

Stewart, Graeme (2010) Implementing video compression algorithms on
reconfigurable devices. EngD thesis.
http://theses.gla.ac.uk/1267/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/1267/

Implementing Video Compression Algorithms on

Reconfigurable Devices

Graeme Robert Stewart

MEng

A thesis submitted in fulfillment

of the requirements of the University of Glasgow

for the degree of Doctor of Engineering

Institute for System Level Integration

Faculty of Engineering

University of Glasgow

June 22, 2009

Abstract

The increasing density offered by Field Programmable Gate Arrays(FPGA), cou-

pled with their short design cycle, has made them a popular choice for imple-

menting a wide range of algorithms and complete systems. In this thesis the

implementation of video compression algorithms on FPGAs is studied. Two ar-

eas are specifically focused on; the integration of a video encoder into a complete

system and the power consumption of FPGA based video encoders.

Two FPGA based video compression systems are described, one which targets

surveillance applications and one which targets video conferencing applications.

The FPGA video surveillance system makes use of a novel memory format to

improve the efficiency with which input video sequences can be loaded over the

system bus.

The power consumption of a FPGA video encoder is analyzed. The results

indicating that the motion estimation encoder stage requires the most power

consumption. An algorithm, which reuses the intra prediction results generated

during the encoding process, is then proposed to reduce the power consumed on

an FPGA video encoder’s external memory bus. Finally, the power reduction

algorithm is implemented within an FPGA video encoder. Results are given

showing that, in addition to reducing power on the external memory bus, the

algorithm also reduces power in the motion estimation stage of a FPGA based

video encoder.

Contents

List of Figures 7

List of Tables 15

Acknowledgments 18

Author’s Declaration 19

List of Abbreviations 20

1 Introduction 22

1.1 Motivation for Work . 23

1.2 Contribution Of Thesis . 27

1.3 Thesis Organisation . 29

2 Video Compression: Algorithms and Architectures 31

2.1 Hybrid Video Compression Overview 32

2.1.1 Digital Video . 32

2.1.2 Video Encoding Process 33

2.1.3 I,P and B Slices . 37

2.1.4 Measuring Video Quality 38

2.1.5 Video Compression Standards 39

2

2.2 Video Compression System Architectures 40

2.3 Motion Estimation . 43

2.3.1 Full Pixel Motion Estimation: Algorithms 45

2.3.2 Full Pixel Motion Estimation: Architectures 54

2.3.3 Fractional Pixel Motion Estimation 72

2.4 Intra Prediction . 75

2.5 Mode Decision . 78

2.6 Transform . 80

2.7 Entropy Encoding . 82

2.8 Loop Filter . 82

2.9 Summary . 83

2.10 Conclusions . 84

3 Field Programmable Gate Arrays 86

3.1 FPGA Architecture . 86

3.2 FPGA Power Consumption . 92

3.2.1 FPGA Static Power . 92

3.2.2 FPGA Dynamic Power . 94

3.3 Summary . 99

4 FPGA Video Compression Systems 101

4.1 H.263 Encoder System using the Xilinx Platform 102

4.1.1 Design of an Pipelined Encoder suitable for integration into

Xilinx platform based systems 102

4.1.2 System Design . 107

4.1.3 Software Design . 109

4.1.4 Results . 111

3

4.2 H.264 Encoder System using the Altera Platform 113

4.2.1 System Design . 113

4.2.2 Input/Output Interface . 118

4.2.3 Results . 123

4.3 Summary . 123

5 FPGA H.264 Video Encoder Power Analysis 125

5.1 Power Estimation Method . 127

5.1.1 Obtaining FPGA Switching Activity Information 129

5.1.2 SDRAM and Interconnect Power Modeling 133

5.2 Results . 133

5.2.1 Validation of Power Estimation Method 133

5.2.2 Overall Results . 135

5.2.3 FPGA Power Consumption 137

5.2.4 IO/SDRAM Power Consumption 147

5.3 Summary . 149

6 Using adaptive propagation to reduce the power used by an

FPGA video encoder’s memory bus 151

6.1 Algorithm . 152

6.2 Bus Encoder/Decoder Implementation 158

6.2.1 DBM/VBM Algorithm Overview 159

6.2.2 DBM/VBM Implementation 160

6.3 Results and Discussion . 163

6.3.1 Adaptive Propagation Algorithm 163

6.3.2 DBM/VBM Implementation Results 168

6.4 Summary . 172

4

7 Integration of the adaptive propagation algorithm into a pipelined

video encoder 174

7.1 Encoder Architecture . 175

7.2 Search Memory Architecture . 177

7.3 Full Pixel Motion Estimation Architecture 179

7.3.1 Consequences of supporting adaptive propagation 179

7.3.2 Dataflow . 182

7.3.3 Motion estimation unit . 185

7.3.4 Decision logic unit . 188

7.4 Fractional Pixel Estimation Architecture 189

7.4.1 Dataflow . 190

7.4.2 Half Pixel Interpolator . 194

7.4.3 Half Pixel Estimator . 197

7.4.4 Quarter Pixel Interpolator/Estimator 201

7.5 Results and Discussion . 203

7.5.1 Use of unencoded data for propagation decision 203

7.5.2 Resources and Performance 205

7.5.3 Power Used . 208

7.5.4 Overall Power Savings . 216

7.6 Summary . 220

8 Conclusions and Further Work 221

8.1 Conclusions . 221

8.2 Further Work . 224

A H.264 Stereo Video Compression 226

A.1 Stereo Video . 226

5

A.2 Previous Work . 228

A.2.1 Stereo Video Compression using H.264 228

A.2.2 Illumination Compensation 230

A.3 Experiments . 231

A.4 Results and Discussion . 233

A.5 Conclusion . 235

B Full Pixel Motion Estimation Array Timing 236

C Video Sequences Used 240

D H.264 Encoder Power Analysis Results 245

D.1 Power By Encoder Function . 245

D.2 IO/SDRAM Power Consumption Results 248

D.2.1 IO Power Consumption . 248

E Fractional Estimation Power Results 250

6

List of Figures

2.1 Different chroma sub-sampling formats currently in use 33

2.2 The hybrid encoding process. Each box represents a stage of the

hybrid encoding process. The shaded boxes represent stages that

are only used within the H.264 standard. 34

2.3 A QCIF image divided into 99 16 by 16 pixel blocks. Each 16

by 16 pixel block is a macroblock. Each macroblock is processed

separately through the majority of the encoding stages as shown

in Figure 2.2 . 35

2.4 An encoded video sequence containing I,P and B frames 38

2.5 Splitting a video frame into several slices to enable parallelisation 43

2.6 Example 2 to 1 (left) and 4 to 1 (right) sub-sampling patterns,

only the unshaded pixels are used in the SAD calculation 49

2.7 Example inter full search architecture 56

2.8 Example intra full search architecture 57

2.9 Inter search architecture processing element 58

2.10 Intra search architecture processing element 58

2.11 Different ways a macroblock can be sub divided for the H.264

motion estimation operation . 59

7

2.12 Different ways a 8x8 block can be sub divided for the H.264 motion

estimation operation . 60

2.13 Block vectors used to determine R(x, y, r) for shaded 4x8 block . 63

2.14 Modified predicted motion vectors A,B, and D used to determine

R(x, y, r) for all sub-blocks in shaded marcoblock 64

2.15 Typical memory hierarchy used in a motion estimation system . . 66

2.16 Overlap between the pixels required for adjacent blocks in a candi-

date row. Once candidate block one has been loaded only another

16 pixels must be loaded for candidate block two 67

2.17 Example data loading schedule for a candidate row when the level

A reuse scheme is used . 67

2.18 Overlap between the pixels required for candidate rows. Once

candidate block row one has been loaded only another 48 pixels

must be loaded for candidate block two, assuming a search area

width of 48 pixels (search range +/- 16) 68

2.19 Example data loading schedule for a current macrablock when the

level B reuse scheme is used . 68

2.20 Overlap between the search areas of adjacent macroblocks in a

single row . 69

2.21 Example data loading schedule for a current macroblock row with

m columns using the level C data-reuse scheme 70

2.22 Overlap between the search areas of adjacent current macroblock

rows . 71

2.23 Example data loading schedule for an entire frame with n mac-

roblock rows and m macroblock columns using the level-D reuse

scheme . 72

8

2.24 Fractional motion estimation search positions for a search range of

one integer pel when supporting quarter(left) and half pel (right)

refinement . 73

2.25 16x16 intra prediction modes . 76

2.26 4x4 intra prediction modes. The 8x8 intra prediction modes are

similarly defined . 76

2.27 Unavailable reconstructed pixels required for (from left) 16x16, 8x8

and 4x4 intra prediction . 77

3.1 Generic block diagram of a modern FPGA 87

3.2 Diagram of an FPGA logic array 88

3.3 Clock Distribution in Cyclone-2 FPGAs 90

3.4 Simplified diagram of a cyclone-2 IO block 91

4.1 H.263 encoder architecture . 103

4.2 Pipeline operation of H.263 encoder. Each macroblock (MB) is

processed sequentially through each of the encoder stages 104

4.3 Macroblock ordered format used for reconstructed and output images106

4.4 Macroblock ordered format used for input images 106

4.5 Spartan-3 System Architecture . 108

4.6 Flow diagram of software during encoding operation 111

4.7 Overall system environment FPGA system operate in 114

4.8 Proposed encoding system architecture 117

4.9 Actual encoding system architecture 118

4.10 Example input meta frame . 119

4.11 Timing relationships between the input and output meta frames

when the encoded frame is passed on to the output bus 121

9

4.12 Timing relationships between the input and output meta frames

when the encoded frame is not passed on to the output bus 121

4.13 Structure of I/O interface . 122

5.1 Simplified diagram of H.264 encoder studied. Note that the mem-

ories internal to each functional unit have been omitted from the

diagram . 126

5.2 Method used to estimate power used by H.264 encoding system . 128

5.3 Power estimation flow directly supported by the Quartus-2 toolset 130

5.4 Modified power estimation flow used 131

5.5 Example power report produced by Modelsim 131

5.6 Comparison of static and dynamic power used using different esti-

mation methods . 134

5.7 Overall power consumption distribution for each sequence 137

5.8 Distribution of FPGA dynamic power per encoder function 138

5.9 Embedded ram power consumption 142

5.10 Distribution of power between search memory and motion estima-

tor unit . 144

5.11 Distribution of power between modified search memory and motion

estimator unit . 146

5.12 Distribution of IO power consumption in encoder 148

6.1 Estimated switching probability for various unencoded sequences.

The probability of the MSB (bit 7) switching is much less than the

probability of the LSB (bit 0) switching 152

10

6.2 Percentage increase in switching activity for the unencoded and

various encoded versions of the suzie sequence when data is read

in the vertical instead of the horizontal direction 153

6.3 16x16 and 4x4 vertical and horizontal luma prediction modes in

H.264. 155

6.4 Horizontal (top) and vertical (bottom) propagation orders for a

macroblock. Each word is 32 bits (4 pixels) wide 157

6.5 DBM/VBM Encoding Process . 159

6.6 Simplified diagram of a DBM encoder 161

6.7 Different DBM/VBM Encoding Structures Implemented, 8-bit DBM/8-

Bit VBM and 8-bit DBM/4-bit VBM. The decoding structures are

similar. 162

6.8 Percentage reduction in transitions using adaptive propagation

compared to fixed horizontal and fixed vertical propagation 164

6.9 Percentage reduction in transitions compared to horizontal prop-

agation when the 4x4 and 16x16 intra prediction results are used . 165

6.10 Percentage reduction in transitions compared to horizontal prop-

agation for a range quantisation parameters 166

6.11 Percentage reduction in transitions (compared to fixed horizontal

propagation), using partial bus invert encoding with and without

the proposed adaptive propagation algorithm 167

6.12 Percentage reduction in transitions(compared to fixed horizontal

propagation) using DBM and 8-bit VBM encoding with and with-

out the proposed adaptive propagation algorithm 168

11

6.13 Percentage reduction in transitions(compared to fixed horizontal

propagation) using DBM and 4-bit VBM encoding with and with-

out the proposed adaptive propagation algorithm 169

6.14 Power used as a function of bus capacitance for a 2.5 and 1.8 volt

bus . 171

7.1 Simplified diagram of search memory architecture 177

7.2 Arrangement of each 4x4 block in the search memory when a hor-

izontally and vertically propagated macroblock is loaded into it . 178

7.3 Full search motion estimation architecture 180

7.4 Different sub-block indices and blocktypes for a block size of 4x8

when horizontal and vertical propagation are used 181

7.5 Data copied to half pixel memory when horizontal and vertical

propagation are used. Each row/column on the diagram is 4 pixels

wide . 183

7.6 Timing of full search motion estimator 184

7.7 Full search array used . 186

7.8 4x4 sub-block SADs calculated in the first and second pass and

the 4x4 array used for their calculation 187

7.9 Processing element (PE) used in 4x4 arrays 188

7.10 Fractional search architecture . 190

7.11 Redundant half pixel interpolation areas for a block size of 8x8

when vertical and horizontal integration are used, assuming data

is propagated in the vertical direction 191

7.12 Buffer used to produce half pixel interpolator input 193

12

7.13 Timing of the half pixel interpolation/estimation operation for a

block size of 4x4 . 193

7.14 Timing of the half pixel interpolation/estimation operation for a

block size of 16x16 . 194

7.15 Correspondence between full pixel samples used and generate half

pixel samples . 195

7.16 Basic interpolation unit used . 196

7.17 Overall filter structure . 198

7.18 Structure of filter banks 1 and 3 198

7.19 Structure of filter bank 2 . 199

7.20 Structure of half pixel processing element 200

7.21 Full and half pixel samples required for 4x4 quarter pixel interpo-

lation operation . 202

7.22 Location of full and half pixel samples required for quarter pixel

interpolation . 203

7.23 Percentage reduction in transitions when compared to horizontal

propagation using intra prediction results calculated using unen-

coded and encoded pixels. A quantisation parameter of 30 was

used to encode the sequences . 204

7.24 Percentage reduction in transitions when compared to horizontal

propagation using intra prediction results calculated using unen-

coded and encoded pixels. A quantisation parameter of 40 was

used to encode the sequences . 205

7.25 Percentage of power consumed by each section of full pixel motion

estimation unit when adaptive propagation is not used 210

13

7.26 Percentage of power consumed by each part of fractional pixel

motion estimator when adaptive propagation is not used 213

7.27 Percentage power reduction in different parts of fractional pixel

motion estimator when adaptive propagation is used 214

7.28 Total power used as a function of bus capacitance for a 2.5 and 1.8

volt bus - paris sequence . 218

7.29 Total power used as a function of bus capacitance for a 2.5 and 1.8

volt bus - riverraft sequence . 219

A.1 Parallel camera configuration used to capture a stereo video sequence227

A.2 Structures for stereo video compression. Horizontal arrows indi-

cate motion estimation, vertical arrows indicate disparity estimation229

A.3 PSNR curves for antonio, talking and diplo sequences when the

simulcast and joint encoding methods were used 234

C.1 Frames (from top left) 0,10,20,30,40 and 50 of riverraft test sequence242

C.2 Frames (from top left) 0,10,20,30,40 and 50 of office test sequence 243

C.3 Frames (from top left) 0,10,20,30,40 and 50 of outdoor test sequence244

14

List of Tables

3.1 Characteristics of the FPGA architectures used in this thesis . . . 91

4.1 Encoder resource usage (Spartan-3 1500 FPGA) 112

4.2 Usage of Spartan-3 1500 resources by Streaming System 112

4.3 Maximum size of main memory transfers required by encoding

system . 116

4.4 Input frame combinations supported 120

4.5 Usage of Cyclone-2 resources and maximum operating frequency . 123

5.1 Sequences, frame rates and clock frequencies used 129

5.2 Power consumed encoding each sequence 136

5.3 Description of the various encoder functions 139

5.4 Power consumed by search memory and motion estimator block . 144

5.5 Power consumed by search memory and modified search memory . 146

6.1 VBM codetable for a bit width of 3 160

6.2 Resources used by the different DBM/VBM Structures Implemented169

6.3 Total power used performing the bus encoding and decoding op-

erations (mW) . 172

7.1 Full pixel motion estimator resource usage 206

15

7.2 Fractional pixel motion estimator resource usage 207

7.3 Resources required to support adaptive propagation algorithm . . 208

7.4 Power used by decision logic unit when adaptive propagation is

and is not used . 209

7.5 Power used by motion estimation unit when adaptive propagation

is and is not used. Sequences were encoded using a quantisation

parameter of 30 . 212

7.6 Power required to support adaptive propagation algorithm. Se-

quences were encoded using a quantisation parameter of 30 215

7.7 Total power used by the full and fractional pixel motion estimators

and the search memory when adaptive propagation is and is not

used . 216

A.1 Images used in experiments . 233

B.1 Input to 4x4 Arrays and 4x4 Array Output 237

B.2 4x8 and 8x4 outputs from adder tree 238

B.3 8x8,16x8,8x16 and 16x16 outputs from adder tree 239

C.1 Test sequences used in chapter 5 241

C.2 Test sequences used in chapters 6 and 7 241

D.1 Encoder dynamic power consumption (in mW) per encoder func-

tion for a quantisation parameter of 6. Power results are in milli-

watts . 246

D.2 Encoder dynamic power consumption (in mW) per encoder func-

tion for a quantisation parameter of 20. Power results are in milli-

watts . 246

16

D.3 Encoder dynamic power consumption (in mW) per encoder func-

tion for a quantisation parameter of 30. Power results are in milli-

watts . 247

D.4 IO power consumption (in mW) attributable to various encoder

memory operations . 248

D.5 SDRAM power consumption (in mW) attributable the various en-

coder memory operations . 249

E.1 Half pixel interpolator power consumption (mW) when adaptive

propagation is and is not used . 251

E.2 Quarter pixel estimator and interpolator power consumption (mW)

when adaptive propagation is and is not used 251

E.3 Half pixel estimator power consumption (mW) when adaptive prop-

agation is and is not used . 252

E.4 Control power consumption (mW) when adaptive propagation is

and is not used . 252

E.5 Power consumpton (mW) of the quarter pixel ram when adaptive

propagation is and is not used . 253

17

Acknowledgments

This research was funded by the Engineering and Physical Sciences Research

Council and 4i2i Communications Ltd. I am grateful to both for their financial

support.

I am indebted to my academic supervisors, David Renshaw and John Hannah,

for their advice and support, and for taking the time to read the many documents

produced during the research period. Lastly, I thank them for encouraging me

to submit my thesis in a timely fashion.

I thank my industrial supervisor, Martyn Riley, for giving me the opportunity

to conduct research at 4i2i Communications. I am also grateful to my other

colleagues at 4i2i, Duncan, Rob, Pamela, Mahdi, Murali, Steve, Willis, Andrew

and Stuart, for their assistance and for making 4i2i Communications such an

enjoyable place to work.

I thank everyone at the Institute for System Level Integration, for allowing

me to study for an engineering doctorate and for making the journey such a

rewarding experience.

Last, but by no means least, I would like to thank Clare, for the faith she has

shown in me in the last 4 years and for putting up with my occasional grumpiness.

Graeme Stewart, August 2008

18

Author’s Declaration

I declare that this thesis is my own account of my own research. Except for

the work described in section 4.2, all the research described in this thesis was

conducted by myself, with the assistance of my two academic supervisors David

Renshaw and John Hannah. The research described in section 4.2 was conducted

in conjunction with Rob Beattie, Chief Codec Architect at 4i2i Communications

Ltd.

19

List of Abbreviations

ASIC Application Specific Integrated Circuit

CIF Common Intermediate Format (352x288 pixels)

DBM Difference Based Mapping

DCT Discrete Cosine Transform

DDR Double Data Rate

DPCM Differential Pulse Coded Modulation

EJO Early Jump Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSBMA Full Search Block Matching Algorithm

GEA Global Elimination Algorithm

IP Internet Protocol

KLT Karhunen Loeve Transform

LUT Look Up Table

MPEG Motion Picture Experts Group

OPB Onchip Peripheral Bus

PSNR Peak Signal to Noise Ratio

QCIF Quarter Common Intermediate Format (176x144 pixels)

RAM Random Access Memory

20

RDO Rate Distortion Optimised

RTP Real Time Transport Protocol

SAD Sum of Absolute Differences

SATD Sum of Absolute Transformed Differences

SDRAM Synchronous Dynamic Random Access Memory

SEA Successive Elimination Algorithm

SIF Source Input Format (352x240 pixels)

SRAM Static Random Access Memory

SSD Sum of Squared Differences

VBM Value Based Mapping

VBSM Variable Block Size Matching

VCD Value Change Dump

VGA Video Graphics Adapter (640x480 pixels)

21

Chapter 1

Introduction

Advances in video compression have and continue to play a crucial role in the

development of many communications applications. Applications such as digital

TV, digital cinema, internet video streaming, video surveillance and video confer-

encing have all benefited from the improved quality and lower bit rates provided

by the advancement in video compression techniques. The increasing processing

capacity available to implement the video encoding and decoding functions has

been crucial to realising this benefit in practice. Fundamentally, this is a result

of the increasing density of transistors which can be placed on a silicon device.

The increasing transistor density has also caused the use of Field Programmable

Gate Arrays (FPGAs) to change. When first introduced FPGAs were primarily

used for glue logic because they had limited processing capacity. As their pro-

cessing capacity has increased, the implementation of complete digital systems on

FPGAs has become common. In this thesis, the implementation of video encod-

ing systems on modern FPGAs is studied. Emphasis is on the implementation

of the H.264 standard [1].

22

1.1 Motivation for Work

The characteristics which can be use to judge a video encoding implementation

include,

• Supported frame rate and video resolution

• Supported Input Video Standards

• Video Quality for a given bitrate

• Power Consumption

• Latency

• Ease of Image Access

• Implementation Cost

The importance of each characteristic is dependent on the video encoding

application. In digital television distribution applications the frame rate, video

resolution and output video quality are key, with other factors being of secondary

importance. Video conferencing applications also place a high level of importance

on video quality, frame rate and video resolution. However, in this application

these needs must be balanced against the need for both a low latency and com-

paratively lower cost encoding solution. For video surveillance applications video

quality, frame rate and resolution may be sacrificed in order to reduce the unit

cost and/or power consumption.

For any application an ASIC encoding solution offers the highest performance

achievable in terms of both encoding performance, power consumption and unit

cost. However, the cost of designing an ASIC is prohibitive. The design cost of

23

an ASIC can be in the tens of millions and is forecast to continue to increase [2].

In addition the long design cycle, and fixed nature of an ASIC can make it

difficult to adapt to changes in the market and technology. For example the

H.264 video compression system described in section 4.2 was an upgrade to a pre-

existing video conferencing system which only supported older video compression

standards. It is unlikely such an upgrade path would have been feasible if a pure

ASIC solution had been used initially. As a result of the large design cost and

inflexibility associated with an ASIC, reconfigurable solutions to implement the

video encoding function are become increasingly attractive.

The reconfigurability can be provided, through general purpose processors or

digital signal processors (DSPs), with the encoding functionality being defined

in software, or, through the use of reconfigurable hardware. In some cases both

reconfigurable hardware and digital signal processors are used to implement a

complete encoding system [3]. If pursuing a software based video encoding imple-

mentation, DSPs are, in general, a better choice because they have performance,

cost and power advantages over general purpose processors.

There are a wide range of DSP architectures available. To support H.264

encoding a high performance DSP architecture is required, particularly if high

definition frame resolutions must be supported. Examples of such architectures

include, the Stream Processor [4], which supports resolutions upto 1080p and a

frame rate of 30 frame per second and the C64x architecture developed by Texas

Instruments. This architecture supports the execution of up-to 8 instructions

per second. Despite this high performance Texas Instruments have incorporated

specific hardware, alongside the C64x DSP processor, to support high definition

video encoding [5] in a number of their system on a chip devices.

24

One of the factors limiting DSP performance is the limit on the amount of data

which can be transferred into the DSP subsystem from external memory [6] [7].

The stream architecture [4] has an innovative method to reduce this problem.

The programming model for the stream architecture forces the designer to ex-

press the locality and concurrency associated with an application. The stream

architecture’s memory hierarchy is designed to exploit the expressed locality and

concurrency. Consequently the external memory bandwidth requirements are re-

duced and the arithmetic logic units present in the stream architecture are able

to perform useful calculations for a greater percentage of the time.

Despite the advances in the design of digital signal processors the amount

of parallelism that can be exploited is still limited. For example the stream

processor described in [4] can only exploit data level parallelism. In the case of

video encoding this forces it to operate on multiple image blocks at once to achieve

the desired throughput [4]. This is, arguably, not an ideal way to implement a

video encoding solution because, as will be discussed in chapter 2, a number of

the algorithms which can be used in a video encoder rely on knowledge of how

adjacent blocks have been encoded. In contrast reconfigurable hardware allows

the type and level of parallelism to be exploited to be determined by the needs

of the application. This allows a high level of performance to be achieved.

FPGAs are currently the most commercially successful reconfigurable hard-

ware platform available today. They contain fine grained logic elements which

accept 3-6 single bit inputs, a range of resource to support arithmetic operations,

and a range of memory resources. This allows them to implement both the func-

tional blocks and the memory hierarchy required by a video encoding solution.

While FPGAs can realise the high level of performance on offer by using recon-

figurable logic, they do have limitations. There is substantial area and power

25

overhead associated with using an FPGA. This is principally a consequence of

the large degree of reconfigurability they support.

Coarse grained logic arrays, where the basic logic elements are much larger and

more complex than in a conventional FPGA, are another form of reconfigurable

hardware which could be used to implement a video encoder, potentially with

more area efficiency and lower power than that offered by a conventional FPGA.

However, currently these devices are not of sufficient maturity. This is especially

true in the case of the development tools required. However, given that they

have some similarity to conventional FPGAs some of the research presented in

this thesis may also be applicable to such devices.

In summary, reconfigurable logic offers the highest performance means of im-

plementing a video encoder whilst maintaining a degree of flexibility. FPGAs

are the most commercially viable reconfigurable logic devices available currently.

It is for these reasons that FPGAs are focused on in this thesis. Two areas are

specifically focused on,

• the integration of a video encoder into a complete FPGA based system

• the power consumption of FPGA video encoder implementations.

Video compression systems are studied because the integration of a video en-

coder into a complete system has a direct impact on some of the characteristics

listed. Specifically the latency of, and the resources used by, the encoding solu-

tion are significantly affected by the overall system design. The system design

intellectual property and associated tools offered by the two main FPGA man-

ufacturers, Altera and Xilinx, are used to realise two distinct video compression

systems. Given the ready availability of this intellectual property, the insights

gained in each case will be applicable to a range of video encoder system designs.

26

As increasingly complex systems have been implemented on FPGAs, power

consumption has become an increasing concern. Consequently, a significant

amount of research has been conducted into methods used to reduce it, as dis-

cussed in chapter 3. As previously mentioned the importance of power consump-

tion varies depending on the video encoding application. However, in all appli-

cations it is desirable to reduce FPGA power consumption. Excessive FPGA

power consumption will increase heat sink, packaging and operating costs and

lower device reliability.

The H.264 standard offers substantially reduced bit-rates for equivalent video

quality compared to that offered by previous compression standards [8]. A num-

ber of new encoding tools, including variable block sized motion estimation, intra

prediction and multiple reference frame prediction, provide this bit-rate improve-

ment. When each encoding tool is used encoding complexity increases [9], and

therefore, the power consumed by the encoder increases. The difficulty in achiev-

ing an acceptable level of power consumption is further complicated both by

the desire to support high-definition resolutions in many video encoding applica-

tions and the power overhead associated with FPGA reconfigurability. Thus, the

central aim of the majority of research described in this thesis was to highlight

techniques to reduce power consumption in FPGAs and apply them to FPGA

video encoding systems

1.2 Contribution Of Thesis

The significant contributions of this research to FPGA video encoder implemen-

tation field and more generally to the video encoder implementation field are.

• A novel memory format which allows the input frames required by a video

27

encoder to be transferred to and from an external memory more efficiently.

• An analysis of the power consumed by an FPGA based video encoder. A

number of published papers have described complete FPGA video encoder

implementations [10] [11] [12] [13] [14] [15]. However, none have charac-

terised the power consumption as is done in this thesis.

• The development of an algorithm to reduce the power used loading and

saving reference frames from external memory. The algorithm developed is

unique in that it can be used in conjunction with other more generic bus

encoding algorithms, such as the bus invert algorithm [16].

• The implementation of the proposed algorithm into a FPGA based pipelined

video encoder. Results are provided showing that the algorithm also reduces

power in the motion estimation stages of a FPGA based video encoder.

• A novel low power FPGA architecture for the Full Fractional Search Al-

gorithm. In contrast to other proposed Full Fractional Search implemen-

tations which either repeat the half pixel interpolation operation [17] [18],

or store the half pixel samples in registers [19], the proposed architecture

stores the half pixel samples in FPGA embedded RAM. Results are pro-

vided showing the power benefit of the approach taken compared to when

the half pixel interpolation is repeated.

All of the proposed techniques can be viewed as FPGA implementation vari-

ations of standard video encoding processes. None of the proposed techniques

sacrifice encoding performance in order to achieve a reduction in the power con-

sumption or resources required by a FPGA video encoder. The above novel

contributions have led to the following publications,

28

• G. Stewart, D. Renshaw, and M. Riley, “A low-cost, fpga based, video

streaming server,” in Programmable Logic, 2007. SPL ’07. 2007 3rd South-

ern Conference on, 2007, pp. 187–190. [Online]. Available: http://

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4234343

• G. Stewart, D. Renshaw, and M. Riley, “A novel motion estimation power

reduction technique,” in Field Programmable Logic and Applications, 2007.

FPL 2007. International Conference on, 2007, pp. 546–549. [Online].

Available: http://dx.doi.org/10.1109/FPL.2007.4380713

• G. Stewart, D. Renshaw, and M. Riley, “Power savings in fpga video com-

pression systems through intra prediction result reuse,” in Programmable

Logic, 2008 4th Southern Conference on, 2008, pp. 161–166. [Online].

Available: http://dx.doi.org/10.1109/SPL.2008.4547749

1.3 Thesis Organisation

The rest of this thesis is organised as follows,

• Chapter 2 describes the algorithms and architectures used for video en-

coding, with an emphasis on the H.264 video compression standard. The

hybrid DPCM/DCT video encoding framework is introduced. This is fol-

lowed by a discussion of the various algorithms and architectures used to

implement each section of it.

• Chapter 3 describes the basic architecture used by the majority of FPGAs

available today. The sources of power consumption in an FPGA are iden-

tified and the general techniques used to reduce FPGA power consumption

discussed.

29

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4234343
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4234343
http://dx.doi.org/10.1109/FPL.2007.4380713
http://dx.doi.org/10.1109/SPL.2008.4547749

• Chapter 4 focuses on FPGA video compression systems. Two video com-

pression systems are described; one for video surveillance applications; one

for video conferencing applications. The novel input image memory format

is proposed in this chapter.

• Chapter 5 analyses the power consumption of a pipelined H.264 video

encoder when implemented in an FPGA.

• Chapter 6 proposes an algorithm to reduce the power used by an FPGA

video encoder’s memory bus and provides results showing its effectiveness.

In addition, results are provided showing that the proposes algorithm is

compatible with other more generic bus encoding algorithms.

• Chapter 7 discusses the implementation of the algorithm proposed in chap-

ter 6 in a pipelined video encoder. An implementation of the full search

and full fractional search motion estimation algorithms is then described.

Finally, results are given showing that the algorithm proposed in chapter

6 reduces the power consumed in the motion estimation stage of a FPGA

video encoder in addition to reducing the power consumed on the external

memory bus.

• Chapter 8 - Concludes the thesis and provides suggestions for further

work.

30

Chapter 2

Video Compression: Algorithms

and Architectures

Video compression is an extensively studied subject. Both the algorithms used

for it and the architectures used to implement it have been the subject of signif-

icant research. In modern video compression systems a variety of algorithms are

employed. The purpose of each algorithm is either, to exploit the redundancy in-

herent in natural video sequences or to remove information from a video sequence

which is of negligible benefit to the perceived video quality.

Despite the large amount of research which has been conducted into video

compression the same hybrid DPCM/DCT [20] framework has been used in the

majority of video compression standards. The increase in compression perfor-

mance achievable using newer standards such as H.264 [1] is a result of improve-

ments to the processes already used within the hybrid DPCM/DCT framework.

In addition the H.264 standard supports two new processes, intra prediction and

in-loop filtering, to further increase the achievable compression performance.

There are other standards, such as JPEG-2000 and Dirac, which are based on

31

wavelets. Currently these standards are mainly used in applications where the

quality of the compressed video is a critical requirement, for example, the JPEG-

2000 standard is used for digital cinema. In this thesis, the hybrid DPCM/DCT

framework is focused on because it is the method used by the majority of video

compression standards, and consequently the method used by the majority of

video compression applications.

2.1 Hybrid Video Compression Overview

2.1.1 Digital Video

A digital video consists of a sequence of pictures captured at regular time in-

tervals. Each picture consists of one, or more, rectangular arrays of quantised

samples (pixels) containing intensity and colour information. Different formats

can be used to represent the intensity and colour information. For video cod-

ing applications the YCrCb format is generally employed. In this format three

rectangular arrays are used [21]. The Y or luma array contains the intensity

information. The two chroma arrays, Cr and Cb, contain the colour information.

The human visual system is less sensitive to colour information than it is to

intensity information. Therefore, it is common that the the size, or resolution, of

the two chroma arrays is smaller than that of luma array. Figure 2.1 illustrates

three of the chroma sub-sampling formats currently in use. In 4:4:4 sub-sampling,

the resolution of the two chroma arrays is identical to that of the luma array. In

4:2:2 sub-sampling, the horizontal resolution of each chroma array is half that of

the luma array. In 4:2:0 sub-sampling, both the horizontal and vertical resolu-

tion of each chroma array is half that of the luma array. Only video sequences

with 4:2:0 sub-sampling are used in this work. Other sub-sampling patterns are

32

Figure 2.1: Different chroma sub-sampling formats currently in use

supported by the H.264 standard [1].

A picture can consist of either a single video frame or two video fields. All

the samples in a video frame are captured at the same time instant (progressive

video). Each video field contains either the odd or even picture lines, with each

field being sampled at a separate time instant (interlaced video). The H.264

standard provides specific modes to support the encoding of interlaced video

sequences. In this thesis, however, only progressive video is used.

The rate at which frames are captured, the frame rate, determines how

smoothly motion is represented. Frame rates of 25 or 30 frames per second

are typical. In some applications frame rates of up to 60 frames per second are

used.

2.1.2 Video Encoding Process

Two types of redundancy in a video sequence can be readily identified,

• Spatial redundancy within an individual frame of the video sequence. Large

33

Figure 2.2: The hybrid encoding process. Each box represents a stage of the
hybrid encoding process. The shaded boxes represent stages that are only used
within the H.264 standard.

areas within a single frame may have similar luminance and chrominance

characteristics.

• Temporal redundancy within a video sequence. Temporally adjacent frames

within a video sequence are generally very similar. This is exploited to

achieve much greater compression than would be achieved if spatial redun-

dancy alone was considered during the compression process.

A diagram of the hybrid video compression process is shown in Figure 2.2. The

hybrid video compression process is block based. Each image to be encoded is di-

vided into non-overlapping 16 by 16 pixel blocks as illustrated in Figure 2.3. Each

16 by 16 pixel block, or macroblock, is processed separately through the majority

34

Figure 2.3: A QCIF image divided into 99 16 by 16 pixel blocks. Each 16 by 16
pixel block is a macroblock. Each macroblock is processed separately through
the majority of the encoding stages as shown in Figure 2.2

.

of the encoding stages. This is advantageous because the temporal and spatial

characteristics of different sections of each video frame are not identical. There-

fore, by considering such sections separately better compression performance is

obtained.

The first two stages of the encoding process are intra prediction and motion

estimation. Both analyse the video sequence in order to aid the compression

process. The motion estimation stage identifies and compensates for the motion

of a macroblock between frames of a video sequence. This aids the exploitation

of the temporal redundancy present in the video sequence. Similarly the intra

prediction stage identifies the direction in which a macroblock, or part of it, has

greatest spatial redundancy. This aids the exploitation of the spatial redundancy

present in the video sequence.

35

A residual macroblock is formed from the difference between the input mac-

roblock and the macroblock prediction made by either the motion estimation

or intra prediction encoder stage. The transform stage de-correlates the resid-

ual macroblock producing output coefficients. Ideally the output coefficients will

have the majority of their energy concentrated in as few a number of coefficients

as possible [20]. Information is lost in the quantisation stage. The transform coef-

ficients are rounded into a limited range of values, dependent on the quantisation

parameter used. The quantisation parameter is the primary mechanism used to

control the size of output bitstream and the quality of the encoded frames [20].

If a constant quantisation parameter is used the quantisation parameter is kept

the same for every frame in the video sequence. This results in all the encoded

video frames being of similar quality. However, the number of bits required to

encode each frame, the bitrate, will vary depending on the complexity of the

frame being encoded. In many applications this is undesirable. Thus, frequently

the quantisation parameter is varied, on a frame or marcoblock basis, in order to

control the output bitrate [20].

As a result of the information lost through quantisation each input macroblock

cannot be perfectly reconstructed by the decoder. The quantised coefficients and

the ancillary information associated with a macroblock (motion vector, mac-

roblock mode etc) are then put through an entropy encoding process to produce

the encoded bitstream.

The other stages within the hybrid video compression process, rescaling, in-

verse transformation and loop filtering are used in both an encoder and a decoder.

In an encoder they are required to provide encoded data for the motion estima-

tion and intra prediction encoder stages. An encoder uses encoded data for intra

prediction and motion estimation to ensure that the data it uses matches that

36

available at the decoder.

The rescaling, inverse transform and reconstruction stages generate encoded

macroblocks from the quantised transform coefficients and the predicted mac-

roblock pixels. The loop filter attempts to remove any artifacts from the re-

constructed frame which may have been introduced as a result of the encoding

process. The loop filter does not operate solely on a macroblock basis. It must

filter at the boundaries between macroblocks because often, it is at these bound-

aries that any artifacts are most apparent [20].

2.1.3 I,P and B Slices

A frame, or a segment of a frame (a slice), can be encoded as either an

• I Slice - in which each macroblock can be encoded using only the intra

prediction modes supported by the encoder.

• P Slice - in which each macroblock can be encoded using either an intra

prediction mode or a motion estimation mode where each block has at most

one motion vector and reference index associated with it.

• B Slice - in which each macroblock can be encoded using either an inter

prediction mode or a motion estimation mode where each block has at most

two motion vectors and reference indices’s associated with it.

P and B slices exploit the temporal redundancy present in a video sequence.

As a result they can achieve a much greater level of compression that I Slices,

which only exploit the spatial redundancy within a single frame of a video se-

quence. I Slices are used to provide an initial frame for motion estimation and

macroblock prediction and to provide access points in the encoded bitstream.

37

Figure 2.4: An encoded video sequence containing I,P and B frames
.

As illustrated in Figure 2.4 macroblocks in a P Slice are predicted from one

reference frame. The reference frames used in a P slice are encoded images which

will by displayed prior to the frame being encoded. B Slices allow each predicted

block to be formed from an average of blocks present within two reference frames.

In previous standards, the two reference frames used were fixed, one from the

past and one from the future in display order. The H.264 standard allows the

two reference frames used to be determined by the encoder. In the majority of

instances, a forward and backward reference will still be used however, as shown

in Figure 2.4. B slices are used because forming the predicted block from multiple

reference blocks improves compression efficiency.

2.1.4 Measuring Video Quality

As a result of the quantisation stage, information is lost during the encoding

process. Consequently, the quality of each encoded frame is less than that of

38

each unencoded frame. To quantify the quality loss the PSNR metric is typically

used. It is given by,

PSNR(db) = 10 log10(2
n − 1/MSE) (2.1)

where n is the bit width of the quantised samples and the mean squared error

(MSE) for a M by N sample array is given by

MSE =
1

M ∗N

M∑
i=1

N∑
j=1

(Pencoded(i, j)− Punencoded(i, j))
2 (2.2)

where Pencoded(i, j) and Punencoded(i, j) represent the encoded and unencoded pix-

els at position (i, j).

2.1.5 Video Compression Standards

Two main standardisation bodies have produced video encoding standards,

• Video Coding Experts Group (VCEG) of International Telecommunications

Union Telecommunication Standardization Sector (ITU-T)

• Motion Picture Experts Group (MPEG) of International Organization for

Standardization International Electrotechnical Commission (ISO/IEC)

The Video Coding Experts Group produced the H.261 and H.263 standards.

The Motion Picture Expert Group produced the MPEG-1, MPEG-2 and MPEG-

4 standards. The H.264 standard was jointly developed by the two standardisa-

tion bodies. More details on each standard can be found in [22] and [20].

39

2.2 Video Compression System Architectures

The architectures proposed for FPGA video encoding include, dedicated hard-

ware compression pipelines [11] [23] [14], mixed hardware/software based sys-

tems where specific tasks are performed in hardware accelerators [24] [25] but the

less computationally intensive tasks are performed in software and pure software

based encoders [12]. Some degree of hardware acceleration is generally required

in an FPGA in order for the encoder to operate at a sufficient frame rate. A

FPGA based MPEG-4 software encoder was proposed in [12]. Multiple Nios-2

processors were used to encode separate slices of each video frame. Even when

using 3 Nios-2 processors for encoding the compression system proposed in [12]

was only capable of encoding QCIF frames at a rate of 6 per second.

One of the justifications for including a software element in a compression

system is that it provides a degree of flexibility [12] [26]. Given the flexibility

inherent in FPGAs this justification has less weight than it would if the com-

pression system was implemented using an ASIC technology. Therefore, in this

thesis the focus is primarily on hardware encoder implementations. It is assumed

that any processor present within the system is used solely for encoder control

and scheduling operations.

A macroblock pipeline is the predominant architecture used in hardware im-

plementations [11] [23] [14] [10] [27]. This is unsurprising given the block based,

sequential nature of the encoding process. Pipelining allows the various encoder

modules to operate simultaneously. This improves an encoder’s resource utilisa-

tion and increases the throughput an encoder can achieve. However, the perfor-

mance improvement comes at a cost. A significant number of embedded RAMs

are required to support pipeline operation. In [15] a generic video processing ar-

40

chitecture is proposed. The analysis in [15] focuses on the design of the communi-

cations architecture between the processing elements within a pipeline, providing

a methodology which can be used to ensure the processing pipeline as a whole

operates at the rate required.

While the general architecture is the same, there are differences between

the various macroblock pipeline implementations which have been proposed.

The number of pipeline stages varies. H.264 implementations generally have a

larger number of pipeline stages than implementations supporting previous stan-

dards [23] [27]. This can be attributed to the greater complexity of the H.264

encoding process. For example the motion estimation process in H.264 supports

both variable block sizes and quarter pixel prediction. As a result, there is a

greater benefit from splitting the motion estimation process across a number of

pipeline stages than there would be if implementing standards with a less complex

motion estimation process.

The method used to control the macroblock pipeline also varies between im-

plementations. The simplest method, used in [23] [28], is to use a fixed number

of clock cycles per pipeline stage, with each stage in the macroblock pipeline

advancing to the next macroblock after a set number of clock cycles. In this case

the maximum frame rate an encoder can operate at is given by,

Fr = F/(wmbhmbCp + Np) (2.3)

where wmb and hmb are the frame width and frame height in macroblocks, Fr

is the required frame rate, F is the clock frequency of the encoder, Np is the

number of pipeline stages and Cp is the number of clock cycles required before

the pipeline can advance.

41

More flexible control schemes have been used [11] [14]. In [11] each individual

stage in the pipeline advances to the next macroblock as soon as it completes

operations on the current macroblock. This is conditional on the next macroblock

being available for processing and the succeeding pipeline stage being able to

accept data. In [14], the macroblock pipeline advances as soon as all stages have

completed operations for their current macroblock. The benefit of a more flexible

pipeline control scheme is that each macroblock can use a different number of

clock cycles at each encoder stage. This can potentially allow a reduction in

the clock frequency required to support a particular frame rate and resolution.

Any actual benefit is, however, dependent on the algorithms and architectures

used within the encoder, particularly those used for motion estimation and mode

decision.

Apart from pipelining, other methods can be used to parallelise the encoding

process. As previously mentioned each frame can be split into several slices, as

shown in Figure 2.5. This allows a separate encoder instance to be used to en-

code each slice. Using this method of parallelisation, any redundancy that exists

between adjacent macroblocks that are in separate slices cannot be exploited. As

H.264 considers this redundancy, this method of parallelisation reduces the video

quality that is achievable for a given bit rate [29]. Parallelisation can also take

place at the frame level. In this case, each separate encoder instance is used to en-

code a subset of the pictures within the video sequence [30]. This method is only

practical if B frames, which use a forward and a backward reference frame, are

used within the encoded video sequence. As such this method of parallelisation

is unsuitable in low latency applications.

Frame and slice based parallelisation are independent of the architecture used

to implement each encoder instance. Using an efficient architecture such as a

42

Figure 2.5: Splitting a video frame into several slices to enable parallelisation

macroblock pipeline reduces the need to use these other methods. The benefit

of using slice or frame based parallelisation is that it allows the total hardware

resources to scale easily with the required video frame rate and resolution.

2.3 Motion Estimation

In general, the aim of the motion estimation operation is to determine the dis-

placement of objects between two frames in a video sequence. The methods used

for motion estimation can be put into two categories, intensity based methods

or feature/object based methods. Intensity based algorithms look for correspon-

dence between images based on the luminance values within each image. Fea-

ture/object based methods first derive a set of features from each image then

look for correspondence between the features present in each set. The majority

of video compression standards imply that block based matching, an intensity

43

based method, should be used. Therefore, it is this method which is focused on

in this thesis

The basic fixed sized block matching process suffers from a number of limita-

tions. As a consequence the residual energy in the difference frame may not be

minimised. This in turn impacts the compression performance of the encoding

system. Either more bits are required to encode the residual frame, or at low bit

rates visible blocking artifacts are introduced. Improvements to the basic block

matching process have been one of the key reasons why video compression per-

formance has improved with successive video compression standards [21]. These

improvements include

• Fractional Pixel Motion Estimation

• Unrestricted Motion Vectors

• Variable Block Sizes

• Multiple Reference Pictures

• Bi-predictive Motion Estimation (B slices)

While these refinements to the basic matching process have increased compres-

sion performance they have also increased complexity. The addition of fractional

pixel motion estimation, for example, typically requires that motion estimation

operation to be a two stage process. An integer pixel motion estimation oper-

ations is followed by a separate fractional pixel refinement stage. A significant

amount of research has been conducted into both reducing the complexity of

the motion estimation process and implementing it efficiently in various types of

hardware [20] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40].

44

2.3.1 Full Pixel Motion Estimation: Algorithms

The full pixel estimation problem can be defined as follows. The frame to be

encoded is divided in into a number of non-overlapping equally sized blocks of

size Nh ∗ Nw pixels. For each block in the image to be encoded, an area of

the reference frame is searched in order to find a block of size Nh ∗ Nw which

minimises a cost measure. The displacement between the current frame block

and the candidate block with the minimum the cost is the motion vector to be

refined during the fractional pixel estimation process. If variable block sizes are

used, a motion vector must be found for each block size.

In H.264 the cost measure generally includes two terms. The first term is a

distortion measure. This gives an indication of the level of similarity between

the current frame and candidate blocks. The second term is an estimate of the

number of bits required to encode the ancillary (motion vector used, reference

frame used) information for the candidate block being considered. This rate

term is designed to have more significance at higher quantisation levels because at

higher quantisation levels, the ancillary information occupies a greater proportion

of the overall bitrate [8]. Thus, to calculate the overall cost Jmotion for a candidate

block with motion vector (x, y) and reference frame r, the following equation is

used

Jmotion(x, y, r) = D(x, y, r) + λmotionR(x, y, r) (2.4)

where D(x, y, r) is the distortion measure, R(x, y, r) is the rate, and λmotion is the

bias applied to the rate term. When a rate term is inlcluded, the motion estima-

tion problem is formulated as a rate/distortion problem. In principle λmotion, for

a given motion vector field rate Rmotion−limit could be found through a bisection

search [41]. In general this is not practical. In the H.264 reference model λmotion

45

is determined empirically, as a function of the quantisation parameter [8].

The simplest algorithm which can be used for motion estimation is the full

search block matching algorithm (FSBMA). In this algorithm the cost is calcu-

lated at each position within the reference image search area. Thus, using the

FSBMA the candidate block with minimal cost will always be found. The algo-

rithm is computationally complex however. When encoding a CIF image at 30

frames per second approximately 9.3 giga-operations per second are required [42],

assuming the Sum of Absolute Differences (SAD) distortion metric is used. Many

algorithms have been proposed which attempt to reduce the computational com-

plexity of the motion estimation process whilst providing compression perfor-

mance similar to that of the FSBMA. The methods used include, reducing the

number of search positions, using previously computed motion vectors for mo-

tion vector prediction, reducing the complexity of the distortion metric used, early

elimination of candidate blocks and the utilisation of multi-resolution reference

images.

Search Position Reduction

This method of complexity reduction focuses on devising search patterns which

reduces the number of candidate blocks which have to be evaluated. The aim be-

ing to devise a search pattern which locates the optimum candidate block whilst

requiring the minimum number of search positions to be tested. Examples of

such algorithms include the Three Step Search, New Three Step Search [31], One

Dimensional Search [32], Four Step Search [33], Diamond Search [34] and Hexag-

onal Search [35]. Algorithms such as the Three Step Search and one dimensional

search are primarily based on the monotonicity assumption. This states that the

block distortion measure will increase monotonically as the point being measured

46

moves away from the global optimum. Newer algorithms such as the Diamond

Search [34] and Hexagonal Search [35] also incorporate the assumption that the

optimum block will probably be located at, or close to, the search centre.

Distortion Measures

The distortion measure typically used for the motion estimation operation is

either the Sum of Absolute Differences (SAD) or the Sum of Squared Differences

(SSD). For motion vector m both the SAD and the SSD can be calculated using

the following equation,

D = Σx,yεA|f1(x, y)− f2(x + mx, y + my)|p (2.5)

where f1 is the frame being encoded, f2 is the reference frame, and p is 1 for

SAD and 2 for SSD. A number of alternatives to these distortion measures have

been proposed. The majority have aimed to reduce the complexity associated

with the motion estimation process. There have been some distortion measures

proposed however which aim to increase compression performance such as the

Sum of Absolute Transformed Differences(SATD) [20].

Truncating the least significant bits of the reference and current pixels prior to

evaluating equation 2.5 provides a simple method with which to reduce distortion

metric complexity. If the number of bits truncated is fixed this method can reduce

both the resources and power used by the motion estimator. If the number of

bits truncated is varied [36], only the power can be reduced using this method.

The reduction in power is typically greater than the proportion of bits truncated

because the switching activity of video data tends to be concentrated in the least

significant bits [37].

47

The advantage of varying the number of bits truncated is that the reduction

in compression performance caused by bit truncation can be reduced when nec-

essary. The impact bit truncation has on compression performance is dependent

on the number of bits truncated and the sequence being encoded. For many se-

quences truncating the 4 least significant bits results in no significant reduction

in compression performance when only a fixed block size of 16x16 is used [36].

In [37] it is shown that, for the smaller block sizes supported by the H.264 stan-

dard, bit truncation causes a greater degradation in motion vector accuracy. The

effect on compression performance is less pronounced because , in general, smaller

block sizes are only used to encode a small proportion of macroblocks in a frame.

Results presented in [43] indicate that even when supporting smaller block sizes,

truncating the least 3 significant bits has a negligible effect on H.264 compression

performance.

Sub-sampling current and candidate blocks is another method which has been

proposed to reduce distortion metric complexity [44] [45]. With this method,

the distortion metric is calculated using a subset of the pixels in each block as

indicated in Figure 2.6. As a result of the frequency aliasing introduced by sub-

sampling, motion vector accuracy and hence compression performance can be

reduced. In [44], the performance impact of sub-sampling is reduced by varying

the sub-sample pattern used for each search position. In [45], edge detection

techniques are used to determine the location of high frequency components in

the current block. Sub-sampling is then only applied at locations where high

frequency components were not detected. Similarly to bit truncation, using an

adaptive sub-sampling pattern reduces the hardware resource savings which can

be realised. In [46], instead of using an adaptive sub-sample pattern, a low pass

filter is used to reduce the magnitude of the high frequency components prior

48

Figure 2.6: Example 2 to 1 (left) and 4 to 1 (right) sub-sampling patterns, only
the unshaded pixels are used in the SAD calculation

to sub-sampling. This method allows the hardware resources required for the

motion estimator to be reduced. However, it does require additional resources

for the low pass filter implementation.

Both sub-sampling and bit truncation reduce complexity by simplifying the

standard SSD/SAD distortion measure. Simpler distortion measures which are

not based on the standard SSD/SAD measure have also been developed. Exam-

ples include,

• mini-max where the distortion measure D is the greatest absolute pixel

difference between the reference and current block [47]

• pel difference classification(PDC) where each pixel is classified as a

match or not. The distortion measure in this case is the total non-matched

pixels.

The alternatives to the SAD and SSD have not been widely adopted because

49

of their relatively poor compression performance. Results provided in [48] indi-

cate that the PDC measure offers better compression performance than the SAD

measure. However, the performance of PDC measure is heavily dependent on the

threshold used for classification and the sequence being compressed.

Full Search Complexity Reduction

Two algorithms, the Early Jump Out Algorithm (EJO) and the Successive Elim-

ination Algorithm (SEA) [38], obtain the same result as the full search algorithm

but with reduced complexity. The Early Jump Out Algorithm is simple. The

SAD accumulation for a particular position is terminated if the partial SAD value

is greater than the current best SAD. Due to its serial nature, the EJO algorithm

is most applicable to software implementations. There have been hardware ar-

chitectures proposed which implement this algorithm however (see section 2.3.2).

The SEA Algorithm uses the triangle inequality to obtain a conservative es-

timate for the SAD at each search position. From the triangle inequality, the

following inequality can be derived [38],

Σx,yεA|f1(x, y)|−Σx,yεA|f2(x+mx, y+my)| ≤ Σx,yεA|f1(x, y)−f2(x+mx, y+my)|

(2.6)

If the conservative estimate, Σx,yεA|f1(x, y)| − Σx,yεA|f2(x + mx, y + my| for a

search position, is higher that the current best SAD, then the SAD calculation

for that position need not be performed. The SEA algorithm is extended in [49].

A closer estimate to the SAD is achieved by summing the conservative estimates

of sub-blocks of the block being considered. This is beneficial because it increases

the number of SAD calculations which can be skipped.

The SEA and EJO algorithms offer a method to reduce complexity when fixed

50

sized block matching is used. No investigation has yet been conducted into their

effectiveness when variable block size matching is required. An efficient way of

performing full search variable block size motion estimation [43] is to calculate

the larger block SADs from the smaller block results. Thus, a more complicated

determination of when a SAD result is and is not required is necessary, if support

for variable block sizes is to be combined with either the EJO or SEA algorithms.

Vector Prediction and Early Termination

The extent to which the EJO and SEA algorithms reduce complexity is dependent

on the order the search positions are evaluated. Ideally a search position close

to the optimum should be evaluated first to ensure that a large number of SAD

calculations are skipped. Vector prediction provides a means with which to find

a position close to the optimum.

Vector prediction exploits the fact that both temporally and spatially adjacent

blocks may have similar motion vectors. When variable block sizes are used the

similarity between the optimum vectors for each block size can also be considered.

By considering the range of possible vector candidates a good estimate for the

current block vector can be found. In [44], every second block is assigned the

same vector as the spatially adjacent block with the minimum SAD value. This

is unusual, typically vector prediction is combined with search position reduction

algorithms such as the diamond search. In [39], two algorithms are proposed

which use vector prediction in combination with a diamond search pattern. One

of the fast search algorithms implemented within the H.264 reference model,

UMHexagonS [50], uses vector prediction in combination with both a hexagon

based search and a localised full search.

The algorithms proposed in [39] and [50] also use early termination to reduce

51

complexity. When early termination is used, the motion estimation operation

is terminated early if the current minimum SAD is less than a threshold value.

Traditionally, the threshold value has been fixed. This is not ideal as the optimum

threshold is dependent on a range of non-stationary factors, such as the degree

of motion in a sequence and the noise present in a sequence. As a result adaptive

thresholds have been used in [39] and [50]. In both cases the threshold value

is generated from the minimum SAD values found for temporally and spatially

adjacent blocks.

Algorithm and Architecture Co-Design

While compression performance and the number of computations are important

other factors also influence the choice of motion estimation algorithm. How eas-

ily an algorithm can be implemented on the target hardware is also important.

Despite its complexity the basic full search algorithm has remained a popular al-

gorithm for hardware implementation due to its, minimal control overhead, high-

level of data reuse and regular data flow. This has motivated the development

of reduced complexity algorithms which have these desirable properties. The one

dimensional search [32] is an example of such an algorithm. It reduces the num-

ber of search positions to be tested whilst maintaining the desirable properties of

the full search algorithm.

Another example of a motion estimation algorithm specifically designed for

hardware is the Global Elimination Algorithm (GEA) [51]. The GEA uses the

conservative estimate, as used in the successive elimination algorithm, to reduce

the number of candidates which need to be fully evaluated. This reduced can-

didate set is then evaluated using the SAD metric. Using the GEA the motion

estimation hardware does not need to be able to calculate the SAD value for

52

every search candidate. It would need to be able to do this if the SEA algorithm

was being implemented. Therefore, the GEA algorithm requires less hardware re-

sources than the SEA algorithm. However, this resource saving is at the expense

of compression performance.

In [52] an algorithm which is designed to minimise the power in ASIC imple-

mentations is proposed. It is based on the observation that in an ASIC imple-

mentation of a search position reduction algorithm, the majority of the power

is consumed fetching the search data from the search memory cache (see sec-

tion 2.3.2).

The power used by particular algorithms, when implemented in both ASICs

and software, is studied in [53]. The set of algorithms chosen was full search,

one dimensional full search, three step search, four step search, diamond search,

modified log search, sub-sampling, and vector field sub-sampling. For ASICs [53]

concluded that the full search algorithm consumed between 5 and 10 times more

power that any of the other algorithms. It also concluded that when a small search

range (8 pixels) is used there are negligible differences in the power consumed by

the other algorithms studied. When a search range of 16 pixels is used [53]

indicated that there are more significant differences in the power consumed by

the various reduced complexity algorithms. Those algorithms which require a

relatively large number of search positions to be tested (one dimensional full

search, sub-sampling and vector field sub-sampling) consuming more than twice

the power of the other reduced complexity algorithms. FPGA implementations

were not considered in [53].

53

2.3.2 Full Pixel Motion Estimation: Architectures

In any video compression system, the architectures used for both full and frac-

tional pixel motion estimation are critical. Commonly it is the algorithms and

architectures used for motion estimation which have the greatest impact on the

performance of the entire video compression system. In a pipelined encoder, for

example, it is typically one of the motion estimation stages which determines

Cp. This is because it is, in general, one of the motion estimation stages which

requires the greatest number of clock cycles per macroblock [11][14].

Given this, is it is clear that the number of clock cycles required per mac-

roblock, the macroblock latency, is an important parameter for full pixel motion

estimation architectures. In [42] a distinction is made between macroblock la-

tency and motion estimator throughput. It is argued in [42] that in a pipeline

system, each stage cannot start operations for the next macroblock until all stages

have finished operations for the current macroblock. Thus, the high through-

put achieved by some full search motion estimation architectures, by performing

operations on two or more macroblocks in parallel, will be difficult to take ad-

vantage of in a pipelined encoder. Other parts of the encoder would limit the

overall encoder throughput. If a different encoder architecture was used it would

be possible to to obtain a benefit from performing multiple motion estimation

operations in parallel.

Achieving a low macroblock latency conflicts with the other motion estimator

design goals. Most obviously with the resource minimisation goal. It also conflicts

with the desire to minimise search memory bandwidth and search memory input

bit width. For example, the full search motion estimator presented in [40] has

a relatively high macroblock latency compared to other architectures that use a

similar number of resources. However, it accepts search memory data in a serial

54

fashion and reads from each search memory location once only.

The principal benefits of minimising the search memory bandwidth are that, it

minimises the power used reading data from the search memory and it allows the

search memory to be more easily shared between the full and fractional motion

estimators. The benefits of minimising the memory port bit width in an FPGA

implementation are less obvious. The search memory is typically implemented

using the embedded RAM blocks available on the FPGA (refer to section 2.3.2).

Each individual embedded RAM has an output port size of 16, or more commonly

32 bits. Although smaller port sizes are supported, no implementation benefit is

accrued using a smaller port size. Arguably there is a cost, the energy required

for a 16 or 32 bit read operation will be incurred even when all 16 or 32-bits have

not been read [54].

Resource utilisation is also an important metric for a motion estimator archi-

tecture. In general, the higher the resource utilisation the higher the throughput

for a given set of resources. A full search implementation achieving a near 100%

utilisation requires more complicated sequencing. Typically, the snake scanning

order, instead of the raster scan order, is adopted to achieve near 100% utilisa-

tion [43].

Full Search Architectures

As previously mentioned, a large number of full search architectures have been

proposed. In this thesis, the focus is on implementations which perform the

variable block size motion estimation operation required by the H.264 standard.

A more general review is given in [42].

In [43], full search architectures are classified into inter architectures and in-

tra architectures. Inter architectures are where each processing element calculates

55

Figure 2.7: Example inter full search architecture

56

Figure 2.8: Example intra full search architecture

57

Figure 2.9: Inter search architecture processing element

Figure 2.10: Intra search architecture processing element

58

Figure 2.11: Different ways a macroblock can be sub divided for the H.264 motion
estimation operation

the SAD for specific search positions. Intra architectures are where each process-

ing element calculates all the absolute differences for a specific current pixel. An

example of an inter architecture is shown in Figure 2.7. An example of an in-

tra architecture is shown in Figure 2.8. The processing elements used by each

architecture are shown in Figures 2.10 and 2.9

Note that to simplify Figures 2.7 and 2.8 the architectures use a smaller num-

ber of PEs than would be used in practice. For the inter architecture shown

in Figure 2.7, sixteen processing elements are typical used [55] [56]. The intra

architecture shown in Figure 2.8 would require two hundred and fifty six pro-

cessing elements to support the typical macroblock size of 16 by 16. The inter

architecture shown is a one dimensional architecture. It calculates the absolute

difference values required for a search position sequentially, on a row by row basis.

The intra architecture shown is a two dimensional architecture. All the absolute

difference values required for a search position are calculated in parallel. Due

to the parallel processing achieved by two dimensional architectures they have a

much lower macroblock latency than one dimensional architectures. This is at

the cost of a much greater resource usage however.

In H.264 a number of different motion estimation block-sizes and block-size

59

Figure 2.12: Different ways a 8x8 block can be sub divided for the H.264 motion
estimation operation

combinations are supported. One motion vector can be used for the entire mac-

roblock, or a macroblock can be sub-divided with separate motion vectors used

for either two 16 by 8 pixel sub-blocks, two 8 by 16 pixel sub-blocks or four 8 by 8

pixel sub-blocks as shown in Figure 2.11. If the 8 by 8 mode is used, then each 8

by 8 pixel block can be further sub-divided into two 8 by 4 pixel sub-blocks, two

4 by 8 pixel sub-blocks or four 4 by 4 pixel sub-blocks as shown in Figure 2.12.

Thus, for H.264 full search variable block size motion estimation a total of 41

motion vectors must be determined for each macroblock.

The method used in all full search VBSM implementations to date has been to

calculate the larger sub-block SAD values from the SAD values of the appropriate

smaller sub-blocks [43]. For inter architectures, such as that shown in Figure 2.7,

it is predominantly modifications to the processing elements which are required

for variable block size support. For example, the variable block size motion

estimator presented in [56] uses the same basic architecture and data flow as

the architecture shown in Figure 2.7. However to support variable block sizes

the processing elements used are substantially more complex. The processing

elements in [56] use 2 adders, fourteen registers with lengths between 12 and 16

bits, and 8 multiplexers. This compares to the one adder and one 16-bit register

used when variable block sizes are not supported. In addition the architecture

presented in [56] uses 13 comparators to determine the best motion vectors for

60

all the various sub-blocks.

In intra architectures, the summation operations required can take place inter-

nally within each processing element (a systolic array architecture) or externally

from the processing element array. To support variable block sizes some external

summation operations are required because the SAD values for each separate

4x4 sub-block needs to be available. The architecture shown in Figure 2.8 for

example, requires the 16x16 processing element array used for fixed block size

motion estimation to be split into 16 separate 4x4 arrays. In [43] an intra ar-

chitecture, SAD tree, is proposed where no summation operations occur within

the processing element array. Instead an external adder tree is used to sum all

the absolute difference values produced. This allows all the absolute difference

calculations for a search position to occur in the same clock cycle. As a result,

the SAD values for all sub-blocks can be calculated in the same clock cycle. This

avoids the need to store the SAD values of smaller sub-blocks prior to calculating

the larger sub-block SAD values.

The FPGA implementation of intra architectures has been studied in [57].

Two intra architectures are compared, SAD tree and a systolic architecture simi-

lar to that shown in Figure 2.8. The systolic architecture requires more resources,

using approximately 2000 more slices in the Virtex-2 FPGA used. Results given

indicate that the systolic architecture is more power efficient than the tree ar-

chitecture. This is primarily due to the SAD tree architecture having a lower

resource utilisation than the systolic architecture. A snake scanning dataflow

for the SAD tree architecture that achieves almost 100% resource utilisation was

proposed in [43]. If this was used it is probable that the power efficiency of the

SAD tree would be, at the least, comparable to the power efficiency of the systolic

array architecture. Supporting the snake scan dataflow does require additional

61

resources however.

Both the SEA [58] and EJO [59] [60] algorithms have been implemented in

hardware. The motivation for these implementations being to reduce the power

consumed by the full search hardware. The SEA algorithm was implemented

in [58] using two systolic arrays. One was used for the SAD calculations, the

other for the conservative estimate calculations. To achieve a power saving, the

appropriate part of the SAD array was disabled when it was determined that the

SAD value for a particular search position was not needed. Results are given in

in [58] indicating that a 50% power saving is achieved compared to when only a

SAD array is used. However using two arrays consumes a significant number of

resources.

In [59] and [60], the EJO algorithm has been implemented. Both use a one

dimensional architecture. This allows the appropriate hardware to be disabled

if after N rows have been summed the partial SAD is greater than current best

SAD. In [59], results are given indicating there is a resource saving with their

EJO architecture compared to a similar full search architecture. However, this

is only through the use of a carry sum adder, an inefficient structure when im-

plemented on modern FPGAs. Discounting this, there is clearly a resource cost

to implementing EJO as the number of comparators required increases. This is

evident in [60], where to support EJO an additional 720 comparators are used.

Such a large number is required because [60] attempts to use the EJO algorithm

with variable block sizes. Neither [59] or [60] indicate the power saved using the

EJO algorithm. Results are provided in [59] indicating that signal transitions are

reduced by over 50%.

All architectures require that the best motion vectors for all sub-blocks are

determined in parallel. This is necessary. In an FPGA implementation the

62

Figure 2.13: Block vectors used to determine R(x, y, r) for shaded 4x8 block

motion estimator’s performance would be severely limited if the motion vectors

for all sub-blocks were determined in a serial fashion. The rate term R(x, y, r) in

equation 2.4 is dependent on the motion vectors chosen for surrounding blocks

as indicated in Figure 2.13. Determining the best motion vector for each sub-

block in parallel makes it impossible to determine the exact cost as defined in

equation 2.4. In a pipelined encoder, the exact value of R(x, y, r) cannot be

determined for any sub-blocks because the motion vectors for the adjacent left

macroblock will also be unknown. At the time they are required the fractional

estimation process is still determining them. To enable the costs for candidate

blocks to be determined [43] proposed to use motion vectors, A, B and D as

shown in Figure 2.14 when calculating R(x, y, r) for all sub-blocks.

Other Architectures

A large number of algorithm specific architectures have been proposed. For ex-

ample in [61], an architecture for the three step search which achieves a high

resource utilisation is proposed. Nine processing elements are used to calculate

63

Figure 2.14: Modified predicted motion vectors A,B, and D used to determine
R(x, y, r) for all sub-blocks in shaded marcoblock

the SADs for the nine search positions in each step, with the reference data being

supplied from 9 memories with 8-bit outputs. To ensure a high resource utili-

sation, without the need for a complicated interconnection network between the

memories and processing elements, the search position each processing element

is calculating alternates every 5 or 6 clock cycles. In addition the reference data

stored in each memory is interleaved to ensure that reference data for each PE is

available in every clock cycle.

Compared to other search position reduction algorithms, the three step search

algorithm can be implemented relatively efficiently in hardware. As a consequence

it has remained a popular candidate for hardware implementation. A H.264 full

pixel motion estimation algorithm and architecture based on the three step search

algorithm is proposed in [62]. This also uses an interleaved memory arrangement.

However, because of the multiple steps used by the algorithm and the varying

search patterns used in each step, a 100% utilisation is not achieved. This is

typical of many fast search algorithm implementations. The irregular dataflow

64

associated with them makes achieving a 100% resource utilisation difficult.

Architectures which implement a range of search position reduction/vector

prediction algorithms have been proposed. The motivation for these algorithms

is flexibility. The choice of motion estimation algorithm does not need to be

determined prior to implementation. The choice of algorithm being determined

purely by the needs of the video compression application and by the types of

motion expected in the sequences to be encoded. In [63], the architecture shown

in Figure 2.7 is used as the basis for two configurable motion estimation archi-

tectures. In the first architecture, the current frame inputs shown in Figure 2.7

are replaced with a programmable interconnection network connected to 16 cur-

rent frame memory banks. In the second architecture, the reference frame inputs

shown in Figure 2.7 are replaced with a programmable interconnection network

connected to 16 reference frame memory banks. In [64] and [65], flexible architec-

tures targeted specifically at FPGAs have been proposed. In both architectures,

the search positions to be evaluated are stored in a programmable memory and the

SAD calculations are performed in a serial fashion. Thus, in both architectures

the overlap between the reference frame pixels required for each search position

cannot be exploited. This increases the search memory bandwidth required.

Search Area Data Reuse

The search area data required for motion estimation is generally stored in a cache

as illustrated in Figure 2.15. This allows the search area data to be reused for

subsequent motion estimation operations. This is beneficial because it reduces

the bandwidth demands on the typically external, memory used to store reference

frame data and it provides the motion estimator with faster access to the data it

requires. Data reuse when the Full Search Motion Estimation Algorithm is used

65

Figure 2.15: Typical memory hierarchy used in a motion estimation system

is studied in [66]. Four levels of data reuse are defined, A, B, C and D, with the

degree of reuse increasing from levels A to D. In each case the architecture shown

in Figure 2.15 applies. What differs in each case however, is the size of the search

memory cache required and the amount of data that must be loaded from the

external memory to the search memory cache to complete the motion estimation

operations for a macroblock.

A and B are defined as candidate level reuse schemes, exploiting the overlap

between the pixels required for adjacent candidate blocks. In the level A reuse

scheme only the overlap, illustrated in Figure 2.16, between adjacent candidate

blocks in a candidate row is exploited. To allow it to store the area to be reused

between candidate blocks (marked in gray in Figure 2.16) the search memory

cache in the level A reuse scheme must be able to store 240 bytes. The search

memory bandwidth required is the highest of all the reuse levels defined in [66].

Assuming a search area of +/−16 pixels 25344 bytes must be loaded from external

memory to complete the motion estimation operations for a macroblock. An

example level A data loading schedule for a candidate row is shown in Figure 2.17.

In the level B reuse scheme, in addition to the overlap between adjacent can-

66

Figure 2.16: Overlap between the pixels required for adjacent blocks in a candi-
date row. Once candidate block one has been loaded only another 16 pixels must
be loaded for candidate block two

Figure 2.17: Example data loading schedule for a candidate row when the level
A reuse scheme is used

didate blocks, the overlap, illustrated in Figure 2.18, between adjacent candidate

rows is also exploited. To do this the search memory cache must be able to store

all the overlapped pixels between two adjacent candidate rows. For a search

range of +/− 16 pixels, this requires the search memory cache to have a size of

720 bytes. The benefit, compared to the level A reuse scheme, is that only 2304

bytes need to loaded from external memory to complete the motion estimation

operations for a macroblock. An example level B data loading schedule for an

67

Figure 2.18: Overlap between the pixels required for candidate rows. Once can-
didate block row one has been loaded only another 48 pixels must be loaded for
candidate block two, assuming a search area width of 48 pixels (search range +/-
16)

Figure 2.19: Example data loading schedule for a current macrablock when the
level B reuse scheme is used

entire macroblock is shown in Figure 2.19

Reuse levels C and D are defined as block level reuse schemes. Instead of

exploiting the overlap between candidate blocks, they exploit the overlap between

the search area’s of adjacent current macroblocks. In the level C reuse scheme the

overlap, illustrated in Figure 2.20, between the search areas of adjacent current

macroblocks in a single row is exploited. For a search range of +/-16 this requires

a search memory cache of 1536 bytes. However only 768 bytes need to be loaded

per current macroblock. An example data loading schedule using the level C

68

Figure 2.20: Overlap between the search areas of adjacent macroblocks in a single
row

reuse scheme is shown in Figure 2.21.

In the Level D reuse scheme the overlap, illustrated in Figure 2.22, between

the search areas of all current macroblocks in adjacent rows is exploited. This

achieves the greatest level of reuse possible. Each reference pixel is only loaded

once from main memory, with only 256 bytes having to be loaded per current

macroblock. Do achieve this however, a large search memory cache is required,

the size of which increases as the width of the frame to be encoded increases.

For a search range of +/− 16 and an image width of W pixels a search memory

cache of 32 ∗W bytes is required. An example data loading schedule for the level

D reuse scheme is shown in Figure 2.23.

It is assumed in [66] that the macroblocks in a frame will be processed in

raster scan order. To reduce search memory cache size requirements whilst still

69

Figure 2.21: Example data loading schedule for a current macroblock row with
m columns using the level C data-reuse scheme

allowing both the horizontal and vertical search area overlap to be exploited [67]

proposed to use a zig-zag macroblock processing order. By using a zig-zag order,

a better trade-off can be made between maximising data reuse and minimising the

size of the search memory cache. However, using a zig-zag order complicates the

design of the overall encoding system because the output bitstream, in general,

must be in raster scan order.

Reuse levels A and B rely on the overlap between candidate blocks. As the

candidate blocks to be considered differ depending on the motion estimation al-

gorithm used, these reuse levels cannot be applied when the full search algorithm

is not used. Reuse levels C and D rely on the overlap between search areas, conse-

quently they can be applied even when the full search algorithm is not used. The

search memory cache required is generally larger when the full search algorithm

is not used. The memory sizes given above are based on the assumption that

only the data to be reused needs to be stored in the search memory cache. For

a full search implementation this assumption is valid. The predictability of the

memory accesses associated with a full search implementation make it feasible

that data can be loaded directly from external memory into the motion estimator

70

Figure 2.22: Overlap between the search areas of adjacent current macroblock
rows

when required [66]. For other algorithms, the exact pixels required by the motion

estimator will not be known in advance and in may cases the same pixels may

be accessed a number of times during the execution of the motion estimation

algorithm. As a result it is generally necessary to store the entire search area

in the search memory cache if the full search motion estimation algorithm is not

used.

With regard to FPGA implementations, the level C data reuse scheme has

proved the most popular [10] [23] [14]. The MPEG-4 FPGA encoding system

presented in [11] uses the level D data reuse scheme. The encoder in [11] further

reduces memory bandwidth, by not writing a reconstructed macroblock to exter-

nal memory when the macroblock is encoded using skip mode with a (0,0) motion

vector. This is possible because under the conditions stated, each reconstructed

71

Figure 2.23: Example data loading schedule for an entire frame with n macroblock
rows and m macroblock columns using the level-D reuse scheme

macroblock is identical to the co-located macroblock in the previous frame. For

this optimisation to be practical each reference frame must be written to the

same external memory location. Thus, it is only of use when the level D reuse

scheme and one reference frame is used.

2.3.3 Fractional Pixel Motion Estimation

Intuitively, fractional pixel motion estimation improves compression performance

by allowing a block’s motion to be expressed more accurately. To do this, refer-

ence pixel samples at half pixel and, in H.264, quarter pixel locations are produced

by an interpolation process. The exact interpolation process varies depending on

which standard is being used. The complexity of the fractional motion estima-

tion process is greater in H.264 than in previous standards, due to it employing

a more sophisticated interpolation filter, and its support for both quarter pixel

refinement and variable block sizes. A much larger number of positions require

to be considered when quarter pixel refinement is supported as illustrated in

Figure 2.24.

In H.264, the half pixel samples are generated using a six tap finite impulse

72

Figure 2.24: Fractional motion estimation search positions for a search range of
one integer pel when supporting quarter(left) and half pel (right) refinement

response interpolation filter. This filter is designed to compensate for the aliasing

which occurs in the digital video sampling process [68]. The quarter pixel samples

are generated from half and full pixel samples using a simple bi-linear filter. To

determine whether a half or quarter pel position offers a compression benefit

equation 2.4 is used.

The standard algorithm used for the H.264 fractional estimation process is the

full fractional search algorithm. This has been used in the JM reference model

and by a number of fractional estimation architectures [19] [17] [18]. This is a

two stage algorithm. In the first stage, the half pel positions surrounding the

best integer search position are evaluated. In the second stage, the quarter pel

positions surrounding the best half pel position are evaluated. Thus, for this

algorithm 18 search points are required for evaluation. This requires significant

computation. A separate interpolation and search operation must be performed

on all 41 sub blocks. If a fast search algorithm is used for full pixel motion

estimation the computation required for fraction motion estimation becomes more

significant. This has motivated the development of fast search algorithms for the

73

fractional estimation process.

In [69], it was proposed to use a simpler bi-linear filter to generate the half

pixel samples. However result showed that this reduced compression performance

by nearly 0.5 dB. In [64], a 4 tap FIR filter is used. However, no results are given

on the impact this has on compression performance. Note that while simpler

filters can be used for the fractional estimation process, they cannot be used to

generate the difference block. The 6 tap filter specified in the H.264 standard

must be used at this stage to ensure that the reconstructed macroblock which is

generated by the encoder matches that generated by the decoder. Search posi-

tion reduction algorithms are another method which has been pursued to simplify

the fractional estimation process. In [50], a diamond search pattern combined

with vector prediction and early termination is proposed. Compared to the full

pixel motion estimation process, there is less risk of a fast fractional estimation

search algorithm becoming trapped in a local minimum. The monotonicity as-

sumption holding more often because all the fractional samples are generated by

an interpolation process [50]. No research has been conducted into applying the

simpler distortion metrics discussed in section 2.3.1 to the fractional estimation

process. Frequently, more complex distortion measures than the SAD are used.

For example the Sum of Absolute Transformed Differences (SATD).

An unusual architecture for fractional estimation is proposed in [70]. Here the

fractional and full pixel estimation stages are combined. This allows the SAD

values of larger blocks to be summed from the SAD values of smaller blocks. This

is not possible if fractional estimation is performed as a separate stage because

in this case, each sub block will have a different search centre. The penalty for

combining the two motion estimation stages is a limited search range and/or a

large hardware requirement. The architecture presented in [70] only has a search

74

range of +/- 4 integer pixels, requires more than 28000 four input LUTs and uses

23 embedded RAMs to supply the reference pixels at the required rate.

More conventional architectures are presented in [19] [17] [18]. All implement

the Full Fractional Search Algorithm and are designed primarily to support 4x4

block estimation. Larger block sizes are supported through decomposition into

their constituent 4x4 blocks. To improve efficiency, work in [18] decomposes

blocks with a width of 8 or more into 8x4 blocks. This allows greater reuse of the

interpolated samples generated. However, it requires the estimator to support

two pipelines, one for 4x4 and 4x8 block sizes, and one for all other block sizes.

The other notable distinction between the architectures is how they implement

the two algorithm stages. In [17] and [18], the same hardware is used to perform

both the half and quarter pixel estimation. While this reduces the area and allows

a high resource utilisation, it will impact on power because it requires the half

pixel interpolation operation to be performed twice. In [19], registers are used to

store the results of the half pixel interpolation process, with separate hardware

for the half and quarter pixel estimates.

2.4 Intra Prediction

In total there are 22 intra prediction modes defined in the H.264 standard, 9 4x4

intra prediction modes, 9 8x8 prediction modes, and 4 16x16 prediction modes [1].

Each mode uses pixels above and to the left of the 16x16, 8x8 or 4x4 block being

considered. The adjacent pixels being used to form a predicted block which

is compared against the block being considered (Figures 2.25 and 2.26). The

determination of the best intra prediction mode may be considered as part of the

rate distortion optimised mode decision process discussed in section 2.5. If it is

75

Figure 2.25: 16x16 intra prediction modes

Figure 2.26: 4x4 intra prediction modes. The 8x8 intra prediction modes are
similarly defined

not, a cost measure similar to that in equation 2.4 can be used to determine the

best intra prediction mode.

Ideally, the best intra prediction mode should be determined in the same

pipeline stage as the fractional pixel motion estimation operation. This allows

the intra/inter mode decision to be made prior to the transform pipeline stage.

However, as shown in Figure 2.27, a number of reconstructed pixels required for

16x16, 8x8 and 4x4 intra prediction will be unavailable in this pipeline stage.

If the best intra prediction mode is determined in the same pipeline stage

as the transform and inverse transform, all the pixels required for 16x16 intra

76

Figure 2.27: Unavailable reconstructed pixels required for (from left) 16x16, 8x8
and 4x4 intra prediction

prediction will be available. For the 8x8 and 4x4 intra prediction modes, only

the top left sub-block will have all the reconstructed pixels it requires available

initially. The pixels required for the other sub-blocks must be produced through

the transform/inverse transform process. This forces the intra prediction, forward

and inverse transform processes to be tightly coupled, restricting their ability to

operate concurrently. It also implies that multiple transform operations will be

required, one to determine the best 4x4 intra prediction mode, one to determine

the best 8x8 prediction mode (assuming 8x8 intra prediction is supported), and

one for the mode actually chosen for the macroblock being encoded.

The simplest solution to this problem is to use input pixels instead of recon-

structed pixels when determining which intra prediction mode to use [69] [14].

This solves the data availability issue. Compression performance can be degraded,

however, particularly for sequences with minimal temporal redundancy. An al-

ternative approach is to optimise the sub block processing order to maximise the

period during which the intra prediction and transform hardware can operate

concurrently [71]. This allows some resource savings but still requires multiple

transform operations to be performed. If reordering is used with a fast intra/inter

mode decision algorithm then the need for multiple transform operations can also

77

be removed.

2.5 Mode Decision

In H.264, there are a greater number of modes which can be used to compress

a macroblock than in previous standards. If the determination of which spa-

tial prediction mode to use is considered as part of mode decision process there

are 592 different mode combinations to choose from for I-slices (assuming 8x8

intra prediction is not supported). Additional modes must be considered when

P-Slices are used (INTRA 16x16, INTRA 4x4, INTER 16x16, INTER 16x8, IN-

TER 8x16 and INTER 8x8). For the INTER 8x8 mode 4 modes must be consid-

ered for each 8x8 sub-block (INTER 8x8, INTER 8x4, INTER 4x4 and INTER

4x4). This compares to the 3 modes available in MPEG-2, and the 4 available in

H.263/MPEG-4 [8].

The rate distortion optimised (RDO) mode decision algorithm implemented

within the H.264 reference software is computationally expensive. The distortion

between the encoded and unencoded macroblocks and the rate for that distortion

must be measured for each mode being considered. This requires each macroblock

to be encoded multiple times. As a result of the RDO mode decision algorithm’s

complexity, it has not been frequently used in H.264 hardware implementations.

Instead less complex mode decision algorithms have been used. The simplest of

which is to use the cost measures calculated in the intra prediction and motion

estimation stages to determine which encoding mode to use. Compared to the

RDO algorithm this offers less compression performance but is substantially less

complex.

Efforts have been made to develop mode decision algorithms which reduce

78

complexity further. In general the method used to do this is to make the mode

decision prior to performing all the calculations required by the motion estimation

and intra prediction processes. In [72], it is proposed to determine the mode

used for some marcoblocks partly on the modes chosen for spatially adjacent

macroblocks. This is based on the assumption that the modes chosen for adjacent

macroblock’s are correlated. While reducing complexity [72], still requires either

the 4x4 intra prediction process, the 16x16 intra prediction process or the motion

estimation process for a specific block size to be performed for every macroblock.

Another proposal in [73] determines which mode class, inter or intra, to

exhaustively search. To determine whether the intra or intra mode class should

be used, work in [73] uses features representative of both the spatial and temporal

redundancy. The spatial feature used is the minimum SATD of a subset of

the 4x4 intra prediction modes. The temporal features used are the SATD and

motion vector length of best motion vector candidate as determined by the vector

prediction algorithm proposed in [39]. Using these features, a Bayesian cost based

decision is made on which mode class to use.

In [74], an algorithm is developed to predict when the SKIP encoding mode

offers the best compression performance. When the algorithm predicts that the

SKIP mode offers the best compression performance, neither the motion estima-

tion and intra prediction processes need to be performed. The algorithm devel-

oped in [74] uses a model to predict the distortion and rate for a macroblock when

it is encoded in the normal fashion (i.e by performing both motion estimation

and intra prediction). The models are based on the following assumptions,

• The best mode for a macroblock and its associated distortion will be the

same as that of the co-located macroblock in the previous frame

79

• The required rate for the best mode will be half that of the co-located

macroblock in the previous frame.

Using these assumptions the cost for best mode can be determined and com-

pared against the cost for the skip mode. Result are given in [74] showing that

using the proposed algorithm reduces encoding time in a software encoder by

between 30% and 70%.

Only work in [23] has used a mode decision algorithm which allows the skip-

ping of some of the required motion estimation and intra prediction calculations

in a pipelined encoder implementation. In general, such algorithms offer the

potential to reduce the power used in a pipelined encoder. The resource sav-

ings offered by such algorithms are limited because the encoder still needs to be

able to perform the full motion estimation and intra prediction operations when

required. Although, as discussed in section 2.4, using a fast mode decision algo-

rithm which predicts when either the 8x8 or 4x4 intra prediction operations need

to be performed can reduce the number of transform operations which need to

be performed. Consequently, such algorithms have the potential to reduce the

resources used by the transform component.

2.6 Transform

The transform stage within DCT/DPCM based compression de-correlates the

video image data, facilitating compression. In most standards apart from H.264

the Discrete Cosine Transform (DCT) is used to do this because it has been

shown to be a good approximation of the optimal Karhunen Loeve Transform

(KLT) for natural video images. The transform is also used to de-correlate the

residual images formed as a result of motion estimation/compensation. In [75] it

80

was shown that the KLT for a motion compensated difference image is identical

to the KLT for the original video image and that the DCT remains a good

approximation of the KLT for motion compensated difference images.

Within H.264, a 4x4 integer transform, derived from the DCT, is used. This

is in contrast to previous standards which have used an 8x8 DCT. An integer

transform is used to remove the possibility of the encoder and decoder refer-

ence images differing due to rounding errors in the encoder and decoder DCT

implementations. A 4x4 transform is justified because the spatial and temporal

prediction which occurs before the transform stage in H.264, negates to a large

extent the correlations between each 4x4 transform block [76]. A new revision of

the H.264 standard does provide support for an 8x8 integer transform [1]. The

integer transform used in H.264 has comparable performance to the normal DCT

transform [20]. In addition, it is simpler to implement because it does not re-

quire any multiplication operations. As discussed in section 2.4, the performance

requirements placed on the transform and inverse transform implementation are

dependent on the mode decision algorithm used and on the intra prediction ar-

chitecture used. Within a pipelined encoder, the transform component’s perfor-

mance may not be critical. In the encoder described in [23] for instance, the

vertical and horizontal transforms required are performed sequentially with one

operation occurring per clock cycle. This gives a throughput of less than one pixel

per clock cycle. The impact on overall encoder performance is masked however by

the performance of other parts of the encoder implementation. This encoder uses

a fast mode decision algorithm. As a result, the encoder only needs to perform

one complete transform operation per macroblock.

If the encoder is specifically targeted at larger frame rates and resolutions a

higher performance transform architecture may be needed. In [14], a distributed

81

architecture is used to implement the transform operations. Each processing

element calculates the transformed value for one pixel in a 4x4 block. This is an

unusual design which requires the output values to be multiplexed onto a data

bus prior to quantisation. More common is to split the transform operation into

its vertical and horizontal components, as in [23], but perform multiple transform

operations per clock cycle [77] [78]. Throughput is further increased in [78] by

pipelining the vertical and horizontal transform operations. Split architectures

require a transpose memory to sequence the data appropriately prior to the second

transform operation. In [79], the vertical and horizontal operations are combined

to realize an architecture which does not require a transposition memory.

2.7 Entropy Encoding

There are two forms of entropy encoding available for use in H.264, Context Adap-

tive Variable Length Coding (CAVLC) and Context Adaptive Binary Arithmetic

Coding (CABAC). CABAC provides better performance, reportedly reducing the

size of the encoded bitstream by between 9% and 14% compared to CAVLC [80].

However, it is relatively complex and for some applications the implementation

costs outweigh the benefits. Therefore, the lower complexity CAVLC entropy

encoding mode is also supported by the H.264 standard.

2.8 Loop Filter

As previously stated the loop filter is designed to remove any artifacts which may

have been introduced as a result of the encoding process. A filtering operation is

applied to the horizontal and vertical edges of each 4x4 luma and chroma block.

82

Various conditions effect the strength of filter which is applied to each edge.

These include whether the macroblock is encoded using an intra prediction mode,

whether the edge is on a boundary between macroblocks and the difference in the

value of pixels on either side of the edge. The filtering operation is also dependent

on the quantisation parameter used, with a filtering operation more likely to be

applied when a higher quantisation parameter is used. These conditions are

designed to ensure that the loop filter filters artifacts introduced by the encoding

process but does filter true edges which exist in the image [81]. The strength of

the filter can be adjusted by the encoder and can also be completely switched off

by the encoder.

2.9 Summary

The hybrid DPCM/DCT framework has been used by the majority of compres-

sion standards. However, due to improvements to the various processes used

within it, newer standards have still provided an improvement in compression

performance. Key improvements incorporated into the H.264 standard include,

variable block size motion estimation, multiple reference frames, an integer trans-

form and intra prediction.

A pipelined architecture is the predominant architecture used to implement

a video encoder in an FPGA. The key part of any encoder implementation is the

algorithms and architectures used for motion estimation. . Secondly, due to the

complexity associated with the motion estimation process, the motion estimation

stages of a video encoder have the greatest influence on the overall throughput

of a video encoder implementation.

83

2.10 Conclusions

Implementing a video encoder requires substantial memory and computational

resources. Many of the key improvements incorporated into the H.264 standard,

such as variable block size motion estimation, multiple reference frames, intra

prediction and loop filtering have increased the memory and computational re-

sources required. The resources required can be reduced, principally by reducing

the complexity of algorithms used for motion estimation, intra prediction and

mode decision. However, this reduces an encoder’s compression performance.

Balancing the trade-off between compression performance and complexity of the

encoder implementation is key when designing a video encoder implementation.

The optimum balance between complexity and encoder performance is very ap-

plication dependent.

Using a flexible programmable solution, such as an FPGA, allows the trade

-off between complexity and performance to be adjusted as required. More im-

portantly, the algorithms used for motion estimation, mode decision and intra

prediction continue to be updated, in order to provide better performance and/or

lower complexity. Using a programmable solution ensures that any improvement

in the algorithms available can easily be incorporated into an encoder imple-

mentation. In comparison incorporating new algorithms into an ASIC encoder

implementation would be a difficult and expensive task.

As discussed in chapter 1 there are other programmable technologies which

could be used to implement a video encoder. FPGAs, however, offer a number

of advantages to a video encoder implementation. The encoder architecture can

be determined by the needs of the application, instead of being determined by

the structure of the programmable system. Secondly, FPGAs come in a range of

84

sizes, this ensures that FPGAs can meet the varying computational requirements

of each video encoding system and that there is minimal wastage of computa-

tional resources. Finally, FPGAs are robust technology with a well understood

development flow. Thus, using FPGAs is a lower risk that alternatives such as

coarse grained reconfigurable arrays. FPGA solutions, whilst offering a number

of advantages, can suffer from a high level of power consumption compared to

other reconfigurable implementation technologies. This is principally a result

of the large degree of reconfiguration supported by an FPGA. Computationally

complex applications, such as H.264 video encoding, can exacerbate this problem,

particularly if the FPGA implementation does not take advantage of some of the

power saving features offered by the FPGA device. As discussed in chapter 1, for

many video compression applications power consumption is an important factor.

Whilst FPGA device manufacturers have addressed power consumption at

the device level. It is the contention of this thesis that, for the video encoding

application, significant savings can be made at the application level. This is the

focus for the majority of research described in the rest of this thesis.

.

85

Chapter 3

Field Programmable Gate Arrays

FPGA based designs have always consumed more power and area for a given clock

rate than equivalent ASIC based designs due to the overhead associated with

reconfigurability [82] [83]. Despite the reduced power consumption achievable,

however, ASICs remain unattractive for all but the most high volume applications

due to the prohibitive non-recurring engineering cost. In this chapter the basic

architecture used by most modern FPGAs is introduced. The types of FPGA

power consumption and the methods used to reduce each type are then discussed.

3.1 FPGA Architecture

A simplified diagram representative of a modern low cost FPGAs is shown in

Figure 3.1. Such an FPGA contains four main elements, logic arrays, embed-

ded SRAM, embedded multipliers, and Input/Output (IO) blocks. Each logic

array is made up of clusters of logic elements as shown in Figure 3.2, with each

logic element containing a SRAM or FLASH based Look-Up-Table (LUT) and a

register.

86

Figure 3.1: Generic block diagram of a modern FPGA

The various elements are connected together with a range of interconnect

resources. As an example, consider the Altera Cyclone-2 FPGA. The clusters, or

Logic Array Blocks (LAB), consist of 16 logic elements, with direct links between

adjacent LABs in the horizontal direction, horizontal interconnect spanning 4

and 24 LAB columns and vertical interconnect spanning 4 and 16 LAB rows [84].

The embedded multipliers and embedded ram within a Cyclone-2 FPGA are

connected to the same routing network as the LABs [84]. In addition to the

general interconnect resources available, there are also dedicated interconnect

87

Figure 3.2: Diagram of an FPGA logic array

resources to support the propagation of the carry bit used in arithmetic operations

and to support the distribution of clocks to the FPGA’s synchronous elements.

The carry chain interconnect and logic allows the propagation of a carry bit

from one logic element to the vertically adjacent logic element in the logic array.

Including this addition logic and interconnect, enables the FPGA to perform basic

arithmetic operations at a much faster rate than would be the case if it were not

present. The clock distribution networks on an FPGA are specifically designed to

provide a low skew path for the clock signals required by the synchronous elements

present within an FPGA. In the low cost FPGAs used in this thesis these are

all global clock distribution networks. Higher cost FPGAs, such as the Xilinx

Virtex-5, have both global clock networks, routed through the entire FPGA, and

localised clock networks, each of which is routed through a rectangular section of

the FPGA device.

Figure 3.3 shows the clock distribution network present on a Cyclone-2 FPGA.

It consists of 16 global clock networks which feed clocks to each LAB row on the

88

FPGA. Each LAB row clock net then feeds upto 6 of the available global clocks

to the synchronous elements on that LAB row and to a section of the IO blocks

present on the device. Buffers are used to ensure that each LAB clock net is only

active when necessary. If a particular LAB row contains only unused synchronous

elements no clock signals are fed onto the LAB row clock nets. This is common,

most modern FPGAs implement similar functionality in order to reduce the power

used distributing clock signals through the FPGA device [84] .

The clock control blocks contain multiplexers which allow the clocks fed onto

the global clock networks to be dynamically selected after the FPGA is config-

ured. The clocks supplying the clock control blocks can come, directly from an

external source, from a phased locked loop (PLL) output, or be generated in-

ternally within the FPGA device. The Cyclone-2 FPGA includes phased locked

loop(PLL) circuits to provide the ability to compensate for the delays introduced

by both the on and off chip clock distribution networks. Using the PLL circuits

ensures that all the clocks present in a system are correctly aligned. The PLL

circuits also provide the ability to adjust the frequency of the incoming clock,

depending on the requirements of the FPGA design. Circuits providing the same

function are present in the majority of other modern FPGAs. For example, the

Xilinx Spartan-3 FPGA includes delay lock loop (DLL) circuits, which while dif-

fering in their implementation, provide similar functionality to the PLL circuits

implemented in the Cyclone-2 architecture [85].

Each IO block in an FPGA is connected to a pin, and can be configured to

either provide an FPGA input or an FPGA output. In the Cyclone-2 architecture,

they consist of a tristate buffer and 3 registers, an input reqister, an output

register and a tristate enable register as shown in Figure 3.4. Use of the IO

registers is optional, configuration multiplexers not shown in Figure 3.4 allow the

89

Figure 3.3: Clock Distribution in Cyclone-2 FPGAs

IO registers to be bypassed if necessary. Using the IO registers however, ensures

that the maximum timing margin achievable is available when communicating

with other devices within a system.

The embedded memory and embedded multipliers present in modern FPGAs

reduce the performance gap between an FPGA and an ASIC, particularly in terms

90

Figure 3.4: Simplified diagram of a cyclone-2 IO block

Spartan 3 [85] Cyclone 2 [86] Cyclone 3 [87]
Process Technology 90nm 90nm 65nm
Core Operating Voltage 1.2 1.2 1.2
Inputs per LUT 4 4 4
Embedded Multiplier
Input Data Width 16 8 8
Embedded Ram
Data Width 36 18 36
Number of Global
Clock Networks 8 16 20

Table 3.1: Characteristics of the FPGA architectures used in this thesis

of circuit area and power consumption [83]. However, this is only the case if the

design implemented on the FPGA uses the embedded blocks available. All the

FPGAs used in this thesis only have embedded memories and embedded multi-

pliers, other FPGAs have more sophisticated embedded blocks. For example the

Xilinx Virtex-4 FX FPGA has multiply accumulate blocks instead of embedded

multipliers, embedded memories, an embedded processor, and transceiver blocks

to support high speed Input and Output. Table 3.1 summaries the features of

the FPGAs used in this thesis.

91

3.2 FPGA Power Consumption

There are three types of power consumption in a FPGA, configuration power,

static power and dynamic power [82]. For flash based FPGAs configuration power

is not an issue because the configuration operation is not required. For SRAM

devices, which are focused on in this thesis, the significance of configuration power

to overall FPGA power consumption is dependent on how the FPGA is used. If

dynamic reconfiguration is employed, or if the FPGA is regularly powered down,

configuration power will obviously represent a greater proportion of overall FPGA

power consumption. In most current designs, dynamic reconfiguration is not

used. Consequently it is static and dynamic power which comprise the greatest

proportion of power consumption in an FPGA.

As FPGA power consumption has become of greater concern there has been

a significant amount of research into characterizing [82], predicting [88] and re-

ducing both FPGA static and dynamic power consumption. The techniques

for reducing FPGA power consumption proposed include, FPGA architectural

modifications [89] with an associated place and route or synthesis algorithm if

required, and place and route/synthesis algorithms independent of any FPGA

architectural modifications.

3.2.1 FPGA Static Power

Static power consumption in an FPGA can be significant because, to support

reconfigurability, an FPGA uses a large number of transistors. Each transistor

will suffer from current leakage to some degree [90]. Moving to smaller process

geometries increases the current leakage associated with each transistor. This

has increased the significance of static power consumption and motivated the

92

development of techniques to reduce it.

In [90] an analysis of the static power consumption of the 90nm Spartan-3

FPGA is performed. It showed that 38% of the static power is consumed in the

SRAM configuration cells. To reduce this two techniques have been proposed

[89][91] and implemented in the more modern commercially available FPGAs.

These are increasing the threshold voltage of the configuration transistors and

increasing the gate oxide thickness of the configuration transistors. Each tech-

nique targets a different leakage type. Increasing the voltage threshold reduces

the sub-threshold leakage. Increasing the gate oxide thickness reduces the gate

leakage. Both techniques increase the time required for FPGA configuration,

making the use of dynamic reconfiguration less appealing.

Further FPGA architecture modifications have been proposed to reduce the

static power consumption in the FPGA interconnect and in the LUT multiplexer

logic. According to the study in [90] these two components represent the second

and third most significant sources of FPGA leakage current. As FPGAs are only

available in discrete sizes, a design will only ever use a proportion of the FPGA

resources available. However, the unused FPGA resources will still consume leak-

age power. By using a low leakage transistor to disconnect the unused resources

from the power supply, power gating, the leakage current through the unused

resources can be minimised [92] [89]. It also enables areas of the FPGA that

are not used frequently to be disabled, in a similar manner to the use of power

gating in ASICs [92]. An extension of this method is to use dual supply voltages.

This allows FPGA resources to operate at a higher voltage if they are on a de-

sign’s critical timing path and at a lower voltage if they are not. This potentially

reduces both the static and dynamic power consumed by an FPGA [93].

Depending on the granularity with which power gating or dual supply voltage

93

techniques are implemented they can increase the FPGA area significantly. This

is especially in the case of the dual supply technique as level converters are

required to allow low voltage logic to drive high voltage logic without causing

leakage current. FPGA performance is also reduced by the addition of gating

transistors. Thus, the use of these techniques within an FPGA architecture

needs to be carefully considered.

Methods to reduce the FPGA leakage which can function for any FPGA are

proposed in [94]. Based on the principle that on average a LUT outputting a

logic 1 will consume less power than a LUT outputting a logic 0, [94] proposes

altering the configuration of LUTs to increase the probability of them outputting

a logic 1. As this inverts the LUT output, only LUTs driving other LUTs can be

subject to this modification in order that the inverted signal can be corrected at

a later logic stage. Favouring the use of interconnect resources with a low leakage

characteristic is also proposed in [94] to further reduce FPGA leakage power.

When combined these methods result in a leakage power reduction of around

30% for a 90 nanometre FPGA. However, as the leakage characteristic of each

interconnect resource may not necessarily be proportional to the interconnect’s

capacitance, favouring interconnect resources with a low leakage characteristic

could potentially increase FPGA dynamic power consumption.

3.2.2 FPGA Dynamic Power

The design implemented on a FPGA has a greater effect on FPGA dynamic

power consumption than on FPGA static power. Dynamic power consumption

can be modeled using the equation,

Pdynamic =
∑ 1

2
CiV

2
i αi (3.1)

94

where Ci, Vi and αi represent the capacitance, voltage and switching activity of

resource i respectively. Equation 3.1 models the power consumed charging and

discharging the capacitive load associated with each resource. This is the most

significant source of dynamic power consumption. Additional dynamic power

is consumed as a result of the short circuit created when an output transitions

from logic 0 to logic 1 or vice versa. As this source of power consumption is also

linearly dependent on switching activity, Ci in equation 3.1 can be increased to

account for it. Thus in the extreme case if a design’s switching activity, a function

of both the design itself and its inputs, is negligible then the design’s dynamic

power consumption will also be negligible. However, this implies a design with

negligible functionality.

Studies of FPGA dynamic power consumption have shown that 50% to 70%

of dynamic power is consumed within the FPGA interconnect [82]. The large

power consumed within the FPGA interconnect is due to each interconnect seg-

ment having a large capacitance associated with it. The large capacitance being

due to the number of switch logic transistors which have to be connected to each

interconnect segment to support reconfigurability. To reduce the dynamic power

consumed within the interconnect a number of power-aware synthesis and place

and route algorithms have been proposed. In [95], a technology mapping algo-

rithm which attempts to consume high activity nets inside LUTs, thus removing

the need for them to utilize any FPGA interconnect, is proposed. In [96], it

is proposed to attempt to pack LUTs into clusters in a way which allows high

activity nets to be completely routed within a single cluster. This reduces power

consumption because interconnect local to a cluster typically has a much smaller

capacitance than any of the global interconnect resources available on the FPGA.

There are also similar algorithms, taking into account net switching activity, for

95

both placement and routing. Prioritising power within both the synthesis and

place and route algorithms may conflict with a design’s speed and area goals.

For instance, nets which are on a design’s critical path, which could be packed

into a cluster, may not be as a result of prioritising the packing of nets with a

high switching activity. As a result, the delay on a design’s critical path may be

increased.

All the power aware synthesis, and place and route algorithms proposed, re-

quire switching activity information in order to operate. To even derive an esti-

mate of dynamic power consumption, switching activity information is required.

The methods used to obtain switching activities are based on either design sim-

ulation or on probabilistic techniques. Simulation based methods offer a high

degree of accuracy. However, as design switching activity is input dependent, it

is difficult to find a set of inputs which are representative of real world operation

and are also small enough for the simulations to be practicable. Probabilistic

techniques generally offer an increase in speed, but sacrifice some accuracy. For

example, by neglecting to account for correlations between signals present within

the design.

Obtaining the switching activity information is further complicated by the

issue of glitches. Glitches are spurious transitions which occur, on LUT or other

FPGA logic outputs, as a result of unequal timing delays associated with the

LUT or other FPGA logic inputs. In [88], a method of predicting the extent

of additional switching activity due to glitching, prior to the place and route

process, is proposed. The method proposed takes into account factors known

at this stage, such as LUT logic function, combinatorial depth and logic path

length, in order to determine whether glitches will be generated or propagated at

each logic element. It is suggested in [88] that glitch prediction prior to place and

96

route is inherently difficult. A large number of glitches are a result of the variable

delays introduced by the different interconnect resources used to route a design’s

signals. Consequently, essential information required for glitch prediction is not

available prior to placement and routing.

Glitching, and hence FPGA dynamic power consumption, can by reduced

through pipelining [97][98] and re-timing [99]. Both pipelining and re-timing re-

duce glitch propagation, preventing glitches at a LUT output from propagating

onto the high capacitance interconnect, and hence the inputs of other LUTs in

the system. Pipelining increases the design latency but, provided this can be

tolerated, power consumption can be reduced by up to 80% depending on the

design and the number of pipeline stages implemented [97]. It may be difficult,

however, to know in advance what parts of the design will most benefit from

pipelining. Time consuming modifications late in the design cycle may therefore

be required in order to reduce power consumption. To prevent this, an auto-

mated method for including additional pipeline registers is proposed in [98]. The

additional registers are clocked using a phase shifted versions of the non-pipelined

register’s clock. This ensures the additional registers do not affect the design’s

operation. The dynamic power reduction achievable with this method is less than

that which can be achieved through pipelining early in the design cycle. The ad-

ditional phase-shifted clocks must be distributed through the FPGA, creating an

additional source of power consumption. In addition, the number of additional

pipeline registers is restricted by the timing margin, or slack, available in the

design. Nevertheless power reductions of up to 30% have been cited using this

method [98].

The embedded blocks present in modern FPGAs can be taken advantage of

to reduce dynamic power consumption [83]. As these blocks are effectively ASIC

97

circuits that implement a particular function, it is inherently more power efficient

to use them for that function than it is to use the generic LUT fabric. However, if

the dedicated blocks are not used in the design implemented on the FPGA they

are effectively just additional sources of static power consumption. If the FPGA,

or reconfigurable array, is targeting a specific application then the whole array,

and each block in it, can be designed for that application. For example, in [100],

a reconfigurable array targeting motion estimation is proposed. For commercial

FPGAs the embedded blocks present must be flexible enough to be used through-

out the application range the FPGA is targeting [101]. In commercial FPGAs

therefore, embedded blocks are typically limited to RAM blocks, multiply or mul-

tiply accumulate blocks, clock control blocks and specialised input/output blocks

to support high speed FPGA input and output. To reduce power consumption,

the design implemented on the FPGA must be designed to use the embedded

blocks available efficiently [83].

Techniques for minimizing the amount of power consumed in embedded RAMs

are proposed in [102]. The techniques proposed take advantage of the fact that

as a result of the way the synchronous RAMs in an FPGA operate, the majority

of their dynamic power consumption is not dependent on the input data or input

addresses but on the number of clock cycles the SRAM clock is enabled [103].

Two methods are proposed. One is to remap write/read enables to write/read

clock enables. The other is to map logical memory blocks which are larger than

the physical memory blocks available on the FPGA in a way which minimises

the number of physical memories which have to be active for any read/write

operation. Embedded RAM optimisations are important with respect to video

encoder designs. Such designs generally make use of a large number of RAMs in

order to reduce bus/memory bandwidth to an acceptable level.

98

The embedded RAMs on an FPGA can also be used to implement logic [104].

In terms of raw silicon area, implementing logic using embedded RAMs is more

efficient than implementing logic using the FPGA LUT fabric [104]. From a power

view point, implementing logic in the available embedded RAMs may reduce

the size of the FPGA required for a design, and hence reduce the static power

associated with it. However, it was shown in [105] that implementing logic in

embedded RAMs results in an increase in FPGA dynamic power consumption.

Thus, in general, using embedded RAMs to implement logic will result in an

increase in a design’s overall power consumption.

Clock gating techniques can also be used in FPGAs to reduce power. Two

clock gating methods can potentially be used [106][107]. The first uses each FPGA

register’s enable pin to approximate the effect clock gating would have, the other

uses the built-in FPGA clock management resources to actually disable one of

the clocks present in the design. The second method reduces power consumption

by the greater amount, as with the first method the clock is still being distributed

to each register. The advantage of the first method is that it does not require

a separate clock distribution tree, a finite FPGA resource, for each gated clock

present in the design.

3.3 Summary

This chapter has introduced the basic architecture used by the majority of FP-

GAs available today. A key aspect of modern FPGA architectures is that they

are heterogeneous. At a minimum a modern FPGA consists of LUTs, embed-

ded RAMs and multipliers. The inclusion of additional blocks has been key to

allowing more complex systems to be implemented on FPGAs.

99

Due to the number of transistors required by an FPGA, the static power

consumed is inherently greater than that of an ASIC implementing an equivalent

function. Significant research has been conducted and new features incorporated

into modern FPGAs in attempt to reduce static power consumption. In the main

these features are implemented at the FPGA architectural level. For example,

the use of a different oxide thickness for configuration transistors.

There is more scope to influence dynamic power consumption at the appli-

cation level because there is a direct link between the application implemented

on the FPGA and the power consumed by it. That said, a number of synthesis,

placement and routing algorithms, which aim to reduce dynamic power consump-

tion, have been proposed. In chapter 5, results will be given showing how some

of these techniques affect the power consumed by a FPGA based video encoder.

The techniques proposed in [103] being used to reduce the power used by the

embedded RAMs present in the FPGA video encoder design.

100

Chapter 4

FPGA Video Compression

Systems

FPGAs have become a popular method of implementing real-time video encoding

systems. Modern FPGAs are well suited to the video compression task. An abun-

dance of logic (LUTs and embedded multiplier/DSP blocks) allows the complex

algorithms required to be efficiently implemented. The embedded RAM present

on all modern FPGAs allows the video data to be buffered on chip, reducing

external memory bandwidth requirements.

A video encoder is only a single part of an overall system. In general, a

video encoding system will include, a video input source, memory, processor(s)

and an output path. Any encoder, regardless of architecture, will have memory

bandwidth and FPGA resource requirements which have a significant impact on

the overall system design. In this chapter, the integration of a pipelined video

encoder into a complete system is studied. Two example systems are described,

each targeting a different application. The first, in section 4.1, describes a low

cost H.263 video streaming system for security applications. The second, in

101

section 4.2, describes a high performance H.264 video encoding system targeted

at video conferencing applications.

4.1 H.263 Encoder System using the Xilinx Plat-

form

4.1.1 Design of an Pipelined Encoder suitable for integra-

tion into Xilinx platform based systems

The encoder is based on the design described in [108]. A diagram of the encoder

is shown in Figure 4.1. It consists of five computational modules, the full pixel

motion estimator, the half pixel motion estimator, the transform and quantiser,

the inverse transform and quantiser and the variable length encoder. Each module

processes macroblock units of data and stores its output in the appropriate RAM

buffer. Double buffering is used to allow the encoder to operate in a pipelined

fashion, as shown in Figure 4.2. In this encoder, the number of clock cycles

required per pipeline stage is fixed at 1468. To encode D1 (704x480) sized images

at 30 frames per second therefore requires a minimum encoder clock frequency

of approximately 59 megahertz (equation 2.3).

102

F
ig

u
re

4.
1:

H
.2

63
en

co
d
er

ar
ch

it
ec

tu
re

103

Figure 4.2: Pipeline operation of H.263 encoder. Each macroblock (MB) is pro-
cessed sequentially through each of the encoder stages

Encoder Modifications

In order to ease integration into Xilinx platform based systems a number of

changes were made to the encoder. The number of embedded RAMs used by it

were reduced and a more efficient method of writing data to and from the encoder

was introduced.

The encoder presented in [108] used 22 embedded RAMs for buffering the mac-

roblock (MB) data between the computational modules, internal storage within

the five functional modules, and buffering the reconstructed image data for use

by the full pixel motion search module. This represents a significant proportion

of the embedded RAMs present in mid-range Spartan-3 devices and, if not re-

duced, would have prevented the encoder being targeted at these FPGAs, given

that in a typical Xilinx platform based design the microblaze processor also uses

a number of block RAMs.

Two methods were used to reduce embedded RAM usage. Where possible, the

104

embedded RAMs were reduced by storing the macroblock data in a more compact

fashion. For instance the search memory is required to store 12 macroblocks at

any instance, the data being held, from a schematic point of view, in 4 buffers

each storing 3 macroblocks. The previous implementation mapped each buffer

directly to an embedded RAM. This, while simple, wastes more than half of

each embedded RAM’s storage capacity of 2048 bytes. To reduce the embedded

RAMs used, the 4 buffers were re-mapped onto 3 embedded RAMs, the minimum

number required to store 12 macroblocks of image data. The second method used

was to utilise the distributed RAM feature available in Xilinx FPGAs, mapping

some of the smaller memories required by the individual functional modules to

distributed RAM.

The previous encoder stored all frames present in external memory (input

frame, output frame and reconstructed frame) in raster scan format. The encoder

operates on macroblock units of data. Thus, when loading and saving macroblock

units of data the memory addresses the encoder accessed were not in a straight

forward sequence. This is not an issue if static memory such as SRAM is used,

as there is no performance penalty for addressing SRAM in a non-sequential

fashion. However, when using dynamic memory, or when accessing a memory

through a bus such as the On-chip Peripheral Bus (OPB) used here, it is desirable

to use sequential memory addressing because the data can be transferred more

efficiently through the use of the burst mode of the memory/bus. For the output

and reconstructed frames the obvious method is to write out output frame in the

macroblock ordered format shown in Figure 4.3. The appropriate data can then

be easily loaded when compressing the next frame in the video sequence.

With respect to the input frame, the issue is more complicated due to it

being coupled with the design of the camera interface. If the encoder accepts

105

Figure 4.3: Macroblock ordered format used for reconstructed and output images

Figure 4.4: Macroblock ordered format used for input images

input frames in the format shown in Figure 4.3, the onus is put on the camera

interface to write the input frame data to external memory in that format. Since

any camera interface will receive camera data in raster scan order, its ability to

write that data to memory efficiently is inhibited if it must write it out in the

format shown in Figure 4.3. With the bt656 source used, the data must also be

converted from an interlaced 4:2:2 format to a non-interlaced 4:2:0 format.

To do this and be able to write out the data in an sequential manner, the

camera interface uses two embedded RAMs to double buffer one line of image

data. For the first field it captures the chrominance and luminance data, for the

second field it captures the luminance data only, thereby performing the 4:2:2 to

4:2:0 conversion required. Each image line is written out in 16 32-bit word bursts

of luminance and chrominance data. This forces every 4 macroblocks of data to

be intermingled as shown in Figure 4.4. However, it allows a burst size of 16,

instead of 4, to be used to write the input frame data to external memory.

Encoder Interface

The camera interface and the encoder have internal registers which require to

be set for every frame captured/encoded. To facilitate this within the Xilinx

106

platform systems being targeted, two OPB slave interfaces, implemented using

the Xilinx provided OPB-IPIF module [109], were used. As already mentioned

OPB masters interfaces were used to provide the encoder and camera with access

to external memory. The external memory being accessed through any of the

OPB external memory interfaces provided by Xilinx. This allows the encoder and

the camera interface to be flexible with regard to the type of external memory

used with them.

4.1.2 System Design

To demonstrate the use of the encoder within a low cost system the Avnet

Spartan-3 1500 evaluation board [110] was used with two expansion cards, one

to provide the bt656 input for the camera interface [111], and one to provide ac-

cess to a 32-bit SDRAM memory [112]. The system implemented is designed to

stream H.263 compressed video using the Real-time Transport Protocol (RTP).

The architecture of the Spartan-3 system is shown in Figure 4.5. The ar-

chitecture used decouples as much as possible the encoding operation from the

streaming operation. The encoding operation is centred on the encoder OPB

bus, the streaming operation is centred on the processor OPB bus. The only

data required to flow between the two buses is the H.263 bitstream data. This

is written into the 8 kbyte embedded RAM buffer accessible to both buses, by

the OPB DMA controller, under direction from the microblaze processor. At no

point does the processor access the SDRAM directly. The encoder, camera inter-

face and processor all operate concurrently, with the camera interface capturing

image n, the encoder encoding image n − 1, and the processor streaming image

n− 2.

This architecture was chosen for a number of reasons. Firstly, using two OPB

107

Figure 4.5: Spartan-3 System Architecture

bus segments ensures that access to the SDRAM is not impeded by the processor

accessing the other slaves in the system. Secondly, the microblaze processor

accesses the OPB bus using single read/write transactions, taking at least 10

clock cycles to read a 32-bit word from SDRAM, and 6 clock cycles to write a

32-bit word to SDRAM, due to the latency associated with the OPB bus and

SDRAM interface [113]. Thus, if the processor software was to be run directly

from SDRAM, it would be able to execute a maximum of 6 million instructions

per second (assuming a system clock rate of 60 MHz), but realistically less, as

processor access to the SDRAM will be hindered by the camera interface and

encoder. Given this, it is clear that a degree of buffering of the program data will

be required for the system to operate at the desired frame rate and resolution.

This buffering can take one of two forms, caching and directly storing the

program instructions and data on the FPGA. Both methods use the embedded

108

RAMs present on the FPGA. In this system, 12 embedded RAMs are available

to be used for this purpose. The others are used, in the encoder and camera

modules as discussed in section 4.1.1 and in the ethernet media access controller,

which requires a minimum of 4 embedded RAMs to function efficiently [114].

The advantage of using an instruction and data cache is that the SDRAM

can still be used for storage. As a result the size of the system software does not

become critical. However, the processor SDRAM usage when caches are used, is

dependent on both the system software and the cache configuration. This is diffi-

cult to anticipate in advance and, for this reason, this approach was not pursued.

Instead the 12 available embedded RAMs were used to store the system software

directly. As shown in Figure 4.5 the available embedded RAM was divided with

8 2-kbyte embedded rams being connected to the microblaze processor through

the faster local memory bus (LMB) and 4 being connected through the slower

OPB bus. This division was chosen because the Xilinx supplied interfaces only

support microblaze memory buffers which use a power of 2 number of embedded

RAMs. It also allows the H.263 bitstream data to be directly loaded into mem-

ory accessible to the system software, as the second port of the OPB embedded

RAMs can be accessed by the encoder OPB bus segment.

4.1.3 Software Design

The software controls the operation of the entire system, instructing the camera,

and encoder, to capture and encode images, and transmitting the encoded im-

ages using the ethernet media access controller. Due to the system architecture

currently used the total size of the system software is restricted to 24 kilobytes.

An Internet Protocol (IP) stack is required in order to properly format the en-

coded data for transmission over the ethernet media access controller. Although

109

it would be possible to develop a custom IP stack specifically for this system

this would take a significant development effort, mitigating some of the benefit

of using a platform design approach. There are a number of IP stack libraries

compatible with the microblaze processor and ethernet media access controller.

Xilinx supply the open source lwIP library and also a custom Xilnet library.

There is also a port of the uclinux operating system available for the microblaze

processor. Due to program size restrictions, the Xilnet library was used, as this is

the only one capable of being implemented within the 24 kbytes available to store

the system software. Although limited, the Xilnet IP stack is adequate for send-

ing the UDP packets required by the RTP protocol. The Xilnet IP stack has very

simple memory management. Two ethernet frame sized buffers are used, sendbuf

for sending data and recvbuf for receiving data. These are mapped to the OPB

embedded RAMs, with encoded data being loaded directly into sendbuf using

the DMA controller shown in Figure 4.5.

Figure 4.6 shows a flow diagram of the software operation whilst encoding.

Due to the program size restriction, no operating system is used. Instead, a

camera and encoder generated interrupt triggers the software operation. The

Xilnet library does not fragment IP packets across ethernet frames and, in any

case, there is not the program memory available to support this. Thus, each RTP

packet must be limited to approximately 1500 bytes. Given that the size of one

H.263 encoded image is generally greater than 1500 bytes, this restricts the RTP

payload header which can be used. The RFC 2190 payload header [115] cannot be

used because, with this protocol, the H.263 bitstream data must be fragmented

at image, group of blocks, or macroblock boundaries. With the current encoder

design, the processor is only aware of where each encoded image starts in external

memory, not where each group of blocks (GOB) or macroblock starts. Therefore,

110

Figure 4.6: Flow diagram of software during encoding operation

the RFC 2429 payload header [116] was used as it allows each frame’s H.263

bitstream to be fragmented at random points.

4.1.4 Results

Table 4.1 shows the FPGA resource usage of the revised encoder, discounting the

additional de-interlacer component. Compared to the original encoder [108], the

embedded RAM usage has been reduced significantly. The slice usage, however,

has increase significantly compared to the 3000 slices used in the previous imple-

mentation. This is due to, the use of distributed RAM as opposed to embedded

RAM, the addition of the OPB master and slave interfaces and the targeting of

the encoder at lower cost Spartan series FPGAs as opposed to the more expensive

111

Slices 4813
Slice Registers 4364
LUTs 7061
Embedded RAMs 12
MULT18X18s 3
Maximum Encoder Clock Frequency 60 MHz

Table 4.1: Encoder resource usage (Spartan-3 1500 FPGA)

Slices 10944 out of 13312
Block RAMs 32 out of 32
MULT18X18s 6 out of 32
Maximum Clock Frequency 60 MHz

Table 4.2: Usage of Spartan-3 1500 resources by Streaming System

but higher performance Virtex series FPGAs.

The maximum clock rate the core is capable of operating at is just over 60

MHz in the lower speed grade Spartan-3 parts. In the higher speed grade parts it

is capable of operating at over 69 MHz. Even using the lower speed grade parts,

the encoder is capable of encoding D1 sized video at 30 frames per second. The

minimum encoder clock frequency required for this throughput being 59 MHz.

Table 4.2 shows the resource usage for the overall system in the Spartan-3

1500 FPGA targeted. Using the lower speed grade part present on the Spartan-

3 evaluation boards used, the system is capable of operating at 60 MHz and

streaming D1 video at 30 frames per second. The size of the encoded data,

however, is limited to approximately 1 MByte per second, due to the ethernet

MAC only supporting 10 megabit operation at 60 mega-hertz.

The main limitation of the system is that, due to the software size constraint,

the software has limited control functionality, only having a start streaming com-

mand which is sent to the system using the ethernet controller. Ideally, the system

should be able to accept various commands, to start/stop streaming, send intra

112

frames and control the video bitrate. As the current system software already

occupies 23506 bytes out of the 24576 bytes available alterations to the system

hardware are required if this functionality is to be supported. One option is to

use the Spartan-3E 1600 FPGA, which has an additional 4 embedded RAMs and

is available for comparable cost to the Spartan-3 1500 FPGA.

Another option is to use caches and store the software within the external

memory used by the encoder and camera interface. Sharing the external memory

between the processor, camera interface and encoder becomes more feasible if the

Xilinx cachelink interface is used. This custom interface was developed by Xilinx

to provide the microblaze processor with a lower latency interface to external

memory than that provided through the OPB bus. The caches used with the

cachelink interface also supports larger cache line sizes than the caches used when

external memory is accessed through the OPB bus. Use of cachelink interfaces to

provide the encoder and camera interface with access to external memory would

also provide a performance improvement whilst still allowing the encoder and

camera interface to be easily used in a variety of Xilinx platform based systems

with different external memories.

4.2 H.264 Encoder System using the Altera Plat-

form

4.2.1 System Design

For this design, the maximum resolution required was 1280x720 (720p) at a frame

rate of 30 frames per second. The target FPGA was the EP2C70 [84], the largest

Cyclone 2 FPGA available. A modified version of the encoder described in [117]

113

Figure 4.7: Overall system environment FPGA system operate in

was used. The FPGA encoding system differs from that discussed in section 4.1

in the method used for encoder control and in the method used to output bit-

stream data. The encoder in this system is controlled from a DSP device instead

of an FPGA based processor. Encoding parameters being transmitted to the

FPGA using the same bus that input frames are transmitted on. Bitstream data

is outputted from the FPGA on a separate bus to another DSP device. The

FPGA is not required to packetise the bitstream data for transmission on an IP

based network. As a consequence of these differences there is no need for an

FPGA based processor to support encoder operation in this system. A diagram

summarising the overall system environment the FPGA design must operate in

is shown in Figure 4.7. The DDR-2 memory shown in Figure 4.7 is used to store

the reference frames required for motion estimation.

While the absence of an FPGA based processor simplifies the FPGA system

design, this is offset by the encoding demands placed on the system. The encoder

described in [117] uses a fixed 1400 clock cycles per pipeline stage. If only one

114

encoder instance was used a clock frequency in excess of 150 MHz would have been

required to meet the desired frame rate and resolution (refer to equation 2.3).

This would have been a difficult clock frequency to achieve in the low cost FPGA

used. To reduce the clock frequency required, the slice based encoding technique

described in section 2.2 was used. Two encoder instances being utilised to meet

the desired frame rate and resolution.

Even when using two encoder instances a 75 MHz clock frequency would still

have been required for an encoder Cp of 1400. This was a higher frequency than

many of the encoder stages could operate at in the Cyclone-2 FPGA used. Using

a third encoder instance was not an option. It would have required more resources

than were available in the Cyclone-2 EPC70 FPGA. Therefore, the number of

clock cycles that the full pixel motion estimation stage required was reduced.

This allowed the Cp of the encoder to be reduced to 1200 clock cycles, reducing

the required encoder clock frequency to 58.8 MHz. The actual encoder clock

frequency used was 60 MHz. This allows both the encoder and input/output

interface to use the same clock.

While the encoding process across can be split across multiple encoder in-

stances, the memory transactions each encoder requires cannot be split across

multiple external memories. Only one DDR-2 SDRAM was available for use on

the target board. Even if more than one memory was available splitting the mem-

ory transactions would be non-trivial. A proportion of the reference frame data

produced by each encoder instance must be accessible to the other. This allows

the motion estimators in each encoder instance to consider search positions which

cross the slice boundary.

Table 4.3 shows the maximum size of the main memory transfers required by

the encoding system. Some of the smaller transfers required, such as the intra

115

Transfer Name Megabytes per second
Reference Frame Load 124.4
Input Frame Load 41.5
Input Frame Save (From IO interface) 41.5
Output Frame Save 41.5
Loop Filter Load 51.875
Loop Filter Save 51.875
Total 352.35

Table 4.3: Maximum size of main memory transfers required by encoding system

prediction load, are not listed. Also not listed is the bitstream data which is

saved to the DDR-2 SDRAM prior to being outputted on the data output bus.

The size of this transfer is sequence specific. The maximum possible size is 1.75

megabytes per second, assuming the encoder complies with level 3.1 of the H.264

standard [1]. Achieving a memory utilisation of over 50% using the Altera DDR2-

SDRAM controller used is difficult [118]. Given this, and the bandwidth required

by the encoding system, it was suspected that it would be necessary to operate

the DDR-2 SDRAM and its controller at the DDR-2 SDRAM’s maximum clock

frequency of 125 MHz. Simulations confirmed this suspicion.

The first architecture proposed for the encoding system is shown in Figure 4.8.

In this architecture each encoder instance and the input/output module are sep-

arate Avalon bus masters. Therefore an arbiter is instantiated within the avalon

switch fabric to control access to the DDR-2 SDRAM. The avalon switch fabric

can also instantiate clock crossing logic when required. This was not used in

this case however. The avalon switch fabric uses a slow handshaking protocol to

correctly transfer data across asynchronous clock domains. This protocol is un-

suitable for the large amount of data which needs to be transferred to and from

the DDR-2 SDRAM. Instead dual-port embedded RAMs on the input/output

of each encoder and within the I/O module are used to facilitate the efficient

116

Figure 4.8: Proposed encoding system architecture

transfer of data between the core and memory clock domains. Consequently, the

entire avalon switch fabric must be able to operate at 125 megahertz.

The main advantage of this architecture is its modularity. Treating each

encoder instance and the input/output module as separate components makes it

easy to reuse the encoder in other Altera platform based systems. For this specific

system however, it was found to be impossible to use a modular architecture and

still meet the system’s frame rate and resolution requirements. This was due to

the avalon switch fabric being incapable of arbitrating between multiple masters

at 125 mega-hertz when implemented in a Cyclone-2 FPGA. To resolve this issue

the two encoder instances and the input/output module were merged into the

one avalon component. The three components sharing the one avalon master

interface. This removes the need for an arbiter within the avalon switch fabric.

Instead, an arbitration between the various modules takes place internally within

the avalon component as shown in Figure 4.9. This allows the majority of the

arbitration process to operate at the encoder and IO clock frequency of 60 MHz.

Consequently the 125 MHz memory clock frequency required can be achieved

117

Figure 4.9: Actual encoding system architecture

whilst using an avalon bus interface.

4.2.2 Input/Output Interface

Format and Timing

The input/output interface must parse the data transmitted on the input bus,

load the appropriate frames into the DDR-2 memory for use by the two encoder

instances, and output the bitstream data on the output bus. In addition, it must

be able to pass on the frames to be encoded to the output bus, as well as any

additional frames transmitted on the input bus.

Data is transmitted to, and from, the FPGA in meta-frames. The meta

frame format is used to ensure the FPGA is compatible with the other devices

in the system. Each meta-frame consists of 625 lines of 3200 bytes. An 8 byte

horizontal synchronisation period occurs at the end of each line. A 5 line vertical

synchronisation period occurs at the end of each frame. The first 128 bytes of

each input meta-frame contains the information required for encoder control.

This is then followed by up-to 3 video frames, the first of which is the frame to

118

Figure 4.10: Example input meta frame

be encoded. An example input meta-frame is shown in Figure 4.10.

In the example shown in Figure 4.10, the 720p frame must also be passed on

to the output bus as well as being encoded. Whether the frame to be encoded

must also be passed on is dependent on the combinations of frames contained

within the meta-frame. A complete list of the input frame combinations which

had to be supported is given in table 4.4.

The requirement to pass on frames complicates the output meta-frame format.

There are no spare resources available to store the additional pass-on frames in

the FPGA. The DDR-2 memory cannot be used as there is no spare memory

bandwidth available. Therefore, the frames must be passed on with minimal

delay. As a consequence the bit-stream data must be transmitted in the empty

119

Encoded Frame Size Encoded Frame Passed On ? Pass On Frame Sizes
720p Yes 720p/16
w4cif No 720p
w4cif Yes w4cif/16
w3cif No 720p
wcif No 720p,720p/16
4cif Yes qcif
3cif No 4cif,qcif
cif No 4cif,qcif
4sif Yes qsif
3sif No 4sif,qsif
sif No 4sif,qsif

Table 4.4: Input frame combinations supported

space available within each output meta frame. For meta-frames which require

the encoded frame to be passed on, the bitstream is located at the end of each

meta-frame, as indicated in Figure 4.11. For meta frames which do not require

the encoded frame to be passed on, the bitstream data starts at the end of a

meta-frame and, if necessary, continues at the start of the next meta-frame as

indicated in Figure 4.12.

From Figure 4.11, it can seen that the encoding latency with this type of meta-

frame is over 30 milliseconds. The bitstream is transmitted on the output bus

over 30 milliseconds after the corresponding input frame has been transmitted.

This is unavoidable given the time needed to encode larger frame sizes and the

inability to store the pass on frames. The latency for meta-frames where the

frame to be encoded is not passed on is much less, as shown in Figure 4.12. This

is a result of the smaller frame sizes which have to be encoded and the larger

frame sizes used for pass on frames in this case. As a result the bitstream can be

outputted in the same meta-frame as the corresponding input frame.

120

Figure 4.11: Timing relationships between the input and output meta frames
when the encoded frame is passed on to the output bus

Figure 4.12: Timing relationships between the input and output meta frames
when the encoded frame is not passed on to the output bus

121

Figure 4.13: Structure of I/O interface

Input/Output Interface Design

The structure of the input/output interface is shown in Figure 4.13. It consists of

three main components. The input/output controller communicates with the two

external buses. It parses the header data from the input bus, writes frame data to

the input frame memory buffer, and reads the bitstream data from the bitstream

memory buffer and puts it on the output bus. The input frame memory controller

schedules the transfer of the input frame from the input memory buffer to the

external memory. The bitstream memory controller schedules the transfer of the

bitstream data to the bitstream memory buffer. The memory buffers are used to

transfer the bitstream and input frame data efficiently between the capture and

memory clock domains.

Similarly to the design described in section 4.1, input images are received in

raster scan order. For this design, the input image memory format shown in

Figure 4.4 is not used. Instead, the simple macroblock ordered format shown in

Figure 4.3 was used. The format shown in Figure 4.4 was not used because the

Altera DDR-2 controller used only supports a burst length of 4. If an Avalon

122

Logic Elements 63929 out of 68416
Embedded Rams (M4K) 240 out of 250
Maximum Memory Clock Frequency 127.8 MHz
Maximum Encoder Clock Frequency 66.77 MHz

Table 4.5: Usage of Cyclone-2 resources and maximum operating frequency

master requires a larger burst size than that supported by the DDR-2 controller,

the Avalon switch fabric instantiates additional logic to support it. It was found

that this additional logic could not operate at 125 megahertz. Consequently, there

would have been no benefit in using the memory format shown in Figure 4.4 in

this system.

4.2.3 Results

The total resources used by the system are shown in table 4.5. From it it can be

seen that, even with the architecture used, the memory clock frequency require-

ment is met with a minimal timing margin. Similarly to the system presented in

section 4.1 the most heavily used resource in the design is the embedded RAMs.

Although in this system the LUT utilisation is only slightly less than the embed-

ded RAM utilisation.

4.3 Summary

The implementation of two FPGA video encoding systems has been described.

Both systems used readily available intellectual property provided by the FPGA

manufacturers to provide the video encoder with access to an external memory. In

both cases this proved problematic. The effective bandwidth provided by the IP in

each case only being suitable due to custom modifications to the encoding system.

In the case of the system presented in section 4.1, a custom memory format was

123

used for input frames. In the case of the system presented in section 4.2 the

overall system was specifically designed around the memory/bus architecture’s

limitations. This is not a surprising result, given the significant amount of data

an encoder needs to write to, and read from, external memory.

Another common issue in the two systems is the high utilisation of FPGA

embedded rams. This is unfortunate. The easiest method to reduce an encoder’s

memory bandwidth requirements is to store more data in the embedded RAMs

available on the FPGA. The results presented here suggest that in many cases this

will increase the size of the FPGA required to implement the encoding function.

Thus, making the integration of the encoder into a complete system easier will,

in many cases, increase the size of the FPGA required to implement the system.

124

Chapter 5

FPGA H.264 Video Encoder

Power Analysis

In this chapter, the power consumed in an FPGA H.264 implementation is anal-

ysed. It is shown that, with respect to dynamic power consumption, the motion

estimation function consumes the most power even when variable block sizes are

not supported. Given the large computation required by the motion estimation

function this is not an unexpected result. The analysis described in this chapter

was performed to obtain real power consumption values on a commercial FPGA,

to assess the extent which each video compression function contributes to over-

all dynamic power consumption and to determine the best methods to reduce

the dynamic power consumed by 4i2i’s H.264 encoder. 4i2i’s H.264 encoder is

studied, instead of the H.263 encoder used in the previous chapter, to ensure the

result are relevant, from both a technological and business perspective.

125

F
ig

u
re

5.
1:

S
im

p
li
fi
ed

d
ia

gr
am

of
H

.2
64

en
co

d
er

st
u
d
ie

d
.

N
ot

e
th

at
th

e
m

em
or

ie
s

in
te

rn
al

to
ea

ch
fu

n
ct

io
n
al

u
n
it

h
av

e
b
ee

n
om

it
te

d
fr

om
th

e
d
ia

gr
am

126

5.1 Power Estimation Method

To estimate the power consumed by the encoder when implemented on an FPGA,

the Altera Quartus-2 software was used. The Quartus-2 software was also used

to synthesize, place and route, the encoder design on the Cyclone-2 EP70 FPGA

targeted. The encoder studied uses an external memory to store the reference

frames required for motion estimation and to store other information required

during the encoding of a video frame. In common with all encoder implemen-

tations, the encoder studied caches search area data on chip allowing it to be

re-used during the motion estimation stage of adjacent macroblocks in the video

frame. Despite this, the encoder’s external memory bandwidth requirements are

still significant. It was therefore considered necessary to estimate the power con-

sumed by the external memory in addition to the power consumed by the FPGA

based video encoder. To do this a Micron SDRAM power model was used. The

complete power estimation method is illustrated in figure 5.2.

In common with any encoder implementation, the frame rates and resolutions

supported by the encoder studied are dependent on the supplied clock frequency

and the available external memory bandwidth. As the encoder’s clock frequency

is increased its power consumption will also increase. In addition a higher clock

frequency requirement gives the synthesis and place and route tools less scope to

reduce power consumption. In this analysis, the aim is to derive the best possible

power consumption for each frame rate and resolution being considered. There-

fore, the encoder clock frequency was set to the minimum frequency required

to support the frame rate and resolution being considered. For the pipelined

encoder used, the required frequency for each frame rate and resolution can be

derived using equation 2.3. Cp for the encoder studied is 1400 clock cycles.

127

Figure 5.2: Method used to estimate power used by H.264 encoding system

While the encoder clock frequency is solely determined by the frame rate and

resolution required, external memory usage, and hence the external memory’s

power consumption, is dependent on the design of the overall system. However,

to simplify the power analysis, only the encoder’s interaction with the external

memory has been considered in this instance. Thus, the power estimates derived

for the external memory and interconnect will only reflect the power consumed as

a result of encoder operation. In a practical system the power consumed will be

greater. At a minimum, additional power will be consumed writing input frames

to external memory and reading the H.264 bitstream data from it.

A 32-bit SDRAM is assumed [119]. In order to provide the encoder with

sufficient memory bandwidth, it was necessary to clock the memory at a higher

frequency than the encoder. Simulations were used to determine the precise

memory clock frequency required for each frame rate and resolution. This is

128

Sequence Resolution F
rame Rate (fps) Encoder Memory

Frequency (MHz) Frequency
(MHz) (Mhz)

Football 352x240 30 17 40
Stefan 352x240 30 17 40
Mobile 352x288 30 17 40
Foreman 352x288 30 17 40
Garden 704x480 30 55 125

Table 5.1: Sequences, frame rates and clock frequencies used

not an uncommon situation. As shown in section 4.2, the minimum memory and

encoder clock frequencies required will typically not be equal. As all input/output

data from the encoder is from embedded RAM, it is relatively simple to switch

clock domains due to the dual port nature of the embedded RAMs on modern

FPGAs. The sequences, frame rates, encoder and memory clock frequencies used

are shown in table 5.1.

5.1.1 Obtaining FPGA Switching Activity Information

As discussed in section 3.2.2, obtaining representative switching activities for an

FPGA design is a non-trivial task. The Quartus-2 software supports a determin-

istic method for estimating switching activity. A Verilog netlist and associated

TCL script are produced by the Quartus-2 netlist writer. The netlist, with an

appropriate testbench, is then simulated using the Modelsim simulator. The

TCL script produced instructs Modelsim to log all transitions which occur on

nets in the design in a Value Change Dump (VCD) file. This is then parsed by

the Quartus-2 power analyser to obtain estimates for net switching activity, and

subsequently a FPGA power consumption estimate. This method is illustrated

in Figure 5.3

When simulating a large design the size of VCD file used to log signal transi-

129

Figure 5.3: Power estimation flow directly supported by the Quartus-2 toolset

tions can become very large. This made it difficult to simulate the encoder for the

length of time required to obtain realistic switching activity estimates. VCD file

sizes in excess of one gigabyte were observed when simulating the encoding of just

one frame of a video sequence. More importantly, it was found that the Quartus-2

power analyser would not read the large VCD files produced reliably. Therefore,

an alternative method was developed to obtain switching activity estimates.

A diagram showing the alternative flow used is shown in Figure 5.4. VCD files

are not used. Instead net transitions are recorded using the power information

tracking functionality provided by Modelsim [120]. The TCL file produced by

the Quartus EDA netlist writer is modified. The modified TCL file instructs

Modelsim to track the appropriate nets for power information instead of logging

the net transitions within a VCD file. At the end of simulation period Modelsim

outputs the power information in a power report file, an example of which is

shown in figure 5.5.

The power report file provides the number of transitions which occur on each

130

Figure 5.4: Modified power estimation flow used

Figure 5.5: Example power report produced by Modelsim

131

net. It also provides the time each net is at logic 1 and logic 0. This enables a

better estimate of the static power consumed. More importantly it ensures that

the power estimate of FPGA blocks, such as embedded RAMs, whose dynamic

power is predominantly determined by how often they are enabled is reasonably

accurate.

The net names assigned to equivalent nets in Quartus-2 and Modelsim differ.

The cross reference file is used to determine the equivalent Quartus-2 net name

for a given Modelsim net name. This ensures that the switching activity and

static probability information derived from the power report file is assigned to

the correct nets prior to the execution the Quartus-2 power analyser.

When a VCD file is used to log transitions the time each transition occurs

is stored. This allows the glitch filtering algorithm embedded in the Quartus-2

power analyser to discount transitions which do not result in a full transition on

the output logic and interconnect. Specific details on the glitch filtering algorithm

used are not available [121]

No timing information is present in the power report file. It is therefore impos-

sible, when the modified estimation method is used, to discount the appropriate

transitions after the simulation has finished. This is a problem. If no glitch filter-

ing algorithm is applied the power used by the encoder will be significantly over

estimated. To solve this problem a crude glitch filtering algorithm is applied. In-

stead of using a transport delay model for the netlist simulation, as recommended

in the Quartus-2 power analyser manual [121], an inertial delay model was used

instead. This underestimates the power consumed by the encoder. The power

consumed by glitches which are shorter than the delay associated with a resource

output will not be modeled. The power consumed by all other transitions, in-

cluding a glitch which lasts longer that delay associated with a resource output,

132

will still be taken into account.

5.1.2 SDRAM and Interconnect Power Modeling

The interconnect between the SDRAM and the FPGA was modeled using a simple

lumped capacitance model, with the power consumed in the interconnect being

calculated using equation (3.1). The capacitance C was taken to be 15 pf. This

was based on I/O capacitance figures from the FPGA and SDRAM datasheets,

and the assumption of a 3pF capacitance per PCB trace. The voltage V was

set to 3.3V in order to be consistent with the SDRAM used and the number of

transitions T was obtained from an RTL simulation as indicated in figure 5.2. The

power consumed by the SDRAM itself was estimated using a model supplied by

Micron [122]. The usage statistics it requires were obtained from RTL simulations

of the encoder and SDRAM model.

5.2 Results

5.2.1 Validation of Power Estimation Method

To test whether the modified method for estimating FPGA power consumption

gives result comparable with the standard Quartus method a test design was used.

The test design used was the fractional pixel estimator described in section 7.4.

It contains a mixture of embedded RAMs, multipliers and logic, providing a

reasonable test of the accuracy of the modified power estimation method. The

standard Quartus method and the modified method were used to estimate power

of the same Cyclone-2 fractional estimator build. The suzie QCIF sequence was

used as input to the test design. A sequence with a larger resolution was not

133

Figure 5.6: Comparison of static and dynamic power used using different estima-
tion methods

used due to the Quartus-2 power analyser’s inability to process large VCD files

reliably.

Figure 5.6 compares the overall dynamic and static power consumption figures

for the test design for four test cases, the standard Quartus method without glitch

filtering, the standard Quartus method with glitch filtering, the modified method

using transport delays and the modified method using inertial delays. From

Figure 5.6, it can be seen that the static power estimate is not dependent on the

estimation method used. This is to be expected given that glitch filtering will

not significantly effect the time a LUT output is at logic 1 or logic 0.

134

The dynamic power estimates do vary significantly. In the two cases where no

glitch filtering is used, the dynamic power estimate is 30% to 40% greater than

the two cases where a glitch filtering algorithm is employed. Given that a large

proportion of this power will not be consumed in practice, using a glitch filtering

algorithm is clearly justified. The modified method, when glitch filtering is used,

gives a slightly lower power estimate than the standard Quartus method. This

can be attributed to the different glitch filtering algorithms used.

Altera claims that that standard Quartus power estimation method, with

glitch filtering enabled, has an error of +/- 20% when compared to “real world”

power measurements [123]. The results given show that the modified method

used produces a slighly lower power estimate than the standard Quartus method

for the test design analysed. The difference between the two methods could

potentially be greater, particularly if a design contains a large proportion of

circuit elements which are prone to glitching. However, the majority of of encoder

sections analysed here are similar to the test design analysed. Thus, the results

presented should be of a similar degree of accuracy to those provided by the

Quartus tool.

5.2.2 Overall Results

The total power figures for each sequence are shown in table 5.2. As would

be expected, there is a marked increase in power consumed as the size of the

encoded sequence is increased. The power consumption distribution, between

the FPGA, SDRAM, and interconnect, for each sequence is shown in Figure 5.7.

From Figure 5.7 it can be seen that when encoding small sized sequences the

power consumed in the FPGA dominates, consuming over 70% of the total system

power. In contrast, for the larger garden sequence, the FPGA consumes less

135

Sequence Quantisation Power Consumed (mW)
SDRAM IO FPGA Static FPGA Dynamic Total

Football
6 86 18 225 78 407
20 86 17 225 77 404
30 86 15 225 74 400

Stefan
6 86 16 225 76 402
20 86 15 225 73 399
30 86 14 225 73 398

Mobile
6 98 20 225 94 436
20 98 19 225 91 432
30 98 18 225 90 430

Foreman
6 98 21 225 89 433
20 98 20 225 88 431
30 98 12 225 85 427

Garden
6 312 70 225 297 904
20 312 67 225 292 896
30 312 63 225 287 887

Table 5.2: Power consumed encoding each sequence

then 60% of the total system power. This difference is a result of the high

amount of static power consumed by the FPGA, approximately 225 mW. As the

size of the sequence being encoded increases, the FPGA static power becomes

less significant as the dynamic power consumed in the FPGA, SDRAM, and

interconnect increases.

The FPGA static power for each sequence was estimated at a temperature

of 25 ◦C. There were only minor variations between the static power consumed

encoding each sequence. If the estimation process is repeated at 85 ◦C, the limit

of the FPGAs temperature operating range, the FPGA static power is much

greater, approximately 335 mW. It is clear from these results that FPGA static

power cannot be ignored. However, the only direct way of reducing it at the

application level is to reduce the size of the FPGA the application, in this case

video encoding, requires. That said, reducing the dynamic power consumed in

136

Figure 5.7: Overall power consumption distribution for each sequence

the FPGA will indirectly affect the static power consumed by the FPGA, as it

will reduce the temperature the FPGA operates at in a particular environment.

5.2.3 FPGA Power Consumption

Power By Encoder Function

The dynamic power consumed in the FPGA by each encoder function is shown in

Figure 5.8. A description of the various functions is given in table 5.3. The results

shown in Figure 5.8 are when a quantisation parameter of 6 was used. There was

negligible variation in the proportion of power consumed by each function when

different quantisation parameters were used. Complete power results per encoder

function are given in Appendix D

137

Figure 5.8: Distribution of FPGA dynamic power per encoder function

138

Encoder Function Description
Full pixel motion This preforms the full pixel motion estimation
estimation function required by a H.264 video encoder. In this

encoder a log search algorithm is used. Two reference
frames are used, thus to implement this function two
search memories blocks and two motion estimator blocks
are used. Only a block-size of 16 by 16 is supported.

Fractional pixel motion This performs the interpolation and fractional search
estimation functions required by a H.264 video encoder. The full

fractional search algorithm is used. The fractional
estimation process is performed on one reference
frame.

Infrastructure rams Embedded rams required to support encoder operation
which are not directly attributable to a single
encoder function.

Intra Prediction This performs the intra prediction function required
required by an H.264 video encoder. Only 4x4 intra
prediction modes 0-3 are supported.

Loop filter This performs the loop filtering operation as defined
in the H.264 standard.

Forward transform and This performs the forward transform and quantisation
quantisation functions required by an H.264 video encoder.
Variable length encoding This performs the CAVLC algorithm required by a H.264

video encoder.
Inverse transform and This function performs the inverse transform and
quantisation quantisation operation as defined in the H.264 standard.
Intra/Inter Mode This function determines whether a macroblock is
decision encoded using an intra prediction mode or an inter

prediction mode.
Reconstruction This function performs the addition operation required to

obtain reconstructed pixels from the result of the inverse
transform and quantisation operation.

Control Components These functions schedule the loading of data from
external memory and control the operation of the other
parts of the encoder.

Table 5.3: Description of the various encoder functions

139

From Figure 5.8, it can be seen that the two motion estimation functions (full

pixel and fractional pixel) consume the most power. When combined these two

functions account for approximately 50% of the total dynamic power consumed

in the FPGA. The full pixel estimator alone accounting for 33% of the total

dynamic power. The full pixel motion estimator in the encoder studied uses a log

search algorithm, 2 reference frames, and uses only one block size, 16x16. This

is a low complexity motion estimation configuration. It requires a minimum of

38400 subtraction, addition, absolute and comparison operations per macroblock,

compared to over 1.6 million if the basic full search algorithm was used (assuming

a square search range of 32 by 32 pixels). If a more complex, higher performance

motion estimation algorithm was used the proportion of power consumed by the

full pixel motion estimator would increase even further.

The full fractional search algorithm is used by the fractional pixel motion

estimator. The fractional estimation process is only performed using one reference

frame. The decision on which reference frame is used is made using the full

pixel estimation results. If the reference frame used was based on the fractional

search results, as in the JM reference model, the fractional search algorithm would

consume more power than the full pixel motion estimator. This shows that, when

less complex algorithms are used for full pixel motion estimation, the power used

by the fractional search becomes more significant.

The infrastructure RAMs are those which are required to support pipeline

operation but are not directly attributable to a single encoder function. Combined

they are the third most significant source of power consumption in the encoder.

The main component of the infrastructure RAM power consumption is the input

RAM. This consumes approximately 40% of the total infrastructure RAM power

consumption. The input RAM is used by the two motion estimator functions

140

and the intra prediction function. This further emphasises the importance of the

motion estimation algorithm and architecture, with respect to overall dynamic

power consumption. Further discussion of embedded RAM power consumption

is given in the next section.

The encoder uses a fast mode decision algorithm to determine if intra pre-

diction is required. However, in the version of the encoder analysed this is not

taken advantage of to reduce power consumption. Thus, intra prediction requires

approximately 10% of the dynamic power consumed by the encoder. A large

proportion of this power consumption could be saved if the intra prediction logic

was disabled when it was known that its results would not be used. The saving

would be more significant if all the 4x4 intra prediction modes were supported as

opposed to only modes 0 to 4, which are supported currently.

The other encoder functions in total consume approximately 25% of the power

consumed by the encoder. This suggest that reducing the power in any single one

of these functions will not, by itself, have a significant impact on overall encoder

power consumption.

Embedded RAMs

The overall results shown in table 5.2 apply when each embedded RAM is enabled

only when data is being read from it or written to it. If all the embedded RAMs

used are permanently enabled, as was the case initially, they consume a much

greater amount of power. Figure 5.9 compares the dynamic power consumed by

the embedded RAMs when they are enabled as necessary, and when they are

enabled permanently.

Figure 5.9 show how significant embedded RAM power consumption can be

in a pipelined encoder. If permanently enabled, 60% of the dynamic power con-

141

Figure 5.9: Embedded ram power consumption

142

sumed by the FPGA encoder is consumed within the embedded RAM blocks.

Even when enabled as necessary, 35% of the total dynamic power is consumed

within them. This is not surprising given the large number of embedded RAMs

typically used in a pipelined encoder design. Generating the appropriate signals

to enable/disable each embedded RAM incurs minimal resource costs. Given this,

appropriate embedded RAM enable signals should be present even when power

is not a key design concern. When power is a key design concern the RAM power

reduction techniques described in [54] could be used to reduce the proportion of

power consumed by the embedded RAMs even further. In general, these were

not applied here. Although the effect of applying these techniques to the search

memory is examined in the next section.

Motion Estimation

Due to the significance of the full motion estimation function to overall FPGA

dynamic power consumption, this component was studied further. While requir-

ing a minimal number of operations, the log search algorithm cannot, in common

with many other fast search algorithms, re-use the search area data as efficiently

as the full search algorithm. Thus, the search area memory buffer consumes ap-

proximately 70% of the power consumed by the full pixel motion estimator as

shown in figure 5.10.The results used to generate figure 5.10 are shown in ta-

ble 5.4.

This is not an unexpected result, a number of studies have noted the signifi-

cance of the power consumed by the search area memory with respect to ASICs.

Fast search algorithms, which attempt to increase search area data reuse, and

hence reduce search RAM power consumption, have also been proposed [52].

However, these algorithms have generally been focused on ASIC design. The

143

Figure 5.10: Distribution of power between search memory and motion estimator
unit

Sequence Search Memory(mW) Motion estimator Unit(mW)
Football 6.33 3.56
Stefan 6.18 3.33
Mobile 7.72 4.35
Foreman 7.48 3.94
Garden 24.32 13.7

Table 5.4: Power consumed by search memory and motion estimator block

144

results presented thus far suggest they could also be of use in FPGAs.

However, these results were determined with all the embedded RAMs (32

M4Ks) used for the search memory being read on each clock cycle. This does

not have to be the case. As shown in [54], only the number of embedded RAMs

needed to provide the output bit width required must be read in each clock cycle.

The motion estimator unit used requires a 32 bit data input. Therefore the

memory must have a 32 bit output bit width. This requires a minimum of two

M4Ks to be enabled per clock cycle. This would however require a 16-to-1 output

multiplexer to select the appropriate M4K outputs. Other combinations, where

more embedded RAM are enabled, but a smaller output multiplexer is required

could also be used.

As an experiment, a new log search estimator was implemented. This sup-

ported a search range of 16x16 thus requiring a smaller number of embedded

rams (8 M4Ks). The search memory was implemented using a 4 to 1 multiplexer.

Thus, only two embedded RAM blocks required to be active at any one time to

provide the motion estimator unit with the 32-bit input it requires.

While the motion estimator unit used in this experiment was a different design

to that used initially, there were negligible differences in the power each of the

motion estimators consumed. The power used by the search memory however

was reduced substantially as shown in table 5.5. This substantially modifies the

distribution of power between the search memory and motion estimator unit as

shown in Figure 5.11

From the results it would appear that the power used by the search memory

can be reduced significantly at relatively little cost. Only when there is a large

search area, requiring a large numbers of embedded memories to implement it,

will the size of the multiplexer required be a substantive issue. For a low power

145

Sequence Search Memory(mW) Modified Search Memory(mW)
Football 6.33 0.95
Stefan 6.18 0.92
Mobile 7.72 1.16
Foreman 7.48 1.09
Garden 24.32 3.76

Table 5.5: Power consumed by search memory and modified search memory

Figure 5.11: Distribution of power between modified search memory and motion
estimator unit

146

FPGA motion estimator therefore, the search area data reuse a motion estimation

algorithm/architecture provides should be considered of secondary importance to

the number of estimation operations the algorithm/architecture requires.

5.2.4 IO/SDRAM Power Consumption

The encoder uses the level-C data reuse scheme. Therefore, each reference mac-

roblock must be loaded up-to 5 times to support the vertical search range of 32

pixels used. As two reference frames are used, ten reference macroblocks must be

loaded per encoded macroblock. As a result, 65% of the IO power is consumed

loading search memory data into the FPGA as shown in figure 5.12. A similar

percentage of the power used by the SDRAM internally is also consumed loading

the search memory data into the FPGA. Complete power results for the IO and

SDRAM are given in Appendix D

Given this, the level-D data reuse scheme discussed in section 2.3.2 would

appear to offer a substantial power reduction. In this system it would reduce

the power used loading search memory data into the FPGA by almost 80%, and

reduce the total IO/SDRAM power used by approximately 50%. Offsetting this

saving would be an increase in power used by the embedded RAMs on the FPGA.

It is also worth considering that the large number of embedded RAMs required

to implement the level-D data reuse scheme may force a larger FPGA to be used

to implement the encoder. This will increase the static power consumption, and

further mitigate the power savings form using the level-D data reuse scheme.

If a smaller search range of 16 pixels and only one reference frame was used,

loading the search memory data would consume approximately 35% of the total

SDRAM/IO power consumption. The other load and store operations becoming

more significant. Of these, the output frame save and load operations could

147

Figure 5.12: Distribution of IO power consumption in encoder

148

be relatively easily eliminated. In the encoder analysed the loop filter operates

independently, loading and saving all frame data it requires directly from external

memory. If the loop filter accepted data directly from the end of the encoder

pipeline, there would be no need for the output frame load and save operations.

The size of the loop filter load operation could also be reduced. The loop filter

would still require some data to be loaded however as a result of it needing to

filter across macroblock boundaries. In addition a line of output pixels would

need to be stored internally within the FPGA to provide the data required for

intra prediction.

5.3 Summary

The power consumption of an H.264 encoder implemented on an FPGA has been

analysed. It has been shown that static power is significant in an FPGA and can-

not be ignored especially when encoding low resolution sequences. With regard

to FPGA dynamic power consumption it has been shown that the motion estima-

tion function consumes the most power. The full pixel motion estimation function

consuming 33% of the total dynamic power consumption, in the encoder studied.

The fractional pixel motion estimation function consuming approximately 17%

of the total dynamic power consumption, in the encoder studied.

It was also shown that, the dynamic power consumed by embedded RAMs

can be significant in an FPGA based video encoder but, by using simple, low

cost, techniques, this source of power consumption can be reduced substantially.

Embedded RAM power consumption was further studied in the context of the

full pixel motion estimation function. It was shown that, as a result of reducing

the power consumed by the search memory, it is the motion estimator itself which

149

consumes the majority of power in an FPGA implementation. This is a distinct

difference compared to ASIC implementations, where the power consumed by the

search memory can be significant.

As well as consuming the greatest amount of power internally within the

FPGA, a substantial part of the power used communicating with external memory

is also attributable to the motion estimation function. This is a result of the

large amount of reference frame data needed for the motion estimation function.

Overall, the results clearly justify focusing on the motion estimation function,

when attempting to reduce the dynamic power consumed by a FPGA based

video encoder.

150

Chapter 6

Using adaptive propagation to

reduce the power used by an

FPGA video encoder’s memory

bus

In this chapter an algorithm is proposed to reduce the power consumed by an

FPGA video encoder’s external memory bus. As shown in chapter 5 this repre-

sents a substantial proportion of the power consumed by an FPGA based H.264

video encoder. The algorithm reuses the results of the intra prediction process

required in an H264 video encoder. As such the algorithm is specific to video

encoding. However, it can also be used in conjunction with other more generic

bus encoding algorithms.

151

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5 6 7

S
w

itc
h

P
ro

ba
bi

lit
y

Bit

Switching Activity Probability

paris
suzie

hall monitor
miss america

Figure 6.1: Estimated switching probability for various unencoded sequences.
The probability of the MSB (bit 7) switching is much less than the probability
of the LSB (bit 0) switching

6.1 Algorithm

It is well known that the switching activity associated with video, and other

multimedia data, varies dramatically between the least and most significant bits

[124]. For typical unencoded video sequences the probability of the least signifi-

cant bit switching is approximately 0.5. The probability of the most significant

bit switching is closer to zero, its actual value being sequence dependent. For the

other bits there is a gradual decrease in switching activity as the significance of

the bit in question increases as shown in Figure 6.1.

The switching activity probabilities shown in Figure 6.1 were estimated by

reading the first 100 frames of each sequence on a row by row basis. If the frames

are read on a column by column basis different estimates are obtained, as shown

in Figure 6.2. This indicates that altering the direction used to read or process the

image data can have an effect on switching activity and hence power consumption.

152

Figure 6.2: Percentage increase in switching activity for the unencoded and var-
ious encoded versions of the suzie sequence when data is read in the vertical
instead of the horizontal direction

The significance of any potential power saving increases when encoded images are

considered. The transform and quantisation operations used in H.264 reduce the

switching activity on the least significant bits. As shown in Figure 6.2, the least

significant bits are less affected by altering the propagation direction. In addition,

the transform and quantisation operations tend to remove those transitions least

likely to be affected by a change in propagation direction. This accounts for the

larger effect altering the direction of propagation has on the least significant bit

switching activity of encoded sequences, as shown in Figure 6.2.

The variation in switching activities shown in Figure 6.2 is a direct result

of each sequence having differing spatial correlations in the horizontal and ver-

tical direction. In H.264, to improve compression performance for intra coded

macroblocks, intra prediction is used to take advantage of any spatial correlation

present in the sequence being encoded. The results of the intra prediction stage

153

can be used to provide an indication of which direction has maximum spatial cor-

relation, and therefore minimum switching activity. Hence the intra prediction

results can be used to determine the direction to propagate a macroblock in or-

der to minimise the number of transitions which occur when it is saved to/loaded

from external memory. The benefit of using the intra prediction results to make

the propagation direction decision is that the decision can be made with minimal

additional cost, in terms of both power and area.

In total there are 13 intra prediction modes defined in the H.264 standard;

9 4x4 modes and 4 16x16 modes [20]. In development of the algorithm only

the results of the horizontal and vertical prediction modes have been considered

as it would be difficult, and costly, to design hardware to support less regular

propagation directions. The propagation direction decision could be made at

either the frame level, where each macroblock in a frame is propagated in the

same direction, or at the macroblock level, where each macroblock’s propagation

direction is determined independently. Making the decision at the frame level

offers a cost advantage. However, the greatest reduction in transitions is achieved

if the decision is made at the macroblock level. This is a result of the macroblocks

in each frame have differing spatial characteristics.

The vertical and horizontal 16x16 and 4x4 intra prediction modes are shown

in Figure 6.3. In the two 16x16 modes each complete macroblock is compared

against either the 16 pixels above or the 16 pixels to the left. In the two 4x4 modes

each 4x4 sub-block is compared against either the 4 pixels above or the 4 pixels

to the left. If attempting to directly determine the best propagation direction

for a macroblock adjacent vertical and horizontal pixels would be compared.

Given this, the results of the 4x4 modes are more appropriate to use because the

maximum distance between the pixels being compared is 4 pixels, as opposed to

154

Figure 6.3: 16x16 and 4x4 vertical and horizontal luma prediction modes in
H.264.

16 for the 16x16 intra prediction modes. In order to determine the direction in

which to propagate a complete macroblock however, it is necessary to combine

the individual 4x4 block distortion measures. This creates an additional cost

which must be considered.

Algorithm 6.1 Algorithm used to determine the propagation direction from the
4x4 intra prediction results

DMvi is the 4x4 vertical distortion measure for sub-block i
DMhi is the 4x4 horizontal distortion measure for sub-block i
if Σi=15

i=0 DMvi < Σi=15
i=0 DMhi then

propagation direction=vertical
else

propagation direction=horizontal
end if

The algorithm used to determine the propagation direction for a macroblock

when the 4x4 intra prediction results are used is shown in algorithm 6.1. If

the 16x16 intra prediction results are used no extra calculations are required.

However a comparison, between the 16x16 vertical and 16x16 horizontal intra

prediction result, is still needed. Note that in this chapter the Sum of Absolute

155

Differences is used as the distortion measure. A 32-bit memory bus has been

assumed, resulting in the propagation orders shown in Figure 6.4.

There are a number of other generic bus encoding algorithms which have

been proposed. Two such algorithms are bus invert [125] and value based map-

ping(VBM)/difference based mapping(DBM) [126]. The proposed propagation

direction reordering algorithm can be used in combination with these other algo-

rithms to provide a larger reduction in transitions.

For the DBM/VBM algorithm, this effect can easily be explained. This al-

gorithm is designed to operated on correlated input data. However, to limit

encoding complexity, and the power used performing the encoding operation,

it only considers the lag-1 correlation. By using the intra prediction results to

adaptively change the propagation direction, the lag-1 correlation on the data

inputted to the DBM/VBM encoder is increased. Hence, a greater reduction in

transitions occurs as a result.

The bus invert algorithm is sub optimal for the correlated video data being

considered. Using a partial bus invert algorithm provides a greater reduction in

transitions. Finding the optimum selection of bits to be inverted is an intractable

problem [16]. Most benefit is derived when the bus invert algorithm is applied to

bus lines whose switching activity is large and/or uncorrelated. In this chapter

the bus invert algorithm is applied to the 4 least significant bits of the 8 bit pixel

data. By applying the adaptive propagation algorithm in addition to the partial

bus invert algorithm, the total number of transitions on the MSB bus lines are

also reduced. The result is a larger overall transition reduction.

156

Figure 6.4: Horizontal (top) and vertical (bottom) propagation orders for a mac-
roblock. Each word is 32 bits (4 pixels) wide

157

6.2 Bus Encoder/Decoder Implementation

There is a practical issue using bus encoding algorithms such as DBM/VBM

and bus invert with commodity memory devices that do not have built in bus

encoding/decoding hardware [127]. Nearly all bus encoding algorithms rely on

knowledge of the previous bus value to determine the current bus value. The

codeword value is dependent on the context in which it was encoded. It is difficult

to use such algorithms with commodity memory devices because, to obtain the

expected transition reduction, the data must be read in the same context it was

saved. For the DBM/VBM algorithm, the data cannot even be correctly decoded

if it is read in a different context to which it was written.

The issue of context is a problem for the video compression specific bus encod-

ing proposal given in [128]. This uses DBM/VBM, but to exploit the correlation

between multiple reference frames, encodes/decodes one reference frame in the

context of another. If used with a commodity memory device, encoding reference

frames in this way makes it impossible to access them on an individual basis.

Thus it would be impossible to use the proposal given in [128] with commodity

memory devices. In general, the context issue is mitigated in video compression

systems because the video data is typically saved and loaded in macroblock sized

chunks. Each word written to memory is loaded in the same context in which it

was saved.

Nearly all bus encoding studies have been focused on ASICs. Implementing

bus encoding techniques on FPGAs is challenging due to the high power cost

associated with FPGA logic. The power used to implement the bus encoding

and decoding operations can frequently outweigh the power saved by reducing

the transitions on the bus. Only the authors of [129] have studied bus encoding

158

Figure 6.5: DBM/VBM Encoding Process

specifically on FPGAs. The results given in [129] indicate that for their chosen

FPGA (A Virtex Device) their algorithm and architecture would not result in

an overall power saving for realistic bus capacitance values. In this section,

the implementation of DBM/VBM encoder architecture is pursued because as

shown in section 6.3.1, this algorithm in combination with the proposed adaptive

propagation algorithm provides the greatest reduction in transitions.

6.2.1 DBM/VBM Algorithm Overview

The DBM/VBM algorithm is specifically designed to reduce transitions on corre-

lated input data [126]. A diagram of the DBM/VBM encoding process is shown

in Figure 6.5. Difference Based Mapping is the first stage of the encoding pro-

cess. The purpose of this stage is to remove the redundancy, present in the input

data. The DBM algorithm does this by computing the difference between the

previous input value and the current input value. The difference is then mapped

to a positive value within the range 0 to 2N − 1, where N is the bit width of the

input data.

The second stage, Value Based Mapping, can be viewed as an entropy en-

coding process. The aim being to reduce the number of transitions on the VBM

159

Input Output
000 000
001 001
010 010
011 100
100 011
101 101
110 110
111 111

Table 6.1: VBM codetable for a bit width of 3

output instead of reducing the output bitrate, as would be the aim in conven-

tional entropy encoding. The XOR gate and register convert any logic 1 produced

by the entropy encoder into a transitions on the output bus. To minimize the

number of transitions the entropy encoder matches the number of bits in the

output word with logical value of 1 to the probability of an input word occurring.

The greater the probability of an input word occurring, the fewer the number of

logic 1 bits in the output word. VBM assumes that the probability of an input

word occurring decreases as the value of that word increases. Thus, for VBM

the number of ones in the output word increases as the value of the input word

increases. The VBM code table for a bit width of 3 is shown in table 6.1. The

DBM/VBM decoding process is simply the inverse of the encoding process. More

details on the DBM/VBM encoding algorithm are given in [126]

6.2.2 DBM/VBM Implementation

As previously stated a memory bus width of 32 bits has been assumed. This

does not require a DBM/VBM encoder and decoder which supports 32-bit oper-

ation. The hardware required would be too complex. More importantly it would

offer little benefit because the video data will only be correlated, and hence the

160

Figure 6.6: Simplified diagram of a DBM encoder

DBM/VBM coding scheme effective in reducing transitions, if it is considered in

segments which have a bit width which is less than or equal to the pixel bit width

(8 bits).

DBM is primarily an arithmetic operation. As such it can be efficiently im-

plemented using the optimised carry chain logic present in the Cyclone-3 FPGA

used. A diagram of the implementation is shown in Figure 6.6. Not shown

on the diagram are the control inputs to the 4 to 1 multiplexer. Sel(0) is

one if In(t) ≥ In(t − 1) else it is zero. Sel(1) is one if |In(t) − In(t − 1)| >

(In(t − 1) ⊕ MSB(In(t − 1)) else 0. The DBM decoder is implemented in a

similar way.

An algorithm for implementing the VBM operation is given in [126]. Im-

plementing this algorithm would require either multiple clock cycles per result

(up to the number of bits in the VBM input/output), or a significant block of

combinatorial logic without any registers. Both options are undesirable as they

would have a large impact on an overall system, either by reducing the available

memory bandwidth, or, by reducing the clock rate the system can operate at.

Therefore, only direct combinatorial implementations have been considered.

161

Figure 6.7: Different DBM/VBM Encoding Structures Implemented, 8-bit
DBM/8-Bit VBM and 8-bit DBM/4-bit VBM. The decoding structures are sim-
ilar.

The critical parameter in a direct combinatorial implementation is the bit

width of the VBM encoder used. As already mention the maximum useful width

is 8 bits. Directly implementing an 8-bit VBM encoder requires significant logic

resources, as it requires the eight 8-bit functions to be implemented. A 4 bit

VBM encoder can be implemented much more efficiently as each output bit can

be produced using only 1 LUT. However, reducing the width of the VBM encoder

increases the transitions on the output bus. However, since the overall aim of

the encoding process is to reduce the total power used this may not be a great

disadvantage given the much higher resource, and hence power cost, of 8-bit

VBM encoding. Two DBM/VBM encoding/decoding structures were therefore

implemented. One using 8-bit DBM and VBM encoders, the other using 8-bit

DBM encoders and 4-bit VBM encoders. A diagram of each structure is shown

in Figure 6.7.

162

6.3 Results and Discussion

6.3.1 Adaptive Propagation Algorithm

To initially test the algorithm’s performance it was implemented into the JM

12.2 Reference Encoder [130]. The number of transitions when each macroblock

was propagated vertically, horizontally and adaptively based on the 4x4 intra

prediction algorithm described was then measured. The results given are the

average across the first 100 frames of each sequence

Figure 6.8 shows the percentage reduction in transitions when the adaptive

propagation algorithm is used compared to when both fixed horizontal, and fixed

vertical, propagation are used. For this experiment, the sequences used were

encoded using a constant quantisation parameter (see section 2.1.2) of 30. For

all sequences the adaptive propagation algorithm reduces the number of tran-

sitions. The extent of the reduction is to a large degree, sequence dependent.

The largest reduction in transitions occurs for sequences which contain a mixture

of horizontally and vertically correlated macroblocks, such as hall monitor, paris

and office. For these sequences, adaptively changing the propagation direction on

a per macroblock basis provides a significant reduction in transitions compared

to when either fixed horizontal or fixed vertical propagation is used. For other

sequences where the majority of macroblocks are either vertically or horizontally

correlated, such as riverraft and suzie, the adaptive propagation algorithm only

provides a small reduction in transitions compared to using the best fixed prop-

agation direction. However, in both cases the adaptive algorithm offers a signifi-

cant reduction compared to when the worst fixed propagation direction is used.

For the rest of the analysis the adaptive algorithm is compared only to fixed

horizontal propagation, the best fixed propagation direction for the sequences

163

Figure 6.8: Percentage reduction in transitions using adaptive propagation com-
pared to fixed horizontal and fixed vertical propagation

164

Figure 6.9: Percentage reduction in transitions compared to horizontal propaga-
tion when the 4x4 and 16x16 intra prediction results are used

studied.

Figure 6.9 compares the transition reduction achieved using the 4x4 intra pre-

diction results and 16x16 intra prediction results. A quantisation parameter of

30 was again used to encode the images. Apart from two sequences, missamerica

and hall monitor, using the 4x4 intra prediction results within the adaptive algo-

rithm causes a larger reduction in transitions. More significantly for the football,

table and riverraft sequences using the 16x16 intra prediction results actually

causes an increase in transitions. The worst case being the table sequence. For

this sequence using the 16x16 intra prediction results causes a 1.5% increase in

transitions compared to when fixed horizontal propagation is used.

Figure 6.10 shows the effect varying the quantisation parameter has on the

percentage reduction in transitions achieved by the proposed algorithm. The

percentage reduction in transitions does increase as the quantisation parameter

increases. At higher quantisation levels, this effect is offset by the inaccuracy

165

Figure 6.10: Percentage reduction in transitions compared to horizontal propa-
gation for a range quantisation parameters

of the intra prediction results. The intra prediction process is performed on

unencoded macroblocks. However, it is encoded macroblocks which are saved to

and loaded from external memory. The proposed algorithm implicitly assumes the

unencoded and encoded macroblocks will be similar. When a high quantisation

parameter is used there is the potential for this assumption not to hold and an

incorrect propagation decision to be made. For sequences where the adaptive

algorithm does not offer an inherent benefit, such as riverraft, this effect can

result in the adaptive algorithm increasing transitions. This only occurs at when

the quantisation parameter is set to a very high value, and consequently the

encoded images are of very low quality.

The effect of using the proposed algorithm with DBM/VBM encoding and

bus invert encoding is shown in figures 6.11 and 6.12. For these experiments a

166

Figure 6.11: Percentage reduction in transitions (compared to fixed horizontal
propagation), using partial bus invert encoding with and without the proposed
adaptive propagation algorithm

constant quantisation parameter of 30 was used. The results show that using the

proposed algorithm in combination with either partial bus invert or DBM/VBM

encoding provides a greater reduction in transitions than using bus invert or

DBM/VBM encoding alone. The performance improvement is most notable when

partial bus invert encoding is used. Using the adaptive propagation algorithm

with bus invert encoding more than doubles the transition reduction achieved

for sequences where the adaptive propagation algorithm alone offers a signifi-

cant benefit. Despite this improvement, partial bus invert encoding still offers a

smaller reduction in transitions than DBM/VBM encoding.

The performance improvement provided by the adaptive propagation algo-

rithm is less notable when DBM/VBM encoding is used. With DBM/VBM

encoding the number of transitions only decreases if the difference between con-

secutive input values is increased by set amounts, dependent on the size of the

167

Figure 6.12: Percentage reduction in transitions(compared to fixed horizontal
propagation) using DBM and 8-bit VBM encoding with and without the proposed
adaptive propagation algorithm

VBM encoder used. Thus when an 8-bit VBM encoder is used, the impact of in-

creasing the lag1-correlation using the proposed adaptive propagation algorithm

is limited. However in the best case, using adaptive propagation still provides

an additional 10% reduction in transitions. If a 4 bit VBM encoder is used the

impact of adaptive propagation is greater as shown in Figure 6.13. The adaptive

propagation algorithm providing upto a 15% reduction in transitions.

6.3.2 DBM/VBM Implementation Results

The resources used by both the 8-bit DBM/8-bit VBM and 8-bit DBM/4-bit

VBM structures are shown in Table 6.2. From Table 6.2 it can be seen that the

4-bit VBM structure requires approximately half the resources of the 8 bit VBM

structure. A near 50% resource saving is obtained for an average 20% increase in

transitions.

168

Figure 6.13: Percentage reduction in transitions(compared to fixed horizontal
propagation) using DBM and 4-bit VBM encoding with and without the proposed
adaptive propagation algorithm

Structure LUTs Registers
8-bit DBM/8-bit VBM 696 64
8-bit DBM/4-bit VBM 348 64

Table 6.2: Resources used by the different DBM/VBM Structures Implemented

169

To estimate the power used performing the bus encoding and decoding oper-

ations the Quartus 2 power analyser was used. The power simulations performed

to provide input data for the analyser modeled how the encoder/decoder hard-

ware would be used in a video compression system. As such, the bus encoder

encoded macroblocks once. The bus decoder decoded macroblocks multiple times

to reflect the typical reference frame data reuse strategy employed by a FPGA

video encoder (see section 2.3.2). For this study, the video compression system

is assumed to have a search range of 16 in both the horizontal and vertical di-

rection, therefore each macroblock was read from memory and decoded 3 times.

The clock frequency used during the simulations was 50 megahertz, and the video

frame rate was assumed to be 30 frames per second in each case. The results are

shown in table 6.3. From table 6.3, it can be seen that there is a substantial power

saved when a 4-bit VBM implementation is used compared to an 8 bit VBM im-

plementation. This is a result of the 4 bit VBM implementation requiring both

less logic resources and less interconnect resources.

To estimate the power consumed on the memory bus, and hence the total

power used, the formula given in equation (3.1) is used. In this study the result

given by equation (3.1) is multiplied by four. This is reflect the assumption that

the level-C data reuse scheme is used with a vertical search range of +/- 16 pixels.

Figure 6.14 shows the total power consumed as a function of bus capacitance on

a 2.5V and a 1.8V bus for the paris sequence using a quantisation parameter of

30.

From the graphs it can be observed that using DBM and 8-bit VBM encoding

uses too much power to be useful in the majority of circumstances. Using DBM

and 4-bit VBM encoding in addition to propagation reordering does result in a

power saving. However, this is only for a 2.5V bus with a relatively high bus

170

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

P
ow

er
(m

W
)

Capacitance(pF)

Bus Voltage 2.5V

No Encoding
No Encoding Adaptive Propagation

4 Bit VBM
8 Bit VBM

4 bit VBM-Adaptive Propagation
8 bit VBM-Adaptive Propagation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40

P
ow

er
(m

W
)

Capacitance(pF)

Bus Voltage 1.8V

No Encoding
No Encoding Adaptive Propagation

4 Bit VBM
8 Bit VBM

4 bit VBM-Adaptive Propagation
8 bit VBM-Adaptive Propagation

Figure 6.14: Power used as a function of bus capacitance for a 2.5 and 1.8 volt
bus

171

Sequence Quant VBM 4-Bit VBM 8-Bit

Table (QCIF)

6 0.28 0.78
20 0.28 0.72
30 0.24 0.63
40 0.19 0.49

Suzie (QCIF)

6 0.3 0.76
20 0.28 0.72
30 0.25 0.65
40 0.22 0.56

Football (SIF)

6 0.76 2.09
20 0.71 1.95
30 0.63 1.74
40 0.39 1.12

Paris (CIF)

6 0.89 2.49
20 0.86 2.39
30 0.76 2.16
40 0.61 1.76

Table 6.3: Total power used performing the bus encoding and decoding operations
(mW)

capacitance. Using solely adaptive propagation results in a power saving in all

circumstances. This is under the assumption that it requires negligible power to

implement. This is not realistic. Making the propagation direction decision will

require some power, as will the reordering operation itself. The exact cost will

be dependent on the video compression architecture used. The adaptive propa-

gation algorithm’s implementation into a pipelined video compression system is

considered in chapter 7.

6.4 Summary

In this chapter an algorithm to reduce the power used by an H.264 encoder’s

memory bus has been proposed. By reusing the intra prediction results to adap-

tively the change the propagation order each macroblock is written to and loaded

172

from memory the number of bus transitions can be reduced by up to 20%. How-

ever the performance of the algorithm is heavily dependent on both the sequence

and quantisation parameter used.

It has been shown that the proposed algorithm can work in conjunction with

both the partial bus invert and DBM/VBM bus encoding algorithms. Combining

adaptive propagation and DBM/VBM encoding provides the greatest reduction

in transitions. However, results indicate that this scheme is probably of limited

practical use in an FPGA. This is due to the relatively large amount of power

used in performing the DBM/VBM encoding and decoding operations.

The cost of implementing the proposed algorithm is dependent on the overall

architecture of the video compression system, as discussed in chapter 7.

173

Chapter 7

Integration of the adaptive

propagation algorithm into a

pipelined video encoder

In this chapter, the implications of implementing the algorithm proposed in chap-

ter 6 within a pipelined encoder architecture are considered. Both a full search

variable block size motion estimator and full fractional search motion estimator

are designed. Results are given showing that as well as reducing the power used

accessing the external memory, the proposed algorithm can also be used to reduce

the dynamic power consumed by both the full and fractional pixel motion esti-

mation encoder stages. Power is reduced in these stages by adaptively changing

the direction reference data is propagated through them.

174

7.1 Encoder Architecture

The starting point for the implementation is the encoder described in [117]. It

is a typical pipelined encoder consisting of multiple function units separated by

RAM blocks. It uses a fixed 1400 clock cycles per pipeline stage. Although

the encoder in [117] supports the loop filter operation, to simplify the design its

inclusion into the modified encoder has not been considered. To implement the

proposed algorithm, it is necessary to have an architecture which can write out

reference pixels in either the vertical or horizontal direction, and utilise reference

data which has been previously been written to memory in either the horizontal

or vertical direction. In addition, the 4x4 intra prediction results need to be

available for every macroblock in the sequence.

The cost associated with meeting the intra prediction result availability re-

quirement is dependent on the mode decision algorithm used by the encoder.

If the encoder skips the 4x4 intra prediction calculations frequently then meet-

ing this requirement will clearly represent a large additional cost. The encoder

studied uses a fast algorithm to determine whether or not 4x4 intra prediction is

required. However, the intra prediction results required by the adaptive propaga-

tion algorithm are still calculated. The algorithm used is shown in algorithm 7.1.

Only unencoded pixels are used in the calculation of DMuhi and DMuvi due to

the intra prediction availability issue which arises in a pipelined encoder (refer to

section 2.4). The use of only unencoded data may adversely effect the adaptive

propagation algorithm’s performance. However, any impact will be negligible in

comparison with the cost of calculating intra prediction results purely for use by

the adaptive propagation algorithm. Others have proposed similar intra/inter

mode decision algorithms. For example [73] use the diagonal down left, diagonal

175

Algorithm 7.1 Algorithm used to determine whether 4x4 intra prediction is
required

DMuhi is the 4x4 horizontal intra prediction distortion measure for sub-block
i calculated using only unencoded pixels
DMuvi is the 4x4 vertical intra prediction distortion measure for sub-block i
calculated using only unencoded pixels
DMm is the best motion estimation distortion measure.
if Σi=15

i=0 min(DMuhi, DMuvi) < DMm then
4x4 intra prediction required

else
4x4 intra prediction not required

end if

down right and DC 4x4 intra prediction results in addition to the horizontal and

vertical results within a fast mode decision algorithm proposal.

Data is written into the output memory buffer at a rate of one pixel per

clock cycle. Therefore, it is trivial to provide the required output functionality.

Only the order in which the buffer write addresses are generated requires to be

changed. This can easily be implemented using a multiplexer on the buffer write

address.

Utilising the reference pixel data, that has previously been written to external

memory, is significantly more complicated. Multiple macroblocks, which may

have been written out using different propagation directions, must be read into

the search area memory. For the motion estimator to utilise this data effectively, it

must be able to read the entire search area using the same propagation direction.

It is impractical to have a single pixel data-path from external memory to the

search memory or from the search memory to the motion estimator. Requiring

the motion estimator to access the reconstructed data on a one pixel per clock

cycle basis would increase the macroblock latency associated with the motion

estimation operation. In turn, this would increase the frequency at which the

encoder has to operate at for a given throughput and reduce hardware efficiency

176

Figure 7.1: Simplified diagram of search memory architecture

(other encoder stages would be forced to wait for the motion estimator to finish).

Thus, address modification alone cannot be used to reorder the reference frame

data sufficiently for it to be of use to the motion estimator.

7.2 Search Memory Architecture

In FPGAs the search memory is constructed from multiple embedded RAMs.

This can be utilised to implement a search memory which can support a data-

path width which is greater than a single pixel and also reorder the data as

required.

A simplified diagram of the search memory architecture is shown in Figure 7.1.

Four separate embedded RAMs are used. Each macroblock is assumed to be

loaded into the search memory in one of the orders shown in Figure 6.4. Each four

consecutive 32-bit words loaded from external memory are saved to a different

embedded RAM. This ensures that each column (horizontal propagation) or row

177

Figure 7.2: Arrangement of each 4x4 block in the search memory when a hori-
zontally and vertically propagated macroblock is loaded into it

(vertical propagation) of each 4 by 4 search area sub-block is stored in a different

embedded RAM as shown in Figure 7.2.

To read the desired row or column of the 4x4 sub-block requires either, a

read of the appropriate embedded RAM, if the propagation direction the data

is written in matches the desired read propagation direction, or a read of all

the embedded rams and the selection of the appropriate byte from the 32-bit

embedded RAM outputs, if it does not. To minimise the number of clock cycles

that each embedded RAM is active, a read operation on all 4 embedded RAMs

is only initiated if the motion estimator requires access to a different 4x4 block

to the one currently being accessed.

To enable the appropriate pixels to be selected an 8 to 1 multiplexer is required

as shown in Figure 7.1. This additional cost is not as significant as it first appears.

As shown in section 5.2.3 the most power efficient method of implementing a

memory larger than the embedded RAMs available on an FPGA device requires

a multiplexer on the output path. The addition of reordering functionality only

increase the size of the multiplexer required. The search memory could support

a large output bit width using the same multiple embedded RAM technique.

However, the resource costs associated with supporting the adaptive propagation

algorithm would be greater. For a 64-bit output bit width for example, eight

separate embedded RAMs and a 16 to 1 multiplexer would be required.

178

7.3 Full Pixel Motion Estimation Architecture

Using the proposed search memory architecture it would be possible to imple-

ment a motion estimator which does not adaptively change the direction data is

propagated through it. However, by adaptively changing the way data is propa-

gated through the motion estimator, additional power can be saved at minimal

additional cost. This can potentially offset the power cost of implementing the

proposed adaptive propagation algorithm.

A diagram of the full pixel motion estimation architecture is shown in Fig-

ure 7.3. The full search algorithm is used due to its high quality and ease of

hardware implementation. Current frame data is loaded into the motion estima-

tion array at the start of the motion estimation operation. Reference frame data

is propagated through the systolic array to enable the SADs values for each block

size and search position to be computed. The decision logic unit applies a bias to

the SAD values outputted from the array, and determines which search position

has the best cost for all 41 sub-blocks. Finally the best motion vector, and the

associated cost value for each sub-block, is written to the motion vector FIFO

for use by the fractional pixel motion estimator.

7.3.1 Consequences of supporting adaptive propagation

For the motion estimation operation to be performed successfully current pixel

data must be loaded into it in the same direction that reference pixel data is

propagated through it. Thus, to support adaptive propagation through the full

pixel motion estimator, it must be possible to reorder the current frame data prior

to the motion estimation stage of the encoder when required. In the encoder

used, this reordering operation can be implemented easily and with minimal

179

Figure 7.3: Full search motion estimation architecture

additional cost. As shown in Figure 5.1 the first pipeline stage of the encoder is

the intra mode decision calculation (Σi=15
i=0 min(DMuhi, DMuvi)). While it could

be included in a later pipeline stage, this calculation is brought forward because

it allows the memory that each input macroblock is loaded into from external

memory to be a simple dual-port memory, easily implemented using a single

embedded RAM. This is advantageous because it makes it simpler to implement

asynchronous external memory and core clocks. Current pixel data is copied from

this memory into the main input memory, which provides access to current pixel

data for the other pipeline stages which require it (full pixel motion estimation,

fractional pixel motion estimation and intra prediction). Data is copied into the

main input memory at a rate of one pixel per clock cycle. Thus, reordering of the

input data only requires a change in the order the main input memory addresses

are generated. As discussed previously this is trivial to implement.

Changing the direction data is read into the motion estimator forces the order

180

Figure 7.4: Different sub-block indices and blocktypes for a block size of 4x8
when horizontal and vertical propagation are used

in which the search positions are evaluated to be changed also. The search

positions being evaluated in horizontal rows if horizontal propagation is used,

and vertical columns if vertical propagation is used. This ensures that a similar

data flow is used and an identical level of data reuse is maintained regardless

of which propagation direction is used. Additionally, when supporting variable

block sizes, the correspondence between sub-block indices and sub-block location

varies depending on the propagation direction used. For block sizes where the

width and height are not equal the correspondence between block size and block

type is also modified. These differences are illustrated for the 4x8 block size

in Figure 7.4. As the same propagation direction is used in both the full and

fractional motion estimation stages, the correct block type and block indices only

need to be resolved after the result of the motion estimation process is complete.

181

7.3.2 Dataflow

In any encoder the search memory data must be available to both the full and

fractional pixel motion estimation stages. The previous encoder [117], which

only supported a block size of 16x16 pixels, copied the data required for fractional

estimation into a separate memory after the full pixel motion estimation operation

had been completed. As the full pixel vector was known at this point, only a small

fraction of the data present in the search memory needed to be copied. When

supporting variable block sizes, a much larger amount of data needs to be copied

for use by the fractional pixel motion estimator.

If the same strategy is used that was used previously, a significant proportion

of the clock cycles available for the full pixel motion estimation operation would

be spent copying data. To prevent this the search data is copied into the half

pixel RAM as the full pixel motion estimation process is performed. This requires

that the entire search area, and at least a +/- 3 pixel area outside it, be copied

into the half pixel memory. For the search range of (-8,+7) used, copying the

entire search area reduces the size of the half pixel memory compared to what

would be needed if the data required for each sub-block was copied separately.

Data from the search memory is aligned on the 4 pixel boundary. To ensure all

the required data is copied to the half pixel memory a small amount of extra

data is copied, as indicated in Figure 7.5. If horizontal propagation is used the

additional data increases the height of the region copied. If vertical propagation

is used the additional data increases the width of the region copied.

A secondary benefit copying the data provides is that it allows the motion

estimation array to have access to a larger bit width that it would do if it only

accessed the reference frame data directly from the search memory. As shown in

Figure 7.3 the data copied to the half pixel memory is reused by the full pixel

182

Figure 7.5: Data copied to half pixel memory when horizontal and vertical prop-
agation are used. Each row/column on the diagram is 4 pixels wide

183

Figure 7.6: Timing of full search motion estimator

motion estimator. Reusing this data increases the initial latency of the motion

estimator. The motion estimator has to wait until the required data has been

read from the search memory into half pixel memory. After this initial period

data from the search memory is copied into the half pixel memory when it is

required by the motion estimation array. The last row/column is copied after

the full pixel motion estimation operation has finished. This is illustrated in

Figure 7.6.

The reference frame data outputted from the search memory and half pixel

memory is aligned on a 4 pixel boundary. To be able to select the required data

for the particular search position row or column being computed a multiplexer is

used. With the appropriate 64 bit data being inputted into the motion estimation

184

array as shown in Figure 7.3.

7.3.3 Motion estimation unit

The motion estimation unit uses an array based architecture. To support vari-

able block sizes individual 4x4 arrays are used to calculate the 4x4 SAD values,

with the SADs for the large block sizes being summed from them as shown in in

Figure 7.7. As discussed in section 2.3.2, this is the most common way in which

variable block sizes are supported within a full search motion estimation archi-

tecture. As the input bit width is only 64 bits, only eight 4x4 arrays are used. As

a consequence to calculate all 41 sub-block SADs for a particular search position

two passes through the array are required. The first pass for the first eight 4x4

sub-blocks. The second pass for the last eight 4x4 sub-blocks as indicated in

Figure 7.8.

To minimise the amount of time the motion estimator is inactive, the SADs

for the first eight 4x4 sub-blocks for a complete search position row or column

are calculated first. The SADs for the last eight 4x4 sub-blocks for the same

search position row or column are then calculated. Using only eight 4x4 arrays

reduces the LUT resources required by the estimator array whilst still providing

enough processing resource for the motion estimator to complete its operation

within 1400 clock cycles. However, to be able to calculate the SADs of block

sizes which cross the first/second phase boundary, additional storage is required.

Specifically the thirty-two 8x8 SAD values calculated in the first phase must be

stored. When horizontal propagation is used, this enables the SAD values for the

16x16 and 8x16 block sizes to be calculated. When vertical propagation is used,

this enables the SAD values for the 16x16 and 16x8 block sizes to be calculated.

All other block sizes do not have sub-blocks which cross the first/second phase

185

Figure 7.7: Full search array used

186

Figure 7.8: 4x4 sub-block SADs calculated in the first and second pass and the
4x4 array used for their calculation

boundary. Thus, the SAD values for these sub-blocks can be calculated as soon

as all the SAD values for all the smaller block sizes required become available.

In the current design, the SAD values required for larger block sizes become

available at different clock cycles. It is therefore necessary to delay them by an

appropriate number of clock cycles to allow the SAD values for larger block sizes

to be calculated. More detailed timing information is given in appendix B.

Each 4x4 array is made up of 16 processing elements. A diagram of a single

processing element is shown in Figure 7.9. Two current pixel registers are used,

one to store the current pixel used in the first pass, the other to store the current

pixel used in the second pass. Current macroblock data could be loaded into

each 4x4 array as required, as opposed to only being loaded into the array at

the start of the motion estimation process. This would remove the need for the

second current pixel register and the 2 to 1 multiplexer. However, by using the

187

Figure 7.9: Processing element (PE) used in 4x4 arrays

additional register and multiplexer the input memory bandwidth is dramatically

reduced. An adder tree is used to accumulate the 16 absolute difference values

to produce the 4x4 SAD outputs.

7.3.4 Decision logic unit

The decision logic unit adds the appropriate rate term (section 2.3.1) to the SAD

values produced by the motion estimation array. It then updates the best vector

and SAD registers when a search position with a lower SAD value than the cur-

rent best is found. Although there are 41 sub-blocks, only 20 adders/comparators

are used in the decision logic unit. Implementing the motion estimation opera-

tion using two passes allows some of the adders/comparators used to be shared

188

between different sub-blocks.

In common with other full search variable block size implementations the rate

term is calculated using only the predicted vector for the 16x16 block size. As

discussed in section 2.3.2 all the vectors required to calculate the predicted vectors

for other block sizes will not be available until the full pixel motion estimation

process has finished.

7.4 Fractional Pixel Estimation Architecture

A diagram of the fractional search architecture is shown in Figure 7.10. The archi-

tecture implements the full fractional search algorithm described in section 2.3.3.

The architecture used allows both the half and quarter pixel estimation opera-

tions required to be performed concurrently. When the half pixel estimator is

determining the best half pixel vector for a sub-block, the quarter pixel estimator

is determining the best quarter pixel vector for a sub-block whose best half pixel

vector has previously been determined.

The complex half pixel interpolation process is performed once. This requires

that the half pixel samples, as well as the necessary full pixel samples, are stored

and available for use by the quarter pixel interpolator. A non trivial amount of

resources are required to store the half pixel samples. However, in an FPGA it is

more power efficient than performing the half pixel interpolation process twice.

Embedded RAMs are used to store the half and full pixel samples because for the

large amount of storage required, registers, as used in [19], would be inefficient.

To reduce the number of embedded RAMs used the interpolation and frac-

tion estimation processes are not split across two pipeline stages, as was done

previously. When supporting variable block sizes this would require over sixteen

189

Figure 7.10: Fractional search architecture

1024 byte embedded RAMs to store all the full and half pixel samples for each

sub-block, assuming double buffering was used. Not splitting the interpolation

and fractional estimation processes across pipeline stages allows the quarter pixel

memory to use only six 1024 byte embedded RAMs. However, not using multiple

pipeline stages places does place greater demands on the performance of the half

pixel interpolator.

7.4.1 Dataflow

Similarly to other fractional estimation implementations, the architecture is de-

signed to operate primarily on sub-blocks with a block size of 4x4. Other block

sizes are supported through decomposition into their constituent 4x4 parts. To

support adaptive propagation without compromising hardware efficiency, 4x4

block integration takes place in the same direction data is propagated. This

allows more of the full pixel samples required for the half pixel interpolation pro-

190

Figure 7.11: Redundant half pixel interpolation areas for a block size of 8x8 when
vertical and horizontal integration are used, assuming data is propagated in the
vertical direction

cess to be reused across constituent 4x4 blocks as shown in Figure 7.11. This

reduces the half pixel memory bandwidth required. More importantly, it en-

sures that less clock cycles are spent filling the half and quarter pixel pipelines,

increasing hardware utilisation. The architecture considers each block type in

series. The 16x16, 16x8, 8x16 block sizes are considered first, then all the possi-

bilities for each 8x8 sub-block (8x8, 8x4, 4x8 and 4x4). The precise processing

order is dependent on the propagation direction.

Half and full pixel data is copied into the quarter pixel memory in vertical or

horizontal strips which are 11 pixels wide. The length of each strip is dependent

on the block size being processed. Each strip is 11 pixels to allow the quarter pixel

interpolator to calculate any of the quarter pixel samples that may be required

for the 4x4 block being considered. The exact quarter pixel samples required are

not known when the full and half pixel data is being copied into the quarter pixel

memory because the best half pixel vector is still being determined at this point.

As well as performing the fractional estimation process for each block type,

the fractional estimation architecture must also ensure that the correct predicted

block is copied to the prediction memory shown in Figure 7.10. This data needs to

191

be copied to enable the next pipeline stage to determine the difference block prior

to the transform operation. The best block type and associated motion vectors

will not be known until the end of the fractional motion estimation process.

Therefore, the data which requires to be copied to the prediction memory will

not be known until this time. The size of the quarter pixel memory used prevents

the half pixel samples for all sub blocks being stored in it until the fractional

estimation process has finished. Consequently, to generate the required data at

this time, both the half and quarter pixel interpolation operations would need

be repeated for the block type chosen. This is not done currently. Instead two

16x16 predicted blocks are copied to the prediction memory. One is the best

predicted block for the 16x16, 16x8 and 8x16 block sizes. The other is the best

predicted block for the 8x8, 8x4, 4x8 and 4x4 block sizes. For the 16x16, 16x8, and

8x16 block sizes the appropriate data is generated and copied into the prediction

memory at the end of processing for that block size, if its cost is lower than

the current best. For each 8x8 sub-block the appropriate data is copied into

the prediction memory after all the block sizes for the 8x8 sub-block have been

considered. This prevents multiple copying operations occurring for each 8x8

sub-block. The same method is not used for the three 16x16 partitions because

there is not enough capacity in the quarter pixel memory to store the half pixel

samples for the 16x16, 16x8 and 8x16 block sizes.

To support the processing of 4x4 blocks, the half pixel interpolation unit

requires a 10 pixel, 80 bits wide input. However, the output port width of the

half pixel memory is only 8 pixels and it is aligned on a 4 pixel boundary. To

provide the 10 pixel input, the interpolation unit requires a buffer is used to

store multiple 5 pixel rows, or columns, of reference data read from the half

pixel memory as shown in Figure 7.12. The exact number is dependent on the

192

Figure 7.12: Buffer used to produce half pixel interpolator input

Figure 7.13: Timing of the half pixel interpolation/estimation operation for a
block size of 4x4

block size of the sub-block being processed. The output of this buffer is then

combined with data read directly from the half pixel memory to produce the 80

bit input, the half pixel interpolation unit requires. To minimize the number

of clock cycles wasted loading the buffer, the data required for the next sub-

block row, or column, is loaded into the buffer at the same time the half pixel

interpolator and estimator are processing the current sub-block row, or column.

This approach is not ideal. It reduces the achievable hardware utilisation to

50% for the 4x4 block size, as shown in Figure 7.13. For larger block sizes, such

as 16x16, the impact on hardware utilisation is not as significant, with an 80%

hardware utilisation achievable, as shown in Figure 7.14.

193

Figure 7.14: Timing of the half pixel interpolation/estimation operation for a
block size of 16x16

7.4.2 Half Pixel Interpolator

The basic half pixel interpolation operation defined in the H.264 standard is given

by

Php = A− 5B + 20C + 20D − 5E + F (7.1)

when Php is the half pixel sample being generated and A, B, C,D, E and F

are either full pixel samples or previously generated half pixel samples. Fig-

ure 7.15 is used to illustrated the correspondence between the location of samples

A, B, C,D, E and F and the location of the generated sample Php. The horizontal

half pixel samples labeled a, b, c, d, e and f in Figure 7.15 are given by,

a=A1-5*B1+20*C1+20*D1-5*E1+F1 d=A4-5*B4+20*C4+20*D4-5*E4+F4

b=A2-5*B2+20*C2+20*D2-5*E2+F2 e=A5-5*B5+20*C5+20*D5-5*E5+F5

c=A3-5*B3+20*C3+20*D3-5*E3+F3 f=A6-5*B6+20*C6+20*D6-5*E6+F6.

(7.2)

194

Figure 7.15: Correspondence between full pixel samples used and generate half
pixel samples

The vertical half pixel samples labeled g, h, i, j, k and l in Figure 7.15 are given

by,

g=A1-5*A2+20*A3+20*A4-5*A5+A6 j=D1-5*D2+20*D3+20*D4-5*D5+D6

h=B1-5*B2+20*B3+20*B4-5*B5+B6 k=E1-5*E2+20*E3+20*E4-5*E5+E6

i=C1-5*C2+20*C3+20*C4-5*C5+C6 l=F1-5*F2+20*F3+20*F4-5*F5+F6.

(7.3)

Due to the symmetry of the interpolation operation the diagonal half pixel sample

labeled m in Figure 7.15 is given by either

m = a− 5 ∗ b + 20 ∗ c + 20 ∗ d− 5 ∗ e + f (7.4)

or

m = g − 5 ∗ h + 20 ∗ i + 20 ∗ j − 5 ∗ k + l. (7.5)

195

Figure 7.16: Basic interpolation unit used

The half pixel interpolation architecture used is similar to that described

in [17]. The basic half pixel interpolation operation, given in equation (7.1),

is implemented using 6 adders as shown in Figure 7.16. Although there are

embedded multipliers available in the Cyclone-3 FPGA targeted, these are not

used to implement the interpolation operation. Using an embedded multiplier

would save at most one adder. Thus, it is unlikely any power saving would

be realised from using them. It may be possible to implement the interpolation

operation very efficiently using the embedded multiply accumulate units available

on some high performance FPGAs. This has not been considered at present.

In total, twenty of the interpolation units shown in Figure 7.16 are used

in the half pixel interpolator. The interpolation units are split across 3 filter

banks as shown in Figure 7.17. Filter bank one generates, the vertical half pixel

samples when horizontal propagation is used and the horizontal pixel samples

when vertical propagation is used. Filter bank two generates, the horizontal half

196

pixel samples when horizontal propagation is used and the vertical half pixel

samples when vertical propagation is used. Filter bank three always generates

the diagonal half pixel samples, regardless of the propagation direction used.

The structure takes advantage of the symmetry of the half pixel interpolation

process to implement adaptive propagation. The diagonal half pixel samples

being generated, from the horizontal half pixel samples as per equation 7.4 when

horizontal propagation is used and from the vertical half pixel samples as per

equation 7.5 when vertical propagation is used.

The structure of filter banks one and three is identical. Each uses five inter-

polation units (Figure 7.18) to generate the half pixels samples required by the

half pixel estimator. Filter bank two uses ten interpolation units as shown in

Figure 7.19. Only filter bank two outputs 3 to 6 are used by the half pixel esti-

mator. The additional output samples are required to generate all the horizontal

and vertical samples used as input to filter bank three. Output samples 2 and 6

of filter bank two are also saved to the quarter pixel memory because they may

be needed by the quarter pixel interpolator.

7.4.3 Half Pixel Estimator

The half pixel estimator uses 8 processing elements of the type shown in Fig-

ure 7.20. Each processing element is used to determine the SAD value for one of

the eight half pixel search positions. The centre full pixel cost is used as the initial

best cost and position. It is available initially having already been determined

by the full pixel motion estimator.

Only one comparator is used. Thus 8 clock cycles are required to determine

the best half pixel vector and its associated cost. Currently the decision operation

takes places sequentially, after the sum of absolute difference calculations. This

197

Figure 7.17: Overall filter structure

Figure 7.18: Structure of filter banks 1 and 3

198

Figure 7.19: Structure of filter bank 2

199

Figure 7.20: Structure of half pixel processing element

200

allows the decision logic to use the accumulator outputs directly. If additional

registers were used it would be possible to pipeline these two operations, increas-

ing logic utilisation. In the current design this would offer no benefit however.

The buffer loading operation, discussed in section 7.4.1, always requires more

than the 8 clock cycles required to determine the best half pixel vector.

7.4.4 Quarter Pixel Interpolator/Estimator

Data is saved to the half pixel memory in columns or rows of 11 pixels. Two adja-

cent rows or columns are read from the half pixel memory in a single clock cycle.

This allows quarter pixel samples for all eight search positions to be calculate in

the same clock cycle. It is necessary to read two rows or columns per clock cycle

because of the minimal overlap between the full and half pixel samples required

for the quarter pixel interpolation process. This is illustrated in Figure 7.21.

Multiplexers are used to select the data required by the quarter pixel interpo-

lation units. For the horizontal and vertical quarter pixel samples this is a simple

operation. The samples required are fixed in relation to the central half/full pixel

sample. In addition to the search centre A, samples labeled B,C,D and E in Fig-

ure 7.22 are always required to calculate the horizontal and vertical quarter pixel

samples. Selecting the half and full pixel samples for the diagonal quarter pixel

locations is more complicated. The location of the required samples in relation

to the central sample is dependent of the central sample location. If the centre

sample is a full pixel sample, or diagonal half pixel sample, samples B,C,D and

E are again required. If the centre sample is a horizontal or vertical half pixel

sample, samples F,G,H and I are required. The interpolator units themselves

are simple bi-linear filters, implemented using two adders and a fixed shift oper-

ation. The quarter pixel estimator is identical to the half pixel motion estimator

201

Figure 7.21: Full and half pixel samples required for 4x4 quarter pixel interpola-
tion operation

202

Figure 7.22: Location of full and half pixel samples required for quarter pixel
interpolation

described in section 7.4.3.

7.5 Results and Discussion

7.5.1 Use of unencoded data for propagation decision

As discussed in section 7.1, for power efficiency reasons unencoded data is used to

calculate the intra prediction results used by the propagation direction decision

algorithm. To investigate the effect this has on the adaptive propagation algo-

rithm’s performance the Bit Accurate Model of the encoder studied was used.

Figure 7.23 shows the percentage reduction achieved when the intra prediction

results used were calculated using encoded and unencoded data. A quantisation

parameter of 30 was used to encode the sequences.

From Figure 7.23, it can seen that the use of unencoded data makes neg-

ligible difference when a quantisation parameter of 30 is used. Similar results

are achieved when lower quantisation parameters are used. When a quantisa-

tion parameter of 40 is used the differences are more noticeable as shown in

Figure 7.24. This is not surprising. It would be expected that as the similarity

between encoded and unencoded pixels decreases, the differences in performance

would become more significant. Only in the case of two sequences, table and

outdoor, is the performance of the adaptive propagation algorithm reduced sig-

203

Figure 7.23: Percentage reduction in transitions when compared to horizontal
propagation using intra prediction results calculated using unencoded and en-
coded pixels. A quantisation parameter of 30 was used to encode the sequences

204

Figure 7.24: Percentage reduction in transitions when compared to horizontal
propagation using intra prediction results calculated using unencoded and en-
coded pixels. A quantisation parameter of 40 was used to encode the sequences

nificantly by the use of unencoded data. Given this, and the advantages the use

of unencoded data has in the encoder architecture studied, the use of unencoded

data is justified.

7.5.2 Resources and Performance

Full Pixel Motion Estimator

The resources required by the motion estimation unit, decision logic unit and

associated control logic when implemented in a Cyclone-3 FPGA are shown in

table 7.1. Of note are the six M9K embedded RAMs used within the motion

205

Motion Estimation Unit
LUTs 6065
Registers 3777
M9K 6

Decision Logic Unit
LUTs 2049
Registers 1047
9x9 Multipliers 1

Control Logic
LUTs 373
Registers 178

Table 7.1: Full pixel motion estimator resource usage

estimation unit. Two of them are used to store the 8x8 SAD values that are

required to be stored between the first and second passes for each search position

row, or column. The other four are used to implement shift registers. These

are needed to delay the smaller block SAD values used in the larger block SAD

calculations. This is not ideal. It is an inefficient use of the embedded ram

resource, given the relatively small amount of storage required. For FPGAs such

as the Spartan-3, which can implement small shift registers very efficiently using

LUTs, this inefficiency would not occur. For the Cyclone-3 FPGA used, the tree

architecture (section 2.3.2) would be more appropriate as it does not require shift

registers to delay the smaller block SAD values.

Fractional Pixel Motion Estimator

Table 7.2 shows the resources required by the fractional pixel motion estimator

components. Six M9K embedded rams are required to store the half and full

pixel samples needed by the quarter pixel interpolator. This is the only resource

cost directly attributable to the decision to store the half and full pixel samples,

instead of performing the half pixel interpolation operation twice. In principle,

the same estimator could be used for the half and quarter pixel estimation oper-

ations, if the resources required needed to be reduced. Two estimators are used

206

Half Pixel Interpolator
LUTs 2204
Registers 932

Half Pixel Estimator
LUTs 1149
Registers 311
9x9 Multipliers 1

Quarter Pixel Interpolator and Estimator
LUTs 2534
Registers 962
9x9 Multipliers 1

Quarter Pixel Ram M9K 6
Half Pixel Result Fifo M9K 1

Control Logic
LUTs 552
Registers 239

Table 7.2: Fractional pixel motion estimator resource usage

currently to provide increased performance.

Currently the fractional pixel motion estimator takes between 1484 and 1700

clock cycles to complete the required operations for each macroblock. This is

outwith the 1400 clock cycles per macroblock target. Substantial additional re-

sources are not required for the fractional pixel motion estimator to meet the

1400 clock cycles per macroblock target. Instead a modification to the dataflow

used is required. As discussed in section 7.4.1, currently a minimum of 2 and

a maximum of 4 predicted blocks are copied to the prediction memory. If the

dataflow is adjusted such that only the data actually needed is copied to the

prediction memory, the architecture should be able to meet the 1400 clock cycles

per macroblock target.

Resources Required to Support Adaptive Propagation

Table 7.3 shows the resource usage of the various modules which need to be modi-

fied to support the adaptive propagation algorithm. The main additional resource

costs are incurred within the search memory unit and inter/intra mode decision

unit. The search memory requiring an additional 100 LUTs and 9 registers to

207

without with
adaptive adaptive
propagation propagation

Search Memory
LUTs 207 311
Registers 46 59

Intra/Inter Mode Decision
LUTs 382 438
Registers 220 254

Direction Store M9K 0 1

Output Ram
LUTs 5 8
M9K 2 2
Registers 1 1

Motion Estimator Input/Output LUTs 0 40

Table 7.3: Resources required to support adaptive propagation algorithm

support the adaptive propagation algorithm. The intra/inter mode decision re-

quiring 56 LUTs and 34 registers to perform the summation and comparison

operations required by the adaptive propagation algorithm. In total the number

of additional LUTs used represent less than 2% of those required by the motion

estimation hardware, and even less if the encoder as a whole is considered. Simi-

larly the registers and single embedded RAM needed to implement the adaptive

propagation algorithm represent small fractions of those used by the complete

encoder.

7.5.3 Power Used

To estimate the power used by both the full and fractional pixel motion esti-

mators, and the power used implementing the adaptive propagation algorithm,

the method documented in section 5.1.1 was used. To allow the impact of the

adaptive propagation algorithm to be judged, the same full and fractional motion

estimator netlist was simulated using both horizontal and adaptive propagation.

This ensures that the impact of using adaptive propagation is not masked by

any differences in synthesis, placement and routing. For the limited parts of

208

Size Sequence
horizontal adaptive % Reduction
propagation propagation with adaptive
(mW) (mW) propagation

QCIF
Suzie 0.63 0.62 1.59
Miss America 0.55 0.55 0
Table 0.59 0.59 0

SIF Football 2.14 2.14 0

CIF
Hall Monitor 2.28 2.25 1.32
Paris 2.41 2.37 1.66
Mobile 2.49 2.47 0.8

VGA
Office 6.67 6.6 1.05
Riverraft 7.41 7.41 0
Outdoor 6.75 6.73 0.3

Table 7.4: Power used by decision logic unit when adaptive propagation is and
is not used

the design which require additional resources to support adaptive propagation

this is not possible. For these parts of the design separate netlists were simu-

lated. To initially test the performance of the adaptive propagation algorithm a

quantisation parameter of 30 was used.

Full Pixel Motion Estimator

The power consumed by the full pixel control logic is constant, regardless of

whether adaptive propagation is used or not. It consumes 0.14mW for a QCIF

sequence, 0.48mW for a SIF sequence, 0.54mW for a CIF sequence and 1.68mW

for a VGA sequence. The power consumed by the decision logic unit is reduced,

by a small degree, by the use of adaptive propagation as shown table 7.4. As

would be expected, given the results shown in chapter 6, the power reduction

achieved is sequence dependent.

The majority of power consumed by the full pixel motion estimator is con-

sumed within the motion estimation unit as shown in figure 7.25. The adaptive

propagation algorithm has the greatest effect on this part of the full pixel motion

209

Figure 7.25: Percentage of power consumed by each section of full pixel motion
estimation unit when adaptive propagation is not used

210

estimator. Table 7.5 shows the power used by the motion estimator unit when

adaptive propagation is and is not used. The percentage power reduction achieved

is less than the percentage transition reduction shown previously. This is princi-

pally a result of the algorithm only targeting one source of dynamic power, the

power consumed routing data through the estimator. The power consumed by

the registers and embedded RAMs as a result of them being clocked and enabled

is not reduced by the algorithm. Nevertheless, as a result of the relatively high

capacitance associated with FPGA interconnect, power reductions of between

7% and 10% can be achieved for sequences, such as hall monitor, paris, suzie

and office, where the number of transitions is reduced by a significant amount.

For the riveraft and football sequences the power used by the motion es-

timator unit is actually increased when adaptive propagation is used. For both

these sequences the adaptive propagation algorithm does not achieve a significant

transition reduction. For other sequences with a similar percentage reduction in

transitions using adaptive propagation still results in a small power reduction.

The increase in power may be a result of the propagation direction decision not

being appropriate for the entire search area. It is currently based on the intra

prediction results of the macroblock at the centre of the search area. The search

area used is larger than one macroblock. Thus, there is scope for the propagation

direction decision to be incorrect.

As discussed in chapter 6, adaptively changing the propagation direction af-

fects the most significant bits to a greater extent. It would be expected that

the significance of any power saving would increase if bit truncation was used.

However, the current full pixel motion estimation architecture is not designed to

take advantage of this. The expense of supporting adaptive propagation must be

incurred for all 8-bits regardless of the motion estimator unit’s bit width. Full

211

Size Sequence
horizontal adaptive % Reduction
propagation propagation with adaptive
(mW) (mW) propagation

QCIF
Suzie 2.66 2.46 7.52
Miss America 1.76 1.71 2.84
Table 2.23 2.22 0.45

SIF Football 11.25 11.34 -0.8

CIF
Hall Monitor 8.64 7.76 10.19
Paris 10.99 10.07 8.37
Mobile 13.15 12.78 2.81

VGA
Office 21.24 19.66 7.44
Riverraft 27.72 28.00 -1.01
Outdoor 22.18 22.08 0.45

Table 7.5: Power used by motion estimation unit when adaptive propagation is
and is not used. Sequences were encoded using a quantisation parameter of 30

8-bit data still needs to be copied to the half pixel memory.

Fractional Pixel Motion Estimator

The percentage of power consumed by the different parts of the fractional pixel

motion estimator is shown in Figure 7.26. From Figure 7.26 it can be seen that

the half pixel interpolator consumes the greatest amount of power. The power

used storing the half and full pixel samples is approximately one fifth of the

power required by the half pixel interpolation operation. Given this, it is clear

that storing the half pixel samples offers a substantial power benefit. It saves

approximately 80% of the power required for the second interpolation operation.

Whilst offering a power benefit, storing the half pixel samples reduces the

impact of the adaptive propagation algorithm. As shown in Figure 7.27, the

adaptive propagation algorithm reduces the power used by the half pixel inter-

polator to a greater extent than it reduces the power used by other parts of the

fractional pixel motion estimator. If the half pixel interpolation operation was

repeated, as in other architectures which have been proposed, the overall impact

212

Figure 7.26: Percentage of power consumed by each part of fractional pixel motion
estimator when adaptive propagation is not used

213

Figure 7.27: Percentage power reduction in different parts of fractional pixel
motion estimator when adaptive propagation is used

adaptive propagation has on the fractional pixel motion estimator’s power con-

sumption would increase. Note that the control logic is not shown in Figure 7.27

because the adaptive propagation algorithm has negligible impact on the power

consumed by it. Full details of the power consumption of the fractional pixel

estimator are given in appendix E

The differing effect adaptive propagation has on the various components can

be explained. The half pixel interpolation component operates solely on encoded

pixels. As previously discussed the adaptive propagation algorithm has a greater

impact on encoded data as a result of the least significant bit switching activity

being reduced by the encoding process. The half pixel estimator, however, oper-

ates on both encoded reference frame, and unencoded input frame, pixels. The

214

Size Sequence Power used supporting adaptive propagation (mW)

QCIF
Suzie 0.06
Miss America 0.05
Table 0.06

SIF Football 0.25

CIF
Hall Monitor 0.23
Paris 0.25
Mobile 0.26

VGA
Office 0.62
Riverraft 0.78
Outdoor 0.68

Table 7.6: Power required to support adaptive propagation algorithm. Sequences
were encoded using a quantisation parameter of 30

adaptive propagation algorithm does not reduce the switching activity of unen-

coded data to the same degree it reduces the switching activity of encoded data.

Therefore, the effect adaptive propagation has on the half pixel estimator’s power

consumption is less. The effect of the current pixel data’s switching activity on

the power consumption of the full pixel motion estimator is less pronounced be-

cause new current pixel data is only loaded into it at the start of the estimation

process. Due to the use of 4x4 decomposition this is not possible in the fractional

pixel motion estimator.

Power used supporting the adaptive propagation algorithm

The total power used supporting the adaptive propagation algorithm is shown

in table 7.6. Over 90% of the power used supporting the algorithm is consumed

within the search memory. The actual propagation direction decision consuming

less than 0.01 milliwatts for each QCIF sequence and a maximum of 0.02 milli-

watts for the riveraft sequence. This suggests that, in an encoder architecture

which can tolerate a motion estimator with a relatively high latency, the cost of

implementing the adaptive propagation algorithm will be minimal.

215

Size Sequence
Horizontal Adaptive % Reduction
propagation propagation with adaptive
(mW) (mW) propagation

QCIF
Suzie 9.72 9.33 3.97
Miss America 7.45 7.37 1.02
Table 8.92 8.91 0.07

SIF Football 38.06 38.45 -1.03

CIF
Hall Monitor 32.97 31.09 5.7
Paris 38.49 36.57 4.98
Mobile 43.26 42.68 1.34

VGA
Office 87.79 84.12 4.18
Riverraft 108.13 109.16 -0.95
Outdoor 90.86 90.95 -0.1

Table 7.7: Total power used by the full and fractional pixel motion estimators
and the search memory when adaptive propagation is and is not used

7.5.4 Overall Power Savings

The total power used by the full and fractional pixel motion estimators and the

search memory, when adaptive propagation is and is not supported, is shown

in table 7.7. Note that the power consumed when the adaptive propagation

algorithm is used includes all the other costs associated with supporting the

adaptive propagation algorithm.

From table 7.7 it can be seen that the adaptive propagation algorithm can be

implemented with minimal additional power consumption. Only in the case of

three sequences do the costs associated with implementing adaptive propagation

outweigh the internal FPGA power savings. For the outdoor sequence this is by

a negligible amount. For the other two sequences, riverraft and football, support-

ing adaptive propagation incurs a power cost of 1 milliwatt and 0.38 milliwatts

respectively.

Figures 7.28 and 7.29 plot the total power used, internally within the FPGA

and on the memory bus itself, as a function of bus capacitance. Two sequences, paris

216

and riverraft, are used. Note that in figures 7.28 and 7.29 only the bus transitions

caused by the luminance component of each sequence are taken into account. The

power cost of using adaptive propagation with each reference frame’s chrominance

components has not been accounted for. Therefore, it would be unfair to con-

sider the reduction in chroma component transitions the adaptive propagation

algorithm provides. To calculate the power used communicating with external

memory equation, 3.1 was again used. The power estimated derived from equa-

tion 3.1 was multiplied by four to reflect the fact that the level-C data reuse

scheme and a vertical search range of 16 pixels has been assumed.

From Figure 7.28 it can be seen that, for the paris sequence, an overall re-

duction in power can be achieved using adaptive propagation. The addition of

the memory bus power increases slightly the percentage power saving, with to-

tal power savings between 5 and 6 percent depending on bus capacitance and

voltage. For the riverraft sequence the addition of the memory bus power does

not significantly alter the percentage power increase adaptive propagation incurs

using this sequence. This is a result of the adaptive propagation algorithm having

minimal impact on the bus transitions which occur when encoding this sequence.

A 1% power increase is incurred as a result of supporting adaptive propagation.

The other sequences have results within this range. The influence of memory

bus power consumption is less than that shown in chapter 5 because a lower bus

voltage has been assumed. The motion estimator used is also more complex, re-

sulting in the motion estimator itself consuming a larger proportion of the total

power.

217

 36.5

 37

 37.5

 38

 38.5

 39

 39.5

 40

 40.5

 41

 41.5

 42

 0 5 10 15 20 25 30 35 40

P
ow

er
(m

W
)

Capacitance(pF)

Bus Voltage 2.5V

horizontal propagation
adaptive propagation

 36.5

 37

 37.5

 38

 38.5

 39

 39.5

 40

 40.5

 0 5 10 15 20 25 30 35 40

P
ow

er
(m

W
)

Capacitance(pF)

Bus Voltage 1.8V

horizontal propagation
adaptive propagation

Figure 7.28: Total power used as a function of bus capacitance for a 2.5 and 1.8
volt bus - paris sequence

218

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 0 5 10 15 20 25 30 35 40

P
ow

er
(m

W
)

Capacitance(pF)

Bus Voltage 2.5V

horizontal propagation
adaptive propagation

 108

 109

 110

 111

 112

 113

 114

 0 5 10 15 20 25 30 35 40

P
ow

er
(m

W
)

Capacitance(pF)

Bus Voltage 1.8V

horizontal propagation
adaptive propagation

Figure 7.29: Total power used as a function of bus capacitance for a 2.5 and 1.8
volt bus - riverraft sequence

219

7.6 Summary

The implementation of the adaptive propagation algorithm into a pipelined en-

coder has been presented. Power can also be reduced in the motion estimation

stage of a video encoder using the adaptive propagation algorithm. The adaptive

propagation algorithm reducing power by up to 13% for individual parts of the

motion estimator. However, as the adaptive propagation algorithm only reduces

the power caused by data transitions, an overall power reduction of up-to 6%

only is achieved. More importantly, for sequences where the adaptive propaga-

tion algorithm does not reduce transitions significantly, the power used is actually

increased by up to 1%.

220

Chapter 8

Conclusions and Further Work

8.1 Conclusions

This thesis has explored the implementation of video encoding algorithms on

reconfigurable devices. This work has specifically targeted FPGAs, currently the

most widely used reconfigurable logic devices. Two different areas were explored,

FPGA video encoding systems and the power consumed by FPGA based video

encoders.

Chapter 4 focused on FPGA video encoding systems. Two video encoding sys-

tems were implemented. The first video encoding system targeted video surveil-

lance applications. The approach used to implement this system was to isolate as

much as possible the encoding sub-system and the processor sub-system. While

this simplified the overall system design it limited the size of the system soft-

ware, and hence the features the overall system could support. As discussed in

section 4.1.4 using the cachelink interface now supported by the microblaze pro-

cessor may make it easier for the processor and encoding system to share a single

memory. This would allow the system to support additional features. The sec-

221

ond system targeted video conferencing applications. In this system the FPGA

had to implement less functionality than in the previous system as the encoder

control and streaming functions were implemented on other devices. Due to the

encoding requirements, however, the system design was still challenging. A cus-

tom architecture had to be used to allow the external memory to operate at the

frequency required.

Chapter 5 documents the results of a power analysis performed on a pipelined

video encoder when implemented in a Cyclone-2 FPGA. It was shown that for

low resolution sequences (SIF/CIF) FPGA static power dominates. However for

higher resolutions such as D1 the dynamic power consumption becomes more

significant, accounting for more that half of the total FPGA power consumption.

The significance of FPGA static power consumption is well known. The results do

quantify the limited overall effect that reducing the dynamic power used would

have, when encoding single low resolution sequences. They also show that for

higher resolution sequences reducing dynamic power will, potentially, have a more

significant effect. Whilst no results are directly provided, it can also be concluded

that, when encoding multiple low resolution sequences, reducing dynamic power

would also be beneficial.

The rest of the thesis focused on reducing dynamic power in an FPGA based

video encoder. In the remainder of chapter 5 the motion estimation function

was identified as the key source of dynamic power consumption in an H.264

FPGA video encoder. It was also shown that, configuring the search memory so

that a minimum number of embedded RAMs are enabled per clock cycle reduces

the power consumed by the search memory substantially. As a consequence, a

much smaller proportion of the total power consumed by the motion estimator

is consumed by the search memory compared to what occurs in ASIC motion

222

estimator implementations. In the results presented the log search algorithm was

used. It would be expected that a similar power distribution would be observed

with other search position reduction algorithms. Given this difference it would

be worth comparing the total power consumed by different search algorithms

when implemented in FPGAs, similar to the investigation conducted for ASICs

reported in [53].

In chapters 6 and 7 an algorithm, and associated architecture, to reduce the

amount of dynamic power used loading and saving reference frame data from

external memory and within the motion estimator computational units was pro-

posed. The basis of the algorithm is that by changing the order data is propa-

gated, the number of data transitions, and hence the dynamic power used, can

be reduced. A unique feature of the algorithm is that it uses results generated

during the encoding process. Specifically, the 4x4 intra prediction results are

used to determine the propagation order. This is beneficial because it reduces

the costs associated with implementing the algorithm.

In chapter 6 it was shown that external memory bus transitions and hence

the power used loading and saving reference frame data is reduced by nearly 20%

when the algorithm is used. In addition the algorithm also works in conjunction

with other bus encoding algorithms such as bus invert and DBM/VBM. Given

this it may also be of use in ASIC video encoder implementations.

In chapter 7 an FPGA architecture to implement the algorithm is developed.

A key implementation decision was to apply the algorithm in the motion esti-

mation stages of the video encoder, in addition to applying it to the reference

frame data written to and read from external memory. Results showed this to

be beneficial. For the majority of sequences the algorithm reduced the dynamic

power in both the full and fractional pixel motion estimation stages. However,

223

for two sequences results indicated that the proposed algorithm actually increases

power consumption, albeit slightly.

The main advantages of the proposed power reduction algorithm are its rela-

tively low resource costs and its wide applicability. It reduces power consumption

in a number of video encoding stages. However, the algorithms usefulness is in-

hibited by its sequence dependence. In chapter 6 it was shown that whilst a

transition reduction of nearly 20% is obtained for some sequences, for others a

transition reduction of less than 5% is obtained. In chapter 7 it was shown that

for two of the sequences tested, the algorithm caused a slight increase in power

consumption overall. Further development of the algorithm/architecture used

could potentially reduce this disadvantage.

Also in chapter 7, a novel FPGA architecture for the full fractional motion

estimation algorithm was developed. It is shown that, by storing the half pixel

samples in embedded RAM prior to the quarter pixel search operation, less power

is consumed. This is a beneficial contribution with respect to implementing the

full fractional search algorithm, However, using a 1 step fractional motion esti-

mation algorithm, which does not have separate half and quarter pixel estimation

stages, may offer a greater power reduction. Further research is required to quan-

tify the power reduction and compression performance achievable using reduced

complexity fractional motion estimation algorithms.

8.2 Further Work

In addition to the future work discussed in the preceding section, a number of

other potential directions for further research have been identified,

• Physical FPGA power measurements. These would allow the estimation

224

methodology used in this thesis to be further verified and enable a more

comprehensive set of power results to be generated for the proposed adap-

tive propagation algorithm.

• Effect of pipelining in combination with the proposed adaptive propagation

algorithm. Given that pipelining reduces the power used in the FPGA

routing network (by reducing glitches), it is probable that the benefit of

using the proposed adaptive propagation algorithm will be reduced as the

level of pipelining used by the full and fractional pixel motion estimators is

increased.

• Adaptively changing the encoder clock frequency. Throughout this thesis it

has been assumed that the number clock cycles per pipeline stage Cp, and

hence the clock frequency required for a specific frame rate and resolution,

is fixed. Clock distribution consumes a substantial amount of power in

any FPGA design. Designing a pipelined encoder to use a variable Cp,

would allow the encoder clock frequency to be adjusted, depending on the

characteristics of the sequence being encoded. This could potential offer

a significant power reduction. However, to realise such an encoder the

algorithms and architectures used by each pipeline stage would need to be

designed carefully.

• Considering the use of reconfigurability within a pipelined encoder. In this

thesis the ability to reconfigure an FPGA in response to a change in its

environment has not been considered. This represents a significant area for

further research. For example the encoding modes supported by the encoder

could be modified depending on the type of sequence being encoded.

225

Appendix A

H.264 Stereo Video Compression

In this appendix the use of the H.264 standard to compress stereo video sequences

is studied. This work was undertaken with the view to implementing a H.264

stereo video encoder in a FPGA. The research was not pursued, however, because

results indicated that exploiting the additional redundancy present in stereo video

compression offered little benefit.

A.1 Stereo Video

Humans perceive the world in three-dimensions, despite the fact that the eyes only

ever provide access to two-dimensional images of the world; a three-dimensional

perception, therefore, must be constructed from the two-dimensional images re-

ceived. Humans, more specifically the Human Visual System, do this using a

number of depth cues including linear perspective, object overlapping, shading,

accommodation, convergence, texture gradient, motion parallax, and disparity.

The importance to depth perception of each depth cue varies with distance. One

of the most important, at short viewing distances, is disparity. Disparity is the

226

Figure A.1: Parallel camera configuration used to capture a stereo video sequence

difference between the position of an object in the images received by the left and

right eye. It is a binocular depth cue requiring both eyes to function correctly

Ordinary television screens and computer monitors do not re-create the dis-

parity depth cue. The same image is presented to each eye. To successfully

recreate the disparity depth cue different images need to be presented to each

eye. In general a parallel camera configuration is used to capture stereo se-

quences as shown in figure A.1. This produces the most comfortable images for

the viewer. For stereo image display a number of techniques have been developed

such as anaglyph - where colour is used to separate the left and right eye images;

and polarisation - where a light’s polarisation is used to separate the left and

right eye images [131].

In terms of applications, the most popular current use is in tele-operation.

Tele-operation systems using stereo video have been employed in industrial [132],

medical, and military applications. It has been shown that for a number of remote

operation tasks stereo video provides a benefit; with stereo video the user typi-

cally requires less training to perform the remote operation task correctly [133].

The other successful current application is 3D cinema. The recent increase in

popularity of 3D cinema being due to the use of better display technologies,

227

which minimise viewer discomfort; and the production of high quality content.

A larger research effort has been conducted into 3D-television. Numerous Eu-

ropean 3D-TV research projects have been initiated, including ATTEST1 and

more recently the 3D-TV Network Of Excellence2. It is unlikely, however, that

3D television will be launched commercially in the short term.

In addition to temporal and spatial redundancy, stereo video sequences also

have binocular redundancy. This extra redundancy potentially allows greater

compression performance. In this appendix the use of H.264 for stereo video

compression is explored, with a view to implementing an FPGA based stereo

video encoder.

A.2 Previous Work

A.2.1 Stereo Video Compression using H.264

The multi-view image compression problem was first considered in [134]. In [134]

it was proposed to use fixed sized block matching to exploit the redundancy

between the images within a multi view image set. This is not unusual. The ma-

jority of the techniques applicable to mono video compression are also applicable

to stereo video compression. As a result the improvement in the performance of

stereo video compression algorithms has tracked the performance improvement

in monocular compression algorithms.

There are three generic structures for stereo video encoding, simulcast, com-

patible, and joint as shown in figure A.2. To aid the exploitation of binocular

redundancy disparity estimation is used, in a similar way to how motion esti-

1Refer to http://www.hitech-projects.com/euprojects/attest/summary.htm
2Refer to https://www.3dtv-research.org/

228

Figure A.2: Structures for stereo video compression. Horizontal arrows indicate
motion estimation, vertical arrows indicate disparity estimation

mation aids the exploitation of temporal redundancy. Only the joint structure

exploits all the temporal, spatial, and binocular redundancies present in a stereo

video sequence

A fourth type of redundancy has been suggested in [135]. Wordline redun-

dancy is the redundancy between different views at different time instances.

While it undoubtedly exists, only [131] has quantified the improvement. Results

given in [131] indicate that for H.264 stereo video exploiting wordline correlation

in addition to the other redundancy types provides a performance improvement

of between 0.1 and 0.2 db.

In [131] the joint encoding structure, and variations which supported wordline

229

correlation were implemented using the multiple reference frame option present

in the H.264 standard. In this type of H.264 stereo implementation, left and right

images are processed in turn by a single H.264 encoder. The produces a single

stream which can be decoded by a standard H.264 decoder. In order for the

H.264 decoder to know which images belong to which view it requires additional

information.

The format of this additional information was standardised, as part of the

H.264 supplementary enhancement information (SEI) syntax. In addition to

supporting the buffer management stereo method the stereo SEI also supports the

use of the H.264 interlaced coding options for stereo video compression. Each field

in a picture being one of the images in a stereo pair [136]. Using interlaced video

to support stereo has been used with analogue video standards such as PAL and

NTSC. This implementation method also supports all the redundancies present

in a stereo sequence, assuming the H264 field encoding mode is used. Surprisingly

in [136] results were produced showing that when the macroblock adaptive frame

field option was enabled, the compression performance was slightly better that

when each field was compressed separately.

A.2.2 Illumination Compensation

All block matching methods make the implicit assumption that an object’s inten-

sity will be consistent between frames being compared. With regard to images

displaced in time this assumption generally holds, although there are some se-

quence specific instances when it does not [137]. For spatially separated images

any sequence can suffer from illumination mismatch, either as a result of dif-

ferences within the cameras used, or as a result of different amounts of light

being reflected into each camera. In stereo video the illumination differences are

230

generally attributable to camera mismatches as the difference in the two cam-

era’s positions is small. To improve compression it is desirable to remove any

illumination differences between the left and right view before a stereo pair is

compressed.

In [138] histogram modification is used in order to reduce the illumination dif-

ferences between the two images in a stereo pair. A less complex method used by

[139][140][141] is to model the illumination difference between two corresponding

points in each image using a scaling and an offset,

Sr(x, y) = aSl(x, y) + b. (A.1)

where a and b are constants and Sr and Sl are the luminance values at corre-

sponding points in the left and right images respectively. The values of a and b

are determined such that the first and second order moments of the left and right

image are equal. The corrected luminance values for the whole right image are

then produced using

Src(x, y) = aSr(x, y) + b (A.2)

A.3 Experiments

The simulcast methods offers a number of implementation advantages compared

to the joint method. The processing requirement is reduced. More significantly,

with simulcast there is not data dependency between the left and right views.

This allows the left and right views to be compressed concurrently, making it

easier to implement a low latency encoder. Low latency is an important require-

ment for all tele-operation applications.

231

Encoding experiments were performed to determine whether the compression

benefit offered by the joint encoding method, outweighed the implementation ad-

vantages of the simulcast method. The compatible method was not considered

because for the majority of macroblocks temporal, instead of binocular, redun-

dancy is favored. Thus, the compatible method provides poorer compression

performance than simulcast, while offering no implementation advantages.

For the simulcast structure only a single temporally adjacent frame was used

for reference. For the joint structure only a single temporal and single binocular

frame was used for reference. Other more complicated encoding structures have

not been considered. The H.264 JM 9.0 reference software was modified to sup-

port stereo operation [130]. Stereo video was loaded on an alternating left/right

pattern, similar to the manner reported in other H.264 stereoscopic encoding

proposals. The reference list management options within H.264 were utilised in

order to ensure that the motion reference frame was situated in reference 0, list 0,

for both simulcast and joint encoding structures. This improves the performance

of the joint structure by ensuring that using motion reference frame requires the

least number of encoding bits. The other modification made was to introduce

a specific function for disparity estimation. This differed from the motion esti-

mation function in that it was strongly horizontal biased, reflecting the fact that

disparity, when the parallel camera configuration is used, only has a horizontal

component.

Three stereo video sequences were used. One of the sequences used diplo

reflects a common tele-operation application, remote vehicle operation (refer to

table A.1) To correct any illumination differences present between the left and

right views the simple gain/offset model, given in equation A.2, was used. The

a and b coefficients were determined by equating the first and second order mo-

232

.

Name Dimensions Description
antonio 176x256 Large Main Object movement
diplo 320x240 Fast Camera/Object movement
talking 320x240 Minimal Main object Movement, Some background movement

Table A.1: Images used in experiments

ments. To ensure no intra-view illumination differences the a and b co-efficients

were only calculated for the first frame in each sequence and then applied to all

frames in the sequence.

A.4 Results and Discussion

To compare the quality of the encoded images the PSNR metric was used. We

only consider the right view of the stereo sequence, as the left sequence is pro-

cessed identically in all cases. Figure A.3 shows the PSNR curves of the right

frame for the joint and simulcast structures. Both the antonio and diplo se-

quences show a compression performance improvement of approximately 0.3 dB

when the joint structure is used. The talking sequence shows a performance

improvement of less than 0.1 dB.

The talking sequence shows noticeable illumination differences between the

left and right view. If illumination compensation is applied to the right view of

the talking sequence the compression performance of the joint stereo structure

increases. With illumination compensation, the joint structure provides a near

0.3 dB performance improvement over the simulcast method. For the antonio

and diplo sequences the use of illumination compensation would appear to de-

crease the compression performance of the joint-p structure. This may be due

233

 35

 36

 37

 38

 39

 40

 41

 42

 43

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

P
S

N
R

Bits Per Pixel

Antonio Sequence

simulcast
joint

joint with illumination compensation

 36

 37

 38

 39

 40

 41

 42

 43

 44

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

Bits Per Pixel

Talking Sequence

simulcast
joint

joint with illumination compensation

 35

 36

 37

 38

 39

 40

 41

 42

 43

 0.4 0.6 0.8 1 1.2 1.4 1.6

P
S

N
R

Bits Per Pixel

Diplo Sequence

simulcast
joint

joint with illumination compensation

Figure A.3: PSNR curves for antonio, talking and diplo sequences when the
simulcast and joint encoding methods were used

234

to the calculated a and b co-efficients from the first frame not being accurate for

future frames.

These results presented are similar to the results reported in [136] [142]. Al-

though [142] did provide results indicating that for a sequence with a large number

of scene changes the joint method provides a performance improvement of nearly

0.8 dB. In [131] results are given indicating that 1 dB performance improvement

is achievable using the joint method for certain sequences.

The two most popular current applications of stereo video are 3D cinema and

tele-operation. For the cinema application, intra frame compression techniques

are predominant to meet the picture quality requirement of that application.

For the tele-operation application there will be no scene changes. Therefore the

performance improvement offered by the joint method does not outweigh the

implementation disadvantages. In particular the increased latency required to

implement the joint method is likely to be unacceptable.

A.5 Conclusion

Exploiting the binocular redundancy present in stereo video sequences offers a

compression benefit. However the improvement provided is not enough to justify

pursuing an FPGA implementation, given the requirements of the applications

which currently make use of stereo video.

235

Appendix B

Full Pixel Motion Estimation

Array Timing

In this appendix timing information for the full search motion estimator described

in chapter 7 is given. Only information for the first search position row/column

is provided. The timing relationships for the other search position rows/columns

are identical. Table B.1 provides details of the input pixel and the corresponding

4x4 SAD output timing. For table B.1 the origin for the reference pixel indices

is assumed to be the upper left corner of the search area. Table B.2 shows the

timing of the SAD outputs for the 4x8 and 8x4 block sizes. Table B.3 shows the

timing of the SAD outputs for the 8x8, 16x8, 8x16 and 16x16 block sizes. For

tables B.2 and B.3 it has been assumed that horizontal propagation has been

used. If vertical propagation was used the timing of the SAD outputs for the 8x4

and 4x8 block sizes would be swapped, as would the timing of the SAD outputs

for 16x8 and 8x16 block sizes.

236

Clock Reference Pixel Input ((X,Y) or (Y,X) Search Position Output ((X,Y) or (Y,X)
Cycle dependent on propagation direction) dependent on propagation direction)

A1/A5 A2/A6 A3/A7 A4/A8
0 (0,0)(0,1)(0,2)(0,3)(0,4)(0,5)(0,6)(0,7)
1 (1,0)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(1,7)
2 (2,0)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(2,7)
3 (3,0)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(3,7)
4 (4,0)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(4,7) (-8,-8)
5 (5,0)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(5,7) (-8,-7)
6 (6,0)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(6,7) (-8,-6)
7 (7,0)(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(7,7) (-8,-5)
8 (8,0)(8,1)(8,2)(8,3)(8,4)(8,5)(8,6)(8,7) (-8,-4) (-8,-8)
9 (9,0)(9,1)(9,2)(9,3)(9,4)(9,5)(9,6)(9,7) (-8,-3) (-8,-7)
10 (10,0)(10,1)(10,2)(10,3)(10,4)(10,5)(10,6)(10,7) (-8,-2) (-8,-6)
11 (11,0)(11,1)(11,2)(11,3)(11,4)(11,5)(11,6)(11,7) (-8,-1) (-8,-5)
12 (12,0)(12,1)(12,2)(12,3)(12,4)(12,5)(12,6)(12,7) (-8,-0) (-8,-4) (-8,-8)
13 (13,0)(13,1)(13,2)(13,3)(13,4)(13,5)(13,6)(13,7) (-8,1) (-8,-3) (-8,-7)
14 (14,0)(14,1)(14,2)(14,3)(14,4)(14,5)(14,6)(14,7) (-8,2) (-8,-2) (-8,-6)
15 (15,0)(15,1)(15,2)(15,3)(15,4)(15,5)(15,6)(15,7) (-8,3) (-8,-1) (-8,-5)
16 (16,0)(16,1)(16,2)(16,3)(16,4)(16,5)(16,6)(16,7) (-8,4) (-8,-0) (-8,-4) (-8,-8)
17 (17,0)(17,1)(17,2)(17,3)(17,4)(17,5)(17,6)(17,7) (-8,5) (-8,1) (-8,-3) (-8,-7)
18 (18,0)(18,1)(18,2)(18,3)(18,4)(18,5)(18,6)(18,7) (-8,6) (-8,2) (-8,-2) (-8,-6)
19 (19,0)(19,1)(19,2)(19,3)(19,4)(19,5)(19,6)(19,7) (-8,7) (-8,3) (-8,-1) (-8,-5)
20 (20,0)(20,1)(20,2)(20,3)(20,4)(20,5)(20,6)(20,7) (-8,4) (-8,-0) (-8,-4)
21 (21,0)(21,1)(21,2)(21,3)(21,4)(21,5)(21,6)(21,7) (-8,5) (-8,1) (-8,-3)
22 (22,0)(22,1)(22,2)(22,3)(22,4)(22,5)(22,6)(22,7) (-8,6) (-8,2) (-8,-2)
23 (23,0)(23,1)(23,2)(23,3)(23,4)(23,5)(23,6)(23,7) (-8,7) (-8,3) (-8,-1)
24 (24,0)(24,1)(24,2)(24,3)(24,4)(24,5)(24,6)(24,7) (-8,4) (-8,-0)
25 (25,0)(25,1)(25,2)(25,3)(25,4)(25,5)(25,6)(25,7) (-8,5) (-8,1)
26 (26,0)(26,1)(26,2)(26,3)(26,4)(26,5)(26,6)(26,7) (-8,6) (-8,2)
27 (27,0)(27,1)(27,2)(27,3)(27,4)(27,5)(27,6)(27,7) (-8,7) (-8,3)
28 (28,0)(28,1)(28,2)(28,3)(28,4)(28,5)(28,6)(28,7) (-8,4)
29 (29,0)(29,1)(29,2)(29,3)(29,4)(29,5)(29,6)(29,7) (-8,5)
30 (30,0)(30,1)(30,2)(30,3)(30,4)(30,5)(30,6)(30,7) (-8,6)

Start of Second Pass
31 (0,8)(0,9)(0,10)(0,11)(0,12)(0,13)(0,14)(0,15) (-8,7)
32 (1,8)(1,9)(1,10)(1,11)(1,12)(1,13)(1,14)(1,15)
33 (2,8)(2,9)(2,10)(2,11)(2,12)(2,13)(2,14)(2,15)
33 (3,8)(3,9)(3,10)(3,11)(3,12)(3,13)(3,14)(3,15)
33 (4,8)(4,9)(4,10)(4,11)(4,12)(4,13)(4,14)(4,15) (-8,-8)

—————————————————————
60 (29,0)(29,1)(29,2)(29,3)(29,4)(29,5)(29,6)(29,7) (-8,5)
61 (30,0)(30,1)(30,2)(30,3)(30,4)(30,5)(30,6)(30,7) (-8,6)

Start of second search position row/column
62 (0,0)(0,1)(0,2)(0,3)(0,4)(0,5)(0,6)(0,7) (-8,7)
63 (1,0)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(1,7)
63 (2,0)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(2,7)
64 (3,0)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(3,7)
65 (4,0)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(4,7) (-7,-8)

Table B.1: Input to 4x4 Arrays and 4x4 Array Output

237

Clock Search Position Output ((Y,X))
Cycle

Blocksize(Subblock-phase1,Subblock-phase2)
4x8(1,5) 4x8(2,6) 4x8(3,7) 4x8(4,8) 8x4(1,5) 8x4(1,6) 8x4(1,7) 8x4(1,8)

2
3
4
5 (-8,-8)
6 (-8,-7)
7 (-8,-6)
8 (-8,-5)
9 (-8,-4) (-8,-8) (-8,-8) (-8,-8)
10 (-8,-3) (-8,-7) (-8,-7) (-8,-7)
11 (-8,-2) (-8,-6) (-8,-6) (-8,-6)
12 (-8,-1) (-8,-5) (-8,-5) (-8,-5)
13 (-8,-0) (-8,-4) (-8,-8) (-8,-4) (-8,-4)
14 (-8,1) (-8,-3) (-8,-7) (-8,-3) (-8,-3)
15 (-8,2) (-8,-2) (-8,-6) (-8,-2) (-8,-2)
16 (-8,3) (-8,-1) (-8,-5) (-8,-1) (-8,-1)
17 (-8,4) (-8,-0) (-8,-4) (-8,-8) (-8,-0) (-8,-0) (-8,-8) (-8,-8)
18 (-8,5) (-8,1) (-8,-3) (-8,-7) (-8,1) (-8,1) (-8,-7) (-8,-7)
19 (-8,6) (-8,2) (-8,-2) (-8,-6) (-8,2) (-8,2) (-8,-6) (-8,-6)
20 (-8,7) (-8,3) (-8,-1) (-8,-5) (-8,3) (-8,3) (-8,-5) (-8,-5)
21 (-8,4) (-8,-0) (-8,-4) (-8,4) (-8,4) (-8,-4) (-8,-4)
22 (-8,5) (-8,1) (-8,-3) (-8,5) (-8,5) (-8,-3) (-8,-3)
23 (-8,6) (-8,2) (-8,-2) (-8,6) (-8,6) (-8,-2) (-8,-2)
24 (-8,7) (-8,3) (-8,-1) (-8,7) (-8,7) (-8,-1) (-8,-1)
25 (-8,4) (-8,-0) (-8,-0) (-8,-0)
26 (-8,5) (-8,1) (-8,1) (-8,1)
27 (-8,6) (-8,2) (-8,2) (-8,2)
28 (-8,7) (-8,3) (-8,3) (-8,3)
29 (-8,-8) (-8,4) (-8,4) (-8,4)
30 (-8,5) (-8,5) (-8,5)

Start of Second Pass

31 (-8,6) (-8,6) (-8,6)
32 (-8,7) (-8,7) (-8,7)
33
34 (-8,-8)

—————————————————————
60 (-8,4) (-8,4) (-8,4)
61 (-8,5) (-8,5) (-8,5)

Start of second search position row/column

62 (-8,6) (-8,6) (-8,6)
63 (-8,7) (-8,7) (-8,7)
64
65
66 (-7,-8)

Table B.2: 4x8 and 8x4 outputs from adder tree

238

Clock Search Position Output ((Y,X))
Cycle

Blocksize(Subblock-phase1,Subblock-phase2)
8x8(1,3) 8x8(2,4) 16x8(1,2) 8x16(-,1) 8x16(-,2) 16x16(-,1)

9
10 (-8,-8)
11 (-8,-7)
12 (-8,-6)
13 (-8,-5)
14 (-8,-4)
15 (-8,-3)
16 (-8,-2)
17 (-8,-1)
18 (-8,-0) (-8,-8)
19 (-8,1) (-8,-7) (-8,-8)
20 (-8,2) (-8,-6) (-8,-7)
21 (-8,3) (-8,-5) (-8,-6)
22 (-8,4) (-8,-4) (-8,-5)
23 (-8,5) (-8,-3) (-8,-4)
24 (-8,6) (-8,-2) (-8,-3)
25 (-8,7) (-8,-1) (-8,-2)
26 (-8,-0) (-8,-1)
27 (-8,1) (-8,-0)
28 (-8,2) (-8,1)
29 (-8,3) (-8,2)
30 (-8,4) (-8,3)

Start of Second Pass
31 (-8,5) (-8,4)
32 (-8,6) (-8,5)
33 (-8,7) (-8,6)
34 (-8,7)
35

—————————————————–
51 (-8,3) (-8,-5) (-8,-6) (-8,2) (-8,-6) (-8,-7)
52 (-8,4) (-8,-4) (-8,-5) (-8,3) (-8,-5) (-8,-6)
53 (-8,5) (-8,-3) (-8,-4) (-8,4) (-8,-4) (-8,-5)
54 (-8,6) (-8,-2) (-8,-3) (-8,5) (-8,-3) (-8,-4)
55 (-8,7) (-8,-1) (-8,-2) (-8,6) (-8,-2) (-8,-3)
56 (-8,0) (-8,-1) (-8,7) (-8,-1) (-8,-2)
57 (-8,1) (-8,0) (-8,0) (-8,-1)
58 (-8,2) (-8,1) (-8,1) (-8,0)
59 (-8,3) (-8,2) (-8,2) (-8,1)
60 (-8,4) (-8,3) (-8,3) (-8,2)
61 (-8,5) (-8,4) (-8,4) (-8,3)

Start of second search position row/column
62 (-8,6) (-8,5) (-8,5) (-8,4)
63 (-8,7) (-8,6) (-8,6) (-8,5)
64 (-8,7) (-8,7) (-8,6)
65 (-8,7)

End of first search position row/column

Table B.3: 8x8,16x8,8x16 and 16x16 outputs from adder tree
239

Appendix C

Video Sequences Used

This appendix provides details on the video sequences used in this thesis. As

the power consumed in an FPGA is dependent on its inputs, the video sequences

used in chapters 5, 6 and 7, will influence the power consumption results given.

With the power estimation methodology used, it is infeasible to use a large set

of sequences. The time required would be excessive.

The estimation problem is most acute in the analysis performed in chapter 5

because, in this case, an entire in encoder is being simulated. The sequences used

in chapter 5 are listed in table C.1, with a URL at which the sequences can be

accessed and viewed. All are standard test sequences used in video compression

research. While the test set used in chapter 5 is limited, it does contain sequences

with fast motion such as football and sequences with a variety of different res-

olutions. It is also worth noting that the motion estimation and mode decision

algorithms used in the encoder studied in chapter 5 are not sequence dependent.

The same number of calculations are performed regardless of each sequences char-

acteristics. Therefore, the results given in chapter 5 are less sequence dependent

that what might initially be expected. However, it would have been beneficial if

240

Size Sequence URL

SIF
Football http://www.cipr.rpi.edu/resource/sequences/sif.html

Stefan http://trace.eas.asu.edu/yuv/index.html

CIF
Foreman http://www.cipr.rpi.edu/resource/sequences/sif.html

Mobile http://index.apple.com/~singer/sequences/mobile.mov

D1 Garden http://www.cipr.rpi.edu/resource/sequences/sif.html

Table C.1: Test sequences used in chapter 5

Size Sequence URL

QCIF
Suzie http://trace.eas.asu.edu/yuv/index.html

Miss America http://trace.eas.asu.edu/yuv/index.html

Table http://www.cipr.rpi.edu/resource/sequences/sif.html

SIF Football http://www.cipr.rpi.edu/resource/sequences/sif.html

CIF
Hall Monitor http://trace.eas.asu.edu/yuv/index.html

Paris http://index.apple.com/~singer/sequences/paris.mov

Mobile http://index.apple.com/~singer/sequences/mobile.mov

VGA
Office Not Available
Riverraft Not Available
Outdoor Not Available

Table C.2: Test sequences used in chapters 6 and 7

a larger sequence set could have been used.

The sequence set used in chapters 6 and 7 is shown in table C.2. The majority

of sequences used are standard test sequences, for which a URL has been pro-

vided. Three sequences, riverraft office and outdoor are not. For these sequences

example frames are provided in figures C.1, C.2 and C.3. The sequence set used

in this case was chosen to allow the performance of the adaptive propagation

algorithm to be judged. As such the sequences used contain a variety of different

spatial correlations. For example, the riverraft sequence is predominantly hor-

izontally corelated, where as the office sequence contains a mixture of vertical

and horizontal correlations.

241

http://www.cipr.rpi.edu/resource/sequences/sif.html
http://trace.eas.asu.edu/yuv/index.html
http://www.cipr.rpi.edu/resource/sequences/sif.html
http://index.apple.com/~singer/sequences/mobile.mov
http://www.cipr.rpi.edu/resource/sequences/sif.html
http://trace.eas.asu.edu/yuv/index.html
http://trace.eas.asu.edu/yuv/index.html
http://www.cipr.rpi.edu/resource/sequences/sif.html
http://www.cipr.rpi.edu/resource/sequences/sif.html
http://trace.eas.asu.edu/yuv/index.html
http://index.apple.com/~singer/sequences/paris.mov
http://index.apple.com/~singer/sequences/mobile.mov

Figure C.1: Frames (from top left) 0,10,20,30,40 and 50 of riverraft test sequence

242

Figure C.2: Frames (from top left) 0,10,20,30,40 and 50 of office test sequence

243

Figure C.3: Frames (from top left) 0,10,20,30,40 and 50 of outdoor test sequence

244

Appendix D

H.264 Encoder Power Analysis

Results

D.1 Power By Encoder Function

Tables D.1 D.2 and D.3 show the power per encoder function for a quantisation

parameters of 6, 20 and 30 respectively.

245

Sequence
Encoder Function Football Stefan Mobile Foreman Garden
Full pixel motion 19.78 19.02 24.14 22.84 76.04
estimation
Fractional pixel motion 10.47 10.02 12.68 11.53 39.23
estimation
Infrastructure rams 7.93 7.8 9.48 9.19 30.45
Intra Prediction 5.62 5.47 6.68 6.36 21.37
Loop filter 5.06 4.89 6.02 5.31 18.74
Forward transform and 3.47 3.4 4.08 3.97 13.11
quantisation
Variable length encoding 3.01 2.68 3.39 2.82 9.58
Inverse transform and 2.22 2.09 2.54 2.35 7.78
quantisation
Intra/Inter Mode 0.99 0.98 1.17 1.16 3.81
decision
Reconstruction 0.7 0.64 0.82 0.58 2.14
Control Components 0.67 0.67 0.79 0.79 2.59

Table D.1: Encoder dynamic power consumption (in mW) per encoder function
for a quantisation parameter of 6. Power results are in milli-watts

Sequence
Encoder Function Football Stefan Mobile Foreman Garden
Full pixel motion 19.84 18.76 24.08 24.99 76.16
estimation
Fractional pixel motion 10.41 9.73 12.57 11.23 38.8
estimation
Infrastructure rams 7.74 7.58 9.28 8.85 29.59
Intra Prediction 5.55 5.36 6.62 6.22 21.16
Loop filter 4.9 4.75 6 5.1 18.48
Forward transform and 3.4 3.33 4.02 3.9 12.87
quantisation
Variable length encoding 1.91 1.77 2.26 1.78 6.51
Inverse transform and 1.67 1.61 1.97 1.76 6.05
quantisation
Intra/Inter Mode 0.99 0.98 1.17 1.16 3.81
decision
Reconstruction 0.67 0.67 0.79 0.79 2.58
Control Components 0.51 0.46 0.63 0.33 1.57

Table D.2: Encoder dynamic power consumption (in mW) per encoder function
for a quantisation parameter of 20. Power results are in milli-watts

246

Sequence
Encoder Function Football Stefan Mobile Foreman Garden
Full pixel motion 19.46 18.74 24.07 22.56 75.37
estimation
Fractional pixel motion 9.95 9.65 12.46 10.96 38.1
estimation
Infrastructure rams 7.55 7.44 9.07 8.62 29.01
Intra Prediction 5.38 5.31 6.55 6.11 20.79
Loop filter 4.54 4.62 5.89 4.77 17.84
Forward transform and 3.35 3.31 4 3.9 12.83
quantisation
Variable length encoding 1.47 1.47 1.73 1.66 5.56
Inverse transform and 1.47 1.43 1.73 1.49 5.36
quantisation
Intra/Inter Mode 0.99 0.98 1.17 1.16 3.81
decision
Reconstruction 0.67 0.67 0.79 0.79 2.58
Control Components 0.29 0.33 0.42 0.18 1.04

Table D.3: Encoder dynamic power consumption (in mW) per encoder function
for a quantisation parameter of 30. Power results are in milli-watts

247

Sequence Quant Search Input Output Loop Loop Bit- Output
Memory Frame Frame Filter Filter stream Frame
Load Load Save Save Load Save Load

Football 6 11.18 1.8 1.21 1.45 1.47 0.65 0.07
Football 20 10.72 1.81 1.17 1.4 1.38 0.61 0.07
Football 30 9.84 1.82 1.07 1.29 1.27 0.56 0.06
Stefan 6 10.18 1.63 1.09 1.3 1.33 0.59 0.07
Stefan 20 9.69 1.65 1.04 1.24 1.24 0.55 0.06
Stefan 30 9.34 1.66 0.99 1.2 1.19 0.53 0.06
Foreman 6 12.79 2 1.36 1.62 1.64 0.73 0.08
Foreman 20 12.21 2.02 1.29 1.54 1.54 0.68 0.08
Foreman 30 11.45 2.03 1.2 1.45 1.45 0.64 0.07
Mobile 6 13.49 2.13 1.43 1.72 1.75 0.78 0.09
Mobile 20 13.21 2.13 1.41 1.69 1.68 0.75 0.09
Mobile 30 12.98 2.45 1.55 1.87 1.01 0.45 0.05
Garden 6 44.92 6.82 4.69 5.65 5.73 2.54 0.29
Garden 20 43.54 6.86 4.56 5.5 5.49 2.43 0.28
Garden 30 41.46 6.89 4.3 5.23 5.22 2.32 0.26

Table D.4: IO power consumption (in mW) attributable to various encoder mem-
ory operations

D.2 IO/SDRAM Power Consumption Results

D.2.1 IO Power Consumption

Table D.4 and Table D.5 shows the IO and SDRAM power consumption at-

tributable to each encoder function.

248

Sequence Quant Search Input Output Loop Loop Bit- Output
Memory Frame Frame Filter Filter stream Frame
Load Load Save Save Load Save Load

Football 6 53.82 8.67 5.83 6.99 7.07 3.13 0.36
Football 20 54.85 9.27 5.97 7.16 7.07 3.13 0.36
Football 30 54.72 10.13 5.96 7.15 7.07 3.13 0.36
Stefan 6 54.21 8.68 5.8 6.94 7.07 3.13 0.36
Stefan 20 55.06 9.38 5.9 7.07 7.07 3.13 0.36
Stefan 30 55.25 9.82 5.88 7.11 7.07 3.13 0.36
Foreman 6 62.82 9.82 6.66 7.97 8.05 3.57 0.41
Foreman 20 63.67 10.5 6.73 8.02 8.05 3.57 0.41
Foreman 30 63.36 11.24 6.65 8.05 8.05 3.57 0.41
Mobile 6 61.97 9.77 6.57 7.91 8.05 3.57 0.41
Mobile 20 63.13 10.2 6.74 8.1 8.05 3.57 0.41
Mobile 30 63.82 10.52 6.78 8.23 8.05 3.57 0.41
Garden 6 201.5 30.6 21.02 25.35 25.71 11.4 1.3
Garden 20 203.95 32.11 21.34 25.78 25.71 11.4 1.3
Garden 30 204.02 33.91 21.16 25.74 25.71 11.4 1.3

Table D.5: SDRAM power consumption (in mW) attributable the various encoder
memory operations

249

Appendix E

Fractional Estimation Power

Results

This chapter details the full results used to generate Figures 7.26 and 7.27. Ta-

ble E.1 gives details of the half pixel interpolator power consumption results.

Table E.2 gives details of the quarter pixel interpolator and estimator power

consumption results. Table E.3 gives details of the half pixel estimator power

consumption results. Table E.4 gives details of the power consumption of the

half and quarter pixel control functions. Table E.5 gives details of the power

consumption of the quarter pixel memory.

250

Sequence Horizontal Propagation Adaptive Propagation % reduction
Suzie 1.57 1.44 8.28
Miss america 0.91 0.86 5.49
Table 1.31 1.27 3.05
Football 6.62 6.64 -0.3
Hall monitor 5.05 4.43 12.28
Paris 6.61 5.98 9.53
Mobile 7.86 7.65 2.67
Office 11.54 10.17 11.87
Riverraft 17.49 17.45 0.23
Outdoor 12.29 12.1 1.55

Table E.1: Half pixel interpolator power consumption (mW) when adaptive prop-
agation is and is not used

Sequence Horizontal Propagation Adaptive Propagation % reduction
Suzie 1.24 1.15 7.26
Miss america 0.87 0.84 3.45
Table 1.18 1.16 1.69
Football 5.19 5.2 -0.19
Hall monitor 4.26 3.92 7.98
Paris 5.2 4.84 6.92
Mobile 6.02 5.87 2.49
Office 10.09 9.29 7.93
Riverraft 14.85 14.84 0.07
Outdoor 10.82 10.63 1.76

Table E.2: Quarter pixel estimator and interpolator power consumption (mW)
when adaptive propagation is and is not used

251

Sequence Horizontal Propagation Adaptive Propagation % reduction
Suzie 0.57 0.54 5.26
Miss america 0.43 0.42 2.33
Table 0.61 0.6 1.64
Football 2.18 2.18 0
Hall monitor 2.13 2 6.1
Paris 2.39 2.26 5.44
Mobile 2.62 2.55 2.67
Office 5.03 4.7 6.56
Riverraft 6.14 6.1 0.65
Outdoor 5.57 5.47 1.8

Table E.3: Half pixel estimator power consumption (mW) when adaptive prop-
agation is and is not used

Sequence Horizontal Propagation Adaptive Propagation % reduction
Suzie 0.38 0.38 0
Miss america 0.37 0.37 0
Table 0.38 0.38 0
Football 1.32 1.3 1.52
Hall monitor 1.37 1.37 0
Paris 1.39 1.38 0.72
Mobile 1.42 1.42 0
Office 4.31 4.31 0
Riverraft 4.51 4.52 -0.22
Outdoor 4.3 4.3 0

Table E.4: Control power consumption (mW) when adaptive propagation is and
is not used

252

Sequence Horizontal Propagation Adaptive Propagation % reduction
Suzie 0.31 0.31 0
Miss america 0.26 0.26 0
Table 0.29 0.29 0
Football 1.14 1.13 0.88
Hall monitor 1.04 0.99 4.81
Paris 1.14 1.1 3.51
Mobile 1.18 1.17 0.85
Office 3.11 3.04 2.25
Riverraft 3.66 3.66 0
Outdoor 3.13 3.12 0.32

Table E.5: Power consumpton (mW) of the quarter pixel ram when adaptive
propagation is and is not used

253

References

[1] “Itu-t recommendation h.264 : Advanced video coding for generic audiovisual

services,” International Telecommunications Union, November 2007. [Online].

Available: http://www.itu.int/rec/T-REC-H.264-200711-I/en

[2] “International technology roadmap for semiconductors 2007 edition,” ITRS,

2007. [Online]. Available: http://www.itrs.net/Links/2007ITRS/Home2007.htm

[3] C. Peng and T. Tran, “Hd video encoding with dsp and fpga partitioning,”

Texas Instruments, Inc, 2007. [Online]. Available: http://focus.ti.com.cn/cn/lit/

wp/spry103/spry103.pdf

[4] B. Khailany, T. Williams, J. Lin, E. Long, M. Rygh, D. Tovey, and W. J.

Daly, “A programmable 512 gops stream processor for signal, image, and video

processing,” in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of

Technical Papers. IEEE International, 2007, pp. 272–602. [Online]. Available:

http://dx.doi.org/10.1109/ISSCC.2007.373399

[5] “Tms320dm6467 digital media system-on-chip datasheet,” Texas Instruments,

Inc, February 2009. [Online]. Available: http://focus.ti.com/docs/prod/folders/

print/tms320dm6467.html

[6] S. Hu, Z. Zhang, M. Zhang, and T. Sheng, “Optimization of memory allocation

for h.264 video decoder on digital signal processors,” in Image and Signal

254

http://www.itu.int/rec/T-REC-H.264-200711-I/en
http://www.itrs.net/Links/2007ITRS/Home2007.htm
http://focus.ti.com.cn/cn/lit/wp/spry103/spry103.pdf
http://focus.ti.com.cn/cn/lit/wp/spry103/spry103.pdf
http://dx.doi.org/10.1109/ISSCC.2007.373399
http://focus.ti.com/docs/prod/folders/print/tms320dm6467.html
http://focus.ti.com/docs/prod/folders/print/tms320dm6467.html

Processing, 2008. CISP ’08. Congress on, vol. 2, 2008, pp. 71–75. [Online].

Available: http://dx.doi.org/10.1109/CISP.2008.173

[7] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and

J. D. Owens, “Programmable stream processors,” Computer, vol. 36, no. 8, pp.

54–62, 2003. [Online]. Available: http://dx.doi.org/10.1109/MC.2003.1220582

[8] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rate-

constrained coder control and comparison of video coding standards,” Circuits

and Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 688–

703, 2003. [Online]. Available: http://dx.doi.org/10.1109/TCSVT.2003.815168

[9] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,

T. Stockhammer, and T. Wedi, “Video coding with h.264/avc: tools,

performance, and complexity,” Circuits and Systems Magazine, IEEE, vol. 4,

no. 1, pp. 7–28, 2004. [Online]. Available: http://ieeexplore.ieee.org/xpls/

abs all.jsp?arnumber=1286980

[10] M. J. Garrido, C. Sanz, M. Jimenez, and J. M. Menesses, “An fpga

implementation of a flexible architecture for h.263 video coding,” Consumer

Electronics, IEEE Transactions on, vol. 48, no. 4, pp. 1056–1066, 2002. [Online].

Available: http://dx.doi.org/10.1109/TCE.2003.1196439

[11] K. Denolf, A. Chirila-Rus, R. Turney, P. Schumacher, and K. Vissers,

“Memory efficient design of an mpeg-4 video encoder for fpgas,” in Field

Programmable Logic and Applications, 2005. International Conference on, 2005,

pp. 391–396. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=1515753

[12] O. Lehtoranta, E. Salminen, A. Kulmala, M. Hannikainen, and T. D. Hamalainen,

“A parallel mpeg-4 encoder for fpga based multiprocessor soc,” in Field

255

http://dx.doi.org/10.1109/CISP.2008.173
http://dx.doi.org/10.1109/MC.2003.1220582
http://dx.doi.org/10.1109/TCSVT.2003.815168
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1286980
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1286980
http://dx.doi.org/10.1109/TCE.2003.1196439
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1515753
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1515753

Programmable Logic and Applications, 2005. International Conference on, 2005,

pp. 380–385. [Online]. Available: http://dx.doi.org/10.1109/FPL.2005.1515751

[13] V. Liguori and K. Wong, “Designing a real time hdtv 1080p baseline h.264/avc

encoder core,” in DesignCon. International Engineering Consortium, February

2006. [Online]. Available: http://www.cast-inc.com/info/events/shows/dcon06/

1-WP1--Vincenzo%20Liguori.pdf

[14] K. Babionitakis, G. Doumenis, G. Georgakarakos, G. Lentaris, K. Nakos,

D. Reisis, I. Sifnaios, and N. Vlassopoulos, “A real-time h.264/avc vlsi encoder

architecture,” Journal of Real-Time Image Processing, March 2008. [Online].

Available: http://dx.doi.org/10.1007/s11554-007-0054-9

[15] P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, and W. Luk, “Run-

time integration of reconfigurable video processing systems,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 15, no. 9, pp. 1003–1016,

2007. [Online]. Available: http://dx.doi.org/10.1109/TVLSI.2007.902203

[16] Y. Shin, S.-I. Chae, and K. Choi, “Partial bus-invert coding for power

optimization of application-specific systems,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 9, no. 2, pp. 377–383, 2001.

[Online]. Available: http://dx.doi.org/10.1109/92.924059

[17] T.-C. Chen, Y.-W. Huang, and L.-G. Chen, “Fully utilized and reusable

architecture for fractional motion estimation of h.264/avc,” in Acoustics,

Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE

International Conference on, vol. 5, 2004, pp. V–9–12 vol.5. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1327034

[18] A. M. Campos, F. B. Merelo, M. M. Peiro, and J. C. Esteve, “High parallel-

pipeline integer-pel and fractional-pel motion estimation vlsi architectures for

256

http://dx.doi.org/10.1109/FPL.2005.1515751
http://www.cast-inc.com/info/events/shows/dcon06/1-WP1--Vincenzo%20Liguori.pdf
http://www.cast-inc.com/info/events/shows/dcon06/1-WP1--Vincenzo%20Liguori.pdf
http://dx.doi.org/10.1007/s11554-007-0054-9
http://dx.doi.org/10.1109/TVLSI.2007.902203
http://dx.doi.org/10.1109/92.924059
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1327034

h.264/avc,” in VLSI Circuits and Systems III, Valente, K. Eshraghian, and

F. B. Tobajas, Eds., vol. 6590, no. 1. SPIE, 2007. [Online]. Available:

http://dx.doi.org/10.1117/12.724042

[19] S. Oktem and I. Hamzaoglu, “An efficient hardware architecture for quarter-pixel

accurate h.264 motion estimation,” in Digital System Design Architectures,

Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on, 2007, pp.

444–447. [Online]. Available: http://dx.doi.org/10.1109/DSD.2007.4341507

[20] I. E. G. Richardson, H.264 and MPEG-4 Video Compression. Wiley, 2003.

[21] G. J. Sullivan and T. Wiegand, “Video compression - from concepts to the

h.264/avc standard,” Proceedings of the IEEE, vol. 93, no. 1, pp. 18–31, 2005.

[Online]. Available: http://dx.doi.org/10.1109/JPROC.2004.839617

[22] R. Schafer and T. Sikora, “Digital video coding standards and their role in video

communications,” Proceedings of the IEEE, vol. 83, no. 6, pp. 907–924, 1995.

[Online]. Available: http://dx.doi.org/10.1109/5.387092

[23] “H.264 baseline video encoder ip core,” 4i2i Communications Ltd, May 2007.

[Online]. Available: http://www.4i2i.com/downloads/H264BaseEncXilinxIP.pdf

[24] Y.-C. Chang, W.-M. Chao, and L.-G. Chen, “Platform-based mpeg-4

video encoder soc design,” in Signal Processing Systems, 2004. SIPS

2004. IEEE Workshop on, 2004, pp. 251–256. [Online]. Available: http:

//dx.doi.org/10.1109/SIPS.2004.1363058

[25] Ben, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, and H. Levi,

“An fpga implementation of hw/sw codesign architecture for h.263 video

coding,” AEU - International Journal of Electronics and Communications,

vol. 61, no. 9, pp. 605–620, October 2007. [Online]. Available: http:

//dx.doi.org/10.1016/j.aeue.2006.11.001

257

http://dx.doi.org/10.1117/12.724042
http://dx.doi.org/10.1109/DSD.2007.4341507
http://dx.doi.org/10.1109/JPROC.2004.839617
http://dx.doi.org/10.1109/5.387092
http://www.4i2i.com/downloads/H264BaseEncXilinxIP.pdf
http://dx.doi.org/10.1109/SIPS.2004.1363058
http://dx.doi.org/10.1109/SIPS.2004.1363058
http://dx.doi.org/10.1016/j.aeue.2006.11.001
http://dx.doi.org/10.1016/j.aeue.2006.11.001

[26] M. Ikeda, T. Kondo, K. Nitta, K. Suguri, T. Yoshitome, T. Minami,

H. Iwasaki, K. Ochiai, J. Naganuma, M. Endo, Y. Tashiro, H. Watanabe,

N. Kobayashi, T. Okubo, and R. Kasai, “Superenc: Mpeg-2 video encoder

chip,” IEEE Micro, vol. 19, no. 4, pp. 56–65, 1999. [Online]. Available:

http://dx.doi.org/10.1109/40.782568

[27] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W.

Chen, and L.-G. Chen, “Analysis and architecture design of an hdtv720p

30 frames/s h.264/avc encoder,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 16, no. 6, pp. 673–688, 2006. [Online]. Available:

http://dx.doi.org/10.1109/TCSVT.2006.873163

[28] T.-C. Chen, Y.-W. Huang, and L.-G. Chen, “Analysis and design

of macroblock pipelining for h.264/avc vlsi architecture,” in Circuits

and Systems, 2004. ISCAS ’04. Proceedings of the 2004 International

Symposium on, vol. 2, 2004, pp. II–273–6 Vol.2. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1329261

[29] Y.-K. Chen, E. Q. Li, X. Zhou, and S. Ge, “Implementation of h.264 encoder and

decoder on personal computers,” Journal of Visual Communication and Image

Representation, vol. 17, no. 2, pp. 509–532, April 2006. [Online]. Available:

http://dx.doi.org/10.1016/j.jvcir.2005.05.004

[30] A. Rodriguez, A. Gonzalez, and M. P. Malumbres, “Hierarchical parallelization

of an h.264/avc video encoder,” in Parallel Computing in Electrical Engineering,

2006. PAR ELEC 2006. International Symposium on, 2006, pp. 363–368.

[Online]. Available: http://dx.doi.org/10.1109/PARELEC.2006.42

[31] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm

for block motion estimation,” Circuits and Systems for Video Technology,

258

http://dx.doi.org/10.1109/40.782568
http://dx.doi.org/10.1109/TCSVT.2006.873163
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1329261
http://dx.doi.org/10.1016/j.jvcir.2005.05.004
http://dx.doi.org/10.1109/PARELEC.2006.42

IEEE Transactions on, vol. 4, no. 4, pp. 438–442, 1994. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=313138

[32] M. J. Chen, L. G. Chen, and T. D. Chiueh, “One-dimensional full search

motion estimation algorithm for video coding,” Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 4, no. 5, pp. 504–509, 1994. [Online].

Available: http://dx.doi.org/10.1109/76.322998

[33] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast

block motion estimation,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 6, no. 3, pp. 313–317, 1996. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=499840

[34] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-matching

motion estimation,” Image Processing, IEEE Transactions on, vol. 9, no. 2, pp.

287–290, 2000. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=821744

[35] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search pattern for fast

block motion estimation,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 12, no. 5, pp. 349–355, 2002. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1003474

[36] Z.-L. He, C.-Y. Tsui, K.-K. Chan, and M. L. Liou, “Low-power vlsi design

for motion estimation using adaptive pixel truncation,” Circuits and Systems

for Video Technology, IEEE Transactions on, vol. 10, no. 5, pp. 669–678,

2000. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=

856445

[37] A. Bahari, T. Arslan, and A. T. Erdogan, “Low power variable block size motion

estimation using pixel truncation,” in Circuits and Systems, 2007. ISCAS 2007.

259

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=313138
http://dx.doi.org/10.1109/76.322998
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=499840
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=821744
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=821744
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1003474
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=856445
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=856445

IEEE International Symposium on, 2007, pp. 3663–3666. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4253475

[38] W. Li and E. Salari, “Successive elimination algorithm for motion estimation,”

Image Processing, IEEE Transactions on, vol. 4, no. 1, pp. 105–107, 1995.

[Online]. Available: http://dx.doi.org/10.1109/83.350809

[39] A. M. Tourapis, O. C. Au, and M. L. Liou, “Highly efficient predictive zonal

algorithms for fast block-matching motion estimation,” Circuits and Systems

for Video Technology, IEEE Transactions on, vol. 12, no. 10, pp. 934–947,

2002. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=

1058224

[40] C. H. Hsieh and T. P. Lin, “Vlsi architecture for block-matching motion

estimation algorithm,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 2, no. 2, pp. 169–175, 1992. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=143416

[41] D. Tzovaras and M. G. Strintzis, “Motion and disparity field estimation using

rate-distortion optimization,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 8, no. 2, pp. 171–180, 1998.

[42] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, “Survey

on block matching motion estimation algorithms and architectures with new

results,” The Journal of VLSI Signal Processing, vol. 42, no. 3, pp. 297–320,

March 2006. [Online]. Available: http://dx.doi.org/10.1007/s11265-006-4190-4

[43] C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C. Wang, and L.-G.

Chen, “Analysis and architecture design of variable block-size motion estimation

for h.264/avc,” Circuits and Systems I: Regular Papers, IEEE Transactions

on [see also Circuits and Systems I: Fundamental Theory and Applications,

260

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4253475
http://dx.doi.org/10.1109/83.350809
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1058224
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1058224
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=143416
http://dx.doi.org/10.1007/s11265-006-4190-4

IEEE Transactions on], vol. 53, no. 3, pp. 578–593, 2006. [Online]. Available:

http://dx.doi.org/10.1109/TCSI.2005.858488

[44] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of

block motion vectors,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 3, no. 2, pp. 148–157, 1993. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=212720

[45] H.-W. Cheng and L.-R. Dung, “A content-based methodology for power-aware

motion estimation architecture,” Circuits and Systems II: Express Briefs, IEEE

Transactions on [see also Circuits and Systems II: Analog and Digital Signal

Processing, IEEE Transactions on], vol. 52, no. 10, pp. 631–635, 2005. [Online].

Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1519649

[46] Z. Liu, Y. Song, T. Ikenaga, and S. Goto, “Low-pass filter based vlsi

oriented variable block size motion estimation algorithm for h.264,” in

Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006

IEEE International Conference on, vol. 2, 2006, p. II. [Online]. Available:

http://dx.doi.org/10.1109/ICASSP.2006.1660327

[47] M.-J. Chen, L.-G. Chen, T.-D. Chiueh, and Y.-P. Lee, “A new block-matching

criterion for motion estimation and its implementation,” Circuits and Systems

for Video Technology, IEEE Transactions on, vol. 5, no. 3, pp. 231–236, 1995.

[Online]. Available: http://dx.doi.org/10.1109/76.401100

[48] H. Gharavi and M. Mills, “Blockmatching motion estimation algorithms-new

results,” Circuits and Systems, IEEE Transactions on, vol. 37, no. 5, pp.

649–651, 1990. [Online]. Available: http://dx.doi.org/10.1109/31.55010

[49] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive elimination

algorithm for block matching motion estimation,” Image Processing, IEEE

261

http://dx.doi.org/10.1109/TCSI.2005.858488
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=212720
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1519649
http://dx.doi.org/10.1109/ICASSP.2006.1660327
http://dx.doi.org/10.1109/76.401100
http://dx.doi.org/10.1109/31.55010

Transactions on, vol. 9, no. 3, pp. 501–504, 2000. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=826786

[50] Z. Chen, J. Xu, Y. He, and J. Zheng, “Fast integer-pel and fractional-pel

motion estimation for h.264/avc,” Journal of Visual Communication and Image

Representation, vol. 17, no. 2, pp. 264–290, April 2006. [Online]. Available:

http://dx.doi.org/10.1016/j.jvcir.2004.12.002

[51] Y.-W. Huang, S.-Y. Chien, B.-Y. Hsieh, and L.-G. Chen, “Global

elimination algorithm and architecture design for fast block matching

motion estimation,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 14, no. 6, pp. 898–907, 2004. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1302172

[52] T.-C. Chen, Y.-H. Chen, S.-F. Tsai, and L.-G. Chen, “Architecture design

of low power integer motion estimation for h. 264/avc,” in Acoustics,

Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE

International Conference on, vol. 3, 2006, pp. III–900–III–903. [Online].

Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1660800

[53] S. Yang, W. Wolf, and N. Vijaykrishnan, “Power and performance analysis of

motion estimation based on hardware and software realizations,” Computers,

IEEE Transactions on, vol. 54, no. 6, pp. 714–726, 2005. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1461359

[54] R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy, “Power-

efficient ram mapping algorithms for fpga embedded memory blocks,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, vol. 26, no. 2, pp. 278–290, 2007. [Online]. Available: http:

//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4068934

262

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=826786
http://dx.doi.org/10.1016/j.jvcir.2004.12.002
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1302172
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1660800
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1461359
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4068934
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4068934

[55] K. M. Yang, M. T. Sun, and L. Wu, “A family of vlsi designs for the

motion compensation block-matching algorithm,” Circuits and Systems, IEEE

Transactions on, vol. 36, no. 10, pp. 1317–1325, 1989. [Online]. Available:

http://dx.doi.org/10.1109/31.44348

[56] S. Y. Yap and J. V. Mccanny, “A vlsi architecture for variable block size video

motion estimation,” Circuits and Systems II: Express Briefs, IEEE Transactions

on [see also Circuits and Systems II: Analog and Digital Signal Processing,

IEEE Transactions on], vol. 51, no. 7, pp. 384–389, 2004. [Online]. Available:

http://dx.doi.org/10.1109/TCSII.2004.829555

[57] B. Li and P. Leong, “Serial and parallel fpga-based variable block

size motion estimation processors,” Journal of Signal Processing Systems,

vol. 51, no. 1, pp. 77–98, April 2008. [Online]. Available: http:

//dx.doi.org/10.1007/s11265-007-0143-9

[58] V. L. Do and K. Y. Yun, “A low-power vlsi architecture for full-search

block-matching motion estimation,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 8, no. 4, pp. 393–398, 1998. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=709406

[59] M. Jiang, D. Crookes, S. Davidson, and R. Turner, “Low-power systolic

array processor architecture for fsbm video motion estimation,” Electronics

Letters, vol. 42, no. 20, pp. 1146–1147, 2006. [Online]. Available: http:

//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1706025

[60] S. Lopez, F. Tobajas, A. Villar, V. de Armas, J. F. Lopez, and R. Sarmiento,

“Low cost efficient architecture for h.264 motion estimation,” in Circuits and

Systems, 2005. ISCAS 2005. IEEE International Symposium on, 2005, pp. 412–

415 Vol. 1. [Online]. Available: http://dx.doi.org/10.1109/ISCAS.2005.1464612

263

http://dx.doi.org/10.1109/31.44348
http://dx.doi.org/10.1109/TCSII.2004.829555
http://dx.doi.org/10.1007/s11265-007-0143-9
http://dx.doi.org/10.1007/s11265-007-0143-9
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=709406
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1706025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1706025
http://dx.doi.org/10.1109/ISCAS.2005.1464612

[61] H.-M. Jong, Liang-Gee, and T.-D. Chiueh, “Parallel architectures for 3-step

hierarchical search block-matching algorithm,” Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 4, no. 4, pp. 407–416, 1994. [Online].

Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=313135

[62] Y.-L. Xi, C.-Y. Hao, Y.-Y. Fan, and H.-Q. Hu, “A fast block-matching algorithm

based on adaptive search area and its vlsi architecture for h.264/avc,” Signal

Processing: Image Communication, vol. 21, no. 8, pp. 626–646, September 2006.

[Online]. Available: http://dx.doi.org/10.1016/j.image.2006.05.001

[63] S. Dutta and W. Wolf, “A flexible parallel architecture adapted to block-

matching motion-estimation algorithms,” Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 6, no. 1, pp. 74–86, 1996. [Online].

Available: http://dx.doi.org/10.1109/76.486422

[64] K. Babionitakis, G. Doumenis, G. Georgakarakos, G. Lentaris, K. Nakos,

D. Reisis, I. Sifnaios, and N. Vlassopoulos, “A real-time motion estimation fpga

architecture,” Journal of Real-Time Image Processing, vol. 3, no. 1, pp. 3–20,

March 2008. [Online]. Available: http://dx.doi.org/10.1007/s11554-007-0070-9

[65] M. Ribeiro and L. Sousa, “A run-time reconfigurable processor for video

motion estimation,” in Field Programmable Logic and Applications, 2007. FPL

2007. International Conference on, 2007, pp. 726–729. [Online]. Available:

http://dx.doi.org/10.1109/FPL.2007.4380755

[66] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory

bandwidth analysis for full-search block-matching vlsi architecture,” Circuits

and Systems for Video Technology, IEEE Transactions on, vol. 12, no. 1,

pp. 61–72, 2002. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=981846

264

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=313135
http://dx.doi.org/10.1016/j.image.2006.05.001
http://dx.doi.org/10.1109/76.486422
http://dx.doi.org/10.1007/s11554-007-0070-9
http://dx.doi.org/10.1109/FPL.2007.4380755
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=981846
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=981846

[67] C.-Y. Chen, C.-T. Huang, Y.-H. Chen, and L.-G. Chen, “Level c+ data reuse

scheme for motion estimation with corresponding coding orders,” Circuits and

Systems for Video Technology, IEEE Transactions on, vol. 16, no. 4, pp. 553–558,

2006. [Online]. Available: http://dx.doi.org/10.1109/TCSVT.2006.871388

[68] T. Wedi and H. G. Musmann, “Motion- and aliasing-compensated prediction

for hybrid video coding,” Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 13, no. 7, pp. 577–586, 2003. [Online]. Available:

http://dx.doi.org/10.1109/TCSVT.2003.815171

[69] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen, “Performance

analysis of hardware oriented algorithm modifications in h.264,” in Acoustics,

Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03). 2003 IEEE

International Conference on, vol. 2, 2003, pp. II–493–6 vol.2. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1202411

[70] C. A. Rahman and W. Badawy, “A quarter pel full search block motion

estimation architecture for h.264/avc,” in Multimedia and Expo, 2005. ICME

2005. IEEE International Conference on, 2005, pp. 4 pp.+. [Online]. Available:

http://dx.doi.org/10.1109/ICME.2005.1521448

[71] W. Lee, S. Lee, and J. Kim, “Pipelined intra prediction using shuffled encoding

order for h.264/avc,” in TENCON 2006. 2006 IEEE Region 10 Conference, 2006,

pp. 1–4. [Online]. Available: http://dx.doi.org/10.1109/TENCON.2006.343970

[72] Y. J. Liang and K. El-Maleh, “Low-complexity intra/inter mode-decision for

h.264/avc video coder,” in Intelligent Multimedia, Video and Speech Processing,

2004. Proceedings of 2004 International Symposium on, 2004, pp. 53–56. [Online].

Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1433998

[73] C. Kim and C. C. J. Kuo, “A feature-based approach to fast h.264

intra/inter mode decision,” in Circuits and Systems, 2005. ISCAS 2005. IEEE

265

http://dx.doi.org/10.1109/TCSVT.2006.871388
http://dx.doi.org/10.1109/TCSVT.2003.815171
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1202411
http://dx.doi.org/10.1109/ICME.2005.1521448
http://dx.doi.org/10.1109/TENCON.2006.343970
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1433998

International Symposium on, 2005, pp. 308–311 Vol. 1. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1464586

[74] C. S. Kannangara, I. E. G. Richardson, M. Bystrom, J. R. Solera, Y. Zhao,

A. Maclennan, and R. Cooney, “Low-complexity skip prediction for h.264

through lagrangian cost estimation,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 16, no. 2, pp. 202–208, 2006. [Online]. Available:

http://dx.doi.org/10.1109/TCSVT.2005.859026

[75] C. F. Chen and K. K. Pang, “The optimal transform of motion-compensated

frame difference images in a hybrid coder,” Circuits and Systems II: Analog and

Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems

II: Express Briefs, IEEE Transactions on], vol. 40, no. 6, pp. 393–397, 1993.

[76] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity

transform and quantization in h.264/avc,” Circuits and Systems for Video

Technology, IEEE Transactions on, vol. 13, no. 7, pp. 598–603, 2003. [Online].

Available: http://dx.doi.org/10.1109/TCSVT.2003.814964

[77] K. Suh, S. Park, and H. Cho, “An efficient hardware architecture of

intra prediction and tq/iqit module for h.264 encoder.” ETRI Journal,

vol. 27, no. 5, pp. 511–524, October 2005. [Online]. Available: http:

//etrij.etri.re.kr/Cyber/servlet/BrowseAbstract?paperid=S40501-0032

[78] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen, “Parallel 4/spl times/4

2d transform and inverse transform architecture for mpeg-4 avc/h.264,” in

Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003 International

Symposium on, vol. 2, 2003, pp. II–800–II–803 vol.2. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1206095

[79] K.-H. Chen, J.-I. Guo, and J.-S. Wang, “A high-performance direct 2-d

transform coding ip design for mpeg-4avc/h.264,” Circuits and Systems for

266

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1464586
http://dx.doi.org/10.1109/TCSVT.2005.859026
http://dx.doi.org/10.1109/TCSVT.2003.814964
http://etrij.etri.re.kr/Cyber/servlet/BrowseAbstract?paperid=S40501-0032
http://etrij.etri.re.kr/Cyber/servlet/BrowseAbstract?paperid=S40501-0032
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1206095

Video Technology, IEEE Transactions on, vol. 16, no. 4, pp. 472–483, 2006.

[Online]. Available: http://dx.doi.org/10.1109/TCSVT.2006.872782

[80] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary

arithmetic coding in the h.264/avc video compression standard,” Circuits and

Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 620–636,

2003. [Online]. Available: http://dx.doi.org/10.1109/TCSVT.2003.815173

[81] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,

“Adaptive deblocking filter,” Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 13, no. 7, pp. 614–619, 2003. [Online]. Available:

http://dx.doi.org/10.1109/TCSVT.2003.815175

[82] A. Amara, F. Amiel, and T. Ea, “Fpga vs. asic for low power applications,”

Microelectronics Journal, vol. 37, no. 8, pp. 669–677, August 2006. [Online].

Available: http://dx.doi.org/10.1016/j.mejo.2005.11.003

[83] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” in

FPGA’06: Proceedings of the internation symposium on Field programmable gate

arrays. New York, NY, USA: ACM Press, 2006, pp. 21–30. [Online]. Available:

http://dx.doi.org/10.1145/1117201.1117205

[84] “Cyclone ii device handbook volume 1,” Altera Corporation, June 2006.

[Online]. Available: http://www.altera.com/literature/hb/cyc2/cyc2 cii5v1.pdf

[85] I. Xilinx, “Spartan-3 fpga data sheet,” June 2008. [Online]. Available:

http://www.xilinx.com/support/documentation/spartan-3 data sheets.htm

[86] Altera, “Cyclone ii fpga family datasheet,” February 2008. [Online]. Available:

http://www.altera.com/literature/hb/cyc2/cyc2 cii51001.pdf

[87] ——, “Cyclone iii device datasheet,” October 2008. [Online]. Available:

http://www.altera.com/literature/hb/cyc3/cyc3 ciii5v2.pdf

267

http://dx.doi.org/10.1109/TCSVT.2006.872782
http://dx.doi.org/10.1109/TCSVT.2003.815173
http://dx.doi.org/10.1109/TCSVT.2003.815175
http://dx.doi.org/10.1016/j.mejo.2005.11.003
http://dx.doi.org/10.1145/1117201.1117205
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf
http://www.xilinx.com/support/documentation/spartan-3_data_sheets.htm
http://www.altera.com/literature/hb/cyc2/cyc2_cii51001.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii5v2.pdf

[88] J. H. Anderson and F. N. Najm, “Power estimation techniques for

fpgas,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 12, no. 10, pp. 1015–1027, 2004. [Online]. Available: http:

//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1336847

[89] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm low-power fpga

for battery-powered applications,” in FPGA’06: Proceedings of the internation

symposium on Field programmable gate arrays. New York, NY, USA: ACM Press,

2006, pp. 3–11. [Online]. Available: http://dx.doi.org/10.1145/1117201.1117203

[90] T. Tuan and B. Lai, “Leakage power analysis of a 90nm fpga,” in

Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003,

2003, pp. 57–60. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=1249359

[91] F. Li, Y. Lin, L. He, and J. Cong, “Low-power fpga using pre-

defined dual-vdd/dual-vt fabrics,” in FPGA ’04: Proceedings of the 2004

ACM/SIGDA 12th international symposium on Field programmable gate arrays.

New York, NY, USA: ACM Press, 2004, pp. 42–50. [Online]. Available:

http://dx.doi.org/10.1145/968280.968288

[92] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan,

“Reducing leakage energy in fpgas using region-constrained placement,” in

FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international symposium

on Field programmable gate arrays. New York, NY, USA: ACM Press, 2004,

pp. 51–58. [Online]. Available: http://dx.doi.org/10.1145/968280.968289

[93] F. Li, Y. Lin, and L. He, “Fpga power reduction using configurable

dual-vdd,” in Design Automation Conference, 2004. Proceedings. 41st, 2004,

pp. 735–740. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=1322580

268

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1336847
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1336847
http://dx.doi.org/10.1145/1117201.1117203
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1249359
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1249359
http://dx.doi.org/10.1145/968280.968288
http://dx.doi.org/10.1145/968280.968289
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1322580
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1322580

[94] J. H. Anderson and F. N. Najm, “Active leakage power optimization for

fpgas,” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 25, no. 3, pp. 423–437, 2006. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1597379

[95] ——, “Power-aware technology mapping for lut-based fpgas,” in Field-

Programmable Technology, 2002. (FPT). Proceedings. 2002 IEEE International

Conference on, 2002, pp. 211–218. [Online]. Available: http://ieeexplore.ieee.

org/xpls/abs all.jsp?arnumber=1188684

[96] J. Lamoureux and S. J. E. Wilton, “On the interaction between power-

aware fpga cad algorithms,” in Computer Aided Design, 2003. ICCAD-

2003. International Conference on, 2003, pp. 701–708. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1257886

[97] S. J. E. Wilton, S.-S. Ang, and W. Luk, “The impact of pipelining on energy

per operation in field-programmable gate arrays,” in Lecture Notes in Computer

Science : Field Programmable Logic and Application, 2004, pp. 719–728.

[Online]. Available: http://www.springerlink.com/content/3peu6h9vv32x8akk

[98] H. Lim, K. Lee, Y. Cho, and N. Chang, “Flip-flop insertion with shifted-phase

clocks for fpga power reduction,” in ICCAD ’05: Proceedings of the 2005

IEEE/ACM International conference on Computer-aided design. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 335–342. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1129601.1129651

[99] R. Fischer, K. Buchenrieder, and U. Nageldinger, “Reducing the power

consumption of fpgas through retiming,” in Engineering of Computer-

Based Systems, 2005. ECBS ’05. 12th IEEE International Conference

and Workshops on the, 2005, pp. 89–94. [Online]. Available: http:

//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1409905

269

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1597379
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1188684
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1188684
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1257886
http://www.springerlink.com/content/3peu6h9vv32x8akk
http://portal.acm.org/citation.cfm?id=1129601.1129651
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1409905
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1409905

[100] S. Khawam, T. Arslan, and F. Westali, “Embedded reconfigurable array

targeting motion estimation applications,” in Circuits and Systems, 2003.

ISCAS ’03. Proceedings of the 2003 International Symposium on, vol. 2, 2003,

pp. II–760–II–763 vol.2. [Online]. Available: http://ieeexplore.ieee.org/xpls/

abs all.jsp?arnumber=1206085

[101] J. Rose, “Hard vs. soft: the central question of pre-fabricated silicon,” in

Multiple-Valued Logic, 2004. Proceedings. 34th International Symposium on,

2004, pp. 2–5. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=1319911

[102] R. Tessier, V. Betz, D. Neto, and T. Gopalsamy, “Power-aware ram

mapping for fpga embedded memory blocks,” in FPGA’06: Proceedings

of the internation symposium on Field programmable gate arrays. New

York, NY, USA: ACM Press, 2006, pp. 189–198. [Online]. Available:

http://dx.doi.org/10.1145/1117201.1117229

[103] “Quartus 2 version 8.0 handbook volume 2: Design implementation

and optimization,” Altera Corporation, May 2008. [Online]. Available:

http://www.altera.com/literature/hb/qts/qts qii52016.pdf

[104] S. J. E. Wilton, “Implementing logic in fpga embedded memory arrays:

architectural implications,” in Custom Integrated Circuits Conference, 1998.,

Proceedings of the IEEE 1998, 1998, pp. 269–272. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=694978

[105] S. Y. L. Chin, C. S. P. Lee, and S. J. E. Wilton, “Power implications of

implementing logic using fpga embedded memory arrays,” in Field Programmable

Logic and Applications, 2006. FPL ’06. International Conference on, 2006, pp.

1–8. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=

4100962

270

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1206085
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1206085
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1319911
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1319911
http://dx.doi.org/10.1145/1117201.1117229
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=694978
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4100962
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4100962

[106] Synplicity, “Gated clock conversion with synplicity’s synthesis products,” web.

[Online]. Available: #

[107] Y. Zhang, J. Roivainen, and A. Mammela, “Clock-gating in fpgas: A

novel and comparative evaluation,” in Digital System Design: Architectures,

Methods and Tools, 2006. DSD 2006. 9th EUROMICRO Conference on, 2006,

pp. ‘584–590. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=1690091

[108] “H.261/3 and mpeg-4 video encoder ip core datasheet,” 4i2i Communcations,

2004.

[109] “Opb ipif (v3.01c),” Xilinx, December 2005. [Online]. Available: http:

//www.xilinx.com/support/documentation/ip documentation/opb ipif.pdf

[110] “Xilinx spartan-3 evaluation kit,” Avnet, Inc., 2004. [On-

line]. Available: http://www.em.avnet.com/ctf shared/evk/df2df2usa/Xilinx%

20Spartan-3%20Evaluation%20Kit%20-%20Brief%20022504F.pdf

[111] “Audio/video module,” Avnet, Inc., 2004. [Online]. Available: http://www.em.

avnet.com/ctf shared/evk/df2df2usa/Audio Video Module% Brief 040904F.pdf

[112] “Communications/memory module,” Avnet, Inc., 2002. [Online]. Avail-

able: http://www.em.avnet.com/ctf shared/evk/df2df2usa/Communications

Memory Module Brief 021003F.pdf

[113] “Opb synchronous dram (sdram) controller (v1.00e),” Xilinx, July 2005. [Online].

Available: http://www.xilinx.com/support/documentation/ip documentation/

opb sdram.pdf

[114] “Opb ethernet media access controller (emac) (v1.04a),” Xilinx, November

2005. [Online]. Available: http://www.xilinx.com/support/documentation/

ip documentation/opb ethernet.pdf

271

#
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1690091
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1690091
http://www.xilinx.com/support/documentation/ip_documentation/opb_ipif.pdf
http://www.xilinx.com/support/documentation/ip_documentation/opb_ipif.pdf
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/Xilinx%20Spartan-3%20Evaluation%20Kit%20-%20Brief%20022504F.pdf
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/Xilinx%20Spartan-3%20Evaluation%20Kit%20-%20Brief%20022504F.pdf
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/Audio_Video_Module% _Brief_040904F.pdf
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/Audio_Video_Module% _Brief_040904F.pdf
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/Communications_Memory_Module_Brief_021003F.pdf
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/Communications_Memory_Module_Brief_021003F.pdf
http://www.xilinx.com/support/documentation/ip_documentation/opb_sdram.pdf
http://www.xilinx.com/support/documentation/ip_documentation/opb_sdram.pdf
http://www.xilinx.com/support/documentation/ip_documentation/opb_ethernet.pdf
http://www.xilinx.com/support/documentation/ip_documentation/opb_ethernet.pdf

[115] C. Zhu, “Rfc 2190: Rtp payload format for h.263 video streams,”

Internet Engineering Task Force, September 1997. [Online]. Available:

http://www.faqs.org/rfcs/rfc2190.html

[116] C. Bormann, L. Cline, T. Gardos, C. Maciocco, D. Newell, J. Ott, G. Sullivan,

S. Wenger, and C. Zhu, “Rfc 2329: Rtp payload format for the 1998 version

of itu-t rec. h.263 video (h.263+),” Internet Engineering Task Force, October

1998. [Online]. Available: http://www.ietf.org/rfc/rfc2429.txt

[117] 4i2i, “H.264 video encoder ip core datasheet,” August 2005.

[118] “The efficiency of the ddr & ddr2 sdram controller compiler,” Altera

Corporation, December 2004. [Online]. Available: http://www.altera.com/

literature/wp/wp ddr sdram efficiency.pdf

[119] Micron, “Micron sdram mt48lc2m32b2 datasheet,” March 2007. [On-

line]. Available: http://download.micron.com/pdf/datasheets/dram/sdram/

64MSDRAMx32.pdf

[120] Modelsim SE Reference Manual 6.3f, Mentor Graphics Corporation, March 2008.

[121] “Quartus ii version 8.0 handbook volume 3: Verification,” Altera Corporation,

May 2008. [Online]. Available: http://www.altera.com/literature/hb/qts/

qts qii5v3.pdf

[122] “Micron system power calculator,” Micron Technology, Inc, April 2001. [Online].

Available: http://www.micron.com/support/part info/powercalc

[123] “Stratix ii and virtex-4 power comparison,” Altera Corporation, August 2005.

[Online]. Available: http://www.altera.com/products/devices/stratix-fpgas/

stratix-ii/stratix-ii/features/st2-competitive.html?GSA pos=3\&WT.

oss r=1\&WT.oss=powerplay%20accuracy

272

http://www.faqs.org/rfcs/rfc2190.html
http://www.ietf.org/rfc/rfc2429.txt
http://www.altera.com/literature/wp/wp_ddr_sdram_efficiency.pdf
http://www.altera.com/literature/wp/wp_ddr_sdram_efficiency.pdf
http://download.micron.com/pdf/datasheets/dram/sdram/64MSDRAMx32.pdf
http://download.micron.com/pdf/datasheets/dram/sdram/64MSDRAMx32.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.micron.com/support/part_info/powercalc
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii/features/st2-competitive.html?GSA_pos=3&WT.oss_r=1&WT.oss=powerplay%20accuracy
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii/features/st2-competitive.html?GSA_pos=3&WT.oss_r=1&WT.oss=powerplay%20accuracy
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii/features/st2-competitive.html?GSA_pos=3&WT.oss_r=1&WT.oss=powerplay%20accuracy

[124] P. E. Landman and J. M. Rabaey, “Architectural power analysis: The

dual bit type method,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 3, no. 2, pp. 173–187, 1995. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=386219

[125] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power i/o,” Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 3, no. 1,

pp. 49–58, 1995. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=365453

[126] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “A coding framework for

low-power address and data busses,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 7, no. 2, pp. 212–221, 1999. [Online].

Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=766748

[127] K. Mohanram and S. Rixner, “Context-independent codes for off-chip

interconnects,” in Power-Aware Computer Systems, 2005, pp. 107–119. [Online].

Available: http://dx.doi.org/10.1007/11574859 8

[128] A. Bahari, T. Arslan, and A. T. Erdogan, “Interframe bus encoding

technique for low power video compression,” in VLSI Design, 2007.

Held jointly with 6th International Conference on Embedded Systems.,

20th International Conference on, 2007, pp. 691–698. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4092122

[129] C. Kretzschmar, R. Siegmund, and D. Müller, “Low power encoding techniques

for dynamically reconfigurable hardware,” The Journal of Supercomputing,

vol. 26, no. 2, pp. 185–203, 2003. [Online]. Available: http://dx.doi.org/10.

1023/A:1024451718410

273

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=386219
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=365453
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=365453
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=766748
http://dx.doi.org/10.1007/11574859_8
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4092122
http://dx.doi.org/10.1023/A:1024451718410
http://dx.doi.org/10.1023/A:1024451718410

[130] “H.264/avc jm reference software,” Joint Video Team (JVT) of ISO/IEC

MPEG & ITU-T VCEG, August 2008. [Online]. Available: http://iphome.hhi.

de/suehring/tml/

[131] B. Balasubramaniyam, “Stereoscopic video coding,” Ph.D. dissertation, Lough-

borough University, September 2006.

[132] A. Woods, “The application of stereoscopic video to underwater remotely oper-

ated vehicles.” APPEA Journal, vol. 37, pp. 797–800, 1997.

[133] David, “Skill acquisition and task performance in teleoperation using monoscopic

and stereoscopic video remote viewing,” in Proceedings of the Human Factors

Society, 1991, pp. 1367–1371.

[134] M. Lukacs, “Predictive coding of multi-viewpoint image sets,” in Acoustics,

Speech, and Signal Processing, IEEE International Conference on., vol. 11, 1986,

pp. 521–524.

[135] Mel, Priyan, S. Sethuraman, and Angel, “Compression of stereo image pairs and

streams,” in Stereoscopic Displays and Virtual Reality Systems.Proceedings of

SPIE, vol. 2177, 1994.

[136] S. Sun and S. Lei, “Stereo-view video coding using h.264 tools,” in Proceedings

of SPIE - The International Society for Optical Engineering, vol. 5685, 2005, pp.

177–184.

[137] K. Kamikura, H. Watanabe, H. Jozawa, H. Kotera, and S. Ichinose, “Global

brightness-variation compensation for video coding,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 8, no. 8, 1998.

[138] I. Dinstein, G. Guy, J. Rabany, J. Tzelgov, and A. Henik, “On stereo image

coding,” in Proceedings - International Conference on Pattern Recognition, 1988,

pp. 357–359.

274

http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/

[139] A. Puri, R. V. Kollarits, and B. G. Haskell, “Basics of stereoscopic video, new

compression results with mpeg-2 and a proposal for mpeg-4,” Signal Processing:

Image Communication, vol. 10, no. 1-3, pp. 201–234, 1997.

[140] W. Yang, K. Ngan, J. Lim, and K. Sohn, “Joint motion and disparity fields

estimation for stereoscopic video sequences,” Signal Processing: Image Commu-

nication, vol. 20, no. 3, pp. 265–276, 2005.

[141] A. Mancini, “Disparity estimation and intermediate view reconstruction for novel

applications in stereoscopic video,” Ph.D. dissertation, McGill University, 1998.

[142] J. D. Oh and C. C. J. Kuo, “A stereo video coding scheme based on h.264,”

in Proceedings of SPIE - The International Society for Optical Engineering, vol.

5909, 2005, pp. 1–10.

275

	List of Figures
	List of Tables
	Acknowledgments
	Author's Declaration
	List of Abbreviations
	Introduction
	Motivation for Work
	Contribution Of Thesis
	Thesis Organisation

	Video Compression: Algorithms and Architectures
	Hybrid Video Compression Overview
	Digital Video
	Video Encoding Process
	I,P and B Slices
	Measuring Video Quality
	Video Compression Standards

	Video Compression System Architectures
	Motion Estimation
	Full Pixel Motion Estimation: Algorithms
	Full Pixel Motion Estimation: Architectures
	Fractional Pixel Motion Estimation

	Intra Prediction
	Mode Decision
	Transform
	Entropy Encoding
	Loop Filter
	Summary
	Conclusions

	Field Programmable Gate Arrays
	FPGA Architecture
	FPGA Power Consumption
	FPGA Static Power
	FPGA Dynamic Power

	Summary

	FPGA Video Compression Systems
	H.263 Encoder System using the Xilinx Platform
	Design of an Pipelined Encoder suitable for integration into Xilinx platform based systems
	System Design
	Software Design
	Results

	H.264 Encoder System using the Altera Platform
	System Design
	Input/Output Interface
	Results

	Summary

	FPGA H.264 Video Encoder Power Analysis
	Power Estimation Method
	Obtaining FPGA Switching Activity Information
	SDRAM and Interconnect Power Modeling

	Results
	Validation of Power Estimation Method
	Overall Results
	FPGA Power Consumption
	IO/SDRAM Power Consumption

	Summary

	Using adaptive propagation to reduce the power used by an FPGA video encoder's memory bus
	Algorithm
	Bus Encoder/Decoder Implementation
	DBM/VBM Algorithm Overview
	DBM/VBM Implementation

	Results and Discussion
	Adaptive Propagation Algorithm
	DBM/VBM Implementation Results

	Summary

	Integration of the adaptive propagation algorithm into a pipelined video encoder
	Encoder Architecture
	Search Memory Architecture
	Full Pixel Motion Estimation Architecture
	Consequences of supporting adaptive propagation
	Dataflow
	Motion estimation unit
	Decision logic unit

	Fractional Pixel Estimation Architecture
	Dataflow
	Half Pixel Interpolator
	Half Pixel Estimator
	Quarter Pixel Interpolator/Estimator

	Results and Discussion
	Use of unencoded data for propagation decision
	Resources and Performance
	Power Used
	Overall Power Savings

	Summary

	Conclusions and Further Work
	Conclusions
	Further Work

	H.264 Stereo Video Compression
	Stereo Video
	Previous Work
	Stereo Video Compression using H.264
	Illumination Compensation

	Experiments
	Results and Discussion
	Conclusion

	Full Pixel Motion Estimation Array Timing
	Video Sequences Used
	H.264 Encoder Power Analysis Results
	Power By Encoder Function
	IO/SDRAM Power Consumption Results
	IO Power Consumption

	Fractional Estimation Power Results

