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Abstract 

Thiol dependent reductase 1 (TDR1) of Leishmania has been implicated in both 

the activation of pentavalent antimonial drugs and in the generation of drug-

thiol conjugates facilitating drug-resistance. Reverse genetic studies were 

carried out on TDR1 to elucidate the role of the enzyme and to assess its 

potential value as a drug target against Leishmania. In a similar study, O-

acetylserine (thiol) lyase (OAS-TL), a key enzyme for the de novo synthesis of 

cysteine in Leishmania, was investigated as a potential target for new 

antileishmanial drugs.   

TDR1 of Leishmania is a 49.9 kDa protein of which the physiological role remains 

unclear. The protein has shown both thiol transferase activity and 

dehydroascorbate reductase activity. Due to its ability to reduce pentavalent 

antimonials to the active trivalent form in vitro, TDR1 has been suggested as 

playing a vital role in antimonial resistance in Leishmania. This part of the study 

was undertaken to clarify the role TDR1 plays in the parasite by investigating the 

effects of deleting the gene. 

Attempts were made to generate Δtdr1 null mutants in Leishmania donovani, 

but these were unsuccessful despite the fact that Δtdr1 null mutants exist for L. 

major and L. infantum. The mutants of these latter lines were studied to 

discover more on the roles of the proteins. L. major and L. infantum Δtdr1 null 

mutant promastigotes grow normally and do not display any change in total 

intracellular levels of cysteine, glutathione and trypanothione. The L. major 

Δtdr1 null mutants were able to survive and proliferate in parasitophorous 

vacuoles of peritoneal macrophages in vitro, with significantly higher numbers of 

parasites per infected macrophage compared to L. major wild-type. This 

suggests that the loss of TDR1 is beneficial to L. major when establishing an 

infection in macrophages. However the loss of TDR1 also causes hypersensitivity 

to the antimonial drug sodium stibogluconate, under the conditions tested. The 

data generated in this study indicate that the physiological function of TDR1 

does not lie in the activation of pentavalent antimonials as has been previously 

suggested. 
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The sulfur-containing amino acid cysteine plays a vital role in the synthesis of 

low molecular weight thiols, e.g. glutathione and trypanothione, as well as 

redox active thiol-containing proteins. In addition, cysteine is important for the 

stabilisation of tertiary and quaternary protein conformation due to its ability to 

form inter- and intra-chain disulfide bonds with other cysteine residues. In 

mammals, cysteine can either be taken up from the environment, or synthesised 

via the reverse trans-sulfuration pathway, involving the action of the enzymes 

cystathionine β-synthase and cystathionine γ-lyase, to generate cysteine from 

the essential amino acid methionine. In contrast, Leishmania parasites can 

synthesise cysteine in two ways but appear unable to salvage it effectively. They 

contain the reverse trans-sulfuration pathway, similar to mammals, and 

additionally, can generate cysteine through the sulfhydrylation pathway from 

serine, coenzyme A and sulfide, by utilising the enzymes serine acetyltransferase 

and O-acetylserine (thiol) lyase (OAS-TL). 

The aim of this study was to assess the suitability of OAS-TL as a potential drug 

target against Leishmania. In this study, Δoas-tl null mutants were generated in 

L. donovani, thus negating the sulfhydrylation pathway. The Δoas-tl null mutant 

promastigotes displayed a slight growth defect as well as a severe morphological 

alterations directly affecting cell body and flagellum length. In addition, the 

Δoas-tl null mutants were unable to survive in the parasitophorous vacuoles of 

peritoneal macrophages in vitro, suggesting that the exogenous supply of a 

source of cysteine (such as methionine) was not sufficiently high to support 

parasite proliferation. The finding that addition of high methionine 

concentrations to the medium facilitates parasite survival supports this idea. 

The data show that either differentiation of promastigotes into amastigotes or 

proliferation of amastigotes is detrimentally affected by the deletion of OAS-TL. 

Lines re-expressing OAS-TL were also generated in the Δoas-tl null mutants and 

were found to complement the phenotypes of the Δoas-tl null mutants identified 

in this study. The inability of Leishmania Δoas-tl null mutants to survive within 

macrophages, together with the absence of OAS-TL in the mammalian host, 

make it a suitable candidate for the identification of new drug targets in the 

search for novel chemotherapeutic agents against leishmaniasis.  
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1.1 Leishmania 

Leishmania are obligate intracellular protozoa of the family Trypanosomatidae, 

and order Kinetoplastida. Over 20 species of Leishmania have been identified, 

each of which has specific mammalian reservoirs. The majority of mammalian 

reservoirs are rodents, but the human pathogens include L. major, L. mexicana, 

L. donovani, L. braziliensis, L. aethiopica and L. tropica (Lainson et al., 1979). 

Approximately 30 species of the phlebotomine sand-fly have been identified as 

vectors (Desjeux, 2004). 

1.2 Leishmaniasis and geographic distribution of disease 

Leishmaniasis is endemic in 88 countries worldwide (Figures 1.1 and 1.2), 66 of 

these are in the Old World and 22 in the New World (Desjeux, 2004). 72 of those 

countries affected are developing countries and a further 13 are among the least 

developed. At present, leishmaniasis affects 12 million people with a population 

of 350 million at risk. The clinical manifestation of leishmaniasis, which depends 

on the infective species as well as the immune response of the host, has been 

classified into four forms.  

1.2.1 Cutaneous leishmaniasis 

The most common clinical form is cutaneous leishmaniasis (CL), which is 

estimated to affect 1-1.5 million people annually (Desjeux, 2004). The disease 

involves the formation of up to 200 self-healing skin lesions on exposed parts of 

the body. When the lesions are multiple, CL can result in disability, and the 

disfiguring scars caused often create an aesthetic stigma. In the Old World, CL is 

mainly caused by L. major, L. tropica and L. aethiopica, and in the New World 

by L. mexicana, L. guyanensis and L. panamensis (Desjeux, 2004). 90 % of CL 

cases occur in Afghanistan, Algeria, Brazil, Iran, Peru, Saudi Arabia and Syria 

(Desjeux, 1996). 
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Figure 1.1 Geographic distribution of cutaneous leishmaniasis. 
Map showing highly endemic regions of cutaneous leishmaniasis in red. Map taken from 
www.vet.uga.edu. 

 

 

Figure 1.2 Geographic distribution of visceral leishmaniasis. 
Map showing highly endemic regions of visceral leishmaniasis in red. Map taken from 
www.vet.uga.edu.  
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1.2.2 Diffuse cutaneous leishmaniasis 

Diffuse cutaneous leishmaniasis (DCL) occurs in infected individuals that have a 

defective cell-mediated immune response. The disease is characterised by 

disseminated cutaneous lesions that resemble lepromatous leprosy. DCL does not 

self-heal and is prone to relapse after treatment with any of the drugs that are 

currently available (Desjeux, 2004). DCL is caused by L. aethiopica in the Old 

World and L. mexicana in the New World. 

1.2.3 Mucocutaneous leishmaniasis 

Mucocutaneous leishmaniasis (MCL), which is also known as espundia, is 

characterised by severely disfiguring lesions causing extensive destruction of the 

oral-nasal and pharyngeal cavities. This level of facial deformity causes affected 

individuals great suffering for life. Although most cases of MCL are caused by the 

New World species L. braziliensis and L. guyanensis, it has also been reported to 

be caused by L. donovani, L. major and, in the immune-suppressed, L. infantum, 

in the Old World (Desjeux, 2004).  

1.2.4 Visceral leishmaniasis 

Visceral leishmaniasis (VL), which is also known as kala azar, is a serious 

systemic infection characterised by irregular fever, severe weight loss, anaemia 

and swelling of the spleen and liver. The disease is fatal in the absence of 

treatment and is therefore considered of higher priority than CL. VL occurs in 65 

countries worldwide, however 90 % of cases occur in poor rural and suburban 

areas of Bangladesh, India, Nepal, Sudan and Brazil (Desjeux, 1996). There are 

an estimated 500 000 cases of VL annually. Most cases that occur on the Indian 

subcontinent and Eastern Africa are caused by L. donovani, whereas most cases 

in the New World are caused by L. infantum (Olliaro et al., 2002). 

1.3 Leishmania life-cycle 

Leishmania are digenetic and exist in two hosts, the female phlebotomine sand-

fly vector and the mammalian host. In the sand-fly, the parasite exists in its 
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flagellated promastigote form, and in the mammalian host, parasites reside 

intracellularly within phagolysosomes in amastigote form. A schematic 

representation of the Leishmania life-cycle is shown in Figure 1.3. 

Leishmania amastigotes are taken up by the female phlebotomine sand-fly 

vector, when it takes a blood-meal from an infected mammal. In order to 

survive within the sand-fly, the parasites must transform into the promastigote 

form. They will subsequently differentiate through six promastigote stages, as 

they move anterially through the mid-gut (Rogers et al., 2002). 

Members of the subgenus Leishmania undergo suprapylarian development taking 

place exclusively in the midgut and foregut of the vector whereas members of 

the subgenus Viannia also undergo a period of peripylarian development in the 

hindgut (Lainson et al., 1987). Amastigotes will transform into procyclic 

promastigotes which then differentiate into nectomonad promastigotes, then 

leptomonad promastigotes followed ultimately by the mammalian infective 

stage, metacyclic promastigotes (Rogers et al., 2002). Two further stages have 

been identified – haptomonad promastigotes and paramastigotes, but these have 

only been found in low numbers and the precursor form of each has never been 

established (Kamhawi, 2006). The time-dependent location of these distinct 

morphological forms of Leishmania promastigotes within the sand-fly are shown 

in Figure 1.4 (Kamhawi et al., 2006).  

Infective metacyclics have been reported to take between 6-9 days to develop 

from amastigotes, depending on the species (Kamhawi, 2006). The metacyclic 

promastigotes accumulate at the stomodeal valve and the thoracic midgut fills 

with promastigote secretory gel. This gel is made up mostly of leptomonad and 

metacyclic promastigotes, and due to the blockage of the midgut, forces the 

stomodeal valve open (Rogers et al., 2002). 
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Figure 1.3 Life cycle of Leishmania spp. 
Schematic diagram of the life cycle stages of Leishmania. The insect stages are shown on the left of the diagram, while the mammalian stages are shown on the right 
of the diagram. Taken from www.dpd.cdc.gov. 



8 
 

 
 

Figure 1.4 Leishmania promastigote stages within the sand-fly vector. 
Schematic representation of a female phlebotomine sand-fly infected with Leishmania, showing the distinct morphological forms of promastigotes within the midgut. 
The thoracic midgut is shown filled with promastigote secretory gel (PSG) which holds the stomodeal valve open. Taken from Kamhawi, 2006. 
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When the sand-fly takes a blood-meal, approximately 1000 metacyclic 

promastigotes are regurgitated into the bite site as well as the promastigote 

secretory gel plug. The main component of this is filamentous 

proteophosphoglycan (PPG), and has been show to enhance disease progression 

(Rogers et al., 2004).  

Within 10-24 h post-infection, polymorphonuclear neutrophil granulocytes (PMN) 

are recruited to the bite site, and the parasites are phagocytosed (Muller et al., 

2001). The spontaneous apoptosis of the PMN is inhibited by Leishmania to 

prolong the lifespan of the cell until macrophages are recruited to the bite site 

(Aga et al., 2002). This normally occurs 1-2 days post-infection, and the 

macrophages will phagocytose the infected PMN (Aga et al., 2002). By taking up 

Leishmania in this way, the parasites are able to infect macrophages without 

activating the antimicrobial functions of the macrophage (Laskay et al., 2003). 

Leishmania are then able to differentiate into amastigotes (Figure 1.5), the 

mammalian replicative stage of the parasite. 

Differentiation and replication both occur within a parasitophorous vacuole of a 

macrophage, and the lifecycle continues when a sand-fly takes a blood-meal 

from the infected mammal. 

1.4 Leishmania ultrastructure 

The structure of Leishmania promastigote and amastigotes stages are shown in 

Figure 1.6. Leishmania cells contain many of the organelles found in higher 

eukaryotes, but additionally contain a number of special organelles.  

1.4.1 Surface Coat 

Due to the digenetic life cycle of Leishmania, it goes through a number of 

distinct developmental stages. The specific shapes of these stages are 

maintained by an array of subpellicular microtubules that underly the plasma 

membrane (McConville et al., 2002). 
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Figure 1.5 Changes in cell shape during the Leishmania life-cycle. 
Scanning electron microscope images of the main life-cycle stages of Leishmania major. Taken 
from Besteiro et al., 2007. 
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Figure 1.6 Cell structure of Leishmania promastigotes and amastigotes. 
Schematic representation of the structural composition of Leishmania promastigotes (left) and 
amastigotes (right). The position of the flagellar pocket is indicative of the anterior end of the cell. 
Taken from Besteiro et al., 2007.  
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In promastigotes, the major macromolecule on the surface of the organism is 

lipophosphoglycan (LPG), the hyperglycosylated glycosylphosphatidylinositol 

(GPI) glycolipid (Mengeling et al., 1997). These surface molecules are made up 

of a conserved GPI anchor with a long phosphoglycan backbone that is 

elaborated with species- and stage-specific glycan side chains (Mengeling et al., 

1997). 

Polymorphisms in the LPG coat contribute to vector tropism in Leishmania (Sacks 

et al., 2000), and is also believed to play a role in protection of promastigotes 

from lysis by the alternative complement cascade and extracellular hydrolases 

(Puentes et al., 1990; Sacks, 2001). It has also been suggested that the LPG coat 

acts either directly or indirectly as a ligand for insect midgut and mammalian 

macrophage receptors (Mengeling et al., 1997; Sacks, 2000). The surface coat 

also contains various GPI proteins and proteophosphoglycans (PPGs), which are 

mostly masked on promastigotes by the LPG coat, and have been found to be 

important for resistance to complement lysis (Joshi et al., 1998). 

The surface of Leishmania amastigotes is coated with a layer of free GPIs and 

host-derived glycosphingolipids, likely to be involved in the protection of 

essential plasma membrane transporters from proteolysis in the parasitophorous 

vacuole. Amastigotes lack a prominent surface glycocalyx of GPI proteins and 

other GPI-anchored macromolecules, which could contribute to immune evasion 

in the parasites (McConville et al., 2002). 

As well as the pellicular plasma membrane, the surface membrane of Leishmania 

can be divided into a further two morphologically distinct subdomains; the 

flagellar membrane and the flagellar pocket. Despite their highly specialised 

biological functions, all three membranes are physically contiguous. 

1.4.2  Flagellar pocket and flagellum 

The flagellar pocket appears as a depression in the cell, formed by the 

invagination of the plasma membrane at the anterior region of the cell. Its 

membrane establishes a direct continuity with the membrane of the flagellum 

(De Souza, 2002), and it is the only region of the cell where the sub-pellicular 

microtubules associated with the membrane are not present (Landfear & 
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Ignatushchenko, 2001). The flagellar pocket has three main roles: the uptake of 

larger nutrients via receptor-mediated endocytosis, secretion of proteins into 

the extracellular medium and for integration of membrane proteins into the cell 

surface (Landfear & Ignatushchenko, 2001). 

The flagellum is a motility organelle involved in movement of the parasite 

forward via wave-like beats of the microtubule-based flagellar axoneme. The 

flagellum also contains a fibrous body called the paraflagellar rod that consists 

of discrete filaments, and runs along the length of the flagellum attached to the 

flagellar axoneme (Landfear & Ignatushchenko, 2001). As well as being involved 

in the motility of promastigotes, it is also involved in the attachment of the 

parasites to the endothelium of the sand-fly gut (Killick-Kendrick et al., 1974a & 

1974b). Amastigotes are immotile due to the fact that the flagellum is much 

shorter and does not emerge from the flagellar pocket in this stage. 

1.4.3 Mitochondrion and kinetoplast 

Each Leishmania cell contains a single mitochondrion, containing a single 

kinetoplast DNA (kDNA) network condensed into a disk-shaped structure.  The 

kDNA disk is localised to a specific region of the mitochondrial matrix, near the 

flagellar basal body (Liu et al., 2005). The network of kDNA is comprised of two 

types of DNA rings: minicircles and maxicircles. The kinetoplast contains a few 

thousand minicircles and a few dozen maxicircles (Liu et al., 2005) comprising 

10-20 % of the total DNA of the cell. Gene products of maxicircles are similar to 

those of mitochondrial DNAs of higher eukaryotes. The transcripts are cryptic 

and require editing to become functional mRNA, which involves the insertion or 

deletion of uridylate residues at precise internal sites (Liu et al., 2005). This 

editing is controlled by minicircle-encoded guide RNAs that serve as templates 

for uridylate-insertion and deletion. Therefore, the expression of kinetoplastid 

mitochondrial genes is a result of a cooperative effort between minicircle and 

maxicircle transcripts (Liu et al., 2005).  

Leishmania promastigotes contain a single mitochondrion that extends 

throughout the cell. In stationary phase, the mitochondrion is asymmetric, with 

a single tubule extending from one edge of the kinetoplast portion of the cell. 

However, in dividing cells, the mitochondrion forms a symmetric circular 
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structure with mitochondrial tubules extending from both edges of the 

kinetoplast portion that join in the posterior region of the cell (Simpson & 

Kretzer, 1997). In Leishmania amastigotes, the mitochondrion forms a complex 

network that extends throughout the cell (Coombs et al., 1986). 

1.4.4 The endocytic pathway 

The morphology and function of organelles in the endocytic pathway of 

Leishmania changes as these parasites differentiate from the promastigote stage 

to the amastigote stage of the parasite. The main organelles in this pathway are 

the endoplasmic reticulum (ER) and the Golgi apparatus. The ER consists of a 

nuclear envelope and a system of cisternae, often closely associated with the 

plasma membrane (McConville et al., 2002). The Golgi apparatus is located 

between the nucleus and flagellar pocket, and consists of a stack of 3 to 10 

cisternae and a polymorphic trans-Golgi network. 

The endocytic pathway of Leishmania promastigotes is made up of three 

morphologically distinct compartments: i) a network of tubular endosomes that 

are localised close to the flagellar pocket, ii) a population of multivesicular 

bodies that are located to the anterior end of promastigotes and iii) a 

multivesicular tubule (MVT)-lysosome that runs along the anterior-posterior axis 

of the parasite (Waller & McConville, 2002). The MVT-lysosome is the terminal 

component in the promastigote endocytic pathway (Ghedin et al., 2001; Mullin 

et al., 2001) and increases in lytic capacity as the cells reach stationary growth 

phase (Mullin et al., 2001). As well as a marked difference in morphology, the 

differentiation of Leishmania from promastigotes to amastigotes is associated 

with significant alterations in the abundance and intracellular distribution of 

secretory and endocytic compartments. In amastigotes, the ER is minimal, 

comprising primarily of the nuclear envelope, and the Golgi apparatus is 

dispersed and often difficult to detect (Waller & McConville, 2002). However, 

amastigotes of some species of Leishmania contain an expanded lysosome 

system often containing one or a number of very large lysosomal vacuoles called 

megasomes (Coombs et al., 1986). 

Endocytosis and lysosomal degradation provides a pathway by which Leishmania 

obtain essential nutrients, as well as being involved in the degradation and 
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turnover of endogenous proteins during differentiation (Waller & McConville, 

2002).  

1.4.5 Glycosomes 

Glycosomes are apparently randomly distributed organelles that belong to the 

peroxisome family. They are bound by a single phospholipid bilayer and contain 

no DNA, while up to 90 % of the protein content of these organelles consists of 

glycolytic enzymes (Michels et al., 2006). The glycosome normally consists of a 

homogenous, slightly dense matrix, although in L. mexicana a crystalloid core 

has been described (Vickerman & Preston, 1974).  

Glycosomes compartmentalise a number of metabolic functions and are believed 

to play an important role in metabolic adaptation of Leishmania to the different 

environments exposed to during the life-cycle. Ether-lipid synthesis and β-

oxidation of fatty acids takes place in the glycosomes (Zheng et al., 2004). The 

organelle also harbours the first seven enzymes of the glycolysis pathway and is 

therefore involved in energy production (Parsons et al., 2001).  

1.4.6 Acidocalcisomes 

Acidocalcisomes are spherical structures with an approximate diameter of 200 

nm, and are preferentially located at the cell periphery. The structures are 

considered storage organelles for a range of elements including phosphorus, 

magnesium, calcium, sodium and zinc (Miranda et al., 2000). 

1.5 Chemotherapy and drug resistance 

1.5.1 Antimonial drugs 

The pentavalent antimonials, e.g. sodium stibogluconate (Pentostam), were first 

introduced as a treatment against leishmaniasis in 1945. The drugs have been 

used to treat both VL and CL and since their introduction have been considered 

the cornerstone of anti-leishmanial therapy. Despite this, there are a number of 

factors decreasing the benefit of this drug. Antimonials require parenteral 

administration with long courses of treatment lasting up to 28 days, and a high 
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number of treatment failures in Nepal and India, particularly in Bihar State, are 

emerging that could be due to drug resistance. Bihar State is estimated to 

contain approximately 50% of annual cases of VL worldwide, with officially 

430,000 cases in the past 11 years, although this figure is believed to be at least 

five times greater in reality (Lira et al., 1999). The precise mode of action of the 

pentavalent antimonials, how they are taken up by the Leishmania and how 

resistance occurs remain unknown.    

1.5.1.1 Activation of antimonials 

The pentavalent antimonials (SbV) are prodrugs and as such, must be reduced to 

the active trivalent form (SbIII) in order to be active against intracellular 

amastigotes (Ouellette et al., 2004) (Figure 1.7). The site of this activation 

together with the mechanism by which it occurs is unclear. Some studies provide 

evidence that the drug is reduced within the amastigote but not the 

promastigote form of the parasite (Shaked-Mishan et al., 2001). Other studies 

have suggested that the reduction of SbV to SbIII occurs in the macrophage, prior 

to uptake by the parasite (Sereno et al., 1998). Therefore, it is most likely that 

the drug may be reduced and thus activated both within the macrophage and in 

the amastigote. Activation is reported to take place both non-enymatically and 

enzymatically within the parasite. The macrophage specific thiols cysteine and 

cysteinyl-glycine are capable of reducing SbV to SbIII in vivo within the acidic 

parasitophorous vacuole (Ferreira et al., 2003). The same study also provides 

some evidence that suggests activation of the drug may be mediated by 

trypanothione (a parasite-specific thiol) within Leishmania parasites (Ferreira et 

al., 2003). Enzymatic activation has been reported recently. The thiol 

dependent reductase, thiol dependent reductase 1 (TDR1) – which is similar to 

the omega class glutathione S-transferases (oGSTs) – is known to reduce SbV to 

SbIII enzymatically using glutathione as a reductant (Denton et al., 2004). 

Additionally, a recent study involved the characterisation of ACR2 – an 

antimoniate reductase – capable of reducing SbV to SbIII in Leishmania. This 

study also showed that the presence of this enzyme increased the sensitivity of 

Leishmania to pentavalent antimony (Zhou et al., 2004). 
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Figure 1.7 Entry, activation, action and efflux of antimonial drugs. 
Schematic representation of the pathways involved in entry, activation, action and efflux of 
antimonial drugs in Leishmania amastigotes. TR, trypanothione reductase; MRPA, multidrug 
resistance protein A; AQP1, aquaglyceroporin 1; TDR1, thiol dependent reductase 1; ACR2, 
arsenate reductase 2; ODC, ornithine decarboxylase; GCS, γ-glutamylcysteine synthetase; GS, 
glutathione synthetase. Activation of SbV may occur outside the amastigotes, and can therefore 
enter the parasite as SbV, via an unknown transporter (blue box) or as SbIII, via AQP1. SbV can 
be reduced within the amastigotes enzymatically by TDR1 or ACR2 or non-enzymatically by thiols. 
The active form of the drug can then affect the intracellular target, which is at present unknown. 
Possible mechanisms of resistance include the conjugation of the drug with thiols, which can then 
be extruded from the cell via an unknown transporter (orange box) or sequestered by MRPA into 
intracellular organelles (pale blue). Alterations in the expression of proteins involved in the 
synthesis of thiols (GCS, GS and ODC) have also been suggested as contributing factors in the 
resistance of Leishmania to antimonials. 
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1.5.1.2 Thiol dependent reductase 1 

Thiol dependent reductase 1 of Leishmania major is a 49.9 kDa protein, which 

forms a trimer of approximately 155 kDa (Denton et al., 2004). The enzyme 

displays a two-domain nature consisting of an N-terminal domain containing the 

characteristic motif of glutaredoxin and thioredoxin, and a C-terminal domain 

where the active site is more similar to the omega class of glutathione S-

transferases (Denton et al., 2004). TDR1 bears some similarity to the arsenate 

reductases, but uses glutathione as the reducing agent, as opposed to 

glutaredoxin and thioredoxin, which are utilised by the arsenate reductases 

(Denton et al., 2004).   

The precise role of the enzyme is as yet unknown, but it has been shown in vitro 

to have the ability to reduce pentavalent antimonials to trivalent antimonials 

(Denton et al., 2004). The amount of TDR1 in amastigotes has been found to be 

ten times the amount present in promastigotes (Denton et al., 2004). As 

Leishmania amastigotes are 50 – 600 times more sensitive to SbV than 

promastigotes (Roberts et al., 1995; Sereno et al., 1998; Callahan et al., 1997; 

Ephros et al., 1999), this increase in TDR1 has been implicated as the potential 

reason for the specificity of antimonial drugs to the amastigote stage, suggesting 

that the activation of SbV to SbIII is the physiological role of the enzyme. 

On the other hand, it has also been suggested that TDR1 plays a role in the 

detoxification of arsenic, due to its similarity with to the arsenate reductases 

(Styblo et al., 2000). Antimony is a metal related to arsenic, and organisms 

resistant to arsenic are often cross-resistant to antimony. If this hypothesis is 

true, the upregulation of TDR1 could play an important role in resistance of 

Leishmania to antimonial drugs. 

Tc52 of Trypanosoma cruzi is similar to glutathione S-transferase and has an 

overall identity of 45.7 % to TDR1 of L. major (Denton et al., 2004). Tc52 is a 52 

kDa protein which plays an important role in the regulation of intracellular thiol-

disulphide redox balance by reducing glutathione disulphide (Moutiez et al., 

1997). The active site residues of TDR1 and Tc52 are identical in the N-terminal 

domains, but differ in the C-terminal domains (Denton et al., 2004). Tc52 has 
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been shown to be essential for parasite survival and helps to modulate the host’s 

immune response to infection (Allaoui et al., 1999; Garzon et al., 2003). 

1.5.1.3 Uptake of antimonials 

Before SbIII/SbV can have an effect, it must be taken up by the amastigote. 

Entry of the drug into the amastigote is believed to occur both in its pentavalent 

form and its reduced, active trivalent form. SbV is known to enter and 

accumulate in Leishmania cells, supporting the hypothesis that activation occurs 

within the parasite (Shaked-Mishan, 2001). Evidence has also been provided 

which suggests the active SbIII enters amastigotes via the Leishmania 

aquaglyceroporin 1 (AQP1) (Gourbal et al., 2004). A recent study has shown that 

the routes of entry of SbV and SbIII to Leishmania are likely to differ and 

therefore the uptake of SbV into the cell must be via an, as yet, uncharacterised 

transporter (Brochu et al., 2003). 

1.5.1.4 Antileishmanial effects of antimonials 

Fatty acid β-oxidation has been reported as a potential cellular target of SbIII as 

well as the inhibition of glycolytic enzymes (Berman et al., 1989). However, the 

trivalent antimonial Triostam and the trivalent arsenical melarsen oxide were 

shown not to affect the activity of leishmanial hexokinase, phosphofructokinase, 

pyruvate kinase, malate dehydrogenase and phosphoenolpyruvate carboxykinase 

(Mottram & Coombs, 1985). It has also been shown that the active SbIII has two 

different mechanisms of action against Leishmania parasites. Firstly, SbIII 

induces the quick efflux of intracellular glutathione and trypanothione, thus 

decreasing thiol buffering capacity within the cell (Wyllie et al., 2004). In 

addition, the active drug is known to inhibit the action of trypanothione 

reductase, causing an increase in intracellular levels of the disulfide forms of 

glutathione and trypanothione (Wyllie et al., 2004). These effects combine to 

significantly compromise the redox potential of the cell, ultimately affecting the 

ability of the cells to withstand oxidative stress. Recent evidence has shown that 

antimony kills the parasite by a process of apoptosis involving DNA fragmentation 

and externalisation of phosphatidylserine on the outer surface of the membrane 

(Sudhandiran & Shaha, 2003).  
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1.5.1.5 Resistance to antimonials 

As is often the case with bacterial drug resistance, reduced drug uptake and 

increased drug efflux are two possible mechanisms by which resistance occurs in 

Leishmania parasites. Since resistance of Leishmania to antimonials has been 

associated with its reduced accumulation, it has been suggested that alteration 

in AQP1 gene transcript levels could be partly responsible for antimonial 

resistance in these organisms. Although changes have not been observed in AQP1 

gene copy numbers or in copy numbers of AQP homologues, it has been shown 

that AQP1 RNA levels are down-regulated in several promastigote species of 

Leishmania that are resistant to antimonials (Marquis et al., 2005). The 

intracellular organelle membrane protein multi-drug resistant protein A (MRPA), 

which is an ABC transporter, has been shown to transport metal/thiol conjugates 

(Legare et al., 1997). It is believed that MRPA may cause antimonial resistance 

by sequestration of these drug/thiol conjugates into cellular organelles ready for 

efflux from the cell. Furthermore, transfection of the MRPA gene has recently 

been shown to confer sodium stibogluconate resistance in L. infantum 

amastigotes (El Fadili et al., 2005). 

In addition, these metal/thiol conjugates could be exported out of the cell via 

an, as yet, uncharacterised efflux mechanism as well as or subsequent to 

sequestration into cellular organelles (Dey et al., 1994). 

Alternatively, both the over-expression and down-regulation of proteins involved 

in thiol biosynthesis have been reported to affect the sensitivity of Leishmania 

to antimonial drugs. Levels of trypanothione have been shown to be elevated in 

heavy metal arsenate-resistant Leishmania parasites (Haimeur et al., 1999). This 

increase in trypanothione is mediated by the over-expression of the rate limiting 

enzyme involved in polyamine biosynthesis - ornithine decarboxylase (ODC). Both 

the overexpression of γ-glutamylcysteine synthetase (GCS) and ODC would cause 

an increase in intracellular thiol levels. Consequently, this would increase the 

levels of thiols available to form conjugates with the drug and undergo extrusion 

from the cell or become sequestered into cellular organelles, thus aiding 

resistance. It has also been suggested that a decrease in thiol metabolism may 

induce antimonial resistance in these parasites (Ouellette et al., 2004). 
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More recent evidence states that the expression of ODC is significantly reduced 

within Leishmania parasites that are resistant to antimonials, compared to drug 

sensitive wild type parasites (Decuypere et al., 2005). In addition, this particular 

study shows that the expression of GCS is down-regulated in antimonal-resistant 

Leishmania compared to the drug sensitive wild-type parasite although this 

difference was not found to be statistically significant (Decuypere et al., 2005). 

This down-regulation of thiol-biosynthetic enzymes would result in an overall 

decrease in thiols within the cell, which could consequently inhibit both 

enzymatic and non-enzymatic drug activation. Since an increase in total thiols is 

observed in antimonial resistant Leishmania, it is generally considered that 

lower trypanothione levels may reduce the incidence of resistance. 

This has been supported by the reversal of resistance using buthionine 

sulfoxamine and difluoromethylornithine (two glutathione and spermidine 

biosynthesis inhibitors) in combination with metals (Arana et al., 1998, Haimeur 

et al., 1999, Legare et al., 2001). 

The over-expression of heat-shock proteins (HSP) by transfection of an Hsp70 

gene increases the tolerance of the cells to metals (Ashutosh, 2007). However, it 

is not known how Hsp70 confers resistance and whether this mechanism operates 

in antimonial resistant field isolates. 

1.5.2  Pentamidine 

The aromatic diamidine pentamidine is now considered one of the first-line 

drugs used in the treatment of both cutaneous and visceral leishmaniasis. The 

efficacy of pentamidine is currently decreasing in India, which suggests the 

emergence of resistant parasites (Sundar et al., 2001). Significant toxicity is 

associated with the administration of the drug (including hypotension, 

hypoglycemia, diabetes and nephrotoxicity) and consequently use of the drug is 

decreasing (Ouellette et al., 2004). 

The mode of action of pentamidine, as well as mechanisms of resistance, are not 

well understood at present, but pentamidine is known to compete with 

polyamines for nucleic acid binding and may also preferentially bind to 

kinetoplast DNA, interfering with replication and transportation at the 
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mitochondrial level (Sands et al., 1985). Studies have also shown that 

pentamidine is a competitive inhibitor of arginine transport in L. donovani 

(Kandpal et al., 1996) and a non-competitive inhibitor of putrescine and 

spermidine transport in L. infantum (Reguera et al., 1994). More recent studies 

suggest that pentamidine greatly enhances the efficacy of mitochondrial 

respiratory chain complex II inhibitors, creating a 4-fold increase in intracellular 

Ca2+ ultimately leading to apoptosis (Mehta & Shaha, 2004). 

In kinetoplastids, it was recently found that the mitochondrion is an important 

target of pentamidine and in some resistant lines is associated with a decrease 

in drug accumulation in this organelle (Basselin et al., 2002). A decreased 

mitochondrial membrane potential could be responsible for this pentamidine 

resistance. Furthermore, the cytosolic fraction of the drug is extruded outside 

the cell in resistant lines which is possibly mediated by the ABC transporter PRP1 

(Coelho et al., 2003). 

1.5.3  Amphotericin B 

The polyene antibiotic, amphotericin B, is a valuable antifungal agent used in 

the treatment of systemic fungal infections. The drug is highly effective against 

visceral leishmaniasis caused by antimonial-resistant L. donovani and against 

some cases of cutaneous leishmaniasis that have not responded well to the first 

line treatment of the antimonials (Thakur et al., 1999). In areas where 

resistance to the pentavalent antimonials is endemic, amphotericin B is the drug 

of choice. The drug must be administered parenterally by slow infusion over a 

period of four hours. This coupled with its high toxicity and association with 

severe side effects including fever and chills, nephrotoxicity and first-dose 

anaphylaxis, make treatment rather unpleasant for the patient. Despite this, 

amphotericin B has replaced antimonials as the first-line treatment of VL in 

Bihar, India (Chappuis, et al., 2007). Lipid formulations of the drug, e.g. 

AmBisome®, although much more expensive, have greatly reduced toxicity and 

have proved effective against VL and mucocutaneous leishmaniasis (Meyerhoff et 

al., 1999). The high cost of these have prevented their use in endemic areas 

until recently, when the WHO announced a reduction in cost from around $ 2 800 

to $ 200 per treatment in VL endemic countries (Chappuis et al., 2007). 
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The antifungal effect of the Amphotericin B results from an interaction with 

sterols in the fungal membrane. The drug forms complexes with 24-substituted 

sterols, e.g. ergosterol in the cell membrane of the parasite, creating pores and 

ultimately causing an ion imbalance and cell death (Roberts et al., 2003). The 

similarity between the major sterols of fungi and Leishmania (ergostane-based 

sterols) explains the high efficacy of this drug against leishmaniasis.  

Although resistance to amphotericin B does not develop quickly, it has been 

induced in vitro and found to be associated with a detrimentally altered 

membrane fluidity which affects the binding affinity of amphotericin B to the 

modified cell membrane. Additionally, the major sterol of the cell membrane 

was found to be an ergosterol precursor in the resistant strains, rather than 

ergosterol itself as was the case with the amphotericin B-sensitive parent 

(Mbongo et al., 1998).  

1.5.4 Miltefosine 

Originally developed as an antitumour agent, miltefosine is an 

alkylphosphocholine and a membrane-active synthetic ether-lipid analogue. It is 

an oral drug and in 2002 was registered in India as a therapy against visceral 

leishmaniasis (Davies et al., 2003). Miltefosine is well absorbed and widely 

distributed after administration. The mechanism of action of the drug involves 

the interference with cellular membranes without interacting with DNA. More 

specifically, miltefosine modulates membrane permeability and fluidity, 

membrane lipid composition, metabolism of phospholipids and proliferation 

signal transduction (Palumbo, 2008). Miltefosine has been shown to be safe for 

treatment of both children and adults, and is approximately 90 % effective 

against visceral leishmaniasis (Palumbo, 2008).  

Clinically-resistant Leishmania parasites have not yet been reported, however, 

this is not surprising as the drug was only registered for use fairly recently. 

However, the drug has a narrow therapeutic index and long half-life (Sundar, 

2001) which are both factors thought to favour the emergence of resistance. 

Resistance to miltefosine can be easily induced in vitro and the subsequent 

characterisation of these mutant strains has shown that reduced drug uptake, 

increased drug efflux, changes in plasma membrane permeability and increased 
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drug metabolism are all possible mechanisms by which resistance to the drug 

occurs in Leishmania. Recently, miltefosine resistant Leishmania cells were 

shown to over-express the P-glycoprotein gene, MDR1, which is an ABC 

transporter involved in the multidrug resistance of cancer cells (Perez-Victoria, 

2001). It has been hypothesised that since MDR1 is associated with a number of 

endocytic and secretory compartments, it transports substrate into these 

secretory compartments ready for export from the cell (Dodge et al., 2004). 

1.5.5 Paromomycin 

Paromomycin is currently in phase IV clinical trials against leishmaniasis 

(Jhingran et al., 2009). It is an aminoglycoside antibiotic which acts primarily by 

impairing the macromolecular synthesis and altering the membrane properties of 

Leishmania (Mishra et al., 2007). The effectiveness of paromomycin was 

determined to be the same as amphotericin B when subjected to trial (Sundar et 

al., 2007). A dose of 16 mg/kg intramuscularly for a period of 21 days has been 

shown to cure 93 % of patients (Jha et al., 1998). 

A major advantage of paromomycin is its low cost, however some minor 

drawbacks exist, including the requirement for administration by intramuscular 

injection, the drug can cause reversible damage to the inner ear in 2 % of 

patients and may produce mild pain at the site of injection (Chappuis et al., 

2007).  

1.6 Cysteine Acquisition 

1.6.1 Functions of cysteine 

Cysteine is one of the main sulfur-containing amino acids and acts as the central 

precursor of all organic molecules containing reduced sulfur. It plays a vital role 

in the stabilization of tertiary and quaternary protein conformation due to its 

ability to form inter- and intra-chain disulfide bonds with other cysteine residues 

(Brosnan & Brosnan, 2006). Due to the reactive sulfhydryl (CH2SH) functional 

group, cysteine is the principal amino acid precursor for low molecular weight 

thiols, e.g. glutathione and trypanothione, as well as redox active thiol-
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containing proteins. The catalytic activities of free thiols as well as thiol 

containing proteins, which are involved in the detoxification of metals, 

nucleophilic drugs and reactive oxygen, depends upon the sulfur atoms of thiol 

groups (Gilbert, 1990). The conversion of free thiol groups to disulfide bridges 

and vice versa produces a reactive system that forms the basis for redox 

switches in protein. These switches play an essential role in the modulation of 

essential metabolic function and regulation of metabolism (Paget & Buttner, 

2003). Cysteine is also involved in the synthesis of essential bio-molecules like 

antioxidants, vitamins and cofactors, e.g. thiamine, lipoic acid, biotin and 

coenzyme A (Wirtz & Droux, 2005). The catalytic mechanism of these molecules 

is based upon the reactivity of the thiol group. 

1.6.2 Cysteine biosynthesis pathways 

Organisms can aquire cysteine either by taking it up from the environment or 

through biosynthesis, which has been reported to occur via two pathways. The 

sulfhydrylation pathway, which involves the enzymes serine acetyltransferase 

(SAT) and O-acetylserine (thiol) lyase (OAS-TL) (Morzycka et al., 1979) and the 

reverse trans-sulfuration pathway which involves the enzymes cystathionine β-

synthase (CBS) and cystathionine γ-lyase (CGL) (Morzycka et al., 1979) (Figure 

1.8). However, both of these biosynthesis pathways do not operate in all 

organisms and therefore cysteine synthesis often depends upon one of these 

pathways only. 

1.6.2.1 Mammals 

Animals and humans lack the ability to reduce inorganic sulfur and as a result 

humans and most animals rely partly on diet for the acquisition of cysteine (Zhao 

et al., 2000). In mammals, cysteine is synthesised via the reverse trans-

sulfuration pathway from methionine. Methionine is converted to homocysteine 

by the action of methionine adenosyltransferase, various S-adenosylmethionine 

methyltransferases and adenosylhomocysteinase (Griffith, 1987). Cystathionine 

β-synthase (CBS) catalyses the condensation of homocysteine and serine to form 

cystathionine, which is ultimately converted to cysteine by cystathionine γ-lyase 

(Mino & Ishikawa, 2003). The absence of the sulfhydrylation pathway in 

mammals makes it a potential candidate for investigation as a drug target in     
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Figure 1.8 Cysteine synthesis pathways of parasitic protozoa. 
Schematic representation of the enzymes involved in the biosynthesis of cysteine. The sulfhydrylation pathway is shown in yellow, the trans-sulfuration pathway is 
shown in pink, the reverse trans-sulfuration pathway is shown in blue and the O-phosphoserine pathway of T. vaginalis is shown in orange.  



 
 

organisms that possess and utilise this pathway and cause human or animal 

diseases. 

1.6.2.2 Plants 

Cysteine synthesis in plants occurs via the sulfhydrylation pathway (Figure 

1.8), by two sequential reactions catalysed by SAT and OAS-TL. The 

conversion of serine to O-acetylserine by SAT occurs in plastids, 

mitochondria and cytosol of plants. In Arabidopsis thaliana, five SATs exist. 

SAT1 and SAT3 are plastid and mitochondria located, respectively 

(Kawashima et al., 2005). SAT2, SAT4 and SAT5 are cytosolic, but the amino 

acid sequences of these substantially differ from the other SATs (Kawashima 

et al., 2005). The second step of cysteine biosynthesis in this pathway 

involves the conversion of O-acetylserine to cysteine and is catalysed by 

OAS-TL. In Arabidopsis, three genes exist that encode cytosolic OAS-TL, 

plastid OAS-TL and mitochondrial OAS-TL (Jost et al., 2005). A further four 

OAS-TL genes exist in Arabidopsis, but these are weakly expressed and show 

either little or no cysteine synthase activity (Wirtz and Hell, 2006; Heeg et 

al., 2008). 40-45 % of Spinacia oleracea, Brassica oleracea and Datura 

innoxia OAS-TL activity is localised to the plastids and cytosol, whereas 

approximately 5 % is attributed to mitochondria (Lunn et al., 1990; Rolland 

et al., 1992; Kuske et al., 1996).  

1.6.2.3 Bacteria 

The biosynthesis of cysteine in bacteria occurs, in most cases, via the 

sulfhydrylation pathway (Figure 1.8). In this pathway SAT catalyses the 

acetylation of the β-hydroxyl of serine giving O-acetylserine. This is 

followed by the β elimination of acetate from O-acetylserine and the 

addition of sulfide to produce cysteine. This process has been described in 

Escherichia coli and Salmonella typhimurium (Kredich & Tomkins, 1966). In 

most bacteria the step catalysing the formation of cysteine from O-

acetylserine is catalysed by two isoforms of OAS-TL, OAS-TL A and OAS-TL B 
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(Kredich et al., 1979), which are produced under aerobic and anaerobic 

conditions respectively (Mino & Ishikawa, 2003). 

The filamentous bacteria Streptomyces phaeochromogenes has been shown 

to possess a reverse trans-sulfuration pathway similar to yeast and moulds 

(Nagasawa et al., 1984). Therefore the actinomycetaceae may utilise this 

pathway for cysteine biosynthesis. 

1.6.2.4 Fungi 

The biosynthesis of cysteine in fungi takes place through the sulfhydrylation 

pathway and the reverse trans-sulfuration pathways. Some species, e.g. 

Saccharomyces lipolytica, use both cysteine synthesis pathways (Morzycka 

et al., 1979). Neurospora crassa and Aspergillus nidulans possess both 

cysteine biosynthesis pathways, but only the sulfhydrylation pathway is 

active (Paszewski et al., 1974). The reverse trans-sulfuration pathway has 

been shown to be activated when the sulfhydrylation pathway was impaired 

(Paszewski et al., 1984). 

However in the yeasts Saccharomyces pombe, Pichia membranofaciens and 

Candida valida, the enzymes involved in the reverse trans-sulfuration 

pathway, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL) are 

absent. This suggests that these organisms only synthesise cysteine via the 

sulfhydrylation pathway (Brzywczy et al., 1993, 2002; Piotrowska et al., 

1990; Piotrowska, 1993). 

1.6.2.5 Parasitic organisms 

The methods by which parasitic organisms synthesise cysteine have not been 

extensively studied, however, some information does exist. The 

sulfhydrylation pathway exists in Trichomonas vaginalis (Goodall, 2001; 

Westrop et al., 2006), as well as the amoebae Entamoeba histolytica and 

Entamoeba dispar (Nozaki et al., 1998), in which the trans-sulfuration 

pathway does not exist. Panagrellus redvivus, a parasitic nematode, and the 
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fluke Fasciola hepatica have been shown to have a functional reverse trans-

sulfuration pathway (Papadopoulos et al., 1996; Bankov et al., 1996). Like 

fungi, the trypanosomatids Trypanosoma cruzi and Leishmania spp. possess 

both the sulfhydrylation and reverse trans-sulfuration pathways (Nozaki et 

al., 2001; Williams et al., 2009). Some differences exist between T. cruzi 

and T. brucei, in the metabolism of the sulfur-containing amino acids.  The 

enzymes involved in the trans-sulfuration pathway have been detected in 

bloodstream trypomastigotes of T. brucei, compared to a down regulation of 

CBS activity observed in T. cruzi mammalian forms (Yarlett & Bacchi, 1988; 

Goldberg et al., 2000).  

It is possible that trypanosomatid parasites are able to take up cysteine 

from the environment, although this has not been extensively studied. A 

total of 30 possible amino acid transporters have been identified in 

Leishmania major, of which only 3 have been characterised (Genedb 

LmjF31.1790, LmjF31.1820 and LmjF31.1800) (Mazareb et al., 2001).  

1.6.3 Enzymes involved in cysteine biosynthesis 

1.6.3.1 Serine acetyltransferase  

Serine acetyltransferase (SAT) catalyses the acetyl CoA-dependent 

acetylation of the side chain hydroxyl group of serine, resulting in the 

formation of O-acetylserine. This is the first step in cysteine synthesis via 

the sulfhydrylation pathway. The molecular mass of the monomeric unit of 

SAT ranges from 30-35 kDa. The X-ray crystallographic structure of SAT from 

the gram negative bacterium Haemophilus influenza has been determined 

showing a hexameric structure arranged as a dimer of trimers (Olsen et al., 

2004).   

SAT is the rate-limiting enzyme involved in cysteine biosynthesis via the 

sulfhydrylation pathway (Harms et al., 2000), and the enzyme exists with an 

excess of OAS-TL. The association of OAS-TL and SAT in complex plays a 

regulatory role in both sulfur assimilation and cysteine biosynthesis. SAT 
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requires binding to OAS-TL for full activity (Wirtz & Hell, 2006). SATs from 

bacteria, plants and protozoa are feedback inhibited by cysteine (Kredich et 

al., 1966; Nozaki et al., 2001), and the binding site is located at the C-

terminal end of the protein. SATs bound to cysteine are still able to form 

complexes with OAS-TL, suggesting that the two events are independent 

(Mino et al., 1999). 

Kinetic analyses of purified SATs have yielded Km values ranging from 0.1 

mM to 5.1 mM for serine, and 0.1 mM to 0.56 mM for acetyl CoA. The pH 

optimum for the enzyme has also been shown to range from 7.5 – 8.5 

(Kredich et al., 1966; Smith et al., 1971; Burnell et al., 1977). 

1.6.3.2 O-acetyl serine (thiol) lyase  

O-acetylserine (thiol) lyase (OAS-TL) is a pyridoxal-5’-phosphate dependent 

enzyme, which catalyses the second step of cysteine biosynthesis via the 

sulfhydrylation pathway. The formation of cysteine via sulfhydrylation is a 

two-step reaction mechanism involving: i) the reversible interaction of O-

acetylserine and pyridoxal phosphate, which results in the β-elimination of 

acetate to form α-aminoacrylate (Cook & Wedding, 1976) and ii) the 

reaction of α-aminoacrylate with sulfide to form cysteine (Cook & Wedding, 

1976). The first of these steps is the overall rate limiting step in the 

formation of cysteine from O-acetylserine and sulfide (Woehl et al., 1996). 

Multiple isoforms of OAS-TL exist in most organisms that use the 

sulfhydrylation pathway, however T. cruzi and T. vaginalis appear to only 

possess one isoform of the enzyme. OAS-TL usually exists as a homodimer, 

with monomeric units ranging from 30 – 35 kDa, but higher oligomeric forms 

have been identified in T. cruzi, where the enzyme exists as a dimer, trimer 

and oligotetramer (Nozaki et al., 2001). Kinetic analyses of purified OAS-TLs 

have yielded Km values ranging from 0.02 mM to 2.7 mM for sulphide and 

1.25 mM to 50 mM for O-acetylserine. 

In enteric bacteria, two isoforms of OAS-TL have been identified, type A and 

type B OAS-TLs. Type A OAS-TL is a homodimeric protein with a molecular 
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weight of approximately 68.9 kDa (Mino & Ishikawa, 2003). The dimer is 

arranged such that entry to the two active sites occurs on the same side 

(Mino & Ishikawa, 2003). Type A OAS-TL occurs as a bifunctional protein 

complex together with SAT, and is governed by the cysK gene (Nakamura et 

al., 1983). Type B OAS-TL is also a homodimeric protein, with a molecular 

weight of approximately 64.0 kDa (Mino & Ishikawa, 2003). Type B OAS-TL is 

encoded by the cysM gene and has been reported to exist as a monomeric 

protein (Hulanicka et al., 1974). Type B OAS-TL of Salmonella typhimurium 

is preferentially used for the biosynthesis of cysteine under anaerobic 

growth conditions within host epithelial cells, and is capable of utilizing 

thiosulfate instead of sulfide, to produce S-sulfocysteine (Nakamura et al., 

1984).  

Cysteine synthesis in plants is performed by a protein system of 

compartment-specific isoforms. In most plants, cysteine synthesis occurs in 

most cells in the plastids, cytosol and mitochondria (Wirtz & Hell, 2007). It 

has been suggested that these subvolumes of cellular space facilitate the 

thermodynamic or kinetic character of the metabolic process to differ from 

that of the bulk cellular space. Enhanced specificity and reaction velocity 

can therefore be achieved as a result of reduced interference with other 

cellular reactions (Srere, 1987; Ovadi, 1991; Winkel, 2004). Plant OAS-TL 

monomer size ranges between 68 and 75 kDa (Wirtz & Hell, 2006).  

Leishmania OAS-TL monomeric units range in size between 34.3 and 35.4 

kDa. OAS-TL of L. major is similar to type A OAS-TL of bacteria and has been 

shown to have Km values of 17.5 and 0.13 mM for the substrates O-

acetylserine and sulfide respectively (Williams et al., 2009). The enzyme has 

the ability to utilise sulfide produced by the action of mercaptopyruvate 

sulfurtransferase. When grown in medium with limited availability of sulfur-

containing amino acids, OAS-TL is upregulated (Williams et al., 2009). The 

parasite Trichomonas vaginalis has multiple type B OAS-TL genes but lacks 

the SAT gene. Instead the organism has a functional 3-phosphoglycerate 

dehydrogenase and an O-phosphoserine aminotransferase, which together 
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produce O-phosphoserine, used by T. vaginalis instead of serine as the 

precursor for cysteine synthesis (Westrop et al., 2006). 

1.6.3.3 The SAT/OAS-TL multi-enzyme complex 

The biosynthesis of cysteine by the sufhydrylation pathway involves, in 

plants, the bienzyme SAT/OAS-TL complex, which is comprised of two OAS-

TL dimers and one SAT hexamer (Feldman-Salit et al., 2009). In plants, the 

nature of the SAT enzyme varies depending on the cellular 

compartmentalisation and sensitivity to cysteine inhibition. Cytosolic SAT 

from Citrullus vulgaris and Arabidopsis thaliana are highly sensitive to 

feedback inhibition by cysteine at the physiological concentration (3 µM) 

(Saito et al., 1995; Noji et al., 1998; Howarth et al., 1997). On the other 

hand, the plastid SAT and mitochondrial SAT isoforms of A. thaliana have 

been shown to be insensitive to cysteine inhibition (Noji et al., 1998). 

Similarly, Leishmania major OAS-TL forms a bi-enzyme complex not only 

with L. major SAT, but also with Arabidopsis SAT (Williams et al., 2009). 

Residues K222, H226 and K227 of L. major OAS-TL are involved in the 

formation of the complex (Williams et al., 2009). These residues exist in 

bacterial type A OAS-TL, which forms complexes with SATs, whereas 

bacterial type B OAS-TL lacks them and does not form SAT/OAS-TL 

complexes (Liszewska et al., 2007). OAS-TL of Mycobacterium tuberculosis 

also forms a bi-enzyme complex with SAT (Schnell et al., 2007).  

The main form of kinetic regulation of cysteine synthesis via sulfhydrylation 

occurs by feedback inhibition of SAT by the end product, cysteine. Cysteine 

competes with serine to bind to the active site of SAT resulting in a 

conformational change of the C-terminal segment of the enzyme stopping 

the binding of the cofactor, CoA (Olsen et al., 2004; Pye et al., 2004). This 

activity has been confirmed by kinetic studies on SAT from E. coli using 

serine analogs, as well as studies showing reduced enzyme activity in 

cysteine-desensitised mutants (Nakamori et al., 1998). The regulation of 

cysteine biosynthesis in mycobacteria via sulfhydrylation is similar to plants. 
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A domain rotation occurs at the same time as the formation of the bienzyme 

complex which results in the closure of the active site of OAS-TL (Schnell et 

al., 2007).  

The formation of the bi-enzyme complex is not affected by the binding of 

cysteine to the SAT active site, indicating that these processes are 

independent of one another (Mino et al., 1999). The dissociation of the bi-

enzyme complex with 1 mM O-acetylserine restores OAS-TL activity (Mino et 

al., 1999).   

1.6.3.4 Cystathionine β-synthase  

Cystathionine β-synthase (CBS) is the first and rate-limiting step in the 

reverse trans-sulfuration pathway, catalysing the formation of cystathionine 

from serine and homocysteine. The enzyme exists as heterotetramers with 

subunit sizes of 55 – 63 kDa. 

Mammalian CBSs are heme-dependent enzymes and therefore consist of a 

heme domain, a catalytic core with a pyridoxal-5’-phosphate motif and a 

regulatory domain composed of two CBS domains (Bateman, 1997). Heme is 

incorporated into mammalian CBSs during folding and is essential for 

enzyme activity as it is a prerequisite for pyridoxal-5’-phosphate binding 

(Kery et al., 1994), as well as activating or binding homocysteine and 

regulation of the redox potential within the cell (Taoka et al., 1998; Taoka 

et al., 1999). The C-terminal CBS domain is the site of S-adenosylmethionine 

binding (Taoka et al., 1999), which is an allosteric activator of mammalian 

CBSs. Binding of S-adenosylmethionine decreases the Km for homocysteine 

eight-fold (Roper et al., 1992).  

CBSs from yeasts and trypanosomatids are heme-independent and lack the 

heme motif (Jhee et al., 2000; MacLean et al., 2000; Nozaki et al., 2001). 

The method by which the CBSs of these organisms bind homocysteine is 

therefore different to the mammalian CBSs, but the precise mechanism is as 

yet unknown. Increased levels of CBS have been shown to result in an 
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increase in cysteine and glutathione levels in humans, which have 

subsequently caused an increase in resistance against oxidative stress 

(Taoka et al., 1998).  

1.6.3.5 Cystathionine γ-lyase 

Cystathionine γ-lyase (CGL), a 140 kDa homo-tetrameric protein, also 

functions in the trans-sulfuration pathway that converts homocysteine to 

cysteine (Smacchi & Gobbetti, 1998). CGL is a pyridoxal-5’-phosphate 

dependent enzyme that catalyses the α, γ-elimination reaction of 

cystathionine to produce cysteine, α-ketobutyrate and ammonia 

(Bruinenberg et al., 1996). The activity of CGL is regulated by feedback 

inhibition of the product cysteine (Cherest et al., 1993; Kanzaki et al., 

1987). 

CGL is widely distributed in filamentous bacteria of the genera 

Streptomyces, Micromonospora, Micropolyspora, Mycobacterium, Nicardia, 

Streptosporangium and Streptoverticillium (Nagasawa et al., 1984). In these 

organisms the reverse trans-sulfuration pathway is similar to yeasts and 

moulds (Nagasawa et al., 1984). CGL is also present in Lactobacillus reuteri 

where its principal role is in cysteine-mediated oxidative defence by 

producing reducing equivalents (Lo et al., 2009). CGL exists in yeasts, such 

as Saccharomyces cerevisiae where its expression is induced by sulfur 

starvation and repressed by the addition of cysteine to the growth medium 

(Hiraishi et al., 2008). 

In mammals, several mutations in CGL have been described in cases of 

cystathioninuria, a poorly understood rare genetic disease (Zhu et al., 

2008). In addition, a single nucleotide polymorphism converting serine at 

position 403 to isoleucine is linked to an increase in plasma homocysteine 

levels (Zhu et al., 2008). 
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1.6.3.6 Cysteine biosynthesis enzymes as potential drug targets 

The enzymes involved in cysteine biosynthesis have been suggested as 

potential drug targets for the development of novel chemotherapeutics 

against leishmaniasis. The development of inhibitors of OAS-TL has not been 

extensively studied, however some studies have been carried out in plants. 

The pyridoxal-5’-phosphate-dependent enzyme inhibitors amino-oxyacetate 

and hydroxylamine have been found to successfully inhibit Echinochloa crus-

galii OAS-TL by 96 and 98 % respectively (Hirase & Molin, 2001).  

Cysteine is vital to all organisms because it is the main sulfur containing 

amino acid, and a range of cellular pathways depend upon its availability. 

Since mammals synthesize cysteine via the reverse trans-sulfuration 

pathway, OAS-TL is not present in these organisms and it has therefore been 

suggested as a possible drug target against a number of human pathogens, 

including Trichomonas vaginalis (Westrop et al., 2006) and other parasitic 

protozoa (Nozaki et al., 2005). The removal of cytosolic and plastid OAS-TL 

in Arabidopsis thaliana, causing it to rely on mitochondrial OAS-TL for 

cysteine biosynthesis, showed a 25 % growth retardation (Heeg et al., 2008), 

highlighting the validity of OAS-TL as a target for herbicides. Other enzymes 

involved in cysteine biosynthesis have also been suggested as worthwhile 

investigating as potential drug targets. SAT, which is also involved in the 

sulfhydrylation pathway, has been identified as a potential drug target in 

Entamoeba hystolytica (Agarwal et al., 2008). In addition, Leishmania CBS 

has been shown to be significantly different to CBS of mammals and as a 

result has been suggested as a possible drug target against the organism 

(Williams et al., 2009).  
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1.7 Aims of this study 

The overall aims of this study were divided into two main sections: 

1.7.1 Thiol dependent reductase 1 

i) To evaluate the potential of TDR1 as an anti-leishmanial drug target, 

by: 

a. Generating TDR1 null mutants in the Nepalese field isolate L. 

donovani BPK 206 clone 10.  

b. Using available L. major and L. infantum TDR1 null mutants to 

elucidate the role of the enzyme in Leishmania and highlight 

any potential alteration in sensitivity to antimonial drugs 

caused by the genetic manipulation.  

ii) To investigate the role of TDR1, by: 

a. Producing recombinant TDR1 and trypanothione reductase 

from L. donovani.  

1.7.2 O-acetylserine (thiol) lyase 

i) To evaluate the potential of OAS-TL as an anti-leishmanial drug 

target, by: 

a. Generating OAS-TL null mutants in the Nepalese field isolate L. 

donovani BPK 206 clone 10.  

b. Evaluating the potential use of OAS-TL as an anti-leishmanial 

drug target by characterisation of the null mutant parasites. 
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2. Materials and Methods 
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2.1 Buffers, solutions, media and antibiotics 

2.1.1  General buffers 

1x PBS 140 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, 1.8 mM 

KH2PO4, pH 7.4 

1x TAE   40 mM Tris-Acetate, 1 mM EDTA, pH 8.0 

TE    10 mM Tris/HCl pH 8.0, 1 mM EDTA, pH 8.0 

2.1.2  DNA analysis 

DNA loading dye 0.25 % (w/v) bromophenol blue, 0.25 % (w/v) 

orange-G, 40 % (w/v) sucrose 

Buffer A   100 mM Tris/HCl, 300 mM NaCl, pH 9.5 

1x SSC    15 mM Tri-sodium citrate, 150 mM NaCl, pH 7-8 

Primary wash buffer 2 M urea, 0.1 % (w/v) SDS, 50 mM sodium 

Phosphate pH 7.0, 150 mM NaCl, 1 mM MgCl2, 0.2 

% (w/v) Blocking Reagent (GE Healthcare)) 

Secondary wash buffer 50 mM Tris base, 100 mM NaCl, 2 mM MgCl2, pH 

7.0 

2.1.3  Protein analysis 

6x loading buffer 62.5 mM Tris/HCl pH 6.8, 2 % (w/v) SDS, 10 % 

(v/v) glycerol, 0.001 % (w/v) bromophenol blue, 5 

% (v/v) 2-mercaptoethanol 

1x running buffer  25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS 
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1x MOPS buffer 50 mM 3-[N-morpholino]propane sulphonic acid, 

50 mM Tris, 3.5 mM SDS, 1 mM EDTA, pH 7.2 

Coomassie stain 40 % (v/v) methanol, 10 % (v/v) acetic acid, 0.1 % 

(w/v) Coomassie brilliant blue R-250 

Destain   20 % (v/v) methanol, 10 % (v/v) acetic acid 

Towbin buffer 25 mM Tris, 192 mM glycine, 20 % (v/v) methanol, 

pH 8.3 

2.1.4  Bacterial culture 

Luria-Bertani medium 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl 

(15 g/L agar was added to make LB plates) 

Ampicillin 100 mg/ml in distilled, deionised H2O (ddH2O) 

(1000x stock), stored at -20 ˚C. Used at a 

concentration of 100 μg/ml. 

Kanamycin 50 mg/ml in ddH2O (1000x stock), stored at -20 

˚C. Used at a concentration of 50 μg/ml. 

2.1.5  Leishmania culture 

Electroporation buffer 120 mM KCl, 0.15 mM CaCl2, 10 mM K2HPO4, 25 

mM HEPES, 2 mM EDTA, 2 mM MgCl2, pH 7.6  

Freezing solution 70 % (v/v) heat inactivated foetal calf serum 

(HIFCS), 30 % (v/v) glycerol 

Nourseothricin 50 mg/ml in ddH2O (1000x stock), stored at 4 ˚C. 

Used at a concentration of 75 μg/ml. 
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PSGEMKA buffer 108 ml of 0.02 M Na2HPO4.2H2O, 34.5 ml of 0.02M 

NaH2PO4.2H2O, 15.75 g of NaCl, 15 g of glucose, 

0.285 g of EDTA, 3.04 g of MgCl2.6H2O, 1.11 g of 

KCl and 0.30 g of albumin (bovine) in 1.3575 l of 

ddH2O), pH 7.3 

2.1.6  HPLC buffers 

Lysis buffer 40 mM N-[2-hydroxyethyl]-piperazine-N’[3-

propanesulphonic acid] (HEPPS), 4 mM 

diethylenetriamine pentaacetic acid (DTPA), pH 

8.0 (adjusted with lithium hydroxide) 

Solvent A   0.25 % (v/v) acetic acid, 99.75 % (v/v) ddH2O 

Solvent B   100 % acetonitrile 

2.1.7  Bacteria strains 

DH5α (Invitrogen) 

F- φ80dlacZM15 (lacZYA-argF)U169 deoR recA1 endA1 hsdR17(r k-, m k+) 

phoA supE44 thi-1 gyrA96 relA1 λ-  

BL21(DE3) (Promega) 

F–, ompT, hsdSB(rB-, mB-), dcm, gal, λ(DE3) 
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2.2 Antibodies and antibiotics 

 Western Blot 
 

Source 

   
Anti-CS (rabbit) 1 : 5 000 SAPU 

Anti-CBS (rabbit) 1 : 10 000 SAPU 
Anti-MST (rabbit) 1 : 5 000 SAPU 

Anti-TDR1 (sheep) 1 : 5 000 SAPU 
Anti-Elf1α (mouse) 1 : 20 000 Upstate Cell Signaling Solutions 

 

 

Table 2.1 Primary and secondary antibodies and their dilutions. 

 
 

 Bacterial culture – using 
concentration 

Leishmania culture – using 
concentration 

   
Ampicillin 100 µg/ml  

Kanamycin 50 µg/ml  
   

Hygromycin  50 µg/ml 
Phleomycin  20 µg/ml 

Nourseothricin  75 µg/ml 
G418  50 µg/ml 

 

 

Table 2.2 Antibiotics used and their concentrations. 
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2.3 Methods 

2.3.1  Bioinformatics 

All DNA and protein analyses, including the construction of cloning and 

expression plasmids and searching for reading frames and restriction sites, were 

carried out using Vector NTI (v 10.0) software (Informax Inc). Sequence 

alignments were performed using the program T-Coffee (Notredame et al., 2000, 

Poirot et al., 2003). 

The following web-based resources were also used: The Sanger Institute 

(http://www.sanger.ac.uk), NCBI (http://www.ncbi.nlm.gov) and GeneDB 

(http://www.genedb.org).  

2.3.2  Leishmania species culture methods 

2.3.2.1  Cell lines 

Throughout this research, wild type L. major (MHOM/IL/80/Friedlin) and the 

field isolate L. donovani (MHOM/NP/2003/BPK 206/0) were used. All cell lines 

were derived from these parent lines. 

The L. donovani BPK 206/0 was isolated from a Nepalese visceral leishmaniasis 

patient living in the Sunsari district. The patient was recruited at the B.P. 

Koirala Institute of Health Sciences on the 6th April 2003, which was also the 

date of isolation, for the study LeishNatDrug-R. Ethical clearance was obtained 

from the institutional review boards of the Nepal Health Research Council, 

Kathmandu, Nepal and the Institute of Tropical Medicine, Antwerp, Belgium. 

The patient was a twelve year old male suffering from visceral leishmaniasis for 

the first time. He had been suffering from bouts of fever for approximately eight 

weeks before hospitalization. The bone marrow aspirate showed high parasite 

load (5+, on a scale of 0-6). The patient was treated with 30 doses of sodium 

stibogluconate at 20 mg/kg/day, and responded very well to treatment. He 

remained healthy during the twelve months follow-up period and was considered 

to be cured. 
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The strain BPK 206/0 was isolated from the bone marrow taken at the time of 

clinical recruitment and was tested several times with both generic (Albert 

David SAG) and branded (Pentostam) sodium stibogluconate, and the results 

indicated that the strain is susceptible to antimonials. (Personal communication 

– Dr. Saskia Decuypere.)  

The clones derived from the isolate were also sensitive to antimonials. 

Leishmania donovani BPK 206 clone 10 was used in this study, and will be 

referred to as wild type (WT).  

2.3.2.2  Cultivation and electroporation of L. major and L. donovani 
promastigotes 

L. major, L. infantum and L. donovani promastigotes were grown at 25 ˚C in 

HOMEM medium (Invitrogen, Paisley, UK, ref. 041-946-99M), a modified Eagle’s 

minimal essential medium with Spinner’s salts (Berens et al., 1976), 

supplemented with 10 % (v/v) heat-inactivated fetal bovine serum (HIFCS) 

(Labtech International, Ringmer, UK), in the case of L. major, and 20 % (v/v) 

HIFCS in the case of L. donovani. Cultures were grown at 25 ºC (L. major and L. 

donovani) or 27 ºC (L. infantum) with air as the gas phase, in phenolic-style 

lidded flasks. Parasites were kept in liquid culture for a maximum of 20 sub-

passages, which were performed once per week. For tranfections, cells were 

used at as low a passage number as possible (typically 1-4). 

Transfections were carried out according to the procedure of Robinson and 

Beverley (2003). 10 ml of Leishmania were grown to late log phase 

(approximately 1 x 107 cells/ml) and harvested by centrifugation at 1000 g for 10 

min before being washed in half the original volume of ice cold electroporation 

buffer (EPB) (120 mM KCl, 0.15 mM CaCl2, 10 mM K2HPO4, 25 mM HEPES, 2 mM 

EDTA, 2 mM MgCl2, pH 7.6). Before electroporation the cells were adjusted to a 

concentration of 2 x 108/ml in EPB (usually 1 ml). 500 μl of this suspension (1 x 

108 cells) were transferred to a pre-chilled 4 mm electroporation cuvette 

(Biorad), containing 10-30 µg of the appropriate linearised/circular DNA. Cells 

were electroporated twice using a Genepulser II apparatus at 25 µF capacitance, 

1500 V (3.75 kV/cm), with 10 s between pulses. After electroporation, cells were 

allowed to recover, on ice, for 10 min before being transferred to flasks 
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containing 10 ml of fresh HOMEM medium + 20 % (v/v) HIFCS, to aid recovery. 

Flasks of transfected parasites were then incubated overnight at 25 ˚C in HOMEM 

medium with 20 % (v/v) HIFBS without drug selection. Cells were seeded, at a 

concentration of 1 parasite per ml in HOMEM with 20% (v/v) HIFBS and the 

appropriate antibiotic and transferred into 96 well culture plates, 100 μl per 

well. Cells were grown to a high density (approximately 3 x 108 cells/ml), then 

later transferred to a 1 ml culture, and subsequently to a 10 ml culture, all 

grown at 25 ˚C. To maintain all cell lines, early stationary phase cells 

(approximately 2 x 107 cells/ml) were inoculated into HOMEM medium containing 

the correct percentage HIFBS and appropriate antibiotics (Table 1.2), at 

approximately 1 x 106 cells/ml. Cell numbers were determined by counting using 

an improved Neubauer haemocytometer. 

2.3.2.3  Clone selection 

After 24 h at 25 ˚C, antibiotics were added directly to flasks of transfected 

cells, generating a population of tranfectants. This was sufficient for 

transfections with extra-chromosomal vectors and controls. Transfectants of 

integrative vectors required selection of single cells to produce clonal cell lines. 

Transfected parasites were diluted to 1 parasite per ml and added to 96 well 

microplates (100 µl per well). Plates were incubated at 25 ˚C for 1-2 weeks. 

Theoretically, 9 wells out of the 96 should yield parasites which were assumed 

to arise from a single transfection event and analysed further. 

Alternatively, serial dilutions of transfected parasite populations were 

performed in 96 well microplates and incubated at 25 ˚C for 1 – 2 weeks. 

Parasites in the most dilute wells were assumed to arise from a single 

transfection event and analysed further. 

2.3.2.4  Growth curves 

Parasites were seeded at a start concentration of 2.5 x 105 cells/ml in HOMEM 

with 10-20 % (v/v) HIFCS, supplemented with the appropriate antibiotic (Table 

1.2). Cultures were incubated at 25 ˚C and counted every 24 h for a period of 

seven days. Growth curves were constructed using Grafit 5.0 (Erathicus). 
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2.3.2.5  Preparation of stabilates for long-term storage of cell lines 

0.5 ml of log phase cultures were diluted with an equal volume of HIFCS 

containing 30% (v/v) glycerol in CryotubeTM vials (Nunc), mixed and left on ice 

for 5 min. The vials were stored at -70 oC overnight and then transferred to 

liquid nitrogen storage until required. 

When required, stabilates were removed from liquid nitrogen, thawed at room 

temperature and immediately transferred into 10 ml of HOMEM supplemented 

with 10 % (v/v) HIFCS (for L. major) or 20 % (v/v) HIFCS (for L. donovani) and the 

appropriate drug selection if necessary. 

2.3.2.6  Passage of L. donovani from Golden Hamster spleen 

Golden hamsters were culled after approximately five months post-infection 

with L. donovani or when they began to show clinical signs of disease. The skin 

of the hamster and all equipment were sterilised with 70% (v/v) ethanol (ETOH). 

The spleen was removed and weighed, cut into small pieces and ground in sterile 

phosphate buffered saline (PBS) using a masticating tube. The volume of the cell 

suspension was made up to 5 ml with sterile PBS and then centrifuged at 2766 g 

for 10 min. The pellet was washed once more and resuspended to a final 

concentration of 1 x 109 amastigotes/ml. 100 μl of cell suspension was then 

injected, intra-peritoneally, into a new animal.  

2.3.2.7  Rapid passage of Leishmania parasites in vivo. 

Leishmania parasites were grown to late stationary phase, harvested by 

centrifugation (1000 g for 10 min, at room temperature) and washed twice in 

sterile PBS. Parasites were then resuspended in sterile PBS at a final 

concentration of 2 x 108 cells/ml. Passage into BALB/c mice was performed via 

sub-cutaneous injection into the footpad, using a 1 ml plastic syringe with a 26 G 

needle. 40 µl of cell suspension was injected into each mouse (8 x 106 parasites). 

Popliteal lymph-nodes were harvested from the mice after either 4 weeks or 8 

weeks post-infection and placed in flasks containing 10 ml of HOMEM medium 

with 20 % (v/v) HIFCS, 1 % (v/v) penicillin/streptomycin. Flasks were incubated 

at 25 ˚C and monitored for outgrowth of promastigote parasites. 
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To quantify the approximate number of viable parasites in the lymph node, each 

lymph node was pushed through a 70 µm cell strainer (Scientific Laboratory 

Supplies), into a known volume of HOMEM medium with 20 % (v/v) HIFCS, 1 % 

(v/v) penicillin/streptomycin. Each cell suspension was then plated out into 96 

well tissue culture plates, and incubated at 25 ˚C. The most dilute well 

containing parasites was assumed to have originally contained one viable 

parasite and the number of parasites within each popliteal lymph node was 

calculated from this.  

2.3.2.8  Purification of L. major from mouse skin lesion 

Cutaneous lesions of L. major were removed from infected Balb/c mice. The 

lesions were cut into small pieces and ground in a tissue grinder in PSGEMKA 

buffer (108 ml of 0.02 M Na2HPO4.2H2O, 34.5 ml of 0.02M NaH2PO4.2H2O, 15.75 g 

of NaCl, 15 g of glucose, 0.285g of EDTA, 3.04 g of MgCl2.6H2O, 1.11 g of KCl and 

0.30 g of albumin (bovine) in 1.3575 l of ddH2O). The cell suspension was then 

made up to 400 ml with PSGEMKA buffer. 100 μl of the suspension was removed 

to estimate the number of amastigotes using a haemocytometer. 50 mg of 

saponin dissolved in 1 ml PSGEMKA buffer was added to the cell suspension, 

mixed and incubated at room temperature for 3-4 min to lyse any red blood cells 

present. The suspension was subsequently centrifuged for 10 min at 2766 g, and 

the pellets were resuspended in a total volume of 200 ml PSGEMKA. The 

amastigote preparation was washed a further three times and resuspended in a 

final volume of 100 ml.  

To prepare the column, 2.5 g of sephadex was weighed out and swelled in 100 

ml of PSGEMKA buffer at room temperature overnight, and added to a glass 

column connected to a short tube with a screw clamp stopcock, containing 

plastic mesh (to retain the chromatography medium) and a small quantity of 

glass wool. The column was mounted vertically on a clamp stand and washed 

with 50 ml of PSGEMKA buffer at a flow rate of approximately 1 drip/sec. The 

cell suspension was then passed through this Sephadex CM-25 cation exchange 

column, allowing the elution of amastigotes. 100 μl of amastigote suspension 

was removed to estimate the number of amastigotes. The final amastigote 

suspension was centrifuged as before and washed three times in PSGEMKA 
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buffer. The pellets were given a final wash in 0.25 M sucrose, centrifuged once 

more and pellets were stored at -70 ˚C. 

2.3.2.9  Preparation of parasite protein extract 

Stationary phase parasites (2-3 x 107 cells/ml) were harvested by centrifugation 

at 1500 g for 10 min at 4 ˚C followed by two washes in sterile PBS. Parasite 

lysates were produced by resuspension of parasite pellets in 100 μl of lysis buffer 

(0.25 M sucrose, 0.25% Triton X-100, 10 mM EDTA and the following protease 

inhibitors: 10 μM E-64, 2 mM 1,10-phenanthroline, 4 μM pepstatin A and 1 mM 

phenylmethylsulfonyl fluoride). The resulting suspension was incubated on ice 

for 10 min and insoluble and soluble protein fractions were separated by 

centrifugation at 13000 g for 30 min at 4 ˚C. The resulting supernatant (soluble 

fraction) was retained for western blot analysis. 

2.3.3  Molecular Biology Methods 

2.3.3.1  Oligonucleotide primer design 

DNA oligonucleotides were synthesised by Eurogentec. Primers were designed 

complementary to the N- and C- termini of the DNA fragment or gene to be 

amplified. The oligonucleotides used in this study are listed below. The 

restriction sites used for cloning are given in bold type. 

Recombinant protein expression 

L. donovani trypanothione reductase 

1 5’ GTG CGG CCG CTC AGA GGT TGC TGC TGA G 3’ (NotI) 

2 5’ GCC ATA TGT CCC GCG CGT ACG ACC TCG TGG 3’ (NdeI) 

L. donovani thiol dependent reductase 1 (TDR1) 

1 5’ ATG CGG CCG CTT ACC CGC TCT GGG CCC TCC GTT GAC 3’ (NotI) 

2 5’ GAC ATA TGG CCG CCC GCG CGC TAA AGC TAT ACG TG 3’ (NdeI) 
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Gene manipulation studies in L. donovani 

O-acetylserine thiol lyase (OAS-TL) null mutant 

3’ flank 

1 5’ CCC GGG TAG TCG ATG CCT CGG AGC TGC AGG 3’ (SmaI) 

2 5’ AGA TCT ACA AGA CGT AGT GCG CTG CAT CAG CTG TAT GCA TAC 3’ 

(BglII) 

5’ flank 

1 5’ AAG CTT GAG GTG CAG GTC GGC GAG CGG CTA GGT GTA 3’ (HindIII) 

2 5’ GTC GAC GCG TGA TGG GAT CAC TTA AAG GGG GGG 3’ (SalI) 

OAS-TL re-expresser 

1 5’ CCC GGG ATG GCG GCA CCG TTC GAC AAG TCA 3’ (SmaI) 

2 5’ GGA TCC CTA CGG GCA GGG ACG ACA CCT CAT CCC 3’ (BamHI) 

TDR1 null mutant 

3' flank 

1 5’ CCC GGG AGG CTC GTC GAG GGG ATC GAC GTG 3’ (smaI) 

2 5’ AGA TCT GGG GAG GGA GGG AAT GTA GTA GTC CTC TGT GCC TGT 3’ 

(BglII) 

5' flank 

1 5’ AAG CTT TGT GCA GCG TTT CTT AGT ACC GCT GTG CAG TTT TG 3’ 

(HindIII) 

2 5’ GTC GAC CCT CGA CGC CAG GCA CGC AGT GGC TTA GTT 3’ (SalI) 
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TDR1 re-expresser 

1 5’ CCC GGG ATG GCC GCC CGC GCG CTA AAG CTA 3’ (SmaI) 

2 5’ GGA TCC TTA CCC GCT CTG GGC CCT CCG TTG ACG 3’ (BamHI) 

2.3.3.2  Polymerase chain reaction (PCR)  

Two commercially available PCR mixes were used to amplifiy fragments of 

Leishmania DNA. PCR SuperMix, which has no proof reading ability, was used in 

diagnostic PCRs, e.g. to verify the integration of fragments of DNA in the correct 

position, and AccuPrime Pfx SuperMix, which has proof reading abilities, was 

used to amplify genes for recombinant protein production and generation 

constructs for genetic manipulation of Leishmania. 

PCR SuperMix 

PCR Supermix (Invitrogen) is a ready to use mix containing 1.65 mM MgCl2, 220 

μM dNTP and 22 U/ml Taq DNA polymerase. The SuperMix was added to 100 ng 

of gDNA in a final reaction volume of 25 μl, with a final concentration of 400 nM 

of each oligonucleotide. The PCR was carried out under the following conditions: 

Initial Denaturation  94 ˚C, 5 min 

30 cycles of: 

Denaturation   94 ˚C, 1 min 

Annealing   Oligonucleotide specific temperature, 1 min 

Elongation   72 ˚C, 1 min per kb to be amplified 

 

Final Elongation  72 ˚C, 10 min 
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All PCR products were analysed on 1 % agarose gels and fragments of the 

expected size were cloned into the pGEM-T easy Vector (Promega) (Figure 2.1). 

AccuPrime Pfx SuperMix 

AccuPrime Pfx SuperMix (Invitrogen) is a ready to use mix containing 1.1 mM 

MgSO4, 330 μM dNTPs and 22U/ml Pfx DNA polymerase. The Pfx SuperMix was 

added to 100 ng gDNA in a final reaction volume of 25 μl, with a final 

concentration of 400 nM of each oligonucleotide. The PCR was carried out under 

the following conditions: 

Initial Denaturation  94 ˚C, 5 min 

30 cycles of: 

Denaturation   94 ˚C, 1 min 

Annealing   Oligonucloetide specific temperature, 1 min 

Elongation   68 ˚C, 2 min per kb to be amplified 

Final Elongation  68 ˚C, 10 min 

All PCR products were analysed on 1% agarose gels and fragments of the 

expected size were cloned into the StrataClone Blunt PCR Cloning Vector (pSC-B) 

(Stratagene) (see Figure 2.2). 
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2.3.3.3   Sub-cloning of PCR products  

Ligation of DNA fragments with commercially available vectors was carried out 

according to the manufacturer’s instructions. Fragments of DNA amplified using 

Taq polymerase produced adenine overhangs at the 3’ ends and therefore the 

pGEM-T easy vector (Promega) was used. PCR products amplified using Pfx 

polymerase had blunt ends and therefore the StrataClone Blunt PCR Cloning 

Vector (Stratagene) was used according to the manufacturer’s 

recommendations. 

2.3.3.4  Selection of colonies 

Both the pGEMT-easy and StrataClone blunt PCR cloning vectors contain the LacZ 

gene which encodes beta-galactosidase. The multiple cloning sites present of the 

vectors are contained within the LacZ gene sequence, which means that when 

foreign DNA is introduced to the multiple cloning site (MCS), the transcription of 

LacZ, and consequently the activity of beta-galactosidase, are disrupted. 5-

bromo-4-chloro-3-indolyl-[beta]-D-galactopyranoside (X-Gal) is a colourless 

modified galactose sugar which produces a coloured (blue) product when 

hydrolysed by beta-galactosidase. The hydrolysis of colourless X-Gal by the beta-

galactosidase causes characteristically blue bacterial colonies and shows that 

the colonies contain recircularised vector, whereas white colonies indicate the 

insertion of DNA into the MCS and the loss of the cells’ ability to hydrolyse the 

marker.  

White colonies were selected and used to inoculate Luria-Bertani (LB) medium 

supplemented with 100 μg/ml ampicillin. Clones were verified by DNA miniprep 

and digestion with appropriate restriction enzymes. Clones with the correct 

vector and insert band size were verified by DNA sequencing.   

2.3.3.5  Sub-cloning into destination vectors 

Fragments of DNA verified by DNA sequencing were digested from the plasmid, 

gel purified and ligated together with the destination plasmid. The ligation 

reactions were transformed into the commercially available E. coli strain DH5α 

(Invitrogen). 
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Figure 2.1 pGEM-T Easy Vector. 
This figure displays the important features of the pGEM-T Easy plasmid (Promega) that was used 
to clone PCR products amplified with the PCR supermix containing Taq polymerase. These include 
the multiple cloning site and the T7 and SP6 primers that were used for DNA sequencing. This 
figure was taken from www.promega.com.      
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Figure 2.2 pSC-B Blunt PCR Cloning Vector. 
This figure displays the important features of pSC-B, the StrataClone blunt PCR cloning vector that 
was used to clone PCR products amplified with Pfx Supermix, such as the ampicillin and 
kanamycin resistance cassettes, the multiple cloning site and the positions of the M13 and M13 
reverse primers that were used for DNA sequencing. This figure was taken from 
www.stratagene.com.  
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Restriction enzymes were used according to the manufacturer’s instructions. 

Typically, 1 μg of plasmid DNA was digested in a 20 μl reaction containing the 

appropriate enzyme and buffer. Reactions were incubated overnight at the 

optimum temperature, specified by the manufacturer. Digested plasmids were 

separated by agarose gel electrophoresis and DNA fragments (either plasmids or 

inserts) were isolated by gel purification. 

Following electrophoresis, DNA fragments were visualised under low intensity UV 

light, and any fragments of interest were excised from the gel using a sterile 

scalpel blade. Purification of DNA from the agarose gel was performed using the 

Qiaquick Gel Extraction Kit (Qiagen), according to the manufacturer’s 

instructions. 

For ligation of purified DNA fragments into destination vectors, plasmid and DNA 

insert were mixed at a molar ratio of 1:3 in a 20 μl reaction containing 1 unit of 

T4 DNA ligase (New England Biolabs) and 1 x T4 ligase buffer. Reactions were 

incubated overnight at 16 ˚C. 

2.3.3.6  Transformation of competent E. coli 

Plasmid DNA was transformed into the chemically competent E. coli strain DH5α 

(Invitrogen) for general cloning and BL21 (DE3) (Stratagene) for recombinant 

protein expression. Transformations were performed by heat-shock according to 

the manufacturer’s instructions, and resulting bacteria were plated onto LB agar 

(LB medium, 1.5 % Bacto-agar (Oxoid), pH 7.0) plates with the appropriate 

antibiotic selection and incubated overnight at 37 ˚C. Possible positive clones 

were verified by plasmid DNA miniprep and digestion with appropriate 

restriction enzymes, as described above. Plasmids containing the correct sized 

inserts were sent for nucleotide sequencing. 

2.3.3.7  Long-term storage of bacteria 

E. coli cells were plated onto LB agar containing the appropriate antibiotic and 

incubated overnight at 37 ˚C. A single colony was used to inoculate 5 ml of LB 

media containing the appropriate antibiotic, which was then incubated overnight 

at 37 ˚C, with shaking at 200 rpm. 0.5 ml of the overnight culture was mixed 
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with an equal volume of sterile 98 % (v/v) glycerol, 2 % (v/v) PBS, and stored at -

70 ˚C. 

2.3.3.8  Isolation of plasmid DNA from E. coli  

Single bacterial colonies from transformation plates were inoculated into 5 ml LB 

medium containing either 50 μg/ml kanamycin (for recombinant expression 

clones) or 100 μg/ml ampicillin (for all other vector clones and destination 

clones produced). These cultures were incubated overnight at 37 ˚C with shaking 

at 200 rpm. Plasmid DNA isolation was then performed using the Qiaprep spin 

miniprep kit (Qiagen) according to the manufacturer’s instructions. Correct 

ligation of DNA fragments into plasmids was verified by either diagnostic double 

digests using appropriate restriction enzymes or by DNA sequencing using 

relevant oligonucleotide primers.  

2.3.3.9  DNA sequencing  

DNA sequencing was carried out by The Sequencing Service, School of Life 

Sciences, University of Dundee (www.dnaseq.co.uk) using Applied Biosystems 

Big-Dye Ver 3.1 chemistry on an Applied Biosystems model 3730 automated 

capillary DNA sequencer. For each sequencing reaction, 200-300 ng of plasmid 

DNA and 3.2 pmoles of sequencing primer was required. 

2.3.3.10 DNA gel electrophoresis 

Analysis of DNA fragments was typically carried out on gels containing 1 % 

agarose in TAE buffer (40 mM TrisAcetate and 1 mM Na2EDTA, pH 7.6). Prior to 

loading the gel, samples were mixed with 6x DNA loading buffer (0.25 % (w/v) 

bromophenol blue, 0.25 % (w/v) orange-G, 40% (w/v) glycerol) to a final 

concentration of 1x loading buffer. Gels were electrophoresed at 100 V until the 

dye in the loading buffer could be seen to have migrated approximately two 

thirds of the length of the gel.  
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2.3.3.11 Southern blot analysis 

Leishmania genomic DNA was analysed by Southern blot. 2-5 μg of DNA was 

digested with appropriate restriction enzymes (typically 20-100 units) overnight. 

The digested DNA was run on a 0.8 % agarose gel overnight at 15-20 V, and then 

transferred to positively charged nylon membrane Hybond-N+ (GE Healthcare), 

using a VacuGene XL apparatus (GE Healthcare). The gel was placed on top of 

the membrane and covered with depurination solution (0.25 N HCl) and a 

vacuum was applied at 50-60 mbar pressure. 

After approximately 25 min, the colour of the loading dye changed from blue to 

yellow and the remaining depurination solution was removed. The gel was then 

covered with denaturation solution (1.5 M NaCl, 0.5 M NaOH) for approximately 

25 min until the loading dye had changed colour from yellow back to blue. The 

remaining denaturation solution was removed and replaced with 20x SSC for 1 h, 

to transfer the DNA onto the membrane. The DNA was crosslinked to the 

membrane by using a UV crosslinker (UVP Laboratory Products). The membrane 

was blocked with pre-warmed pre-hybridization buffer (5x SSC, 0.1 % (w/v) 

dextran sulphate and 1:20 dilution of liquid block (GE Healthcare)), at 55 ˚C for 

at least 1 h. After pre-hybridization, a DNA probe labelled with a thermostable 

alkaline phosphatase enzyme was added, which had been synthesized using the 

AlkPhos Direct Labelling Reagents (GE Healthcare) according to the 

manufacturer’s guidelines. The blot was incubated at 55 ˚C overnight. The blot 

was then washed twice in pre-warmed primary wash buffer (2 M urea, 0.1 % 

(w/v) SDS, 50 mM sodium phosphate pH 7.0, 150 mM NaCl, 1 mM MgCl2, 0.2 % 

(w/v) Blocking Reagent (GE Healthcare) at 55 ˚C), for 10 min each wash. After 

the primary washes, the blot was transferred to a clean container and washed in 

secondary wash buffer (50 mM Tris base, 100 mM NaCl, 2 mM MgCl2) twice at 

room temperature, for 5 min. 

Excess secondary wash buffer was removed from the blot and CDP-Star detection 

reagent (GE Healthcare) was applied to the membrane (30-40 μl/cm2) and 

incubated at room temperature for 2-5 min. Chemiluminescence was detected 

on autoradiography film (Kodak), for 2-24 h. 
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2.3.4  Biochemical methods 

2.3.4.1  Estimation of protein concentration  

Concentration of protein was determined using Protein assay reagent (BioRad). 

Varying dilutions of protein of an unknown concentration were added to wells of 

a 96 well microplate in total volumes of 10 μl. Protein assay reagent was diluted 

1:5 in sterile water, filtered and 200 μl added to each well containing protein. 

Bovine serum albumin (BSA) was used to determine a standard curve of the 

concentrations 0, 0.5, 1.0, 1.5 and 2.0 mg protein/ml. 

The absorbance of unknown protein solutions and standards with added Protein 

assay reagent was measured at 595 nm and the concentration of protein was 

determined by reference to the standard curve of known BSA concentrations. 

Measurements were taken using a Versamax microplate reader (Molecular 

Devices). A standard curve of BSA concentrations was made for each estimation 

of protein concentration, using the software Grafit 5.0 (Erathicus). 

2.3.4.2  SDS-PAGE analysis 

Protein samples were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) using the NuPAGE Bis/Tris electrophoresis system 

(Invitrogen). Proteins for analysis were quantified by the method described in 

Section 2.3.4.1 and heated to 100 ˚C for 5 min in 1 x SDS loading buffer (10.4 

mM Tris-HCl pH 6.8, 0.3 % (w/v) SDS, 1.7 % (v/v) glycerol, 0.0002 % (w/v) 

bromophenol blue, 0.8 % (v/v) 2-mercaptoethanol), before being loaded into 

Novex Bis/Tris pre-cast gels (4-12 % polyacrylamide). Gels were run in Xcell 

Surelock™ Mini-cell apparatus with 1 x MOPS buffer (50 mM 3-[N-morpholino] 

propane sulphonic acid, 50 mM Tris base, 3.5 mM SDS, 1 mM EDTA) (all 

Invitrogen). Electrophoresis was performed according to the manufacturer’s 

instructions. SDS-PAGE gels were stained by incubation in Coomasie stain (40 % 

(v/v) methanol, 10 % (v/v) acetic acid, 0.1 % (w/v) coomasie brilliant blue R-

250) for 10 min and washing in destain solution (20 % (v/v) methanol, 10 % (v/v) 

acetic acid). 
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2.3.4.3  Western blot analysis 

1-20 μg of protein separated by SDS-PAGE was transferred to Protran 

nitrocellulose (Schleicher & Schuell) using a Transblot semi-dry blotting system 

(Biorad) according to the manufacturer’s guidelines. Transfer occurred in a 

downward direction in a sandwich consisting of, from top to bottom, six sheets 

of blotting paper soaked in cold Towbin buffer (25 mM Tris, 192 mM glycine, 20 % 

(v/v) methanol), SDS-PAGE gel, nitrocellulose and a further six sheets of blotting 

paper soaked in cold Towbin buffer. The transfer was performed at 20 V for 40 

min per gel. After transfer, nitrocellulose membranes were stained with Ponceau 

S stain (Sigma) to visualise transferred proteins and to ensure the transfer was 

successful and to allow marking of the gel lanes. The membranes were blocked 

by incubating in PBS with 5 % (w/v) Marvel milk powder overnight at 4 ˚C, with 

shaking.  

Rabbit polyclonal antibodies raised against Leishmania recombinant proteins by 

the Scottish Antibody Production Unit (SAPU, Carluke, UK), using standard 

protocols. Primary antibodies were diluted to the appropriate concentration 

(Table 1.1) in PBS with 1 % (w/v) Marvel milk powder, and incubated on 

membranes at room temperature for 60 min, with shaking. The membranes were 

then washed three times in PBS with 0.1 % (v/v) Tween 20, for 10 min each 

wash, with shaking. Horse radish peroxidise (HRP) conjugated secondary 

antibodies were applied at the appropriate dilution in 1 % (w/v) Marvel milk 

powder in PBS, for 60 min at room temperature, with shaking.  The wash steps 

were then repeated as before. The ECL-plus detection kit (GE Healthcare) was 

used to detect HRP conjugated secondary antibodies. The blots were exposed to 

ECL film (GE Healthcare) from 15 s to 5 min in a hyperfilm cassette (GE 

Healthcare). 

2.3.4.4  Recombinant protein constructs 

L. donovani TDR1 and trypanothione reductase genes were amplified from 

genomic DNA using the oligonucleotide primers described in Section 2.3.3.1. The 

restriction sites NotI and NdeI were added to the 3’ and 5’ ends respectively, to 

facilitate cloning. The genes were first cloned into pGEMT-easy (Figure 2.1), 

then competent E. coli was transformed and plasmid DNA extracted from 6 ml 
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overnight cultures of the bacteria. The TDR1 and trypanothione reductase genes 

were then digested out of the pGEMT-easy vector using the restriction enzymes 

NotI and NdeI (typically 20-50 units) and the products were run on a 1 % agarose 

gel, to isolate the gene insert. Digested TDR1 and trypanothione reductase were 

then cloned into the expression vector pET28a+ (Novagen) (Figure 2.3). 

Recombinant expression of gene products in this vector is under control of the 

T7 promoter and is therefore inducible by addition of isopropyl-beta-D-

thiogalactopyranoside (IPTG). pET28a+ contains a multiple cloning site and a 

kanamycin resistance cassette. The L. donovani TDR1 and L. donovani 

trypanothione reductase expression constructs were cloned into NotI/NdeI sites, 

resulting in the addition of an N-terminal (His)6 tag.  

2.3.4.5  Production of recombinant L. donovani trypanothione reductase and 
TDR1 

A single colony of BL21 DE3 cells harbouring the appropriate expression 

construct was inoculated into 5 ml of LB medium with kanamycin (25 μg/ml) and 

allowed to grow at 37 ˚C overnight. The overnight culture was then diluted 1:50 

with LB containing 25 μg/ml of kanamycin and grown at 37 ˚C until OD600 

reached 0.7 – 0.8. Expression was induced with 2 mM IPTG and growth was 

continued for 16 h at 15oC for TDR1 (previously optimised by other lab members) 

and 20 ˚C for trypanothione reductase (Mittal et al., 2005). The induced culture 

was harvested by centrifugation at 1500 g for 20 min then resuspended in 6 ml of 

buffer A (20 mM Tris/500 mM NaCl, pH 7.9) containing 5 mM imidazole. The cells 

were lysed by sonication with a power of 50 W (six times 10 s pulse with 10 s 

cooling interval) and the resulting suspension was centrifuged at 15000 g for 20 

min at 4 ˚C to remove cell debris. The clear supernatant was applied on to a 2.5 

ml Ni2+-nitrilotriacetate column, pre-equilibrated in buffer A containing 5 mM 

imidazole.  The column was washed first with 50 ml of buffer A with 60 mM 

imidazole and the His-tagged recombinant protein was eluted with 250 mM 

imidazole in buffer A. Samples from each stage of the purification process were 

prepared as described in Section 2.3.4.2 and analysed on 12% SDS-PAGE gel.  
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Figure 2.3 pET28a+ Recombinant Expression Plasmid. 
Schematic representation of the pET28a+ recombinant expression plasmid and its important 
features, including the kanamycin resistance cassette, for selection in E. coli, and the multiple 
cloning site. The L. donovani trypanothione reductase expression construct was subcloned using 
NotI/NdeI. The L. donovani TDR1 expression construct was subcloned using NotI/NdeI. 
Recombinant expression using this plasmid is under the control of the T7 promoter and attaches a 
His(6) tag at the N-terminus of the expressed protein. This figure was taken from 
www.novagen.com.  
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2.3.4.6  Activity of trypanothione reductase 

This assay was performed according to Hamilton et al., 2003, to ensure the 

recombinant trypanothione reductase was active. The standard assay mixture 

contained, in a final volume of 1 ml, 40 mM Hepes (pH 7.5), 1 mM EDTA, 0.15 

mM NADPH, 1 µM T[S]2, 25 µM DTNB and various concentrations of trypanothione 

reductase. The basis of the assay involves the reaction of each trypanothione 

molecule with one DTNB molecule, producing one TNB molecule which is yellow 

in colour and detectable spectrophotometrically at 412 nm. This is a cycling 

reaction in which the initial rate is proportional to the concentration of 

trypanothione. The assay components were preincubated with NADPH for 5 min 

at 27 ˚C, before initiating the reaction by the addition of T[S]2. Enzyme activity 

was monitored as the increase in absorbance at 412 nm due to the formation of 

TNB. 

2.3.4.7  Thiol transferase activity of TDR1 

The ability of TDR1 of using glutathione and trypanothione as electron donors to 

reduce the synthetic disulphide – 2-hydroxyethyl disulfide (HEDS) was 

investigated as described in Denton et al., 2004. The standard assay mixture 

contained, in a final volume of 200 µl, 50 mM Tris/HCl (pH 7.0), 5 mM EDTA, 300 

µM NADPH, 1 mM GSH, 0.75 mM HEDS and 1 unit/ml GSH reductase. When using 

trypanothione as an electron donor, all assay components were the same except 

1 mM GSH was replaced by 400 µM trypanothione, 1 unit/ml of GSH reductase 

was replaced by 1 unit/ml of trypanothione reductase and the concentration of 

NADPH was reduced from 300 µM to 200 µM. The assay mixture was preincubated 

at 30 ˚C for 10 min, before initiation of the reaction by the addition of TDR1. 

Activity was monitored as the decrease in absorbance at 340 nm. Specific 

activities were calculated from the linear rate during the first 1 min of the 

reaction. 
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2.3.5  DNA manipulation techniques for L. major and L. donovani 

2.3.5.1  Production of a knock-out cassette 

The plasmids pGL345, pGL158 and pGL1033 were obtained from Prof. J. C. 

Mottram, Glasgow (Mottram et al., 1996). pGL345 contains the hygromycin 

phosphotransferase (HYG) gene, conferring resistance to Hygromycin, pGL158 

contains the nourseothricin acetyltransferase (SAT) gene, conferring resistance 

to Nourseothricin and pGL1033 contains the dihydroxybiphenyl dioxygenase 

(BLEO) gene, conferring resistance to Bleomycin/Phleomycin.  

Approximately 1 kb of the 3’ flanking region of the L. donovani OAS-TL gene was 

amplified using the oligonucleotide primers described in Section 2.3.3.1, and the 

amplification conditions described in Section 2.3.3.2. HindIII and BamHI sites 

were introduced at the 5’ and 3’ ends of the amplified 5’ flanking region and 

SmaI and BglII sites were introduced to the 5’ and 3’ ends of the amplified 3’ 

flanking region.  

The 1 kb 3’ flanking region of the antibiotic resistance genes of the plasmid 

pGL345 was removed by digestion with the restriction enzymes HindIII and 

BamHI (20-50 units). The amplified 3’ flanking region of the OAS-TL gene was 

then subcloned into the pSD-B plasmid (Figure 2.2), released using the 

restriction enzymes HindIII and BamHI (20-50 units) and sub-cloned into the 

plasmid pGL345 pre-digested with the same restriction enzymes. Competent E. 

coli was transformed with pGL345 + OAS-TL 3’ flank and the plasmid DNA was 

purified from a 6 ml overnight bacterial culture. This procedure was repeated to 

replace the 5’ flanking region of the antibiotic resistance gene with the 5’ 

flanking region of the OAS-TL gene creating the construct pGL345 with OAS-TL 3’ 

and 5’ flanks. 

Since the sequence of pGL345, pGL158 and pGL1033 are identical apart from the 

antibiotic resistance genes, the nourseothricin acetyltransferase and 

dihydroxybiphenyl dioxygenase genes were isolated from pGL158 and pGL1033 

respectively, by digest with SpeI and BamHI. These fragments of DNA were then 

used to replace the hygromycin phosphotransferase gene in the construct 

pGL345 + OAS-TL 3’ and 5’ flanks. This method was used to generate TDR1 knock 
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out constructs in the same way. Figure 2.4 shows the constructs designed to 

knock-out TDR1 in L. donovani and L. infantum, and Figure 2.5 shows the 

constructs designed to knock-out OAS-TL in L. donovani.  

2.3.5.2  Production of over-expression plasmids 

The pGL102 plasmid was obtained from Prof. J. C. Mottram, Glasgow, and used 

to create Leishmania lines in which a particular gene was re-expressed or over-

expressed. pGL102 contains the neomycin phosphotransferase gene, which 

confers resistance to G418 and neomycin (Figure 2.6).  

The OAS-TL gene (975 bp in length) and the TDR1 gene (1353 bp in length) were 

amplified using the oligonucleotide primers described in Section 2.3.3.1. A 

BamHI site and an ATG initiation codon were added to the 5’ end of the 

oligonucleotide N-terminal primers and a SmaI restriction site and a stop codon 

were added to the C-terminal end. In the case of OAS-TL, the SmaI restriction 

site was replaced with EcoRV, because the gene itself contains a SmaI restriction 

site. The PCR products were cloned into the pGEMT-easy vector (Qiagen) and 

then used to transform E. coli DH5α cells. Plasmid DNA was purified from a 6 ml 

overnight bacterial culture. The TDR1 and OAS-TL inserts were digested out with 

BamHI and SmaI (20-50 units) in the case of TDR1, and BamHI and EcoRV (20-50 

units) in the case of OAS-TL, and ligated into the pre-digested SmaI/BamHI 

pGL102 plasmid. Plasmids were used to transform E. coli DHα cells. Plasmid DNA 

was purified from a 6 ml overnight bacterial culture.  

2.3.5.3  Preparation of plasmid for transfection  

Extra-chromasomal plasmids for over-expression of OAS-TL and TDR1 were 

prepared by using the Qiaprep spin miniprep kit (Qiagen) with 6 ml of overnight 

E. coli cultures, to purify plasmid DNA. The plasmid DNA was then sterilised by 

ethanol precipitation. DNA was washed twice in 70 % (v/v) ethanol and 

resuspended in 20 µl of sterile water.  
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Figure 2.4 Constructs for the gene knock-outs of TDR1. 
Schematic representation of the pGL345 with TDR1 flanks (Panel A), pGL1033 with TDR1 flanks 
(Panel B) and the pGL158 with TDR1 flanks (panel C). Hyg, hygromycin phosphotransferase; 
Bleomycin, dihydroxybiphenyl dioxygenase; SAT, nourseothricin acetyltransferase; AmpR, 
ampicillin resistance gene; DHFR, flanking regions of the Leishmania dihydrofolate reductase. All 
contain the ampicillin resistance gene (AmpR; 858 bp) for selection in E. coli. The restriction sites 
used to clone the TDR1 flanks into the plasmids are shown in red. HindIII and BglII were used to 
cut out the flank-containing linear knock-out construct for transfection into L. donovani. 
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Figure 2.5 Constructs for the gene knock-outs of OAS-TL. 
Schematic representation of pGL345 with OAS-TL flanks (Panel A), pGL1033 with OAS-TL flanks 
(Panel B) and pGL158 with OAS-TL flanks (Panel C). Hyg, hygromycin phosphotransferase; 
Bleomycin, dihydroxybiphenyl dioxygenase; SAT, nourseothricin acetyltransferase; AmpR, 
ampicillin resistance gene; DHFR, flanking regions of the Leishmania dihydrofolate reductase. All 
contain the ampicillin resistance gene (AmpR; 858 bp) for selection in E. coli. The restriction sites 
used to clone the OAS-TL flanks into the plasmids are shown in red. HindIII and BglII were used to 
cut out the flank-containing linear knock-out construct for transfection into L. donovani.                                     
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Figure 2.6 Plasmids for the re-expression/over-expression of OAS-TL and TDR1. 
Schematic representation of the pGL102 plasmid for re-expression or over-expression of genes in 
Leishmania. pGL102 with OAS-TL (Panel A) for re-expression/over-expression of OAS-TL and 
pGL102 with TDR1 (Panel B) for re-expression/over-expression of TDR1. Neo, neomycin 
resistance gene; AmpR, ampicillin resistance gene for selection in E. coli. The restriction sites used 
to clone OAS-TL and TDR1 into the plasmids are shown. 



  67 

  

Plasmid DNA containing the knock-out constructs for OAS-TL and TDR1 were also 

prepared using the Qiaprep spin miniprep kit (Qiagen) with 6 ml of overnight E. 

coli cultures, to purify plasmid DNA. 20 µg of knock-out plasmid DNA was 

linearised by overnight digest with HindIII and BglII, in a 60 µl reaction volume, 

according to the manufacturer’s instructions. Digested knock-out DNA was 

electrophoresed on 1 % agarose TAE gels, purified using the Qiaquick Gel 

Extraction Kit (Qiagen) and sterilised by ethanol precipitation. DNA was washed 

twice in 70 % (v/v) ethanol and resuspended in 20 µl of sterile water.  

2.3.5.4  Isolation of genomic DNA 

Genomic DNA was isolated from Leishmania promastigotes according to a 

method based on the mini-prep procedure described by Medina-Acosta and Cross 

(1993). Up to 2 x 108 cells were harvested at 1000 g for 10 min, resuspended in 

150 µl of TELT lysis buffer and incubated at room temperature for 5 min. The 

cell lysate was extracted after the addition of phenol/chloroform (1:1) followed 

by centrifugation at 13000 g, 5 min. DNA was ethanol precipitated by washing 

twice in 70 % (v/v) ethanol. The precipitated DNA was allowed to air dry for 5 

min before being resuspended in sterile TE buffer. The quantity and quality of 

DNA were analysed by agarose gel electrophoresis. 

2.3.6  HPLC 

2.3.6.1  Preparation of thiol standards for analysis by HPLC 

Mixes containing stock concentrations of 0, 50, 100, 150, 200, 250, 300 and 350 

pmoles of each of cysteine, γ-glutamyl cysteine, cysteinyl glycine, glutathionyl 

spermidine, glutathione, homocysteine and trypanothione were diluted in 50 µl 

of 40 mM N-[2-hydroxyethyl]-piperazine-N’[3-propanesulphonic acid] (HEPPS), 4 

mM diethylenetriamine pentaacetic acid (DTPA) buffer, 1 mM dithiothreitol 

(DTT), pH 8.0 (adjusted with lithium hydroxide). Thiols were derivatised by the 

addition of 50 µl 2 mM monobromobimane in absolute ethanol and heated for 3 

min at 70 ˚C. After a brief cooling period, standards were deproteinised by the 

addition of 100 µl of 4 M methanesulphonic acid, pH adjusted to 1.6 with lithium 

hydroxide, and incubated on ice for 30 min. Standards were centrifuged at 15000 

g for 5 min. Supernatant was carefully removed and stored at -80 ˚C until 
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analysis, typically no longer than 4 weeks. The correlation between peak area 

and thiol concentration was shown to be linear in the range 0 – 350 pmoles. 

2.3.6.2  Preparation of parasite extracts for analysis by HPLC 

5 x 107 L. donovani cells, in amber coloured microcentrifuge tubes (Eppendorf), 

were pelleted at 1 500 g for 10 min at 4˚C and stored at -20 ˚C overnight. The 

cells were resuspended in 50 µl of 40 mM N-[2-hydroxyethyl]-piperazine-N’[3-

propanesulphonic acid] (HEPPS), 4 mM diethylenetriamine pentaacetic acid 

(DTPA) buffer, 1 mM DTT, pH 8.0 (adjusted with lithium hydroxide), and 

incubated on ice for 1 h. Intracellular thiols were derivatised by the addition of 

50 µl 2 mM monobromobimane in absolute ethanol and heated for 3 min at 70 

˚C. After a brief cooling period, cells were deproteinised by the addition of 100 

µl of 4 M methanesulphonic acid, pH 1.6 (adjusted with lithium hydroxide) and 

incubated on ice for 30 min. The denatured cell protein was removed by 

centrifugation at 15 000 g for 5 min. Supernatant was carefully removed and 

stored at -20 ˚C until analysis.   

2.3.6.3  Separation of thiols by HPLC analysis 

Solvent A (0.25 % acetic acid) and solvent B (100 % acetonitrile) were made fresh 

for each HPLC run, and were de-gassed by vaccum filtration using 0.2 μm filters 

(Phenomenex). HPLC was performed by an UltiMate HPLC system, consisting of 

the UltiMate 3000 pump, autosampler and variable wavelength detector, the RF 

2000 fluorescence detector and a UCI-50 universal chromatography interface. 

Prepared samples were defrosted at room temperature and transferred, by 

pipette, into 0.3 ml HPLC crimp vials with snap caps (Kinesis), and placed in the 

autosampler. Separation of labelled thiols was performed using a Gemini C18 

chromatography column fitted with a SecurityGuard guard column 

(Phenomenex), at a flow rate of 0.55 ml min-1 by application of the following 

gradient (% of solvent B): 0 min, 0%; 10 min, 0%; 40 min, 8%; 100 min, 15%; 110 

min, 50%; 111 min 0%; 121 min, 0%. Thiols were detected by a fluorescence 

spectrophotometer (excitation, 365 nm; emission, 480 nm). The mobile phases 

consisted of 0.25% acetic acid (solvent A) and 100% acetonitrile (solvent B). 
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Peak area was used to calculate the amount of γ-glutamyl-cysteine, cysteine, 

cysteinyl-glycine, glutathione, homocysteine and trypanothione in a given 

sample. Values were calculated using the straight line equation y = mx + c and 

the appropriate standard curves. To allow for slight differences in retention time 

between columns, the standard curves were re-plotted when the column was 

changed, and during every run, a standard thiol mix of known concentrations 

was run to ensure the validity of the results. 

2.3.7  Macrophage infections 

2.3.7.1  Purification of macrophages from mice 

Culled ICR mice and all equipment to be used were sterilised by spraying with 70 

% (v/v) ethanol. A small incision was created in the middle of the abdomen of 

the mouse and the skin was pulled off to reveal the peritoneum, which was 

sterilised by spraying with 70 % (v/v) ethanol. 10 ml of RPMI 1640 with 1 % (v/v) 

gentamycin (both Invitrogen) was injected into the peritoneal cavity of the 

mouse and, holding the tail and shoulders, was gently agitated for approximately 

20 s. The fluid (macrophage suspension) within the peritoneal cavity of the 

mouse was removed using a syringe, and centrifuged at 691 g for 10 min. The 

cell pellet was resuspended in fresh RPMI 1640 with 10 % (v/v) HIFCS and the cell 

number determined. The number of cells was adjusted to 5 x 105 cells/ml. 

2.3.7.2  In vitro macrophage infections 

Peritoneal macrophages were harvested as described in Section 2.3.7.1. 100 μl 

of cell suspension (5 x 104 cells/ml) was pipetted into each well of 16-well Lab-

tekTM tissue culture slides (Nunc) and incubated at 37 ˚C, in 5 % CO2 95 % air for 

24 h. Stationary phase promastigotes were counted using a haemocytometer and 

diluted to the relevant concentration for the desired ratio (typically 5 

promastigotes: 1 macrophage) in HOMEM with 20% (v/v) HIFCS. 100 μl of this 

parasite suspension was added to each of the wells containing macrophages. The 

slides were then incubated for a further 2 h at 37 ˚C with 5 % CO2, 95 % air.  

The medium was then carefully removed from each well and replaced with fresh 

HOMEM medium with 20 % HIFCS. Slides were fixed and stained after various 
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time points including 2 h, 12 h, 24 h, 55 h and 144 h post-infection with 

promastigote parasites. Slides were always incubated at 37 ˚C, in 5 % CO2, 95 % 

air, fixed in 100% methanol and stained with 10% Geimsa for 10 min. The 

percentage of macrophages infected was determined using light microscopy by 

counting 100 macrophages. The number of parasites per macrophage, or per 

infected macrophage, was determined by counting the number of parasites in 50 

macrophages per well, and calculating the average. Counts were always 

performed at least in triplicate and standard errors were calculated using the 

computer program Grafit 5.0 (Eraticus).  

 
The effect of supplementing the medium with glutathione (1 mM) and L-

methionine (5 mM), was investigated by setting up macrophage infections and 

infecting them with stationary phase parasites as described above. At all 

experimental stages, the medium was supplemented with the appropriate amino 

acid. 2 h post infection, the medium was replaced with HOMEM + 20 % HIFCS 

supplemented with the appropriate amino acid. Slides were fixed in 100 % 

methanol after 2 h, 12 h, 24 h and 55 h post infection, and stained using 10 % 

Geimsa stain for 10 min. Percentage infection and mean number of parasites per 

infected macrophage were calculated as described previously.  

2.3.7.3  Sodium Stibogluconate Sensitivity Assay 

Peritoneal macrophages were harvested as described in Section 2.3.7.1. 100 μl 

of cell suspension was pipetted into each well of 16-well Lab-tekTM tissue culture 

slides (Nunc) and incubated at 37 ˚C, in 5% CO2, 95% air for 24 h. Stationary 

phase promastigotes were counted using a haemocytometer and diluted to the 

relevant concentration for the desired ratio (7 promastigotes:1 macrophage) in 

RPMI1640 with 10% (v/v) HIFCS. 100 μl of this parasite suspension was added to 

each of the wells containing macrophages. The slides were then incubated for a 

further 24 h at 37 ˚C with 5% CO2, 95% air. The medium was then carefully 

removed from each well and sodium stibogluconate added in the following 

concentrations: 500 μM, 250 μM, 125 μM, 62.5 μM, 31.3 μM, 15.6 μM, 7.8 μM and 

0 μM. The sodium stibogluconate was dissolved in PBS, filter sterilised and 

diluted in HOMEM with 10 % HIFCS. Drug dilutions were prepared in duplicate for 

each parasite line being tested (L. major FNM, L. major Δtdr1 (tdr1 null mutant) 
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and L. major Δtdr1 [TDR1] (TDR1 re-expresser)). The slides were incubated for a 

further 72 h at 37 ˚C with 5% CO2, 95% air. The removal of medium and 

application of fresh sodium stibogluconate was then repeated using the 

concentrations described previously. The slides were then incubated for a 

further 48 h at 37 ˚C with 5% CO2, 95% air. All slides were fixed with 100% 

methanol and stained with 10% Geimsa for 10 min. The percentage of 

macrophages infected was determined using light microscopy by counting 100 

macrophages per well, and calculating the percentage of those infected. IC50 

values and standard errors were determined by Grafit 5.0 (Erathicus). 

2.3.8  Statistical tests 

Unpaired t-tests were used routinely throughout this project to determine 

whether there is a difference between two means. Macrophage infection data 

were analysed in this way. All unpaired t-tests were carried out using the 

statistical program Minitab 15. 

In order to compare the data collected on flagellum and body length of L. 

donovani WT, Δoas-tl A, Δoas-tl B, Δoas-tl A [OAS-TL] and Δoas-tl A [OAS-TL], 

the one way analysis of variance (ANOVA) was used. The ANOVA compares the 

means of several populations and depends on the following assumptions: each 

data set must be a random sample from each population, all populations must 

have the same variance and each population must have a normal distribution. 

Minitab 15 was used to carry out four separate analyses of variance to compare 

the means of the following groups: L. donovani WT, Δoas-tl A and Δoas-tl A 

[OAS-TL] flagellum length; L. donovani WT, Δoas-tl B and Δoas-tl B [OAS-TL] 

flagellum length; L. donovani WT, Δoas-tl A and Δoas-tl A [OAS-TL] body length; 

L. donovani WT, Δoas-tl B and Δoas-tl B [OAS-TL]. 

2.3.9  The effects of stressors on promastigote growth of 
Leishmania 

2.3.9.1  The effect of peroxides on growth of Leishmania promastigotes 

To investigate the effect of hydro-peroxides on growth of Leishmania 

promastigotes, wild type and transgenic parasite lines were seeded at 2.5 x 105 
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cells/ml in white bottom 96-well tissue culture plates and cultured for 72 h at 25 

˚C, with hydrogen peroxide (10, 5, 2.5, 1.3, 0.6, 0.3, 0.2, 0.08, 0.04, 0.02 or 

0.01 mM), cumene hydroperoxide or tert-butyl hydroperoxide (both at 1, 0.5, 

0.3, 0.1, 0.06, 0.03, 0.02, 0.008, 0.004, 0.002 or 0.001 mM) in total volumes of 

200 µl. 20 µl of 500 µM resazurin sodium salt was then added to each well and 

the plates were incubated for a further 48 h at 25 ˚C before absorbance values 

were determined by dual wavelength using a FLUOStar OPTIMA fluorescent plate 

reader at 490 and 595 nm. 

Resazurin sodium salt is used for the measurement of the metabolic activity of 

living cells. The bioreduction of the dye reduces the amount of the oxidised form 

(blue) and subsequently increases the fluorescent intermediate (red). 

2.3.9.2  The effect of heavy metals on growth of L. donovani promastigotes 

To investigate the effect of heavy metals on growth of L. donovani 

promastigotes, wild type and transgenic lines were seeded at 2.5 x 105 cells/ml 

in white bottom 96-well tissue culture plates and cultured for 72 h at 25 ˚C, 

with copper sulphate, potassium arsenate or cadmium chloride (all at 5, 2.5, 

1.3, 0.6, 0.3, 0.2, 0.08, 0.04, 0.02 0.01 or 0.005 mM), in total volumes of 200 µl. 

20 µl of 500 µM resazurin sodium salt was then added to each well and the plates 

were incubated for a further 48 h at 25 ˚C before absorbance values were 

determined with an excitation of 490 nm and emission of 595 nm, using a 

FLUOStar OPTIMA fluorescent plate reader. 

2.3.10  Scanning Electron Microscopy 

2.3.10.1 Preparation of samples for Scanning Electron Microscopy 

10 mm glass coverslips were coated with poly-L-lysine and allowed to dry at 

room temperature for approximately 1 h. Mid-log phase cells (approximately 3 x 

106 cells/ml) were centrifuged at 1000 g for 5 min, washed in PBS once, 

centrifuged again at 1000 g for 5 min and resuspended in 2.5 % glutaraldehyde, 

0.1 M sodium phosphate. Samples were fixed by incubation at room temperature 

for 40 min. Cells were pelleted by centrifugation at 1000 g for 5 min and washed 

in 0.1 M sodium phosphate buffer. This was repeated twice to ensure the 
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complete removal of glutaraldehyde. Droplets of fixed cells were placed, by 

pipette, onto 10 mm glass coverslips pre-coated with poly-L-lysine. Cells were 

allowed to settle and adhere to the coverslips for 30 min at room temperature. 

The coverslips were washed twice in 0.1 M sodium phosphate buffer, for 5 min 

each wash, by placing them specimen-side down onto droplets of buffer on 

nescofilm wax paper.  The coverslips were then transferred, specimen-side down 

onto droplets of osmium tetroxide where they were incubated for 1 h at room 

temperature. Following incubation with osmium tetroxide, the samples were 

washed three times in distilled water by placing the coverslips specimen-side 

down onto droplets on wax paper. Each wash was performed at room 

temperature and lasted 5 min. The coverslips were transferred, specimen-side 

up, into a 24 well tissue culture plate containing distilled water, for 5 min at 

room temperature, then into filtered uranyl acetate and incubated in darkness 

for 30 min-1 h. Following staining in uranyl acetate the coverslips were washed 

once in distilled water and then dehydrated by incubation for 10 min in each of 

the following; 30 % (v/v) ethanol, 50 % (v/v) ethanol, 70 % (v/v) ethanol, 90 % 

(v/v) ethanol, absolute ethanol and dried absolute ethanol. The absolute ethanol 

incubation was performed twice.  The coverslips were placed specimen-side up 

in hexamethyldisilazane (HMDS) for 5 min at room temperature. This step was 

repeated once before removing coverslips from the 24 well tissue culture plate 

and placing them, specimen-side up, onto blotting paper to dry out. To allow 

specimens to dry out completely, they were placed in a dessicator overnight. 

Samples were then mounted onto aluminium pin stubs (Agar Scientific), secured 

by double-sided copper tape (Agar Scientific). Conductivity was increased by 

painting a layer of silver paint (Agar Scientific) around the edge of the glass 

coverslip, connecting it to the aluminium stub. Samples were then coated in a 

layer of gold palladium, 20 nm in thickness, using a Polaron SC515 SEM coating 

system.  

2.3.10.2 Visualisation of samples by Scanning Electron Microscopy 

Imaging was performed using a JSM 6400 scanning electron microscope  

at 6kV. Digital images were acquired via an ADDA 3 capture system at  

2048 x 1536 pixel resolution. 
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2.4 Companies from which equipment, chemicals and 
kits were purchased 

Agar Scientific Aluminium pin stubs, double-sided copper tape, silver 

paint 

BDH     Giemsa stain, saponin 

Beckman   GS-15R centrifuge 

Beckman Coulter   Avanti J-26xP centrifuge, Allegra™ X-12R centrifuge 

Beckton Dickinson 10 ml, 5 ml, 2 ml and 1 ml sterile plastic syringes, 

Microlance™ 3 needles (26 G x 5/8”) and (21 G x 1 

1/2”) 

BioRad  Transblot SD semi-dry transfer cell, precision plus all 

blue protein standards, gene pulser electroporation 

cuvette (0.4 cm), GenePulser® II electoporator, 

Capacitance extender II, Protein assay reagent 

Calbiochem   G418 sulfate  

ClonNAT   Nourseothricin 

Dionex  UltiMate HPLC system (UltiMate 3000 pump, 

autosampler and variable wavelength detector, RF 

2000 fluorescence detector and UCI-50 universal 

chromatography interface) 

Eppendorf  Microcentrifuge 5415D, Amber microcentrifuge tubes 

(1.5 ml) 

Eurogentec    All oligonucleotide primers 

Floustar    OPTIMA fluorescence plate reader 
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GE Healthcare Hyperfilm ECL, ECL-plus detection kit, Hypercassettes 

(18 x 24 cm), AlkPhos direct labelling reagents, CDP-

Star detection reagent, Hybond-N+ nylon membrane 

Invitrogen  Accuprime Pfx Supermix, PCR Supermix, chemically 

competent E. coli TOP10 cells, chemically competent 

E. coli DH5α cells, RPMI 1640 (with 25 mM HEPES, L-

Glutamine), gentamycin, penicillin/streptomycin, 

NuPAGE 10 % Bis/Tris gels, 20 x MOPS buffer, Xcell 

Surelock™ Mini-cell apparatus, phleomycin 20 mg/ml, 

HOMEM medium (ref 041-946-99M) 

Kinesis   HPLC crimp vials (0.3 ml), HPLC vial snap caps 

Kodak    Autoradiography film 

Melford Ampicillin, Isopropyl-beta-D-thiogalactopyranoside 

(IPTG), NADPH 

Molecular Devices  Versamax tunable microplate reader 

New England Biolabs All restriction endonucleases, T4 DNA ligase 

Novagen    pET28a+ expression vector 

Nunc  1.0 ml cryotubes, 16-well Lab-tekTM tissue culture 

slides 

Phenomenex Gemini C18 chromatography column, SecurityGuard 

guard column kit, 0.2 μm nylon filters 

Polaron   SC515 SEM coating system 

Promega   pGEMT-easy cloning kit, 1 kb DNA ladder 

Qiagen  Qiaprep spin DNA miniprep kit, Qiaquick gel 

extraction kit, Ni-NTA agarose 
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Roche    Hygromycin B 

Sartorius    0.2 µm syringe filters 

Schleicher & Schuell Protran nitrocellulose 

Shimadzu    UV-2501 PC spectrophotometer 

Sigma     6k15 centrifuge, all chemicals unless otherwise stated 

Stratagene    StrataClone blunt PCR cloning kit 

UVP Laboratory Products UV crosslinker 

Zeiss     Axioplan 2 microscope 
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3. Leishmania donovani, L. major and L. infantum 
TDR1: Analysis of gene deletion and production 
of recombinant protein. 
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3.1 Introduction 

Thiol dependent reductase 1 (TDR1) of Leishmania is a 49.9 kDa protein of which 

the physiological role remains unclear (Denton et al., 2004). The amino acid 

sequence alignment of TDR1 of various Leishmania species with a thiol 

dependent reductase, TcAc2, of the related organism Trypanosoma cruzi 

(Schöneck et al., 1994), is shown in Figure 3.1. 

The protein is made up of two domains with differing active site residues. The N-

terminal domain contains the characteristic glutaredoxin/thioredoxin active 

site, CXXC, while the C-terminal domain active site is more similar to the active 

sites of the omega class glutathione S-transferases. Although the precise 

function of TDR1 remains unclear, it has been suggested that the two domains 

may function together as an electron donor and a reductase, respectively. TcAc2 

has a conserved N-terminal active site, but the active site residues of the C-

terminal domain differ.  

TDR1 has been shown to reduce inactive pentavalent antimonials, SbV, to the 

active trivalent form, SbIII, in vitro (Denton et al., 2004), suggesting that the 

protein may be involved in the activation of SbV in vivo. This possible 

physiological role of the protein is supported by the evidence that TDR1 is 

expressed approximately 10-fold higher in amastigotes than promastigotes, 

possibly explaining the specificity of the drug to the amastigote stage of the 

parasite (Denton et al., 2004). TDR1 also shows some similarity and a conserved 

active site (Figure 3.1) to the three classes of arsenate reductases that have 

been described previously (Mukhopadhyay et al., 2002). The arsenate reductases 

have a role in the detoxification of arsenic by reduction followed by excretion of 

drug-thiol conjugates from the cell. Therefore it has been suggested that TDR1 

could be involved in the detoxification of arsenic and other heavy metals from 

Leishmania. 

The sequence homology between TDR1 of different Leishmania species suggests 

the conservation of an important function, particularly given that the presumed 

active sites are highly conserved. Table 3.1 shows the percentage identity of the 

different proteins included in the alignment.  
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The aim of this study was to investigate the role of TDR1 in L. donovani through 

over-expression and gene replacement studies and subsequent analysis of 

phenotype. 

3.2 Gene deletion of TDR1 in L. major 

The removal of the TDR1 gene from L. major, by two rounds of homologous 

recombination, was anticipated to result in a phenotypic effect that may clarify 

the role of TDR1 in the parasites. The design of the knock-out plasmids as well 

as both rounds of transfection were carried out by a previous PhD student in the 

laboratory. 

3.3 Analysis of L. major ∆tdr1 A and ∆tdr1 B 

The replacement of both TDR1 alleles of the two clones generated, L. major 

Δtdr1 A and Δtdr1 B, with DNA from the plasmids pGL345 and pGL1033, was 

confirmed by Southern blot analysis. L. major wild-type (WT) as well as Δtdr1 A 

and Δtdr1 B were harvested from stationary growth phase and the genomic DNA 

was extracted. 1-2 µg of DNA was digested overnight using the restriction 

endonuclease XhoI, and separated by DNA gel electrophoresis before Southern 

blotting. The sizes of the expected DNA fragments can be seen in Figure 3.2. The 

blot was probed with the labelled 3’ flanking region of TDR1, and the resulting 

Southern blot in shown in Figure 3.3. The 4.9 kb band that was seen in the WT 

lane represents the fragment of DNA detected by the labelled 3’ flanking region 

of the gene. In each of the lanes corresponding to Δtdr1 A and Δtdr1 B, two 

bands were seen at 7.0 kb and 7.7 kb, indicating that the knock-out DNA had 

integrated in the correct place. However, a faint band was visible in the lane 

containing Δtdr1 A at 4.9 kb, suggesting that the clone selection procedure was 

not optimal and resulted in a mixed population of knock-out and WT parasites.  



  80 

  

L_donovani          MAARALKLYVSATCPFCHRVEIVAREKQVSYDRVAVGLREEMPQWYKQINPRETVPTLEV 60 
L_infantum          MAARALKLYVSATCPFCHRVEIVAREKQVSYDRVAVGLREEMPQWYKQINPRETVPTLEV 60 
L_major             MAARALKLYVSATCPFCHRVEIVAREKQVSYDRVAVGLREEMPQWYKQINPRETVPTLEV 60 
L_braziliensis      MTSRALKLYVAATCPFCHRVEIVAREKKVSYDRVVVGLREEMPQWYKEINPRETVPTLEV 60 
T_cruzi_1           --MKALKLFKDRLCPFCQRVLITAKEKRVTLEEVEVPLGDDMPQWYKELNPRETVPTLQV 58 
T_cruzi_2           --MKALKLFTNRICPFCQRVLITAKEKRVTLEEVEVPLGDDMPQWYKELNPRETVPMLQV 58 
                       :****:    ****:** *.*:**:*: :.* * * ::******::******* *:* 
 
L_donovani          GNADKRFMFESMLIAQYLDNSGAPAGALMGSSAAQRHQIEFFLAQVGDFIGAAHGLLRDP 120 
L_infantum          GNADKRFMFESMLIAQYLDNSGAPAGALMGSSAAQRHQIEFFLAQVGDFIGAAHGLLRDP 120 
L_major             GNAEKRFVFESMLIAQYLDNSGAPAGALMGASSAQRHQIEFFLAQVGDFIAAAHGLLRDP 120 
L_braziliensis      GCPERRFVFESMLIAQYLDNSCAPAGALMGASAIQRHRIEYFLTQVGDFIGAAHELLGDP 120 
T_cruzi_1           DG--KKCMIESDLISRYIDRISSPANALMGSSPYQRHRVEFFLGEIGDLVKAYFGLVRDP 116 
T_cruzi_2           DG--KKCMIESDLISRYIDRISSPENALIGSSPYQRHRVEFFLSEIGDLVKAYFGLVRDP 116 
                    .   :: ::** **::*:*.  :* .**:*:*. ***::*:** ::**:: * . *: ** 
 
L_donovani          LSGEKRKAMDDNAAYVDGLLAANQTTGPYYCDGEFTMADVALVPFLVRLKPALMYYAGYD 180 
L_infantum          LSGEKRKAMDDNAAYVDGLLAANQTTGPYYCDGEFTMADVALVPFLVRLKPALMYYAGYD 180 
L_major             LSGEKRKAVDDNAAYVDGLLAANQTTGPYYCDGEFTMADVALVPFLVRLKPALMYYAGYD 180 
L_braziliensis      LSAEKRSALSDSAAYMDELLAANQTTGPYYCDGEFTMADVALVPFLVRLKFVLMYYAGYD 180 
T_cruzi_1           FNEEKRKSVDNNTAYIEDIIAEHQGDGPYFLDDTFSMAEVMVVPFLACFRPVLSYYCGYD 176 
T_cruzi_2           FNEEKRKSVDHNTAYIEGIIAEHQGDGPYFLDDTFSMAEVMVVPFLACFRPVLSYYCGYD 176 
                    :. ***.::...:**:: ::* :*  ***: *. *:**:* :****. :: .* **.*** 
 
L_donovani          VFCKAPRMKALWAAAAQRASVRETSPTAAQCIENYRHLVPESAPMMGANGGHVLYSNLFC 240 
L_infantum          VFCKAPRMKALWAAAAQRASVRETSPTAAQCIENYRHLVPESAPMMGANGGHVLYSNLFC 240 
L_major             VFCKAPRMKVLWAAAAQRTSVRETSPTAAQCIENYRHLVPESAPMMGANGGHVLYSNLFC 240 
L_braziliensis      VFCKAPRMKALWAAAVQRASVLETLPTAEQCVENYRHLVPESAPMMGANGGYVLYSNHLC 240 
T_cruzi_1           IFHNAPRLKKMYVTSMQRTTVKETISKPEEYIIGFKSKVPKSHVTWSLAPGYVLFVNKYS 236 
T_cruzi_2           IFHEAPRLKKMYVTSMQRTTVKETISKPEEYIIGFKSKVPKSHVTWSLAPGYVLFVNKYS 236 
                    :* :***:* ::.:: **::* ** ... : : .::  **:*    .   *:**: *  . 
 
L_donovani          PFVDRARLASELRKFQMHIVEVPLHPQPEWYKYINPRDTVPALFTPSGEAVHESQLIVQY 300 
L_infantum          PFVDRARLASELRKFQMHIVEVPLHPQPEWYKYINPRDTVPALFTPSGEAVHESQLIVQY 300 
L_major             PFVDRARLACELRKFQVHTVEVPLHPEPEWYKYINPRDTVPALFTPSGEAVHESQLIVQY 300 
L_braziliensis      PFADRVRLACELRKFTVHAVEVPLHPQPEWYQHFNSLGTVPALFTPSGEAVHESQLILYY 300 
T_cruzi_1           PFSDRPRLACALKNIDLPMLEIDLKQLPPWFRWFNQRETVPTLLTPQGTYVHESQLIVHY 296 
T_cruzi_2           PFSDRPRLACALKNIDLPMLEIDLKQLPSWFRWFNQRETVPTLLTPRGTYVHESQLIVHY 296 
                    ** ** ***. *::: :  :*: *:  * *:: :*   ***:*:** *  *******: * 
 
L_donovani          IDC-VATKGSALVPRGDAEKEYEVGFFVENAGYFVGGLMSWIIR-GGEDAKAELQWAAGE 358 
L_infantum          IDC-VATKGSALVPRGDAEKEYEVGFFVENAGYFVGGLMSWIIR-GGEDAKAELQWAAGE 358 
L_major             IDC-VATEGTALVPRGDAEKEYEVGFFVENAGYFVGGLMSWIIR-GGEDAKAELQWAAGE 358 
L_braziliensis      IDR-LATGDTVLVPRGDAEKEYEVGFFLDNAGYFVTGLLSWFFG-GSEDAKAEFEWAAVE 358 
T_cruzi_1           LDDGFPEHGPALLPK-DADGSYHVRFVESNVDYFMDAMYSFIKDPKNMNAKEEFDWAAGE 355 
T_cruzi_2           LDDGFPEHGPALLPK-DADGSYHVRFVESNVDYFMDAMYSLIKDPKNTNAKEEFDWAAGE 355 
                    :*  ..  ...*:*: **: .*.* *. .*..**: .: * :    . :** *::*** * 
 
L_donovani          LEQQLAKHPFGEGPFFGGKRMNAGDVAILPFLVRAKAFMPEFSGGYDLFAHFPLLNGLAE 418 
L_infantum          LEQQLAKHPFGEGPFFGGKRMNAGDVAILPFLVRAKAFMPEFSGGYDLFAHFPLLNGLAE 418 
L_major             LEQQLAKHPFGEGPFFGGKRMNAGDVAILPFLVRAKAFMPEFSGGYDLFAHFPLLNVLAE 418 
L_braziliensis      LEQQLAKHPFGEGPFFGGKTMNAGDVAILPFLVRVKSLTPELTNGYDFFAKFPLLNELAE 418 
T_cruzi_1           LEKLLAEHQFGEGPFFGGATMNAADVSLVPMLVHLKACTPELTEGQDLLANYKLLAAAAE 415 
T_cruzi_2           LEKLLAEHQFGEGPFFGGATMNAADVSLLPMLVHLKACTPDLTEGQDLLANYKLLAAAAE 415 
                    **: **:* *********  ***.**:::*:**: *:  *::: * *::*:: **   ** 
 
L_donovani          AGMATPEAKSVFRTLEEYKEHIRKRQRRAQSG 450 
L_infantum          AGMATPEAKSVFRTLEEYKEHIRKRQRRAQSG 450 
L_major             AGMAAPEAKAVFRTLEEYKEHIRQRQRRAQGG 450 
L_braziliensis      AGMVTPEAKAVFCTLEEYKKRILQLQQKARDE 450 
T_cruzi_1           AGLTSEAGKKVFLSLSEYSSIYKTFLRPSS-- 445 
T_cruzi_2           AGLTSEAGKKVFLSLSEYSSIYKTFLRPSS-- 445 
                    **:.:  .* ** :*.**..      : :    
  
Figure 3.1 Amino acid alignment of L. donovani TDR1 with TDR1 of other Leishmania and 
TcAc2 of T. cruzi. 
ClustalW alignments of L. donovani TDR1 (sequenced), L. infantum TDR1 (Genedb 
LinJ33_V3.0260), L. major TDR1 (Genedb LmjF33.0240), L. braziliensis TDR1 (Genedb 
LbrM31_V2.0550), T.cruzi TcAc2 (Genedb Tc00.1047053503419.30) and T. cruzi TcAc2 (Genedb 
Tc00.1047053509105.70), were combined using the program T-Coffee (Notredame et al., 2000, 
Poirot et al., 2003) showing (*) identical residues, (:) conserved residues and (.) homologous 
residues. Residues are coloured as follows: A, V, F, P, M, I, L and W are shown in red; D and E are 
blue; R, H and K are magenta; S, T, Y, H, C, N, G and Q are green and all other residues are grey. 
Presumed active sites are underlined. T_cruzi_1 and T_cruzi_2 are variant haplotypes of TcAc2. 
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 Tc_2 Tc_1 Lb Lm Li Ld 
Tc_2  96 44 46 45 45 
Tc_1   44 46 46 46 
Lb   80 80 80 
Lm     96 96 
Li      100 
Ld       

 

 

Table 3.1 Amino acid sequence identities of TDR1 and TcAc2 of trypanosomatids. 
Percentage identities of the amino acid sequences of TDR1 of L. donovani, L. infantum, L. major 
and L. braziliensis and TcAc2 of T. cruzi. Ld, L. donovani TDR1 (sequenced); Li, L. infantum TDR1 
(Genedb LinJ33_V3.0260); Lm, L. major TDR1 (Genedb LmjF33.0240); Lb, L. braziliensis TDR1 
(Genedb LbrM31_V2.0550); Tc_1, T.cruzi TcAc2 (Genedb Tc00.1047053503419.30); Tc_2, T. 
cruzi TcAc2 (Genedb Tc00.1047053509105.70). 
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Figure 3.2 Schematic representation of the TDR1 locus and plasmid constructs used for 
gene replacement in L. major. 
A = TDR1 locus, B = pGL345 and C = pGL1033. Positions of XhoI restriction sites are shown, with 
the sizes of DNA fragments expected when digested with XhoI and probed with the 3’ flanking 
region. 

 

Figure 3.3 Southern blot analysis of L. major ∆tdr1 lines 
Genomic DNA (1 µg) from L. major WT (lane 1), L. major ∆tdr1 A (lane 2) and L. major ∆tdr1 B 
(lane 3) was digested overnight at 37 ºC with XhoI and resolved on a 0.8 % agarose gel. The blot 
was probed with the 3’ flanking region of L. major tdr1 labelled with an alkaline phosphatase, 
detected by CDP-Star detection reagent (G.E. Healthcare) and chemiluminescence was detected 
by autoradiography film. The band at 4.9 kb represents the endogenous gene and the bands at 7.7 
kb and 7.0 kb show the correct integration of the HYG and BLEO knock-out cassettes, respectively. 
The 4.9 kb band visible in lane 2 means that the endogenous gene still exists in a proportion of the 
cells.  
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Alternatively, the gene, chromosome or the entire genome of the organism may 

have been duplicated in some of these parasites to try and counteract any 

detrimental effect that the loss of TDR1 may have (Cruz et al., 1993). 

Due to the existence of only one verified TDR1 null mutant, Δtdr1 B will be 

referred to as L. major Δtdr1 from here on. 

3.4  Generation of L. donovani ∆tdr1 null mutant lines 

Specific oligonucleotide primers were designed using the L. infantum genome 

due to the lack of an available L. donovani sequence at the time, which were 

then used to amplify the 3’ and 5’ flanking regions of tdr1. PCR products were 

subcloned into pGEMT-Easy and ultimately into the vectors pGL345, pGL1033 and 

pGL158, which contain the hygromycin phosphotransferase, dihydroxybiphenyl 

dioxygenase and nourseothricin acetyltransferase genes respectively, conferring 

resistance to hygromycin, bleomycin/phleomycin and nourseothricin (Figure 

2.4). The constructs containing the 3’ and 5’ flanking regions and the antibiotic 

resistance markers were digested out of the vectors and the linear DNA was 

purified, sterilised by ethanol precipitation and used to transfect mid-log phase 

L. donovani promastigotes. Two independent rounds of transfection were carried 

out. After each one, parasites were allowed to recover for 24 h during which 

time the knock-out DNA was expected to integrate into the genomic DNA of a 

proportion of cells, by homologous recombination. The corresponding selective 

drugs were added after this time and the cultures were diluted to obtain clonal 

lines.  

3.5 Analysis of attempts to generate L. donovani ∆tdr1  

Clones that were selected by serial dilution with the appropriate drug pressure 

were subjected to further analysis by either PCR, to amplify a region of DNA 

from a point within the knock-out cassette to a point outside the 1 kb flanking 

region of TDR1, or by Southern blot, probing with a labelled flanking region.  

Table 3.2 details the attempts that were made to create a TDR1 null mutant in 

L. donovani. Three attempts were made in total to create single allele knock-

outs of TDR1. Integration of the knock-out DNA in the correct place and 
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subsequent removal of one copy of TDR1 was shown to have occurred in all of 

the clones that grew from selection plates. However, all attempts to replace the 

second allele of TDR1 appeared to be unsuccessful. Over the course of three 

attempts, a total of 76 ‘clones’ were selected using two different selection 

methods and each one grown under the pressure of the two relevant antibiotics 

corresponding to the two knock-out cassettes used to transfect. Each of the 76 

‘clones’ were then analysed by PCR or Southern blot and the results clearly 

showed that the knock-out DNA had correctly integrated into the parasite 

genome, which would explain the ability of the parasites to grow under the 

selective drug pressure. However, the endogenous gene was still shown to exist 

in all the clones. Figure 3.4 shows an example Southern blot of two L. donovani 

double allele TDR1 gene replacement clones, given the names Δtdr1 A and Δtdr1 

B, clearly showing bands of the at 7.0 and 7.7 kb indicating integration of the 

knock-out DNA in the correct places, but also show bands at 4.9 kb, which 

indicate at least one copy of the TDR1 gene is still present.  

In some cases, when attempts are made to replace essential genes in 

Leishmania, the genome duplicates itself to try to overcome the detrimental 

effect that would inevitably occur if the gene replacement was successful. This 

has been previously reported by Cruz et al., 1993. The genomic content of the 

clonal lines was investigated further by FACS analysis and an example of both L. 

donovani WT and one of the clonal lines created using knock-out DNA derived 

from the plasmids pGL345 and pGL1033 are shown in Figure 3.5. 

The large peaks at 200 FL2-area on both of the tracings represent the vast 

majority of parasites with the genomic content corresponding to one nucleus and 

one kinetoplast. The small peak at approximately 400 FL2-area represents a 

small proportion of the cells that are preparing to divide and consequently have 

double the genomic content of L. donovani that are not dividing. The results are 

as expected as the cells used in this experiment were taken at stationary phase, 

so fewer cells would be expected to be preparing for division. Since the genomic 

content of the cells from the clonal lines was not found, in any case, to be 

different to the genomic content of WT parasites, the endogenous gene could 

not have still been present due to a duplication of the parasite’s entire genomic 

content. 
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 Single allele gene replacement 

 
Double allele gene replacement

Attempt No. of clones 
selected 

No. of clones 
verified 

No. of clones 
selected 

No. of clones 
verified 

     
1 4 4 2 0 
2 4 4 4 0 
3 3 3 70* 0 
  

Table 3.2 Attempts to create L. donovani ∆tdr1. 
The number of clones selected after one and two rounds of transfection with knock-out DNA, and 
the number of clones verified, either by Southern blot or by PCR. * The increased number of clones 
selected in this case was due to a different method used. Both methods are detailed in Section 
2.3.2.3. Plasmids derived from pGL345, pGL1033 and pGL158 were used during the first round of 
transfection, indicating that they are not deficient in any way, and are capable of replacing genes in 
the correct location. 

 

 

Figure 3.4 Southern blot analysis of two L. donovani double allele TDR1 gene replacement 
clones. 
Genomic DNA (1 µg) from L. donovani WT (lane 1), L. donovani ∆tdr1 A (lane 2) and L. donovani 
∆tdr1 B (lane 3) was digested overnight at 37 ºC with XhoI and resolved on a 0.8 % agarose gel. 
The blot was probed with the 3’ flanking region of TDR1 labelled with an alkaline phosphatase, 
detected by CDP-Star detection reagent (G.E. Healthcare) and chemiluminescence was detected 
by autoradiography film. The band at 4.9 kb represents the endogenous gene and the bands at 7.7 
kb and 7.0 kb show the correct integration of the HYG and BLEO knock-out cassettes respectively. 
The 4.9 kb band visible in all lanes is indicative of the presence of the endogenous gene.  
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Figure 3.5 Effect of duplication of chromosome 33 on ploidy of L. donovani promastigotes. 
FACS analysis was performed on L. donovani WT promastigotes and L. donovani promastigotes 
that had been subjected to two rounds of gene replacement, but retained at least one copy of the 
endogenous gene. A = L. donovani WT, B = L. donovani pGL345/pGL1033. Peaks at 200 FL2-area 
represent cells containing 1 nucleus and 1 kinetoplast and peaks at 400 FL2-area represent cells 
containing double the genomic content. 
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The results suggest that given the integration of the knock-out DNA in the 

correct place, the ability of the parasite lines to grow in the presence of drugs 

and the results of the FACS analysis, the parasites have undergone a 

chromosome duplication that was not detectable by FACS. 

The PCR primers used to amplify the 3’ and 5’ flanking regions of TDR1 and make 

the knock-out constructs for L. donovani, were also used by another PhD 

student, Ana Marta Silva, to attempt to create a L. infantum TDR1 null mutant 

line. One clonal line was verified as L. infantum Δtdr1 and was analysed along 

with L. major Δtdr1 to clarify any phenotypic effect of the loss of TDR1 in the 

two Leishmania species that cause two different clinical manifestations of 

disease. Due to time constraints, a parasite line re-expressing TDR1 in the L. 

infantum Δtdr1 was not generated. 

3.6 Generation of L. major TDR1 re-expressing line 

To ensure any phenotypic difference observed between the L. major WT and the 

TDR1 null mutant lines was due entirely to the loss of the gene and not a result 

of the genetic manipulation techniques, a re-expressing line was created in 

which TDR1 was expressed, extra-chromasomally, in L. major Δtdr1.  

Specific oligonucleotide primers were designed, using the L. major genome, and 

used to amplify TDR1. PCR products were subcloned into pGEMT-Easy and 

ultimately into the vector pGL102 which contains the neomycin 

phosphotransferase gene which confers resistance to neomycin (Figure 2.6). 

pGL102 containing TDR1 was used to transfect mid-log phase L. major Δtdr1 

promastigotes. Cultures were allowed to recover overnight before being 

subjected to the selective drug pressure of neomycin phosphotransferase. 
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3.7 Phenotypic analysis of L. major ∆tdr1 and L. infantum 
∆tdr1 null mutant parasite lines 

3.7.1 Western blot analysis of L. major ∆tdr1 and ∆tdr1 [TDR1] 

Western blot analysis confirmed that L. major Δtdr1 [TDR1] was indeed 

expressing TDR1 (Figure 3.6). When compared to the expression of TDR1 in L. 

major WT cells, the blot suggests that the protein is, in fact, over-expressed in 

Δtdr1 [TDR1]. No visible band at 49.9 kDa in the lane containing protein extract 

from Δtdr1, confirms that TDR1 is not expressed by this line. 

3.7.2 Growth and morphology 

Growth of L. major WT, Δtdr1 and Δtdr1 [TDR1] was monitored to identify any 

differences between the parasites due to the gene deletion. Promastigote 

cultures were counted and diluted to the same concentration, then counted at 

24 h intervals for 7 days.  

Figure 3.7 shows the growth of L. major WT, Δtdr1 and Δtdr1 [TDR1] over 7 

days. The results suggest that there is no growth defect between any of the 

parasite lines. Each of the parasite lines go through the same lag, exponential 

growth and stationary phases at the same time and also reach a similar cell 

density.    

The growth of L. infantum WT and Δtdr1 was also monitored over 7 days and the 

results are shown in Figure 3.8. Similarly, there is no growth defect between 

either of the L. infantum lines, with the same final cell density achieved by both 

WT and Δtdr1 after going through the typical growth stages. 

L. major Δtdr1 and Δtdr1 [TDR1] were compared with L. major WT by phase 

contrast microscopy, and no morphological differences could be identified. In 

addition, L. infantum Δtdr1 was compared with L. infantum WT in the same way 

and, again, there were no visible differences in morphology. 
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Figure 3.6 Western blot analysis of TDR1 expression in L. major promastigotes. 
Lane 1, L. major WT; lane 2, L. major ∆tdr1; lane 3, L. major ∆tdr1 [TDR1]. 2.5 µg of soluble 
parasite lysate was loaded per lane. CS was used as a loading control (L.C.). The positions of the 
proteins are indicated to the right of the image.  
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Figure 3.7 Growth curve of L. major WT, ∆tdr1 and ∆tdr1 [TDR1] promastigotes. 
Cultures were seeded at a concentration of 2 x 105 parasites/ml and were counted daily. ∆tdr1 : 
TDR1 was grown in 50 µg/ml G418. 

 
Figure 3.8 Growth curve of WT and ∆tdr1 L. infantum promastigotes. 
Cultures were seeded at a concentration of 2 x 105 parasites/ml and were counted daily. 
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3.8 In vitro infectivity of L. major ∆tdr1 and ∆tdr1 [TDR1] 
in macrophages  

The ability of L. major WT, Δtdr1 and Δtdr1 [TDR1] to infect murine peritoneal 

macrophages was assessed in vitro. Macrophages were extracted and incubated 

for 24 h in tissue culture slides at 37 ºC with 5 % CO2, 95 % air, before infecting 

with stationary phase promastigotes at a ratio of 5:1. Infections were incubated 

for a further 6 days at 37 ºC with 5 % CO2, 95 % air, carefully replacing used 

medium with fresh after 3 days post-infection.  

To investigate the ability of these parasites to infect macrophages, the 

percentage infection was determined over the course of three independent 

experiments and the results are shown in Figure 3.9. After 6 days, L. major WT 

parasites had established an infection in 78 % of macrophages, and there was no 

difference between the level of infection of L. major Δtdr1, which shows a 

percentage infection of 84 %. However, the results show that Δtdr1 [TDR1] only 

infects 45 % of macrophages, almost half that of the WT and Δtdr1. According to 

these findings, there appears to be no effect on the infection of macrophages 

due to the deletion of TDR1 in L. major. The re-expressing line shows a 

statistically significant difference (p = <0.001) in percentage infection when 

compared to the WT. Since these parasites are actually over-expressing TDR1, 

these findings suggest that the over-expression of TDR1 reduces the ability of 

the parasites to establish an infection of macrophages in vitro. 

In order to examine the ability of L. major WT, Δtdr1 and Δtdr1 [TDR1] to 

proliferate within peritoneal macrophages, the mean number of parasites per 

infected macrophage was also determined and the results are shown in Figure 

3.10. Despite the similar infection levels of L. major WT and Δtdr1, after a 

period of 6 days post-infection, there is an average of 4.7 parasites per 

macrophage infected with L. major WT, while L. major Δtdr1 shows an average  
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Figure 3.9 Infectivity of L. major WT, tdr1 and ∆tdr1 [TDR1] promastigotes in macrophages. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1 and 
were incubated for 6 days. Each value is the mean of 3 replicates ± S.E.M. §, p < 0.001, compared 
to L. major WT, by unpaired t-test. 

 

 

Figure 3.10 Proliferation of L. major WT, tdr1 and ∆tdr1 [TDR1] promastigotes in 
macrophages. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1 and 
were incubated for 6 days. Each value is the mean of 3 replicates ± S.E.M. §, p = 0.001 and ¥, p = 
0.001, compared to L. major WT, by unpaired t-test. 
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of 9.0 parasites per macrophage. This difference is statistically significant, 

yielding a p-value of 0.001 when compared by unpaired t-test. This suggests that 

the deletion of TDR1 is, in fact, of benefit to the parasites when establishing an 

infection in macrophages. The mean number of parasites per macrophage 

infected with L. major Δtdr1 [TDR1] is significantly less than WT, with a mean 

number of 2.1 parasites per infected macrophage. This is less than half the 

number seen in macrophages infected by WT parasites and approximately 4-fold 

less than the number of parasites seen in macrophages infected by Δtdr1. This is 

again a statistically significant difference (P-value = 0.001) when compared to 

WT by unpaired t-test, and suggests that the benefit of the absence of TDR1 is 

reversed when the protein is re-expressed and actually results in both a 

percentage infection and mean number of parasites per infected macrophage 

even lower than WT, due to the over-expression of TDR1 in this line.     

In summary, Δtdr1 [TDR1] infects approximately half the percentage of 

macrophages as WT and Δtdr1. The mean number of Δtdr1 parasites per infected 

macrophage is double that of the WT and approximately 4-times higher than that 

of Δtdr1 [TDR1]. 

3.9  Thiol analysis of L. major and L. infantum tdr1 
mutant parasite lines 

As part of the phenotype analysis of the L. major and L. infantum TDR1 null 

mutant lines, total intracellular thiol levels in these parasites were analysed by 

HPLC. The level of expression of TDR1 undoubtedly affects the ability of the L. 

major parasites to infect and proliferate within macrophages. By quantifying the 

levels of intracellular thiols, any differences observed between L. major WT, 

Δtdr1 and Δtdr1 [TDR1] may shed light on reasons that ultimately may have an 

effect on the ability of these parasites to infect and proliferate within 

macrophages.  

A number of tests were performed prior to the thiol quantification of any 

parasite lines, to ensure the complete derivatisation of thiols, after being 

reduced by DTT. Initially known amounts of thiol standards were reduced by two 

different concentrations of DTT, 1 mM and 10 mM, before derivatisation with 



  94 

  

monobromobimane, and subsequent analysis by HPLC. No differences in thiol 

amounts were detected between the samples that had been reduced by 1 mM 

DTT and those that had been reduced by 10 mM DTT. Therefore, 1 mM DTT was 

used throughout this study with the confidence that it was sufficient to fully 

reduce the thiols in the samples. 

Standard curves were generated for the six thiols to be detected; cysteine, 

glutathione, trypanothione, γ—glutamyl cysteine, cysteinyl glycine and 

homocysteine, by reduction with 1 mM DTT, derivatisation with 

monobromobimane and analysis by HPLC. 0 – 350 pmoles of each thiol was used, 

as linear relationships between peak area (mV) and thiol amounts were 

identified within this range. Analysis of individual thiols was performed from six 

independent replicates, each replicate consisting of two injections. Thiol mixes 

of the concentration range already tested were also analysed by HPLC, to 

confirm the standard curves. Again, these mixes were analysed from six 

independent replicates, replicate consisting of two injections. The C18 reversed-

phase chromatography column was replaced once during this study and the 

generation of standard curves was repeated for the new column, as described 

above. Figure 3.11 shows an example chromatogram of a mix of 250 pmoles of 

each of the six thiol standards as well as an example chromatogram of L. major 

WT parasites. 

To ensure the complete reduction and subsequent derivatisation of thiols in a 

parasite extract, samples were spiked with known amounts of cysteine, 

trypanothione and glutathione, and the results are shown in Table 3.3. The 

amounts that were quantified were compared with the amounts of thiols that 

were quantified for the same parasite line without any addition. The results 

show that the difference between the appropriate thiol is approximately equal 

to the amount that was added to the parasite extract. Since this amount is 

rather small, the detection of the added amount can be looked on as evidence 

not only of the sensitivity of the technique, but that the thiol content of the 

entire samples were both fully reduced and derivatised. 

Stationary phase promastigotes to be analysed were counted and harvested, 

before lysing the cells, reducing thiols with DTT and derivatising intracellular  
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Figure 3.11 HPLC analysis of low-molecular-weight thiols of Leishmania.  
A = Reversed-phase HPLC separation of a mixture of monobromobimane-derivatized thiol 
standards. A mixture of cysteine, cysteinyl-glycine, homocysteine, trypanothione, glutathione and 
gamma glutamyl cysteine (all 250 pmoles) were injected after reduction with DTT. B = An example 
chromatogram of the thiol pattern of L. donovani WT. X, unidentified peak, s.p., solvent peak. 
Derivatization and chromatographic conditions are described in Sections 2.3.6.2 and 2.3.6.3. 
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 Amount of thiol detected (pmoles) 
 Cysteine Trypanothione Glutathione 

L. major WT 37.9 22.5 101.6 
+ 40 pmoles cysteine 73.8 21.7 77.1 

+ 40 pmoles trypanothione 32 67.9 107.3 
+ 40 pmoles glutathione 31.5 25.4 141.5 

    
L. donovani WT 30.1 56.2 202.3 

+ 40 pmoles cysteine 78.1 71.1 209.9 
+ 40 pmoles trypanothione 18.6 99.7 203.9 

+ 40 pmoles glutathione 18.4 66.5 230.0 
 

 

Table 3.3 Thiol content of parasite extracts supplemented with known amounts of cysteine, 
trypanothione and glutathione. 
Stationary phase L. major and L.donovani promastigotes were harvested and lysed. Known 
amounts of cysteine, trypanothione and glutathione were added, individually, to the samples and 
they were then reduced by the addition of DTT and subsequently monobromobimane-derivatised. 
Thiols were derivatised by reversed-phase HPLC. Derivatization and chromatographic conditions 
are described in Sections 2.3.6.2 and 2.3.6.3. 
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thiols with fluorescent monobromobimane. Thiols were separated by HPLC using 

a C18 reversed-phase chromatography column, using the mobile phases 0.25 % 

acetic acid and 100 % acetonitrile. Up to 350 pmoles of each thiol was detected, 

as this was the concentration range shown to have a linear relationship between 

peak area and thiol concentration. Results were then multiplied to express the 

results in nmoles/108 parasites. Details of the derivatisation method as well as 

the separation program are given in materials and methods Sections 2.3.6.2 and 

2.3.6.3. 

The proportion of cysteine, glutathione and trypanothione, that make up the 

total thiol content of the parasites, changes quite significantly over the 6 day 

period in liquid culture. Figure 3.12 shows the thiol profile of L. donovani WT 

cells that have been harvested between days 2-7 of culture, and then reduced 

by DTT, derivatised and quantified by HPLC. In this study, all parasites used to 

infect macrophages were used at day 7 of liquid culture; therefore all parasites 

used in HPLC analysis were also taken at this time-point.  

Thiol levels of L. major WT, Δtdr1 and Δtdr1 [TDR1] as well as L. infantum WT 

and Δtdr1 were quantified by HPLC and the results are shown in Table 3.4. 

There is clearly no significant difference in total intracellular levels of cysteine, 

trypanothione or glutathione between the L. major and L. infantum WT lines 

and their corresponding TDR1 null mutant lines. There is also no difference 

between the total cysteine and total glutathione levels between the two groups 

of parasites. However, the total intracellular amount of trypanothione appears 

to be higher in the L. infantum lines compared to the L. major lines. It is 

possible, however, that due to the differences in thiol levels seen for L. 

donovani WT over the different growth stages of the parasites, that there is an 

effect on thiol levels caused by the deletion of TDR1 that remains undetected. 

Future studies may involve quantification of total cysteine, trypanothione and 

glutathione levels at an earlier stage of culture, perhaps when the parasites are 

dividing and growing.         
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Figure 3.12 Thiol levels of L. donovani WT promastigotes over 6 days. 
L. donovani WT promastigotes were harvested between day 2 and day 7 of liquid culture. Parasite 
extracts were monobromobimane-derivatized after reduction of thiols with DTT, and were 
separated by reversed-phase HPLC. Derivatization and chromatographic conditions are described 
in Sections 2.3.6.2 and 2.3.6.3. 

 

 Thiol levels (nmoles per 108 parasites) ± S.E. 
 Cysteine  Trypanothione Glutathione 
    
L. major WT 2.1 ± 0.1 0.5 ± 0.1 3.4 ± 0.2 
L. major ∆tdr1 1.9 ± 0.2 0.3 ± 0.02 3.8 ± 0.6 
L. major ∆tdr1 [TDR1] 2.1 ± 0.3 0.5 ± 0.1 3.7 ± 0.4 
    
L. infantum WT 1.6 ± 0.2 1.0 ± 0.2 3.3 ± 1.0 
L. infantum ∆tdr1 2.7 ± 0.8 0.7 ± 0.1 4.3 ± 0.9 
 

 

Table 3.4 Thiol levels of L. major and L. infantum promastigotes. 
Total cysteine, trypanothione and glutathione levels in L. major and L. infantum promastigotes per 
108 parasites ± S.E.M. Parasite extracts were monobromobimane-derivatized after reduction of 
thiols with DTT, and were separated by reversed-phase HPLC. Derivatization and chromatographic 
conditions are described in Sections 2.3.6.2 and 2.3.6.3. Parasites were harvested at day 7 in 
liquid culture (Figures 3.7 and 3.8). 
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3.10  Effect of sodium stibogluconate on L. major ∆tdr1 
and ∆tdr1 [TDR1] in vitro macrophage infection  

Two possible physiological roles of TDR1 have been suggested. TDR1 has been 

shown in vitro to enzymatically reduce inactive pentavalent antimonials to the 

leishmanicidal trivalent form. Alternatively, the protein may be involved in the 

detoxification of heavy metals from the cell, due to its homology to other 

arsenate reductases. To help elucidate the true function of TDR1, the 

susceptibility of L. major WT, Δtdr1 and Δtdr1 [TDR1] to sodium stibogluconate 

was investigated. 

Stationary phase promastigotes were used to infect peritoneal macrophages at a 

ratio of 10:1 and incubated for 24 h at 37 ºC with 5 % CO2, 95 % air. Medium 

containing extracellular parasites was carefully removed from the macrophages 

and replaced with fresh medium containing varying concentrations of sodium 

stibogluconate; 0, 7.8, 15.6, 31.3, 62.5, 125, 250 and 500 µg/ml, and incubated 

for a further 6 days, refreshing the drug containing medium after 3 days. The 

percentage of infected macrophages was determined by counting 100 

macrophages and calculating the percentage infected. The results are shown in 

Table 3.5. Due to time constraints, only two biological replicates exist, which is 

not enough to analyse the data statistically. The data is variable and would 

require further investigation, but there is a clear general trend.    

Compared to L. major WT, Δtdr1 is more sensitive to sodium stibogluconate. 

When exposed to 500 µg/ml SbV, the highest concentration tested, Δtdr1 is 

completely cleared from macrophages, whereas 1.7 and 2.5 % of macrophages 

are still infected with WT. L. major Δtdr1 [TDR1] is much less sensitive to the 

drug at this concentration, with 22.8 % and 46.5 % of macrophages remaining 

infected. The higher values may be explained by the over-expression of TDR1 in 

these parasites. It is worth noting that when these experiments were carried 

out, a similar trend in percentage infection was seen as with the in vitro 

macrophage infections shown in Figures 3.9 and 3.10. A higher percentage of 

macrophages were infected with L. major Δtdr1 than WT and Δtdr1 [TDR1], with 

Δtdr1 [TDR1] infecting almost half the percentage of macrophages than the WT.  
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  Percentage infection 
 

  Concentration of Sb(V) (µg/ml) 
 

  0 
 

7.8 15.6 31.3 62.5 125 250 500 

L. major WT Expt 1 100 
 

100 86.8 81.0 82.8 46.6 28.2 1.7 

 Expt 2 100 
 

94.4 91.9 78.2 88.3 54.1 20.3 2.5 

L. major ∆tdr1 Expt 1 100 
 

65 58 59 37 9 0 0 

 Expt 2 100 
 

78 82.8 93.9 84.8 40.4 7.1 0 

L. major ∆tdr1 [TDR1] Expt 1 100 
 

96.2 105.4 94.1 85.4 87.6 56.8 46.5 

 Expt 2 100 
 

105.4 98.2 86.2 64.1 46.1 27.0 22.8 

 

 

Table 3.5 Susceptibility of L. major WT, ∆tdr1 and ∆tdr1 [TDR1] to sodium stibogluconate. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 10:1 and incubated for 24 h at 37 ºC with 5 % CO2, 95 % air. Medium was 
replaced with fresh medium containing varying concentrations of sodium stibogluconate; 0, 7.8, 15.6, 31.3, 62.5, 125, 250 and 500 µM, and incubated for a further 6 
days, replacing the medium once after 3 days with fresh medium containing the same concentration of sodium stibogluconate. The percentage of infected 
macrophages was determined by counting 100 macrophages and calculating the percentage infected. The control values (no drug) were taken as 100 % and all other 
values were adjusted accordingly. Two biological replicates are shown. 
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3.11 Recombinant expression of L. donovani TDR1 and 
trypanothione reductase 

Recombinant L. donovani TDR1 was generated to try to elucidate potential roles 

of the enzyme and clarify its function in the parasite. L. major TDR1 has already 

been produced recombinantly, and some investigation into functionality has 

been carried out (Denton et al., 2004). It was decided that TDR1 from a species 

of Leishmania that is the causative organism of a different clinical form of the 

disease should be produced and investigated. TDR1 was hypothesised to possibly 

be involved in antimonial resistance, therefore L. donovani BPK 206 clone 10 was 

used. This line is a field isolate line from a region in Nepal where antimonial 

drug resistance is endemic. To test the ability of TDR1 to use trypanothione as a 

reducing agent, trypanothione reductase was also required to carry out several 

spectrophotometric functional assays. Therefore, L. donovani trypanothione 

reductase was produced recombinantly.  

The ORFs of L. donovani TDR1 and trypanothione reductase were amplified by 

PCR using oligonucleotide primers and PCR conditions described in Materials and 

Methods Sections 2.3.3.1 and 2.3.3.2. PCR products were first sub-cloned into 

pGEMT-easy and subsequently into pET28a+ (Figure 3.13). L. donovani tdr1 and 

trypanothione reductase genes were expressed and purified as soluble proteins 

from E. coli. The recombinant TDR1 was 49.9 kDa in size and approximately 17.8 

mg of protein per litre of E. coli culture was produced. Recombinant 

trypanothione reductase was 54.7 kDa in size and approximately 27.3 mg of 

protein per litre of E. coli culture was produced. The purification procedures 

used to purify recombinant TDR1 and trypanothione reductase are described in 

Section 2.3.4.5. Figures 3.14 and 3.15 show the stages of purification of 

trypanothione reductase and TDR1 respectively. 

At the end of the processes used to purify the proteins (Section 2.3.4.5) 

imidazole was removed from the buffer containing TDR1 and trypanothione 

reductase. The imidazole was dialysed out of the buffer containing TDR1, and 

the protein was aliquoted into small volumes and stored at -80 ºC for a maximum 

of 8 months, as described by Denton et al., 2004. 
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Figure 3.13 Cloning of L. donovani TDR1 and trypanothione reductase into pGEM T-easy 
and pET28a+. 
Sybr safe stained 1 % agarose gel showing the PCR products and digested products of 
recombinant protein expression constructs. 1, 1.4 kb TDR1 PCR product; 2, 1.4 kb TDR1 digested 
out of pGEMT-easy by NotI and NdeI; 3, 1.4 kb TDR1 digested out of pET28a+ by NotI and NdeI; 
4, 1.5 kb trypanothione reductase PCR product; 5, 1.5 kb trypanothione redutcase digested out of 
pGEMT-easy by NotI and NdeI; 6, 1.5 kb trypanothione reductase digested out of pET28a+ by NotI 
and NdeI. 

 

 

Figure 3.14 SDS-PAGE analysis of expression and purification of recombinant L. donovani 
TDR1 at 15 ºC. 
CL, clear lysate; FT, flow through; E1-E4, elutes. Arrow indicates TDR1. 20 µl of extract containing 
up to 20 µg of protein was loaded in each lane. The recombinant TDR1 is 49.9 kDa in size and 
17.8 mg of protein was produced per litre of E. coli culture. 
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Figure 3.15 SDS-PAGE analysis of expression and purification of recombinant L. donovani 
trypanothione reductase at 20 ºC. 
CL, clear lysate; FT, flow through; W1-W2, washes 2; E1-E4, elutes. Arrow indicates trypanothione 
reductase. 20 µl of extract containing up to 20 µg of protein was loaded in each lane. The 
recombinant trypanothione reductase is 54.7 kDa in size and 27.3 mg of protein was produced per 
litre of E. coli culture. 

 

 
Activity [µmol/min/mg protein] 

 
Glutathione Trypanothione 

 
11.6 ± 1.9 4.4 ± 0.1 

 
 

 

Table 3.6 Thiol transferase activity of recombinant L. donovani TDR1. 
Activities are expressed in terms of µmol/min/mg of protein and are means ± S.D. for 3 
determinations. 

 
 

Activity [µmol/min/mg protein] 
 

TNB produced 
 

4.6 ± 0.5 

 
 

Table 3.7 Activity of recombinant L. donovani trypanothione reductase. 
Activities are expressed in terms of µmol/min/mg of protein and are means ± S.D. for 3 
determinations. 
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The imidazole from the purification buffer was dialysed out of the buffer 

containing trypanothione reductase. The protein was then aliqouted into small 

volumes and stored at 4 ºC for a maximum of 4 weeks, as described by Mittal et 

al., 2005. 

3.11.1 Activity of recombinant L. donovani TDR1 

To confirm whether or not recombinant L. donovani TDR1 was active, the thiol 

transferase activity of the enzyme was tested. The ability of TDR1 of using 

glutathione and trypanothione as electron donors to reduce the synthetic 

disulphide – 2-hydroxyethyl disulphide (HEDS) was investigated as described in 

Denton, et al., 2004. The standard assay mixture contained, in a final volume of 

200 µl, 50 mM Tris/HCl (pH 7.0), 5 mM EDTA, 300 µM NADPH, 1 mM GSH, 0.75 

mM HEDS and 1 unit/ml GSSG reductase. When using trypanothione as an 

electron donor, all assay components were the same except 1 mM GSH was 

replaced by 400 µM trypanothione, 1 unit/ml of GSSG reductase was replaced by 

1 unit/ml of trypanothione reductase and the concentration of NADPH was 

reduced from 300 µM to 200 µM. The assay mixture was preincubated at 30 ˚C 

for 10 min, before initiation of the reaction by the addition of TDR1. Activity 

was monitored as the decrease in absorbance at 340 nm. Specific activities were 

calculated from the linear rate during the first 1 min of the reaction, using the 

molar extinction coefficient of NADPH of 6220 M-1 cm-1. 

 
The results are given in Table 3.6 and show that recombinant L. donovani TDR1 

is active, with a similar activity to L. major TDR1, as shown by Denton et al., 

2004. The protein is capable of using both glutathione and trypanothione as 

substrates, however, it is unclear whether TDR1 prefers to use glutathione or 

trypanothione as an electron donor. Further investigation would have to be 

carried out before this can be established. 

3.11.2 Activity of recombinant L. donovani trypanothione 
reductase 

A spectrophotometric assay was performed to confirm the activity of 

recombinant trypanothione reductase. The assay was performed according to 
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Hamilton et al., 2003, and the standard assay mixture contained, in a final 

volume of 1 ml, 40 mM Hepes (pH 7.5), 1 mM EDTA, 0.15 mM NADPH, 1 µM T[S]2, 

25 µM DTNB and various concentrations of trypanothione reductase. The basis of 

the assay involves the reaction of each trypanothione molecule with one DTNB 

molecule, producing one TNB molecule which is yellow in colour and detectable 

spectrophotometrically at 412 nm. This is a cycling reaction in which the initial 

rate is proportional to the concentration of trypanothione. The assay 

components were pre-incubated with NADPH for 5 min at 27 ˚C, before initiating 

the reaction by the addition of T[S]2. Enzyme activity was monitored as the 

increase in absorbance at 412 nm due to the formation of TNB. The results of 

the assay confirm that trypanothione reductase is active (Table 3.7), with a 

specific activity of 4.57 µmol/min/mg protein. 

3.12 Discussion 

The attempts made to generate a L. major TDR1 null mutant were successful (Dr 

Joanne McGregor), as were the attempts to generate a L. infantum TDR1 null 

mutant (Miss Marta Silva). However, all the attempts made to generate a L. 

donovani TDR1 null mutant were unsuccessful. In all parasites that had 

undergone two rounds of transfection with knock-out DNA, the knock-out DNA 

was shown to have integrated in the correct place, thus making the parasites 

resistant to the two drugs used in culturing at this stage. However, Southern blot 

analysis of these lines suggested that, despite integration of knock-out DNA in 

the correct place, at least one WT allele still existed. FACS analysis showed that 

the parasites had a normal genomic content, indicating that it was likely that 

the parasites had duplicated chromosome 33, the location of TDR1. This 

phenomenon was first observed in L. major by Cruz et al., 1992, where it was 

suggested that this may be an indicator for assessing essentiality of genes. 

However, the fact that TDR1 null mutants have been generated in L. major and 

L. infantum suggest that TDR1 is unlikely to be essential for L. donovani, 

particularly since L. infantum is so closely related to L. donovani. More recently 

aneuploidy has been shown in L. infantum to be a result of antimonial drug 

selection (Leprohon et al., 2009), indicating that this process can facilitate the 

development of drug resistance in Leishmania. The effects of the TDR1 gene 

deletion have been shown to be complemented by the line re-expressing TDR1, 
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indicating that this is a true null mutant. The analysis of the L. infantum TDR1 

null mutant did not show any phenotype that could be complemented by re-

expressing TDR1, therefore it may be that this is not a true null mutant. The 

gene duplication observed in the attempts to generate L. donovani Δtdr1 were 

also observed in the attempts to generate L. infantum Δtdr1. Only one clonal 

line from multiple attempts carried out over the course of a year was verified as 

L. infantum Δtdr1. In contrast, the first attempt to generate L. major Δtdr1 was 

fruitful, suggesting that it is much easier to create a TDR1 null mutant in L. 

major than L. infantum and L. donovani. L. infantum and L. donovani are closely 

related species that are very different to L. major, which could account for the 

differences in ease of removing TDR1. 

Both TDR1 and the similar T. cruzi enzyme Tc52 show similarity in both amino 

acid sequence and function in vitro. Both enzymes have thiol transferase activity 

and dehydroascorbate reductase activity (Denton et al., 2004). It has been 

reported that Tc52 is an excretory-secretory product that plays a role in parasite 

modulation of the host’s immune response to infection (Garzon et al., 2003). 

Indeed, under experimental infection, Tc52 appears to be immunologically 

silent, failing to cause an antibody response and lymphocyte proliferation during 

the initial acute phase infection (Fernandez-Gomez et al., 1998). T. cruzi 

tolerates the deletion of one Tc52 allele, but deletion of both alleles causes the 

death of the parasite (Allaoui et al., 1999). This indicates that Tc52 is essential 

for parasite survival and the gene cannot be deleted. Due to the similarity 

between TDR1 and Tc52 it is possible that this could explain the lack of success 

found when trying to generate TDR1 null mutants in L. donovani. 

The growth and morphology of promastigotes of the L. major and L. infantum 

TDR1 null mutants were analysed, and found not to be different to the 

corresponding WT of each parasite line. Therefore the lack of TDR1 has no effect 

on the growth and morphology of L. major and L. infantum.  

The sensitivity of the HPLC method developed for the analysis of intracellular 

thiol levels was checked, as well as the ability of DTT to reduce the entire 

samples. The results clearly show the entire reduction of samples, and the 

extent of the sensitivity of detection. These results give confidence of the 

validity of the procedure used. The retention times for the low molecular weight 
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thiols were found to be different to those previously determined (Spies et al., 

1994, Ariyanayagam & Fairlamb, 1999, Mandal et al., 2007). However, the HPLC 

program used in this study was developed to separate a greater number of thiols 

and would account for the differences observed in retention time between this 

and previous studies.   

No significant differences were found in intracellular amounts of cysteine, 

glutathione and trypanothione between the L. major WT and TDR1 null mutant 

lines and the L. infantum WT and TDR1 null mutant lines. Thiol levels of L. 

major have recently been quantified by HPLC, showing similar levels of cysteine 

and glutathione and a much higher amount of trypanothione than the levels 

shown in this study (Williams et al., 2009). Alternative studies have shown 

glutathione levels in L. major to be 0.8 nmol/108 parasites (Romao et al., 2006), 

which is much lower than the levels detected in this study. However, the 

detection method used was not HPLC, and may be the cause of the differences 

observed. HPLC analysis of the low molecular weight thiols of L. tarentolae 

indicated levels of 0.13 nmol/108 parasites, 0.09 nmol/108 parasites and 0.1 

nmol/108 parasites for cysteine, glutathione and trypanothione respectively 

(Mukhopadhyay et al., 1996). These findings are again much less than those 

detected in this study, but this could be explained by the lack of a reducing 

agent in the sample preparation. Only thiols that were reduced would be 

derivatised and ultimately detected by HPLC, resulting in the quantification of 

only cysteine, glutathione and trypanothione that were reduced at the time of 

cell harvest. It is also to be expected that some variation in thiol levels exists 

between different species of Leishmania (Romao et al., 2006).     

The most significant effect of the lack of TDR1 in Leishmania was observed when 

the infectivity of L. major Δtdr1 was assessed using in vitro macrophage 

infections. The lack of TDR1 did not have any effect on average percentage 

infection of macrophages compared to WT, but it did cause a significant increase 

in the number of parasites per macrophage. Almost double the number of 

parasites was observed per macrophage compared to WT. When TDR1 was re-

expressed extra-chromasomally, the protein was in fact over-expressed and the 

infectivity of these parasites was assessed. Interestingly, the average percentage 

of macrophages infected with L. major Δtdr1 [TDR1] was almost half that of the 

WT and the mean number of parasites observed per infected macrophage was 
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less than half that of the WT, and less that 25 % of L. major Δtdr1. Clearly the 

lack of TDR1 gives the parasites an advantage when infecting and proliferating 

within macrophages in vitro. It is, however, unclear whether the parasites that 

over-express TDR1 are less efficient in establishing an infection or in 

proliferation after infecting. This could be further analysed by carrying out 

macrophage infections for time periods indicative of specific stages of infection, 

differentiation to amastigotes and proliferation as amastigotes within 

macrophages. The precise stage affected by the lack of TDR1 could then be 

elucidated.  

Analysis of the susceptibility of L.major WT, Δtdr1 and Δtdr1 [TDR1] to sodium 

stibogluconate showed that the lack of TDR1 resulted in an increase in sensitivity 

to the drug. Additionally, the over-expression of TDR1 caused an increase in 

resistance to sodium stibogluconate. Although this particular experiment was 

only carried out twice, the general trend remains clear. It is also worth noting 

that although the numbers have been adjusted, the raw data reflect the same 

trend even when the differences in macrophage infectivity, seen in Section 3.8, 

were taken into account.  

Ten times the amount of TDR1 is present in L. major amastigotes compared to 

promastigotes (Denton et al., 2004), which adds weight to the theory that the 

particular function of this protein lies in amastigotes. The protein has been 

shown to be capable of reducing inactive pentavalent antimonials, SbV, to the 

active trivalent form, SbIII, in vitro (Denton et al., 2004). Although the non-

enzymatic chemical conversion of SbV to SbIII can occur spontaneously in vitro 

involving thiols, the reaction is significantly faster in the presence of TDR1 

(Denton et al., 2004), suggesting that the role of TDR1 lies in the activation of 

SbV to SbIII, within the parasite. However, TDR1 bears some similarity to 

arsenate reductases, which play a role in the detoxification of arsenate 

(Mukhopadhyay & Rosen, 2002), with reduction followed by excretion from the 

cell. Since arsenic and antimony are related metalloids, arsenical resistant 

Leishmania strains are frequently cross-resistant to antimonials. This is 

supported by evidence that the Leishmania arsenate reductase LmACR2 

increases susceptibility to Pentostam when over-expressed (Zhou et al., 2004). 

The results of this study add weight to this latter proposed function of TDR1, 

that the protein aids in the detoxification of drugs and heavy metals in 
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Leishmania parasites. The removal of a drug activator would be expected to 

cause resistance to the drug, but the opposite is, in fact, true when TDR1 was 

removed. The removal of a protein involved in de-toxification of drugs and other 

xenobiotics from the cell would be expected to result in sensitivity to 

antimonials, as was seen for Δtdr1 in this study.  

Recombinant L. donovani TDR1 and trypanothione reductase were successfully 

produced. The extent to which these proteins were analysed is minimal, 

however they were shown to be active. The thiol transferase activity of 

recombinant L. major TDR1 was previously shown to be 11.2 ± 2.2 µmol/min/mg 

protein (Denton et al., 2004), which is very similar to the thiol transferase 

activity of recombinant L. donovani TDR1, which was determined as 11.6 ± 1.9 

µmol/min/mg protein. It was also shown that recombinant L. donovani TDR1 is 

able to utilise trypanothione as an electron donor. However, it remains unclear 

whether glutathione or trypanothione is preferentially used by TDR1, and further 

investigation is required before this could be determined. Recombinant 

L.donovani trypanothione reductase was required to facilitate the execution of 

the thiol transferase assay using trypanothione as a substrate, however, it was 

also subject to activity analysis to ensure any difference between the two thiol 

transferase assays using glutathione and trypanothione was not due to poor 

activity of the enzyme. The activity of the recombinant L. donovani 

trypanothione reductase was similar to that reported of L. donovani 

trypanothione reductase (Mittal et al., 2005) as well as trypanothione reductase 

of other trypanosomatids (Castro-Pinto et al., 2008).   

3.12.1 Conclusions and future directions 

TDR1 null mutants can be generated in L. major and L. infantum, and have been 

attempted unsuccessfully in L. donovani. It is therefore not an essential gene in 

L. major and L. infantum promastigotes, and therefore unlikely to be an 

essential gene in L. donovani, despite the lack of success generating the null 

mutant.  

The intracellular thiol levels of L. major Δtdr1 and L. infantum Δtdr1 remained 

no different to WT, and the parasites showed no defect in growth or 

morphology. Since the parasites were harvested for HPLC analysis in stationary 
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phase, it may also be worthwhile quantifying the thiol levels in these 

promastigotes in mid-log phase, to elucidate whether levels of cysteine, 

glutathione and trypanothione are affected by the gene deletion during growth. 

L. major Δtdr1 [TDR1] showed a decreased ability to survive in macrophages. 

This finding was supported by the increased number of parasites per macrophage 

shown by L. major Δtdr1. This suggests that TDR1 plays a role in either 

establishing an infection or proliferating within macrophages, however it 

remains unclear exactly what stage of the infection process is inhibited by 

higher levels of TDR1. Further investigation could easily clarify this by carrying 

out macrophage infections for periods of time indicative of the particular 

developmental stages of the parasites. The proportion of metacyclic 

promastigotes in stationary phase cultures could also be quantified, which may 

shed light on the reasons behind the differences observed in their ability to 

maintain an infection. It would also be interesting to investigate the effect of 

the lack of TDR1 in L. major on in vivo infectivity, by conducting mouse footpad 

infections. In addition, these macrophage infections should be repeated using 

the L. infantum TDR1 null mutant to confirm the L. major findings, with re-

expression of TDR1 in the null mutant being necessary to confirm any 

deficiencies observed.   

L. major Δtdr1 showed a slight increase in sensitivity to sodium stibogluconate 

compared to WT, and L. major Δtdr1 [TDR1] showed a marked increase in 

resistance to the drug. Although the general trend from these results is clear, 

the actual values were quite variable and, since the experiment was only carried 

out twice, should undoubtedly be repeated to ensure the reliability of the 

findings. 

Finally, in depth analysis of the L. donovani recombinant protein is required, 

including the analysis of different substrates under varied conditions, before a 

greater understanding of the physiological function of TDR1 is achieved. 
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4. O-acetylserine (thiol) lyase of Leishmania 

donovani 
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4.1 Introduction 

The de novo synthesis of cysteine occurs via the sulfhydrylation pathway, in 

which cysteine is formed from serine by a two-step reaction. In most cases the 

reaction is initiated by SAT to form O-acetylserine, which then condenses with 

sulfide to form cysteine, which is catalysed by OAS-TL. Trichomonas vaginalis 

lacks SAT and instead has a functional 3-phosphoglycerate dehydrogenase and an 

O-phosphoserine aminotransferase, which together result in the production of O-

phosphoserine which is used as a substrate for OAS-TL (Westrop et al., 2006). 

OAS-TL of other organisms, including Mycobacterium tuberculosis, also use O-

phosphoserine as a substrate (Agren et al., 2008). Plants (Blaszczyk et al., 1999), 

fungi (Marzluf, 1997), bacteria (Kredich et al., 1969) and some protozoa (Nozaki 

et al., 2001; Williams et al., 2009) are capable of fixing sulfur and synthesising 

cysteine via the sulfhydrylation pathway. However, since mammals do not 

contain the sulfhydrylation pathway, they synthesise cysteine solely through the 

reverse trans-sulfuration pathway. 

SAT forms a complex with OAS-TL, while OAS-TL exists either bound to SAT or 

free (Ruffet et al., 1994). OAS-TL is inactive when bound to SAT, but SAT in 

complex with OAS-TL, is highly active and displays a high affinity for its 

substrates. The activity of SAT results in the production of O-acetylserine. The 

OAS-TL unbound dimer is highly active and is capable of catalysing the formation 

of cysteine. The SAT/OAS-TL complex is not only regulated by the product 

cysteine, but also by its substrates. A high concentration of O-acetylserine 

causes the dissociation of the complex (Saito et al., 1994), while a high 

concentration of sulfide regulates the stabilisation of the complex (Kredich, 

1971; Droux et al., 1998). Cysteine is also capable of regulating cysteine 

biosynthesis via sulfhydrylation, by feedback inhibition (Saito et al., 1995). 

The tight regulation of the activity of SAT and OAS-TL through interaction within 

the SAT/OAS-TL complex suggests that the genetic manipulation of either of 

these enzymes would result in a significant disruption in cysteine biosynthesis via 

the sulfhydrylation pathway.  
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Transgenic studies on OAS-TL of parasitic protozoa are not documented, but the 

effect of genetic manipulation of OAS-TL in plants has been studied extensively. 

Null mutants created for the cytosolic OAS-TL isoform in Arabidopsis thaliana 

were shown to result in a decrease in the total amount of intracellular cysteine 

and glutathione (Lopez-Martin et al., 2008). This subsequently caused an 

increase in sensitivity to the heavy metal cadmium and the lack of OAS-TL was 

also found to promote a perturbation in hydrogen peroxide homeostasis (Lopez-

Martin et al., 2008). Similarly, the over-expression of cytosolic OAS-TL in a 

Populus sieboldi x P. grandidentata hybrid displayed several-fold increases in 

cysteine and glutathione levels, resulting in an increased resistance to hydrogen 

sulfide, sulfur dioxide, sulfite and hydrogen peroxide (Nakamura et al., 2009). 

Transgenic tobacco plants over-expressing OAS-TL in the cytosol, chloroplasts 

and both organelles together showed higher resistance to cadmium, selenium 

and nickel (Kawashima et al., 2004). These findings highlight the importance of 

OAS-TL in detoxification of heavy metals and the maintenance of the redox 

potential of the cell, and ultimately the defence against oxidative stress.    

The parasite line used in the reverse genetic studies, Leishmania donovani BPK 

206 clone 10, is a field isolate from an area of Nepal where visceral 

leishmaniasis is endemic (Section 2.3.2.1). The efficacy and cost-effectiveness of 

the pentavalent antimonials has made them the cornerstone of anti-leishmanial 

therapy since their introduction in 1945. The high toxicity of the drugs coupled 

with difficulty in administering and ensuring patients receive full courses of 

treatment make the use of pentavalent antimonials less than ideal. However, 

the emerging problem of drug resistance, which is endemic in the region where 

L. donovani BPK 206 clone 10 was isolated, is perhaps posing the biggest problem 

of all. Therefore, the development of novel chemotherapeutic agents is an 

urgent research priority, but before these can be developed valid drug targets 

must be identified.  

Given the wide range of vital roles of the sulfur containing amino acid cysteine 

in Leishmania, and the absence of the enzymes involved in the sulfhydrylation 

pathway in the mammalian host, OAS-TL was investigated as a potential drug 

target in L. donovani.   
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4.2 Alignment of O-acetylserine (thiol) lyase amino acid 
sequences 

The amino acid sequence of L. donovani O-acetylserine (thiol) lyase (OAS-TL) 

was used to perform alignments firstly with the amino acid sequences of OAS-TL 

of other trypanosomatids (Figure 4.1) and then with other organisms (Figure 

4.2), using the program T-Coffee (Notredame et al., 2000, Poirot et al., 2003). 

The amino acid sequence of L. donovani OAS-TL has significant identities with 

other trypanosomatids (Table 4.1). L. major OAS-TL bears the closest 

resemblance to L. donovani OAS-TL with a percentage identity of 94 %, closely 

followed by L. infantum (92 %) and L. braziliensis (88 %). The two forms of OAS-

TL of Trypanosoma cruzi that were included in the alignment had sequence 

identities of 71 and 72 % when compared to L. donovani. Of all the organisms 

included in the alignment, the PLP binding sites and the SAT binding sites are 

100 % identical.    

The amino acid sequence of L. donovani OAS-TL was also compared to the OAS-

TL sequence of a selection of other organisms. Of those compared, two 

Chlamydomonas reinhardtii OAS-TLs showed the highest sequence identity to L. 

donovani OAS-TL (53 %), and the OAS-TL of Arabidopsis thaliana and 

Dictyostelium discoideum show the lowest, both with identities of 30 %. It is 

worth noting that the SAT binding site was identical between most of the 

organisms except A. thaliana, D. discoideum and S. cerevisiae. The lysine 

residues essential for sulfhydrylase activity and also for binding PLP were not 

found to be conserved between OAS-TLs of the organisms included in the 

alignment. 
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L_donovani          -MAAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPMASVKDRLGFAIY 59 
L_infantum          -MAAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPMASVKDRLGFAIY 59 
L_major             -MAAPFDKSRNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPMASVKDRLGFAIY 59 
L_braziliensis      -MAAPFDTSKNVAESIDQLIGHTPALYLNKLNHTKAKIVLKMECENPMSSVKDRLALAIY 59 
T_cruzi_1           MSVQEFDPRNNVAPSMDALIGETPAVYLKRMNDTAATIVLKLECENPMASVKDRLAYAIY 60 
T_cruzi_2           MSVQEFDPRNNVAPSIDALIGETPAVYLKKMNDTGATIVLKLECENPMASVKDRLAYAIY 60 
                      .  **  .*** *:* ***.***:**:::*.* *.:***:******:******. *** 
 
L_donovani          DKAEKEGKLIPGKSIVVESSSGNTGVSLAHLGAIRGYKVIITMPESMSLERRCLLRIFGA 119 
L_infantum          DKAEKEGKLIPGKSIVVESSSGNTGVSLAHLGAIRGYKVIITMPESMSLERRCLLRIFGA 119 
L_major             DKAEKEGKLIPGKSVVVESSSGNTGVSLAHLGAIRGYKVIITMPESMSLERRCLLRIFGA 119 
L_braziliensis      DKAEKEGKLIRGKSIVVESTSGNTGVALAHLGAIRGYKVIITMPESMSLERRCLLRIFGA 119 
T_cruzi_1           DKAEKEGKIIPGKSVIVEATSGNTGIALAHIGTIRGYKVIIVMPESMSIERRCLMRIFGA 120 
T_cruzi_2           DKAEKEGKIIPGKSVIVEATSGNTGIALAHIGTIRGYKVIIVMPESMSIERRCLMRIFGA 120 
                    ********:* ***::**::*****::***:*:********.******:*****:***** 
 
L_donovani          EVILTPAALGMKGAVAMAKKIVAANPNAVLADQFATKYNALIHEETTGPEIWEQTNHNVD 179 
L_infantum          EVILTPAALGMKGAVAMAKKIVAANPNAVLADQFATKYNALIHEETTGPEIWEQTNHNVD 179 
L_major             EVILTPAALGMKGAVTMAKKIVTANPNAVLADQFATKYNALIHEETTGPEIWEQTNHNVD 179 
L_braziliensis      EVILTPAALGMKGAMAMAKKIVAANPNAVLAEQFATKYNALMHEETTGPEIWDQTHHSVD 179 
T_cruzi_1           EVILTPAALGMKGALEAVNRIVSNNPDAVSANQFATKYNAQIHEETTGPEIWRQTKGHVD 180 
T_cruzi_2           EVILTPAALGMKGALEAANRIVSKNPVAVSANQFATKYNAQIHEETTGPEIWRQTKGNVD 180 
                    **************:  .::**: ** ** *:******** :********** **:  ** 
 
L_donovani          CFIAGVGTGGTLTGVARALKKMGSHARIVAVEPTESPVLSGGKPGPHKIQGIGPGFVPDV 239 
L_infantum          CFIAGVGTGGTLTGVARALKKMGSHARIVAVEPTESPVLSGGKPGPHKIQGIGPGFVPDV 239 
L_major             CFIAGVGTGGTLTGVARALKKMGSHARIVAVEPMESPVLSGGKPGAHKIQGIGPGFVPDV 239 
L_braziliensis      CFIAGVGTGGTLTGVARALKKVGSHARIIAVEPVESPVLSGGKPGPHKIQGIGAGFVPAV 239 
T_cruzi_1           CFVAGVGTGGTITGVARYLKSVGCGATIFAVEPAESPVLSGGKPGPHRIQGIGAGFVPEV 240 
T_cruzi_2           CFVAGVGTGGTITGVARYLKSVGCGATIFAVEPAESPVLSGGKPGPHRIQGIGAGFVPEV 240 
                    **:********:***** **.:*. * *.**** ***********.*:*****.**** * 
 
L_donovani          LDRSLIDEVLCVAGDDAIETALKLTRSDGVFCGFSGGANVYAALKIAERPGDGGQTIVTV 299 
L_infantum          LDRSLIDEVLCVAGDDAIETALKLTRSDGVFLRFSGGANVYEALKIAERQEMEGKTIVTS 299 
L_major             LDRSLIDEVFCVAGDDAIETALKLTRSDGVFCGFSGGANVYAALKIAERPEMEGKTIVTI 299 
L_braziliensis      LDRSLIDEVFCVSGDDAIETALKLTRSDGVCCGFSGGANVYAALRIAERPEMEGKTIVTV 299 
T_cruzi_1           FEAALVDEVIQVSGDEAIDTAQKLPRTDGIFCGFSGGANVYAALQIAKRPEMAGKTIVTV 300 
T_cruzi_2           FEAALVDEVIQVSGDEAIDTAQKLPRTDGIFCGFSGGANVYAALQIAKRPEMAGKTIVTV 300 
                    :: :*:***: *:**:**:** **.*:**:   ******** **:**:*    *:****  
 
L_donovani          IPSFGEHYLSTTLYRAFGDECRPCP--------- 324 
L_infantum          FRHSVSATSPPCCTGAFGMRCRPCP--------- 324 
L_major             IPSFGERYLSTALYRSVRDEVSSLPVVDASELQD 333 
L_braziliensis      IPSFGERYLSTVLYKNVRDEVSSLPVVDASELQD 333 
T_cruzi_1           IPSYGERYLSTALYSSIKDEVFALKVLSAADI-- 332 
T_cruzi_2           IPSYGERYLSTALYSSIKDEVSALKVLSAADI-- 332 
                    :    .   ..     .  .  .            
  
Figure 4.1 Amino acid alignment of L. donovani OAS-TL with OAS-TL of other 
trypanosomatids.  
ClustalW alignments of L. donovani OAS-TL (sequenced), L. infantum OAS-TL (Genedb 
LinJ36_V3.3750 ), L. major OAS-TL (Genedb LmjF36.3590), L. braziliensis OAS-TL (Genedb 
LbrM35_V2.3820), T.cruzi OAS-TL 1 (Genedb Tc00.1047053507165.50) and T. cruzi OAS-TL 2 
(Genedb Tc00.1047053507793.20), were combined using the program T-Coffee (Notredame et al., 
2000, Poirot et al., 2003) showing (*) identical residues, (:) conserved residues and (.) homologous 
residues. Residues are coloured as follows: A, V, F, P, M, I, L and W are shown in red; D and E are 
blue; R, H and K are magenta; S, T, Y, H, C, N, G and Q are green and all other residues are grey. 
The four lysine residues that are essential for sulfhydrylase activity and binding pyridoxal 
phosphate (PLP) are underlined in red. The SAT binding site is underlined in black.   
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C_thermocellum       ------------------------------------------------------------ 
C_botulinum          ------------------------------------------------------------ 
M_tuberculosis       ------------------------------------------------------------ 
C_reinhardtii_1      ------------------------------MQLQQKALRLQSTFPTRVSR-VALVPKAVA 29 
C_reinhardtii_2      -------------------------------------MLCGCGGAKQVSR-VALVPKAVA 22 
G_max                MASASLINSLTCSSRAPTQHCSTFTRTTAATSLRQFNSHCRRPLATRISPPSTVVCKAVS 60 
L_donovani           ------------------------------------------------------------ 
A_thaliana           ----------------------------MAPVNMTGAVVAA----AALLMLTSYSFFFRL 28 
D_discoideum         ---------------------------MFSSIYGYFNSEGD----SNQQQNNNNNSNNNL 29 
S_cerevisiae         ---------------------------MSCSQNKTSVSLAWRECISIASVLIGAYASYKY 33 
                                                                                  
 
C_thermocellum       --------MAKIAKNLTELIGNTPLLELSNYNRANNLEAV--LIAKLEYFNPASSVKDRI 50 
C_botulinum          --------MKKIYKNITELIGNTPLLELEKLKKENKLKAN--IIAKVEYFNPANSVKDRI 50 
M_tuberculosis       ---------MSIAEDITQLIGRTPLVRLRRVT--DGAVAD--IVAKLEFFNPANSVKDRI 47 
C_reinhardtii_1      APEKAAVK-MNIATDVTELIGKTPMVYLNKVA--TGTHAK--IAAKLEIMEPCCSVKDRI 84 
C_reinhardtii_2      APEKAAVK-MNIATDVTELIGKTPMVYLNKVA--TGTHAK--IAAKLEIMEPCCSVKDRI 77 
G_max                VKPQTEIEGLNIAEDVTQLIGKTPMVYLNNIV--KGSVAN--IAAKLEIMEPCCSVKDRI 116 
L_donovani           -MAAPFDKSKNVAQSIDQLIGQTPALYLNKLN---NTKAK--VVLKMECENPMASVKDRL 54 
A_thaliana           SEKKKRKEKLTMRNGLVDAIGNTPLIRINSLSEATGCEVFLDILGKCEFLNPGGSVKDRV 88 
D_discoideum         KESVFHSG---ISNGIIETVGNTPLIRIKSLSEATGCEIY----GKAEFMNPGGSPKDRV 82 
S_cerevisiae         YKLFKTRDIPRPKEGVEELIGNTPLVKIRSLTKATGVNIY----AKLELCNPAGSAKDRV 89 
                                   .: : :*.** : :                 * *  :*  * ***: 
 
C_thermocellum       GYAMIKDAEEKGIINK--DTVIIEPTSGNTGIALAFVAAARGYRVILTMPETMSIERRN- 107 
C_botulinum          AFSMIEEAEKEGLIDK--DTVIIEPTSGNTGVGLAFVAAAKGYKLILTMPETMSMERRL- 107 
M_tuberculosis       GVAMLQAAEQAGLIKP--DTIILEPTSGNTGIALAMVCAARGYRCVLTMPETMSLERRM- 104 
C_reinhardtii_1      GYSMISSAEKEGLITPG-KTVLVEPTSGNTGIGLAFIAAARGYKLILTMPASMSLERRI- 142 
C_reinhardtii_2      GYSMISSAEKEGLITPG-KTVLVEPTSGNTGIGLAFIAAARGYKLILTMPASMSLERRI- 135 
G_max                GFSMINDAEQRGAITPG-KSILVEPTSGNTGIGLAFIAASRGYKLILTMPASMSLERRV- 174 
L_donovani           GFAIYDKAEKEGKLIPG-KSIVVESSSGNTGVSLAHLGAIRGYKVIITMPESMSLERRC- 112 
A_thaliana           AVKIIQEALESGKLFPG--GIVTEGSAGSTAISLATVAPAYGCKCHVVIPDDAAIEKVIS 146 
D_discoideum         AREIILDGEKKGLLKKG--STIVEATAGSTGISLTMLGKSRGYNVQLFIPDNVSKEKVD- 139 
S_cerevisiae         ALNIIKTAEELGELVRGEPGWVFEGTSGSTGISIAVVCNALGYRAHISLPDDTSLEKLA- 148 
                     .  :   . : * :       : * ::*.*.:.:: :    * .  : :*   : *:    
 
C_thermocellum       -------------LLKALGAELVLTPGADGMGGAIRKAEELAREIPN------------- 141 
C_botulinum          -------------ILKAYGAELVLTPGKDGMKGAIEKATELSKEYKN------------- 141 
M_tuberculosis       -------------LLRAYGAELILTPGADGMSGAIAKAEELAKTDQR------------- 138 
C_reinhardtii_1      -------------LLRAFGAELVLTDPAKGMKGAVAKAEEILASTPD------------- 176 
C_reinhardtii_2      -------------LLRAFGAELVLTDPAKGMKGAVAKAEEILASTPD------------- 169 
G_max                -------------LLKAFGAELVLTDAAKGMNGAVQKAEEILKSTPN------------- 208 
L_donovani           -------------LLRIFGAEVILTPAALGMKGAVAMAKKIVAANPN------------- 146 
A_thaliana           FKYLDDDSNSLSQIIEALGASVERVRPVSITHKDHYVNIARRRADEANELASKRRLGSET 206 
D_discoideum         -------------LLEMLGAETKIVPIVGMNNANHFMHCAY-----------QRCLGDDM 175 
S_cerevisiae         -------------LLESLGATVNKVKPASIVDPNQYVNAAKKACN------ELKKSGNGI 189 
                                  ::.  **    .                                    
 
C_thermocellum       ----------------------------SFIPQQFSNPANPEIHRRTTAEEIWRDTDGQV 173 
C_botulinum          ----------------------------SFVPQQFENKFNPAMHKRTTAVEIWNDTDGEV 173 
M_tuberculosis       ----------------------------YFVPQQFENPANPAIHRVTTAEEVWRDTDGKV 170 
C_reinhardtii_1      ----------------------------AFMLQQFQNPNNPKVHYETTGPEIWSATDGKV 208 
C_reinhardtii_2      ----------------------------AFMLQQFQNPNNPKVHYETTGPEIWSATDGKV 201 
G_max                ----------------------------SYMLQQFDNPSDPKVHYETTGPEIWEDTKGKI 240 
L_donovani           ----------------------------AVLADQFATKYNALIHEETTGPEIWEQTNHNV 178 
A_thaliana           NGIHQEKTNGCTVEEVKEPSLFSDSVTGGFFADQFENLANYRAHYEGTGPEIWHQTQGNI 266 
D_discoideum         A----------------------------FYANQFDNLSNFNAHYNGTAKEIWEQTKGDV 207 
S_cerevisiae         R---------------------------AVFADQFENEANWKVHYQTTGPEIAHQTKGNI 222 
                                                     :** .  :   *   *. *:   *. .: 
 
C_thermocellum       DIFVAGVGTGGTISGVGEVLKQRKPD-VKIVAVEPFDSPVLSGGTKG------------- 219 
C_botulinum          DIFIAGVGTGGTITGVGEYLKEKNKD-IKIIAVEPEDSPVLSGGNPG------------- 219 
M_tuberculosis       DIVVAGVGTGGTITGVAQVIKERKPS-ARFVAVEPAASPVLSGGQKG------------- 216 
C_reinhardtii_1      DILVSGVGTGGTITGTGRYLREKKSD-VQLVAVEPAESPVLSGGKPG------------- 254 
C_reinhardtii_2      DILVSGVGTGGTITGTGRYLREKKSD-VQLVAVEPAESPVLSGGKPG------------- 247 
G_max                DILVAGIGTGGTVSGAGQFLKQQNRK-IQVIGVEPLESNILTGGKPG------------- 286 
L_donovani           DCFIAGVGTGGTLTGVARALKKMGSH-ARIVAVEPTESPVLSGGKPG------------- 224 
A_thaliana           DAFVAAAGTGGTLAGVSRFLQDKNER-VKCFLIDPPGSGLYNKVTRGVMYTREEAEGRRL 325 
D_discoideum         DGFVAAAGTGGTVAGISSYLKEVNPN-IQNWLIDPPGSGLYSLVNTGVIFHPKDRLVVEK 266 
S_cerevisiae         DAFIAGCGTGGTITGVAKFLKERAKIPCHVVLADPQGSGFYNRVNYGVMYDYVEKEGTRR 282 
                     * .::. *****::* .  ::.      :    :*  * . .    *              
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C_thermocellum       ----PHKIQGIGAGFVPDNFNRAV--VDEIFKVKNEEAFETSRKLARTEGLLVGISSGAA 273 
C_botulinum          ----PHKIQGIGAGFVPSTLNTEV--LDEIFKVSNEKAFEVTKSIAKTEGLLVGISSGAA 273 
M_tuberculosis       ----PHPIQGIGAGFVPPVLDQDL--VDEIITVGNEDALNVARRLAREEGLLVGISSGAA 270 
C_reinhardtii_1      ----PHKIQGIGAGFVPAVLDTAL--ISEVVQVSSDDAIDMARRLALEEGLMVGISSGAA 308 
C_reinhardtii_2      ----PHKIQGIGAGFVPAVLDTAL--ISEVVQVSSDDAIDMARRLALEEGLMVGISSGAA 301 
G_max                ----PHKIQGIGAGFVPRNLDQDV--LDEVIAISSDEAVETAKQLALQEGLLVGISSGAA 340 
L_donovani           ----PHKIQGIGPGFVPDVLDRSL--IDEVLCVAGDDAIETALKLTRSDGVFCGFSGGAN 278 
A_thaliana           KNPFDTITEGIGINRLTKNFLMAK--LDGGFRGTDKEAVEMSRFLLKNDGLFVGSSSAMN 383 
D_discoideum         LGP-RSFYEGVGVNKKTENFNKAS--LNGAFRGTEEEGVDMAHYLLKHDGLFLGGSSALN 323 
S_cerevisiae         RHQVDTIVEGIGLNRITHNFHMGEKFIDESIRVNDNQAIRMAKYLSVNDGLFVGSSTAIN 342 
                             :*:* .  .  :      :.  .    ....  :  :   :*:: * * .   
 
C_thermocellum       AFAATQIAKRPENKGKNIVVLLPDTGERYLSTALFQDA-------------------- 311 
C_botulinum          IYAAMKIAERQENQGKNIVVLLPDTGQRYLSTGVFE---------------------- 309 
M_tuberculosis       TVAALQVARRPENAGKLIVVVLPDFGERYLSTPLFADVAD------------------ 310 
C_reinhardtii_1      VQAAIKVASRPENEGKLVVVVLPSFGERYLSSVLFQQLRDEASKMTFEPSA------- 359 
C_reinhardtii_2      VQAAIKVASRPENEGKLVVVVLPSFGERYLSSVLFQQLRDEASKMTFEPSA------- 352 
G_max                AAAALKVGKRPENAGKLIGVVFPSFGERYLSTILFQSIREECEKMQPEP--------- 389 
L_donovani           VYAALKIAERPGDGGQTIVTVIPSFGEHYLSTTLYRAFGDECRPCP------------ 324 
A_thaliana           CVGAVRVAQTLGP-GHTIVTILCDSGMRHLSKFHDPKYLNLYGLSPTAIG-LEFLGIK 439 
D_discoideum         CVGAVKLARKLGP-GKTIVTVLCDSGHRYTSRLYSKSWLNDHNFQVSDLSNLNFVK-- 378 
S_cerevisiae         AVAAIQVAKTLPH-GSNIVIIACDSGSRHLSKFWKEAKEIDHDVSLEEVINI------ 393 
                       .* ::.      *  :  :  . * :: *                        
  
Figure 4.2 Amino acid alignment of L. donovani OAS-TL with OAS-TL of other organisms. 
ClustalW alignments of L. donovani OAS-TL (sequenced), Clostridium thermocellum OAS-TL 
(GenBank accession no. NC_009012.1), Clostridium botulinum OAS-TL (GenBank accession no. 
NC_009495.1), Mycobacterium tuberculosis OAS-TL (GenBank accession no. NC_002755.2), 
Chlamydomonas reinhardtii OAS-TL 1 (GenBank accession no. XM_001691883.1), 
Chlamydomonas reinhardtii OAS-TL 2 (GenBank accession no. XM_001691884.1), Glycine max 
OAS-TL (GenBank accession no. EF584900.1), Arabidopsis thaliana OAS-TL (GenBank accession 
no. AC002304.3), Dictyostelium discoideum OAS-TL (GenBank accession no. XM_629377.1) and 
Saccharomyces cerevisiae OAS-TL (GenBank accession no. EDN61611.1), were combined using 
the program T-Coffee (Notredame et al., 2000, Poirot et al., 2003) showing (*) identical residues, (:) 
conserved residues and (.) homologous residues. Residues are coloured as follows: A, V, F, P, M, 
I, L and W are shown in red; D and E are blue; R, H and K are magenta; S, T, Y, H, C, N, G and Q 
are green and all other residues are grey. The four lysine residues that are essential for 
sulfhydrylase activity and binding pyridoxal-5’-phosphate (PLP) are underlined in red. The SAT 
binding site is underlined in black.   
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 Cb Ct Mt Dd At Sc Tc_2 Tc_1 Lb Lm Li Ld Cr_2 Cr_1 Gm 
Cb  72 61 34 31 34 48 47 51 49 46 48 58 58 55
Ct   68 34 33 36 52 52 49 52 45 48 58 58 57 
Mt    32 30 36 52 52 51 50 46 50 62 62 57 
Dd     43 37 33 33 30 29 29 30 29 28 29 
At      44 29 29 29 30 29 30 28 27 27 
Sc    34 33 34 34 33 34 32 32 31
Tc_2        98 74 73 67 72 54 54 49 
Tc_1         72 72 66 71 53 53 49 
Lb          90 83 88 54 54 49 
Lm           89 94 53 53 49 
Li            92 49 49 45 
Ld             53 53 49 
Cr_2              97 66 
Cr_1               66 
Gm                
 

 

Table 4.1 Sequence identities of OAS-TL of various organisms. 
Percentage identity of the amino acid sequences of various organisms when compared to OAS-TL of L. donovani BPK 206 clone 10. Cb, Clostridium botulinum 
(GenBank accession no. NC_009495.1); Ct, Clostridium thermocellum (GenBank accession no. NC_009012.1); Mt, Mycobacterium tuberculosis (GenBank accession 
no. NC_002755.2); Cr_1 Chlamydomonas reinhardtii (GenBank accession no. XM_001691883.1), Cr_2 Chlamydomonas reinhardtii (GenBank accession no. 
XM_001691884.1); Gm, Glycine max (GenBank accession no. EF584900.1); At, Arabidopsis thaliana (GenBank accession no. AC002304.3); Dd, Dictyostelium 
discoideum (GenBank accession no. XM_629377.1); Sc, Saccharomyces cerevisiae (GenBank accession no. EDN61611.1); Li, L. infantum (Genedb LinJ36_V3.3750); 
Lm, L. major (Genedb LmjF36.3590); Lb, L. braziliensis (Genedb LbrM35_V2.3820); Tc_1, T.cruzi (Genedb Tc00.1047053507165.50) and Tc_2, T. cruzi (Genedb 
Tc00.1047053507793.20) were combined using the program T-Coffee (Notredame et al., 2000, Poirot et al., 2003) and sequences identities were calculated. 
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4.3 Knocking out of OAS-TL in L. donovani 

The removal of the OAS-TL gene from L. donovani, by two rounds of homologous 

recombination, was anticipated to result in a phenotypic effect that would 

clarify the role of OAS-TL in the parasites. Analysis of various aspects of the 

biology of the knock-out parasites would also clarify whether the reverse trans-

sulfuration pathway was able to compensate for the loss of OAS-TL, and further 

elucidate the role of OAS-TL. 

4.4 Generation of L. donovani OAS-TL null mutant 
parasite lines 

Specific oligonucleotide primers were designed, using the L. infantum genome, 

and used to amplify the 3’ and 5’ flanking regions of OAS-TL. The L. infantum 

genome was used because no L. donovani genome was available at the time the 

primers were designed and L. infantum is believed to be the most similar to L. 

donovani. PCR products were subcloned into pGEMT-Easy and ultimately into the 

vectors pGL345, pGL1033 and pGL158 (Mottram et al., 1996), which contain the 

hygromycin phosphotransferase, dihydroxybiphenyl dioxygenase and 

nourseothricin acetyltransferase genes respectively, conferring resistance to 

hygromycin, bleomycin/phleomycin and nourseothricin (Figure 2.5). The 

constructs containing the 3’ and 5’ flanking regions and the antibiotic resistance 

markers were excised from the vectors and the linear DNA fragments were 

purified and used to transfect mid-log phase L. donovani promastigotes. Figure 

4.3 shows the sizes of the 500 bp 3’ and the 1 kb 5’ flanking regions of OAS-TL 

when they were digested out of pGL1033 with OAS-TL flanks, pGL158 with OAS-

TL flanks and pGL345 with OAS-TL flanks. Following two independent rounds of 

transfection, where gene replacement occurs by homologous recombination, the 

corresponding selective drugs were added and the cultures were diluted to 

obtain clonal lines. Two independent rounds of transfection were carried out. 

After each one, parasites were allowed to recover for 24 h during which time the 

knock-out DNA integrates into the genomic DNA of a proportion of cells, by 

homologous recombination. The corresponding selective drugs were added after 

this time and the cultures were diluted to obtain clonal lines. Two lines, Δoas-tl 

A and Δoas-tl B, were generated in this way resulting from transfection with the 
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plasmids pGL158 (nourseothricin acetyltransferase) followed by pGL345 

(hygromycin phosphotransferase). These parasite lines were produced 

independently. 

4.5 Analysis of ∆oas-tl A and ∆oas-tl B 

The replacement of the OAS-TL gene from Δoas-tl A and Δoas-tl B with DNA from 

the plasmids pGL158 and pGL345, was assessed by Southern blot analysis. L. 

donovani WT as well as Δoas-tl A and Δoas-tl B were harvested from stationary 

growth phase and the genomic DNA was extracted. 1-2 µg of DNA was digested 

overnight using the restriction endonuclease XhoI, and separated by DNA gel 

electrophoresis before Southern blotting. The sizes of the resulting DNA 

fragments can be seen in Figure 4.4. The blot was then probed with labelled 

hygromycin phosphotransferase and nourseothricin acetyltransferase (Figure 

4.5). No band was seen in the WT lane because hygromycin phosphotransferase 

and nourseothricin acetyltransferase do not exist in this parasite line. In each of 

the lanes corresponding to Δoas-tl A and Δoas-tl B, two bands were seen at 7.0 

kb and 7.4 kb, indicating that the DNA fragments carrying the selection markers 

had replaced both OAS-TL alleles. 

To ensure that the OAS-TL had been completely removed from the genome, and 

that no chromosome duplications had occurred (Cruz et al., 1992), the blot was 

stripped and re-probed with labelled OAS-TL (Figure 4.6). In the WT lane a clear 

band of 4.7 kb was visible, however the expected band at 0.6 kb was too small 

to be seen clearly on the blot. This indicated that the OAS-TL gene is present in 

the WT line. In the lanes containing Δoas-tl A and Δoas-tl B DNA, no bands 

corresponding to OAS-TL were seen, demonstrating that both of the OAS-TL 

alleles were replaced with the selectable markers (Figure 4.5). Therefore Δoas-

tl A and Δoas-tl B are two independently generated parasite lines in which the 

OAS-TL gene has been replaced.   
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Figure 4.3 Cloning of L. donovani OAS-TL 5’ and 3’ flanks into pGL1033, pGL158 and 
pGL345. 
Sybr safe stained 1 % agarose gel showing the DNA products of digested pGL1033 with OAS-TL 
flanks, pGL158 with OAS-TL flanks and pGL345 with OAS-TL flanks. 1, 1 kb 5’ flank of pGL158 
with OAS-TL flanks digested with HindIII and SalI; 2, 500 bp 3’ flank of pGL158 with OAS-TL flanks 
digested with SmaI and BglII; 3, 1 kb 5’ flank of pGL1033 with OAS-TL flanks digested with HindIII 
and SalI; 4, 500 bp 3’ flank of pGL1033 with OAS-TL flanks digested with SmaI and BglII; 5, 1 kb 5’ 
flank of pGL345 with OAS-TL flanks digested with HindIII and SalI; 6, 500 bp 3’ flank of pGL345 
with OAS-TL flanks digested with SmaI and BglII. 
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Figure 4.4 Knock out strategy of OAS-TL in L. donovani. 
Schematic representation of one gene copy of OAS-TL and the two knock-out cassettes that will 
replace the endogenous genes by homologous recombination following two independent rounds of 
transfection. The positions of XhoI restriction sites and the sizes of DNA fragements expected from 
XhoI digest are given. 
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Figure 4.5 Southern blot analysis of L. donovani OAS-TL null mutant lines. 
Genomic DNA (1 µg) from L. donovani WT (lane 1), L. donovani ∆oas-tl A (lane 2) and L. donovani 
∆oas-tl B (lane 3) was digested overnight at 37 ºC with XhoI and resolved on a 0.8 % agarose gel. 
The blot was probed with the hygromycin phosphotransferase and nourseothricin acetyltransferase 
labelled with an alkaline phosphatase, detected by CDP-Star detection reagent (G.E. Healthcare) 
and chemiluminescence was detected by autoradiography film. The bands at 7.0 and 7.4 kb 
indicate the correct integration of the HYG and SAT knock-out cassettes respectively. As expected, 
there are no visible bands in the WT lane, as the hygromycin phosphotransferase and 
nourseothricin acetyltransferase genes do not exist in this line.  

 

Figure 4.6 Southern blot analysis of L. donovani OAS-TL null mutant lines. 
Genomic DNA (1 µg) from L. donovani WT (lane 1), L. donovani ∆oas-tl A (lane 2) and L. donovani 
∆oas-tl B (lane 3) was digested overnight at 37 ºC with XhoI and resolved on a 0.8 % agarose gel. 
The blot was probed with OAS-TL labelled with an alkaline phosphatase, detected by CDP-Star 
detection reagent (G.E. Healthcare) and chemiluminescence was detected by autoradiography film. 
The band at 4.7 kb in lane 1 represents the endogenous gene, which is no longer present in ∆oas-
tl A and ∆oas-tl B.   
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4.6  Generation of OAS-TL re-expressing lines 

To ensure any phenotypic differences observed between the WT and the OAS-TL 

null mutant lines was due entirely to the loss of the gene and not a result of the 

genetic manipulation techniques, re-expressing lines were generated in which 

OAS-TL was expressed, extra-chromasomally, in Δoas-tl A and Δoas-tl B.  

Specific oligonucleotide primers were designed, using the L. infantum genome, 

and used to amplify OAS-TL. PCR products were subcloned into pGEMT-Easy and 

ultimately into the vector pGL102 which contains the neomycin 

phosphotransferase gene which confers resistance to neomycin (Figure 2.6). 

pGL102 containing OAS-TL was used to transfect mid-log phase L. donovani Δoas-

tl A and Δoas-tl B promastigotes. Cultures were allowed to recover overnight 

before being subjected to the selective drug pressure of neomycin. 

4.7 Phenotypic analysis of OAS-TL null mutant lines 

4.7.1 Western blot analysis of OAS-TL mutant lines 

Western blot analysis confirmed that L. donovani Δoas-tl A [OAS-TL] and Δoas-tl 

B [OAS-TL] expressed the protein (Figure 4.7). The level of expression compared 

to L. donovani WT, Δoas-tl A and Δoas-tl B was confirmed by quantification of 

the band intensity of the blot (Table 4.2). The relative band intensity of OAS-TL 

suggests that the protein level of OAS-TL present in L. donovani Δoas-tl A [OAS-

TL] and Δoas-tl B [OAS-TL] is approximately half the level found in WT. The 

protein level of mercaptopyruvate sulfurtransferase (MST) and cystathionine β-

synthase (CBS) in L. donovani WT, Δoas-tl A, Δoas-tl B, Δoas-tl A [OAS-TL] and 

Δoas-tl B [OAS-TL] was investigated in the same way. Interestingly, CBS is 

present at a similar level as WT in Δoas-tl A and Δoas-tl B, but in Δoas-tl A [OAS-

TL] and Δoas-tl B [OAS-TL] the level of protein is roughly half that found in L. 

donovani WT. Although the values representing the expression of MST are 

slightly more variable than those representing the expression of OAS-TL and CBS, 

the results suggest that there is no difference in the amount of MST between the 

various parasite lines.  
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4.7.2 Growth 

Growth of L. donovani WT, Δoas-tl A, Δoas-tl B, Δoas-tl A [OAS-TL] and Δoas-tl B 

[OAS-TL] was monitored to assess whether the loss of OAS-TL affected 

promastigote growth. Growth was monitored by determining cell density at 24 h 

intervals for 7 days.  

The knock-out parasites go through the same lag, exponential and stationary 

phases as WT, but appear to show a slight growth defect. The lack of OAS-TL 

causes the parasites to grow to a lower density at all stages of growth, compared 

to WT (Figure 4.8). A stationary phase culture of Δoas-tl A and Δoas-tl B is 

approximately 1 x 107 cells/ml, compared to WT which reaches a maximum of 

approximately 4 x 107 cells/ml. When OAS-TL is expressed extra-chromasomally 

in Δoas-tl A and Δoas-tl B, the deficiency in density is restored to WT levels. 

4.7.3 Morphology 

It appears that L. donovani Δoas-tl A and Δoas-tl B follow the same growth 

pattern as the WT parasites, but it was found that their density in stationary 

phase was reduced compared to L. donovani WT. While assessing parasite growth 

it was found that L. donovani Δoas-tl A and Δoas-tl B had a very different 

morphology compared to WT parasites, which appeared to be restored to WT in 

the parasite lines re-expressing OAS-TL. The knock-out lines were significantly 

shorter in body length than the WT. The flagella were also shorter in these 

parasites compared to WT, and in some cases seemed to lack the flagellum 

entirely. In addition to the difference in size, the knock-out parasites also look 

severely deformed. Morphological features that can be clearly seen in WT cells, 

like the overall spindle-like shape of the body and the ‘spiral’ effect of the 

membrane, are grossly altered in Δoas-tl A and Δoas-tl B (Figure 4.9). L. 

donovani Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] appear more similar to WT 

parasites, with both the spindle-like shape and ‘spiral’ effect recovered. Overall 

body length, however, was not recovered. 
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Figure 4.7 Western blot analysis of the expression of ELF1α, CBS, MST and OAS-TL in WT, 
∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] L. donovani promastigotes. 
1 µg of soluble cell extract was subjected to western blot analysis using the rabbit anti-OAS-TL 
(1:7,500), rabbit anti-MST (1:7,500), rabbit anti-CBS (1:10,000) and mouse anti-ELF1α (1:30,000) 
antisera. WT, lane 1; ∆oas-tl A, lane 2; ∆oas-tl B, lane 3; ∆oas-tl A [OAS-TL], lane 4 and ∆oas-tl B 
[OAS-TL], lane 5. 

 

  WT  Δoas‐tl A
 

Δoas‐tl B Δoas‐tl A [OAS‐TL]  Δoas‐tl B [OAS‐TL]

OAS‐TL  1  0.00 0.00 0.54  0.55
CBS  1  0.85 0.96 0.58  0.56
MST  1  1.19 0.93 0.78  0.82

 

Table 4.2 Relative density of bands detected by western blot representing OAS-TL, CBS and 
MST in L. donovani promastigotes. 
1 µg of soluble cell extract was subjected to western blot analysis using the rabbit anti-OAS-TL 
(1:7,500), rabbit anti-MST (1:7,500), rabbit anti-CBS (1:10,000) and mouse anti-ELF1α (1:30,000) 
antisera. Chemiluminescence was detected and density determined using a Molecular Imager 
ChemiDoc XRS System with Quantity One 4.6.3 software. Values were adjusted using the values 
obtained for the loading control, ELF1α, and then WT values were taken as 1 and the data for the 
other cell lines were adjusted accordingly.   
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Figure 4.8 Growth curve of WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-
TL] L. donovani promastigotes. 
Cultures were seeded at a concentration of 2 x 105 parasites/ml and were counted daily. ∆oas-tl A 
[OAS-TL] and ∆oas-tl B [OAS-TL] were grown in 50 µg/ml G418. 
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These observations suggest that the lack of OAS-TL results in dramatic 

morphological changes in promastigotes. Scanning Electron Microscopy (SEM) was 

used to capture images of a sample of each of the parasite lines, to facilitate 

the visualisation of the morphological differences in more detail, while also 

enabling the quantification of these differences by using measurement software. 

Measurements of flagellum length and body length of L. donovani WT, Δoas-tl A, 

Δoas-tl B, Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] were taken, and the means 

and standard errors were calculated from a random sample of 100 parasites from 

each line. The data were statistically analysed by analyses of variance (ANOVA), 

to compare the means of three populations, with Tukey’s post-tests to provide 

confidence intervals for all pairwise differences between group means.  

Figure 4.9 A shows a representative image of a L. donovani WT promastigote. 

The mean length of the flagella in the parasite population at late log phase was 

determined to be 14.2 ± 0.4 µm. The two OAS-TL null mutant lines (Δoas-tl A 

and Δoas-tl B), shown in Figure 4.9 B and C, show an obvious reduction of 

flagellum lengths. The mean lengths of the flagella of Δoas-tl A and Δoas-tl B 

were determined to be 6.7 ± 0.4 µm and 4.8 ± 0.5 µm respectively. Figure 4.9 D 

and E show examples of the parasite lines re-expressing OAS-TL (Δoas-tl A [OAS-

TL] and Δoas-tl B [OAS-TL]). The mean flagella lengths of these parasite 

populations was found to be 10.2 ± 0.3 µm and 8.3 ± 0.2 µm, suggesting that the 

re-expression of OAS-TL causes the partial recovery of this phenotypic defect. 

ANOVA tests were used to analyse the difference between WT, Δoas-tl A and 

Δoas-tl A [OAS-TL] flagella lengths and the difference between WT, Δoas-tl B 

and Δoas-tl B [OAS-TL] flagella lengths. The null hypothesis of no statistically 

significant difference between the mean flagellum lengths of the L. donovani 

WT, Δoas-tl A and Δoas-tl A [OAS-TL] was rejected [F2,297 = 123.3, p < 0.001]. 

Tukey’s post test shows significant differences between all three mean values. 

The null hypothesis of no statistically significant difference between the mean 

flagellum lengths of L. donovani WT, Δoas-tl B and Δoas-tl B [OAS-TL] was also 

rejected [F2,297 = 166.4, p < 0.001]. Tukey’s post test shows significant 

differences between all three mean values. The results of the statistical test on 

flagellum lengths are shown in Figure 4.10. The data are graphically summarised 

in Figure 4.12 A.      



  129 

  

The body length of the OAS-TL null mutants also appeared to have a detrimental 

effect on the parasites due to the loss of the gene. The mean body length of L. 

donovani WT promastigotes at late log phase (Figure 1.9 A) was found to be 11.4 

± 0.3 µm, which is much higher than the mean body lengths of Δoas-tl A and 

Δoas-tl B (Figure 1.9 B and C), which were determined to be 6.4 ± 0.2 µm and 

6.7 ± 0.2 µm respectively. Despite the recovery of body shape in the re-

expressing lines (Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL], Figure 1.9 D and E), 

the mean body lengths of these parasite populations were determined to be 6.8 

± 0.2 µm and 5.6 ± 0.2 µm. ANOVA tests were performed to determine whether 

or not statistically significant differences existed between the WT, Δoas-tl A and 

Δoas-tl A [OAS-TL] body lengths and WT, Δoas-tl B and Δoas-tl B [OAS-TL] body 

lengths. The tests confirmed that the differences between the mean body length 

of WT and Δoas-tl A and the difference between WT and Δoas-tl B were 

statistically significant, and the results are shown in Figure 4.11. The null 

hypothesis of no statistically significant difference between the mean body 

lengths of the L. donovani WT, Δoas-tl A and Δoas-tl A [OAS-TL] was rejected 

[F2,297 = 155.5, p < 0.001]. Tukey’s post test shows a significant difference 

between mean body lengths of WT and Δoas-tl A, and WT and Δoas-tl A [OAS-

TL], but no significant difference between Δoas-tl A and Δoas-tl A [OAS-TL]. The 

null hypothesis of no statistically significant difference between the mean body 

lengths of L. donovani WT, Δoas-tl B and Δoas-tl B [OAS-TL] is rejected [F2,297 = 

155.2, p < 0.001]. Tukey’s post test shows a significant difference between mean 

body lengths of WT and Δoas-tl B, and WT and Δoas-tl B [OAS-TL], but no 

significant difference between Δoas-tl B and Δoas-tl B [OAS-TL]. The data are 

graphically summarised in Figure 1.12 B. 

Therefore, the lack of OAS-TL in promastigotes has a severe, negative effect on 

the flagellum length of L. donovani, which is partially recovered by the extra-

chromasomal re-expression of OAS-TL. The mean body lengths of the OAS-TL null 

mutant parasites were also significantly shorter due to the gene deletion. When 

OAS-TL was re-expressed, morphological features such as the spindle-like shape 

and the twisted effect of the membrane were restored, but the mean body 

length remained similar to the null mutant lines. It is likely that the partial 

nature of the recovery of the morphological defects in the re-expressing lines is  
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Figure 4.9 SEM images of WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-
TL] L. donovani promastigotes. 
Log phase promastigotes (approximately 5 x 106 cells/ml) were fixed, mounted and viewed using 
scanning electron microscopy. A, WT; B, ∆oas-tl A; C, ∆oas-tl B; D, ∆oas-tl A [OAS-TL]; E, ∆oas-tl 
B [OAS-TL]. The range of values observed for flagellum length are; WT, 5.5 – 21.7 µm; ∆oas-tl A, 0 
– 15.8 µm; ∆oas-tl B, 0 – 18.9 µm; ∆oas-tl A [OAS-TL], 4.7 – 17.5 µm; ∆oas-tl B [OAS-TL], 4.3 – 
17.9 µm. The range of values observed for body length are; WT, 6.1 – 23.7 µm; ∆oas-tl A, 3.3 – 
11.9 µm; ∆oas-tl B, 0.4 – 14.7 µm; ∆oas-tl A [OAS-TL], 3.7 – 12.2 µm; ∆oas-tl B [OAS-TL], 2.0 – 
16.9 µm.   
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A 
L. donovani WT, ∆oas-tl A, ∆oas-tl A [OAS-TL] flagellum length. 
One-way ANOVA: C1 versus C2   
 
Source   DF          SS          MS       F      P 
C2        2  2846285177  1423142589  123.33  0.000 
Error   297  3427276178    11539650 
Total   299  6273561355 
 
S = 3397   R-Sq = 45.37%   R-Sq(adj) = 45.00% 
 
 
                          Individual 95% CIs For Mean Based on 
                          Pooled StDev 
Level    N   Mean  StDev  ------+---------+---------+---------+--- 
1      100  14250   3556                                (--*--) 
2      100   6713   3568  (--*--) 
3      100  10170   3040                (--*-) 
                          ------+---------+---------+---------+--- 
                             7500     10000     12500     15000 
 
Pooled StDev = 3397 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of C2 
 
Individual confidence level = 98.01% 
 
 
C2 = 1 subtracted from: 
 
C2  Lower  Center  Upper  -----+---------+---------+---------+---- 
2   -8661   -7536  -6412  (--*---) 
3   -5204   -4080  -2955            (--*---) 
                          -----+---------+---------+---------+---- 
                           -7000     -3500         0      3500 
 
 
C2 = 2 subtracted from: 
 
C2  Lower  Center  Upper  -----+---------+---------+---------+---- 
3    2332    3457   4581                                  (--*--) 
                          -----+---------+---------+---------+---- 
                           -7000     -3500         0      3500 
 
 
 
 
 
 
 

B 
L. donovani WT, ∆oas-tl B, ∆oas-tl B [OAS-TL] flagellum length. 
One-way ANOVA: C2 versus C1  
 
Source   DF          SS          MS       F      P 
C1        2  4566393504  2283196752  166.42  0.000 
Error   297  4074639994    13719327 
Total   299  8641033498 
 
S = 3704   R-Sq = 52.85%   R-Sq(adj) = 52.53% 
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                          Individual 95% CIs For Mean Based on 
                          Pooled StDev 
Level    N   Mean  StDev  ------+---------+---------+---------+--- 
1      100  14250   3556                                 (-*--) 
2      100   4795   4615  (-*-) 
3      100   8320   2686             (--*-) 
                          ------+---------+---------+---------+--- 
                             6000      9000     12000     15000 
 
Pooled StDev = 3704 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of C1 
 
Individual confidence level = 98.01% 
 
 
C1 = 1 subtracted from: 
 
C1   Lower  Center  Upper  -------+---------+---------+---------+-- 
2   -10681   -9455  -8229  (--*--) 
3    -7156   -5930  -4704           (--*--) 
                           -------+---------+---------+---------+-- 
                              -8000     -4000         0      4000 
 
 
C1 = 2 subtracted from: 
 
C1  Lower  Center  Upper  -------+---------+---------+---------+-- 
3    2300    3526   4752                                   (--*--) 
                          -------+---------+---------+---------+-- 
                             -8000     -4000         0      4000 

 

 

Figure 4.10 Statistical analysis of the flagellum lengths of L. donovani parasite lines. 
ANOVA analysis was used to determine whether or not a difference exists between the flagellum 
lengths of the parasite lines, and Tukey’s post-test was used to particularly identify where the 
differences lie. ANOVA analysis of the mean flagellum lengths of A, L. donovani WT, ∆oas-tl A and 
∆oas-tl A [OAS-TL] and B, L. donovani WT, ∆oas-tl B and ∆oas-tl B [OAS-TL]. In the case of A, the 
null hypothesis of no statistically significant difference between the mean flagellum lengths of the L. 
donovani WT, ∆oas-tl A and ∆oas-tl A [OAS-TL] is rejected [F2,297 = 123.3, p < 0.001]. Tukey’s post 
test shows significant differences between all three mean values. In the case of B, the null 
hypothesis of no statistically significant difference between the mean flagellum lengths of L. 
donovani WT, ∆oas-tl B and ∆oas-tl B [OAS-TL] is rejected [F2,297 = 166.4, p < 0.001]. Tukey’s post 
test shows significant differences between all three mean values. 
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A 
L. donovani WT, ∆oas-tl A and ∆oas-tl A [OAS-TL] body length. 
One-way ANOVA: C1 versus C2  
 
Source   DF          SS         MS       F      P 
C2        2  1570008932  785004466  155.46  0.000 
Error   297  1499724128    5049576 
Total   299  3069733059 
 
S = 2247   R-Sq = 51.14%   R-Sq(adj) = 50.82% 
 
 
                          Individual 95% CIs For Mean Based on Pooled StDev 
Level    N   Mean  StDev     +---------+---------+---------+--------- 
1      100  11444   2899                                      (--*--) 
2      100   6369   1681     (-*--) 
3      100   6850   1979        (--*--) 
                             +---------+---------+---------+--------- 
                          6000      7500      9000     10500 
 
Pooled StDev = 2247 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of C2 
 
Individual confidence level = 98.01% 
 
 
C2 = 1 subtracted from: 
 
C2  Lower  Center  Upper  ---------+---------+---------+---------+ 
2   -5819   -5075  -4332  (---*--) 
3   -5338   -4595  -3851    (---*---) 
                          ---------+---------+---------+---------+ 
                               -4000     -2000         0      2000 
 
 
C2 = 2 subtracted from: 
 
C2  Lower  Center  Upper  ---------+---------+---------+---------+ 
3    -263     481   1225                              (--*---) 
                          ---------+---------+---------+---------+ 
                               -4000     -2000         0      2000 

 

 
 
 
B 
L. donovani WT, ∆oas-tl B and ∆oas-tl B [OAS-TL] body length. 
One-way ANOVA: C1 versus C2  
 
Source   DF          SS         MS       F      P 
C2        2  1934505719  967252860  155.20  0.000 
Error   297  1850962128    6232196 
Total   299  3785467847 
 
S = 2496   R-Sq = 51.10%   R-Sq(adj) = 50.77% 
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                          Individual 95% CIs For Mean Based on 
                          Pooled StDev 
Level    N   Mean  StDev  ----+---------+---------+---------+----- 
1      100  11444   2899                               (-*--) 
2      100   6682   2445       (-*--) 
3      100   5598   2077  (-*-) 
                          ----+---------+---------+---------+----- 
                           6000      8000     10000     12000 
 
Pooled StDev = 2496 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of C2 
 
Individual confidence level = 98.01% 
 
 
C2 = 1 subtracted from: 
 
C2  Lower  Center  Upper  -------+---------+---------+---------+-- 
2   -5589   -4763  -3936       (--*--) 
3   -6673   -5846  -5020  (---*--) 
                          -------+---------+---------+---------+-- 
                             -5000     -2500         0      2500 
 
 
C2 = 2 subtracted from: 
 
C2  Lower  Center  Upper  -------+---------+---------+---------+-- 
3   -1910   -1083   -257                     (---*--) 
                          -------+---------+---------+---------+-- 
                             -5000     -2500         0      2500 

 

 

Figure 4.11 Statistical analysis of the body lengths of L. donovani parasite lines. 
ANOVA analysis was used to determine whether a difference exists between the body lengths of 
the parasite lines, and Tukey’s post-test was used to particularly identify where the differences lie. 
ANOVA analysis of the mean body lengths of A, L. donovani WT, ∆oas-tl A and ∆oas-tl A [OAS-TL] 
and B, L. donovani WT, ∆oas-tl B and ∆oas-tl B [OAS-TL]. In the case of A, the null hypothesis of 
no statistically significant difference between the mean body lengths of the L. donovani WT, ∆oas-tl 
A and ∆oas-tl A [OAS-TL] is rejected [F2,297 = 155.5, p < 0.001]. Tukey’s post test shows a 
significant difference between mean body lengths of WT and ∆oas-tl A, and WT and ∆oas-tl A 
[OAS-TL], but no significant difference between ∆oas-tl A and ∆oas-tl A [OAS-TL]. In the case of B, 
the null hypothesis of no statistically significant difference between the mean body lengths of L. 
donovani WT, ∆oas-tl B and ∆oas-tl B [OAS-TL] is rejected [F2,297 = 155.2, p < 0.001]. Tukey’s post 
test shows a significant difference between mean body lengths of WT and ∆oas-tl B, and WT and 
∆oas-tl B [OAS-TL], but no significant difference between ∆oas-tl B and ∆oas-tl B [OAS-TL]. 
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Figure 4.12 Body length and flagellum length of L. donovani promastiogtes. 
L. donovani WT (1), ∆oas-tl A (2), ∆oas-tl B (3), ∆oas-tl A [OAS-TL] (4) and ∆oas-tl B [OAS-TL] (5) 
mid-log phase promastigotes were harvested and fixed and coated with a layer of gold palladium 
before being visualised by scanning electron microscopy (SEM). 1, L. donovani WT; 2, ∆oas-tl A; 3, 
∆oas-tl B; 4, ∆oas-tl A [OAS-TL]; 5, ∆oas-tl B [OAS-TL]. A, Mean body lengths of L. donovani 
promastigotes. Graph shows the means and standard errors of 50 parasites measured from each 
parasite line; B, Mean flagellum lengths of L. donovani promastigotes. Graph shows the means 
and standard errors of 50 parasites measured from each parasite line.  
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due to the levels of OAS-TL in these lines being approximately 50 % less than the 

WT (Figure 4.7 and Table 4.2). 

4.7.4 Thiol analysis of L. donovani WT, ∆oas-tl A and ∆oas-tl B 

In order to elucidate the potential reasons for the differences in growth and 

morphology of Δoas-tl A and Δoas-tl B when compared to WT, the levels of 

cysteine, glutathione and trypanothione were quantified in the WT and knock-

out lines by HPLC. Stationary phase cultures to be analysed were counted and 

harvested, before lysing the cells and derivatising intracellular thiols with 

fluorescent monobromobimane. Thiols were separated by HPLC using a C18 

reversed-phase chromatography column, using the mobile phases 0.25 % acetic 

acid and 100 % acetonitrile. Values were calculated using the appropriate 

standard curves.  

Table 4.3 shows the amount of cysteine, glutathione and trypanothione detected 

in derivatised parasite extract of WT, Δoas-tl A and Δoas-tl B. Each value is a 

mean of six biological replicates, each of which is a mean of two injections. The 

data show no difference between any of the three parasite lines, therefore the 

absence of OAS-TL appears not to affect the amount of thiols available in the 

cell, which means that the differences observed in growth and morphology of 

the OAS-TL knock-out lines cannot be attributed to a reduction of intracellular 

thiol levels.  

4.7.5 Susceptibility of L. donovani ∆oas-tl A and B to heavy 
metals 

Parasites lacking OAS-TL clearly have no difference in intracellular thiol levels, 

however the experiments to determine this were carried out under normal 

culture conditions. Thiols have been shown to be involved in the detoxification 

of heavy metals from a number of organisms including Leishmania (Ashutosh et 

al., 2007). It may be the case that parasites lacking OAS-TL are capable of 

maintaining thiol levels under normal conditions, but when the parasites are 

exposed to stress, may have very little capability of synthesising enough thiols to 

create sufficient defence. 
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 Thiol levels (nmoles per 108 parasites) ± S.E. 
 

 Cysteine  
 

Trypanothione Glutathione 

L. donovani WT 
 

1.7 ± 0.3 0.6 ± 0.1 4.9 ± 0.6 

L. donovani ∆oas-tl A 
 

1.7 ± 0.2 0.6 ± 0.1 5.3 ± 0.5 

L. donovani ∆oas-tl B 
 

1.6 ± 0.1 0.6 ± 0.1 4.3 ± 0.5 

 

 

Table 4.3 Thiol levels of WT, ∆oas-tl A and ∆oas-tl B L. donovani promastigotes. 
Total cysteine, trypanothione and glutathione levels in L. donovani WT, ∆oas-tl A and ∆oas-tl B 
promastigotes, per 108 parasites ± S.E. Parasite extracts were monobromobimane-derivatized after 
reduction of thiols with DTT, and were separated by reversed-phase HPLC. Derivatization and 
chromatographic conditions are described in Sections 2.3.6.2 and 2.3.6.3. 
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 Since the most commonly used drugs against leishmaniasis are the antimonials, 

which may have a similar mode of action to heavy metals, the susceptibility of L. 

donovani WT, Δoas-tl A, Δoas-tl B, Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] to 

a range of heavy metals was investigated. Cultures were counted and seeded at 

2.5 x 105 cells/ml in 96-well plates and incubated at 25 ºC for 72 h with copper 

sulphate, potassium arsenate or cadmium chloride (all at 5, 2.5, 1.3, 0.6, 0.3, 

0.2, 0.08, 0.04, 0.02, 0.01 or 0.005 mM). Resazurin sodium salt was then added 

and the plates incubated for a further 48 h at 25 ºC. The bioreduction of this dye 

reduces the amount of the blue oxidised form and increases the fluorescent 

intermediate, thus allowing the metabolic activity of the cells to be quantified 

and indicate cell viability. Values were used to construct IC50 graphs (Figures 

4.13, 4.14 and 4.15), and IC50 values are shown in Table 4.4. 

Δoas-tl A and Δoas-tl B are more susceptible to copper sulphate than the WT, 

with IC50 values of 87.7 and 90.7 µM compared to 178.3 µM. When OAS-TL is re-

expressed extra-chromasomally, the IC50 is restored close to that of the WT, 

with values of 137.3 and 159.4 µM for Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] 

respectively. This evidence supports the hypothesis that although able to 

achieve normal intracellular thiol levels under normal conditions, parasites 

lacking OAS-TL are less able to cope with heavy metal stress. A similar pattern is 

seen when the parasite lines were exposed to cadmium chloride. The IC50 values 

for Δoas-tl A and Δoas-tl B are 10.8 and 12.4 µM compared to the WT value of 

68.8 µM. Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] have IC50 values of 26.2 and 

28.1 respectively, which are higher than those of the two null mutant lines, but 

still lower than the WT value. In the case of potassium arsenate the WT and 

knock-out lines follow a similar pattern to those observed for the other heavy 

metals tested, with a WT IC50 value of 227.5 µM compared to Δoas-tl A and Δoas-

tl B which have IC50 values of 169.7 and 177.1 µM respectively. Surprisingly, the 

re-expression lines do not show any recovery of this phenotype. Δoas-tl A [OAS-

TL] and Δoas-tl B [OAS-TL] have IC50 values of 161.0 and 92.3 µM, which are even 

less than the corresponding knock-out lines.  

 



  139 

  

 

Figure 4.13 IC50 determination of L. donovani promastigotes exposed to copper sulfate for 5 
days. 
L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes 
were exposed to varying concentrations of copper sulphate, ranging from 0.005 mM to 5 mM. Initial 
cell density was 2.5 x 105 cells/ml. Metabolic activity of cells was determined by the addition of 
resazurin sodium salt, 48 h before the end of incubation. Absorbance values were determined with 
an excitation of 490 nm and emission of 595 nm, using a fluorescent plate reader. 

 

Figure 4.14 IC50 determination of L. donovani promastigotes exposed to cadmium chloride 
for 5 days. 
L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes 
were exposed to varying concentrations of cadmium chloride, ranging from 0.005 mM to 5 mM. 
Initial cell density was 2.5 x 105 cells/ml. Metabolic activity of cells was determined by the addition 
of resazurin sodium salt, 48 h before the end of incubation. Absorbance values were determined 
with an excitation of 490 nm and emission of 595 nm, using a fluorescent plate reader. 
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Figure 4.15 IC50 determination of L. donovani promastigotes exposed to potassium arsenate 
for 5 days. 
L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes 
were exposed to varying concentrations of potassium arsenate, ranging from 0.005 mM to 5 mM. 
Initial cell density was 2.5 x 105 cells/ml. Metabolic activity of cells was determined by the addition 
of resazurin sodium salt, 48 h before the end of incubation. Absorbance values were determined 
with an excitation of 490 nm and emission of 595 nm, using a fluorescent plate reader. 

Parasite Line IC50 CuSO4 

[µM] 

IC50 CdCl2 

[µM] 

IC50 KH2AsO4 

[µM] 

L. donovani WT 178.3 ± 0.1 68.8 ± 0.1 227.5 ± 0.1 

L. donovani ∆oas-tl A 87.7 ± 0.1 10.8 ± 0.1 169.7 ± 0.1 

L. donovani ∆oas-tl B 90.7 ± 0.1 12.4 ± 0.1 177.1 ± 0.1 

L. donovani ∆oas-tl A [OAS-TL] 137.3 ± 0.1 26.2 ± 0.1 161.0 ± 0.1 

L. donovani ∆oas-tl B [OAS-TL] 159.4 ± 0.1 28.1 ± 0.1 92.3 ± 0.1 

 
 

Table 4.4 Effect of heavy metals on L. donovani promastigote viability. 
IC50 values were determined as described in Materials and Methods Section 2.3.9.2 using 
resazurin sodium salt as an indicator of metabolic activity in promastigote stages of L. donovani 
WT and oas-tl mutant lines. 
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4.7.6 Susceptibility of L. donovani ∆oas-tl A and B to 
hydroperoxides 

As well as being an essential defence against heavy metal toxicity, thiols also 

play a vital role in protecting Leishmania against oxidative stress (Castro et al., 

2002). The results of the heavy metal stress experiments led to the hypothesis 

that parasites lacking OAS-TL may also be significantly more sensitive to 

hydroperoxides. To investigate this, IC50 values were obtained for hydrogen 

peroxide (H2O2), cumene hydroperoxide (C6H5C(CH3)2OOH) and tert-butyl 

hydroperoxide ((CH3)3COOH) against of L. donovani WT, Δoas-tl A, Δoas-tl B, 

Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL], and are presented in Figures 4.16, 

4.17 and 4.18 and Table 4.5. 

Experiments were set up similar to the heavy metal experiments described in 

Section 2.3.9.2, with the following concentrations used, hydrogen peroxide (10, 

5, 2.5, 1.3, 0.6, 0.3, 0.2, 0.08, 0.04, 0.02 or 0.01 mM), cumene hydroperoxide 

and tert-butyl hydroperoxide (both at 1, 0.5, 0.3, 0.1, 0.06, 0.03, 0.02, 0.008, 

0.004, 0.002 or 0.001 mM).  

No significant differences were found between the parasite lines when exposed 

to H2O2. L. donovani Δoas-tl A and Δoas-tl B are approximately twice as 

susceptible to cumene hydroperoxide than the WT, with IC50 values of 9.3 and 

13.8 µM respectively compared to 22.1 µM. The sensitivity of the re-expressing 

lines was reduced back to WT levels, with IC50 values of 20.2 and 20.5 µM for 

Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] respectively. 
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Figure 4.16 IC50 determination of L. donovani promastigotes exposed to hydrogen peroxide 
for 5 days. 
L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes 
were exposed to varying concentrations of hydrogen peroxide, ranging from 0.01 mM to 10 mM. 
Initial cell density was 2.5 x 105 cells/ml. Metabolic activity of cells was determined by the addition 
of resazurin sodium salt, 48 h before the end of incubation. Absorbance values were determined 
with excitation of 490 nm and emission of 595 nm, using a fluorescent plate reader. 

 

Figure 4.17 IC50 determination of L. donovani promastigotes exposed to cumene 
hydroperoxide for 5 days. 
L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes 
were exposed to varying concentrations of cumene hydroperoxide, ranging from 0.001 mM to 1 
mM. Initial cell density was 2.5 x 105 cells/ml. Metabolic activity of cells was determined by the 
addition of resazurin sodium salt, 48 h before the end of incubation. Absorbance values were 
determined with excitation of 490 nm and emission of 595 nm, using a fluorescent plate reader. 
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Figure 4.18 IC50 determination of L. donovani promastigotes exposed to tert-butyl 
hydroperoxide for 5 days. 
L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes 
were exposed to varying concentrations of tert-butyl hydroperoxide, ranging from 0.001 mM to 1 
mM. Initial cell density was 2.5 x 105 cells/ml. Metabolic activity of cells was determined by the 
addition of resazurin sodium salt, 48 h before the end of incubation. Absorbance values were 
determined with an excitation of 490 nm and an emission of 595 nm, using a fluorescent plate 
reader. 

Parasite Line IC50 for 

hydrogen 

peroxide 

(H2O2) [µM] 

IC50 for cumene 

hydroperoxide 

C6H5C(CH3)2OOH 

[µM] 

IC50 for tert-butyl 

hydroperoxide 

(CH3)3COOH 

[µM] 

L. donovani WT 364.0 ± 35.9 22.1 ± 0.4 11.2 ± 0.2 

L. donovani ∆oas-tl A 350.9 ± 24.8 9.3 ± 0.1 4.8 ± 0.2 

L. donovani ∆oas-tl B 353.6 ± 31.4 13.8 ± 0.1 4.6 ± 0.1 

L. donovani ∆oas-tl A [OAS-TL] 367.2 ± 31.5 20.2 ± 0.5 10.6 ± 0.3 

L. donovani ∆oas-tl B [OAS-TL] 354.4 ± 55.5 20.5 ± 0.7 16.2 ± 0.6 

 
Table 4.5 Effect of hydroperoxides on L. donovani promastigote viability. 
IC50 values were determined as described in Section 2.3.9.1 using resazurin sodium salt as an 
indicator of metabolic activity in promastigote stages of L. donovani WT and OAS-TL mutant lines. 
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IC50 concentrations of tert-butyl hydroperoxide showed a similar pattern 

between the WT, knock-out and re-expressing lines, with IC50 values of 4.8 and 

4.6 µM for Δoas-tl A and Δoas-tl B respectively, compared to a WT value of 11.2 

µM. Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] have IC50 values of 10.6 and 16.2 

µM respectively, higher than the values corresponding to the OAS-TL knock-out 

lines.    

4.7.7 Infectivity of peritoneal macrophages in vitro 

The ability of L. donovani WT, Δoas-tl A, Δoas-tl B, Δoas-tl A [OAS-TL] and Δoas-

tl B [OAS-TL] to infect murine peritoneal macrophages was assessed in vitro. 

Macrophages were extracted and incubated for 24 h in tissue culture slides at 37 

ºC with 5 % CO2, 95 % air, before infecting them with stationary phase 

promastigotes.  These were allowed to infect for 2 h before being washed off 

and replaced with fresh medium. Infections were incubated for a further 6 days 

at 37 ºC with 5 % CO2, 95 % air, changing spent medium after 3 days. Percentage 

infection and number of parasites per macrophage were determined and the 

results are shown in Figure 4.19. 

After 6 days, L. donovani WT parasites had established an infection level of 20.0 

% ± 6.2. Δoas-tl A and Δoas-tl B did not appear to infect macrophages at all (0 % 

and 0%), while Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] infected their host 

cells to about the same level as WT parasites (18.7 % ± 6.3 and 20.0 ± 5.0). When 

OAS-TL is re-expressed in the knock-out lines, the level of infection was restored 

to a similar percentage to the WT. This indicates that Δoas-tl A and Δoas-tl B 

must be unable to develop an infection of macrophages. This could be due to an 

inability to infect, an inability to transform to amastigotes or an inability to 

survive as amastigotes. 

4.7.8 Time course in vitro infectivity to macrophages 

To dissect exactly which stage of the ‘infection’ process was hindered by the 

lack of OAS-TL in the null mutants, macrophages were exposed to promastigotes 

as before. This time the experiments were stopped after 2 h, 12 h, 24 h and 55 

h, and only WT and one of the null mutant lines, Δoas-tl B, were used to infect. 

The 2 h time-point was chosen as an indicator of the ability of the parasites to  



  145 

  

 

 

 

Figure 4.19 Infectivity of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-
tl B [OAS-TL] promastigotes to macrophages. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1, and 
slides were incubated for 6 days post-infection. 1, WT; 2, ∆oas-tl A; 3, ∆oas-tl B; 4, ∆oas-tl A [OAS-
TL]; 5, ∆oas-tl B [OAS-TL]. A: Percentage of infected macrophages per 100 counted. Results show 
the mean ± S.E.M. of three replicates. B: Mean number of amastigotes per 50 macrophages. 
Results show the mean ± S.E.M. of three replicates. 
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infect macrophages, the 12 h time-point was indicative of survival within 

macrophages, the 24 h time-point was the estimated time taken for 

promastigotes to transform into amastigotes and the 55 h time-point was chosen 

as an indicator of proliferation within macrophages as amastigotes. The 

percentage infection of macrophages as well as the number of parasites per 

infected macrophage were determined and are shown in Figure 4.20. 

After 2 h no difference was seen in the average percentage infection between L. 

donovani WT and Δoas-tl B. However, the number of Δoas-tl B parasites per 

infected macrophage was significantly higher than WT (p = 0.028), with 2.48 ± 

0.1 compared to 1.94 ± 0.1 parasites per macrophage respectively. This 

indicates that the parasites lacking OAS-TL are taken up by macrophages in 

higher numbers than WT. After the 12 h and 24 h time-points, no difference in 

either percentage infection or number of parasites per macrophage was 

observed between the two parasite lines. At 55 h post-infection, no difference 

was observed between the number of WT and Δoas-tl B parasites per infected 

macrophage. However, there was a significant decrease in percentage infection 

of Δoas-tl B parasites compared to WT (p = 0.002). L. donovani WT established 

an infection of 26 ± 1.3 % of macrophages compared to Δoas-tl B parasites which 

infected 6 ± 1.2 % of macrophages. 

These results suggest that parasites lacking OAS-TL are capable of being taken 

up by macrophages and surviving at a similar level to WT for a period of around 

24 h post-infection, after which their numbers decrease rapidly. Since 24 h is the 

estimated time taken for Leishmania to transform into amastigotes, it is possible 

that L. donovani lacking OAS-TL cannot transform into amastigotes, and they are 

subsequently cleared by the host macrophages. Alternatively, if the parasites 

are capable of transformation into amastigotes, they may not be able to survive 

within the macrophage and proliferate as such.   
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Figure 4.20 Infectivity of L. donovani WT and ∆oas-tl B promastigotes to macrophages at 
early time-points. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1, and 
slides were incubated for 2, 12, 24 and 55 h time-points. A: Percentage infection of L. donovani WT 
and ∆oas-tl B in macrophages after 2, 12, 24 and 55 h post-infection. Results show the mean ± 
S.E.M. of three replicates, and 100 macrophages were counted from each. B: Mean number of L. 
donovani WT and ∆oas-tl B parasites in infected macrophages after 2, 12, 24 and 55 h post-
infection. Results show the mean ± S.E.M. of three replicates, and the number of parasites in 50 
macrophages were counted from each. Values were statistically analysed by comparison to the WT 
value from the appropriate time-point. *, p = 0.002 and **, p = 0.028. 
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4.7.9 Effect of medium supplementation on in vitro infectivity 
to macrophages 

The previous experiments showed that L. donovani Δoas-tl A and B are not 

capable of surviving in macrophages in vitro for 6 days. Further investigation 

clarified that these parasites are taken up by macrophages and result in a similar 

percentage infection as WT after 2 h post-infection. The OAS-TL null mutants 

can survive for up to 24 hours post-infection at a similar percentage infection as 

WT, however after this time there is a significant decrease in percentage 

infection of these parasites compared to WT. 

The OAS-TL null mutant parasites have been shown to be more susceptible to 

hydroperoxides that L. donovani WT. Since methionine is believed to be the 

limiting factor for the reverse transsulfuration pathway – the alternative 

cysteine biosynthesis pathway in Leishmania - it was hypothesised that by 

supplementing the medium with methionine, infection levels of L. donovani 

Δoas-tl A and B may be restored to WT levels. In addition, glutathione was also 

used to supplement the medium, due to the ability of the parasite to break-

down this low molecular weight thiol and use it as an alternative source of 

cysteine. 

The effect of supplementing the medium on parasite development in 

macrophages was investigated at different timepoints. Macrophage infections 

were set up as described previously, and parasites were allowed to infect for 2 h 

before extracellular parasites were washed off. At all stages the medium used 

was either addition-free or contained the appropriate supplement (1 mM 

glutathione or 5 mM methionine). Slides of macrophage infections were fixed 

and stained after 2 h, 12 h, 24 h and 55 h. 

After 2 h, the OAS-TL null mutant parasites appear to be taken up by 

macrophages at higher numbers than WT parasites, with percentage infections 

of 68 ± 3.6 % and 65.7 ± 0.3 % compared to the WT value of 40.3 ± 0.7 %, (Figure 

4.21). The average percentage infection of Δoas-tl A [OAS-TL] and Δoas-tl B 

[OAS-TL], after 2 h post-infection, are 53.3 ± 2.3 % and 47.7 ± 1.2 % 

respectively, showing a partial recovery of the null mutants back to WT levels. 
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At this stage, no clear difference between the infection rates without additions 

to the medium, and those where the medium was supplemented with 1 mM 

glutathione or 5 mM methionine was seen. Despite the difference in average 

percentage infection between the knock-out lines and the WT at 2 h, at 12 h 

post-infection the difference no longer exists, indicating that a lower proportion 

of OAS-TL null mutant parasites are able to survive within host macrophages for 

12 h than WT. 43.7 ± 2.0 % of macrophages were infected with L. donovani WT 

parasites after 12 h post-infection, which is not statistically different to the 

level of infection seen after 2 h for these parasites. No difference was observed 

between the average percentage infection of all of the parasite lines after 12 h. 

Furthermore, there is no significant difference in the infection rates of the 

experiments carried out using medium with either no addition, or supplemented 

with either 1 mM glutathione or 5 mM methionine.  

After 24 h, the infection levels of the different parasite lines under different 

conditions show a change. The OAS-TL null mutant lines had infected almost half 

the number of macrophages than WT parasites. One of the re-expressing lines 

shows a percentage infection only very slightly higher than the knock-out lines, 

and the other, Δoas-tl B [OAS-TL], is higher than all of the other lines. The 

addition of glutathione to the medium does not affect the average percentage of 

macrophages infection of all five lines. In the case of the methionine 

supplementation, WT parasites infected 51.7 ± 1.9 % of macrophages compared 

to Δoas-tl A and Δoas-tl B, which infected 32.3 ± 5.0 % and 37 ± 1 % respectively. 

The results suggest that there is no difference in percentage infection of the 

OAS-TL null mutant lines and the WT.  

At 55 h post-infection, a clear difference between L. donovani WT and Δoas-tl A 

and Δoas-tl B had become apparent. WT parasites infected macrophages and 

survived for 55 h in over 52.3 ± 1.5 % of macrophages, compared to Δoas-tl A and 

Δoas-tl B which were almost completely cleared from all macrophages, with 

percentage infections of 0.7 ± 0.7 % and 1.0 ± 0 %. There was a partial recovery 

shown by the OAS-TL re-expressing lines, with infection rates of 18.3 ± 1.8 % and 

19.3 ± 1.9 %.  



  150 

  

 

 



  151 

  

 

 

Figure 4.21 Effect of medium supplementation on the infectivity of L. donovani WT, ∆oas-tl 
A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes to macrophages. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1. The 
parasites and macrophages were incubated for 2 h before the parasites were washed off and 
replaced with fresh medium. Experiments were carried out with either no addition to the medium, or 
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supplemented with either 1 mM glutathione or 5 mM methionine, and were terminated after 2 h, 12 
h, 24 h and 55 h. 1, WT; 2, ∆oas-tl A; 3, ∆oas-tl B; 4, ∆oas-tl A [OAS-TL]; 5, ∆oas-tl B [OAS-TL]. A: 
Percentage infection of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B 
[OAS-TL] in macrophages after 2 h. B: Percentage infection of L. donovani WT, ∆oas-tl A, ∆oas-tl 
B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] in macrophages after 12 h. C: Percentage infection 
of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] in 
macrophages after 24 h. D: Percentage infection of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A 
[OAS-TL] and ∆oas-tl B [OAS-TL] in macrophages after 55 h. Results show the mean ± S.E.M. of 
three replicates, and 100 macrophages were counted. Values were statistically analysed by 
comparison to the WT value with the appropriate addition by unpaired t-test, and resulting p-values 
are given. 
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The addition of glutathione to the medium leads to a slight decrease in the 

average percentage infection of macrophages with WT parasites compared to 

when the medium was supplement-free, although this decrease was minimal. 

Δoas-tl A and Δoas-tl B show a slight increase in percentage infection when 

glutathione was added to the medium, with infections of 4.7 ± 0.3 % and 2.3 ± 

1.9 % respectively. The re-expressing lines show the same partial recovery as 

those infections carried out under no medium supplementation. There is no 

significant difference between the infections of Δoas-tl A [OAS-TL] and Δoas-tl B 

[OAS-TL], carried out under the different medium supplementation conditions.  

When methionine was added to the medium, Δoas-tl A and Δoas-tl B showed an 

increase in infection to 9.3 ± 1.7 % and 13.3 ± 0.3 %, compared to values close to 

0 % when addition-free medium was used. Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-

TL] showed average percentage infections of 17.3 ± 7.4 % and 13 ± 1 % - 

marginally higher than the null mutant lines.  

In addition to the average percentage infection, the mean number of parasites 

per infected macrophage was also determined and used as a measure of the 

infectivity, survival and proliferation of L. donovani WT, Δoas-tl A, Δoas-tl B, 

Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] in macrophages (Figure 4.22). At both 

2 h and 12 h post-infection, the results show very little variation between the 

five parasite lines maintained in various media. After 24 h, the number of 

parasites per macrophage infected by the OAS-TL null mutants was similar to the 

WT and re-expressing lines.  

At 55 h post-infection, a clear trend had emerged showing that with no addition 

to the medium 2.5 ± 0.3 WT parasites could be seen per infected macrophage on 

average, whereas no Δoas-tl A and Δoas-tl B parasites could be visualised in 

macrophages. The addition of both 1 mM glutathione and 5 mM methionine had a 

positive effect on the number of null mutant parasites per macrophage. Δoas-tl 

A increased from 0 ± 0 parasites per infected macrophage to 1.7 ± 0.1 parasites 

per infected macrophage when supplemented with 1 mM glutathione and 1.8 ± 

0.2 parasites per infected macrophage when supplemented with 5 mM 

methionine. Δoas-tl B increased from 0 ± 0 parasites per infected macrophage to 

2.0 ± 0.1 when supplemented with 1 mM glutathione and 2.1 ± 0.2 parasites per 

infected macrophage when supplemented with 5 mM methionine. Similar 
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Figure 4.22 Effect of medium supplementation on the number of parasites per macrophage 
infected with L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-
TL] promastigotes.  
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1. The 
parasites and macrophages were incubated for 2 h before the parasites were washed off and 
replaced with fresh medium. Experiments were carried out with either no addition to the medium, or 
supplemented with either 1 mM glutathione or 5 mM methionine, and were terminated after 2 h, 12 
h, 24 h and 55 h. 1, WT; 2, ∆oas-tl A; 3, ∆oas-tl B; 4, ∆oas-tl A [OAS-TL]; 5, ∆oas-tl B [OAS-TL]. A: 
Mean number of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] 
parasites in infected macrophages after 2 h. B: Mean number of L. donovani WT, ∆oas-tl A, ∆oas-tl 
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B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] parasites in infected macrophages after 12 h. C: 
Mean number of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] 
parasites in infected macrophages after 24 h. D: Mean number of L. donovani WT, ∆oas-tl A, ∆oas-
tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] parasites in infected macrophages after 55 h. 
Results show the mean ± S.E.M. of three replicates and the number of parasites in 50 
macrophages was counted from each. Values were statistically analysed by comparison to the WT 
with the appropriate addition by unpaired t-test, and resulting p-values are given. 
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numbers of re-expressing parasites were seen in macrophages as for WT 

parasites under all conditions.  

The way the data has been presented in Figures 4.21 and 4.22 highlights any 

effect of the different supplementations made to the medium, and differences 

between the parasite lines. In order to clarify differences between the different 

parasite lines as the experiment progresses, the data was re-plotted to highlight 

this (Figure 4.23). When no supplement was added to the medium, the average 

percentage infection of WT parasites stays relatively constant from 2 h to 24 h, 

with a slight elevation after 55 h, suggesting that the parasite have started to 

proliferate. The null mutants, however, had a much higher percentage infection 

than the WT line after 2 h post-infection, indicating that these parasites are 

taken up by macrophages better than WT. The infection level of Δoas-tl A and 

Δoas-tl B progressively decreases at each time-point until at 55 h, the average 

percentage infections were 0.7 ± 0.7 % and 1 ± 0 % respectively. The largest 

decrease in percentage infection and number of parasites per infected 

macrophage was seen between 24 h and 55h, indicating that these parasites 

have difficulty either transforming into amastigotes or surviving as such. At 2 h, 

12 h and 24 h post-infection, Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] show 

both percentage infections and number of parasites per macrophage similar to 

WT at each time-point. At 55 h, both re-expressing lines have an average 

percentage infection less than half that of WT, showing that the re-expression of 

OAS-TL results in the partial recovery of the null mutants. This partial recovery 

can be explained by the fact that Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] 

contain approximately half the amount of OAS-TL than L. donovani WT. 

When glutathione was added to the medium, the same general trends as 

described above were seen in all parasite lines. However, the level of infection 

established by Δoas-tl A and Δoas-tl B does not drop as dramatically after 24 h 

and, by 55 h showed percentage infections of 4.7 ± 0.3 % and 2.3 ± 1.9 % 

respectively, compared to 0.7 ± 0.7 % and 1 ± 0 % when no addition was made to 

the medium. This shows that the addition of glutathione has a positive effect on 

the ability of the null mutant lines to survive within macrophages until 55 h 

post-infection.   
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When methionine was added to the medium, a similar pattern was seen. The 

percentage infection of the OAS-TL knock-out lines decreased as time 

progressed, as seen previously. However, after 55 h the level of infection was 

higher than when no addition was made to the medium and also when 

glutathione was added. 9.3 ± 1.7 % and 13.3 ± 0.3 % of macrophages remained 

infected my Δoas-tl A and Δoas-tl B respectively, compared to 0.7 ± 0.7 % and 1 

± 0 % when no addition was made to the medium. 

The data corresponding to the number of parasites per macrophage were also re-

plotted to clarify the pattern of infection over the four time-points investigated 

(Figure 4.24). With no additions to the medium, the WT has an approximately 

constant number of parasites per infected macrophage, across all the time-

points investigated. At 2 h, 12 h and 24 h post-infection, all five of the parasite 

lines had roughly the same number of parasites per infected macrophage.  

At 55 h, no Δoas-tl A or Δoas-tl B parasites could be seen in any visualised 

macrophages, while the OAS-TL re-expressing lines had a mean number of 

parasites per infected macrophage similar to the WT. Although the average 

percentage infection of the OAS-TL null mutants was greater than zero, the low 

nature of the infection meant that enough infected macrophages could not be 

found to calculate the mean number of parasites per macrophage. The fact that 

these parasites have difficulty surviving beyond 24 h in macrophages suggests 

that OAS-TL null mutants are unable to transform into amastigotes, or are 

unable to survive as amastigotes. When glutathione was used to supplement the 

medium, an increase in the number of null mutant parasites was seen per 

macrophage at this time-point. Interestingly, after 55 h post-infection, the mean 

number of null mutant parasites per infected macrophage was similar to the 

level seen in the WT and the Δoas-tl A [OAS-TL], with Δoas-tl B [OAS-TL] slightly 

higher. However, it was not possible to visually determine whether or not these 

parasites were in fact amastigotes. When the medium was supplemented with 5 

mM methionine, no difference was seen in the number of parasites per infected 

macrophage between each of the five parasite lines at 2 h, 12 h and 24 h post-

infection. Again, after 55 h, the mean number of OAS-TL knock-out parasites per 

infected macrophage is similar to the WT and Δoas-tl B [OAS-TL], with Δoas-tl A 

[OAS-TL] slightly higher. These data indicate that glutathione and methionine 

are able to partially overcome the detrimental effect of the lack of OAS-TL.  
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Figure 4.23 Infectivity of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-
tl B [OAS-TL] promastigotes to macrophages, at various time-points. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1. The 
parasites and macrophages were incubated for 2 h before the parasites were washed off and 
replaced with fresh medium. Experiments were carried out with either no addition to the medium, or 
supplemented with either 1 mM glutathione or 5 mM methionine, and were terminated after 2 h, 12 
h, 24 h and 55 h. 1, WT; 2, ∆oas-tl A; 3, ∆oas-tl B; 4, ∆oas-tl A [OAS-TL]; 5, ∆oas-tl B [OAS-TL]. A: 
Percentage infection of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B 
[OAS-TL] in macrophages. B: Percentage infection of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl 
A [OAS-TL] and ∆oas-tl B [OAS-TL] in macrophages, when supplemented with 1 mM glutathione. 
C: Percentage infection of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B 
[OAS-TL] in macrophages, when supplemented with 5 mM methionine. Results show the mean ± 
S.E. of three experiments, and 100 macrophages were counted from each. Values were 
statistically analysed by comparison to the WT value from the same time-point by unpaired t-test, 
and resulting p-values are given. 
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Figure 4.24 Mean number of parasites per macrophage infected with donovani WT, ∆oas-tl 
A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] promastigotes, at various time-
points. 
Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1. The 
parasites and macrophages were incubated for 2 h before the parasites were washed off and 
replaced with fresh medium. Experiments were carried out with either no addition to the medium, or 
supplemented with either 1 mM glutathione or 5 mM methionine, and were terminated after 2 h, 12 
h, 24 h and 55 h. 1, WT; 2, ∆oas-tl A; 3, ∆oas-tl B; 4, ∆oas-tl A [OAS-TL]; 5, ∆oas-tl B [OAS-TL]. A: 
Mean number of L. donovani WT, ∆oas-tl A, ∆oas-tl B, ∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] 
parasites in infected macrophages. B: Mean number of L. donovani WT, ∆oas-tl A, ∆oas-tl B, 
∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] parasites in infected macrophages, with medium 
supplemented with 1 mM glutathione. C: Mean number of L. donovani WT, ∆oas-tl A, ∆oas-tl B, 
∆oas-tl A [OAS-TL] and ∆oas-tl B [OAS-TL] parasites in infected macrophages, when 
supplemented with 5 mM methionine. Results show the mean ± S.E. of three experiments and the 
number of parasites in 50 macrophages was counted from each. Values were statistically analysed 
by comparison to the WT value for the same time-point by unpaired t-test, and resulting p-values 
are given.  
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4.8 Infectivity of popliteal lymph nodes in vivo 

To confirm the previous findings that the L. donovani OAS-TL null mutant 

parasites were unable to survive in macrophages beyond approximately 24 h, the 

in vivo infectivity of the parasites was assessed, using the rapid passage in vivo 

method described in Section 2.3.2.7.   

8 x 106 late stationary phase promastigotes of L. donovani WT, Δoas-tl A and 

Δoas-tl A [OAS-TL] were injected into the footpads of five BALB/c mice. 

Infectivity was assessed by the migration and survival of parasites in the 

popliteal lymph node. The popliteal lymph nodes of infected mice were carefully 

removed after 8 weeks and passed through a 70 µm cell strainer into a final 

volume of 6 ml of HOMEM with 20 % (v/v) HIFCS. Serial dilutions of these cell 

suspensions were made in 96-well tissue culture plates, incubated at 25 ºC and 

monitored for growth of parasites. The most dilute well containing parasites was 

assumed to contain just one parasite and based on this the total number of 

parasites per popliteal lymph node was calculated. 

The numbers of parasites contained in each popliteal lymph node are given in 

Table 4.6. Four out of the five lymph nodes contained L. donovani WT parasites, 

suggesting that these parasites were taken up by macrophages at the site of 

infection and were subsequently transported to the popliteal lymph node where 

they survived for 8 weeks. No L. donovani Δoas-tl A parasites grew from the cell 

suspensions made from the removed popliteal lymph nodes, suggesting that they 

were either unable to transform into amastigotes or had difficulty surviving as 

amastigotes. This supports the in vitro findings that the OAS-TL null mutants 

were able to infect to a similar level as WT for a period of around 24 h, after 

which the parasite numbers declined rapidly. Of the five lymph nodes removed 

corresponding to the infection with the re-expressing line, parasites only grew 

from one. This could be due to the incomplete re-expression of OAS-TL in these 

parasites as there may not be enough of the protein in the cell to overcome the 

detrimental effects shown by the gene deletion.      
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Parasite line Popliteal lymph node Number of parasites present 
in popliteal lymph node 
 

L. donovani WT 1 1 008 
 

 2 4 032 
 

 3 64 512 
 

 4 504 
 

 5 0 
 

L. donovani ∆oas-tl A 1 0 
 

 2 0 
 

 3 0 
 

 4 0 
 

 5 0 
 

L. donovani ∆oas-tl A [OAS-TL] 1 0 
 

 2 0 
 

 3 0 
 

 4 0 
 

 5 252 
 

 

Table 4.6 In vivo infectivity of L. donovani WT, ∆oas-tl A and ∆oas-tl A [OAS-TL]. 
8 x 106 late stationary phase promastigotes of each parasite line were injected into footpads of 5 
BALB/c mice. Mice were culled after 8 weeks. The popliteal lymph nodes of infected mice were 
removed and passed through a 70 µm cell strainer. Serial dilutions of cell suspensions were made 
in 96-well tissue culture plates, incubated at 25 ºC and monitored for growth of parasites. The most 
dilute well containing parasites was assumed to contain one parasite and the total number of 
parasites per popliteal lymph node was determined. 
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This experiment was only carried out once, and will have to be repeated before 

clear conclusions can be drawn. The in vivo method used has never been used on 

the L. donovani line used in this study before and, given the low numbers of 

parasites recovered, requires further development. The length of time parasites 

were allowed to infect as well as the final volume of cell suspension will have to 

be optimised. In addition, the remainder of each cell suspension was discarded 

after the serial dilutions were set up. The low numbers of parasites that grew 

was unexpected and the remaining cell suspensions, even of the lines that 

appeared to show no growth, could have contained a small number of parasites.   

4.9 Discussion 

Cysteine is a vital amino acid required for numerous cellular processes and is 

particularly important as the active component of low molecular weight thiols 

such as glutathione (Snoke et al., 1953) and, in trypanosomatid parasites like 

Leishmania, trypanothione (Fairlamb et al., 1985).  This sulfur-containing amino 

acid is essential for the biosynthesis of coenzyme A, lipoic acid and a variety of 

vitamins such as biotin, pantothenate and thiamine pyrophosphate, to name only 

a few (Kessler, 2006). Furthermore, cysteine is a key component of redox active 

sulfhydryl-group containing proteins as well as structural proteins. It is also 

crucial for the generation of [Fe-S] clusters and thus the biosynthesis of [Fe-S]-

containing proteins (Howard et al., 1976). It can therefore be inferred that the 

amino acid plays a key role in a wide variety of biosynthetic processes, which 

are likely to be essential for the survival of the cell or organism. 

In some organisms, cysteine can also be a source of methionine, although this is 

an essential amino acid for mammals. In mammals, cysteine can either be taken 

up from the environment or generated via the reverse trans-sulfuration pathway 

from methionine (Figure 1.8). Bacteria, plants, fungi and some protozoa have 

the ability to generate cysteine de novo, by utilisation of the sulfhydrylation 

pathway, via the action of serine acetyltransferase and O-acetylserine (thiol) 

lyase (OAS-TL) (Figure 1.8) (Foglino et al., 1995; Bogdanova et al., 1995; 

Morzycka & Paszewski, 1979; Walker & Barrett, 1997). Protozoan parasites of the 

genus Leishmania possess and utilise both the reverse trans-sulfuration and the 

sulfhydrylation biosynthesis pathways to generate cysteine (Williams et al., 
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2009). This study analysed the role of cysteine biosynthesis in Leishmania, 

particularly focussing on the enzyme OAS-TL, using a reverse genetic approach. 

In order to analyse the value of OAS-TL as a potential drug target, the effect of 

removing the gene was investigated, and two independent null mutant lines 

(Δoas-tl A and Δoas-tl B) were generated for L. donovani. Only a small growth 

defect was observed and it was found that promastigote cultures of L. donovani 

Δoas-tl A and Δoas-tl B did not reach the same density as WT promastigotes 

(Figure 4.8). Extra-chromasomal expression of OAS-TL resulted in the 

complementation of this growth phenotype (Figure 4.8).  

Morphologically, promastigotes of the OAS-TL null mutants appeared grossly 

deformed when compared with L. donovani WT promastigotes, having 

significantly shorter flagella and body lengths. The control of body size and 

organelle size (such as the flagellum length) are essential pre-requisites for the 

integrity of an organism and are therefore tightly regulated by signalling 

cascades (Berleman & Bauer, 2005). Signalling cascades are activated by many 

stimuli, including oxidative stress (Kurata, 2000; Kanterewicz et al., 1998) and 

may therefore indirectly depend upon the availability of cysteine.  

A number of factors are known to be involved in maintaining the structural 

integrity of Leishmania. Several MAP kinases have been found to be involved in 

flagellum length during the promastigote stage of Leishmania (Rotureau et al., 

2009). In addition, ADP-ribosylation factor-like protein (LdARL-3A) was identified 

as an essential gene involved in flagellum biogenesis (Cuvillier et al., 2000). 

Similarly, it has been shown that TC10, a GTPase belonging to a family of 

proteins involved in the regulation of MAP kinase cascades, plays a role in the 

regulation of cellular signalling to the actin cytoskeleton and processes 

associated with cell growth (Murphy et al., 1999). Given that cysteine is such an 

abundant amino acid involved in a plethora of biological functions, it is likely 

that alterations in the amount of cysteine available may either directly or 

indirectly affect the regulation of these pathways, despite the fact that in 

trypanosomatids the regulation of these pathways is poorly understood. 

In recent years it has become apparent that a number of these pathways are 

regulated by other signalling molecules such as sphingosine and sphingosine-1-
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phosphate. Sphingosine-1-phosphate is involved in proliferation, differentiation 

and apoptosis (Ohanian & Ohanian, 2001). Genes and proteins involved in these 

processes have been studied extensively in yeast (Dickson, 2008). In mammalian 

cells it was shown that the activity of serine-palmitoyltransferase responds 

directly to changes in the levels of the two substrates serine and palmitoyl-CoA 

resulting in an adjustment of sphingosine biosynthesis in response to the 

substrate levels (Linn et al., 2001). Although it was recently shown that 

Leishmania are auxotrophic for sphingosine (Zhang et al., 2007) they also have 

the ability to generate sphingolipids de novo. The fact that serine is used for the 

biosynthesis of cysteine suggests that the loss of OAS-TL may result in changes in 

levels of intracellular serine and therefore may alter the activity of serine-

palmitoyltransferase. This in turn would lead to changes in the sphingolipid 

levels in the parasites, which could affect membrane composition and signal 

transduction pathways.  

In Leishmania major, promastigotes lacking serine palmitoyltransferase were 

found to have a growth defect, which was recovered by the addition of 

ethanolamine (Zhang et al., 2007). In addition, these promastigotes displayed a 

morphological defect when compared to WT promastigotes, with 36 % of log-

phase cells and 86 % of stationary phase cells appearing ‘rounder’ (Zhang et al., 

2007). Although the serine-palmitoyltransferase promastigotes were viable in log 

phase, they failed to differentiate into metacyclic promastigotes, ultimately 

compromising virulence (Zhang et al., 2007). 

In yeast, sphingolipids have been implicated in interactions with signalling 

cascades involved in a wide range of physiological functions such as heat stress, 

regulation of nutrient permeases, cytoskeleton changes, control of cell size, cell 

cycle progression and RNA translation to name only a few (Mathias et al., 1998). 

Furthermore, there is evidence to support the fact that the inhibition of 

sphingolipid biosynthesis results in alterations in the flagellar membrane of 

Leishmania, including a partial loss of internal axoneme and a complete loss of 

paraflagellar rod structures (Tull et al., 2004). 

The levels of intracellular cysteine, glutathione and trypanothione in L. donovani 

WT, Δoas-tl A and Δoas-tl B were determined by reversed phase HPLC. The level 

of cysteine detected in L. donovani promastigotes was much less than previously 
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reported (Ariyanayagam & Fairlamb, 1999), and the levels of glutathione and 

trypanothione were found to be higher and lower respectively (Mandal et al., 

2007). There are several possibilities for this variation including the use of 

different growth medium and the stage of growth at which the parasites were 

harvested for derivatisation. Furthermore, the L. donovani strain used in this 

study was a field isolate which has never been subject to thiol analysis 

previously, and therefore could account for the differences observed. 

Surprisingly, the levels of intracellular cysteine, glutathione and trypanothione 

were unaffected by the deletion of both OAS-TL alleles in L. donovani. The 

results are in agreement with a previous study by Heeg et al., 2008, where all 

three of the OAS-TL genes of Arabidospis thaliana were deleted and did not lead 

to any significant changes in the levels of low molecular weight thiols as well as 

cysteine. However, a later study where only cytosolic OAS-TL was deleted 

resulted in a clear reduction of cysteine and glutathione levels by about 30 % 

(Lopez-Martin et al., 2008). Given the growth defect and morphological defects 

observed in the OAS-TL null mutants, the uniformity of the thiol levels between 

the parasite lines suggests that the intracellular levels of cysteine, glutathione 

and trypanothione are preferentially maintained at the expense of other 

functions of the amino acid.  

Despite the fact that the levels of intracellular cysteine were no different to WT 

in the OAS-TL null mutants, the amounts of the amino acid were only detected 

in promastigotes in stationary phase. Therefore any deficiency at an earlier 

stage of growth would not have been detected. A number of pathways may be 

affected by the availablility of cysteine, including methionine, glycine, serine 

and threonine metabolism. The availability of methionine would fundamentally 

affect the concentration of important molecules such as S-adenosylmethionine, 

which is not only a major methyl-donor, but also is a substrate for polyamine 

biosynthesis and acts as a co-factor for radical SAM proteins (Loenen, 2006). 

Furthermore, the generation of coenzyme A, which is of vital importance to both 

cellular metabolism in general and the formation of various t-RNAs required for 

protein biosynthesis, is affected by the availability of cysteine (Chua et al., 

1984). 

Alternatively, the morphological defects observed in L. donovani promastigotes 

lacking OAS-TL, could be a result of the accumulation of metabolic 
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intermediates caused by the inhibition of de novo cysteine synthesis. These 

molecules include O-acetylserine, which is the reaction product of serine 

acetyltransferase, and the sulfide source that is utilised for de novo cysteine 

biosynthesis, although this has never been reported. 

It is reasonable to suggest that the morphological changes that were observed in 

this study are not directly attributable to changes in cysteine levels, rather that 

they are downstream effects of metabolic changes arising from compensatory 

efforts or as the result of changes in the metabolic balances within the parasite 

as suggested above. This is supported by the fact that L. donovani parasites re-

expressing OAS-TL extra-chromasomally in the null mutant lines only partially 

recover flagellum length, and do not recover body length, but morphological 

features of the body were restored (Figure 4.9). Since the amount of OAS-TL in 

these parasites was determined to be approximately half the amount of OAS-TL 

as L. donovani WT, it can be hypothesised that if WT amounts of OAS-TL could 

be expressed in the OAS-TL null mutants, the morphology of these parasites 

would be completely recovered.  

L. donovani Δoas-tl A and Δoas-tl B were found to be more susceptible to the 

heavy metals copper sulphate, cadmium chloride and potassium arsenate as well 

as the hydroperoxides cumene hydroperoxide and tert-butyl hydroperoxide than 

L. donovani WT and Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL] (Figures 4.13, 

4.14, 4.15, 4.17 and 4.18, and Tables 4.4 and 4.5). A possible explanation of this 

is that OAS-TL is involved in the compensatory reactions that help to maintain 

the thiol levels of parasites under normal conditions. However, when the mutant 

parasites are exposed to additional stress, the cysteine synthesised through the 

reverse transsulfuration pathway is insufficient to maintain normal thiol levels. 

This suggestion is supported by the fact that the activity of OAS-TL in Phragmites 

and Typha plants increases when stressed with sodium chloride and cadmium 

(Fediuc et al., 2005), suggesting that higher tolerance shown by L. donovani WT, 

Δoas-tl A [OAS-TL] and Δoas-tl B [OAS-TL]  to the metals may reflect an increase 

in cysteine biosynthesis. Over-expressing OAS-TL in Tobacco plants has been 

shown to increase resistance against cadmium, selenium and nickel (Kawashima 

et al., 2004). In addition, expression of E. coli OAS-TL resulted in an increased 

resistance against cadmium in Arabidopsis (Howarth et al., 2003); it is therefore 
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consistent that removal of the protein resulted in an increased susceptibility to 

heavy metal stress.    

The OAS-TL null mutant parasites had a defect in their ability to survive in 

macrophages for 6 days. After six days in macrophages in vitro, no OAS-TL null 

mutant parasites were observed, compared to both the WT and re-expressing 

parasites. On further investigation, it was found that the OAS-TL null mutants 

are capable of being taken up by macrophages and can survive for approximately 

24 h after which numbers rapidly decline. The fact that after 55 h in 

macrophages, very few parasites are present and after 6 days none had survived, 

suggests that OAS-TL is involved in cellular processes that are vital to the 

differentiation of L. donovani into amastigotes or the survival of amastigotes.  

Unfortunately, it was not possible to test for the presence of metacyclic 

promastigotes in stationary phase cultures, because the marker routinely used to 

test for metcyclic L. major promastigotes, HaspB (Flinn et al., 1994) could not 

be used for L. donovani. The widely used method of agglutination of 

promastigotes by peanut agglutinin (Louassini et al., 1998), to allow the 

quantification of metacyclics, was also not possible in the parasite line used. It 

was therefore not possible to check whether or not these parasites have an 

impaired ability to transform to the infective form. In addition, the 

differentiation of L. donovani WT into axenic amastigotes was attempted using 

the method described by Doyle et al., 1991, but proved unsuccessful. It could 

therefore not be established whether the null mutant parasites were able to 

differentiate into amastigotes. 

When 5 mM methionine and 1 mM glutathione were used as additions to the 

medium, a partial recovery was seen in the ability of the parasites to survive in 

macrophages for at least 55 h (Figures 4.23 and 4.24). It was hypothesised that 

glutathione could be used by the parasites as a source of cysteine, and therefore 

increased the amount of cysteine available in the parasite to be used in various 

cellular processes essential for the differentiation/survival of amastigotes. It is 

likely that the availability of methionine results in some biosynthesis of cysteine 

via the reverse trans-sulfuration pathway. Therefore supplementing the medium 

with methionine is likely to have driven the reverse trans-sulfuration pathway to 

synthesise more cysteine, and, again, increased the amount of cysteine available 
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to be used for the various cellular processes used in the differentiation/survival 

of amastigotes.  

These findings were in agreement with the fact that no OAS-TL null mutant 

parasites grew from the five popliteal lymph nodes extracted 8 weeks after 

inoculation of the parasites into the footpad of mice (Table 4.6). Only one of the 

five lymph nodes yielded OAS-TL re-expressing parasites. This is much less than 

for the WT parasites, where parasites grew from four out of the five lymph 

nodes. This is probably explained by the fact that L. donovani Δoas-tl A [OAS-TL] 

and Δoas-tl B [OAS-TL] only express approximately half the amount of OAS-TL 

compared to WT. This protocol had never previously been used with this line of 

L. donovani, and required further development, but due to time constraints was 

not possible within the scope of this study.    

4.9.1 Conclusions and future directions 

It has been shown that OAS-TL is not an essential gene for L. donovani 

promastigote growth. However, when the gene was removed from L. donovani 

promastigotes the resulting parasites displayed both a growth defect and severe 

morphological changes. These include a shorter body length with the loss of the 

spindle-like shape, and a shorter flagellum which was not present at all in many 

cases.  

Intracellular levels of cysteine, glutathione and trypanothione were not found to 

be different in the OAS-TL null mutant compared to WT promastigotes. Since the 

intracellular thiol levels of the L. donovani Δoas-tl promastigotes were 

quantified in stationary phase, it would be interesting to analyse the 

intracellular thiol levels of parasites in mid-log phase also. The thiol profile of L. 

donovani changes throughout the 7 days in liquid culture (Figure 3.12), 

suggesting that the amounts of thiols required by promastigotes differs over 7 

days in liquid culture. Therefore, there may be differences in amounts of 

cysteine, glutathione and trypanothione at an earlier stage of growth that have 

not been detected in this study. The inclusion of the reducing agent DTT in the 

sample preparation means that total amounts of thiols were quantified. Any 

difference in the ratio of oxidised to reduced thiols due to the gene deletion 

were therefore also not detected. The removal of DTT from the sample 
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preparation would allow the quantification of only the thiols reduced at the time 

of parasite harvest. 

Promastigotes lacking OAS-TL were also found to be more sensitive to heavy 

metals and hydroperoxides than L. donovani WT promastigotes, indicating that 

the cysteine generated through the reverse transsulfuration pathway is 

insufficient to maintain normal thiol levels when the parasites are exposed to 

stress. This could be further investigated by analysis of the expression of OAS-TL 

in L. donovani WT promastigotes that have been exposed to stress, to establish 

whether or not the protein is up-regulated in response to stress. In addition, it 

would be interesting to use HPLC to quantify the thiol levels of L. donovani OAS-

TL null mutants that have been exposed to stress, and compare these to L. 

donovani WT parasites.  

L. donovani was used in this study because it is the most important disease-

causing species of Leishmania. The strain used was a field isolate from Nepal 

where visceral leishmaniasis is endemic and drug resistance is becoming an 

increasing problem. The parasite line was less easy to study than some other 

species as there are fewer tools available for analysis. For example, the tools 

commonly used to assess the ability of other species of Leishmania to 

differentiate into metacyclic promastigotes cannot be used on L. donovani. The 

determination of metacyclic differentiation has been assessed by a reduced 

ability to bind peanut agglutinin (Sacks et al., 1987). However, this method was 

not successful for the L. donovani BPK 206 clone 10, despite the fact that this 

method has been used for L. donovani before (Howard et al., 1987). Successful 

analysis of metacyclic differentiation by lectin agglutination has been reported 

in other species of Leishmania, including L. major, (Sacks et al., 1987; da Silva & 

Sacks, 1987), L. infantum (Louassini et al., 1998) and L. braziliensis (Almeida et 

al., 1993). Therefore the study of one of these species may facilitate the 

provision of conclusive evidence as to whether OAS-TL null mutants are capable 

of differentiation into the infective form of the parasite. Other methods of 

determining the presence of metacyclic forms have been reported, including 

flow cytometry, which has been used for L. major, L. donovani, L. amazonensis 

and L. braziliensis (Saraiva et al., 2005).  However, this method relies upon the 

typical morphology of metacyclic forms, with a short, narrow cell body and an 
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elongated flagellum. Given the abnormal morphology of the L. donovani OAS-TL 

null mutants, it is clear that this is not a suitable method of analysis. 

Conducting further analyses of OAS-TL through reverse genetics carried out on a 

species such as L. mexicana, would facilitate the use of many more analytical 

tools. Although the attempts to generate and maintain L. donovani axenic 

amastigotes were unsuccessful, many successful attempts have been reported 

(Doyle et al., 1991; Gupta et al., 1996). As previously mentioned, the L. 

donovani field isolate used in this study has never been analysed in this way 

before and therefore similar studies using an L. mexicana laboratory strain may 

prove fruitful, as the generation of L. mexicana axenic amastigotes is well 

documented (Pan, 1984; Bates et al., 1992; Pral et al., 1993). The ability of 

OAS-TL null mutants to differentiate into amastigotes could be determined in 

this way. In addition, it is also easier to identify intracellular amastigotes 

visually, due to the large parasitophorous vacuoles observed with L. mexicana 

macrophage infections.  

Although the in vivo infectivity of L. donovani Δoas-tl parasites was found to be 

much lower than WT parasites, the fact that the method used has never been 

previously used for L. donovani and was only carried out once, was not optimal 

and would require extensive development. The use of L. mexicana would again 

be advantageous, as the cutaneous nature of the disease manifestation means 

that routinely used mouse footpad infections could be utilised as a measure of in 

vivo infectivity.  

The exploitation of the metabolic pathways associated with the sulfur-containing 

amino acids has been suggested as a rational target for the development of 

chemotherapeutic or prophylactic therapies against parasitic protozoa, due to 

the diversity between the organisms and their mammalian hosts (Nozaki et al., 

2005). OAS-TL has been suggested as a possible drug target in Trichomonas 

vaginalis (Westrop et al., 2006). In addition, the related protein, serine acetyl 

transferase, also involved in the de novo synthesis of cysteine, has also been 

identified as a potential drug target against Entamoeba hystolytica (Agarwal et 

al., 2008). Given the inability of L. donovani OAS-TL null mutant parasites to 

survive within macrophages, together with the absence of the protein in the 
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mammalian host make OAS-TL an exciting prospect for the development of novel 

chemotherapeutics against visceral leishmaniasis.     
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