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Su*mmary 

Pharmacological inhibition of the renin-angiotensin system (RAS) 

plays a crucial role in the treatment of cardiovascular and renal disease. In 

addition to systemic generation of angiotensin II (AII), experiments in animals 

and humans suggest that local, tissue-based, mechanisms are also important 

sources of, the peptide. In particular, it has recently been suggested that a 

number of enzymes, other than angiotensin-converting enzyme (ACE), 'can 

generate AII within tissues. - These alternative pathways may allow for escape 

from ACE-inhibition and thus be clinically significant. 

The work presented in this thesis concentrates on the local generation 

of AIL Preliminary experiments using wire myography were performed in 

human resistance arteries from normal subjects, obtained by subcutaneous 

gluteal fat biopsy. In these vessels, Al stimulated a contractile response that 

was dependent on activation of the AII type I receptor (ATIR). Thus, 

conversion of AI to All can occur within the vasculature. - This conversion 

was resistant to inhibition of ACE with enalaprilat in human, tissue. In 

contrast, AI responses in rabbit arteries were almost completely inhibited by 

enalaprilat. Further investigation demonstrated that the combination of 

enalaprilat and the chymase inhibitor, chymostatin (but neither agent alone), 

inhibited the response to Al in human resistance arteries. Thus, a -dual 

pathway for AII generation exists in human arteries, probably mediated by 

ACE and chymase. 
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Since the significance of non-ACE AII generation may be greatest in 

patients taking ACE-inhibitors, further studies were conducted on resistance 

arteries from patients with chronic heart failure (CHF) who were receiving 

such medication, compared to patients with coronary heart disease (CHD). In 

patients with CHD ,a similar dual pathway to that observed in normal 

volunteers appeared to be present. However, in arteries from patients with 

CIHF, the contribution of chymase to AII generation - as inferred from the 

effect of inhibiting ACE - appeared to be less. Thus, the activity of the 

enzymes responsible for AII generation may be modulated by either the 

syndrome, or its treatment. 

In other studies on resistance arteries from patients with CHF and 

CHD, responses to AII, norepinephrine (NE), acetylcholine (ACh) and 

bradykinin (BK) were investigated. The response to AII appeared to be 

exaggerated in arteries from patents with CBF, but ACE and chymase 

inhibition had no effect in either CBF or CBD. Similarly, the responses to NE 

and ACh were unaffected by these inhibitors. There was, thus, no evidence 

that potentiation of counter-regulatory vasodilatory peptides accounted for 

the apparent inhibition of AI responses. The response to BK was, however 

potentiated by enalaprilat, consistent with previous studies. 

In order to investigate whether non-ACE All generation is limited to 

gluteal resistance arteries, or is more widespread, responses in human internal 

mammary arteries were also studied. The results of these experiments were 

consistent with those in smaller vessels. In addition, both internal mammary 
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arteries and samples of skin taken from the normal volunteers, who, had 

undergone gluteal biopsy, were used in an investigation of the localisation of 

ACE and chymase. -Indirect immunohistochernistry was performed using 

monoclonal antibodies for ACE and chymase. Chymase was identified within 

mast cells -in the adventitia of internal mammary arteries and small skin 

vessels: ACE was identified on the endothelial surface of skin capillaries and 

in the media - of internal - mammary arteries. Thus, ACE and, chymase 

expression are spatially distinct and, this, may be reflected in a functional 

distinction. III 

Numerous studies have suggested that polymorphisms within genes 

encoding components of the RAS may associate with hypertension and 

cardiovascular disease. The ACE I/D polymorphism has acted as a paradigm 

for such investigations. However these studies have often been contradictory 

and their interpretation is limited by the failure to demonstrate a convincing 

intermediate phenotype, that explains in physiological terms, how 

polymorphic markers may influence disease predisposition., ý Since the D allele 

is associated vAth higher plasma and tissue ACE levels, I hypothesised that 

this might be reflected in greater local conversion of AI to AII in human blood 

vessels. An analysis of, the ý response ý to AI, according to genotype, was 

therefore performed. ý This was limited by heterogeneity in the distribution of 

genotypes in experimental subjects, but did not support the hypothesis. 

I These studies convincingly demonstrate that AII generation in the 

human vasculature occurs by the action of ACE and an alternative enzyme - 
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probably chymase., However their interpretation is limited by a number of 

methodological issues. In particular, it has been suggested that these in-vitro 

studies exaggerate the importance'of chymase because circulating AI is 

exposed to plasma and enclothelial ACE, and is thus available to the enzyme. 

In-vivo experiments have consistently suggested that ACE is the predominant 

AII-generating enzyme. It is also possible that chymase does generate AII 

that acts locally within the vasculature, but not primarily as a vasoconstrictor. 

In this respect, AII is known to act in a paracrine fashion as a local growth 

promoter. However the experiments presented in this thesis have 

concentrated on the vasoconstricting action of angiotensin and have not 

addressed this issue. 

These issues could be resolved in a number of ways. The development 

of a specific chymase inhibitor suitable for in-vivo use would facilitate studies 

of the pressor action of AI to determine whether chymase contributes 

significantly to AII generation in man. However, other in-vitro strategies may 

also be helpful. These include further functional studies, but also a molecular 

biological approach to investigate whether ACE and chymase expression in 

the vasculature are influenced by disease or treatment. Functional studies 

could utilise the known substrate specificities of ACE and chymase. Indeed, 

AI isopeptides have been synthesised that are converted by either ACE or 

chymase, but not both. These could be used to dissect out the relative 

contributions of ACE and chymase to AII generation. In addition perfusion 

myography could be used to investigate local AII generation in a more 
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physiological preparation. Molecular techniques might include rtPCR, in-situ 

hybridisation and immunohistochemistry to investigate the regulation of ACE 

and chymase expression. If confirmed, the existence of non-ACE AII 

generating pathways may have considerable therapeutic significance. 
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1.1 The Renin-Angiotensin System: Overview and Historical, ý 

Perspective 

"I The Renin-Angiotensin System (RAS) plays a fundamental role in the 

regulation of the cardiovascular system. Through , the production , of 

Angiotensin II (AII) and indirectly by AII-stimulated secretion of aldosterone, 

the RAS regulates vascular structure and tone, renal ý haernodynarnics and 

electrolyte and fluid homeostasis. Inhibition of the RAS is effective in the 

treatment of hypertension, chronic heart failure and progressive renal disease. 

However, despite the proven effectiveness of such treatment, the mortality 

and morbidity from these conditions remains high and it is therefore likely that 

novel strategies to optimise blockade of the RAS (and similar neuroendocrine 

systems) will yield further clinical benefits. In this introductory review I shall 

take a historical overview of the RAS'and discuss areas of controversy, in 

particular the existence of local renin-angiotensin systems, genetic factors 

influencing AII production and mechanisms of AII generation, concentrating, 

wherever possible, on data obtained from human studies. 

History of the RAS 

In 1898 Tigerstedt and Bergman described a landmark experiment in 

which an elevation in blood pressure in the rabbit was induced by injecting a 

crude extract - from - the kidney. [I] They , named the hypothetical pressor 

substance renin. , Although this is now regarded as a discovery of fundamental 
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importance, it was largely ignored for twenty years, until Volhard postulated 

that renin nfight be a- humoral factor responsible for, so-called "pale 

hypertension, " now known as malignant hypertension. [2] Two separate 

groups then suggested that renin was not directly responsible for the increase 

in blood pressure, but instead generated a vasoactive substance from plasma. 

Page and colleagues, working in Cleveland, showed that renal extracts only 

induced vasoconstriction when incubated with plasma and subsequently 

identified the , plasma product, which they -named angiolonin. [31 

Simultaneously Braun-Menendez, in Mendoza, came to the, same conclusion 

by extracting venous blood from ischaernic kidneys, which contained a pressor 

agent. Purification of the pressor substance yielded a factor that, unlike renin, 

induced only a, short-lived pressor response in-vivo and was thermostable. 

They named this substance hyperiensin. [4] The two groups subsequently 

agreed that the two substances were identical and combined their names to 

give the name angiotensin. 

The existence of angiotensinogen was postulated by Page, who called 

it the "Renin Activatoe,. [5] Plasma subjected to proteolytic digestion with 

pepsin was shown to liberate a pressor agent and by analogy it was suggested 

that renin was an enzyme which acted on a substrate - renin substrate (i. e. 

angiotensinogen), rather than being itself activated by a factor in plasma. [6] 

The existence of a further enzyme in the cascade was suggested by the work 

of Skeggs and colleagues -who attempted to produce large quantities of 

angiotensin by incubating crude horse plasma angiotensinogen with porcine 
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renin. The constrictor factor was purified by countercurrent distribution with 

dialysis against distilled water and was shown to be a decapeptide. However, 

when dialysis was performed against 0.15M sodium chloride, a different form 

of angiotensin was identified. This is now known to be angiotensin II (AII), 

an octapeptide formed from the decapeptide precursor, angiotensin I by a 

chloride-sensitive dipeptidase. [7,8] This enzyme was then identified and is 

known as angiotensin-converting enzyme (ACE). ' 

Independently of the work on the generation of angiotensin, Erdos and 

co-workers were studying the metabolism of bradykinin (BK). Bradykinin is 

a vasodilator that was first identified in snake venom. [9] It is produced from 

its precursor, kininogen, by kallikrein (though other enzymes, such as trypsin, 

will also generate BK) and in the plasma is then rapidly degraded by removal 

of the C-terminal dipeptide, Phe'-Argý. The enzyme responsible for the 

degradation of BK in plasma and kidney was identified and named kininase II 

(kininase I cleaves the terminal Arg only). [ 10] Purification of the enzyme and 

study of its substrate specificity subsequently showed that ACE and kininase 

II were identicaQ 11 ] 

By the early 1970s the concept of the RAS as an endocrine system 

that generated AII by a series of enzymatic steps was firmly established. In 

addition it was known that the RAS interacted with the kinin system through 

the bifunctional actions of ACE to catalyse the conversion of AI to AII and to 

inactivate BK, This basic pathway for the generation of AII is surnmarised in 

Figure 1.1. 
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Figure 1.1: Basic pathwgy of the RAS 

Angiotensinogen Angiotensin I Angiotensin H aldosterone 

Renin ACE 

Kininogen --> Bradykinin des- Phes-Argý-BK (inactive) 

This diagram demonstrates the basic All-generating pathways. In 

reality these pathways are considerably more complex than'shown above. AIII 

may be generated from angiotensinogen directly, ' vvithout the intermediate 

step of Al formation. This is not mediated by ACE. Furthermore, ACE is not 

the only enzyme'capable of releasing AII from AL This issue is'discussed 

further in section 1.4.3. Just as the generation of AII is more complex than 

was initially supposed, so is the 'degradation of this peptide. Several All 

degradation products have been'described and some of these are thought to 

bebioactive. This issue is discussed in section' 1.1.5. 

1.1.2 Renin Synthesis and Secretion 

The major site of renin synthesis is the kidney. Renin is synthesised 

in specialised epitheloid cells of the juxtaglornerular apparatus (JGA) in the 

kidney. Ruyter first identified these cells in 1925 and Goormaghtigh then 

suggested that they were responsible for the secretion and activation of renin 
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(this subject has been'extensively reviewed). [ 12] In man, renin is encoded by 

a single gene, located on chromosome lq32. [13] It is synthesised as a 45kDa 

protein, pre-prorenin, from which the signal peptide is removed. during 

transfer into the Golgi apparatus. [14] In the Golgi complex the prosegment is 

cleaved from some molecules to form active renin. [15] This is sequestered in 

granules, which have, a number of features that suggest that they are 

lysosomal in nature. -, Mature granules, which are mainly comprised of active 

renin, are formed by the coalescence of protogranules, which are largely 

comprised of prorenin - suggesting that some inactive renin is cleaved within 

the granules. Export of renin is achieved by exocytosis of mature granules, 

though there is evidence that small immature granules containing prorenin are 

also exocytosed and as much as 90% of circulating renin is in this form. The 

fact that nephrectomy leads to a dramatic fall in plasma active renin suggests 

that the kidney is the principal site of active renin synthesis. This is not true 

of inactive renin, whose levels may be nearly normal -after nephrectomy. 

Extra-renal sites of prorenin synthesis include the ovary and there are other 

local systems such as the vasculature and the central nervous system (see 

below). Whether prorenin is physiologically active, is debatable., , Prorenin 

plasma levels are reported to be elevated in a number of pathological states 

including diabetic nephropathy., but-the significance of this is unclear and it 

may reflect a more general activation of the RAS. [ 16] Some studies, however, 

report a hypotensive, vasodilating, "action of prorenin. This may be due to 

competition with renin for angiotensinogen or may reflect a genuine action of 
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the peptide itself[ 17] In contrast, a recent study utilised rats transgenic for 

the human angiotensinogen gene to . investigate whether prorenin was 

physiologically active. [18] Isolated rat hindquarters were perfused with 

human prorenin and/or renin and AI formation and'mean arterial pressure 

were measured. -There was no evidence that prorenin was activated to renin, 

nor of competition between the two peptides. Prorenin did not antagonise the 

effect of renin on blood pressure. ý- ,Ii 

Renin is an aspartyl protease whose only known substrate is 

angiotensinogen, which it cleaves, at a Leu-Leu bond to release the 

decapeptide, AL In the conventional concept of the RAS as a ciFCUlating 

endocrine system plasma - renin is thought to release AI from circulating 

angiotensinogen (which is almost exclusively derived from the liver). Since 

the concentration of plasma angiotensinogen is many times higher than the 

Nfichaelis constant for the conversion to AI by renin, it was generally 

accepted, that renin is the rate-limiting step in the enzyme cascade. [19,20] 

Recently, however, some studies have cast doubts on ýhe kinetics of the renin- 

angiotensinogen reaction, putting the substrate concentration much closer to 

the K, of the enzyme and transgenic models suggest that the availability of 

angiotensinogen is also rate-limiting. [21] Thus, Kim et at showed that, in 

transgenic mice expressing a variable number of copies of the angiotensinogen 

gene, blood pressure correlated with both the number of copies of the gene 

and the plasma level of substrate. [22] 
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1.1.3 Regulation of renin secretion', 

The regulation of renin synthesis is complex and a detailed review 

of this subject is beyond the scope of this introduction (see review by Taugner 

and Hackenthal; [12]). Briefly, however, renin synthesis and secretion, are 

regulated by a number of factors. These include renal nerves, hormonal 

factors, sodium status and pressure responses. Numerous studies suggest that 

P-adrenergic agents are'able to stimulate renin secretion, probably via 01 

receptors activated by renal sympathetic nerves. The effect of a- 

adrenoreceptor stimulation is less certain. Stimulation of this receptor causes 

renal vasoconstriction and inhibition of renin release inay' therefore be 

secondary to induced haernodynamic changes. However some experiments 

have shown that stimulation of a, receptors increases renin secretion '- an 

effect that may be mediated by prostaglandins. 

Renin synthesis i's closely related to sodium status and is stimulated by 

sodium depletion. Whether sodium delivery to the JGA influences renin 

secretion is difficult to establish, but it appears that cells of the macula densa 

exert a tonic inhibitory effect by a local, as yet unidentified, - signal. Autocrine 

regulation by nitric oxide (NO) and prostaglandins has been-'sUggested. [23] 

Renin secretion is also responsive to changes in - renal perfusion, with a 

marked rise as perfusion falls. [24] This is mediated in part by renal 

sympathetic nerves, " with a significant contribution from the myogenic 

I response of renal arterioles. [25] The set-point for this response is probably 
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very close to mean arterial pressure, suggesting that the baroreflex'is an 

important physiological mediator of renin secretion. I 

The most important hormonal factor that influences renin release is 

All. ý This' has been shown to inhibit renin release as part of a negative 

feedback -control mechanism. 'The effect of AII is mediated through its 

actions on renal haemodynamics and tubular function, but there is also a direct 

inhibitory effect on grariWated cells. [26] 

1.1.4 Generation of angiotensin H by ACE 

The next step in the cascade is the generation of AII from Al. Initially 

this was also felt to occur in the plasma compartment. Vane and colleagues 

showed that a major site for AII generation was the pulmonary vascular 

bed. [27] ACE is an enzyme with a wide tissue distribution. It is present in 

plasma in a truncated form that lacks'the C-terminal hydrophobic anchoring 

domain, implying that it is shed from the endothelial surface. [28] In the 

vasculature ACE is an ecto-enzyme present on endothelial cells of arteries and 

veins, and is present in large amounts in the lungs (because of their extensive 

vascular bed). Other sites rich in ACE, are the brain, particularly in the 

choroid plexus, 'adjacent to the subfomical organ and the caudate nucleus, the 

kidney and the genital tract, especially the testis. [29] ACE has two distinct 

isoforms, germinal and somatic. Germinal ACE is derived from the same 

gene as the somatic form by differential splicing regulated by a tissue specific 

promoter. [30] Immunohistochemistry -and in-situ hybridisation show that 
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germinal ACE is expressed uniquely in germinal cells. [3 1] Epithelial cells also 

contain large amounts of ACE. Thus immunohistochernical staining reveals 

large amounts of the enzyme in the epithelium of proximal tubules in the 

kidney. [28] 

ACE is a chloride-sensitive C-terminal peptidase. Its primary structure 

suggests that it has two catalytic sites which can, be shown Ao be 

independently active. [32] Both the active sites are able to hydrolyse Al and 

BK, but their Y,, t for these substrates and chloride sensitivity differ. Unlike 

renin, which shows great substrate specificity, ACE has a number of peptide 

substrates, - limited by the presence of a penultimate proline residue. 

Alternative substrates for ACE include opioids, neurotensin, substance P and 

luteinizing hormone releasing hormone. [33,34] These substrates are 

generally short and the rate of hydrolysis is related to the length, slowing 

considerably if the peptide has more than ten residues. Chloride dependence 

of the ACE-substrate reaction is variable; AI is chloride dependent, however 

BK is hydrolysed at much lower concentrations. The exact role of these 

reactions remains unknown, but clearly ACE has multiple ffinctions beyond 

the generation of Al and inactivation of BK. ACE is not thought to be rate- 

limiting in the RAS. 

1.1.5 Other derivatives of angiotensin I 

The major product of the RAS is the octapeptide AII, although further 

cleavage of the peptide by a number of peptidases produces fragments that 
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may be active (Figure 1.2). Thus deletion of the C-terminal phenylalanine by 

a metalloendopeptidase produces Ang-(1-7) which- is thought to have 

vasodilator and anti-proliferative properties. Ang-(1-7) is degraded by'ACE 

and thus ACM increase plasma levels of this peptide. [35] Other fragments of 

AII that may have physiological actions include angiotensin III (Ang III) and 

angiotensin IV (AIV). Ang III is the N-terminal- aspartic acid deleted 

derivative of AII. Ang IV is produced from Ang III by the deletion of the N- 

terminal arginine. The peptidases responsible for the generation of Ang III 

and Ang IV include arninopeptidases A and B. [36] Ang III may also be 

generated independently of AII by initial cleavage of Al to Des-Asp' AI 

(mediated by aminoPeptidase B), followed by removal of the terminal I-Iis-Leu 

dipeptide (by ACE). While Ang III is thought to viert its effects through 

binding to the ATI receptor, this is not thought to be true of Ang IV and 

Ang-(1-7). Moreover the biological effects of these peptides are distinct from 

those of AII. Ang III acts predominantly in the brain where it is released in 

the paraventicular nucleus in response to water deprivation and induces a 

dipsogenic response. [37] Ang IV appears to act on a receptor found in the 

brain, kidneys, lungs, prostate gland and the gut. Its actions are not yet clear; 

in some vascular beds it mediates vasoconstriction, but in others causes 

vasodilation. [38] 
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Angiotensin H receptors -. I 

AII acts at two principal receptors, though the existence of others has 

been postulated. Most of the known biological actions of AII are through 

binding to the type I receptor, ATIR. A second major receptor subtype, the 

AT2 receptor (AT2) has also been identified. The molecular biology and role 

of the two receptors has been comprehensively reviewed. [39,40] Both the 

ATIR and AT2R are members of tthe family of, receptors with seven 

transmembrane hydrophobic domains and are G-protein coupled. They are 

encoded by distinct genes and have only a 32% sequence homology. 

Pharmacologically they can be distinguished by- their different binding 

affinities, ATIR showing a high affinity for the AII antagonist losartan, and 

AT2R for the compounds CGP42112A and PD 123177.:, - 

Binding of AII to ATIR is followed by the cleavage -of 

phosphatidylinositol to diacylglycerol (DAG) and inositol4,5-bisphosphate 

(IP2). IP2 and its metabolite, IP3. initiate a rapid rise in intracellular C2', 

while DAG stimulates the activity of the membrane-associated kinase, protein 

kinase C. In turn, this phosphorylates serine and threonine residues on protein 

substrates and modifies their activity. , Mitogen-activated protein kinases 

(MAP) are also stimulated and these may be responsible for activation of 

immediate early genes, such as c-fos, c-jun and c- myc. Other pathways 

activated by AII acting through - ATIR include phospholipase A2 and 

phospholipase D. Recently All has been found to cause phosphorylation of 

janus kinases, JAK2 and TYK2, which in turn leads to tyrosine 
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phosphorylation and nuclear translocation of the ! STAT, and' STAT2 

transcription proteins, thus providing a mechanism for the prolonged trophic 

effects of AII stimulation in a number of organs. 

Figure 1.2: ý Metabolism of All and related peptide 

Aminopeptidase A- -4-Prolylendopeptidase 

Asp Arg Val Tyr Ile His Pro 

(angiotensin 1-7) 

Arg Val Tyr Ile His Pro Phe 

(angiotens' III) 

Anfinopeptidase N 

Endopeptidase 247 

Val Tyr Ile His Pro Phe 

(angiotensin IV) 

Inactive Fragments 
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In contrast to the ATIF, very little is known about AT2R signal 

transduction. Activation of AT2R is not associated with a rise in intracellular 

C2+, or the generation of phospholipid derived second messengers. While 

there is some evidence that the AT2R is associated with phosphotyrosine 

phosphatase activation, MAP inhibition and inhibition of T-type calcium 

channels, the biological effects of AT2 stimulation are unclear. The ability of 

AT2R stimulation to induce protein dephosphorylation suggests that it might 

counteract the growth promoting effects of ATIR. Consistent with this is the 

observation that over-expression of the AT2R in rat carotid arteries is 

associated with attenuated neointima formation. [41] There have also been 

suggestions that stimulation of the AT2R may result in apoptosis in vascular 

smooth muscle cells and in a rat phaeochromocytoma cell line. [42,43] This is 

mediated through the dephosphorylation, - and inactivation of specific 

ccsurvival" proteins such as Bcl-2.1, 

The differential actions of the ATIR and AT2R are mirrored in their 

tissue localisation and pattern of expression. Thus, ATIR is expressed in the 

myocardium, on vascular smooth muscle cells, fibroblasts, neuronal cells, in 

the adrenal cortex and in the kidney. Inhibition of the ATIR during 

pregnancy induces specific renal abnormalities in the foetus, characterised by 

papillary atrophy, tubular atrophy and vascular wall thickening. [44] This 

suggests that the ATIR is also required for normal renal development. AT2R 

is expressed in the adrenal medulla, ovary, brain and at high levels during 

foetal development. In the rat the AT2R is the predominant angiotensin 
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receptor in the aortic arch and pulmonary artery from day fifteen of gestation 

until fifteen days post-parturn and is also expressed in the trachea. However, 

soon after birth; ATIR becomes the predominant receptor subtype in these 

tissues. [45] This suggests that, while the AT2R may play an important role in 

the development of the vasculature (though its precise role remains to: be 

elucidated), regulation of the cardiovascular system in the adult is largely 

mediated by binding to the ATIR. 

1.2 Local Renin Angiotensin Systems 

The historical review of the biology of the RAS given above 

concentrates on its role as an endocrine system and . suggests thav. AII is 

generated in plasma and acts as a circulating hormone. However, many lines 

of evidence suggest that there may be a parallel local RAS, distinct from, but 

related to; the systernic RAS. The possible role of locally generated 

angiotensin was first suggested by mechanistic studies of angiotensin 

metabolism. It was found that the rate of angiotensin metabolism was too 

high -for ý generation in plasma by (plasma) renin Ao explain measured 

levels. [46] This was studied in some detail by Admiraal et al who infused 

[125 11-labelled Al intravenously into hypertensive subjects at the time of renal 

vein sampling as an investigation for renovascular disease. [47] This allowed 

the sampling of venous blood to measure the extraction of AI across the 

forearm, kidney, leg and hepatomesenteric vascular beds. Placement of an 
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arterial catheter allowed the arterio-venous concentration gradient to be 

assessed. The extraction of labelled AI varied from 47% across the forearm 

to 96% across the kidney. However, in spite of the high degree of extraction, 

there was little or no difference in the plasma arteriovenous concentration 

gradient, for AI, strongly' suggesting that regional de novo production 

accounted for a large proportion of the generation of the peptide. From the 

blood transit time across the various vascular beds, and the known plasma 

renin level, the contribution of plasma renin to the generation of AI was 

estimated to be less than 20-30% across the kidney and at best 60% across 

the hepatomesenteric bed. 

While the demonstration of local angiotensin generation is important it 

does not prove that there are tissue based renin-angiotensin systems, 

independent of the circulating system. Components of the RAS such as renin, 

angiotensinogen and ACE may - be adsorbed from the bloodstream thus 

making local activity of the RAS dependent on delivery of precusors. For 

example, Loudon showed that after bilateral nephrectomy in rats, renin was 

detectable in the aortic wall for some hours, despite a profound and rapid fall 

inýplasma levels, consistent with arterial wall uptake. [48] Thus, a clear 

distinction between circulating and tissue renin-angiotensin systems requires 

the demonstration of synthesis of components of the RAS in the tissues. 

Before molecular biological techniques to detect the presence of mRNA were 

available the existence of components of the RAS in tissues was inferred from 

the results of bioassays. This raised concerns that the activity measured was 
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not due to renin, but to other enzymes such as cathepsin G, which also release 

AII from its precursors, but at a more acid pH. - However in recent years the 

presence of mRNA for all the components of the RAS has been demonstrated 

iný many organs, including the'heart, nervous system, kidney, "and the 

vasculature. In addition there is -evidence that the expression of various 

components of tissue renin-angiOtensin systems may be altered in various 

pathological states. 

1.2.1 The Vascular Renin Angiotensin System ýI 

A. Evidence from physiological studies 

The existence of a local vascular RAS is suggested by both in-vivo 

and in-Vitro experiments studying pressor responses to angiotensin. Bund et 

al showed that porcine' tetradecapeptide (TDP) renin substrate elicited a 

contractile response in isolated small human resistance arteries mounted in a 

wire myograph. [49] This contraction could be inhibited by a renin inhibitor, 

H261, suggesting that vascular wall renin was able to activate the'precursor 

TDP. Interestingly this contraction could not be inhibited by captopril, but 

some inhibition was obtained using the serine protease inhibitor, aprotinin, 

and this was, enhanced by combining aprotinin and, captoýril. Thus,, it 

appeared that the vessel wall RAS included renin, ' ACE and a serine protease 

(or proteases) capable of generating All from its precursors. , The ability of 

locally generated AII to modulate the tone of resistance ý arteries was also 

studied in an elegant experiment by Hen . non et al. [50] They perfused an 
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excised rat carotid artery (donor) in series with a smaller rat mesenteric 

resistance artery (recipient),, thus allowing them to study whether vasoactive 

agents generated in the donor vessel influence the tone of the recipient. -, The 

vessels were perfused with Kreb's solution, mounted in separate chambers 

and immersed in a superfusate into which drugs could be added to each vessel 

individually. They found, that AII was generated by the donor (despite the 

absence of any precursor in the perfiisate) and that this constricted the 

recipient, an effect that was inhibited by adding cilazapril to the superfusate 

surrounding the donor artery. ý In addition incubation with both losartan and 

cilazapril caused the recipient artery to dilate. Their data suggest that AII was 

generated locally, in both the donor and recipient vessels, and was acting on 

the ATI receptor. Furthermore the addition of a BK antagonist, HOE 140, 

suppressed the ACM induced dilation of the recipient, suggesting that locally 

generated BK was able to influence vascular tone. 

Local vascular conversion of AI to AII in-vivo has also been studied 

using venous occlusion plethysmography. Webb et al infused Al into the 

brachial artery of healthy volunteers and assessed the pressor response. 

AI induced vasoconstriction could be inhibited by co-infusion with enalaprilat, 

suggesting that vascular ACE was responsible for converting AI to AII within 

the vessel. Interestingly, while infusion of enalaprilat alone had no effect on 

forearm vascular tone in sodium replete subjects, after, sodium, depletion, 

infusion of the ACM increased resting forearm blood flow, suggesting that 

vascular AII generation may be influenced by sodium status. Further evidence 
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of regulation of the vascular RAS by sodium status was recently provided by 

Boddi et al who I 
investigated AII production and AI degradation in the 

forearm and leg vascular beds in healthy subjects on -a normal, low and high 

sodium diet. [52] Their methods were similar, to those employed by Admiraal 

et al - using infusions of both [1251]-labelled AI and unlabelled AI-[47] As in 

earlier work, they found that that both Al and AII were generated by the local 

vascular bed. Surprisingly, manipulation of the sodium status of the subjects 

revealed, differential regulation of the circulating and vascular RAS. , In 

sodium deplete subjects plasma renin activity increased but vascular Al and 

AII generation became undetectable, while in sodium replete subjects plasma 

renin activity fell and vascular AI and All generation were, significantly 

enhanced. The conclusion from this study, that sodium depletion is associated 

with reduced vascular ACE activity is obviously at variance with the results 

obtained by Webb and requires confirmation. Nonetheless, 'it -used well- 

established methodology and measured vascular angiotensin generation more 

directly. If confirmed, this study does suggest that the vascular and systemic 

RAS are differentially regulated by sodium balance, which is clearly an 

important finding. 

It is clear, from both in-vivo and in-vitro studies, that there is local 

vascular generation of AII and, in addition, there are tantalising hints that 

regulation of the vascular. RAS is distinct from the circulating system. 

However, proof that the vascular RAS is differentially regulated at a genomic 

level requires the tools of molecular biology. ,, 
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B. Evidence from molecular biology 

Expression of renin 

Whether renin is expressed in blood vessels has been hotly debated, 

with both positive and negative studies being reported. [53,54] The 

persistence of renin-like activity in the vasculature after nephrectomy may 

indicate continuing synthesis outwith the kidney. However, other authors 

have suggested that when the pH is kept at 6.5, which is optimal for renin, 

activity rapidly declines, suggesting that other enzymes have been responsible 

for the generation of AII in bioassays. [55,56] When renin mRNA has been 

detected in vascular tissue it has been at a low level. Thus, though Paul et al 

detected renin mRNA in human aorta and saphenous vein, the measured level 

in the latter (using a semi-quantitative competitive rtPCR reaction), was about 

1% of that found in the kidney. [57] Since angiotensinogen and ACE mRNA 

are also expressed in aorta and saphenous vein, it is possible that all the 

components necessary for AII generation are present in vascular tissue, at 

least in large vessels. Whether this is true of resistance arteries is not known. 

Expression of angiotensinogen 

Although it is thought that the reaction between renin and 

angiotensinogen is the rate-limiting step in the RAS, 'surprisingly little is 

known about local production of this peptide. As discussed above, 

angiotensinogen mRNA is detectable in the human aorta and saphenous vein. 

Naftilan et al investigated angiotensinogen expression in the aorta of Wistar 

44 



and Wistar-Kyoto rats. [5 8] The aim of this study was to obtain information 

about both the level and spatial organisation of angiotensinogen expression 

and investigate the effect of sodium depletion on the former. 

Angiotensinogen mRNA, identified using northern blot analysis and localised 

by in-situ hybridisation, was located in the smooth muscle cell layer of the 

aorta, as well as in perivascular adipose tissue. On a normal sodium diet the 

expression of angiotensinogen mRNA was greater in the adipose tissue than in 

the aorta, but sodium depletion enhanced the latter and had no effect on the 

former. Shiota et al found that angiotensinogen gene expression was 

increased in the aorta and liver of two-kidney, one clip rats four weeks after 

clipping, but levels fell to normal after twelve weeks. [59] In the rat, at least, 

these two studies suggest that increased local angiotensinogen expression may 

contribute to the vascular abnormalities seen in hypertension. This hypothesis 

has been tested further in rats transgenic for the human angiotensinogen gene 

(which is not cleaved by rat renin). [60] In-situ hybridisation detected mRNA 

for human angiotensinogen in the smooth muscle cell layer of skeletal muscle 

resistance arterioles from the rat hindlimb, though precise cellular localisation 

was not possible. When the isolated hindlimb was perfused with active human 

renin, Al was detectable in the effluent in transgenic but not control rats. 

After cessation of the infusion plasma renin quickly became undetectable, but 

AI continued to be detected for 30 minutes. Renin infusion also stimulated 

AII production and induced vasoconstriction. These results suggest that 
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plasma renin can be -taken up from'the circulation and thafthis is able to 

generate AII by cleavage of locally synthesised angiotensinogen. 

Expression of ACE 

ACE can be detected in smooth muscle cells fronl'the media of blood 

ýessels, as well as in the'endothelium. [61,62] ACE has also been identified in 

the adventitia of the rai aorta. Given the evidence for vascular'localisation of 

angiotensinogen, it is likely that all three layers of larger arteries may possess 

the components of a local RAS. - Again, the location of components of a 

putative local RAS in resistance arteries is not yet known, though these 

vessels have a similar three-layer structure to conduit vessels. - 

Interest in ACE as a regulator, of local AII generation has been 

stimulated by the identification of a polymorphism that associates with plasma 

and cellular, ACE levels and which may be associated with cardiovascular 

disease (see section"" 1.3). [63,64,65] In addition, ACE expression is 

increased in a number of animal models of hypertension. Thus Miyazaki and 

co-workers have shown that ACE activity and gene expression is increased in 

the rat two-kidney, on6 clip model of hypertension and that this is associated 

with an increased contractile response of isolated arteries, to Al. [66] This 

work was extended by Muller et al who used the same model to'measure, both 

aortic ACE ý gene expression, by an mRNA protection, assay, and AII 

formation from infused AI in the isolated hindlimb. [67] AII generation was 

linear over a wide range of infused Al concentrations in both hypertensive and 
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control rats and did not show saturation, consistent with the known kinetics 

of the ACEW reaction. Nonetheless, All generation and ACE gene 

expression were significantly higher in the hypertensive rats, suggesting that 

vascular ACE was able to regulate local AII formation. This finding may be 

of particular importance since it suggests that while ACE ý may not, be rate 

limiting in the systemic RAS, it may act to regulate the final concentration of 

AII in tissues, especially in conditions where there is increased expression of 

the RAS. 

,. The significance of increased local AII generation secondary to 

increased ACE expression may lie not only with regulation of vascular tone, 

but with long-term regulation of vascular -structure (see section 1.4). 

Consistent with this hypothesis, Morishita et al were able to increase carotid 

artery ACE expression in the rat using a gene transfer approach and this was 

associated with an increase in wall to lumen ratio, an effect that could be 

abolished by an ATIR antagonist. [68] 

Transgenic models 

Transgenic models, have also investigated the, possibility that local 

expression of the RAS may be of pathophysiological significance. The model 

that has generated most interest is the Ren-2 transgenic rat. [69] This model, 

developed by Mullins and co-workers, expresses the mouse salivary gland 

Ren-2 (i. e. renin) gene and develops fultninant hypertension. While there is 

some debate about what the true plasma renin levels are in this model 

47 



(radioimmunoassay detects low plasma renin, but this may be rat renin and the 

possibilitý remains that mouse renin circulates in the plasma at high levels) 

there is little doubt that the Ren-2 gene is expressed in vascular tissue. This is 

associated with increased angiotensin generation in the isolated hindlimb, 

compared to control rats. [70] In addition, continuing angiotensin generation 

in the isolated hindlimb following bilateral nephrectomý suggests continued 

vascular renin gene expression. The low plasma renin level Suggests that local 

angiotensin. generation secondary to local ovei-expression of the transgene 

may be responsible for the phenotype. I 

Most of the evidence that there is a vascular RAS has come from 

animal studies, or from histological examination of large human vessels. A 

recent study, 'however, detected mRNA for all the components of the RAS, 

including renin, in (smaller) uterine spiral arteries, which undergo considerable 

remodelling during pregnancy. [71] It is theref6re possible that components of 

the RAS are expressed widely in the human vasculature and that ý they are 

regulated independently from the circulating system. - There, is preliminary 

evidence to suggest that dysregulation of the vascular RAS could contribute 

to the pathogenesis of hypertension and may be responsible for some of the 

vascular and end-organ abnormalities seen in this condition. 

1.2.2 The Cardiac Renin Angiotensin System 

There is a large literature concerning the cardiac RAS. Several lines 

of evidence suggest that AII is generated within myocardial tissues. * The heart 
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appears to be a net secretor of angiotensins and the tissue concentrations of 

Al and AII are too high to be explained by diffusion from the blood and 

distribution into the interstitium. [72] The site of cardiac angiotensin 

production has been studied in some detail. Using a modification "Of the 

Langendorff isolated perfused rat heart, de Lannoy et al studied the relative 

contributions of interstitial, and intravascular AI production. [73] No Al 

production was observed when the heart was perfused with Tyrode's buffer 

alone, but Al was detectable in interstitial fluid during renin infusion and in 

greater quantities in both interstitial fluid and coronary venous effluent during 

combined renin and angiotensinogen infusion. , However, though the 

appearance of Al in interstitial fluid' could be explained by the renin- 

angiotensinogen reaction in that compartment, the concentration of AI 

measured in the coronary effluent was 4.6 times higher than could be 

explained by intravascular generation alone. This suggests that the majority 

of cardiac AI production occurs in the extravascular compartment. The 

authors thus proposed that AII is generated at two sites - the interstitium and 

the vascular endothelium. This study also suggested that cardiac Al 

generation was dependent on the delivery of renin, and possibly 

angiotensinogen, by plasma. This work was extended by van Kats et al, who 

measured cardiac AI and AII production in pigs using a radiolabelled tracer 

technique. [74] Again they found that most of the cardiac-derived AI and All 

were synthesised locally. In addition, they investigated the effect of captopril 

treatment on cardiac Al and All production and showed that, while plasma 
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AII was suppressed, tissue AII levels were unchanged. Thus, tissue All 

production was maintained under conditions in which circulating AII 

production was inhibited. - 

These studies, provide strong evidence that the heart is able to 

synthesise AI and All locally. However, proof of the existence of an 

independent cardiac RAS requires the demonstration of local synthesis of 

angiotensinogen or renin. Bilateral nephrectomy has been shown to cause a 

fall in cardiac renin to low or undetectable levels in the rat and other species, 

casting doubt on this possibility. [75,76] In contrast, other studies have 

shown that the heart does contain mRNA for renin, angiotensinogen and 

ACE. [77,78,79] Thus, gene expression of components of the RAS may 

contribute to increased local cardiac All generation independent of the 

systemic RAS. 

Activation of the cardiac RAS after Lnyocardial infarction 

Falkenhahn et al studied ACE distribution using 

immunohistochernistry in an experimental rat model of myocardial infarction 

and also in human post-mortem specimens. [80] In non-infarcted myocardium 

ACE was largely confined to endothelial cells. One day after myocardial 

infarction no ACE was identified in the zone of necrosis, but after three days 

began to appear within granulation tissue at the border of this zone. Intense 

ACE expression was then identified in the endothelium of sprouting capillaries 

and this -continued as fibrosis developed. ACE was also identified in 
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macrophages and fibroblasts within the scar tissue'. AII is known to promote 

hypertrophy' of 'cardiac myocytes and hyperplasia' of cardiac fibroblasts, 

inhibits matrix metalloproteinase type I and also stimulates cardiac fibroblasts 

to increase production of type I and type III collagen. [81,82] Increased 

cardiac ACE expression may thus contribute to remodelling after myocardial 

infarction. Cardiac remodelling is also a feature of congestive heart failure 

(CBF) and may contribute to the progressive myocardial dysfunction seen in 

this condition. It is, therefore, no surprise that inhibition of the RAS -is 

associated with marked mortality and morbidity befiefits in established CBF 

and post myocardial infarction. [83,84,85,86] 

1.2.3 Other Oirgan Specific Renin Angiotensin Systems -- 

The conventional view of the systemic, RAS as an endocrine system 

places the kidney in a pivotal position since it is the major source of 

circulating renin and is also the site of action of AII and aldosterone in 

regulating sodium balance and extracellular fluid volume. In fact, the kidney 

is also a net secretor of AII, and studies assessing the total renal content of 

the peptide suggest that there is far more than'can be explained by diffusion 

from the plasma compartment into the interstitium. [87] 'It is likely that AII is 

generated' from both locally synthesised , and - systemically delivered 

angiotensinogen and acts in a paracrine manner within the kidney. [88,89] 

Thus, angiotensinogen mRNA has been identified in the proximal tubule by a 

variety of techniques and ACE, 'is found - in large quantities at the proximal 
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tubule brush border; - as,. well - as on endothelial cells in the renal 

vasculature. [90,91 ] The AT IR is also found on the lurninal membrane in the 

proximal and distal tubule, as well as on mesangial cells and both afferent and 

efferent arterioles, and it is likely that AII is generated in the nephron, where 

it is also active. [92] Braam et al confirmed that All is detectable, within 

proximal tubule fluid in the nanomolar range and also showed that AII can be 

detected in microperfused tubules. [93] In perfused tubules the source of the 

All cannot be glomerular filtrate, and this finding provides very strong 

evidence that All is generated within the nephron. Whether this is as a result 

of the action of renin synthesised in the tubule is open to question: some 

authors report the detection of renin mRNA in small quantities within 

proximal tubule cells and Leyssac reported measurable renin within tubular 

fluid. [94] Since renin is not filtered at the glomerulus it is likely that there is 

some intra-tubular renin synthesis, albeit at a low level. The renal tubules thus 

appear to express all the components of the RAS. 

All generated within the tubule acts to promote tubular sodium 

absorption through binding to the ATIR. It is also likely that locally 

generated All has trophic effects within the kidney, just as it does in the 

vasculature. Thus, All stimulates growth of cultured mesangial and proximal 

tubular cells. [95] In addition to promoting cell growth All also stimulates 

extracellular matrix deposition by these cells. The trophic effects of All in the 

kidney may be mediated by stimulating the paracrine secretion of various 

cytokines such as TGF-P, PDGF and endothelin-l. [96,97] In proximal 
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tubular cells All induces transcription of type IV collagen, an effect that is 

blocked by a neutralising antibody to TGF-P, emphasising the importance of 

cytokine secretion in mediating the local trophic effects of the RAS. [98] 

In addition to the examples of local AII synthesis and action presented 

above there is evidence for a, local RAS in the brain, adrenal gland and 

reproductive tissue, but a review of these data is beyond the scope of this 

thesis. There is little doubt, however, that All is generated locally in a variety 

of tissues and that this may be significant in a number of pathological states. 

It is also likely that the RAS has an extended role at a local level, as a growth 

promoter and to stimulate extracellular matrix remodelling. These effects are 

likely to be of pathophysiological, significance and emphasise the potential 

benefits of pharmacological interruption of the RAS in conditions such as 

CHF and renal failure. Finally, I have alluded to recent evidence that 

polymorphisms of genes encoding the RAS may influence AII generation and 

so contribute to genetic susceptibility to 'cardiovascular disease. in the 

following section I shall briefly review the evidence for this hypothesis. 

1.3 , Polymorphisms of Genes within the Renin Angiotensin System 

Most, if not all, genes are subject to minor variations in their 

sequences and are considered polymorphic if the frequency of the rarest allele 

is Zt 1%. Some of these polymorphisms may influence the biological activity 
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of the gene product, for example the expression of a gene or the functional 

properties of the encoded protein. This is the intermediate phenotype. 

Possession of one, or many, of these variantsý may confer a genetic liability to 

develop a particular trait. 

There are two basic strategies for identifying the genetic determinants 

of any given trait: candidate gene analysis and total genome searches. [99] 

The former tests for an association between a polymorphism in a candidate 

gene and a trait, aiming to show that the variant-is more frequent in disease 

than in'controls, or that individuals with a common polymorphism also share 

the same natural history. This approach relies upon our understanding of the 

intermediate phenotype and hence the choice of the candidate gene. - It is also 

dependent on the choice of appropriate controls, requires a large candidate 

gene pool, and is limited in the presence of genetic heterogeneity between 

populations. In a total gene search strategy, ,a search is made for the 

cosegregation of marker loci with the trait-in sample pedigrees (such as'a 

family or amongst siblings). This approach is more laborious as it requires the 

identification of family members and, for this reason, most studies of the 

genetic basis of cardiovascular and renal disease have utilised a, candidate 

gene approach. Given the importance of the RAS in cardiovascular 

homeostasis, genes encoding its components are obvious candidates. ? 
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1.3.1 Renin gene polymorphisms 

Renin is thought to be the rate-limiting step in the RAS, making it an 

obvious candidate gene in hypertension and cardiovascular disease. Early 

studies in rats suggested that renin gene variation may contribute to the risk of 

hypertension. For example a restriction fragment length polymorphism 

kRFLP) -within the renin gene,, that was identified in the spontaneously 

hypertensive rat (SHR), has been shown to co-segregate with an increase in 

blood pressure in F2 progeny of the SHR and Wistar-Kyoto (WKY) 

cross. [ 100,10 1]A number of RFLPs have been identified in the human renin 

gene, recognised by the restriction enzymes Taql, HindIll, Bgl I, Bgl 11 and 

MboI. [102,103] However most studies using these markers have failed to 

show any association with blood pressure. 

1.3.2 The Angiotensinogen M235T Polymorphism 

Transgenic strategies inducing over-expression of the angiotensinogen 

gene in mice suggest that this gene is associated with the regulation of blood 

pressure. In this model introduction of multiple copies of the angiotensinogen 

gene led to a, dose-dependent increase in blood pressure. [22] 

Angiotensinogen is thus a strong candidate gene for hypertension. A number 

of polymorphic variants of this gene have been identified, and their association 

with hypertension investigated. One such variant of the angiotensinogen gene 

is the M235T polymorphism, which encodes for the substitution of a 

threonine for methionine at position 235. Interest in this polymorphism was 
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stimulated, by a sibling-pair study from Salt Lake City and France, which 

suggested that the gene locus -was associated with hypertension in men, 

particularly in severely affected 'sib-pairs. [ 104] . Two variants of the gene, the 

M235T and the 174M were found to be associated with hypertension in this 

study and the former was found to be associated with higher angiotensinogen 

plasma levels. Other studies, have also found that, the, M235T variant is 

associated with essential hypertension' in,,. both American and-- Japanese 

populations. [ 105,106] The M235T polymorphism has also been found to be 

associated with coronary heart disease and, 'in addition; the T allele occurred 

at a higher frequency in women with pre-ecla'mpsia. [107,108] 

As with the ACE I/D polymorphism, association studies involving the 

M23ST polymorphism can be viewed with more confidence if an intermediate 

phenotype can be identified. One study investigated the role of the M235T 

polymorphism in determining the renaF, plasma flow , response to AII 

infusion. [ 109], The hypothesis was that, since the T allele is associated with 

higher angiotensinogen levels, it n-ýight also be associated with greater intra- 

renal AII generation and a blunted plasma flow response to infused AII. This 

was observed and, in addition, there was an interesting interaction between 

the genotype and obesity, with obese patients exhibiting greater blunting of 

the response in TT homozygotes. The reason for this interaction is unclear 

but may reflect greater generation of AII in adipose tissue. ýIf 

Further support for a physiological role of the M235T polymorphism 

derives from the demonstration that it may be associated with variation in 
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gene expression. , A, common, variant in the proximal promoter of the 

angiotensinogen gene, characterised by the presence of adenine instead of 

guanine, has been -identified. [110] This appears to be in close linkage 

disequilibrium with the M235T polymorphism and appears to influence 

transcription of the gene. ; The authors speculated that-theT variant and its 

associated regulatory element were, in fact, -the original version of the gene 

and had evolved in the sodium-deprived conditions of the , African 

subcontinent. In this scenario hypertension,, related to this polymorphism, 

develops upon a change in environment, such as an increase in sodium intake - 

a version of Neel's "thrifty gene hypothesis. "[ IIII 

In contrast to these studies there have also been a number of negative 

studies relating the angiotensinogen gene and hypertension. In a study of 223 

untreated hypertensives and matched controls from the East-Anglian region of 

the UK there was no association between. the M235T polymorphism and 

blood pressure. [ 112] Similarly a study of 508 patients with hypertension from 

Finland failed to demonstrate any association with this polymorphism. [113] 

Similarly negative results were also obtained in a German population. [114] 

Another study suggested that while the - angiotensinogen gene itself was 

associated with hypertension, the M235T polymorphism was not. [ 115] Thus, 

it is possible that genetic variation within the'angiotensinogen gene may be 

implicated in-the pathophysiology of hYPertension, but the role of specific 

polymorphisms is less clear. 

57 



1.3.3 , The ACE I/D Polymorphism -1 

While there are polymorphic markers in the genes encoding renin, 

angiotensinogen, ACE and the ATIR, most attention has been focused on the 

ACE gene since the discovery by Rigat of an insertion/deletion (I/D) 

polymorphism that accounts about half of the inter-individual variation in 

plasma ACE levels. This polymorphism is characterised by the presence or 

absence of a 287 base pair fragment within intron 16 of the ACE gene and is 

thus not part of the coding sequence. [63] Subsequent studies have confirmed 

a strong association between serum, cellular and cardiac ACE levels and this 

polymorphism. [64,116] The mean plasma ACE level in Caucasian DD 

hornozygotes is about twice the level found in II homozygotes, with an 

intermediate level in heterozygotes suggestive of co-dominant inheritance. It 

is suggested that the polymorphism is in strong linkage disequilibrium with a 

putative regulatory gene locus that controls ACE levels. [ 117] 

The ACE I/D polymoiphism and the risk of ischaernic heart disease 

Interest in this polymorphism was first generated by the finding of an 

excess risk of myocardial infarction (MI) in male DD homozygotes. [65] 

Several. other ý studies, in aivariety of populations, have also suggested an 

association between the I/D polymorphism and coronary artery disease. [ 118, 

119] In particular two studies have shown an association between possession 

of the D allele and a parental or grandparental history of MI. [ 120,12 1] While 

these data were initially persuasive there have also been a number of negative 
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studies. [ 122], In particular, Lindpaintner analysed the relationship between 

the polymorphism and ischaen-k heart disease in the'large,, prospectively 

followed, cohort of the Physicians Health Study and found no association 

between the ACE I/D polymorphism and the risk of , ischaemic heart 

disease. [123] A subsequent meta-analysis gave a mean odds ratio for MI in 

DD homozygotes of 1.26, but a funnel plot of odds ratio against sample size 

suggested that publication bias may have confounded the result. [124] More 

recently the ISIS III database was interrogated to examine the 'association 

between the D allele -and the risk'of NU in 4629 patients and 5934 controls. 

No significant association was found between'the DD genotype and the risk 

of MI (odds ratio 1.10,95% CI 1.00-1.21). [125], In-the same paper the 

results of an up-dated meta-analysis of the association between MI and the D 

allele were reported. When the results from ISIS were combined with those 

from the larger hypothesis-generating trials (involving 200 or more cases) the 

odds ratio was 1.02 (99% CI 0.95 - 1.11). The study was also able to assess 

the impact of the polymorphism on patient survival and found no association. 

The authors concluded that, while there may be an, excess risk of NH'(of 

approximately 10 -, 15%) associated with the D allele, studies with more than 

10,000 cases would be needed to provide a reliable answer. 

The ACE I/D polyinoiphism and left ventricular hypertrop 

Following the initial suggestion of an association with the risk of MI, 

further studies have been performed to investigate the contribution of the I/D 
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polymorphism to a variety of other conditions in which over expression of the 

RAS may play a role. Thus the relationship between the I/D polymorphism 

and left ventricular hypertrophy (LVH), hypertension and progressive renal 

disease has also been studied. There is now an extensive literature on the 

possible role of polymorphisms within the RAS in renal disease and this has 

been comprehensively reviewed. [ 126] 

, Several studies have suggested that the D allele may associate with 

LVH, or other conditions that are due to abnormal cardiac remodelling. Thus 

Schunkert et al found that the D allele was over-represented in subjects, 

drawn from population of 711 women and ý717 men, found to have LVH by 

electrocardiographic criteria. [ 127] The association was particularly strong in 

normotensive men, who would otherwise be considered at low risk for LVK 

but the relationship was not present in women. Other conditions found to be 

associated "with the I/D allele include- ischaernic and idiopathic 

cardiomyopathy, and hypertrophic cardiomyopathy (HCM), especially, in 

families with HCM and a history of sudden death. [ 128,129] Although other 

studies, particularly from Japan, have also found an association between LVH 

and the ACE I/D polymorphism, there have been a number of negative studies 

as well. Kupari et al used the more sensitive technique of echocardiography 

to investigate the role of the I/D polymorphism in determining LVH and 

found no association. [ 130] This was confirmed by Lindpaintner, using the 

cohort from the Framingham Study. [ 13 1] 
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Although there have been' many studies of the role of -the I/D 

polymorphism 'in cardiovascular regulation there is, ý as yet no definite 

conclusion., There are many reasons for this. Many studies have been small 

and have lacked statistical power. Genetic heterogeneity (i. e. different genetic 

associations in different populations) may have confounded the results, the 

high frequency of the D allele limits its genetic informativeness and there is an 

inherent weakness in association studies - which are limited, for example, by 

the choice of an appropriate control population and by the fact that they take 

a "snap-shot" of a'dynamic situation. Greatest doubt has been cast on the 

association between the D allele and MI, as discussed above. 

Twin studies are an attractive, alternative to association studies, 

though recruitment is obviously harder. Only one twin study has been 

published investigating the role of the I/D polymorphism and cardiovascular 

structure. BusJahn et al studied cardiac dimensions in 91 monozygotic (MZ) 

and 41 dizygotic (DZ) twins. [132] - There was a significant relationship 

between both serum ACE activity and possession of the D allele and posterior 

cardiac wall thickness. However study of the within-pair differences in wall 

thickness between MZ, concordant DZ and discordant DZ twins suggested a 

major contribution of other genes in determining cardiac structure. 

The ACE I/D polymorphism and theregulation of blood pressure 

There are a number of reasons to consider ACE to be a candidate gene 

for hypertension. In a cross between stroke-prone spontaneously 
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hypertensive rats (SIERISP) and WKY rats, a major locus determining blood 

pressure was identified on chromosome 10. [133] This region is homologous 

to chromosome 17q in man - on which the ACE gene is located. Studies in 

other strains of hypertensive rats also' suggested that ACE may be an 

important locus in determining blood pressure. [134] However, serum ACE 

activity does not correlate with blood pressure and there have been a number 

of studies that did not suggest the ACE gene is a determinant, of 

hypertension. [ 135] Thus, in both Finnish and Japanese populations, and in a 

French sib-pair analysis, no association was found between the ACE gene and 

hypertension. [ 13 6,137,138] 

Despite this some studies have suggested that the D allele of the ACE 

gene may-: contribute to the development of hypertension in specific 

populations, such as African-Americans. [139] More recently O'Donnell et al 

used a cohort of 3095 participants in the Framingham Heart Study to study 

the association between the ACE gene and hypertension. [140] This study 

used both the ACE I/D locus and a microsatellite associated with the human 

growth hormone (hGH) gene - which is tightly linked to ACE - as markers in 

a linkage analysis on 1044 sibling pairs from 484 families. Logistic and linear 

regression analyses were also performed, to investigate - the risk of 

hypertension associated with the ACE I/D polymorphism in the whole cohort. 

The odds ratio for hypertension among men who were homozygous at the D 

allele was 1.59 (95% CI, 1.13 to 2.23), but there was no such association in 

women. In the linkage analysis a weak association was found between the I/D 
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locus and the hGH rnicrosatellite and diastolic, but not systolic, blood 

pressure in men, but not women. While such studies may suggest that the 

ACE locus is an important determinant of blood pressure they do not exclude 

the possibility of an association with other'genes in linkage disequilibrium 

with ACE. Julier et al performed a sib-pair analysis in 357 French and UK 

families to investigate further the linkage between the homologous region on 

human chromosome 17 and blood pressure. [141] They found evidence that 

two closely. linked markers, D17SI83 and D17S934, -were linked with 

hypertension, but these were located 18 centi-Morgans proximal to the ACE 

locus. - Thus,, while chromosome 17q may well contain an important blood- 

pressure determining locus, it is probably not ACE. II 

I- Further doubt on the role of, the ACE gene in blood pressure 

regulation has been suggested by transgenic models. Krege et al found that 

mice, heterozygous for an insertional mutation that inactivates the ACE gene 

had a lower blood pressure than controls. [ 142] However a subsequent study 

from the same group found that, in marked contrast to animals - over- 

expressing the angiotensinogen gene, over-expression of the ACE gene had 

no effect on blood pressure, despite markedly higher serum ACE levels. [143] 

Thus, the weight of evidence is against any significant role of the ACE gene in 

determining blood pressure, or the risk of developing hypertension. 
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Intermediate phenotypes for the ACE I/D polyLnoiphis III 

Although the D allele is a major determinant of serum ACE levels it 

has, been more difficult to identify an intermediate phenotype -(i. e. -a 

physiological effect) for the polymorphism that might explain its association 

with cardiovascular disease. Ueda studied the pressor response to AI infusion 

in normotensive men homozygous for the I and D alleles. Venous levels of 

All during AI infusion were higher in DD subjects than in II subjects and the 

dose required to raise the blood pressure by -20 mmHg (PD20)' was 

significantly lower. [144] This response was enhanced in sodium depleted 

su ects, suggesting that the - polymorphism may be more, important in 

conditions when the RAS is activated. Another study assessed the effect of 

the I/D genotype on the contractile properties of isolated internal- mammary 

artery rings in-vitro. [145] Contractile responses to AI were expressed as the 

% of the maximum response to AII and the difference in the areas between 

the AI and AII curves was taken to represent vascular AI-AII conversion 

(thus greater conversion would be associated with a smaller difference in 

area). Although the area between the 'curves did fall from II through ID to 

DD homozygotes, this was not significant. However, there did appear to be 

greater AI-AII conversion associated * with the DD and ID genotypes ý taken 

together, compared with the II genotype. There was also a significantly lower 

sensitivity to the endothelium-dependent vasodilator methacholine in patients 

with the D allele, suggesting that stimulated release of nitric oxide (NO) was 

lower. By contrast, the increase in phenylephrine stimulated contraction in 
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the presence of the NO synthase inhibitor L-NNB4A, was greater, suggesting 

higher basal NO release in those possessing the D allele. Again these results 

were analysed in terms of the presence or absence of the D allele. Another 

study investigated forearm vasodilation induced by acetylcholine (ACh) in 

hypertensive and normotensive individuals. [ 146] ACh induced less 

vasodilation in hypertensive DD homozygotes, ý but only when compared with 

ID, and II subjects 'taken together. Though -these results are initially 

persuasive it is debatable whether analysis based on combining ID and DD 

genotypes is appropriate, given that the alleles are co-dominant. A further 

criticism of these studies is their failure to take into account the possibility of 

non-ACE AII "generation, an issue that will be discussed at great length 

throughout this thesis. When phenotypic variation, related to the I/D 

polymorphism, is studied in terms of the response to Al, the presence of 

alternative pathways - for AII generation may be an important confounding 

factor. 

In contrast to the above studies that suggest that the I/D 

polymorphism is associated with an intermediate phenotype, of increased 

pressor response to AI, Lachurie et al did not, find that either the blood 

pressure response, or the achieved AII concentration, to Al infusion was 

different between II and DD subjects. [147] This negative result was 

replicated by Chadwick et al who, using a very similar protocol to Ueda, were 

unable show a greater pressor response in DD homozygotes. [1481 

Unequivocal demonstration of, an intermediate phenotype for the ACE I/D 
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polymorphism is thus awaited., -On present evidence it is not likely that this 

polymorphism is a useful marker for cardiovascular risk. )-, 

1.3.4 The ATlRA1166C Polymorphism 

The Al 166C pol3gnoiphism and blood pressure ýI ýj 

Since AII acts principally on this receptor, it is an obvious candidate 

gene, for cardiovascular disease. The A1166C polymorphismýof the-ATIR 

gene has been identified, and an association was reported between the C allele 

and hypertension in a small population of 206 patients. [149] - However, 

subsequent studies have been contradictory., One case-control study showed 

that the frequency of the C allele was increased in a group of 108 hypertensive 

patients with ,a strong family history and early onset of disease. [150] 

However this association was not confirmed in another, larger, study. [ 15 1]A 

fiirther study, failed to show any influence of this polymorphism on blood 

pressure within a group of patients without hypertension. [ 152] 

The Al 166C polymorphism and the risk of ischaemic heart disease --ý 

The role of polymorphisms within the ATlR in detern-ýining 

cardiovascular risk has also been extensively investigated. Following, the 

demonstration of a putative association between the ACE I/D polymorphism. 

and NH, a similar analysis was performed for the Al 166C 

polymorphism. [153] Although the frequency of the C allele was not increased 

in patients with NH, there appeared to be an'interaction with the ACE DD 
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genotype, such that the odds ratio for MI in DD homozygotes was increased 

in patients also carrying the C allele. This result was not replicated in a 

similar study from Norway, though there was a suggestion that the frequency 

of the C allele was increased in patients with NH who were thought to have 

been at low risk (low body mass index and apolipoprotein B levels). [154] 

Since these early studies there have been a variety of others considering the 

effect of this polymorphism on cardiovascular risk and progressive renal 

disease but no consistent association has been found. Other studies have 

concentrated on the role of the Al. 166C polymorphism in determining 

cardiovascular structure, and these are described in section 1.3.3. ' ý 

Intermediate phenotypes for the Al 166C polyLnorphism 

As suggested above demonstration of an intermediate phenotype is 

crucial for a polymorphism to be considered to be physiologically significant. 

Such data for the Al 166C polymorphism has recently been provided by Miller 

at al. [155] In this study healthy, sodium replete, men, and women were 

chosen to form two groups characterised by the presence or absence of the C 

allele i. e., AA or AC/CC. Renal haemodynamic function was assessed using 

inulin and para-aminohippurate clearance at baseline and after administration 

of losartan or AII by infusion. Baseline glomerular filtration rate (GFR), renal 

plasma flow and renal blood flow were lower in the AC/CC group but there 

was no difference in mean arterial blood pressure (MAP). Losartan induced 

an increase in GFR and a fall in MAP in AC/CC, but not AA, subjects, with 

67 



no effect on renal blood, or plasma, flow. Although there was a trend to a fall 

in aldosterone after losartan in AA subjects, it was significant only in AC/CC 

subjects. Response to AII infusion also varied according to genotype. Thus 

AII induced a fall in GFR only in AC/CC subjects. These results show a clear 

difference in renal haemodynan-fics associated with this polymorphism. Since 

MAP was equal in the two groups the reduced renal plasma, and blood, flow 

associated with the C allele reflected increased renal vascular resistance. 

Given the differential effects of losartan in the two groups it is likely that this 

was due to increased intra-renal AII activity in those possessing the C allele. ý 

However, while initially persuasive, this was a small study and has yet to be 

replicated. 

Another study investigated the relationship between this polymorphism 

and vascular' reactivity in human internal mammary arteries. [156] This 

showed that the potentiation of ý phenylephrine-mediated contraction of 

isolated rings induced by'AII was greater in subjects possessing the C allele. 

Again, this -result has 'to be viewed with caution, since there was no 

association between the polymorphism and AII-induced contraction alone. 

Further studies are required to define an intermediate phenotype of the 

Al 166C polymorphism and, as yet, there is no really convincing evidence that 

this marker truly associates with either cardiovascular disease or hypertension. 
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1.3.5 Polymorphisms of the RAS and Vascular Structure 

It is possible that genetic variation within the RAS, by influencing AII 

generation or action, directly at a cellular level,, or indirectly through the 

control of blood pressure, may be associated with variation in cardiovascular 

structure. I-Egh-resolution ultrasound probes can visualise the carotid, 

femoral and radial arteries and allow wall thickness to be measured in man in- 

vivo. In addition ultrasound can be used to measure arterial pulse wave 

velocity, which is an indirect estimate of vessel distensibility, or compliance, 

and can visualise the boundary between the intimal and medial layers. Low 

arterial compliance, which may be due to abnormal vascular structure, has 

been associated with cerebrovascular disease. [157] Thus, changes in vascular 

structure and compliance may act as markers for cardiovascular and 

cerebrovascular risk. 

It has been hypothesised that the importance of polymorphisms in the 

RAS is that, even if they are not directly involved in the pathogenesis of 

hypertension, they modify the response of the cardiovascular system to 

elevated blood pressure. Numerous studies have therefore studied the 

relationship between genetic variation in the RAS, hypertension and vascular 

structure. 

Castellano et al studied carotid artery intima-media thickness (INff) in 

199 members of a randomly selected population from the Vobarno region in 

Italy, who were genotyped for the ACE I/D polymorphism. [158] A 

multivariate analysis showed that carotid IMT was significantly higher in DD 

69 



subjects than in ID or Il subjects. The study was, however, confounded by 

the fact that a higher proportion of II homozygotes was on antihypertensive 

therapy than in the other two groups. A similar finding has been reported in a 

group of patients with type 11 diabetics - though this study did not find an 

association with femoral artery IMT and again analysed for possession versus 

absence of the D allele. [159] 

Several similar studies have investigated the effect of the Al 166C 

polymorphism of the ATIR on vascular structure. Benetos et al studied the 

relationship between possession of the C allele and pulse wave velocity (hence 

arterial compliance) in normotensive and hypertensive patients. The C allele 

was found to be associated with higher pulse wave velocity and lower arterial 

compliance. [160] A further study investigated the interaction between this 

polymorphism and treatment of hypertension with a calcium channel blocker, 

nitrendipine, and the ACE inhibitor - perindopril. [161] Treatment with 

perindopril reduced pulse wave velocity (increased compliance) to a greater 

extent in carriers of the C allele than in AA subjects, whereas treatment with 

nitrendipine had the opposite effect. Thus a genetic marker in the RAS 

influenced vascular structure and appeared to determine the response to 

treatment. However, although this work is provocative, it has not been 

replicated. Castellano et al failed to show a relationship between the Al 166C 

polymorphism and either carotid IMT or blood pressure in a similar 

study. [ 162] 
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In conclusion, there is considerable evidence that genetic variation in 

the RAS may influence cardiovascular structure and risk. However the 

strength of the associations remain uncertain and it, is likely that their 

importance (and particularly that of the ACE I/D polymorphism) has been 

over-stated. The existence of numerous contradictory studies engenders 

scepticism, which is compounded by lack of evidence of, an intermediate 

phenotype to link genotype and phenotype. In addition, mechanisms by which 

polymorphisms in non-coding regions of these genes can, influence their 

expression have not been described. Authors have consistently suggested that 

the ACE I/D and ATIR A1166C polymorphisms, for example, may be in 

linkage disequilibriurn with regulatory elements, but these have yet, to be 

identified or characterised at a molecular level. - It is equally possible that they 

are also in linkage disequilibrium with other major loci. Further work is 

clearly required to determine whether specific polymorphisms, or 

combinations of polymorphisms, will be useful in quantifying cardiovascular 

risk or guiding treatment. Future studies will need to consider other 

candidate genes, both within the RAS and distinct from it. Other studies are 

already being performed which do not depend on the knowledge of a 

candidate gene but instead use the tools of population genetics, to identify 

useful markers. Finally, the possibility of gene-gene and gene-environment 

interactions adds another layer of complexity to an already confusing subject. 
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1.4 Alternative Angiotensin H Generating Pathways 

tII, IiI 

In recent years the "classical vieV' of the RAS has had to be modified 

to incorporate the likelihood of local AII generation and has been expanded to 

include the study of the genetic variation in its ý expression. Furthennore, 

alternative enzymatic pathways for AII generation have recently been 

discovered. 

Inhibition of the Renin-Angiotensin System (RAS) is a cornerstone of 

the treatment of cardiovascular and renal disease. ACM reduce symptoms, 

slow the progression and improve mortality in chronic heart failure (CBF) and 

their use is now, virtually obligatory in that syndrome. [163] Similarly, they 

slow the progression of chronic renal failure (CRF), an effect that cannot be 

explained simply by their anti-hypertensive action. [164] However, despite 

their manifest benefits,, mortality in I patients with CIHF treated with ACEi 

remains high, and their use slows, but does not stop the progression of CRF. 

One explanation for the limited effectiveness of ACM in these situations is 

that other neurohumoral systems are activated, and that these are not 

susceptible to inhibition of the RAS. For example, the sympathoadrenergic 

system is activated in CBF - hence the benefit of P-blockers in this syndrome 

- and the endothelin system is activated in glomerulosclerosis. [165,166] 

Alternatively the effect of ACEi may be limited by incomplete inhibition of the 

RAS. Strategies that maximise the suppression of the RAS may be associated 

with greater clinical benefits. This would be consistent by the results of the 
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ELITE I study in which treatment with an ATIR antagonist in patients with 

CHIF was associated with a greater reduction in mortality than conventional 

treatment with captopril. [167] Clearly these viewpoints are not mutually 

exclusive. In this section I shall describe the evidence that ACM fail to 

adequately suppress the RAS and go on to suggest possible explanations for 

this. 

Clinical Evidence of Incomplete Suppression of the RAS by 

ACE Inhibitors 

ACEi block the final step in the generation of AII. Their use is 

therefore associated with an acute fall in the plasma concentration of AII and 

this is usually regarded as their predominant mode of action. However studies 

of the long term use of ACM do not show a consistent fall in AII. In one 

study, while plasma AII levels fell acutely after oral administration of 

enalapril, at 24 hrs they had risen significantly, despite continuing low plasma 

converting enzyme levels. [168] After six months of treatment AII levels, 

measured 12-16 hrs post dose, were not significantly different in patients 

receiving enalapril compared to placebo. Despite this, blood pressures in the 

active drug group were reduced. Similarly, in the CONSENSUS trial, in 

which patients with severe (NYHA class IV) CBF were randomised to 

enalapril vs. placebo, long term suppression of ACE was established, but AII 

was only partially suppressed. [169] In another small study of patients with 

CBF, left ventricular ejection fractions (LVEF) were measured before and at a 
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mean of 42 months after administration of an ACEi. [170] At the end of this 

period plasma AII concentrations measured in the patients treated with ACEi 

were higher than those measured in age and sex matched patients without 

CHF, not on ACEL In the majority of these patients LVEF had fallen during 

this period, indicating progression of CHF despite treatment. ', 

Physical exercise is known to be associated with renin release and 

activation of the RAS. Accordingly, in a further study of the ability of ACEi 

to reduce AII levels, the effect of captopril on the exercise-induced rise in AII 

was studied in normal human subjects. [171] After 3 days of treatment with 

captopril 50 mg thrice daily the baseline, *pre-exercise, plasma AII was 

significantly reduced. However, the subsequent rise in AII during exercise 

was not significantly suppressed in the ACM treated group compared to 

placebo. 

1.4.2 ý Mechanisms by which All may overcome ACE Inhibition 

There are two main mechanisms by which AII may be able to escape 

the effects, of ACEL The first, relates to the kinetics of the enzymes 

contributing to AII generation, together with the pharmacokinetics of ACEL 

The second mechanism relates to the existence of a number of alternative 

enzymes able to catalyse the conversion of Al to All and thus bypass ACE., 

Although the existence of ACM has focused attention on this enzyme, 

the conversion of angiotensinogen to Al by renin is thought to be the rate 

limiting step in the RAS. Treatment with an ACEi is associated with an 
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increase in renin, and in turn, AI levels, by interruption of the negative 

feedback loop. Thus, towards the end of a dosing interval with an ACEi, AII 

will be generated by a "mass action" effect through residual ACE activity and 

will tend to return to its baseline concentration. This is demonstrated in 

Figure 1.3, 'which shows the time course of plasma renin, Al and AII after 

administration of enalapril in humans. Similarly, Juillerat et al found that 

plasma AII levels returned to normal less than 24 hrs after administration of 

enalapril or benazepril, despite the fact that ACE was still suppressed - 

continuing production of AII being driven by the persistently high plasma 

renin and Al levels. [ 172] These data may explain the flat dose response curve 

of ACE inhibitors. [ 173]. 

It follows from this argument that combined ACE and ATIR 

inhibition may have. additive effects. Thus administration of an ACE inhibitor 

might blunt the rise in AII that occurs when the feedback loop is interrupted 

by blockade of the ATIR and similarly blockade of the receptor might blunt 

the effect of rising AII levels driven by the high AI level that results from 

inhibition of ACE. Azizi et al tested this hypothesis by examining the effects 

of 10 or 20 mg of enalapril and 10 mg enalapril + 50 mg losartan on blood 

pressure and active renin in normotensive sodium depleted volunteers. [ 174] 

The combination caused a greater fall in blood pressure than 10 mg enalapril, 

alone and a much more prolonged fall than was achieved by doubling that 

dose. 
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Figure 1.3: Time course of plasma renin. AI and All following administration 

of enalapdl (data adapted from Azizi et al)[174] 
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The potential benefitS of combined ACE and ATIR blockade in heart 

fail6re have been investigated in a pig rapid pacing model which exhibits 

progressive changes in left ventricular function and neurohormonal activation, 

similar to those which occur in clinical CBF. [175] Treatment of the pigs with 

benazeprilat ameliorated the increase in left ventricular"end-diastolic diameter 

and reduced plasma noradrenaline to a greater extent than treatment with the 

ATIR antagonist, valsartan. However, the combination was more effective 

than either drug alone. In aiimilar study of humans with CHF, Baruch et al 

studied the effect I of .a, ddition of 'Valsartan or placebo . to standard ACE 

therapy. ( 176] This was 'associated with an improvement in both 

haernodynamic parameters, such as pulmonary capillary wedge pressure and 

pulmonary artery diastolic pressure, and the neurohormonal profile as 

assessed by plasma aldosterone and noradrenaline. ' The authors also 
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measured plasma AII levels at baseline and after administration of valsartan. 

At baseline AII was within the normally reported range in all patients, despite 

treatment with an ACEi, and it did not rise after administration of valsartan - 

exactly as predicted above. 

1.4.3, ý' Non-ACE pathways for AH generation I 

The octapeptide All is formed -by cleavage of the C-terminal 

dipeptide, I-Es-Leu, from the precursor,, decapeptide AL ACE is 

conventionally thought be largely, responsible for this conversion, in human 

tissues. ACE has low requirements for substrate specificity: requiring the 

presence of a terminal COOH group and the absence of proline in the 

penultimate position in the peptide. It therefore catalyses the cleavage of a 

number of peptides, including bradykinin and enkephalins (see above). Just as 

the actions of ACE are not specific to the generation of AII, so the cleavage 

of Al may be mediated by a number of other enzymes. Moreover, in-vitro 

other enzymes are able to generate AII by cleavage of AI and directly from 

angiotensinogen. Thus, AII formation as a result of the action of trypsin, 

chyrnotrypsin, tonin, cathepsin G and kallikrein has been described. [177] 

Kallikrein appears to be bifunctional depending on the local pH conditions. 

At low, pH it favours the generation of AII directly from angiotensinogen, 

while at higher pH it will generate kinins, thus contributing to the so-called 

"kinin-tensin7' system. [ 178] This may have significance in ischaernic tissue, in 

which the pH is low. This hypothesis was tested in nephrectornized dogs, 
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after occlusion of the left anterior descending artery. AII generation, assayed 

in blood extracted from the coronary sinus, was inhibited by aprotinin 

(trasylol) but not captopril. This suggests that a serine protease effective at 

the low pH induced by ischaemia may generate AII. That the dogs had 

undergone bilateral nephrectomy strongly suggests that the reaction was 

independent of renin and the protease responsible has subsequently been 

identified as kallikrein. [179] The physiological role of, these reactions in 

humans is not known. Human urinary kallikrein has been shown to generate 

AII from both angiotensinogen and AI in-vitro. [180] However, the amount 

of AII liberated directly from angiotensinogen was considerably lower than 

that from AL Nonetheless these data suggest that the kinin-tensin system may 

also be physiologically relevant in humans. 

Further evidence of the role of serine proteases as putative AII 

generating enzymes follows from experiments in a number of other animal 

models. Thus, Okunishi et al demonstrated that an ACEi reduced, but did not 

abolish, the contraction of vascular strips from the mesenteric and pulmonary 

arteries of dogs and monkeys to AL [ 18 1] However, addition of chymostatin, 

a serine protease inhibitor of chymase and chymotrypsin, abolished the 

contraction. Inhibition of AII generation by vascular extracts followed the 

same pattern. This non-ACE, chymostatin-sensitive component of Ang II 

generation has been termed "CAGE. " 
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1.4.4 Role of chymase in AH generation-' ' 

Interest in non-ACE AII generation in human tissues, although known 

to occur through 'the action of serine proteases in-vitro, was further 

stimulated by Urata et al who studied AII generation in membrane 

preparations from normal and failing human hearts. [182] Normal hearts were 

those that were unsuitable donors for cardiac transplantation and failing hearts 

were those removed from recipients. Membrane fractions were prepared from 

left ventricular tissue and AII formation was examined, by incubation with 

[125 I]-labelled Al. Surprisingly captopril was able to reduce All formation by 

only 11% in normal and cardiornyopathic hearts. In contrast the serine 

protease inhibitor, SBTI (soybean trypsin inhibitor), reduced cardiac AII 

formation by 80%. This observation strongly suggests that a dual pathway 

for AII generation exists in human - myocardial tissue in-vitro, one - limb 

mediated by ACE and the other by a serine protease. In a further study Urata 

et al isolated the AII generating serine protease from cardiac membranes using 

high salt extraction, gel filtration and BPLC chromatography. [ 183], From the 

amino-acid sequence the enzyme was identified as a member of the chymase 

family and was named human heart chymase (HHC). Subsequent biochemical 

characterisation showed that HHC has an optimum pH for AII generation of 

7.5-9.0, is very specific for the AI-AII conversion, and has a very high 

catalytic rate (some 20 times higher than ACE). [184] The gene encoding 

HHC was then cloned and a cDNA identified. [ 18 5] 
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1.4.5 Biochemistry and molecular biology of chymase 

- ýChymases are enzymes generally associated with mast cells, in which 

they are contained in secretory granules. Unlike, digestive proteases, 

chymases are not stored as proenzymes, but as the active form. Analysis of 

the N-terminal sequence and comparison with the cDNA suggests'that the 

proenzyme is cleaved and activated at an early stage of vesicle maturation. 

Both heparin and histarnine at low pH inhibit the conversion of the proenzyme 

to the active form. [186] Chymases are serine proteases that catalyse'the 

hydrolysis at the C-terminal of peptides, usually after an aromatic amino acid 

such as Phe, - Tyr and Trp. In rodents they exist as a number of isoforms and 

glycoforms, encoded by different genes. Thus, mice appear to have 'five 

chymases (designated mouse mast cell. proteases, MMCP), MMCP 1-5. [187] 

Rats have RMCP 1-5. [188] Humans appear to have only one gene, for 

chymase and isolates of the enzyme from human heart, skin and tonsil have 

identical amino acid sequences, although there may be multiple 

glycoforrns. [189] McEuen et al. recently identified two major distinct forms 

of human chymase, B and C, that differed in their affinity for heparin and 

eluted at different concentration of NaCl on heparin-agarose 

chromatography. [ 190] A further peak, chymase A, did not bind to the 

column and was considered to be a contaminant, complexed to proteoglycans. 

These chymases had similar molecular weights and were both recognised by 

the same antibody, but had different tissue distributions. Chymase B was the 

predon-iinant form identified in the skin and heart, but chymase C was 
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predorninant in the lung. - The authors were unable to show that these two 

chymases were products of different genes, but their distinct. biochemical 

properties suggest that they may be functionally different. 

Human chymase is unusual in having a -high degree of substrate 

specificity. Initially it was thought that AI, from which it cleaves the Phe8- 

His9 dipeptide to liberate AII, was the only substrate. - In contrast RMCP 2 

cleaves the Tyr4-Ile5 bond in AI and hence acts as an angiotensinase. Recent 

phylogenetic analysis of chymases suggests that there are, in fact, two distinct 

groups, cc and 0. [191] cc-chymases include HHC, dog chymase and RMCP 3. 

These enzymes cleave AI to AII but are unable to hydrolyse AII further 

because the Tyr4-Ile5 bond is resistant to'their action. P-chymases include 

RMCP I and 2'and NMCP 1,2 and 3 and these act as angiotensinases. 

Three-dimensional molecular modelling suggests that the different substrate 

specificity resides in the electrostatic properties of the substrate binding 

sites. [ 192] 

The different specificities of the various chymases may be the reason 

that there are marked species differences in AII forming pathways. Animal 

experiments 'have not uniformly identified non-ACE AII generation, or 

CAGE. There is clearly a species difference between humans and fodents. 

The contractile response to Al in rat and rabbit vascular strips is completely 

blocked by captopril and unaffected by'chymostatin, 'whereas in human 

vascular strips captopril has little effect. [193] 'Balcells'et al studied AII 

generation in membranes prepared from the left ventricles of humans, dogs, 
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mice and rats. [ 194] Membranes were, extracted in either high or low 

detergent (HD or LD), with the expectation that ACE, being membrane- 

bound in-vivo would localise to HD preparations and chymase to LD. AII 

forraing activity could be identified in both HD and LD fractions . and - was 

greatest in the human heart compared to animal hearts. ý, This difference was 

attributable to chymase dependent AII generation in the LD fraction, which 

was much greater than ACE dependent generation in the HD fraction. Akasu 

et al studied species and organ differences in AII generation using a similar 

method. [195] AII generating capacity was greatest in extracts of lung tissue 

and in all species (dog, rabbit, hamster, pig and marmoset),, except humans, 

this was predominantly due to ACE. In humans chymase like activity 

predominated over ACE in the lung, heart and aorta: Chymase activity was 

significant in all species except the rabbit, in which very -little non-ACE AII 

generation was identified. 

1.4.6 Tissue distribution of chymase I. I 

Functional and ultrastructural studies suggest that ACE and chymase 

are spatially disssociated. In a study of cat femoral arteries the response to AI 

was incompletely inhibited by captopril. [196] Endotheliurn removal had a 

similar effect to captopril, but there was no additional inhibition when 

endothelium-denuded arteries were incubated with the ACEL Chymostatin 

induced further inhibition in these vessels suggesting that the location of ACE 

is primarily the endothelium, with further AII generation occurring within the 
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vessel wall, probably catalysed by chymase. A similar situation pertains in dog 

arteries, where non-ACE AII generation is predon-dnantly adventitial. [197] 

I Urata used immunohistochernistry and in-situ hybridisation to study 

the location of human chymase. The levels of expression were also examined 

using western blotting. [198] In the heart chymase was identified within 

secretory granules of mast, cells and in the interstitium, associated with the 

extracellular matrix. ,, Some endothelial cells, also contained granules. 

Chymase -activity was greater in the ventricles compared to the atria. 

Chymase could also be detected in coronary artery, aorta, kidney and spleen, 

though at very low levels in the latter two organs. - In a subsequent study 

chymase was detected at high levels in the alimentary tract, especially the 

oesophagus and stomach, the tonsils and the colon. [199] Moderate levels 

were detected in cardiac ventricles and the lung, with low levels in atria and 

aorta. There was some discrepancy between the ý chymase expression as 

detected by western blotting and activity determined by bioassay, with skin, 

coronary artery and renal cortex all showing high levels of enzymatic activity, 

but lower levels of expression. The reason for this was not clear, but did not 

appear to be due to the activity of cathepsin G because the enzymatic activity 

was aprotinin-insensitive. 

1.4.7 AH generation by chymase in the heart --- I 

The studies by Urata and his group suggest that the majority of All 

generation in the human heart is mediated by chymase, located largely in the 
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interstitium and -in mast cells. The potential importance of this was 

emphasised by a study by Shiota et al who studied chymase gene expression in 

the heart of the cardiomyopathic hamster. [200] Chymase gene expression 

was found to be increased in the early stages of the condition, concurrent with 

the development of fibrosis, while ACE expression was unchanged. 

However, whether chymase is the pre-dominant AII generating enzyme in the 

heart has been challenged in a number of studies which highlight the 

importance of experimental methodology in this field. 'I 

1.4.7 Importance of experimental methodology in assessing the'role 

of chymase ,IýI 

The major criticism of in-vitro studies of AII generation is that 

homogenisation of cardiac tissUe may 'release intracellular and bound 

extracellular chymase, presenting Al to an enzyme that would not normally be 

accessible to it. Thus, the apparent predominance of chymase mediated AII 

generation might reflect the technique used to assay for it. Zisman et al 

studied AII generation across the intact heart and in solubilised left ventricular 

membranes obtained from hearts removed from the recipients of 

transplants. [201] In intact hearts 125 I-Al was infused into the left main 

coronary artery at the time of coronary catheterization, with sampling from 

the coronary sinus and femoral vein to allow calculation of AII generation. 

After 6 minutes of -AI infusion a simultaneous infusion of enalaprilav was 

commenced in order to examine the effect of an ACE inhibitor on AII 
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generation. 'In a separate study a membrane fraction from left ventricular 

tissue -was solubilised in a buffer containing 0.6% Triton-XIOO and 

extensively dialysed against 0.01M Hepes to remove residual ACE inhibitor. 

AII generation by the membrane preparation was then measured in the 

presence and absence of enalaprilat. In marked contrast to the results of 

Urata, AII generation across the myocardial bed was reduced by 89% in the 

presence of enalaprilat and by 85% in the homogenized tissue. A similar 

experiment in dogs was performed by Balcells et al. [202] They showed that 

AII generation across the intact myocardial bed was inhibited by 60% in the 

presence of captopril, but by only 6% in homogenised tissue. Further doubt 

has been cast on the ability of chymase to generate AII in-vivo by the work of 

Kokkonen et al who showed that the activity of the enzyme in homogenised 

myocardial tissue was almost fully inhibited in the presence of interstitial 

fluid. [203] 'Since, chymase is, located mainly in the interstitium, this 

experiment suggests that the contribution of chymase to AII generation may 

be less that was previously supposed. 

I, The results of these studies may be explained by the detergent content 

of the medium in which AII generation was assayed, as suggested in the study 

by Balcells et al. [194] Thus, - solubilisation of heart tissue with a high 

detergent concentration, as in the method applied by Zisman, may result in the 

loss of chymase from the sample and retention of ACE. Wolny et al studied 

this directly and found that when the method of Zisman et al was applied there 

was large fall in AII generation due to the loss of chymase activity from the 
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sample. [204] Although this experiment suggests that chymase is, indeed, 

responsible'for the majority of AII formation in homogenised heart tissue, it 

does not explain the dominant role of ACE when conversion across the 

myocardial bed is studied. Urata showed that chymase is not present in the 

circulation and thus it is likely that intravascular AILformation is mediated by 

ACE, probably located on the endothelial surface. [197] 

1.4.8, Non-ACE AH generation in the vasculature ý-- 

The role of chymase in angiotensin II generation in the vasculature has 

also been studied in both humans and animals, -,, As previously discussed non- 

ACE angiotensin II generation has been shown in large arteries from the cat 

and dog. [195,196] Mangiapane et al studied the pressor effect of AI and 

Pro", D-Ala 12_Aj (SUB) on isolated superior mesenteric arteries from the 

I 
dog. [205] SUB is an AI analogue that is resistant to ACE, but is cleaved by 

chymase to release AII. [206] Both AI and SUB were able to contract canine 

arteries. Responses to Al were inhibited by captopril, but this could be 

enhanced by combining captopril with chymostatin. The response to SUB 

was not reduced by captopril but was inhibited by chymostatin. , Thus, there 

appeared to be both ACE and non-ACE All generation in these vessels. SUB 

was also used to investigate ACE-independent conversion of Al in an intact 

vascular bed - the isolated cat hindlimb preparation. [207] Again SUB was 

able to induce vasoconstriction, which was subject to inhibition by an ATIR 

antagonist, candesartan, but not by captopril.. 
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,-I Takai et al were able to extract chymase from human gastroepiploic 

arteries and the same group studied the contractile response to AI in these 

vessels. [208,209] Lisinopril reduced the contraction to 100n. N4 AI by 30%, 

but addition of chymostatin increased this to 96%. Similarly the generation of 

AII in homogenised gastroepiploic arteries was reduced by 92% in the 

presence of chymostatin, but by only 14% in the presence of-lisinoPril. The 

natural protease inhibitor (x-antitrypsin also reduced AII generation in 

homogenised vascular tissue, however, it had very little effect on AII 

generation by vascular slices, suggesting that, in intact tissue, chymase is less 

susceptible to natural protease inhibitors than previously supposed. Wolny et 

al studied the contraction of isolated, coronary arteries taken from hearts 

removed - at the time of transplantation , (4 patients with - idiopathic 

cardiomyopathy and 4 with ischaemic heart disease). [204] Their results were 

very similar, in that there was little -effect of the ACEi'cilazapril alone, but 

significant inhibition could be achieved with chymostatin and this could be 

enhanced by combining the two. Voors et al studied the contractile response 

to both AI and the ACE dependent analogue [Prolo]-AI in human internal 

mammary arteries. [210] Here captopril slightly inhibited the response to Al, 

shifting the dose-response curve to the right, but the ACM nearly abolished 

the response to Pro"-AI. Chymostatin also inhibited the response , to AI, 

with a similar shift in' the dose-response curve. The combination of 

chymostatin and captopril caused much greater inhibition of the response to 

AI, shifting the dose-response curve and also reducing the maximum 
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response. Veins also contract to Al and All. Borland et al studied human 

saphenous veins and found a similar pattern of response and inhibition to that 

seen in arteries. [211] Thus, the response to AI could not be inhibited by 

quinalprilat, but was very significantly inhibited by quinalprilat and soybean 

trypsin inhibitor (SBTI, which is known to inhibit chymase) together. 

In addition to mediating pressor responses, AII generated by chymase 

may exert a trophic role in the vasculature. Chymase is induced by balloon 

injury to the dog carotid artery and monkeys fed a high cholesterol diet 

display marked activation of the enzyme in the atherosclerotic aorta. [212, 

213] Shiota et al studied the response of the canine carotid artery to balloon 

injury and showed, not only that chymase was induced in the injured region, 

but that pre-treatment with the mast cell stabiliser, tranilast, very significantly 

reduced the intimal hyperplasia that occurred as a consequence. [214] The 

same group also provided evidence that chymase-induced AII generation was 

involved in the response by showing that the ATlR antagonist, candesartan, 

also reduced intimal hyperplasia after balloon injury. [215] 

1.4.10 Non-ACE AH generation in other tissues 

Chymase expression and non-ACE AII generation have been studied 

in a number of tissues other than the heart and blood vessels. There are high 

levels of chymase in the pineal and pituitary glands but whether it is 

responsible for AII generation in the brain is, however, not known. [216] 
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Chymase may be an important AII-generating enzyme in the renal and 

urogenital systems. AI causes contraction of human detrusor muscle and this 

can be inhibited by SBTI. [217] This response of detrusor muscle is inhibited 

only slightly by enalaprilat, but addition of the *specific chymase inhibitor, 

CH5450 (a peptide inhibitor designed to inhibit chymase) causes additional 

inhibition. [218] Again, the functional significance of AII generation in the 

bladder is not known. 

Rat glomeruli convert Al to AII and this can be reduced by 80% in the 

presence of chymostatin. [219] The role of non-ACE AII generation in the 

intact canine kidney was studied by infusion of AI and [Pro' l D-Ala 12]_Aj into 

the renal artery while arterial blood pressure and renal blood flow were 

measured. [220] Both peptides elicited a rise in blood pressure and reduced 

renal blood flow, though AI was effective at lower doses. Using an intravital 

needle probe the ability of these peptides to influence glornerular 

haernodynamics, through vasoconstriction of the efferent and afferent 

arterioles, was also studied. Again both induced a contractile response, but 

that induced by AI was greater. Interestingly, the sensitivity of the afferent 

and efferent arterioles to AI was similar, though previous studies have 

suggested that postglomerular vessels are more sensitive to All than 

preglomerular vessels. The intrarenal All concentration, before and after 

injection of peptide into the renal artery, was also measured directly by needle 

biopsy from the cortex. Both AI and [Pro" D-Ala 12]-AI increased renal 

cortical AII. 
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Renal AII -generation is difficult to study in-vivo in humans. An 

indirect method is to compare the effect of ACM, renin inhibition and ATIR 

blockade on renal plasma flow. [221] Although ACEi might be expected to 

increase renal plasma flow to a greater degree than renin inhibition, due to 

kinin-mediated vasodilation in addition to reduction of AII generation, they 

are substantially less effective. , ATIR blockade is as effective as renin 

inhibition, suggesting that there is a renin-dependent; ACE-independent, AII 

generating pathway in the human kidney. 

These studies demonstrate that 'non-ACE pathways exist in intact 

tissue, and furthermore, that they are physiologically significant in an organ 

that is a major target for AII and is fundamentally involved in cardiovascular 

regulation. 

1.4.11 Functions of chymase outwith the RAS 

Although it has been suggested that the only substrate for chymase is 

AI, recent evidence suggests that there are others, and that generation of AII 

is not the only function of chymase. The endothelin system has become a 

major focus of cardiovascular research since its discovery by Yanagisawa in 

1988. [222] Endothelin 1 (ET-1) is a 21 amino acid peptide that is the most 

potent vasoconstrictor yet identified and is the major form produced by 

vascular endothelial cells and in the heart. It is derived from a precursor, big- 

ETI, by the action of endothelin converting enzyme (ECE) and has a major 

role in regulating vascular resistance. The system also includes endothelins 2 
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and 3, derived from their own precursors and encoded by separate genes (big 

ET-2 and big ET-3). Endothelin levels are elevated in heart failure and renal 

failure, suggesting that the endothelin system is part of the neurohormonal 

activation that occurs in these conditions. [223] Recent work suggests that 

human, but not rat, chymase (RMCP 1), is able to cleave the Tyr'I_GIY32 bond 

within the big endothelin peptides. [224] This generates a novel set of 31 

amino acid endothelin peptides, ET 1(1,31)ý ET 2(1,31) and ET 3(1,31). 

Preliýninary studies i indicate that these peptides are able to constrict rat 

trachea, and that this cannot be blocked by phosphorarnidon (which blocks 

ECE), suggesting that further cleavage to the 21 amino acid derivative is not 

required. [225] , Further studies have shown that these novel endothelin 

peptides can also constrict porcine coronary artery and induce an increase in 

intracellular calcium in cultured, human vascular smooth muscle cells. [226] 

This latter action appears to be mediated through the ETA receptor, since it is 

blocked by the, selective antagonist BQ123. The role of chymase as an 

endothelin conveFting enzyme and the biological actions of these novel 

endothelins clearly requires further study. 

Since chymase is expressed by mast cells it might be expected to play a 

role in inflammatory responses. Injection of human chymase into the skin of 

guinea pigs induces an increase in microvascular permeability which can be 

blocked by SBTI. [227] This is associated with local accumulation of 

neutrophils and eosinophils. [228] In addition to facilitating the recruitment of 

inflammatory cells, chymase activates the potent pro-inflammatory cytokine 
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EL-10. [229] 'Other important actions *of chymase include the activation of 

procollagenase (matrix metalloproteinase 1), suggesting that it may play a role 

in tissue remodelling. [230] Mast cells accumulate at the shoulder region of 

coronary artery plaques and, ' in autopsy the' number of 

degranulated mast cells at the site of plaque rupture relative'to unruptured 

plaques *or normal coronary artery intima, is incr'eased. [231,232] Inanother 

study mast cells associated with coronary a. rtery plaques were shown to 

contain significant quantities'of the inflammatory mediator TNFýa. [233] A 

recent 'study "showed that chymase dependent AII generation in'homogenised 

human internal mammary - arteries correlated with ' total ", and LDL 

cholesterol. [234] Thus it is 'Possible' to 'speculate that mast cells may 

contribute to atherogenesis and, by releasing chymase, histamine and TNF-cc, 

contribute to the inflammatory reaction that may precede plaque rupture. In 

addition to the pielinuýaiý evidence that links chymase'to atherosclerosis 

there have also been suggestions that this enzyme may also induce apoptosis 

in cardiomyocytes. Hara et al studied the effect of co-culture of rat neonatal 

cardioMYocytes withraast cell granules and observed apoptosis that could be 

prevented by pre-treatment with SBTI. [235] Using a specific neutralising 

antibody, the specific chymase responsible for apoptosis was'identified as 

RMCP-1. 

In summary it is becoming clear that AII . -may be generated by non- 

ACE pathways in the heart and the vasculat'u're, in 'addition to aI numb IeIr of 

other tissues. It is also clear that the enzyme largely responsiblefor 6ypassing 
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ACE in humans is chymase. However there are still many questions left to be 

answered. -In particular, the physiological role of chymase is uncertain and its 

regulation unknown. Still less is known about the contribution of chymase to 

the pathophysiology of conditions such as heart failure and hypertension, in 

which the RAS is fundamentally important, although the existence of non- 

ACE pathways may be an important therapeutic consideration. There are 

currently no specific inhibitors of chymase available for use in humans and so 

in-vivo experiments cannot be performed. Furthermore, while non-ACE AII 

generation has been demonstrated in human large and medium sized arteries, 

similar studies have not been performed in resistance arteries, which, as 

discussed below, play an important role in cardiovascular regulation. 

1.5 Resistance Arteries: Physiology and Pathophysiology 

1.5.1 , Small arteries are resistance vessels 

As the work in this thesis concerns the regulation of AII generation in 

human resistance arteries, the structure and function of these vessels will be 

considered further. The physiology of small arteries and their role in 

regulating peripheral resistance in normal and pathological states has been 

comprehensively reviewed byMulvany and Aalkjaer. [236] The. importance of 

these vessels lies in their ability to regulate the distribution of blood to 

peripheral organs, through variation of their diameter and hence resistance to 
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flow. The vessels that contribýte substantially to peýnpheral resistance are 

known as resistance arteries. ' The precise definition of resistance arteries is 

unclear: formerly it was thought that the major site of peripheral resistance lay 

at the level of arterioles (those vessels with no more than one complete layer 

of smooth muscle cells). , However studies of the pressure drop across a 

variety of vascular beds in several animal species suggest that up to 50% of 

the peripheral resistance lies proximal to vessels with diameters of 100 grn 

(Figure 1.4). Although studies of this nature have not been made in the 

human, vasculature it is assumed that the properties of human blood vessels 

are similar to those observed in animals. Mulvany and Aalkjaer suggested 

that small arteries with diameters of less than 500 "gm which contribute 

substantially 'to the peripheral resistance be 6onsidered as resistance 

arteries. [236] This definition takes into account the functional studies 

mentioned above, together with previous histological definitions. 

Small arteries control resting peripheral resistance through 

haemOdynamic properties related to their struCture and their tone. 'In-vivo 

small arteries have pronounced active tone which may be modulated by two 

major mechanisms: 

Local or intrinsic control 

Peripheral resistance may be modulated by the' action of tissue 

metabolites and autocrine factors and responses to physical factors'sUch as 

flow, wali stretch and pressure. Thus arteries constrict 'in respo nse to 

increased intravascular pressure and 'this can be shown to relate to both 
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longitudinal stretch and internal pressure. [237] , While both responses are 

calcium dependent, ! the stretch response appears to be endothelium- 

independent but the pressure induced response is abolished by removal of the 

endothelium. [238] Flow-mediated vascular responses are a function of shear 

stress, which is the force per unit area acting in the direction of blood flow at 

the endothelial surface. It is a function of both the vessel radius and the blood 

viscosity. Flow-mediated vasodilation has been shown to occur in both 

conduit and resistance arteries, and is endothelium-dependent in most 

preparations thus far studi6d. [23 9,240,24 1] 

Extrinsic neurohumoral reszulation 

Resistance arteries receive external stimuli from autonomic nerves 

and circulating endocrine factors., Neural control of vascular tone is effected 

by a plexus located within the adventitia. Axons run along the adventitia- 

media junction but, in the systemic circulation, do not penetrate the media. 

Three classes of nerves have been identified: vasoconstrictor sympathetic 

nerves, vasodilator sympathetic and parasympathetic nerves and peripheral 

small sensory nerves. The predominant vasoconstrictor neurotransmitter is 

norepinephrine (NE), which is released by stimulation of sympathetic nerves. 

Co-transmission of NE and ATP has been identified, with the latter mediating 

rapid excitatory junctional potentials which surnmate to produce early 

depolarization via P2 (purine) receptors. Slow prolonged depolarization is 

due to NE acting mainly on the cc, receptor. [242] Vasodilator autonomic 

nerves appear to act via ACh release and antidromic stimulation of 
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nociceptive sensory nerves is known to induce vasodilation through the 

release of CGRP and Substance P. [243] A number'of circulating hormones 

may also regulate vascular tone. * These include catecholamines, principally 

adrenaline and NE which mediate vasoconstriction via a, (and possibly CC2) 

receptors and vasodilation via 02 receptors. Other endocrine vasoconstrictors 

include AII, enjothelin and vasopressin. Vasodilation may be mediated 

through BK, ANP and Purines. [244] 

Figure 1A Pressure drop through hamster cheek pouch circulation . 
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Fig 1.4 demonstrates that the majority of the fall in pressure is at the level of 

small arteries and arterioles and to significant degree occurs within vessels of 

> 100 gm diameter. Trom Davis et al. [245] 11 
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1.5.2 - Regulation of resistance artery function by AH 

AII regulates resistance artery structure and function by a number of 

distinct, but inter-related, mechanisms. , 
All causes vasoconstriction directly 

through its effects on vascular smooth muscle cells. This is mediated by the 

ATI receptor through the IP3 pathway and an increase in intracellular 

Ca". [246,247] In addition to a direct effect on smooth muscle cells All may 

also increase vascular tone indirectly through facilitation of sympathetic 

stimulation of the vessel. Thus All potentiates sympathetic neurotransn-dssion 

in peripheral nerves by increasing norepinephrine release and reducing its re- 

uptake. at nerve endings. [248,249] Indeed,, there is evidence for an 

interaction ý between local noradrenergic neurotransmission and locally 

generated AII, with AII release stimulated by the P adrenergic receptor. [250] 

The evidence cited in the section on the local RAS suggests that resistance 

arteries are capable of generating AII through the action of ACE on locally 

generated AI and that this acts as a paracrine agent to influence vascular tone., 

A third mechanism by which All may modulate vascular tone is 

through its influence on the endothelium and, in particular, on nitric oxide 

synthesis. AII is known to induce a counter-regulatory increase in NO 

synthesis which offsets AII mediated vasoconstriction. [251] Recently 

Ackermann, et al showed that the contractile response to AI in rat vessels was 

reduced by direct nitric oxide donors such as SIN-1, suggesting that while AII 

induces NO synthesis, NO may have the opposite effect on local AII 

generation through ACE. [252] A further mechanism through which AII and 
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NO may interact arises through the action of vascular superoxide anion (-027). 

This free-radical can reduce bioavailable NO and impair endothelium- 

dependent relaxation. AII induces -02- production in human internal 

mammary arteries through activation of the ATIR. [253] -Other studies have 

shown that AII infusion may induce endothelial dysfunction and an increase in 

-027 production. [254] Thus AII stimulated NO synthesis maybe offset' by the 

scavenging actionof superoxide. 

In addition to short term effects on vascular tone, AII may also have 

chronic effects on vascular structure. When infused into rats at a dose below 

the threshold' for a'cute vasoconstriction, * AII 'raises blood 'pressure 

progressively over the course of a few days. [255] This is associated with 

increases in media thickness, media/lumen ratio and media cross-sectional area 

in the mesenteric vascular bed. When rats were treated with hydralazine'to 

prevent the -increase in blood pressure, similar changes in the mesenteric 

vessels were still observed, suggesting that the effect of AII was blood 

pressure-independent. [256] Thus, AII may have a long-term trophic effect on 

resistance arteries. This trophic effect of AII on artery structurd may also be 

mediated through an interaction with other vascular regulators. There is 

evidence that the local vascular RAS and NO systems interact in the long- 

term regulation of vascular Structure. Takemoto et al showed that vascular 

remodelling and myocardial hypertrophy could be induced in rats by treatment 

with L-NAME which inhibits endothelial nitric oxide synthase. [257] This was 

associated with an increase in'myocardial and aortic ACE activity and both 

98 



the vascular changes and the increase in ACE activity could be attenuated by 

treatment with the ACEi, temocapril. 

The ability of resistance arteries to respond to vasoactive agents and 

neural stimuli enables acute regulation of peripheral resistance and allows 

regulation of blood flow to individual organs. However, of equal importance 

is the long term regulation of vascular structure. The best evidence that the 

structure and function of resistance arteries is altered in a pathological state 

comes from studies in hypertension. 

1.5.3 Abnormalities of resistance artery structure and function in 

hypertension 

Established essential - hypertension is associated with. increased 

peripheral resistance. [258] While there is evidence that an increased response 

to vasoactive agents may be partly responsible for this - as suggested by an 

enhanced pressor response to infused agonists - the observation. - that 

peripheral resistance is increased under conditions when the vasculature is 

completely relaxed (e. g. - during reactive hyperaernia) suggests that essential 

hypertension is associated with structural changes in small arteries. [259,260] 

These structural changes may take several forms; increased resistance could 

be due a reduction in the internal diameter, an increase in -length, or 

rarefaction (reduction in the number, and therefore cross-sectional area), of 

peripheral vessels. Moreover while abnormal haemodynamic responses have 

been shown in some studies, others have not replicated these findings; indeed 

99 



increased vascular reactivity in hypertension per se does not imply a causal 

relationship, since it may be related to basal tone (contractility being related to 

the degree of stretch imposed on the vessel), which -is itself influenced by 

blood pressure. 

These, problems have led to the development of in-vitro techniques 

which allow the study of defined isolated vessels under standardised 

conditions. - Perfusion and wire myography (see methods) allow the study of 

resistance arteries under defined transmural pressures, allowing quantitative 

structural and fiinctional comparisons to be made. - These techniques have 

been utilised in a series of landmark studies by Mulvany's group in Aarhus 

and Heagerty in Manchester. Thus, Aalkjaer et al showed that essential 

hypertension is associated with a 29% increase in media to lumen ratio in 

resistance arteries from human subjects. [261] This was associated with an 

increased maximum contractile response to NE, vasopressin and AII,, with no 

change in sensitivity to any of these agents. When corrected for the increased 

media thickness the force production per unit of smooth muscle (active media 

stress) was found to be unchanged compared to normotensive controls, 

suggesting that the increased pressor response was due to altered vascular 

structure and not to abnormal smooth muscle cell function; if anything 

calcium sensitivity (tested by the response to standard NE activation in the 

presence of varying calcium concentrations) was reduced in vessels from 

hypertensive subjects. These findings have been confirmed using pressure 

myography and in addition defective endothelium-dependent vasodilation to 
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ACh was identified. [262] , The * arteries studied were dissected fi-om 

subcutaneous gluteal fat, taken under local anaesthesia. Although small 

arteries supplying skin may not be the best model for the human vasculature, 

their accessibility has led to this technique being widely adopted. , 

Structural changes in peripheral resistance 'arteries arise from a 

combination of two processes: eutrophic remodelling and hypertrophic 

remodelling. [263] This is illustrated in Figure 1.5. In eutrophic remodelling 

there is rearrangement of existing material in the media around a smaller 

lumen, resulting in a greater media-lumen ratio and reduced external diameter. 

Hypertrophic remodelling involves a thickening of the media resulting, in a 

reduced lurninal' diameter,, but leaving the external diameter ý unchanged. 

These processes can co-exist, leading to the development of "remodelling" 

and "growth' ' indices to try to quantify their relative contributions. [264] 

It is thought that eutrophic remodelling predominates in mild essential 

hypertensives, but hypertrophic remodelling predominates in models of severe 

hypertension, such as I-kidney, 1-clip Goldblatt rats, -and in secondary 

hypertension. [260,265] Thus, in one study the morphology of resistance 

arteries from patients with secondary hypertension (primary 

hyperaldosteronism, phaeochromocytoma and renovascular hypertension) and 

essential hypertension were compared to normotensive controls. [266] Media- 

lumen ratio was increased in all hypertensive patients, but media cross- 

sectional area (consistent with growth rather than remodelling) was increased 

only in patients with renovascular hypertension, with a smaer and non- 
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significant growth' effect'observed in'primary, hyperaldosteronism. The 

authors speculated that this was, due to -the activation of the RAS that 

accompanies renovascular disease. 

,: Indirect evidence that the RAS 'may be , involved in . vascular 

hypertrophy and remodelling, independent of any effect on blood pressure, 

may also be inferred from studies of the effects on ACM on small artery 

structure. Thus, in a -double blind randomised trial of treatment ý with 

. perindopril or atenolol in subjects with essential hypertension, a reduction in 

media-lumen ratio and an increase in lumen diameter were observed only with 

the ACEi, ' despite a greater, fall in blood pressure obtained with the 0- 

blocker. [267] Similarly Schiffrin showed that treatment with cilazapril was 

associated vvith, a reduction in -the media-lumen ratio of subcutaneous 

resistance arteries from patients with essential hypertension while atenolol had 

no effect. [268] 

Figure 1.5: Hypertrophic versus eutrophic remodelling of resistance arteries 

Hypertrophic Hypothetical cross-sections 
of vessels undergoing 
growth and remodelling. 
Growth is associated with a 
smaller lumen, but the 
external diameter of the 

Eutrophic vessel is unchanged. 
Remodelling is associated 
with rearrangement of 
existing material around a 
smaller lumen, and thus both 
internal and the external 
diameters are reduced. 
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Although the" evidence cited above suggests that hypertension is 

associated with changes in resistance artery structure and an increased 

peripheral resistance, this does, not necessarily imply a causal relation. An 

increase in media-lumen ratio, by normalising media stress, ý may be an 

adaptive response to raised intravascular pressure. Thus, it is interesting to 

note that in the vessels studied by Aalkjaer the degree of blood pressure 

elevation correlated with the increase in media-lumen ratio. In addition the 

greater efficacy in normalising vascular structure observed - with ACEi than 

with other anti-hypertensives suggests that neurohumoral mechanisms, and in 

particular the RAS, may influence vascular structure independent of blood 

pressure. Mulvany suggested that, while structural changes in the vasculature 

certainly increase peripheral resistance, the level of blood pressure may be set 

elsewhere in the cardiovascular system. [236] 

1.5.4 1 Abnormalities of resistance artery structure 'and function in 

chronic heart failure IIII I- 

Chronic heart failure is associated Mth neurohormonal activation at an 

early' stage of the disease. Poor myocardial performance and falling cardiac 

output result in activation of the sympathetic nervous system and a rise in 

plasma catecholamines. [269,270] Also, a fall in renal perfiision pressure 

r esults in sodium retention, probably mediated by, the action - of 'AII, and 

aldosterone at the distal tubule. Stimulation of renal sympathetic nerves'also 

promotes sodium retention. Thus, patients with early. cardiac failure are 
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unable to excrete sodium when given a high salt diet, despite normal, renal 

haemodynamics. [271] Sodium excretion is normalised by enalapril, 

emphasising the role of the RAS. I-Egh circulating levels of NE and AII (as 

well as - vasopressin, epinephrine, doparnine and endothelin-I) increase 

peripheral resistance through vasoconstriction, and volume expansion occurs 

secondary to sodium retention. 

In addition there is thought to be endothelial dysfunction in CBF. 

Thus, vasodilation mediated by ACh in the forearm resistance bed; as assessed 

by venous occlusion plethysmography, and flow-mediated dilation of conduit 

arteries (which is endothelium dependent) are reduced. [272,273] These 

changes, though initially adaptive, overload the failing myocardium and 

contribute to the progression of the syndrome. 

Although it is widely accepted that peripheral resistance is increased in 

heart failure there have been very few studies looking directly at the structure 

and function of resistance arteries from patients with CHF. Angus et al 

studied resistance arteries from 6 patients, with symptomatic CBF and 

compared them with healthy controls. [274] Vessels were obtained from 

gluteal fat, following the method of Aalkjaer et al. Maximum responses to 

NE, AI and AII were significantly reduced in vessels from patients with CBF, 

with no change in agonist sensitivity (as assessed by EC50, the concentration 

for half maximum response). In addition, responses to ACh were reduced (in 

only 2/6 vessels studied was any response obtained), but relaxation with an 

endothelium-independent agonist, sodium nitroprusside, was normal. In one 
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vessel a rightward shift in the concentration-response curve to AI was seen in 

the presence of enalaprilat. No structural data was ý obtained in this small 

study and it is possible that the poor response to ACh was due to damage to 

the endothelium at the time of dissection or mounting of the vessels. More 

recently, Stephens et al studied 27 patients with heart failure, who were a 

subset of those recruited for the Acute Infarction Ramipril Study (AIRE), and 

compared them with 10 healthy controls. [85,275] As part of the AIRE study 

protocol patients with clinically evident heart failure were randomly assigned 

to treatment with, the ACEi, ramipril, from 3-10 days post, myocardial 

infarction. The degree of heart failure was mild (Left - ventricular ejection 

fraction 41 ± 4%) and'patients with severe (NYHA grade IV) heart failure 

were excluded from the study. Resistance arteries were obtained from gluteal 

fat biopsy and arterial wall morphology, together with the responses to AII, 

NE, ACh and electric field stimulation, studied using wire myography. There 

were no differences in 'wall morphology (media-lumen ration and cross 

sectional area) between control or either patient group, though lumen 

diameter tended to be higher and media-lumen ratio lower in arteries ftom 

patients treated with rarnipril. In contrast to the previous study, responses to 

NE and AII in the control and placebo treated OF group were the same, 

implying that there was no difference in the responses to vasoconstrictor 

agonists as a result of heart failure. However, response to AII and NE were 

significantly enhanced in patients treated with rarnipril. The authors 

suggested that this may represent an interaction between AII and NE, possibly 
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it the level of the ATIR. Again, in contrast to previous findings, there was 

no difference in the response to ACh between groups, except at high 

concentiations where there was an apparent reduction in the response ý in 

patients treated with ramipril. 

Studies of human resistance arteries in other pathological states have 

been limited. Aalkjaer et al'studied vessels obtained from gluteal biopsy in 20 

patients with, renal failure, requiring dialysis. [276] The patients were 

heterogeneous in terms of aetiology of renal failure and 2 had received a renal 

transplant previously. ý ý The patients were subdivided into 3 groups according 

to whether they were'currently hypertensive and receiving anti-hypertensive 

medication, Previously hypertensive but not currently receiving medication, or 

had never, been hypertensive. No differences in vascular morphology were 

observed between any patient group and controls, though there was a 

correlation between blood pressure and media-lumen ratio. Similarly, no 

differences were observed in the response to NE, AII or activation by 

potassium depolarization. These results are surprising given the vasculopathic 

state and'Ievels of blood pressure commonly associated with uraemia. 

However it was an early study and more subtle alterations in morphology and 

endothelial function may be detected in future. 
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1.6 Summary iI-1 -1 1 1- 

There is considerable evidence that abnormalities in peripheral 

resistance vessels contribute to the pathophysiology of hypertension and CBF. 

The RAS is clearly implicated in the control of vascular structure and tone 

and the greater ability of ACM to normalise the structural abnormalities seen 

in hypertension argue for a role for this neurohormonal system in their 

aetiology. However, little is known about the regulation of the RAS in 

resistance arteries. In this thesis I shall concentrate on three major issues: 

I The existence of a local RAS in human resistance arteries 

There is little direct evidence that an active local RAS exists in human 

resistance arteries, though the evidence cited in section 1.2 would suggest that 

this is very likely. 

2 Influence of RAS genotype on phenotype of resistance arteries 

Although genetic variation within the RAS can be shown to influence its 
I 

systemic activity, no similar intermediate phenotype has been shown in the 

resistance bed. 

3 Non-ACE AII generation in resistance arteries 

There is evidence that AII generation may occur through non-ACE pathways 

in the heart and large arteries, but this has not been adequately demonstrated 

in resistance vessels. 
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The work presented in this thesis is 
1, 
therefore a study of the actions, 

mechanism of generation and regulation of AII in resistance arteries from 

human subjects. 
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"Chapter 2 

Materials and Methods, 
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2.1 - Study of Resistance Arteries using Wire Myography: I 

Introduction 

q,, 

Contractile responses of human resistance arteries were investigated in 

two separate studies. The first was in healthy volunteers and New Zealand 

white rabbits, the second, was in patients with chronic heart, failure and 

coronary heart disease. 

The initial aim of the project in healthy volunteers, was to investigate 

the role of the ACE I/D polymorphism in determining the response of human 

resistance arteries to AL Thus, after initial genotyping, only subjects who 

were homozygous at either the I or D alleles of the ACE gene I/D 

polymorphism were invited to participate in the study. However, the protocol 

was subsequently modified because preliminary data suggested that the role of 

the I/D polymorphism might be less than had been expected, due to the 

possibility of non-ACE AII generation. It was then decided that selection 

according to genotype was unnecessary. This obviously had the additional 

benefit of speeding recruitment. Owing to difficulties in recruiting healthy 

volunteers willing to undergo gluteal biopsy abdon-dnal wall fat biopsies were 

obtained from healthy patients undergoing hernia repair. Responses obtained 

from healthy human subjects were compared with those from a control 

species, the New Zealand White rabbit. - This species was ý chosen because 

tissue was readily available in the laboratory and because it has been used as a 
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model of CHF, in which the possibility of non-ACE AII generation is 

important. 

The results of the study of AI mediated responses in healthy volunteers 

stimulated a further study in patients with CHF, treated with ACEi, compared 

to patients with CHD who were ACE-nalve. This study was performed in the 

light of the results obtained from experiments on resistance arteries from 

normal volunteers and was carried out in collaboration with Professor JJV 

McMurray and Dr MC Petrie. Dr Petrie recruited experimental subjects and 

carried out gluteal biopsy and echocardiography. I dissected resistance 

arteries, performed all myography and analysed the data. 

Stated here are details of the methods common to all myography 

studies, namely materials, artery preparation, myography normalisation 

procedures and statistical analysis. Also included are details of preliminary 

experiments which were performed prior to the main studies. Details of 

patient selection and specific experimental protocols are included in the 

relevant chapters. 

2.1.1 Materials 

Human AI, AII, bradykinin, noradrenaline and acetylcholine were 

purchased from Sigma (Sigma-Aldrich, UK). 'Chymostatin was purchased 

from Bachem (Safron-Walden, UK) and enalaprilat was a gift from Merck, 

Sharp and Dohme Ltd. CH5450 was a gift from'Ferring Research, 
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(Southampton, UK). All myography experiments were per-formed, on a 

Mulvany-Halpern four channel myograph (JP Trading, Aarhus, Denmark). 

2.1.2 , Human cutaneous resistance artery preparation -ý 

In most patients studied, a subcutaneous ýgluteal fat biopsy -, was 

performed under local anaesthesia with 1% lignocaine. Following the method 

of Aalkjaer et al an ellipse of skin 1.5cm x 0.5 cm was excised and adherent fat 

dissected. free to a depth of approximately 1.5cm. [276], . -This was placed 

immediately to cold 0.9% NaCt solution and then transferred to cold Kreb's 

solution (composition. in mM: NaCl 118.4, KCL 4.7, MgS04. H20 1.2, 

KH2P04 1.2. Na HC03 24.9, CaC12.2.5, - glucose . 11.1, EDTA 0.023 which 

gives a pH of 7.4 when gassed with a 5% C02 / 95% 02 mixture). 

Subcutaneous fat biopsies were also obtained from the abdominal wall 

of male patients undergoing routine open -hernia repair. This method of 

obtaining resistance arteries from human subjects was described by Aalkjaer et 

al, who found no difference in the properties of vessels from the two sources 

when mounted in a wire myograph. [276] These samples were of skin and 

adherent fat taken from the initial skin incision by sharp dissection. Diathermy 

was not used prior to obtaining the biopsy. The biopsy was immediately 

transferred into cold 0.9% NaCl solution and then to Kreb's solution. 

Resistance arteries were dissected free of fat using watchmaker's 

forceps and spring scissors, under a Zeiss dissecting microscope. Care was 

taken to avoid handling the vessels directly to minimise traumatic damage. 
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This was achieved by handling the vessel using a side branch that was not 

subsequently -mounted in the myograph, or by handling adherent connective 

tissu-e. Once free, vessels were placed in fresh cold Kreb's solution and stored 

overnight at 4"C, after first extruding any'residual blood from the lumen by 

gentle manipulation with forceps. Approximately 24 hrs after the biopsy the 

vessels were divided into segments approximately 2mm in length. ' ýThe aim 

was to obtain 4 resistance arteries and usually these were segments from one 

longer vessel. Resistance arteries were then mounted on'two 40pm diameter 

stainless steel wires in a four channel Mulvany-Halpern myograph. In this set 

of experiments the responses of cutaneous resistance arteries from a control 

species, in this case, the rabbit, were also studied. Details of the rabbit 

cutaneous 'artery preparation are given below. 

2.1.3 Rabbit cutaneous resistance artery preparation 

After sacrifice a flap of skin from the area overlying the gluteal muscles 

was removed. On the deep surface of the skin flap the cutaneous vascular 

network could be seen, with arteries and veins running parallel to each other. 

An artery of suitable size was selected and dissected free from overlying 

connective tissue using the same instruments as described above. During 

dissection the surface of the skin flap was kept moist by applying Kreb's 

solution. Vessel preparation was as described above. 
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2.1.4 The Mulvany-Halpern Myograph 

The myograph was first described by Mulvany and Halpern in 

1977. [277] This device allows the study of vessels with diameters in the range 

of 100-1000ýim. Parameters that can be determined with this device include 

isometric' responses to agonists, internal diameter normalised for transmural 

pressure and simple morphological measures, such as wall thickness and 

adventitia, 'media and intima thickness. In this technique segments of artery, 

approximately 2mm in length. are mounted as a ring preparation on two 40 

gm 'diameter stainless 'steel wires, using a no-touch technique -as far as 

possible. ' A schematic diagram of the myograph is shown below in Figure 2.1. 

Figure 2.1 The Mulvany-Halpern Myograph (not to scale) 
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The force transducer was connected to a specially designed myo-interface and 
thus to a chart recorder, allowing the force across the vessel wall to be 
recorded. The preparation was bathed in Kreb's solution which could be 
extracted using a suction device. The myograph was kept at 37' C during the 
experiments by an in-built heater and thermostat. 
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The experiments described in this section were all performed in a four- 

channel myograph. This consisted of a base-unit on which were mounted four 

myograph blocks, and thus allowed the study of four arteries simultaneously. 

Once each vessel had been obtained it was cannulated either in a Petri dish or 

by threading it onto a wire already fixed in the myograph. The second wire 

was then passed down the lumen taking care to avoid touching the endothelial 

surface. Both wires were secured under screws such that, as the screw was 

tightened, tension was applied to the wire, ensuring that the wires were taut 

and that slippage could not occur as the vessel contracted,, or was stretched in 

the normalisation procedure. Any part of the vessel protruding from the jaw 

of the myograph was cut away and if it extended into the jaw a longitudinal 

incision was made to the vessel wall, to ensure that this segment was not able 

to contract. Using a micometer eyepiece that had previously been calibrated 

using a graticule, the length of the vessel was then measured to the inner edge 

of the jaw. Using the micometer the heads of the myograph were then moved 

together until the wires were just touching and the micometer reading at that 

point, xo, was recorded. This was done either under direct vision using the 

microscope, or could be determined from the chart recorder, which gave a 

sudden negative reading at that point, as the force across the vessel wall fell to 

zero. 
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2.1.5 Normalisation 

The reasons for following a normalisation procedure are threefold. 

Firstly, it is obvious that the size of an elastic structure, such as a blood vessel, 

is influenced by the transmural pressure, and that this needs to be defined. 

Secondly; the'active response of the vessel is dependent, on ý the degree of 

stretch it is under. Thirdly; the sensitivity, of the vessel to pharmacological 

stimulation is'also influenced by stretch. For this reason the size of the vessel 

is first determined at a given transmural pressure and then set to the pressure 

at which contraction is optimal. Following the original work from Mulvany's 

group the internal circumference of the vessel was determined for a transmural 

pressure of 100 mmHg (IC, oo = 13.3 kPa), with the vessel relaxed. The size of 

the vessel that was optimal for contraction was the IC, = 0.9 x IC, oo. This was 

determined by Mulvany's early work on rat mesenteric arteries, and it was 

assumed throughout -these myography studies that the properties of human 

arteries are sinffir. [277] III 

Normalisation was performed by exploring the passive internal 

circumference - tension relationship of the artery. Each artery was distended 

stepwise, using the micrometer, and the tension developed across the wall was 

measured using the chart recorder. The Laplace equation relates effective 

internal pressure, wall tension and internal circumference. Thus: 
.,, - 

Pi = Wall tension / (internal circumference /2.7r) 

Where Pi is the effective pressure 
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The internal circumference was calculated from the micrometer reading 

(subtracting the reading taken when the wires were just touching, xo, for each 

successive stretch) and the known'diameter of the wires. Wall tension was 

calculated from the force measured across the -wall, divided by twice the 

segment length (which had been measured using the - micrometer eyepiece). 

The force was measured from the displacement ý of the pen on the chart 

recorder, which had previously been calibrated against a force of known 

magnitude. Thus for each distension a micrometer reading and chart reading 

were taken. In practice these were entered into a computer, or programmable 

calculator, able to calculate the, actual values from the readings, given the 

relevant calibration factors. , The stepwise distension was continued at one 

minute intervals, to allow for "stress relaxation" (with the force recording 

being taken at the end of each interval), until the effective pressure exceeded 

100 mmHg. At that point the computer fitted an exponential curve to the 

internal circumference - pressure data and determined the point corresponding 

to 100 mmHg. This gave the ICIOO, as described above. From this the IC, 

could be calculated and the computer was able to interpolate the equivalent 

rnicrometer reading. The vessel, was then set to that reading. The internal 

diameters equivalent to the ICIOO and ICI, L100 and, L, respectively were 

calculated from the equation L= IC /. 7c. The aim was to study arteries in the 

range of L, = 250 -350 pm, but they were not discarded unless L, was greater 

than 500gra (using Mulvany's definition of resistance arteries [2361). 
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2.1.6 Experimental protocol 

In prelin-dnary experiments normalisation was followed by activation of 

each artery through exposure to KPSS, on three occasions, followed by one 

exposure to KPSS and norepinephrine (NE) 10 pM together (NEK), with the 

intention of examining the maximum contractile capability of the vessel. , ACh 

was - added on the - plateau achieved with NEK in order to stimulate 

endothelium-dependent vasodilation. This protocol was discontinued because 

there was concern that failure to achieve significant vasodilation in vessels pre- 

contracted with NEK might reflect the, unphysiological nature of the 

stimulation, and not damaged endothelium. Thus the protocol was modified 

to include activation with KPSS twice and NE 10 pM once. After a plateau 

contraction had been attained with NE (defined as a stable contraction for at 

least 2 minutes), ACh 3W was added to the bath. Vessels that were unable 

to contact to either KPSS or NE, or that showed no relaxation to ACh (and 

were therefore considered to have no functionally intact endothelium), were 

discarded. 

2.1.7 ' Experimental protocols: human vessels 

Preliminary experiments'were performed in order to establish that AI 

was able to elicit a contraction in human subcutaneous resistance arteries, and 

to compare this response with that elicited by AII. In addition, the effect of 

inhibition of the AI response with the ACE inhibitor, captopril, and the ATIR 

antagonist, losartan, were investigated. In the light of these experiments the 
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protocol was modified to investigate the effect of the ACE inhibitor, 

enalaprilat and a chymase inhibitor, CH5450, on the responses to AL CH5450 

is a peptide designed to inhibit chymase specifically. [278] Concentrations used 

were enalaprilat, IpM and CH5450, lOpM. Since a review of the literature 

suggested that the action of chymase is commonly defined in terms of 

inhibition by bacterial product, chymostatin, a more formal study was then 

designed to investigate the response to Al in the -presence of enalaprilat, 

chymostatin and their combination in arteries from normal patients. Details of 

the experimental protocol are given in chapter 3. Experimental protocols in 

patients with OF and CHD are shown in chapter 5. 

2.1.8 Experimental protocol: rabbit vessels 

Rabbit vessels underwent a similar standard activation to human 

vessels. Dose-response curves to. Al were constructed over the same 

concentration range as for human vessels. Preliminary experiments suggested 

very marked inhibition in the presence of enalaprilat. The effect of chymase 

inhibition was studied using CH5450. Since-AII generation has been 

described by serine proteases, such as cathepsin G and kallikrein, which are 

inhibited by trasylol, the effect of this inhibitor was also studied in rabbit 

vessels. The full protocol is given in section 3.2. 
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2.1.9 'Data Presentation and Statistical analysis 

1ý Coniractile responses were expressed as an increase in active effective 

pressure (P, mmHg), calculated as -an increase in isometric tension (T) above 

resting divided by the normalised internal radius. Because there was great 

variability in the magnitude of the responses of the arteries to AI and AII, 

responses -to these agonists were expressed as the % of the response to 'a 

standard vasoconstrictor. '' For this, I chose the response to the second 

exposure to KPSS at plateau. 

Where possible, agonist potency in the presence or absence of inhibitor 

was expressed in terms of the EC50, values, - this being the concentration 

required to produce 50% of the maximum response. The EC50 was derived 

from fits of each separate curve (calculated directly by interpolation in 

NEcrosoft -Excel spreadsheets, using the "FORECAST" function). To 

facilitate analysis, these values were also expressed as the PD2 - which is the 

negative logarithm of the corresponding EC50 and is a whole number. 

Maximum responses were taken directly from the curves. 

Since some responses did not achieve a clear maximum even at the 

highest concentration of agonist, EC values could not be calculated for all 

curves. Thus, in an initial analysis, the -area under the curve was calculated for 

each concentration-response curve (using the response normalised to j(PSS) 

by a simple trapezoidal rule. This gave a dimensionless numerical value 

expressing the contractile response. ' Calculation of, the AUC is given in 

schematic form in figure 2.2. 
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' Responses, to AI for each inhibitor were then compared as a group 

with control responses. An Anderson-Darling test for normality was made on 

responses as expressed as AUC. This determined whether parametric or non- 

parametric statistics were used. Thus, for responses to Al in normal human 

volunteers, where a matched control was not available for all curves, a Mann 

Whitney U test was employed. AUC was also calculated for responses to BK 

and, because a matched control was available for all experimental curves, a 

Wilcoxon Rank Sum test was employed. Analyses were performed using 

SPSS or Nfinitab software. Analysis of data obtained from patients with CBF 

or CHD was performed in the same way, for the sake of consistency. Where 

data appeared to be described by a normal distribution, paired or unpaired t- 

tests were performed, as appropriate. 

Re-consideration of the analysis of angiotensin dose-response curves in 

the absence of a clear maximum response led to an analysis of variance 

(ANOVA) procedure being employed. This was employed to compare EC50 

and maximum responses where there was a clear maximum. Where no clear 

maximum could be identified, the threshold concentration - defined as the 

concentration at which a response was first observed - was noted for each 

individual dose-response curve. This followed the suggestion of Voors et al, 

who faced similar problem in analysing the response of human internal 

mammary arteries to angiotensin 1. [210] Threshold concentrations were then 

compared by ANOVA using GraphPad Prism software (GraphPad Inc). An 

appropriate correction for multiple comparisons (Dunnett's or Bonferroni - 
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depending on whether each experimental curve was compared only to control 

or to other experimental curves as well) was made and ap value of less than 

0.05 (after correction) was considered significant. In the text the results of 

both methods of analysis are described and any discrepancies are discussed. 

Figure 2.2: Calculation of AUC 
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AUC was calculated using a simple trapezoidal rule. Based on the 

schematic above the equations would be: 

Wx (b-a) + ([0.5 x (b-a)] x (X-W» + (X x (c-b) + [0.5 x (c-b) x (Y- 

X)ll ... etc 
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2.2 Experiments with human internal mammary arteries in an 

organ bath 

Details of patient selection, vessel preparation and experimental 

protocols are given in chapter 6. Statistical analysis was based on the methods 

employed in studies of human resistance arteries. -Thus, the responses to Al in 

IMAs were expressed as the percent contraction to that elicited by 80mM KCI 

in that vessel. Analysis was similar to, that performed for resistance arteries. 

Thus the EC50 and maximum response were used to compare curves by 

ANOVA. For the sake of consistency with previous analyses AUC was also 

calculated using the same simple rule as for resistance arteries. Mean AUC 

values were compared as a group for each experimental curve compared to 

control, using a Mann Whitney U test. 
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2.3 Identification of ACE and Chymase in human internal 

mammary arteries: Studies using immunohistochemistry 

This study was performed in collaboration with Dr George Lindop in 

the Department of Pathology, Western Infirmary. Vessel preparation was 

performed by Mr Niall Whyte. Immunohistochemistry (1111C) was performed 

by Mr Iain Downie, using established methodology within the Pathology 

Department. 

Patient details are given in chapter 7. Vessel preparation and standard 

operating protocols for immunohistochernistry are stated in the appendix to 

this chapter. 
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2.4 Appendix to Methods 

Included in this appendix are details of standard methods that were 

being employed in the laboratory and which were used in the preparation of 

this thesis. 

2.4.1 Genotyping for the ACE gene I/D Polymorphism 

A sample of whole blood was drawn from each patient into a standard 

5nd K-EDTA bottle. This was stored in a -20"C freezer. DNA was extracted 

using a modified standard procedure. [279] Genotyping for the ACE I/D 

polymorphism. was then done in two batches - these samples being included in 

protocols being run as a routine in the laboratory by Dr Cathy Clark. The first 

batch (patients 1-20) was analysed using a 2-primer PCR; the second (patients 

21-47) utilised an updated 3-primer PCR. Both protocols are given below. 

A) 2-Primer PCR for the ACE I/D PolyLnorphis 

The I/D polymorphism is located in intron 16 of the human ACE 

gene. The D allele arises from the absence of a 287 base pair sequence from 

this intron. Initial genotyping was performed using a modification of the 2- 

primer method developed by Rigat. [280,281] This gives a 190 base pair (bp) 

fragment in the absence of the insertion (D allele) and a 490 bp fragment in the 

presence of the insertion (I allele). DNA was incubated with the following 

reaction mixture: 
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Commercial PCR buffer without M902 (Promega Ltd, 

Southampton UK) 

MgC12 3. Ommol/I 

dATP, dCTP, dGTP, dTTP (Promega) 0.5mmolfi each 

DMS05% 

Taq DNA Polymerase IU (Promega) 

Primer 1: 5'CAGGAGACCACTCCCATCCTTTCT 3' 

Primer 2: 5'ý GATGTGGCCATCCACATTCGTCAGAT 3' 

Cycling conditions were as follows: 

Initial denaturation 94"C for 3 rnin 

30 cycles of 94'C for I nýn, 58*C for I min, 72*C for 2min 

Final extension 72'C for 2 min 

The PCR product was visualised after electrophoresis on 1.5% agarose 

gels with ethidium bromide staining. The results were subsequently checked 

using a third primer to avoid mistyping of ID for DD (see below). [281] 

B) 3-Primer PCR for the ACE I/D Polymo! phis 

-, This method utilised a "nested" PCR primer situated within the 

insertion sequence of the I allele. -Genomic DNA (50ng) from each subject 

was added to a well of a microtitre plate and dried down at 60'C for 25 

minutes. Reaction mix (25gl/well) was then added containing: 

Tris HCI (pH 9.0) 10 mmol/I 

KCI 50 mmolA 
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0.1 % triton X- 100 

M902 1.5MMOI/I 

dATP, dCTP, dGTP, dTTP (Promega Ltd, Southampton UK) 

I OOgmol/I each 

DMS05% 

Taq DNA Polymerase IU (Promega Ltd) 

Primer 1: 5'CCCATCCCTTCTCCCATTTCTC3' 

Primer 2: 5'GGTTTCACCGTTTTAGCCGGGA3' lOpmoYleach 

Primer 3: 5'CCATGCCCATAACAGGTCTTCA3' 

Cycling conditions were as follows: 

Initial denaturation 94'C for 3 min 

30 cycles of 94'C for I min, 62*C for 1 min, 72'C for lmin 30sec 

Final extension 72'C for 5 min 

PCR products were visualised on a pre-stained 7.5% acrylamide- 

bisacrylamide (19: 1) gel using diagonal gel electrophoresis (MADGE; 

MadgeBio Ltd, Grantham, Lincolnshire UK). The banding patterns of the 3 

possible genotypes were: DD 210 base pair (bp) fragment; 11498 and 264 bp 

fragments; ID 498,264,210 bp fragments. 
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2.4.2 Assays for Renin, - AH, Aldosterone and ACE 

In the study patients with CBF and CHD blood was drawn for 

estimation of plasma AII, renin and alclosterone. These assays were 

performed by Dr JJ Morton, using established laboratory methodology. AII 

and renin were estimated using "in-house" radioimmunoassays. [282,283] 

Aldosterone was estimated using a commercially available radioimmunoassay 

(DPC, Los Angeles, USA). ACE was estimated using established techniques 

in the biochemistry laboratory at the Western Infirmary. 

2.4.3 Immunohistochemistry 

A) Materials ,, II 

Murine anti-human mast cell chymase monoclonal antibody was 

obtained from Chernicon International Ltd (Harrow, UK). A mouse anti- 

human ACE monoclonal antibody was a gift from Dr F Alhenc-Gelas (Paris). 

Secondary antibodies (human anti-mouse monoclonal antibody) were from 

DAKO Ltd. Alkaline phosphatase and peroxidase substrate kits were obtained 

from Vector Labs (UK). 

B) Human intemal mammajy artejy and skin biopsy preparatio 

Vessels were transferred to the pathology laboratory in cold 0.9% 

NaCI solution. ' They were then divided and one portion was embedded in 

OCT compound and then placed into liquid nitrogen. This was then wrapped 

in aluminium foil and stored at -70'C until required. The other portion was 
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formalin-fixed and embedded in paraffin. Skin biopsies were prepared in the 

same way. 

Standard Operating Procedure 

Indirect immunohistochemistry was employed. Formaldehyde-fixed 

specimens were sectioned on a microtome and mounted on glass slides. 

Frozen sections were prepared on a cryostat at -20*C and transferred to glass 

slides. Primary monoclonal antibodies were diluted in 1% bovine serum 

albunýn (BSA). Thereafter the procedure was as follows: 

1. Frozen sections were air-dryed after sectioning on the cryostat 

2. Sections were then acetone-fixed for 10 minutes and allowed to air- 

dry 

3. Cover sections in 1% BSA in TBS/Tween for 10 minutes at room 

temperature 

4. Serum drained and excess wiped off 

5. Cover sections with primary antibody diluted in 1% BSA and 

incubated at room temperature for I hour 

6. Slide rinsed in TBS/Tween and washed in 2 changes of TBS/Tween 

for 5 minutes each 

7. Slide covered in secondary antibody, appropriately diluted in 1% 

BSA at room temperature for 30 minutes 

8. Repeat step 7 

9. Appropriate substrate solution (alkaline phosphatase or peroxidase) 
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then applied and visualised according to manufacturer's instructions 

10 Counter-stain with haematoxylin 

11 Slides dehydrated in alcohols and xylene, then mounted. 

In preparation of this thesis the original slides were photographed 

using a digital camera. Colour balance and contrast of the resulting images 

were adjusted in Adobe Photoshop. 
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i Chapter 3 

Studies of resistance arteries in norifial Subjects and 

New Zealand White Rabbits: effect of ACE and 

chymase inhibition 

» i-» S 
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3.1 Introduction 

In section 1.4 1 discussed the possibility of non-ACE AII generation in 

human tissue and suggested that this may reflect the activity of the enzyme 

chymase. Urata has demonstrated chymase-depefident non-ACE AII 

generation in the human myocardium. [182] A number of studies have 

investigated the possibility of chymase-dependent AII generation in the 

vasculature, but these studies have concentrated on large and medium-sized 
-ýI Iý1 -1 ,II ýý , 

arteries and veins. Thus, chymase plays an important role in AII generation in 

human gastroepiploic, coronary and internal mammary arteries. [204,208,210] 

However, there have been no studies investigating the role of non-ACE AII 

generation in human resistance arteries. 

The potential importance of the structure and function of resistance 

arteries in cardiovascular disease has been discussed in section 1.5. In 

particular hypertension is associated with remodelling within the vascular tree 

- but whether this is cause or effect is not known. [259,261] Once 

established, however, the increased vascular resistance that results from this 

process may contribute to the maintenance of hypertension and its outcome. 

Since the RAS is a major therapeutic target in cardiovascular disease, the 

possibility of non-ACE All generation in resistance arteries is clearly 

important. 

Small artery structure and function have been extensively studied in 

animal models. However, as alluded to in section 1.4, there are thought to be 
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major differences in the mechanisms of AII generation between species. [192] 

This has implications for study design, particularly if interventions affecting the 

RAS are being contemplated. The aim of the studies presented in this chapter 

was therefore to investigate the possibility of non-ACE AII generation in 

human resistance arteries and compare these responses with those observed in 

a commonly used animal model, the rabbit. 

3.2 , Studies in Human Volunteers ý, ý! 

3.2.1 Volunteer and patient selection 

Non-smoking healthy male volunteers were identified by 

advertisement. ý,, Interested volunteers were invited to attend the Research Unit 

at the Western, Infirmary, Glasgow, where they completed a basic health 

questionnaire. Volunteers -with a history of cardiovascular disease, 

hypertension, diabetes or renal impairment were excluded from the study. All 

subjects gave written informed consent to participate in the study, which was 

approved by the Hospital Ethics Committee. Venous blood was drawn for 

measurement of electrolytes, random glucose and cholesterol. An additional 

sample of whole blood was drawn and placed into a freezer at -20"C for 

subsequent DNA extraction and genotyping for polymorphisms within the 

RAS. After 10 minutes rest, blood pressure was recorded in the right arm, 

sitting, with a standard mercury sphygmomanometer (Accoson UK). A 
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gluteal fat biopsy was then performed according to the method described in 

chapter 2. 

Additionally some volunteers were healthy men who were admitted to a 

surgical ward for repair of inguinal hernia. Only men with no history of 

cardiovascular disease, diabetes, hypertension or hyperlipidaernia were 

included in the study. Blood pressure was measured and blood drawn as 

described above. These patients signed an informed consent form distinct 

from that described above. In these patients, a fat biopsy was taken from the 

edge of the initial incision at the time of hernia repair. Diathermy was not used 

prior to biopsy. 

3.2.2 Experimental protocols 

Resistance arteries were dissected, mounted in a wire myograph and 

normalised as described in section 2.1. They than underwent a standard 

activation to assess their contractile properties. Following this resistance 

arteries were incubated for 30 min in either Kreb's solution alone (control, 

vessel 1) or with enalaprilat IW (vessel 2), chymostatin I OW (vessel 3) or 

both enalaprilat IpM and chymostatin lOpM (vessel 4), respectively. 

Chymostatin replaced CH5450 as the chymase inhibitor because a review of 

the literature suggested that chymase activity is generally defined by its 

susceptibility to inhibition with this product C'CAGE, " see introduction). A 

cumulative concentration response curve (CRQ was then performed to AI 

from O. OlnN4 to 3pM in log molar increments. Arteries were exposed to each 
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had , been reached, whichever was sooner, since it was observed that 

tachyphylaxis developed even during a single dose-response curve. Owing to 

tachyphylaxis, vessels could not be exposed to AI more than once, precluding 

further concentration-response curves to this peptide, or to angiotensin II 

(All). 

In a subset of vessels responses to bradykinin (BK) were investigated. 

Following the dose response curve to AI, baseline was re-established by 

washing with PSS. Vessel 2 was incubated for 30 mins in the presence of 

Enalaprilat IgM, vessel I remaining the control. - Pre-contraction was then 

established with NE I OgM and once a stable plateau had been reached vessels 

were exposed to BK O. OlnM to 3gM. A summary of the experimental 

protocol is given in table 3.1 
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Table 3.1 Experimental protocol for resistance arteries from normal human 

volunteers 

Vessel 
2 3 4 

KPSS 
Standard 
Activation KPSS 

NE 1OpM 

ACh 3xlO-'6gM 

Incubation Control Enalaprilat Chymostatin Enalaprilat 

30 mins Vehicle lpm 10AM + 

Chymostatin 

Al (0.01nM, 0.03nM, O. 1nM, 0.3nM etc ... to 3gM) 
CRC to Al 

Wash to baseline 

Incubate Control Enalaprilat 

30 mins Vehicle 111M 

Pre-constrict 
NE 101M 

CRC to BK 
BK (O. InM, 1nM, 10nM 
etc... to 3pM) 
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3.2.3 Volunteer characteristics 

In total gluteal biopsies were obtained from 29 normal volunteers. Fat 

biopsies from the anterior abdominal wall at the time of hernia. repair, were 

obtained from a further 9 patients. ý Subcutaneous arteries were not obtained 

from all biopsies, and several were discarded according to the criteria 

described in section 2.1 (F). Thus,. the vessels studied came from 13 gluteal 

biopsies and 6 abdominal wall biopsies. - The clinical characteristics of the 

volunteers who underwent gluteal biopsy, and from whom at least one vessel 

was studied, are shown in table 3.2. Similar data is shown for patients from 

whom an abdominal wall fat biopsy was obtained. 

As can be seen from the tables all subjects were normotensive and had 

normal renal function, cholesterol and haemoglobin. None were diabetic. 

Although the age of those patients from whom abdominal wall biopsies were 

taken tended to be higher, there were no significant differences in the clinical 

characteristics of the subjects in each group. 

3.2.4 Characteristics of arteries studied 

Concentration response curves to AI alone (control) were performed in 

15 arteries from separate patients. In early experiments the response to AI in 

the presence of losartan was also investigated (n--3). Subsequent experiments 

examined the response to Al in the presence of enalaprilat (IgM) in 12 

arteries, chymostatin (I OgM) in 6 arteries and the combination of chymostatin 

and enalaprilat (1 pM, I OpM) in 7 arteries. In other experiments the response 
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to Al in'the presence of CH5450 (IOpM or trasylol (IOOU/ml) was 

investigated in 8 and 3 vessels, respectively. The sizes of the vessels in each 

group are given in Table 3.3. Also given in Table 3.3 are the responses of the 

vessels in each group to the second exposure to KPSS, NE and ACh. There 

were no significant differences between control and experimental groups in 

terms of vessel diameter, contractile ability to either NE or KPSS, or 

endothelial-dependent vasodilatation to ACh. 
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Table 3.2 Clinical characteristics of patients studied 

Patients who underwent gluteal biopsy (n7-13) 

All values mean ± SD 

Age BP Creatinine Cholesterol Glucose Haemoglobin 

(years) (mmHg) (PM01/1) (MMOIA) (Mmol/1) (g/dl) 

30.15 128.5/78.6 91.17 4.68 4.79 14.58 

(8.29) (14.0/10.7) (8.88) (0.42) (0.57) (1.10) 

Patients who underwent abdominal wall biopsy (n=6) 

All values mean ± SD 

Age BP Creatinin Cholesterol Glucose Haemoglobin 

(years) (mmHg) e (mmol/1) (mmol/l (g/dl) 

(4moIA) 

39.00 133.0/76.0 86.00 4.75 4.60 14.80 

(17.13) (6.42/12.33) (5.15) (1.26) (0.55) (1.48) 
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3.2.5 Responses of human resistance arteries to Al: The 

effect of inhibition of ACE and chymase 

Arteries constricted to KPSS and NE and were able to maintain 

contraction for several minutes. The response to the second exposure to 

KPS S was larger than the first, -and the response to NE was generally larger 

still. ' ACh induced a near-maximal vasodilation in most vessels. The 

responses'to KPSS and NE given in table 3.3 are the absolute increases in 

effective pressure above baseline (kPa) and the response to ACh ýis the 

reduction in effective pressure as a% of the pre-contraction (thus, full 

relaxation is equivalent to 100%). The data presented below represents only 

vessels that were able to constrict in response to both KPSS and NE and relax 

on exposure to ACh. 

In the absence of any inhibitors, AI induced a concentration-dependent 

contractile response in human resistance arteries with a threshold (defined as 

the concentration at which the first response was detected) of [mean ± (SD)] 

4.04 (4.09) xlO'9M and a maximum at 0.1 W., The response followed"a 

stereotypical pattern, with marked tachyphylaxis developing during the dose- 

response curve. This determined how the CRC was performed. Thus, the 

dosing interval was 4 minutes initially but once the threshold was reached the 

next dose was added when the peak response at that concentration had been 

achieved. A consistent observation was the inability of the artery to maintain 

contraction at high concentrations of AI, giving the dose-response curve a 
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characteristic "inverted U' shape. ,A representative CRC to Al in the absence 

of any inhibitors is shown in Figure 3.1. 

Effect of losartan on responses to Al 

In preliminary experiments the dependence of the contractile response 

to Al on activation of the AT IR, and, by inference, on'conversion to All was 

studied. Arteries were incubated with the AT IR antagonist lo sartan I pM for 

30 minutes before a CRC to AI was performed. A representative trace is 

shown in Figure 3.2. It can be seen from this figure that losartan almost 

completely inhibited the response to Al. This experiment was performed in 3 

arteries. 

Effect of ACE and chMase inhibition on responses to AI 

The effect of co-incubation with enalaprilat, chymostatin, chymostatin 

enalaprilat, CH5450 and trasylol are shown in figures 3.3-3.8., In these 

graphs, responses to AI are expressed as the % of the contraction observed 

with the second exposure to KPSS in that vessel. This was done in order to 

try to control for the variability in the responses to Al that was observed. 

Neither enalaprilat, chymostatin, nor CH5450 inhibited the'response to AL 

Due to the small number of vessels studied it is difficult to draw firm 

conclusions about the effect of trasylol, but inspection of the CRC revealed 

little evidence of inhibition with this agent. The concentrations of Al required 

for 50% (EC50) of maximum contraction in the presence'of enalaprilat, 
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chymostatin and CH5450 are shown in table 3.4. Also shown in table 3.4 are 

the threshold concentrations and maximum responses to Al in the presence of 

these agents. 

In contrast to the lack of inhibition of Al responses in the presence of 

ACEi or chymase inhibitors alone, the combination of enalaprilat and 

chymostatin had a very marked inhibitory effect. The CRC was shifted to the 

right, with a threshold response of 1.55 (1.15) xlO'7M, some 40-fold higher 

than the control response. The degree of inhibition was so marked that the 

maximum response was not achieved within the range of concentrations used. 

Thus neither the EC50 nor the maximum could be calculated for this response. 

In order to compare the response to AI in the presence or absence of inhibitors 

the AUC was calculated as described in methods. AUC values are shown in 

table 3.5. There was no significant difference between the AUC for AI alone 

compared to AI in the presence of enalaprilat (p=0.48), chymostatin (p=0.063) 

or CH5450 (p=O. 12) when these values were compared using a Mann Whitney 

U test. However the AUC in the presence of both enalaprilat and chymostatin 

was significantly lower than control (p=0.028). Thus only the combination of 

enalapril and chymostatin significantly inhibited the response to AL 

In a subsequent analysis the threshold concentrations for Al in the 

presence of each inhibitor were compared to control using one-way analysis of 

variance (ANOVA) with a 4onferroni correction for multiple comparisons. 

When analysed in this way, similar results were obtained i. e. enalaprilat, 

chymostatin and CH5450 alone did not significantly increase the threshold to 
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AI (p>0.05 by ANOVA), but the combination of enalaprilat and chymostatin 

did increase the threshold to AI (p<0.01). 
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Figure 3.3: Concentration-Response Curve to AI: control 
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Figure 3.3 shows the cumulative concentration-response curve to AI in the 

absence of any inhibitors. 
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Figure 3.4: Concentration- Response Curve to Al: effect of enalaprilat I [IM 
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Figure 3.4 shows the cumulative concentration-response curve to Al after 

incubation with enalaprilat for 30 minutes. 
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Figure 3.5: C oncentration- Response Curve to Al: effect of chyMostatin 10gM 
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Figure 3.5 shows the cumulative concentration-response curve to Al after 

incubation with chymostatin for 30 minutes. 
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Figure 3.6: Concentration- Response Curve to Al: effect of CH5450 10j! M 
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Figure 3.6 shows the cumulative concentration-response curve to Al after 

incubation with CH5450 for 30 minutes. 
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Figure IT Concentration-Response Curve to Al: effect of trasylol I OQU/ml 
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Figure 3.7 shows the cumulative concentration-response curve to Al after 

incubation with trasylol for 30 minutes. 
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Figure 3.8: Concentration-Response Curve to Al: comparative effects of 

inhibitors 
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Figure 3.8 shows the cumulative concentration-response curve to Al in the 

presence of inhibitors compared to control. 

* 
p<0.0 I comparing the threshold for combination with that of control 

* 
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Table 3A Potengy of AI in human arteries 

Control Enalaprilat Chymostatin CH 5450 Combination 

n-- 15 n-- 12 n--7 n-- 8 n--6 

EC 50 2.14(l. 97) 3.43(2.10) 2.09(l. 59) 4.36(3.06) N/A 

(xlO-IN1) 

Threshold 4.04(4.09) 5.13(4.40) 2.89(3.41) 18.4(34.4) 155.0 
(X10-9NO (115.0)* 

Maximum 96.11 (67.41) 104.60 72.00 (32.24) 83.96 (15.33) N/A 

Response (121.50) 

(% KPSS) 

Table 3.4 shows the effect of various inhibitors on the potency, threshold and 

maximum response to AL (all values means ±[SD]) 

* p<O. 01 combination vs. control by ANOVA 

Table 3.5: AýC values for Al: effect of inhibitors 

Control Enalaprilat Chymostatin CH 5450 Combination 

AUC 

(mean ± SD) 

163.12 

(128.07) 

169.82 

(215.43) 

113.78 

(73.22) 

111.44 

(53.98) 

29.15 

(73.22)* 

Table 3.5 shows the mean AUC values of Al curves 

* p=0.028 vs control 
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3.2.6 Response of human resistance arteries to bradykinin: Effect of 

Enalaprilat 

These experiments were performed in a subset of vessels, which had 

already been exposed to AL In human resistance arteries pre-constricted with 

NE lOgM, and in the absence of enalaprilat, BK induced a dose-dependent 

vasodilation. The threshold was O. InM and the maximum response 

approached 100%. 

Cumulative concentration-response curves to BK are shown in figure 

3.9. In these graphs the response to BK is expressed as the % of the pre- 

constriction to NE. For each experimental vessel there was a matched control 

and data was normally distributed, allowing the use of parametric statistics. 

Enalaprilat did not influence the maximum response to BK (p=0.32 compared 

to control, by paired t-test). However there was a significant shift in the dose 

response curve to the left. Thus the EC50 for BK in the presence of 

enalaprilat was 4.46 (6.79) xlO-8M compared with 3.33 (6.02) xlO'7M in 

control vessels (p=0.0026, by paired t-test). There were no significant 

differences in the sizes of arteries studied in each group., or their responses to 

NE. Table 3.6 summarises these data. 
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Figure 3.9: 'Response of human resistance arteries to bradykinin: effect of 

enalaprilat I 
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Figure 3.9 shows the cumulative concentration-response curve to BK in 

untreated arteries and those pre-treated with enalaprilat I pM. . The ECSO for 

BK in the presence of enalaprilat was significantly lower than for control, but 

the maximum response was unchanged. 
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Table 3.6: Potengy of BK in human resistance arteries 

Control Enalaprilat 

316.78 306.41 

(diameter, gm, mean (50.71) (68.84) 

1 ±SD) 

Contraction to NE 26.74 28.22 

(kPa, mean ± SD) (9.48) (5.72) 

Maximum response to 94.53 95.18 

BK (12.40) (10.68) 

(% pre-constriction, 

mean ± SD) 

EC 50 3.33(6.02) 0.45 (0.68)* 

(X104M) 

Table 3.6 shows the sizes of arteries exposed to BK. These arteries are a sub- 

set of those described in table 32 under the headings AI control and AI + E. 

There were no differences in the responses to NE, KPSS or ACh during the 

standard activation. Data presented in this table shows no difference in the 

sizes of this sub-set of arteries, or in their response to NE (pre-constriction for 

BK CRC). 

* p=0.0026 vs. control by paired t-test 
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3.3 Studies in New Zealand White Rabbits 

3.3.1 Animals studied 

The animals used in these experiments were sham operated controls for 

a rabbit coronary artery ligation model of heart failure and had normal left 

ventricular function as determined by echocardiogram. Experiments were 

carried out in male rabbits weighing 3.0-3.5 kg. Animals were sacrificed by an 

overdose of pentobarbitone into the ear vein. Biochemical data equivalent to 

human data is not available for these animals. 

3.3.2 Experimental protocols 

The protocol was essentially the same for rabbit cutan ,e. ous arteries, the 

difference lying in the inhibitors used. Rabbit arteries were incubated with 

either enalaprilat IW, trasylol IOOU/ml or CH5450 lOpM. Trasylol is a 

serine protease inhibitor, to which chymase is not susceptible. The 

combination of enalaprilat and CH5450 was not used because the inhibition 

achieved with the former was so marked (see results). Rabbit vessels did not 

appear to relax to bradykinin. The experimental protocol used is surnmarised 

in table 3.7 
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Table 3.7: Experimental protocol for resistance arteries from New Zealand 

white rabbits 

Vessel 
21 3 4 

KPSS 
Standard 
Activation KPSS 

NE 1OpM 

ACh 3x 10-6 PM 

Incubation Control Enalaprilat CH5450 Trasylol 

30 mins Vehicle lpm lopm 10OU/ml 

Al (0.01nM, 0.03nM, O. 1nM, 0.3nM etc ... to 3gM) 
CRC to Al 
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3.3.3 ' Characteristics of Rabbit Arteries Studied 

Dissection of rabbit cutaneous resistance arteries was considerably 

easier than that of human vessels and it was possible to obtain vessels within 

the desired range of normalised internal diameters. Arteries larger than L, = 

350ýLrn were discarded and thus the mean sizes of rabbit vessels was smaller 

than their human equivalents. Rabbit arteries were subjected to the same 

"warm-up" as human arteries. They contracted when activated with KPSS 

and NE and exhibited a vasodilatory response to ACh. Mean internal 

diameters of the arteries studied and responses to KPSS, NE and ACh are 

given in table 3.8. It was a consistent finding that rabbit arteries exhibited a 

greater contractile response to KPSS and to NE, and a smaller vasodilatory 

response to ACh. 

159 



Table 3.8: Characteristics of rabbit arteries 

Al Al + AI + Al+ 

Control Enalapril CH5450 Tranlol 

Number of 9 8 6 6 

vessels 

LIO 298.58 293.62 265.90 279.94 

(diameter ýtm) (30.05) (33.60) (19.29) (23.53) 

Contraction to 32.12 36.10 30.90 34.78 

KPSS (kPa) (4.01) (5.41) (6.18) (2.28) 

Contraction to 30.04 36.09 30.12 34.31 

Norepinephrin (6.82) (9.13) (8.29) (4.46) 

e 

(kPa) 

% Relaxation 64.46 51.73 64.22 62.02 

to (11.73) (7.30) (13.49) (11.80) 

Acetylcholine 

Table 3.8 shows normalised internal diameters of vessels in each group and 

responses to KPSS and NE, together with % relaxation to ACh in vessels pre- 

contracted with NE as part of the "warm-up. " There were no significant 

differences between the sizes of the arteries studied in each group, or in their 

response to any of these agonists. 
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3.3.4 Responses of rabbit resistance arteries to Al: The 

effect of inhibition of ACE and chymase 

AI stimulated a dose-dependent contraction in rabbit cutaneous 

resistance arteries. In the absence of inhibitors, the threshold response was at 

8.33 (8.80) xIO-9M and the maximum response was at 0.3pM. Thus, rabbit 

cutaneous arteries were slightly less sensitive to Al than were human arteries. 

As in human resistance arteries there was marked tachyphylaxis which 

followed a similar pattern. Concentration-response curves were therefore 

performed in the same way, with addition of the next concentration of agonist 

at 4 minutes, or whenever the peak response had developed, whichever was 

sooner. 

Effect of ACE and ch nase inhibition on responses to Al yL 

The maximum response and EC50 to AI in the presence of trasylol 

were not different from control. CH5450, an inhibitor of chymase appeared to 

reduce the maximum response slightly (p<0.01 by ANOVA) but had no effect 

on the EC50. However, enalaprilat at the same concentration as employed in 

human vessels almost completely abolished the response, shifting the curve 

markedly to the right. The threshold in the presence of enalaprilat was 1.61 

(1.48) xIO-6M and no maximum response was observed within the 

concentration range utilised in this set of experiments. Accordingly AUC was 

calculated and used to compare the responses. The AUC (mean ± SD) 

calculated for Al in the presence of enalaprilat was 21.43 (22.89) compared to 
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210.00 (55.60) for control (p=0.012; Wilcoxon Rank Sum, Test). Neither 

CH5450 (p=0.075) nor trasylol (p=0.116) exerted any significant inhibitory 

effect. 

The threshold concentrations for AI in the presence of the inhibitors 

were also compared to control in a one-way ANOVA with Bonferroni 

correction for multiple comparisons. The result of this was consistent with the 

comparison of AUC values - revealing significant inhibition only in the 

presence of enalaprilat (p<0.001). Threshold concentrations for a curves, 

together with EC50 and maximum responses for AI control, CH5450 and 

trasylol are shown in table 3.9. 
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Figure 3.10: Concentration-Response Curve to AI in the absence of inhibitors 
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Figure 3.10 shows the cumulative concentration-response curve to Al in the 

absence of any inhibitors. 
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Figure 3.11: Concentration- Response Curve to Al: effect of enalaprilat I [! M 
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Figure 3.11 shows the cumulative concentration-response curve to Al after 

incubation with enalaprilat. The threshold was significantly increased 

(p<0.00 I) demonstrating marked inhibition by enalaprilat 
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Figure 3.12: Concentration- Response Curve to Al: effect of CH5450 I OpM 
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Figure 3.12 shows the cumulative concen t rat ion -response cune to Al after 

I. licubation with CH5450. The maximum response is reduced in the presence 

ot'('l 15450 (p- 0.0 1). 
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Figure 3.13: Concent rat ion -Response Curve to Al: effect of trasylol I OQU ml 
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Figure 3.14: Concentration- Response Curve to Al: comparative effect of 

inhibitors 
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Figure 3.14 shows the cumulative concentration-response curve to Al in the 

presence of inhibitors compared to control. Only enalaprilat significantly 

inhibited the response to Al. 
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Table 3.9: Potency of Al in rabbit cutaneous resistance arteries 

Control Enalaprilat CH 5450 Trasylol 

n--9 n--8 n--6 n--6 

EC50 4.24(4.84) N/A 3.25(2.42) 5.00(6.63) 

(XIO-IM) 

Threshold 8.33 (8.80) 1.61(l. 48) 9.33(l. 05) 7.66(3.61) 

X10-9M XIO-6M* X10-9M X10-9m 

Maximum 112.02 N/A 90.26 104.62 

Response (13.48) (13.08)t (13.07) 

(0/o KPSS) 

All values means ± (SD) 

*p<0.001 compared to control 

tp<0.01 compared to control 
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3.4 Discussion 

In the introductory review I discussed the possibility of the existence 

of local AII generation in a variety of tissues. In the preliminary experiments 

described in this chapter I showed that Al stimulates a contractile response in 

human resistance arteries, which is completely blocked by losartan. Thus, 

the data I have presented here suggests that, when supplied with the 

precursor Al, human resistance arteries are also capable of generating AII, 

which then acts in a paracrine fashion to regulate vessel tone through 

activation of the ATIR. Furthermore, the data presented in this chapter 

demonstrate that in-vitro blockade of ACE is insufficient to prevent the 

contraction of human subcutaneous resistance arteries to AL In contrast, 

responses to AI in rabbit resistance arteries were almost completely inhibited 

by enalaprilat. Lastly I have demonstrated that enalaprilat potentiates the 

response to exogenous BK in human resistance arteries. I shall begin this 

discussion by considering the response to BK. 

ACE is identical to kininase II, the enzyme responsible for the 

degradation of kinins, and it has been suggested that potentiation of BK may 

be partly responsible for the actions of ACEL This, however, remains 

controversial. Although plasma kinin concentrations have been shown to 

increase in humans after administration of quinapril, other studies have not 

confirmed this. [284,285] This may be due to technical difficulties in 

measuring kinin levels accurately. Physiological studies do suggest an 
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interaction between -ACE inhibitors and kinins. BK has been shown to be 

responsible for coronary artery vasodilation observed in dogs after 

administration of ramiprilat. [286] Similarly, BK-mediated vasodilation of 

human coronary arteries is potentiated *by enalaprilat. [287] However, 

whether the cardiac effects of ACE-inhibition are mediated by potentiation of 

kinins is unclear. A recent study found no increase in tissue kinin levels in 

the right atrial appendage after administration of an ý ACM orally prior to 

open-heart surgery. [288] 

In these experiments I have demonstrated that enalaprilat can 

potentiate the response to exogenously administered BK in human resistance 

arteries., This raises the possibility that the hypotensive actions of ACEi and, 

perhaps, ' their effect on peripheral resistance may be mediated through the 

potentiation of endogenous kinins. Gainer et al studied the effect of a 

specific BK-receptor antagonist, HOE 140, on the blood pressure response 

to ACE ý inhibition - and AT IR antagonism in sodium deplete normotensive 

and hypertensive subjects. [289] HOE 140 reduced the hypotensive effect of 

captopril by 53%, but did not alter the response to losartan. As expected, 

captopril reduced renal vascular resistance, but this was unaffected by HOE 

140. Thus, while potentiation of endogenous kinins appeared to contribute 

to the hypotensive action of captopril, they did not appear to contribute to 

the regulation of renal vascular resistance. Further studies are required to 

investigate the contribution of endogenous kinins to the regulation of 

peripheral vascular resistance. I 
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,ý, The most important observation, in this study was the failure of 

enalaprilat to reduce AI-mediated contractions in human resistance arteries. 

Several alternative explanations for this need to be considered. ý One 

possibility is that enalaprilat did not fully inhibit tissue ACE in human vessels. 

This seems unlikely for two reasons: firstly there was an obvious effect of 

enalaprilat in rabbit vessels, which were of very similar size to their human 

equivalents, and secondly enalaprilat potentiated BKin human vessels. The 

possibility that the apparent effect of the inhibitors on AI in human and rabbit 

vessels nught have been due to differences in their contractile abilities, or to 

enclothelial denudation, is rendered remote by the very similar responses to 

KPSS, NE and ACh. 

The most, likely , explanation for the failure of enalaprilat to 

significantly inhibit AI-mediated responses is the presence of an alternative 

enzymatic pathway (or pathways) for AII generation. This -has been 

described extensively in the, myocardium and in large and medium sized 

blood vessels in man and in animals. Urata observed that SBTI reduced AII 

generation in human heart homogenates by 80%, while captopril reduced AII 

generation by only, 11%. [182] This led to the identification of human heart 

chymase. [183] Similarly Takai showed that the, contraction of human 

gastroepiploic arteries could be reduced by 96% in the presence of 

chymostatin, but only 30% in the presence of lisinopril. [208] These data 

suggest that, far from being mediated by ACE, the predominant route forAII 

generation in the human myocardiurn and vasculature is through the action of 
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chymase. The data presented above, suggest that, in human resistance 

arteries, neither inhibition of ACE, nor chymase significantly attenuates the 

response to AI and thus differ from previous studies. In contrast, the 

combination of the two inhibitors suggests that there is a dual pathway for 

AII generation in human resistance arteries, mediated by ACE and a 

chymostatin-sensitive enzyme, which is probably HHC. These pathways 

appear to be equally able to generate AII, so that significant inhibition of the 

response to AI was onlyachieved by combining inhibitors of both ACE and 

chymase. 

The comparison with rabbit vessels is'-of interest:, here enalaprilat 

inhibited the response to AI, to the same degree as combination treatment in 

human vessels. There was a slight reduction in the maximum response in the 

presence of a chymase inhibitor, with no change in the ECSO or threshold. 

This result is difficult to interpret and may be artefactual. The broad serine 

protease inhibitor, trasylol (which inhibits kallikrein) had no effect. These 

results are consistent with an early study, which investigated the effect of the 

ACE inhibitor, teprotide, on AI and AII-mediated contraction of isolated 

rabbit aortic rings. [290] Teprotide, completely inhibited contraction to AI 

but had no effect on AII. Thus a species difference exists in the response to 

AI and it would appear that the local production 'of, AII in rabbit 

subcutaneous arteries is ACE-dependent. Moreover these rabbit vessels 

consistently failed to vasodilate when challenged with BK. Such species 

differences are clearly of importance in choosing suitable animal models of 
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CIIF, hypertension or chronic renal failure, in which ACE is an important 

therapeutic target. 

, It is possible that these - in-vitro experiments exaggerate the 

importance of alternative AII generating pathways. In humans, as in dogs, a 

dichotomy exists, with chymase appearing to be responsible for the majority 

of AII generation in homogenised myocardial tissue in-vitro, but ACE being 

the predominant enzyme in-vivo., This problem has been noted before and 

raises the possibility that the ' importance of non-ACE pathways may 

exaggerated by in-vitro preparations which expose. Al to an enzyme from 

which it is normally hidden. [204] In-vivo, AI will, be exposed to both 

circulating and endothelial ACE and thus may be unavailable for conversion 

by chymase. Furthermore, in our experiments, reagents were added to the 

solution in the organ bath and therefore delivered to the vessel ý abluminally. 

This may expose adventitial and interstitial chymase to an unphysiologically 

high concentration of AL 

Although the presence of non-ACE AII generation seems the most 

plausible explanation for the data described in this chapter, another 

possibility is that chymase degrades an endogenous vasodilator, just as ACE 

degrades BK. Inhibition of ACE and chymase may thus appear to result in 

inhibition of the contractile response to AI due to the potentiation of 

counter-regulatory vasodilators., 

Why then is, redundancy observed in the final limb -of the AII 

generating pathway? One possibility is that that AII generated locally by 
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non-ACE pathways has a different role from AII generated by circulating and 

endothelial ACE. - AII is known to regulate cellular hypertrophy and 

hyperplasia and contribute to vascular remodelling. [29 1] Thus, the 

contraction of resistance arteries to AII, generated by chymase, could be an 

epiphenomenon. In-vivo AII, generated by chymase, may have a trophic 

role. One model of the possible trophic role of vascular AII is the balloon- 

injured vessel. It has been shown that ACEi reduce restenosis in rodent 

models of balloon angioplasty. [292] However this does not appear to be the 

case in larger animals, such as the dog. [212] A recent study confirmed that 

cilazapril did not prevent restenosis after coronary angioplasty in 

humans. [293] , In contrast inhibition of the ATIR does reduce intimal 

hyperplasia after balloon injury in dogs. [215] It therefore seems reasonable 

to speculate that the'failure of ACEi to reduce restensosis after vascular 

injury in large animals and man is due to the continuing generation of All 

through the action of chymase. The potential importance of the trophic 

actions of All and chymase has been emphasised by a recent study of 

chymase expression in the human atherosclerotic aorta., This study compared 

chymase expression (identified by immunohistochemistry) and AII-forming 

activity in normal, atherosclerotic 'and aneurysmal aortae from human 

subjects obtained either at autopsy, or during vascular surgery. [294] AII 

formation, largely due to chymase, was greater in homogenates from 

diseased arteries compared to controls and there was a slight increase in the 

density of chymase-positive, mast cells. A further study investigated chymase 
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and ACE-dependent AII formation in human internal thoracic arteries and 

showed a significant correlation between chymase expression and serum total 

and LDL cholesterol. [295] Thus hypercholesterolaemia and atherosclerosis 

may be associated with greater non-ACE AII formation. 

The relevance of non-ACE All generation in-vivo is difficult to test 

since there are no specific chymase inhibitors licensed for this, application. 

However, studies have shown that the exercise-induced rise in AII levels 

measured in the veins draining the human leg could be inhibited by 

nafamostat, a serine protease inhibitor, but not captopril. [296,297] In 

ischaemic conditions AII generation may be mediated by a serine protease - 

and nafamostat has also shown to increase lower limb blood flow and 

exercise capacity in patients with peripheral vascular disease. [298] ý, 

A number of approaches could be used to resolve these questions. In 

the technique of perfusion myography vessels are cannulated at both ends 

and then perfused at a controlled pressure, allowing a distinction to be made 

between drugs applied lutninally or abluminally. [299] Additionally, in-vivo 

studies using forearm occlusion plethysmography to study the effects of 

ACE on the contraction to AI would give an indication of global vascular 

bed AI - AII conversion, but would not give information about specific parts 

of the vascular tree and are limited by the absence of specific chymase 

inhibitors licensed for use in man. A further possibility is the use of AI- 

isopeptides, -which will liberate AII by the action of chymase, but not ACE 

(or vice-versa). [206] Pro" D-Ala 12 AI is-created by adding a terminal 

175 



dipeptide, Pro-DAla, to the COOH terminus of native AL This peptide is 

resistant to ACE, due to the presence of Proline at the penultimate position, 

and to carboxy-peptidases, due to the terminal D-Alanine. It is, however, 

cleaved by chymase to liberate AII and has been shown to induce a pressor 

response in the conscious baboon. A, similar peptide" Pro'O-AI has been 

described that is resistant to chymase, but sensitive to ACE. [300] It may 

thus be possible to use specific isopeptides to dissect further the relative 

contributions of ACE and chymase to AII generation in the human 

vasculature. 

The techniques of molecular biology could also be used in a 

complementary approach to investigate the regulation of ACE and chymase 

expression in vascular and other tissue. A pathophysiological role of 

chymase would be made more likely if increased expression of this enzyme 

could be demonstrated in diseased tissue (such as atherosclerotic arteries) 

and after ACE-inhibition. Finally, the possibility of potentiation of 

endogenous vasodilators by chymase can be tested in two ways; firstly by 

investigating the effect of chymase (and ACE) inhibition on vasoconstrictors 

other than Al, and secondly by studying the response to a panel of known 

vasodilators in the presence of chymostatin and/or enalaprilat. 

In summary, our data indicates that AII generation in human 

subcutaneous arteries is mediated by a dual enzymatic pathway and provides 

a strong basis for further investigation of these mechanisms and for novel 

therapeutic strategies in order to facilitate blockade of the RAS in man. 
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Chapter 4 

Responses to angiotensin I in arteries from normal 

human subjects: the role of the ACE I/D 

polymorphism 
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4.1 ' Introduction 

In section 1.3 1 discussed the associations between polymorphisms in 

genes encoding the RAS and cardiovascular disease. One recurring theme in 

that discussion was the relative paucity of studies demonstrating an 

intermediate phenotype for these polymorphisms. Ueda et al showed that the 

pressor response to infused AI was greater in subjects who were homozygous 

for the D allele'of the ACE gene, compared to I homozygotes. [144] These 

data suggested that an intermediate phenotype for the ACE I/D polymorphism 

is greater AII generation associated with the D allele. However this result has 

bot been confirmed by other recent studies. [ 147,148] 

In this chapter I describe the responses to AI in resistance arteries 

from normal human subjects, analysed according to their ACE genotype. The 

aim of this analysis was to test the hypothesis that possession of the D allele 

of the ACE gene would result in a greater contractile response of human 

resistance arteries to AI due to greater conversion of AI to AII. 

4.2, Volunteers and genotypes 

I 
The data reported in this chapter pertains to the same cohort of normal 

volunteers described in Chapter 3. Thus, patient selection and clinical 

characteristics are the same. In total 47 patients were screened for entry into 

the study. DNA was available for 40 subjects who were therefore genotyped 
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for the ACE I/D polymorphism, using the techniques described in appendix 1 

to methods. The numbers of subjects with each genotype are given in Table 

4.1. 

Table 4.1: ACE Genotypes (all subjects) 

Genotype H ID DD 

Number of 

Subjects 

12 18 10 

As described in methods, the initial aim of this project was to study 

responses to AI in subjects homozygous for the ACE genotype. Initial 

experiments therefore excluded heterozygotes. In some subjects who 

underwent gluteal biopsy no arteries could be identified and thus do not form 

part of this analysis; a further group of patients were excluded from analysis 

because of poor artery responses, according to the criteria described in 

methods (these were vessels that either failed to contract to KPSS and NA, or 

failed to vasodilate to ACh, during the standard activation). As the project 

proceeded the number of biopsies that failed to yield usable arteries fell, due 

to improved operator technique. As the number of homozygotes recruited 

was fairly small, it was decided, after genotyping the first batch, to include 

heterozygous subjects in the study. For these reasons the proportion of 

arteries studied from patients with each genotype was uneven. 
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The numbers of patients with each genotype, for whom data regarding 

AI-mediated contraction are available, are shown in table 4.2. Clinical data 

for these patients is also shown (these data are obviously a subset of the 

clinical data given in table 3.2). The two groups were well matched for all 

parameters - though there was a trend to older subjects in the II homozygous 

group, this was non-significant. 

Table 4.2: ACE Genotype and Clinical Characteristics of Patients Studied 

ACE Genotype 

All data mean (±SD) 
ID H 

Number 11 4 

Age 27.59 (6.36) 46.25 (13.00) 

Creatinine 92.09 (7.67) 90.00 (9.54) 

BP 128.8/74.4 

(12.7/11.3) 

131.0/81.5 

(3.5/5.0) 

Glucose 4.91(0.54) 4.67(0.58) 

Cholesterol 4.88(0.83) 5.00(1.41) 

Haemoglobin 14.86 (1.07) 15.67 (1.15) 
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4.3 Responses to Angiotensin I According to Genotype 

The lack of DD homozygotes limited the analysis of responses by 

genotype to a comparison of heterozygotes with subjects homozygous at the I 

allele. Concentration-response curves to AI were obtaineý in 11 

heterozygotes and 4 11 homozygotes. The effect of enalaprilat IW was 

studied in'a further 8 arteries from heterozygotes, but only 2 vessels were 

available from II homozygotes. Figure 4.1 shows the response to AI in 

subjects with each genotype. In heterozygotes the maximum response to AI 

(normalised to the response to KPSS) appeared to begreater than the 

response in homozygotes [106.28 (71.57) vs. 68.81 (36. '51) %). However, 

this difference did not achieve significance (p=0.382 by unpaired t-test). 

There was no difference in the EC50 for AI in ID compared to 11 [1.21 X 10-8 

VS. 1.10 X 10-8M, p=0.919). Figure 4.2 shows the response to Al in the 

presence of enalaprilat in heterozygotes and homozygotes. The maximum 

response in arteries from ID patients in the presence of enalaprilat was 82.47 

(28.97)%, and the EC50 was 2.3 5x 10-8 M. In heterozygotes enalaprilat did 

not significantly reduce the maximum response (p=0.102) or alter the EC50 

(p=0.664). There were insufficient arteries from II subjects treated with 

enalaprilat for these data to be analysed. 
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Figure 4.1: Response to AT in the absence of inhibitors: effect of genotype 
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Figure 4.1 shows concentration-response curves to AI in subjects either 

heterozygous or homozygous at the I/D locus. There was no significant 

difference in either the maximum response or the EC50. 
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Figure 4.2: Response to Al: effect of genotype on response to enalaprilat 
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Figure 4.2 shows response to Al in the presence and absence of enalaprilat in 

subjects with the ID and 11 genotypes. Enalaprilat did not significantly alter 

either the maximum response or EC50 to Al in ID heterozygotes. 
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4.4 Discussion 

, 
Whether the ACE I/D polymorphism is associated with cardiovascular 

disease, hypertension or progressive renal disease remains debatable. There 

have been numerous conflicting studies, -with evidence of considerable 

publication bias. In addition, it has been difficult to identify an intermediate 

phenotype for the polymorphism. Since the D allele is associated with higher 

plasma and tissue ACE levels it is possible that it is also associated with 

greater AII generation. [64,65] This was suggested by the work of Ueda, as 

described above and the analysis presented in this chapter aimed to test this 

hypothesis. [144] 

Possession of the D allele was not associated with a greater response 

to AL Though there may have been a trend to a higher maximum response to 

Al in arteries from ID heterozygotes, it did not reach significance. Similarly, 

there was no difference in the sensitivity to AI according to genotype. Thus, 

these data do not support the hypothesis that the D allele is associated with 

greater AII generation at a tissue level. 

The data presented above is, however, very limited. There were no 

data describing responses in DD homozygotes. Thus, it is possible that the 

trend towards an increased response to AI, associated with possession of the 

D allele, would have reached significance if DD homozygotes had been 

compared to III homozygotes. The effect of enalaprilat would also have been 

interesting in this regard, since it might be expected that the higher ACE 
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levels, associated with the D allele, would render subjects resistant to ACE- 

inhibition. It was therefore disappointing that so little data on the effect of 

enalaprilat was obtained. , 

In chapter 31 suggested that a dual pathway exists for AII generation 

in human resistance arteries, mediated by ACE and chymase. The lack of 

inhibition seen with enalaprilat suggests that chymase is able to compensate 

fully when ACE is blocked and the same situation arises when chymase in 

blocked. Neither ACE nor chymase can therefore be seen as rate-limiting for 

AII generation. If this is so, it is difficult to understand how variation in the 

ACE gene could result in detectable differences in AII generation. Thus, the 

failure to demonstrate an effect of genotype, though difficult to interpret in 

such a small study, is compatible with other data presented in this thesis. 

Studies of the intermediate phenotype of the I/D polymorphism may be 

confounded by the presence of non-ACE AII generation and this possibility 

needs to be considered when designing such experiments. An elegant 

solution to this problem was demonstrated by Steeds et al, who used an ACE 

specific AI-isopeptide, Prolo-AI (which is not hydrolysed by chymase) to 

study the role of the ACE I/D polymorphism on vascular reactivity in 

resistance arteries from 70 normal human subjects. [300] They could show no 

difference in the response to the isopeptide according to ACE genotype. 

In summary, the data described in this chapter are not consistent with 

any discernible effect of ACE genotype on AII generation in human 

resistance arteries. While it is possible that this polymorphism is associated 
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with phenotypic variation, a much larger study would be required to 

demonstrate it. Studies using AII levels, or generation, should take into 

account the possibility of non-ACE pathways. 
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Chapter 5 

Studies of resistance arteries in patients with Chronic, 

Heart Failure and Coronary Heart Disease 
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5.1 Introduction 

CHF is associated with neurohormonal dysfunction and activation of 

the RAS. [301] It is now felt that the activation of, the RAS (and other 

neurohormonal systems) is a maladaptive response that contributes to the 

progression of CIIF through a variety of mechanisms, not restricted to-the 

heart itself [165] In addition to contributing to abnormal central and 

peripheral haemodynamics, neurohormonal activation contributes to cardiac 

remodelling, with fibrosis and myocyte apoptosis. [302] ' Furthermore, 

endothelial dysfunction and peripheral muscle abnormalities appear and both 

renal and, pulmonary homeostatic mechanisms are affected. Thus, while 

neurohormonal activation may be beneficial initially, it then contributes to the 

progression of the syndrome. The logical conclusion from this hypothesis is 

that treatments that reduce neurohormonal activation may not only improve 

symptoms, but also slow the progression of the syndrome. This hypothesis 

has been tested in a number of large clinical trials which have uniformly 

shown that ACM reduce mortality and improve symptoms in CBF. [ 163 ] 

While ACM are undoubtedly beneficial in CBF, the mortality from 

this syndrome remains depressingly high. Thus, in CONSENSUS I mortality 

at one year was 36% and in Ve HeFT II the 4 year cumulative mortality was 

41%, despite enalapril therapy. [169,303] One explanation for the poor 

prognosis in CHF, despite treatment with ACEi. - is that the suppression of the 

RAS due to these drugs is incomplete., Thus, progressive. left ventricular 
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dysfunction has been associated with the failure to'suppress plasma AII levels 

with ACEi. [170] In section 1.4.11 discussed the evidence that ACEi do not 

suppress plasma AII fully and, in section 1.4.2,1 suggested that this 

phenomenon may be due to both the presence of non-ACE AII generating 

pathways and the pharmacokinetic properties of ACEL 

In previous chapters I have described responses to Al and BK in 

normal human subjects and suggested that there may be a dual pathway for 

AII generation. This pathway appears to consist of ACE and chymase, as 

evinced by the inhibition of the contractile response to AI in the presence of 

both enalaprilat and chymostatin. However, while inhibition of AII 

generation seems the most plausible explanation of the results described in 

previous chapters, another possibility is . that chymase may degrade 

endogenous vasodilators, just as ACE degrades BK. The potential 

significance of non-ACE AII generation in human resistance arteries is 

greatest in patients treated with ACEL In such people continuing AII 

generation may contribute to disease progression and it is possible that non- 

ACE pathways are actually upregulated as a result of treatment. 

The studies described in this chapter were therefore designed to 

investigate the possibility of non-ACE AII generation in patients treated with 

ACEL The subjects chosen were patients with CIHF and they were compared 

with a group of ACEi-nalve patients who had documented CHD. Thus the 

experimental group differed from control in only 2 respects: treatment with 

ACEi and the presence of left ventricular systolic dysfunction. While the 
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basic design of the experiments was similar to those previously described, 

they were more comprehensive. Thus, the effects of enalaprilat and 

chymostatin on the responses to the vasoconstrictors, AII and NE, and the 

vasodilators, ACh and BK were also studied, for the reasons given above. --, ' ý 

5.2 Patient selection 

t 

For all clinical studies patients with diabetes mellitus or renal failure 

(creatinine > 200 pmol/1) were excluded. Written informed consent'was 

obtained from each patient and all protocols were approved by the Hospital 

Ethics Committee. Two groups of patients were studied; patients with 

chronic heart failure (CHF), established on ACE inhibitor therapy, and 

patients with coronary heart disease (CHD) who were not taking such agents. 

Male and female patients were invited to take part in this study. 

On the morning of study, after 15 minutes supine rest, blood pressure 

was recorded in the right arm, with a standard mercury sphygmomanometer 

(Accoson UK). Blood was then drawn from a cannula in an ante-cubital vein 

for estimation of renal function, serum cholesterol, serum ACE and plasma 

neurohormones. Finally patients underwent a gluteal biopsy, as described in 

chapter 2. 
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Patients with CBF 

Ambulatory ý patients with New York Heart association II/III CHF, 

who were attending the outpatient clinic, were studied. All were on long term 

(>3 month) ACE inhibitor and diuretic treatment, The aetiology of CHF was 

coronary heart, disease in all cases and each patient had a left ventricular 

ejection fraction of, less than , 
40%, , as assessed by transthoracic 

echocardiography, (Accuson 128XT/IOC, Simpson's biplane, method)., All 

patients had suffered a previous myocardial infarction. The patient's usual 

medication (including ACE inhibitor therapy) was, taken on the -study 

morning. 1, .IVI 

Patients with CHD 

These were patients with chronic stable angina attending outpatient 

clinics. All patients had preserved left ventricular function, determined as an 

echocardiographic left ventricular, ejection fraction of 40 per cent or more 

(Simpson's biplane), and none were treated with an ACE inhibitor. 

5.3 Experimental protocols 

Immediately after the gluteal biospy had been, 
_taken, 

resistance 

arteries were dissected free of subcutaneous fat. Any blood remaining in the 

lumen was extruded by gentle pressure with watch-makers forceps and the 

vessels were cleaned of adherent connective tissue.. They were then stored in 
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Kreb's solution at 4*C overnight. Experiments were performed the next day 

and arteries were mounted in a four-channel myograph, normalised and 

subjected to the same standard activation procedure as described in chapter 2. 

Experiments were therefore performed 24 hrs after biopsy and, in the case of 

patients with CBF, 24hrs after their last dose of ACEL 

In one set of experiments the responses of the arteries to AI was then 

investigated following the same protocol as described in chapter 3. Thus, the 

arteries were incubated for 30 minutes with either no inhibitor (vessel 1, 

control), enalaprilat IW (vessel 2), chymostatin lOpM (vessel 3) or both 

enalaprilat lpM and chymostatin lOpM (vessel 4). A cumulative 

concentration response curve for AI was then performed. 

In a second set of experiments the response of resistance arteries to 

All, from 0.01 nM to 0.3 pM, was investigated in the presence of the same 

inhibitors. Unfortunately tachyphylaxis to Al and AII precluded performing 

curves to each agonist in the same vessel. 

After exposure to AI or AII vessels were washed with Kreb's solution to 

re-establish baseline and inhibitors were again added, maintaining the same 

relationship between vessel and inhibitor. The responses of the arteries to 

norepinephrine (NE), bradykinin (13K) and acetylcholine (ACh) were then 

investigated. Thus, after 30 minutes a CRC was constructed to NE from I 

nN4 to 30 W in log molar increments. Thereafter the vessels were again 

washed with Kreb's solution to re-establish baseline, inhibitors were 

reapplied and, after a further 30 minutes a CRC to BK from 0.1 nN4 to 3 gM 
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was performed. Finally a CRC to ACh was performed from I nM to 30 pM 

in the same manner., Pre-contraction for the CM to ACh and BK was 

achieved with NE lOgM and vasodilators were added once plateau was 

reached (defined, arbitrarily as a maintained contraction, stable at the same 

level, for 2 minutes). Experimental protocols are surnmarised in table S. 1. 

The order of experimental protocols was held constant throughout this study. 
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Table 5.1 Experimental protocol for resistance arteries from patients with 

CHF and CHD 

Vessel 
213 4 

"Standard KPSS 
Activation" KPSS 

NE 10ýtNl 
ACh 3x 10-6ýLM 

Incubation Control Enalaprilat Chymostatin Enalaprilat 
30 mins Vehicle 1 ýLm 10ýLm +Chymostatin 

(same 
concentrations 

CRC to Al AI concentrationsO. 0 InM, 0.03n M, 0. InM, 0.3nM etc ... to 3gM 
Wash to baseline 

Incubate Control Enalaprilat Chymostatin Enalaprilat 
30 mins Vehicle 1ý, M IOýLm IRM + 

Chymostatin 
104M 

CRC to NE N E InM, 3nM, lOnM etc ... to 30V M 
Wash to baseline, reapply inhibitors maintaining same relationship to vessel 

Incubate 30 mins Pre-constrict with NE 10 gM 
CRC to BK 

7ýý ýK 
0. InM, InM, lOnM etc... to 3 gM 

Wash to baseline, reapply inhibitors maintaining same relationship to vessel 
Incubate 30 mins Pre-constrict with NE 10 gM ' CRC to ACh ýCh 

0. InM, InM, lOnM etc... to 3gM 

A similar set of experiments was performed using All instead of Al. The 

concentration range for AII was 0.01 nNl to 0.3 W. 
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5.4 Patient Characteristics , 

Gluteal biopsies were performed in 47 patients, 21 of whom had CHF, 

the rest CHD. I was unable to obtain arteries, or was forced to discard 

arteries according to my pre-defined criteria, from 11 patients. Resistance 

arteries were therefore studied from 18 patients with CBF and 18 patients 

with CHD. Clinical characteristics of these patients are shown in table 5.2. 

In this table patients are subdivided according to the primary experiment 

performed - either a CRC to AI or to AIL As discussed in methods and 

further in Chapter 3, tachyphylaxis to Al precluded repeated CRCs to this 

peptide, or to All, in the same artery. Responses to Al and AII were therefore 

studied in separate patients. 

The patients studied had mild-moderate CHF according to NYHA 

functional class, but all had reduced EF by transthoracic echocardiography. 

The aetiology of CBF was ischaemic in almost all cases - indeed 17/18 

patients with CBF had suffered a myocardial infarction in the past and 8/18 

had undergone previous coronary bypass surgery. All patients with CBF, but 

none with CHD, were receiving treatment with an ACE-inhibitor. Baseline 

characteristics of patients with CHD and CBF differed in., only two respects 

(except their previously defined differences in left ventricular function and 

ACE inhibitor and diuretic prescriptions). Firstly, CHIF patients were on 

treatment with digoxin more often than CHD patients and more CHD patients 

than CHF -patients were on treatment with beta-blockers. Secondly, AI 
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concentration curves were constructed in CHF patients who were older than 

their CHD counterparts (p=0.004). 

All, patients who attended for the study had blood samples drawn for 

estimation of plasma renin, AII and alclosterone and serum ACE. These 

values are shown in table 5.3 (a, b). Values for individual patients are shown 

to highlight the wide variation in results. The mean plasma AII value (mean 

± SD) in patients with CBF, who were receiving therapy with ACM, was 

16.41 (14.60) pg/ml, which is greater than the upper limit of the standard 

reference range. However some patients suppressed their AII to undetectable 

levels. In patients with CHF the mean plasma a1dosterone was 14.33 (8.54) 

ng/100ml and the mean plasma renin was 70.85 (56.12)* gU/ml, but again 

there was a wide variation in levels. The mean plasma AII in patients with 

CHD was 6.56 (5.34) pg/ml, which is within the reference range, though 

again there was wide variation in levels. Plasma AII was significantly higher 

in patients with CHF despite ACE-inhibition (p=0.045, by 2-tailed t-test). 

Similarly plasma renin, at 11.0 (13.32) pU/ml, was significantly lower in 

patients with CHD (p=0.003, by 2-tailed t-test). There was no difference in 

plasma aldosterone (p=0.93). 

Plasma ACE levels are also shown in tables 5.3 (a) and (b). Of the 

patients with CHF 9/13, for whom data is available, had suppressed their 

plasma ACE to undetectable levels. However, suppression of serum ACE did 

not appear to associate with suppression of plasma AIL Figure 5.1 shows 

plasma AII plotted against serum ACE in those patients with CHF and CHD 
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for whom matched values were available., There was no correlation between 

serum ACE and AII in either patient group. In patients with CHD plasma 

ACE was - not suppressed, and was significantly higher than in patients with 

CHF (p=0.026). 
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Table 5.2: Clinical characteristics of patients with CHF and CHD 

Concentration 
response 
curves 

angiotensin I angiotensin II 

CHF CHD OF CHD 
Number of 
patients 

10 10 8 8 

Sex (M/F) 8/2 9/1 6/2 7/1 
Age 70.1 

(+/-6.1)) 
60.3 
(+/-7.4)- 

70.5 
(+/- 11.1) 

66.2 
(+/-6.3) 

Previous MI 9 2 8 2 
Previous 
CABG 

6 1 2 1 

NYHA 
functional class 

5 111; 5 11 NA 4 11; 4111 NA 

Hypertension 1 1 2 3 
NIDDM 0 0 0 0 
Ejection 
fraction 

24.5 
(+/-6.1) 

59.3 
(+/-8.4) 

21.4 
(+/-8.6) 

57.9 

Drug therapy 
ACE inhibitor 10 0 8 0 
diuretic 10 0 8 0 
digoxin. 3 0 2 0 
calcium channel 
blocker 

0 2 1 3 

nitratc 4 4 3 4 
beta blockcr 1 9 2 7 
IHMG Co A 
reductase 
inhibitor 

5 8 4 5 

aspirin 8 10- 4 8 
Systolic BP 125 

(+/-18) 
149.2 
(+/-9.6) 

131 
(+/-19) 

151 
+/-17) 

Diastolic BP 70 
(+/-9) 

82.6 
(+/-0.9) 

80 
(+/-8) 

79.5 
(+/-2.1) 

Glucose 5.5 
(+/-1.8) 

5.9 
(+/-1.7) 

5.5 
(+/-1. 

1 
5.3 
(+/-0.9) 

Cholesterol 5.0 
(+/-0.9) 

4.7 
(+/-0.8) 

4.7 
(+/- 1.1) 

5.0 
(+/- 1.1) 

Creatininc 116 
(+/-17) 

89 
(+/-13) 

100 
(+/-28) 

94 
1, (+/-12) 

CABG - coronary artery bypass grafting; NYHA - New York Heart 

Association; MI - myocardial infarction; CHD - coronary heart disease; 

CIHF - chronic heart failure; ACE - angiotensin converting enzyme; HMG 

CoA - 3-hydroxy -3- methylglutaryl coenzyme A; NIDDM - non insulin 

dependent diabetes mellitus (all values mean ± SD). 
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Table 5.3: Plasma renin. AIL aldosterone and ACE from patients with CHF 

I and CHD 

a) Patients with CBF 

Patients with CHF 

Patient ID Renin 

(9u/ml) 

3 21 

4 59 

7, 129 

8 

9 

10 

14 

18 

33 

34 

35 

36 

37 

40 

41 

Total 

15 

36 

212 

49 

143 

54 

74 

5 

76 

18 

45 

Mean (SD) 

70.85 

(56.12) 

AII 

(pg/ml) 

2.8 

11.3 

30.3 

4.3 

<1 

<1 

22 

22.4 

21.4 

52.4 

16.2 

3 

27.2 

Mean (SD) 

16.41 

(14.60) 

Aldo 

(ng/100ml) 

7 

11 

32 

6 

11 

14 

10 

36 

12 

19 

13 

7 

11 

18 

8 

fflean (SP) 

14.33 (8.34) 

ACE 

U/I 

<10 

31 

30 

<10 

58 

<10 

<10 

51 

<10 

<10 

<10 

<10 

<10 

Mean (UD 

13.07 

(20.76) 

Neurohormone levels for patients with CHF, whose vessels were studied. All 

were thought to be taking an ACE inhibitor. Means were calculated taking 

values below detection threshold (i. e. '<I', '<10') to equal zero. Standard 

reference ranges are: renin (5-50 [tU/ml), AII (2-12 pg/ml), aldosterone 

(<25ng/100ml) and ACE (<88U/1). 
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b) Patients with CIHOD 

Patients with CHD 

Patient ID Renin AII Aldo ACE 

(ýLu/lnl) (pg/ml) (ng/100ml) U/I 

2 19 

6 52 <1 38 13 

13 21 11.5 12 34 

17 4 1.2 3 39 

21 4 6 8 10 

22 5 <1 7 27 

23 3 4 77 32 

24 11 16.3 11 51 

25 5 5 9 51 

26 5 9.5 0 33 

29 18 7 38 

30 16 15.8 6 10 

31 10 32 

45 3 5 4 

46 5 5 5 28 

47 2 6 11 28 

Total Mean (SD) Mean (Si? ) Mean (SD) Mean (S12) 

15 11.0 (13.32) 6.56(5.34) 13.87 (19.46) 29.67 (12.78) 
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Figure 5.1: Plasma ACE and All levels in patients with CHF and CHD 
I 
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Figure 5.1 shows plasma AII levels plotted against serum ACE. Values 

below the detection thresholds were taken to be zero. 
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5.5 Characteristics of Arteries Studied 

As in the previous study in normal volunteers it was frequently not 

possible to obtain 4 arteries from biopsies and a considerable number were 

discarded because of lack of response to KPSS or ACh. Resistance arteries 

were studied in 4 groups - arteries from patients with CBF or CHD, exposed 

to AI or All respectively. The number of vessels studied, together with their 

sizes and responses to KPSS, NE and ACh, are shown in tables 5.4,5.5,5.6 

and 5.7. A minimum of 6 arteries in each subgroup was arbitrarily regarded 

as the minimum necessary to complete a data-set. There were no significant 

differences between control and experimental groups in terms of vessel 

diameter, contractile ability to either NE or KPSS, or endothelial-dependent 

vasodilatation to ACh. 
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Table 5A Vessel diameters and responses to KPSS. NE and ACh in 

resistance arteries from patients with CHF. exposed to AI 

Control Enalaprilat Chymostatin Combinatio 

n=9 n--6 n--6 n, 

n--8 

L, (gm) 335.96 330.95 332.19 309.98 

(68.79) (93.41) (56.23) (65.04) 

Response to 18.53 (4.77) 20.52 (3.75) 16.08 (7.49) 16.42 (3.72) 

KPSS (kPa) 

Response to 19.03 (3.77) 20.48 (2.28) 15.25 (6.64) 17.32 (3.43) 

NE (kPa) 

Response to 86.01 73.51 93.03 (6.16) 84.02 

ACh (0/6 of (11.04) (29.82) (15.64) 

pre- 

contraction 

to NE) 

Table 5.4 shows group responses to KPSS, NE and ACh (means, ± SD) in 

vessels from patients with CHF exposed to AL There were no significant 

differences between these parameters for control and each experimental 

group by unpaired t-test. 
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Table 5.5: Vessel diameters and responses to KPSS. NE and ACh in t, 

resistance arteries from patients with CHD. exposed to Al 

Control Enalaprilat Chymostatin Combination 

n--7 n--6 n--6 n--6 

L, (gm) 281.75 324.24 327.00 294.47 (71.35) 

(13.77) (41.70) (47.25) 

Response to 18.79 20.03 (5.10) 16.31 (8.50) 17.78 (4.74) 

KPSS (kPa) (3.97) 

Response to NE 19.84 21.31 (4.50) 16.10 (8.14) 19.58 (4.62) 

(kPa) (3.93) 

Response to ACh 63.77 75.28 62.26 66.17 (29.17) 

(% of pre- (37.83) (21.59) (34.977) 

contraction to 

NE) 

Table 5.5 shows group responses to KPSS, NE and ACh (means ± SD) in 

vessels from patients with CHD exposed to AL There were no significant 

differences ý between these - parameters for control and each , experimental 

group by unpaired West. 
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Table 5.6: Vessel diameters and responses to KPSS. NE and ACh in human 

resistance arteries from patients with CHF. exposed to All 

Control Enalaprilat Chymostatin Combination 

n--7 n--8 n--7 n--7 

L, (gm) 278.86 259.60 296.36 283.17 

(31.88) (56.68) (42.97) (41.91) 

Response to 18.63 15.11 (6.23) 15.16 (4.69) 17.82 (5.86) 

KPSS (kPa) (5.89) 

Response to 20.78 18.84 (7.43) 18.78 (6.21) 23.11 (7.48) 

NE (kPa) (5.73) 

Response to 61.75 54.30 66.59 (31.31) 70.63 (29.27) 

ACh (% of (34.26) (35.10) 

pre- 

contraction 

to NE) 

Table 5.6 shows group responses to KPSS, NE and ACh (means ± SD) in 

vessels from patients with CBF exposed to AII. There were no significant 

differences between these parameters for control and each experimental 

group by unpaired t-test. 
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Table 5.7: Vessel diameters and responses to KPSS. NE and ACh in 

resistance arteries from patients with CHD. Mosed to AII 

Control Enalaprilat ' Chymostatin , Combination 

n=6 n--6 n=8 n--8 

L, (pm) 371.98 327.37 323.32 326.94, 

(83.20) (131.05) (86.25) (107.13)- 

Response to 20.22 17.92 18.46 (9.51) 21.04 (7.96) 

KPSS (kPa) (8.11) (10.01) 

Response to 14.67 16.16 (9.51) 17.03 (8.47) 22.67 (9.28) 

NE (kPa) (8.41) 

Response to 64.21 82.70 69.64 (31.47) 78.19 (29.09) 

ACh, (% of (34.14) (21.28) 

pre- 

contraction 

to NE) 

Table 5.7 shows group responses to KPSS, NE and ACh (means ± SD)'in 

vessels from patients with CHF exposed to AII. There were no significant 

differences between these parameters for control and each experimental 

group by unpaired t-test. 
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5.6 -1 Response to Al in patients with CHF and CHD 4-1 11ý 

,- Resistance arteries from patients with CHF and CHD were subjected 

to the same "warm-up" as described in Chapter 3 for, normal volunteers and 

were discarded according to the same criteria. - CRCs to AI were performed 

according to the 'same protocol i. e. - after co-incubation with either vehicle 

(vessel L control), enalaprilat IgM (vessel 2), chymostatin IOW (vessel 3) 

or both inhibitors together (vessel 4). 'Dose response curves to AI are shoWM 

in Figures 5.2 to 5.6. ' AI induced a dose-dependent contraction in arteries 

from'patients with CBF and CHD. In the'absence of any inhibitor, the 

threshold (defined, as the concentration at which a contraction was first 

observed) was [mean ±(SD)] 5.03 (3.82) xlO"10M and'2.76 (3 - . 36) x10-9M in 

arteries-from patients with CHF and CHD, respectively (Figure 5.2). Thus 

arteries from'patients with CBF appeared more sensitive to AI than those 

from patients with CHD, or normal volunteers. The maximum responses 

(expressed as the % contraction to KPSS) were 69.01, (16.83) and -65. '81 

(22.41)% in vessels from patients with CBF -and CHD, respectively, and 

occurred at O. IW in both., Maximum'responses,, EC50 and AUC values for 

all vessels exposed to AI are given in table 5.7. 

Effect of ACE and chymase inhibition on responses to Al, 

As described in chapter 2 (section 2.1.9) the absence of a clear 

maximum' precluded'the comparison'of curves in terms of either ECSO or 
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maximum response. Thus, the threshold concentration was used to compare 

the effect of ACE and chymase inhibition on the responses to AI in arteries 

from patients, with CHD and CBF. -, Figure, 5.3 illustrates the effect of 

enalaprilat on AI responses. In arteries from patients with CHD the threshold 

concentration in the presence of enalaprilat was little different to control, at 

2.20 (3.85) X10-8M (p>0.05, control vs. enalaprilat), and there was, no 

significant shift in the dose response curve, or reduction in the maximum 

response. However, in arteries from patients with CHF incubation, with 

enalaprilat induced a reduction in the maximum response to 38.15 (19.17)% 

(p>0.05, compared to control) and a shift in the dose-response curve to the 

right. The threshold increased to 2.44 (3.86) X10-8M (p<0.05 compared to 

control), and the EC50 increased from 1.38(0.12)xlO-8M to 5.75 (0.47)xlO" 

8M when arteries were co-incubated with enalaprilat. ,, 

Figure 5.4 illustrates the effect of chymostatin on AI-mediated 

responses. In the presence of chymostatin the threshold concentrations were 

0.56 (1.20) xlO-ýM and 1.32 (1.33) x10-9M in arteries from patients with CHF 

and CHD, respectively. Chymostatin did not significantly inhibit the 

response to AI in arteries from either patient group (p>0.05). 

Figure 5.5 shows the effect of combining enalaprilat and chymostatin 

on AI-mediated responses. The threshold concentrations in the presence of 

both inhibitors were 0.77 (1.07) xIO-6M and 2.90 (2.70) xIO-7M in arteries 

from patients with CBF and CHD, respectively. The combination was 

therefore associated with a marked inhibition of the response in arteries from 
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patients with both CBF and CHD (p<0.001 in CBF and p<0.01 in CHD, 

respectively). The degree of inhibition was similar to that which was found 

in normal vessels (see Chapter 3), with a large shift to the right and no clear 

maximum response. In arteries from patients with CI-IF the addition of 

chymostatin to enalaprilat significantly enhanced the degree of inhibition 

(p<0.01, enalaprilat vs. combination). These results are summarised in table 

5.8. 

In order to be consistent with previous analyses AUC values were also 

calculated for control and each experimental curve in arteries from patients 

with CHD and CBF. An Anderson-Darling test suggested that these data 

were not normally distributed. Hence a Mann Whitney U test was used to 

compare groups. This showed that in arteries from patients with CHF, 

enalaprilat and the combination of enalaprilat and chymostatin significantly 

inhibited the response to AI (p=0.0039, p=0.001, respectively). The addition 

of chymostatin to enalaprilat enhanced the degree of inhibition (p=0,038). In 

contrast, in CHD, enalaprilat did not inhibit the response to AI and the 

combination just failed to reach significance (p=0.054). 
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Figure 5.2: Response to Al in arteries from patients with CHF and CHD 
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Figure 5.2 shows cumulative concentration-response curves to Al in arteries 

from patients with CHF and CHD. There was no difference between the 

curves in terms of maximum response, EC50 or AUC. 
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Figure 5.3: Response to Al in arteries from patients with CHF and CHD: 

effect of enalaprilat 
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Figure 5.3 shows cumulative concentration response curves to Al in arteries from patients with CHF 

and CHD in the presence of enalaprilat. Enalaprilat significantly increased the threshold to Al in 

CHF (p<0.05), but not CHD (p>0.05). 
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Figure 5.4: Response to Al in arteries from patients with CHF and CHD: 

effect of chymostatin 
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Figure 5.4 shows cumulative concentration response curves to Al in arteries from patients 

with CHF and CHD in the presence of chymostatin. In neither was there any apparent 

inhibition. 
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Figure 5.5: Response to Al in arteries from patients with CHF and CHD: 

effect of chMostatin and enalaprilat 
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Figure 5.5 shows the effect of the combination of enalaprilat and chymostatin on the 

responses to Al in arteries from patients with CHF and CHID. The threshold to Al was 

increased significantly in both CHD and CHF (p<0.001, p<0.01, respectively). 
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Figure 5.6: Response to Al in arteries from patients with CHF and CHD: summar 
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Figure 5.6 summarises figures 5.2-5.5. In arteries from patients with CHF, the combination 
of enalaprilat and chymostatin increased the threshold for Al compared to enalaprilat alone 
(p<0.05). 
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5.7 Response to AH in patients with CHF and CHD 

CRCs to AII were performed according to the same protocol as 

described in previous sections i. e. after co-incubation with either vehicle 

(vessel 1: control), enalaprilat IpM (ýressel 2), chymostatin lOpM (vessel 3) 

or both inhibitors together (vessel 4). AII induced a dose-dependent 

contraction in resistance arteries from patients with both CHD and CHF. 

Concentration response curves were similar to those seen for Al, with marked 

tachyphylaxis and an "inverted U' shape. Figure 5.7 illustrates the response 

to AII in the absence of any inhibitors. The threshold contraction [mean ± 

(SD)] was at 2.03 (3.91) xIO"oM and 2.27 (3.54) xIO-10M AII for CHD and 

CHF, respectively. The maximum response in CHD (mean ± SD) was 49.99 

(27.79)% at 1OnM. In contrast the maximum response in CHF was 77.48 

(9.68)% at 30n. M. Theses values were significantly different (p=0.028, by 

unpaired t-test). The EC50s for CHD and CBT, respectively, were 1.55 (0.1) 

nM and 3.80 (0.2) nM (p=ns). Thus the maximum response to AII, but not 

the sensitivity, was enhanced in patients with CBF compared to CHD. 

Maximum responses, EC50 values and AUCs are surnmarised in table 5.8. 

Effect of ACE and chymase inhibition on responses to All 

Figure 5.8 illustrates the effect of enalaprilat, chymostatin and the 

combination of both inhibitors on responses to AII in arteries from patients 

with CHD. Although a slight shift in the dose-response curve to the right is 
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evident, there, were no' significant differences - between control and 

experimental curves in terms of maximum response or EC50 (p>0.05 by 

ANOVA). For the sake of consistency with previous analyses of Al curves, 

AUC was also calculated and used as a comparator, with similarly negative 

results. Thus there was no apparent attenuation of the response to AII when 

either ACE or chymase were inhibited singly or in combination. 
t 

Figure 5.9 shows analogous data for arteries from patients with CBF. 

As previously noted for the control curve, the maximum responses to AII 

were consistently greater than observed in arteries from patients with CHD. 

However neither enalaprilat, chymostatin, or their combination significantly 

attenuated AII responses. Again these- curves were compared in terms 

maximum response, EC50 and AUC. These data are summarised in table 5.9. 
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Figure 5.7: Response to AII in arteries from patients with CHD and CBF in 

absence of inhibitors 
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Figure 5.7 shows the response to AII in control vessels. The maximum 

response was greater in arteries from patients with CBF (p = 0.028), but there 

was no, difference in EC50. 
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Figure 5.8: Response to All in resistance arteries from patients with CHD: 

effect of ACE and ChyLnase inhibition 
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Figure 5.8 shows the responses to All in arteries from patients with CHD. 

Neither enalaprilat nor chymostatin, alone or in combination, significantly 

inhibited the response. 
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Figure 5.9: Response to All in resistance arteries from patients with CHF: 

effect of ACE and Chyrnase inhibition 
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Figure 5.9 shows the responses to All in arteries from patients with CHF. 

Neither enalaprilat nor chymostatin, alone or in combination, significantly 

inhibited the response. The maximum response to All was significantly 

greater than in CHD, regardless of the presence of ACEi or chymostatin. 
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5.8 ý Responses to norepinephrine, acetylcholine and bradykinin in 1 

arteries from patients with CHF and CHD -1 1- 

5.8.1 Responses to norepinephrine 

CRCs to NE were performed after arteries from patients with either 

CBF or CHD had been exposed to AI or AII, maintaining the same 

relationship between vessel and inhibitor. Thus responses to NE were 

investigated after co-incubation with either vehicle (vessel 1: control), 

enalaprilat IýM (vessel 2), chymostatin lOgM (vessel 3) or both inhibitors 

together (vessel 4). In control vessels NE induced a dose-dependent 

contraction in arteries from patients with a threshold of I nM and a maximum 

at .I 
OpM. Figure 5.10 shows the response to NE in control vessels from 

patients with CBF and CHD, expressed as the absolute increase in internal 

pressure above baseline and not normalised to a standard vasoconstrictor. 

Thus, the maximum response to NE (mean ± SD) in arteries from patients 

with CHF was 21.03 (5.77)kPa compared to 21.45 (6.04) kPa in those from 

patients with CHD (p = 0.786). There was no difference in the EC50 for NE 

in the control vessels, as can be seen in the figure. 

Effect of ACE and chymase inhibition on responses to NE 

Figure 5.11 illustrates the response to NE in arteries from patients 

with CHD in the presence of enalaprilat, chymostatin and their combination. 

The maximum response seemed to be slightly attenuated, with a rightward 
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shift in the curve, - in those vessels exposed to enalaprilat or chymostatin, but 

not the combination. However these differences were not statistically 

significant (p>0.05 by ANOVA). Maximum responses and EC50 values are 

shown in table 5.10. Figure 5.12 illustrates the response to NE in patients 

with CHF. Again there seemed to be a slight reduction in the maximum 

response in the presence of either enalaprilat or chymostatin alone, but not 

with the combination. However these differences were not significant. 

Similarly, there were no significant differences in the EC50 values. 

Table 5.10: Maximum response and EC50 to NE 

CHD 

Control Enalaprilat Chymostatin Combination 

Max 

Response 

(kPa) 

21.45 (6.04) 17.49 (7.58) 15.42 (7.59) 21.03 (7.68) 

EC50 
(M, X 10-7) 

, 1.12 (0.27) 2.19(0.32) 1,48(0.35) 1.48(0.43) 

CHF 

Control Enalaprilat Chymostatin Combination 

Max 

Response 

(kPa) 

21.03 (5.77) 17.88 (3.88) 16.23 (3.27) 18.33 (5.86) 

EC50 
(M, X 10-7) 

1.86(0.44) 3.16(0.29) 1.70(0.47) 2.04(0.35) 

All values means (± SD) 

There were no significant differences between control and experimental 

groups in either CHD or CHF by ANOVA. 
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Figure 5.10: Responses to NE in arteries from patients with CBF and CHD 
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Figure 5.10 demonstrates the response to NE in arteries from patients with 

CBF and CHD in the absence of any inhibitors. These responses were not 

different by EC50 or maximum. 
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Figure 5.11: Responses to NE in arteries from patients with CHD: effect of 

ACE and chymase inhibition 
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Figure 5.11 shows the effect of chymostatin and enalaprilat on responses to 

NE in arteries from patients with CHD. There were no significant differences 

between control and experimental groups (p>0.05 by ANOVA). 
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Figure 5.12: Responses to NE in arteries from patients with CHF: effect of 

ACE and chyMase inhibition 
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Figure 5.12 shows the lack of effect of either chymostatin or enalaprilat on 

responses to NE in arteries from patients with CHF. There were no 

significant differences between control and experimental groups (p>0.05 by 

ANOVA). 
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5.8.2 , Responses to bradykinin 

- After CRC s had been performed to NE arteries were washed with 

Kreb's to re-establish baseline and then incubated with enalaprilat etc as 

described above. After 30 minutes vessels were pre-constricted with NE 

lOgM and CRCs to BK were performed. Figure 5.13 illustrates the 

vasodilator response to BK in the control vessels from patients with CBF and 

CHD. BK induced a dose-dependent vasodilation, with a maximum response 

of 96.87 (18.83)% in arteries from patients with CHD and 94.03 (4.70)% in 

patients with CBF (these responses are expressed as the % change from pre- 

constriction, thus 100% response would indicate a return to baseline). The 

graph demonstrates that arteries from patients with CHF were perhaps 

slightly more sensitive to BK than those from CHD - the threshold response 

being 0.1 nM compared to I nM. However, there was no difference in either 

the maximum response or EC50 (p = 0.689 and 0.169, respectively, by 

unpaired t-test). 

Effect of ACE and chymase inhibition on responses to BK 

Figure S. 14 illustrates the responses to BK in the presence of ACE and 

chymase inhibitors in arteries from patients with CHD. As expected there 

was a shift to the left in the dose-response curve in the presence of 

enalaprilat, but not with chymostatin. However when expressed as ECSO this 

did not reach significance (p>0.05 by ANOVA), though the trend is obvious. 
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There was no significant difference in the maximum responses in any of the 

groups. These results are summarised in table 5.11. 

Figure 5.15 illustrates responses to BK in arteries from patients with 

CHF. Again there was a trend towards potentiation in the presence of 

enalaprilat, but this failed to reach significance (p>0.05 by ANOVA). There 

was no difference in the maximum response between groups. Actual values 

are given in table 5.11. Figure 5.16 summarises these data. 
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Table 5.11: Responses to BK 

CHD 

All valucs mean ± (SD) 
Control Enalaprilat Chymostatin Combination 

Max 96.87 (18.83) 84.84 (13.63) 89.20 (5.15) 88.63 (15.43) 

Response 

(0/o change) 

EC50 - 19.90 (3.30) *3.09 (0.14) 30.90 (1.30) 5.25(0.24) 

(M, X10-1) 

CHF 
All valucs mcan ± (SD) 

Control Enalaprilat Chymostatin Combination 

Max 94.03 (4.70) 95.27 (5.21) 94.41 (6.53) 94.38 (6.12) 

Response 

(% change) 
EC50 - 17.8(2.3) 4,07(0.12) 12.70 (3.20) `15.57 (0.13) 

(M, X 10-1) 

ANOVA did not reveal significant differences between control and 

experimental groups for either EC50 or maximum response 

9'ý p>0.05 
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Figure 5.13: Response to BK in arteries from patients with CHF and CHD 
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Figure 5.13 shows the response to BK in arteries from patients with CHD and 

Cl-IF in the absence of any inhibitors. There was no significant difference 

between the 2 groups. 
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Figure 5.14: Response to BK in arteries from patients with CHD: effect of 

ACE inhibition 
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Figure 5.14 illustrates the effect of ACE and combined ACE and chymase 

inhibition on the responses to BK in arteries from patients with CHD. There 

was a trend towards potentiation in the presence of enalaprilat, but this did 

not reach significance (p>0.05, EC50, control vs. enalaprilat). 
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Figure 5.15: Response to BK in arteries from patients with CHF: effect of 

ACE inhibition 
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Figure 5.15 illustrates the effect of ACE and combined ACE and chymase 

inhibition on the responses to BK in arteries from patients with CHF. There 

was a trend towards potentiation in the presence of enalaprilat, but again this 

did not reach significance. 
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Figure 5.16: Response to BK in arteries from patients with CHF and CHD: 

effect of ACE and chyMase inhibition 
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Figure 5.16 summarises figures 5.14 and 5.15 
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5.8.3 Responses to acetylcholine 

CRCs to ACh were constructed after those to BK, and in the same 

fashion. ACh induced a dose-dependent vasOdilation, which was near 

maximal in all vessels studied. The threshold in both CBF and CHD was 

ln. M. Figure 5.17 compares the response to ACh in arteries from patients 

with CBF and CHD. In the former the maximum response was 97.42 

(8.10)% and in the latter, 103.64 (14.17)% (p = 0.24). There was no 

difference in EC50. 

Effect of ACE and chymase inhibition on responses to ACh 

Figure 5.18 shows the response to ACh in arteries from patients with 

CHD. There did not appear to be any significant effect of either ACE or 

chymase inhibition (p>0.05 by ANOVA). Similar data is shown in figure 

5.19, for arteries from patients with CBF. Again no effect of ACE or 

chymase inhibition is discernible (p>0.05 by ANOVA). Table 5.12 

summarises these data. 
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Table 5.12: Responses to ACh 

CHD 

Control Enalaprilat Chymostatin Combination 

Max 103.64 98.08 (5.54) 97.83 (3.81) 96.67 (7.65) 

Response (14.17) 

(% change) 

EC50 10.0(1.90) 7.24(0.42) 40.70(l. 1) 8.91(0.23) 

(M, X 10-1) 

I I I I II 

CHF 

Control Enalaprilat Chymostatin Combination 

Max 97.42 (8.10) 95.07(8.81) 94.08(11.63) 98.22(6.01) 

Response 

(% change) 

EC50 11.50 (1.90) 7.94(0.27) 10.0(1.50) 7.24(0.36) 

(M, X 10-1) 
I I I I II 

All values means (± SD) 
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Figure 5.17: Response to ACh in arteries from patients with CHF and CHD 
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Figure 5.17 illustrates the effect of ACh in arteries from patients with CHF 

and CHD, in the absence of either ACE or chymase inhibition. 
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Figure 5.18: Response to ACh in arteries from patients with CHD: effect of 

ACE and chyl-nase inhibition 
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Figure 5.18 illustrates the response to ACh in arteries from patients with 

CHD in the presence of ACE and chymase inhibitors. 
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Figure 5.19: Response to ACh in arteries from patients with CHF: effect of 

ACE and chyMase inhibition 
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Figure 5.19 illustrates the response to ACh in arteries from patients with CHF 

in the presence of ACE and chymase inhibitors. 
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5.9 Discussion 

In chapter 31 demonstrated that AI induces -a dose-dependent 

contraction in human resistance arteries. A surprising finding was that the 

response to AI, though dependent on AII formation, was not dependent on the 

action of ACE. Instead there appears to be a dual pathway, consisting of 

ACE and a chymostatin-sensitive enzyme (most likely chymase) in human 

resistance arteries. The aim of the studies described in this chapter was to 

extend these experiments to patients receiving ACM (compared to similar 

patients who were not) and to investigate the effect of chymase and ACE- 

inhibition on the action of other vasoconstrictors and dilators. 

Patient characteristics: The patients studied were well matched, 

differing only in the pre-defined criteria of ejection fraction, which was 

reduced in those with CHF, and medication. All patients with CHF were 

receiving ACEL Patients with CBF were also older than patients with CHD, 

as might be expected. Since all the patients were instructed to take their 

medication (including ACEi in those patients with CBF) on the morning of 

study, plasma AII and serum ACE levels are illuminating. Most of the 

patients with CHF had suppressed serum ACE, suggesting that they had taken 

their ACEi on the morning of study. Consistent with that -suggestion, plasma 

renin levels were elevated in patients with CHF, though with a wide spread of 

values. However, despite compliance with ACEi therapy, plasma AII levels 

were elevated in patients with CHF. In contrast, patients with CHD were not 
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hyper-reninaemic and had lower AII levels than patients with CHF. "These 

data are consistent with other studies in CHIF in demonstrating failure of 

suppression of AII despite ACM therapy and might be due to the presence of 

alternative enzyme pathways. However, they should be interpreted with 

caution, since plasma Al was not measured. [282] In the assays used in this 

study there is'an approximately 1% cross-reactivity between Al and AIL 

Thus apparent failure to suppress AII could be due to very high AI levels, 

detected in the AII assay, 

Myography Dat : In arteries from CHD the effects of enalaprilat and 

chymostatin on the dose-response curve to AI were qualitatively very similar 

to those described in Chapter 3 for normal volunteers. -Neither enalaprilat nor 

chymostatin significantly inhibited the response to AI, but there was a 

pronounced trend towards inhibition in the combination group. These results 

are consistent with those of Voors et al, who also described a dual pathway 

for All generation in internal mammary arteries taken from patients with 

CHD, and they'also extend my previous findings in small resistance arteries 

from healthy volunteers to patients with CHD. [210] 

Collectively, the available data in healthy volunteers and patients with 

CHD, show that neither an ACE inhibitor alone, nor a chymase inhibitor 

alone, substantially, inhibit the conversion of Al to All in small, arteries, 

medium sized arteries or veins. i,. Only the combination of an ACE inhibitor 

and a chymase inhibitor effectively blocks AI to All conversion. These 

findings imply that both the limbs of the dual pathway for conversion of AI to 
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AII have a high capacity and that substrate can normally be rapidly and 

completely shunted through one limb, should the other be blocked. 

It is important to note that the response of small resistance vessels to 

AII was not affected by enalaprilat, chymostatin or the combination of the 

two in arteries from patients with either CBF or CHD. Similarly the 

responses to NE in the presence or absence of the inhibitors were very 

similar. Thus there is no evidence that potentiation of the action of 

vasodilator substances by any of these inhibitors indirectly influences the 

response to AL The responses to AII do, however, merit further 

consideration. Figure 5.7 shows the response to AII in the absence of 

inhibitors in arteries from each patient group. The response to AII was 

enhanced in arteries from patients with CBF. Stephens et al studied the 

response to AII and NE in a subset of patients with impaired left ventricular 

function after MI. [274] These patients were randomised to receive ramipril 

or placebo as part of the AIRE trial. [275] They showed that the maximum 

response to All was enhanced in patients who received the ACE-inhibitor, 

compared to patients who received placebo, or normal controls. In contrast, 

while there was no difference in the maximum response, arteries from 

patients who received ramipril exhibited greater sensitivity to NE. Therefore, 

they hypothesised that the increased response to AII was due to an interaction 

between NE and AIL My findings confirm the exaggerated response to AII, 

but I did not show an altered sensitivity to NE. 
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In both CBF and CHD subjects, there was a pronounced trend towards 

potentiation of dilator responses to bradykinin in the presence of enalaprilat. 

This was consistent with the effect of enalaprilat on bradykinin responses 

described in chapter 3. Chymostatin did not appear to enhance the effect of 

enalaprilat, suggesting that chymase plays little, or no, role in the degradation 

of kinins in human resistance arteries. 

I also showed that vessels from patients with CBF and CHD exhibited 

a vasodilator response to ACh. There was no apparent difference between the 

patient groups, suggesting that endothelial function in CBF does not differ 

from CHD.. However, in the absence of a normal control group, it is not 

possible to make any inference about vascular endothelial function in these 

patients with cardiovascular disease compared to healthy subjects. ý Our 

results do raise the possibility that previous reports of endothelial dysfunction 

in CHF may in fact reflect endothelial dysfunction in coronary heart disease 

rather than in CBF'per se. Neither enalaprilat nor chymostatin had any 

apparent effect on responses to ACh. 

In contrast, to the responses seen in arteries from CHD patients, the 

response to AI in arteries from patients with CBF proved to be quite different. 

Here enalaprilat significantly inhibited the response to Al, an effect that was 

possibly enhanced - in, the presence of chymostatin. . As in previous 

experiments, chymostatin alone had no effect on AI-mediated responses. 

Thus, contrary to my original expectation, I did not find "up-regulation" of 

the chymostatin sensitive pathway in these subjects and instead, found that 
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the small resistance arteries from these patients were more sensitive to ACE 

inhibition than those from healthy volunteers or patients with CHD. It is 

unlikely that this finding is due to the minor age and therapy differences 

between CIHF and CHD patients. There are, however, at least three potential 

explanations. 

The first possibility is that the chymostatin sensitive non-ACE 

pathway is actually "down-regulated" in CHF patients treated with an ACE 

inhibitor. Why this should occur is not clear, though it could occur if the 

ACE pathway is "up-regulated". The second possibility, that ACE activity is 

induced, could also explain our findings in CBF and it is known that both 

CBF and ACE inhibitor treatment, experimentally, can induce ACE. A third 

possibility is that tissue ACE is not fully inhibited when arteries are incubated 

with enalaprilat for 30 minutes. The inhibition of AI responses in the 

presence of enalaprilat, observed in patients with CBF, might then reflect the 

effect of residual ACE-inhibition due to their medication, enhanced by adding 

the inhibitor in the bath. This explanation seems unlikely because the 

experiments with BK clearly demonstrated that the addition of enalaprilat to 

the bath exerted a physiological effect. In addition, if the enalaprilat in the 

bath failed to inhibit vascular ACE, then the response to AI in the presence of 

the combination of chymostatin and enalaprilat should not have been different 

-from chymostatin alone. 

The results of the experiments described here cannot be due to altered 

ACE activity alone. If there is an alternative pathway for AII generation, AII 
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should continue to be generated by this enzyme (or enzymes) in the presence 

of an ACE-inhibitor. My findings, therefore, imply that the chymase pathway 

is "down-regulated" alone, or in conjunction with induction of ACE, in CHF. 

These findings differ from those obtained by Wolny et al, who studied 

the responses to Al in coronary arteries from patients with CBF treated with 

ACE inhibitors. [204] In these vessels cilazaprilat did not inhibit the 

response to AI, but chymostatin did inhibit it by 78%, and the combination of 

chymostatin and cilazaprilat inhibited the response by 97%. ' Thus, it would 

appear that in coronary arteries the chymase pathway is predominant, though 

the incremental - inhibition obtained by combining chymostatin and 

cilazaprilat suggests that some of the conversion of AI to'AII is mediated by 

ACE. It is possible that the results obtained by Wolny are due to a difference 

in the physiology of coronary arteries compared to resistance arteries - and 

reflect the relative contribution of ACE and chymase to AII generation in 

these tissues. However, in Wolny's experiments the effect of the inhibitors 

was only studied at I pM AI, which is supra-physiological, and not over a 

whole concentration range. It is therefore difficult to make a direct 

comparison between their results and mine. 

One limitation of the study presented here is that I was not able to 

distinguish between the effect of ACE inhibition and the presence of Cl-IF per 

se i. e. all the CHF patients were also on an ACE inhibitor. This question 

could be resolved in two ways: one approach might be to study arteries 

obtained from ACE inhibitor-nalve patients with CBF and a second would be 
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to study arteries from CHD patients pre and post ACE-inhibition. Despite 

this limitation, however, these findings are important, since they suggest that 

physiological escape from ACE inhibition can occur in a relevant clinical 

situation. II-1, ,,. I1 11 . 

Even though the chymase pathway may be less, active, in CHF, I did 

find an incremental and statistically significant inhibition of AI to AII 

conversion with the combination of chymostatin and enalaprilat compared to 

enalaprilat alone in these patients. This finding provides a rationale for using 

drugs which inhibit the action of All directly in the treatment of patients with 

CHD and CBF; an alternative, and potentially worthwhile approach, would 

be the development of agents that inhibit non-ACE AII generating pathways. 
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Chapter 6 

Organ bath preparations of internal mammary 

arteries from patients with coronary heart disease 
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6.1 Introduction 

In previous chapters I have examined the responses to AI in human 

resistance arteries from normal subjects, patients with CI-IF and patients with 

CHD. As discussed in section 1.4, ACE-independent AII generation has been 

shown in a number of animals and in a variety of tissues. In man non-ACE 

AII generation has been demonstrated in the heart and in the vasculature. The 

aim of the study presented in this chapter was to investigate whether non- 

ACE All generation occurs in human medium-sized arteries. Accordingly I 

studied the responses to AI in human internal mammary arteries which were 

readily available from cardiac theatre. 

6.2 Patient selection 

Human internal mammary arteries (IMAs) were obtained from male 

and female patients undergoing coronary artery bypass grafting (CABG). 

Vessels were obtained from cardiac theatre and were segments discarded after 

the procedure had finished. Since the use of the vessels was at the discretion 

of the surgeon, it wasnot possible to select patients in advance. There were, 

therefore, no specific exclusion criteria and patients with both hypertension 

and diabetes mellitus were included. Similarly it was not possible to screen 

the patients for left ventricular dysfunction in advance and this (and other) 

clinical information was derived from the case notes (comments about LV 
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function were recorded at the time of cardiac catheterization). Approval to 

use the discarded IMAs was granted by the Hospital Ethics Committee. 

These experiments were performed by Dr Mark Petrie, as part of a 

collaborative study with myself Protocols were based on my previous work, 

as described above, and it was agreed in advance that the study would be 

included in this thesis. 

6.3 ý Human internal mammary artery preparation 

IMAs were dissected from the thoracic wall by the surgeon, using a no 

touch technique, leaving the vessels surrounded by internal thoracic fascia. 

The discarded distal end of the IMA (1-2cm) was carefully removed and 

placed in ice-cold physiological salt solution (PSS), and the vessels were 

f. immediately transferred to the laboratory. 

The vessels were cleaned of connective tissue and cut into four 2- 

3mm long segments. Rings were suspended on wires in 10ml organ 

chambers filled with physiological salt solution (PSS), maintained at 370C, 

and aerated with a 95% 02-5% C02 mixture. The rings were connected to 

force transducers, and changes in isometric tension were recorded. The PSS 

(pH 7.4+/-0.1) had the following composition (in mM): NaCI 13 0, KCI 4.9, 

NaHC03 14.9, KH2P04 1.18, glucose 5.5, MgS04.7H20 1.17, Ca C12.. H20 

1.6, EDTA 0.03, indomethacin 0.02, dissolved in DMSO. 
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6.4 Experimental protocol f 

After an incubation period of 45 minutes vessels were initially 

activated with phenylephrine (PE) 3xIO-6M and subsequently with KCI 

80mM. Vessels were then incubated for a further 30 minutes in either PSS 

(control, vessel 1) or with enalaprilat 10-6M (vessel 2), chymostatin 10-5M 

(vessel 3) or both enalaprilat 10-6 and chymostatin 10,5M (vessel 4). 

Cumulative concentration response curves were then performed to AI from 

0.01 nN4 to 3 pM. 

6.5 Patient Characteristics 

Internal mammary arteries were obtained from patients undergoing 

coronary artery bypass surgery at the Western Infirmary. Unused internal 

mammary arteries were obtained from cardiac theatre at the discretion of the 

surgeon. No prior selection of patients studied w-asltherefore made. Clinical 

data concerning the patients was taken from the case-notes retrospectively. 

Patient characteristics are shown in table 6.1. As can be seen from the table, 

patients formed a heterogeneous group. Left ventricular function was 

preserved in most patients and only one was receiving an ACE-inhibitor. 
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Table 6.1: Patient from whom internal mammaEy arteries were harvested for 

organ bath experiments 

Number 

Sex 7 males; 4females 

Age(mean+/-SD) 58+/-11 

Left ventricular function at 

cardiac catheterisation 

9 "good" 

I "fair" 

I moderate LVD 

Previous MI 6 

Hypertension 4 

NIDDM 2 

Drug therapy 

Ace inhibitor 1 

diuretic 

digoxin 0 

calcium channel blocker 5 

nitrate 8 

beta blocker 8 

HMG CoA reductase inhibitor 7 

aspirin 

SD - standard deviation; NIDDM 7: non, insulin dependent diabetes mellitus; 

ACE - angiotensin converting enzyme; HMG CoA - 3-hydroxy -3- 

methylglutaryl coenzyme A; LVD - left ventricular dysfunction. 
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6.6 Responses to Al in human internal mammary arteries 

Al induced a dose-dependent contraction in human internal mammary 

arteries, which was qualitatively similar to that observed in human resistance 

arteries. In the absence of inhibitors, the threshold was 1.61 (1.25) x10-8M, 

the maximum response occurred at 0.1 pM and the EC5 0 was 0.63 (0.5 1) x 10' 

7M. Marked tachyphylaxis was again observed. Compared to those in 

resistance vessels, the responses observed in these experiments were 

extremely variable. Thus, responses were again expressed as the % response 

to KPSS as an internal control. 

Responses to Al in the presence of enalaprilat, chymostatin and the 

combination are shown in figure 6.1. EC50s, threshold concentrations, 

maximum responses and AUC values are shown in table 6.2. Neither 

enalaprilat nor chymostatin alone inhibited the response to AL In fact, there 

appeared to be a greater maximum response in the presence of both of these 

inhibitors. In the case of enalaprilat there appeared to be a larger maximum 

response, with little difference in the EC50. However, neither the maximum 

response nor the EC50 were significantly different to control (p>0.05 by 

ANOVA). Similarly, although the response in the presence of chymostatin 

was greater than in control vessels, this was not significant. The combination 

of chymostatin and enalaprilat had very little effect on the maximum response 

compared to control but did induce a shift of the dose-response curve to the 

right, with an ECSO of 8.55 (6.37) xlO'7M and a threshold of 8.04 (10.5) xIO' 
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7 M. Although'there was no significant difference in the ECSO (P>0.05 by 

ANOVA), the threshold concentration was significantly higher (p<0.01 by 

ANOVA). When AUC was used to compare the responses, only the 

combination appeared to induce significant inhibition (p = 0.0029). 
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Figure 6.1: Response to Al in human intemal mammary arteries: effect of 

ACE and chyLnase inhibition 
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Figure 6.1 shows the response to Al in human internal mammary arteries 

expressed as the % of response to activation with KCI, 80mmol/l. Neither 

enalaprilat nor chymostatin alone inhibited the response to AI, however the 

combination significantly increased the threshold concentration and reduced 

the AUC (p<0.0 I by ANOVA, p=0.0029). 
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Table 6.2: Potency. maximum response and AUC to Al in internal mamma 

arteries from human subjects with CHD 

Means ±SD Control Enalaprilat Chymostatin Combination 

Maximum 69.11 96.95 124.44 61.22* 

response (56.48) (75.59) (87.87) (37.63) 

(as % 

response to 

KPSS) 

EC50 0.63 1.68 1.78 8.55t 

(x 10-7M) (0.51)' (1.76) (3.35) (6.37) 

Threshold 1.61 2.47 3.02 80.4t 

(XIO-IM) (1.25) (3.07) (4.33) (105) 

AUC 138.61 184.03 233.54 67.24'ý 

(135.35) (135.35) (165.74) (61.44) 

Table 6.2: Potency and maximum response to AI in human IMAs. All data is 

mean ± (SD). 

*p = ns compared to control 

t p>0.05 compared to control 

tp<0.01 compared to control 

ep=0.0029 compared to control 
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Discussion 11$, - 

The, aim of the experiments presented in this chapter -was to 

investigate whether non-ACE AII generation occurs in medium-sized arteries 

from human subjects. In these vessels, as in resistance arteries, AI induced a 

dose-dependent contraction, suggesting conversion to AII. Neither 

enalaprilat nor chymostatin inhibited the response to Al. In contrast, the 

combination of enalaprilat and chymostatin induced a marked shift to the 

right of the dose-response curve. -Although the EC50 for the combination 

was not significantly different from control, the threshold concentration was 

higher and the AUC was lower. 

These experiments were limited by the variability of the responses to 

AL This may account for the apparent increase in the maximum response to 

Al in the presence of enalaprilat and chymostatin (which did not reach 

significance). 

Thus, the effect of ACE and chymase inhibition on the response to AI 

was qualitatively similar in internal mammary arteries to that observed in 

resistance arteries. These results are similar to those of Voors et al, who 

studied the effect of captopril and chymostatin on AI-mediated responses in 

human internal mammary arteries. [210] In their experiments both Al and the 

ACE-dependent AI analogue, [Prolo]-Al, elicited a contraction that was 

abolished by irbesartan, conforming dependence on activation of the ATIR. 

Captopril completely inhibited [Prolo]-AI responses and increased the 
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threshold concentration to AI three-fold. 7he maximum response to AI in the 

presence of captopril was slightly higher than control - similar to the data 

presented in this chapter. Chymostatin had a slight inhibitory effect on AI 

responses (reducing the maximum response and increasing the threshold). 

The combination of captopril and chymostatin induced a much greater 

inhibition of Al responses than either agent alone. 

The results of the experiments presented in this chapter, therefore, 

confirm that a dual pathway for AII generation exists in human internal 

mammary arteries in-vitro. Internal mammary arteries are an order of 

magnitude larger than resistance arteries and are more proximally placed in 

the arterial tree. These results may therefore suggest that the phenomenon of 

non-ACE AII generation may be generalised throughout the vasculature. 

However, as discussed in chapter 3, these data should be interpreted with 

caution, since there is a discrepancy between the results of in-vitro and in- 

vivo investigations. Further studies are required to determine the significance 

of non-ACE AII generation in-vivo. 
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Chapter 7 

Identiflcation of ACE and Chymase in human internal 

0000 mammary arteries using immunohistochemistry 
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7.1 Introduction 

In chapter 3 and chapter 5,1 showed that the contractile response to 

AI in human resistance arteries and internal mammary arteries appeared to be 

due to generation of AII, mediated by a dual enzymatic pathway. In addition 

to ACE, an alternative enzyme appeared to be able to generate AII. This 

enzyme was susceptible to inhibition by chymostatin and, from the literature, 

is most likely to be chymase. However, the presence of chymase as an AII- 

generating enzyme in these experiments can only be inferred from the effect 

of pharmacological inhibition. These experiments therefore, do not 

unequivocally prove that chymase is the enzyme responsible for ACE- 

independent All generation. In particular it is known that cathepsin G is able 

to generate AII from angiotensinogen directly and that this reaction is 

inhibited by chymostatin, aprotinin and cc-antitrypsin. [208,209,3 04] 

The demonstration of the presence of chymase in human blood vessels 

would provide additional evidence that this enzyme is responsible for 

vascular non-ACE AII generation. In addition, as discussed in chapter 3, the 

spatial localisation of chymase and ACE expression may be related to their 

physiological roles in-vivo. Urata has shown that in the human myocardium 

chymase is synthesised in mast cells, endothelial cells and mesenchymal cells 

and, on release, localises to the interstitium. [198,199] In human saphenous 

veins, immunohistochernistry localises chymase to the adventitia, in 

association with mast cells, while ACE is found in endothelial cells and 

diffusely in the smooth muscle cell layer. [21 1] Chymase has not however, 



7.1 - Introduction , 

In chapter 3 and chapter 5,1 showed that the contractile response to 

AI in human resistance arteries and internal mammary arteries appeared to be 

due to generation of All, mediated by a dual enzymatic pathway. In addition 

to ACE, an alternative enzyme appeared to be able to generate All. This 

enzyme was susceptible to inhibition by chymostatin and, from the literature, 

is most likely to be chymase. However, the presence of chymase as an AII- 

generating enzyme in these experiments can only be inferred from the effect 

of pharmacological inhibition. These experiments therefore, do not 

unequivocally prove that chymase is the enzyme responsible for ACE- 

independent All generation. In particular it is known that cathepsin G is able 

to generate All from angiotensinogen directly and that this reaction is 

inhibited by chymostatin, aprotinin and cc-antitrypsin. [208,209,304] 

The demonstration of the presence of chymase in human blood vessels 

would provide additional evidence that this enzyme is responsible for 

vascular non-ACE All generation. In addition, as discussed in chapter 3, the 

spatial localisation of chymase and ACE expression may be related to their 

physiological roles in-vivo. Urata has shown that in the human myocardium 

chymase is synthesised in mast cells, endothelial cells and mesenchymal cells 

and, on release, localises to the interstitium. [198,199] In human saphenous 

veins, immunohistochernistry localises chymase to the adventitia, in 

association with mast cells, while ACE is found in endothelial cells and 

diffusely in the smooth muscle cell layer. [211] Chymase has not however, 
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been identified in human resistance arteries or internal mammary arteries.. In- 

vitro experiments, on non-ACE All generation may over-estimate the 

significance of chymase because they take no account of its localisation. 

Thus AI introduced to the luminal surface of resistance arteries may be 

entirely converted to - All, by ACE, with little or no contribution from 

chymase. -I 

The aim of the study - presented in this chapter was, therefore, to 

identify and localise chymase and ACE in human vascular tissue using 

immunohistochernistry (IHC). Dissected resistance arteries suitable for lHC 

were not available. Therefore the vessels studied were human internal 

mammary arteries. In addition, IHC was performed on skin samples taken 

with gluteal fat biopsies, hoping to identify ACE and chymase expression in 

arterioles or capillaries therein. Skin mast cells -are known to express 

chymase at relatively high levels and so this tissue provided a positive control 

for this enzyme. [305] IHC was also perfonned in sections of normal kidney, 

kept as part of the collection in the pathology department. ACE is known to 

be heavily expressed in the kidney and mast cells have also been identified in 

the renal interstitium. [306] 

7.2 Patient selection 

Human internal mammary arteries (IMAs) and saphenous veins (SV) 

were obtained from male and female patients undergoing coronary artery 

bypass grafting (CABG) as described in chapter 6. As described above, the 
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vessels obtained were those left unused at the end of the procedure and again 

it was not possible to select the patients in advance. Patient details were thus 

obtained retrospectively from the case-notes and there were no specific 

inclusion or exclusion criteria. - 

Samples of skin used in this study were those taken at the time of 

gluteal biopsy from normal human volunteers. Details of patient selection are 

described in chapter 3. After dissection of resistance arteries, the remaining 

skin was cleaned of fat and divided into two; one sample was placed into 

liquid nitrogen to allow preparation of frozen sections and the other was 

placed into formaldehyde. 

Sections of normal kidney were available from the collection in the 

pathology department. Samples used in these experiments were taken from a 

nonnal kidney intended for use in renal transplantation but not used for 

technical reasons. 

7.3 Experimental protocol 

Details of immunohistochemical methods are given in chapter 2 

(appendix to methods). Briefly, two-step indirect immunohistochemistry was 

employed. Chymase and ACE were detected using mouse monoclonal 

antibodies visualised with , standard immunoperoxidase or alkaline 

phosphatase techniques. Prelimfinary expenments were performed to identify 

the optimal dilutions of each antibody. These were performed in both frozen 
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sections ý and formaldehyde-fixed specimens. Immunohistochernical 

specimens were reviewed in association with Dr George Lindop. 

7.4 , Identification of chymase and ACE by IHC 

Internal mammary arteries were taken from five patients who had 

undergone coronary artery bypass grafting. Patient characteristics are shown 

in table 7.1. Skin biopsies were taken from patients who were normotensive, 

non-diabetic men, as described in chapter 3. 

Representative immunohistochemical preparations are shown in 

Figures 7.1-7.5. Neither ACE nor chymase were identified in formaldehyde- 

fixed preparations. However both were detected in frozen sections. These 

are illustrated in figures 7.1-7.5. Figure 7.1 (A) illustrates 

immunohistochemical staining for chymase in the kidney. Mast cells staining 

strongly for chymase were identified in small numbers, scattered throughout 

the interstitium. Figure 7.1 (B) illustrates staining for chymase in sections of 

human skin. Chymase was identified scattered throughout the dermis, within 

mast cells. However, chymase was also identified within mast cells, in close 

proximity to skin arterioles in the adventitia, as shown in figure 7.2 (A and 

B). Figure 7.3 illustrates the location of chymase and ACE in internal 

mammary arteries. Chymase was identified in the adventitia, in association 

with mast cells, with no staining within the medial layer (figure 7.3 [A]). 

Little endothelium was present in these sections and no staining for chymase 

was identified therein. Figure 7.3 (B) shows an internal mammary artery 
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stained fbrACE. ' While staining for ACE was at a low level, there appeared 

to be a "blush" of staining throughout the medial layer, at levels too low to 

localise at a cellular level (figure 7.4 [A]). On a high-power view, the nuclei 

of endothelial cells were visible, with some staining for ACE possibly seen 

also. In the skin, ACE was identified within the stratified squarnous 

epithelium and in association with apocrine glands and capillaries. ACE 

could also be seen on the luminal. side of capillaries (figure 7.5 [A]). No 

vessels , resembling resistance arteries were seen in these sections. A 

representative negative control is shown in figure 7.5 (B). 
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Table 7.1: Patients from whom intemal mammajýý arteries were harvested fo 

IHQ 

Patient number 5 

Sex (male: female) 2: 3 

Age at time of bypass 67.6(8.8) 

Blood Pressure 151.4/75.0 (16.1/12.2) 

Creatinine 83.2(6.0) 

Glucose 5.1(0.6) 

Cholesterol 6.4(l. 7) 

HMG Co A reductase inhibitor 3/5 

Table 7.1 describes patients from whom internal mammary arteries were 

harvested. All values are given as mean (± SD). All patients were receiving 

a P-blocker and aspirin. None were diabetic. Serum biochemistry and blood 

pressure values were those taken pre-operatively, as recorded in the case- 

sheet. 
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Figure 7.1: Immunphistochemistry for chyMase in the kidney and skin 
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A) IHC with chymase monoclonal antibody in normal human kidney. A mast 

cell is seen in the interstitium (immunoperoxidase method; 1: 400 dilution of 

primary antibody) 

B) lHC with chymase monoclonal antibody in gluteal skin from a non-nal 

volunteer. Mast cells are seen in the dermis (alkaline phosphatase method; 

1: 1000 dilution). 
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Figure 7.2: Immunohistochemistry for chyMase in human skin 
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A) lHC for chymase in non-nal gluteal skin. An arteriole is seen with 

branches (arrowed). Chymase is seen within adventitial mast cells (broken 

arrow). 

B) lHC for chymase in normal gluteal skin. An arteriole is seen with 

adventitial mast cells stained for chymase (both alkaline phosphatase method 

with 1: 1000 dilution of primary antibody) 
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Figure 7.3: Immunohistochemistry for chymase and ACE in intemal 
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A) lHC for chymase in an internal mammary artery. Mast cells (arrows) 

stained for chymase are visible in the adventitia, but not the media (1: 400 

dilution) 

B) IHC for ACE in an internal mammary artery. A "blush" of staining for 

ACE is visible in the media (arrow), but not the adventitia. The endothelium 

is not intact (both samples by immunoperoxidase method; ACE at dilution of 

1: 100). L= lumen. 
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Figure 7.4: Immunohistochemistry for ACE in the intemal mammary arte 

and skin 
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A) High-power view of IMA stained for ACE. Staining within media is 

clearly seen. A few endothelial cell nuclei are seen (arrow), possibly with 

some staining for ACE also present. 

B) IHC for ACE in normal gluteal skin. Heavy staining for ACE is seen 

within the stratified squamous epithelium and in association with a capillary 

(arrow) and an apocrine gland (broken arrow). Both using 

immunoperoxidase method; with a dilution of 1: 50 of the ACE antibody. 
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Figure 7.5: Immunphistochemistry for ACE in the skin and negative control 
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A) High-power view of IHC for ACE in human skin. A capillary is seen with 

staining for ACE on endothelial cells. (immunoperoxidase method) 

B) Negative control. IMA without primary antibody, but otherwise processed 

in the same way as other samples. 
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7.5 Discussion 

In this chapter immunohistochemistry was used to try to identify 

chymase within human tissue and to compare its distribution with that of 

ACE. Chymase was identified in human skin, as expected. The pattem of 

staining suggested that the enzyme was located in mast cells and, within the 

detection limits of this study, there did not appear to be expression of the 

enzyme in the dermal interstitium. The key finding presented here is that 

chymase is present in the adventitia of human internal mammary arteries, 

probably also in association with mast cells. No staining for chymase was 

identified in the media. Unfortunately, the absence of intact endothelium 

means that it is not possible to exclude expression there. However, chymase 

was not identified on the luminal surface of small skin blood vessels, though 

it was seen in the adventitia. 

In contrast to chymase, ACE was not found in the adventitia of 

internal mammary arteries, but there appeared to be a low level of expression 

within the media. Again the absence of intact endothelium was 

disappointing, however there may have been a low level of staining in 

association with the remnants of endothelial cells. in the skin, ACE was seen 

on the luminal side of capillaries, in apocrine glands and in the squarnous 

epithelium. 

The results of this study are descriptive and are limited by poor tissue 

preparation. The absence of endothelium probably reflected tissue handling 

and the long delay between removal of the vessel and placement to liquid 



nitrogen. This severely limits the conclusions that can be drawn. In 

particular it is not possible to comment definitively on the presence or 

absence of chymase in the endothelium, though it appears unlikely. The 

identification of chymase within the adventitia is consistent with previous 

studies. [198,211] The failure to identify chymase, except in association with 

mast cells may be due to the sensitivity of the technique. It is noteworthy that 

Urata identified interstitial chymase using immunogold precipitation and 

electron microscopy. [ 198] Thus, I cannot exclude the presence of chymase, 

below the detection threshold for this technique, within the vascular 

interstitium. 

It was also disappointing that identification of ACE and chymase was 

not possible in fonnaldehyde-fixed sections. Had this been possible these 

experiments could have been repeated on a wider range of specimens within 

the departmental collection. This problem was probably due to antigen 

unavailability after the fixation procedure and may be solved in future by 

antigen-retrieval techniques, such as heating the tissue or partial trypsin 

digestion. Furthermore, no attempt was made to quantitate ACE or chymase 

expression and so no conclusions can be drawn as to their regulation in these 

tissues. For this molecular techniques would be more suitable, though semi- 

quantitative immunohistochemistry is possible. Of particular interest is the 

question of whether ACE-inhibition leads to up-regulation of ACE and/or 

down-regulation of chymase, as suggested in chapter 5. The regulation of 

ACE and chymase in disease states would also be of interest, since there is 
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some evidence that chymase expression is increased in 

hypercholesterolaemia. [295] 

Despite these reservations, both ACE and chymase were identified in 

human vascular tissue. The localisation of the enzymes was consistent with 

previous studies and suggests that the two enzymes may have different roles. 

Chymase is a strong candidate as the enzyme responsible for non-ACE AII 

generation in the human vasculature identified in previous chapters. The 

functional significance of this requires further investigation using a 

combination of physiological and molecular techniques. 
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Chapter 8 

Final Discussion 
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8.0 Final discussion 

Although it is now over one hundred years since the first 

demonstration of the pressor action of AII, the RAS remains pivotal to our 

understanding of the regulation of the cardiovascular system. During this 

time the biology of the RAS has been studied in great detail. These 

investigations have culminated in the development of drugs that interrupt the 

system at key points. Following a number of large clinical trials, the use of 

ACE inhibitors is now virtually mandatory in the treatment of CHF and these 

drugs are widely used in the treatment of hypertension and renal disease. [163, 

164] -To these have been added angiotensin receptor antagonists, which are 

now being investigated in a number of disease states. [167] Use of the 

aldosterone antagonist, spironolactone, is also increasing, following the 

demonstration of its efficacy in severe CBF. [307] Since AII stimulates 

aldosterone secretion, this constitutes a form of functional inhibition of the 

RAS. 

Despite, these facts there are still many areas of controversy 

concerning the RAS. In particular, there is uncertainty about whether there is 

a local RAS regulated independently of the systemic RAS. Related to this 

issue is the question of whether there is significant All generation by tissue- 

based pathways other than ACE and, if so, whether they are induced when the 

RAS is subject to pharmacological interruption. It is also unclear to what 

extent genetic variation alters the physiology of the RAS and whether this has 
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pathophysiological significance - for example in determining cardiovascular 

risk or contributing to the development of essential hypertension. 

The studies presented in this thesis have concentrated on the actions 

of AI and AII in the human vasculature and particularly in human small 

arteries. 'There were a number of reasons for choosing this tissue. Regulation 

of the peripheral resistance contributes to the control of blood pressure and 

abnormalities of these blood vessels have been identified in hypertension, 

CHF and uraemia. In terming the vessels that I studied "resistance arteries, " I 

have followed the definition suggested by Mulvany and Aalkjaer i. e. arteries 

with internal diameters of less than 5OOgm. [236] However, studies of the 

pressure drop across the human vascular bed have not been performed and, 

while it is assumed that these vessels contribute significantly to the regulation 

of peripheral resistance, this is not known for sure. Moreover, the majority of 

vessels studied in these experiments were obtained from subcutaneous gluteal 

fat biopsies. Though this is a well-established technique, a systematic study 

of the properties of arteries from different vascular beds has not been 

performed in man. It is not known whether the properties of gluteal 

subcutaneous resistance arteries, which must play an important role in 

thernioregulation, are representative of vessels elsewhere. A similar situation 

pertains to arteries from the abdominal wall. Caution is therefore necessary 

when interpreting the results of these experiments and extrapolating their 

significance to the vasculature as a whole. It is assumed throughout this 
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thesis that the properties of gluteal subcutaneous resistance arteries are 

similar to those of vessels found in other organs. 

The -- ma . or conclusion from these studies is that, in in-vitro j 

preparations of human tissue, the generation of AII is mediated through a 

dual'pathway. - In contrast, AII generation in resistance arteries from the 

rabbit was, ACE-dependent. Thus the mechanism of AII generation in 

resistance arteries appears to be species-specific. This dual pathway appears 

to be present in both resistance arteries and internal mammary arteries and 

may be ubiquitous in the human vasculature. One limb of this pathway is 

ACE. The other limb is an enzyme (or enzymes) susceptible to inhibition 

with chymostatin. This chymostatin-sensitive component of AII generation 

("CAGE") is thought to represent the action of the enzyme chymase. in 

resistance arteries from normal volunteers and patients with CHD there 

appeared to be sufficient capacity in each arm of the pathway to generate a 

normal response to AI, when either ACE or chymase was blocked. The same 

situation appeared to exist in internal mammary arteries from patients with 

CHD. Thus it appears that AI can be "shunted" between the enzymes 

responsible for AII generation. In contrast, in arteries from patients with 

CBF, enalaprilat exerted a significant inhibitory effect on AI responses. 

Though this was enhanced by the addition of chymostatin, it would appear 

that the non-ACE pathway was less important (and had, perhaps, been down- 

regulated) in these arteries. Whether this was due to treatment of the patients 

with ACM, or to their underlying heart failure, is not clear. 
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There are a number of ways of resolving this issue. One would be to 

study resistance artery responses to AI in ACE inhibitor-nalve patients and 

then to repeat the experiments in the same patients after administration of this 

medication. A complementary approach would be to study patients with 

CHD and normal left ventricular function before and after administration of 

an ACE inhibitor. A third possible approach would be to use Al-isopeptides 

to dissect the relative contributions of ACE and chymase to AII generation. 

[Pro" D-Ala 12] AI is a synthetic peptide that is resistant to cleavage by ACE 

but is hydrolysed to form AII by the action of chymase. [206] Similarly 

[Prolo] AI is susceptible to cleavage by ACE but not chymase. [300] Each of 

these strategies would represent a functional approach to identify whether the 

increased sensitivity to enalaprilat seen in CHF patients was due to the 

syndrome or to the fact that they were receiving ACEL 

III Other, experiments in resistance arteries were designed to study the 

mechanism of inhibition of AI responses exerted by enalaprilat and 

chymostatin. The failure to significantly inhibit responses to AII and NE 

suggested that there was no non-specific inhibition of contractile responses to 

standard , vasoconstrictors due to stimulation of counter-regulatory 

vasodilators. Thus, while enalaprilat did potentiate BK, chymostatin did not, 

and neither influenced the response to ACh. It was an interesting observation 

that there was no apparent difference in the response to ACh in arteries from 

CBF compared to CHD patients - suggesting that endothelial. dysfunction in 

the former was not specific to the syndrome itself. However, the absence of 
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an age and s'ex-matched control group without vascular disease makes this 

difficult to interpret. Similarly the enhanced response to AII in arteries from 

CBF patients was an interesting observation. As discussed in chapter 5, this 

may be due to an interaction between the sympathetic nervous system and 

AIL Whatever the mechanism, this observation may have implications for 

patients with CHF, especially if AII plasma levels are not fully suppressed 

despite ACE-inhibition. 

In chapter 41 reported an analysis of the role of the ACE I/D 

polymorphism in determining the responses to AL This analysis was limited 

by lack of DD, homozygotes, and it did not support the suggestion that 

variation at the ACE locus may influence vascular AII generation. Indeed, if 

there is a functional bypass pathway and the conversion of AI to AII is not 

rate-limiting, then variation in the expression of ACE could be expected to 

play little part in determining AII generation. In contrast, ACE seemed to be 

more important in'arteries from patients with CHF, since the alternative 

pathway was unable to compensate fully in the presence of enalaprilat - so 

variation at the ACE gene locus may be an important determinant of local All 

generation in specific situations when the RAS is activated. This question 

could be addressed by using molecular techniques to quantitate ACE and 

chymase expression in resistance arteries. Chymase has recently been 

detected by PCR in human adipose tissue and it might be possible to extend 

this technique to human blood vessels. [308] Immunohistochernistry has also 

been employed to identify chymase and ACE expression in human 
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atherosclerotic aorta in a semi-quantitative manner. [294] In this study AII 

formation (largely chymase-mediated) was increased in diseased arteries and 

the number of chymase-positive cells observed in atherosclerotic and 

aneurysmal lesions was higher than in normal arteries. Similarly ACE 

expression has been localised within atherosclerotic plaques from human 

carotid arteries by a combination of immunohistochernistry and in-situ 

hybridisation. [309] This study showed that ACE appeared to be up-regulated 

in diseased vessels. Thus there is evidence that expression of both ACE and 

chymase are increased in diseased large and medium sized arteries. There is, 

however, little information concerning the regulation of chymase and ACE in 

small arteries. While it is theoretically possible to identify ACE and chymase 

gene expression in resistance arteries using the same techniques, the very 

small quantity of tissue available and the time taken to dissect vessels free 

renders mRNA difficult to detect. Nonetheless, a study of ACE and chymase 

gene expression in resistance arteries from patients with CBF, or taking ACEi 

would be of great interest. 

The conclusion that there is a dual pathway for AII generation in 

human blood vessels is largely dependent on pharmacological experiments. 

Thus the action of ACE and chymase is inferred from observations of the 

effect of blocking these enzymes. However, information about the spatial 

organisation of the enzymes within the vessel wall, together with an 

understanding of their regulation at a molecular level, is also necessary to 

understand their physiological and potential pathophysiological role. In 
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chapter 71 demonstrated that ACE is found in the medial layer of internal 

mammary arteries (and is known to be expressed on the surface of endothelial 

cells), while chymase is located within mast cells in the adventitia. This 

separation may be functionally significant. Thus, in-vitro studies of non-ACE 

AII generation in excised vessels may have over-estimated its significance by 

introducing AI abluminally, so exposing adventitial chymase to a substrate 

from which it is normally hidden. Similarly, the release or activation of 

previously inactive or intracellular chymase may confound biochemical 

studies of AII generation in homogenised tissue. There have been no in-vivo 

studies quantifying the contributions of ACE and chymase to AII generation 

directly, mainly because there is no specific chymase inhibitor available for 

use in man. However, there have been studies that have assessed AII 

generation across defined vascular beds. Zisman et al infused 125I_Aj into the 

coronary circulation and showed that enalaprilat almost completely abolished 

All generation. This suggested that chymase contributed little to All 

generation within the blood compartment, though it did not exclude non-ACE 

All generation within cardiac tissue. [201]. A recent study used venous 

occlusion plethysmography to study the relative importance of local AII 

generation and blood-delivered All for vasoconstriction in the forearm. [3 10] 

Enalaprilat inhibited both vasoconstriction and the conversion of AI into All 

- the latter by 99%. AI and All induced vasoconstriction with similar 

potencies despite a fractional conversion of only 36%. Based on these 

observations it was suggested that local All generation was very significant 
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but was ACE-dependent. A similar conclusion was arrived at by Webb, ý who 

also studied AII generation in the forearm using plethysmography. [51] Thus, 

the mode of delivery of 'AI to an artery may determine which enzyme is 

largely responsible for its conversion. 

There may. be two reasons for the discrepancies between in-vitro and 

in-vivo studies of AII generation. The first is that chymase-mediated--AII 

generation may be an artefact that occurs in-vitro due to experimental 

conditions and that this 'phenomenon is not clinically significant. The 

importance of experimental conditions was recently emphasised in a study of 

AI-responses in rat arteries. [311] Chymase dependent conversion of AI was 

identified, but only at very high substrate concentrations and the authors 

therefore questioned whether this phenomenon had any in-vivo significance. 

Another explanation is however, that vasoconstriction to AII generated by 

chymase may be an epiphenomenon of the enzyme. Thus, chymase may 

indeed mediate local AII generation, but this does not primarily influence 

vascular tone. It is possible that the spatial dissociation of ACE and chymase 

within the vessel is reflected in a functional dissociation. In a recent editorial 

Miyazaki and Takai proposed that chymase may play an important role in 

vascular proliferation and remodelling. [312] Chymase-mediated AII 

generation may not be important in normal healthy tissue, but it may be 

significant when there is inflammation or damage to blood vessels. Evidence 

to'support this notion comes from studies on balloon injured arteries in dogs, 

where chymase has been shown to be induced. [212] In this system 
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neointimal hyperplasia can be inhibited by an angiotensin-receptor 

antagonist, but not an ACE-inhibitor. [214,215] The significance of the 

potential trophic role of chymase is emphasised by a recent study that showed 

an increase in expression associated with hypercholesterolaemia. [295] One 

could therefore speculate that when blood vessels are damaged, mast cells are 

recruited, resulting in increased local AII generation, mediated by chymase. - 

There are a number of ways in which the role of chymase within the 

vasculature could be clarified. In perfusion myography, resistance vessels are 

cannulated at each end and isobaric responses (rather than the isometric 

responses of wire myography) are studied. [299] There are a number of 

potential advantages associated with this technique. Perfusion mimics in-vivo 

conditions more precisely and the vessels are allowed to maintain a normal 

shape. The more physiological nature of the preparation may be reflected in 

observations that pressurised vessels are more sensitive to agonists such as 

NE. [313] Thus, a comparison of responses to AII in wire and pressure 

mounted vessels demonstrated that low concentrations of AII induced a 

sustained contraction in the latter but not the former. [314] The perfusion 

system may be more appropriate for studies of AI and AII responses in 

resistance arteries. A further potential advantage of the perfusion system is 

that this may allow agonists to be introduced to the lumen of the vessel 

directly. It may then be possible to investigate the relative contributions of 

ACE and chymase to AII generation when Al is introduced luminally or 

abluminally. 
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In summary, in this thesis I have demonstrated that AI acts locally in 

human resistance arteries to generate AII. This conversion is apparently 

mediated through the action of ACE and chymase, which together form a 

dual pathway for AII generation. Studies in arteries from patients with CHD 

and CHF suggest that the relative contributions of ACE and chymase to AII 

generation may be modified by either the disease or the treatment. Studies in 

internal mammary arteries confirm the existence of this dual pathway in a 

different vascular bed and additionally suggest that the enzymes are spatially 

distinct within the vessel wall. Whether this spatial organisation is reflected 

in the functions of the two enzymes is not fully understood and further studies 

are required to clarify the role of chymase in man in-vivo. Of particular 

importance is the issue of whether chymase expression is increased in disease 

, states such as CHF and atherosclerosis and whether this contributes to the 

f 

pathophysiology of these syndromes. Chymase itself may be an important 

therapeutic target and strategies to maximise inhibition of the renin- 

angiotensin system should take into account the possibility of non-ACE 

angiotensin 11 generation. 
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