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Abstract 

Aberrant methylation of CpG islands (CGIs) is associated with transcriptional silencing of 
key tumour suppressor genes in cancer and is a frequent epigenetic event in epithelial 

ovarian cancer (EOC). It has been shown to be involved in many aspects of tumour 

progression including chemoresistance. Methylation of CGIs can be detected in tumour 
DNA released into plasma, which means it has potential clinical use both as an early 
diagnostic and prognostic/predictive marker in EOC. The methylation status of 24 CGIs in 

a retrospective group of 142 EOCs and 16 non-turnour adjacent tissues were analysed 

using methylation-specific PCR (MSP) and Combined Bisulphite Restriction Analysis 

(COBRA) methods. CGI methylation of at least one of these loci was a frequent event in 

both early (78%) and late stage (60%) disease. A group of loci were identified as being 

methylated in 64% of early stage turnours; (CGIs linked to the OPCAM, RASSFIA and 
HICI genes). The HICI CGI was frequently methylated in matched non-tumour adjacent 
tissues, but not in normal ovarian surface epithelium, potentially representing an early 

epigenetic event in the carcinogenic process present even before apparent morphological 

change. 

Differential methylation hybridisation (DMH) of a 12K CGI microarray using ovarian cell 
lines identified methylation of a CGI located at the LAMIA gene. This CGI was shown by 

MSP to be a potential early epigenetic marker methylated in 75% of early stage ovarian 

tumours. 87.5% of the early stage turnours examined were methylated in at least one of 
four loci (LAMA, OPCML, RASSFIA or HICI). The clinical application of this group of 

methylated CGIs was examined in matched plasma from chemonaive patients with EOC 

for similar methylation changes. Methylation of LAMIA was detected in 43.3% of all 

plasma samples and in 48.2% of those patients with methylated LAMA in their tumour. 
When methylation was detected in plasma, it was always detectable in the corresponding 
tumour. Therefore, detection of LAMIA methylation in plasma has a sensitivity of 48.2% 

and a specificity of 100%. 

In late stage chemonaive ovarian turnours, methylation in tumour of CGIs associated with 
BRCA1, GSTPI or MGMT correlated with an improved response to chemotherapy 
(p=0.013). In addition, a non-random pattern of methylation was observed which 
demonstrated that there is an underlying biological mechanism leading to co-methylation 
of specific genes, but the cause of this remains unidentified. 
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In addition to identifying methylation of the LAMIA CGI as a potentially early epigenetic 

event DMH of ovarian cell lines also identified both the LAMA CGI and a CGI at the 

NR2EI gene, within a group of ranked sequences, whose methylation status optimally 
discriminate between cisplatin sensitive and resistant cell lines. CGI methylation of these 

genes was associated with a transcriptionally repressed state. Methylation of these CGIs 

was observed in 61.8% and 12.6% of chemonaive, ovarian turnours respectively, but not in 

normal ovarian surface epithelium. Comparison of matched pairs of chemonaive, ovarian 
turnours and post-chemotherapy residual samples showed that methylation of NR2EI and 
LAMA increased in 33% and 25% respectively following chemotherapy, which is in 

keeping with selection of methylation of these genes during platinum based chemotherapy 
and a potential role for these genes in platinum resistance mechanisms. 
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1 Introduction 

1.1 Clinical diagnosis and first-line treatment of ovarian 

cancer 

Ovarian cancer is a heterogeneous disease in its biological nature, aggressive 

characteristics and response to chemotherapeutic agents. Epithelial ovarian cancer (EOQ 

is considered to be the most aggressive neoplasm of the female genital tract and remains 
the cause of more cancer-related deaths than a combination of both cervical and 

endometrial cancers (Ozols et al., 2004). EOC is the most common WHO (World Health 

Organisation) histological type and multiple subtypes of this exist which are based on cell 
type and architecture of the tumour. At least 80% of EOCs arise from the coelomic 

epithelium of which 75% are serous cystadenocarcinomas. These are predominantly found 
in advanced ovarian malignancy. Less common types include mucinous, endometrioid, 
transitional cell (Brenner), carcinosarcoma, clear cell and unclassified carcinomas. 
Approximately 20% are germ-cell and sex cord-stromal cell tumours (Kaku et al., 2003). 

Despite the many advances in diagnosis and treatment of ovarian cancer over the last four 

decades, approximately 7000 women develop this disease in the United Kingdom, with 

more than 4600 women dying annually (www. info. cancerresearchuk. orwcancerstatý). The 

most important determinant of survival from ovarian cancer is turnour stage at diagnosis. 
Early stage ovarian cancer, which is limited to the ovary, can be treated successfully with 

surgery alone in 90% of patients, but due to its insidious onset the majority (approximately 

80%) present with incurative disseminated late stage disease (FIGO Stage III/IV) 

(International Federation of Gynaecology and Obstetrics) (Agarwal and Kaye, 2003). The 

five year survival rates for these advanced turnours dramatically decrease to 17-35% 

(Angioli et al., 2006). Ovarian turnours are known to spread via the lymphatic system and 
through seedling implantations on the peritoneum. Development of this disease is not 

associated with any specific clinical symptoms or signs. A diagnosis is therefore very 
difficult to make based on non-specific symptoms as these will often mimic upper 

gastrointestinal disease with abdominal fullness, dyspepsia and bloating (Cannistra, 2004). 

Over the last four decades, surgical debulking has been the accepted initial management of 
patients with advanced ovarian cancer (Griffiths, 1975). One of the most important 

prognostic factors in the treatment of advanced ovarian malignancy is a crude 
measurement of the extent to which the tumour is optimally debulked. Patients with 
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residual tumour mass of greater than 2cm have a median survival of 12-16 months 

compared to 4045 months if residual disease is less than 2cm (Mutch, 2002). However, 

the evidence for debulking surgery has previously mainly been based on small, 

retrospective studies (Allen et al., 1995; Hunter et al., 1992; Voest et al., 1989), but there is 

recent evidence to suggest that increased progression-free survival (PFS) may be 

associated with patients who are optimally debulked with less advanced disease (Crawford 

et al., 2005). Some authors have suggested that the underlying heterogeneous biological 

nature of ovarian turnours may dictate its potential surgical resectibility (Hogberg, 1995; 

Zanaboni et al., 1988). This has lead to some debate over whether or not neoadjuvant 

chemotherapy would improve survival (Inciura et al., 2006; Schwartz et al., 1999; Vergote 

et al., 2000). There are now randomised prospective studies examining this which are 

being undertaken by the European Organisation for Research and Treatment of Cancýr 

55971 (EORTC) and Chemotherapy or Up-Front Surgery studies. These studies are 

comparing neoadjuvant chemotherapy followed by surgery versus primary surgery 

followed by chemotherapy. Until conclusions are drawn from these studies and other 

future prospective trials, cytoreductive surgery will remain the recommendation for the 

first-line treatment of FIGO Stage III/IV disease. 

The majority of patients present too late for curative removal of the tumour, hence, 

chemotherapeutic agents remain a key part of treatment for most women. Historically, 

women were treated with alkylating agents such as cyclophosphamide. However, adjuvant 

chemotherapy has advanced significantly over the last four decades with the introduction 

of platinum, and more recently, taxane-based chemotherapy (McGuire and Markman, 

2003). Platinum analogues, such as cisplatin or carboplatin, are DNA damaging agents 

which mediate their effects by inducing intra- and interstrand crosslinks within DNA 

(Kartalou and Essigmann, 2001). In contrast, taxanes such as paclitaxel and docetaxel exert 
their cytotoxic effects by binding to and stabilising the tubulin polymer (Rowinsky and 
Donehower, 1995). For patients with early-stage turnours with an increased risk of relapse, 
i. e. those with Stage Ia/b high grade, Stage Ic and Stage II disease, the use of platinum- 
based chemotherapy can result in a5 year disease-free survival of approximately 80% 

compared to approximately 65% in those patients who do not receive platinum adjuvant 
therapy (Young, 2003; Young et al., 2003). In advanced ovarian malignancy, two 

randomised-controlled trials (RCTs) in the 1990s established paclitaxel combined with a 
platinum agent as standard first-line chemotherapy (McGuire et al., 1996; Piccart et al., 
2000), showing a particular increase in overall survival when compared to treatment with 
cyclophosphamide. Meta-analysis results showed that carboplatin has a lower toxicity 

profile than cisplatin in patients (Aabo et al., 1998), and this is now routinely used 
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following two larger RCTs (du Bois et al., 2003; Ozols et al., 2003). There remain many 

controversies surrounding the current first-line chernotherapeutics used in this disease. 

Firstly, there are differing opinions over whether combination chemotherapy with a taxane 

has superior effects to single agent carboplatin. Secondly, if combination treatment is the 

first choice, which taxane is appropriate to use has also been debated. The results of 

ICON3 concluded that single agent carboplatin can be regarded as reasonable first-line 

treatment in ovarian cancer (ICON Group, 2002), although there was an early trend 

towards overall survival benefit in those treated with combination therapy. Regarding the 

choice of taxane, "The Scottish Randomised Trial in Ovarian Cancer" (SCOTROC) 

compared docetaxel-carboplatin with paclitaxel-carboplatin in first-line treatment. 

Although there was no overall survival benefit of the docetaxel combination over 

paclitaxel, both were associated with acceptable toxicities. Docetaxel-carboplatin was 

associated with significantly more myelosuppression but significantly less neurotoxicity 

and symptom scoring favoured docetaxel. Therefore, the authors concluded that a 

combination of carboplatin with docetaxel may be an appropriate chemotherapeutic agent 

in chemonaive ovarian turnours (Vasey et al., 2004). In addition, there is current debate 

over whether current standard intravenous (IV) carboplatin-paclitaxel delivery should be 

replaced with the intraperitoneal (IP) delivery of chemotherapy. IP delivery of drugs, 

specifically cisplatin, has been examined in several trials for optimally debulked Stage III 

ovarian cancer (Alberts et al., 1996; Armstrong et al., 2006; Markman et al., 2001). 

However, although advantages in overall and progression-free survival have been 

demonstrated, the merits of using this remain uncertain due to issues with efficacy, quality 

of life and toxicity of IP regimes versus standard IV carboplatin-paclitaxel. 

Although a large number of studies have established carboplatin-paclitaxel as standard 
first-line treatment, current chemotherapeutic regimes used in both first- and second-line 
treatment will produce differing responses due to the heterogeneous nature of this disease. 

Therefore, stratification of current and more novel therapies in patients are now required to 
improve the poor overall response rate in patients. 
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1.2 Potential mechanisms of drug resistance in ovarian 

cancer 

A first-line chemotherapy regimen of platinum and taxane will achieve response rates of 

more than 80% in advanced ovarian malignancy, with an overall complete response in 40- 

60% of patients (Greenlee et al., 2001). Despite treatment advances though, most patients 
become drug resistant and relapse within a median progression-free survival period of 18 

months (Greenlee et al., 2001). Drug resistance accounts for treatment failure and demise 

in more than 90% of patients with advanced malignancy, and this is related to numerous 

causative factors (Agarwal and Kaye, 2003). Both intrinsic and acquired drug resistance is 

encompassed in ovarian cancer (Balch et al., 2004), but most clinical studies have 

concentrated on tumour characteristics at presentation, rather than in relapsed disease 

(Teodoridis et al., 2004). Intrinsic mechanisms of resistance occur in approximately 20% 

of women, and is clinically defined in those who fail to respond to first line chemotherapy 
(platinum-refractory disease), have stable disease as a best response following first line 

treatment or have a short treatment-free interval of less than 6 months (Vasey, 2005). If re- 

challenged with platinum agents or other second-line chemotherapeutics, these tumours 

have a poor prognosis (Agarwal and Kaye, 2006). 

Intrinsic resistance is influenced by the gene expression of cancer cells prior to treatment 
(Balch et al., 2004). Acquired drug resistance, however, is seen in patients who initially 

respond to treatment but then proceed to develop resistance to second-line or subsequent 
chemotherapeutic regimes. It has been suggested that acquired resistance emerges either 
from the survival and expansion of drug-resistant subpopulations of cells under selective 

pressure during turnour evolution (Figure IA), which is induced by chemotherapeutic 
measures, or that cancer stem cells can repopulate the tumour environment (Figure 113) 
(Agarwal and Kaye, 2003). Stem cells may only comprise a very small proportion of the 

cells within a tumour, but they are naturally chemoresistant through their relative 
quiescence, i. e. due to spending most of their time in GO, and therefore avoid the toxicity 

of the initial chemotherapy regime which will target rapidly dividing cells. In addition they 
have a capacity for DNA repair and have been found to express high levels of specific 
ABC drug transporters which may contribute to chemoresistance (Dean et al., 2005). 
Subsequent relapse due to growth of these stem cells may be chemosensitive initially, but 

ultimately most patients develop resistance after an initial chemoresponsive history. 
Therefore, a combination of these proposed models (Figure IA and IB) of 
chemoresistance would seem most likely (Figure I C). 
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Figure 1 Models of drug resistance in ovarian cancer. (A) Initial response to chemotherapy 
(CTX) seen due to drug sensitive cells (green) followed by clonal expansion of a subpopulation of 
chemoresistant cells/regrowth of a chemoresistant progenitor cell population (red). (B) Regrowth of 
a persistent stem cell population (blue) which can be initially chemosensitive. (C) Most likely 
scenario is a combination of (A) and (B) where chemoresistance develops after initial 
chemosensitive relapse. Illustration modified from Agarwal and Kaye, 2003. 

There are diverse possible mechanisms which may be responsible for drug resistance in 

patients. Firstly, pharmacokinetic variability may exist between patients and will place 

limitations on aspects such as the first pass metabolism, renal clearance and hepatic 

metabolism of a drug. In addition, variation in the tumour microenvironment such as 
hypoxia and altered cell interactions exist and tumour-cell specific mechanisms can 

contribute (Agarwal and Kaye, 2003). Each of these three possible general mechanisms 

influence chemotherapeutic response by principally affecting intracellular active drug 

concentrations, drug-target interaction, target-mediated cell damage, damage-induced 

apoptotic signaling or the apoptotic effector machinery. 

Various pathways within a cell are probably altered in clinical drug resistance due to 

polygenic gene expression changes (Glasspool et al., 2006) which will affect multiple 

genes involved in key pathways. A number of specific biochemical pathways and gene 

expression patterns have been identified as causes of both intrinsic and acquired resistance 
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to chemotherapy in vitro although the clinical in vivo relevance of these remains unclear 
(Agarwal and Kaye, 2003; Vasey, 2005). Many drugs used can be actively pumped from 

cells by membrane-based proteins and expression of these proteins can lead to multidrug 

resistance (MDR) towards numerous anticancer agents (Gottesman et al., 1998). Such 

proteins, including P-Glycoprotein (MDRI), can be important in determining drug 

resistance in vitro (Borst et al., 2000). Recent work has also shown that expression of 

NIRP2, a known ABC transporter, is observed in ovarian cancer and confers resistance to 

cisplatin chemotherapy and can predict clinical outcome (Surowiak et al., 2006). Other 

previous work has investigated the role of the p53 protein in drug resistance. p53 gene 

mutations can be associated with poor response in patients with ovarian cancer who are 

exposed to high-dose platinum chemotherapy regimes (Righetti et al., 1996). In vitro 

studies have shown that p53 mutations and acquired platinum resistance are associated 

with increased sensitivity to taxanes in ovarian cancer cell lines (Cassinelli et al., 2001). 

However, overall there remains no conclusive evidence in vivo that, firstly, individual 

genetic modulation of genes such as AMR] and p53 leads to acquisition of clinical drug 

resistance (Glasspool et al., 2006), or that their ability to predict clinical outcome in 

patients with ovarian cancer has advantages over currently used markers such as the 

tumour stage and grade. (Agarwal and Kaye, 2003; Hall et al., 2004). 

Increased knowledge of how platinum compounds mediate cytotoxicity, i. e. through 
formation of DNA-platinum adducts and induction of apoptosis, has increased our 

understanding of potential drug resistance mechanisms (Kartalou and Essigmann, 2001). 

Chemoresistant tumours most likely evade apoptosis due to deficient proapoptotic and/or 

enhanced antiapoptotic signaling pathways (Fojo and Bates, 2003). Altered expression of 

genes involved in key DNA damage response pathways therefore potentially contribute to 

the drug resistant phenotype (Teodoridis et al., 2004). The advent of microarray-based 
technologies has identified a myriad of genes whose expression status are altered in 

acquired drug resistant ovarian turnours (Jazaeri et al., 2005; VEsperance et al., 2006). 
There remains very little evidence though that altered expression status of genes by genetic 
mutations have a key role to play in acquired resistance mechanisms in vivo (Glasspool et 
al., 2006). Therefore, if genetic alterations have little influence over the control of gene 
expression in drug resistant turnours, there must be alternative aberrant mechanisms 
controlling the development of this phenotype. 

Previous work in our laboratory has focused on characterising the proteins involved in the 

recognition of damage induced by platinum agents. Mismatch repair (MMR) proteins, 
including hNILHI and hMSH2, recognise and repair damaged or mismatched nucleotides 
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which can result from DNA replicative mechanisms and other repair processes. It has been 

shown that cisplatin resistance can be associated with loss of DNA NMR activity in 

ovarian cancer cell lines (Anthoney et al., 1996; Brown et al., 1997; Drummond et al., 
1996). Complete loss of MEHI protein expression in cisplatin resistant cell lines was 

observed with no apparent loss of the hMLHI gene (Brown et al., 1997). Loss of hNEHI 

protein expression following chemotherapy was shown in ovarian cancer (Strathdee et al., 
1999; Watanabe et al., 2001), and this was associated with an epigenetic alteration known 

as CpG island (CGI) methylation at the hMLHI locus (Strathdee et al., 1999). Chapter I 

will now examine the contributory effect of CGI methylation in the pathogenesis of 

ovarian cancer and its phenotypic consequences. It is now widely recognised that this 

epigenetic mechanism can transcriptionally repress genes involved in multiple biological 

pathways in ovarian cancer. Furthermore, co-selection of genes affected by these 

epimutations can subsequently affect its biological properties, including the propensity to 

influence drug resistance. 
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1.3 DNA methylation and epigenetic gene regulation 

The term "epigenetics" (greek meaning, "upon" genetics) can be defined as a stable, 

heritable change in gene expression which is retained during mitosis and/or meiosis. It 

does not involve a change in the primary base sequence, but instead is stored in the 

distribution of the modified base 5-methylcytosine, which has previously been aptly 

described as "the fifth base" (Costello and Plass, 2001). DNA methylation is the only 

known epigenetic modification of human DNA and results in the enzymatic transfer of a 

methyl group from the methyl donor S-adenosylmethionine (SAM) to the carbon-5 

position of cytosine bases in DNA (Bird, 2002). This almost exclusively occurs at the 

sequence motif 5'-CpG-3' which are known as CpG dinucleotides (Teodoridis et al., 
2004), although non-CpG methylation in mammals has also been reported (Ramsahoye et 

al., 2000). An illustration of this chemical modification is shown in Figure 2. 
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Figure 2 Chemical modification of cytosine methylation. (A) the chemical structure of the base 
cytosine. (B) the chemical structure of 5-methylcytosine following enzymatic transfer of a methyl 
(CH3) group. 

Over recent years, CpG methylation and its consequences have become more fully 

understood (Teodoridis et al., 2004). The family of enzymes which catalyse the transfer of 

a methyl group from the donor molecule, SAM, to a cytosine ring are known as the DNA 

methyltransferases (DNMT). Several distinct physiologically active members have been 

cloned and characterised so far in mammalian cells including DNMTI, DNMT3a and 
DNMT3b (Bird and Wolffe, 1999; Hendrich and Bird, 2000). The main role of DNMTl is 

thought to be the post-replicative maintenance of DNA methylation patterns (Leonhardt et 
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al., 1992), which specifically involves the reinstatement of fully methylated sites from 

initially hemi-methylated DNA substrates in daughter cells (Chuang et al., 1997; Pradhan 

et al., 1999). DNMTI has been shown to bind to proliferating cell nuclear antigen (PCNA), 

an auxiliary factor of DNA replication, during S phase via a specific binding domain 

(Chuang et al., 1997; Mortusewicz et al., 2005) consistent with a function in maintaining 

methylation patterns. This enzyme, though, is additionally able to de novo methylate DNA 

substrates in cancer (Jair et al., 2006). In contrast to this enzyme, DNMT3a and DNMT3b 

are involved in initiating methylation patterns during early embryogenesis, a process which 

is known as de novo methylation (Okano et al., 1999; Okano et al., 1998). Both DNMT3a 

and DNMT3b show a preference to unmethylated DNA in vitro (Okano et al., 1998), 

however, there is also data to suggest that both DNMT3a and DNMT3b can maintain 

methylation patterns in the embryonic stem cells of mice (Chen et al., 2003b). In addition, 

the DNMT3-like protein, DNMT3L, has also been identified which is inactive as a DNMT 

per se, but is essential for the establishment of germ line DNA methylation and stimulates 

de novo methylation by DNMT3a and DNMT3b (Chen et al., 2005b). DNMTs and their 

role in the methylation of DNA are vital for mammalian development. Homozygous 

knockout of DNMTI or DNM`F3b in mice has been shown to be embryonically lethal and 

DNMlr3a knockout mice die at four weeks old (Li et al., 1992; Okano et al., 1999). Mice 

with reduced expression levels of DNMT1 show genomic hypomethylation and have an 

increased likelihood of developing lymphomas although they have a lower incidence of 

other tumour types (Gaudet et al., 2003; Laird et al., 1995). Additionally, DNNI[TI 

overexpression or complete loss of this results in loss of genetic imprinting and lethality of 

the embryo (Biniszkiewicz et al., 2002; Li et al., 1993). 

In humans, patterns of DNA methylation are first established during gametogenesis. 
However, after fertilisation, dramatic waves of methylation changes are observed. The 

paternal genome has been shown to be actively demethylated in mitotically active zygotes, 
followed by a passive and selective loss of DNA methylation continuing into the morula 
stage (Santos et al., 2002). After implantation, DNA methylation patterns become re- 
established and are maintained through subsequent cell divisions (Gaudet et al., 2004). The 

primary role of DNA methylation in normal adult tissues is thought to be the maintenance 
of transcriptionally silent repetitive DNA elements in the genome (Walsh et al., 1998), 

which includes sustaining satellite DNA and parasitic elements. This allows the specific 
targeting of transcription factors to important genomic sites (Bird and Wolffe, 1999; 
Stratlidee and Brown, 2002). There is an overall depletion of CpG dinucleotides spanning 
the genome and this is presumably because methylated cytosine residues are mutagenic 
due to spontaneous dearnination of 5-methylcytosine to thymine (Bird, 1996; Chan et al., 
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2001). In contrast to this, there are small, unequally distributed distinct stretches of DNA 

(500 base pairs (bp) -2 kilobases (kb) in length) which are rich in CpG dinucleotides. 

These clusters of CpGs are known as CpG islands (CGIs), and these frequently co-localise 

within and around the promoter regions of mammalian genes (Jones, 2002). It is estimated 

that there are around 30,000 CGIs within the human genome and approximately 50-60% of 

all genes contain a CGI (Costello and Plass, 2001). In contrast to the rest of the genome, 

these CGIs remain largely unmethylated in normal tissue (Bird, 1986) regardless of the 

transcriptional state of the gene. However, it is now apparent that methylation of CGIs is 

important in X chromosome inactivation in females (Heard et al., 1997; Weber et al., 

2005), and in genomic imprinting where promoter methylation of either the paternally or 

maternally inherited allele is associated with its transcriptional repression (Bartolomei and 

Tilghman, 1997). There have also been reports of some non-imprinted autosomal CGIs 

which are methylated in normal cells, and that this mechanism may be important in the 

establishment and control of cell-type-specific expression of genes. This was initially 

described for the maspin gene (Futscher et al., 2002) but has more recently been shown in 

several other genes including MCJ (Strathdee et al., 2004), 14-3-3a (Oshiro et al., 2005) 

and HOXA5 (Strathdee et al., 2007). One study has reported that this epigenetic mechanism 

is most likely relatively rarely involved in the control of cell-type-specific expression of 

genes in normal tissues (Yamada et al., 2004), although others dispute this (Song et al., 

2005). 

The two major mechanisms which define the epigenome of a cell are DNA methylation 
and histone modifications. Modulation of chromatin structure is essential for the regulation 
of gene expression, but it remains unclear whether DNA methylation is the initial silencing 

event or whether it is a consequence of earlier chromatin-remodelling events leading to 

changes in gene expression. Several proposals have been suggested to explain the 

mechanism by which DNA methylation may cause transcriptional repression of genes. 
Historically, the suggestion was simply that DNA methylation could physically deter the 
binding of transcription factors to their binding sites in the promoters of genes and inhibit 

gene transcription this way. This was shown to affect the binding of several important 

transcription factors including AR-2, E2F and NFKB (Tate and Bird, 1993). Recent authors 
though have described an alternative more generally applicable mechanism by which this 

repression may occur, which establishes a link between DNA methylation and higher order 
chromatin structure (Bird and Wolffe, 1999; Tyler and Kadonaga, 1999), as illustrated 
below in Figure 3. 
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Figure 3 Epigenetic mechanism of transcriptional repression and chromatin remodeling. 
Active transcription is associated with an open chromatin structure, acetylated histones and 
unmethylated CpGs (white). RNA polymerase (RNA Pol 11) and transcription factors can access 
and transcribe the gene. DNMTs methylate CpGs (black) and bind methyl binding domain, MBD, 
proteins (yellow). Subsequent recruitment of histone deacetylases, HDAC, (blue) and chromatin 
remodeling proteins, sin3a/mi-2, (green) leads to remodeling of chromatin and deacetylation of 
histone tails. Histone methyltransferases, HMTs, methylate lysine residues, allowing binding of 
heterochromatin protein 1, HP1, (red) to chromatin. 

Initial work in the last decade brought together a link between DNA methylation and gene 

silencing. In experimental systems, it was shown that promoter methylation does not cause 

silenced transcription until chromatin-remodel ling proteins are recruited to the region 
(Kass et al., 1997), and further work identified the chromatin-remodel ling proteins with 

which methylcytosine-binding proteins associate (Jones et al., 1998; Ng et al., 1999; Wade 

et al., 1999). Methylated DNA can recruit a family of methyl-binding domain (MBD) 

proteins which all share a common MBD motif. Several members of this family (MeCP2, 

MBD2 and MBD3) are able to associate with protein complexes involving histone 

deacetylases (HDAC I and HDAC2) and chromatin remodelling proteins (sin3a and mi-2). 
Normally, in transcriptionally active genes, lysine residues on the N-terminal tails of the 

core histones (H2A, H213, H3 and H4) are acetylated (Marks et al., 2001). However, 
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following association with these proteins, deacetylation of these histone tails occurs and 

leads to a tighter binding between positively charged lysine residues of histories and the 

negatively charged phosphodeoxyribose backbone of the DNA. This tighter binding 

reduces accessibility of DNA for transcription factors. MBD proteins also engage histone 

methylases (HMTs) which results in the methylation of lysine 9 of histone 3 (H3-K9) and 

binding of the heterochromatin protein I (HPI) which is involved in maintenance of a 

transcriptionally silenced state (Bannister et al., 2001; Lachner et al., 2001). Additional 

recent work has revealed that NIBD I associates with a complex containing H3-K9 specific 

methyltransferase activity (Sarraf and Stancheva, 2004), providing another possible link 

between DNA and histone methylation. An alternative mechanism though could be that 

methylation of DNA occurs after the formation of a closed chromatin state. In mammals, 

DNA methyltransferases interact with H3-K9 methylases (Fuks et al., 2003; Lehnertz et 

al., 2003), and loss of H3-K9 methylation. in knockout embryonic stem cells decreases 

DNMT3B-dependent CpG methylation at major centromeric satellites (Lehnertz et al., 

2003). H3-K9 methylation and suppression of pl6mý" can occur before CpG methylation 

which may mean therefore that DNA methylation is secondary to histone modification in 

gene silencing (Bachman et al., 2003), and that only genes repressed by other mechanisms 

are then subject to CpG methylation (Bird, 2002; Mutskov and Felsenfeld, 2004). It has 

also been suggested that DNA methylation could subsequently reinforce the repressed 

chromatin structure (Szyf, 2003). In addition, there are also more novel findings which 

suggest a communication between DNA methylation and other histone modifications, 

including H3-K27me3 and H4-K20me3 (Fraga et al., 2005b). There is really only a partial 

understanding of the molecular interplay between these epigenetic modifications, and the 

mechanisms which underlie this intimate link between DNA methylation and histone 

modifications remain under intense scrutiny. 

The importance of DNA methylation patterns in humans, and the cause and possible 

consequences of disruption to this epigenetic mechanism have been studied intensely over 
the last decade (Robertson, 2005). During development a number of congenital 

malignancies are characterised by abnormal DNA methylation. These include 

immunodeficiency, centromeric region instability, facial anomalies (ICF) syndrome, which 
has been linked to mutations in DNMT3B (Xu et al., 1999), and imprinting disorders such 

as Beckwith-Wiedemann and Prader-Willi syndromes (Robertson, 2005). DNA 

methylation aberrations have also been linked to the phenotypic disconcordance that can be 

later identified in monozygotic (MZ) twins. Interestingly, it is not possible to distinguish 

epigenetic differences between MZ twins at an early age (Fraga et al., 2005a), but older 
MZ twins show striking differences in respect to 5-methylcytosine content and this is 
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emphasised in those who are separated for longer periods of time (Fraga et al., 2005a). 

This indicates that environmental factors may have influence over the epigenome. There is 

also evidence to suggest that global 5-methylcytosine levels can be affected by nutritional 

status including dietary deficiencies in folate and methionine, and that these may indeed 

contribute to alterations in the DNA methylation content (Pogribny et al., 1995; Pogribny 

et al., 2004). An age-dependent increase in methylation is observed in some histologically 

normal tissues (Ahuja et al., 1998; Issa et al., 1994), but perhaps the most significant and 
frequently studied association to date has been that aberrant methylation changes are 
observed frequently in many human cancer types. 
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1.4 DNA methylation alterations in cancer 

Cancer is now recognised as being both a polygenic and polyepigenetic disease. DNA 

methylation patterns are profoundly altered in human cancer (Robertson, 2005), and this 

was first demonstrated in the genome of cancer cells which were found to be 

hypomethylated in comparison to normal tissues (Feinberg and Vogelstein, 1983). In 

cancer, this genome-wide hypornethylation is mostly due to loss of methylation from 

repetitive elements in the genome (Yoder et al., 1997) and results in genomic instability. 

Concomitantly, de novo methylation of CGIs around the promoter region of genes is 

observed in cancer development correlating with transcriptional repression of genes. This 

is the most well characterised epigenetic alteration in neoplastic cells (Jones and Baylin, 

2002). An epigenetic comparison of normal and cancer tissues is illustrated below in 

Figure 4. 

TSG ACTIVE (PERMISSIVE FOR TRANSCRIPTION) 

TISSUE 
CpG Island Genome wide CpGs 

(HYPOMETHYLATED) (HYPERMETHYLATED) 

TSG INACTIVE (TRANSCRIPTIONALLY SILENCED) 

CANCEROUS 
TISSUE 

CpG island Genome wide CpGs 
... 

GENOMIC 
(HYPERMETHYLATED) (HYPOMETHYLATED) INSTABILITY 

Figure 4 DNA methylation and cancer. A representation of a region of DNA in non-cancerous 
(top; green) and cancerous (bottom; red) tissues showing the differences in DNA methylation in the 
two phenotypes. In non-cancerous tissue, genome wide hypermethylation of CpGs (closed green 
circles) and an actively transcribed tumour suppressor gene (TSG) is associated with a 
hypomethylated CGI (green lines). In cancerous tissue, the opposite is seen with genome wide 
hypornethylation (red lines) leading to genomic instability, and CGI hypermethylation (closed red 
circles) contributing to transcriptional silencing of a TSG. 
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Despite the fact that we know a great deal regarding the alteration of transcriptionally 

active euchromatin into a repressive heterochromatic state, the mechanisms by which CGIs 

remain protected against methylation in normal cells, but subsequently lose this protective 
barrier in cancer and become hypermethylated are yet to be elucidated. It has been 

proposed that during turnourigenesis, the segregation of the epigenome into unmethylated 

and methylated regions may be destroyed leading to a spread of heterochromatin (Turker 

and Bestor, 1997). This process has been shown for the oestrogen receptor gene in 

association with aging (Issa et al., 2001; Issa et al., 1994), and although the exact 

mechanism is unclear, the protective barriers against CGI methylation may be more 

vulnerable in aging cells and therefore increase cancer "risk7' in individuals. It has also 
been suggested that de novo methylation may be "seeded" in exonic CGIs and 

subsequently spread into the promoter region of genes in cancer (Nguyen et al., 2001). 

Interestingly, it has been proposed that this exonic methylation seen could be an age- 

related phenomenon or representative of a preneoplastic lesion. It is also unclear what 
dictates the specific CGI-associated genes which will be epigenetically altered in different 

cancer types and why other CGIs are protected from methylation (Frigola et al., 2006). 

Altered methylation has previously been considered to locally silence discrete genes in 

cancer cells but recent work has challenged this concept by showing that long-range 

epigenetic silencing of genes may exist in cancer (Frigola et al., 2006) which 
hypermethylates neighbouring genes and causes global gene silencing through chromatin 

remodeling activities. Recent evidence has also argued that genes which are methylated in 

cancers may be vulnerable to aberrant DNA hypermethylation and epigenetic silencing 
during turnour initiation and progression because of alterations in chromatin structure in 

stem or progenitor cells, including dimethylated H3K9 and trimethylated H3K9 (Ohm et 

al., 2007; Widschwendter et al., 2007). 

CGI methylation and subsequent transcriptional silencing occurs at least as often as genetic 
alterations in turnour suppressor genes (TSGs) in cancer (Herman and Baylin, 2003; Jones 

and Baylin, 2002). According to Knudson's "two-hif' hypothesis, in carcinogenesis, loss 

of function of both alleles of a gene is required for malignant transformation (Knudson, 
2001). The first hit is most often mutation of a critical gene (e. g. TSG), followed by loss of 
the wild-type allele through deletion or loss of heterozygosity (LOH). Aberrant promoter 

methylation offers an alternative reversible mechanism to inactivate key tumour suppressor 

genes in cancer. For instance, it can constitute the initial hit in many cancers with 

subsequent mutations or deletions eliminating the second allele. Furthermore, 
hypermethylation of both alleles has been noted in tumours in the absence of genetic 

aberrations of a given gene (Herman and Baylin, 2003; Jones and Baylin, 2002). 
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On average, 600 CGIs are aberrantly methylated in turnours although this is dependent on 

tumour type and particular histological subtype (Costello et al., 2000). Hundreds of genes 

have the potential to be regulated by CGI methylation, affecting many properties of a 

tumour during its development. It has been postulated that in order for a cancer to develop, 

most malignancies need to develop "hallmarks" such as evasion of apoptosis, insensitivity 

to antigrowth signals, limitless replicative potential, self-sufficiency in growth signals, 

sustained angiogenesis and tissue invasion/metastasis (Hanahan and Weinberg, 2000). The 

role of DNA methylation and its ability to affect properties such as these has been widely 

reported in many cancers, including ovarian cancer. Previous work has shown that aberrant 

CGI methylation can affect a number of key genes involved in multiple biological 

pathways in FIGO Stage III and IV ovarian turnours (Strathdee et al., 2001). Epigenetic 

changes that confer these types of traits could be selected for during tumourigenesis 

(Teodoridis et al., 2004). Examples of genes which have been shown to become 

epigenetically silenced in many cancers including ovarian tumours and could affect the 

hallmarks of cancer development are shown below in Table 1. 
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KNOWN GENE 
REGULATORY CONSEQUENCE OF EXAMPLE OF 

GENE REFERENCE 
FUNCTION EPIGENETIC SILENCING SILENCED 

APAF-1 (Furukawa et al., 2005) 
CASP8 (Teitz et al., 2000) 
DAPK (Balana et al., 2003) 

PERTURBED DcR1* (Shivapurkar et al., 2004) 

APOPTOSIS APOPTOTIC Fas 
ARF* 

(Hopkins-Donaldson et al., 2003) 
2001 l MECHANISM p14 ., ) (Hashiguchi et a 

p73* (Strathdee et al., 2001) 
RASSFIA* (Yoon et al., 2001) 

TMSI* (Terasawa et al., 2004) 

REPLICATION LIMITLESS PTEN* (Yang et al., 2006) 
AND REPLICATION AND SFRP-I* (Takada et al., 2004) 

PROLIFERATION PROLIFERATION SOCS-3 (He et al., 2003) 

CELL ADHESION TISSUE INVASION 
METASTASIS OPCML* (Sellar et al., 2003) 

BRCAI* (Strathdee et al., 2001) 
DNA REPAIR IMPAIRED DNA FANCF* (Taniguchi et al., 2003) 

REPAIR MGMT* (Dhillon et al., 2004b) 
hMLH1* (Strathdee et al., 2001) 

DETOXIFIES 
DRUGS 

IMPAIRED 
DETOXIFICATION GSTPI* (Makarla et al., 2005) 

CELL CYCLE IMPAIRED CELL p16* (Hashiguchi et al., 2001) 
CYCLE REGULATION P21 (Roman-Gomez et al., 2002) 

METHYLATEDIN HICII (Strathdee et al., 2001) 
OVARIAN UNKNOWN MINT25 (Strathdee et al., 2001) 
CANCER I II 

Table 1 Examples and biological consequences of genes which are epigenetically silenced 
In tumours. Genes highlighted in bold print are those reported to be methylated in ovarian tumours 
by Teodoridis et al, 2005. *indicates studies which have reported methylation of these genes 
specifically in ovarian tumours (and references shown). All other genes mentioned have been 
reported to be methylated in other tumour types, but not specifically ovarian cancer. Other genes 
which have been reported to be methylated in ovarian cancer are shown, although their specific 
function remains unknown. 

In addition to the evidence that specific genes become methylated and silenced, there is 

also some evidence to support the concept that clusters of CGIs can become co-methylated 
in cancer, giving rise to a "CpG island methylator phenotype" (CEMP). This idea was 
originally described in colorectal cancer (Toyota et al., 1999a) but has now been proposed 
in a variety of tumour types including ovarian cancer (Strathdee et al., 2001). However, 

there remains controversy over whether the OUT exists at all (Anacleto et al., 2005; 

Yamashita et al., 2003), and if it does, whether it may exist as gradual distributions of 
methylation (Eads et al., 2001; Rashid et al., 2001) rather than as a categorical state 
(CIMP+ICM-). The most recent definition of CIMP, using an unbiased genome-wide 

method of analysis, has given the strongest evidence to support the existence of a distinct 

subset of tumours with a methylator phenotype (Weisenberger et al., 2006). The CIMP was 
originally thought to be due to a general defect in the methylation machinery but it remains 
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unclear whether there is an underlying biological mechanism for the concurrent 

methylation changes seen in multiple tumour suppressor genes in cancer (Issa, 2003). One 

such biological mechanism underlying the increased methylation which has been described 

is overexpression of DNMTs. This has been shown recently in the context of 

overexpression of DNMT1 (Nakagawa et al., 2005; Peng et al., 2006). Changes in 

expression of DNMTs due to genetic factors may potentially be a cause for the frequent 

methylation seen in those tumours defined as having a CIMP (De Marzo et al., 1999). It 

has been shown that a (-149 C>T) single nucleotide polymorphism (SNP) can affect the 

transcription of DNMT3b. An association of this SNP and methylation levels in turnours 
including lung and ovarian type may exist (Shen et al., 2002; Teodoridis et al., 2005). Most 

recently, a genetic influence has also been described in a distinct subset of colorectal 
tumours which almost all had BRAF mutations (Weisenberger et al., 2006). In addition, 
factors that are known to be associated with methylation of CGIs including aging (Ahuja et 

al., 1998; Issa et al., 1994), chronic inflammation (Hsieh et al., 1998; Issa et al., 2001), and 
infective factors including viral infections e. g. Epstein-Barr Virus (EBV)-associated gastric 

carcinoma (Kang et al., 2002; Osawa et al., 2002) and bacterial infections e. g. 
Helicobacter pylori dependent mucosa associated lymphoid tissue (MALT) lymphoma 

(Kaneko et al., 2003) may all potentially influence the methylation profile of tumours and 

act in concert with genetic factors (Bjornsson et al., 2004) to propensiate a CIMP. 
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1.5 The impact of DNA methylation on drug resistance 

mechanisms in ovarian cancer 

1.5.1 DNA methylation and intrinsic drug resistance 

Drug resistance remains a major problem in the successful treatment of patients with 
ovarian cancer. Most chemotherapeutic drugs used in patients with this disease target stress 
on rapidly dividing cells, ultimately leading to cell death through apoptotic mechanisms. 
Specifically, platinum-based drugs form inter- and intra-strand crosslinks following their 
incorporation into DNA (Kartalou and Essigmann, 2001). These adducts are recognised by 

the MMR system leading to apoptosis and cell death in turnours (Agarwal and Kaye, 
2003). Taxanes stabilise tubulin, causing defective spindle formation, G2/M arrest and 
subsequent apoptosis (Dumontet and Sikic, 1999). Drug resistant turnour cells often 
possess perturbed proapoptotic and/or antiapoptotic cellular mechanisms (Balch et al., 
2004). Consequently, the mechanisms by which chemotherapeutic agents will lead to 
turnour regression are altered and therefore this leads to changes in the response to 
important drugs. Genes involved in key DNA damage response pathways including 

control of the cell cycle, DNA repair and apoptotic signalling can frequently become 

methylated and silenced in cancer (Teodoridis et al., 2004), leading to such defective 

mechanisms in cancer cells. These epigenetic changes may confer opposing effects on the 
intrinsic sensitivity of ovarian turnours to drugs by modulating the apoptotic response. 
Methylation-mediated epigenetic silencing of genes involved in DNA repair (including 
BRCAI, MGMT and FANCF) may increase chemosensitivity of tumours. In contrast, this 
type of epigenetic silencing in proapoptotic genes (including OEM and APAF-1) may aid 
in chemoresistance mechanisms (Esteller et al., 2000a; Glasspool et al., 2006; Soengas et 
al., 2001; Taniguchi et al., 2003). Key genes involved in the DNA damage response 
pathway which have the potential to be epigenetically silenced in ovarian cancer are 
illustrated in Figure 5. There have been many reports of genes which are downregulated by 

epigenetic mechanisms in ovarian cancer and examples of these have been previously 
shown in Table 1. However, it is important to decipher from the myriad of epigenetically 
silenced gene signatures, which of these will be important predictive markers of disease 

response to treatment. 
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Figure 5 Epigenetic silencing of key genes in ovarian cancer drug resistance. Methylation of 
genes (shown in red) involved in key DNA damage response pathways in an ovarian cancer cell. 
Methylation of genes involved in the DNA repair pathway (pale green), including BRCAI, FANCF, 
MGMT, or drug detoxification (brown), including (GSTP1), could enhance chemosensitivity by 
blocking the ability of cell to survive. Methylation of genes involved in apoptotic mechanisms (dark 
green), including MLH1, APAF-1 and DAPK could enhance cancer cell survival. 

BRCA I deficiency in mammary epithelial cells and breast cancer cell lines has been linked 

to sensitivity to cisplatin and other DNA damaging agents in vitro (Sgagias et al., 2004; 

Tassone et al., 2003). However, although frequent methylation of BRCAI has been 

reported in ovarian cancer (Esteller et al., 2000b; Ibanez de Caceres et al., 2004), there 
have been no additional reports suggesting that this is an important predictive marker of 

chemosensitivity in this disease. 

MGMT (06 -methylguanine-DNA methyltransferase) removes methyl groups as well as 
larger adducts from the 06 position of guanine. The alkylation of DNA by alkylating agents 

at this position of guanine is associated with the formation of mutations in DNA (Gerson, 

2004). However, MGMT removes these groups and inhibits cancer cell death induced by 

such agents. CGI methylation of MGMT has been frequently reported in cancers including 

ovarian, glioma and colorectal cancer (Dhillon et al., 2004b; Esteller et al., 1999a; Esteller 
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et al., 2000d). This mechanism of epigenetic silencing of MGA1T has been shown to be 

associated with response in other tumour types, including patients treated with 

temozolomide in combination with radiation (Hegi et al., 2004). In addition, 

hypermethylation of the MGMT promoter also correlated with increased survival of 

patients with diffuse large B-cell lymphoma after chemotherapy (Esteller et al., 2002). 

GSTx belongs to a group of enzymes which detoxifies carcinogens and therefore reduces 

the ability of these types of compounds to damage DNA (Hayes and Strange, 2000). 

GSTPI is frequently methylated in many tumour types including prostate and ovarian 

cancer (Makarla et al., 2005; Perry et al., 2006). Epigenetic silencing of GSTPI may 
improve chemosensitivity by preventing detoxification of chemotherapeutic agents. The 

contribution of this enzyme family to chemoresistance has been shown in vitro (Perquin et 

al., 200 1). 

Epigenetic alteration of another gene, FANCF, involved in the DNA repair complex 

containing BRCAI and BRCA2 has been reported in ovarian cancer (Taniguchi et al., 

2003). In ovarian cancer cell line models, methylation of FANCF was associated with 

increased cisplatin sensitivity, however, FANCF was shown to become demethylated and 

re-expressed during the acquisition of drug resistance in ovarian cancer (Taniguchi et al., 
2003). The contribution of this gene to acquired drug resistant mechanisms though remains 
debatable. 

Methylation of pro-apoptotic genes may be a causative factor in drug resistance in patients. 
Genes involved in this type of apoptotic response have been shown to be methylated in 

ovarian cancer (Strathdee et al., 2001). The DNA MMR protein, hNIIHI, is one of the 

most well characterised proteins involved in recognising platinum-induced damage 

(Papouli et al., 2004). Methylation of hMLHI has been reported in many tumour types 
including ovary (Geisler et al., 2003; Strathdee et al., 2001), colon (Cunningham et al., 
1998) and stomach (Kitajima et al., 2003). Evidence has shown that hMLHI is required for 

the engagement of apoptosis and that loss of hMI. HI protein expression could be a 

contributing factor to platinum resistance (Anthoney et al., 1996; Brown et al., 1997; 

Drummond et al., 1996). Coupling to cell death may not occur when expression of hMLHI 

is lost because of reduced attempts at processing 06 -methylguanine or DNA lesions being 

bypassed during replication (Karran and Hampson, 1996; Moreland et al., 1999). 

RASSFIA is another example of a pro-apoptotic gene which is frequently methylated in 

ovarian turnours (Yoon et al., 2001). This gene has been shown to be methylated through a 
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"seeding effect" where methylation spreads from the first exon into the promoter region 

(Yan et al., 2003). In this study, this spreading of methylation observed appeared to be 

associated with tumour progression in breast cancer. RASSFIA binds to tubulin and leads 

to the stabilisation of microtubules (Liu et al., 2003). This is the target of taxane-based 

chemotherapy, and therefore, methylation-induced silencing of RASSFIA could abrogate 

this effect. 

In mammalian cells, nonreceptor-mediated apoptosis occurs predominantly via the 

assembly of a cytochrome c-dependent apoptosome complex containing caspase-9 and 

apoptotic protease-activating factor-1 (APAF-1) (Adams and Cory, 2002). Dysfunctional 

activity of this apoptotic mechanism has been implicated in ovarian cancer and drug 

resistance (Liu et al., 2002). Methylation of APAF-I may be associated with 

chemoresistance in other cancer types including leukaemia and melanoma (Fu et al., 2003; 

Soengas et al., 2001). Treatment with a DNMT inhibitor was shown to reverse methylation 
and both restore sensitivity of leukaemic cells to LJV light-induced apoptosis (Fu et al., 
2003), and increase sensitivity of melanoma to doxorubicin (Soengas et al., 2001). 

It is evident therefore that aberrant epigenetic alterations in key genes may alter drug 

response in patients and enable the clinical prediction of outcome following chemotherapy. 
Defined groups of genes can become concordantly methylated in ovarian cancer (Strathdee 

et al., 2001; Wiley et al., 2006) which supports the concept of the CIMP, and epigenetic 

gene silencing in drug resistance has recently been defined as polygenic (Glasspool et al., 
2006). Therefore, large scale genome wide analysis will enable the identification of 
important gene signatures which are predictive of disease response to treatment. A recent 

study has shown that patients with late-stage ovarian tumours can be clustered into two 
distinct groups based on differences in CGI methylation using the high throughput global 
technique, differential methylation hybridisation (DMH) (Wei et al., 2002). Tumours from 

the group of patients with shorter PFS after chemotherapy displayed higher concurrent CGI 

methylation. This study indicates that distinct hypermethylated CGIs may be important 

prognostic markers in ovarian cancer. Other recent studies have also shown that CIMT+ 

turnours may be associated with worse prognosis/prediction in many cancers including 

neuroblastoma (Abe et al., 2007) and gastric cancer (An et al., 2005). 
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1.5.2 DNA methylation and acquired drug resistance 

The majority of clinical studies into drug resistance have examined tumour characteristics 
in chemonaive turnours rather than at the time of relapse (Teodoridis et al., 2004). This 

allows for the identification of intrinsic resistance markers of chemoresistance in ovarian 

cancer. However this does not divulge the pathways or enhance our understanding of the 
key genes which are potentially selected for during acquired chemoresistance mechanisms. 
Changes in DNA methylation may occur throughout cancer progression, although these 

changes may not directly impact on the phenotype of an ovarian tumour until it is 

challenged with chemotherapy. Chemonaive tumours are heterogeneous consisting of 
subpopulations of cells with varying degrees of chemosensitivity. It has been suggested 
that chemotherapy may exert a selective pressure on epigenetically silenced drug 

sensitivity genes present in small subpopulations of cells and/or may be due to regrowth of 
a cancer stem cell population in the tuniour cell environment. These can then lead to 

acquired resistance alone or in combination and a chemoresistant tumour cell population 
will regrow (Agarwal and Kaye, 2003). Therefore, analysis of tumour at relapse will allow 
for the identification of these selected subpopulations of cells. 

Studies of in vitro models in ovarian cancer have shown that both methylation patterns 
(Wei et al., 2003) and methylation of genes individually, such as hMLHI (Strathdee et al., 
1999), can be selected for during chemotherapy. A study in breast cancer showed that 

reduced expression of the hMLHI protein in breast tumour following neo-adjuvant 
chemotherapy in comparison to chemonaive tumour samples was associated with worse 
survival in patients (Mackay et al., 2000). The difficulty in obtaining tumour samples at 
relapse from patients with ovarian cancer though has undoubtedly impacted on the lack of 
studies examining clinical acquired resistance for this disease. Recently though, the use of 
plasma DNA to detect methylation differences in patients with ovarian cancer has been 
investigated successfully (Gifford et al., 2004). Methylation of the hMLHI CGI was 
examined in blood samples from patients with EOC in both chemonaive and relapse 
samples. Acquisition of hMLHI methylation following chemotherapy was predictive of 
poor overall survival in patients with this disease (Gifford et al., 2004). Therefore, CGI 

methylation would appear to be a driving force behind the loss of hMLHI expression in 

cancer and other genes may be concomitantly methylated. Identification of these 
polyepigenetic changes in plasma may therefore provide important epigenetic signatures 
during treatment and allow enrichment for patients who will benefit greatly from 

epigenetic treatments that lead to reversal of chemoresistance (Lyko and Brown, 2005). 
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There is now an increasing wealth of evidence to suggest that epigenetic alterations in stem 

cells may be inherently linked to drug resistant properties in turnours (Feinberg et al., 

2006). The high incidence of relapse attributable to multidrug resistance and the many 

histological phenotypes indicative of multipotency suggests that there may be a stem cell- 

like aetiology to ovarian cancer. Stem cells may only comprise a very small proportion of 

the cells within a turnour and be relatively quiescent, therefore avoiding the toxicity of the 

chemotherapy regime which will target rapidly dividing cells (Agarwal and Kaye, 2003). 

Survival and regrowth of a cancer stem cell population has been suggested to be involved 

in acquired drug resistance (Dean et al., 2005). Acquisition of methylation post- 

chemotherapy could represent survival, growth and differentiation of cancer stem cells 

which were present in the original tumour prior to treatment with chemotherapy (Feinberg 

et al., 2006). A recent study has identified and characterised side populations of cancer 

stem-like cells from mouse ovarian cancer cell lines (Szotek et al., 2006). These side 

populations were found to form measurable turnours sooner than other populations, and 

also responded less well when treated with doxorubicin (Szotek et al., 2006). In addition, 

the aggressive nature of EOC has also been attributed to cancer stem cell properties (Bapat 

et al., 2005). 
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1.6 DNA methylation as an early diagnostic marker in 

ovarian cancer 

Despite advances in our understanding of the molecular manifestations of ovarian cancer, 

long-term survival rates have remained relatively static over the last three decades 

(Bamholtz-Sloan et al., 2003). Current modalities which are used to detect ovarian cancer 

have limited success i. e., physical, radiological [Ultrasound (US) and Computed 

Tomography(CT)] and biochemical (CA-125) assessment (Bourne et al., 1993; Sato et al., 

2000; van Nagell et al., 2000), and the efficacy of developing a screening test for this 

insidious and extremely aggressive malignancy remains unproven (Rosenthal et al., 2006). 

Novel molecular markers and methods which allow the early detection of ovarian cancer 

do have the potential to impact on the clinical outcome of this disease and improve the 

current poor survival rates. The efficacy of a biomarker assay will be determined by its 

sensitivity and specificity. For population-based screening approaches, these are precisely 

defined. The clinical sensitivity of a biomarker refers to the proportion of sub ects with 

confirmed disease who test positive, whereas its specificity refers to the proportion of 

healthy control subjects who test negative for the biomarker being used (Pepe et al., 2001). 

Early detection of ovarian cancer will require a high degree of sensitivity (75%) and a 

particulary high specificity (99.6%) to achieve an acceptable positive predictive value 

(Bast, 2003; Jacobs and Menon, 2004). Hypermethylation of CGIs is a potentially 

attractive marker for detecting this neoplasm, and detection of these changes have been 

proposed previously as a potential early diagnostic tool in cancer (Esteller, 2003). 

In order to use a biornarker in a clinical setting, it has to be readily detected in easily 

accessible surrogate body sources such as plasma. Cancer-specific methylation patterns 

can be detected in free DNA released from dead cancer cells (Jahr et al., 2001; Sidransky, 

2002), and this free DNA is thought to be released from apoptotic or necrotic tumour cells 
(Jahr et al., 2001). It has already been shown by several groups that CGI methylation can 
be detected in plasma with the same characteristic changes as are found in the 

corresponding tumour (Esteller et al., 1999b; Gifford et al., 2004; Ibanez de Caceres et al., 
2004; Weaver et al., 2006), and that this is therefore a promising novel biomarker. 

Additionally, numerous genes have been shown to be hypermethylated in cells isolated 

from other bodily fluids including urine, serum, sputum and stool of cancer patients 
(Cairns, 2004; Dulaimi et al., 2004; Sidransky, 2002; Wang et al., 2006b). In the case of 

ovarian cancer, these changes have been detected with high specificity, thus demonstrating 
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their potential use as a diagnostic tool (Chang et al., 2002). In contrast to cancerous tissues, 

CGIs in normal tissue are rarely methylated (Bird, 1986; Hendrich and Bird, 2000), 

including peripheral blood mononuclear cells (PBMC) DNA (Foyota et al., 2001). The 

development of exquisitely sensitive PCR-based techniques, in particular methylation- 

specific PCR (MSP) (Herman et al., 1996) and fluorescent-based equivalents (Gifford et 

al., 2004), have enabled scientists to detect aberrant methylation of specific genes in easily 

obtainable samples with a small amount of turnour-derived DNA present such as plasma 

(Ibanez de Caceres et al., 2004). This is feasible because these types of PCR-based assays 

can detect I methylated allele in 1,000 unmethylated alleles (Herman et al., 1996). 

Epirnutations, specifically CGI methylation, invariably occur in the same region of a gene 

promoter (Baylin et al., 2000), which is in contrast to genetic mutations which can often 

occur in a variety of genetic positions. This enables high-throughput analysis of these types 

of epigenetic changes. 

DNA methylation has merits over other assays which rely on the detection of RNA or 

protein markers, for several reasons (for review see Levenson, 2004). Firstly, RNA and 

protein analytes are less stable than DNA and this instability leads to a requirement of 

more specific precautions for sample collection, storage and analysis, which can prove 

technically challenging in a clinical setting. DNA in clinical samples does not degrade as 

easily and can be isolated from frozen or paraffin-embedded tissues and then easily 

amplified using PCR techniques (Crisan and Mattson, 1993; Lehmann and Kreipe, 2001). 

DNA methylation itself can be qualitatively assessed using PCR in comparison to both 

protein and RNA measurements which rely on quantitative measures and further 

comparison to controls. This quantification of RNA or protein becomes more complex in 

heterogeneous clinical tissue samples. In contrast, DNA methylation analysis will give a 

categorical answer and is a cancer-specific biomarker (Laird, 2003). 

Tumour heterogeneity in ovarian cancer means that groups of potentially methylated 

markers may increase the sensitivity and specificity of such a biomarker in this type of 

cancer (Levenson, 2004). There is very little data on the identification of groups of 

methylated CGIs in the plasma or serum of patients with early stage ovarian cancer. 
Recently though, one group have encouragingly identified methylation of a group of six 
genes, including BRCAI and RASSFIA, in early stage tumours with a high degree of 
sensitivity and specificity (Ibanez de Caceres et al., 2004), which was not evident in 

matched normal/benign controls. BRCAI or RASSFIA was methylated in 68% of ovarian 
tumour samples, but by additionally examining one of four other genes (APC, p144RF, 
pl6m"A and DAPK), 100% of tumour samples were methylated. Encouragingly, 95% of 
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early stage tumours had detectable levels of methylation in at least one of six genes, 

confirming that hypermethylation is a marker of early stage disease. Matched serum 

showed identical patterns of methylation to the tumour in 83% of samples. This is an 

important study because it shows that ovarian cancer can be detected in serum with a 

specificity of 100% and sensitivity of 83%. Further studies to identify other useful markers 

may improve the sensitivity of the test. 

In addition to improving early diagnostic and chemotherapeutic strategies, we also need 
better models to investigate early stage disease. Recent work indicates that epigenetic 

alterations may be initiating events in the expansion of cells in preneoplastic lesions 

(Baylin and Ohm, 2006; Feinberg and Tycko, 2004). However, although epigenetic 

alterations contribute to the pathogenesis of ovarian cancer, the influences of these 

alterations as initiation events in this type of cancer have been difficult to study. 
Methylation of specific genes alongside coordinated genetic hits has been shown to 

potentially drive the development of a cancer (Chen et al., 2004; Chen et al., 2005a). 

Additionally, multiple epigenetic hits have been shown to be potential early events in pre- 

cancerous lesions/cells prior to genetic alterations (Derks et al., 2006; Mei et al., 2006; 

PiJnenborg et al., 2006). This epigenetic silencing in early disease may even addict cancer 

cells to further mutations and increase the likelihood of tumour progression (Baylin and 
Ohm, 2006). Further to this, methylation in premalignant breast and colorectal tissue has 

been suggested to represent a field defect, perpetuating further neoplastic change (Shen et 

al., 2005; Yan et al., 2006). Methylation has also been previously shown to be associated 

with recognised stress such as inflammation (Hsieh et al., 1998) or chronic injury related to 
infective causes (Maekita et al., 2006). A complex series of epimutations may occur when 

ovarian surface epithelial cells are placed under stress. Recently, a group have addressed 
the timing of all of these types of events using a mouse model of cultured mouse ovarian 

surface epithelium to understand the chronological epigenetic events which may begin at 

an early stage of neoplasia, in the ovary (Roberts et al., 2005). 

There is also recent opinion to suggest that epimutations of stem cells may be the initiating 

progenitor event in turnourigenesis (Feinberg et al., 2006). This has been suggested to 

occur in three steps involving epigenetic interference of stem cells, an initiating mutation 
event and thereafter genetic and epigenetic plasticity of cells (Feinberg et al., 2006). The 

concept of an initiating epimutation in stem cells can be supported by previous work. 
Turnour-related growth has been shown to be stable but reversible in vitro (Lotern and 

Sachs, 2002) and DNA methylation is inherited through cell division (Lorincz et al., 2002). 
Recent cloning experiments have also shown that the blastocyst cloned from a melanoma 
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nucleus can differentiate into multiple cell types and that the phenotypic properties of 

cancer are reversible, suggesting a largely epigenetic code (Hochedlinger et al., 2004). 

Also, a small subpopulation of stem cells in a brain tumour can propagate a cancer 

phenotype when consecutively transmitted from mouse to mouse (Singh et al., 2003). 
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1.7 Methods of detecting DNA methylation and epigenetic 

alterations in cancer 

There are a wide variety of methodologies which can be applied to obtain DNA 

methylation data. The detection of this epigenetic alteration is based on the ability to 

differentiate between cytosine and 5-methylcytosine in the DNA sequence. There are three 

principal approaches to detect this difference in methylation. These involve: (1) the use of 

the chemical modification of DNA with sodium bisulphite, (2) digestion of DNA with 

either a methylation-sensitive or -insensitive restriction enzyme, or (3) 

immunoprecipitation of 5-methylcytosine to distinguish any methylated fractions. The 

study of DNA methylation changes has been at the forefront of epigenetic research since 

the initial application of sodium bisulphite conversion of genomic DNA in conjunction 

with PCR amplification and sequencing (Frommer et al., 1992). Sodium bisulphite 

conversion relies on the differential deamination of cytosine to uracil without affecting 5- 

methylcytosine content as shown below in Figure 6. This conversion will produce a 

difference in DNA sequence, which depends on the sequence's original methylation status. 

Methylated 

CACGCCCGCGCCT 
GTGCGGGCGCGGA 

I 
SODIUM BISULPHITE 

CONVERSION 

UACGUUCGCGUUT 
GTGCGGGCGCGGA 

METHYLATION-BASED PCR 
I 

TECHNIQUE 

UACGUUCGCGUUT 
ATGCAAGCGCAAA 

METHYLATED. 
SPECIFIC PRIMERS 

GTGCGGGCGCGGA 

Unmethylated 

CACGCCCGCGCCT 
GTGCGGGCGCGGA 

I 

UAuGUUý-'-UUT 
GTG: - :; GG -- , GA 

I 

UAu(-, UUU3uGUUT 
ATACAAACACAAA 

UNMETHYLATED- 
SPECIFIC PRIMERS 

GTGUGGGUGUGGA 

Figure 6 Principles of sodium bisulphite conversion and subsequent PCR-based analysis of 
DNA. DNA is modified with sodium bisulphite in a methylation-dependent way prior to PCR 
amplification. Methylated cytosines (red) remain unconverted, whereas unmethylated cytosines are 
converted to uracils (green), resulting in a difference in DNA sequence. The converted strands of 
DNA are no longer complementary, and amplification of either strand (top strand shown above) 
requires primers which are specific for the methylated sequence (blue) or the unmethylated 
sequence (purple). 
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Many DNA methylation assays will involve at least one PCR step. The difference in 

sequence which is apparent following sodium bisulphite treatment can be used to design 

PCR primers which will either amplify a region depending on its methylation status or 

alternatively amplify a pool of unmethylated and methylated products as shown below in 

Figure 7. 

(A) M ETHYLATION -SPEC I FIC PRIMING 

M-F PRIMER M-R PRIMER 

BIND TO M-CpGs 

U-F PRIMER U-R PRIMER 

BIND TO U-CpGs 

(B) NON-METHYLATION-SPECIFIC PRIMING 

F PRIMER R PRIMER 

BIND TO NON-CpG SITES 

Figure 7 Design of primers following sodium bisulphite conversion of DNA. (A) Methylation- 
specific amplification using forward (F) and reverse (R) primers designed to anneal to a sequence 
with either complementary methylated (M) CpGs or unmethylated (U) CpGs. (B) Alternatively, non- 
methylation-specific priming of either M or U sequences can be attained using F and R primers 
which attach outwith the methylation-differential part of the sequence and will amplify DNA 
regardless of its methylation status. 

Established methods using the initial bisulphite conversion of DNA described above 
include MSP (Herman et al., 1996), bisulphite sequencing (Frommer et al., 1992), 

combined bisulphite restriction analysis (COBRA) (Xiong and Laird, 1997) and, more 

recently, pyrosequencing (Ronaghi et al., 1996). MSP is a highly sensitive, qualitative 

technique, which can detect a small proportion of methylated alleles in a heterogeneous 

sample, and has been the most widely accepted method of analysing CGI methylation for 

many years (Derks et al., 2004; Herman et al., 1996). It uses primers which are designed to 
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anneal either to the methylated or unmethylated sequence (Figure 7A) and has had a 

significant bearing on our understanding of epigenetics events in many types of cancer 
including ovarian (Shames et al., 2007). This is a reflection of its accessibility and ease of 

use in many laboratories (Laird, 2003), which is of considerable importance when 

considering the application of a method. Although MSP remains a common assay used to 

detect new epigenetic markers in cancer, it is acknowledged that this technique will only 

produce a result as categorical information (either methylated or unmethylated). Bisulphite 

sequencing and COBRA provide more quantitative information using PCR-primers which 
do not cover any potentially methylated CpG sites (Figure 7B). Amplification generates a 

pool of products with variable methylation states. COBRA relies on a methylation- 

sensitive restriction enzyme digest to provide a quantitative assessment of the methylation 

status of individual CpG sites but is not suited to multiplex reactions. Bisulphite 

sequencing has the disadvantage of being very labour intensive, and has now been widely 

replaced with a bisulphite sequencing technique known as Pyrosequencing (Ronaghi et al., 
1996; Ronaghi et al., 1998) which can quantitate CpG methylation at individual sites 
following bisulphite treatment (Tost and Gut, 2006). This sequencing by synthesis based 

technique involves the luminometric detection of pyrophosphate following sequential 

single nucleotide incorporation. Pyrosequencing allows the detection of up to 10 CpG sites 

spanning an 80-nucleotide stretch in a single run (Tost and Gut 2006). The main 

advantages of this new technology over traditional sequencing methods are that it is a very 

quick and efficient quantitative method, it uses a PCR product to directly obtain 
information, without the requirement of cloning and multiple sequencing reactions, and it 

can be run in multiplex fashion. 

The second approach, which detects methylation using enzyme-based differences, 

historically involved Southern Blot analysis (Reed et al., 1996), but more recently there has 

been a surge of interest in developing techniques which can examine genome-wide 
epigenetic alterations in cancer. Restriction landmark genomic scanning (RLGS) is one 

such enzyme-based technique which has been used to assess global CGI methylation in 

tumours (Costello et al., 2002). The study of global DNA methylation alterations at the 
CGI level can also be achieved using CGI arrays. Differential methylation hybridisation 

(DME) was the first technique of this kind which was used to assemble an array-based 
DNA methylation assay (Huang et al., 1999; Yan et al., 2001), and has been successfully 
used to detect such alterations in breast and ovarian cancer. 

The third approach uses anti-methylcytosine antibodies to enrich for methylated sequences. 
This relatively new technique is known as methylated DNA immunoprecipitation 
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(MeDIP), and has been used in conjunction with a comparative genomic hybridisation 

(CGH) microarray (Weber et al., 2005). This allows simultaneous assessment of 

methylation status and copy number. 

Analysis of methylation on a global scale using robust high throughput platforms still 

represents a significant challenge. Most recently, methylation profiling has involved the 

use of novel technologies such as universal bead arrays (Bibikova et al., 2006), promoter- 

associated methylated DNA amplification DNA chip (PMAD) (Fukasawa et al., 2006), and 

quantitative assays such as bio-COBRA (COBRA coupled with the Agilent 2100 

Bioanalyser platform) (Brena et al., 2006) and COMPARE-MS (combination of 

methylated-DNA precipitation and methylation-sensitive restriction enzymes) 
(Yegnasubramanian et al., 2006). 

There are limitations in any of the methodologies described which means that no single 

method is unanimously better than another to examine methylation changes. Methods vary 
in how sensitive they are to detect methylation differences, their ability to quantitate 

methylation and their potential application in different tissues and preparations (e. g. 

paraffin-embedded versus snap frozen tissue) (Laird, 2003). Additionally, the potential to 

make comparisons and interpret different datasets originating from a variety of 

methodologies is difficult. For instance, many studies will use variable conditions for the 

same methodologies, such as altered PCR cycling numbers, which can change the 

threshold of a positive result e. g. investigation of CGI methylation of FANCF (Taniguchi 

et al., 2003; Teodoridis et al., 2005). Studies may also amplify different promoter regions 

of a gene which could lead to discrepancies in results obtained depending on methylation 

status. Techniques which rely on restriction enzyme digests (e. g. COBRA, RLGS and 
DMH) are limited by the sites available for methylation-sensitive enzymes and the digest 

efficiency, as incomplete digestion could lead to false positive results. Additionally, care 

must be taken in the interpretation of data from CGI libraries used in microarray-based 

experiments as more than 80% of all CGIs are not related to genes and are not likely to be 

involved in the regulation of gene expression (Takai and Jones, 2002). 

Ultimately, the scientist's method of choice will depend on how the technology is to be 

applied (Laird, 2003), but carefully validated data using an independent method will be of 

utmost importance. The application of these novel tools in clinical research for genome- 

wide analysis of methylation will be critical in ovarian cancer. It will not only allow the 

identification of novel methylation targets, but will also enable assessment of the 

effectiveness and safety of regimes which can reverse methylation and identify patients for 
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whom it may be advantageous to treat with novel epigenetic therapies (Lyko and Brown, 

2005). 
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1.8 The therapeutic implications of DNA methylation 

Aberrant CGI hypermethylation requires an active mechanism for its maintenance during 

cell proliferation in cancer. Therefore, this type of epimutation is pharmacologically 

reversible by small molecule inhibitors, which makes it an attractive focus for the 
development of novel epigenetic therapies in cancer (Egger et al., 2004; Yoo and Jones, 

2006). In vitro work has shown that double inactivation of DNMTI and DNMT3b in a 

colon cancer cell line reduces cell growth and reverses global methylation of previously 
dormant turnour suppressor genes (Paz et al., 2003; Rhee et al., 2002). Inhibition of this 
family of enzymes in cancer could lead to suppression of the growth of a tumour or 
increase the ability of turnour cells to undergo apoptosis induced by chemotherapeutic 

agents and hence overcome drug resistance (Teodoridis et al., 2004). The DNMT family of 

enzymes are recognised as potential targets for the development of epigenetic therapies. 
Inhibitors of these enzymes represent the most widely studied demethylating agents in 

phase I-III clinical trails (Lyko and Brown, 2005). Several small molecule drugs which are 

nucleoside analogues of 2'-deoxycytidine have been studied. These potent inhibitors of 
DNA methylation include the prototype 5-azacytidine (5-azaC) and the deoxyribose 

analogue of 5-azaC, known as 5-aza-2'-deoxycytidine (DAC, Decitabine). These are 
incorporated into the DNA and trap DNMTs during movement of the replication fork 

(Lyko and Brown, 2005). This leads to passive demethylation of nascent DNA and re- 
activation of epigenetically silenced tumour suppressor genes. 5-aza-C and DAC have been 

used to inhibit DNMTs and reverse methylation in tissue culture work for many years 
(Brown and Plumb, 2004). In the clinical setting, DNMT inhibitors have been studied most 
intensely with regard to treatment of haernatological malignancies (Issa et al., 2004; 

Lubbert, 2000). The originally described DNMT inhibitor 5-azaC (Vidaza(&) was first 

approved by the Food and Drug Administration (FDA) for use in myelodysplastic 
syndrome (Kaminskas et al., 2005), and more recently, 5-aza-2'-deoxycytidine 
(Decitabine, DacogenS) has also gained FDA approval for use. 

The use of these types of nucleoside analogues in clinical trials have been hindered by their 
innate cytotoxic side effects including thrombocytopenia and neutropenia. These side 

effects are most likely due to cytotoxicity associated with drug incorporation into DNA 

independent of their DNA-hypomethylating value (Esteller, 2005). Indeed, the in vitro 

effect of decitabine at higher concentrations has been shown to produce less differentiation 

and more cytotoxicity (Taylor and Jones, 1979). Higher doses of these DNA- 
demethylating drugs have cytotoxic actions which are independent of their ability to cause 
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hypomethylation, but if the dose is lowered, they are more dependent on their role to re- 

express epigenetically silenced genes. Therefore, it may be more appropriate to use lower 

dose scheduling as shown for haernatological malignancies (Issa et al., 2004) which will 

reduce myelosuppressive side-effects. However, although these drugs have shown promise 

as single demethylating agents in haernatological malignancies, their use in the treatment 

of patients with solid tumours remains disappointing (Glasspool et al., 2006). The disparity 

seen between these different types of malignancy may be due to differing pharmacokinetic 

and pharmacodynamic mechanisms in solid and haernatological malignancies. Therefore, 

to improve use in solid malignancies, combination with currently used cytotoxics or more 

novel epigenetic therapies may be best. 

The re-expression of genes following the use of a demethylating agent is not finite, and 
following a period of time, genes will become silenced again by methylation (Bender et al., 
1999). The reactivation of multiple tumour suppressor genes could enhance the action of 

other chemotherapeutic agents used within a certain time frame, thereby increasing 

apoptosis in cells induced by DNA damaging agents and overcoming drug resistance 
(Teodoridis et al., 2004). Decitabine has been shown to cause demethylation and re- 

expression of the hMLHI gene (maximal effect at day 9) which sensitises drug resistant 
tumour xenografts grown in nude mice to a range of cytotoxic chemotherapeutic drugs, 

including carboplatin (Plumb et al., 2000). This re-sensitisation shown to conventional 

cytotoxic drugs may be particularly useful in tackling the management of patients with 
drug resistant ovarian cancer. Crucial histone modifications in the promoter regions of 

genes silenced through methylation have also been shown (Fahmer et al., 2002; Kondo et 

al., 2003). The combination of an HDAC inhibitor and a demethylating agent have been 

shown to enhance re-expression of epigenetically silenced genes compared to the use of 

either drug alone (Cameron et al., 1999; Gore et al., 2006). Together, these drugs can also 
lead to enhanced sensitivity to chernotherapeutics in cell lines and increase the antiturnour 
effect seen (Boivin et al., 2002). 

If novel epigenetic agents are to be used in a clinical setting, stratification of patient 

populations will be required. Methylation of particular genes, such as the DNA repair 

genes, may bestow enhanced chemosensitivity in some patients, and therefore it may be 
inappropriate to treat these patients with agents which will reverse the methylation status 

and reduce their sensitivity. Concurrently, some patients may be chemosensitised with 

epigenetic therapies (Teodoridis et al., 2004). Additionally, it has also been shown that 

genes with metastasis-related functions such as synuclein-y (Gupta et al., 2003) can 
become epigenetically upregulated through hypornethylation and subsequently 
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overexpressed in aggressive turnour types. Therefore, in order to identify appropriate 

patients, robust technology and better pharmacodynamic endpoints will be required (Lyko 

and Brown, 2005). 
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1.9 Specific aims and approaches of this research 

project 

The specific airns of this research project: 

To investigate if methylation patterns in primary EOC can predict response to 

chemotherapy. 

To identify DNA methylation markers for acquired cisplatin chemoresistance in an 

ovarian cancer model system. 

To investigate if aberrant DNA methylation is an early event in ovarian 
tumourigenesis and if it has potential use as an early detection marker in plasma. 

The approaches used to reach these aims: 

24 CGIs were analysed in a group of late stage EOCs (FIGO Stage III/IV). 

Association of methylation with response was analysed by grouping of genes 

according to their biological function. 

DMH was performed on a panel of 16 ovarian cancer cell lines (6 cisplatin- 

sensitive and 10 cisplatin-resistant). 2 CGIs close to known genes were analysed in 

EOC specimens. 

15 CGIs were analysed in a group of early stage EOCs (FIGO Stage I/Il) and the 

most frequently methylated CGIs were analysed in plasma. 
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Chapter 2 
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Materials and Methods 
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2 Materials and Methods 

2.1 General equipment 

Casy-I haernocytorneter Scharfie System 

CR422 centrifuge Jouan 

Gilson Pipettes Anachem 

Heating block Dri-Block DB 2A Techne 

Incubator (37'C) Genlab 

Innova 4000 incubator shaker New Brunswick Scientific 

Microcentaur microcentrifuge, MSE and EBA12 Rettich Zentrifugen 

Microwave Sanyo 

Nanodrop ND-1000 spectrophotometer LabTech 

PCR workstation Labcalre 

Rocking Table Luckham 

Set of scales PM 300 Mettler 

Tetrad DNA Engine PTC 225 MJResearch 

Vortex Whirlmixer Fisons 

Water bath SUB36 Grant 

2.2 General chemicals 

55 

All chemicals were of the highest quality available and were supplied by Sigma unless 

otherwise stated. 

2.3 General glass and plasticware 

Bijous (5ml) 

Eppendorf tubes (1.5ml) 

Falcon tubes (I 5ml and 50ml) 

Glass pipettes (5,10,25ml) 

Pasteur pipettes 

Bibby-Sterilin Limited 

EppendorfAG 

Becton Dickinson Labware 
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Sterile Pipette filter tips (10,20,200,1 000pl) 

Universals (20ml) 

Universal containers (30ml and 100ml) 

Greiner bio-one 

Bibby-Steriline Limited 

Sterilin 

2.4 Patient samples and characteristics 

56 

Tumour samples were collected from chemonaive patients undergoing cytoreductive 

surgery for suspected ovarian cancer. Matched blood samples were collected from a 

number of patients in the prospective "DNA Methylation Study" at the time of admission 

to hospital for surgery. Only those patients with pathologically confirmed EOC were 
included in the analysis. Ethical approval for all samples collected was obtained from 

relevant authorities and samples were collected according to Medical Research Council 

operational and ethical guidelines on "Human tissue and biological samples for use in 

research". All tumour and separated blood samples were stored at -70'C until required for 

analysis. Pathology reports, including histological subtype and grade, were obtained where 

possible. 

Reasonably complete clinical data sets were available for the following clinical factors: 

FIGO stage at diagnosis, age, performance status (PS) and size of residual disease at 

primary surgical procedure. These data were collected prospectively through the Clinical 

Trials Unit. Stage was categorised using FIGO criteria into early (Stage I/II) versus late 

(Stage III/IV), age was categorised on the median value, PS was classified as 0,1 or 2/3 

and residual disease as: 52cm or >2cm. 

PFS was defined as the time from first chemotherapy or date of entry onto trial (within 6 

weeks of surgery) until date of second line chemotherapy or progression or cancer related 
death. Progression was defined as either a ý: 25% increase in size of at least one 

measureable lesion, worsening previously evaluable disease, recurrence of a previously 

successfully treated lesion or appearance of a new lesion as measured on CT scan. Overall 

survival (OS) was calculated from the date of first chemotherapy or date of entry onto trial 

until the date of cancer related death. Response to chemotherapy was measured in all 

patients that had evaluable disease Le had measurable disease following cytoreductive 

surgery prior to chemotherapy. This was done anonymously, blinded to the methylation 

status of each patient and response was defined by modified Southwest Oncology Group 

(SWOG) criteria (Vasey et al., 2004). Patients who were evaluable for response to 
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chemotherapy were classified into two groups: responders were those with complete 

response (CR) or partial response (PR) and non-responders were those with stable disease 

(SD) or progressive disease (PD). 

2.5 DNA extraction from ovarian tissue samples 

2.5.1 Materials 

100% ethanol 
Microdismembrator II 

Mortar and pestle 
Phenol and chloroform: isoamyl alcohol (24: 1) 

3M sodium acetate 

B. Braun 

2.5.2 Recipe 

Lysis Buffer 

0.3M sodium acetate (pH 8.0) 

0.5% SDS 

5mM EDTA 

50pg/ml proteinase K 

2.5.3 Method 

Genomic DNA was isolated from ovarian tissue samples by crushing frozen samples with 

a mortar and pestle. Samples were then powdered with a microdismembrator 11, lysed in 

10ml of lysis buffer and shaken overnight at 37T. Proteins were extracted with phenol and 

chloroform: isoamyl alcohol (24: 1) and DNA was then precipitated in 1: 10 volume of 3M 

sodium acetate and 2 volumes of 100% ethanol. 
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2.6 Separation of plasma and PBMCs from whole blood 

2.6.1 Materials 

EDTA vacutainers 

Histopaque-1077 

Greiner Bio-one 

Sigma-Aldrich 

2.6.2 Method 

58 

Two EDTA vacutainers per patient containing 10ml whole blood were received and 

processed within 2 hours and accurately logged with time/date of sample collection. 
Plasma was separated by centrifuging an EDTA vacutainer at 1500xg at 20'C for 10 

minutes, aspirating the supernatant into a 15ml Falcon tube and then repeating the 

centrifugation step under the same conditions. The plasma was then aliquoted into 2 

labelled 1.5ml centrifugation tubes and frozen at -70*C. To separate PBMCs, 3ml of whole 

blood was layered onto 3ml of Histopaque-1077 in a 15ml Falcon tube and centrifuged at 
400xg for 30 minutes at room temperature with the centrifuge brake off. The upper phase 

was discarded and the opaque interface containing the PBMCs was transferred to a fresh 

15ml Falcon tube and suspended in 10ml of PBS (see Chapter ZI72 for PBS recipe). This 

was then centrifuged at 250xg for 10 minutes at room temperature with the centrifuge 
brake low (-2) and the cell pellet was resuspended in 5ml of PBS and centrifuged again at 
250xg. The cell pellet was then resuspended in 0.5ml of PBS and stored as above for 

plasma. 
.1 

2.7 Extraction of DNA from plasma and PBMCs 

2.7.1 Materials 

Ethanol 

QlAamp DNA Blood Mini Kit (Kit size 50) Qiagen 
RNase A (100mg/ml) Qiagen 
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2.7.2 Method 

DNA was extracted and purified using the QIAwnp DNA Blood Mini Kit according to 

manufacturer's instructions. Buffer AWI, AW2 and Q[Agen protease were prepared 

according to the manufacturers instructions and all centrifugation steps were performed at 
6000xg at room temperature unless otherwise stated below. Iml plasma/0.5ml PBMCs 

were thawed and PBMCs were spun down and resuspended in 200AI PBS. Samples were 
lysed and ethanol precipitated by adding 20pl/4gl of RNase A and 125pl/25[tl of QIAgen 

Protease to the plasma and PBMCs respectively. Iml/200PI of Buffer AL was added and 

samples were incubated at 56T in a water bath for 10 minutes and briefly centrifuged. 
1050gl/210pt of 100% ethanol was added, pulse vortexed and briefly centrifuged to 

complete the precipitation step. The precipitated material was bound to a QIAamp spin 

column and centrifuged for I minute at high speed in a benchtop-centrifuge (filtrate 
discarded). Samples were washed in 500gI of Buffer AW1 and centrifuged for I minute 
(filtrate discarded). 500gl of Buffer AW2 was added and centrifuged for 3 minutes at full 

speed (filtrate discarded) and then centrifuged at full speed for a further I minute. DNA 

was eluted by adding 200pl of Buffer AE, incubating at room temperature for 5 minutes 

and then centrifuging at 6000xg for I minute. The eluted sample was pipetted into the 

same spin column and incubated for 5 minutes and centrifuged for I minute as before. To 

complete the elution, this was repeated five times for plasma and twice for PBMCs. 

Following extraction of DNA from ovarian tissue samples and blood products, the 

concentration of each specimen was determined using the Nanodrop(V ND-1000 

spectrophotometer. The "Nucleic Acid" application module was selected from the software 
package. IgI of DNA was pipetted onto the sample pedestal to ensure that the liquid 

sample column was formed and the light path was completely covered by the sample. This 

accurately and reproducibly measures DNA concentrations by utilising the 0.2mm. 

pathlength to calculate the absorbance and then converts this into a specific concentration. 

2.8 Sodium bisulphite modification of extracted DNA 

2.8.1 Materials 

P-Mercaptoethanol Sigma 
CpGenorneTm DNA Modification Kit Chemicon Intemational 
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dH20 

EDTA Fishers 

Ethanol Hayman 

NaOH pellets Fishers 

Sterile H20 for injection B Braun 

Tris Base Metford 

2.8.2 Recipes 

. 
8-MercaptoethanotIH20 

P-Mercaptoethanol IPI 

dH20 20ml 

3M NaOH 

NaOH pellets Ig 

dH20 8.3ml 

20mM NaOH / 90% Ethanol (freshly prepared for each experiment) 
100% Ethanol 900[11 

dH20 93.4[tl 

3M NaOH 6.6gl 

TE 

I OmM Tris 

0. ImM EDTA 

pH 7.5 

Per modification: Reagent 1, supplied with kit (make up fresh each time) 

Reagent I 227mg 

dH20 571 gl (vortex) 

3M NaOH 20gl (vortex) 

60 

Per modification: Reagent 11, supplied with kit (can be stored In dark for 6 

weeks. ) Do not use if reagent H has turned yellow. 
Reagent II 1.35g 

P-mereaptoethanol/H20 750ý1 
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2.8.3 Method 

Sodium bisulphite modification is based on the selective dearnination of unmethylated 

cytosines to uracils whereas methylated cytosines remain unchanged. This chemical 

reaction converts a difference in methylation into a difference in sequence. 

I gg of genomic DNA was modified with sodium bisulphite using the CpGenome DNA 

Modification Kit according to the manufacturer's instructions in a Category I environment. 
I gg of DNA was denatured at an alkaline pH by mixing with 2ýd of Reagent IV and 7ýd of 
3M NaOH in a 1.5ml centrifugation tube and bringing the total volume to 100PI with 

sterile H20. Samples were incubated at 500C for 10 minutes and following this, 550ýd of 
freshly prepared Reagent I was added to each sample and incubated at 50'C for 16-20 

hours. This reagent contains HS03' which causes sulphonation and hydrolytic dearnination 

of unmethylated cytosines. 5pI of Reagent III (a micro-particulate carrier) and 750gl of 
Reagent II were added to the reaction and incubated at room temperature for 10 minutes, 

which allowed the beads to bind to the DNA (in the presence of Reagent II). Samples were 

then centrifuged at 5000xg for 10 seconds leading to formation of bound DNA in pellet 
form and the supernatant was discarded. The bound DNA was then desalted by washing in 

Iml of 70% ethanol three times. After the supernatant from the third wash was removed, 

the samples were centrifuged at top speed for 2-3 minutes and the remaining supernatant 

was removed. The conversion to uracil was completed by alkaline desulphonation which 

involved incubating samples in 50gl of 20mM NaOH at room temperature for 5 minutes 

and further desalting by washing twice in 90% ethanol. The remaining supernatant was 

removed and the cell pellets were air-dried for 20 minutes at room temperature. DNA was 

eluted from the carrier by incubating in 40pl of TE at 55*C for 15 minutes. The samples 

were then centrifuged at high speed for 2-3 minutes and the supernatant was pipetted to 
freshly-labelled eppendorf tubes. This modified DNA was stored at -20'C until required 
for MSP or other methylation-related experiment. 

2.9 Verification of successful bisulphite modification 
using PCR 

Incomplete bisulphite modification can lead to false positive results using MSP (Rand et 
al., 2002). Therefore it is important to avoid using incompletely modified DNA samples as 
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these could result in an overestimation of methylated cytosines. In order to address this 

problem, successful bisulphite modification of the DNA was verified before proceeding to 

MSP by amplifying a DNA sequence that contains cytosines with COBRA primers (for 

details, see Table 3). These primers do not contain CpG sites and will only give an 

amplified product if the cytosines in the original sequence have been successfully 

converted to uracils, irrelevant of its methylation status. For this purpose, a promoter 

region of the CALPONEV gene (sequence as shown in Table 3) was amplified with every 

modified DNA sample. Samples that did not give a band of similar intensity were 

considered unmodified or incompletely modified and the modification reaction was 

repeated for those samples. The materials and methods used for this are described in 

Chapter 2.10.1 and 2.10.2. 

2.10 Methylation Specific PCR (MSP) 

2.10.1 Materials 

dH20 

dNTPs 0.2mM Applied Biosystems 

70% Ethanol (to wash down workstation) 
Fast Start Taq DNA Polymerase Kit Roche 

Human Genomic Male DNA Promega 

In Vitro Methylated DNA (IVM) Chemicon 

Mineral Oil Sigma 

Oligonucleotides (detailed below in Table 2) TA GN 

Semi-skirted 96 well PCR plate (0.2ml) Abgene 

Sterile H20 for injection B Braun 

Microseal A Film MJResearch 

Z10.2 Method 

MSP is a qualitative PCR-based technique which is highly sensitive and has the potential 
to detect small subpopulations of methylated sequences (Herman et al., 1996). It is used to 
detect a sequence corresponding to a particular methylation state (either methylated or 

unmethylated) in extracted bisulphite modified genomic DNA. Primers were specifically 
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designed to utilise the sequence differences between methylated and unmethylated DNA 

resulting from sodium bisulphite treatment. 

To avoid contamination of the amplification reaction (Kwok and Higuchi, 1989), all MSP 

related equipment and consumables were stored in a pre-PCR environment in the Category 

I room. The MSP reactions were set up in a vertical laminar airflow in a pre-PCR 
Category I environment (PCR workstation). All MSP reactions were carried out on an MJ 

Research, Tetrad DNA Engine PTC 225. 

For all MSP assays, a series of positive and negative controls plus H20 blank were run 

simultaneously with each reaction. Undiluted IVM DNA and serial dilutions (1: 5,1: 10, 

1: 20) of this in male whole blood genomic DNA were used as positive controls and a 

negative control of male whole blood genomic DNA was used. 

Reaction mixes were prepared in a PCR workstation which was washed down with 70% 

ethanol spray prior to use. All tubes and tips were exposed to UV light prior to 

commencing the experiment. A master mix with the appropriate primer sets was then 

prepared before addition of DNA. MSP master mixes were made using reagents from the 
Fast Start Taq DNA Polymerase kit which were thawed and vortexed prior to use except 
Taq polymerase was kept at -20'C until required. MSP reactions were performed in 96 

well PCR plates using I pl of modified DNA, 150ng of each forward and reverse primer, 
0.2mM dNTPs and IU Faststart Taq in a total volume of 25pl. The H20 blank control 

consisted of 24gl master mix and lul of sterile H20 in place of DNA. Specific reaction 
mixes, primers and cycling conditions are described below. 

A master mix for one reaction contained: 

Fast Start I Ox Buffer 

dNTPs 

Forward sequence primer 

Reverse sequence primer 

MgC12 25mM 

Fast Start Taq DNA Polymerase 

Sterile H20 

2.5ýtl 

0.5pl 

0.5pt 

0.5gl 

14ýfl, depending on primer conditions 
0.2ýtl (add immediately prior to use) 

To 24 pl 
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Wells were sealed with microseal film and reactions were run on a Tetrad DNA Engine 

PTC 225. Each MSP reaction underwent an initial denaturation and enzyme activation step 

at 95'C for 5 minutes, followed by 35 amplification cycles of 95'C for 30 seconds (unless 

otherwise indicated), appropriate annealing temperature for 30 seconds and elongation at 
72*C for 30 seconds. This was followed by a final extension step at 72'C for 5 minutes. as 
below. 

MSP conditions were as follows: 

Initial Denaturation Step of 5mins at 95'C then 35 cycles of: 
Denaturation 30s 95'C 

Anneal 30s Temp. dependent on primer 
Elongation 30s 72'C 

Following these 35 cycles, final elongation step of 5 mins at 72'C 

2.10.3 MSP oligonucleotides and cycling conditions 

Primer sequences and conditions for MSP are shown below in Table 2. 

Gene Primer Sequence Product Annealing 
* Imirl Z 

Forward (1) / Reverse (R) 5'--*3' Size (bp) Temp ( Q 

APAR F: TTTCGGGTAAAAGGGATAGAATTAGA 140 63 2 
R: TATAACGCCCTTCCCCCGACGACG 

BLU F: TTCGTGGGTrATAG GAGAAAGCG 157 61 2 
R: AACGAATTAACCGCGCCTACGC 

BRCAI F: GAGTTTCGAGAGACGTTTGG 176 63 3 
R: AATCTCAACGAACTCACGCC 

CASP8 F: TAGGGGATTCGGAGATTGCGA 321 53 2 
R: CGTATATCTACATTCGAAACGA 

DAPK F: GGATAGTCGGATCGAGTTAACGTC 98 60 2 
R: CCCTCCCAAACGCCGA 

DcRI F: TTACGCGTACGAATTTAGTTAAC 127 55 2 
R: CATCAAACGACCGAAACG 

FancF F: T=GCGTTTGTTGGAGAATCGGGTTTTC 153 65 2 
R: ATACACCTCAAACCGCCGACGAACAAAACG 

Fas F: GAAAGGGTAGGAGGTCGG=CGAG 269 65 2 
R: CACTCTTACGCGAAATCAAAAACGAACTCA 

GSTpi F: AGTTGCGCGGCGAMC 140 61 2 
R: GCCCCAATACTAAATCACGACG 

HIM F: TCGGTMCGCGT-MGTrCGT 95 60 2 
R: AACCGAAAACTATCAACCCTCG 

MINT25 F: GCGAAAGCGAAAGTCGTTCG 213 58 2 
IR: CCCAACGCACATAACGAACC 

MGMT F: TTTCGACGTTCGTAGG=CGC 81 58 2 
R: GCACTCTTCCGAAAACGAAACG 

MLHI F: ACGTAGACGTMATTAGGGTCGC 115 64 2 
R: CCTCATCGTAACTACCCGCG 

OPCML F: GCGCGGTGCGGGTITA=C 135 61 2 
R: TCCCGATACCGCCTCGAAACGAACG 
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P14 F: GTGITAAAGGGCGGCGTAGC 122 62 2 
R: AAAACCCTCACTCGCGACGA 

P16 F: ITATTAGAGGGTGGGGCGGATCGC 150 65 2 
R: GACCCCGAACCGCGACCGTAA 

P21 F: TAGTACGCGAGGTTTCG ATC 197 58 2 
I R: AACTAACG, CAACTCAACGCGAC 

P73 F: GTTCGCGGTG=ITTCGCG 315 62 
R: AATACCTACCCAACGCTACG 

PTEN F: ITAGGGTTGGGAACGTCGGAG 227 61 2 
R: CAACAACCAAAAACCTAACAACGACGACAA 

RASSFIA F: CGAGAGCGCGTTTAGMCGIT 192 52 2 
I R: GATTAAACCCGTACTTCGCTAA 

SFRP-1 F: CGTA=AGI'MGTAGTMCGG 163 64 2 
R: CCCCCGACCAATAACG 

SOCS-3 F: =GTGGA=ACGGTCGT 134 57 2 
R: GAAAAACTAATCCCGAATCGAA 

Survivin F: TCGGTATATITCGCGTCGTITC 280 61 2 
I R: AAACCGAACAATCTCACCCGCT 

TMSI F: ITGTAGCGGGGTGAGCGGC 191 65 2 
R: AACGTCCATAAACAACAACGCG 

5D4(m) F: ATATAGAGTAAAAAGCGACGTTCGT 112 57 2 
R: ACTTITAAACTTACCCAACCTCGA 

5D4"7ý F: GATATAGAGTAAAAAGTGATGMGT 113 52 2 
R: AC=AAACTTACCCAACCTCAAA 

119A6(') F: TCGTAGCGATAGGTATAAAGTTACG 100 55 2 
R: AAAAAAACGACCAAATCCGA 

119A6(") F: TGTAGTGATAGGTATAAAGTTATGG 100 55 2 
R: AAAAAAAACAACCAAATCCAAA 

41D9 F: CGTATTAGVITAMATTATTATCGG 102 60 2 
R: TACCTAACTAAATTTCTACTACGCT 

41D9(` F: TTTGTTGGTAGATGGA=AGAGTG 99 52 2 
R: AATAAATAAACTAATACAAAATCACC 

66G6(m) F: GTTCGGGAGAGT=GATAGTC 115 58 2 
R: AAACAAATTACCTAATAAAAACGAA 

66G677- F: TTGGGAGAGT=GATAGTTGT 114 57 2 
1 R: AAAACAAATTACCTAATAAAAACAAA 

Table 2 IVISP oligonucleotides and cycling conditions Primers amplify methylated ýmý DNA 
sequences unless otherwise stated. Primers which are specific for the unmethylated sequence are 
indicated (uý. Primers were all designed using MethPrimer (Li and Dahiya, 2002) 
(hfti3*/hvww. urociene. or-q/methprimer . 

2.11 Fluorescent MSP and CEQ fragment analysis 

2.11.1 Materials 

Beckman CEQ 8000 Genetic Analysis System 
CEQ Sample Loading Solution (SLS), 6ml 
GenomeLab DNA Separation Capillary Array 

GenomeLab Separation Gel LPA- 1,1 Oml 

GenomeLab Sequencing Separation Buffer 

Mineral oil (supplied with size standard) 

Beckman Coulter 

Beckman Coulter 

Beckman Coulter 

Beckman Coulter 

Beckman Coulter 

Beckman Coulter 
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Oligonucleotides (WellRed fluorescent tag) Sigma 

Sample Microtiter 96 well PCR plates Beckman Coulter 

Size standard 400 Beckman Coulter 

96-well plates non-sterile Beckman Coulter 

2.11.2 Method 

Fluorescent MSP was performed on bisulphite modified DNA extracted from plasma and 
PBMCs as described above in Chapter 2.10. Primers used (OPCML, RASSF I A, HIC I and 
5D4(m) and cycling conditions were as shown in Table 2, labelling each forward primer 
with a WellRed Fluorescent tag. 

Fragment analysis of fluorescently tagged PCR was performed with the Beckman CEQ 

8000 Genetic Analysis System. This automatically filled the capillary array with a patented 
linear polyacrylamide (LPA) gel, denatured and loaded the samples, applied a voltage 

program and analyzed the data. A dye signal level of ?: 5000 was taken as a positive value. 
Any level less than this was interpreted as a signal consistent with background noise. 

2.12 Combined bisulphite restriction analysis (COBRA) 

2.12.1 Materials 

BSA New England Biblabs 

I Ox NEBuffer 2 or 4 (detailed below in Table 4) New England Biblabs 

Oligonucleotides (detailed below in Table 3) TAGN 
QIAquick PCR purification kit Qiagen 
Restriction enzymes (detailed below in Tables 3 and 4) New England Biolabs 

2.12.2 Method 

COBRA was performed to confirm selective data obtained by MSP (Xiong and Laird, 
1997). COBRA is a quantitative PCR-based technique which measures the methylation 

state of individual cytosines in bisulphite modified genomic DNA using primers which 

amplify DNA irrespective of its methylation state (ie do not contain CpG sites) followed 
by restriction digest of the product. PCR was carried out as per Chapter 2.10.2 but included 
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45 cycles of amplification to obtain a stronger product which could be detected following 

the restriction enzyme digestion step. 

After amplification, PCR products were purified using the QlAquick PCR purification kit 

according to the manufacturer's instructions. All centrifugation steps were carried out at 
15700xg. DNA was bound to the QlAquick column supplied with the kit, washed and 

eluted in 30gl of elution buffer. 

The eluted product was digested with a restriction enzyme which cut specific sites whose 

sequence depended on the methylation state of the unmodified DNA. lOx NEBuffer was 

required for each restriction endonuclease and supplemented with lOOPg/mI BSA when 

required as detailed below in Table 4. A master mix for one reaction contained: 

Eluted product 14gl 

1 Ox buffer 2VI 

Restriction enzyme I til 
100x BSA 0.2gl 

Sterile H20 To 20gl 

Digestion was performed on a heating block at 37'C for 2 hours. Following digestion, 

products were separated on a 2% agarose gel as described below in Chapter 2.13. 
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2.12.3 COBRA oligonucleotides 

conditions 

68 

and restriction digestion 

Gene Primer Sequence Product Annealing jMg, *j Restriction 
Forward (F) /Reverse (A) S-3' Size Temp Min enqme 

(*0 
BRCAI F: TTI'r=GTTII-=ATT=GATT 193 59 4 Fnu4HI ýu) 

R: TATCTAAAAAACCCCACAACCTATC 
Calponin F: GGAAGGTAGTTGAGGTTGTG 333 63 3 Not used 

, 
R: CCCAAACTCAA, AACTCTAACCTAAC 

MCI F: TAGTTGGAAAA=IT=AAGMG 443 53 2 H y118111 W 
R: AATTACCCCAATTAAAAAAAATAATAC 

MLHI F: GTGAAGGAGGTTAYGGGTAAG 354 55 2 BSTYI17M 
R: ATACTTAACACTTCTCAAACTCCTCC Fnu4HI 

OPCML F: GTI-1-r=GTAGGGGAAGT 243 59 2 Fnu4HI 
R: CAACAACTCCATCCCTAACC 

RASSFIA F: GTGGGTAGGTrAAGTGTGTTGT 438 58 1 BsiEI 
R: CAACTCAATAAACTCAAACTCCC 

SFRPI F: YGTATTTTAGTTTTGTAGTTTTYGG 163 53 2 BsiEI (m) 
R: CCCCCRCCAATAACR 

TMSI F: GTTTGGGGT=AATTTAGAGGTTr 288 57 2 BsiEI (M) 
R: TCAACTTAAACTTCTTAAACTCCTC / Fnu4HI 

(MY 
Hpyl 18111 

1 I(M) 
Table 3 COBRA oligonucleotides and cycling conditions. (M) and (U) indicate that the 
restriction enzyme cleaves a sequence resulting from modified methylated and unmethylated DNA 
respectively. The nomenclature of IUPAC is used. Restriction enzymes were mapped using 
NEBcutter2 (http: //tools. neb. com/NEBcufter2) and primers were designed, as before, using 
Methprimer (Li and Dahiya, 2002). 

Enzyme NEBuffer BSA Restriction enzyme cut site 

Fnu4HI 4 No 5'.... GC/NGC .... 3' 

3'.... CGN/CG.... 5' 

Hpyll8111 4 Yes 5'.... TC/NNGA.... 3' 

3 ..... AGNN/CT .... 5' 

BsaHI 4 Yes 5'.... GR/CGYC .... 3' 

3'.... CYGC/RG.... 5' 

BsiEl 2 Yes 5 ..... CGRY/CG .... 3' 

1 
3 ..... GCIYRGC .... 5' 

Table 4 Restriction enzyme conditions and cutting site. Details of enzyme, NEBuffer, whether 
supplemented with BSA and restriction site cut. The IUPAC nomenclature is used in the sequence. 
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2.13 Agarose gel electrophoresis 

2.13.1 Materials 

Agarose 

Amresco Ethidiurn Bromide solution 
Boric acid 
dH20 

100bp DNA Ladder 

EDTA 

Electrophoresis unit and power pack 
GeneGenius Bioimaging System 

Glycerol 
Orange G 

Tris Base 

Melford 

NBS Biologicals 

Fisher 

Invitrogen 

Fisher 

Pharmacia 

Syngene 

Fisher 

Sigma 

Melford 

2.13.2 Recipes 

TBE (5x) 

69 

Tris base 108g 

Boric acid 55g 

0.5M EDTA 40ml 

Make up to 2L with dH20 and then dilute to 0.5x with dH20 for use in agarose, gel 

electrophoresis. 

2% Agarose Get 

0.5x TBE Buffer 100ml 

Agarose 2g 

Heat in microwave for 2mins until agarose is completely dissolved. Allow to coot to "hand 

warm" before adding 2 droplets of ethidiurn bromide solution. 

Loading Buffer 

Glycerol loml 

dH20 30ml 

Orange G 0.25g 
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2.13.3 Method 

70 

After the PCR step, the products were separated through size by agarose gel 

electrophoresis. 5gl of loading buffer was added to each PCR product and 20gl of this 

mixture was pipetted into wells of a 2% agarose gel immersed in 600ml 0.5x TBE Buffer. 

A DNA ladder was run at the same time to confirm that products were of the expected size. 
Gels were run for 3545 minutes at 150 volts. 

DNA was visualised with UV light using a Syngene GeneGenius Bioirnaging System with 
GeneSnap version 6.03 software. For each primer sequence, samples which were positive 
displayed visible bands in their corresponding lanes. The MSP assay including samples of 

unknown methylation status was only regarded as being successful if there was a visible 
band in the positive control lanes and no visible bands in both the negative control and 
H20 blank lane. 

2.14 Differential methylation hybridisation (DMH) 

In a collaborative study described in Chapter 4.1, DMH was performed similarly as 

previously described (Paz et al., 2003), with some modifications. Figure 8 illustrates the 

method of sample preparation for DMH. Genomic DNA was digested with Msel (TTAA) 

which has only a few restriction sites within CpG islands. The DNA fragments were then 
ligated to endlinker oligonucleotides and divided into two equal aliquots. One aliquot was 

mock-treated, the other aliquot was digested with the methylation-sensitive restriction 

enzyme McrBC which cuts methylated DNA at the degenerate recognition site 
(G/A)'CN4o-3ooo(G/A)'C (Stewart and Raleigh, 1998). PCR amplification was performed 
with primers binding to the endlinkers. Unmethylated fragments are amplified in both the 
McrBC digest and the mock-treated aliquot. In contrast, methylated fragments are digested 

with McrBC but remain intact in the mock-treated aliquot. The amplicons were then 
labelled with Cy3 or Cy5 and hybridised to the Human CpG 12K Array (Heisler et al., 
2005) (University Health Network, Toronto, Canada) overnight. This array is based on a 
CpG island library containing approximately 12,000 CpG-rich sequences (Cross et al., 
1994). Arrays were washed with IxSSC, 0.1% SDS and 0.2xSSC, rinsed with H20 and 

scanned with an Axon GenePix 4000A scanner. GenePix Pro 6.0 was used for image 
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analysis. Dye swap experiments were performed for all cell lines to ensure quality control 

and reproducibility. An example of such a dye swap experiment is shown in Figure 16. 

Genomic DNA 
ýAm6116ý 

I Msel digest 

WOOOOý -ý666ý 
McrBC Mock 

PCR with primers binding to linkers I 

Label with Cy3 or Cý 

Hybridisation to Microarray 

Yellow unmethylated 
Red methylated 

Figure 8 DMH sample preparation. Genomic DNA digested with Msel, ligated to endlinkers and 
divided into equal aliquots. One mock-treated, the other digested with McrBC, which is a 
methylation-sensitive restriction enzyme. PCR performed with primers binding to endlinkers. 
Unmethylated fragments are labelled in both aliquots. Methylated fragments remain intact only in 
the mock treated aliquot. Amplicons are labelled with Cy3 or Cy5 and hybridised to microarray. 

2.15 Sodium bisulphite sequencing 

2.15.1 Materials 

Ampicillin I 00mg/ml stock solution 
Dual Promoter TA Cloning Kit 

imMedia Amp Blue sachets 

LB medium 
QlAquick Gel Extraction Kit 

Oligonucleotides (detailed below in Table 5) 

Petri dishes (90mm) 

Sigma 

Invitrogen 

Invitrogen 

Beatson Institute stores 
QL4GEN 

TAGN 

Sterilin 
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SOC Medium Invitrogen 

Sterile inoculating loops Nunc 

2.15.2 Method 

Sodium bisulphite sequencing is a genomic sequencing technique (Frommer et al., 1992) 

allowing generation of methylation maps with single nucleotide resolution based on 

bisulphite modification of DNA and sequencing of PCR products. The method involves the 

subcloning of a PCR product into an appropriate vector and sequencing of the inserts of 

several individual clones. The resulting final sequence pattern shows that all original 

cytosines appear as thymines whereas methylated cytosine bases are displayed as 

cytosines, resulting in quantification of CGI methylation at every CpG position. 

Bisulphite modified cell line DNA (from A2780, A2780p6, MCPI, MCP6 and MCP9) 

were PCR amplified in 25ýd reactions. Primer sequences and conditions are shown below 

in Table 5. PCR reagents and primer concentrations used were as for MSP. The PCR 

product was extracted and purified from a 2% agarose gel using a QlAquick Gel Extraction 

Kit as per manufacturer's instructions. 

This product was then ligated into a pCeIl vector (supplied with TA Cloninge Kit). 

This vector is linearized with 3'-T overhangs. The use of Taq polymerase in the initial 

PCR reaction adds a single A to the 3' ends of the PCR product and allows efficient 
ligation of the PCR insert with the vector due to compatible end. The ligation mixture was 
incubated overnight at 14*C in 10ýtl reactions containing 6gl PCR product, IgI lOx 

ligation buffer, 2gl pCeIl and 1ý1 T4 DNA ligase. A negative control of H20 was 
included in each sequencing experiment which comprised 6ýd H20 in place of PCR 

product. 

The ligation reaction mixture was then transformed into competent DH5a E. coU (kindly 

provided by the Beatson Institute Stores). This utilises the ability of the plasmid to be 

replicated within the dividing bacteria and therefore provide sufficient quantities of 

plasmid DNA. 40gl of DI-15a cells were thawed on ice and added to 2VI of ligation 

reaction mixture which was then incubated on ice for 30 minutes. This was followed by a 
heat shock at 42'C for 30 seconds to allow plasmid entry into the bacterium. The mixtures 

were then placed on ice and 250gl of SOC Medium was added. The resulting mixtures 

were shaken for 1 hour at 37'C to allow expression of the ampicillin-resistance gene before 

plating out. 
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The features of the pC02.1 vector are illustrated below in Figure 9. These include an 

ampicillin resistance gene which allows growth of Rcoli in ampicillin containing medium 

and the lac promoter which allows bacterial expression of the lacZa fragment. This 

fragment encodes for P-galactosidase which is used for blue-white colony screening as 
described below. 

+1 

pCR! 2ml 
3.9 kb 

Figure 9 Features of pCIRO 2.1 vector. Features include an ampicillin resistance gene, and the 
lac promoter which permits bacterial expression of the lacZa fragment. This encodes for 
galactosidase which is used for blue-white colony screening. 

Agar plates were made up by dissolving an imMedia Amp Blue sachet in 200ml of dH20 

and pipetting out approximately 18ml per 90mm Petri dish once mixture cooled slightly. In 

addition to ampicillin, nutrients and agar, this media contained both IPTG which induces 

the lac promoter and X-Gal which is cleaved by 0-galactosidase yielding a blue product. 
75pl of shaken mixture was plated out evenly on plates using a sterilised cell spreader and 
incubated overnight at 37*C. If transformation was successful, plates yielded both blue and 

white colonies. Transformants were identified by genetic selection: blue colonies result 
from cleavage of X-Gal due to LacZa expression but if the PCR product had successfully 
inserted into the vector, the LacZa gene was disrupted and X-Gal was not cleaved leading 

to formation of white colonies. White colonies were cultured overnight in the 37*C shaker 
in 1 ml LB media containing I jil of I 00mg/ml ampicillin stock solution. Overnight cultures 

were then submitted to the Beatson Institute Molecular Services for mini-prep and 

sequencing. Primers used for sequencing encompassed the T7 promoter within the vector. 
Methylation density was calculated from at least 10 complete sequences, and the 
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methylation percentage for each individual CpG was rounded to the nearest increment of 

10%. 

2.15.3 Bisulphite sequencing oligonucleotides and cycling 

conditions 

Primer Primer Sequence Product Size Annealing Imel Name Forward (F) / Reverse (R) 5'-3' (bp) T-p (C) mm 
LMXIA F: TGTTATTGTAAGTTTATTATTTGGGGG 200 61 2 
Seq I R: CAATAAATATAAACCCAACAACTCCTAAC 
LMXIA F: GAAGTTGGAAATTGGTATGAG= 379 61 2 
Seq 2 R: ATACTCCCTTTCCCAACCTAACTAC 
LMXIA F: AGTTAGGTTGGGAAAGGGAGTATTA 206 55 2 
Seq 3 R: ATTACTTCTCCAAAACTAAAAAAAA 
LMXIA F: ATTTAGGA=GGGT=G= 334 57 2 
Seq 4 R: AACAACCTrAMACCTAATAAAC 
5D4 F: TTr=ATTrATTTTGT"=GGAGTTT 208 58 2 
Seq II R: AAAATrCCTCACTAAATTTAATTTCTCC 
5D4 F: TTGTTGGAGAAATTAAATrTAGTGAG 333 50 2 
Seq 2 R: AATAAAAAAAATTAAAAAAAACAAC 
5D4 F: GTTGTI-11=AATTrr=ATT 277 55 2 
Seq 3 R: AAACTITATA=ATTCCTTTAATTTATA 
NR2EI F: GTAGGGGATGAGGGTITT= 455 58 2 
Seq I I R: CCTCTCTCCAAAATACCAAATAAATr 
NR2EI F: AMAMGGTATTTrGGAGAGAGG 233 58 2 
Seq 2 R: ACTAATAATATTAATAAACCTCCAAAC 
NR2EI F: GAGTrATAT=ATAT"ITATATT=AA 250 54 2 
Seq 3 R: AATCCCCTATAATATCTCCAAAAAC 
NR2EI F: GGAGATATTATAGGGGATTTAGTT 271 58 2 
Seq 4 R: CATACAAAATATAAACAATCTCTACC 
NR2EI F: TTrGTATGTTTATGTAGAGGGAGAGAT 347 57 2 
Seq 5 R: TCCAACCTACAAAACTCCTAAAC 
NR2EI F: AT=GTT=AATATTI-I-= 361 53 2 
Seq 6 R: CTAACTTACTCATACTAACTATCCC 
NR2EI F: GAGTTTTGTAGGTTGGAGGGTAGT 355 58 2 

1 Seq 7 JR: AAAAATCAAACAATCCAAAAACAAC I 

Table 5 Bisulphite sequencing oligonucleotides and conditions. All primers were designed as 
before using MethPrimer. I pi of DNA and 45 cycles of PCR were used in each reaction. 

2.16 Pyrosequencing 

2.16.1 Materials 

Ix Annealing Buffer 

Binding Buffer 

Denaturation solution (0.2M NaOH) 

70% ethanol 
Oligonucleotides @ 10ýM (detailed below in Table 6) 

Biotage 

Biotage 

Biotage 

TAGN 
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PSQ 96 Plate Low 

PSQ 96MA Pyrosequencer 

PSQ 96 Reagent Cartridge 

PSQ 96 SNP Reagent Kit 

Pyrosequencing Thermoplate 
Pyrosequencing Vacuum Prep Workstation 

Streptavidin sepharose BP 

Thermofast 96 well semi-skirted PCR plates 
I Ox Washing Buffer 

2.16.2 Method 

Biotage 

Biotage 

Blotage 

Biotage 

Biotage 

Biotage 

Amersham Biosciences 

Abgene 

Biotage 

75 

Pyrosequencing was used to sequence short regions within specific CGIs and provided 

quantitative information on levels of methylation at individual CpG sites which had 

previously been assessed in a qualitative manner using MSP. This high throughput 

technique involves sequencing by synthesis and detection of hydrolysis of pyrophosphate 
(PPi) by pyrophosphatase. Pyrosequencing uses sodium bisulphite modified DNA; 

methylation sites are treated as "C/T SNPs" (methyISNP) with an allele frequency 

spectrum spanning the entire range (0- 100%). 

DNA was bisulphite modified and PCR performed, as described previously in Chapter 2.8 

and 2.10, in a total volume of 50pl including 2pl of modified DNA template using 35 

cycles of PCR. Either the forward or reverse PCR primer was biotinylated to allow 
immobilisation to streptavidin coated sepharose beads. 40pl of PCR product was 
immobilised to sepharose beads and single stranded templates prepared using the Vacuum 

Prep Workstation in a series of wash steps with 70% ethanol, 0.2M denaturation solution, 

wash buffer and dH20. lOpM sequencing primer was annealed to the template (80'C for 3 

minutes) before analysis in the PSQ 96MA Pyrosequencer. 

Analysis using the pyrosequencer involves the DNA template and primer complex being 

incubated with the enzymes DNA polymerase, ATP sulfurylase, luciferase, apyrase and the 

substrates, adenosine 5' phosphosulphate (APS) and luciferin per sample. dNTPs are added 
to the reaction and incorporated into the sequencing strand if complementary to the 
template strand. This is accompanied by release of PPi which is then hydrolysed into ATP 

in the presence of APS. AT? drives the conversion of luciferin to oxyluciferin which 

generates visible light which can be detected and translated into a peak by the 

pyrosequencing software. As the process continues, the complementary DNA strand is 
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built up and the nucleotide sequence determined from the signal peaks within the 

pyrosequencing programme. Incorporation of aT at a CpG site indicates unmethylated 
DNA and incorporation of aC indicates methlyation of that given site. The degree of 

methylation at individual CpG sites is then analysed using the AQ software. 

Z 16.3 Pyrosequencing oligonucleotides, cycling conditions and 

sequence analysed 

Sequence 
name used 

Primer Sequence 
Forward (F) / Reverse (R) / Sequencing (S) 51- 31 

Product 
Size (bp) 

Annealing 
Temp (*Q 

Imel 
MM 

5D4 F: ATGAATGTGGAGGATGAGATAGTT (Fbiotinylated) 323 53 2 
R: CCCAA=ACAATTCTA=CT 
S: CAA=ACAATTCTATTTT 

119A6 F: TTTGGAGATATTATAGGGGATTTA 288 50 2 
R: TCCCTCTACATAAACATACAAAA(5'biotinylated) 

IS: GGGGTAATGAATTT 

Table 6 Pyrosequencing oligonucleotides and conditions. Primers were designed using the 
Biotage PSQ Pyrosequencing software package. 

Sequence 
name used 

Sequence analysed Number of CpG sites examined 

5D4 CTTTYGATAAAATCTYGAYGTCCTAAACCAYGTT 6 

- 
AAAAAYGAAYGTA 

MUE1 YGGGGAT=YGTYGTTGYGTGYGYGGTTT= 7 

IYGGAAATT II 

Table 7 Sequences and number of CpG sites analysed using pyrosequencing. YG is a 
potential site of methylation otherwise known as OC/T SNP". 

2.17 Cell culture 

All tissue culture media was stored at 4'C. 

2.17.1 Materials 

Cryotubes 

DMSO 

Fetal Bovine Serum (FBS) 

L-Glutamine 200mM 

Petri dishes (5cm and 10cm) 

Penicillin-Streptomycin 

Pipet-aid pipettor 

Nunc 

Fisher 

Autogen Bioclear 

Gibco 

Sterilin 

Gibco 

Drummond Scientific 
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RPMI growth medium Gibco 

25,75 and 175cm2 sterile tissue culture flasks Iwaki 

Stericup vacuum-driven filtration System Millipore 

NaOH Fisher 

6,24 and 96 well tissue culture plates Iwaki 

Trypsin 2.5% Gibco 

2.17.2 Recipes 

PBS (Phosphate Buffered Saline) 

NaCl 137mM 
Na2HP04 8.5mM 

KCI 44mM 
KH2P04 1.4mM 

RPMI 

RPMI 1640 500ml 

L-Glutarnine (2mM, final) 5mI 

Penicillin/Streptomycin (100mg/ml - optional) 2.5ml 

IM NaOH 0.5ml 

FBS (10%, final) 50ml 

Trypsin 

2.5% Trypsin (stock) 20ml 

PBS/EDTA* 180ml 

77 

,2 *P/E is used because cellular adhesion is in part dependent on the presence of Mg + which 
is complexed and effectively removed by EDTA. 

2.17.3 Method 

Aseptic manipulations were performed using sterile glassware and plasticware in a class II 

microbiological safety cabinet with vertical airflow. All cell lines were regularly analysed 
for mycoplasma infection. 

Ovarian epithelial cancer cells lines were grown and maintained at 370C in RPMI 1640 

medium supplemented with 10% FBS and 2mM L-Glutamine as monolayers in 25,75 or 
175cm2 flasks in the presence of 5% C02. The cisplatin-sensitive cell lines used in these 
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experiments were the parental cell line A2780 and 5 clonal derivatives (A2780p3, 

A2780p5, A2780p6, A2780p13 and A2780pl4). The 10 cisplatin-resistant cell lines used 

were A2780cp7O (Behrens et al., 1987) and MCPI-9 (Brown et al., 1997). In addition, 6 

additional cisplatin-resistant cell lines derived from exposing A2780 cells to a single dose 

of cisplatin (McLaughlin et al., 1991) were used which included Clcis6, C2cis6, C2E3, 

C3Cis6, C5E4 and C5E4(15). 

For the re-expression studies described in Chapter 4.5, cells were treated with the DNMT 

inhibitor 5-aza-2'-deoxcytidine (DAC) (Jones and Taylor, 1980) (0.5gM) for 4 days with 
daily change of medium. 

Cell stocks were formed by freezing 10 6 cells in Iml growth medium with 10% DMSO at 

-70*C in cryotubes. After 24h, samples were transferred to liquid nitrogen. Cell lines were 

replaced regularly from frozen stocks to reduce the chances of genetic drift. 

2.18 RNA extraction from cell lines 

2.18.1 Materials 

P-Mercaptoethanol Sigma 

DEPC treated H20 Invitrogen 

Ethanol Hayman 

QIAshredder spin columns Qiagen 

RNeasy Mini Kit Qiagen 

RNase-Free DNase Set Qiagen 

2.18.2 Method 

Total RNA was extracted using the RNeasy Mini Kit spin protocol according to the 

manufacturer's instructions, with the homogenisation step being carried out using 
QIAshredder spin columns. All centrifugation steps were carried out at room temperature 

and at ?: 8000xg. DEPC treated H20 was used in all steps to reduce the probability of 
RNase contamination. This kit combines the guanidine-isothiocyanate lysis with silica-gel- 

membrane purification. Samples were lysed by adding 600PI of Buffer RLT to 100pl of 

cells. Samples were then homogenised using the QlAshredder. I volume of 70% ethanol 
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was added to the lysate to provide ideal binding conditions and mixed by pipetting. The 

lysate, was then loaded onto the RNeasy silica-gel membrane column and centrifuged for 

15 seconds. 350[d of Buffer RWI was added to the column and centrifuged for 15 seconds. 

RNase-Free DNase Set was used to provide efficient digestion of DNA. The DNase was 

removed in subsequent wash steps. The Iyophilised DNasel was dissolved in 550gl of 

RNase-free H20 and gently inverted to mix. lOgI of this DNasel stock solution was added 

to 70[tl of Buffer RDD and mixed by gentle inversion. The DNasel incubation mix was 

then pipetted directly onto the RNeasy silica-gel membrane and incubated at room 

temperature for 15 minutes. 350gl of Buffer RWI was then added to the column and 

centrifuged for 15 seconds. The column was then placed in a new 2ml collecting tube and 

5OOgI of RPE was added and centrifuged for 15 seconds. A further 500[11 of RPE was 

added to the column and centrifuged for 2 minutes. This centrifugation step was then 

repeated again in a clean 2ml collecting tube. These steps allow RNA to bind to the 

column and contaminants are washed away. RNA was eluted twice in 40gl of RNase-free 

H20. RNA was then stored at -70'C until required. 

2.19 cDNA synthesis (Reverse Transcription, RT) 

2.19.1 Materials 

SuperScript First-Strand Synthesis Kit Invitrogen 

2.19.2 Method 

cDNA was prepared according to the manufacturer's instructions by reverse transcribing 

5gg of RNA using the Superscript 11 first strand synthesis system. This kit contains dNTP 

mix, oligo dT, DEPC treated H20, RT buffer, MgC12 solution, DTr, RNase OUT, RNase 

inhibitor and superscript Il reverse transcriptase (RTase). A no RTase control was included 

for each sample. Each reaction contained the following: 

Ingredients +RTase No RTase 

RNA 16pl 8ýtl 

I OmM dNT? 2pl 1ý1 

oligodT 2pl 1 ýd 
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This was incubated at 65*C for 5 minutes and then put on ice for at least I minute. 

A master mix as follows was made up for each no RTase reactions and volumes were 
doubled for the + RTase reactions: 

I OX RT Buffer 2pl 

25mM M9CI2 4gl 

DTT 2gl 

RNase OUT IPI 

This reaction mix was incubated at 42'C for 2 minutes and then 2pl of superscript RTase 

was added to each +RTase reaction at 420C. This was then incubated at 420C for 50 

minutes, 70'C for 15 minutes and put on ice. RNase was added to each tube (2PI per 
+RTase; I [d per no RTase reaction) and incubated at 37C for 20 minutes. cDNA was then 

stored at -20'C until required for qRT-PCR. 

2.20 Quantitative RT-PCR (qRT-PCR) 

2.20.1 Materials 

DyNAmo HS SYBR green qRT-PCR kit Finnzymes 

Flat cap strips Biorad 

Low 96-well white multiplate PCR plate Blorad 
Opticon 2 DNA Engine (conditions as for Table 9) MJResearch 
RT-PCR oligonucleotides (detailed below in Table 8) TAGN 
All other reagents used as described in Chapter 2.10 

2.20.2 Method 

qRT-PCR was used to quantitatively evaluate the change in RNA expression levels of 
NR2EI and LAMIA in cell lines before and after treatment with Decitabine as described in 

Chapter 4.5. qRT-PCR master mixes were made up using the DyNAmo HS SYBR green 

qRT-PCR kit. The 2x master mix provided contained a hot start version of modified 
Thermus brockianus DNA polymerase, SYBR Green I binding dye, optimized PCR buffer, 
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M902 and dNTPs in a pre-mixed form. Reactions included Ix SYBR green master mix, 
150ng of each forward and reverse primer and 2gl cDNA made up to 25pl with dH20- 

Reaction mixes and plates were prepared in a PCR workstation. A negative control 

containing H20 instead of template cDNA was included and a standard curve derived from 

a range of known concentrations of cDNA was set up in triplate for each sample. The 

constitutively expressed gene GAPDH was used as an internal control to normalise, the data 

and the average value of 3 independent RT-PCR reactions once standardised to GAPDH 

was taken as the concentration of PCR product. Reactions were run on an Opticon 2 DNA 

Engine according to cycling conditions below in Table 9. 

2.20.3 RT-PCR oligonucleotides and cycling conditions 

Gene Primer Sequence Genontic Product Annealing IM91*1 _M/ 
ForwardlReverse 5'ý3' Position Size (bp) Temp (T) 

GAPDH F: GTCAAGCTCAMCCTGGTATG Exon 214 61 2 
R: GTCTACATGGCAACTGTGAG 8-9 

LMXIA F: TCATGAACCCCTACACGG Exon 143 61 2 
: GGGCTCGGCACCATAA 9-10 , I I 

NR2EI 
I 

: ATCAACAAGCCGCATTTTAG Exon 160 65 2 
R: GCCTCCCTGGTTTCCAG 1-3 

1 

Table 8 RT-PCR oligonucleotides and conditions. 

Gene Cycling conditions 

GAPDH 1.94T 15 mins; 2.94T 30 secs; 3.63T 30 secs; 4.720C 30 secs; 
5.820C 10 secs; 6. plate read; 7. Go to Step 2x 39 times; 
8. Melting curve 70-930C 

LMXIA 1.940C 15 mins; 2.94T 30 secs; 3.61T 30 secs; 4.72T 30 secs; 
5.80T 10 secs; 6. plate read; 7. Go to Step 2x 42 times; 
8. Melting curve 70-930C 

NR2EI 1.940C 15 mins; 2.94T 30 secs; 3.620C 30 secs; 4.720C 30 secs; 
5.800C 10 secs; 6. plate read; 7. Go to Step 2x 42 times; 
8. Melting curve 70-93*C 

Table 9 Cycling conditions for qRT-PCR. 
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2.21 Statistical methods of analysis 

2.21.1 Chi-squared (X2) test 

The Chi-squared test is a non-parametric test of statistical significance which is used to test 

associations between categorical variables. The chi-squared statistic is computed from a 

cross tabulation of the two variables. This goodness-of-fit test compares the observed and 

expected frequencies in each category (Armitage, 1994). Fisher's Exact Test was used if 

the smallest expected value was less than 5. 

2.21.2 Mann Whitney U Test 

This is a non-parametric test to investigate whether two independent samples come from 

the same population. Mann-Whitney U tests whether two samples populations are 

equivalent in location. The observations from both groups are combined and ranked, with 
the average rank assigned in the case of ties (Armitage, 1994). 

2.21.3 Unsupervised gene shaving 

Gene shaving is based on a dimension reduction method, Principal Components Analysis 

(PCA), to identify subsets of genes that vary concordantly across samples. This was used 
in this thesis to identify consistently methylated groups of genes associated with clinical 

outcome (CIMP). PCA extracts the most important features of the data and re-maps the 
data into a reduced dimensional space. Weights are allocated to objects depending on their 

contribution to the projection with the larger the absolute value of the weight, the larger the 

contribution from that item. Gene shaving uses the dimension reducing capacity of PCA to 
identify subsets of features with high weights that maximally separate the samples. 

2.21.4 The cluster quality R2statistic 

The W statistic (W ý IOOVB/VT) is used to estimate the quality of an identified pattern. 
The larger the W statistic, the better the separation of the patient population and/or the 

higher the coherence between selected features. VB is a measure of variance between 

samples and VT measures the total variance of a cluster. 



Catriona Hardie, 2007 

Chapter 3 
83 

Methylation analysis of candidate genes during 

epithelial ovarian cancer development 
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3 Methylation analysis of candidate genes during 

epithelial ovarian cancer development 

3.1 CGI methylation in late stage ovarian tumourigenesis 

The aim of this chapter was to identify markers which are methylated in late stage EOC. 

These could potentially be translated into clinically useful predictive DNA methylation 
biomarkers of response to chemotherapy. The methylation status of 24 candidate CGIs 

(APAF-1, BLU, BRCA1, CASP8, DAPK, DCRI, FANCF, FAS, GSTPI, HICI, MGAIT, 

AHNT25, MLHI, OPCML, P14, P16, P21, P73, PTEN, RASSFIA, SFRPI, SOCS-3, 

SURVIUV and TMSI) which had previously been reported to be methylated were 

examined in a group of 106 late stage epithelial ovarian tumours. The samples obtained 

were from chemonaive tumours taken at the time of initial cytoreductive surgery. The 

CGIs overlapped the promoter/1' exon of genes and included genes specifically involved 

in DNA repair and drug detoxification (BRCAI, FANCF, GSTPI and MGM7), regulators 

of proliferation (PTEN, SFRPI and SOCS-3), regulators of apoptosis (APAF-1, DCRI, 

FAS, MLHI, P14, P73, RASSFIA, SURVIV17V and TMSI) and genes that had previously 
been reported to be methylated in ovarian cancer (HICI, MIN725 and OPCML). 

Methylation-specific PCR (MSP) was used to assess CGI methylation (see chapter 2.10). 

Primers for MSP were designed to amplify methylated sequences whose methylation status 
had previously been correlated with transcriptional silencing of the corresponding gene in 

other studies. MSP is a highly sensitive assay (Herman et al., 1996) and has been widely 

used to analyse CGI methylation patterns in various turnour types. Incomplete bisulphite 

modification of DNA can lead to false positive results (Rand et al., 2002) therefore 

stringent controls and scoring criteria were applied in this study. Successful bisulphite 

modification of the DNA sample was verified using a region of the CALPONIN promoter 
as described in chapter 2.9. This sequence will only be amplified if the cytosines in the 

template sequence are converted to uracils (Teodoridis et al., 2005). Samples which did not 

give a band of similar intensity were considered unmodified or incompletely modified and 
the modification experiment was repeated for these, as illustrated in Figure 10. 
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0 
Unmodified Modified Modified tumours 

- IVIVI PMN IVIVI PIVIN samples 1-4 

Figure 10 Examples of successful sodium bisulphite modifications. H20, reaction without 
template DNA; unmodified (red) and successfully modified (black) IVM, in vitro methylated DNA 
and PMN, DNA from whole male blood; 4 modified tumour samples. 

MSP is not a quantitative assay but by using a stringent modification control as well as 
including a standard curve of IVM DNA in male genomic DNA dilutions, the results 

obtained here were semi-quantitative. No PCR product using methylation-specific primers, 

and hence no evidence of methylation of these CGIs, was observed for normal or 
immortalised ovarian surface epithelium or DNA extracted from PBMCs. In each 

experiment, MSP gave a product using IVM DNA and low level methylation signals 

comparable to <1: 10 dilution of IVM DNA into normal unmethylated DNA which were 

not reproducible were disregarded. A maximum number of 35 cycles of PCR was used in 

each reaction to avoid amplification of very low intensity signals or low levels of 

unmodified DNA which could lead to false positive results. All MSP data obtained was 

repeated on at least two independent reactions and those results which did not correlate 

were repeated again. Finally, frequently positive MSP results were confirmed using 
COBRA (Xiong and Laird, 1997), (see chapter 2.12). This is a quantitative assay 

measuring methylation at individual CpG residues and allowed verification of MSP scores 

obtained. 

Overall, methylation of at least one gene was observed in 60% of late stage turnours. 
Frequent methylation was observed for OPCML, DCRI, RASSFIA, HICI, BRCAI and 
MINT25 (33%, 31%, 26%, 17%, 12% and 12%, respectively), whereas no methylation was 
observed for APAF-I, DAPK, FANCF, FAS, P14, P21, P73, SOCS-3 and SURVIVIN. The 

remaining genes showed only a low frequency of methylation, <10%. The methylation 
frequencies of the group of epithelial ovarian turnours examined here are shown below in 

Table 10 and examples of MSP results are shown in Figure 11. 

MSP results were confirmed using COBRA which is an independent quantitative method 

of assessing methylation at individual CpG residues. 54 MSP results were quantified using 
COBRA and this covered 7 selected CGIs (BRCAI, HICI, MLHI, OPCML, RASSFIA, 
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SFRPI and TMSI). There was 87% (47/54 samples) concordance between the MSP and 

COBR-A results and examples of this are shown below in Figure 12. 

Chapter 5.2 and 5.3 will discuss the analysis and validation of these results as clinically 

useftil predictive biornarkers in ovarian cancer. 

H20 IVM 1: 5 1: 10 1: 20 PMN 01 02 03 04 05 06 07 08 09 

OPCML (1 

H20 IVM 1: 5 1: 10 1: 20 PMN 01 02 03 04 05 06 07 08 09 

RASSFI A (1 92bp) 

H20 IVM 1: 5 1: 10 1: 20 PMN 01 02 03 04 05 06 07 08 09 

HIC1 (95bp) 
Figure 11 Examples of MSP results. CGI methylation of tumour samples (numbered 01-09) 
determined at loci indicated (product size). H20, reaction without template DNA; IVM, in vitro 
methylated DNA; 1: 5,1: 10 and 1: 20 serial dilutions of IVM in PMN; PMN, DNA from whole male 
blood. 
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Figure 12 Examples of COBRA results. Quantitative methylation assay using restriction digest 
confirming MSP results for OPCML, RASSF1A and HIC1. Each MSP score is shown below each 
COBRA gel image. MSP scores which did not correlate with COBRA are indicated in red. Controls 
included IVM, in vitro methylated DNA; 75% IVM, 50% IVM and 25% lVM dilutions of IVM in PMN; 
PMN, DNA from whole male blood. Tumour sample numbers indicated above each image. 

As discussed in the introduction, it has been shown that clusters of CGIs can become co- 

methylated in cancers, including late stage ovarian cancer (Strathdee et al., 2001). Groups 

of genes may exist which can define particular CpG island methylator phenotypes (CIMP) 

of cancers including colorectal cancer that are independent of histological type (Toyota et 

al., 1999a). This concept of a CIMP existing in a subset of ovarian turnours was 
investigated using a bioinformatics approach called unsupervised gene shaving (Chapter 

2.21.3) to identify concordant patterns of methylation that separate the samples into 

subgroups, in collaboration with Dr. Jacqueline Hall. This was applied to all of the 106 

stage IIIAV samples and 23 genes. SOCS-3 was not included, because the CGI associated 

with this gene was examined following the statistical analysis. The primary aim of this 

approach was to investigate the coherence of gene methylation and identify patterns of 

methylation that are non-random in this group of late stage ovarian turnours. 

Pattern I (Figure 13A) was identified which has a cluster score (R 2) of 0.34 (Chapter 

221.4) and accounts for 87.1 % of the PCA (Principal Components Analysis) solution. The 

derivation of Pattern I is unlikely to have occurred by chance as shown by the distribution 



Catriona Hardie, 2007 88 

of the cluster quality Rý statistic for 200 permutations (Figure 13B). Pattern identification 

ceased here as the next pattern only accounted for a small proportion of the full PCA 

solution (<3%). Pattern 1 shows concordant positive methylation between genes and is 

mostly comprised of frequently methylated genes OPCML, DCRI, RASSFIA, MINT25 and 

HICI, but also SFRPI which shows less methylation. This group of loci was identified as 
having a degree of concordance which was unlikely to have occurred by chance (p=0.002) 

but the cluster quality score (le) suggested only a weak degree of concordance between 

these genes. No CGIs were identified in the pattern to have negative concordance, which 

the gene shaving approach would have identified if present. One frequently methylated 

gene which is not present here in the non-random patterns is BRCAI suggesting 

methylation. of this gene may occur via a different underlying process or biological 

selection. This is consistent with a previous observation using different analysis on a 
different group of Stage III/IV ovarian turnours within our group (Strathdee et al., 2001) 

which suggested that BRCA1 had negative concordance with the methylator phenotype 
defined. The methylation pattern from unsupervised gene shaving was independent of age 

(p=0.239, N=100) and histological subtype (p=0.247, N=80). 

A B 
OPCML1 
DcR1 0.36- 
MINT25 
HICI 
SFRPI 
RASSFiA- I IN 01 111 Till 

TMSi 
PTEN 0.30- 
BLU 
APAM - 
P21 - 
Ple . P14ARF - 
MGMT - 0.25- 
GSTP - 
S i - urviv n 
CASPe CY 
BRCAI S. I 
FancF 41 

V, 0.20- F" 1 3 
DAPK 
P73 
MLHI . 

.... . 

Samples 

Figure 13 Gene shaving analysis to Identify co-methylated CGIs. (A) The pattern of gene 
methylation (black) identified by unsupervised gene shaving separates patients using a co- 
methylated sub sample of all methylation events (shading). Samples are ordered from right to left 
according to the frequency (no. of methylation events per sample) of methylation in the pattern. 
This cluster explains 87.1 % of the equivalent principal components analysis solution (n=1 06). (B) 
The boxplot shows the distribution of the cluster quality R2 statistic for 200 permutations. The 
square signifies the upper confidence interval of this distribution; the triangle shows the R2 value of 
pattern 1. A larger R2 suggests a tighter cluster of coherent genes. 
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Chromsome 

Gene 
alignment I 

MSP product Function MSP primer 
Reference 

Methylation Frequency 
distance 

from TS* (bp) 

Stage III Stage IV 

APAF-1 
12q23.1 

+34 to +173 
Apoptosis (Fu et al., 2003) 0 0 

BLU 
3p2l. 3 / Unknown (Agathanggelou et al., 1.2(1/80) 0 

+972 to +1128 2003) 

BRCA1 
17q2l/ DNA repair (Strathdee et al. , 2001) 8.8(7/80) 23.1 (6/26) 

-80 to +96 

CASP8 
2q33/ 

+536 to +856 
Apoptosis (Teitz et al., 2000) 1.2(1/80) 0 

DAPK 
9q34.1 / 

+4 to +101 
Apoptosis (Balana et al., 2003) 0 0 

DCR1 
8p2l * 

3/ 
+27 to +153 

Apoptosis (van Noesel at al., 2002) 28.1 (16/57) 38.9(7/18) 

FANCF I 1p14.3 / 
+280 to +432 

DNA repair (Taniguchi et al., 2003) 0 0 

FAS 10q23 ' 
3/ Apoptosis (Hopkins-Donaldson et al., 0 0 

-260 to +9 2003) 

GSTP1 I 1q1 3.2 / 
+29 to +168 

Drug 
detoxification (Jeronimo et al., 2001) 1.2(1/80) 0 

HICI 
17p 13.3 / 

-230 to -135 
Unknown (Dong et al., 2001) 10.5(6/57) 38.9(7/18) 

MGMT 
I Oq26.3 / 

+26 to +106 
DNA repair (Balana et al., 2003) 0 3.8(1/26) 

MINT25 
22q11/ 

+38 to +250 
Unknown (Strathdee et al., 2001) 12.3(7/57) 11.1(2/18) 

MLHI 
3p2l. 3 / 

-476 to -361 

DNA repair/ 
Apoptosis (Strathdee et al., 1999) 5(4/80) 7.7(2/26) 

OPCML 11q25/ Ovarian tumour (Sellar et al., 2003) 36.8 (21/57) 22.2(4/18) 
from -500** suppressor 

P14 
9p21 / 

+201 to +322 
Apoptosis (Esteller et al., 2000c) 0 0 

P16 
9p2l / 

+ 192 to +341 
Cell cycle (Herman et al., 1996) 0 3.8(1/26) 

P21 6p2l. 3 / 

-142 to +55 
Cell cycle This thesis 0 0 

P73 
1 p36.3 / 

-166 to +149 
Apoptosis (Strathdee et al., 2001) 0 0 

PTEN 
I Oq23.3 / 

+925 to +1151 
Proliferation This thesis 8.6(5/58) 0 

RASSFIA 
3p2l. 3 / 

-65to+127 
Apoptosis (Honorio et al., 2003) 26.2 (21/80) 26.9(7/26) 

SFRP-11 
8pl 1.2 / 

+2 to +164 
Proliferation This thesis 5.2(3/58) 5.6(1/18) 

SOCS-3 
17q25.3 / 

+205 to +338 
Proliferation This thesis 0 0 

Survivin 17q25.3 / 

-31 to +249 
Apoptosis This thesis 0 0 

1 

TMS1 16PI 1.2 / 

-44 to +147 
I 

Apoptosis (Conway et al., 2000) 5.1(3/59) 5.6(1/18) 
1 

Table 10 Methylation frequencies In late stage epithelial ovarian turnours. Methylation 
frequency % (number methylated / total number of samples) of each candidate gene examined in 
FIGO Stage IIIAV epithelial ovarian tumours. Chromosome alignment, *amplified MSP product 
distance up(-)/down(+) stream from predicted transcriptional start site (TS) shown in bp, gene 
function and MSP primer reference given. "according to Sellar et a/ (2003). 
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3.2 CGI methylation in early stage tumours 

The aim of this chapter was to identify candidate CGIs which are methylated in early stage 

EOC and uncover CGI methylation changes which occur during disease progression. 

Previous reports have suggested that epigenetic aberrations including methylation events 

occur more frequently as a cancer develops (Guo et al., 2006; Jones and Baylin, 2002; 

Mehrotra et al., 2004). 

The methylation status of 14 of the candidate CGIs examined in chapter 3.1 (APAF-1, 

BLU, BRCAI, DCRI, HICI, MGMT, ADNT25, MLHI, OPCML, P16, P21, RASSFIA, 
SFRPI and TMSI) were examined in a group of 36 early stage epithelial ovarian tumours 

as shown below in Table 11. The turnours comprised 12 borderline, 18 stage I and 6 stage 
II epithelial ovarian tumours and the same acceptance criteria for MSP as detailed in 
Chapter 3.1 were used again. 

Overall, methylation of at least one gene was observed in 78% of early stage tumours. 
Specifically, 75% of borderline turnours, 83% of stage I turnours and 67% of stage II 

turnours showed methylation of at least one gene. Frequent methylation of OPCML, 
RASSFIA, HICI and A=5 (53%, 31%, 22% and 14% respectively) was observed in 

this group of early stage turnours. Taken together, 64% of tumours were methylated in at 
least one of 3 genes (OPCA9, RASSFIA and HIC1). The remaining genes showed either a 
low frequency of methylation, <10% (DCRI, P21, SFRPI, TMSI), or no methylation 
(APAF-1, BLU, BRCAI, MGMT, MLHI and P16). 

As expected, methylation frequency of some genes increased with advancing stage of early 
disease (RASSFIA and TMS1). Early stage disease included borderline, stage I and stage Il 

turnours. Unexpectedly, however, this pattern was reversed in other genes where 
methylation frequency decreased as early stage disease progressed (DcR1, MINT25, 
OPCML and SFRPI). For the remaining genes, no general trend (HICI and P21) or no 
change in methylation (APAF-1, BLU, BRCAI, MGAIT, MLHI and P16) was observed. 
These trends are illustrated in a panel of three graphs shown below in Figure 14 and Table 
11. 
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Figure 14 Methylation trends of genes observed in early stage ovarian turnours. As early 
stage ovarian tumours; became more advanced, a trend of increasing frequency of methylation was 
observed for RASSFIA and TMSI. Decreasing frequency of methylation was observed for DcR1, 
MINT25, OPCML and SFRP. No methylation trend was observed for HIC1 and p2l. For absolute 
numbers of methylated genes, see Table 11. 
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A reduction in methylation frequencies with advancing tumour stage (early vs. late stage 

disease) was observed for some genes (OPCML, 53% vs. 33% and RASSFIA, 31% vs. 

26%) whereas for other genes, we observed increased methylation frequencies for late 

stage disease (BRCA 1,0% vs. 12%, DCRI 6% vs. 31% and MLH1,0% vs. 6%). Fisher's 

Exact Test was used to determine if these differences observed for each CGI with 

advancing stage of turnour were statistically significant. Methylation of BRCAI (p=0.039) 

and DCRI (p=0.003) both significantly increased with stage when comparing late stage 

with early stage disease. MSP bands were of variable intensity for some CGIs examined in 

both early and late stage disease which may indicate tumour heterogeneity within a sample 

(e. g. HICI). In contrast, some CGIs showed bands of similar intensity in all tumour 

specimens examined, as shown above in Figure 11. 

Gene Methylation Frequency 

Borderline Stage I Stage 11 Stage III/IV 

APAF-1 0 0 0 0 

BLU 0 0 0 0.9(1/106) 

BRCA1 0 0 0 12.3 (13/106) 

DCRI 16.7(2/12) 0 0 30.7 (23/75) 

HIM 16.7(2/12) 27.8(5/18) 16.7(1/6) 17.3 (13/75) 

MGMT 0 0 0 0.9(1/106) 

MINT25 16.7(2/12) 16.7(3/18) 0 12(9/75) 

MLH1 0 0 0 5.7(6/106) 

OPCML 58.3(7/12) 55.6 (10/18) 33.3(2/6) 33.3 (25/75) 

P16 0 0 0 0.9(1/106) 

P21 8.3(1/12) 0 16.7(1/6) 0 

RASSNA 25(3/12) 27.8(5/18) 50(3/6) 26.4 (28/106) 

SFRP-1 8.3(1/12) 5.6(1/18) 0 5.3(4/76) 

TMS1 0 11.1(2/18) 16.7(1/6) 5.2(4/77) 

Table 11 Methylation frequencies In early stage versus late stage epithelial ovarian turnours. 
Methylation frequency % (number methylated / total number of tumours) of each candidate gene 
examined in borderline, and FIGO Stage HV epithelia[ ovarian turnours. 
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3.3 CGI methylation in non-turnour tissue 

The methylation status of the 24 CGIs previously examined in the tumour samples in 

Chapter 3.1 and 3.2 were analysed in 4 normal ovarian surface epithelium (nOSE) and 3 

immortalised ovarian surface epithelium (iOSE) samples. No methylation signal was 

detected in any of these samples. 

16 specimens were obtained from biopsies of normal tissue immediately adjacent to the 

ovarian turnour and included tissue next to 3 borderline turnours, 8 stage I turnours and 5 

stage 11 turnours. Overall, 63% of these normal samples showed methylation of at least one 

of the 14 CGIs analysed in early stage turnours. Specifically, methylation of HICI, DCRI, 

APAFI, OPCML and RASSFIA (50%, 3 8%, 6%, 6% and 6% respectively) was observed in 

these adjacent normal epithelial tissues. However, methylation within the corresponding 

tumour was not always observed as illustrated in Figure 15. In addition, methylation of 

BLU, BRCAI, MGMT, MINT25, MLHI, P16, P21, SFRP-1 and TMS1 was not observed in 

adjacent nortnal tissue, although methylation of MINT25 and TMS1 was noted in 13% and 

19% of the corresponding turnour samples respectively. 

Methylation of CGIs in adjacent normal tissue 
70 - 

60 

50 ---- 25 
13 0 Methylated in both 

40 - 
tumour and normal 

13 13 60 Methylated only in 
30 - turnour 

20 31 M Methylated only in 
31 normaltissue 

10 19 

N 4K 611'ý 

0"I 

Figure 15 Methylation of CGIs in adjacent normal tissue. Percentages of methylation observed 
in normal tissue adjacent to tumours. Grey bar: methylation only detected in normal adjacent tissue 
but not in corresponding tumour sample; Blue bar: methylation only detected in tumour samples, 
White bar: methylation in both normal adjacent tissue and matched tumour. 

25 

13 0 Methylated in both 

- - -- tumour and normal 

13 13 6 0 Methylated only in 
tumour 

31 M Methylated only in 
31 normaltissue 

19 



Catriona Hardie, 2007 

3.4 Discussion 

94 

The acquisition of aberrant CGI methylation is a now a widely accepted hallmark of cancer 

and it has been previously shown that multiple CGIs can become methylated in late stage 

epithelial ovarian tumours compared to normal ovarian surface epithelium (Strathdee et at., 
2001; Wei et al., 2002). In this Chapter, MSP and COBRA methods were firstly used to 

analyse methylation of 24 candidate CGIs (APAF-1, BLU, MCA], CASP8, DAPK, DCRI, 

FANCF, FAS, GSTP1, HICI, MGMT, A=5, MLH1, OPCML, P14, P16, P21, P73, 

PTEN, RASSFIA, SFRPI, SOCS-3, SURVIVIN and TMSI) in 106 late stage I1I/IV 

epithelial ovarian turnours (Teodoridis et al., 2005) and 4 normal ovarian surface 

epithelium samples. Further to this, the methylation status of 14 of these candidate loci 

(APAF-1, BLU, BRCAI, DCRI, HICI, MGAff, AHNT25, MLHI, OPCML, P16, P21, 

RASSPA, SFRPI, TMS1) were examined in early stage disease (12 borderline, 18 stage I 

and 6 stage II) and matched non-tumour tissue samples. The CGIs examined were linked to 

genes biologically involved in the cellular responses to DNA damage. This included genes 
involved in DNA repair/drug detoxification, control of cell cycle, apoptosis, proliferation, 

and those which have been previously shown to be frequently methylated in ovarian 

cancer. 

Aberrant DNA methylation in ovarian carcinogenesis 

A comparison between the methylation percentages reported in this study for the late stage 
turnours and previous publications show similar CGI methylation frequencies in ovarian 
turnours for BRCAI (Baldwin et al., 2000; Esteller et al., 2000b; Strathdee et al., 2001), 

CASP8 (Strathdee et al., 2001), DAPK (Terasawa et al., 2004), DCRI (Shivapurkar et al., 
2004), HICI (Strathdee et al., 2001), ADN725 (Strathdee et al., 2001), MLHI (Strathdee et 

al., 2001), P16 (Brown et al., 2001; Marchini et al., 1997; Strathdee et al., 2001; Wong et 

al., 1999), P73 (Chen et al., 2000), SFRPI (Takada et al., 2004) and SOCS-3 (Sutherland et 
al., 2004). 

The methylation frequencies observed for FANCF, OPCML and TMSI in the late stage 
turnours (0%, 33.3% and 5.2% respectively) were not in agreement with previous reports 
in ovarian cancer. FANCF had originally been reported to be methylated in 21% of ovarian 
tumours (Taniguchi et al., 2003). The MSP cycling number used in the aforementioned 

study was 45 cycles compared to this study which used 35 cycles for the results obtained 

above and this may have accounted for the observed differences in methylation 
frequencies. A frequency of FANCF methylation (24%), similar to that of Taniguchi et al, 
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was reported in a more recent study (Dhillon et al., 2004a). However, the tumours 

examined were of the gramilosa sub-type and this difference in histological type may 

contribute to the percentage differences seen here. OPCML methylation frequency had 

previously been reported in 83% of ovarian turnours (Sellar et al., 2003) which is the 

highest reported frequency of aberrant CGI methylation in ovarian malignancy to date. 

However, the stage of tumour examined was not shown in this previous study. The results 

of this thesis show that methylation. in the group of borderline and early stage turnours was 

higher than that seen in late stage disease (58.3% and 50% versus 33.3% respectively). It 

may be that different stage proportions were examined in the study by Sellar et aL leading 

to higher frequencies (ie more early stage tumours) reported. An alternative reason for 

differences seen may be that OPCML methylation varies with histology. Histological data 

available for the late stage group of tumours in the work here showed variability in 

methylation frequencies. Specifically, 0% and 33% in clear cell and mucinous tumours, 

respectively. The decrease in methylation frequency seen with turnour progression may be 

due to loss of the methylated OPCML-allele, but this is unlikely here because in the 

previous study lower frequencies of methylation for those turnours without LOH was 

observed, indicating preferential loss of the unmethylated allele (Sellar et al., 2003). 

Methylation of TMSI was reported previously in 19% (Terasawa et al., 2004) and 40% 

(Akahira et al., 2004) of ovarian cancers but frequency was variable between histological 

types which may account for the differences seen in this current study. 

Overall, CGI methylation was a frequent event in early stage disease (780/o), and 

specifically, methylation of OPCML, RASSF1A and HICI were frequently observed in 

borderline and early stage ovarian turnours (53%, 31% and 22% respectively). One 

previous study reported that RASSFIA was frequently methylated in 11/17 Stage I ovarian 
tumours (Ibanez de Caceres et al., 2004), but there have been no other studies examining 
CGI methylation of these specific genes in early stage ovarian cancer. Similar methylation 
frequencies of these CGIs were reported in the group of late stage tumours examined 
(Teodoridis et al., 2005) and this compares favourably with previous reports examining 
methylation of HICI (Strathdee et al., 200 1) and RASSFIA (Yoon et al., 200 1). However, 
it is important to note that these reports have examined late stage disease and are therefore 

not directly comparable with the results for the early stage group of tumours. 

Different methylation events may be important when considering the initiation, 

progression and phenotype of ovarian tumours. The identification of frequent methylation 
events occurring at an early stage of carcinogenesis supports the concept that HICI, 
RASSFIA and OPCML may constitute tumour suppressor genes whose inactivation may 
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favour tumour development (Dammann et al., 2000; Hoff et al., 2000; Sellar et al., 2003) 

and provide a driving force in the formation of a tumour at an early stage. Perhaps early 

epigenetic changes in cells could lead to a tendency to genetic and epigenetic alterations 

that further advance the neoplastic process and "addicf' cells to various oncogenic 

pathways (Baylin and Ohm, 2006). It is interesting to consider that there may be tumour- 

specific methylation events leading to the initiation and development of turnours and what 

those may be. In keeping with the concept of methylation of HIC], OPCML and R, 4SSFIA 

being initiating epigenetic events, methylation of HICI has been shown to cooperate with 

the genetic disruption of p53 in mouse knockout models and drive the development and 

progression of cancer (Chen et al., 2004). More recent work has demonstrated the 

functional cooperation between HICI and p53 and how these are homeostatically regulated 

in a feedback loop through the histone deacetylase, SIRTI (Chen et al., 2005a). Actively 

transcribed HICI forms a repressive complex with SIRTI, which leads to acetylation of 

p53, allowing p53 to trans-activate HICL However, if HICI is epigenetically silenced, 

SIRTJ is upregulated which causes deacetylation and inactivation of p53. This initial 

epigenetic silencing of the HICI gene may ultimately allow cells to survive DNA damage 

and promote the development of turnours (Chen et al., 2005a). 

A recent report examining methylation of RASSFIA in childhood gliomas reported 
frequent methylation in tumours and widespread CGI methylation across the entire CGI 

which indicates that this epigenetic alteration may be an early event rather than a late 

clonal event (Hamilton et al., 2005). RASSFIA is thought to be responsible for Ras- 

dependent growth inhibition due to its proapoptotic function (Vos et al., 2000), since 

elimination of Ras inhibits apoptosis induced by transient transfection of RASSFIA into 

293-T cells. RASSFIA has also been shown to induce cell cycle arrest by inhibition of 

cyclin DI accumulation, thereby preventing GI/S-phase cell cycle progression 
(Shivakumar et al., 2002). A recent study has shown a high prevalence of RASSFIA 

promoter methylation in both endometrial turnours and pre-cancerous hyperplastic tissues 
(Pijnenborg et al., 2006) whereas mutation of K-RAS and B-RAF were infrequent. A further 

study in colorectal cancer has examined the timing of methylation of a group of genes, 
including RASSFIA, and has shown that promoter methylation of these genes was present 
in early adenomas without mutations or chromosomal alterations (Derks et al., 2006), 

suggesting that this may be an early event in cancer development. Therefore, inhibition of 

expression of RASSFIA through methylation may be an early initiating event in the 

carcinogenic process which is independent of genetic mutations. This epigenetic silencing 

would lead to a loss of the proapoptotic and cell cycle-suppressive functions of RASSFIA 

and promote tumour development. 
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Opioid binding protein/cell adhesion molecule-like gene, OPCML, is a member of the 

IgLON family (LSAMP, OPCML/OBCAM) and is likely to play a role in cell adhesion 

and cell-cell recognition (Schofield et al., 1989). OPCML has the functional characteristics 

of a tumour suppressor gene in an ovarian cancer cell line in vitro and in vivo when 

xenografted into nude mice and is frequently inactivated by allele loss and CGI promoter 

methylation in sporadic ovarian cancer (Sellar et al., 2003). Reduced expression of other 

members of the IgLON family (LSAMP and NEGRI) have also recently been shown in 

sporadic EOC (Ntougkos et al., 2005), and epigenetic silencing has been shown to be 

accountable for this reduced expression in LSAMP (Chen et al., 2003a). However, there is 

still a necessity to understand the function of OPCML and other members of the IgLON 

family in the normal ovary, and how methylation of this family of genes may be related to 

the malignant phenotype. The molecular mechanism leading to the epigenetic inactivation 

of OPCML in EOC remains largely unknown but it has been shown that activation of the 

oncogene RAS may play an important role in epigenetic inacitivation of OPCML in EOC 

(Mei et al., 2006). This RAS-mediated epigenetic silencing of OPCML was shown in 

immortalized human ovarian surface epithelial cells and may therefore represent an early 

event in ovarian carcinogenesis, which would be in keeping with the results described in 

this thesis. RAS-induced hypermethylation of genes involved in key apoptotic pathways, 

cell cycle, DNA repair and differentiation has been reported previously (Alcock et al., 

2002; Contente et al., 1999; Guan et al., 1999; Peli et al., 1999). These may be early events 

which are important in the development and progression of a turnour. OPCML contributes 

to cell adhesion properties and the epigenetic loss of this gene may have important 

biological consequences. Adhesion molecules can trigger intracellular signaling which may 

then alter proliferative changes. In addition, silencing of OPCML could play an important 

role at a later stage of ovarian carcinogenesis when propensity for metastatic peritoneal 

spread becomes important. In this case, the methylation events that a tumour cell 

accumulates during its history may not always contribute to the turnour phenotype until a 

later stage of development. 

Methylation of BRCAI was not observed in early stage tumours which is similar to a 

previous report (Wang et al., 2004) where BRCAI hypermethylation was not detected in 

benign or borderline ovarian tumours. Some studies have reported methylation of BRCAI 

in ovarian tumours but either did not mention tumour stage or analysed late stage disease 

(Geisler et al., 2002; Hilton et al., 2002; Strathdee et al., 2001). One group have speculated 

that BRCAI methylation may be an early event in ovarian tumourigenesis (Baldwin et al., 
2000) which is in contrast to the results here. No methylation of APAF-I, BLU, MGMT, 

MLHI and P16 was observed in borderline or early stage ovarian tumours which is 
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comparable to previous findings in ovarian turnours (Strathdee et al., 2001) and the results 

above for late stage disease (Teodoridis et al., 2005). The results in this thesis would 

suggest that methylation of these six loci are not early events during the development and 

progression of ovarian carcinogenesis. Three of these genes (BRCA1, MGMT and MLHI) 

are involved in DNA repair and were methylated in late stage tumours, suggesting that 

epigenetic changes in these DNA repair genes do not significantly contribute to the early 

stages of sporadic ovarian tumourigenesis. Impaired DNA repair and genomic instability 

may be considered to be "hallmarks of cancer" (Hanahan and Weinberg, 2000). The 

findings here suggest that epigenetic silencing of BRCAI, MGMT and MM are late 

events in ovarian cancer. There may be alternative mechanisms and genes affected, which 

have not been investigated within the scope of this work, but which may contribute to 

genetic instability. Alternatively, this instability may not be a frequent event during 

initiation and early development of a tumour. 

An alternative explanation for the methylation differences seen between early stage and 
late stage epithelial ovarian tumours may be that these are independent, separate disease 

entities. There remains continued controversy over whether benign, borderline and 

malignant ovarian tumours are part of a continuous spectrum of disease or if they arise de 

novo (Cvetkovic, 2003). Perhaps this is not always a disease which progresses stepwise 
from a very early lesion to late stage metastatic cancer. The methylation differences such 

as those seen above could influence the phenotypic behaviour of the turnour itself and 

determine its metastatic potential. 

Methylation events in non-tumour adjacent tissue 

Methylation of HICI, DCRI, APAF-1, OPCML and RASSFIA (50%, 3 8%, 6%, 6% and 
6% respectively) was observed in normal adjacent non-tumour tissue. In the case of 
RASSFIA, methylation in the non-tumour tissue could be due to tumour cell infiltration 

since the matched tumour also showed RASSFIA methylation and MSP can detect as little 

as 0.1% methylated sequence (Herman et al., 1996). However, it is unlikely that this alone 

can explain the observed methylation frequency of HIC1, DCRI, APAF-1 and OPCML in 

non-turnour tissue. Firstly, if methylation in adjacent normal tissue is due to tumour cell 
infiltration, methylation should also occur in the matched tumour which was not observed 
in the majority of cases. Secondly, if this is the case, the ranks of methylation frequencies 

should be similar in turnour and non-tumour matched tissues, with OPCML and RASSFIA 

methylation being more frequent in non-turnour tissue than HICI or DCR1 which is not the 

case. Perhaps though, the methylation differences seen are due to tumour heterogeneity in 
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ovarian cancer. It is possible that multiple biopsies of the ovarian tumour samples would 

yield more information on methylation status than one individual biopsy and corroborate 

the findings in non-tumour tissue, but again this would seem unlikely to be the main issue 

here. 

An alternative explanation is that methylation of these genes in normal tissues could 

represent a premalignant epigenetic lesion which is a mediator of a "field defect" in these 

tissues, although the origin of this field defect remains unknown (Yan et al., 2006). 

Although perhaps not transforming on their own, epigenetic inactivation of specific genes 
due to methylation may then be permissive for acquisition of additional genetic and 

epigenetic changes which ultimately lead to cancer growth. This concept has been shown 
in sporadic colorectal cancer (Shen et al., 2005) and it has been suggested that detection of 

this epigenetic lesion may be useful in the risk assessment for colorectal cancer although 
the idea of a field defect in patients with colorectal adenomas has been disputed by others 
(Rashid et al., 2001). However, a more recent study examining normal adjacent breast 

tissue suggested that there is indeed a localised field of R, 4SSFIA hypermethylation in both 

tumours and associated normal tissues, and that premalignant epigenetic changes spreading 

out from the epicentre of the turriour may be more widespread than currently thought (Yan 

et al., 2006). Aberrant CGI methylation has previously been observed in normal tissue 

samples adjacent to several cancers (Eads et al., 2001; Florl et al., 2004; Kanaya et al., 
2003; Leung et al., 2001; Yu et al., 2002). In addition, a recent study showed defined 

epigenetic changes in the stromal cells surrounding breast cancers and suggested that these 

may play a role in maintaining the cellular microenvironment during breast cancer 
development (Hu et al., 2005). Previous studies have reported absence of methylation in 

non-malignant tissues adjacent to ovarian cancer or normal ovarian tissues for DCRI and 
R, 4SSFIA (Shivapurkar et al., 2004; Yoon et al., 200 1). However, methylation of HICI has 

been detected in normal breast ductal tissue, normal bone marrow samples and normal 
cerebellum (FuJii et al., 1998; Lindsey et al., 2004; Melki et al., 1999). Methylation of 
HICI has also been reported in 19% of non-malignant ovarian tissues from patients 
undergoing surgery for benign gynaecological disease (Rathi et al., 2002). Therefore, 

although we did not observe methylation in nOSE or iOSE, the possibility of HICI 

methylation in nOSE cannot be excluded here. 

Another possible explanation of the findings in non-tumour adjacent tissue may also 
involve the idea of a cancer stem cell population. There is an increasing body of evidence 
that suggests the cellular and molecular events surrounding the initiation of tumour 
development are fuelled by mutation of cancer stem cell-like cells (Marx, 2003; Singh et 
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al., 2003) and that this small subpopulation of stem cells can maintain the cancer 

phenotype (Singh et al., 2004) in solid turnours. This view has now been extended to 

encompass the idea that early epigenetic alterations of stem cells may substitute for genetic 

mutation and be the initiating factor in the carcinogenic process and evolve in normal 

tissue before the recognised turnour arises (Feinberg et al., 2006). The methylation of non- 

tumour adjacent tissue in this study which occurs even in the absence of epigenetic change 

in the corresponding tumour may represent an epigenetic disruption of progenitor cells 

which leads to cancer through a stepwise process, setting the scene for further epigenetic 

alterations later. These initial epigenetic events may lead to a polyclonal population of cells 

which have potential for neoplastic change. If this is the case, then the goal will be 

detection of these pre-neoplastic epigenetic lesions (further discussed in Chapter 5), 

defining risk and ultimately treating patients with epigenetic therapies before the tumour 

mass develops. The caveat is the current technical difficulty in isolating and identifying 

these cancer stem cells from solid turnours (Hill, 2006). 

Potential epigenetic changes within normal ovarian surface epithelium 

Although no methylation of the 24 candidate CGIs was detected in 4 nOSE, it would be 
intriguing to examine a greater number of nOSE samples from female patients with 
differing clinical histories and pathological diagnoses. There may be many factors which 
lead to methylation in ovarian surface epithelium. However, the difficulty is obtaining OSE 

cells and maintaining them in culture, because they are very fragile and easily disrupted at 
the time of surgical removal while handling the ovary. It has previously been proposed that 

ovulatory rupture and repair predispose the OSE to mutations (Fathalla, 1971). Tberefore, 
decreasing the number of ovulatory cycles in a female's reproductive lifetime using the 

oral contraceptive pill (OCP) may potentially reduce the lifetime risk of developing 

ovarian cancer. It would be interesting to examine the OSE from patients with an OCP 
history versus those without, allowing us to investigate differences in the methylation 
status of these tissues. 

The effect of aging can potentially alter the epigenetic environment within nOSE. It was 
firstly reported that a NotI restriction site within exon I of the oestrogen receptor was 
methylated in normal colonic mucosa in association with aging (Issa et al., 1994). 
Findings such as this led to the established idea that some CGIs are methylated in 

association with aging in normal tissues (Waki et al., 2003). These changes in the 

epigenetic environment of nOSE associated with the aging process may then increase the 

risk of malignancy and this has previously been proposed (Chen et al., 2005a). 
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When examining nOSE from patients, it is also potentially important to consider 

inflammatory conditions which may alter the epigenetic status of tissues. Chronic 

inflammation has been shown to be associated with increased methylation. For instance, 

normal-appearing colonic mucosa of patients diagnosed with ulcerative colitis is associated 

with increased methylation of the p16 INK4a promoter (Hsieh et al., 1998). It has recently 

been proposed that NFO may be a key modulator in the link between chronic 

inflammation and cancer (Dobrovolskaia and Kozlov, 2005; Zaenker, 2006). Further to 

this, the integration of NFrB cell signaling by proinflarnmatory cytokines and chemokines 

with epigenetics has recently been proposed (Vanden Berghe et al., 2006), linking the 

spectrum of inflammatory changes with epigenetics and cancer risk. The ovary can be 

subject to a variety of inflammatory insults during its reproductive lifetime including 

polycystic ovarian syndrome (PCOS), oophoritis secondary to acute or chronic pelvic 

inflammatory disease (PID) and endometriosis. 

Any of these conditions could potentially increase methylation in the nOSE. Further nOSE 

analyses are essential to avoid using, for example, age-dependently methylated sequences 

as a turnour marker. 

The potential existence of CIMP 

It has been shown that concordant promoter hypermethylation of multiple genes, which is 

known as the "CpG island methylator phenotype" (CIW), may exist in gastric and 

colorectal carcinomas (An et al., 2005; Toyota et al., 1999a; Toyota et al., 1999b; Toyota 

et al., 2000) although there has been some debate regarding the validity of CIMP (Anacleto 

et al., 2005). However, a recent study using an unbiased genome-wide method of analysis 
has given the strongest support of its existence to date (Weisenberger et al., 2006). One 

previous study has examined the concept of CIMP in EOC and suggested that potentially 
two groups of CIMP-positive tumours may exist (Strathdee et al., 2001). In this previous 
work, one group exhibited methylation of HIC], MINY25, AffNT31 and P73, and the 

second group showed susceptibility to BRCAI methylation. The concept of concordant 
methylation in EOC was addressed in this study using a bioinformatics approach called 
gene shaving (Hastie et al., 2000) which objectively identifies coherent methylation 
patterns. A non-random pattern of methylation was observed for CGIs including OPCML, 
DCR1, RASSFIA, A=5, HICI and SFRPI (Teodoridis et al., 2005) which supports the 

existence of MIR This non-random pattern observed could potentially be due to either a 
specific defect driving active co-methylation of certain genes or through a more passive 
mechanism. A possible explanation may be that aberrations in the DNMT enzyme 
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machinery may result in co-methylation of certain genes (De Marzo et al., 1999). There is 

also modest evidence to suggest that DNMT overexpression or functional polymorphisms 

are related to CGI methylation in cancer (Teodoridis et al., 2005). The analysis presented 

shows that a single group of genes were identified to be concordantly methylated. Of the 

identified loci in this study, only M17VT25 has previously been found to be associated with 

the CMT by other authors (An et al., 2005; Kusano et al., 2006; Toyota et al., 1999a), 

although not in ovarian cancer. This statistical method may represent a new way of 

identifying genes which are concordantly methylated. Methylation of MINT25 may be 

common to the CIMP and allow identification of further genes which are concordantly 

methylated with MNT25 and are part of a methylator phenotype in a variety of tumour 

types. However, it remains unclear what the biological process driving this concordance is. 

It is possible that the concordant methylation of these 6 genes reflects a difference in 

methylation propensity or a selective advantage and this will most likely affect more genes 

than the candidates examined here. Genome wide screening methods in ovarian cancer 

(Wei et al., 2002) will ultimately identify further methylated loci which have potential to 

be defined within a CINT category. This may aid in gathering further evidence regarding 

whether CHAP exists (1) as a definitive biological lesion, (2) within a spectrum of multiple 

random epigenetic events or (3) as a combination of both, as the biological significance of 

the CRv1P remains unknown. 
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4 Identification of novel DNA methylation markers 

of acquired chemoresistance in ovarian cancer 

4.1 Analysis of a CGI library to identify potential novel 

chemoresistance markers in ovarian cancer 

The initial aim of this part of the project was to identify and characterise novel DNA 

methylation markers for acquired chemoresistance in ovarian cancer. These could then 

potentially help identify clinically relevant mechanisms of acquired resistance which 

would impact on detection of relapsed, chemoresistant disease in patient subgroups and 

allow stratification of chemotherapy regimes to individual patients. In a collaborative effort 

with Dr. Tim H. -M. Huang (Ohio State University, Columbus, Ohio) and Dr. Jens 

Teodoridis (University of Glasgow), a CGI microarray was analysed using Differential 
Methylation Hybridisation (DMH) for DNA sequences whose methylation state 
discriminate between cisplatin-sensitive and cisplatin-resistant ovarian surface epithelial 

cancer cell lines. DMH was used to detect genome wide changes in CGI methylation in 

DNA from 16 well characterised, matched ovarian cancer cell line models including the 

cisplatin-sensitive parental cell line A2780,5 cisplatin-sensitive clonal derivatives 

(A2780p3, A2780p5, A2780p6, A2780p13 and A2780pl4) and 10 cisplatin-resistant cell 
lines (A2780cp7O, MCPI-9). The resistant cell lines were generated by repeated exposures 

of the A2780 cell line to cisplatin (Behrens et al., 1987; Brown et al., 1997). A schematic 
description of this method is given in chapter 2.14. An example of a DMH microarray 

experiment and a dye-swap for the A2780 cell line is shown below in Figure 16. 
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Figure 16 Example of a DMH microarray experiment for the cell line A2780. left: McrBC 
digested DNA was labelled green (Cy3), mock-digested DNA was labelled red (Cy5); right: dye 
swap experiment. 

Signal intensities were corrected for background intensity and after removal of weak (equal 

or less than the average plus two standard deviations of background signals) and frequently 

missing signals from each sample data set, Prediction Analysis for Microarrays (PAM) 

(Tibshirani and Efron, 2002) was applied to the microarray data using PAM 2.0 for Excel. 

The results are obtained by gradually removing those sequences which are creating noise 
by increasing a threshold estimated by cross validation. PAM identified a set of 13 

sequences whose methylation states optimally discriminate between cisplatin-sensitive and 

cisplatin-resistant cell lines. The sequences are shown below in Table 12 and these 
included 119A6,66G6,41D9,5134 and 123D9 which are described in more detail later in 

this chapter. Two sequences did not map to CGIs, one sequence mapped to the 3' region of 
AH7VAK and two sequences could not be aligned to the genome. CGIs mapping to LMXIA 

and SOX12 were identified independently twice. Therefore, DMH identified putative 

methylation of CGIs located within or in proximity to 7 known genes as shown below in 

Table 12. Within the listed sequences below, a higher rank indicates a stronger 
discriminatory sequence. 
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PAM 
Rank 

Resistant 
score 

Sensitive 
score 

Microarray 
ID' Chromosome CG12 

Distance 
from TS3 

(bps) 

Gene 
symbol 

1 0.1739 -0.2675 119A6 6q21 Yes 0 NR2EI 

2 0.1708 -0.2627 66G6 9q22.32 Yes 

3 0.1141 -0.1756 42D9 no alignment - 

4 0.0919 -0.1415 41 D9 12qI3.12 Yes +82 WNT1 

5 0.0872 -0.1342 5D4 Iq23.3 Yes +2021 LlVlX1A 

6 0.0644 -0.0991 6134 4 1 q23.3 Yes +2021 LIVIXIA 

7 0.0551 -0.0848 55F8 7q36.3 Yes 

8 0.0476 -0.0732 801-15 no alignment 

9 0.0199 -0.0306 39EI 16p13.3 No +6300 

10 0.0158 -0.0243 123D9 20p13 Yes -1055 SOX12 

11 0.0115 -0.0177 109A6 I1qI2.3 Yes +102006 AHNAK 

12 0.0027 -0.0042 122D95 20p13 Yes -1055 SOX12 

13 0.0004 -0.0006 51 H8 3p14.2 No -1033 ZNF312 

Table 12 Ranking of DNA sequences which discriminate cisplatin-sonsitive and cisplatin- 
resistant cell lines Identified by Prediction Analysis for Microarray (PAM). 
lhftp: //data. microarrays. ca/cpg/searchsingleclones. htM 2 CpG Islands are defined as "stretch of 
DNA of at least 200bp long with at least 50% GC content" (hftp: //data. microarrays. ca/cpg/faq. htm) 
'TS: Predicted transcriptional start site 4 Sequence identical to 5D4.5Sequence identical to 123D9. 
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4.2 Validation of identified sequences using MSP 

It was important to validate the results of the DMH analysis using an independent method 

to detect CGI methylation. The methylation states of these sequences in the cisplatin- 

sensitive and cisplatin-resistant cell lines were therefore firstly examined using MSP, as 

described previously in Chapter 3. MSP was performed on the sequences within or 

immediately upstream of known genes for the top-ranking sequences. 66G6 was included 

because PAM analysis identified it as the second-strongest individual discriminator 

between cisplatin-sensitive and cisplatin-resistant cell lines (Table 12). The results which 

are illustrated in Figure 17 clearly show that no methylation was detectable for either of the 

two top-ranking sequences, 119A6 or 66G6, in cisplatin-sensitive cell lines but in contrast 

there was strong methylation in cisplatin-resistant cell lines. For 5D4 and 41D9, weak 

methylation signals were observed in some of the cisplatin-sensitive cell lines but an 

overall distinct increase was still observed for these candidate loci. No methylation was 
detected for 123D9 using several different MSP primer sets and therefore this sequence 

was removed from further analysis although it should be noted that this was in keeping 

with the PAM results where it was the weakest discriminator. Although no methylation for 

123D9 was detected using MSP, this method will only detect methylation within the 

primer binding sites, i. e. at specific CpG sites, and there may still be changes in 

methylation in other regions of 123D9 that are detected by DMH. The MSP results for 

11 9A6,66G6,5D4 and 41 D9 confirm and corroborate the PAM analysis of the DMH data. 

In addition to the cell lines described above, a further 6 cisplatin-resistant cell lines 

(Clcis6, C2cis6, C2E3, c3cis6, C5E4 and C5E4(15)) were included in the MSP validation 

(Figure 17) which were derived by exposing A2780 cells to a single high dose of cisplatin 

(McLaughlin et al., 1991). Methylation of 119A6,66G6,41D9 and 5D4 was not as 
frequent in these cell lines compared to the multiply selected cisplatin resistant cell lines 

but there was still clear evidence of acquisition of methylation of the sequences analysed 
by MSP following a single cisplatin exposure. 
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Figure 17 MSP validation of DMH results. Validation using MSP of 11 9A6,66G6,41 D9,5D4 and 
123D9 in the cell lines analysed by DMH as well as 6 additional cisplatin resistant cell lines, 
ClCis6-C5E4(15). (M), methylated primer set and (U), unmethylated primer set. H20, reaction 
without template DNA; IVM, in vitro methylated DNA; PMN, DNA from whole male blood. 
Amplification of bisulphite modified CALPONIN promoter used as a control for successful bisulphite 
modification, as described previously. 
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4.3 Methylation frequencies of identified sequences in 

epithelial ovarian tumours 

Methylation of 119A6,66G6,5134 and 41139 showed a distinct increase in chemoresistant 

versus chemosensitive cell lines as shown above in Figure 17. The methylation status of 

these four sequences was therefore next analysed using MSP in DNA from 199 primary 

epithelial ovarian turnours which included 16 early stage (1111) and 183 late stage (III/IV) 

turnours to identify if similar changes could be seen in in vivo as in vitro, as methylation 

events in tumours; may not necessarily mimic those seen in cell lines. The turnours 

analysed were comprised of 125 samples from the prospective DNA Methylation Study 

which were collected frozen from chemonaive turnours undergoing cytoreductive surgery 
for primary ovarian cancer, and 74 samples from the retrospective study described in 

Chapter 3.119A6 and 5D4 were methylated in 12.6% (25/199) and 61.8% (123/199) of the 

ovarian turnour samples respectively as shown below in Table 13. Methylation frequencies 
for 119A6 and 5D4 were higher for early versus late stage disease with 119A6 being 

methylated in 18.8% (3/16) versus 12% (22/183) and 5D4 being methylated in 75% 

(12/16) versus 60% (111/183) respectively. In contrast no methylation was identified for 

66G6 and 41D9 in 55 of the primary epithelial ovarian turnours, as shown below in Figure 

18. This would suggest that methylation of 66G6 and 41D9 is a rare event in primary 
ovarian tumour specimens. 66G6 and 41D9 were therefore removed from further analysis 

as rare methylation in primary ovarian tumour samples would reduce their potential 
usefulness as clinical markers of this disease, although it can not be excluded that 

methylation of these genes could be selected for during chemotherapy since only 
chemonaive turnours were examined. 
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I 
Methylation frequency of identified sequences 

Samples (N) 119A6 5134 7 66G6 41 D9 
Retrospective 
stage I and 11 18.8(3/16) 75(12/16) 

(16) 
Retrospective 
stage III and 10.3(6/58) 58.6 (34/58) 

IV (58) 
Prospective 
stage III and 12.8 (16/125) 61.6 (77/125) 0(0/55) 0(0/55) 

IV (125) 
Overall 
ovarian 12.6 (25/199) 61.8 (123/199) 0(0/55) 0(0/55) 
turnours 

(199) 
Table 13 Methylation frequencies of identified sequences in epithelial ovarian tumours. 
Methylation frequency % (number methylated/total number of samples) 
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Figure 18 Examples of MSP for 119A6,66G6,41139 and 5134 in primary epithelial ovarian 
turnours. Controls included as per Figure 11 including 50% IVM, dilution of 1: 2 in vitro methylated 
DNA into PMN. M, methylated primers shown. 
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Methylation of 119A6 or 5D4 was not detected in 4 normal ovarian surface epithelium 

(nOSE 14) DNA samples. In addition, for the 3 immortalised ovarian surface epithelial 

(iOSE 1-3) samples analysed, no methylation was detected for 119A6 but 2 out of 3 of the 

samples (iOSE samples I and 3) showed methylation at 5D4 as shown below in Figure 19. 

In combination, the very frequent methylation seen in primary ovarian epithelial tumours 

(61.8%) and iOSE (67%), but not mortal OSE, may suggest that methylation of 5D4 is an 

early event in the development of ovarian cancer. 

H, O IVM NM nOSE 1-4 ý-iOSE 1-3 

5D4 

119A6 

Figure 19 MSP: 5134 and 119A6 in ovarian surface epithelial samples. Controls included as 
above. 4 normal mortal ovarian surface epithelium samples (nOSE) and 3 immortalised ovarian 
surface epithelial samples (iOSE) shown. Methylation identified in iOSE samples I and 3 for 51D4. 

As described above, the initial DMH study identified 119A6 and 5134 as being sequences 

whose methylation states could discriminate cisplatin-selected from parental cell lines. In 

the first instance, MSP was used to analyse a set of 12 matched pairs of ovarian turnours 

biopsied from patients both before and after platinum-based chemotherapy (samples kindly 

provided by the University Medical Centre Groningen, The Netherlands). Residual tumour 

that was present after completion of chemotherapy was considered to be indicative of 

cisplatin-resistance where the tumour may be expected to be enriched for resistant cells 

and analysis of this allowed a direct comparison with the in vitro model described above in 

the validation set. Using MSP, methylation of 119A6 was increased in 33% (4/12) of 

paired tumours post-chemotherapy (Figure 20: paired samples 1,2,5 and 12) which is in 

keeping with the idea of 119A6 being a marker of chemoresistance. Histological analysis 

showed that the percentage of tumour cells in all paired samples were almost equal (except 

paired samples 4 and 5) which would indicate that the obvious increase in methylation seen 
in I 19A6 post-chemotherapy is not due to a quantitative increase in tumour cells following 

treatment or simply enrichment of tumour cells after chemotherapy. In contrast to 119A6 

though, there was no consistent change in methylation of 5134 following chemotherapy 

when examined with MSP. Frequent methylation was seen in both pre- and post- 

chemotherapy samples for this sequence (Figure 20: paired samples 1,2,4,5,8,11 and 
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12). This is in keeping with the overall frequent methylation seen previously in primary 

epithelial ovarian turnours for 5D4 but not with the theory that 5D4 may be a marker of 

chernoresistance as was originally hypothesised. 

0 Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair6 Pair7 PairS Pair9 Pairl Pairll Pair12 
cli > LO Z 

119A6 

5D4 
%Tumour 

Figure 20 Methylation changes in chemonaive versus residual disease. Methylation of 119A6 
can increase in residual disease after chemotherapy(*) compared to chemona*fve(*) tumours 
whereas methylation of 51D4 is similar in both. Tumour percentage by histological analysis is shown 
(% Tumour). 

However, it was important to quantitatively analyse the methylation differences between 

the paired samples. Pyrosequencing technology was used to address this for both 119A6 

and 5D4. As shown below in Figure 21 and 22,7 and 5 individual CpG sites within the 

MSP product sequences for 119A6 and 5134 respectively were analysed using 

pyrosequencing technology, (for method, see Chapter 2.16), for each of the 12 paired 

samples. Background CpG methylation was determined by pyrosequencing of DNA from 

male whole blood, as shown in Figures 21B and 22B (dotted line). This allowed 

non-nalisation of each result to this background level of methylation seen in whole male 
blood (unmethylated control) and eliminated any "noise". For 119A6 and 5134, there was a 
background "noise" level of 3% and 10.3% respectively. 119A6 pyrosequencing showed a 

quantitative strong increase in methylation over the 7 CpG sites in 4/12 (33.3%) paired 

samples following chemotherapy (pairs 1,3,4 and 5) as shown in Figure 21.5134 

pyrosequencing showed a quantitative strong increase in methylation over the 5 CpG sites 
in 3/12 (25%) paired samples following chemotherapy (pairs 4,5 and 10) as shown in 

Figure 22. The quantitative increase in methylation seen for each of the CpG sites which 

were pyrosequenced for 119A6 and 5134 are tabulated below in Table 14. 
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(A) 119A6: % CpG 
methylation at each CpG I CpG 2 CpG 3 CpG 4 CpG 5 CpG 6 G7 

loci 

Chemonaive 0 10.1 7.9 3.3 0 2.4 0 
Pair I 

Residual 12.5 50.2 20.2 17.5 17.4 2.1 56.2 
disease 

Chemonaive 0 0 3.9 0 0 0 0 
Pair 3 Residual 8.2 36.5 38.6 3.5 30.1 25.1 45.9 

disease 

Chemonaive 0 22.4 6.8 13.6 13.6 0 0.5 
Pair 4 Residual 16.8 41.7 28.3 24 3 30.1 14.3 24 

disease . 

Chemonaive 0 7.4 2.3 2 0 0 7.3 
Pair 5 Residual 27 42.8 36.4 31.1 33.9 23.6 45.4 disease II 

(B) 5134: % CpG 
methyl ion at each loci CpG I CpG 2 CpG 3 CpG 4 CpG 5 

Chemonaive 12.7 11.7 7.1 15.6 37.8 
Pair 4 

Residual 19 9 11.8 5 0 30.9 76.4 disease . . 

Chemonaive 6.6 10.7 6.3 12.3 15.7 
Pair 5 Residual 

disease 52.1 50.9 43.7 53.2 63.2 

Chemonalve 4.1 9.1 3.1 8.4 17.9 
Pair 10 Residual 

disease 
7 

19.3 27.7 6.2 23.2 41.8 
11 

Table 14 Pyrosequencing CpG methylation percentage at each Individual CpG site. Paired 
samples which showed a quantitative overall increase in methylation in residual disease compared 
to chemonaive tumours for (A) II 9A6 and (B) 5D4. Values for each individual CpG site are shown. 
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Figure 21 Pyrosequencing analysis of 119A6 in 12 paired chemonaive turnours (green) and 
residual disease following chemotherapy (red). (A) Methylation average (%) of 7 individual CpG 
sites from at least 2 independent experiments. Grey scale depicts % of methylation. (B) Average 
CpG methylation over 7 sites for each matched pair. Dotted line indicates background methylation 
in DNA from whole male blood of 3%. *Increase in methylation seen in residual disease samples 1, 
3,4 and 5. (C) Examples of pyrograms from pyrosequencing analysis of matched Pair 1 of 
chemonaive (left) and residual disease (right) ovarian turnours. 
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Figure 22 Pyrosequencing analysis of 5134 in 12 paired chemonaive turnours (green) and 
residual disease following chemotherapy (red). (A) Methylation average (%) of 5 individual CpG 
sites from at least 2 independent experiments. Grey scale depicts % of methylation. (B) Average 
CpG methylation over 5 sites for each matched pair. Dotted line indicates background methylation 
in DNA from whole male blood of 10.3%. *Increase in methylation seen in residual disease 
samples 4,5 and 10. (C) Examples of programs from pyrosequencing analysis of matched Pair 5 
of chemonaive (left) and residual disease (right) ovarian tumours. 
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In summary, the findings above would suggest that 119A6 and 5D4 may be important 

novel DNA methylation markers of acquired chemoresistance due to the acquisition of 

methylation in both the paired residual tumours and cell lines. In addition, the 5D4 locus is 

very frequently methylated in chemonaive primary ovarian tumours and iOSE specimens, 

and therefore in addition to its potential role as a marker of acquired resistance, it may also 
be a marker for the early detection of ovarian cancer. To further strengthen their potential 

role as biomarkers, methylation of 5D4 or 119A6 is not observed in nOSE and this 

suggests that these sequences are preferentially methylated in tumour compared to non- 
turnour ovarian surface epithelium. This is a crucial finding when considering a methylated 
locus as a potential clinical marker. 
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4.4 Bisulphite sequencing of 119A6,5D4 and LMXlA 

117 

As discussed in Chapter 3.1, MSP is not an assay which can be used to quantitatively 

measure density of CGI methylation. For this reason, bisulphite sequencing was used to 

compare the differences in methylation density between the cisplatin-sensitive and 

cisplatin-resistant cell lines, and corroborate the MSP findings. The identification of 

specific regions which showed quantitative differences in methylation could then be used 

to identify specific CpG sites for Pyrosequencing analysis in the matched tumour samples. 
119A6 maps to the Ist exon /transcriptional start site of the human gene encoding for 

NR2EI, a nuclear receptor, and it is located within a CGI (Figure 23). 5D4 is 2kB 

downstream of the transcriptional start site of the human gene which encodes for LAff]A, 

a LIM box transcription factor, but importantly it maps to a CGI that extends into the 

promoter region of LAMIA, as shown below in Figure 23. 

NR2E1 Exon 

L 

A6 

Exons 

CpG Island 

-4- 
CpG Island 

+1000 

---> 
5D4 

+2000 

Figure 23 Genomic positions of 119A6 and 5D4. The positions of 119A6 and 51D4 in relation to 
the predicted transcriptional start sites of NR2E1 and LMX1A, respectively. 

Sodium bisulphite sequencing of 5 cell lines (A2780, A2780p6, MCPI, MCP6 and MCP9) 

described in the MSP validation experiment above was performed to quantify the DNA 

methylation status of 3 regions: 119A6 (within the CpG island of NR2EI), 5134 and the 

region which overlaps the transcriptional start site of LMXIA. The latter region was 

analysed to see if the methylation status at 5134 is associated with the methylation status of 
the DNA region around the predicted transcriptional start site of LMXIA. The cell lines 

examined were 2 cisplatin-sensitive cell lines (A2780 and A2780p6) and 3 cisplatin- 
resistant cell lines (MCPI, MCP6 and MCP9). 119A6 was sequenced from 797bp 
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upstream of the predicted transcription start site of NR2EI (sequence length 1494bp) and 

quantified the methylation status of 102 CpGs in this region. LMXIA was sequenced from 

595bp upstream of its predicted transcription start site (sequence length 971bp) and 

quantified methylation of 82 CpGs. The region surrounding 5134 was also examined which 

was 2021bp downstream of the predicted transcription start site of LMXIA (sequence 

length 610bp) and included 36 CpGs. 

As described in Chapter 2.15, successful transformants (white colonies) were selected by 

genetic selection using blue: white colony screening as shown in Figure 24 and submitted 

for sequencing. Complete sequencing of >I 0 colonies was included for each region and the 

methylation density of each individual CpG was rounded to the nearest increment of 10%. 

Figure 24 Blue; white colony screening for sodium bisulphite sequencing. This screening 
method relies on disruption of the LacZa gene resulting in uncleaved X-Gal and white colony 
formation in successful transformants. Left plate (-ve control plate): only blue colonies grown. Right 
plate: both blue and white colonies grown. 

The bisulphite sequencing results of the 3 loci examined are shown below in Figure 25. 

Bisulphite sequencing showed distinct changes in the overall methylation density of all 3 

loci when comparing cisplatin-sensitive versus cisplatin-resistant cell lines which further 

confirms the DMH and MSP results. Sequencing of NR2EI confirmed the differences 

observed in the validation MSP experiment (Chapter 4.2). There was dense methylation of 
CpG sites in the cisplatin-resistant cell lines compared to low levels of methylation in the 
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cisplatin-sensitive cell lines but the bisulphite sequencing results showed that the density of 

methylation was not distributed evenly throughout the DNA regions examined. The 

methylation differences were more pronounced in the region flanking the predicted 

transcriptional start site of NR2E1. The methylation differences were even more apparent 

downstream of the transcriptional start site of NR2E1 where methylation increased in the 

cisplatin-resistant cell lines. Average methylation densities of 119A6 were 5.6% in the 

cisplatin-sensitive cell lines which increased to 53.7% in the cisplatin resistant cell lines. In 

both the 5D4 and LAMA sequences, these differences were certainly not as obvious. For 

LAMA, stronger methylation was seen in the cisplatin-resistant versus cisplatin-sensitive 

cell lines although there was a region downstream of the transcriptional start site (CpG 52- 

82) where the differences in methylation density were less pronounced. 5D4 showed 

similar results in that although more methylation was seen in resistant cell lines, there were 

not the same distinctive differences as seen in the NR2E1 sequence. Average methylation 

densities of 5D4 and the region overlapping the predicted transcriptional start site of 

LAMA were 18.1% and 14.1% respectively in the cisplatin-sensitive cell lines which 

increased to 59.1% and 33.5% in the cisplatin resistant cell lines respectively. 
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Figure 25 Bisulphite sequencing in ovarian cancer cell lines. Sodium bisulphite genomic 
sequencing of A2780, A2780p6, MCP1, MCP6 and MCP9 to quantitatively assess methylation 
densities of the loci 119A6 (top panel), the region which overlaps the transcriptional start site of 
LMX1A (middle panel) and 5ID4 (bottom panel). Grey scale depicts % of methylation. 
Transcriptional start site of NR2EI and LMX1A shown by arrows. DMH locus shown in blue. 



Catriona Hardie, 2007 121 

4.5 Expression profiling of NR2E1 and LMXIA 

CGI methylation within promoter regions of genes has been shown to be associated with 

transcriptional repression of the reciprocal gene (Bird and Wolffe, 1999). The RNA 

expression levels of LMXIA and NR2EI were quantified in the cisplatin-sensitive cell lines 

A2780 and A2780p6, and the cisplatin-resistant cell lines MCPI, MCP6 and MCP9 using 

qRT-PCR (see Chapter 2.20), in collaboration with Dr. Jens Teodoridis. As shown below 

in Figure 26, increased methylation of 119A6 (mapping to NR2EI) and 5D4 (mapping to 

LAMA) in cisplatin-resistant cell lines (MCPI, MCP6 and MCP9) compared to cisplatin- 

sensitive lines (A2780 and A2780p6) was associated with reduced expression levels of 
both NR2EI and LAMA, respectively. qRT-PCR was used to quantitatively examine the 

expression levels by measuring mRNA levels in the five cell lines for both NR2EI and 
LAMA before and after treatment with the demethylating agent decitabine (DAC). This 

was calculated successively in three individual experiments to verify values obtained, as 

shown in the graphs on Figure 26. 

Figure 26 shows that treatment of MCPI, MCP6 and MCP9 with the demethylating agent 
DAC led to re-expression of NR2EI and LAMA in these cell lines. qRT-PCR confirmed 

that NR2EI mRNA levels in the cisplatin-resistant cell lines (MCPI, MCP6 and MCP9) 

were reduced by at least 92% in comparison to the mRNA level of NR2EI in the cisplatin- 

sensitive cell line, A2780. This suggested that methylation of NR2EI was associated with 

reduced mRNA expression in cisplatin-resistant cell lines. The differences in the 

expression levels of LWIA following treatment with decitabine are less pronounced if 

comparing the cell lines A2780 and A2780p6 with MCPI, MCP6 and MCP9. This may be 

because 5D4 and the region which flanks the predicted transcriptional start site of LAMIA 

already show methylation even in the cisplatin sensitive cell lines. However, after 

treatment with decitabine, an obvious increase in expression of LAMA is observed. 
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Figure 26 Quantitative RT-PCR values for NR2E1 and LMX1A. qRT-PCR was performed with 
primers amplifying NR2E1 (left) and LMX1A (right) cDNA. GAPDH qRT-PCR was used for 
normalisation and values are from 3 independent experiments. Values represent averages 
standard deviation. Filled bars: untreated cells, open bars: DAC-treated cells. (DAC = Decitabine) 
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4.6 Discussion 

123 

Successful treatment of patients with advanced ovarian malignancy lies not only in the 

surgical and medical management of the initial presenting tumour mass, but also in the 

management of acquired drug resistance in the relapsed patient (Vasey, 2005). Identifying 

markers of chemoresistance will enable clinicians to optimise chemotherapeutic regimes to 

individual patients and personalise therapy. Further to this, identification of novel CGI 

methylation markers may allow enrichment for patients who will benefit greatly from 

epigenetic treatments that lead to reversal of chemoresistance (Lyko and Brown, 2005). 

DMH was used as a discovery approach to identify genome-wide differences in CGI 

methylation in a panel of 6 cisplatin-sensitive and 10 cisplatin-resistant well characterised, 

matched, human ovarian cancer cell lines. PAM (Tibshirani and Efron, 2002) identified 13 

sequences whose methylation states optimally discriminate between cisplatin-sensitive and 

cisplatin-resistant cell lines, and the validation using MSP which was carried out on five of 

these sequences (119A6,66G6,41D9,5D4 and 123D9) agreed with the PAM analysis. 

119A6 and 66G6 showed a strong methylation signal in cisplatin-resistant versus cisplatin- 

sensitive cell lines. 41D9 and 5D4 showed weak methylation signals in some of the 

cisplatin-sensitive cell lines but an overall increase was still observed in the resistant lines. 

Methylation of 123D9 could not be detected and this may reflect differences in the DMH 

and MSP methodologies. However, this sequence has little discriminatory power according 
to PAM analysis. In the validation work, 41D9 and 66G6 showed no methylation signal in 

primary ovarian turnours. Therefore, the resulting work in Chapter 4 focussed on 5D4 and 
I 19A6 as potential markers of cisplatin resistance. 

5D4 was methylated in 61.8% of primary ovarian turnours overall, and interestingly, 

frequent methylation was observed in both early (75%) and late stage (60%) disease. This 

not only indicates that 5D4 is frequently methylated in ovarian cancer but also it can be 
detected frequently in early stage carcinogenesis (stage I and II), which has implications 
for its use in early detection, as applied and discussed in Chapter 5. The high methylation 
frequency was further emphasised when comparing results with those of Chapter 3. In this 

previous study, MSP identified aberrant methylation changes of 24 candidate CGI loci in a 
group of epithelial ovarian tumours. It was important to use the same stringent acceptance 
criteria for the MSP method in order to directly compare both studies. 5D4 methylation 
frequency in Stage I-IV disease was higher than that of OPCML (37.4%) (Teodoridis et al., 
2005), and is comparable to one of the highest reported methylation frequencies in the 
literature for ovarian cancer (Sellar et al., 2003). In agreement with the above findings, 
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frequent methylation of the CGI of LAMIA has been observed by others. LAMIA has been 

shown to be differentially methylated in HCT116 wild-type versus DNMTI/DNTN4T3b 

knockout (DKO) cells (Hu et al., 2005; Paz et al., 2003). Colorectal adenoma and 

carcinoma showed methylation of this CGI (42% and 55% respectively) (Paz et al., 2003) 

and a potential role for CGI methylation of LAMIA in turnourigenesis was suggested, but 

not in drug resistance. Methylation of this CGI has also been reported in myeloid 

leukaemic cell lines using a novel profiling method (Gebhard et al., 2006) which is one of 

the largest published lists of potentially methylated genes. Encouragingly, there was no 

methylation identified in mortal ovarian surface epithelium samples but interestingly, 

methylation was seen in 66.7% of immortalised ovarian surface epithelium samples. This 

further emphasises that 5134 may play a role as an early event in the initiation of ovarian 

cancer due to these changes which are seen in immortalised cells. Methylation of LAMIA 

was also shown to be associated with transcript loss (Paz et al., 2003). This is in keeping 

with the qRT-PCR results here where methylation of 5D4 is associated with transcriptional 

silencing. 

5D4 maps to a CGI which extends into the promoter region of a human gene known as 
LAMIA. This gene encodes a LIM-box transcription factor involved in roof plate formation 

and brain development during murine development (Millonig et al., 2000). In chick 
developing spinal cord, LMXIA has been shown to induce expression of Wntl (Chizhikov 

and Millen, 2004). This is interesting because in the DMH screen, methylation of 41D9, 

mapping to a CGI located at the 917VTI promoter, was identified in the cisplatin-resistant 

cell lines. Alterations in the canonical Writ signalling pathway have been implicated in the 

pathogenesis of a variety of tumour types (Duan et al., 2006; Simon et al., 2005). 

Overexpression of P-catenin has been suggested to play a role in ovarian cancer (Rask et 

al., 2003; Wang et al., 2006a) although the specific molecular alterations of the Writ 

pathway which are involved remain to be elucidated. Epigenetic silencing of LAMIA could 
be an early event which may influence other epigenetic and genetic pathways, causing a 
tumour to addict itself to the oncogenic Wnt pathway (Baylin and Ohm, 2006; Weinstein, 
2002). The methylation changes seen in drug-resistant cell lines also suggest that 

alterations of the Wnt pathway may play a role in drug resistance mechanisms. Normally, 
Wnti overexpression favours tumour development, but the results of this thesis suggest 
that lack of methylation of LAff1A and WWI are associated with chemosensitivity. A 

similar situation exists in the BRCAI pathway, where inactivation of its components 
(BRCAI, FANCF) favour turnourigenesis but are associated with increased 

chemosensitivity (Taniguchi et al., 2003). It may be that LMXIA may be sufficient but not 

necessary for Wntl expression (i. e. overexpression of LMXIA will lead to an increase in 
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Wntl expression, but a reduction in expression of LMXIA through epigenetic mechanisms 

will not reduce Wntl expression). Potentially, it could be envisioned that other 

transcription factors compensate for the loss of LMXlA at the WNTI promoter and 

maintain its expression, contributing to tumour development and/or chemoresistance. 

Epigenetic silencing of LAMIA could then be involved in turnourigenesis and factors 

relating to chemoresistance via a Wntl independent mechanism. LMXlA also induces 

MSX1, which in turn interacts with the p53 turnour suppressor and inhibits turnour growth 

by induction of apoptotic mechanisms (Park et al., 2005). It has been shown that 

overexpression of MSX1 in OVCAR3 ovarian tumour cells inhibits cell proliferation by 

increasing the length of the G1 phase of the cell cycle (Park et al., 2001). This further 

emphasises the potential of this pathway to suppress growth of ovarian tumour cells and its 

role in chemotherapy induced apoptosis. 

119A6 maps to a CGI overlapping the first exon of the human NR2EI gene which encodes 

an orphan nuclear receptor and was methylated in 12.6% of primary ovarian turnours. This 

gene is the human homologue of murine TLX, mapping to a region of common deletion in 

human lymphoid leukaemia on chromosome 6q2I and may function as a tumour 

suppressor gene (Jackson et al., 1998). The results above show that methylation of the 

119A6 locus is associated with transcriptional repression of the associated gene. This is the 

first report of an epigenetic mechanism regulating the transcriptional status of this nuclear 

receptor although methylation of other nuclear receptors including retinoic acid receptor 

alpha2 and IL2 have been reported previously (Farias et al., 2002; Misawa et al., 2005). 

5D4 and 119A6 represent potential novel loci for the study of chemoresistance markers in 

ovarian cancer. 5D4 and 119A6 showed an increase in methylation of 25% (3/12) and 
33.3% (4/12) respectively when comparing post-chemotherapy to chernonaive tumour 

samples. This makes them promising epigenetic markers of cisplatin-resistance in relapsed 
disease. This increase in methylation at the time of relapse has also been reported for other 
markers such as OEM (Gifford et al., 2004). 

The relationship between the abnormal expression of transcription factors and drug 

resistance has been the focus of various studies and emerging evidence suggests that drug 

resistance in cancer can arise from elaborate gene expression of multiple transcription 
factors. For example, inhibition of PAX2 (which is frequently overexpressed in renal 

carcinoma) with antisense-cDNA can enhance cisplatin-induced apoptosis in renal 

carcinoma cells (Hueber et al., 2006), activation of NFKB can mediate paclitaxel resistance 
in ovarian cancer cell lines (Mabuchi et al., 2004), overexpression of Ets-1 results in 
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increased cisplatin resistance in the ovarian cancer cell line 2008 (Wilson et al., 2004) and 

overexpression of BARX2 leads to increased sensitivity against cisplatin in the ovarian 

cancer cell line PEOI (Sellar et al., 2002). Currently though, the relevance of these 

mechanisms to the development of drug resistance in patients remains unclear. 

TLX, the murine homolog of NR2EI, is an upstream regulator of PAX2 (Yu et al., 2000) 

and suppresses PAX2 expression in mice. This is intriguing because, firstly, the human 

neuronal apoptosis inhibitory protein (NAIP) gene promoter has been shown to be a 

downstream target of PAX2 which then suppresses apoptosis in the developing kidney 

(Dziarmaga et al., 2006). In addition, downregulation of PAX2 can enhance cisplatin 

sensitivity (Hueber et al., 2006), and therefore methylation and silencing of NR2EI may 

increase chemoresistance by increasing PAX2 expression in tumours and inhibiting 

cisplatin-induced apoptosis through binding to NAIP. PAX2 has also been shown to 

activate W7VT4 gene expression (Torban et al., 2006), and therefore could also be 

potentially involved in regulatory mechanisms of the Wnt signalling pathway in 

carcinogenesis, although any involvement in drug resistance mechanisms remains to be 

investigated. TLX can also regulate PTEN and other genes involved in signalling 

pathways, including TGFP and MAPK signalling in the mouse retina (Zhang et al., 2006). 

TLX is required for development of the retina (Yu et al., 2000; Zhang et al., 2006) and 

brain including the dentate gyrus (Monaghan et al., 1997) and the subventricular zone (Shi 

et al., 2004). Stem cells are located in these regions and indeed TLX-positive neuronal 

cells show stem cell-like properties in their ability to self-renew and are multipotent (Shi et 

al., 2004). 

It has previously been proposed that acquired drug resistance following chemotherapy can 

be due to either the survival and growth of chemoresistant subpopulations initially present 
in heterogeneous chemonaive turnours, or may be due to cancer stem cells repopulating the 

tumour environment (Agarwal and Kaye, 2003). Both of these are possibilities in acquired 

resistance mechanisms, either singularly or in combination. NR2E1 seems to induce 

cisplatin-induced apoptosis (Dziannaga et al., 2006; Hueber et al., 2006), and cisplatin- 
based chemotherapy may select pre-existing subpopulations with epigenetically silenced 
NR2E1. Alternatively, there is increasing interest in the suggestion that epigenetic 

alterations in stem cells may be inherently linked to many properties seen in turnours, such 

as drug resistance (Feinberg et al., 2006), and that survival of cancer stem cells may 

provide them with a role in acquired drug resistance following chemotherapy (Dean et al., 

2005). In addition, stem cells have been reported to contribute to the aggressive behaviour 

of EOC (Bapat et al., 2005). NR2E1 and LAMA are both expressed in stem or progenitor 
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cells and are implicated in stem cell maintenance, cell fate determination and 
differentiation (Burbach and Smidt, 2006; Shi et al., 2004). These stem cells may only 

comprise a very small proportion of the cells within a tumour and be relatively quiescent 

therefore avoiding the toxicity of the chemotherapy regime which will target rapidly 
dividing cells. Therefore, the acquisition of methylation post-chemotherapy could 

represent survival, growth and differentiation of cancer stem cells which were present in 

the original tumour prior to treatment with chemotherapy. However, from the results 
described, it is not possible to distinguish if drug resistant subpopulations or stem cells 

contribute to the resistance seen. Considering that both of the genes examined here were 
firstly detected in a cell culture-based search for methylation markers of chemoresistance, 
it seems unlikely that stem cell-related processes should occur in such an in vitro system. 
However, other groups have reported the presence of side populations of tumourigenic 

stem-like cells in cell lines cultured in vitro for several years (Kondo et al., 2004; 

Patrawala et al., 2005). Therefore, the presence of stem cell populations and consequently 

a role for them in acquired drug resistance in these cell cultures cannot be excluded. 

The above findings represent novel diagnostic and therapeutic challenges in ovarian 

cancer. The clinical implications of these are discussed in Chapter S. 
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Clinical application of aberrant DNA methylation 

markers in ovarian cancer 
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Clinical application of aberrant DNA methylation 

markers in ovarian cancer 

5.1 Early detection biornarkers: identification of CGI 

methylation in plasma 

Ovarian cancer remains difficult to detect at an early stage with currently available 

screening methods. Results described in Chapters 3 and 4 showed that CGI methylation 

can be frequently identified in early stage EOC. 5D4 (2kB downstream of the predicted 
transcription start site of the transcription factor, LAMA), OPCML, RASSFIA and HICI 

were frequently methylated in early stage ovarian turnours (75%, 53%, 31% and 22% 

respectively). 87.5% of the early stage tumours examined were methylated in at least one 

of these 4 genes. Therefore, a combination of these methylation markers could potentially 
impact on the current poor sensitivity levels of detecting early stage disease and therefore 
improve poor survival rates for patients presenting with ovarian cancer. However, CGI 

methylation will only be acceptable as a clinical marker of early detection if we can 
identify the changes described above in easily accessible body fluids, such as plasma 

extracted from whole blood. 

Matched plasma and PBMC DNA samples were examined from patients in the prospective 
DNA methylation study undergoing cytoreductive surgery for ovarian cancer. This was to 

see if the same epigenetic changes could be detected in plasma as were seen in 

corresponding tumour. In an initial feasibility study, thirty matched blood and chemonaive 

epithelial ovarian tumour samples were analysed and compared for methylation of the four 

loci which were frequently methylated in early stage disease (5D4, OPCAE, RASSFIA and 
HICI) with the aim of correlating these with MSP data from the corresponding tumour 

sample. A gene which was negative for hypermethylation in the tumour DNA was always 

negative in the matched plasma DNA. The converse was also true, in that when a gene was 
methylated in plasma, it was also methylated in matched tumour DNA, representing a 
specificity of 100%. The plasma-positive cases were all sampled from patients with late 

stage III/IV EOC. However, because only 1/30 samples was from a Stage I ovarian 
tumour, more early stage samples will require analysis for conclusions to be drawn 

regarding CGI methylation frequencies in these early stage cancers. Methylation of at least 

one of the four genes analysed was found in 100% of the 30 ovarian tumour samples, with 
individual methylation frequencies of 90%, 50%, 33.3% and 20% for 5D4, OPCML, HICI 
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and RASSFIA respectively. Individually, methylation of 5D4, OPCML, and RASSFIA was 

observed in 43.3% (13/30), 20% (6/30) and 6.7% (2/30) of the plasma samples 

respectively. No methylation signal was detected for HICI in any of the plasma samples 

examined. The sensitivity of detecting methylation of 5134 alone in plasma from patients 

whose tumour was methylated at this locus was 48.2%. Overall, the sensitivity of detecting 

methylation of at least one of the four genes examined was 53.3% (16/30) in the matched 

plasma samples (i. e. 14 patients showed no methylation in plasma DNA despite showing 

methylation in tumour). Encouragingly, 10% (3/30) and 3.3% (1/30) of plasma samples 

were co-methylated in at least 2 or 3 genes respectively. Table 15 shows the methylation 

status of all loci for matched plasma and tumour samples. 

GENE ANALYSED IN MATCHE TUMOUR (T) OR LASMA (P ) 
5134 OPCM L RAS SFIA HI CI 

PATIENT T p T p T p T p 
I m u u u m u u u 
2 m m u u u u u u 

3 m m u u u u u u 

4 m u u u m m m u 

5 m m m u m u u u 

6 u u u u m u u u 
7 m u m u m u m u 
8 m m u u u u m u 
9 m m m m u u m u 

lo m m u u u u u u 

11 m u u u u u u u 
12 m u m m u u u u 
13 M u u u u u u u 
14 M u u u u u u u 
15 m u u u u u u u 
16 m m m m u u u u 
17 m m m m m m u u 

18 m m u u u u u u 
19 u u m u u u m u 

u u u u u u m u 
21 m m u u u u u u 
22 m u m u u u m u 
23 M m m u u u u u 
24 m u m u u u u u 
25 m m m u u u u u 
26 m m m m u u m u 
27 m u u u u u u u 
28 m u m u u u m u 
29 m u m m u u m u 

m u m u u u u u 
90% 43.30% 50% 20% 20% 6.70% 33.30% 0% 

Table 15 Methylation status of matched tumour and plasma. Tabulation of methylation status 
of the loci (51D4, OPCML, RASSF1A and HIC1) for 30 matched tumour (T) and plasma (P) patient 
samples. 
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5.2 Predictive biornarkers in ovarian cancer 

The majority of the 24 genes examined in Chapter 3 have previously been shown in 

experimental models to be associated with cellular sensitivity/response to DNA damage 

(Teodoridis et al., 2005). In order to identify potentially useful predictive markers of 
disease response to treatment at initial presentation, patterns of methylation were examined 
in the group of retrospective late stage III/IV ovarian turnours to see if there was any 

correlation with chemotherapy response. This work was done in collaboration with Dr. 

Jacqueline Hall. All of the patients had been treated with platinum-based chemotherapy 
(100%), either cisplatin or carboplatin, and the majority had received a course of taxoid 

chemotherapy (69%). Only 70 of the 106 patients were suitable for assessment of their 

response to chemotherapy. For the purpose of this analysis, complete and partial clinical 

response were combined and compared to stable and progressive disease. The CGIs were 

grouped according to the biological role of a specific gene, as shown below in Table 16, 

and examined for associations with clinical response to chemotherapy. It was hypothesised 

that disruption of a biological pathway at any specific point had the potential to affect the 
functioning of that cellular response. In addition, grouping genes together also reduced 

problems of multiple statistical analyses. A group was considered methylated if at least one 
CGI examined was methylated. Correlation between methylation and response was 

assessed by the e test unless the smallest expected value was less than 5, and then Fisher's 

Exact Test was used (Chapter 2.21.1). All statistical analysis in Chapter 5 was performed 

using the SPSS v12.01 software package (SPSS Inc., Chicago, USA). 

BIOLOGICAL FUNCTION GENE GROUPS 

APOPTOSIS APAFI, CASP8, DAPK, DCRI, Fas, MLHI, P14, P73 
RASSFIA, Survivin, TMSI 

OVARIAN TUMOUR 
SUPPRESSOR 

OPCML 

PROLIFERATION PTEN, SFRP1, SOCS3 

DNA REPAIR / DRUG 
DETOXIFICATION 

BRCA1, FANCF, MGMT, GSTPI 

CELL CYCLE P16, P21 

OTHER / UNKNOWN BLU, HICI, MINT25 

Table 16 Genes grouped according to specific biological function. 
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Methylation of any one of the 24 CGIs examined compared to no gene methylated did not 

associate with response to treatment (p=0.51, n--64). Methylation of the group of genes 

involved in regulation of apoptosis (APAF-1, CASP8, DAPK, DCRI, FAS, MM, P14, 

P73, RASSFIA, SURVIVIN and TMSI) was not significantly associated with response to 

chemotherapy in those patients that were evaluable (p=0.74). MLH1 was included in the 

group of apoptosis-related genes, rather than the DNA repair set, because a lack of MM 

has been shown to lead to DNA damage tolerance due to loss of engagement of an 

apoptotic response (Luo et al., 2004). Methylation of the groups of genes involved in cell 

cycle control and proliferation (P16, P21, PTEN, SFRPI, SOCS-3) did not significantly 

correlate with response (p=0.999). However, methylation of at least one of the group of 

genes involved in DNA repair and drug detoxification (BRCA], GSTP1, MGAfl) was 

significantly associated with increased response to chemotherapy (p=0.013, n--70). In the 

patient group that showed methylation of BRCAI, GSTPI or MGMT, response rate to 

chemotherapy was 100% compared to a response rate of 62.7% for patients not showing 

methylation of any one of these genes. The majority of the ovarian tumours examined in 

the DNA repair group showed methylation of BRCA1 (85%), but methylation of BRCAI 

alone showed only borderline significance for association with response to treatment 

(p=0.049, n--70). 

The patterns of CGI methylation, which are described above may have the potential to 

predict clinical outcome but adequate power and careful validation of results is important. 

The validation study of the hypotheses generated here are described below in Chapter 5.3. 
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5.3 Validation of predictive biomarkers 

133 

The retrospectively collected ovarian tumour samples which have been discussed in 

previous chapters were obtained from a heterogeneous population of patients who did not 

always receive comparable chemotherapeutic regimes following cytoreductive surgery. It 

was important to confinn and validate the observations and hypotheses generated in 

Chapter 5.2 in a prospective collection of tumours from patients who all received standard 
first-line platinum based chemotherapy (+/- taxane) following surgery. To achieve this 

aim, the "DNA Methylation Study" was set up to collect primary epithelial ovarian 

tumours from a more defined homogenous patient population. Samples were collected at 
the time of cytoreductive surgery prior to chemotherapy. The precise number of samples 

which were required depended on the exact details of recruitment rate and the minimum 
follow-up period of this study. It was assumed that 50% more patients than events were 

required, which meant having approximately a minimum of I year follow-up for the vast 

majority of patients. The sample size calculations were based on the primary end-point of 
PFS. Assuming a power of 90%, between 131 and 258 patients were required for this study 
(hazard ratio 2.0). 

The statistical analysis of the MSP results in Chapter 5.2 showed that methylation of at 
least one of the group of genes involved in DNA repair and drug detoxification (BRCA], 

FANCF, GSTPI, MGAM was significantly associated with increased response to 

chemotherapy (p=0.013, n=70). We tested this in an independent data set using samples 
from the prospective collected ovarian turnours. 

The initial MSP analysis of BRCA 1, FANCF, GSTP1 and MGMT was performed in 125 

ovarian turnours which were collected prospectively although, as shown below, not all of 
these samples were included in statistical analysis. Methylation of BRCAI (n=13,10.4%) 

and FANCF (n--I, 0.8%) were observed but no methylation was seen for either MGMT or 
GSTPL These methylation frequencies observed are comparable to those obtained in the 

retrospective study, as shown in Table 10, Chapter 3.1. 

77 of the 125 tumours analysed had collected clinical information. 19 of these samples 
were removed from further statistical analysis because 3 turnours were found to be non- 
epithelial. derived ovarian tumour samples and 16 tumours were of an earlier stage (<Stage 

III) than those examined in Chapter 5.2.58 tumour samples were therefore available for 

further analysis. Of these 58 patients, 28 patients had unevaluable disease (Le had no 
measurable tumour volume following cytoreductive surgery) and 11 patients had some 
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missing or incomplete clinical data and therefore were excluded which reduced the number 
to 19 suitable patients. Clearly these numbers are small and the study is underpowered to 

validate the original findings. However, due to time constraints it was not possible to 

prospectively accrue sufficient samples, so the data was analysed as it was. 

For the purpose of this analysis, complete and partial clinical response were again 

combined and compared to stable and progressive disease. Those patients with evaluable 

response data included 12 patients who responded to chemotherapy and 7 patients who did 

not respond. These results are illustrated below in Table 17. 

Outcome DNA Repair 
Unmethylated 

DNA Repair 
Methylated Total 

No response 
_ 

7 
, 

0 7 

Response 9 3 12 

Total (both) 16 3 

Table 17 Cross tabulation of response to chemotherapy In the prospective validation set. 

For several reasons, the 19 patient samples which were evaluable for response were 

underpowered for any further statistical interpretation. Firstly, there were 28 patients with 

missing response endpoints due to unevaluable disease prior to chemotherapy. There was 

also insufficiently mature response data for II patients. In addition to these issues, there 

were also a low number of methylation events in the DNA repair set of genes which made 
it difficult to assess the data statistically with such small numbers. However, it should be 

noted that a trend was observed in Table 17 which showed that there were more 

methylation events in the DNA repair set in responders versus non-responders (3 versus 0), 
in keeping with the statistically significant findings in the retrospective group. 
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5.4 Identifying novel markers of acquired resistance in 

ovarian cancer 

The potential to uncover novel DNA methylation markers of acquired chemoresistance in 

ovarian cancer was investigated in Chapter 4. Two novel markers, 5D4 and 119A6, were 
identified which could potentially improve detection in the relapsed patient and 
individualise treatment in subgroups of patients. 199 patient samples were analysed for 

methylation of these 2 markers. 126 of these had sufficient clinical information for 

associations with clinical characteristics to be sought and had been treated with platinum 
+/- taxane therapy as a first line treatment regime. Where it was appropriate, Pearson Xý or 
Fisher's Exact Test were used to examine associations between methylation frequency and 

stage, grade and histology (details as shown in Table 18). The Mann Whitney U Test was 

applied to test associations between methylation and age. This uses a range of frequencies 

rather than specific categories. Methylation of 119A6 and 5D4 was independent of age 
(I 19A6: p=0.87 and 5D4: p=0.34, N=125), stage (early vs. late stage, 119A6: p=0.23 and 
5D4: p=0.99, N=126) and grade (well/moderately vs. poorly/undifferentiated, 119A6: 

p=0.65 and 5D4: p=0.13, N=93). Stage was categorised into early versus late because the 

numbers for each individual stage were low. In spite of the small numbers, for 119A6, 

there was a slight trend of a reduction in methylation with advancing tumour although this 

was not statistically significant (p=0.23). Removal of cases with unknown histology 

showed that the proportion of cases methylated for 119A6 and 5D4 was not significantly 
different between serous and non-serous histological subtypes (I 19A6: p=0.68 and 5D4: 

p=0.75, N=94). 
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119A6 5D4 Total (n) 

HISTOLOGICAL 
Serous 6(13%) 29(64%) 45 

Endometrioid 3(33%) 6(67%) 9 

Clear Cell 2(25%) 5(63%) 8 

Mucinous 1(17%) 3(50%) 6 

Other 0 1(50%) 2 

Adenocarcinoma 2(8%) 15(63%) 24 

Unknown 3(9%) 17(53%) 32 

TOTAL 17 76 126 

TUMOUR STAGE 
Early 4(25%) 10(63%) 16 

Late 13(12%) 66(60%) 110 

TOTAL 17 76 126 

TUMOUR GRADE 
Well 1(17%) 2(33%) 6 

Moderate 4(17%) 14(61%) 23 

Poor/Undifferentiated 4(6%) 39(61%) 64 

TOTAL 9 55 93 

PATIENT RESPONSE 
Response 6(13%) 28(62%) 45 

No Response 2(8%) 13(54%) 24 

TOTAL 8 41 69 

Table 18 Details of clinicopathological data of 126 tumours examined for methylation of 
119A6 and 5134. 



Catriona Hardie, 2007 137 

Kaplan Meier survival curves and log rank tests were used to assess associations with PFS 

(defined as from presentation to first progression) or OS. Methylation of either 119A6 or 

5134 was not associated with PFS or OS (PFS/I 19A6: p=0.34, PFS/5D4: p=0.47; 

OS/I 19A6: p=0.86, OS/5134: p=0.93). The Kaplan Meier curves are illustrated below in 

Figure 27. 

C 
0 

0 
0 
0 

0. 
C 
o 

0 
0. 
0 
0. 

Methylation of 119A6 

Log rank 
p=0.34 

Methylation of 5D4 

1 0- - I-- 
0 

Log rank 
08- p=0.47 

0 :E 
0 04- 0. 

CL 

00-4 

Progression Free Survival 

0 

Methylation of 119A6 

Log rank 
p=0.86 

ow low 20,00 woo . 00 Woo 

Progression free survival 

Methylation of 5D4 

co 

0 ;E 
0 CL 0 

CL 

1 0- 
Log rank 
p=0.93 

04- 

D2- 

oo- 

ow WW.. W. WW 

Overall survival Overall survival 

Figure 27 Kaplan Meier survival curves to assess association of 119A6/SD4 methylation with 
PFS or OS. Methylation of either marker does not associate with PFS/OS. Green line 
metýiyýate!. Blue line = unmethylated. 
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Response information was only available for 69 patients as shown below in Table 19.24 

patients were classified as non-responders and 45 were responders. No association was 

shown between response to chemotherapy and methylation of 119A6 or 5D4 (P=0.54 and 

p=0.52 respectively). The cross tabulation of this is shown in Table 19. 

5D4 
(Methylat d) 

119A6 
(Methylated) Total 

Response 28(62%) 6(13%) 45 

No response 13(54%) 2(8%) 24 

69 

Table 19 Cross tabulation of response to chemotherapy for methylated loci I 19A6 and 5D4. 
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5.5 Discussion 

139 

The results in Chapters 3 and 4 illustrate that aberrant CGI methylation is detected at all 

stages of EOC. It is accepted that this can potentially be used as a diagnostic tool to detect 

cancer (Esteller, 2003), and the results here show that different groups of methylated CGIs 

may specifically be useful for early disease detection, prediction of response to 

chemotherapy and as markers of relapsed disease. It is feasible that as a cancer cell 

accumulates an increasing number of methylation events over time, these may then 

potentially impact on the phenotype of the tumour and subsequently affect its ability to 

respond to chemotherapy. It is also worth considering that heterogeneous turnours may 

exhibit differing methylation patterns, therefore examining groups of potentially 

methylated markers may increase the sensitivity and specificity of a biomarker (Levenson, 
2004). In order to use CGI methylation as a clinical biomarker, it firstly has to be readily 
detectable in easily accessible surrogate body sources such as plasma. It has already been 

shown that CGI methylation can be detected in plasma with the same characteristic 

changes as are found in the corresponding turnour (Esteller et al., 1999b; Gifford et al., 

2004; Ibanez de Caceres et al., 2004; Weaver et al., 2006). Encouragingly, this is highly 

specific for ovarian cancer (Chang et al., 2002). Methylation analysis is particularly suited 
to plasma DNA because highly sensitive PCR-based assays such as fluorescent-MSP only 
require small amounts of DNA. These types of MSP-based assays will potentially be very 

useful in the clinic to detect changes since hypermethylation of a given gene tends to occur 

at the same location (i. e. close to the promoter), meaning that one PCR primer set can be 

used in most patients (Baylin et al., 2000), avoiding the need for multiple different 

analyses. This is in sharp contrast to DNA mutations in genes such as p53 (Fliss et al., 
2000) which can often involve numerous base alterations at a multitude of positions and 
therefore are not easily analysed in a high throughput manner. In addition, aberrant CGI 

methylation which is frequently identified in tumours is not observed in normal tissues 
(Bird, 1986), including peripheral blood mononuclear cells (PBMCs) and these can be used 
as a negative control in comparison to tumour DNA in plasma samples (Toyota et al., 
2001). DNA is also more stable than mRNA which reduces the technical problems of 
handling potentially unstable RNA when processing tissue and blood samples. 

The potential for early detection methylation biomarkers 

The efficacy of screening methods in ovarian cancer remain unproven (Rosenthal et al., 
2006) and to date there has been no cost-effective screening strategy available for this 
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disease (www. figo. org). However, a reliable screening protocol which would specifically 

identify early stage lesions could improve the dismal survival rates associated with this 

clinically silent disease (Hickey et al., 1999). The results in Chapter 5.1 have identified 

CGI methylation as a promising molecular strategy for early detection of ovarian cancer 

that may be independent of its functional implications. There have been many groups who 

have identified tumour-specific hypermethylation in surrogate body fluids matched to 

several early stage tumour types. These include methylation changes in serum from 

patients with breast cancer (Dulaimi et al., 2004), urine from patients with kidney turnours 

(Cairns, 2004) and sputum from patients with lung cancer or with a smoking-related risk of 

this disease (Belinsky et al., 2006; Wang et al., 2006b). However, the results in this thesis 

are one of the first descriptions of these epigenetic changes in matched early stage ovarian 

tumours and plasma. Only one previous study which investigated methylation as a frequent 

early event in ovarian turnours and matched serum, plasma and peritoneal fluid could be 

identified (Ibanez de Caceres et al., 2004). Frequent CGI methylation of 5D4 (LMXIA), 

OPCML, RASSFIA and HICI were observed in early stage epithelial ovarian tumours 

(75%, 53%, 3 1% and 22% respectively) as shown in Chapters 3 and 4.87.5% of the early 

stage tumours examined were methylated in at least one of these genes. These methylated 

loci were then further investigated in matched plasma and tumour from patients 

undergoing cytoreductive surgery for EOC. In this initial feasibility study, methylation of 

at least one of these four genes (5D4, OPCML, RASSFIA or HICI) was observed in 16/30 

of the plasma samples, giving a sensitivity of 53.3%. When methylation was detected in 

plasma, it was always detectable in the corresponding tumour, representing a specificity of 

100%. This suggests a mechanism by which tumour DNA is either directly shed into the 

circulation or may be due to DNA released following apoptosis in neoplastic cells 

(Sidransky, 2002), either of which would then lead to the identical methylation changes 

seen. Hypermethylation of any gene may not have been detected in 46.6% (14/30) plasma 

samples due to low levels of neoplastic DNA in some patients which are not detectable by 

Fluorescent-MSP as described in previous work (Ibanez de Caceres et al., 2004). 

Additionally, previous work in ovarian cancer has shown that there is only a 73% 

concordance between turnour and plasma methylation (Hickey et al., 1999). Heterogeneity 

is seen both in individual ovarian tumours and between samples, meaning that CGI 

hypermethylation will vary in tumours (Rathi et al., 2002; Strathdee et al., 200 1), as shown 

above. Future studies will require analysis of a panel of markers which could include 5D4, 

OPCML, RASSFIA and HICL This will inevitably lead to marker redundancy, but will 

increase diagnostic coverage and the sensitivity of a screening test. The sensitivity will 

require to reach at least 75% in order to achieve a positive predictive value of 10% (Bast 
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2003). The specificity of this study is 100% since methylation in plasma was only 

observed when methylation could be detected in the matched tumour, which is in keeping 

with requirements for the specificity of such a test to be at least 99.6% (Jacobs and Menon, 

2004). In addition, the specificity of diagnosis will also benefit from screening a larger 

number of methylation markers, such as one of those described by Ibanez de Caceres et aL 

(R, 4SSFIA, BRCAI, APC, pMAu, p16N"' or DAPK) and this will potentially reduce the 

probability of detecting false positives. Although this thesis did not identify many of these 

genes as being hypermethylated in ovarian cancer, tumour heterogeneity may mean that 

methylation of these markers will occur in larger sample sets examined. However, from the 

results of this feasibility study in the plasma sample collection, if this can be confirmed in 

larger groups of patients, these methylated markers may have potential as a foundation for 

a larger set of early diagnostic epigenetic markers in EOC. 

In an attempt to identify relevant early detection biomarkers, it is important to firstly 

understand the epigenetic mechanisms which may be implicated in the initiation event(s) 

responsible for development of an ovarian neoplasm. Currently, it would suffice to say that 

we know more details about the maintenance of methylation in tumour suppressor genes 

rather than the initiating events themselves. There have been some recent studies 

examining the role of methylation in the potential malignant transformation of benign and 
low malignant potential ovarian tumours to invasive cancers (Makarla et al., 2005; Wiley 

et al., 2006). In addition, other groups have suggested that epigenetic events most 
frequently occur during the earliest stages of neoplasia, including the development of 

precancerous lesions (Feinberg and Tycko, 2004; Yamada et al., 2005). In addition to 

tumour suppressor genes being epigenetically inactivated in the initiation events of a 

cancer, there may also be an epigenetic "switch" in gene-imprinting status which could 

contribute to the early stages of many turnours, which has been suggested for colorectal 

cancer (Cui et al., 2003; Holm et al., 2005; Sakatani et al., 2005). Recent promising work 
has shown the use of cultured mouse ovarian surface epithelium in identifying sequential 

molecular changes, including the epigenetic silencing of tumour suppressor genes, during 

the development of ovarian cancer from an initial premalignant model (Roberts et al., 
2005). Using this novel model, it may be possible to identify other epigenetic events, in 

addition to the potential markers described in this thesis, which can initiate an EOC and be 

used, in the long term, as early diagnostic markers of this disease. In addition, there may 
be specific events which can be seen in the adjacent normal tissue which then put a patient 
"at risk7' of developing an overt tumour. Certainly, results described in Chapter 3 for non- 

tumour adjacent tissue showed that methylation of specific genes (HIC1, DCRI, APAF-1, 

OPCAff, and RASSFIA) were seen in these samples, and in some cases this was a frequent 
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event. Perhaps cancer progresses in a step-wise fashion as epigenetic and genetic control of 

homeostasis is lost as described for HICI (Chen et al., 2005a). Interestingly, methylation 

of HICI in non-tumour adjacent tissue was frequently seen in Chapter 3 and may represent 

a very early event in ovarian carcinogenesis. This type of homeostatic loss of control could 

lead to the disease progressing through phases including metaplasia, dysplasia, early stage 

and metastatic disease. If this is an early event, it is curious that this epigenetic event was 

not detected in the plasma DNA of ovarian cancer patients. It may be that increasing the 

number of samples analysed will show methylation of this gene in some patients. Overall, 

understanding the molecular components which initiate epigenetic change and gene 

silencing could provide the much needed answers as to what markers may be important for 

risk assessment and early detection in many cancers, including ovarian. This concept will 

be discussed further in Chapter 6 examining future outlooks which may lead on from this 

project. 

The use of predictive biomarkers 

Predictive biomarkers can potentially predict a response to a specific chemotherapy and 
therefore provide information that will lead to a decision regarding treatment. Ultimately, 

these markers have the potential to translate into individualised treatment options for 

patients. Having investigated the CGI methylation of genes, the results obtained were 

assessed with statistical methods to interpret if this biological process was linked with the 

clinical outcome of ovarian cancer patients. Recently, large genome-wide studies have 

focussed on ovarian cancer and have shown that methylation of groups of CGIs could 
provide important predictive or prognostic signatures in assessing and managing cancer 
(Wei et al., 2006; Wei et al., 2002). In addition, it has also been suggested that the CIMP 

may have associations with clinical outcome in cancers including neuroblastoma (Abe et 

al., 2005; Abe et al., 2006) and colorectal cancer (Van Rijnsoever et al., 2003), although 
there have yet to be any studies such as these which suggest a link of the CIMP with 
outcome in ovarian cancer. 

The predictive potential of the candidate CGI methylation data in 106 late stage turnours 
from the retrospective study (Chapter 3) were first examined statistically. Genes were 
grouped according to biological function although categorising the genes in this way is 

admittedly oversimplifying the biological process involved here. Methylation of at least 

one gene involved in DNA repair or drug detoxification (BRCA I, GSTPI or MGAfl) was 
associated with improved response to chemotherapy (p=0.013). These genes have 

previously been shown to be potentially important predictive markers in other cancer 
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types. MGMT (06 -methylguanine- DNA methyltransferase) is a DNA repair enzyme 

which removes methyl groups as well as larger adducts from the 06 position of guanine. 

The alkylation of DNA at the 06 position of guanine is associated with the formation of 

mutations in DNA (Gerson, 2004). Methylation of MGMT has been reported in a variety of 

cancers including granulosa cell turnours of ovarian origin, head and neck carcinoma and 

colorectal cancer (Dhillon et al., 2004b; Esteller et al., 1999a; Esteller et al., 2000d). 

MGW activity has been shown to be a major mechanism causing resistance to alkylating 

agents by rapid reversal of adducts formed at the 06 position of guanine by such 

chemotherapeutics (Esteller and Herman, 2004). In concordance with the results above, 

methylation of a CGI in the MGMT promoter has been shown to be an independent 

predictive marker of longer survival for glioblastoma patients treated with temozolomide 

(Hegi et al., 2004) and hypermethylation of the MGMT promoter also correlated with 

increased survival of patients with diffuse large B-cell lymphoma after chemotherapy 

(Esteller et al., 2002). The Glutathione-S-Transferases (GST) are a family of metabolic 

enzymes which detoxify potentially carcinogenic agents by catalysing the conjugation of 

glutathione to a variety of electrophilic intermediates. This prevents the accumulation of 

compounds that can lead to damaged DNA (Hayes and Strange, 2000). GSTs might 

detoxify chemotherapeutic drugs within cancer cells which would contribute to 

chemoresistance, and this is well established in cell culture models (Perquin et al., 2001). 

Tberefore, silencing of GSTPI could increase sensitivity to chemotherapy. GSTPI is the 

most frequently methylated gene in prostate cancer (Perry et al., 2006), although to date, 

there have still been no studies examining CGI methylation of GSTPI and clinical 

chemosensitivity. BRCA1 aids in the maintenance of genomic integrity and participates in 

double strand break repair by homologous recombination (Tutt and Ashworth, 2002). 

Several in vitro studies show that the integrity of the BRCA1 pathway is important for 

turnour response to chemotherapy. It has been shown that BRCAI deficiency is linked to 

sensitivity to cisplatin and other DNA damaging agents (Sgagias et al., 2004; Tassone et 

al., 2003), although the need for further clinical studies of BRCA1 and response to 

chemotherapy has recently been highlighted (Kennedy et al., 2004). It has been reported 

that promoter hypermethylation of BRCAI is a frequent event in sporadic ovarian tumours 

(Esteller et al., 2000b; Ibanez de Caceres et al., 2004) and mechanistically, methylation of 

BRCAI could inhibit cells from repairing the damage caused by chemotherapeutic agents 

leading to an apoptotic response in these damaged cells. 

As shown, multiple biological pathways are affected by methylation in individual patients 

and this will lead to complex patterns in patients with the same phenotype. However, some 
of these events will not directly influence the outcome in patients. In order to decipher 
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which methylation events were important and influenced the biological phenotype, a larger 

homogeneous study was required. The results above were taken from a retrospective study 

which was excellent for the hypothesis-generating observations above but tumours varied 

in histological type and had been exposed to various chemotherapies. Therefore, the 

validation of these results was examined in an independent set of epithelial ovarian tumour 

samples from a more defined patient population in the prospective "DNA Methlyation 

Study", funded through the Scottish Gynaecological Cancer Trials Group. The validation 

result for the potential predictive markers BRCAIIGSTPIIMGMT was not statistically 

significant. However, there was a trend in keeping with the previous results. One reason 

why these results may not have been significant was because the validation set was 

significantly underpowered and there had not been enough time for a number of clinical 

events to occur. To address this question, the study will require further analysis at a later 

date after allowing more events to accumulate for analysis. 

Ultimately, the results described within this subchapter suggest that methylation profiling 

may be useful to identify individual patients who may benefit from specific current 

therapies to improve clinical outcome. Also though, and perhaps more importantly, these 

types of studies may identify those patients who are eligible to enter clinical trials 
investigating novel epigenetic therapies depending on their methylation profile. 

The potential to identify markers of relapsed disease 

Biomarkers which identify patients with chemoresistant tumours have the potential to 

significantly contribute to the optimisation of second-line chemotherapies in the treatment 

of ovarian cancer. Identification of these markers remains the elusive goal in successfully 
identifying and treating the patient with relapsed disease. Ultimately, this may lead to the 

ability to recognise patients who can undergo reversal of chemoresistance with novel 

epigenetic therapies (Lyko and Brown, 2005). Methylation of the novel markers, 119A6 

and 5D4, were shown to be selected for during platinum-based chemotherapy in Chapter 4. 
Despite this selection during chemotherapy, methylation of 119A6 or 5D4 in chemonalfve 

ovarian tumours taken at presentation was not shown to be associated with response to 

chemotherapy, progression free survival or overall survival. Again, a lack of a significant 
association between methylation patterns and clinical outcome is not evidence for its 

absence here. There may not have been adequate statistical power here to detect small 

effects or the examination of these two novel loci in isolation may not be sufficiently 

sensitive. Indeed, an increase in sensitivity may be achieved by measuring these markers as 
part of a larger methylation profile (Glasspool et al., 2006). The lack of statistical findings 
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may have been due to the fact that the samples examined were heterogeneous chemonaive 
tumours, and to understand the biology of chemoresistance, ovarian tumours/plasma 

samples from the relapsed patient may be required for this type of analysis. These types of 

relapse samples have previously been the focus of a study which successfully identified 

that acquired methylation of the DNA mismatch repair gene, hMLHI, is associated with 

patient survival, rather than the methylation status at presentation (Gifford et al., 2004). 

Potentially, one could hypothesis that a combination of hMLHI, 5D4 and 119A6 may be a 

useful set of methylation markers for acquired chemoresistance but this will need further 

assessment with appropriate samples. 
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6 Summary and future outlook of this project 

6.1 Summary of findings 

This project aimed to identify novel methylation patterns associated with early disease 

detection, prediction of disease response to chemotherapeutics and chemoresistance 

markers in ovarian cancer. CGI methylation was a frequent event at all stages of EOC. In 

early stage chemonaive turnours, a set of 3 candidate loci (CGIs linked to the OPCML, 

RASSFIA and HICI genes) were methylated for at least one locus in 64% of turnours. 
Further results revealed that methylation of 5D4, mapping to the novel gene LAMA, was a 

potential novel epigenetic marker which was very frequently methylated in 75% of early 

stage ovarian turnours. In combination, 87.5% of the early stage tumours examined were 

methylated in at least one of these 4 loci. The clinical application of this was investigated 

by examining matched plasma from chemonaive patients with ovarian cancer with the aim 

of identifying methylation changes in a relatively non-invasive blood test. Detection of 
LMX1A (5D4) methylation in plasma was found to have a sensitivity of 48.2% and a 

specificity of 100%. The sensitivity may increase by examining a larger panel of markers. 

In late stage chemonaive ovarian tumours, the MSP data was examined to identify if 

methylation of groups of markers could be correlated with response to chemotherapy. 
Methylation of CGIs associated with either BRCA I, GSTPI or MGMT, which are involved 

in DNA repair and drug detoxification, were correlated with an improved response to 

chemotherapy (p=0.013). The validation of these results has not been completed due to the 
immaturity of clinical response data but it will be important to assess if these relationships 

can be validated in an independent set of ovarian tumours. Also, in this group of late stage 

turnours, a non-random pattern of DNA was seen. This demonstrated that there is an 

underlying biological mechanism which leads to co-methylation of specific genes but the 

cause of this remains unidentified. 

Two novel sequences (5D4 and 119A6) were identified in a genome-wide CGI screen 

whose methylation status can discriminate cisplatin sensitive and resistance cell lines, and 

who are also abberantly methylated in ovarian turnours. These novel loci may represent 

newly discovered epigenetic biomarkers in ovarian cancer which are selected for during 

drug resistance mechanisms. 
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6.2 The challenge of identifying early epigenetic markers 

The evidence has shown that ovarian cancer is only curable if detected at an early stage. 

The results in this thesis have indicated that epigenetic methylation events are ubiquitous 
in early stage ovarian neoplasia and can also be detected in matched non-tumour adjacent 

tissue. A promising novel marker, 5D4, has been described which has one of the highest 

reported methylation frequencies in ovarian cancer and potential in early diagnosis. Future 

research should be targeted at detecting which additional epigenetic events are potential 
initiating factors in premalignant and early stage cancers. If methylation abnormalities 

arise early in normal tissues, then comparison between histologically normal ovarian 

surface epithelium from early stage cancer patients and healthy controls may identify 

methylated markers which are useful in assessing risk, and ultimately developing a 

screening test. A single tumour may contain important histological components which 

could be involved in carcinogenesis and should be examined including inclusion cysts, 

cortical invaginations of the surface epithelium and stromal abnormalities (Cvetkovic, 

2003). These possible precursor lesions may create a turnour-promoting microenvironment 

and it would be interesting to examine the role of epigenetic change in these lesions. 

Potential issues will include the difficulty which histopathologists have in identifying these 

precursor lesions, the fact that normal ovaries are rarely removed due to the current climate 

of more non-invasive treatment modalities and the rarity of identifying an early stage 

ovarian turnour itself. Examination of adjacent tissues next to a matched early stage tumour 

provide some much needed answers regarding the epigenetic events which initiate an 

ovarian neoplasm such as those described here. Comparison between tumour and 

equivalent histologically "normal" non-tumour tissue from the same patient may be 

possible using technologies such as DMH to detect differences. Alternatively, the use of 

the mouse ovarian surface epithelium (Roberts et al., 2005) may provide an excellent 

model to identify early epigenetic events. 

Identification of a panel of early epigenetic markers, including methylation of 5D4, 

OPCML, RASSFIA and HICI could alert the clinician that the patient is at risk of ovarian 

cancer and lead to the implementation of appropriate treatment at an earlier stage. What 

will be the appropriate treatment though and when will it be best implemented? 

Admittedly, the difficulty will be when epigenetic changes are identified but existing 

technologies used, such as CT scanning, classify the patient as "disease free". The role of 

methylation, and examining if it has a higher sensitivity than existing methods, will only be 

determined in longitudinal studies in which patients are followed up to see if they do 
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indeed develop a recognised malignancy. This could potentially involve patients being 

recruited to trials and followed up for many years which may be technically unfeasible. It 

could be that ultimately treatment of "at risk7' lesions which show identical epigenetic 

changes to an occult neoplasm should receive similar management. This could then 

potentially impact on improving survival from this disease. The caveat, though, is that 

there is a recognised high morbidity associated with complex pelvic surgery and the use of 

this procedure in women with "at risk" lesions rather than definitive cancers may lead to 

surgical-related complications in women, some of whom may have false-positive screening 

results (Jacobs and Menon, 2004). This may then reduce the benefits of early detection and 

treatment in women with true-positive results. 

Earlier results in this thesis have shown that the use of a non-invasive blood test will be an 
important tool in future studies examining methylation as an early diagnostic marker in 

ovarian cancer. It should be noted that this is a very early study but the sensitivity achieved 
is encouraging for future larger screening studies. There are, however, some potential 
considerations when applying this type of test to early stage ovarian neoplasia. It has 

previously been thought that the early detection of lung cancer may be hindered by the fact 

that DNA from early stage lesions may not be efficiently released into the plasma due to 

reduced vascularisation of this stage of lung turnour (Belinsky, 2004). The same may be 

said for premalignant/early stage changes in the ovary which would then reduce the 

sensitivity of a blood test considerably. However, encouragingly, other groups have shown 
that a detectable amount of DNA from stage Ia ovarian cancer (ie confined to one ovary) is 

released into the bloodstream (Hickey et al., 1999). There are also issues with the 

specificity of such a test. Can we be sure of an ovarian origin for specific methylation 
changes seen in plasma? Again, one could hypothesis that a larger panel of markers may 
increase the specificity of the test but this would have to be specific for ovarian cancer if 

used for diagnosis. 

The identification of methylation in bodily fluids also has implications, not only in 

detection of disease at an early stage, but also in how an ovarian neoplasm is staged. It has 

previously been proposed that DNA is released directly into the plasma from early stage Ia 

ovarian tumours (Hickey et al., 1999). However, another pathway may be that DNA from 

tumour cells shed into the peritoneal cavity could enter the bloodstream through the 
lymphatics (Hickey et al., 1999). Hickey et al have suggested that there is potential to 
"molecularly upstage" an ovarian cancer if turnour DNA was detected in peritoneal fluid. 

This is an interesting point if we consider our methylation analysis results. Currently, 

cytology of peritoneal aspirate is used in conjunction with surgical staging and 
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histopathological diagnosis of an ovarian tumour to accurately stage a tumour using FIGO 

(International Federation of Gynaecology and Obstetrics) criteria. Currently, and still under 

debate by some groups, adjuvant platinum based chemotherapy is used in patients with ?: 

Stage Ic disease or in those with high grade earlier stage turnours (Trimbos et al., 2003). 

Potentially though, if ovarian cancer was molecularly upstaged by detection of methylation 

in peritoneal fluid, this would perhaps not only increase the use of adjuvant therapy in 

early stage disease, but also introduce the use of novel epigenetic therapies to target these 

early methylation events. 



Catriona Hardie, 2007 151 

6.3 Translating identified epigenetic markers into routine 

clinical use 

This thesis has shown that epigenetic biomarkers can be used to stratify both current 

chernotherapeutics and potentially novel epigenetic therapies to individual patients 
depending on their methylation status. The major challenge still remains though that well- 
designed prospective clinical trials are required to obtain samples at crucial stages of 
treatment and relapse. These trials need to be carefully designed with well-defined 

objectives and clinical endpoints. There is a need for new objective measures of clinical 
outcome. Studies vary in their use of endpoints and how they define these. To explain, 
survival encompasses other factors which may influence the direct survival of the patient. 
PFS and OS do not explain the underlying biological mechanism of cell death following 

chemotherapy. The endpoint of response is used with the aim of encompassing information 

on chemoresistance but is not quantitative. New quantitative and objective measures of 
response to chemotherapy may help uncover new biologically relevant markers. 
Identification of these markers will require genome-wide analysis, such as the microarray 

experiment described in Chapter 4, to obtain complex data concerning the ovarian cancer 

epigenome. The difficulties and complexities in statistically analysing the tremendous 

amount of data obtained from these types of experiments will also have to be addressed. 
Validation of the hypothesis-generating studies described will be required and this thesis 
has illustrated that this can only occur after a sufficient number of events have been 

allowed to accumulate. It is worth noting that the vast majority of published biomarker 

studies to date have not been validated and this will be a crucial component in the future. 

Tumour biopsies from relapsed patients with ovarian cancer are rarely used in studies due 

to the difficulties in procuring such samples. However, in order to test the hypothesis, that 

methylation of 5D4 and 119A6 are selected for during chemotherapy and are markers of 
relapse in ovarian cancer, these are the types of samples will be necessary for analysis. If it 
is true that chemotherapy positively selects for resistant subpopulations of cells (Agarwal 

and Kaye, 2003), methylation analysis of tumour biopsies at relapse may shed some light 

on the methylation status of these subpopulations and their potential role in acquired 
resistance. Acquired methylation will be magnified in post-chemotherapy samples due to 
selective pressure. To avoid the problems of inter-patient heterogeneity, matched samples 
pre- and post-chemotherapy will need to be examined and correlated. One of the problems 
in acquiring these samples lies in the fact that secondary cytoreductive surgery is rarely 
performed in the relapsed patient and its use remains controversial (Benedetti Panici et al., 
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2007). To date, there has been no randomised trial comparing secondary cytoreductive 

surgery with second-line chemotherapy in relapsed ovarian cancer and therefore these 

samples are not readily available as patients most commonly undergo treatments with a 

secondary cytotoxic agent. Admittedly, surgery for recurrent disease is technically 

challenging with associated risks of organ damage such as bowel or bladder, and therefore 

it remains ethically unconsiderable to perform a second laparotomy in order to obtain 

biopsied tumour from this type of patient. An alternative consideration may be biopsy of 

relapsed tumour via laparoscopy, however, this will require careful ethical consideration in 

setting up a clinical trial and appropriate patient consent explaining the risks of the 

procedure. Otherwise, the collection of plasma at relapse and/or ascitic fluid remains the 

most likely source of this type of material following chemotherapy. The less invasive 

techniques involved would most likely increase the number of patients consenting to trials 

and could also allow investigation of selective mechanisms controlling methylation at 

different timepoints during treatment. The caveat is that the concentration of DNA in these 

samples may be low therefore reducing the sensitivity of the test. However, if a greater 

number of patients are consented to this more non-invasive sampling method, the power of 

the test may increase. 

The functionality of the novel genes relating to chemoresistance described in Chapter 4, 

LAMA (5D4) and NR2E1 (119A6), and their potential roles in ovarian turnourigenesis 

will require further investigation. In addition to examining the mRNA expression levels of 
LAMIA and NR2E1 shown, it will be important to attempt to correlate these results with 

protein expression levels in the cisplatin-sensitive and cisplatin-resistant cell lines. This 

will involve the use of Western Blotting and Immunohistochernistry techniques. Potential 

functional studies could involve the overexpression and knockdown of these genes in vitro 

to allow determination of their effects on colony formation (LMXIA) and drug sensitivity 
(LAMA and NR2E]). Additionally, it was hypothesised in the discussion section of 
Chapter 4 that methylation-related transcriptional repression of NR2E1 may influence 

chemoresistance mechanisms by increasing the expression of the transcription factor, 

PAX2, in turnours. It would be intriguing to examine the expression of PAX2 using RT- 

PCR in both chemoresistant cells which show methylation of NR2E1, and in relapsed 
tumours following chemotherapy. Increased expression of PAX2 should reduce cisplatin- 
induced apoptosis and lead to chemoresistance. The Wnt signalling pathway and its 

involvement in the pathogenesis of ovarian cancer remains unclear, but methylation of 
LAMA and NR2E1 could potentially affect this pathway in cancer. It would be interesting 

to look at this pathway in ovarian tumours using a candidate gene approach to determine 

the influence which methylation may have on associated Wnt-signalling genes. Both of 
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these novel markers are involved in stem cell maintenance and differentiation and a 

potential link between epigenetic changes of these genes in stem cell compartments could 

be investigated using tissue microarray-based approaches (TMAs). Are these eventual 

markers of chemoresistance methylated in stem cells and then selected for during 

chemotherapy? Finally, it could be considered if selection of methylation of these novel 

markers has a role to play in the chemoresistant phenotype of other turnours. 

The hypothesis-generating results obtained from the work described in this thesis do 

require further validation, but the identification of these predictive and chemoresistance 

markers may influence future translational studies. Potentially, these results could lead to 

the rational use of epigenetic therapies, such as those described in Chapter 1, which will 
improve sensitivity to current chernotherapeutics and improve the dismal survival rates 

associated with this disease. Well-designed large prospective trials are still required though 

to identify those key genes silenced by epigenetic mechanisms among the multiple 
potential candidates that can help a clinician make real-time treatment decisions in respect 
to a particular regimen depending on a patient's epigenetic profile. 
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