASATVAAAGRA 12 
Mm_DHTKD1       -----------------------------------------------MASAATVAAAGRA 13 
Hs_DHTKD1       ------------------------------------------------MASATAAAARRG 12 
Lm_E1kB         MMRR--ALSGVVAVR-----ASAMRSYTDARTIRKPN-------------PYDQLVNAEN 40 
Lm_E1kA         MMRRLVPVRGVVSCGSAVAPTSAFPCASHAALIMGRRRAAEAVPERQLLFDNDSFLSGSS 60 
                                                                             
 
Rn_E1k          SNYVEEMYCAWLENPKSVHKSWDIFFRNTNAGAPPGTAYQSPLSLSRSSLATMAHAQSLV 114 
Mm_E1k          SNYVEEMYCAWLENPKSVHKSWDIFFRNTNAGAPPGTAYQSPLSLSRSSLATMAHAQSLV 114 
Hs_E1k          SNYVEEMYCAWLENPKSVHKSWDIFFRNTNAGAPPGTAYQSPLPLSRGSLAAVAHAQSLV 114 
Rn_E1kL         PSYVEEMYFAWLENPQSVHKSWDNFFQRATKEASVGPAQPQPP-------AVIQESRASV 101 
Mm_E1kL         SSYVEEMYFAWLENPQSVHKSWDSFFQRASKEASVGPAQPQLP-------AVLQESRTSV 101 
Hs_E1kL         SSYMEEMYFAWLENPQSVHKSWDSFFREASEEAFSGSAQPRPP-------SVVHEGRSAV 101 
Rn_DHTKD1       LRRAVPLLRRSYQTERGVYGYRP---RKAGSGEPRGDR-----------------ARPSV 52 
Mm_DHTKD1       LRRAVLLLRRGYQTERGVYGYRP---RKAKSGEPRGDR-----------------ARPSV 53 
Hs_DHTKD1       LGRALPLLWRGYQTERGVYGYRP---RKPESREPQGAL-----------------ERPPV 52 
Lm_E1kB         QHYVEDLMRQYEADSALVDPSWVPVLEAIRSGSDDSPVVAT--------------FSRPT 86 
Lm_E1kA         AMYMDGLYQQWKKDPASVDASWAELFSRSDLGNYNHALLDTPI----------CVLPAKS 110 
                      :          *                                           
 
Rn_E1k          EAQPNVDKLVEDHLAVQSLIRAYQIRGHHVAQLDPLGILDADLDSSVPAD------IISS 168 
Mm_E1k          EAQPNVDKLVEDHLAVQSLIRAYQIRGHHVAQLDPLGILDADLDSSVPAD------IISS 168 
Hs_E1k          EAQPNVDKLVEDHLAVQSLIRAYQIRGHHVAQLDPLGILDADLDSSVPAD------IISS 168 
Rn_E1kL         SSCTKTSKLVEDHLAVQSLIRAYQIRGHHVAQLDPLGILDADLDSFVPSD------LITT 155 
Mm_E1kL         SSCTKTSKLVEDHLAVQSLIRAYQIRGHHVAQLDPLGILDADLDSFVPSD------LITT 155 
Hs_E1kL         SSRTKTSKLVEDHLAVQSLIRAYQIRGHHVAQLDPLGILDADLDSFVPSD------LITT 155 
Rn_DHTKD1       DHG------------LARLVTVYCEHGHKAAQINPLFPGQALLDTVPEIQ------ALVQ 94 
Mm_DHTKD1       DHG------------LARLVTVYCEHGHKAAQINPLFPGQALLDTVPEIQ------ALVR 95 
Hs_DHTKD1       DHG------------LARLVTVYCEHGHKAAKINPLFTGQALLENVPEIQ------ALVQ 94 
Lm_E1kB         DAKSLSEKQRHDNMRLSWMIREYERFGHHMANVDPLSGYHADNCILG-SR------TLAP 139 
Lm_E1kA         SDEAVVKQSLADCGRLIRMIHTFEDRGHLMAQTDPLNYVDTDVTERTPSRRYKEMVRLDL 170 
                .              :  ::  :   **  *: :**   .:                :   
 
Rn_E1k          TDKLGFYGLHESDLDKVFHLPTTTFIGGQEPALPLREIIRRLEMAYCQHIGVEFMFINDL 228 
Mm_E1k          TDKLGFYGLHESDLDKVFHLPTTTFIGGQEPALPLREIIRRLEMAYCQHIGVEFMFINDL 228 
Hs_E1k          TDKLGFYGLDESDLDKVFHLPTTTFIGGQESALPLREIIRRLEMAYCQHIGVEFMFINDL 228 
Rn_E1kL         IDKLAFYDLQEADLDKEFRLPTTTFIGGSENTLSLREIIRRLESTYCQHIGLEFMFINDV 215 
Mm_E1kL         IDKLAFYDLQEADLDKEFRLPTTTFIGGPENTLSLREIIRRLESTYCQHIGLEFMFINDV 215 
Hs_E1kL         IDKLAFYDLQEADLDKEFQLPTTTFIGGSENTLSLREIIRRLENTYCQHIGLEFMFINDV 215 
Rn_DHTKD1       TLQGPFT--------------TTGLLNMGKEEASLEEVLAYLNHIYCGPISIETAQLQSQ 140 
Mm_DHTKD1       TLQGPFT--------------TTGLLNLGKEAASLEEVLAYLNHIYCGPISIETAQLQSQ 141 
Hs_DHTKD1       TLQGPFH--------------TAGLLNMGKEEASLEEVLVYLNQIYCGQISIETSQLQSQ 140 
Lm_E1kB         EEFGFTKDDLTHVFNVTFGASHEATFVSGGTAMTLQQIIDQLRRLYCGPIGFEFMSSGFF 199 
Lm_E1kA         AYFGFSDKDLDRVVRVGFQNQMGGIYDTSSPQLTIRQLHELLTERYCGRIGFELVHLTDG 230 
                                                 .:.::   *   **  *..*        
 
Rn_E1k          EQCQWIRQKFETPGIMQFTN-----EEKRTLLARLVRSTRFEEFLQRKWSSEKRFGLEGC 283 
Mm_E1k          EQCQWIRQKFETPGIMQFTN-----EEKRTLLARLVRSTRFEEFLQRKWSSEKRFGLEGC 283 
Hs_E1k          EQCQWIRQKFETPGIMQFTN-----EEKRTLLARLVRSTRFEEFLQRKWSSEKRFGLEGC 283 
Rn_E1kL         EQCQWIRQKFETPGVMKFSI-----EEKRTLLARLVRSMRFEDFLARKWSSEKRFGLEGC 270 
Mm_E1kL         EQCQWIRQKFETPGVMQFSV-----EEKRTLLARLVRSMRFEDFLARKWSSEKRFGLEGC 270 
Hs_E1kL         EQCQWIRQKFETPGVMQFSS-----EEKRTLLARLVRSMRFEDFLARKWSSEKRFGLEGC 270 
Rn_DHTKD1       EEKDWFARRFEELKKETFTT-----EERKHLSKLLLESQEFDHFLATKFATVKRYGGEGA 195 
Mm_DHTKD1       EERDWFARRFEELKKETFTT-----EERKYLSKLLLESQEFDHFLATKFATVKRYGGEGA 196 
Hs_DHTKD1       DEKDWFAKRFEELQKETFTT-----EERKHLSKLMLESQEFDHFLATKFSTVKRYGGEGA 195 
Lm_E1kB         ELRNWFR--QEVMDSLQSLP----TEERRLYYNDVVKACGFEKFLQLKYATKHRFGLDGG 253 
Lm_E1kA         DAKRFVRSQIELKDGCSALHRPMSREERLRIWDTVASAVFFEDFFKRKYSTQKRFGCDGA 290 
                :   :.    *              **:      :  :  *:.*:  *::: :*:* :*  
 
Rn_E1k          EVLIPALKTIIDMSSANGVDYVIMGMPHRGRLNVLANVIRKELEQIFCQFDSKLEAAD-- 341 
Mm_E1k          EVLIPALKTIIDMSSANGVDYVIMGMPHRGRLNVLANVIRKELEQIFCQFDSKLEAAD-- 341 
Hs_E1k          EVLIPALKTIIDKSSENGVDYVIMGMPHRGRLNVLANVIRKELEQIFCQFDSKLEAAD-- 341 
Rn_E1kL         EVMIPALKTIIDKSSEMGVENVILGMPHRGRLNVLANVIRKDLEQIFCQFDPKLEAAD-- 328 
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Mm_E1kL         EVMIPALKTIIDKSSEMGIENVILGMPHRGRLNVLANVIRKDLEQIFCQFDPKLEAAD-- 328 
Hs_E1kL         EVMIPALKTIIDKSSEMGIENVILGMPHRGRLNVLANVIRKDLEQIFCRFDPKLEAAD-- 328 
Rn_DHTKD1       ESMMGFFHELLKLSAYGGITDIIIGMPHRGRLNLLTGLLQLPPELMFRKMRGLSEFPENV 255 
Mm_DHTKD1       ESMMGFFHELLKLSAYGGITDIIIGMPHRGRLNLLTGLLQLPPELMFRKMRGLSEFPENV 256 
Hs_DHTKD1       ESMMGFFHELLKMSAYSGITDVIIGMPHRGRLNLLTGLLQFPPELMFRKMRGLSEFPENF 255 
Lm_E1kB         EALIPALKAAILTSSDLGVQSAIIGMPHRGRLNVLANVLRKSLRAILNEFEGR--VAIED 311 
Lm_E1kA         ESMVAGLRALLEKSSELGVQAINLGMPHRGRLNVLCHVIGKPFEVILKEFVGVTGQELHP 350 
                * ::  ::  :  *:  *:    :**.******:*  ::    . :: .:           
 
Rn_E1k          EGSGDMKYHLGMYHRRINRVTDRNITLSLVANPSHLEAADPVVMGKTKAEQFYCGDTE-- 399 
Mm_E1k          EGSGDMKYHLGMYHRRINRVTDRNITLSLVANPSHLEAADPVVMGKTKAEQFYCGDTE-- 399 
Hs_E1k          EGSGDMKYHLGMYHRRINRVTDRNITLSLVANPSHLEAADPVVMGKTKAEQFYCGDTE-- 399 
Rn_E1kL         EGSGDMKYHLGMYHERINRVTNRNITLSLVANPSHLEAVDPVVQGKTKAEQFYRGDAQ-- 386 
Mm_E1kL         EGSGDMKYHLGMYHERINRVTNRNITLSLVANPSHLEAVDPVVQGKTKAEQFYRGDAQ-- 386 
Hs_E1kL         EGSGDMKYHLGMYHERINRVTNRNITLSLVANPSHLEAVDPVVQGKTKAEQFYRGDAQ-- 386 
Rn_DHTKD1       AAIGDVLSHLTSSVD-LDFGAHRPLHVTMLPNPSHLEAINPVAVGKTRGRQQSQEDGDYS 314 
Mm_DHTKD1       ATIGDVLSHLTSSVD-LDFGAHQPLHVTMLPNPSHLEAVNPVAVGKTRGRQQSREDGDYS 315 
Hs_DHTKD1       SATGDVLSHLTSSVD-LYFGAHHPLHVTMLPNPSHLEAVNPVAVGKTRGRQQSRQDGDYS 314 
Lm_E1kB         AHLTGDVEYHLGKRKHVSLPNNKSIELDLLPNPSHLEAVNPLVLGKARARQTYTNDVE-- 369 
Lm_E1kA         FQIQSDVKYHLGYRGQLKLNSGKVMETEMLFNPSHLEAVNPFVQGYTRAMQVSLGEKG-- 408 
                    .   :       :     : :   :: ******* :*.. * ::. *    :     
 
Rn_E1k          -------GKKVMSILLHGDAAFAGQGIVYETFHLSDLPSYTTHGTVHVVVNNQIGFTTDP 452 
Mm_E1k          -------GKKVMSILLHGDAAFAGQGIVYETFHLSDLPSYTTHGTVHVVVNNQIGFTTDP 452 
Hs_E1k          -------GKKVMSILLHGDAAFAGQGIVYETFHLSDLPSYTTHGTVHVVVNNQIGFTTDP 452 
Rn_E1kL         -------GRKVMSILVHGDAAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDP 439 
Mm_E1kL         -------GRKVMSILVHGDAAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDP 439 
Hs_E1kL         -------GKKVMSILVHGDAAFAGQGVVYETFHLSDLPSYTTNGTVHVVVNNQIGFTTDP 439 
Rn_DHTKD1       PNGSAQPGDKVICLQVHGDASFCGQGIVLETFTLSNLPHFRIGGSIHLIVNNQLGYTTPA 374 
Mm_DHTKD1       PNGSAQPGDKVICLQVHGDASFCGQGIVLETFTLSNLPHFRIGGSIHLIVNNQLGYTTPA 375 
Hs_DHTKD1       PDNSAQPGDRVICLQVHGDASFCGQGIVPETFTLSNLPHFRIGGSVHLIVNNQLGYTTPA 374 
Lm_E1kB         -------CTAVLPILIHGDAAFAGQGSCYETMGFCELENFHVGGTLHLVINNQIGFTTNP 422 
Lm_E1kA         -------REKVLPIEIHGDAAFAGQGVAFETMCISEVGEQDTGGTVHVVCNNQIGFTTDP 461 
                          *: : :****:*.***   **: :.::      *::*:: ***:*:** . 
 
Rn_E1k          RMARSSPYPTDVARVVNAPIFHVNSDDPEAVMYVCKVAAEWRNTFHKDVVVDLVCYRRNG 512 
Mm_E1k          RMARSSPYPTDVARVVNAPIFHVNSDDPEAVMYVCKVAAEWRNTFHKDVVVDLVCYRRNG 512 
Hs_E1k          RMARSSPYPTDVARVVNAPIFHVNSDDPEAVMYVCKVAAEWRSTFHKDVVVDLVCYRRNG 512 
Rn_E1kL         RMARSSPYPTDVARVVNAPIFHVNADDPEAVIYVCSVAAEWRNTFNKDVVVDLVCYRRRG 499 
Mm_E1kL         RMARSSPYPTDVARVVNAPIFHVNADDPEAVIYVCSVAAEWRNTFNKDVVVDLVCYRRRG 499 
Hs_E1kL         RMARSSPYPTDVARVVNAPIFHVNADDPEAVIYVCSVAAEWRNTFNKDVVVDLVCYRRRG 499 
Rn_DHTKD1       ERGRSSLYSSDIGKLVGCAIIHVNGDSPEEVVRATRLAFEYQRQFRKDVIIDLLCYRQWG 434 
Mm_DHTKD1       ERGRSSLYSSDIGKLVGCAIIHVNGDSPEEVVRATRLAFEYQRQFRKDVIVDLLCYRQWG 435 
Hs_DHTKD1       ERGRSSLYCSDIGKLVGCAIIHVNGDSPEEVVRATRLAFEYQRQFRKDVIIDLLCYRQWG 434 
Lm_E1kB         KDSRASAYCTDLSKVNNAPVMHVNGDDVDACVKAAKIAARFRQQFHHDIIIDLVCYRRYG 482 
Lm_E1kA         KSSRSSAYCSDLGRVYNCPILHVNGDYPEEVIRVFEFAAEYRARFHKSVVIDLVCYRRFG 521 
                . .*:* * :*:.:: ...::***.*  :  : .  .* .::  *.:.:::**:***: * 
 
Rn_E1k          HNEMDEPMFTQPLMYKQIRKQKPVLQKYAELLVSQGVVNQPEYEEEISKYDKICEEAFTR 572 
Mm_E1k          HNEMDEPMFTQPLMYKQIRKQKPVLQKYAELLVSQGVVNQPEYEEEISKYDKICEEAFTR 572 
Hs_E1k          HNEMDEPMFTQPLMYKQIRKQKPVLQKYAELLVSQGVVNQPEYEEEISKYDKICEEAFAR 572 
Rn_E1kL         HNEMDEPMFTQPLMYKQIHKQVPVLKKYADKLIAEGTVTLQEFEEEIAKYDRICEEAYGR 559 
Mm_E1kL         HNEMDEPMFTQPLMYKQIHKQVPVLKKYADKLIAEGTVTLQEFEEEIAKYDRICEEAYGR 559 
Hs_E1kL         HNEMDEPMFTQPLMYKQIHRQVPVLKKYADKLIAEGTVTLQEFEEEIAKYDRICEEAYGR 559 
Rn_DHTKD1       HNELDEPFFTNPVMYKIIRARKSIPDTYAEHLIASGLMTQEEVSDIKASYYAKLNGHLAN 494 
Mm_DHTKD1       HNELDEPFFTNPVMYKIIRARKSIPDTYAEHLIASGLMTQEEVSDIKTSYYTKLNDHLAN 495 
Hs_DHTKD1       HNELDEPFFTNPIMYKIIRARKSIPDTYAEHLIAGGLMTQEEVSEIKSSYYAKLNDHLNN 494 
Lm_E1kB         HNELDEPFFTNPQLYHQIRQHPSVVDIYTKTLIKDGVLTAEEAKAKDKDWEGVLRQAYDR 542 
Lm_E1kA         HNENDDPSITQPLMYERVRAMPDVFRRYTDALITQGILTPQQSTQKAID-EKARYGSYQE 580 
                *** * *  *:* :*. ::    :   *:. *:  * :.  :      .          . 
 
Rn_E1k          SKDEK---------ILHIKHWLDSPWPGFFTLDGQPRSMTCPSTGLEEDILTHIGNVASS 623 
Mm_E1k          SKDEK---------ILHIKHWLDSPWPGFFTLDGQPRSMTCPSTGLEEDVLFHIGKVASS 623 
Hs_E1k          SKDEK---------ILHIKHWLDSPWPGFFTLDGQPRSMSCPSTGLTEDILTHIGNVASS 623 
Rn_E1kL         SKDKK---------ILHIKHWLDSPWPGFFNVDGEPKSMTYPTTGIPEDTLSHIGNVASS 610 
Mm_E1kL         SKDKK---------ILHIKHWLDSPWPGFFNVDGEPKSMTCPTTGIPEEMLTHIGSVASS 610 
Hs_E1kL         SKDKK---------ILHIKHWLDSPWPGFFNVDGEPKSMTCPATGIPEDMLTHIGSVASS 610 
Rn_DHTKD1       VAHYS---------PPAPH--LQARWQGLVQP---AACVTTWDTGVPLELLRFVGVKSVE 540 
Mm_DHTKD1       VAHYS---------PPATN--LQARWQGLVQP---EACVTTWDTGVPLELLRFIGVKSVE 541 
Hs_DHTKD1       MAHYR---------PPALN--LQAHWQGLAQP---EAQITTWSTGVPLDLLRFVGMKSVE 540 
Lm_E1kB         MNSAQNFVKVMPVFDPESENTSADLSSAKIAATRVPPPVSAVDTGVETQTLRAAGLRLAS 602 
Lm_E1kA         AAAQVNYAEYLKKSIPD-KWKCMKYSDELGNVTQHP-------TAITQETVDKVLKALKT 632 
                                  .                        *.:  : :          
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Rn_E1k          VPVENFTIHGGLSRILKTRRELVTNRT-VDWALAEYMAFGSLLKEGIHVRLSGQDVERGT 682 
Mm_E1k          VPVENFTIHGGLSRILKTRRELVTNRT-VDWALAEYMAFGSLLKEGIHVRLSGQDVERGT 682 
Hs_E1k          VPVENFTIHGGLSRILKTRGEMVKNRT-VDWALAEYMAFGSLLKEGIHIRLSGQDVERGT 682 
Rn_E1kL         VPLEDFKIHTGLSRILRGRADMTKKRT-VDWALAEYMAFGSLLKEGIHVRLSGQDVERGT 669 
Mm_E1kL         VPLEDFKIHTGLSRILRGRADMTKKRT-VDWALAEYMAFGSLLKEGIHVRLSGQDVERGT 669 
Hs_E1kL         VPLEDFKIHTGLSRILRGRADMTKNRT-VDWALAEYMAFGSLLKEGIHVRLSGQDVERGT 669 
Rn_DHTKD1       VPEELQLHSHLLKMYVQSRMEKVKNGTNLDWATAETLALGSLLAQGFNVRLSGQDVERGT 600 
Mm_DHTKD1       VPEELQVHSHLLKMYVQSRMEKVKNGSGLDWATAETLALGSLLAQGFNVRLSGQDVERGT 601 
Hs_DHTKD1       VPRELQMHSHLLKTHVQSRMEKMMDGIKLDWATAEALALGSLLAQGFNVRLSGQDVERGT 600 
Lm_E1kB         IPKEMQKPHPVVERTYAARKKGTEQGDAIEWCQAELMALATLSMQGVPIRLTGEDVERGT 662 
Lm_E1kA         YPEGFQL-HPKLKAVLDRRNETIETGEGIEWGTAEALAFGSLLLEGHQVRVTGEDVERGT 691 
                 *         :.     * .       ::*  ** :*:.:*  :*  :*::*:** *** 
 
Rn_E1k          FSHRHHVLHDQNVDKRTCIPMNHLWPNQAPY-TVCNSSLSEYGVLGFELGFAMASPNALV 741 
Mm_E1k          FSHRHHVLHDQNVDKRTCIPMNHLWPNQAPY-TVCNSSLSEYGVLGFELGFAMASPNALV 741 
Hs_E1k          FSHRHHVLHDQNVDKRTCIPMNHLWPNQAPY-TVCNSSLSEYGVLGFELGFAMASPNALV 741 
Rn_E1kL         FSHRHHVLHDQDVDRRTCVPMNHLWPDQAPY-TVCNSSLSEYGVLGFELGYAMASPNALV 728 
Mm_E1kL         FSHRHHVLHDQEVDRRTCVPMNHLWPDQAPY-TVCNSSLSEYGVLGFELGYAMASPNALV 728 
Hs_E1kL         FSHRHHVLHDQEVDRRTCVPMNHLWPDQAPY-TVCNSSLSEYGVLGFELGYAMASPNALV 728 
Rn_DHTKD1       FSQRHAMVVCQNTDD-VYIPLNHMDPNQKGFLEVSNSPLSEEAVLGFEYGMSIESPKLLP 659 
Mm_DHTKD1       FSQRHAMVVCQDTDD-AYIPLNHMDPNQKGFLEVSNSPLSEEAVLGFEYGMSIESPTLLP 660 
Hs_DHTKD1       FSQRHAIVVCQETDD-TYIPLNHMDPNQKGFLEVSNSPLSEEAVLGFEYGMSIESPKLLP 659 
Lm_E1kB         FTQRHAGITDMKTNL-KYFPVKMLSPS-QALITISNSSLSELGVCGFEMGYNMENTRSIT 720 
Lm_E1kA         FAQRHAVIHDQSQER-TYVPLAHISDT-QGRMIINNSPLSEYGMLGYAAGYSLYDPTSLV 749 
                *::**  :   . :    .*:  :         : **.*** .: *:  *  : ..  :  
 
Rn_E1k          LWEAQFGDFNNMAQCIIDQFICPGQAKWVRQNGIVLLLPHGMEGMGPEHSSARPERFLQM 801 
Mm_E1k          LWEAQFGDFNNMAQCIIDQFICPGQAKWVRQNGIVLLLPHGMEGMGPEHSSARPERFLQM 801 
Hs_E1k          LWEAQFGDFHNTAQCIIDQFICPGQAKWVRQNGIVLLLPHGMEGMGPEHSSARPERFLQM 801 
Rn_E1kL         LWEAQFGDFHNTAQCIIDQFISTGQAKWVRHNGIVLLLPHGMEGMGPEHSSARPERFLQM 788 
Mm_E1kL         LWEAQFGDFHNTAQCIIDQFISTGQAKWVRHNGIVLLLPHGMEGMGPEHSSARPERFLQM 788 
Hs_E1kL         LWEAQFGDFHNTAQCIIDQFISTGQAKWVRHNGIVLLLPHGMEGMGPEHSSARPERFLQM 788 
Rn_DHTKD1       LWEAQFGDFFNGAQIIFDTFISGGEAKWLLQSGLVILLPHGYDGAGPDHSSCRIERFLQM 719 
Mm_DHTKD1       LWEAQFGDFFNGAQIIFDTFISGGEAKWLLQSGLVILLPHGYDGAGPEHSSCRIERFLQM 720 
Hs_DHTKD1       LWEAQFGDFFNGAQIIFDTFISGGEAKWLLQSGIVILLPHGYDGAGPDHSSCRIERFLQM 719 
Lm_E1kB         IWEAQFGDFANGAQVIFDQFLSCCEEKWNEHSSLVLSLPHGYSGAGPEHSSARVERFLQL 780 
Lm_E1kA         IWEAQYGDFANGATIVFDQFLSAGESKWNQQQSCIVTLPHGYDGKGAEHSSGRLERFLQM 809 
                :****:*** * *  ::* *:.  : **  :.. :: **** .* *.:*** * *****: 
 
Rn_E1k          CNDDPDVLP---NLQEENFDISQLYDCNWIVVNCSTPGNFFHVLRRQILLPFRKP----- 853 
Mm_E1k          CNDDPDVLP---DLQEENFDINQLYDCNWIVVNCSTPGNFFHVLRRQILLPFRKP----- 853 
Hs_E1k          CNDDPDVLP---DLKEANFDINQLYDCNWVVVNCSTPGNFFHVLRRQILLPFRKP----- 853 
Rn_E1kL         SNDDSDAYP---VFTED-FEVSQLYDCNWIVVNCSTPASYFHVLRRQVLLPFRKPGWMWG 844 
Mm_E1kL         SNDDSDAYP---VFTED-FEVSQLYDCNWIVVNCSTPASYFHVLRRQILLPFRKP----- 839 
Hs_E1kL         SNDDSDAYP---AFTKD-FEVSQLYDCNWIVVNCSTPANYFHVLRRQILLPFRKP----- 839 
Rn_DHTKD1       CDSAEEGVD---SDTVN-----------MFVVHPTTPAQYFHLLRRQMMRNFRKP----- 760 
Mm_DHTKD1       CDSAEEGVD---SDTVN-----------MFVVHPTTPAQYFHLLRRQMIRNFRKP----- 761 
Hs_DHTKD1       CDSAEEGVD---GDTVN-----------MFVVHPTTPAQYFHLLRRQMVRNFRKP----- 760 
Lm_E1kB         SDDSDRVPSDFRHFPNDQALEIRIRRHNWQVTYPSTPANYFHLLRRQGLREFAKP----- 835 
Lm_E1kA         SSEDVTTP--------AYSKEERAHRINWEITYPSTPAQYFHLLRRHQKRNFRKA----- 856 
                ...                           :.  :**..:**:***:    * *.      
 
Rn_E1k          --------------LIVFTPKSLLRHPEARTSFDEMLPGTHFQRVIPEDGPAAQNPDKVK 899 
Mm_E1k          --------------LIVFTPKSLLRHPEARTSFDEMLPGTHFQRVIPENGPAAQDPHKVK 899 
Hs_E1k          --------------LIIFTPKSLLRHPEARSSFDEMLPGTHFQRVIPEDGPAAQNPENVK 899 
Rn_E1kL         PIDGAPGGWLFAFQLIVFTPKSLLRHPDAKSSFDQMVSGTSFQRMIPEDGPAAQSPERVE 904 
Mm_E1kL         --------------LIVFTPKSLLRHPDAKSSFDQMVSGTSFQRLIPEDGPAAHSPEQVQ 885 
Hs_E1kL         --------------LIIFTPKSLLRHPEAKSSFDQMVSGTSFQRVIPEDGAAARAPEQVQ 885 
Rn_DHTKD1       --------------LIVASPKMLLRYPVAVSTLEEMAPGTAFKPVIGD---SSVDPKNVK 803 
Mm_DHTKD1       --------------LIVASPKMLLRYPAAVSTLEEMAPGTAFKPVIGD---SSVDPKNVK 804 
Hs_DHTKD1       --------------LIVASPKMLLRLPAAVSTLQEMAPGTTFNPVIGD---SSVDPKKVK 803 
Lm_E1kB         --------------LINLFSKARLRAPN-LSKLSDMTQGTSFKAVIDT---ARAKDTVAR 877 
Lm_E1kA         --------------LVIFFSKKYLRAPN-VSTLEELTSG-EFQPVIPD---LSVPASQAR 897 
                              *:   .*  ** *   :.:.::  *  *: :*            .. 
 
Rn_E1k          RLLFCTGKVYYDLTRER----KARDMAE-EVAITRIEQLSPFPFDLLLKEAQKYPN---- 950 
Mm_E1k          RLLFCTGKVYYDLTRER----KARNMEE-EVAITRIEQLSPFPFDLLLKEAQKYPN---- 950 
Hs_E1k          RLLFCTGKVYYDLTRER----KARDMVG-QVAITRIEQLSPFPFDLLLKEVQKYPN---- 950 
Rn_E1kL         RLIFCTGKVYYDLVKER----SSQGLEK-QVAITRLEQISPFPFDLIMREAEKYSG---- 955 
Mm_E1kL         RLIFCTGKVYYDLVKER----SSQGLEQ-QVAITRLEQISPFPFDLIMREAEKYSG---- 936 
Hs_E1kL         RLIFCTGKVYYDLVKER----SSQDLEE-KVAITRLEQISPFPFDLIKQEAEKYPG---- 936 
Rn_DHTKD1       TLIFCSGKHFYALLKQR----ESLGAKKRDFAIIRLEELCPFPLDSLQQEMGKYKHV--- 856 
Mm_DHTKD1       TLIFCSGKHFYALLKQR----ESLGTKKHDFAIIRLEELCPFPLDALQQEMSKYKHV--- 857 
Hs_DHTKD1       TLVFCSGKHFYSLVKQR----ESLGAKKHDFAIIRVEELCPFPLDSLQQEMSKYKHV--- 856 
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Lm_E1kB         KVVFCSGQIESIVNDAKTAMQKETPGVHDDVVLVTVEQLAPFPWEEVADVMEKYAQRNPN 937 
Lm_E1kA         RLVMCTGQIYHYLNKYR-----ETKGVKD-VALVRVEELSPFPVAEVQQLLAEYEK---- 947 
                 :::*:*:    :   :             ..:  :*::.***   :     :*       
 
Rn_E1k          AELAWCQEEHKNQGYYDYVKPRLRTTIDRAK----PVWYAGRDPAAAPATGNKKTHLTEL 1006 
Mm_E1k          AELAWCQEEHKNQGYYDYVKPRLRTTIDRAK----PVWYAGRDPAAAPATGNKKTHLTEL 1006 
Hs_E1k          AELAWCQEEHKNQGYYDYVKPRLRTTISRAK----PVWYAGRDPAAAPATGNKKTHLTEL 1006 
Rn_E1kL         AELVWCQEEHKNMGYYDYISPRFMTLLGHSR----PIWYVGREPAAAPATGNKNTHLVSL 1011 
Mm_E1kL         AELVWCQEEHKNMGYYDYISPRFMTLLGHSR----PIWYVGRDPAAAPATGNKNAHLVSL 992 
Hs_E1kL         AELAWCQEEHKNMGYYDYISPRFMTILRRAR----PIWYVGRDPAAAPATGNRNTHLVSL 992 
Rn_DHTKD1       QDIIWSQEEPQNMGPWSFVYPRFEKQLACK------LRLVSRPPLPAPAVGIGTVHQQQH 910 
Mm_DHTKD1       RDVIWSQEEPQNMGPWSFVSPRFEKQLACR------LRLVSRPPLPAPAVGIGTVHQQQH 911 
Hs_DHTKD1       KDHIWSQEEPQNMGPWSFVSPRFEKQLACK------LRLVGRPPLPVPAVGIGTVHLHQH 910 
Lm_E1kB         TEFVWLQEEPRNMGMWTHMRPRMNSLMRHLGLKQTRVNVVSRPSAASPSTGYGSVHVAEE 997 
Lm_E1kA         AELMWAQEEPKNMGSWAHVEPRIEDYTK----GERELRYAGRSITAAPSTGYKSKHEKEQ 1003 
                 :  * *** :* * : .: **:             :  ..*   . *:.*  . *  .  
 
Rn_E1k          QRFLDTAFDLDAFKKFS-                                           1023 
Mm_E1k          QRFLDTAFDLDAFKKFS-                                           1023 
Hs_E1k          QRLLDTAFDLDVFKNFS-                                           1023 
Rn_E1kL         RKFLDTAFNLKAFEGKTF                                           1029 
Mm_E1kL         RRFLDTAFNLKAFEGKTF                                           1010 
Hs_E1kL         KKFLDTAFNLQAFEGKTF                                           1010 
Rn_DHTKD1       EAILFKTFTS--------                                           920 
Mm_DHTKD1       EDILSKTFTQ--------                                           921 
Hs_DHTKD1       EDILAKTFA---------                                           919 
Lm_E1kB         KKLIAETLA---------                                           1006 
Lm_E1kA         EIICEMVFH---------                                           1012 
                . :   .:           

 

Figure 7.1 Alignment of E1k, E1k-like and DHTKD1 pr otein sequences 
ClustalW alignment of L. major E1k-A and E1k-B (LmE1k-A and LmE1k-B) (see Table 3.1) with: R. 
norvegicus E1k (RnE1k) (accession number NP_001017461); M. musculus E1k (MmE1k) 
(accession number CAI24405); H. sapiens E1k (HsE1k) (accession number NP_002532); R. 
norvegicus E1k-like (RnE1kL) (accession number NP_001099532); M. musculus E1k-like 
(MmE1kL) (accession number AAI57971); H. sapiens E1k-like (HsE1kL) (accession number 
NP_060715); R. norvegicus DHTKD1 (RnDHTKD1) (accession number NP_001099532); M. 
musculus DHTKD1 (MmDHTKD1) (accession number AAI57971); H. sapiens DHTKD1 (Hs 
DHTKD1) (accession number NP_061176). The alignment indicates identical residues (*), 
conserved residues (:) and homologous residues (.). Red residues indicate conserved amino acids 
within different motifs that fulfil various roles within E1k enzymes. Blue residues and green residues 
are those that are conserved in E1k/E1kL proteins but not in DHTKD1 or LmE1kA/LmE1kB, 
respectively. Refer also to Table 7.1. 
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Signature specific motif 
Function a E1k consensus a Hs E1k a Hs DHTKD1 a Lm E1kA b Lm E1kB b

Lipoyl domain
complementarity

KRF(G/s)(L/i)EG KRFGLEG KRYGGEG KRFGCDG HRFGLDG

2-Oxo substrate side chain
binding pocket GM(A/p)HRGRLN GMPHRGRLN GMPHRGRLN GMAHRGRLN GMPHRGRLN
ThDP interaction

2-Oxo substrate side chain
binding pocket

GD(V/m)KYH(L/m,q)G GDVKYHLG GDVLSHLT SDVKYHLG GDVEYHLG

Stabilization of ThDP binding
Shielding S of ES from the
solvent

NPSHLE NPSHLE NPSHLE NPSHLE NPSHLE

Binding of ThDP
pyrophosphate group

G(Q/e)G GQG GQG GQG GQG

Binding of ThDP
pyrophosphate group and
thiazole ring GFTT GFTT GYTT GFTT GFTT
Hydrogen bond network

Interaction with ThDP
through loop 1
Catalysis of decarboxylation
and reductive acylation

GHNExD(E/q)PxxTQ GHNEMDEPMFTQ GHNELDEPFYTN GHNENDDPSITQ GHNETDLPDFTQ

Lipoyl domain interaction

Lipoyl domain
complementarity

Wxx(A/g)E WALAE WATAE WGTAE WCQAE

Lipoyl domain
complementarity

G(Q/e)DxxRGTF GQDVERGTF GQDVGRGTF GEDVERGTF GEDVERGTF

ThDP binding WEAQ(F/y)GDF WEAQFGDF WEAQFGDF WEAQYGDF WEAQFGDF

Catalysis
Shielding leaving
carboxylate from solvent

LPHG(Y/m)(E/d)GxGPEHSS LPHGMEGMGPEHSS LPHGYDGAGPDHSS LPHGYDGKGAEHSS LPHGYSGAGPEHSS

Lipoyl domain interaction

Lipoyl domain
complementarity

LLR LLR LLR YLR RLR

Ca2+ binding DxDxDx DADLDS QALLEN DTDVTE HADNCI
ExDxDx ESDLDK - FSDKDL ?
NDDxDx NDDPDV MCDSAE? SEDVTT SDDSDR  

Table 7.1 Summary of conserved motifs in LmE1k-A and LmE1k-B 
This table summarises which motifs contribute to specific activities within E1k enzymes (Bunik & 
Degtyarev, 2008)a. Based upon ClustalW alignment (see Figure 7.1), conservation of sequences 
comprising these motifs was determined for LmE1k-A and LmE1k-Bb. Blue residues and green 
residues are those that are conserved in E1k/E1kL motifs in other species but not in HsDHTKD1 or 
LmE1kA/LmE1kB, respectively. 
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Hs_E1p-α          MRKMLAAVSRVLSGASQKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED 60 
Rn_E1p-α          MRKMLAAVSHVLAGAAQKPASRVLVASRNFANDATFEIKKCDLHRLEEGPPVTTVLTRED 60 
Lm_E1p-α          ---MFKCATRCLLDTKTVP----LKPQR------PFKLHTAGRTDMAP-LPTQAVYDAEQ 46 
                     *: ..:: * .:   *    * ..*      .*:::...   :    *. :*   *: 
 
Hs_E1p-α          GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQEACCVGLEAGINPTDHLITAYRA 120 
Rn_E1p-α          GLKYYRMMQTVRRMELKADQLYKQKIIRGFCHLCDGQEACCVGLEAGINPTDHLITAYRA 120 
Lm_E1p-α          LKQSLALMFRIRRMESLCDQSYKLKKIRGFCHLYIGQEAIPAGMENVLTFEDPIITGYRD 106 
                    :   :*  :****  .** ** * *******  ****  .*:*  :.  * :**.**  
 
Hs_E1p-α          HGFTFTRGLSVREILAELTGRKGGCAKGKGGSMHMYAKN--FYGGNGIVGAQVPLGAGIA 178 
Rn_E1p-α          HGFTFTRGLPVRAILAELTGRRGGCAKGKGGSMHMYAKN--FYGGNGIVGAQVPLGAGIA 178 
Lm_E1p-α          HGWYISRGGKPEDVFAEMFGRQGGCSKGKGGSMHMYRVDNGFYGGNGIVGAQVSIGAGLA 166 
                  **: ::**   . ::**: **:***:**********  :  ************.:***:* 
 
Hs_E1p-α          LACKYNGKD---EVCLTLYGDGAANQGQIFEAYNMAALWKLPCIFICENNRYGMGTSVER 235 
Rn_E1p-α          LACKYNGKD---EVCLTLYGDGAANQGQIFEAYNMAALWKLPCIFICENNRYGMGTSVER 235 
Lm_E1p-α          WRFAMENRDSPKHVAVTFYGDGAANQGQIYESMNIAALQRLPVIFAVENNHFGMGTSAAR 226 
                       :.:*   .*.:*:***********:*: *:*** :** **  ***::*****. * 
 
Hs_E1p-α          AAASTDYYKRGDFIPGLRVDGMDILCVREATRFAAAYCRSGKGPILMELQTYRYHGHSMS 295 
Rn_E1p-α          AAASTDYYKRGDFIPGLRVDGMDILCVREATKFAAAYCRSGKGPILMELQTYRYHGHSMS 295 
Lm_E1p-α          GSYQAEFYRRGDYIPGIKVDGMDVLAVQEGTRYARDYCMSGKGPIVMELDCYRYMGHSMS 286 
                  .: .:::*:***:***::*****:*.*:*.*::*  ** ******:***: *** ***** 
 
Hs_E1p-α          DPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNLASVEELKEIDVEVRKEIEDAAQFATA 355 
Rn_E1p-α          DPGVSYRTREEIQEVRSKSDPIMLLKDRMVNSNLASVEELKEIDVEVRKEIEDAAQFATA 355 
Lm_E1p-α          DPDNQYRTKSDIQHVKQERDCIRKMREFMATEGIMTEDEMSKMEKDVKKEVDQDLQKAQK 346 
                  **. .***:.:**.*:.: * *  ::: *....: : :*:.::: :*:**:::  * *   
 
Hs_E1p-α          DPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSVS                          390 
Rn_E1p-α          DPEPPLEELGYHIYSSDPPFEVRGANQWIKFKSVS                          390 
Lm_E1p-α          QPMTKLDELFTDIYVG-EQYEHRTCQGTVYHKP--                          378 
                  :* . *:**  .** .   :* * .:  : .*.   

 

Figure 7.2 Alignment of E1p- αααα protein sequences 
ClustalW alignment of L. major E1p-α (LmE1p-α) (see Table 3.1) with homologues in R. 
norvegicus (RnE1p-α) (accession number CAA78146) and H. sapiens (HsE1p-α) (accession 
number NP_000275). The alignment indicates identical residues (*), conserved residues (:) and 
homologous residues (.). Red residues indicate conserved amino acids within different motifs that 
fulfil various roles within E1p-α enzymes. Green residues are those that are conserved in E1p-α 
proteins found in other species but not in LmE1p-α. Refer also to Table 7.2. 
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Hs_E1p-β         MAAVSGLVRRPLREVSGLLKRRFHWTAPAALQVTVRDAINQGMDEELERDEKVFLLGEEV 60 
Rn_E1p-β         MAAVAGLVRGPLRQASGLLKRRFHRSAPAAVQLTVREAINQGMDEELERDEKVFLLGEEV 60 
Lm_E1p-β         ---MRRFASRALFSASAAMAARCATTN-----MTVRDAIHSALDEELAREEKVFVIGEEV 52 
                    :  :.  .* ..*. :  *   :      :***:**:..:**** *:****::**** 
 
Hs_E1p-β         AQYDGAYKVSRGLWKKYGDKRIIDTPISEMGFAGIAVGAAMAGLRPICEFMTFNFSMQAI 120 
Rn_E1p-β         AQYDGAYKVSRGLWKKYGDKRIIDTPISEMGFAGIAVGAAMAGLRPICEFMTFNFSMQAI 120 
Lm_E1p-β         AQYQGAYKVTKGLMDKYGKDRIIDMPITEHGFAGMAVGAALSGLRPVCEFMTFNFAMQAI 112 
                 ***:*****::** .***..**** **:* ****:*****::****:********:**** 
 
Hs_E1p-β         DQVINSAAKTYYMSGGLQPVPIVFRGPNGASAGVAAQHSQCFAAWYGHCPGLKVVSPWNS 180 
Rn_E1p-β         DQVINSAAKTYYMSAGLQPVPIVFRGPNGASAGVAAQHSQCFAAWYGHCPGLKVVSPWNS 180 
Lm_E1p-β         DQLVNSAGKSLYMSGGQMKCPIVFRGPNGASAGVGAQHSQCFGPWYASVPGLKVIAPYNC 172 
                 **::***.*: ***.*    **************.*******..**.  *****::*:*. 
 
Hs_E1p-β         EDAKGLIKSAIRDNNPVVVLENELMYGVPFEFLPEAQSKDFLIPIGKAKIERQGTHITVV 240 
Rn_E1p-β         EDAKGLIKSAIRDDNPVVMLENELMYGVAFELPTEAQSKDFLIPIGKAKIERQGTHITVV 240 
Lm_E1p-β         EDARGMIKAAIRDDNAVVVLEHELLYSESFPVTDEAADKNFVIPFGKAKIEREGKDITLI 232 
                 ***:*:**:****:*.**:**:**:*. .* .  ** .*:*:**:*******:*..**:: 
 
Hs_E1p-β         SHSRPVGHCLEAAAVLSKEGVECEVINMRTIRPMDMETIEASVMKTNHLVTVEGGWPQFG 300 
Rn_E1p-β         AHSRPVGHCLEAAAVLSKEGIECEVINLRTIRPMDIEAIEASVMKTNHLVTVEGGWPQFG 300 
Lm_E1p-β         GFSRGVDLCLKAAEKLAAEGVQAEVINLRSLRPLDRHTILSSIKKTHRAVTVDESFPVCN 292 
                 ..** *. **:**  *: **::.****:*::**:* .:* :*: **:: ***: .:*  . 
 
Hs_E1p-β         VGAEICARIMEGPAFNFLDAPAVRVTGADVPMPYAKILEDNSIPQVKDIIFAIKKTLNI 359 
Rn_E1p-β         VGAEICARIMEGPAFNFLDAPAVRVTGADVPMPYAKILEDNSIPQVKDIIFAIKKTLNI 359 
Lm_E1p-β         IGAEICACVMESDTFDYLDAPIERVSCADCPTPYSKDIEMASQPQVADVMAAAKRVLS- 350 
                 :****** :**. :*::****  **: ** * **:* :*  * *** *:: * *:.*.  

 

Figure 7.3 Alignment of E1p- ββββ protein sequences  
ClustalW alignment of L. major E1p-β (LmE1p-β) (see Table 3.1) with homologues in R. norvegicus 
RnE1p-β) (accession number NP_001007621) and H. sapiens (HsE1p-β) (accession number 
NP_000916). The alignment indicates identical residues (*), conserved residues (:) and 
homologous residues (.). Red residues indicate conserved amino acids within different motifs that 
fulfil various roles within E1p-α enzymes. Green residues are those that are conserved in E1p-β 
proteins found in other species but not in LmE1p-β. Refer also to Table 7.2. 
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Signature specific motif 
Function a E1p consensus a Hs E1p-alpha a Lm E1p-alpha b Hs E1p-beta a Lm E1p-beta b

Lipoyl domain
complementarity

IRGFCHL IRGFCHL IRGFCHL - -

2-Oxo substrate side chain
binding pocket IT(A/s)YR ITAYR ITGYR - -
ThDP interaction

2-Oxo substrate side chain
binding pocket

GKGGSMH GKGGSMH GKGGSMH - -

Stabilization of ThDP binding
Shielding S of ES from the
solvent

FYGG(N/h)GIVGAQ FYGGNGIVGAQ FYGGNGIVGAQ - -

Binding of ThDP
pyrophosphate group

NQGQ NQGQ NQGQ - -

Binding of ThDP
pyrophosphate group and
thiazole ring GMGT GMGT GMGT - -
Hydrogen bond network

Interaction with ThDP
through loop 1
Catalysis of decarboxylation
and reductive acylation

TYRY(H/g)GHSMSDPG TYRYHGHSMSDPG CYRYMGHSMSDPD - -

Lipoyl domain interaction

Lipoyl domain
complementarity

TVR(D/e)A(L/i)N - - TVRDAIN TVRDAIH

Lipoyl domain
complementarity

GEEVxQYxGAYK - - GEEVAQYDGAYK GEEVAQYQGAYK

ThDP binding EFM(T/s)FNFSMQAID - - EFMTFNFSMQAID EFMTFNFAMQAID

Catalysis
Shielding leaving
carboxylate from solvent

VFRGPNGAxxGVxAQHSQ - - VFRGPNGASAGVAAQHSQ VFRGPNGASAGVGAQHSQ

Lipoyl domain interaction

Lipoyl domain
complementarity

(L/m)YG - - MYG LYS  

Table 7.2 Summary of conserved motifs in LmE1p-αααα and LmE1p-ββββ 
This table summarises which motifs contribute to specific activities within E1p enzymes (Bunik & 
Degtyarev, 2008)a. Based upon ClustalW alignments (see Figure 7.2 and Figure 7.3), conservation 
of sequences comprising these motifs was determined for LmE1p-αand LmE1p-βb. Green residues 
are those that are conserved in E1p-α/E1p-β motifs in other species but not in LmE1p-αand 
LmE1p-β. 
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Hs_E1b-α          ------------MAVAIAAARVWRLNRGLSQAALLLLRQPG---ARGLARSHPPRQQQQ- 44 
Rn_E1b-α          ------------MAVAMSAAKIWRPSRGLRQAALLLLGRPG---ARGLARFHPSRQQQQQ 45 
Lm_E1b-α          MFHISRAVRCNALATAIAGRTSLSDAIRQVQKVWNLDFKDGPVITSTLAFNDEPDPAAPI 60 
                              :*.*::.           * .  *  : *   :  **  . .       
 
Hs_E1b-α          FSSLDDK-PQFPGASAEFIDKLEFIQPNVISGIPIYRVMDRQGQIINPSEDPH--LPKEK 101 
Rn_E1b-α          FPSLDDK-PQFPGASAEFVDKLEFIQPNVISGIPIYRVMDRQGQIINPSEDPH--LPQEE 102 
Lm_E1b-α          FHVLDLQGRVFVEDKADSRAAAATPSTVNEAGKMESQSADVGEVFRYHAEDEMSVITREV 120 
                  *  ** :   *   .*:        ..   :*    :  *    :   :**    :.:*  
 
Hs_E1b-α          VLKLYKSMTLLNTMDRILYESQRQGRISFYMTNYGEEGTHVGSAAALDNTDLVFGQYREA 161 
Rn_E1b-α          VLKLYRSMTLLNTMDRILYESQRQGRISFYMTNYGEEGTHVGSAAALERTDLVFGQYREA 162 
Lm_E1b-α          AQGMMSAMLTHNTMDKIMLEAQRQGRISFYMTMFGEEAAVIGAAAGLASNDELFAQYREA 180 
                  .  :  :*   ****:*: *:*********** :***.: :*:**.*  .* :*.***** 
 
Hs_E1b-α          GVLMYRDYPLELFMAQCYGNISDLGKGRQMPVHYGCKERHFVTISSPLATQIPQAVGAAY 221 
Rn_E1b-α          GVLMYRDYPLELFMAQCYGNVSDPGKGRQMPVHYGCKERHFVTISSPLATQIPQAVGAAY 222 
Lm_E1b-α          GILTYRGYTIPEFIAQCMGNCECDAKGRQMPIHYGSKRLHAQMVSSPLATQIPHGAGAGY 240 
                  *:* **.*.:  *:*** ** .  .******:***.*. *   :*********:..**.* 
 
Hs_E1b-α          AAKRAN-----------------ANRVVICYFGEGAASEGDAHAGFNFAATLECPIIFFC 264 
Rn_E1b-α          AAKRAN-----------------ANQIVICYFGEGAASEGDAHAGFNFAATLECPIIFFC 265 
Lm_E1b-α          AFRLENQALERRLPAGTLLSTIPEARICATFFGEGAASEGDFHAGLNFASTVGSHTLFFV 300 
                  * :  *                   ::   :********** ***:***:*: .  :**  
 
Hs_E1b-α          RNNGYAISTPTSEQYRGDGIAARGPGYGIMSIRVDGNDVFAVYNATKEARRRAVAENQPF 324 
Rn_E1b-α          RNNGYAISTPTSEQYRGDGIAARGPGYGIMSIRVDGNDVFAVYNATKEARRRAVAENQPF 325 
Lm_E1b-α          RNNGYAISTPTHSQYMGDGILSRAVGYGIPAARVDGLDALAVYHTVRKAREMILNSHRPV 360 
                  *********** .** **** :*. **** : **** *.:***::.::**.  : .::*. 
 
Hs_E1b-α          LIEAMTYRIGHHSTSDDSSAYRSVDEVNYWDKQDHPISRLRHYLLSQGWWDEEQEKAWRK 384 
Rn_E1b-α          LIEAMTYRIGHHSTSDDSSAYRSVDEVNYWDKQDHPISRLRQYLLNQGWWDEEQEKAWRK 385 
Lm_E1b-α          LVEALTYRLSHHSTSDDSTAYRSRDEIEHFAETFSPIERFEHFVTARGWWTPEQSREVVE 420 
                  *:**:***:.********:**** **:::: :   **.*:.:::  :***  **.:   : 
 
Hs_E1b-α          QSRRKVMEAFEQAERKPKPNPNLLFSDVYQEMPAQLRKQQESLARHLQTYGEHYPLDHFD 444 
Rn_E1b-α          QSRKKVMEAFEQAERKLKPNPSLLFSDVYQEMPAQLRRQQESLARHLQTYGEHYPLDHFD 445 
Lm_E1b-α          RTRSEVLSELRRQEKLPAWPVSTLCDDVFEHLTPELERQRTQLVEHYQAHRSIYDQEKL- 479 
                  ::* :*:. :.: *:      . * .**::.:..:*.:*: .*..* *:: . *  :::  
 
Hs_E1b-α          K          445 
Rn_E1b-α          K           446 
Lm_E1b-α          -                   
 

Figure 7.4 Alignment of E1b- αααα protein sequences 
ClustalW alignment of L. major E1b-α (LmE1b-α) (see Table 3.1) with homologues in R. 
norvegicus (RnE1b-α) (accession number NP_036914) and H. sapiens (HsE1b-α) (accession 
number NP_000700). The alignment indicates identical residues (*), conserved residues (:) and 
homologous residues (.). Red residues indicate conserved amino acids within different motifs that 
fulfil various roles within E1b-α enzymes. Green residues are those that are conserved in E1b-α 
proteins found in other species but not in LmE1b-α. Refer also to Table 7.3. 
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Hs_E1b-β         MAVVAAAAGWLLRLRAAGAEGHWRRLPGAGLARGFLHPAATVEDAAQRRQVAHFTFQPDP 60 
Rn_E1b-β         MAAVAARAGGLLRLGAAGAERRRRGLRCAALVQGFLQPA--VDDASQKRRVAHFTFQPDP 58 
Lm_E1b-β         ----------MRRLFDASATAVVAASSAAAKRHGSVQPS-------------EFVFAPAP 37 
                           : **  *.*         *.  :* ::*:             .*.* * * 
 
Hs_E1b-β         -EPREYGQTQKMNLFQSVTSALDNSLAKDPTAVIFGEDVAFGGVFRCTVGLRDKYGKDRV 119 
Rn_E1b-β         -ESLQYGQTQKMNLFQSVTSALDNSLAKDPTAVIFGEDVAFGGVFRCTVGLRDKYGKDRV 117 
Lm_E1b-β         GEEEAMRNGVKMNLFQAVNSGLDHALSKE-RTVLLGEDVAFGGVFRCTLDLRKKHGPQKV 96 
                  *     :  ******::.*.**::*:*:  :*::*************:.**.*:* ::* 
 
Hs_E1b-β         FNTPLCEQGIVGFGIGIAVTGATAIAEIQFADYIFPAFDQIVNEAAKYRYRSGDLFNCGS 179 
Rn_E1b-β         FNTPLCEQGIVGFGIGIAVTGATAIAEIQFADYIFPAFDQIVNEAAKYRYRSGDLFNCGS 177 
Lm_E1b-β         FDSPLTEQGIVGFAVGMAAVGWHPIAEVQFADYIFPAFDQIVNEAAKYRFRTGSNFHCG- 155 
                 *::** *******.:*:*..*  .***:*********************:*:*. *:**  
 
Hs_E1b-β         LTIRSPWGCVGHGALYHSQSPEAFFAHCPGIKVVIPRSPFQAKGLLLSCIEDKNPCIFFE 239 
Rn_E1b-β         LTIRAPWGCVGHGALYHSQSPEAFFAHCPGIKVVIPRSPFQAKGLLLSCIEDKNPCIFFE 237 
Lm_E1b-β         MLIRAPCSAVGHGGIYHSQSVEGYFTHCPGLKIVMPSSPSEAKGLLLKCVEENDPCIFFE 215 
                 : **:* ..****.:***** *.:*:****:*:*:* ** :******.*:*:::****** 
 
Hs_E1b-β         PKILYRAAAEEVPIEPYNIPLSQAEVIQEGSDVTLVAWGTQVHVIREVASMAKEKLGVSC 299 
Rn_E1b-β         PKILYRAAVEQVPVEPYKIPLSQAEVIQEGSDVTLVAWGTQVHVIREVASMAQEKLGVSC 297 
Lm_E1b-β         PKILYRSAVEEVNPDYYTLPLGKGRILVEGRDVTMVTYGSQVYVAAKAAEMARKE-GISV 274 
                 ******:*.*:*  : *.:**.:..:: ** ***:*::*:**:*  :.*.**::: *:*  
 
Hs_E1b-β         EVIDLRTIIPWDVDTICKSVIKTGRLLISHEAPLTGGFASEISSTVQEECFLNLEAPISR 359 
Rn_E1b-β         EVIDLRTIVPWDVDTVCKSVIKTGRLLISHEAPLTGGFASEISSTVQEECFLNLEAPISR 357 
Lm_E1b-β         ELIDLRSLLPWDRQLVADSVKKTGKVIVTHEAPKTSGYGAELVSSITEDCFLSLEAPPTR 334 
                 *:****:::*** : :..** ***:::::**** *.*:.:*: *:: *:***.**** :* 
 
Hs_E1b-β         VCGYDTPFPHIFEPFYIPDKWKCYDALRKMINY                            392 
Rn_E1b-β         VCGYDTPFPHIFEPFYIPDKWKCYDALRKMINY                            390 
Lm_E1b-β         VCGLDTPFP-LHERLYLPNELKLLDAIKSVVHF                            366 
                 *** ***** :.* :*:*:: *  **::.:::: 

 

Figure 7.5 Alignment of E1b- ββββ protein sequences 
ClustalW alignment of L. major E1b-β (LmE1b-β) (see Table 3.1) with homologues in R. norvegicus 
(RnE1b-β) (accession number NP_062140) and H. sapiens (HsE1b-β) (accession number 
NP_000047). The alignment indicates identical residues (*), conserved residues (:) and 
homologous residues (.). Red residues indicate conserved amino acids within different motifs that 
fulfil various roles within E1b-β enzymes. Green residues are those that are conserved in E1b-β 
proteins found in other species but not in LmE1b-β. Refer also to Table 7.3. 
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Signature specific motif 
Function a E1b consensus a Hs E1b-alpha a Lm E1b-alpha b Hs E1b-beta a Lm E1b-beta b

Lipoyl domain
complementarity

- - - - -

2-Oxo substrate side chain
binding pocket YR(D/e,q) YRE YRE - -
ThDP interaction

2-Oxo substrate side chain
binding pocket

(K/s)G(G)RQ(M/l)P KGRQMP KGRQMP - -

Stabilization of ThDP binding
Shielding S of ES from the
solvent

- - - - -

Binding of ThDP
pyrophosphate group

(N/t)FA NFA NFA - -

Binding of ThDP
pyrophosphate group and
thiazole ring AIS AIS AIS - -
Hydrogen bond network

Interaction with ThDP
through loop 1
Catalysis of decarboxylation
and reductive acylation

(P/h)H(S/t)xx(G)DD(P/d,s) HHSTSDDS HHSTSDDS - -

Lipoyl domain interaction

Lipoyl domain
complementarity

(Q/d)(A/s)xxxA - - QSVTSA QAVNSG

Lipoyl domain
complementarity

G(E/q)DVxxxGGVF - - GEDVAFGGVF GEDVAFGGVF

ThDP binding E(I/m)QF - - EIQF EVQF

Lipoyl domain
complementarity

(L/a)Y(R/n) - - LYR LYR
 

Table 7.3 Summary of conserved motifs in LmE1b-αααα and LmE1b-ββββ 
This table summarises which motifs contribute to specific activities within E1b enzymes (Bunik & 
Degtyarev, 2008)a. Based upon ClustalW alignments (see Figure 7.4 and Figure 7.5), conservation 
of sequences comprising these motifs was determined for LmE1b-αand LmE1b-βb. Green residues 
are those that are conserved in E1b-α/E1b-β motifs in other species but not in LmE1b-αand 
LmE1b-β. 
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Ec_P-protein      ------------------------------------------------MTQTLSQLE-NS 11 
Hs_P-protein      MQSCARAWGLRLGRGVGGGRRLAGGSGPCWAPRSRDSSSGGGDSAAAGASRLLERLLPRH 60 
Lm_P-protein      --VSALPSGFTP--------------PPFLSPACARMLRRLLRVHGVPAPAGLARYT-ST 43 
                                                                   .  * :      
 
Ec_P-protein      GAFIERHIGPDAAQQQEMLNAVGAQSLNALTGQIVPKDIQLATPPQVGAPATEYAALAEL 71 
Hs_P-protein      DDFARRHIGPGDKDQREMLQTLGLASIDELIEKTVPANIRLKRPLKMEDPVCENEILATL 120 
Lm_P-protein      DAYLNRHIGPTRKETAEMLKTVGKESLADLMTTVLPSDI-LRTPLNNFKCLSETAALSYL 102 
                  . : .*****   :  ***:::*  *:  *    :* :* *  * :      *   *: * 
 
Ec_P-protein      KAIASRNKRFTSYIGMGYTAVQLPPVILRNMLENPGWYTAYTPYQPEVSQGRLEALLNFQ 131 
Hs_P-protein      HAISSKNQIWRSYIGMGYYNCSVPQTILRNLLENSGWITQYTPYQPEVSQGRLESLLNYQ 180 
Lm_P-protein      KSLGAQNKVLKSMIGQGYYECIVPSAIMRNVLENPMWYTPYTPFQSEIAQGRLESLLNFQ 162 
                  :::.::*:   * ** **    :* .*:**:***. * * ***:*.*::*****:***:* 
 
Ec_P-protein      QVTLDLTGLDMASASLLDEATAAAEAMAMAKRVSKLKNANRFFVASDVHPQTLDVVRTRA 191 
Hs_P-protein      TMVCDITGLDMANASLLDEGTAAAEALQLCYRHNKRR---KFLVDPRCHPQTIAVVQTRA 237 
Lm_P-protein      TMVTDLTKMDISNASLLDQATAAGECLYLALNQHRHKR-RKFFVSRDVFLSSIEMIRTRA 221 
                   :. *:* :*::.*****:.***.*.: :. .  : :   :*:*    . .:: :::*** 
 
Ec_P-protein      ETFG-FEVIVDDAQKVLDHQDVFGVLLQQVGTTGEIHDYTALISELKSRKIVVSVAADIM 250 
Hs_P-protein      KYTGVLTELKLPCEMDFSGKDVSGVLFQYPDTEGKVEDFTELVERAHQSGSLACCATDLL 297 
Lm_P-protein      HPLGAQVIVGDVQSLDLDDAELSGIFVQTPDAKGELHDFTTIFARAKANGVVCCAGVDLM 281 
                  .  *    :    .  :.  :: *::.*  .: *::.*:* :. . :    : . ..*:: 
 
Ec_P-protein      ALVLLTAPGKQGADIVFGSAQRFGVPMGYGGPHAAFFAAKDEYKRSMPGRIIGVSKDAAG 310 
Hs_P-protein      ALCILRPPGEFGVDIALGSSQRFGVPLGYGGPHAAFFAVRESLVRMMPGRMVGVTRDATG 357 
Lm_P-protein      ASCLVKPAGEMGADVVVGCAQRFGTPLGYGGPHAAFMATTDNLKRLSPGRIVGISKDNAG 341 
                  *  :: ..*: *.*:..*.:****.*:*********:*. :.  *  ***::*:::* :* 
 
Ec_P-protein      NTALRMAMQTREQHIRREKANSNICTSQVLLANIASLYAVYHGPVGLKRIANRIHRLTDI 370 
Hs_P-protein      KEVYRLALQTREQHIRRDKATSNICTAQALLANMAAMFAIYHGSHGLEHIARRVHNATLI 417 
Lm_P-protein      DPAIRVALQTREQHIKRERATSNICTAQALLANMNAFYAIYHGPEGLKQLAREIHQKAKL 401 
                  . . *:*:*******:*::*.*****:*.****: :::*:***. **:::*..:*. : : 
 
Ec_P-protein      LAAGLQQKGLKLRHAHYFDTLCVEV----ADKAGVLTRAEAAEINLRSD-ILNAVGITLD 425 
Hs_P-protein      LSEGLKRAGHQLQHDLFFDTLKIQCG---CSVKEVLGRAAQRQINFRLF-EDGTLGISLD 473 
Lm_P-protein      FAVGMESLGFSPVNTTYFDTLSFSMEAAPMTAADYAQRCVERGINLFVDGSTNQVSVSLD 461 
                  :: *::  * .  :  :**** ..             *.    **:      . :.::** 
 
Ec_P-protein      ETTTRENVMQLFNVLLGDNHGLDIDTLDKDVAHDSRSIQPAMLR-DDEILTHPVFNRYHS 484 
Hs_P-protein      ETVNEKDLDDLLWIFGCESS---AELVAESMGEECRGIPGSVFKRTSPFLTHQVFNSYHS 530 
Lm_P-protein      EATTEQHIAALLQAAGMPTP--KIEALTR-VADTICVIPEALLR-KSKFLQSTVFNSHKS 517 
                  *:...:.:  *:      .     : : . :..    *  ::::  . :*   *** ::* 
 
Ec_P-protein      ETEMMRYMHSLERKDLALNQAMIPLGSCTMKLNAAAEMIPITWPEFAELHPFCPPEQAEG 544 
Hs_P-protein      ETNIVRYMKKLENKDISLVHSMIPLGSCTMKLNSSSELAPITWKEFANIHPFVPLDQAQG 590 
Lm_P-protein      ETELMRYAQHLQRKDYGLTHGMIPLGSCTMKLNSAAAMRALSWPEYTALHPYAPEDQARG 577 
                  **:::** : *:.** .* :.************::: : .::* *:: :**: * :**.* 
 
Ec_P-protein      YQQMIAQLADWLVKLTGYDAVCMQPNSGAQGEYAGLLAIRHYHESRNEGHRDICLIPASA 604 
Hs_P-protein      YQQLFRELEKDLCELTGYDQVCFQPNSGAQGEYAGLATIRAYLNQKGEGHRTVCLIPKSA 650 
Lm_P-protein      YHTLLADLKQKLCDITGMAACSIQPNSGAQGEYAGLRIIRAYHESRGEAHRDVCFIPISA 637 
                  *: :: :* . * .:**    .:*************  ** * :.:.*.** :*:** ** 
 
Ec_P-protein      HGTNPASAHMAGMQVVVVACDKNGNIDLTDLRAKAEQAGDNLSCIMVTYPSTHGVYEETI 664 
Hs_P-protein      HGTNPASAHMAGMKIQPVEVDKYGNIDAVHLKAMVDKHKENLAAIMITYPSTNGVFEENI 710 
Lm_P-protein      HGTNPASAVLAGLKVVTVKCLDDGSVDMVDLETKCVKHARDLACLMITYPSTYGLYDQNI 697 
                  ******** :**:::  *   . *.:* ..*.:   :   :*:.:*:***** *::::.* 
 
Ec_P-protein      REVCEVVHQFGGQVYLDGANMNAQVGITSPGFIGADVSHLNLHKTFCIPHGGGGPGMGPI 724 
Hs_P-protein      SDVCDLIHQHGGQVYLDGANMNAQVGICRPGDFGSDVSHLNLHKTFCIPHGGGGPGMGPI 770 
Lm_P-protein      RKITSMVHEHGGQCYIDGANLNALVGYTGPGFIGGDVCHINMHKTFSIPHGGGGPGLGPI 757 
                   .: .::*:.*** *:****:** **   ** :*.**.*:*:****.*********:*** 
 
Ec_P-protein      GVKAHLAPFVPGHSVVQIEG--MLTRQGAVSAAPFGSASILPISWMYIRMMGAEGLKKAS 782 
Hs_P-protein      GVKKHLAPFLPNHPVISLKRNEDACPVGTVSAAPWGSSSILPISWAYIKMMGGKGLKQAT 830 
Lm_P-protein      TVRPHLAPFLPNSTYGPAVG--GSQAFGQVSQAGNGSASIATISYAFMMMLGSHGLKTCT 815 
                   *: *****:*. .             * ** *  **:** .**: :: *:*..*** .: 
 
Ec_P-protein      QVAILNANYIASRLQDAFPVLYTGRDGRVAHECILDIRPLKEETGISELDIAKRLIDYGF 842 
Hs_P-protein      ETAILNANYMAKRLETHYRILFRGARGYVGHEFILDTRPFKKSANIEAVDVAKRLQDYGF 890 
Lm_P-protein      EYAVLNANYLKKRLEEHYTICFLDHSQFCAHEFILDIRPFKKTAHIDAEDVAKRLIDYGF 875 
                  : *:*****: .**:  : : : .     .** *** **:*: : *.  *:**** **** 
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Ec_P-protein      HAPTMSFPVAGTLMVEPTESESKVELDRFIDAMLAIRAEIDQVKAGVWPLEDNPLVNAPH 902 
Hs_P-protein      HAPTMSWPVAGTLMVEPTESEDKAELDRFCDAMISIRQEIADIEEGRIDPRVNPLKMSPH 950 
Lm_P-protein      HAPTLAFPVEGTLMIEPTESESKRELDRLADALISIRREIAAVERGDQPKDNNVLTNAPH 935 
                  ****:::** ****:******.* ****: **:::** **  :: *      * *  :** 
 
Ec_P-protein      -IQSELVAEWAHPYSREVAVFPAGVA---DKYWPTVKRLDDVYGDRNLFCSCVPISEYQ- 957 
Hs_P-protein      SLTCVTSSHWDRPYSREVAAFPLPFVKPENKFWPTIARIDDIYGDQHLVCTCPPMEVYES 1010 
Lm_P-protein      TAKCVTADEWNRPYSRQLAAYPTRHQYR-EKFWPSVGRVDNTYGDRNLMCSCAPLEFY-- 992 
                     .    .* :****::*.:*       :*:**:: *:*: ***::*.*:* *:. *   
 
Ec_P-protein      ---------- 
Hs_P-protein      PFSEQKRASS         1020 
Lm_P-protein      ---------- 

 

Figure 7.6 Alignment of P-protein sequences 
ClustalW alignment of L. major P-protein (LmP-protein) (see Table 3.1) with homologues in E. coli 
(EcP-protein) (accession number AAC75941) and H. sapiens (HsP-protein) (accession number 
NP_000161). The alignment indicates identical residues (*), conserved residues (:) and 
homologous residues (.).Red residues indicate conserved amino acids within different motifs that 
fulfil various roles within P-proteins. Green residues are those amino acids that are not conserved 
in L. major, but which are strictly conserved in other species. 
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Hs_E2k          LSRSHCVPGVQHSLSAFQKGNCPLGRHSLPGVSLCQGPGYPNSRKVVINNSVFSVRFFRT 60 
Lm_E2k          ----------------FRR----VSTRVLP--TACSAAHNLN------------LRFC-- 24 
Ec_E2k          ------------------------SS---------------------------------- 2 
                                        .                                    
 
Hs_E2k          TTVCKYDLVTVKTPAFAEPVTEGDVR-WEKAVGDTVAEDEVVCEIETDKTLVQVPSPANG 119 
Lm_E2k          --------LSINVPTIAESISTGKVVNWTKKVGDAVAEDEVICQIESDKLNVDVRAPANG 76 
Ec_E2k          --------VDILVPDLPESVADATVATWHKKPGDAVVRDEVLVEIETDKVVLEVPASADG 54 
                        : : .* :.*.:: . *  * *  **:*..***: :**:**  ::* :.*:* 
 
Hs_E2k          MIEALFVPDGGKVEGGTPLFTLRKTGAAPAKAKPAEAPAAAAPKAE-----------PIA 168 
Lm_E2k          VITKINFEEGADVEVGAQLSTMKEGPAPAAAAPKAAEVKLDAPKAE-----------PPK 125 
Ec_E2k          ILDAVLEDEGTTVTSRQILGRLREGNSAGKETSAKSEEKASTPAQRQQASLEEQNNDALS 114 
                ::  :   :*  *     *  :::  :.   :         :*  .           .   
 
Hs_E2k          AAVPPRAAPIPTQMPPVPSP---------------SQPPSSK-PVSAVKPTAVPPLAEPG 212 
Lm_E2k          AAAPAASAPA---APAAPAA---------------AAKPAMH-TIAGADPRTKS------ 160 
Ec_E2k          PAIRRLLAEHNLDASAIKGTGVGGRLTREDVEKHLAKAPAKESAPAAAAPAAQPALAAR- 173 
                .*     *      ..  ..               :  *: . . :.. * : .       
 
Hs_E2k          AGKGLHSEHREKMNRMRQCIAQRLKEAQNTVPMLTIFNEIDVSNIQKMRARHKEAFLKKH 272 
Lm_E2k          ----------VRISSMRRRIADRLKASQNTCAMLTTFNEIDMTPLFQLRDKYKDEFHKRH 210 
Ec_E2k          ------SEKRVPMTRLRKRVAERLLEAKNSTAMLTTFNEVNMKPIMDLRKQYGEAFEKRH 227 
                            :. :*: :*:**  ::*: .*** ***:::. : .:* :: : * *:* 
 
Hs_E2k          NLKLGFMSASVKASAFALQEQPVVNAVIDDITKEVVYRDYIDISVAVATPQGLVVPVIRN 332 
Lm_E2k          DVKLGLMSPFVKASAIALKDVPIVNASFG--KDTIDYHEFVDIAIAVATPRGLVVPVIRD 268 
Ec_E2k          GIRLGFMSFYVKAVVEALKRYPEVNASID--GDDVVYHNYFDVSMAVSTPRGLVTPVLRD 285 
                .::**:**  *** . **:  * *** :.   . : *:::.*:::**:**:***.**:*: 
 
Hs_E2k          VEAMNYADIEQTITELGEKARKNEFAIEDMDGGTFTISNGGVFGSLFEHPLS-TPLSAIL 391 
Lm_E2k          VQNMNLANIETAIADYAARARINKLTMAEMTGGTFTISNGGVFGSWMGTPIINPPHSAIL 328 
Ec_E2k          VDTLGMADIEKKIKELAVKGRDGKLTVEDLTGGNFTITNGGVFGSLMSTPIINPPQSAIL 345 
                *: :. *:**  * : . :.* .:::: :: **.***:******* :  *:  .* **** 
 
Hs_E2k          GMHGIFDKPVAIGGKVEVRPMMYVALTYDHRLIDGREAVTFLRKIKAAVEDPRVLLFDL- 450 
Lm_E2k          GMHAIKKKPWVVGNEIKIRDIMAVALTYDHRLIDGSDAVTFLVKVKNLIEDPARMVLDLS 388 
Ec_E2k          GMHAIKDRPMAVNGQVEILPMMYLALSYDHRLIDGRESVGFLVTIKELLEDPTRLLLDV- 404 
                ***.* .:* .:..::::  :* :**:******** ::* ** .:*  :***  :::*:  

 

Figure 7.7 Alignment of E2k protein sequences 
ClustalW alignment of L. major E2k (LmE2k) (see Table 3.1) with homologues in E. coli (EcE2k) 
(accession number AAA23898) and H. sapiens (HsE2k) (accession number NP_000161). The 
alignment indicates identical residues (*), conserved residues (:) and homologous residues (.).Red 
residues indicate conserved amino acids within different motifs that fulfil various roles within E1k 
enzymes. Green residues are those that are conserved in E1k proteins found in other species but 
not in LmE1k. 
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Hs_E2p          MWRVCARRAQNVAPWAGLEARWTALQEVPGTPRVTSRSGPAPARRNSVTTGYGGVRALCG 60 
Hs_E3BP         ----------MAASWR-----------LGCDPRLLRYLVGFPGRRS-----VGLVKGALG 34 
Lm_E2p          -----------------------------------------------------MLRCRAV 7 
Ec_E2p          -MAIEIKVPDIGADEVEITEILVKVGDKVEAEQSLITVEGDKASMEVPSPQAGIVKEIKV 59 
Lm_E2pL         -----------------------------------------------------MMRRTLL 7 
                                                                      ::     
 
Hs_E2p          WTPSSGATPRNRLLLQLLGSPGRRYYSLPPHQKVPLPSLSPTMQAGT------------- 107 
Hs_E3BP         WSVSRGANWRWFHSTQWLRGD---------PIKILMPSLSPTMEEGN------------- 72 
Lm_E2p          SKLATLAALRFLTITP-----------------IPMPALSPTMEKGK------------- 37 
Ec_E2p          SVGDKTQTGALIMIFDSADGAADAAPAQAEEKKEAAPAAAPAAAAAKDVNVPDIGSDEVE 119 
Lm_E2pL         WLVNFEP--------------------------VFMPALSPSMETGT------------- 28 
                                                    *: :*:   ..              
 
Hs_E2p          IARWEKKEGDKINEGDLIAEVETDKATVGFE-SLEECYMAKILVAEGTRDVPIGAIICIT 166 
Hs_E3BP         IVKWLKKEGEAVSAGDALCEIETDKAVVTLD-ASDDGILAKIVVEEGSKNIRLGSLIGLI 131 
Lm_E2p          ITEWCKQPGDFIRPGDTFCNIETDKAVVSYDNATEEGFFARVITSPG-EETVVGQTVCLI 96 
Ec_E2p          VTEILVKVGDKVEAEQSLITVEGDKASMEVP-APFAGTVKEIKVNVGDKVSTGSLIMVFE 178 
Lm_E2pL         VVEWKKKIGELVKESDVFCTIQTDKAVVDYTNTFESGYLAKIYCGNGQSAPVAKTIAVMV 88 
                :..   : *: :   : :  :: *** :    :     . .:    *           :  
 
Hs_E2p          VGKPEDIEAFKNYTLDSSAAPTPQAAPAPTPAATAS--PPTPSAQAPGSSYPPHMQVLLP 224 
Hs_E3BP         VEEGE----------DWKHVEIPKDVGPPPPVSKPS--EPRPSPE-PQISIPVKKEHIPG 178 
Lm_E2p          VDEKEGVHS------DEVKNWKPEAEEAPAAAAEEA--PAAPAATTPVAAAPVAAS---- 144 
Ec_E2p          VAGEAGAAAP-----AAKQEAAPAAAPAPAAGVKEVNVPDIGGDEVEVTEVMVKVGDKVA 233 
Lm_E2pL         SDAADVSKAD----EYTPEGEVPAAEAEAPTAAAVAAAPAAGGASSKAPEGVTCEPVFMP 144 
                                      *     ...           .                  
 
Hs_E2p          ALSPTMTMGTVQRWEKKVGEKLSEGDLLAEIETDKATIGFEVQEEGYLAKILVPEGTRDV 284 
Hs_E3BP         TLRFRLSPAARNILEKHS--------------------------------LDASQGTATG 206 
Lm_E2p          GDRVKASPYARKMAAEKN---------------------------------VSLRGIKGT 171 
Ec_E2p          AEQSLITVEGDKASMEVPAPFAG-----------------------VVKELKVNVGDKVK 270 
Lm_E2pL         ALSPSMETGTVVEWKKKIG----------------------------------------- 163 
                               :                                             
 
Hs_E2p          PLGTPLCIIVEKEADISAFADYRPTEVTDLKPQVPPPTPPPVAAVPPTPQPLAPTPSAPC 344 
Hs_E3BP         PRG-----IFTKEDALKLVQLKQTGKITESRPTPAP------TATPTAPSPLQAT----- 250 
Lm_E2p          GGG------VGRITSKDVAAAVASGTASSAAEVAAP-------AKTAATAALAAP----- 213 
Ec_E2p          TGSLIMIFEVEGAAPAAAPAKQEAAAPAPAAKAEAP------AAAPAAKAEGKSEFAEND 324 
Lm_E2pL         --------ELVKESDVFCTIQTDKAVVDYTNTFESG------------------------ 191 
                         .                        .                          
 
Hs_E2p          PATPAGPKGRVFVSPLAKKLAVEKGIDLTQVKGTGPDGRITKKDIDSFVPSKVAPAPAAV 404 
Hs_E3BP         ---------------------------------SGPS------------------YPRPV 259 
Lm_E2p          ------------------------------------------------------------ 
Ec_E2p          AYVHATPLIRRLAREFG----------VNLAKVKGTGRKGRILREDVQAYVKEAIKRAEA 374 
Lm_E2pL         ------------------------------------------------------------ 
                                                                             
 
Hs_E2p          VPPTGPGMAP----------VPTGVFTDIPISNIRRVIAQRLMQSK-QTIPHYYLSIDVN 453 
Hs_E3BP         IPPVSTPGQP----------NAVGTFTEIPASNIRRVIAKRLTESK-STVPHAYATADCD 308 
Lm_E2p          AKPAAAKGTP----------PANPNFTDIPVTTMRSVIAKRLHQSKNLEIPHYYLFDDCR 263 
Ec_E2p          APAATGGGIPGMLPWPKVDFSKFGEIEEVELGRIQKISGANLSRNW-VMIPHVTHFDKTD 433 
Lm_E2pL         --------------------------------YLAKIYCGNGQSAPVAKTIAVMVSDAAD 219 
                                                 :  :   .                    
 
Hs_E2p          MGEVLLVRKELN---KILEGRSKISVNDFIIKASALACLKVPEANSSWM--DTVIRQNHV 508 
Hs_E3BP         LGAVLKVRQDL------VKDDIKVSVNDFIIKAAAVTLKQMPDVNVSWD--GEGPKQLPF 360 
Lm_E2p          VDNMLALIKQLN---AKGNGEYKITVNDYIVKAVARANTLVPEVNSSWQ--GDFIRQYAT 318 
Ec_E2p          ITELEAFRKQQNEEAAKRKLDVKITPVVFIMKAVAAALEQMPRFNSSLSEDGQRLTLKKY 493 
Lm_E2pL         VEKVANYYPEDA-----VGGPPASAADPSAAAAAAASARPAPSAASAKH-------YGGS 267 
                :  :     :              :       * * :    *    :              
 
Hs_E2p          VDVSVAVSTPAGLITPIVFNAHIKGVETIANDVVSLATKAREGKLQPHEFQG--GTFTIS 566 
Hs_E3BP         IDISVAVATDKGLLTPIIKDAAAKGIQEIADSVKALSKKARDGKLLPEEYQG--GSFSIS 418 
Lm_E2p          VDVSVAVATPTGLITPIIRNAQAKGLVEISKETKALAKKARDGTLQPSEFQG--GTCSVS 376 
Ec_E2p          INIGVAVDTPNGLVVPVFKDVNKKGIIELSRELMTISKKARDGKLTAGEMQG--GCFTIS 551 
Lm_E2pL         LDAAVAASGPS---------VARIAAGLETSTLAGIAPSGKGGRFLKSDFSGQPGFDYND 318 
                :: .**.             .   .    :     :: ..: * :   : .*  *    . 
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Hs_E2p          NLGMFGIKNFSAIINPPQACILAIGASEDKLVPADNEKG---FDVAS----MMSVTLSCD 619 
Hs_E3BP         NLGMFGIDEFTAVINPPQACILAVGRFRPVLKLTEDEEGNAKLQQRQ----LITVTMSSD 474 
Lm_E2p          NLGATGIPGFTAIINPPQAMILAVGSAKPRAEIVKSEETG-EFEMTGRVENVVSFSASFD 435 
Ec_E2p          SIGGLGTTHFAPIVNAPEVAILGVSKSAMEPVWNGKEFVP---------RLMLPISLSFD 602 
Lm_E2pL         TTPARAMQQKAAPAAAADEASKTAAKSAAPAAVSGDIYN------------VVLKPGPVY 366 
                .    .    :.   ..:      .          .               ::  . .   
 
Hs_E2p          HRVVDGAVGAQWLAEFRKYLEKPITMLL                                 647 
Hs_E3BP         SRVVDDELATRFLKSFKANLENPIRLA-                                 501 
Lm_E2p          HRIVDGALGAKWFQHFHDAMENPLSLLL                                 463 
Ec_E2p          HRVIDGADGARFITIINNTLSDIRRLVM                                 630 
Lm_E2pL         KSVSDTALLKKLMHTMHVPKPKLKKAAE                                 394 
                  : *     : :  :.    .       

 

Figure 7.8 Alignment of E2p and E3BP protein sequen ces 
ClustalW alignment of L. major E2p (LmE2p) and L. major E2p-like (LmE2pL) (see Table 3.1) with: 
E. coli E2p (EcE2p) (accession number AAC73226); H. sapiens E2p (HsE2p) (accession number 
NP_001922); H. sapiens E3BP (HsE3BP) (accession number NP_001128496). The alignment 
indicates identical residues (*), conserved residues (:) and homologous residues (.).Red residues 
indicate conserved motifs within E2p and E3BP enzymes. Green residues are those that are 
conserved in E1p proteins but not in E3BP or LmE2pL. 

Hs_E2b          --TPAVRRLAMENNIKLSEVVGSGKD-GRILKEDILNYLEKQTGA 42 
Rn_E2b          --TPAVRRLAMENNIKLSEVVGSGKD-GRILKEDILNFLEKQTGA 42 
Bs_E2b          --MPSVRKYAREKGVDIRLVQGTGKN-GRVLKEDIDAFLAGGAKP 42 
Ec_E2p          --TPLIRRLAREFGVNLAKVKGTGRK-GRILREDVQAYVKEAIKR 42 
Hs_E2p          FVSPLAKKLAVEKGIDLTQVKGTGPD-GRITKKDIDSFVP--SKV 42 
Mm_E2p          FVSPLAKKLAAEKGIDLTQVKGTGPE-GRIIKKDIDSFVP--SKA 42 
Sc_E2p          --SPLAKTIALEKGISLKDVHGTGPR-GRITKADIESYLEKSSKQ 42 
Lm_E2p          KASPYARKMAAEKNVSLRGIKGTGGGVGRITSKDVAAAVASGT-- 43 
Ec_E2k          --SPAIRRLLAEHNLDASAIKGTGVG-GRLTREDVEKHLAKAPAK 42 
Hs_E3BP         RLSPAARNILEKHSLDASQGTATGPR-GIFTKEDALKLVQLKQ-- 42 
Lm_E2b          -EECELTRLMEVRG-SLKDVVKERSK-GKAKLSFMPFFLKAASIA 42 
Lm_E2k          --LGLMSPFVKASAIALKDVPIVNASFGKDTID-YHEFVDIAIAV 42 
Lm_E2pL         --PSMETGTVVEWKKKIGELVKESDVFC-TIQTDKAVVDYTNTFE 42                                                             

 

Figure 7.9 Alignment of the E1/E3 binding sequences  found within E2p and E3BP proteins, 
respectively 
ClustalW alignment of the E1/E3 binding domains of LmE2p, LmE2pL, HsE2p, HsE3BP, EcE2p 
(see Figure 7.8), LmE2b, HsE2b, RnE2b (see Figure 7.10), LmE2k, EcE2k (see Figure 7.7) and: B. 
stearothermophilus E2p (BsE2p) (accession number CAA37630); M. musculus E2p (MmE2p) 
(accession number NP_663589); S. cerevisiae E2p (ScE2p) (accession number NP_014328). Red 
residues are those in H. sapiens E3 that interact with E3BP. Replacement of Pro with a less 
constraining residue (blue residue), along with a positively charged residue instead of Ile (blue 
residue), is thought to permit E1 binding as well as E3 binding (Ciszak et al., 2006). Green residues 
represent those from L. major E2 proteins that do not conform to the consensus, but which could 
perform similar functions. For example, the Val in LmE2p does not align well with Pro and Lys 
residues due to insertion of two Gly residues, but could be homologous to the Val observed in 
EcE2k. LmE2b and LmE2k potentially fulfil E1 and E3 binding since they possess both Ser and Lys 
residues, instead of Lys and Arg.  
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Hs_E2b          MAAVRMLRTWSRNAGKLICVRYFQTCGNVHVLKPNYVCFFGYPSFKYSHPHHFLKTTAAL 60 
Rn_E2b          MAAARVLGTWSRNAVRLTCVRYFQTYNNVHILKPQHVCSVGYPLLKSSQPRHSLRTAAVL 60 
Lm_E2b          MRSARCMVRR--------CIGAAAGAATVAHAS-------GWPYTASR--RHLFATTCAP 43 
                * :.* :           *:       .*   .       *:*       :* : *:..  
 
Hs_E2b          RGQVVQFKLSDIGEGIREVTVKEWYVKEGDTVSQFDSICEVQSDKASVTITSRYDGVIKK 120 
Rn_E2b          QGQVVQFKLSDIGEGIREVTIKEWYVKEGDTVSQFDSICEVQSDKASVTITSRYDGVIKR 120 
Lm_E2b          LGRCIPYRLADIGEGITEVQVLGVCVKAGDTINEFDPICEVQSDKATVDITSRYTGVVKA 103 
                 *: : ::*:****** ** :    ** ***:.:**.*********:* ***** **:*  
 
Hs_E2b          LYYNLDDIAYVGKPLVDIETEALKDSEEDVVET-----PAVSHD---EHTHQEIK----- 167 
Rn_E2b          LYYNLDDIAYVGKPLIDIETEALKDSEEDVVET-----PAVAHD---EHTHQEIK----- 167 
Lm_E2b          VYLQPGATAKVGSVMLDIVPEGADDAPEAASPSRSAPPPSSAPDSAPQATYSASKPSSDA 163 
                :* : .  * **. ::** .*. .*: * .  :     *: : *   : *:.  *      
 
Hs_E2b          -GRKTLATPAVRRLAMENNIKLSEVVGSGKDGRILKEDILNYLEKQTGAILPPSPKVEIM 226 
Rn_E2b          -GQKTLATPAVRRLAMENNIKLSEVVGSGKDGRILKEDILNFLEKQTGAILPPSPKSEIT 226 
Lm_E2b          SAGKVLATPATRYLAREHKLDLAHVPATGKGGRVTKEDVLQFMDAGMSAAAAPSPPSTAS 223 
                 . *.*****.* ** *:::.*:.* .:**.**: ***:*::::   .*  .***      
 
Hs_E2b          PPPPKPKDMTVPILVSKPPVFTGKDKTEPIKGFQKAMVKTMSAALKIPHFGYCDEIDLTE 286 
Rn_E2b          PPPPQPRDRPFPTPVSKPPVFLGKDRTEPVTGFQKAMVKTMSAALKIPHFGYCDEVDLTE 286 
Lm_E2b          SAATAPPG----TVVSGLQTEAG-DTVMPITGVRRGMVKTMSQAASIPTFTFSEECELTR 278 
                .... * .      **   .  * * . *:.*.::.****** * .** * :.:* :**. 
 
Hs_E2b          LVKLREELKPIAFARG---IKLSFMPFFLKAASLGLLQFPILNASVDENCQNITYKASHN 343 
Rn_E2b          LVKLREELKPVALARG---IKLSFMPFFLKAASLGLLQFPILNASVDENCQSITYKASHN 343 
Lm_E2b          LMEVRGSLKDVVKERSKGKAKLSFMPFFLKAASIALQHHPDINAHCPVDCSALVRKAAHN 338 
                *:::* .** :.  *.    *************:.* :.* :**    :*. :. **:** 
 
Hs_E2b          IGIAMDTEQGLIVPNVKNVQICSIFDIATELNRLQKLGSVSQLSTTDLTGGTFTLSNIGS 403 
Rn_E2b          IGIAMDTERGLIVPNVKNVQVRSVFEIAMELNRLQKLGSLGQLSTTDLTGGTFTLSNIGS 403 
Lm_E2b          IGFAMDTPNGLIVPVVKHVERKSILDIANDMQVLIERGKSNKLTTQDMTGGTFTLSNIGV 398 
                **:**** .***** **:*:  *:::** ::: * : *. .:*:* *:***********  
 
Hs_E2b          IGGTFAKPVIMPPEVAIGALGSIKAIPRFNQKGEVYKAQIMNVSWSADHRVIDGATMSRF 463 
Rn_E2b          IGGTYAKPVILPPEVAIGALGAIKALPRFDQKGDVYKAQIMNVSWSADHRVIDGATMSRF 463 
Lm_E2b          IGATVTTPVLLPPQVAIGAIGRLQKLPRFDANGSLYAANLICVSFTADHRVIDGASMVRF 458 
                **.* :.**::**:*****:* :: :***: :*.:* *::: **::*********:* ** 
 
Hs_E2b          SNLWKSYLENPAFMLLDLK                                          482 
Rn_E2b          SNLWKSYLENPAFMLLDLK                                          482 
Lm_E2b          ANTYKQLLEHPENMLVDLR                                          477 
                :* :*. **:*  **:**: 

 

Figure 7.10 Alignment of E2b protein sequences 
ClustalW alignment of L. major E2b (LmE2b) (see Table 3.1) with homologues in H. sapiens 
(HsE2b) (accession number NP_001909) and R. norvegicus (RnE2b) (accession number 
NP_445764). The alignment indicates identical residues (*), conserved residues (:) and 
homologous residues (.). Red residues indicate conserved amino acids within different motifs that 
fulfil various roles within E2b enzymes. 
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Hs_H-protein      MALRVVRSVRALLCTLRAVPLPAAPCPPRPWQLGVGAVRTLRTGPALLSVRKFTEKHEWV 60 
Rn_H-protein      MSLRVVRSVRAVALQPALSPWP--PCPPRPWRRALAAVRSLRTGSALLSVRKFTEKHEWV 58 
Lm_H-protein      -----MR--RAFASVP------------------VAAAAYLRC----YATKHFTDSHEWV 31 
                       :*  **.                      :.*.  **      :.::**:.**** 
 
Hs_H-protein      TTENGIGTVGISNFAQEALGDVVYCSLPEVGTKLNKQDEFGALESVKAASELYSPLSGEV 120 
Rn_H-protein      TAKDGIGTVGISNFAQEALGDVVYCSLPEVGTKLKKQEEFGGLESVKAASELYSPLSGEV 118 
Lm_H-protein      MQCEDEITIGISSYAQENLGDVVYVSLPQVGDTVKEKDVIGEVESVKATSNVYSPVDGTV 91 
                     :.  *:***.:*** ****** ***:** .::::: :* :*****:*::***:.* * 
 
Hs_H-protein      TEINEALAENPGLVNKSCYEDGWLIKMTLSNPSELDELMSEEAYEKYIKSIEE 173 
Rn_H-protein      TEVNEALPENPGLVNKSMYEDGWLIKMTLSDPSELDELMSEEAYEKYVKSN-- 169 
Lm_H-protein      SAVNENLKDEPGLVNQSPEEKGWLIKVKCSEIP--KGLMDEAAYKKFLE---- 138 
                  : :** * ::*****:*  *.*****:. *: .  . **.* **:*:::     

 

Figure 7.11 Alignment of H-protein sequences 
ClustalW alignment of L. major H-protein (LmH-protein) (see Table 3.1) with homologues in H. 
sapiens (HsH-protein) (accession number NP_004474) and R. norvegicus (RnH-protein) 
(accession number CAB56621). The alignment indicates identical residues (*), conserved residues 
(:) and homologous residues (.).Red residues indicate conserved amino acids within different 
motifs that fulfil various roles within H-protein. Green residues are those that are conserved in H-
protein motifs in other species but not in LmH-protein. 
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Lm_T-protein-A      ----------------------------MSASLKKTALHLFHLAQQAKMDAFAGYHMPIS 32 
Lm_T-protein-B      ----------------------------MSASLKKTALHLFHLAQQAKMDAFAGYHMPIS 32 
Hs_T-protein        MQRAVSVVARLGFRLQAFPPALCRPLSCAQEVLRRTPLYDFHLAHGGKMVAFAGWSLPVQ 60 
Ec_T-protein        -------------------------------MAQQTPLYEQHTLCGARMVDFHGWMMPLH 29 
                                                     ::*.*:  *    .:*  * *: :*:  
 
Lm_T-protein-A      YGRLGVLKEHLYTREVAGIFDVSHVGQYEVRGADRERFLEHVTPVDLQRIR-AGHGALTM 91 
Lm_T-protein-B      YGRLGVLKEHLYTREVAGIFDVSHVGQYEVRGADRERFLEHVTPVDLQRIR-AGHGALTM 91 
Hs_T-protein        Y-RDSHTDSHLHTRQHCSLFDVSHMLQTKILGSDRVKLMESLVVGDIAELR-PNQGTLSL 118 
Ec_T-protein        Y--GSQIDEHHAVRTDAGMFDVSHMTIVDLRGSRTREFLRYLLANDVAKLTKSGKALYSG 87 
                    *   .  ..*  .*  ..:*****:   .: *:   .::. :   *: .:  ..:.  :  
 
Lm_T-protein-A      LTNAQGGIKDDCIVTKMAD-HLFLVLNAGCKEKDVAHMESVLRESAMKGADVQLVPLDRS 150 
Lm_T-protein-B      LTNAQGGIKDDCIVTKMAD-HLFLVLNAGCKEKDVAHMESVLRESAMKGADVQLVPLDRS 150 
Hs_T-protein        FTNEAGGILDDLIVTNTSEGHLYVVSNAGCWEKDLALMQDKVRELQNQGRDVGLEVLDNA 178 
Ec_T-protein        MLNASGGVIDDLIVYYFTEDFFRLVVNSATREKDLSWITQHAEPFGIEIT----VRDDLS 143 
                    : *  **: ** **   :: .: :* *:.  ***:: : .  .    :         * : 
 
Lm_T-protein-A      LIALQGPQAAAILSE-FMDDVPGMGFMQCRQRVNIKGMEVQVTRCGYTGEDGFELSVSNT 209 
Lm_T-protein-B      LIALQGPQAAAILSE-FMDDVPGMGFMQCRQRVNIKGMEVQVTRCGYTGEDGFELSVSNT 209 
Hs_T-protein        LLALQGPTAAQVLQAGVADDLRKLPFMTSAVMEVFGVSGCRVTRCGYTGEDGVEISVPVA 238 
Ec_T-protein        MIAVQGPNAQAKAAT-LFNDAQRQAVEGMKPFFGVQAGDLFIATTGYTGEAGYEIALPNE 202 
                    ::*:*** *       . :*     .        .      ::  ***** * *:::.   
 
Lm_T-protein-A      DIVALVELLMSR-KAEMIGLGARDSLRLEAGLNLYGHELTEDINPVAARFMWVISKRRMA 268 
Lm_T-protein-B      DIVALVELLMSR-KAEMIGLGARDSLRLEAGLNLYGHELTEDINPVAARFMWVISKRRMA 268 
Hs_T-protein        GAVHLATAILKNPEVKLAGLAARDSLRLEAGLCLYGNDIDEHTTPVEGSLSWTLGKRRRA 298 
Ec_T-protein        KAADFWRALVEA-GVKPCGLGARDTLRLEAGMNLYGQEMDETISPLAANMGWTIAWEP-A 260 
                      . :   ::.   .:  **.***:******: ***::: *  .*: . : *.:. .  * 
 
Lm_T-protein-A      EGGFIGYEPIKYLRDNASKGAVPRLRVGLVSTGPVAREKT---VIEVGGKPVGEVTSGCP 325 
Lm_T-protein-B      EGGFIGYEPIKYLRDNASKGAVPRLRVGLVSTGPVAREKT---VIEVGGKPVGEVTSGCP 325 
Hs_T-protein        AMDFPGAKVIVPQ----LKGRVQRRRVGLMCEGAPMRAHSP--ILNMEGTKIGTVTSGCP 352 
Ec_T-protein        DRDFIGREALEVQR---EHGTEKLVGLVMTEKGVLRNELPVRFTDAQGNQHEGIITSGTF 317 
                      .* * : :        :*      : :   *   .  .        .   * :***   
 
Lm_T-protein-A      SPCLKKNIAIGYLDRELAKDGVKVDLVVRGRRVAAVVVTPPFVPARYYRKPPVKGTEERR 385 
Lm_T-protein-B      SPCLKKNIAIGYLDRELAKDGVKVDLVVRGRRVAAVVVTPPFVPARYYRKPK-------- 377 
Hs_T-protein        SPSLKKNVAMGYVPCEYSRPGTMLLVEVRRKQQMAVVSKMPFVPTNYYTLK--------- 403 
Ec_T-protein        SPTLGYSIALARVPEGIG---ETAIVQIRNREMPVKVTKPVFVRNGKAVA---------- 364 
                    ** *  .:*:. :    .       : :* :.  . * .  **                  
 
Lm_T-protein-A      TPTIKNIAS                                                    394 
Lm_T-protein-B      --------- 
Hs_T-protein        --------- 
Ec_T-protein        --------- 

 

Figure 7.12 Alignment of T-protein sequences 
ClustalW alignment of L. major T-protein-A and -B (LmT-protein-A and -B) (see Table 3.1) with 
homologues in H. sapiens (HsT-protein) (accession number NP_000472) and E. coli (EcT-protein) 
(accession number AAC75943). The alignment indicates identical residues (*), conserved residues 
(:) and homologous residues (.).Red residues indicate conserved motifs within T-proteins. Green 
residues are those that are conserved in bacterial T-proteins but not in HsT-protein or LmT-protein-
A/B. 
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Lm_LipDH        VTTLSGPRSNTHTFPHFTHT----QAHTSMFRRNIAHLAS-YDVTVIGGGPGGYVAAIKA 55 
Hs_LipDH        MQSWSRVYCSLAKRGHFNRISHGLQGLSAVPLRTYADQPIDADVTVIGSGPGGYVAAIKA 60 
Ec_LipDH        -----------------------------------MSTEIKTQVVVLGAGPAGYSAAFRC 25 
                                                          :*.*:*.**.** **::. 
 
Lm_LipDH       AQLGLKTACIEKRGALGGTCLNVGCIPSKALLHATHLYHDAH-ANFAQYGLRGGENVTMD 114 
Hs_LipDH       AQLGFKTVCIEKNETLGGTCLNVGCIPSKALLNNSHYYHMAHGKDFASRGIEMSE-VRLN 119 
Ec_LipDH       ADLGLETVIVERYNTLGGVCLNVGCIPSKALLHVAKVIEEAK--ALAEHGIVFGE-PKTD 82 
                *:**::*. :*:  :***.*************: ::  . *:   :*. *:  .*    : 
 
Lm_LipDH       VSAMQAQKGKGVKALTGGVEYLFKKNKVTYYKGEGSFVNPNTIKVKGLDGKEETLESKKT 174 
Hs_LipDH       LDKMMEQKSTAVKALTGGIAHLFKQNKVVHVNGYGKITGKNQVTATKADGGTQVIDTKNI 179 
Ec_LipDH       IDKIRTWKEKVINQLTGGLAGMAKGRKVKVVNGLGKFTGANTLEVEGENGKT-VINFDNA 141 
                :. :   * . :: ****:  : * .**   :* *.:.. * : .   :*   .:: .:  
 
Lm_LipDH       IVATGSEPTELPFLPFDEKVVMSSTGALDLDHVPKKMIVVGGGVIGLELGSVWARLGAEV 234 
Hs_LipDH       LIATGSEVTPFPGITIDEDTIVSSTGALSLKKVPEKMVVIGAGVIGVELGSVWQRLGADV 239 
Ec_LipDH       IIAAGSRPIQLPFIPHEDPRIWDSTDALELKEVPERLLVMGGGIIGLEMGTVYHALGSQI 201 
                ::*:**.   :* :. ::  : .**.**.*..**::::*:*.*:**:*:*:*:  **::: 
 
Lm_LipDH       TVVEFASRCAAT-TDADVSKALTDALVKHEKMKIMTNTKVVSGTNNGSS-VTIEVEDKDG 292 
Hs_LipDH       TAVEFLGHVGGVGIDMEISKNFQRILQKQG-FKFKLNTKVTGATKKSDGKIDVSIEAASG 298 
Ec_LipDH       DVVEMFDQVIPA-ADKDIVKVFTKRISKKF--NLMLETKVTAVEAKEDG-IYVTMEGKKA 257 
                 .**: .:   .  * :: * :   : *:   ::  :***..   : .. : : :*  .. 
 
Lm_LipDH       -KHQTLEADALLCSVGRRPHTTGLNAEAINLQME-RGFICINDHFETNVPNVYAIGDVVN 350 
Hs_LipDH       GKAEVITCDVLLVCIGRRPFTKNLGLEELGIELDPRGRIPVNTRFQTKIPNIYAIGDVVA 358 
Ec_LipDH       -PAEPQRYDAVLVAIGRVPNGKNLDAGKAGVEVDDRGFIRVDKQLRTNVPHIFAIGDIVG 316 
                   :    *.:* .:** *  ..*.    .:::: ** * :: ::.*::*:::****:*  
 
Lm_LipDH       KGPMLAHKAEEEGVACAEILAGKPGHVNYSVIPGVIYTNPEVAQVGETEEQVKKRGIDYK 410 
Hs_LipDH       -GPMLAHKAEDEGIICVEGMAGGAVHIDYNCVPSVIYTHPEVAWVGKSEEQLKEEGIEYK 417 
Ec_LipDH       -QPMLAHKGVHEGHVAAEVIAGKKHYFDPKVIPSIAYTEPEVAWVGLTEKEAKEKGISYE 375 
                  ******. .**  ..* :**   :.: . :*.: **.**** ** :*:: *:.**.*: 
 
Lm_LipDH       VGKFPFSANSRAKAVGTEDGFVKVVTDKKTDRILGVQIVCTAAGEMIAEPTLAMEYGASS 470 
Hs_LipDH       VGKFPFAANSRAKTNADTDGMVKILGQKSTDRVLGAHILGPGAGEMVNEAALALEYGASC 477 
Ec_LipDH       TATFPWAASGRAIASDCADGMTKLIFDKESHRVIGGAIVGTNGGELLGEIGLAIEMGCDA 435 
                ...**::*..** :    **:.*:: :*.:.*::*  *: . .**:: *  **:* *... 
 
Lm_LipDH       EDLGRTCHAHPTMSEAVKEACMAC-FAQTINF---------                    501 
Hs_LipDH       EDIARVCHAHPTLSEAFREANLAASFGKSINF---------                    509 
Ec_LipDH       EDIALTIHAHPTLHESVGLA--AEVFEGSITDLPNPKAKKK                    474 
                **:. . *****: *:.  *  *  *  :*.           

 

Figure 7.13 Alignment of LipDH protein sequences  
ClustalW alignment of L. major LipDH (LmLipDH) (see Table 3.1) with homologues in H. sapiens 
(HsLipDH) (accession number NP_000099) and E. coli (EcLipDH) (accession number AAC73227). 
The alignment indicates identical residues (*), conserved residues (:) and homologous residues (.). 
Red residues indicate conserved motifs within LipDH proteins. 
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Hs_PDK-1        -ELFKNAMRATMEHHANR--------GVYPPIQVHVTLGN--EDLTVKMSDRGGGVPLRK 49 
Hs_PDK-2        -ELFKNAMRATVESHESS--------LILPPIKVMVALGE--EDLSIKMSDRGGGVPLRK 49 
Hs_PDK-3        -ELFKNSMRATVELYEDRK-------EGYPAVKTLVTLGK--EDLSIKISDLGGGVPLRK 50 
Hs_PDK-4        -ELFKNAMRATVEHQENQ--------PSLTPIEVIVVLGK--EDLTIKISDRGGGVPLRI 49 
Hs_BCKDK        PELLKNAMRATMESHLDTP-------YNVPDVVITIANND--VDLIIRISDRGGGIAHKD 51 
LmjF20.0280     LELMKNAFRATVDSHMKRNDVGMVTCADMPPVRVLINLQEGTEHACICISDEGMGMTDEA 60 
                 **:**::***::   .            . :   :   .   .  : :** * *:. .  
 
Hs_PDK-1        IDRLFNYMYSTAPR----PRV----------ETSRAVPLAGFGYGLPISRLYAQYFQGDL 95 
Hs_PDK-2        IERLFSYMYSTAPT----PQP----------GTG-GTPLAGFGYGLPISRLYAKYFQGDL 94 
Hs_PDK-3        IDRLFNYMYSTAPR----PSL----------EPTRAAPLAGFGYGLPISRLYARYFQGDL 96 
Hs_PDK-4        IDRLFSYTYSTAPT----PVM----------DNSRNAPLAGFGYGLPISRLYAKYFQGDL 95 
Hs_BCKDK        LDRVMDYHFTTAEASTQDPRISPLFGHLDMHSGAQSGPMHGFGFGLPTSRAYAEYLGGSL 111 
LmjF20.0280     LTMAMAYSYTSVSK----PALQLGESG-ERCASTAPSPLAGYGYGLPMSRVYAQSLGGDL 115 
                :   : * :::.      *                  *: *:*:*** ** **. : *.* 
 
Hs_PDK-1        KLYSLEGYGTDAVIYIKALSTDSIERLPVYNKAAWKHYNTNHEADDWCVPSREPKDMTTF 155 
Hs_PDK-2        QLFSMEGFGTDAVIYLKALSTDSVERLPVYNKSAWRHYQTIQEAGDWCVPSTEPKNTSTY 154 
Hs_PDK-3        KLYSMEGVGTDAVIYLKALSSESFERLPVFNKSAWRHYKTTPEADDWSNPSSEPRDASKY 156 
Hs_PDK-4        NLYSLSGYGTDAIIYLKALSSESIEKLPVFNKSAFKHYQMSSEADDWCIPSREPKNLAKE 155 
Hs_BCKDK        QLQSLQGIGTDVYLRLRHIDG---------REESFRI----------------------- 139 
LmjF20.0280     LLQTMEGYGTRAYYYIKIADAQP------LCDEETK------------------------ 145 
                 * ::.* ** .   ::  .           .   :                         
 
Hs_PDK-1        RSA-             158 
Hs_PDK-2        RVS-             157 
Hs_PDK-3        KAKQ             160 
Hs_PDK-4        VAM-             158 
Hs_BCKDK        ---- 
LmjF20.0280     ---- 

 

Figure 7.14 Alignment of the ATPase/kinase domains of known PDH kinase proteins with a 
potential L. major αααα-KADH kinase, LmjF20.0280 
ClustalW alignment of LmjF20.0280 (see Table 3.1) with: H. sapiens PDK-1 (HsPDK-1) (accession 
number NP_002601); H. sapiens PDK-2 (HsPDK-2) (accession number NP_002602); H. sapiens 
PDK-3 (HsPDK-3) (accession number NP_005382); H. sapiens PDK-4 (HsPDK-4) (accession 
number NP_002603); H. sapiens BCKDK (HsBCKDK) (accession number NP_005872). The 
alignment indicates identical residues (*), conserved residues (:) and homologous residues (.). Red 
residues indicate conserved motifs within PDK and BCKDK proteins. Orange residues are those 
required for binding of PDK proteins to the E2p lipoyl-domain 2 (L2) of the PDH complex. 
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Hs_PDK-1        -ELFKNAMRATMEHHANR-GVYPPIQVHVTLG--NEDLTVKMSDRGGGVPLRKIDRLFN- 55 
Hs_PDK-2        -ELFKNAMRATVESHESS-LILPPIKVMVALG--EEDLSIKMSDRGGGVPLRKIERLFS- 55 
Hs_PDK-3        -ELFKNSMRATVELYEDRKEGYPAVKTLVTLG--KEDLSIKISDLGGGVPLRKIDRLFN- 56 
Hs_PDK-4        -ELFKNAMRATVEHQENQ-PSLTPIEVIVVLG--KEDLTIKISDRGGGVPLRIIDRLFS- 55 
Hs_BCKDK        PELLKNAMRATMESHLDTPYNVPDVVITIANN--DVDLIIRISDRGGGIAHKDLDRVMD- 57 
LmjF24.0010     CAMLEDAVSANVDRQERTGKECTKIEVTLAQWPTNKRFVLRISDTAGGMTLRQASMQLSC 60 
                  :::::: *.::         . :   :.    .  : :::** .**:. :  .  :.  
 
Hs_PDK-1        -YMYSTAPR----PRV----------ETSRAVPLAGFGYGLPISRLYAQYFQGDLKLYSL 100 
Hs_PDK-2        -YMYSTAPT----PQP----------GTG-GTPLAGFGYGLPISRLYAKYFQGDLQLFSM 99 
Hs_PDK-3        -YMYSTAPR----PSL----------EPTRAAPLAGFGYGLPISRLYARYFQGDLKLYSM 101 
Hs_PDK-4        -YTYSTAPT----PVM----------DNSRNAPLAGFGYGLPISRLYAKYFQGDLNLYSL 100 
Hs_BCKDK        -YHFTTAEASTQDPRISPLFGHLDMHSGAQSGPMHGFGFGLPTSRAYAEYLGGSLQLQSL 116 
LmjF24.0010     WSLYRNIQG----------------HNQDTISTWTSSPIRLPYAYNAARVIGGNITLASI 104 
                   : .                          .  .    ** :   *. : *.: * *: 
 
Hs_PDK-1        EGYGTDAVIYIKALSTDSIERLPVYNKAAWKHYNTNHEADDWCVPSREPKDMTTFRSA- 158 
Hs_PDK-2        EGFGTDAVIYLKALSTDSVERLPVYNKSAWRHYQTIQEAGDWCVPSTEPKNTSTYRVS- 157 
Hs_PDK-3        EGVGTDAVIYLKALSSESFERLPVFNKSAWRHYKTTPEADDWSNPSSEPRDASKYKAKQ 160 
Hs_PDK-4        SGYGTDAIIYLKALSSESIEKLPVFNKSAFKHYQMSSEADDWCIPSREPKNLAKEVAM- 158 
Hs_BCKDK        QGIGTDVYLRLRHIDG---------REESFRI--------------------------- 139 
LmjF24.0010     EGYGTDRQLYLPSTGLAGVSL-------------------------------------- 125 
                .* ***  : :   .                                             

 

Figure 7.15 Alignment of the ATPase/kinase domains of known PDH kinase proteins with a 
potential L. major αααα-KADH kinase, LmjF24.0010 
ClustalW alignment of LmjF24.0010 (see Table 3.1) with: H. sapiens PDK-1 (HsPDK-1) (accession 
number NP_002601); H. sapiens PDK-2 (HsPDK-2) (accession number NP_002602); H. sapiens 
PDK-3 (HsPDK-3) (accession number NP_005382); H. sapiens PDK-4 (HsPDK-4) (accession 
number NP_002603); H. sapiens BCKDK (HsBCKDK) (accession number NP_005872). The 
alignment indicates identical residues (*), conserved residues (:) and homologous residues (.). Red 
residues indicate conserved motifs within PDK and BCKDK proteins. Green residues are those that 
are strictly conserved in PDK and BCKDK proteins but not in LmjF24.0010. Orange residues are 
those required for binding of PDK proteins to the E2p lipoyl-domain 2 (L2) of the PDH complex. 
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