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Abstract 

 

In studies on the pathophysiology of the autoimmune neuropathy, Miller Fisher 

syndrome (MFS), monoclonal antibodies to the disialosyl epitopes on GQ1b, GT1a 

and GD3 gangliosides have been produced. Antibodies to these complex gangliosides 

are thought to be crucial in the pathogenesis of MFS.  

 

These antibodies have recently been shown to produce complement dependent, glial 

and/or neuronal injury at mouse neuromuscular junctions (NMJs). Three antibodies 

(EG1, LB1 and R24) were identified as producing selective terminal Schwann cell 

(TSC) injury whilst sparing neuronal membranes at NMJs in BALB/c and C57BL/6 

mouse strains in a dose dependent manner. These changes occur in the absence of 

observable acute physiological or morphological changes to the nerve terminal, 

suggesting that TSC injury or loss has no major short-term influence on synapse 

function. Having compared the suitability of two common ex vivo muscle preparations 

for use in characterisation studies, TSC selective antibodies were compared, and EG1 

was identified as most suitable for further investigations on the role of the TSC in 

mammalian NMJ function and as a possible disease target in MFS. The effect of this 

antibody when combined with normal human serum as a source of complement in ex 

vivo hemidiaphragm preparations was independent of complement regulators DAF 

and CD59a.  

 

Cell specific promoter sequences have been used to produce a mouse line that 

expresses green-fluorescent protein (GFP) in TSCs, and cyan-fluorescent protein 

(CFP) in axons (CK mouse). Live imaging techniques were used to study the acute 

 xxiii



and chronic effects of EG1 mAb mediated, complement dependent glial injury in this 

system. It is shown that TSC injury is characterised by loss of GFP staining, occurring 

within 20 minutes of complement exposure. Repopulation of the NMJs with GFP-

positive cell bodies is first evident at day 2. The origin of these returning Schwann 

cells is discussed, and three possible sources are considered – the last myelinating 

Schwann cell, non-myelinating Schwann cells lying more proximally in the peripheral 

nervous system, and muscle stem cells. At day 7, the number of GFP-positive cell 

bodies seen at the NMJ is higher (7-12 per NMJ) than prior to antibody exposure (3-5 

per NMJ). This process of enhanced repopulation is not dependent on an intact axon 

as it is retained following axotomy. At 3 months, minor remodelling of the NMJ is 

seen, and is more pronounced at one year. Repeat antibody exposure within 48 hours 

does not injure returning processes, or delay repopulation. Instead, extra-junctional 

TSC processes are formed, with associated axon sprouts in the absence of gross 

terminal axon injury.  

 

Anti-GQ1b containing serum from a MFS patient is shown to induce murine TSC 

death in a similar manner to murine monoclonal antibodies described previously. This 

suggests that TSCs are a potential new disease target in human disease if the 

ganglioside profile of mouse and human TSCs is equivalent. Ganglioside distribution 

and antibody binding are examined on a series of human muscles. These studies 

demonstrate for the first time that components of the human NMJ are potentially 

susceptible to anti-ganglioside antibody mediated injury, by virtue of their ganglioside 

profile.   

 

 xxiv



This study suggests that TSCs may be a previously unrecognised site of immune-

mediated nerve injury. It also describes a new technique for observing chronic TSC 

injury and recovery in an in vivo mouse model system, which could be used for 

human disease modelling. 

 xxv
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Chapter 1: Introduction 

 

The aims of my thesis are outlined in section 1.6. Briefly stated, these aims are to: 1) 

Identify and characterise an antibody suitable for producing selective terminal 

Schwann cell injury; 2) Examine ways of increasing the effect of this antibody by 

removing complement regulators; 3) Adapt a new fluorescent mouse system to study 

the effects of immune mediated injury in the peripheral nervous system; 4) 

Characterise the chronic effects of selective terminal Schwann cell injury in the 

mammalian neuromuscular junction; and 5) Identify the ganglioside profile, and 

potential binding targets in human tissue to establish whether the human 

neuromuscular junction, and in particular the terminal Schwann cell could be a 

disease target in Miller Fisher syndrome. The following introduction is intended to 

provide the clinical and experimental context in which these aims can be evaluated. 

 

1.1 Autoimmune neuropathies 

 

1.1.1 Background 

 

Autoimmune neuropathy is a generic term to describe syndromes resulting from both 

axonal and glial injury caused by inflammation in the peripheral nerve (Willison and 

Yuki, 2002). The acute diseases, Guillain-Barré syndromes (GBS) are the foremost 

cause of neuromuscular paralysis with a global incidence of ~1.5/105 (~750 UK cases 

per year). These syndromes include the acute motor axonal neuropathy (AMAN), 

acute inflammatory demyelinating polyneuropathy (AIDP); and the focal variant, 
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Miller Fisher syndrome (MFS) which is characterised by a distinct clinical triad of 

ataxia, areflexia and ophthalmoplegia (Fisher, 1956).  

 

GBS and variants are post-infectious illnesses, occurring approximately 2 weeks after 

diverse and ubiquitous infections in individuals with unpredictable sensitivity. These 

are characterised by inflammation and loss of function in peripheral nerves; and can 

cause severe axial, limb and respiratory paralysis. A study from the south of England 

highlighted the considerable morbidity and mortality associated with the illness. In 

this study, 79 patients were recruited over a 12 month period, and followed up for a 

year. This study demonstrated that in approximately 25% of patients, the paralysis is 

so severe that prolonged mechanical ventilation is required, and 4% of patients 

remained bedbound or ventilator dependent one year from illness onset. The authors 

also described a mortality rate of 8% in the first year, (all of these patients were over 

60 years of age), with 9% of survivors being left unable to walk after 12 months (Rees 

et al, 1998). Studies have also demonstrated the substantial economic burden of this 

illness, with the financial impact on the US economy of Campylobacter related GBS 

being estimated at between US$0.2-1.8 billion annually (Buzby et al, 1997). 

 

1.1.2 Guillain-Barré and its clinical forms 

 

The first description of GBS was made by a French Physician in 1859, called Jean 

Baptiste Landry. In this early work, he described a group of 10 patients who had a 

form of ascending paralysis associated with various forms of sensory disturbance, and 

respiratory paralysis as a terminal event (Landry, 1859). The condition was 

subsequently known as “Landry’s Ascending Paralysis”.  
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It took over 50 years until the next influential paper was published in the field. In 1916, 

three French Physicians, George Guillian, Jean Alexandre Barré and Albert Strohl 

published the paper: ”Sur un syndrome de radiculo-neurite avec hyperalbuminose du 

liquide cephalo-rachidien sans reaction cellulaire: remarques sur les caracteres cliniques 

et graphiques des reflexes tendineux” (Guillain et al, 1916). In this study, they described 

two soldiers in the First World War who developed clinical weakness associated with 

loss of tendon reflexes. In addition, CSF analysis from these patients demonstrated an 

acellular CSF with a high protein1. 

 

Some debate existed around the clinical definition of the disease, with Guillain arguing 

for a number of years that his description was distinct from “Landry’s Ascending 

Paralysis”, as it followed a relatively benign course, and respiratory paralysis was not a 

feature of the illness. Guillain’s opinion was widely accepted for almost 3 decades, until 

Webb Haymaker and James Watson Kernohan published a study in 1949, describing 

post mortem data from over 50 patients with severe, rapid onset fatal peripheral 

neuropathy consistent with a diagnosis of GBS. This post mortem study was also 

supported with a very comprehensive literature review of similar cases (Haymaker and 

Kernohan, 1949). The literature review in particular, concluded that many peripheral 

neuropathies (including GBS and Landry’s Ascending Paralysis) represented a spectrum 

of the same condition, rather than distinct clinical entities. They concluded that it was 

more appropriate from a clinical and research perspective to classify them together as a 

single, distinct syndrome. 

 

                                                 
1 More contemporary studies have shown that CSF protein levels may be normal, particularly during 
the first week of illness (Ropper, 1992) 
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In addition to the new classification based on the literature review, the post mortem data 

also suggested that an as yet unidentified agent was responsible for the tissue damage, 

rather than the widely held belief that injury resulted from direct inflammatory injury. 

Although methodological difficulties exist with this study, including issues of tissue 

preparation and pathology that was not consistent with the geographical area of the 

patient sample; the study was the first to suggest that a foreign agent may be the 

initiating factor of GBS.  

 

Aside from the original descriptions by Landry and Guillain, Barré and Strohl, the 

Haymaker and Kernohan paper is possibly one of the most important publications in the 

field of GBS research, as it identifies a heterogenous group of disorders as a single 

clinical condition while also offering an important insight into disease pathogenesis. 

This conclusion provided an important basis for further research into the condition.  

 

1.1.3 AIDP 

 

1.1.3.1 Background 

 

The demyelinating form of GBS is known as acute inflammatory demyelinating 

polyneuropathy (AIDP), and is particularly common in Europe and North America. In 

this condition, patients present with the typical flaccid paralysis in conjunction with 

absent tendon reflexes. Nerve conduction studies on these patients are often 

inconclusive, due to the patchy nature of the demyelination and this can lead to 

equivocal or negative results.  When present however, certain features are thought to be 

highly specific for AIDP.  
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1.1.3.2 Electrophysiological features 

 

Two common tests of motor function in neurophysiology are testing the H-reflex and F-

wave, and both are sensitive for AIDP. The H-reflex is the muscle response to 

stimulation of 1a sensory afferent nerves arising from the muscle spindles in their 

innervating nerves, in a way analogous to tendon reflexes producing a knee or ankle jerk 

via the spinal reflex arc. Its absence is one of the most common neurophysiological 

changes in AIDP patients (Gordon and Wilbourn, 2001) but it can also occur in other 

conditions, therefore its absence is not exclusively diagnostic. 

 

The F-wave measurement represents the antidromic activation of motorneurones. The 

distal portion of a nerve is stimulated transcutaneously, and the impulse travels antero- 

and retrogradely along the nerve. The anterograde conduction produces muscle 

contraction, known as the M-response while the retrograde response travels back up the 

nerve to the cell body, where it is “reflected back” to produce a second muscle 

contraction. It is this second, antidromic response that produces the F-wave.  However, 

this technique has the potential for considerable variation in measurement and as a 

result, its analysis is subject to a number of strict protocols that account for nerve length, 

stimulation frequency, and age of the subject (Fisher, 1998). Despite this, absent or 

prolonged F-wave latencies are seen in up to 80% of patients with AIDP.  

 

Often distal compound muscle action potential (CMAP) amplitudes are preserved in 

patients with AIDP. These CMAP amplitudes represent a group of simultaneous muscle 

action potentials that are combined as a summated action potential following stimulation 

of the innervating motor nerve and, when preserved, suggest that the muscle bulk and 
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axon are intact, and are responding appropriately to nerve action potentials. A preserved 

CMAP in conjunction with absent or delayed F-waves latencies is highly suggestive of 

GBS (Al Shekhlee et al, 2005; Gordon and Wilbourn, 2001).  

 

Another electrophysiological marker of AIDP is the presence of multifocal 

demyelination in the absence of any entrapment neuropathies. Studies have shown that 

proximal conduction block and temporal dispersions are highly specific for AIDP, in 

addition to slowing of the nerve conduction velocity in the first 3 weeks of illness 

(Ropper et al, 1990). However, these findings are only present in approximately 20% of 

patients and are not sensitive for AIDP. 

 

Although AIDP is considered primarily a motor weakness, sensory abnormalities are 

also often present, particularly in the first 3 weeks of illness. At this time, patients will 

display sensory abnormalities on nerve conduction in the upper limbs with relative 

sparing in the lower limbs, particularly the sural nerve. This finding is thought to be 

highly specific for acquired demyelination, particularly under 60 years of age (Al 

Shekhlee et al, 2005; Gordon and Wilbourn, 2001). 

 

1.1.3.3 Clinical features 

 

Although there are no clinical features which are exclusively diagnostic of AIDP in 

isolation, a combination of several features in conjunction with a suitable history are 

very suggestive of AIDP, and are used in diagnosis as defined by Asbury and Cornblath 

(Asbury and Cornblath, 1990). Clinical features that are consistent with a diagnosis of 

GBS, and AIDP include: 
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• Progressive, relatively symmetrical motor weakness lasting until 4th week of 

illness, not restricted to limb musculature 

• Limited sensory involvement 

• Autonomic dysfunction 

• Recovery within 4 weeks after motor progression stops 

• Absence of fever at disease onset. 

 

However, variation in the disease symptomatology means that many patients have a 

unique clinical presentation, which limits the practical application of strict diagnostic 

criteria with GBS. It is also important to recognise that certain presentations can suggest 

other diseases, including marked asymmetry of symptoms, persistent bladder or bowel 

weakness, and a high levels of mono- or poly-nuclear lymphocytes in the CNS. In which 

examples, conditions such as botulism, poliomyelitis and other peripheral nerve 

disorders should be excluded in the first instance. 

 

1.1.3.4 Pathological features 

 

While both the clinical presentation and electrophysiological features are well 

documented, the exact mechanism of injury in AIDP has yet to be clearly elucidated. 

The original paper by Asbury in 1969 described pathological samples from patients 

showing lymphocytic infiltration, suggesting that the process was mediated by T-cells 

and therefore similar to allergic neuritis (figure 1.1) (Asbury et al, 1969).  
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Figure 1.1: Illustration of injury in AIDP.  

A: Perivascular infiltrate contains many polymorphonuclear lymphocytes, 

as well as leucocytes in areas of tissue damage. (Cross section through 

several roots at the level of the cauda equina, 200x) 

B: Small subperineurial exudates composed of a mixture of lymphocytes 

and polymorphonuclear leukocytes. Transforming cells derived from 
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invading lymphocytes are also seen (large, pale nuclei with prominent 

nucleoli and marginated chromatin) (Cross section through several roots at 

the level of the cauda equina, 490x) 

C: Extensive myelin destruction and inflammatory infiltrate. Arrows 

indicate areas of myelin breakdown. Small dark cells are predominantly 

lymphocytes. (Radial nerve, 170x). Taken from Asbury (1969) 

 

 

However, a more recent study examined post mortem tissue from 3 patients who had 

symptoms of AIDP at the time of death. These immunohistochemical studies examined 

the distribution of complement activation products on the surface of myelin, using a 

combination of resin imbedded tissue and EM studies. This work showed complement 

activation products on the surface of myelin, and vacuolar changes occurring prior to the 

ingress of macrophages to the area. This suggests, at least in these cases of AIDP, that 

the injury is an antibody-mediated, complement dependent injury to myelin, with 

subsequent macrophage recruitment to remove the damaged myelin (figure 1.2) (Hafer-

Macko et al, 1996b). There may also be subsequent axonal degeneration associated with 

the demyelinating process (Albers et al, 1985), and while the exact mechanism of this 

damage is unclear, it is most likely due to loss of trophic support from the Schwann cells 

(so called “bystander effect”).  
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Figure 1.2: Contemporary study of injury in AIDP. 

A: Post mortem study of ventral roots. At day 9, there were large plaque-

like areas (outlined with asterisks) with demyelinated nerve fibres. (Ventral 

roots, day 9 post mortem, 910x). 

B: C5b-9 deposition. In addition to extensive C5b-9 deposition on the 

Schwann cell surface, macrophages were also identified in close 

association, and also expressed C5b-9 antigen (black arrowheads). 

Macrophages on the outer surface of myelin sheaths also stained for C5b-9 

(black arrow in boxed region) (Etched immunostained plastic sections 

counterstained with toludine blue, day 8 post-mortem) 
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C: EM study of nerve injury at day 8. C3d is seen on the outer surface of 

two fibres. Myelin disruption in fibres with C3d immunostaining is 

associated with vesicular changes in the sheath, and was seen in the 

outermost myelin lamellae (seen in fibre with asterisk). However, it is not 

possible to fully exclude post-mortem artefact as a cause for these structural 

changes. (Thick and thin sections, day 8 post mortem, 4830x) Taken from 

Hafer-Macko et al 1996b) 

 

1.1.4 AMAN 

 

1.1.4.1 Background 

 

Although axonal degeneration can result from the “bystander effect”, it was proposed 

in the 1980s that axonal degeneration could result from an entirely separate 

pathological process, where the injury was directed towards the axon itself, rather 

than the surrounding myelinating Schwann cells (Feasby et al, 1986). These forms of 

GBS are called acute motor axonal neuropathy (AMAN) (McKhann et al, 1993) and 

acute motor sensory axonal neuropathy (AMSAN) (Griffin et al, 1996).  

 

The injury in AMAN and AMSAN is believed to be antibody-mediated, usually 

directed towards the GM1 and GD1a gangliosides. Unlike AIDP, post mortem studies 

from these cases have shown axonal degeneration associated with immunoglobulin 

and complement deposition at the nodes of Ranvier in the absence of significant 

demyelination (Hafer-Macko et al, 1996a). It is thought that the initial immune 

response can then recruit macrophages to this site by complement co-factors, 
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including C5a. The macrophages can then travel in the periaxonal space between 

internodes to produce degeneration of the axon, often extending as far as the ventral 

root to produce extensive Wallerian degeneration (figure 1.3) (Griffin et al, 1996).  

 

 

A B
 

 

Figure 1.3: Illustration of damage in AMAN.  

A: Electron micrograph of a sectioned nerve fibre shows a macrophage (M) 

in the periaxonal space, with a normal myelin sheath and a condensed, but 

otherwise normal intact axon (A) (1mm plastic embedded sections of the 

ventral nerve, 6826x) 

B: Electron micrograph of a sectioned nerve fibre. The axon has 

denegerated, and a macrophage is present in the space normally occupied 

by the axon. The myelin sheath is intact. (1mm plastic embedded sections  

of spinal roots, 7600x before 5% reduction)  (Taken from Griffin, 1996) 
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Interestingly, these predominantly axonal forms of GBS are more prevalent in the 

developing world, particularly rural China, in contrast to AIDP, which is common in 

Europe and North America. The exact reason for this geographical difference is 

unknown. 

 

1.1.4.2 Electrophysiological features 

 

Unlike AIDP, patients with AMAN will demonstrate normal motor distal limb 

latencies and conduction velocities, with apparently normal sensory electrophysiology 

and F-waves. Significantly however, they may have reduced CMAP amplitudes 

because the axon is damaged, and therefore present as a pure motor axonal 

neuropathy in contrast to AIDP (McKhann et al, 1993). Patients who have AMSAN 

may have the same motor features as AMAN, in addition to reduced or absent sensory 

nerve action potentials (SNAP). 

  

1.1.4.3 Recovery 

 

Understandably, if the injury is proximal, recovery from such extensive axonal 

degeneration will be prolonged, as the axons will have to grow a considerable 

distance during reinnervation. However, certain subgroups of patients exhibit 

relatively rapid recovery from AMAN. In this group, it is thought that the antibodies 

bind transiently to the nodes of Ranvier, and produce a short-lived 

electrophysiological disruption. This antibody complex does not cause significant 

axonal degradation, therefore recovery is rapid as regeneration does not need to occur 

(Ho et al, 1997). 
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1.1.5 Acute Panautonomic Neuropathy 

 

A very severe GBS-like condition is Acute Panautonomic Neuropathy (APAN), 

which is also known as autoimmune autonomic gangliopathy. Although the condition 

in its purest form affects only the autonomic nervous system, many presentations also 

have a somatic component, and it is considered to be very similar to GBS as a result. 

Patients may experience an ascending sensory disturbance initially, which is also 

associated with widespread autonomic dysfunction (Low et al, 1983). The autonomic 

dysfunction can be purely cholinergic, or can also involve the adrenergic and other 

organ systems, particularly the GI tract (Low, 1994). This may result in significant 

cardiovascular instability characterised by labile blood pressure; and GI paresis. 

Recent work suggests that antibodies bind to acetylcholine (ACh) receptors in the 

autonomic ganglia to produce a conduction block analogous to myasthenia gravis 

(Wang et al, 2007). Unlike other forms of GBS, the prognosis for this variant is 

particularly poor due to the autonomic features, and therapeutic options are limited. 

However, a study suggests that high dose intra-venous immunoglobulin may be 

appropriate in certain cases (Smit et al, 1997). 
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1.1.6 Miller Fisher syndrome 

 

1.1.6.1 Clinical features 

 

1.1.6.1.1 Background 

 

MFS is another variant of GBS, and was first described by Charles Miller Fisher in 

1956 (Fisher, 1956), a Canadian neurologist who is also renowned for his work on 

stroke disease, and transient ischaemic attacks (TIAs). Although the disease only 

accounts for less than 5% of all cases of GBS, it provides an interesting experimental 

model for the disease. Patients were originally described as presenting with a clinical 

triad of: ophthalmoplegia, areflexia and ataxia; often occurring after antecedent 

infection that may include a diarrhoeal illness caused by Campylobacter jejuni (Endtz 

et al, 2000). However, recent reviews have suggested that other clinical features, 

including papillary abnormalities, ptosis, and bulbar and facial weakness should be 

considered as variants of the clinical presentation, in addition to the original clinical 

triad described by Fisher (Mori et al, 2001). It is also possible that components of the 

syndrome may present in isolation, including isolated ophthalmoplegia or bulbar and 

facial palsies, and these are believed to represent a more limited variant of MFS 

(Overell et al, 2007).  

 

Although variations do exist in the presentation of MFS, the original description and 

subsequent studies have emphasised that limb weakness is not considered a feature of 

pure MFS (Fisher, 1956; Sauron et al, 1984). Recent reviews suggest however that a 
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“GBS overlap” syndrome may exist where limb weakness is a feature, but its long-

term morbidity may be different from isolated MFS (Overell et al, 2007).  

 

1.1.6.1.2 Electrophysiological features 

 

Interestingly, despite the lack of limb symptoms, electrophysiological studies have 

shown some degree of peripheral nerve dysfunction in MFS. In particular, a reduction 

in sensory nerve potential amplitude in the limbs is often seen (Fross and Daube, 

1987, Durand et al, 2001), suggesting involvement of the afferent spinal nerves and 

possibly the dorsal root ganglia. However, the exact pathophysiological mechanism 

behind these findings has yet to be elucidated. Motor nerve dysfunction in the limbs 

has also been described in the absence of weakness, but these data are more variable 

than studies of sensory abnormality. Some studies describe an axonal neuropathy 

(Fross and Daube, 1987), while others conclude that a form of proximal 

demyelination is present (Jamal and Ballantyne, 1988). The exact nature of the motor 

limb lesion is therefore unclear. 

 

There are few studies examining the nature of motor cranial nerve dysfunction in 

MFS, as these nerves are often very difficult to examine. However, a recent paper 

demonstrated a neuromuscular junction conduction defect in the extraocular muscles 

using single fibre EMG techniques (Sartucci et al, 2005), while transcranial magnetic 

stimulation studies suggest that facial nerve weakness results from demyelination of 

the proximal nerve segments (Arányi et al, 2006). However, it is widely accepted that 

further work is required to characterise the nature of the defects in more detail, to 

assist in diagnosis and understanding the disease pathogenesis. 
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1.1.6.1.3 Prognosis 

 

In contrast to other forms of GBS, MFS is generally considered to have a relatively 

benign, self-limiting course. One retrospective review of MFS cases demonstrated 

that all of their untreated patients with MFS (28 patients) had returned to normal 

approximately 6 months after disease onset, with a median period of recovery of 32 

days (range from 8 to 271 days) for symptoms of ataxia, and 88 days (range from 29 

to 165 days) for ophthalmoplegia (Mori et al, 2001). Although both immunoglobulin 

and plasma exchange therapy are commonly used in the treatment of MFS, there is 

little evidence to establish their value in the treatment of the condition at present 

(Overell et al, 2007). 

 

1.1.6.2 Anti-ganglioside antibodies 

 

During the acute phase of the illness, over 90% of patients with MFS will have 

demonstrable titres of antibodies to the GQ1b ganglioside  (figure 1.4) (Chiba et al, 

1993; Willison et al, 1993a). Serum titres of these antibodies often become 

undetectable during the recovery phase (Mizoguchi, 1998), and these observations 

have led investigators to believe that anti-ganglioside antibodies are strongly 

implicated in the disease pathogenesis.  
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Figure 1.4: GQ1b IgG antibody titres from patients during acute 

neurological weakness.  

18 of the 19 patients with typical MFS, and all 5 patients with atypical MFS 

(no ataxia, variable limb reflexes) had demonstrable titres of GQ1b. In 

addition, 5 of the 6 patients with GBS with ophthalmoplegia (GBS OP(+)) 

also had GQ1b antibodies. This suggests that antibodies to complex 

gangliosides, in particular GQ1b are present in MFS, and may be involved 

in the mechanism of ophthalmoplegia (Taken from Chiba et al, 1993). 
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Although anti-ganglioside antibodies are highly specific for MFS, they are also found 

in Bickerstaff’s brainstem encephalitis (Yuki et al, 1993a). There is considerable 

debate over the similarities between these diseases, particularly their clinical signs and 

pathogenesis. For example, the original description of Bickerstaff’s encephalitis 

identified patients with ophthalmoplegia, and ataxia, with 50% displaying either 

hypo- or areflexia (Winer, 2001). These features are consistent with MFS leading 

some authors to suggest that they may represent a spectrum of the same condition, 

supporting the similar anti-ganglioside antibody profiles in both (Odaka et al, 2001). 

Similarities also exist between MFS and diseases like acute ophthalmoparesis and 

ataxic GBS, including clinical presentation and ganglioside profile  (Willison and 

Yuki, 2002), and “GBS overlap” syndromes have also been described with features of 

MFS or Bickerstaff’s encephalitis in association with limb weakness (Overell et al, 

2007). This has led some authors to propose the concept of an “anti-GQ1b antibody 

syndrome”, classifying patients with anti-GQ1b antibodies and ophthalmoplegia as a 

distinct clinical entity, regardless of the primary diagnosis. However, this new 

classification has yet to be accepted, as the clinical outcome of the “anti-GQ1b 

antibody syndrome” often varies according to the primary presentation, making it 

difficult to classify as a single disease entity (Winer, 2001) 

  

1.1.6.3 Disease targets 

 

One of the more interesting hypotheses recently proposed identifies the 

neuromuscular junction (NMJ) as a possible target of antibody-mediated injury in 

GBS variants, particularly MFS (Sartucci et al, 2005). The antibody-mediated injury 

is thought to result from the formation of pores in the nerve membrane, by activation 
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of complement and resulting production of membrane attack complex. These pores 

allow entry of calcium, and induce vesicle release with subsequent nerve terminal 

destruction caused by activation of calpain (a calcium dependent proteolytic enzyme) 

(figure 1.5) (O’Hanlon et al, 2003). Certain cranial nerves, particularly the 

oculomotor nerve, are relatively rich in complex gangliosides (Chiba et al, 1997), and 

as antibodies to these structures are strongly associated with the MFS (Willison and 

Veitch, 1994), it is likely that these sites are the target for antibody binding and give 

the symptom of ophthalmoplegia.  

 

 

Figure 1.5: Cartoon illustration of nerve terminal injury.  

Antibodies bind to ganglioside on the surface of the nerve, and activate 

complement to form MAC. The resulting MAC pores cause the influx of 

calcium into the nerve terminal, causing massive exocytosis of ACh 

vesicles. Calcium also activates calpain to induce nerve terminal 

destruction. 
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A number of other factors exist that suggest the NMJ is the likely source of injury in 

MFS. For example, the NMJ is more vulnerable to circulating antibodies than other 

structures in the nervous system, as it is not bound by the blood-nerve barrier and can 

be easily accessed by antibodies in the circulation. Also, many other autoimmune 

diseases of the nervous system, including myasthenia gravis, and Lambert-Eaton 

myaesthenic syndrome, produce induce injury at this structure. Aside from 

autoimmune disease, a number of toxins have been shown to target the NMJ. One of 

these toxins, from the bacterium Clostridium botulinum, shares many of the clinical 

and electrophysiological features of MFS, and exerts its initial effect at the NMJ by 

binding to gangliosides (O’Hanlon et al, 2002). This interesting similarity provides 

strong support for ganglioside involvement in the pathogenesis of MFS. Finally, a 

recent case study suggests that the conduction defect in MFS occurs at the NMJ 

(Sartucci et al, 2005), although the patient in this example did not have demonstrable 

titres of anti-ganglioside antibody in their serum.  

 

Neuromuscular conduction defects are also seen in animal models exposed to 

complex ganglioside antibodies, and support the electrophysiological studies from the 

human. In these ex vivo animal studies, the antibody caused spontaneous release of 

ACh vesicles (measured by miniature end plate potentials), followed by failure of end 

plate potentials evoked by nerve stimulation (O’Hanlon et al, 2001). This effect is 

similar to the injury caused to the nerve terminal by the black widow spider venom, α-

latrotoxin.  
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Although injury to the NMJ is one possible mechanism for paralysis in MFS, it should 

be noted that antibodies to GQ1b have been noted to bind at other sites, including the 

nodes of Ranvier in oculomotor nerves (Chiba et al, 1993). It is therefore possible that 

the variants of disease represent antibodies binding to different neural sites, including 

the TSC. 

 

However, the clarity of data surrounding the possible pathogenesis of MFS make it a 

desirable model, not just for MFS, but for other antibody-mediated nerve injuries. In 

particular, work towards an animal model will allow new therapeutic strategies to be 

tested that may significantly reduce the morbidity and mortality of the disease. 
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Syndrome 
 

Identified 
ganglioside 

targets 

Electrophysiology Probable 
Site of injury 

AIDP GalC, LM1, GM1
SGPG, GM2 

Absent F- and H-reflex
Normal CMAP 

Myelinating 
Schwann Cells 

 
AMAN 

 
GD1a, 

GM1a, GM1b 

 
Normal distal limb 

latencies 
Reduced CMAP 

 

 
Axon (possibly 

via node of 
Ranvier) 

AMSAN GD1a, 
GM1a, GM1b 

 

Normal distal limb 
latencies 

Reduced CMAP 
Reduced or absent 

SNAPs 
 

Axon (possibly 
via node of 
Ranvier) 

APAN 
 
 
MFS 

Unknown 
 
 

GQ1b, GD3 
GT1a, GT1b 

 

Autonomic instability 
 
 

Reduced SNAP 
amplitudes 

Abnormal blink 
reflexes 

Reduced facial CMAP 
Variable motor studies

Autonomic 
ganglia 

 
NMJ 

 
Table 1.1: Clinical summary of GBS variants.   

 
 
 

1.1.7 Therapeutic options  

 

Although it is clear that the immune system is strongly implicated in the pathogenesis 

of GBS, only a limited number of current therapies are successful in modulating the 

immune response in this condition. Current literature suggests that plasma exchange 

and high dose intravenous immunoglobulin therapy (at 2g/kg over 2 days) are equally 

effective at improving functional outcome (for example shortening the time to 

walking independently) (Shahar, 2006) .  
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During plasma exchange, the patient’s blood is filtered and the plasma is substituted 

by an albumin solution. As plasma contains the pathological antibodies, its removal 

reduces the concentration of circulating antibody, and moderates the disease effect. 

The technical requirements of this process and equipment costs however, restrict this 

method to specialist tertiary referral centres. There are also certain complications 

specific to plasma exchange, rendering it slightly less safe than immunoglobulin 

therapy. These complications include those arising from insertion of dialysis 

catheters, and also bleeding diatheses (Raphael et al, 2002).  

 

The current alternative to plasma exchange is high dose intravenous immunoglobulin 

therapy. During this treatment, the patient receives a high concentration of purified 

plasma taken from at least 1000 donors. One of the earliest uses of immunoglobulin 

therapy was described in 1981 for the treatment of autoimmune thrombocytopenia in 

children, and then later for GBS (Imbach et al, 1981; Kleyweg et al, 1998). While the 

exact mechanism of action is unknown, it is thought that the high concentration of 

immunoglobulin can suppress the immune response. This may occur by blocking Fc 

receptors on macrophages to prevent them being directed to Schwann cells by 

antibodies; inhibiting the action of cytokines or autoantibodies; or by inhibiting the 

components of the complement cascade (Dalakas, 2004). Another, more complex 

hypothesis suggests that the immunoglobulin accelerates the breakdown of IgG by 

overwhelming the immunoglobulin recycling process in endothelial cells (a 

mechanism dependent on FcRn receptors on the cell surface) and diverting excess IgG 

towards lysosomes, increasing its rate of breakdown (Yu and Lennon, 1999). Another 

mechanism, which uses a model of MFS, suggests that immunoglobulin may inhibit 

antibody binding to the NMJ (Jacobs et al, 2003). 
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Regardless of the mechanism, recent reviews have clearly shown that concentrated 

immunoglobulin therapy is efficacious for the treatment of GBS to reduce overall 

morbidity (Hughes et al, 2007).  Although immunoglobulin therapy is widely 

considered to be safer than plasma exchange, there are risks with transfusion 

reactions, although these are normally self-limiting and are generally associated with 

hyperviscosity. The risk of infection is also limited by the careful screening of donors, 

and there have been no documented cases of transmission of HIV through 

immunoglobulin blood product, and only a small number of cases of hepatitis C. 

However, the large number of donors required for the therapy, and the difficulty with 

identifying and eliminating prion proteins, suggests that exposure to variant 

Creutzfeldt-Jakob disease is possible. While the transfusion services have made 

attempts to minimise this risk, the long-term effects of the potential exposure are still 

unknown (Hughes et al, 2006a). 

 

Another well established immunosuppressive treatment is the corticosteroid therapy. 

This technique has been used extensively in medicine as a treatment for autoimmune 

illness, and it would be expected to play a similar role in modulating the immune 

response in GBS. However, a recent Cochrane review did not show any evidence that 

steroids alone produce an improvement in symptoms, and indeed their use was 

associated with a slight (statistically insignificant) increase in steroid related 

complications including diabetes but not surprisingly, hypertension (Hughes et al, 

2006b). Steroids are widely recognised as being effective modulators of 

inflammation, and this surprising result may due to the effect of steroid myopathy 

masking any improvement in nerve function.  



 26

 

Clearly current therapy is effective but has a number of limitations, in particular 

failure to reduce the overall mortality of the condition (Hughes et al, 2007). It is 

therefore highly desirable to explore other treatment options. These new therapies 

could even be used in other autoimmune diseases beyond the nervous system that 

share a common pathogenesis. 

 

1.1.8 Possible future treatments  

 

Current therapies in GBS are directed towards modifying the immunological 

response, by either removing the causative antibodies, or directly influencing the 

immune response with high dose immunoglobulin. However, recent work suggests 

that it may be possible to inhibit the damage caused by the activation of complement, 

allowing prompt recovery from the initial insult. 

 

As discussed previously, damage in MFS is thought to arise from the entry of calcium 

into the nerve, through pores created by the complement product C5b-9 (membrane 

attack complex). The injury results from calcium binding to the cysteine proteases: 

calpains, producing damage to cytoskeletal proteins, including neurofilament (Chan 

and Mattson, 1999). Although they potentially contribute to injury in disease, calpains 

are also thought to be important in maintaining normal synaptic structure, as 

application of calpain inhibitors in a healthy preparation causes abnormal 

accumulations of neurofilament (Roots, 1983). Experiments have also shown a 

therapeutic role for calpain inhibitors, as their administration in vivo can have 
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beneficial effects following brain injury by preventing axonal breakdown (Bartus et 

al, 1995).  

 

As a result of these observations, calpain was studied in the context of antibody-

mediated nerve injury, as a method of inhibiting damage to neurofilament resulting 

from calcium ingress secondary to MAC activation (O’Hanlon et al, 2003). These 

experiments demonstrated that while application of calpain inhibitors (calpeptin and 

calpain inhibitor V) did not stop the electrophysiological changes associated with 

antibody-mediated injury, their application did inhibit subsequent breakdown of 

axonal neurofilaments. This suggests that while calpain inhibitors may not prevent the 

initial insult that produces paralysis, they may expedite recovery by limiting the 

damage resulting from antibody-mediated neuropathy. 

 

Other therapeutic strategies that attempt to modify or prevent the initial injury are also 

being investigated, including the use of complement inhibitors to limit the formation 

of MAC, and prevent significant terminal destruction. This could be achieved by 

inhibitors of C3 and C5 convertase enzymes in the complement cascade, using 

APT070, which is a substance based on the active component of CD35 (a naturally 

occurring complement regulator) (Halstead et al, 2005a).  

 

The formation of MAC can also be inhibited by the use of antibodies to C5, a key 

component in the MAC complex. These antibodies bind to C5 to prevent its cleavage 

into C5a and C5b, and thus prevent its use in the MAC complex. This has been shown 

to prevent nerve terminal injury caused by antibodies to complex gangliosides 

(Halstead, submitted).  
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Another treatment possibility involves refining the technique of plasma exchange to 

produce therapeutic columns through which blood is passed. Anti-ganglioside 

antibodies are then removed by immuno adsorption onto glycan-conjugated filtration 

devices (Willison et al, 2004). This would selectively remove pathogenic antibodies, 

without causing significant disruption or fluid shifts from the patient’s plasma. 

 

Once fully developed, these exciting strategies will hopefully offer new, safer 

treatments that will expedite recovery, and limit long-term injury in patients with 

GBS. If successful, these new therapies will hopefully reduce the considerable 

financial, and emotional impact of the disease. 

 

1.2 Disease Pathogenesis 

 

1.2.1 Role of gangliosides 

 

1.2.1.1 Background 

 

As discussed previously, a number of theories exist about the origin of injury in GBS, 

and anti-ganglioside antibodies are thought to be the most likely cause based on both 

laboratory and clinical data (Quarles and Weiss, 1999).  

 

Gangliosides are glycosphingolipid structures found extensively through the body, 

(Yuki et al, 1993c; Sheikh et al, 1998) and are particularly concentrated in the 

nervous system (Leeden, 1995), and in the outer leaflet of synaptic membranes 

(Simons and Ikonen, 1997). They consist of a hydrophobic ceramide “tail” lodged in 
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the lipid cell membrane, and an extracellular hydrophilic carbohydrate backbone to 

which sialic acids are attached. The constitution of the carbohydrate varies, as does 

the number and position of the sialic acid residues, allowing gangliosides to be 

identified using the widely recognised Svennerholm nomenclature. Firstly, the 

number and position of the sialic acids on each ganglioside are named as M, D, T or 

Q corresponding to: mono, di, tetra or quadra-sialosyl groups. A number from 1 to 4 

then follows, and this describes the biosynthesis of the carbohydrate backbone. Thus, 

gangliosides lacking the terminal galactose, galactosyl-N-acetylgalactosamine or 

internal galactose are assigned the number 2, 3 or 4, respectively. Finally, the position 

of the sialic acid groups on the backbone are described using a, b, or c and this 

correlates with the biosynthetic pathway. Most b group gangliosides have disialosyl 

gangliosides on the internal galactose (with the exception of GM1b) and c group have 

three internal sialic acids on the internal galactose. This nomenclature is preceded by 

the letter G, corresponding to “ganglio-series” ganglioside (figure 1.6).  

 



 30

 

 

Figure 1.6: Summary of ganglioside biosynthetic pathway. 

 

 

Thus, a ganglioside with a full carbohydrate “backbone” of galactose, galactosyl-N-

acetylgalactosamine, and the internal galactose, with a disialosyl group on the internal 

glucose would be named: GD1b 
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1.2.1.2 Ganglioside biosynthesis 

 

Using the Svennerholm nomenclature, the pattern of ganglioside biosynthesis is easily 

understandable. All gangliosides share a common ceramide, hydrophobic tail that is 

lodged in the cell membrane. A glucose molecule is added to this by UDP-

glucose:ceramide b-glucosyltransferase to form glucosylceramide (GlcCer). A 

galactose molecule is then added to the structure by galactose transferase to form 

lactosylceramide (LacCer). This forms the structural backbone of all other 

gangliosides. 

 

From here, the sialic acids are added to the first, internal galactose molecule by sialyl 

transferases (ST1-3) to form GM3, GD3 and GT3, respectively. These new 

gangliosides comprise the first molecules in the a-c series. The molecule then receives 

a GalNAc residue (using GalNAc transferase) to expand the carbohydrate backbone. 

A further galactose is added if necessary by galactose transferase, and remaining 

sialic acid residues are added to the terminal galactose by sialyl transferases where 

appropriate.  

 

The exact location of these synthetic enzymes is not clear, with variability seen 

between cell types, and actual gangliosides. However, it has been shown 

experimentally, using pharmological manipulation, that manufacture of simple 

gangliosides such as GM3 and GD3 occurs in the proximal Golgi apparatus (Young et 

al, 1990). GalNAcT has also been shown in the trans-Golgi apparatus (Giraudo et al, 

1999), and it is therefore likely that GM2 and GD2 are synthesised here. Often, 

enzymes are closely associated along gradients in the Golgi, to ensure efficient 



 32

transfer of molecules, and synthesis. This is seen in particular with GalNAc T and Gal 

T2 (Giraudo et al, 1999). However, it should be noted that this arrangement is not 

static, and can vary between cell types making biosynthesis a very complex 

arrangement. 

 

There are approximately 50 distinct gangliosides found throughout the body that are 

synthesised from monosaccharides in the Golgi apparatus using glycosyltransferases. 

They are usually located in “lipid rafts” with soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor (SNARE) proteins in the plasma membrane, and 

are particularly concentrated at NMJs, amongst other sites (Chamberlain et al, 2001).  

 

The distribution of gangliosides throughout the nervous system is not uniform as less 

complex ganglioside structures, such as GM1, are found in the spinal cord, 

particularly the cauda equina (Ogawa-Goto and Abe, 1998) while complex 

gangliosides are more commonly found in the motor cranial nerves (Chiba et al, 1993, 

Chiba et al, 1997). This results in a cranio-caudal reduction in ganglioside complexity 

through the spinal cord. 

 

Although the exact role of gangliosides at the synapse is not clear, studies suggest that 

they can modulate long-term potentiation of the synapse (Furuse et al, 1998), 

influence ion-channel function (Kappel et al, 2000), and their addition to incubation 

baths can cause an increase in synaptosomal neurotransmitter release (Ando et al, 

1998). Also, in the disease botulism, a paralytic illness caused by a neurotoxin from 

Clostridium botulinum, gangliosides are believed to act as presynaptic ectoacceptors 

for the toxin, whose incorporation into the presynaptic terminal results in blockade of 
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ACh release, and paralysis (Schiavo et al, 1992).  In addition to their role in nerve 

terminal function, gangliosides also therefore act as targets for paralytic disease in the 

peripheral nervous system (PNS). 

 

1.2.1.3 Anti-ganglioside antibodies 

 

1.2.1.3.1 Background 

 

Early work highlighted an association between benign monoclonal gammopathies and 

certain late onset neuropathies, when patients displaying strong IgM antibody titres to 

myelin associated glycoprotein (MAG) often had characteristic patterns of peripheral 

neuropathy (Kyle, 1992).  Patients with classical MAG related neuropathy usually 

present with a chronic, progressive, primarily sensory demyelinating neuropathy, 

characterised by an early onset upper limb tremor (Nobile-Orazio et al, 1994). Ex vivo 

studies, and also nerve biopises have shown both immunoglobulin deposition and 

complement activation products (van den Berg et al, 1996) associated with chronic 

demyelination and secondary axonal degeneration, supporting an antibody-mediated 

effect. 

 

Later studies also support the hypothesis that anti-ganglioside antibodies are capable 

of producing neuropathy, by demonstrating a correlation between neuropathy and 

antibodies to other structures within the PNS including sulfated glucuronyl 

paragloboside (SGPG), which shares many similar antigenic structures to MAG and 

gangliosides such as GM1 (Quarles and Weiss, 1999). Also, other anti-ganglioside 

antibodies have been associated with types of neuropathy, including those to Gal(ß1-
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3) GalNAc-bearing glycolipids; or NeuAc (α2-8) NeuAc (α2-3) Gal-configured 

disialylated gangliosides (Léger et al, 2001; Willison et al, 2001). Additionally, there 

is a strong association between GQ1b antibody and MFS (Chiba et al, 1993; Willison 

et al, 1993a). 

 

These illnesses give insights into ganglioside distribution in the body, by association 

with clinical symptomatology. For example, anti-GD1b antibodies can produce a 

sensory neuropathy, and have been shown to bind to the ventral roots in preference to 

the dorsal roots (Willison and Yuki, 2002) especially in the head and neck. In 

addition, the node of Ranvier has been identified as a possible source of injury in the 

variants of GBS possibly causing both demyelination and axonal degeneration. 

Gangliosides have been identified on both the axolemma (Ganser et al, 1983) and 

paranodal structures while anti-ganglioside antibody binding has been demonstrated 

to structures at this site (Molander et al, 1997; Willison et al, 1996).  

 

However, it should be noted that ganglioside distribution doesn’t necessarily correlate 

with clinical phenotype as both anti-GM1 and anti-GD1b antibodies bind to neurones 

in the dorsal root ganglia, but only anti-GD1b antibodies are associated with sensory 

neuropathies, (Maehara et al, 1997; O’Hanlon et al, 1998). Ganglioside location is 

clearly important, but other factors may be responsible for clinical presentation in 

certain cases. 
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1.2.1.3.2 Antibody production 

 

Although the antibodies may be implicated in the disease, the process that results in 

the production of antibodies has yet to be elucidated. A recent study examined the 

incidence of 16 common infections occurring shortly before the onset of GBS, with 

Campylobacter jejuni, cytomegalovirus and Epstein Barr virus being the most 

common (Jacobs et al, 1998). However, other studies have shown that GBS is 

preceded by a variety of infections. On this basis, it is now clear that many cases of 

GBS are preceded by an insult to the immune system. Often, these antibodies arise 

through a process of molecular mimicry. 

 

The process of molecular mimicry is clearly seen with the evolution of MFS 

following Campylobacter infection (Endtz et al, 2000). In response to this enteric 

infection, the body generates an immune response to lipooligosaccharides (LOS) and 

the outer core oligosaccharides of lipopolysaccharide (LPS) on the bacterial coat of 

Campylobacter jejuni (Boffey et al, 2004). These LOS glycan structures are 

structurally similar to gangliosides (Yuki et al, 1993b; Sheikh et al, 1998), and it is 

thought that the resulting antibodies bind these gangliosides in addition to the 

bacterial epitopes (Ang et al, 2004; Goodyear et al, 1999). However, less than 1% of 

all Campylobacter infections result in GBS, therefore these LOS structures alone are 

not sufficient to produce a response (Nachamkin, 2001).  

 

Detailed immunological characterisation of the antibody response is confusing, and 

does not appear to identify a clear method of antibody generation. There are two main 

cell types in the immune system: B-cells and T-cells. It has been widely accepted that 



 36

T-cells control much of the activity of B-cells, as B-cell activation usually requires 

antigenic protein binding to immunoglobulin on the surface of a subclass of B-cell 

(follicular dendritic B-cell), in association with antigen specific T-cell co-stimulation 

using ligand complexes and cytokine release. These newly activated B-cells either 

become quiescent memory cells, or plasma cells in the circulation. 

 

However, an earlier mechanism of B-cell activation exists that is independent of T-

cell function. In this pathway, subsets of B-cells (B1 cells, and marginal zone B-cells) 

found particularly in the pleural and peritoneal cavities, can activate independently to 

produce both IgA and IgM antibodies to respond early to infection (Fagarasan and 

Honjo, 2000), particularly with lipopolysaccharide expressing bacteria (Kearney et al, 

1997).   

 

Early mouse anti-ganglioside antibodies were generated from a T-cell independent 

mechanism. In these studies, mice immunised with ganglioside, or LPS devoid of 

disialosyl structures, produce IgM and IgG3 antibodies at low levels, in a manner that 

is consistent with activation of the innate B-cell pool. This suggests that B-cells exist 

in these pools, and can be polyclonally activated and amplified in response to antigen. 

Although these responses are weak, it is still possible to clone these antibodies for 

further study (Goodyear et al, 1999).   

 

Further characterisation of these antibodies confirms their T-cell independent origin. 

Work shows that the antibodies are of relatively low affinity, and are also polyreactive 

antibodies arising from unmutated V genes, without undergoing affinity maturation 

(Boffey et al, 2004). Despite their polyreactive nature, these antibodies do show 
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selective binding to polysaccharide structures, and could possibly cause injury in the 

nervous system (Boffey et al, 2005). Indeed, it has been proposed that activation of 

naturally occurring anti-ganglioside antibody from the innate B-cell pool may cause 

proliferation and pathologically elevated levels of antibody, causing neuropathy. 

Similar mechanisms of activation occur as an immediate response to other infections,   

(Snapper et al, 1994; Fagarasan and Honjo, 2000). 

 

However, human work suggests that anti-ganglioside antibodies causing MFS, 

AMAN and other forms of GBS belong to the IgG1 and IgG3 subtypes (Vedeler et al, 

1988; Willison and Veitch, 1994; Ogino et al, 1995). This suggests that the cells arise 

from B2 cells, which is consistent with a T-cell dependent response to an antigenic 

protein, most likely the LOS glycans on the coat of Campylobacter. This produces 

high affinity, specific antibodies that are particularly efficient at activating 

complement.  

 

Further evidence to support a T-cell dependent pathway in the human was seen from 

studies using a cloned antibody to the GM1 ganglioside. In this example, the genes 

were encoded by both diverse, and closely related V genes, some of which exhibited 

somatic mutation (Paterson et al, 1995). The authors suggest this is consistent with an 

antigen driven immune response, as expected with a T-cell dependent pathway. Other 

work from using IgM antibodies cloned from a patient with CANOMAD (chronic 

ataxic neuropathy with ophthalmoplegia, IgM paraprotein, cold agglutinins and 

disialosyl antibodies) also described somatic mutation and similar gene families, 

consistent with a T-cell dependent origin (Willison et al, 1996) that would produce 

high affinity, specific antibodies. 
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The mechanism of antibody generation in the human, and mouse is clearly very 

different. Although the reason for this difference is not entirely clear, it may reflect 

the nature of antigen exposure in both groups. In the mouse model, the animal is 

exposed to a high concentration of antigen very acutely, and this may result in a T-cell 

independent response. In the human however, exposure to antigen (from the infection) 

is more chronic, and prolonged, which may result in the T-cell dependent response.  

 

1.2.1.4 Immunological tolerance 

 

The mechanism behind the generation of anti-ganglioside antibodies in the human is 

further complicated by the concept of “immunological tolerance”.  Gangliosides are 

found throughout the body, and most people have low levels of antibodies to 

gangliosides circulating as natural innate defence against microbial infections (Casali 

and Schettino, 1996). These antibodies exist in low levels, possibly the result of 

immunological “tolerance”, and do not produce any apparent neuropathy. A failure of 

this process may account for the high levels of antibody seen pathologically. 

 

The exact mechanism behind this immunological tolerance is unknown, but it is 

believed that B-cells from the spleen and bone marrow are capable of detecting, and 

developing tolerance for, gangliosides within the tissues and circulation, but not 

necessarily when sequestered in the nervous system.  

 

This is supported by experiments where knock-out mice that are deficient in complex 

gangliosides, are inoculated with the oligosaccharide coating from Campylobacter 

jejuni (which is structurally similar to gangliosides). These mice generate an anti-
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ganglioside antibody response far greater than expected from their wild-type controls. 

These antibodies are also generated in a T-cell dependent manner (Bowes et al, 2002). 

It suggests that, under normal conditions, the presence of complex gangliosides limits 

the immune response, as the host animal does not recognise inoculated 

oligosaccharides as foreign. For some reason, there is a breakdown of this tolerance 

following infection, resulting in a vigorous immune response throughout the body, but 

especially in the nervous system where the high levels of antibody produces 

neuropathy. 

 

Detailed studies continue in this area, to develop a greater understanding of the exact 

mechanisms behind anti-ganglioside antibody production, and eventually develop 

techniques to interrupt this process that will possibly offer another therapeutic option 

in the disease. 

 

1.2.1.5 Detection methods 

 

One of the limitations of studying anti-ganglioside antibodies is the relative difficulty 

in their assay. Indeed, a number of factors exist that vary between laboratories, 

including source of antigen, handling of sera, and diagnostic criteria which make 

inter-laboratory comparisons difficult. Although attempts have been made to 

standardise current assay techniques (Willison et al, 1999), the sampling method 

(ELISA) may itself have inherent difficulties. For example, previously seronegative 

samples can show mildly positive titres if other molecules (for example, phosphatidic 

acid) are present on the ganglioside ELISA plate (Kusunoki et al, 2003). This 

suggests that anti-ganglioside antibodies have the capability to bind to complexes of 
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structures, rather than single ganglioside structures in isolation. This was supported by 

a recent study using sera from patients, where the anti-ganglioside antibodies bound at 

the interface between two ganglioside species (Kaida et al, 2004). As a result, it may 

be difficult to correlate clinical disease with antibody sub-species if they are tested in 

isolation on ELISA. 

 

1.2.1.6 Experimental evidence 

 

However, before anti-ganglioside antibodies can be confirmed as the cause of injury 

in GBS, the Witebsky’s postulates must be satisfied (Rose and Bona, 1993). These 

state that a disease can be classified as autoimmune if:  

 

1) There is evidence of an autoreactive process (ie molecular mimicry) 

2) There is a specific autoantigen  

3) The disease can be reproduced using an animal model 

4) The disease can be passively transferred to an animal model.  

 

The autoreactive process (molecular mimicry) has been described previously (Endtz 

et al, 2000) in GBS, and confirms the first postulate. Aside from this, it has been very 

difficult to confirm or refute the other postulates, particularly in the human. However, 

other investigators have provided indirect evidence, and have also performed animal 

studies that offer compelling evidence to support the autoimmune nature of injury.  

 

An example of this includes research into the role of gangliosides as a method of 

directing chemotherapeutic agents towards malignant tissue. Mouse anti-GD2 



 41

antibodies were used to target neuroectodermal tumours that are rich in ganglioside 

GD2. Two of the patients in this clinical trial then developed a sensorimotor 

polyneuropathy (Saleh et al, 1993), and resulting ex vivo binding studies using this 

antibody then showed strong binding to peripheral nerve myelin (Yuki et al, 1997), 

possibly explaining the pathogenesis of the neuropathy. In this study, anti-ganglioside 

antibodies were, in effect, passively transferred to the patient, and induced a clinical 

disease (sensorimotor polyneuropathy).  

 

Evidence to support the existence of an autoantigen is seen with AMAN patients who 

express high titres of antibodies in GM1. Firstly, ganglioside GM1 was shown to be 

present at the node of Ranvier by cholera toxin binding studies (Sheikh et al, 1999). 

Autopsy studies from patients with AMAN expressing high levels of GM1 showed 

immunoglobulin and complement binding to the nodes of Ranvier, and paranodal 

structures (Hafer-Macko et al, 1996a). The strong correlation suggests that anti-

ganglioside antibodies are binding to GM1 at this site. Although there have been 

limited studies demonstrating conduction block at the node of Ranvier, it is widely 

believed that it is the site of injury in anti-GM1 related disease (Willison and Yuki, 

2002), thus implicating the ganglioside in the disease pathogenesis, and making it a 

likely candidate as an autoantigen. This study is supported by work in the rabbit. In 

this example, rabbits were immunised with bovine brain ganglioside. These animals 

then produced high titres of anti-GM1 antibodies, and subsequently developed a 

flaccid paralysis. Post-mortem analysis also demonstrated pathological changes 

similar to AMAN, and this is strong evidence for an animal model of the disease 

(Yuki et al, 2001), while also supporting the possibility of gangliosides as 

autoantigens. 
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Interestingly, while anti-ganglioside antibodies can induce a polyneuropathy in 

humans, it has been extremely difficult to induce clinical disease in animal models 

using serum from patients. Aside from the obvious species difference, it is also 

difficult to break down the blood-nerve barrier in these experimental animals to allow 

antibody access to the potential sites of injury. While the other postulates have been 

proved, it remains difficult to absolutely confirm the autoimmune basis of GBS 

pathogenesis as a result (Sheikh and Griffin, 2001). 

 

1.2.1.7 Other hypotheses 

 

Other theories also exist as to the mechanism of injury in GBS. One such theory 

suggests that Campylobacter infection produces a non-specific activation of B-cells to 

produce IgM rather than high affinity, class-switched IgG. This is unlikely in GBS, 

but may be present in chronic neuropathies (Willison and Yuki, 2002).  

 

Another hypothesis identifies T-cells as the cause of injury and inflammation in the 

PNS, based in part on studies that have shown T-cell infiltration in cases of AIDP 

(Hughes et al, 1992a,b). One of the first animal models of AIDP, called experimental 

autoimmune neuritis (EAN), was developed in 1955 in rabbits. In this disease model, 

rabbits were inoculated with either ground sciatic nerve or spinal ganglia, and after 2 

weeks developed a progressive, acute flaccid paralysis associated with degeneration 

of peripheral nerve myelin. However, the pattern of this degeneration was variable, 

ranging from simple myelin degeneration to complete destruction of the Schwann 

cell, and its associated axon (Waksman and Adams, 1955). Although the authors 

couldn’t identify the exact pathological mechanism behind this injury, they felt this 
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model shared a number of similarities with human forms of peripheral neuropathy, 

and may be a suitable experimental model for the human disease.   

 

Later work using rabbit, and also rats inoculated with myelin or its components e.g. 

P0, P2 and PMP22, suggested these structures may be antigenic targets, and resulting 

demyelination was the result of a T-cell mediated injury (Kadlubowski and Hughes, 

1979; Linington et al, 1992; Gabriel et al, 1998) in AIDP. This was further supported 

by studies examining the effects of transferring CD4+ T-cell lines, which caused 

demyelination in a timescale that is not compatible with an antibody response 

(Linington et al, 1984). It is thought that this T-cell response to myelin antigens then 

directs macrophages to the site of injury, to cause demyelination. Interestingly, while 

the predominant cell type in the T-cell response bears αβ receptors on the surface, a 

small proportion of cells have γδ receptors, whose antigen presenting molecules are 

CD1. These molecules are upregulated in GBS, and may recognise non-protein 

antigens including glycolipids. This may explain the antibody response in cases of 

AIDP  (Hughes et al, 1999). 

 

However, it was shown elsewhere in both rat and rabbit that EAN serum could cause 

demyelination when passively transferred between animals by intraneural injection, 

and that this injury was primarily based on an antibody-mediated, complement 

dependent injury (Saida et al, 1978). Later work in rat sciatic nerve using passive 

intraneural transfers of antibody to galactocerebroside (GalC) also supported this 

observation (Saida et al, 1979a), as did work using cell cultures (Saida et al, 1979b). 

The role of anti-GalC antibodies is however controversial, and it has been argued that 

they represent a secondary phenomenon, unrelated to the pathogenesis of EAN 
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(Susuki et al, 2004), in particular because antibodies to GalC are rarely seen in human 

GBS, with the exception of those associated with Mycoplasma pneumoniae infection 

(Hughes and Cornblath, 2005).  It is possible in this model that both T and B-cell 

responses co-exist, with the T-cells initially recognising an antigen in the endoneurial 

compartment, before opening the blood-nerve barrier to allow antibody to access the 

nerve itself, and produce injury (Hughes et al, 1999). 

 

Also, some workers suggest that the initial infection may itself attack and injure the 

nerve, or nerve injury results from a post infection autoimmune response. While this 

is unlikely for bacterial infections such as Campylobacter, viral infections with CMV 

may acquire gangliosides from cells during infections, and thus invoke an immune 

response.  

 

1.2.2 Role of complement 

 

1.2.2.1 Complement Activation 

 

Early work has shown complement in close association with nerves and demyelinated 

areas in patients with GBS (Luijten et al, 1972), and samples of serum and CSF taken 

during the acute phase of the illness have demonstrated higher than expected 

concentrations of complement proteins including membrane attack complex 

(Tonnessen et al, 1982; Sanders et al, 1986). These clinical findings therefore suggest 

that antibodies may produce injury in GBS through a complement dependent process. 

Although anti-ganglioside antibodies have been shown to have influence NMJ quantal 

release independently in the mouse (Buchwald et al, 2002), certain anti-ganglioside 



 45

antibodies can produce significant NMJ injury in the presence of a source of serum, 

due to activation of the complement cascade (Halstead et al, 2006b). 

 

Complement was first described in 1898 by Jules Bordet (Bordet, 1898) and later 

characterised in 1899 by Ehrlich and Morgenroth as a heat-sensitive component of 

serum that could kill bacteria in conjunction with antibody (Silverstein, 2001; Ehrlich 

and Morgenroth, 1899). In addition to its bactericidal properties, complement has 

other functions in the body, including acting as a stimulus to inflammation by causing 

degranulation of mast cells and basophils via C3a and C5a. These can also produce 

smooth muscle contraction, and increase vascular permeability, which are all 

important in the inflammatory process. Complement can also activate neutrophils, and 

cause their chemotaxis (C5a); solubilise circulating immune complexes to prevent 

injury to capillary beds (C3b, CR1); and permit the opsonization of bacteria and fungi 

to allow their subsequent phagocytosis (C3b, C4b) (Walport, 2001b) 

 

Complement can also produce injury at the cellular level by the “complement 

cascade”. This cascade consists of three different pathways that recognise different 

activating antigenic “targets”; amplification enzymes to increase the effect of the 

initial target substance, and the final common pathway resulting in the formation of 

membrane attack complex (MAC).  

 

The “classical” pathway was the first to be described, and results from antibody 

binding to antigenic targets on the cell surface, activating complement components 

C1-C9. Antibody binding to the antigenic surface results in the activation of enzyme 

C1, which then undergoes a conformational change and cleavage of its 4 intrinsic 
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polypeptide chains. One of these chains (C1s) then cleaves C2b from the membrane 

bound C4b-C2 complex. The resulting C3-convertase complex then produces C3b. 

  

The “alternative” pathway is more complex, and involves binding of circulating C3b 

to the cell membrane, which then binds Factor B. This process can be initiated by 

either circulating immunoglobulins (IgA or IgE), or non-immunological means e.g. 

particulate polysaccharides (bacterial LPS, yeast, fungi etc). Circulating Factor D then 

cleaves Factor B into Ba and Bb. The resulting C3Bb complex acts as a C3 convertase 

to produce C3b.   

 

The other pathway in the complement cascade is known as the Mannose-Binding 

Lectin pathway. This process is similar to the “classical” pathway, and uses mannose-

binding lectin-associated proteases 1 and 2 (MASP1 and MASP2) from the liver to 

bind to arrays of mannose groups on the bacterial cell surface, and activate C3 or its 

convertase enzyme. MASP2 activation is thought to lead to the formation of the C3 

convertase enzyme, while MASP1 is thought to cleave C3 directly. This leads to 

further activation of the cascade in a manner similar to the classical pathway. The end 

result of these pathways is the formation of C5 convertase enzyme, which cleaves C5 

to form C5b and is used to form MAC (Walport, 2001a). These pathways are 

summarised in figure 1.7.  
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Figure 1.7: Summary of complement cascade. 

The Classical, Mannose-Binding-Lectin, and Alternative pathways are 

shown. In the classical pathway, antibody is seen to bind to the surface of a 

bacterial cell, with activation of complement products C1-C9 to form 

MAC. The alternative pathway is also shown, with C3b binding to the 
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bacterial cell before assembling MAC through a complex series of 

enzymatic reactions (taken from Walport, 2001). 

 

1.2.2.2 Membrane Attack Complex 

 

MAC is a complex molecule, comprising complement molecules C5b-C9. Although 

C5b-8 is crucial to the formation of MAC, it is thought that the initiating step of MAC 

formation is insertion of the C9 molecule into the cell membrane. C9 is an 

amphipathic molecule that binds to the C5b-8 complex, and inserts through the cell 

membrane before polymerising to form a transmembranous “pore”. The classic “tube-

like” structure of MAC usually contains between 16-18 C9 molecules but it is 

believed that C9 can produce membrane disruption in smaller numbers (one or two 

C9 molecules) by forming functional, rather than structural pores (Podack and 

Tschopp, 1984; Bhakdi et al, 1991).  Functional disruption in the absence of structural 

“tubes” seen with small numbers of C9 molecules led to the “leaky patch” hypothesis 

of MAC action. In this hypothesis, C9 insertion into the membrane was thought to 

disrupt membrane integrity but true, discrete channels were not formed (Esser, 1991). 

However, the former hypothesis of structural tube formation is currently more widely 

accepted (Cole and Morgan, 2003). 

 

Interestingly, MAC is not exclusively cytotoxic, and in certain conditions, can act to 

preserve cells by inhibiting apoptosis, or protecting against lysis. Although MAC has 

been implicated in Schwann cell injury in GBS (Putzu et al, 2000), studies have 

shown that sub-lethal levels of MAC can actually induce proliferation of Schwann 

cells in culture  (Dashiell et al, 2000; Hila et al, 2001) and thus may be involved in 
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Schwann cell recovery following injury. The role of complement on Schwann cells is 

clearly an interesting area for further study.   

 

1.2.2.3 Complement regulators 

 

In order to limit damage to host tissues from the indiscriminate activation of the 

complement cascade, regulators exist on cell membranes to minimise injury: 

membrane cofactor protein (MCP or CD46), decay-accelerating factor (DAF or 

CD55) and CD59 (Miwa and Song, 2001). MCP acts as a cofactor for serum protease 

factor I to cleave the C4b and C5 convertase (Brodbeck et al, 2000), while DAF limits 

both C3 and C5 convertase assembly on cell surfaces by limiting their assembly, and 

accelerating their decay (Hourcade et al, 1999). CD59 acts by inhibiting the formation 

of MAC pores by preventing insertion of C9 into the C5b-8 complex, inhibiting cell 

lysis (Davies et al, 1989). Mouse models deficient in these regulators have been 

developed to understand their contribution to complement-mediated disease, 

including nephritis (Lin et al, 2004) and paroxysmal nocturnal haemoglobinuria (Holt 

et al, 2001). 

 

Unlike humans who have only single genes, mice have two DAF (DAF1 and DAF2) 

and two CD59 (CD59a and CD59b) genes. DAF2 is a transmembrane anchored 

protein mainly expressed in testis and splenic dendritic cells, while DAF1 is a GPI 

anchored protein expressed in a number of cell membranes (Spicer et al, 1995). The 

distribution of the CD59 regulator genes (CD59a and CD59b) is broadly similar 

(Harris et al, 2003). Both DAF1 and CD59a are considered homologous for the 

human regulators, and they have been shown to regulate heterologous sources of 
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complement to an extent (Sun et al, 1999; Miwa and Song, 2001). As a result, strains 

deficient in these complement regulators are a useful tool for understanding the 

contribution of complement in anti-ganglioside antibody-mediated injury at the NMJ. 

 

1.3 Neuromuscular Junction 

 

1.3.1 Historical context 

 

The NMJ has been under close scrutiny for over 150 years, having first been 

described by Wagner, Kuhne, Rouget and Krause in the latter half of the 19th Century 

(cited by Couteaux 1973).  In the central nervous system, synapses often receive 

multiple inputs, and act as processors of data. However, the sole purpose of the NMJ 

appears to be the transmission of axonal action potentials into muscle fibre 

contractions, essentially acting as a conduit between two cell types. 

 

1.3.2 NMJ transmission 

 

Although the patterns of transmission at the NMJ are complex, the mechanisms have 

been described in great detail. Transmission occurs across a synaptic cleft, via ACh. 

This transmitter substance is stored in the axon in small packets, known as vesicles, 

which are released in response to action potentials in the axon. Each vesicle can 

contain between 5000-10000 molecules of ACh (Kuffler and Yoshikami, 1975). 

However, these vesicles also fuse with the axon membrane spontaneously, releasing 

their ACh into the synaptic cleft. Some of this ACh reaches the post-synaptic 

nicotinic-ACh receptors to produce sodium influx into the muscle, and a small 
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depolarisation (approximately 1mV) of the post-synaptic specialisation that is usually 

insufficient under normal circumstances to produce muscle contraction. This 

spontaneous release, known as miniature end plate potentials (MEPPs) was first 

described famously by Bernard Katz, in his studies of frog muscle fibres, and offered 

the first description of quantal release at the NMJ.  

 

A proportion of these vesicles lie in clusters at the presynaptic nerve terminal cell 

membrane, in groups known as “active zones”. During active contraction, an action 

potential from the axon depolarizes the NMJ, and opens voltage dependent calcium 

channels in the axonal membrane, causing a massive influx of calcium. A number of 

these calcium channels are believed to lie in close proximity to the “active zones” 

(Robitaille et al, 1993). Calcium-sensitive proteins anchor synaptic vesicles to the 

membrane, and cause vesicular release in response to calcium influx from the active 

zones (Sheng et al, 1998). A second group of ACh vesicles lies behind the “active 

zones”, and are not involved in neuromuscular transmission under normal 

circumstances. It is thought that this second group acts as a reserve supply of ACh, to 

prevent transmission failure in response to high frequency activation of the nerve. 

 

Active zones lie in direct opposition to the open areas of post-synaptic sarcolemmal 

folding, known as “junctional folds”. Junctional folds are deep foldings within the 

post-synaptic area that are particularly evident in the mammal, and have a high 

concentration of ACh receptors at their apex. In mammals, the area of contact 

between the nerve and the post-synaptic specialisation is relatively small (particularly 

in comparison to the frog). To maximise the effect of neurotransmitter release, 

junctional folds increase the surface area post-synaptically, and thus increase the 
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number of available ACh receptors (Wood and Slater, 2001). Their location directly 

across from active zones also ensures maximum use of any released ACh, and 

establishes a high fidelity synapse. If a sufficient quantity of ACh therefore binds to 

post-synaptic receptors, and the resulting depolarization is sufficiently great, voltage 

sensitive sodium channels deeper within the post-synaptic specialisation will open, 

and produce a muscle action potential and contraction (figure 1.8). 

 

 

 

Figure 1.8: Electron micrograph illustrating the structure of a mouse NMJ.  

Synaptic vesicle and mitochondria are seen in the axon terminal, which lies 

in a depression on the surface of the muscle. The synaptic vesicles lie in an 

area adjacent to the synaptic folds. ACh receptors are stained with HRP-

bungarotoxin, and are seen at the crests of the junctional folds. A TSC is 
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seen to cap the terminal (from Wood and Slater, 2001, and Lyons and 

Slater, 1991) 

 

1.3.3 Age related changes 

 

Once formed, the junction is not static and a number of changes occur with age. The 

synaptic structure gradually becomes more complex, with increasing branching 

patterns seen pre- and post-synaptically in most studies in the mouse. The amount of 

ACh released in response to an action potential also increases, to reach a peak at 

around 200 days in the mouse before starting to decline. Changes in junction 

structural complexity may be associated with these changes in ACh release, and while 

the amount of ACh released does decline with age, it is not sufficient to impair 

neuromuscular function to any noticeable extent (Wood and Slater, 2001). 

 

1.4 Terminal Schwann cells 

 

1.4.1 Background 

 

Although previously considered a bipartite synapse comprising presynaptic nerve 

terminal and postsynaptic specialization, recent work has suggested that adjacent glial 

cells are functionally important at the NMJ (Araque et al, 1999). These glial cells, 

known as peri-synaptic or terminal Schwann cells (TSCs), were first described by 

Ranvier in 1878 as “arborisation nuclei”, and were thought to be responsible for 

branching during nerve development. It was only some years later that these nuclei 
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were identified as derivatives of Schwann cells, which “capped” the nerve terminal 

junction (figure 1.9) (Birks et al, 1960).   

 

 

 

Figure 1.9: The morphology of the NMJ, as shown by scanning electron 

micrography.  

The terminal axon is almost detached from the muscle surface, 

demonstrating grooving on the muscle surface (m) almost identical to the 

terminal axon. A TSC (s) is seen to overlie the terminal axon, with a 

capillary (c), pericyte (p) and adjacent nerve (n) lying nearby. (Taken from 

Matsuda, 1988) 
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During development, all Schwann cells arise from the same neural crest progenitor 

cells. These early Schwann cells migrate along nascent axons projecting to peripheral 

targets, to eventually wrap and segregate the axons or lie adjacent to NMJs. These 

cells differentiate during maturity depending on their location, morphology, or 

biological phenotype (Corfas et al, 2004).   

 

Previously, distinction was made between Schwann cells based on their myelin 

expression. Many small calibre axons are encased in Schwann cells that do not 

express myelin, while thicker axons are often wrapped in several layers of a Schwann 

cell sheath containing large amounts of myelin. This allowed distinction between 

myelinating and non-myelinating Schwann cells. However, this distinction is not 

static, and it has been shown that Schwann cells are pleomorphic. In experiments, a 

non-myelinated radiolabelled section of nerve was grafted onto a regenerating 

myelinating nerve in an unlabelled animal, and with time, the radiolabelled Schwann 

cells adopted a myelinating phenotype (Aguayo et al, 1976a). A similar series of 

experiments demonstrated that Schwann cells can also lose their myelinating 

phenotype, and this process appears to be under the control of the regenerating axon 

(Aguayo et al, 1976b), possibly via neuregulin-1 signalling (Taveggia et al, 2005).  

 

Interestingly, TSCs express many of the proteins found on other Schwann cells, 

including the low molecular weight, calcium binding protein S100 and P0 

Surprisingly, TSCs also express many myelinating cell markers, including MAG, 

2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNPase), myelin galactolipid and 

galactocerebroside (GalC), and suggests that TSCs and myelinating Schwann cells are 

closely related (Georgio and Charlton, 1990).  Despite these similarities, it is now 
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accepted that the TSC represent a third type of Schwann cell. This distinction was 

initially made on the location of these cells: overlying the NMJ, and capping the 

axonal branches at this site.  However, they also express more neurotransmitter 

receptors, and have a greater variety of ion channels than other types of Schwann cell 

(Descarries et al, 1998; Robitaille et al, 1996). In their “quiescent” state, TSCs appear 

to detect, and possibly influence synaptic transmission through changes in 

intracellular calcium concentrations, while also influencing synaptic morphology. 

Under certain conditions (for example nerve injury), the cell can change its 

phenotype, under the influence of neuregulin, to become “reactive” and provide 

trophic support for the regenerating axon by producing processes that can guide 

axonal sprouts to adjacent junctions. 

 

1.4.2 Role of terminal Schwann cells following nerve injury 

 

1.4.2.1 Morphological and functional changes 

 

Early work examined the NMJ following nerve sectioning and demonstrated that the 

TSCs, after axonal damage, became phagocytic and removed subsequent detritus in 

preparation for nerve regrowth (Miledi and Slater, 1970). During this process, the 

cells were also noted to move between the muscle fibre and nerve terminal to occupy 

the spaces vacated by the nerve, and synthesise the enzyme acetyltransferase (Miledi 

and Slater, 1970). The ACh subsequently produced by this process was then released 

to the muscle fibre, producing miniature endplate potentials in both the frog, and to a 

lesser extent, mammals  (figure 1.10) (Reiser and Miledi, 1988; Miledi and Slater, 

1970). It is unclear if release of this transmitter from TSCs has any role in maintaining 
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post-synaptic terminal function immediately following denervation. In the amphibian 

model, TSCs cells produce other neuronal transmitter substances, including nitric 

oxide and glutamate but again, their role remains unclear (Descarries et al, 1998; 

Pinard et al, 2003).  

 

 

 

 

Figure 1.10: An end plate denervated at 12¾  hours.  

This plate shows accumulations of high-density material, consisting of 

mitochondria, dense granular material of unknown origin, and degenerating 

axonal material. Muscle is shown (m) and processes from the TSC (Sch) 

are seen to extend into the synaptic cleft. (Taken from Miledi and Slater, 

1970). Scale bar 1µm   
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Other functional changes occur in the cell following nerve injury, including increased 

muscarinic ACh receptor expression in the amphibious NMJ. (Robitaille et al, 1997). 

It has been demonstrated that other proteins, such as myelin basic protein, may alter 

the pharmacology of this receptor, suggesting the change in receptor expression may 

have functional significance (Tucek and Proska, 1995).   

 

1.4.2.2 Molecular changes 

 

Changes have also been shown to occur in the TSC’s cytoskeleton with alterations in 

the levels of growth-associated phosphoprotein (GAP-43) and glial fibrillary acidic 

protein (GFAP). Alterations in these cytoskeletal components are believed to control 

the cell’s response to neuronal injury.  

 

Other molecules in the cell undergo changes depending on the cell state. Before the 

development of fluorescent proteins, markers were developed to better understand the 

changes that occur at the NMJ following denervation. One of these antibody markers, 

4E2 bound strongly to the edges of the post-synaptic ACh receptor gutters, and 

elements of the contractile proteins of the muscle lying near the junctions (Astrow et 

al, 1994). However, following axonal injury, the TSCs also began to express the 4E2 

phenotype and this was used as a marker for reactive Schwann cells in studies of 

axonal injury. Provisional data suggest the antibody may be binding to a component 

of the intermediate neurofilament, nestin, whose expression is upregulated following 

denervation (Son and Thompson, 1995a, Vaittinen et al, 1999). 
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1.4.2.3 Post-synaptic maintenance 

  

TSCs have an important role in reinnervation of vacated end plates following 

axotomy. Axons have the capacity to regrow following incomplete axotomy. To 

facilitate this process, following partial denervation, the nerve is phagocytosed and 

the Schwann cells which previously wrapped the axon, regress to leave an 

endoneurial tube.  The new axon then regrows along this tube, remyelination occurs, 

and the vacant end plate is reinnervated (Kang et al, 2003; Rich and Lichtman, 1989). 

 

Rather than regress like their axonal counterparts, TSCs extend following denervation 

to enter the synaptic site previously occupied by the nerve. Eventually, a newly 

growing axon will enter the area occupied by the TSC and reinnervate the end plate in 

a process regulated by the TSC. Immunofluorescence studies have shown that if this 

process is delayed, there is a loss of post-synaptic ACh receptors, suggesting 

degradation in synaptic function (Trachtenberg and Thompson, 1996; Kang et al, 

2003). 

 

The exact reason for this post-synaptic degradation is unclear, but may be due to the 

changes in TSC morphology following denervation. Although it initially occupies a 

large proportion of the area vacated by the axon, the TSC begins to withdraw from 

this site to extend a fine network of cellular processes beyond the synapse to guide 

reinnervation (Reynolds and Woolf, 1992), leaving some postsynaptic areas 

“uncovered” and thus unstimulated by ACh (either from the TSC or reinnervating 

axon). This causes a loss of function in the “uncovered” areas. 
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It is thought that this loss of function arises through competition between active and 

inactive post-synaptic areas. This was first described during localised applications of 

bungarotoxin (an ACh receptor antagonist) to nerve terminals. When this toxin is 

applied to discrete areas post-synaptically, the “silent area” quickly begins to 

degenerate. This is thought to result from direct competition between active post-

synaptic areas and sites that are electrophysiologically quiescent as a result of 

bungaratoxin application, although the mechanism of this interaction is not known. 

This hypothesis is supported by observations where bungarotoxin is applied across the 

whole end plate, and post-synaptic function is maintained as there is no direct 

competition within the end plate  (Balice-Gordon and Lichtman, 1994). Thus, when 

TSC processes extend beyond the synapse, leaving areas of the post-synaptic 

apparatus uncovered and unstimulated, this will result in loss of Ach receptor area 

through competition with active areas.  

 

1.4.3 Terminal Schwann cells and NMJ reinnervation 

 

1.4.3.1 Complete axotomy 

 

Processes extended beyond the junction by TSCs are often closely associated with 

regrowing axons, which extend beyond their newly innervated endplate along the 

TSC extensions (Reynolds and Woolf, 1992). This phenomenon was noted as early as 

1944, when these axonal growths were described as “escaped fibres”. Extensions 

from the TSC are thought to provide trophic support for these regenerating axons 

(Son and Thompson, 1995a,b). This is supported by in vivo studies where neurones 

have been shown to grow along newly formed Schwann cell processes. Live imaging 
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studies have also shown that the TSC extensions act as a “guide” for the regrowing 

axon, possibly via this trophic interaction (Bixby et al, 1988; Kang et al, 2003).  

 

Schwann cell processes can meet similar processes from adjacent synaptic sites, or 

contact other end plates to form direct connections, and form “Schwann cell bridges”. 

Often, an axon will grow across a bridge to reinnervate an adjacent, vacant end plate 

and then travel proximally through the end plate’s endoneurial tube to grow down an 

adjacent fibre, and thus innervate further end plates (figure 1.11). If however, both the 

Schwann cell process and its axon fail to meet an appropriate synaptic site, and 

reinnervation is delayed, they both regress, stressing the importance of synaptic 

transmission on Schwann cell process formation (O’Malley et al, 1999).  
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Figure 1.11: Cartoon illustration of changes to TSCs following 

denervation.  

Following denervation, both myelinating and non-myelinating Schwann 

cells phagocytosed the nerve debris (B).  The TSCs also begin to extend 

processes over the surface of the muscle. These processes can often 

connect, forming a Schwann cell “bridge” (C). This allows an axon that is 

reinnervating a single junction to cross this bridge, and innervate the 

remaining junctions (D). (From Kang et al, 2003) 

 

 

Manipulation of synaptic transmission and muscle function can influence TSC 

process formation. For example, direct muscle stimulation can inhibit bridge 

formation between innervated and denervated end plates, as can exercise in 

extensively denervated muscles (Love et al, 2003; Tam et al, 2001). This has led the 
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authors of the latter study to suggest that increased neuromuscular activity is not 

recommended immediately following motor neurone injury, or early stage motor 

neurone disease. Inducing a presynaptic blockade with botulinum toxin however 

results in TSC process formation, but the resulting network is usually less complex 

and more disorganized than those extended during denervation (Son and Thompson, 

1995).  When botulinum is applied after denervation, the Schwann cell processes do 

not form bridges appropriately. Similar effects on process formation are also seen 

with alpha-bungarotoxin application (a post-synaptic blocker), implying that pre- and 

post-synaptic function are important in determining successful TSC process formation 

(Love and Thompson, 1999). 

 

1.4.3.2 Incomplete axotomy 

 

Another method of nerve regrowth facilitated by Schwann cells is known as “terminal 

sprouting”. During incomplete nerve injury (e.g. nerve crush), both intact and 

denervated terminals coexist. The intact terminals can often extend an axonal 

outgrowth, called a “terminal sprout” to reinnervate adjacent synaptic sites, and static 

studies again suggest that Schwann cells facilitate this process. The TSCs from 

denervated end plates extend cellular processes towards “healthy” end plates, and 

induce an axonal sprout, which the Schwann cell process then guides to the 

denervated end plate (figure 1.12). It is thought that this process may be under the 

control of nitric oxide, generated post-synaptically from muscle fibres (Marques et al, 

2006). 
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Figure 1.12: Cartoon illustration of TSC response to nerve crush.  

In this example, two junctions are seen. Following axon loss from the upper 

junction, TSCs extend processes across the surface of the muscle (B). A 

process contacts an adjacent, innervated junction, and induces axon 

sprouting from this site. The axon sprout travels across the TSC process, 

and innervates the upper junction (C). (From Love and Thompson, 1999) 

 

This mechanism of sprouting can lead to motor units that are significantly larger than 

their predecessors, often by as much as 6-8 fold, representing a capacity to 

compensate for the potential loss of over 85% of all motor units (Thompson and 

Jansen, 1977; Tam et al, 2001). Although functional muscle weakness is only evident 

when less than 20% of motor units remain intact, this degree of loss can occur in 

spinal cord injury and conditions such as amyotrophic lateral sclerosis and polio 

(Rafuse et al, 1992). Understanding and controlling Schwann cell function to regulate 

terminal regeneration may therefore be crucial to improving muscle function in these 

types of nerve injury. 
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1.4.3.3 Perisynaptic fibroblasts following axotomy 

 

Ultrastructural analysis of the end plate following axotomy-induced denervation has 

also demonstrated cellular processes that are not associated with TSCs or axons. 

These stellate shaped cells, because they lack a basal lamina, and have a rough 

endoplasmic reticulum on ultrastructural analysis, are thought to be of fibroblast 

origin (figure 1.13a) (Gatchalian et al, 1989). These fibroblasts exist adjacent to the 

TSC, and produce extracellular matrix components that are considered important in 

nerve and muscle remodelling following denervation e.g. type I collagen, fibronectin 

and proteoglycans.  

 

Following denervation, these cells proliferate and extend a network of processes 

across and around muscle fibres to form a “diaphanous veil” arising from the end 

plate which is thought to provide trophic support for both the muscle and regenerating 

nerve immediately following denervation (figure 1.13b) (Connor and McMahan, 

1987). The cells arise through local proliferation, although the exact stimulus for this 

increase is unknown. No clear link has been established between this fibroblast 

network, and TSCs, but their shared role in axonal regeneration makes an association 

likely (Gatchalian et al, 1989; Reynolds and Woolf, 1992). 
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Figure 1.13: Cartoon illustration of fibroblasts at the NMJ.  

The NMJ is shown in cross section. Stellate shaped fibroblasts lie over 

TSCs at the junction (not shown), and over the surface of the muscle 

around the NMJ (A). Following denervation, these fibroblasts proliferate 

and extend over the surface of the muscle fibre to form a complex network 

(B). 

 

 

 

 

A 

B 
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1.4.3.4 Synaptic remodelling 

 

Interestingly, TSCs spontaneously extend and retract processes in a manner similar to 

denervation under normal conditions, although these rarely extend a significant 

distance beyond the junction or make contact with adjacent junctions. It is thought 

that these processes can provide trophic support for the axon, and result in subtle 

changes in end plate morphology over a period of time through competition between 

active and inactive zones, as described earlier (Lichtman et al, 1987). This is 

supported by in vivo studies from the frog, where limited TSC process extension is 

seen to precede axon growth and eventual remodelling. 

 

1.4.4 Control of Terminal Schwann cell function 

 

Despite learning much about the effects of TSC process formation, little is known 

about the control mechanisms or signals that result in their production. However, 

recent work has highlighted possible signalling molecules that may influence both 

Schwann cell process formation, and nerve terminal guidance.  

 

1.4.4.1 Muscle Factors 

 

Axonal sprouts exist during periods of muscle inactivity, whether induced pre or post 

synaptically (Pamphlett, 1989; Holland and Brown, 1980). Equally, sprouting is 

inhibited during periods of muscle activity, or when botulinum toxin induced sprouts 

are exposed to antibodies from antigens in inactive mouse muscle (Love et al, 2003; 

Grney, 1984). It is thought that sprout formation is the result of local factors released 
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from muscle, possibly insulin like growth factor II, or neural cell adhesion molecules 

(Caroni and Grandes, 1990; Gurney et al, 1986). A similar effect may exist between 

TSC processes and muscle derived factors. 

 

1.4.4.2 Neurotrophins and neuregulins 

 

A variety of neuroregulin and neurotrophin receptors also exist on the cellular 

components of the NMJ, and their distribution changes with different levels of 

synaptic activity (Auld and Robitaille, 2003). During axotomy-induced denervation, 

for example, the levels of low-affinity nerve growth factor receptor GAP-43 increase 

(Reynolds and Woolf, 1992).  

 

Neurotrophins have also been implicated in TSC process formation. Neurotrophins 

represent a family of molecules that are secreted from a nerve’s target area, and are 

thought to be responsible for promoting nerve survival, possibly by inhibiting axon 

apoptosis (Arevalo and Wu, 2006).  

 

It is acknowledged that neurotrophin 3 (NT-3) expression, which occurs in muscle, is 

promoted by neurotransmission during development, allowing ACh receptor 

clustering (Loeb et al, 2002). However, recent work also suggests that NT-3, and its 

receptor TrkC (which is specific to the TSCs of neonatal and adult mice) may also be 

important in process extension, since selective inhibition of this signalling interaction 

can induce sprouting in a fashion similar to denervation. Also, process formation and 

sprouting were reduced when NT-3 was over expressed in muscle. These data suggest 
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that reduced NT-3 release from muscle, acting on TSCs via TrkC, may be an 

important limiting factor in TSC process formation (Auld and Robitaille, 2003).  

 

Recent work suggests that neuregulins, particularly neuregulin-1, are important in the 

response of the TSC to injury. Neuregulin-1 (Nrg-1) is a series of alternatively spliced 

growth and differentiation factors that signal through the ErbB receptor tyrosine 

kinases, and whose levels are extremely concentrated within the synapse, and the 

synaptic basal lamina (Sandrock et al, 1995; Goodearl et al, 1995).  

 

Although there are several genes that code for different classes of neuregulin, Nrg-1 is 

one of the best characterised and has been shown to be involved in cell migration, 

growth, survival and differentiation (Buonanno and Fischbach, 2001).  Various 

isoforms of Nrg-1 exist, and studies of one variant, glial growth factor II (GGF2) have 

demonstrated that exogenous application can induce Schwann cell process formation, 

migration and proliferation in the developing rat (Trachtenberg and Thompson, 1997). 

This isoform can also protect rat TSCs from undergoing denervation induced 

apoptosis (Trachtenberg and Thompson, 1996).  

 

However, receptors for Nrg-1 (ErbB) are also present on both the axon and muscle, 

therefore to confirm that Nrg-1 acts on the TSC, a Tet-On system was used to regulate 

a mutant constitutively active ErbB-2 receptor expressed on Schwann cells. This 

demonstrated that activation of the system induced process formation, and migration 

of the TSCs away from the junction, with associated axonal sprouting in a manner 

similar to early work with topical application of GGF2 (Hayworth et al, 2006). This 
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suggests strongly that neuregulin-1 is important in the response of Schwann cells to 

denervation. 

 

1.4.4.3 GFAP 

 

Another hypothesis developed in the frog implicates glial fibrillary acid protein 

(GFAP) as a TSC regulatory protein, acting via ACh. GFAP is a major glial 

intermediate filament protein that constitutes part of the glial cell cytoskeleton and is 

involved in a variety of functions (Galou et al, 1997). Approximately 11% of TSCs 

express GFAP under normal conditions, possibly due to muscarinic receptors on their 

surface that down regulate GFAP in response to ACh release at the nerve terminal 

(Georgiou et al, 1994; Georgiou and Charlton, 1999).  

 

In the absence of ACh release at the nerve terminal, for example following axotomy, 

levels of GFAP expression increase to become detectable in 81-91% of all TSCs. This 

increase may act as a stimulus to process extension. Increase in GFAP expression can 

be inhibited when the transected nerve is electrically stimulated, and precipitated by 

blockade of the pre-synaptic calcium channels which govern ACh release. Local 

release of ACh from adjacent, intact end plates during partial denervation can also 

limit intracellular GFAP in denervated end plates, and prevent process formation 

(Tam et al, 2001).  This interaction is only seen with ACh, and is absent with 

transmitters ATP, adenosine, and substance P.  
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1.4.4.4 GAP-43  

 

Although the GFAP work has only been characterised in the amphibian model, 

changes have also been shown to occur in the TSC’s cytoskeleton in the mammal. In 

particular, levels of growth-associated phosphoprotein (GAP-43) are shown to 

increase in the TSC following denervation. GAP-43 is associated with neurite 

production and may be implicated in the TSC process formation following 

denervation as a result (Woolf et al, 1992).  

 

1.4.5 Neuromuscular transmission 

 

1.4.5.1 Detecting synaptic transmission 

 

The TSC appears to be very important in controlling the response to nerve injury, but 

it is also an active partner in synaptic function (Araque et al, 1999). Using marker 

dyes that become fluorescent in the presence of calcium, it was shown that the 

concentration of calcium within the TSC derived from intracellular stores increases 

during high frequency stimulation of the NMJ, but is greatly reduced when transmitter 

release is blocked. Further, when ACh or muscarinic agonists are applied, similar 

calcium transients were observed, that diminished in the presence of atropine. 

Although this represents a muscarinic response, purinergic stimulation with adenosine 

through A1 (adenosine) receptors can also produce a calcium response. This response 

is partially blocked by A1 antagonists and therefore suggests that endogenous 

adenosine may have a limited role in TSC activation.  
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Interestingly, while ATP can also produce a calcium response in the TSC, possibly 

via P2x and P2y receptors, A1 receptor antagonists did not impair the effect of ATP, 

suggesting the involvement of an ATP metabolite other than adenosine in this 

process. These effects are similar in the more primitive amphibian preparations   

(Jahromi et al, 1992; Georgiou et al, 1999; Rochon et al, 2001). 

 

1.4.5.2 Altering synaptic transmission 

 

In addition to detecting synaptic transmission, experiments suggest that transient 

calcium changes within the TSC can influence the nerve terminal itself. In the 

amphibian model, stimulating calcium release from the intracellular stores of the TSC 

via thapsigargin (an inhibitor of calcium-ATPase pumps) increased the end plate 

potential amplitude in response to stimulation, but depression of transmission 

occurred when calcium chelators were applied (Castonguay and Robitaille, 2001). 

 

Paradoxically however, blocking G-protein signalling pathways, which “activate” the 

TSC in response to neurotransmitters, can also produce an increase in synaptic 

activity. This may occur via nitric oxide, a substance that is known to regulate 

neurotransmitter release (Schuman and Madison, 1994; Robitaille, 1998). It is not 

clear why blocking this pathway should increase transmission, since it is also crucial 

for increasing intracellular calcium (and thus potentiating synaptic transmission). 

Another, as yet undescribed mechanism, may be involved in calcium release however, 

and be influenced by G-protein signalling. Interestingly, this paradox allows the TSC 

to exert both positive and negative effects on the synapse, and exert greater control on 
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the relatively complicated processes that occur during high frequency stimulation 

(Auld and Robitaille, 2003). 

 

Although these studies were performed in the amphibian preparation, similar 

mechanisms may exist in the mammal to regulate synaptic transmission and further 

work in this area is ongoing. 

 

1.4.6 Electrolyte homeostasis 

 

In the mid 1960s, it was demonstrated that astrocytes were permeable to K+, and that 

a slow inward intake to the glial cells was evident after repeated axonal stimulation 

(Kuffler and Nicholls, 1966). It was hypothesised that this slow intake of potassium 

provided a “spatial buffering” mechanism for the axon. Potassium would enter the 

astrocyte in an area of high concentration, and potassium would then leave the cell in 

an area where potassium concentrations were lower. This phenomenon is also present 

in the retina, where it is proposed that Müller cells remove high concentrations of 

potassium from the retina, by “siphoning” concentrations away from the retina to the 

vitreous where it will not influence activity (Newman, 1986). 

 

A similar process occurs in the PNS. Myelinating Schwann cells express a high 

concentration of potassium channels at the ends of internodes in microvilli, and it is 

thought these channels also provide a buffering mechanism during saltatory 

propagation (Wilson and Chiu, 1990).  
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TSCs have been shown to express high concentrations of voltage-dependent sodium 

channels, and these may also provide a role in buffering. These sodium channels help 

to maintain the activity of the Na/K ATPase pumps on the cell membrane, by 

ensuring the entry of sodium into the cell in the resting state and allowing prompt 

restoration of internal and external ion gradients during depolarisation. It has also 

been hypothesised that these channels may be synthesised for transfer to the adjacent 

axon, or are even used for axon-glial communication around the node of Ranvier 

(Boudier et al, 1988; Sontheimer et al, 1996). Although glial cells elsewhere in the 

nervous system have a clear role in ion homeostasis, the exact contribution, if any, of 

these channels in the TSC remains unclear at this time. 

 

1.5 Current research 

 

1.5.1 Schwann cell ablation using antibodies 

 

To further elucidate the role of TSCs in supporting axonal function and survival at 

nerve terminals, a TSC-selective monoclonal antibody was developed for use in the 

frog. This antibody selectively removed all the TSCs in the muscle under study, 

without damaging other components of the NMJ.  

 

Although there were no acute effects on nerve terminal function within the first week 

after ablation using this model, synaptic potentials were decreased by approximately 

half while postsynaptic function remained unchanged one week later. Further, muscle 

twitch tension was also reduced, growth and addition of additional synapses was 
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severely limited, and existing synapses underwent widespread withdrawal in 

developing systems (Reddy et al, 2003).  

 

This study offers important insights into the function of the TSC, but the amphibian 

model is developmentally primitive, and as noted previously, its NMJ is both 

morphologically and physiologically different to the human and other more complex 

mammals. For example, human NMJs are 80% smaller than those of frogs, and 50% 

smaller than those of rats or mice. Since the size of the junction is proportional to the 

amount of ACh released, fewer quanta of ACh are released in response to direct 

stimulation in mammals than the amphibian. To maximise transmission, junctions in 

developmentally more complex animals have deeper junctional folds (Slater et al, 

1992). Since the monoclonal antibody used by Reddy et al is species specific, its 

application to other species is limited. As a result, mouse antibodies to complex 

gangliosides developed in the Willison lab will provide a useful tool in the 

investigation of the role of the TSC in the mammalian system. 

 

1.5.2 Mouse monoclonal antibodies 

 

1.5.2.1 Production of murine anti-ganglioside antibodies  

 

It is difficult to produce a stable cell line that produces sufficient quantities of 

antibody for experimental use using cells from patients with neurological illness. As a 

result, studies were directed towards developing a series of anti-ganglioside cell lines, 

using the mouse as a carrier. These anti-ganglioside antibodies could then be 

produced in sufficient quantity to study their effect on the nervous system. 
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In these investigations, mice were inoculated with the LPS core oligosaccharides from 

the surface of pathogenic strains of Campylobacter jejuni. Structural studies have 

shown that these core oligosaccharides are very similar to gangliosides, and are thus 

implicated in molecular mimicry (figure 1.14).  

 

 

 

 

Figure 1.14: Schematic illustration of GQ1b and LPS core OS structures, 

illustrating the structural similarity between core OS and gangliosides.  

The carbohydrate structure for GQ1b is shown, with other gangliosides. 

The similarities between these ganglioside structures, and the core LPS 

used to immunise mice to generate an antibody response is highlighted.  

NeuAc = N-acetyl neuraminic acid; Gal = galactose; GalNAc = N-acetyl 

galactosamine; X = Glc (1->1) ceramide (gangliosides) or the remaining 

core OS/lipid A (LPSs) (adapted from Goodyear, 1999). 
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Although immunising a mouse with LPS would in itself generate a low level immune 

response, this effect can be enhanced with the addition of an “adjuvant”, which is a 

substance that enhances the immunogenicity of substances mixed with it. The LPS 

core oligosaccharides were therefore mixed with both Complete and Incomplete 

Freund’s Adjuvant (CFA and IFA respectively). These adjuvants enhance 

immunogenicity by converting soluble protein antigens into particulate material, 

making them more readily ingested by antigen-presenting cells such as macrophages. 

They also adsorb antigen onto adjuvant particles to enhance immunogenicity, and the 

presence of mycobacterial products in the CFA in particular, are thought to make the 

antigen presenting cells more effective. Unlike hapten carriers however, CFA and IFA 

do not form stable linkages with the immunogen. 

 

Once an immune response was detected, spleen cells were harvested, and fused with 

myeloma cells to produce a stable cell line of polyreactive antibodies with selective 

binding to ganglioside like structures. These antibodies, as discussed earlier, appear to 

arise from a T-cell independent mechanism (Goodyear et al, 1999; Boffey et al, 

2004). Since this study, more cell lines have been established using this technique, 

and now a large series of antibodies with differing specificities for complex 

gangliosides on ELISA has been established.  

 

1.5.2.2 Glial specificity of anti-ganglioside antibodies 

 

Early work suggested that the NMJ was a likely target for these newly developed 

antibodies. Although many shared similar ganglioside binding profiles on ELISA, 

their behaviour at the NMJ was very different. As a result, it was possible to classify 
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these new antibodies based on their behaviour ex vivo. These studies were performed 

on ex vivo hemidiaphragm preparations, using a combination of immunohistological 

analysis, electrophysiological assessment and electron microscopy (Halstead et al, 

2005b). 

 

As described previously, anti-ganglioside antibodies produce their injury by local 

complement activation, resulting in MAC pore formation and massive influx of 

calcium across the cell membrane that results in calpain activation and cell death. 

Ethidium homodimer (EthD-1) was therefore used as a marker of TSC injury, as it is a 

nuclear impermeant nuclear marker that is taken up into cells in the presence of MAC 

pores, and has been previously used as a marker of MAC induced cell injury in the 

TSC (Halstead et al, 2004). Disruption to neurofilament over the junction was used as 

a marker of axonal injury, and complement deposition was assessed to confirm the 

mechanism of injury. Electrophysiological measurements assessed both the miniature 

end plate potential frequency, and end plate potential following direct stimulation, as 

these have previously been shown to be good markers of antibody induced axonal 

injury (figure 1.15A and B). 
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Figure 1.15A: Immunofluorescent staining of hemidiaphragm tissue 

exposed to anti-ganglioside antibodies with normal human serum as a 

source of complement.  

a,b: All antibodies used in this study produced significant deposits of 

complement (C3c; green) over the NMJ (BTx staining, red) in the presence 

of NHS.  

c: Normal pattern of nerve terminal NF (green) extended from the distal 

axon to form an arborization over the NMJ (BTx, red), as seen after 

exposure to Ringer or Group S antibodies plus NHS.  

d: Complete dissolution or fragmentation of the NF signal (green) over the 

NMJ (BTx, red) or distal intramuscular axons, as seen after exposure to 

latrotoxin or Group SN and N antibodies plus NHS.  

e,f: Abnormal nuclear uptake of EthD-1 (red) by TSCs overlying NMJs 

(BTx, green) after exposure to Group S and SN antibodies plus NHS. Scale 
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bars 20μm. (All images taken by Mr. P. Humphreys or Dr. S. Halstead, and 

published in Halstead et al, 2005b). 

 

 

Figure 1.15B: Quantitative analysis of NMJ injury as assessed by 

immunofluorescent staining for complement product C3c, neurofilament 

(NF), and abnormal TSC nuclear uptake of ethidium dimer (EthD-1).  

According to the distribution of injury, mAbs are segregated into three 

groups: S (TSC only), N (nerve terminal only), and SN (TSC and nerve 

terminal).  
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a: Complement deposits. All antibodies produced significant deposits of 

C3c over NMJs compared with Ringer controls or LTx exposure.  

b: Axonal integrity. NF signal is reduced over the NMJ with antibodies 

producing a nerve terminal injury (Groups SN, N) and with latrotoxin. NF 

signal is unaffected by Group S antibodies. For a and b, values represent 

mean +/- SEM for the pooled data for each group. SD is significantly 

different from Ringer control (Student’s two-tailed t-test P < 0.01).  

c: TSC injury. EthD-1-positive nuclei were observed over NMJs with 

Group S and SN antibodies, and not with Group N antibodies or LTx. 

NMJs with one or more overlying EthD-1-positive nuclei were scored as 

positive, and counts were pooled from one or more preparations. SD is 

significantly different from Ringer control (Chi squared test, P < 0.01).  

(Taken from Halstead et al 2005b) 

 

Electron microscopy studies identified TSC injury by the presence of cell vacuolation, 

abnormal cell processes, and electron translucency in the cells. Axonal injury was 

identified by mitochondrial disruption, loss of ACh vesicles, and the presence of 

wraps of TSC around the axon itself (figure 1.16).   
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Figure 1.16: Ultrastructural characterization of TSC injury induced by 

Group S anti-ganglioside antibody, EG-1.  

This figure is a low-magnification electron micrograph showing a NMJ in 

cross section. The axon is wrapped by a myelinating Schwann cell, and 

forms a synaptic contact with a muscle fibre. Numerous vesicles are seen in 

the nerve terminal, with electron dense mitochondria. Two damaged TSCs 

(pSCs) are seen on either side of the nerve terminal, and appear damaged 

with electron-lucent cytoplasm, damaged organelles, nuclear blebbing and 

perinuclear bodies (black arrows). The exact function of the perinuclear 

bodies was not addressed in this study, but they are a feature of TSC injury. 

Two myonuclei (MN) project from beneath the postsynaptic membrane, 

and are of normal appearance.  Scale bar 5µm. (Taken from Halstead et al, 

2005b) 
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Based on these criteria, it was possible to classify the antibodies into: 

 

Group S: Only injure TSCs 

Group N: Only injure terminal axons  

Group SN: Injure both terminal axons and TSCs. 

 

As expected, antibodies that bound the terminal axon caused massive, uncontrolled 

exocytosis from the nerve terminal, followed by paralysis. Neurofilament levels over 

the junction were significantly disrupted, and there were EM changes consistent with 

axonal injury. These changes are consistent with the “latrotoxin like” effect described 

previously, and indeed latrotoxin controls performed at the same time showed similar 

changes (Goodyear et al, 1999). 

 

Other antibodies, particularly EG1 (an IgG3 antibody), were shown to selectively 

damage the TSC whilst leaving the remaining nerve terminal intact. Despite having 

no TSCs, the junctions did not exhibit any acute electrophysiological changes within 

the timescale of the experiment, suggesting that TSCs are not required for the acute 

maintenance of nerve terminal function. This finding supports previous work in the 

frog, where no short-term electrophysiological disruption was described in the 

absence of TSCs (figure 1.17) (Reddy et al, 2003). 

 

 



 84

 

 

 

Figure 1.17: Electrophysiological analysis of anti-ganglioside antibody 

effects on NMJ synaptic function ex vivo.  

a-b: Hemidiaphragm preparations from BALB/c mice were incubated with 

anti-ganglioside antibody, and normal human serum. Electrophysiological 

recordings were made from 7-19 NMJs in each preparation for 1 hour. 

Antibodies were classified as Groups S (TSC only), N (nerve terminal 

only), and SN (TSC and nerve terminal) based on previous morphological 



 85

studies. Group N and SN induced the latrotoxin-like effect, measured by an 

increase in miniature endplate potential (MEPP) frequency followed by 

block of evoked ACh release measured as a reduction in endplate potentials 

(EPPs).  

NMJs that were incubated with Group S antibodies did not show LTx-like 

effects, with no change in MEPP frequency from the Ringer control.  

c–e: Analysis of the effects of the Group S mAbs EG1 on evoked ACh 

release at either 40-Hz (c) or 0.3-Hz (d,e) nerve stimulation and on 

spontaneous MEPPs (d) showed no differences from control. This study 

demonstrates that removal of TSCs does not have any acute effects on 

neuromuscular function.  

Data in a, c, and e are mean values 6 SEM of 16–35 NMJs sampled in two 

preparations per mAb. Traces in b and d are representative examples of 

the electrophysiological recordings. Black dot indicates the moment of 

nerve stimulation. (Taken from Halstead et al, 2005b) 

 

 

The exact reason for this glial specificity is unclear, but may reflect the differing 

composition of gangliosides across neuronal membranes. This is supported on ELISA 

studies, where the specificity of TSC specific antibody EG1 was compared to other 

antibodies which damage either the nerve or both the nerve and TSC. These 

investigations demonstrate that EG1 appears to have preferential binding to 

ganglioside GD3 while nerve specific antibodies bind more strongly to gangliosides 

GQ1b and GT1a. Although the ganglioside composition in different neuronal 
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membranes is unknown, these localisation studies suggest that gangliosides on nerves 

are structurally more complex than those on TSCs. 

 

1.5.2.3 Summary 

 

This unique panel of antibodies permits study into the role of anti-ganglioside 

antibodies in the pathogenesis of autoimmune neuropathy, in addition to studying the 

contribution made by the glial components at the NMJ. However, these observations 

were only made one hour after complement exposure, due to the limitations of the ex 

vivo system. To fully study the longer-term effects of TSC injury in the mammalian 

model, and thus consider the role of the TSC in autoimmune nerve injury, a system 

was developed that allows repeated imaging over injured NMJs over a prolonged 

period. 

 

1.5.3 CFP/GFP mouse preparation 

 

Before detailed dynamic studies of the cellular interactions occurring at the NMJ can 

be undertaken in a mammalian model, a reliable method of vital imaging must be 

developed which easily distinguishes the various cellular components. However, 

many of the existing cellular stains used to identify these structures are either toxic to 

the cell, making recovery impossible, or involve processing that requires sacrifice of 

the animal, and thus cessation of the experimental time course. However, a new 

transgenic system has been developed that expresses fluorescent proteins in a site or 

cell specific manner, allowing repeated imaging of nerves without injuring the cell by 

immunostaining  (Trachtenberg et al, 2002; Walsh and Lichtman, 2003). 
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Green light is produced by the bioluminescent jellyfish, Aequorea Victoria, when 

calcium binds to the photoprotein aequorin, and provides sufficient excitation energy 

to green fluorescent proten (GFP) to produce green light in vivo  (Simomura et al, 

1962; Morin and Hastings, 1971). When aequorin is isolated ex vivo without GFP, 

blue light is produced. 

 

GFP is a stable protein of 238 amino acids, with very specific, and stable fluorescence 

spectra. The exact mechanism of fluorescence is unclear, but as the protein has a very 

stable genetic sequence, it is possible to transgenically insert and express GFP in both 

prokaryotic and eukaryotic cells (Prasher et al, 1992; Chalfie et al, 1994). Cells can 

therefore be rendered fluorescent by the introduction of GFP’s cDNA, rather than the 

chromophore itself. As the chromophore is derived entirely from its polypeptide 

chain, without requiring any additional factors from the cell, this permits imaging 

with minimal disruption to the cell itself.  Using cell-specific promoter sequences, the 

protein can also be localised to other compartments in the preparation, making 

specific cell lines fluoresce (Tsien, 1998). As the genetic sequence is stable, the 

fluorescent properties can be inherited across generations, allowing lines of 

fluorescent mice to be established. An example of this technique is seen in the 

Kosmos mouse. In this preparation, GFP is coupled to the promoter sequence of S100 

beta, a protein found in Schwann cells. This marker is a small calcium binding protein 

of uncertain significance found in the cell cytosol, but has a recognised promoter 

sequence. As a result, a line of mice has been generated whose peripheral Schwann 

cells are labelled for GFP (Zuo et al, 2004).  
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Another interesting feature of GFP is that its genetic sequence can be easily altered, 

and thus alter the spectral qualities of the protein, producing chromophores that 

fluoresce at different wavelengths. Examples of this include the cyan fluorescent 

protein (CFP), red fluorescent protein (RFP) and yellow fluorescent protein (YFP). 

These chromophores can then be inserted in differing compartments in the same 

animal, labelling different cell sub-types (Feng et al, 2000).  

 

A mouse line was generated, that expressed cyan fluorescent protein (CFP) in 

association with the thy 1.1 promotor sequence (Lichtman and Sanes, 2003). Thy 1.1 

is an immunoglobulin superfamily member that is expressed by both neuronal, and 

several non-neuronal cell types including thymocytes (from which it is named) 

(Gordon et al, 1987). However, early work using the sequence demonstrated that 

altering the genomic elements slightly (by removing selective introns, for example) 

can abolish the expression of the gene in non-neuronal cells (Vidal et al, 1990). This 

has been used to produce constructs that selectively over-express enzymes and 

growth-promoting molecules in neurones, but not non-neuronal tissue (Kelley et al, 

1994; Caroni, 1997). Using this principle, a line of mice was developed that 

selectively expresses CFP in both motor and sensory neurones in the periphery, in 

addition to subsets of central neurones. This line was then crossed with S100β-GFP, 

to produce a mouse whose Schwann cells expressed GFP, and neurones expressed 

CFP (figure 1.18). This system allows real time visualisation of axon-glial 

interactions, and has been used to effectively determine the precedence of several 

processes at the synapse, including the formation of Schwann cell bridges, escape 

fibres, and sprout formation (Kang and Thompson, 2003).  
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Figure 1.18: In vivo image of CK mouse preparation (colourised to reflect 

actual image through microscope).  

S100β-GFP is seen on the TSC bodies (arrow heads) and processes of 

terminal Schwann cells covering the NMJ. Axon expresses thy 1.1-CFP, 

and Texas-red bungarotoxin demonstrates post-synaptic specialisation. 

(Scale bar 10μm) (From pilot studies in Thompson laboratory by Dr. Ian 

Morrison) 

 

 

Using our panel of monoclonal antibodies, and a source of exogenous complement, 

this preparation can be used to investigate the longer-term effects of antibody-

mediated injury at the NMJ, and in particular the role of TSCs at this site. 
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1.6 Research Question 

 

TSCs clearly provide important functional support to the underlying motor nerve 

terminal, both in the steady state and during regeneration. Although selective ablation of 

TSCs has been possible in the amphibian model, it has not been achieved at mammalian 

NMJs. Further, the role of TSCs in autoimmune neuropathy has never been considered 

in detail. This is a departure from the current emphasis on seeking axonal antigens to 

account for axonal injury in autoimmune disorders such as GBS, and also has far-

reaching implications for understanding the glial contribution to axonal injury and 

regeneration in other diseases, including multiple sclerosis. 

 

The newly generated panel of antibodies from the Willison laboratory, in conjunction 

with the GFP/CFP fluorescent mouse model, offers a unique opportunity to study the 

developmentally advanced mammalian NMJ by selectively attacking and destroying 

its various components through a complement mediated effect.  

 

These studies will determine the acute and chronic effects of immune mediated TSC 

depletion at the NMJ. In particular, I will test whether TSC depletion causes motor 

nerve terminal dysfunction by studying the response of the NMJ to TSC injury in the 

CK mouse. Human muscle tissue will then be used to examine whether human TSCs 

are a possible site of injury in autoimmune neuropathy. 
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Chapter 2: Methods 

 

2.1 Antibody preparation 

 

2.1.1 Tissue Culture 

 

In preparation for these investigations, stocks of pure EG1 antibody were grown from 

tissue culture. Original hybridoma cell lines were prepared in the laboratory by 

technical staff, by immunising mice with LOS from a GBS associated Campylobacter 

strain (OH4384) in Complete Freund’s adjuvant. Hybridoma cell lines were stabilised 

in DMSO before freezing in the vapour phase of liquid nitrogen at –196oC for long 

term storage.  

 

All tissue culture work was performed in a class II sterile hood. The original 

hybridoma cell line for EG1 was thawed from storage, before being transferred to 

growth medium (RPMI 1640 with 10% FCS and 5mmol glutamine) to initiate culture. 

After incubation at 32oC in 95% O2, 5% CO2 rich environment for 24 hours, the 

solution was spun at 1000rpm for 5 minutes in a Beckman GS-6R centrifuge, and the 

supernatant (containing DMSO) was discarded.  

 

Fresh growth medium was then added, and the cells were incubated for a further 48 

hours. A cell count was obtained, and once the cells were confirmed to be growing in 

the log phase, they were separated into five separate 175ml flasks containing 

complete RPMI 1640 media, at a concentration of 1-2x105 cells/ml.  
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After 24 hours, the cells were spun again at 1000rpm for 5 minutes, and transferred to 

FCS rich growth medium (RPMI 1640 with 20% FCS and 5mmol glutamine) at a 

concentration of 1.5x106 cells/ml. The cells in FCS rich medium were then transferred 

to an “Integra CL1000”. The nutrient medium was exchanged on a twice-weekly basis 

with RPMI 1640 and 5mmol glutamine. Approximately half the volume of the cell 

compartment was removed on a weekly basis, and replaced with FCS rich growth 

medium. The cell compartment solution was frozen at –20oC until purification. 

 

To assess the viability of the cell line and its ability to produce antibody, twice 

monthly ganglioside ELISAs were performed on the harvested cell compartment 

medium.  

 
 
 
2.1.2 Antibody purification and concentration 

 

2.1.2.1 Antibody EG1 

 

Once sufficient volumes of nutrient medium were harvested, the solutions were 

purified using protein A affinity chromatography. Protein A is a surface protein found 

on the surface of Staphylococcus aureus, and is part of the bacterium’s defence 

against immunological attack. The protein binds to the Fc region of immunoglobulins, 

and mis-orientates any defensive immunoglobulin binding to the surface of the 

bacterium, preventing opsonization and phagocytosis. This mechanism can be 

harnessed in the laboratory for purification and concentration of antibody, by creating 

columns of protein A that bind and remove antibody from its host solution. Antibody 

can then be eluted at a later stage, resulting in a purified, highly concentrated solution. 
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Solutions were defrosted to room temperature, before being spun at 10,000rpm for 30 

minutes in a Sorval RC5c centrifuge, and filtered using Nalgene 50ml bottle top filters 

(pore size 0.45µm). The supernatant was dialysed in phosphate buffer solution for 24 

hours at 4oC (0.1M NaH2PO4 at pH7). 

 

A “protein A” affinity column was prepared with 50ml of binding buffer (10 column 

volumes) at a rate of 5ml/min. Filtered nutrient medium solution, stored on ice, was 

then passed through the column at 5ml/min and the flow through was collected. The 

column was washed with a further 50ml of binding buffer solution, and then eluted 

with 50ml of 0.1M citric acid. One-column volumes of elutant were retained in 

collecting tubes, and neutralised to pH 7 in an appropriate volume of 1M tris-HCl. 

The column was again washed with 50ml of binding buffer, and then 50ml of 20% 

ethanol prior to storage. 

 

Optical densities of the eluted fraction, and final buffer fraction were checked at 

280nm to minimise antibody loss.  Samples from the elution series with high 

concentrations of protein were combined, and diluted to concentrations less than 

0.5mg/ml to prevent precipitation before being stored at  –70oC.  

 

A ganglioside ELISA of flow through solutions was also performed from each stage 

of the purification process, and solutions were run through the column a second time 

if reactive for GD3, to minimise wastage.  

 

With the assistance of Mr Eric Wagner, the purity of the resulting antibody solution 

was confirmed using sodium dodecyl sulphate polyacrylamide gel electrophoresis 
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(SDS page). Antibody solution was diluted in loading buffer to 1/10 and 1/100 

concentrations and heated to 99oC for 10 minutes. A 10% polyacrylamide gel was 

rinsed in distilled water, and coated in running buffer before the antibody dilutions 

were added with a control (Colorburst pH8 marker). The gel was run at 180V for 1 

hour, and transferred to “Coomassie blue” solution for 1 hour to develop. 

 

2.1.2.2 Antibody LB1 

 

Once sufficient volumes of nutrient medium were obtained, solutions were defrosted 

to room temperature, before being spun at 10,000rpm for 30 minutes in a Sorval RC5c 

centrifuge, and filtered using Nalgene 50ml bottle top filters (pore size 0.45µm). The 

supernatant was dialysed in phosphate buffer solution for 24 hours at 4oC (0.1M 

NaH2PO4 at pH7). 

 

Solutions were concentrated before use by spinning through a 10,000MW CO 

membrane in a “Vivacell 100” at 5000rpm for 10 minutes. Solutions were dialysed 

overnight at 4oC in Ringers solution (116mM NaCl, 4.5mM KCl, 1mM MgCl, 2mM 

CaCl2, 1mM NaH2PO4, 23mM NaHCO3, 11mM glucose at pH 7.4 pre-gassed with 

95% O2/5%CO2). 
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2.1.3 Quantification of antibody concentration 

 

2.1.3.1 Optical density 

 

For IgG antibodies following purification, the optical density at 280nm was measured, 

and the concentration was calculated using the following equation: 

OD280/1.43 = antibody concentration 

 

2.1.3.2 Quantitative ELISA 

 

IgM samples (LB1) were quantified using quantitative ELISA, and OD measurements 

using IgG antibodies were also confirmed using this technique. ELISA kits were 

obtained from Bethyl Laboratories (E90-101 for IgM and E90-131 for IgG) 

 

Capture antibody (anti-mouse IgG or IgM) was diluted to 1:100 in bicarbonate 

coating buffer, and 25µl was added to each well in a 384 well plate (Immulon 2HB). 

The plate was left overnight at 4oC, and then washed 3 times in a PBS + 0.05% 

Tween 20 solution. 50µl of 2% BSA was added to each well, and left for 1 hour at 

room temperature before being washed again for 3 times in a PBS + 0.05% Tween 20 

solution. 

 

Reference antibody was diluted in concentrations from 0ng/ml to 1000ng/ml in 0.1% 

BSA and added to appropriate wells. 
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25µl of stock antibody solution was added to each well, and incubated for 2 hours at 

room temperature before washing 3 times in PBS + 0.05% Tween 20 solution. 

 

Anti-mouse IgG- or IgM-HRP (Bethyl Lab anti-IgG or anti-IgM) was diluted to 

1:30000 in 0.1%BSA, and 25µl was added to each well before incubating for 1 hour 

at room temperature. The plate was then washed 6 times in PBS+ 0.05% Tween 20 

solution. 25µl of substrate was added to each well, and incubated for 20 minutes in 

darkness at room temperature. The reaction was stopped by adding 4M H2SO4, and 

the plate was read at 492nm. 

 

2.1.4 Antibody characterisation 

 

2.1.4.1 Ganglioside ELISA 

 

Alternate rows of an “Immulon IIB ELISA plate” were coated with 100µl per well of 

2µg/ml ganglioside GD3, which had been sonicated for 1 minute; and 100µl of 

methanol for background subtraction. The plate was dried in a fume hood for 2-3 

hours until fully dry before being transferred to 4oC for a minimum of 1 hour. The 

plate was blocked with 2% BSA for 1 hour at 4oC, any excess was discarded, and 

100µl of substrate were added to each well for a minimum of 4 hours at 4oC. After 

washing the plate in PBS, secondary HRP-antibody (Sigma anti-IgG or IgM) at 

1:3000 in 0.1%BSA was added for 1 hour at 4oC. After a further PBS wash, 100µl of 

substrate buffer (0.1M citrate, 0.2M Na2HPO4, 1 OPD tablet (Sigma, P4664), 20μl 

H202) were added to each well, and incubated in the dark for 20 minutes. The reaction 

was terminated by adding 50µl of 4M H2SO4 and the plate was read at 492nm. 
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2.1.4.2 Ganglioside characterisation 

 

Antibody ganglioside binding profiles were characterised on a multi-ganglioside 

ELISA plate. Antibodies were tested against a range of gangliosides, sulfatide, and 

methanol using a standard ganglioside ELISA protocol. Antibodies were then titrated 

using an ELISA against the positive gangliosides at concentrations ranging from 10-2 

to 10-5mg/ml. The reciprocal of the Ab concentration that gave half-maximal binding 

was calculated (1/50%). I am very grateful for the assistance of Ms Dawn Nicholl, 

who assisted in these characterisation experiments, and described EG1 and R24. 

 

2.1.5 Human antibodies 

 

Human antibodies were obtained from three sources: patients SM, Ha and Ch.  Patient 

SM had multifocal motor neuropathy, and monoclonal antibodies obtained from B 

cell clones from peripheral blood lymphocytes. Samples of serum from patient Ch 

were retained during plasmapheresis therapy, and stored at –80oC until further use. 

Patient Ha has CANOMAD (chronic ataxic neuropathy with ophthalmoplegia, IgM 

paraprotein, cold agglutinins and disialosyl antibodies) and also undergoes regular 

plasmapheresis therapy. A red cell eluate was prepared using retained serum samples 

from this therapy, using established techniques (Willison et al, 1993b), and I am very 

grateful to Mrs Jean Veitch for her assistance in preparing the red cell eluate.  
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2.2 Ex vivo tissue analysis 

 

2.2.1 Animal euthanasia 

 

All animals were male, aged 6 weeks unless otherwise stated, and their strain is 

identified in the text. Animals were killed by a rising concentration of carbon dioxide, 

in accordance with Home Office regulations. Other Schedule 1 methods, including 

terminal anaesthesia, and cervical dislocation were performed as noted in the text.  

 

Euthanasia at the University of Texas in Austin was performed using rising 

concentrations of carbon dioxide, or intra-peritoneal injections of phenobarbitone, 

using local and Federal guidelines. These protocols are similar to those established by 

the Home Office. 

 

2.2.2 Hemidiaphragm preparations  

 

2.2.2.1 Muscle dissection 

 

Ex vivo hemidiaphragm preparations were used to quantify TSC injury, 

immunoglobulin deposition, complement deposition (C3c and MAC), and 

neurofilament loss. 

 

Following euthanasia in carbon dioxide, a flap in the anterior wall of the rib cage was 

reflected, and the phrenic nerves were identified and tied off. The diaphragm was 

removed from the thoracic cavity with its supporting ribs, and rinsed in Ringer’s 
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solution. The muscle was then pinned onto a sylgard-lined dish, and divided into two 

halves, each innervated by a single phrenic nerve.  

 

Unless otherwise stated, each hemidiaphragm was described in 3 sections (A-C). 

Section A (the most anterior part of muscle) was removed immediately after 

dissection. This section was used as an untreated control for comparative 

quantification studies. Section B included the section of muscle with the innervating 

phrenic nerve, and was removed after incubation with antibody/control solutions and 

complement. This piece of muscle was used for experimental study, including 

immunoglobulin and complement deposition, and neurofilament loss. Section C was 

used to quantify TSC injury using ethidium application. 

 

2.2.2.2 Antibody incubation protocols 

 

The following antibody incubation protocol was used to produce injury in the ex vivo 

hemidiaphragm preparation: 

 

1. Anti-ganglioside antibody (100µg/ml unless otherwise stated) dialysed 

overnight in oxygenated Ringers solution 

2. Section A removed from hemidiaphragm and snap frozen 

3. Hemidiaphragm preparation incubated in dialysed anti-ganglioside 

antibody/control solution for 2 hours at 32oC, 30 minutes at 4oC and 15 

minutes at room temperature. Washed in Ringers solution 

4. 40% normal human serum or control solution for 1 hour at room temperature. 

Washed in Ringers solution 
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5. Section B removed and snap frozen 

6. Incubated with 1:1000 (2µM) ethidium homodimer (Molecular Probes, 

Eugene, Oregon, USA) in PBS for 1 hour in dark environment at room 

temperature. Washed in Ringers solution 

7. Section C removed and snap frozen. 

 

Sections of hemidiaphragm muscle were subsequently thawed to –25oC, before 

mounting on a block of Tissue-Tek OCT embedding matrix. Sections were cut onto 3-

aminopropyltriethoxysilane (APES) coated slides using a freezing cryostat. Sections 

were cut at 8µm for immunoglobulin and complement studies, and 15µm for ethidium 

and neurofilament quantification, and were then air-dried. Sections were stored at        

-20oC prior to staining.   

 

Tissue sections were stained and assayed as described in General Staining techniques 

(section 2.4.2). 

 

2.2.3 Triangularis sterni preparations 

 

Ex vivo preparations of triangularis sterni were used to obtain clear images of the 

entire NMJ, without sectioning the muscle. 

 

Following euthanasia, the pectoral muscles, and diaphragm were dissected from the 

rib cage, and the thoracic organs were removed from the chest cavity via the 

abdomen. The posterior ribs were cut lateral to the thoracic vertebrae, and the entire 

rib cage was removed, and washed in Ringers solution. The rib cage was then pinned 
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in a sylgard-lined dish, with the anterior surface uppermost. The intercostal muscles, 

and their supporting ribs were removed under transverse illumination to reveal a 

window in the rib cage, showing triangularis sterni underneath.  

 

The following antibody incubation protocol was used to induce a lesion in this 

muscle: 

 

1. Anti-ganglioside antibody (100µg/ml unless otherwise stated) dialysed 

overnight in oxygenated Ringers solution 

2. Triangularis sterni incubated in dialysed anti-ganglioside antibody/control 

solution for 2 hours at 32oC, 30 minutes at 4oC and 15 minutes at room 

temperature. Washed in Ringers solution 

3. 40% normal human serum or control solution for 1 hour at room temperature. 

Washed in Ringers solution 

4. 1:500 TxR-BTx (Molecular Probes) for 1 hour at room temperature 

5. Fixed in 4% paraformaldehyde for 20 minutes at 4oC then PBS rinse 

 

If neurofilament staining was required in the United States, the following 

additional steps were performed: 

6. Permeabilised in methanol for 8 minutes at –20oC then rinsed in PBS 

7. Blocker solution for 30 minutes 

8. Incubate anti-SV2 (diluted 1:500; Developmental Studies Hybridoma Bank, 

Iowa) with anti-2H3 (diluted 1:200; Developmental Studies Hybridoma Bank, 

Iowa) and TxR-BTx (diluted 1:500) overnight in blocker solution. 

9. Rinse in blocker solution for 30 minutes then 1:200 anti-secondary for 1 hour 
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In certain instances, this incubation protocol was modified: 

 

a) Ethidium – if demonstration of TSC injury is necessary, ethidium homodimer 

(diluted 1:1000, 2µM, Molecular Probes) in PBS is added for 1 hour in dark 

environment at room temperature, after incubation with normal human serum. The 

tissue is then washed in Ringer’s solution and FITC bungarotoxin (diluted 1:500, 

Molecular Probes) was added for 1 hour at room temperature. 

 

b) Sytox – to fully assess the extent of TSC injury, Sytox green (Molecular Probes ) 

was used to co-stain with ethidium, to demonstrate the complete population of TSCs. 

Sytox green is a membrane impremeant nuclear stain with a distinct wavelength that 

can be visualised on the laboratory’s existing confocal microscope and filter sets. 

After incubation with ethidium, tissue was stained with 1:500 TxR-BTx for 1 hour at 

room temperature, and fixed in 4% paraformaldehyde for 20 minutes at 4oC. The 

tissue was then permeabilised with ethanol as above, and Sytox Green (diluted 

1:50000) in blocking solution (1% goat serum, 0.4M l-lysine and 0.5% Triton X-100) 

was added after a PBS rinse. The tissue was left for a minimum of one hour at room 

temperature, before mounting.  

 

After staining, the TS muscle was placed on a slide with a supported coverslip, and 

mounted in citifluor before imaging.  

 

Structural analysis was performed using a Zeiss Pascal confocal microscope with 

reconstructions performed using Voxx (Indiana Centre for Biological Microscopy) or 

Volsuite 3.2 (Ohio Supercomputer Center) and Adobe Photoshop Pro 8 (Adobe). 



 103

2.3 Topical staining 

 

2.3.1 Murine tissue harvest 

 

All animals were male, aged 6 weeks unless otherwise stated, and their strain is 

specified in the text. Untreated sections of diaphragm were dissected from mice that 

were euthanased by approved Schedule 1 methods. These samples were immediately 

snap frozen following removal, and stored at –80oC until sectioning. 

 

Sections of hemidiaphragm muscle were thawed to –25oC in a freezing cryostat, 

before mounting on a block of Tissue-Tek OCT embedding matrix. Sections were cut 

onto 3-aminopropyltriethoxysilane (APES) coated slides using a freezing cryostat. 

Sections were cut at 8µm for immunoglobulin and complement studies, and 20µm for 

ethidium and neurofilament quantification, and were then air-dried. Sections were 

stored at –20oC prior to staining.  Unless stated otherwise, experiments were repeated 

on 3 occasions using tissue from at least 3 different animals. Three non-contiguous 

sections of muscle were examined on each repeat. 

 

2.3.2 Human tissue harvest 

 

2.3.2.1 Consent 

 

COREC documentation, and local Research and Development Approval forms were 

completed before human tissue harvests were undertaken. These forms were 
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submitted to the North and South Glasgow Trusts, in addition to local offices at the 

Western Infirmary, Glasgow.  

 

Consent was then granted by local hospital ethical committees, to obtain muscle tissue 

from human volunteers undergoing routine surgery. Subjects were given information 

sheets and the opportunity to discuss the research before providing written consent 

(see appendix 3 for information sheet, and consent forms). All tissue would be 

routinely discarded at operation, and tissue harvest did not affect treatment or 

outcome of the procedure.  

 

Biobank also sought consent for muscle harvest. Biobank is a commercial branch of 

the department of Pathology, North Glasgow University NHS Trust, and a fee was 

paid to them for this service.  

 

Consent was also obtained from relatives of patients undergoing post-mortem 

examination. Families were given information sheets and the opportunity to discuss 

the research before providing written consent (see appendix for information sheet, and 

consent forms). 

 

2.3.2.2 Harvest and processing 

 

A) Intercostal muscle. Sections of this muscle are routinely removed during 

dissection of the internal mammary artery during coronary artery bypass 

grafting (CABG).  This muscle is dissected from the artery, and routinely 

discarded. 



 105

B) Omohyoid muscles. During radical neck surgery for cancer, complete sections 

of omohyoid are routinely dissected and discarded without further staging or 

analysis. 

C) Pharyngeal constrictor muscle. During radical neck and oral surgery for 

cancer, sections of the pharyngeal constrictor muscle are dissected and 

discarded without further staging or analysis. 

D) Biceps muscle. During surgery for tumours of bone and soft tissue, the limb is 

often amputated. Much of the tissue is discarded without further analysis. 

Biobank harvest and store surplus muscle, for use in research. 

E) Human sciatic nerve. Tissue was obtained from post-mortem examinations, 

and stored. Samples were also obtained from Biobank and vascular surgery. 

F) Peroneus longus, and extensor digitorum longus. Fresh specimens of human 

leg were obtained from patients having amputations for critical ischaemia of 

the lower limb, or for tumours of the bone and muscle of the leg. Samples 

were taken from areas not involved in the primary disease process, and not 

required by Pathology. 

 

Once removed, muscle was coated in Tissue-Tek OCT embedding matrix before 

freezing on dry ice.  

 

Muscles were then thawed to –25oC, before mounting on a block of Tissue-Tek OCT 

embedding matrix. Muscle sections were cut to 20µm thickness onto 3-

aminopropyltriethoxysilane (APES) coated slides using a freezing cryostat.   

 

Sections were stored at –20oC prior to staining.   
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2.4 Staining protocols 

 

2.4.1 Topical primary anti-ganglioside antibody staining 

 

Antibody was applied to untreated sections of human or mouse muscle tissue, to 

demonstrate binding at the NMJ.  

 

Mouse antibodies, human monoclonals, and human red cell eluate were applied 

topically overnight at 4oC and a further 15 minutes at room temperature. Dilution 

series determined optimum binding concentrations, which are specified in the text. 

Serum samples from patients Ch and Ha was applied at 40% concentration using the 

same incubation protocol.  

 

Normal human serum at 4% concentration was then applied to sections for a further 

hour. All antibody and serum samples were diluted in PBS. 

 

2.4.2 General staining protocols 

 

a) C3c - Slides containing 8µm sections of tissue were treated with 1:750 Texas 

Red bungarotoxin (TxR-BTx) (Molecular Probes) and FITC-Goat anti-human 

C3c (diluted 1:300; Dako, Ely, UK) for 1 hour at 4oC 

 

b) Immunoglobulin - 8µm sections of tissue were treated with 1:500 Texas Red 

bungarotoxin (TxR-BTx) (Molecular Probes) and FITC-Goat anti-mouse Ig 

(diluted 1:300; Southern Biotechnology Associates, inc) for 1 hour at 4C 
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c) Membrane Attack Complex - 8µm sections were treated with mouse anti-

human C5b-9 (diluted 1:50; Dako) for 1 hour at 4oC, followed by 1:500 TxR-

BTx and FITC-Goat anti-mouse IgG2a (diluted 1:300, Southern 

Biotechnology Associates, inc) for 1 hour at 4oC  

 

d) Neurofilament – 20µm sections were treated with TxR-BTx (1:500) for one 

hour at room temperature. Tissue was permeabilised in ethanol for 8 minutes 

at –20oC then rinsed. Anti-mouse NF (1211; diluted 1:750; Affinity 

Bioreagents) was added overnight, then goat anti-rabbit IgG (1:300; Southern 

Biotechnology Associates, inc) was added for a minimum of 3 hours at 4oC. 

 

e) Ethidium analysis – Section C of hemidiaphragm was cut to 20µm thickness, 

and stained with FITC bungarotoxin (diluted 1:500; Molecular Probes) for 1 

hour at room temperature.  

 

After staining, all slides were mounted in Citifluor antifade (Citifluor Products, 

Canterbury, UK) before storage at –20oC until viewing. Unless stated otherwise, 

experiments were repeated on 3 occasions using 3 different animals. Three non-

contiguous sections of muscle were examined on each repeat. 
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2.4.3 Cholera toxin on muscle 

 

FITC-labelled cholera toxin (1mg/ml; Sigma) was applied to sections of mouse and 

human muscle sections. Cholera toxin was applied at dilutions of 1:500 in the mouse, 

and 1:3000 on human tissue for one hour. Solutions were diluted with PBS containing 

1:500 rhodamine or Texas Red bungarotoxin (Molecular Probes). Where stated, 

sections were blocked with copper sulphate in ammonium acetate buffer solution for 

10 minutes to reduce lipofuscin background. 

 

After staining, all slides were mounted in Citifluor antifade (Citifluor Products, 

Canterbury, UK) before storage at –20oC until viewing. 

 

2.4.4 Cholera toxin staining on sciatic nerve 

 

A protocol first described by Sheikh and colleagues (Sheikh et al, 1999) was modified 

for cholera toxin staining in sciatic nerve.  

 

Fibres were teased onto 3-aminopropyltriethoxysilane (APES) coated slides under 

PBS, and air-dried before immediate use. Slides were then fixed with 2% 

paraformaldehyde solution in PBS for one hour at room temperature. Working buffer 

(see solutions appendix) was applied for an hour on ice, before incubating with 1:100 

FITC labelled cholera toxin with 1:200 anti-Kv1.1 (Abcam, Cambridge UK) diluted 

in working buffer overnight at 4oC. Samples were washed five times in working 

buffer the next day, and rhodamine anti-rabbit IgG (1:100; Southern Biotechnology 

Associates, inc) in PBS was then applied for one hour.  
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Where specified, slides were stained with 1:50 FITC labelled peanut agglutinin (PNA, 

L7381, Sigma) and 1:100 FITC labelled cholera toxin diluted in working buffer 

overnight. 

 

After staining, all slides were mounted in Citifluor antifade (Citifluor Products, 

Canterbury, UK) before storage at –20oC until viewing.  

 

2.4.5 Neuraminidase treatment 

  

Complex ganglioside distribution was demonstrated by use of neuraminidase (N2876, 

Neuraminidase from Clostridium perfringens, Sigma). Sections of muscle or teased 

fibre sciatic nerve preparations were first pre-blocked with 20µg/ml unlabelled 

cholera toxin in PBS (Sigma) in PBS for one hour at room temperature to block any 

existing GM1 ganglioside. Samples were then incubated with 2 units of 

neuraminidase in PBS for one hour at room temperature before washing in PBS. 

Samples were then stained for FITC-cholera toxin, or antibody as described 

previously. 
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2.5 In vivo studies 

 

2.5.1 Animal preparation 

 

Mice were genotyped elsewhere prior to use, and breeding pairs of animals 

homozygous for B6CG-TgN(Thy 1.1-CFP) and S100-GFP were established (CK 

mouse, as discussed in section 1.5.3). Litters were weaned at 4 weeks and screened at 

week 5, by examination of an ear punch under a Leica MZ FLIII fluorescence 

stereomicroscope with CFP/GFP filter sets. Animals expressing CFP and GFP were 

retained, and experiments were started on male animals aged 6 weeks.  

 

Animals from homozygote crosses were crossed onto a DBA background strain to 

produce “heterozygote” offspring. Where specified, these heterozygotes were paired, 

and ear punches were screened using a fluorescence stereomicroscope to identify 

animals that only expressed CFP or GFP. 

 

Unless stated otherwise, antibody studies were paired with an age matched control 

using sterile Ringer solution. 

 

2.5.2 Anaesthesia  

 

In the USA, animals were anaesthetised using intraperitoneal injections of 0.1 to 

0.4ml of ketamine and xylazine according to local and federal protocols (17.4mg/ml 

of ketamine and 2.6mg/ml of xylazine diluted in 0.9% NaCl solution. Both 
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anaesthetics were obtained from AJ Buck and Son, MD USA).  All anaesthesia was 

conducted under local and Federal protocols. 

 

In the United Kingdom, animals were anaesthetised using intraperitoneal injections 

(0.1ml/10g body weight) of Hypnoval/hypnorm (Roche Products Ltd, Welwyn 

Garden. City, UK). Anaesthesia was selected after consultation with Veterinary staff 

at the University of Glasgow. 

 

In both the United States and the United Kingdom, depth of anaesthesia was assessed 

by testing for absence of paw, and whisker reflexes. These were checked frequently 

during the procedure, and anaesthetic doses were supplemented as required. 

 

During the post-operative recovery phase, animals were maintained on the ventilator 

until reflexes were returned before prompt extubation. 

 

2.5.3 Surgical Procedure 

 

Following induction of anaesthesia, the animal was transferred to the surgical stage 

and a depilatory cream was applied to the operative area for 5 minutes, before being 

removed with a cotton swab. In the UK, the surgical stage was then transferred to a 

heating pad, and the animal was covered in a thermal space blanket to limit 

hypothermia. The animal was maintained under a heat lamp in the United States. 

 

The surgical site was cleaned with an alcohol solution, and the animal was covered in 

sterile drapes, leaving the surgical site exposed. 
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Under strict aseptic technique, a ventral midline incision in the neck exposed the 

sternomastoid muscle, and trachea (figure 2.1). Animals were intubated 

endotracheally under direct vision, and hyper-ventilated using a small rodent 

ventilator (Harvard rodent ventilator, model 683 set to a respiratory rate of 110 

breaths per minute and tidal volume of 1.5ml). Hyper-ventilating the animal is not 

harmful, and results in a pause in respiratory effort when the ventilator is stopped. 

This limits respiratory movement, and allows for stable image acquisition from the 

neck area. 

 

 

 

 

Figure 2.1: Ventral midline incision. Retractors maintain the surgical 

wound, and the trachea can be visualised directly (arrow) to guide 

endotracheal intubation.  
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Under careful blunt dissection, avoiding direct contact with the overlying salivary 

glands, connective tissue was dissected from the surface of the left sternomastoid 

muscle. A wire frame was inserted under the muscle to separate connective tissue 

lying underneath. Care was also taken during this process to avoid any injury to the 

adjacent carotid artery. 

 

ACh receptors were labelled with either CY5 or rhodamine-conjugated α-

bungarotoxin (Molecular Probes, Eugene, OR), in a 5µg/ml solution in sterile Ringers 

lactate solution (USP, Braun Medical), applied for 5 minutes.  Imaging was then 

performed using the 10x objective to obtain a “map” of BTx labelled end plates, 

which could then be used to guide repeat imaging in later operations (figure 2.2). 
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Figure 2.2: Map of sternomastoid after BTx application at 10x. This image 

was used to locate the same junction during repeat imaging studies (scale 

bar 50µm). 

 

Antibody EG1 (100µg/ml) or Ringer’s lactate (USP, Braun Medical) as control, were 

applied topically to the sternomastoid muscle for one hour.  After washing with 

Ringer’s lactate solution, 40% normal human serum was applied topically for one 

hour, before a further wash.  

 

When necessary, the nerve to sternomastoid was crushed using standard forceps, at its 

point of insertion to the muscle, immediately after incubation with antibody and 

complement. Substances to modify the immune response were applied where 

specified in the text. 
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In the United States, the wound was sutured using 6-0 silk, and the animal was 

recovered under a heat lamp. 

 

In the United Kingdom, the wound was sutured using 6-0 Vicryl, and the animal was 

recovered by technical staff in a rodent incubator.  

 

Repeat operations were followed using this protocol. Flow charts (appendix 2.1 to 

2.6) summarise the incubation protocols used. 

 

Imaging was also performed at the start of each operation using the 10x objective. 

This allowed a “map” of all NMJs to be taken, which  

 

2.5.4 Whole mount immunostaining 

 
2.5.4.1 Muscle dissection  

 

Under terminal anaesthesia, the animal was perfused with a transcardiac injection of 

PBS solution.  The sternomastoid muscle was dissected, and fixed in 4% 

paraformaldehyde for 30 minutes, before being washed for 30 min in three changes of 

PBS. 4,6-diamidino-2-phenylindole (DAPI) (10-4mg/ml) was applied for 7 minutes to 

demonstrate nuclear staining, and a thin fillet of muscle was then dissected and 

mounted in anti-fade solution before imaging. 
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2.5.4.2 Nuclear stains 

 

2.5.4.2.1 Ki-67 

 

Where stated, whole mount sternomastoid was incubated overnight with Ki-67 

(AbCam) at 1:200 with 1% triton in PBS following 4% paraformaldehyde fixation. 

Ki-67 is a monoclonal antibody to the Ki-67 protein, which is detectable in the cell 

nucleus during the active phases of the cell cycle, but not during the resting phases. 

The muscle was washed in PBS for 30 minutes before staining with anti-rabbit IgG (1 

in 200) for 1 hour with 1:500 rhodamine bungarotoxin. The muscle was then filleted 

as described earlier. 

 

2.5.4.2.2 BrdU 
 

Where specified, 5-bromo-2-deoxyuridine (BrdU) was used as a marker of cell 

division (203806; Calbiochem, La Jolla, CA).  It was dissolved in sterile Ringer’s 

lactate solution, and injected into the peritoneal cavity (1mg/10g body weight) on a 

twice-daily basis for 3 days, starting immediately after the first application of 

antibody.  In addition, 1.5mg/ml of BrdU was added to the drinking water of the 

animals during the same period. 

 

Muscles were fixed in 4% paraformaldehyde as described previously, and 

permeabilised in methanol at –20oC for 7 minutes before being washed in 3 changes 

of PBS.  Muscles were then denatured in 2N HCl in 0.1M PBS containing 0.3% 

Triton X-100 for 30 min, before a further PBS wash for 30 minutes.  Muscles were 

incubated overnight in 1:500 rabbit anti-cow S100 (Dako, Carpinteria, CA) and 1:5 
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mouse monoclonal antibody to BrdU (G3G4, Developmental Studies Hybridoma 

Bank, Iowa). Following a further PBS wash, 1:400 S-100 rhodamine-conjugated goat 

F(ab)2 fragment anti-rabbit (Cappel, 55671) and 1:100 fluorescein-conjugated sheep 

F(ab)2 fragment anti-mouse (Sigma, F-2266) was added for one hour.  The muscle 

was dissected and mounted. 

 

2.5.4.2.3 Ethidium homodimer-1 

 

Ethidium homodimer 1 (EthD-1, Molecular Probes, Eugene, OR) was used as a 

marker of TSC injury. When required, EthD-1, diluted to 2µM was added to the 40% 

normal human serum solution for the duration of its incubation, and removed by 

washing in Ringers lactate before further imaging. Muscle fixation was performed in 

4% paraformaldehyde for 15 minutes only, before three, 5 minute washes in Ringers 

solution otherwise EthD-1 staining was lost. The muscle was then filleted as 

previously. 

 

2.5.4.3 Schwann cell markers 

 

2.5.4.3.1 Myelin basic protein 

 

Where specified, myelin basic protein (MBP) was used as a marker of myelinating 

Schwann cells. Muscles were fixed in 4% paraformaldehyde as described previously, 

and permeabilised in methanol at –20oC for 7 minutes before being washed in 3 

changes of PBS. Tissue was then incubated in 1:500 MBP antibody (18-0038, 

Invitrogen) overnight at room temperature in blocker before being washed 3 times in 
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blocker over 30 minutes. The muscle was then incubated with a TRITC anti-rabbit 

IgG (1:250, Southern Biotechnology Associates, inc) for one hour in blocker before 

being filleted and mounted as previously. 

 

2.5.4.3.2 Nestin 

 

Reactive Schwann cells were labeled using markers for nestin. Nestin is a type VI 

intermediate filament protein widely used as a marker of proliferating and migrating 

cells, including those outside the nervous system. Muscles were fixed in 4% 

paraformaldehyde, and perfused with methanol as described previously. Tissue was 

incubated in 1:200 anti-nestin (1:200, SCRR-1001; American Type Culture 

Collection, Manassas, VA) overnight at room temperature in blocker solution before 

being washed 3 times in blocker. The muscle was then incubated with a TRITC anti-

rabbit IgG (1:250, Southern Biotechnology Associates, inc) for one hour in blocker 

before being filleted and mounted as previously. 

 

2.6 Image acquisition and statistical analysis 

 

2.6.1 Confocal imaging 

 

Quantification of complement and neurofilament deposition of hemidiaphragm 

preparations was performed on a Zeiss Pascal confocal microscope using standard 

epifluorescence techniques. Imaging was performed at 40x magnification, with an 

open pinhole to provide maximum depth of view. Levels were set so no staining was 

seen on negative controls. 
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Images were then analysed using either using either Scion Image (Scion Corporation) 

image analysis software or ImageJ (National Institutes of Health).  

 

Structural analyses of human tissue, hemidiaphragm and triangularis sterni 

preparations were performed using a Zeiss Pascal confocal microscope with the 

pinhole set to one Airy unit, and section thickness optimised using existing confocal 

software. Reconstructions were performed using Voxx (Indiana Centre for Biological 

Microscopy), or Volsuite 3.2 (Ohio Supercomputer Center) and Adobe Photoshop Pro 

8 (Adobe).  

 

2.6.2 Apotome imaging 

 

Other illustrative images were performed at on a Zeiss Axio Imager.Z1 with 

Apotome. In this system, a grid is used to project stripes of light onto the focal plane 

of the objective, and shifted laterally in three defined steps relative to the sample. A 

CCD camera takes images from each step, and computer software reconstructs these 

images to produce a sharper final image, with out of focus information greatly 

reduced especially in the z-plane and allowing clearer 3-D imaging (Carl Zeiss 

website). Reconstructions were performed using Voxx (Indiana Centre for Biological 

Microscopy), ImageJ (National Institutes for Health) and Adobe Photoshop Pro 8 

(Adobe).  
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2.6.3 In vivo studies 

 

In the United States, images were acquired with a Leica DMRX microscope using 

both 10x and 40x water immersion objectives, and filter cubes for GFP, CFP, TRITC, 

and CY5 (Chroma Technology).  Neutral density filters were used to reduce the 

intensity of illumination to the preparation by 50-90%.  An integrating CCD camera  

(Coolsnap HQ, Photometrics, Roper Scientific) was used to capture images that were 

subsequently processed using IPLab (Scanalytics, Rockville, Maryland USA). Images 

were taken at various depths in the axial (Z) direction to produce a “manual z stack”. 

The in-focus areas of these images were then combined using Adobe Photoshop 

(Adobe Systems Inc). 

 

In the United Kingdom, no such in vivo imaging facility was available, therefore a 

new system was developed to comply with Home Office guidelines. Images were 

acquired with a Leica DM4000 microscope using both 10x and 40x water dipping 

objectives (HCX APO L 10x/0.3 and HCX APO L 40x/0.8 respectively), and filter 

cubes for:  GFP, CFP, N3, and Y5 (Leica Microsystems). A cooled monochrome 

camera (Leica DFC350FX) was used to acquire images. The imaging stage was 

machined from a piece of stainless steel, with holes to allow it to be secured to the 

existing microscope stage. Magnets secured gauze and intubation equipment to the 

metal surgical stage. 

 

Reconstructions were performed on Adobe Photoshop (Adobe Systems Inc).  

 

 



 121

2.6.4 Format of final images 

 

Unless stated otherwise, images are shown in black and white to improve contrast, 

with a combined colourised image. Text within the figure describes the stain, with the 

colour of the text corresponding to its colour in the combined image. 

 

2.6.5 Statistical analysis 

 

2.6.5.1 Data accumulation 

 

Unless stated otherwise, all data represents an analysis of 3 separate areas of tissue 

per experiment, repeated 3 times in different animals.  

 

2.6.5.2 Ethidium analysis 

 

All NMJs stained with bungarotoxin were included in analyses. Junctions with one or 

more EthD-1 nuclei overlying the bungarotoxin staining were considered positive, 

and the total was expressed as a percentage of the total number of identified NMJs in 

the section. Data was compared using Chi-squared tests. 

 

2.6.5.3 Antibody, complement and neurofilament levels 

 

Neurofilament loss was measured as a percentage of bungarotoxin area, and antibody 

and complement levels were expressed as staining intensity over the bungarotoxin 

signal using a range from 0 (negative) to 255 (saturation). These values were 
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calculated using pre-written macros (Peter Humphreys, University of Glasgow) on 

ImageJ (National Institutes for Health). 

 

Data was compared using the Mann-Whitney mean ranks test. Data was displayed in 

box-and-whisker plots using Minitab (Minitab Corporation), with outlying data points 

removed leaving median values, interquartile ranges (box) and 1.5 times the 

interquartile range (vertical lines). 
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Chapter 3: Antibody characterisation 

 

3.1 Introduction 

 

Techniques to characterise binding of anti-ganglioside antibodies at the NMJ have 

been described previously, using both immunofluorescence, and also electron 

microscopy (Halstead et al, 2004; Halstead et al, 2005b). These ex vivo methods 

easily identify antibody binding to particular structures within the nervous system, 

demonstrating the resulting injury to axon and glia, and providing an indication of 

possible disease pathogenesis.  

 

Neuromuscular morphology was described in these studies by the use of co-staining, 

to identify both pre- and post-synaptic components of the NMJ and thus localise 

antibody binding. For example, BTx can be used to identify post-synaptic ACh 

receptors, while antibodies to neurofilament and S100, found in the nerve and 

Schwann cells respectively, can be used to demonstrate pre-synaptic morphology. In 

addition, a reduction in neurofilament co-staining has also been used as a marker of 

axonal damage, while EthD-1 has been used as a marker of TSC injury (O’Hanlon et 

al, 2003, Halstead et al, 2005b). 

 

Using these methods, two IgG3 antibodies were identified that produce selective TSC 

injury at the NMJ (Halstead et al, 2005b). Antibody EG1 was prepared within the 

Willison laboratory, while R24 is available commercially (American Type Culture 

Collection (ATCC; Manassas, VA)). Professor Richard Reynolds from Charing Cross 

Hospital, London, also generously donated a third antibody, LB1. This IgM antibody 
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is also thought to produce TSC injury, and broadly shares the same ganglioside 

binding profiles on ELISA as both EG1 and R24 (see table 3.1). 

 

 
 

MAb 
 

Isotype 
      Disialylated ganglioside specificity 
       GT1a               GQ1b                 GD3 

 
EG1 

 
IgG3 

 
91 

 
1.8x103 

 
1x102 

 
R24 

 
IgG3 

 
53 

 
90 

 
2.5x102 

 
LB1 IgM N/T N/B 5x103 

     
 

Table 3.1: Antibody specificity on ELISA. Antibodies were titrated in an 

ELISA against the gangliosides at concentrations ranging from 10-2 to 10-5 

mg/ml, and the reciprocal of the Ab concentration that gave half-maximal 

binding was calculated (1/50%). Data for EG1 and R24 was kindly supplied 

by Ms Dawn Nicholl. N/B= no binding on ganglioside ELISA, N/T = not 

tested. 

 
 
The aim of this first series of experiments is therefore to identify which antibody is 

most suitable for producing selective TSC injury at the NMJ, and to characterise its 

effect at this site.  
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3.2 Results 

 

3.2.1 Muscle tissue identification for ex vivo studies 

 

3.2.1.1 Background 

 

The hemidiaphragm of BALB/c has been used extensively to describe the 

electrophysiological and structural effects of EG1 and other antibodies at the NMJ 

(Halstead et al, 2005b). In other laboratories, triangularis sterni muscle (a thin 

thoracic muscle found on the innermost aspect of the rib cage) is used to examine 

end-plate morphology. Before undertaking more detailed study of antibody effect, 

hemidiaphragm and TS preparations were compared to identify which would be most 

suitable for use in later experiments.  

 

3.2.1.2 Muscle comparison 

 

Initial experiments compared the number of NMJs in each muscle preparation to 

demonstrate which muscle produced the greatest yield of NMJs for statistical analysis. 

Using ex vivo staining protocols described in Methods, end plates were identified 

using BTx in BALB/c mice, and the number of junctions in each section of muscle 

tissue was compared.  

 

Three hemidiaphragm preparations were taken from three mice. Each diaphragm 

yielded 6 areas of muscle. Three distinct sections from the same area of each 

hemidiaphragm were then examined, giving a total of 9 areas of analysis from 3 mice. 
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A mean of 93 end plates identified on each cryostat section on the microscope slide 

(standard deviation of 10.3). In total, at least 558 distinct end plates were available for 

study across six areas in the diaphragm. However, since these samples were made 

from 20µm sections of cut diaphragm, they do not include end plates that may lie 

outwith the sections under study and therefore the total number of available end plates 

is much higher in this muscle.  

 

Three TS muscles were taken from 3 mice, and the entire muscle was examined. Each 

TS muscle could be divided into 4 areas, with a mean of 60 end plates in each area 

(standard deviation of 0.76), yielding an approximate total of 240 end plates across 

the muscle in total. As the muscle was not sectioned, this represents the total number 

of end plates available for study in this muscle. 

 

This study shows that hemidiaphragm preparations clearly have a greater number of 

NMJs, making it more suitable for statistical analysis than TS muscle. 

 

3.2.1.3 Morphological analysis 

 

Hemidiaphragm and TS muscles were then compared using ex vivo staining 

techniques described in Methods, to identify which muscle was most suitable for 

morphological studies. Both muscles were stained for post-synaptic ACh receptors 

using BTx as described in Methods. In TS, the majority of junctions were flat, and the 

morphology was obvious. However, in hemidiaphragm, a number of junctions were 

sectioned, and it was not possible to visualise the entire junction. The text denotes the 
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type of stain, and its corresponding colour on the combined image as described in 

Methods. This is used throughout the thesis, unless stated otherwise (fig 3.1).  

 

 

 

 

Figure 3.1: Hemidiaphragm sections of BALB/c mouse. Texas red BTx 

was used to identify end plates, with neurofilament to identify the axon. 

Although the innervating nerve is seen, its distribution does not exactly 

correlate with BTx at the NMJ, suggesting that sections of the NMJ are 

missing from this section. (Scale bar 30µm).  

 

S100 is a common cytosolic marker used to identify Schwann cells, and is useful for 

studying the morphology of the NMJ. In the TS muscle of BALB/c, an incubation 

protocol outlined in Methods produced images shown in fig. 3.2. This clearly 

demonstrates several morphological features of the NMJ. Numerous attempts to stain 

Combined 
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the hemidiaphragm of BALB/c using S100 did not produce significant staining, 

despite different protocols and staining solutions being used. This confirms that TS 

muscle is more suitable than hemidiaphragm preparations for visualising the NMJ, 

and performing morphological studies. 

 

 

 

Figure 3.2: Image of single NMJ from the TS muscle in a BALB/c mouse. 

Texas red BTx demonstrates post-synaptic specialisations. The entire NMJ 

can be seen in contrast to hemidiaphragm sections. S100 positive cells are 

stained blue. TSCs overlie the bungarotoxin signal (Scale bar 20µm). 

 

 

 

 

 

BTx S100 

Combined 
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3.2.1.4 Strain comparison 

 

Previous studies using antibodies to complex gangliosides in NIH mice did not 

describe TSC injury (O’Hanlon et al, 2000) while later work using the same 

antibodies in different mouse strains (BALB/c and C57Bl/6) did describe TSC 

damage (Halstead et al, 2004). To explore this in greater detail, ex vivo 

hemidiaphragm preparations were taken from a series of mouse strains using 

techniques described in Methods, and the effects of a well characterised antibody to 

complex gangliosides, which is known to injure both TSCs and axons (CGM3), was 

studied. This data demonstrates that, while NIH mice do not have obvious TSC injury, 

damage is evident in the other mouse strains under consideration (figure 3.3). As a 

result, NIH strains were avoided where possible in later experiments. 
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Figure 3.3: Inter-strain comparison of TSC susceptibility to CGM3 

mediated injury. Diaphragms from Harlan, C57Bl/6, 129/Sv and CBA (both 

crossed onto the C57Bl/6 background); NIH Swiss old and young, and 

BALB/c mice were exposed to CGM3 and NHS, using EthD-1 uptake to 

identify TSC injury. Boxed numbers indicate the total number of NMJs 

assessed per experimental condition. TSC injury is virtually absent from 

NIH strains (data published in Halstead et al, 2005b). 
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3.2.2 Antibody selection 

 

The effect of the antibodies at the NMJ was quantified, in an attempt to identify which 

antibody injures TSCs at the most NMJs. The antibody producing the greatest effect 

would therefore be most suitable for further study. 

 

3.2.2.1 Antibody growth and purification 

 

Before undertaking ex vivo studies, antibodies were first grown, purified and, where 

possible, concentrated using protocols outlined in Methods. Antibody growth takes 

place over several weeks, and despite taking place in a sterile environment, was often 

complicated by infection that resulted in destruction of the hybridoma and antibody. 

 

Twice monthly ganglioside ELISAs were performed on the cell compartment 

medium, to ensure the continued viability of the cell line as described in Methods.  A 

graphical representation of the resulting dilution series ELISA is shown using Excel 

in figure 3.4. 
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GD3 Ganglioside ELISA for antibody EG1
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Figure 3.4: Ganglioside ELISA from tissue culture supernatant. The 

optical density of the tissue culture supernatant is compared against a stock 

sample of antibody as positive control. The presence of antibody to GD3 

ganglioside was used to confirm cell line viability. A similar graph was 

created for LB1, using GD3 IgM ELISA kit. 

 

Having prepared suitable volumes of antibody over a period of several months in 

tissue culture, the harvested nutrient medium of EG1 was purified using protein A 

affinity chromatography as described in Methods (LB1 could not be purified using 

this technique). Filtered and dialysed nutrient medium solution was passed through 

the column, and the flow through was collected before the column was washed, and 
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then eluted. At regular intervals, the resulting solutions were retained, and an 

OD280nm was performed, to prevent unintentional loss of antibody. The results of 

these OD measurements are shown in figure 3.5. These data were confirmed using 

ganglioside ELISA, shown in figure 3.6. 
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Figure 3.5: OD280nm measurements of antibody purification solutions 

(flow through not shown). The OD280nm is high for the first column 

volume in the wash series, this sample did not test positive for antibody on 

ganglioside ELISA, and represents impurities from the filtered nutrient 

solution being cleared from the column. In the elution series, the OD280nm 

peaks between samples 2 and 3, suggesting that the majority of antibody 

was eluted during these intervals. 
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GD3 ganglioside ELISA of antibody purification solutions
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Figure 3.6: Ganglioside ELISA of antibody purification solutions. 

Antibody to GD3 ganglioside is seen in samples 2-4 in the elution series, 

but not in the wash series or flow series. This supports observations from 

the OD280nm study. 

 

Samples 2 to 4 from the elution series were then combined, and the concentration of 

the resulting antibody solution was measured using quantitative ELISA, as described 

in Methods, and confirmed using OD280nm to exclude any variability that may result 

from ELISA. An example of a standard curve for quantitative ELISA is shown in 

figure 3.7. 
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Quantitative ELISA using GD3 on purified EG1
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Figure 3.7: Standard curve for quantitative ELISA measurements. 

 

With the assistance of Mr Eric Wagner, the success of the purification process was 

assessed using an SDS page gel, using techniques outlined in Methods. In this study, 

samples of purified and quantified antibody solution were run through an SDS page 

gel, and compared to previously purified samples, as seen in figure 3.8. 
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Figure 3.8: SDS PAGE gel of purified antibody EG1 (compared to stock 

sample – Kate EG-1). The freshly purified sample is comparable to existing 

stocks, as both show similar heavy and light chain bands on electrophoresis 

(arrows). A third antibody (Kay DG) is shown, as a control. 

 

 

3.2.2.2 Terminal Schwann cell injury 

 

Ex vivo hemidiaphragm studies were undertaken using pre-established concentrations 

of the antibodies under study  (100µg/ml for EG1 and R24, and 60µg/ml for LB1), 

using protocols to measure TSC injury described in Methods with three preparations 

from 3 mice for each condition. The number of NMJs with TSC damage was 

determined by using EthD-1 as a marker of TSC injury, and displayed graphically 

using Excel.  
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These studies demonstrated that all antibodies produced significant TSC injury at the 

NMJ, compared to control (fig 3.9). Both EG1 and R24 produced statistically similar 

effects, and these data are consistent with earlier characterisation studies (Halstead et 

al, 2005b).  There is no statistical difference between the mAbs investigated. 
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Figure 3.9: Comparison of TSC injury using selected antibodies. These 

data suggest that EG1 and R24 produce comparable levels of TSC injury (p 

value=0.652) while LB1 also produces damage, but not to the same extent  

(p=0.065 for LB1 and R24, and p=0.203 for LB1 and EG1). Mean of 3 

hemidiaphragm preparations from 3 mice is shown as a value in the graph, 

with standard error of mean as error bars. 
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3.2.2.3 Complement activation products 

 

As damage to TSCs is mediated by complement, measurements of complement 

activation products C3c and MAC were also made, using ex vivo incubation protocols 

and complement deposition indices described in Methods, and displayed in box-and-

whisker format using Minitab. This study further illustrates the extent of antibody-

mediated injury, by showing which antibody can activate complement, and thus direct 

the immune system to the greatest extent. This would also help to clarify data 

obtained from earlier EthD-1 studies. 

 

Findings from these experiments support data obtained from EthD-1 studies, and 

show that EG1 and R24 produce similar levels of activation of C3c, while LB1 does 

not appear to activate complement to the same extent. More MAC is present with 

antibody EG1 than either R24 or LB1. Data is displayed graphically using Minitab, 

and represents pooled data from 3 hemidiaphragm preparations from 3 mice as 

described in Methods (figure 3.10 and 3.11). 
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Figure 3.10: C3c deposition at the NMJ with selected antibodies. There is 

not a significant difference in C3c deposition between EG1 and R24 

(p=0.77) while LB1 is significantly lower than EG1 or R24 (p<0.05). 

Pooled data from 3 hemidiaphragm preparations from 3 mice is displayed 

in box-and-whisker plots as intensity of C3c over bungaratoxin staining, 

measured using ImageJ as described in Methods. Outlying data points are 

removed, leaving median values, interquartile ranges (box) and 1.5 times 

the interquartile range (vertical lines). 
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Figure 3.11: MAC deposition using selected antibodies. There is 

significantly less MAC present on LB1 than either EG1 or R24 (p<0.01). 

There is more MAC deposited on EG1 than R24 (p=0.01). Pooled data 

from 3 hemidiaphragm preparations from 3 mice is displayed in box-and-

whisker plots as intensity of MAC over bungaratoxin staining, measured 

using ImageJ as described in Methods. Outlying data points are removed, 

leaving median values, interquartile ranges (box) and 1.5 times the 

interquartile range (vertical lines). 

 

 

 

 

 

MAC deposition at NMJs with different antibodies 
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3.2.3 Antibody Characterisation 

 

3.2.3.1 TSC identification 

 

Before undertaking studies to determine the proportion of TSCs injured by the 

antibody at each NMJ, a reliable cellular marker of TSCs in an ex vivo muscle 

preparation was sought. As shown previously, hemidiaphragm preparations identify a 

large number of junctions, which is useful for statistical analysis. However, this 

method does not describe the number of TSCs injured by the antibody, as it is seldom 

possible to fully visualise NMJ morphology. This prevents hemidiaphragm 

preparations being used in these experiments.  

 

Although TS can be used for morphological studies, and would be ideal for these 

characterisation experiments, the marker for TSCs in this muscle (S100) is impractical 

following antibody-mediated injury as it leaches from TSCs through MAC pores 

created by complement activation. However, a cell marker (Sytox Green) was 

identified that does not leach from the cells following antibody-mediated injury. Its 

suitability for use in these studies was therefore tested in the TS preparation.  

 

Sytox Green is a membrane impermeant nuclear marker, and was used in these studies 

to stain the TSC nuclei in ex vivo TS preparations as described in Methods. The Sytox 

signal is easy to identify, and co-localises with EthD-1 (figure 3.12) without leaching 

from the cell following antibody-mediated injury, like S100. Using Triton X-100, the 

marker can penetrate cell membranes, and label virtually all cell nuclei so the 

location, and number of cells can be identified at the junction.  
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Figure 3.12: Image of staining obtained using Sytox green. Image taken 

from TS muscle of BALB/c mouse, incubated with EG1 and NHS. Texas 

red BTx and EthD-1 are shown in red, with Sytox in green. Note the 

correlation between Sytox and EthD-1 (Scale bar 20µm). 

 

Studies characterising the morphology of the junction were therefore undertaken 

using Sytox green. Using data from previous experiments with S100 at the NMJ, 

criteria were developed to identify which nuclei were most likely to correspond to 

TSCs using confocal microscopy. These criteria were the presence of nuclei lying 

directly next to the convex surface of BTx, as it overlies the muscle. Nuclei were 

excluded if they were not immediately adjacent to the BTx signal, or were on the 

muscle side of the end plate. Other nuclei were not analysed if they did not clearly 

BTx + 
ethidium Sytox 

Combined 
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meet the criteria for analysis. Unlike S100, however, Sytox is not specific for 

Schwann cells and labels all nuclei in the TS muscle when used with Triton X-100. 

Although not formally quantified, no more than 5 NMJs were discarded during each 

analysis (from 42 junctions) because their associated nuclei did not meet the criteria 

for inclusion, representing 12% of all junctions in the preparation. Generally, these 

junctions were excluded as their NMJ morphology made it difficult to identify the 

convex side easily. This technique was then tested to confirm that it produced results, 

which supported previously published data on this area. 

 

The number of TSCs at each NMJ was assessed by counting Sytox positive nuclei 

immediately overlying each end plate from 3 TS preparations taken from 3 different 

mice. Data was pooled, and displayed graphically as a frequency histogram using 

Minitab. In these investigations, the number of TSCs at each NMJ follow a normal 

distribution, with a mean of three TSCs per end plate (figure 3.13).  
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Figure 3.13: Frequency histogram of TSCs at each NMJ using 

DAF1/CD59a double KO TS preparations, assessed by counting Sytox 

positive nuclei immediately overlying each end plate. The number of TSCs 

overlying each end plate follows a normal distribution, with a mean of 3 

(standard deviation 1.5). 

 

 

The long axis of the BTx signal was also measured when counting the number of 

Sytox nuclei overlying each end plate, and this demonstrated a proportional 

relationship between the number of TSC nuclei and end plate length, suggesting that 

larger end plates have more overlying TSCs. This data is displayed graphically using 

Minitab (figure 3.14). 
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Figure 3.14: Relationship between end plate length and number of TSCs. 

Using DAF1/CD59a double KO TS muscle preparations, a proportional 

relationship between end plate length and number of TSC nuclei is 

demonstrated (R2=78.3%). When NMJs with no Sytox staining are 

removed from the regression, the relationship is more significant 

(R2=86.8%). Data is displayed in box-and-whisker format using Minitab. 

Outlying data points are removed, leaving median values, interquartile 

ranges (box) and 1.5 times the interquartile range (vertical lines). 

 

3.2.3.2 Antibody effect 

 

Using this new Sytox technique, the effect of the antibody was further characterised 

by studying the proportion of TSCs that were injured at each junction in the TS 

muscle preparation by antibody EG1. Three TS muscles from 3 BALB/c mice were 
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incubated with antibody, NHS and EthD-1, and were then treated with Sytox 

following fixation as described in Methods. The nuclei of TSCs binding Sytox was 

compared to EthD-1 nuclei at each junction, providing an indication of the proportion 

of TSCs damaged at each NMJ. 

 

This study demonstrated that a mean of 86% of NMJs from the 3 TS preparations 

(SEM = 4.3) had evidence of TSC injury (150 from 174 junctions in 3 animals). A 

median quartile of 75% of TSCs were damaged at each NMJ (Q1=50%). 

 

3.3 Discussion 

 

3.3.1 Muscle tissue identification 

 

Although in vivo studies would be performed using the sternomastoid muscle in the 

CK mouse, it was not possible to use this preparation during the early stages of this 

investigation for a number of reasons. In particular, the animal strain was not 

available at the time in the United Kingdom, permission was not available for animal 

surgery, and it is difficult to maintain the sternomastoid muscle ex vivo during 

incubation protocols without causing muscle fibre damage. Unlike the hemidiaphragm 

or triangularis sterni muscles, it is not possible to remove sternomastoid with its 

supporting bone or tendon sheaths intact and therefore it is difficult to maintain 

appropriate tension on the muscle for the period required for antibody incubation. As 

a result, alternative muscles were sought that would allow testing of antibodies. 
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Two commonly used muscles in anti-ganglioside antibody binding studies in the 

Willison laboratory are hemidiaphragm muscle and TS. Both muscles are located in 

the thoracic cavity, and are easily dissected with supporting bone to maintain muscle 

tension ex vivo. A comparison study was therefore undertaken to determine which 

would be most suitable for antibody studies.  

   

TS muscle was selected to investigate the morphological effects of the antibody on 

the NMJ ex vivo as it offered the best images and did not require sectioning to image 

NMJs. Although the hemidiaphragm had a large number of NMJs, it was not possible 

to stain for S100, a key morphological marker at this site. Unlike the TS muscle, 

which is a whole mount preparation, the hemidiaphragm is sectioned prior to analysis 

and this often results in sectioning through NMJs. This can damage the TSCs, 

producing leaching of the cytosolic contents into the extracellular space, preventing 

staining with S100. Although it would be possible to stain the hemidiaphragm muscle 

as a whole mount, the thickness of the muscle limits the quality of image obtained, 

and therefore TS was used for morphological analysis. 

 

However, sectioning the hemi-diaphragm does yield a large number of NMJs that can 

be used for analysis of neurofilament injury, and complement and immunoglobulin 

deposition, using established techniques for analysis (O’Hanlon et al, 2003). The 

number of available NMJs can therefore maximise the statistical significance of any 

data, while reducing the number of animals required for each study in compliance 

with Home Office guidelines. As a result, the hemidiaphragm was used to screen 

antibodies, measure the effect of the antibody on the components of the nerve 

terminal, and establish staining protocols.  
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It is also interesting to note that NIH mouse strain TSCs are insensitive to the effects 

of antibody CGM3, despite axonal sensitivity. Preliminary work by colleagues in the 

laboratory suggests that ganglioside composition is different between BALB/c and 

NIH, as immunoglobulin deposits of CGM3 are lower at the NMJs of NIH mice than 

BALB/c (Dr Sue Halstead, personal communication). Although further study of this 

area was outwith the scope of this investigation, it would be interesting to explore this 

in greater detail. 

 

3.3.2 Antibody selection 

 

A series of antibodies with similar binding properties on ELISA were previously 

identified for their ability to selectively injure TSCs. These antibodies were either 

commercially available (R24), or grown in the laboratory, from hybridomas 

developed in the Willison laboratory (EG1) or from the Reynolds laboratory (LB1). 

Both R24 and EG1 are IgG antibodies, while LB1 is an IgM antibody. 

 

Experiments show that the TSC killing effects of both R24 and EG1 are broadly 

similar. Although LB1 injures fewer TSCs, this difference does not reach statistical 

significance. The reduced effect of LB1 is also seen when examining complement 

activation products at the junction, with both R24 and EG1 activating more C3c and 

MAC than LB1.  

 

This is an unexpected result, as LB1 is an IgM antibody with a pentameric structure 

that has more potential binding sites than a corresponding IgG antibody. However, it 

was used at a lower concentration than both R24 and LB1, and this may explain the 
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difference in effect. It was not possible to compare LB1, R24 and EG1 at the same 

concentration as it was impossible to concentrate LB1 beyond 60µg/ml. IgG 

antibodies can be purified and concentrated using a protein A column, but this 

technique cannot be used for IgM antibodies. Protein A binds to the Fc of IgG, but the 

pentameric structure and disulfide bonds of IgM antibodies mask the Fc site. As a 

result, LB1 cannot bind to protein A columns and other less effective methods e.g. 

Vivacell concentration columns, must be used instead. These methods only 

concentrate, rather than purify the antibody. LB1, despite being easily grown in the 

laboratory, was not considered for further use. 

 

Interestingly, EG1 appears to activate more MAC at the NMJ than other antibodies, 

despite having similar levels of C3c and EthD-1 injury as antibody R24. MAC is the 

final common pathway of complement activation, and is responsible for the injury 

with antibody EG1. It is not clear why more MAC should be present with EG1, but it 

suggests that it is more capable of activating the complement cascade to produce TSC 

injury. 

 

Although the effects of R24 and EG1 on TSCs were not statistically different, EG1 

was selected for use in later experiments, as it was developed in the Willison 

laboratory, it activated MAC more efficiently than other antibodies, it could be easily 

grown from existing hybridoma lines, and the resulting antibody could be purified 

through a protein A column for further use. 
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3.3.3 Antibody Characterisation 

 

Previous work characterising the effect of EG1 used ex vivo hemidiaphragm 

preparations to identify the number of NMJs with evidence of TSC injury. Although 

this data is statistically very robust, and a strong method for identifying, and 

comparing antibody effect, it does not consider the number of TSCs injured at each 

junction. However, this information would be very useful, as removing all the TSCs 

from a junction would permit observation of the NMJ in their absence, giving an 

important insight into TSC biology, and also the junction’s response to this form of 

injury, which may occur in MFS. As a result, experiments were conducted to identify 

the proportion of TSCs damaged by the antibody at each junction, using antibody 

EG1.  

 

Before these studies could be performed, an accurate method of identifying TSCs at 

the NMJ had to be developed. Unfortunately, it was not possible to obtain the CK 

mouse model at the time of these studies, and other methods were therefore devised to 

identify these cells. A reliable Schwann cell stain is S100, which is a low molecular 

weight calcium binding protein of uncertain significance. It was hoped that staining 

with this marker would demonstrate all the TSCs at the NMJ of TS, and this could 

then be correlated with EthD-1 nuclei showing TSC injury. However, early studies 

with antibody EG1 showed that S100 staining was lost following antibody-mediated 

injury. Following antibody injury, pores are formed in the membrane of the cell, 

causing loss of cytoplasmic contents (including S100) into the extracellular 

compartment, at the same time as calcium ingress. As a result, S100 staining was not 

reliable, and it was not felt to be an appropriate co-stain for these studies.  
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It is known that the TSC nucleus remains intact for at least the first hour following 

injury, as staining using the nuclear marker EthD-1 persists, and is used as a marker 

for TSC injury. Nuclear stains other than EthD-1 were therefore considered as 

possible co-stains. Early studies used DAPI, but it was difficult to correlate DAPI 

staining accurately with structural markers at the NMJ, as it was not possible to 

confocal this stain, and analysis had to be performed under epifluorescence 

microscopy.  

 

Sytox green was identified as an alternative. This nuclear stain has been used 

extensively for studies of the cellular apoptosis in a similar manner to EthD-1, but has 

a distinct absorption and emission spectrum from EthD-1, and unlike DAPI can be 

examined under the laboratory’s confocal microscope with existing filters. Sytox also 

has an emission peak at 523nm, and can be examined through the FITC filter set of 

the confocal microscope, while EthD-1, with its emission wavelength of 617nm can 

be examined using a TRITC filter set. By using laser stimulation to take z stacks 

through each junction, images can be constructed of TSC nuclei, and correlated with 

EthD-1 staining. 

 

Like EthD-1, Sytox green is a membrane impermeant dye, so that protocol was 

devised to facilitate cell penetration during tissue processing, using Triton X-100 as a 

permeabilising agent. The detergent disrupted the cell membranes in previously fixed 

tissue, allowing access and binding of the dye to the cell nucleus. This method 

however, resulted in very non-specific nuclear staining and identified nuclei 

belonging to many other tissue types, including myonuclei and fibroblasts. Previous 
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experiments in the laboratory identified strict criteria for describing TSC nuclei in TS 

muscle, by staining with S100. These criteria were applied to the Sytox Green 

method, and in most examples, offered a reliable method of identifying TSC nuclei 

using confocal microscopy. 

 

Early characterisation studies using this technique confirmed previous data that the 

size of the junction correlates closely with the number of TSCs (Love et al, 1998). 

This confirms that the Sytox technique produces data that is consistent with previous 

findings.  

 

However, during the analysis, several end plates appeared to have no overlying Sytox 

positive nuclei, and by implication, no TSCs. The pattern of nuclear staining adjacent 

to these end plates, representing adjacent end plates or muscle nuclei, appeared 

normal, and suggests that this was not an issue of dye penetration. Equally, there was 

no correlation between end plate size and location with these end plates. These 

junctions may therefore represent the latter stages of synaptic elimination or 

denervation and if followed over a period of time, the NMJ may eventually 

degenerate. If these end plates are removed from the correlation analysis as being 

unrepresentative, the relationship between the number of TSCs and the length of the 

end plate becomes more significant.  

 

Having established this technique, studies were then undertaken to describe the 

number of TSCs at each junction injured by antibody EG1. These investigations 

showed that 87% of junctions in triangularis sterni had evidence of TSC injury. 

Although no direct comparison studies were performed, the proportion of injured 
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junctions in TS appears to be higher than hemidiaphragm (figure 3.9).  TS is 

significantly thinner than the diaphragm, and therefore this discrepancy may be the 

result of muscle thickness, and tissue penetration. However the hemidiaphragm 

sections were cut on a cryostat, and it is likely that measurements of injury using this 

muscle are underestimated. It would be interesting to directly compare antibody 

effects between these muscles, to identify if the antibody effect, and therefore by 

implication, ganglioside composition, is different between the two muscles. All the 

junctions in the hemidiaphragm preparation would be assayed to ensure a fair 

comparison. If the ganglioside composition were different between the muscles, this 

would support the hypothesis in humans that complex gangliosides are mainly located 

in the head and neck, which is an explanation for the symptoms of MFS being 

confined to this site (Chiba et al, 1997). 

 

It was also shown that a mean of 75% of TSCs are injured at each junction by 

antibody EG1 in the timescale under consideration, although a number of junctions 

have complete TSC loss. While it is difficult to extrapolate these ex vivo findings to 

the human disease, these results suggest that certain TSCs at the NMJ may be 

insensitive to the effects of anti-ganglioside antibodies, while others at the same 

junction experience injury. A number of possibilities may account for this 

observation, including differing ganglioside composition or complement regulator 

expression on individual TSCs at the junction. The NMJ is not a static junction, and 

the morphology (including TSC number and distribution) does change with age 

(Lubischer and Bebinger, 1999). The difference in ganglioside or complement 

regulator expression may be related to the age of the cell, and it would therefore be 

interesting to see if the antibody’s effect is only confined to cells at a particular level 
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of maturity for this reason. It may also provide insight into the human disease, and 

whether certain age groups would be more susceptible to certain types of immune 

mediated injury. 

 

The study also demonstrates that many junctions had complete loss of all TSCs after 

antibody exposure. This proves that EG1 can be used to remove all TSCs from certain 

junctions, and study the longer-term effects of their absence at these sites. Although it 

would be interesting to remove all the TSCs from a preparation and examine the 

consequences, having a range of injury across a series of junctions (from no damage 

to complete loss of TSCs), will provide a series of different scenarios that can be 

observed. Further, having some junctions with no damage may provide an internal 

control in the muscle, which would be useful for comparison. 

 

Although it is not possible to directly extrapolate these findings to the sternomastoid 

due to strain and muscle differences, these studies provide a likely indication of 

antibody effect with the in vivo system. 

 

3.4 Conclusion 

 

This study sought to identify an antibody that would produce a significant injury to 

TSCs in ex vivo preparations that could then be used for later work in in vivo animal 

models. The most appropriate testing system for antibody comparison studies was 

identified as the hemidiaphragm preparation, due to the yield and established 

techniques for antibody testing in this system; while the TS muscle was shown to be 

the most suitable for structural, and morphological studies. 
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Using the hemidiaphragm technique, 3 antibodies with similar binding profiles to 

GQ1b and GD3 on ganglioside ELISA were compared, and EG1 was selected as the 

most suitable for use in later experiments as it produced TSC injury at a large number 

of junctions. Also, because this IgG antibody was prepared from laboratory stocks, 

large amounts could be grown and purified for regular use. 

 

Finally, the effect of this antibody was quantified in TS muscle, and it was shown that 

75% of TSCs at each junction were damaged by antibody EG1, but some junctions 

had complete TSC loss. This antibody would therefore provide a range of injury 

across the muscle that could be directly observed using the in vivo imaging system, to 

compare the effects of varying degrees of TSC injury at the NMJ. 

 

In summary, antibody EG1 was selected as the most suitable antibody for use in later 

experiments. 
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Chapter 4: Effect of DAF1/CD59a regulators on complement- 

mediated antibody effect 

 

4.1 Introduction 

 

TSC injury caused by antibody EG1 is a complement dependent process that involves 

the formation of MAC, via activation of the classical pathway of the complement 

cascade. The MAC molecule renders the cell membrane permeant, and disrupts the 

cell’s osmotic balance leading to cell lysis. Although a single MAC pore is sufficient 

to produce lysis in an erythrocyte, nucleated cells utilise a number of systems to 

minimise the effects of MAC, including ion pumps to regulate any osmotic disruption, 

and vesicular mechanisms to remove MAC from the cellular membrane (Morgan, 

1989; Scolding et al, 1989).  This prevents cell death in response to low level MAC 

formation, as part of a non-specific immune response. 

 

In addition, regulator proteins exist which can disrupt the formation of MAC. These 

proteins can exist in the serum, or on the surface of cells. One of the cellular 

membrane bound proteins, CD59a acts by inhibiting insertion of C9 into the 

membrane itself, to directly reduce the efficacy of MAC by preventing the formation 

of the molecule (Meri et al, 1990). Another protein on the cell surface, decay 

accelerating factor (DAF) also known as CD55, binds C3 and C5 convertases. Both 

C3 and C5 convertases are important in generating MAC, and DAF acts to increase 

the breakdown of these enzymes, and thus inhibit subsequent MAC formation (Fujita 

et al, 1987).  
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These regulator mechanisms, in conjunction with other systems that control 

complement activity, mean that more complex, nucleated cells are relatively resistant 

to the action of MAC, and a significant number of MAC pores are therefore required 

to produce injury in these cell types. 

 

The expression of these regulator proteins can be manipulated genetically to study the 

effects of these inhibitors directly, and gain an understanding of their contribution to 

complement function (Miwa et al, 2002). Much of this work was developed to study 

the pathogenesis of paroxysmal nocturnal haemoglobinuria, a complement dependent 

process causing haemolysis of erythrocytes. In this disease, patients have a defect in 

the gene that codes for phosphatidylinositol glycan A (PIGA) which makes the 

membrane anchor protein called glycosylphosphatidylinositol (GPI). These GPI 

structures “anchor” a number of complement regulators to the cell membrane, 

including CD59 and DAF. Without these regulators on the surface of their red blood 

cells, patients experience complement-induced haemolysis of their erythrocytes 

(Nangaku, 2003). Mouse strains were developed with deficiencies in CD59a and 

DAF1, which are similar regulators of complement function in mice, to understand 

the contribution of GPI anchored complement regulators at the cell surface. 

 

The purpose of this study was therefore to determine whether removing regulators of 

complement function would increase the effect of EG1. These studies were 

undertaken using a mouse strain deficient in complement regulators DAF1 and 

CD59a (double KO), and this was compared to the C57Bl/6 background strain (DAF 

WT). BALB/c mice were used as a positive control, as the antibodies have previously 
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been described in this strain. Complement regulator knockout lines were kindly 

donated by Dr P Morgan (Cardiff University, Wales). 

 

4.2 Results 

 

4.2.1 Image acquisition 

 

Before undertaking ex vivo and topical assays of complement and immunoglobulin 

deposition, experiments were conducted to optimise the image acquisition settings using 

the confocal microscope. Three settings on the confocal software could be altered to 

influence the resulting image: detector gain, amplifier offset (representing background 

levels) and amplifier gain (amplification factor). Incorrect settings on the acquisition 

software could either mask any staining that is present over the end plate, or over-

saturate the image to a false positive signal as shown in figure 4.1 (a-c).   
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Figure 4.1: A-C. In these figures, sections from the same ex vivo BALB/c 

hemidiaphragm muscle are imaged using different acquisition settings on 

the imaging software. The muscle was incubated with EG1 and NHS, and 

stained for C3c using protocols outlined in Methods. Although the pattern 

of staining should be the same between samples, the effect of altering the 

image acquisition software settings is clearly seen. In (A), the image is 

oversaturated by increasing amplifier gain, and offset, and detector gain to 

produce a false positive signal. In (B), the levels are decreased and no 

staining is apparent. However, by setting the acquisition levels correctly 

(C), the image is a more accurate representation of actual staining patterns 

as visualised through the microscope (Scale bar 15µm). 
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The effects of altering the settings is also seen when the data is represented 

graphically, using Minitab (figure 4.2). 
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Figure 4.2: Ex vivo hemidiaphragm preparations of EG1 and normal 

human serum, stained for BTx and MAC as described in Methods. Despite 

the same muscle being used, altering the settings can drastically alter the 

appearance of the data. In graph A, the data range is broad whilst in B, the 

data sets are very small. In both, it is difficult to establish any clear trends 

and the data is inconsistent. In C, the correct settings are used giving 

consistent, reproducible data sets. Pooled data from 3 hemidiaphragm 

preparations from 3 mice for each stain is displayed in box-and-whisker 

plots as intensity of MAC over bungaratoxin staining, measured using 

ImageJ as described in Methods. Outlying data points are removed, leaving 

median values, interquartile ranges (box) and 1.5 times the interquartile 

range (vertical lines). 

 

C    MAC deposition – correct acquisition settings     
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To ensure the accuracy of image acquisition settings, ex vivo experiments were often 

conducted in parallel with Mr Peter Humphreys to ensure that the resulting data was 

comparable. Also, images acquired for analysis were often reviewed by laboratory 

colleagues, and compared with images viewed directly through the microscope to 

ensure their accuracy. 

 

4.2.2 Topical staining 

 

4.2.2.1 Tissue preparation 

 

Sections of untreated hemidiaphragm were obtained from the mouse strains under 

study, and were stained topically with antibody and a source of complement as 

described in Methods. Intensities of immunoglobulin and MAC were measured using 

a confocal microscope, and ImageJ analysis software as described in Methods. Non-

parametric data is displayed in “box and whisker” format, and represents pooled data 

of muscle tissue from 3 mice, as outlined in Methods. 

 

4.2.2.2 Immunoglobulin deposition  

 

Before undertaking detailed comparison studies of the effect of antibody EG1 in 

different strains, topical deposition of immunoglobulin was measured on sections of 

hemidiaphragm tissue from the selected mouse strains. This study would identify 

whether the ganglioside composition of each strain was different, and may account for 

differences in complement activation, or TSC injury. 
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The results show that the strains under examination had measurable levels of antibody 

EG1. There is a statistically significant difference in immunoglobulin deposition 

between the strains (figure 4.3), with less immunoglobulin binding to BALB/c than 

the complement regulator knockout, or its wild type. Further, the knockout 

preparation has more intense binding than its wild type. 
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Figure 4.3: Topical deposition of antibody EG1 in different mouse strains. 

There is a statistically significant difference between deposition of antibody 

in BALB/c and DAF WT (p<0.01), or the DAF1/CD59a double knockout 

preparation (p<0.01); and also between the DAF1/CD59a knockout 

preparation, and its wild type (p<0.01). Pooled data from 3 hemidiaphragm 

preparations from 3 mice for each stain is displayed in box-and-whisker 

plots as intensity of mAb over bungaratoxin staining, measured using 

ImageJ as described in Methods. Outlying data points are removed, leaving 
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median values, interquartile ranges (box) and 1.5 times the interquartile 

range (vertical lines). 

 

4.2.2.3 Complement deposition 

 

The ability of antibody EG1 to activate complement at the NMJs of different mouse 

strains was then measured, using the complement activation product MAC. In this 

study, a well-described antibody that binds both the TSCs and nerve terminal (CGM3) 

was used as a positive control.  

 

All mouse strains had detectable levels of MAC overlying the end plate with both 

antibodies (figure 4.4). There was a statistically significant difference in intensity of 

MAC deposition between BALB/c, and both the complement regulator knockout 

preparation and its wild type, using EG1 and CGM3. However, there was no 

statistical difference in complement deposition between the complement regulator 

strains (fig 4.4). This demonstrates that complement deposition due to EG1 or CGM3 

in BALB/c is lower than the DAF1/CD59a knockout mouse, or its wild type. 
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Figure 4.4: Topical complement deposition in different mouse strains. 

MAC deposition with both antibodies was lower in BALB/c than DAF WT 

(p<0.01) and DAF1/CD59a double knockout preparations (p<0.01). There 

was no difference between DAF WT and DAF1/CD59a double knockout 

preparations for both antibodies (p=0.07 for EG1 and p=0.49 for CGM3). 

Pooled data from 3 hemidiaphragm preparations from 3 mice for each 

condition is displayed in box-and-whisker plots as intensity of MAC over 

bungaratoxin staining, measured using ImageJ as described in Methods. 

Outlying data points are removed, leaving median values, interquartile 

ranges (box) and 1.5 times the interquartile range (vertical lines). 
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4.2.3 Ex vivo hemidiaphragm preparations 

  

4.2.3.1 Pathological effects of antibodies 

 

Although topical staining provides a useful indication of antibody binding to tissues 

and subsequent complement activation, it does not describe the pathological effects of 

the antibody on live tissue. Experiments were therefore undertaken using ex vivo 

hemidiaphragm preparations, which provide a better model for effects in vivo than 

topical sections. Hemidiaphragm sections were harvested, and treated with antibody 

EG1 and normal human serum as described in Methods. Tissue was retained for 

measurement of MAC deposition, and remaining sections of hemidiaphragm were 

exposed to EthD-1 as a marker of TSC injury. Results are pooled data from 3 

hemidiaphragm preparations from 3 mice, as described in Methods. 

 

4.2.3.2 Terminal Schwann cell injury 

 

To investigate whether removing complement regulators enhanced the effect of EG1, 

the number of NMJs with EthD-1 positive nuclei, (suggesting TSC injury), were 

measured in BALB/c, C57Bl/6, and DAF1/CD59a deficient preparations.  

 

No statistically significant difference in the number of end plates with EthD-1 nuclei 

was seen across any of the mouse strains, suggesting that removing complement 

regulators DAF1/CD59a do not enhance the Schwann cell damaging effect of EG1. 

Data is displayed graphically using Excel (fig 4.5).  
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Figure 4.5: TSC injury using EthD-1 as marker of TSC injury ex vivo. 

There is no statistical difference between mouse strains using antibody EG1 

(p=0.22 for DAF vs BALB/c, p=0.73 for Double KO vs DAF WT and 

p=0.12 for BALB/c vs Double KO). Pooled data from 3 hemidiaphragm 

preparations from 3 mice is shown for each strain, with mean displayed as a 

value in the graph, with standard error of mean as error bars. 

 

4.2.3.3 Complement product deposition 

 

As with earlier topical investigations, MAC immunostaining was used to study 

whether removing complement regulators would enhance the complement activating 

effect of antibody EG1.  

 



 169

No statistically significant difference was present with MAC deposition (fig 4.6) 

across any of the strains under study, suggesting that removing complement regulators 

DAF1/CD59a do not enhance complement activation mediated by EG1.  
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Figure 4.6: MAC deposition at NMJ across mouse strains with antibody 

EG1. No statistical difference was evident in complement deposition 

product C3c in ex vivo preparations with antibody EG1 (p=0.06 for Double 

KO vs BALB/c; p=0.26 for Double KO vs DAF WT; and p=0.8 for 

BALB/c vs DAF WT). Pooled data from 3 hemidiaphragm preparations 

from 3 mice for each strain is displayed in box-and-whisker plots as 

intensity of MAC over bungaratoxin staining, measured using ImageJ as 

described in Methods. Outlying data points are removed, leaving median 

values, interquartile ranges (box) and 1.5 times the interquartile range 

(vertical lines). 



 170

4.3 Discussion 

 

4.3.1 Topical Staining 

 

4.3.1.1 Immunoglobulin staining 

 

Before starting in vivo studies using antibody EG1, experiments were undertaken to 

examine whether removing complement regulators could enhance the effect of 

antibody EG1, and if it would be worthwhile to establish a transgenic fluorescent 

complement regulator knockout mouse model for in vivo imaging. Although mouse 

strains are available which are separately deficient in DAF1 and CD59a, the “double 

knockout” model was used in these studies. If a difference in effect were identified, 

the mice deficient in either CD59a or DAF1 would then be used to determine which 

regulator made the greatest contribution.  

 

Early experiments considered the effects of antibody binding topically to sections of 

hemidiaphragm muscle tissue, and its ability to fix complement. This type of study is 

a useful screening tool: by using small quantities of muscle and antibody to determine 

immunoglobulin deposition, a large number of strains can be screened rapidly while 

reducing the number of animals required for each investigation. However, the system 

is relatively artificial because sectioning muscle reveals epitopes that are normally 

masked by connective tissue or other structures, and this may influence antibody 

binding. Also, the morphology of the junction is largely lost during sectioning, and 

detailed co-localisation is therefore virtually impossible. Despite these minor 

limitations, the method is useful as a screening tool and was therefore used early in 
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these regulator studies to show if the mouse strains under study could actually bind 

antibody, and fix complement. 

 

Topical immunoglobulin deposition demonstrated a statistically significant difference 

in antibody deposition across the three muscle strains under consideration. The 

difference between BALB/c and the complement regulator mice could be the result of 

strain differences in ganglioside composition. Other work has suggested that 

ganglioside composition can vary between mouse strains, and this difference can 

influence anti-ganglioside antibody binding (Halstead et al, 2005b). Although it is not 

directly related to this study, it would be interesting to examine the binding 

characteristics of other anti-ganglioside antibodies in these mouse strains, in an 

attempt to elucidate the different ganglioside compositions between strains. 

 

Interestingly however, the topical study also identified a difference in antibody 

binding between the DAF1/CD59a knockout mouse, and its wild type. This is an 

unexpected finding, as the DAF1/CD59a mouse should have the same ganglioside 

backgrounds as its wild type. As both DAF1 and CD59a exist on the cell membrane 

surface, and both are GPI-anchored, they may be associated with gangliosides through 

lipid rafts (Simons and Ikonen, 1997; Fukinaga et al, 2003). It is conceivable that 

their absence may influence ganglioside composition in the cell membrane and 

influence antibody binding. If this hypothesis were correct, it would identify a new 

aspect of cell membrane glycobiology, and the interaction of molecules on lipid rafts.  

 

However, the breeding programme to create the DAF1/CD59a knockout mouse may 

have unintentionally bred animals selectively with a different ganglioside composition 
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to their background stain, and this may also account for the difference. It would again 

be interesting to examine other anti-ganglioside antibodies in these strains, to further 

elucidate the differences in ganglioside composition. Comparing antibody binding in 

the single knockout preparations, deficient in either DAF1 or CD59a may also help to 

identify which molecule may be influencing ganglioside composition.  

 

4.3.1.2 Topical complement activation 

 

These experiments also show that levels of complement deposition after incubation 

with antibody and complement were significantly lower in BALB/c mice than either 

DAF1/CD59a preparations, or their corresponding wild type. However, levels of 

immunoglobulin deposition are different in between these strains, and it is possible 

that differences in complement deposition may be the result of differences in antibody 

deposition between the strains. Equally, as the tissue is sectioned, and effectively 

“dead”, complement regulators may not be able to function within this model. Finally, 

it is possible that the amount of antibody present, and concentration of heterologous 

serum, overwhelms the regulators DAF1 and CD59a, making it impossible to identify 

any difference between the knockout, and its wild type. To investigate these 

hypotheses, a dose response experiment could be undertaken where different amounts 

of antibody and serum were applied, and the intensity of MAC and immunoglobulin 

were measured. If the regulator system was overwhelmed, a difference in MAC 

deposition may become apparent at lower concentration of serum or antibody. If not, 

this would suggest that differences in deposition may be due to regulator inactivity in 

“dead” tissue. 
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In summary, this study demonstrates that the antibody can bind, and fix complement 

to the mouse strains under study, and they are suitable for further investigation. It also 

suggests that there is a significant difference in immunoglobulin deposition between 

DAF1/CD59a knockout preparations and its wild type, there is no difference in MAC 

deposition between these strains suggesting that removing DAF1/CD59a does not 

enhance the human complement activating effects of antibody EG1 on topical 

sections of tissue. These experiments were continued using ex vivo models, using 

whole mount hemidiaphragm preparations to provide a more accurate experimental 

paradigm that is comparable to in vivo models. 

 

4.3.2 Ex vivo hemidiaphragm preparations 

 

Comparison studies were therefore made using ex vivo hemidiaphragm preparations 

taken from BALB/c, DAF1/CD59a knockout and DAF wild type mice, to investigate 

whether there was a difference in TSC injury between these mouse strains ex vivo, 

and in particular whether removing complement regulators would enhance TSC 

injury. In contrast to topical studies, these ex vivo preparations provide a more 

accurate model for in vivo tissue damage. 

 

The results suggest that removing complement regulators DAF1/CD59a do not 

enhance the TSC injury of antibody EG1 when compared to their corresponding wild 

type. There is also no difference in TSC injury between BALB/c mice, and other 

mouse strains under consideration. In addition to TSC injury, there is also no 

difference in MAC deposition between mouse strains on ex vivo preparations.  
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This presents an interesting contrast with data from the topical sections, where less 

antibody and MAC was present on BALB/c than either of the complement regulator 

knockout strains, although it is obviously not possible to directly compare topical 

sections to ex vivo preparations for reasons outlined previously. 

 

As the ex vivo preparation is a more accurate model, which identifies injury rather 

than passive antibody binding, these experiments suggest that removing complement 

regulators do not increase the antibody effect on TSCs, or alter MAC activation at the 

NMJ. This is surprising, as both DAF1 and CD59a influence the formation of MAC, 

and their removal should increase MAC deposition and possibly injury. As discussed 

with topical sections, the expression of complement regulators may be tissue specific, 

and DAF1 and CD59a may not be expressed at sufficient concentration to 

demonstrate an effect in diaphragm muscle. This may also account for the lack of 

difference in complement deposition, or TSC injury in this model. However, the 

concentration of serum used in the ex vivo experimental protocol is very high (40%), 

and this may instead overwhelm the complement regulatory system, rendering both 

DAF1 and CD59a ineffective. This hypothesis could be confirmed by repeating the ex 

vivo experiments in the same strains, using differing concentrations of human serum. 

A difference in effect would be expected at lower concentrations if the hypothesis 

were correct.   

 

Additionally, as human serum is used on mouse tissue, it is possible that cross-species 

complement regulation is not possible in this system. This hypothesis could be tested 

by applying mouse serum to the preparation under similar conditions, which may 

demonstrate a difference in effect between complement regulator strains. 
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4.4 Conclusion 

 

The aim of this study was to identify whether removing complement regulators DAF1 

and CD59a would enhance the effect of antibody EG1 in the hemidiaphragm.  

 

Using topical sections of mouse diaphragm, it was shown that complement deposition 

is lower in BALB/c mice than either DAF/CD59a knockout preparations, or their 

corresponding wild types. This effect may be due to differences in antibody 

deposition between the strains. 

 

The investigation also demonstrated that there was no statistically significant 

difference in TSC injury between any of the mouse strains under investigation ex vivo, 

and that removing DAF/CD59a did not enhance the effect of antibody EG1. Instead, it 

is possible that the high concentration of human serum used in the experimental 

protocol overwhelms the regulator system, and the effect has been maximised using 

this current system; or that normal human serum can bypass mouse complement 

regulator systems. 
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Chapter 5: TSC injury and recovery using an in vivo fluorescent 

system 

 

5.1 Introduction 

 

One of the major difficulties encountered during histological analysis of the PNS is 

the difficulty in staining tissue in vivo. Most stains are either cytotoxic, or bind to the 

cell and alter its normal behaviour, making serial morphological studies impossible. 

This is particularly problematic when studying the effect of injury and recovery at the 

NMJ. Although junctions share the same gross morphology – axon, TSCs, and post-

synaptic specialisation, there are important differences that make each junction 

unique, including the pattern of axon distribution, the number and position of TSCs, 

and the pattern of bungarotoxin (and hence, ACh receptor) distribution. Current ex 

vivo studies of injury only state whether any gross change occurs at the junction (i.e. 

absence of axon, or TSC) as a result. Potentially important, more subtle observations 

that will influence nerve terminal function may not be identified using current 

methods e.g. change in TSC number, alteration in bungarotoxin area or axonal 

distribution, etc.  

 

Equally, these practical difficulties prevent accurate description of longer-term 

changes at the NMJ. In the human, the effects of immune mediated nerve injury can 

last from weeks to months, and to produce an accurate rodent model of disease, it is 

important to describe changes that occur following injury over a comparable period of 

time. Again, it is only possible to describe gross changes using current methods. To 
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produce an accurate rodent model of disease, and describe disease pathogenesis, it is 

crucial to derive a suitable system for repetitive in vivo imaging. 

 

It has recently become possible to transgenically insert fluorescent protein derivatives 

from the bioluminescent jellyfish, Aequorea victoria in a cell specific manner in the 

mouse (CK mouse model). These green and cyan fluorescent proteins (GFP and CFP) 

act as vital stains, which permit visualisation of the nervous system without causing 

cellular injury. By using existing techniques that allow repetitive imaging of the 

sternomastoid muscle of the mouse under recovery anaesthesia (Lichtman et al, 

1987), it is now possible to repeatedly image NMJs in these fluorescent mouse 

preparations. By combining this technique with anti-ganglioside antibody and an 

exogenous source of complement, this mouse model could be used to study both the 

immediate, and long-term sequelae of immune mediated injury at the NMJ. 

 

The purpose of this study therefore is to establish and characterise an in vivo system 

for immune mediated injury at the NMJ of the CK mouse, in sternomastoid muscle. 

Using this system, the immediate effects of selective glial cell injury at this site will 

be confirmed, using antibody EG1 and human serum. The longer-term sequelae to 

selective TSC injury will also be examined, by reviewing injured junctions over time.  

 

These experiments will also support ex vivo studies in the mouse (Halstead et al, 

2005b) that illustrate another possible mechanism of immune mediated injury at the 

NMJ, where antibodies to complex gangliosides injure the TSCs independently of the 

terminal axon. 
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5.2 Results 

 

5.2.1 In vivo terminal Schwann cell injury using antibody EG1 

 

5.2.1.1 Identifying antibody effect in CK mouse model 

 

Initial studies of the sternomastoid muscle demonstrated that the fluorescence of GFP 

was lost from TSCs following incubation with antibody EG1 and 40% normal human 

serum (NHS) (Fig. 5.1A). This was evident immediately after the incubation with 

NHS. Since the GFP is expressed as a soluble cytoplasmic protein, its loss suggests a 

lack of membrane integrity in the Schwann cells. Such a conclusion is supported by 

the application of ethidium homodimer (EthD-1), a membrane impermeable nuclear 

dye, to the Ringers solution bathing the muscle. The ethidium labelled the nuclei of 

the same cells that lost GFP (Fig. 5.1B). On the other hand, the CFP expressed in the 

terminals of the motor axons was unaffected in the majority of junctions (Fig. 5.1C), 

suggesting that the effect of the EG1 was confined to the TSCs. A small proportion of 

axons (see below) did display evidence of damage in addition to Schwann cell loss; 

this consisted of swelling, and fragmentation with eventual loss of CFP fluorescence. 

These junctions were easily identifiable following antibody and NHS incubation, and 

were excluded from studies of isolated TSC injury. 
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Figure 5.1: Acute terminal Schwann cell injury 

 

A) Acute effect of antibody exposure in mouse that only expresses S100β-

GFP, before (i) and after (ii) application of antibody and NHS, thus 

avoiding bleed-through from the CFP channel.  Rhodamine bungarotoxin is 

added to identify post-synaptic ACh receptors.  Complete loss of GFP 

staining is seen in TSCs after antibody application.  The last myelinating 

Schwann cell does not lose GFP (arrow) 

B) Ethidium uptake before (i) and after (ii) antibody-mediated injury, with 

Cy-5 bungarotoxin in mouse that only expressed S100β-GFP. There is 

complete loss of GFP staining following antibody and NHS exposure.  

Ethidium homodimer localises to the areas previously occupied by the TSC 

bodies.   

C) Effect of antibody and NHS before (i) and after (ii) incubation in CK 

mouse. Loss of GFP from the TSC bodies is seen.  The axonal expression 

of CFP appears unchanged.  Bleed-through from the CFP channel into the 

GFP channel is seen after loss of GFP staining. 

(Scale bar: 30µm) 

 

5.2.1.2 Addressing issues of bleed through of CFP into GFP 

 

One complication in these pilot studies was the presence of bleed-through of CFP 

fluorescence into the GFP channel. While such bleed-through is not obvious in the 

images taken from control material, it becomes more evident when the GFP is lost 

from the TSCs, and junctions were viewed through the GFP filter at longer exposure 
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times (not shown). An additional complication is the increase in background 

fluorescence in the GFP channel resulting from exposure to complement. To present 

an accurate reflection of the fluorescence seen, the images are presented at the same 

camera gain and exposure time as the images obtained prior to application of antibody 

and complement. In addition, a series of experiments were undertaken where animals 

expressing GFP in Schwann cells but no CFP in axons were exposed to the antibody 

and complement. In these experiments, there was no complication of bleed-through 

and the results of these experiments confirmed the conclusion that the SCs at the 

junction lost their GFP label as a result of the procedure (figure 5.1A). These cells 

were reviewed over a 48-hour period following this initial loss of GFP, and they did 

not appear to recover their GFP fluorescence during this time (as illustrated in figure 

5.4). 

 

5.2.1.3 Issues with repetitive imaging 

 

One of the major considerations in repetitive in vivo imaging is minimising trauma to 

the animal. On all occasions, the induction of anaesthetic was conducted in a 

controlled environment to minimise distress and anxiety to the animal. An 

unsatisfactory depth of anaesthesia was achieved if the animal was stimulated during 

induction, and this occasionally resulted in early termination of the experiment. 

 

Another significant complication of repetitive imaging is the requirement for 

intubation. If the animal is not intubated quickly, unnecessary trauma would be 

induced at the back of the oropharynx, causing localised inflammation which would 

affect feeding and animal welfare in the longer term.  The process of intubation is 
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technically difficult, and experiments were often terminated early due to complicated 

intubation. 

 

Finally, the other significant issue was minimising trauma to the muscle surface itself, 

which could result from either direct injury through the dissection process, or indirect 

injury to surrounding structures. In particular, the sternomastoid muscle lies next to 

major blood vessels, and inappropriate dissection could injure these structures leading 

to exsanguination, and euthanasia of the animal. The salivary glands lie on the surface 

of the sternomastoid muscle, and their associated connective tissue has to be carefully 

removed during the dissection process otherwise the glands themselves can be 

damaged, causing localised inflammation to the muscle surface. This inflammation 

can impair imaging, by disrupting both CFP and GFP fluorescence (figure 5.2) and 

animals exhibiting these changes were euthanased. 
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Figure 5.2: Effects of inflammation on imaging quality. This in vivo 

control preparation was incubated with sterile Ringers solution and NHS as 

described in Methods. The junction is visualised before incubation with 

Ringers solution and NHS (A). During the initial dissection process, the 

salivary glands were inadvertently damaged. When the junctions were 

imaged again at 3 days (B), the fluorescence is poor due to overlying 

inflammatory tissue, making it difficult to focus on structures at the NMJ. 

(Scale bar 40µm) 

 

5.2.1.4 Quantification of antibody effect 

 

To obtain an estimate of the percentage of junctions affected by the application of 

antibody and complement, 6 sternomastoid muscles from 6 animals were treated, 

identifying 746 junctions. Of these, data from 3 animals exposed to antibody were 

pooled to give 405 junctions, while data from 3 animals exposed to a ringer control 

solution were pooled to give 341 junctions. Immediately after incubation, the muscles 

were exposed to ethidium in situ. Muscles were dissected from freshly euthanized 

animals, and fixed with paraformaldehyde. A layer of muscle fibres was dissected 

A 

B 
Combined 

Combined 

BTx
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TSC

TSC

Axon 

Axon 
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from each side of the muscle for examination. Junctions labelled with bungarotoxin 

were scored for the presence of ethidium label as a marker of TSC injury, and CFP. A 

mean of 23% of junctions (SEM 5.1) so scored (93 junctions from 405) had TSCs that 

took up EthD-1 in the muscle exposed to antibody (figure 5.3a). These junctions were 

located on the muscle surface in direct contact with the incubating solutions and were 

absent from the side of the muscle that was not directly exposed to the solutions. 

Control preparations were exposed to Ringers solution without antibody, and 40% 

NHS. EthD-1 positive nuclei were present in a mean of 1.8% of junctions (SEM=0.8) 

(6 junctions from 341) imaged under the same conditions, a significant difference 

from muscles that received antibody (p<0.01, Chi-squared test). These few ethidium 

positive cells in the control muscle could not be localized to any distinct area of the 

muscle. 6% of junctions (SEM=1.8) in experimental tissue (24 junctions from 405) 

had evidence of axonal injury (figure 5.3b), defined by swelling, fragmentation or loss 

of CFP fluorescence in the antibody preparation compared to 3% (SEM=2.4) in the 

control tissue (10 junctions from 341) (p = 0.084). It was not possible to localize this 

injury to an area in the control muscle although in the antibody preparation, a number 

of injured axons (less than 3%) were seen in association with TSC injury.  
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Figure 5.3: Quantification of TSC and axonal injury in sternomastoid muscle.  

A) 23% of junctions across sternomastoid muscle had evidence of TSC 

injury as demonstrated by ethidium uptake. Less than 2% of junctions had 

ethidium nuclei in control muscles, representing a statistically significant 

difference between the two preparations (p<0.01).   

A) 

B) 



 186

B) 6% of junctions had evidence of axonal injury in the antibody 

preparation, compared to 3% in the control muscle. This difference is 

statistically significant (p=0.084).  

Mean of 3 muscles from 3 mice with each condition is shown as a value in 

the graph, with standard error of mean as error bars as described in 

Methods. 

 

5.2.2 Nerve terminal morphology following acute injury 

 

A series of experiments examining a total of 9 junctions from 3 different animals were 

then undertaken to study whether the TSCs were required for the maintenance of the 

nerve terminal, using protocols outlined in Methods. For a one day period following 

the ablation, no GFP processes could be detected at the NMJs whose TSCs were 

ablated during the initial procedure. As there were no acute changes in the distribution 

of AChR at the TSC ablated junctions, nerve terminals that remained in apposition to 

the AChR were quantified. In 9 junctions from 3 animals, the apposition remained 

perfect (figure 5.4). Not only did nerve terminals remain in apposition to the receptors 

sites, there were no terminal sprouts that formed during this period.  

 

 

 



 187

 Before Ab 

24 hrs later 

BTx

BTx TSC

TSC

Axon

Axon  

 

Figure 5.4: Nerve terminal apposition following TSC injury. 24 hours after 

selective TSC injury, the axon is seen in perfect apposition to the 

bungarotoxin. Some bleed through from the axon is seen in the GFP 

channel at this time point. (Scale bar: 30µm) 

 

These observations support previous findings from the mouse hemidiaphragm using 

this antibody. In these acute studies over the first hour following injury, 

immunofluorescence studies and electron microscopy demonstrated selective SC 

injury at the NMJ, with no apparent injury to the terminal axon. In addition, no 

electrophysiological changes were seen in junctions with selective SC injury in 

previous studies, with no changes to the miniature end plate potential (MEPP) 

frequency, or end plate potential (EPP) immediately after antibody and NHS 

incubation (Halstead et al, 2005b). This suggests that TSCs are not required for nerve 

terminal maintenance over the first hour. 
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5.2.3 Schwann cell recovery following acute TSC injury 

 

At 30 hours following the ablation of the TSCs, GFP labelled processes were 

observed with the junctions (figure 5.5C). These processes were always connected to 

the site where the pre-terminal axon entered the junction, suggesting that these 

processes were extended by cells located somewhere along this axon. Initially, these 

processes covered only a portion of the NMJ; however, with a very short period, the 

entire junction was covered. Within 3 days, new SC bodies were observed with the 

synaptic site (figure 5.5D). These cell bodies were obvious as swellings along the 

GFP positive processes that were usually brighter in their labelling than the processes. 

Application of DAPI to such preparations showed that these sites contained nuclei 

(not shown).  

 



 189

SC  

BTx 

BTx 

BTx 

BTx 

SC 

SC 

SC 

SC 

X

X

X

X

 

 

Figure 5.5:  Acute effect of antibody exposure in mouse that only 

expresses S100-GFP to avoid bleed-through from the CFP channel.  

Rhodamine bungarotoxin is added to identify post-synaptic ACh receptors.  

Complete loss of GFP staining is seen in TSCs after antibody application.  

The last myelinating Schwann cell (X) does not lose GFP. Processes extend 

from the pre-terminal nerve over the junction at 30 hours (arrows) with 

more extensive coverage at 55 hours. In addition, GFP positive structures 
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are seen at the periphery at 55 hours, which stain for DAPI (not shown), 

and most likely represent new TSC cell bodies. 

(Scale bar: 15µm) 

 

The number of these Schwann cell bodies increased over the following week, with the 

consequence that these junctions had more Schwann cell bodies than were present 

prior to ablation (figure 5.6).  Repeated imaging over the course of the next few 

months showed that these cell bodies persisted, although they occasionally changed 

their locations within the junctions (figure 5.7).  
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Figure 5.6: TSC repopulation. After the TSC processes extend over the 

junction, the dense areas of GFP appear to differentiate to form numerous 

GFP positive cell bodies (figure 5.4C - arrow) that migrate over junctional 

area, and also stain for DAPI (not shown). They are more numerous, and do 

not share the same location, or morphology as those present before 

antibody and NHS exposure. (Scale bar: 20µm) 

 

 

5.2.4 Long-term review of neuromuscular junction following injury 

 

Junctions were also examined at 3 months from the experimental animals (3 animals, 

8 junctions), and controls (2 animals, 6 junctions). The number of Schwann cell 

bodies remained unchanged from one week, and only occasionally changed their 

position within the junction. At 3 months, changes in bungarotoxin distribution were 

also evident. Small areas of bungarotoxin were added around the junction, but these 
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were also seen in the control preparations and are consistent with remodelling in the 

ageing animal. Four junctions exposed to antibody also had areas of significant 

localised bungarotoxin loss (figure 5.7, arrows), but this was also seen in control 

preparations.  

 

Subtle changes in the axon were evident at 3 months in 3 junctions under study. In 

these examples, CFP distribution gave the axon a “fragile” appearance with an 

irregular edge. However, these junctions did not undergo further remodelling, and 

their appearance remained constant at 6 months. 

 

Although a comparative control was not available, one mouse treated with mAb and 

NHS (3 junctions) was imaged at one year (figure 5.5D). The junction appeared 

morphologically stable, with an intact axon. Further, the number of TSCs was 

unchanged from 3 months, occupying similar territories. Changes to bungarotoxin 

distribution represented a continuation of changes seen at 3 months. It would 

therefore appear that the NMJ remains morphologically stable after repopulation with 

TSCs (table 5.1). 
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Figure 5.7: Long term effects of TSC loss. Junctions were also examined at 

3 months. These examples had changes in bungarotoxin distribution 

(arrowhead), and axon morphology that were consistent with ageing. These 

included areas of addition and deletion of ACh receptors as imaged by 

bungarotoxin. The number of GFP positive cell bodies at the junction was 

unchanged from day 7. (Scale bar: 15µm) 
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Time NMJ changes 

 
0-60 minutes 

 
 

24 hours  

 
Loss of GFP from TSCs 

Ethidium uptake 
 

No axonal changes 
 

2 days 
 

GFP positive processes extend 
from pre-terminal area 

 
2-3 days GFP positive cell bodies become 

evident at terminal 
 

7 days Large number of GFP positive cell bodies over 
junction 

Axon unchanged 
 

3 months GFP cell bodies remain 
Subtle changes in bungarotoxin distribution 

 
6 months to 1 year Bungarotoxin/axon changes more pronounced 

 
 
 

Table 5.1: Summary of changes following antibody-mediated injury. 

 

 

5.2.5 Effect of denervation following TSC injury 

 

The stimulus for TSC repopulation was unclear from these early studies, therefore an 

experiment was undertaken to determine if the axon was important in this process. 

During these studies, the nerve to sternomastoid was crushed immediately after 

incubation with antibody and NHS. The animal was recovered, and re-examined at 3 

and 7 days.  

 

These experiments show that terminal Schwann processes and cell bodies had 

returned to the junction by 3 days as expected, without a terminal axon being present 
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(3 animals, 9 junctions). Although covering the bungarotoxin label, the pattern of 

process coverage was different to that present prior to mAb-mediated ablation (figure 

5.8). 

 

When the junctions were re-examined at 7 days, the axon returned to the junction, 

apparently following the TSC processes. In addition, extra-junctional TSC processes 

were seen in association with axonal sprouts (see figure 5.8). 
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Figure 5.8: Effect of denervation on TSC repopulation. The nerve to 

sternomastoid was crushed following TSC injury. Repopulation occurs as 

expected by day 3 in the absence of an axon. However, TSC processes with 

associated axon sprouts extend beyond the junction at 7 days (arrowhead). 

(Scale bar: 10µm). Images courtesy of Dr Yue Li, University of Texas. 
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5.2.6 Origin of returning terminal Schwann cells  

 

5.2.6.1 Nestin and myelin basic protein 

 

In an attempt to identify the origin of returning TSCs, two markers of Schwann cell 

activity (nestin, and myelin basic protein) were considered.  

 

5.2.6.1.1 Nestin staining 

 

Nestin is an intermediate filament protein, which is synthesised by synaptic 

myonuclei at mouse NMJs (Kang et al, 2007). Although it is also weakly expressed 

by myelinating Schwann cells but not TSCs, it is upregulated in response to muscle 

denervation (Kang et al, 2003).  As a result of this observation, nestin has since been 

used as a marker of Schwann cell reactivity (Hayworth et al, 2006). Staining for 

nestin was therefore undertaken following TSC injury, in an attempt to identify 

reactive glia in the pre-terminal area, which may represent the source of returning 

TSCs and their processes.  However, despite using established protocols under the 

guidance of experienced investigators (Dr. C. Hayworth), repeated attempts did not 

demonstrate upregulation of nestin along the pre-terminal nerve area at time points: 

24 hours, 55 hours, and 72 hours after mAb injury, or convincing TSC expression of 

nestin in positive controls (figure 5.9). The process of nestin staining is technically 

very challenging, and the failure of repeatable staining in the positive control suggests 

this was most likely a technical issue. However, time constraints prevented further 

investigation into this area, although it would be interesting to explore this technique 

again at a later stage 
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BTx S100 

Axon Nestin 
 

 

Figure 5.9: Nestin staining from mAb and NHS treated animal at 72 hours. 

In this junction, the axon is present, and a large number of TSCs are seen at 

the NMJ as would be expected at this time point. Post-synaptic nestin 

staining is seen at the junction, which may represent synaptic myonuclear 

staining. This staining was typical at other time points, and also in control 

animals. (Scale bar 40μm) 

 

5.2.6.1.2 Myelin basic protein 

 

Myelin basic protein (MBP) is a key component of compact myelin (Martini and 

Schachner, 1986), and is not therefore present in TSCs. If the returning TSCs arose from 

the pre-existing myelinating Schwann cells surrounding the innervating axon, it was 

hypothesised that these “parent cells” would be unable to lose their compact myelin 
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within 55 hours, and their processes extending into the junction would express myelin 

basic protein. Staining was therefore undertaken at 55 hours, when processes first 

appeared over the junction using protocols outlined in Methods. 

 

However, staining for MBP over the junction was very non-specific, and it was not 

possible to localise MBP to returning processes at the junction (figure 5.10). Again, 

this may be a technical issue, or it could represent a problem with detection, due to the 

size of the processes in relation to the rest of the junction. It would be useful to repeat 

these studies at the electron microscope level to clarify staining in more detail.   
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Figure 5.10: Myelin basic protein staining. In this junction, process 

formation is seen over the junction as expected at 3 days after mAb and 

NHS exposure. Ex vivo staining at this time-point for MBP shows a non-

specific MBP stain over the junction, which is difficult to localise to any 

structure (Scale bar 30µm). 

 

5.2.6.2 Nuclear marker stains 

 

Having conducted unsuccessful experiments using both MBP and nestin, experiments 

were then conducted using nuclear stains that indicate cell division and activity. It was 

hypothesised that the source of the returning cells would be undergoing cellular 

division to provide “daughter” cells to repopulate the NMJ, and nuclear markers of 
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cell division would identify these cells. The nerve to the contralateral sternomastoid 

was crushed, and used as a positive control.  

 

Antibodies to Ki-67 were considered in the first instance. Ki-67 is expressed by 

proliferating cells in all phases of the active cell cycle (G1, S, G2 and M phase) while 

being absent in resting (G0) cells (AbCam data sheet). This technique as described in 

Methods, is relatively uncomplicated but despite numerous attempts at staining, it was 

not possible to identify nuclear staining in nerve bundles with evidence of TSC injury 

at time points: 24 hours, 55 hours, and 72 hours after mAb injury. 

  

Experiments were also made using another nuclear stain, bromodeoxyuridine (5-

bromo-2-deoxyuridine, BrdU), which is an analogue of thymidine, and is incorporated 

into nuclei during the S-phase of the cell cycle. In one animal, the last myelinating 

Schwann cell stained positive for BrdU in one junction, suggesting that the cell is 

undergoing cellular division at the same time as TSC repopulation (figure 5.11). 

However, it was not possible to repeat this result in other animals, and this finding 

was not supported by findings using Ki-67.  
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BrdU 
 

 

Figure 5.11: BrdU staining during repopulation. Fluorescence from the 

junction is lost during the staining process, and S100 is used as a marker of 

Schwann cell morphology. The nucleus of the last myelinating Schwann 

cell incorporates BrdU at 3 days (arrow). (Scale bar: 30µm) 
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5.2.7 Repeat application of antibody, and associated changes 

 

To model the effect of chronic antibody titres that are present in human immune 

mediated disease, and also to investigate the long-term effects of TSC ablation at the 

NMJ, an attempt was made to stop the repopulation of the junction by TSCs. A 

second dose of antibody and NHS was applied 48 hours after the first exposure in an 

attempt to injure returning TSCs, with a third at 72 hours. In total, 3 animals, with 9 

junctions were examined.  

 

Unexpectedly, there was no obvious damage to these processes after the second or 

third applications of antibody and NHS, with GFP fluorescence remaining over the 

terminal axon (figure 5.12B and C). Processes continued to cover the junction over 

the following day (figure 5.12C), and also extended beyond the junction itself. Axon 

sprouts were closely related to these processes and travelled a short distance from the 

junction at 11 days, where they were associated with new areas of bungarotoxin 

(figure 5.12 – 11 days).  
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Figure 5.12: Repeat application of antibody. A: Before and after the initial 

application of mAb and NHS. B: Before and after mAb and NHS 

application at 48 hours. C: Before and after mAb and NHS at 72 hours. 

Returning processes, or the underlying axon did not appear to be injured by 

the second or third application of antibody. However at one week, TSC 

processes were seen to extend beyond the NMJ. Axon sprouts were also 

seen in association with TSC processes at 11 days, extending beyond the 

junction (arrow) and were associated with new areas of bungarotoxin. 

(Scale bar: 30µm) 

 

 

To determine if the differences seen with repeat antibody application were the result 

of antibody binding to the processes, or newly exposed antigenic sites on the axon, a 

pilot study was performed with a second application of antibody at 12 hours following 

the initial mAb and NHS incubation, before processes returned to the junction. In this 

study of a single animal, and 3 junctions, TSC processes did not extend from the 

junction, and the pattern of repopulation was similar to a single application of 

antibody. Although more data is required to achieve significance, this study suggests 

that changes seen when antibody is applied at 48 hours likely result from antibody 

binding to the newly returning processes without causing cell death, rather than 

exposed sites on the axon.  
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5.2.8 Selective injury is dependent on antibody concentration 

 

Under normal circumstances, approximately 6% of NMJs had evidence of axonal 

injury following antibody exposure. During the course of the study, it became clear 

that altering the concentration of the antibody would also alter its behaviour. When 

increased concentrations of EG1 were applied topically to sternomastoid muscle, the 

antibody also caused axonal injury at the nerve terminal, characterised by axonal 

fragmentation and degradation in addition to TSC injury. It was not possible to 

identify any NMJs that had selective TSC loss at concentrations of antibody greater 

than 200µg/ml (figure 5.13), with all junctions displaying both axonal and TSC loss. 

Between 100-150µg/ml, a range of injury was visible with both selective TSC injury, 

and mixed axonal and TSC loss. The axon loss was localised to the terminal axon 

only, and no disruption to axon structure was seen more proximally. 
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Figure 5.13: Axon and TSC injury following EG1 application at 200µg/ml 

with NHS. Before antibody application, TSCs and axon are seen over the 

motor end plate. Following antibody application (60 mins), both TSCs and 

the terminal axon are absent. However, the last myelinating Schwann cell, 

and the pre-terminal axon remain intact (arrows). TSC proliferation is seen 

at 8 days as expected (Scale bar 15µm) 

 

 

Interestingly, the axon recovered promptly following injury (3 animals, 3 junctions per 

animal). As can be seen in figure 5.13 and 5.14, the terminal axon is present 8 days after 

injury, and there is associated TSC proliferation. Although not shown here, the axon was 

seen to return to the junction within 3 days. Only one animal (3 junctions) was followed 

beyond 8 days, and the axon remained present over the motor end plate for the duration 

of this study (28 days). Although its appearance was more irregular than prior to injury, 
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no change in junction morphology was seen in this animal during the timescale of this 

investigation (figure 5.14). 
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Figure 5.14: Long term effects of axon and TSC injury. In this preparation, 

both the terminal axon and Schwann cells are injured, but demonstrate 

recovery at 8 days. TSC proliferation is seen at 8 days, in association with 

axon recovery. Although the axon appearance is more irregular than prior 

to injury, the end plate appearance remains unchanged up to 28 days after 

axon injury. (Scale bar 30µm) 

 
 
 
 
5.3 Discussion 

 

5.3.1 Antibody effect in CK mouse 

 

Characterising the antibody effect on sternomastoid muscle confirms TSC injury, 

using ethidium uptake into TSC nuclei as a marker of damage. The presence of 

ethidium nuclei also correlate very closely with loss of GFP expression from TSCs, 

most likely through formation of membrane attack complex, rendering the cell 

membrane permeant which allows access of ethidium to the cell nucleus in addition to 

loss of GFP.  

 

Unsurprisingly, NMJs with evidence of damage lie most superficially on the 

sternomastoid muscle, in direct contact with incubating solutions of antibody and 

complement. Junctions lying deeper within the muscle are unaffected, most likely due 

to the muscle thickness with associated connective tissue acting as a barrier for 

antibody and complement penetration to deeper junctions. 
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Interestingly, a proportion of junctions also displayed evidence of axonal injury, 

characterised by swelling and breakdown of the axon. This pattern of change is 

consistent with an antibody-mediated injury at this site, and was enhanced when 

higher concentrations of antibody were applied.  It is possible that EG1 is binding to 

axons at these junctions under normal circumstances, and may be activating 

complement in a small minority to cause injury. When the concentration of antibody 

is increased, more is available to bind to the axon and produce a greater injury as a 

consequence. 

 

5.3.2 Short-term changes following selective terminal Schwann cell injury 

 

This study also suggests that the nerve terminal can survive for at least 48 hours 

without TSCs. There was no gross morphological change to the axon or nAChR up to 

48 hours without TSCs, suggesting that the TSC does not provide significant trophic 

support for the axon or post-synaptic apparatus over this time. Further studies 

examining the electrophysiology of damaged junctions just prior to repopulation 

would be interesting, to determine whether any physiological, rather than anatomical 

disturbance was evident at this time. This would confirm the the conclusions of Ko 

and colleagues who suggest that frog TSCs are not necessary for the acute 

maintenance of the NMJ (Reddy et al, 2003).   
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5.3.3 Terminal Schwann cell recovery 

 

5.3.3.1 Terminal Schwann cells proliferate following injury, and occupy new sites at 

the NMJ causing long-term synaptic remodelling in the mammal 

 

In contrast to studies in the frog, all visualised junctions with TSC injury exhibited 

TSC recovery in the mouse, beginning around 48 hours after initial injury.  A number 

of factors may account for this difference between the two studies.  In particular, 

different species were used: the amphibian NMJ is developmentally less complex than 

the mammal, and therefore its capacity to regenerate may be different to the mouse.  

Additionally, the method of antibody delivery was different between the two systems.  

In the mouse model, muscle was incubated for an hour with antibody and then 

complement, before both were washed off with Ringer’s solution.  However, Ko and 

colleagues administered antibody between muscle layers, presumably maintaining 

antibody levels for a longer period.  This prolonged dosing may inhibit the return of 

TSCs in the frog, and prevent any recovery that was shown in our system.  This 

difference allowed us to characterise the process of TSC recovery in greater detail, 

rather than examine effects of chronic TSC depletion that has been described 

previously. 

 

Prior to TSC return to the NMJ, GFP expressing processes were seen to extend from 

the pre-terminal nerve to cover the terminal axon.  The appearance of these processes 

was very similar to those seen following denervation (Son and Thompson, 1995a,b; 

Son et al, 1996; Trachtenberg and Thompson, 1996; Trachtenberg and Thompson, 

1997). Unlike the changes seen following denervation however, these processes did 
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not extend beyond the NMJ, and were also present over an intact axon.  Myelinating 

Schwann cells have been shown to migrate along intact axons following 

demyelination (Griffin et al, 1987) and nerve graft repair (Hall, 1986; Hall, 1989); 

and also possibly during development (Reithmacher et al, 1997). This was highlighted 

by Asbury in his original review in 1969 (Asbury, 1969). 

 

Within 72 hours of the original TSC injury, GFP positive cell bodies were evident at 

the junction.  Over the following week, these cells multiplied to exceed the number 

present before injury.  An increase in myelinating Schwann cell number is often seen 

after axonal injury and demyelination elsewhere in the PNS (Pellegrino and Spencer, 

1985; Griffin et al, 1987; Griffin et al, 1990; Murinson et al, 2005), although the 

stimulus for this proliferation is not known (Pellegrino et al, 1986; Oaklander et al, 

1987).  Proliferation of TSCs is also seen following axonal injury, although the 

stimulus for repopulation in these examples is renervation, rather than the initial 

injury (Love and Thompson, 1998; Connor and McMahan, 1987).   However, it is 

also known that complement, and in particular membrane attack complex, can cause 

cell proliferation (Dashiell et al, 2000; Cole and Morgan, 2003).  Although it is 

unlikely that residual levels of MAC would be present at the NMJ after 3 days and 

then cause significant cell division, it is possible that the presence of MAC at the time 

of the initial injury is a sufficient signal to initiate repopulation.   

 

5.3.3.2 Response of junction is similar following TSC and axon injury 

 

Interestingly, junctions with evidence of axon damage behaved in a very similar fashion 

to those with TSC injury alone. In these junctions, both axons and TSCs would return to 
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the NMJ by 72 hours after initial mAb and NHS exposure. Proliferation of TSCs would 

follow over the next week, and the structure of the junction would remain remarkably 

constant up to 28 days later. This suggests that the process of recovery following 

localised injury to the motor nerve terminal is very rapid, and does not appear to cause 

significant disruption to terminal morphology. It would be interesting to perform 

electrophysiological measurements during this recovery process, to identify whether any 

functional deficit is evident following this injury as both axon and TSC injury have been 

implicated as a possible method of disease pathogenesis in MFS. 

 

5.3.3.3 TSC repopulation is not axon dependent 

 

Another interesting finding suggests that an intact axon is not required to achieve TSC 

repopulation of the junction. Although the stimulus for repopulation is not entirely 

clear from our studies, a number of possibilities may cause the return of TSCs.  The 

stimulus may arise from loss or alteration of contact between the last myelinating 

Schwann cell and the TSCs, causing the last myelinating Schwann cell to undergo 

morphological change, permitting repopulation.  The stimulus may also arise post-

synaptically, either from the muscle fibre, or junction itself.   

 

Interestingly, returning TSC processes do not appear to follow the same pattern of 

axonal distribution that was seen prior to denervation, and these processes appear to 

alter the location of the returning axon at 7 days. This contrasts with antibody induced 

axon and TSC injury, where there was no gross morphological disruption to the motor 

nerve terminal.  
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However, axon recovery was much more rapid following antibody-mediated injury, as 

only the terminal axon was disrupted. It is possible that the rapid recovery of the axon 

in this circumstance provided a framework for TSC regrowth over the junction, which 

was not present following nerve crush. It is possible that the synaptic basal lamina 

may act as a guide for the returning processes in the absence of an axon following 

nerve crush, but further work is required to investigate this more fully. 

 

5.3.4 Origin of returning cells 

 

TSCs returned to the NMJ relatively quickly, within approximately 55 hours, and the 

pattern of process return appears to suggest that the cells arise from the pre-terminal 

nerve bundle. One possible source of these repopulating cells could therefore be the 

last myelinating Schwann cell, which would de-differentiate to lose its myelinating 

phenotype, and repopulate the junction. TSCs share many proteins associated with 

myelinating Schwann cells, including MAG, 2’,3’-cyclic nucleotide 3’-

phosphodiesterace (CNPase), myelin galactolipid and galactocerebroside (GalC) 

(Georgio, 1999), and this suggests that both cell types are closely related.  

Additionally, demyelination and nerve injury can cause SCs to alter their phenotype 

(Aguayo, 1976; Cheng 2002), and illustrates how established Schwann cells can alter 

their behaviour depending on local circumstances.   

 

To investigate this hypothesis, staining was undertaken using both BrdU, and Ki-67 

which are separate markers of cell division. Despite extensive studies, only one 

animal showed BrdU uptake into the last myelinating Schwann cell in a “recovering” 

junction, while no uptake was seen using Ki-67. As a result, it is impossible to 
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conclude that returning TSCs arise from the last myelinating Schwann cell. This 

observation is supported by other studies which demonstrate that myelinating 

Schwann cells do not normally undergo cell division, while non-myelinating SCs 

undergo division relatively infrequently (Griffin et al 1987, 1990).  While 

demyelination and nerve injury can cause SCs to undergo mitosis (Pellegrino and 

Spencer, 1985; Oaklander et al, 1987) and also alter their phenotype (Aguayo et al, 

1976; Cheng and Zochodne, 2002), it is conceptually difficult to accept that the last 

myelinating Schwann cell could demyelinate, extend processes, and undergo mitosis 

within the timescale.  

 

Another possible source of these cells may be the non-myelinating Schwann cell pool, 

which lies more proximally in nerve bundles. These cells have been shown to 

multiply and migrate (Murenson et al, 2005) following nerve injury but two main 

reasons preclude this mechanism in the TSC ablation model. Firstly, the cells would 

have to move to the NMJ rapidly, and possibly undergo mitosis prior to this 

migration, which may not be possible within the timeframe of this model. Equally, 

this mechanism would most likely require a myelinating nerve bundle to signal to a 

non-myelinating nerve bundle, and there is little evidence that such a signalling 

pathway exists. As a result, although this hypothesis is possible, it is not likely. 

 

Another hypothesis suggests that cells may migrate from outwith the nervous system 

to proliferate and produce new TSCs. Although processes are seen to extend from the 

pre-terminal nerve bundle, the majority of the cell bodies, when present, are usually 

seen to the outside of the junction (figure 5.5). While this could simply be the cells 

migrating to the tips of the newly formed processes, it may also represent cells 
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entering from outwith the junction, and associating with processes from the pre-

terminal nerve. One source of these cells could be the latent pool of primitive stem 

cells that are present in muscle (Seale et al, 2001).  Several populations of multipotent 

stem cells are thought to exist in the muscle (Qu et al, 1998; Gussoni et al, 1999; 

Jackson et al, 1999; Lee et al, 2000), and while none have been shown to differentiate 

into Schwann cells as yet, it is thought that these multipotent stem cells in the muscle 

only commit to a lineage in response to a differentiation inducing signal (Wada et al, 

2002).  This “stock options” model may allow early stage multipotent stem cells to 

differentiate into TSCs in response to injury.  

 

5.3.5 Repeat antibody application 

 

Experiments were also undertaken to examine whether the axon can survive without 

TSCs. A second dose of antibody was applied when processes returned to the 

junction, in an attempt to injure the returning processes and stop repopulation. 

However, this second dose of antibody did not produce any obvious injury to the 

cells, with no loss of GFP or interruption to the process of repopulation. It is possible 

that the returning TSC processes become less sensitive to the effects of the antibody 

and complement, either by altering complement regulators on the cell surface or 

changing the ganglioside composition of the membrane. Both of these mechanisms 

would allow recovery, without any further antibody-mediated injury to the cell. 

 

However, it is likely that the antibody had some effect, because the returning 

processes extended beyond the junctional area, and induced limited axon sprouts with 

associated bungarotoxin changes within 2 weeks. This effect was not seen when a 
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second dose of antibody was applied before processes returned to the junction at 12 

hours (1 animal, 3 junctions), which suggests that these changes are not the result of 

cryptic ganglioside binding sites being exposed on the surface of the axon following 

TSC removal. 

 

It was not possible to replicate chronic exposure to antibody, as occurs in disease, in 

this model system within the timescale of the study. However, these early pilot 

experiments suggest that significant changes may occur to the junction during this 

type of exposure, which may influence both NMJ structure and function.  

 

It would be interesting to perform both passive transfer models of disease to maintain 

an antibody titre, and studies involving inhibitors of cellular mitosis (to prevent TSC 

repopulation). These models would provide a more accurate model of chronic TSC 

injury, and study the effects of their absence in the mammalian NMJ. 

 

5.4 Conclusion 

 

The purpose of this study was to illustrate the changes that occur at the mammalian 

NMJ following selective TSC injury, and to compare this with previous studies in the 

frog. 

 

This study shows that selective TSC injury can be achieved in the sternomastoid 

muscle of the CK mouse preparation, with the effect being seen in junctions lying 

most superficially. Morphological data also supports previous ex vivo findings that an 

axon can survive without TSCs in the short term, and can maintain its morphology in 
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their absence. However, the results contrast with a previous study in the frog, by 

demonstrating TSC recovery following an acute injury, and subsequent repopulation 

of the junction. Despite the increase in TSC number, the junction remains remarkably 

stable over this time. Although the stimulus for this recovery is not apparent from this 

investigation, it is clear that recovery can take place in the absence of the terminal 

axon.  

 

Remodelling is seen following a second application of antibody, and suggests that the 

returning TSC distribution is altered following repeat antibody exposure. This 

interesting finding offers a possible insight into human disease, where antibodies may 

selectively injure TSCs at the NMJ. 
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Chapter 6: Human tissue 

 

6.1 Introduction 

 

Antibodies to complex gangliosides have been implicated in a number of diseases of 

the PNS, including GBS and its variants (Yuki et al, 1990; Ropper, 1992; Willison et 

al, 1993a).  Although a substantial body of both clinical and epidemiological evidence 

exists to support the possible pathogenic role of anti-ganglioside antibodies in PNS 

disease (Kornberg and Pestronk 1991, 1995), it has been difficult to confirm this 

unequivocally in humans.  

 

Antibodies to GM1 ganglioside have been used extensively in human disease 

modelling, due to its close association with AMAN/AMSAN variant of GBS (Yuki et 

al, 1990; Pestronk and Li, 1991; Ogino et al, 1995). Anti-GM1 antibodies have been 

shown to bind to human nerve tissue (Kusunoki et al, 1997; Gong et al, 2002), and 

also mouse preparations (O’Hanlon et al, 1996; Molander et al, 1997). However, 

studies examining the pathogenicity of these antibodies are often contradictory. For 

example, certain studies have shown that anti-GM1 antibodies can produce 

demyelination and electrophysiological disturbance in ex vivo nerve fibre preparations 

(Santoro et al, 1992), while others have not shown such a lesion (Harvey et al, 1995). 

Despite this contradictory work, it has been shown that injecting rabbits with a bovine 

brain ganglioside mixture or isolated GM1 causes high titres of antibodies to GM1, 

flaccid limb weakness and pathological changes consistent with an axonal 

neuropathy. This has provided researchers with an animal model of GM1 mediated 
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GBS (Yuki et al, 2001), and supports other models using the GD1b ganglioside  

(Kusonoki et al, 1996).  

 

Antibodies to the complex ganglioside GQ1b have been closely associated with cases 

of MFS, and other immune-mediated diseases associated with ophthalmoplegia 

(Chiba et al, 1993; Willison et al, 1993a, Yuki et al, 1993c). Considerable work has 

been undertaken using antibodies to these gangliosides, in an attempt to elucidate 

disease pathogenesis (as discussed in chapter 1). Many of these experiments have 

been performed in mouse ex vivo preparations, where both monoclonal antibodies to 

complex gangliosides, and also sera from patients have been shown to induce 

electrophysiological disruptions, particularly at the NMJ (Roberts et al, 1994, 

Willison et al, 1996; Plomp et al, 1999). This supports neurophysiology 

measurements made from patients who are in the acute phase of MFS, and also from 

patients with CANOMAD (chronic ataxic neuropathy with ophthalmoplegia, IgM 

paraprotein, cold agglutinins and disialosyl antibodies) (Willison et al, 1993b; 

Sartucci et al, 2005).   

 

Although much of the work using antibodies to complex gangliosides has been 

performed in mouse tissue, there have only been limited studies in human nerve and 

muscle preparations. An interesting publication by Chiba and colleagues in 1993 

described an association between symptoms of ophthalmoplegia, and antibodies to 

complex gangliosides demonstrated from patient sera. In addition, they also used a 

separate monoclonal antibody to GQ1b to map the distribution of this ganglioside in 

human cranial nerves, and highlighted its distribution in the nodes of Ranvier, 

particularly in oculomotor nerves. However, they did not demonstrate significant 
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binding of their patient serum to these sites. Another study from the same laboratory 

also examined the distribution of GQ1b alpha and GT1a alpha (minor gangliosides) in 

human tissue, and mapped these to lamina I and III of dorsal horn and lateral horn of 

human thoracic cord, but not to motor neurones (Kusunoki et al, 1993).  

 

Despite antibodies to complex gangliosides causing injury at the mouse NMJ, no 

experiments have been performed that demonstrate antibody binding at this site in the 

human. Additionally, although the TSC has been shown to be an antibody target in the 

mouse model, it is important to clarify whether this is also a target in human disease. 

This would bridge the gap between animal and human studies, while also identifying 

glia, as possible disease targets at human NMJs.  

 

The purpose of these experiments is therefore to demonstrate whether the human NMJ 

is a likely target for antibodies to complex gangliosides, and in particular whether 

human TSCs are a disease target. 

 

6.2 Results 

 

6.2.1 TSC injury using human serum 

 

6.2.1.1 Introduction 

 

A technique for studying the effects of antibodies to complex gangliosides is well 

established using mouse ex vivo hemidiaphragm muscle preparations. Before 

examining antibody binding in human tissue, human serum was first tested in mouse 
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hemidiaphragm preparations using this established technique. This experiment would 

demonstrate whether human serum is capable of producing TSC injury in an 

established experimental model, and would also show if any special conditions are 

required for using human antibodies in ex vivo preparations.   

 

Samples of serum were taken from a patient in the acute phase of MFS (sample Ch), 

who had elevated titres of antibodies to complex gangliosides (see table 6.1, Ch). 

Samples of serum, and also red cell eluate from a patient with CANOMAD who had 

antibodies to complex gangliosides (table 6.1, Ha) were also studied. A serum sample 

from a healthy volunteer with no anti-ganglioside antibodies (table 6.1, Col) was used 

as a negative control. 
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Glycolipid  

Ch 

IgG 

Ha 

 

Col 

  

Ch 

IgM 

Ha 

 

Col 

Normal 

Ranges 

(IgG & IgM) 

GM1 NEG NEG NEG  NEG NEG NEG 1/500 

GM2 NEG NEG NEG  NEG NEG NEG 1/500 

GM3 NEG NEG NEG  NEG NEG NEG 1/500 

GA1 NEG NEG NEG  1/300 NEG NEG 1/5000 

GD1a 1/450 NEG NEG  1/200 NEG NEG 1/500 

GD1b NEG NEG NEG  NEG >1/12500 NEG 1/500 

GT1b 1/420 NEG NEG  NEG >1/12500 NEG 1/500 

GQ1b >1/12500 NEG NEG  NEG >1/12500 NEG 1/500 

GD3 1/500 NEG NEG  NEG >1/12500 NEG 1/500 

Sulphatides NEG 1/3200 NEG  NEG >1/15000 NEG <1/10000 

Globoside NEG NEG NEG  NEG NEG NEG 1/500 

 

Table 6.1: Anti-glycolipid antibody titres for patient Ch, Ha and Col (data supplied 

by Mrs. J. Veitch). 

 

Hemidiaphragm preparations from 3 BALB/c mice were incubated with samples of 

human serum as described in Methods. TSC injury was measured by EthD-1 uptake. 

Intensities of immunoglobulin and membrane attack complex (MAC) were measured 

using a confocal microscope, and ImageJ analysis software as described in Methods.  
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6.2.1.2 Ex vivo analysis of sample Ch 

 

The results show that immunoglobulin was present over the junctions with samples 

Ch (figure 6.1), but not Col. There was also evidence of TSC injury with sample Ch, 

in association with elevated levels of MAC (figures 6.2a and 6.2b). There was 

associated neurofilament loss with human serum (figure 6.2c), suggesting that the 

effect was not entirely TSC selective.  

 

 

BTx 

IgM 
 

Figure 6.1: Immunoglobulin deposition using serum from patient Ch in ex 

vivo hemidiaphragm preparations from BALB/c mice (Scale bar 30µm). 
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Figure 6.2: Quantitative analysis of NMJ injury as assessed by 

immunofluorescent staining for membrane attack complex (MAC), 

neurofilament (NF), and abnormal TSC nuclear uptake of EthD-1.  

A - TSC injury. NMJs with one or more overlying EthD-1-positive nuclei 

were scored as positive, and counts were pooled from 3 preparations from 3 

mice. Human serum is significantly different from control (p < 0.01), with a 

mean of 21.1 (SEM=0.9) compared with a mean of 2.9 in control 

(SEM=0.7). 

B - MAC deposits. Patient serum Ch produced significant deposits of MAC 

over NMJs compared with controls (p < 0.01). 

C - Axonal integrity. NF signal is reduced over the NMJ with human 

serum. Human serum preparations are significantly different from control 

(p < 0.01). 

C 



 228

In figure A, the mean is shown as a value in the graph, with standard error 

of mean as error bars. In figures B+C, outlying data points are removed, 

leaving median values, interquartile ranges (box) and 1.5 times the 

interquartile range (vertical lines). MAC intensity or NF is measured using 

ImageJ as described in Methods. Data is pooled from 3 hemidiaphragm 

preparations from 3 mice for each condition, using techniques outlined in 

Methods. 

 

6.2.1.3 Ex vivo analysis of sample Ha 

 

Samples from patient Ha were initially considered for use as a positive control, as it 

has been previously characterised ex vivo (Willison et al, 1993b; Willison et al, 1996). 

Samples of serum and red cell eluate were studied on BALB/c and NIH 

hemidiaphragm preparations, but despite using previously established ex vivo 

protocols, it was not possible to reproduce either the electrophysiological or 

morphological changes described previously even using different concentrations of 

antibody during the initial incubation. Although immunoglobulin was present over the 

end plate, this was not associated with C3c deposition. The results of 3 preparations 

taken from 3 mice is shown in figure 6.3. These findings were supported by 

ganglioside ELISAs that confirmed the presence of antibody in both serum and red 

cell eluate (not shown).  
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Figure 6.3: Quantitative analysis of NMJ injury using serum Ha as 

assessed by immunofluorescent staining for immunoglobulin and C3c 

deposition using ImageJ as described in Methods, from 3 hemidiaphragm 

preparations taken from 3 mice for each condition. Outlying data points are 

removed, leaving median values, interquartile ranges (box) and 1.5 times 

the interquartile range (vertical lines). 

A – Immunoglobulin deposition. Patient serum Ha produced significant 

deposits of immunoglobulin over NMJs compared with controls (p = 0.03) 

B – C3c deposits. There was no difference in C3c intensity overlying the 

junction between serum from patient Ha and control (p>0.13) 

 

 

6.2.2 Human muscle tissue 

 

6.2.2.1 Characterisation of human muscle tissue 

 

Several muscle groups were considered for these experiments, including: innermost 

intercostal muscle, omohyoid muscle, pharyngeal constrictor muscle, extra-ocular 

muscle (EOM) and biceps. These muscles were either routinely discarded during intra-

operative dissection for a variety of procedures, or were obtained from post-mortem 

tissue banks. Table 6.2 shows the number of samples for each muscle group, the type of 

operation, and the patient diagnoses. A summary of the tissue harvest is included in 

Methods.  
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Human tissue Number of 

samples 
 

Operation Time to 
freeze  

Diagnosis 
 

Intercostal 
muscle 

1 Coronary 
artery bypass 

graft 
 

Immediate IHD 

Omohyoid 
muscle 

 

3 Neck 
dissection 

Immediate Neoplasia 

Pharyngeal 
constrictor 

muscle 
 

3 Oro-
pharyngeal 
dissection 

Immediate Neoplasia 

Peroneus 
longus 

 

1 Amputation One hour Neoplasia 
 
 

Extensor 
digitorum 

brevis 
 

1 Amputation One hour Neoplasia 

Extra-ocular 
muscle 

 

1 Post mortem 
harvest 

Not 
known 

Unknown 
(non-

neoplastic) 
Sciatic nerve 

 
 

1 Post mortem 
harvest 

Not 
known 

Unknown 
(non-

neoplastic) 
Lumbar spine 1 Post mortem 

harvest 
Not 

known 
Unknown 

(non-
neoplastic) 

 
Table 6.2: Summary of human tissue samples. “Time to freeze” is the time 

from removal of the muscle to snap freezing. 

 
 

Although studies on the morphology of human NMJs have been performed previously 

(Slater et al, 1992), no comparison studies have been made using the muscles in this 

investigation. Before undertaking more detailed studies, the number of available 

junctions in each muscle was measured. Junctions were identified by post-synaptic 

bungarotoxin labelling from each muscle group, from at least 3 different sections of 

each muscle block as described in Methods.  



 232

 

These studies showed that there was a significant difference in the number of 

junctions available per sample between human and mouse muscle. Additionally, there 

were more junctions in EOM, and omohyoid than other human muscles under study 

(figure 6.4). Although it is not possible to draw a meaningful conclusion from the 

absolute values obtained from this study, it does demonstrate the differences in the 

number of junctions available for further study. 

 

The size of junctions were also measured in each muscle tissue. Junctions were 

identified by bungarotoxin labelling, and the long axis of each junction was 

measured using existing scaling software (Axiovision, Zeiss). Data from three 

repeats using three non-contiguous muscle sections in each experiment were 

pooled.  

 

In this study, there does not appear to be a statistically significant difference in end 

plate size between the different muscles under consideration, and in particular, there 

was no difference between human or mouse muscle (figure 6.4). 
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Figure 6.4: End plate size, and number of junctions in 20µm muscle 

sections. Muscle sections were stained with bungarotoxin, and the long axis 

of this signal was measured. No statistically significant difference in 

junction length was evident between muscle groups, although the sample 

numbers are low for all muscles except EOM and BALB/c. Outlying data 

points are removed, leaving median values, interquartile ranges (box) and 

1.5 times the interquartile range (vertical lines). 

 

.  

 6.2.2.2 Anti-ganglioside antibody binding 

 

Having characterised the human muscles, the binding patterns of anti-ganglioside 

antibodies was examined. Cryostat sections of human muscles were first incubated 

with antibodies that are known to bind to the mouse NMJ, and produce TSC injury 

(EG1, R24, LB1, and CGM3) using protocols outlined in Methods. Human lumbar 
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spine (figure 6.5) and mouse hemi-diaphragm sections were used as a positive control. 

Imaging was performed using Zeiss AxioImager with Apotome microscopy, as 

described in Methods. 

 

 

 

 

Figure 6.5: Binding of antibody CGM3 to human lumbar spinal cord as 

positive control. (Scale bar 60µm). Staining was absent from control 

tissues. 

 

Despite various incubation protocols being used, and a series of dose-response 

experiments with differing concentrations of antibody, it was not possible to identify 

any selective binding of these antibodies to any of the human NMJs. Unfortunately, it 

was not possible to examine patient sample Ch on these tissues due to limited stocks 

of this serum being available. 
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Antibodies to GM1 were also examined in an attempt to identify binding to the human 

NMJ. One antibody, DG2, is raised in the mouse while SM1 is a human monoclonal 

antibody. In these experiments, DG2 was shown to bind strongly to 60% of NMJs (15 

of 25) in human peroneus longus samples, and also to intramuscular nerve bundles 

(figure 6.6a, b); while SM1 was shown to bind to human intramuscular nerve bundles 

(figure 6.7), but not NMJs in peroneus longus. Binding pattern data is summarised in 

table 6.3. 
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Figure 6.6: Binding of mouse antibody DG2 to peroneus longus muscle. 

Sections of peroneus longus muscle were incubated with antibody DG2.  

A – A NMJ is shown, with innervating nerve. DG2 is shown overlying the 

junction. This could represent binding to TSCs or perisynaptic fibroblasts. 

60% of junctions exhibited this binding. 

B – Intramuscular nerve bundles are identified with neurofilament. 

Antibody DG2 binds extensively to these bundles, although it was not 

possible to localise this to either Schwann cells or axon.  

(Scale bar 15µm) 
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Figure 6.7: Binding of SM1 to peroneus longus intramuscular nerve 

bundles. Intramuscular nerve bundles are shown with neurofilament. (Scale 

bar 15µm) 
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 Anti-disialosyl antibodies 
 

Muscle EG1/LB1/R24 CGM3 
 

DG2 SM1 

 
Intercostal 
 

0 0 N/T N/T 

Omohyoid 
 

0 0 N/T N/T 

Pharyngeal 
Constrictor 
 

0 0 N/T N/T 

Peroneus 
longus 
 
 

0 0 NMJ, 
Nerve 

bundles 

Nerve bundles 

Extensor 
digitorum 
brevis 
 

0 0 0 0 

Extra-ocular 
muscle 

0 0 0 0 

 
Table 6.3: Ganglioside binding patterns of anti-disialosyl antibodies. 0 = no 
binding, N/T = not tested. 

 
 
 
6.2.3 Ganglioside distribution in human tissues 

 

The surprising failure of antibody binding to human muscle tissue was then examined 

in greater detail. The next study examined the distribution of gangliosides in various 

human tissue samples, to determine which gangliosides were present at human NMJs, 

or other locations. This would determine whether gangliosides were available to bind 

antibody at the NMJs. 
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6.2.3.1 Sciatic nerve GM1 distribution 

 

Before examining ganglioside distribution in human muscle tissue, staining protocols 

and distribution assays were first explored in human sciatic nerve samples. Previous 

work examined the distribution of cholera toxin at the nodes of Ranvier in human 

sciatic nerves when studying the pathogenesis of AMAN/AMSAN (Sheikh et al, 

1999).  

 

Using techniques described in Methods, samples of human sciatic nerve were stained 

for cholera toxin and markers of the node of Ranvier, peanut agglutinin (PNA) or the 

juxtaparanode (Kv1.1). Imaging was performed using Apotome microscopy, as 

described in Methods. 

 

These studies confirm the findings of Sheikh and colleagues, who show that 

ganglioside GM1 is present around the nodes of Ranvier in human sciatic nerves 

(figures 6.8a and 6.8b). This binding appeared to be most evident on the para-nodal 

myelin, but is also present at the nodes also.   
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Figure 6.8: Cholera toxin deposition at human nodes of Ranvier in sciatic 

nerve. Two methods are shown for identifying nodes at this site – Kv1.1 

(A) and peanut agglutinin (B). Cholera toxin is shown prominently in the 

perinodal area in both examples, but is also present at the node. (Scale bar: 

5µm) 

 

6.2.3.2 Sciatic nerve complex ganglioside distribution 

 

Using techniques described in Methods, cholera toxin and neuraminidase were then 

used to demonstrate complex ganglioside distribution in various tissues. 

Neuraminidase cleaves complex gangliosides to GM1 by removing terminal sialic 

acid residues from glycoconjugates, while leaving GM1 relatively spared. This 

technique has been used successfully by colleagues in the laboratory in mouse tissue 

(Kay Greenshields, personal communication). Imaging was performed using Apotome 

microscopy, as described in Methods. Three conditions were used in these studies: 

1) Cholera toxin alone – demonstrates existing GM1 distribution 

2) Block with high concentration unlabelled cholera toxin then 2U 

neuraminidase– existing GM1 is blocked, and neuraminidase is used to 

identify complex gangliosides 

3) Block with high concentration unlabelled cholera toxin, then no 

neuraminidase- negative control  

 

A study was first performed in an ex vivo hemidiaphragm preparation taken from 

BALB/c mice to illustrate the technique. This muscle has been used extensively to 

study the effects of monoclonal antibodies to a variety of gangliosides, and their 
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distribution is therefore well known. By using neuraminidase and cholera toxin, the 

difference between GM1 and complex gangliosides deposition at the NMJ and the 

innervating axon was shown (figure 6.9). In particular, GM1 can be seen to localise 

along the pre-terminal nerve bundles in this preparation, while complex gangliosides 

are present both on, and around the NMJ, supporting previous work using monoclonal 

antibodies. 
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Figure 6.9: Effect of neuraminidase on BALB/c hemidiaphragm sections.  

A - Before neuraminidase treatment, cholera toxin is shown in nerve 

bundles (arrows), demonstrating GM1 at this site. Virtually no cholera 

toxin staining is demonstrated over the end plate. 

B – Following neuraminidase treatment, cholera toxin staining in nerve 

bundles is much reduced, and staining over the NMJ becomes more 

apparent  suggesting complex gangliosides are located at this site. Arrows 

demonstrate cholera toxin “around” the NMJ, possibly binding to TSCs and 

terminal axon. 

 (Scale bar 10µm) 

 

Having reproduced the neuraminidase technique successfully in the mouse, the 

method was then used in 3 human sciatic nerves from different patients, using 3 

mouse hemidiaphragm preparations from 3 separate mice as a positive control in the 

absence of suitable human tissue at the time of the study. 

 

These studies showed that cholera toxin was present at the nodes of Ranvier in human 

sciatic nerves (figures 6.10). This data was quantified by randomly identifying nodes 

of Ranvier by PNA, and counting the number that had evidence of cholera toxin 

staining. More nodes scored positive for both GM1 and complex gangliosides in 

mouse sciatic nerve than human but saturating levels of cholera toxin were not 

achieved in the mouse therefore it would be difficult to draw direct comparisons 

between the tissues. These data are displayed graphically using Excel in figure 6.11. 

 



 246

 

 

 

Figure 6.10: Complex ganglioside deposition at human sciatic nerve shown 

after neuraminidase treatment (confocal reconstruction). Following 

neuraminidase treatment, cholera toxin is shown at the node of Ranvier 

suggesting that complex gangliosides are located at this site. (Scale bar 

5µm) 
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Figure 6.11: Ganglioside distribution on sciatic nerves. Nodes of Ranvier 

were identified by PNA staining in sciatic nerve teased fibre preparations, 

and scored as positive if cholera toxin was present at the node.  81% of 

human, and 98% of mouse nodes were positive when cholera toxin was 

applied alone. When background GM1 was blocked, and neuraminidase 

was added, over 52% of human and 86% of mouse nodes scored positive 

for cholera toxin. In samples that were blocked, but not treated with 

neuraminidase, no human nodes scored positive while less than 13% of 

mouse nodes had evidence of cholera toxin suggesting that a saturating 
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concentration of cholera toxin was not achieved in the mouse. Mean is 

shown as a value in the graph, with standard error of mean as error bars. 

 

6.2.3.3 Human muscle GM1 distribution 

 

Studies were undertaken to map the distribution of gangliosides in human muscle 

samples using techniques established from the sciatic nerve, and described in 

Methods. This protocol demonstrated cholera toxin binding strongly to a number of 

sites in the muscle sections, including across and between muscle fibres, nerve 

bundles, and also at the NMJ. It was therefore difficult to distinguish staining patterns 

as a result. Dose response experiments using lower concentrations of cholera toxin did 

not clarify the staining further. These studies were further complicated by lipofuscin 

deposition across the tissue. 

 

Another protocol used to illustrate cholera toxin deposition in human muscle tissue, 

(described in O’Hanlon et al., 1998) was then attempted but staining was similar to 

that seen using protocols developed in the sciatic nerve. Again lower dilutions of 

cholera toxin using the O’Hanlon protocol, ranging from 1 in 500 to 1 in 6000 did not 

clarify staining.  

  

Eventually, the protocol outlined in Methods was devised. Using this method, 

peroneus longus showed evidence of concentrated cholera toxin staining at some 

NMJs (figure 6.12), and also in nerve bundles throughout the muscle. However, it was 

not possible to demonstrate specific NMJ staining in other muscles, or in 
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intramuscular nerve bundles (where present). This supports the binding patterns seen 

with antibodies to GM1 gangliosides (DG2 and SM1). 

 

 

 

Figure 6.12: Cholera toxin at human NMJs. A NMJ is identified by 

bungarotoxin staining, and its innervating nerve is shown with 

neurofilament. Cholera toxin is seen to cover the junction, and adjacent 

DAPI positive nuclei (not shown). It is not clear if these nuclei are muscle 

nuclei, or TSCs. This staining was present in 60% of junctions, and 

correlates with antibody staining described previously. (Scale bar 10µm) 
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Colleagues in the laboratory have since modified this protocol to include a copper 

sulphate based blocking step (see Methods). In addition to further reducing the 

concentration of cholera toxin, this produced a startling reduction in the level of 

staining secondary to lipofuscin deposits staining across the muscle, in particular 

across and between muscle fibres. This new protocol confirmed cholera toxin 

deposition at the junction in peroneus longus, and also demonstrated cholera toxin at 

junctions in the intercostal muscle (figure 6.13). Other muscles have yet to be tested 

using this new protocol. 
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Figure 6.13: Cholera toxin deposition in human intercostal muscle 

following copper sulphate blocking. Cholera toxin staining in intercostal 

muscle was greatly improved when copper sulphate is used. In this 

example, cholera toxin is seen around the NMJ at a dilution of 1 in 8000 

(125ng/ml) when copper sulphate is used. (reproduced with permission 

from Dr Sue Halstead) (Scale bar 15 µm) 

 

6.2.3.4 Human muscle complex ganglioside distribution 

 

Using the protocol outlined in Methods, the neuraminidase technique was then used to 

identify the distribution of complex gangliosides in human muscle tissue. However, 

the distribution of cholera toxin following neuraminidase treatment was again 

generalised across the tissue, and was not particularly concentrated at the NMJ or 
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other structure in any muscle tested. This supports studies using antibodies to 

complex gangliosides.  

  

6.3 Discussion 

 

6.3.1 Human serum produces TSC injury in mouse hemidiaphragm preparations 

 

To determine whether the TSC could be a disease target in human immune-mediated 

neuromuscular disease, it is important to show that patient serum can produce TSC 

injury. It was not possible to obtain biopsy samples of human muscle tissue from 

patients with acute MFS, as this is not a routine investigation, and obtaining samples 

would be technically challenging, with a high complication rate. It would not be 

ethically justified to obtain samples in this manner.  

 

However, the ex vivo hemidiaphragm muscle preparation from the mouse is a robust 

method of studying glial injury at the NMJ, and was used as an alternative model. 

Serum was obtained from a patient in the acute phase of MFS (patient Ch), and was 

shown to have high antibody titres to complex gangliosides, in particular GQ1b as 

expected in the acute phase of MFS (Chiba et al, 1993; Willison et al, 1993a). 

Interestingly, serum from patient Ch produced a very similar effect to antibodies to 

complex gangliosides raised in the mouse, by producing both axonal and TSC injury 

at the mouse NMJ. This suggests that mouse antibodies raised in the laboratory have 

an effect that is broadly similar to pathogenic human antibodies, supporting previous 

findings (Plomp et al. 1999). 
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Additionally, this study also illustrates for the first time that a human serum with 

antibodies to complex gangliosides can produce TSC injury in the mouse when 

compared to human serum without antibodies to gangliosides. However, it is difficult 

to extrapolate results obtained from animal tissue to humans, because glycolipid 

expression is highly species specific. Despite this, the study does illustrate the 

potential for human antibodies to produce complement-mediated injury at sites with 

high concentrations of complex gangliosides. If it were possible to demonstrate 

binding of anti-ganglioside antibodies to human tissue, this would suggest that 

complement dependent injury could potentially occur at the binding site, in a manner 

similar to mouse NMJs.  

 

Interestingly, it was not possible to reproduce previously published data using either 

red cell eluate, or serum from a patient with CANOMAD in either BALB/c or NIH 

mouse strains. It would appear from both immunoglobulin staining, and ganglioside 

ELISA that antibody was present in the incubating solutions, and was capable of 

binding to the NMJ, but could not activate complement. Protocols, and methods were 

checked with colleagues in the laboratory who have also experienced similar 

problems with the antibody recently (Mr Peter Humphreys, personal communication). 

It would be interesting to explore this area further, in an attempt to determine the 

reason for this failure, and also to examine other human sera to determine whether 

they can also produce a TSC injury in this model. 
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6.3.2 Characterisation of human muscle tissue 

 

In an attempt to demonstrate anti-ganglioside antibody binding at human NMJs, a 

series of topical staining experiments were undertaken using a panel of antibodies 

with different specificities to identify potential binding sites in human samples.  

  

6.3.2.1 Obtaining human muscle tissue 

 

Basic characterisation studies were first performed on human muscle tissue to gain a 

better understanding of the tissue, and any special staining conditions that may be 

required. These studies described the number, and size of junctions on each section of 

muscle. Although the symptoms of MFS are usually restricted to the head and neck, it 

was only possible to obtain muscle for use in the study if it was routinely discarded in 

operation, due to ethical constraints. Although samples became available from post 

mortem tissue banks latterly, the types of muscles available for this study were 

restricted, and hence sites outwith the head and neck were also considered.  

 

6.3.2.2 Differences in number of junctions between muscles 

 

Early studies described the number of junctions visualised in each muscle. This 

demonstrated that the number of available NMJs identified by bungarotoxin staining 

in each human muscle sample was significantly lower than similar muscle sections 

from BALB/c hemidiaphragm. Within the human muscle samples, there was also a 

significant difference between muscles, with extra-ocular muscle having more NMJs 
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than omohyoid, and both EOM and omohyoid having more NMJs than other muscles 

under examination. 

 

The difference in the number of available NMJs reflects the size of muscle involved, 

pattern of innervation in the muscle, and also the sampling area. For example, it is 

relatively easy to identify a large number of junctions in EOM, as it is a small muscle, 

and NMJs are localised in a small area. However, in muscles such as intercostal, or 

omohyoid, the muscle is much larger, and although attempts were made to sample at 

the point of nerve innervation, junctions were still scattered throughout the muscle 

making it difficult to localise large numbers of NMJs. In contrast, BALB/c 

hemidiaphragm muscle is very small and thin, with junctions localised to a particular 

area within the muscle, making it easy to identify and access areas with a large 

number of junctions.  

 

As a consequence, observations in most muscles were based on observations on a 

small number of NMJs taken from either one or two patients. The statistical 

significance of the data is reduced as a consequence, and it is therefore difficult to 

extrapolate this data to a whole population. 

 

6.3.2.3 Junction size between muscles 

 

Studies were also made to examine if the size of each junction varies between muscle 

samples. Surprisingly, there was no statistical difference between any of the sampled 

human muscles, or BALB/c mouse tissue. In contrast, work from human vastus 

lateralis biopsy samples suggests that human NMJs are smaller than those in the 
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mouse (Slater et al, 1992; Wood and Slater, 2001). This interesting study compared 

muscle biopsy samples from patients with myopathy to healthy controls, and also 

noted that while human NMJs were smaller and their quantal content was lower, the 

post-synaptic folds were deeper and overall this enhanced neuromuscular 

transmission. 

 

However, the study by Slater and colleagues used teased fibre preparations and 

measured junction length and area using EM techniques that were not available in my 

study. The limited number of samples, and the small amounts of muscle available 

made it difficult to perform teased fibre studies, and cryostating was selected as an 

alternate method for analysis due to the high tissue yield. 

  

The limitations of this method are shown when examining junction size between 

muscle fibres. The median length of the samples is around 20µm, which corresponds 

with the thickness of cryostat section. Work by Slater and colleagues using vastus 

lateralis suggest that human junctions are at least 30µm in length, and junctions are 

even larger in the mouse. This study illustrates that sections of both human and 

BALB/c NMJs are missing from cryostat sections, and potential binding sites may not 

be included in the morphological analysis as a result. 

 

6.3.3 Anti-ganglioside antibody binding was seen in peroneus longus muscle 

 

Although these experiments used mouse antibodies, it was not possible to use serum 

from patients with MFS due to insufficient volumes being available. However, using 

mouse anti-ganglioside monoclonals ensures that any binding to tissue is not the result 
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of binding due to the immunoreactivity within mixed human serum to other antigens 

in the tissue.  

 

In contrast to studies in the mouse hemidiaphragm preparation (Halstead et al, 

2005b), antibodies to complex gangliosides did not appear to bind to the NMJs in any 

of the human muscles under examination. In particular, no binding was seen in 

pharyngeal constrictor or extra-ocular muscles, both of which are likely targets for 

weakness in MFS due to their location in the head and neck. However, positive 

control samples from human lumbar spine (Graus et al, 1984), and also mouse 

hemidiaphragm muscle confirmed that antibody solutions were binding successfully 

to other sites.  

 

Complex gangliosides have not been shown directly at human NMJs. However, 

botulinum toxin binds to complex gangliosides (Kamata et al, 1986; Kozaki et al, 

1998), is known to produce paralysis at human NMJs (Willison and Kennedy, 1993), 

and has been shown to exert its effect via complex gangliosides at the mouse NMJ 

(Bullens et al, 2002). By implication therefore, complex gangliosides, and in 

particular GT1b and GQ1b, are present in human NMJs. Although this binding failure 

could be the result of a species difference in antibody, this is improbable. Both the 

mouse antibodies, and human serum shared similar binding profiles on ELISA, and 

also produced similar types of injury in mouse ex vivo hemidiaphragm preparations. 

The antibodies therefore recognise similar targets, and it is unlikely that a species 

difference in antibody exists.  
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As discussed previously, the antigenic targets in the mouse may be presented 

differently to human muscles. The glycolipid repertoire between species does vary 

(Kusunoki et al, 1997), and therefore the presentation of gangliosides between the two 

species could result in different antibody binding patterns. Further work using other 

antibodies with different specificities could demonstrate this effect. 

 

It is also possible that the limited sample of this study may not accurately represent 

the general population, and these results are atypical. Indeed, with the exception of 

pharyngeal constrictor and omohyoid, these studies were conducted on samples 

obtained from a single patient per muscle group. It may be possible that the 

ganglioside profile of these patients is not consistent with the population, or patients 

with immune mediated nerve injury. If this is the case, this finding may explain 

geographical variation in disease, and the diversity of illness presentation. Obtaining 

more samples from a broad range of patients is clearly very important to continue 

these studies. 

 

Despite the binding failure of antibodies to complex gangliosides, two antibodies to 

GM1 ganglioside did bind to human peroneus longus muscle. Two antibodies were 

examined: DG2, which is a mouse monoclonal, and SM1, which is a human 

monoclonal antibody. Only DG2 bound convincingly to the NMJ and intramuscular 

nerve bundles, while SM1 only bound to nerve bundles. Antibodies to GM1 are 

strongly implicated in the pathogenesis of AMAN, and this study supports the 

observation that a likely source of injury in anti-GM1 disease is the innervating nerve 

(Hafer-Macko et al, 1996a, Sheikh et al, 1999, Willison and Yuki, 2002). However, 
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the difference between the patterns of binding between the two antibodies is 

interesting, particularly when comparing their similarity on ganglioside ELISA.  

 

It is now widely recognised that gangliosides can form “complexes” with surrounding 

structures, and these interactions can influence antibody-binding patterns (Kaida et al, 

2004; Willison, 2005). Current clinical practice identifies anti-ganglioside antibodies 

by ELISA, using single purified ganglioside in individual wells as antigens. However, 

gangliosides do not exist in isolation in the cell membrane, and many are clustered in 

“lipid rafts” on the surface, in close association with other gangliosides or membrane 

components (Hakomori, 2002). It may be possible in human tissue that these 

ganglioside complexes influence the presentation of the ganglioside to the antibody, 

and alter subsequent binding. Examining antibody binding profile on ELISA using 

mixed ganglioside wells may demonstrate which complexes are present at each site to 

account for the binding differences. 

 

This study also demonstrates that anti-GM1 antibodies can bind to the NMJ. While it 

was not possible to identify the structures to which the antibody bound, it is clear that 

these structures were overlying the NMJ, and could be either TSCs or supporting 

fibroblasts. This supports the hypothesis that the TSC could be a disease target in anti-

ganglioside antibody-mediated disease, although clearly further confirmatory work 

should be undertaken to fully identify which structures are involved. In the first 

instance, teased fibre preparations could be undertaken, and whole mount imaging 

performed in a similar manner to TS preparations in the mouse. This method would 

fully retain the structure of the junction, and allow detailed confocal microscopy to 

determine which sites bound antibody. Additionally, the number of patient samples 
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should be increased, to increase diversity, and remove any variation that may result 

from the pre-existing disease. 

 

However, it is also interesting to note that only 60% of junctions in each muscle 

displayed significant antibody binding. Although it was outwith the scope of this 

study, these junctions could be innervating different muscle fibre types (Wood and 

Slater, 2001) and may suggest that ganglioside profiles may change depending on the 

muscle fibre type. This important finding would provide interesting insights into basic 

ganglioside glycobiology and manufacture, in addition to demonstrating variations in 

disease, and onset of symptoms.  

 

6.3.4 GM1 and complex gangliosides are present in human sciatic nerves 

 

To clarify staining patterns seen with anti-ganglioside antibodies, cholera toxin was 

used to demonstrate ganglioside deposition in a variety of tissues. Before undertaking 

these studies, pilot investigations using human teased fibre sciatic nerve preparations 

were conducted to clarify protocols, using a tissue whose ganglioside composition has 

been described previously (Sheikh et al, 1999). In this experiment, cholera toxin 

deposition was shown at the nodes of Ranvier in human sciatic nerve, suggesting 

GM1 localisation to this site and confirming findings from other workers examining 

this area (Ganser et al, 1983; Corbo et al, 1993; Kusunoki et al, 1993, O’Hanlon et al, 

1998). 

 

Having established a reliable staining technique to illustrate GM1 deposition on 

human tissue, the technique was adapted to demonstrate the localisation of complex 
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gangliosides. The enzyme neuraminidase, from Clostridium perfringens has been 

shown to cleave complex gangliosides to GM1 by removing terminal sialic acid 

residues from gangliosides. As the sialic acid of GM1 is relatively resistant to this 

enzyme, more complex gangliosides can be converted to GM1 by its action 

(Holmgren et al, 1980; Ganser et al, 1983; Brennan et al, 1988). Blocking existing 

GM1 with unlabelled cholera toxin before treatment clearly identifies any new GM1 

created by the action of the enzyme.  

 

Using this technique, complex gangliosides were demonstrated across the myelin in 

human sciatic nerve, but were especially concentrated at the nodes of Ranvier. 

Although it is not possible to identify which gangliosides are located at this site, these 

results support biochemical studies that have shown high concentrations of complex 

gangliosides in the axonal fraction of human peripheral nerve (Svennerholm et al, 

1994). It is difficult to correlate this finding with human pathology, as almost all cases 

of disease caused by antibodies to complex ganglioside have symptoms confined to 

the head and neck. However, there have been descriptions of patients with variants of 

MFS having limb involvement, and while this may be the result of co-existing anti-

GM1 antibodies (Odaka et al, 2001), it is possible that the peripheral nodes of Ranvier 

could also be injured by antibodies to GQ1b.  
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6.3.5 GM1 but not complex gangliosides are present in human NMJs from peroneus 

longus muscle 

 

The neuraminidase technique was then used on human muscles. Although GM1 was 

present over the surface of all the muscles under examination, GM1 appears to be 

particularly concentrated at the NMJs and intramuscular nerve bundles of peroneus 

longus and intercostal muscle. The neuraminidase technique did not demonstrate the 

presence of complex gangliosides, and these findings support earlier antibody work. 

In particular, the extra-ocular muscle, and pharyngeal constrictor muscles did not 

have any evidence of concentrated areas of complex gangliosides at NMJs. 

 

However, in the latter stages of this study, a blocking step using copper sulphate was 

developed, which reduced background lipofuscin. By reducing the concentration of 

cholera toxin, GM1 was shown to be present at the NMJ. Other blocking steps using 

BSA did not produce a comparable reduction in background staining, although this 

technique did not specifically reduce autofluorescence. Colleagues in the laboratory 

have used this copper sulphate blocking step on intercostal muscle, and have shown 

cholera toxin deposition at human NMJs. It is possible that repeating the 

neuraminidase study on human muscle, using this step to reduce autofluorescence, 

may demonstrate new areas of ganglioside localisation that were not evident 

previously as occurred in intercostal muscle. 
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6.4 Conclusions 

 

The purpose of this study was to determine if the NMJ, and in particular TSCs, could 

be a site of disease injury in MFS.  

 

These studies show that human serum from a patient in the acute phase of MFS 

produce TSC injury in mouse models, and this injury is similar to damage caused by 

mouse anti-ganglioside antibodies. This illustrates the similarity in effect between 

human serum, and antibodies raised in the laboratory. 

 

Although antibodies to complex gangliosides were not shown to bind to the NMJ in 

any of the muscles in this study, the limited sample size makes it difficult to 

extrapolate this data to the general population. However, anti-ganglioside antibodies 

were shown to bind to human NMJs in peroneus longus muscle, suggesting that 

structures in the NMJ, including TSCs, may be a disease target in anti-ganglioside 

antibody-mediated disease.  
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Chapter 7: Conclusions 

 

7.1 Antibody characterisation 

 

Before conducting experiments on the chronic effects of TSC injury, I sought to 

identify the most suitable antibody for use in these investigations. However, the CK 

mouse was not available in the early stages of the study, and restrictions on animal 

surgery made it difficult to examine sternomastoid muscle, which would be used in 

the longer term in vivo experiments. Early studies therefore identified the most 

suitable muscle for later antibody characterisation studies. 

  

Two different muscle preparations that are widely used in the laboratory were 

compared, to examine which would be most suitable for ex vivo experiments. These 

studies demonstrated that triangularis sterni (TS) muscle was most suitable for 

morphological studies requiring detailed imaging of synaptic structures, in addition to 

demonstrating antibody and complement deposition. TS is a thin, sheet like muscle 

which can be dissected as a whole mount from an animal, and maintained for several 

hours ex vivo. It can also be imaged without sectioning and can therefore be used to 

stain intracellular components, such as S100. This muscle was later used with Sytox 

green to illustrate the proportion of TSCs injured by antibody EG1 at each NMJ, 

which would not have been possible using a standard hemidiaphragm preparation. 

 

Although it was not suitable for detailed morphological studies, the large number of 

available NMJs in the hemidiaphragm preparation made it very suitable for statistical 

analysis. Neurofilament measurements, complement and immunoglobulin deposition 
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studies can also be performed on hemidiaphragm muscle sections, and then quantified 

using computer analysis software to provide numerical measurement. Additionally, 

the EthD-1 protocol on hemidiaphragm provides a strong method for quantifying 

antibody-mediated TSC injury, and was used extensively throughout this study. 

 

A series of antibodies with similar ganglioside binding profiles on ELISA were 

compared on the ex vivo hemidiaphragm preparation, and antibody EG1 was 

identified as most suitable for use in later experiments. EG1 was considered most 

suitable as it produced TSC injury in a high number of NMJs, in addition to activating 

MAC and C3c at this site more efficiently than other antibodies. Further, this antibody 

has been previously shown to be TSC selective, it does not need to be purchased from 

a commercial supplier, and it is very easy to purify and concentrate IgG class 

antibodies. 

 

It was important to identify the proportion of TSCs killed by antibody EG1 at each 

NMJ, to fully characterise its effect. However, this was not possible with 

hemidiaphragm sections, as cryostating would often leave junctions incomplete. 

Although entire junctions were visible with TS muscle, antibody injury rendered the 

cell permeant, and reliable Schwann cell intracellular markers (e.g. S100) were often 

lost making morphological analysis difficult. As a result, a nuclear stain was used 

(Sytox green) with confocal microscopy to identify nuclei overlying the junction that 

were most likely TSCs. This method proved robust, and confirmed previously 

published data showing that end plate size correlates with the number of TSC nuclei 

overlying the junction (Love and Thompson, 1998). 
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This Sytox method also demonstrated that antibody EG1 did not produce a uniform 

pattern of TSC injury at each NMJ, with a range of injury from no apparent damage to 

complete TSC loss. This provides a useful range of conditions in which to study TSC 

injury, and recovery in the mammal. 

 

7.2 Effect of complement regulators on antibody injury 

 

A large number of junctions were injured by the antibody in both hemidiaphragm and 

TS preparations, and a range of TSC injury was present at each junction. Many NMJs 

were spared, therefore experiments were undertaken in an attempt to enhance the 

antibody effect and produce greater TSC injury. If this could be achieved, an animal 

model could be created which exhibits complete TSC loss in response to antibody 

exposure.  

 

Antibody EG1 produces its effect via complement activation and subsequent MAC 

production causing failure of membrane integrity. Experiments were conducted to 

examine whether removing regulators of complement activity (DAF1 and CD59a) 

could enhance antibody effect at the NMJ and produce greater TSC injury. Although 

it may be possible to increase complement activation by removing other complement 

regulators, these were not available for this investigation and were not examined. 

 

As part of these investigations, early topical studies demonstrated differences in 

antibody binding between the mouse strains. This difference in antibody binding 

suggests different ganglioside expression at the NMJ between the mouse strains, and 

has implications for researchers examining the role of other antibodies to gangliosides 
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at this site. For example, a lack of injury in one mouse strain does not necessarily 

exclude an antibody from having a pathological effect in another. This emphasises the 

importance of fully understanding target gangliosides present at each binding site 

before stating a lack of effect, and is particularly important for human studies, which 

are discussed later. 

 

Topical complement studies also demonstrated differences in complement activation 

products between mouse strains. Although this could be the result of complement 

regulator expression, it is not known if complement regulators are active in cut tissue, 

and if so, to what extent. It is more likely therefore that the differences in complement 

activation product deposition could be explained by different levels of 

immunoglobulin deposition at the junction shown earlier.   

 

Despite differences in immunoglobulin deposition on topical staining studies, ex vivo 

hemidiaphragm preparations measuring TSC injury using EthD-1 and complement 

activation products did not show any difference between BALB/c or the wild type of 

the DAF1/CD59a knockout strain. Although topical staining is useful for screening 

purposes, ex vivo preparations provide a more accurate experimental model. These 

data suggest that removing complement regulators DAF1 and CD59a do not increase 

the effect of antibody EG1 in this system, suggesting that within the current 

experimental model, the effect of the antibody has been maximised.  

 

A number of possibilities could explain why complement regulators had no apparent 

effect: the regulator system may be  “overwhelmed” with complement from 

exogenous human serum that is applied or that these complement regulators are 
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unable to efficiently regulate NHS. Although the purpose of this study was not to 

examine complement regulators directly at the NMJ, it would be interesting to repeat 

these studies using different concentrations of human serum, and also antibody, to 

examine whether complement regulators are expressed at the NMJ. This could also be 

confirmed by immunostaining or in-situ hybridisation studies. These studies may 

identify whether particular cell types have increased levels of complement regulator, 

and are “protected” from antibody-mediated injury. Defects in this expression may 

explain why certain individuals are more susceptible to this form of injury than others 

in the population. 

 

7.3 Terminal Schwann cell recovery following antibody-mediated injury 

 

It has been very difficult to examine the long-term effects of antibody-mediated injury 

at the mouse NMJ. Passive transfer studies, where the antibody is introduced intra-

peritoneally, can provide both functional, and morphological data. However, motor 

paralysis can affect diaphragmatic function and this can limit the duration of the 

study. 

 

The CK mouse has been shown previously to provide a stable method for repeated in 

vivo imaging of the PNS using sternomastoid muscle. This technique was adapted to 

demonstrate the acute and chronic changes at the NMJ following immune-mediated 

injury caused by anti-ganglioside antibodies. Since the injury was localised to 

junctions on the surface of the muscle, there was no significant functional deficit that 

impairs the animal’s quality of life. As a consequence, experiments could continue 

without the requirement for early euthanasia.  
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Although isolated TSC injury was examined exclusively in this study, the system 

could easily be adapted to examine the effects of immune-mediated injury to other 

structures at the NMJ, including the terminal axon, ACh receptors, fibroblasts and the 

pre-terminal nerve bundle. This versatile technique could therefore provide new 

insights into antibody-mediated nerve injury, and subsequent recovery in the PNS. 

Although not described in detail in this study, other muscles in the CK mouse, for 

example soleus, can also be used in addition to sternomastoid muscle to examine 

chronic functional and electrophysiological changes. 

 

Previous studies examining the chronic effects of TSC injury in the frog (Reddy et al, 

2003) did not consider in detail the recovery of TSCs in response to injury. In 

contrast, recovery was seen in all mouse NMJs within 48 hours following injury. 

Initially, processes were shown to extend from the pre-terminal nerve bundle to cover 

the existing terminal axon, before DAPI-positive cell bodies were seen at the 

periphery of the junction at 72 hours post-injury. Over the next 4 days, the processes 

continued to cover the junction, and the new cell bodies occupied new sites within the 

junction.  

 

Surprisingly, this process of recovery was not axon dependent and suggests that the 

stimulus for repopulation arises from another source. Colleagues in the United States 

have recently shown that TSC recovery can occur even in the absence of an intact 

muscle fibre (Yue Li, personal communication) suggesting that a stimulus from the 

muscle fibre itself is also unlikely. A number of structures exist around the junction 

that could produce the signal for repopulation however. For example, the stimulus 
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may arise from a direct glial-glial interaction, between the last myelinating Schwann 

cell, and the TSCs. Signals could also arise from the supporting fibroblasts that 

overlie the junction, or other muscle fibres or junctions in the vicinity of the injured 

NMJ could signal recovery. Although it was not addressed in this study, it would be 

interesting to identify these signals, as it would offer important insights into Schwann 

cell signalling at the NMJ. 

 

The origin of the returning TSCs is also unclear from this study. The last myelinating 

Schwann cell was thought to be the most likely source of returning Schwann cells, as 

processes were initially seen to emerge from the pre-terminal nerve bundle. However, 

only one experiment from several using BrdU identified nuclear division at the last 

myelinating Schwann cell in one junction. Other markers of cell division (Ki-67) did 

not show any evidence of mitosis in this cell either, and stains to identify if these 

returning cells arose from myelinating Schwann cells were also unhelpful. 

 

Since it was not possible to demonstrate that returning cells arise from the pre-

terminal nerve bundle, it is possible that TSCs may originate from another source. 

One exciting hypothesis suggests that these cells may arise from the latent pool of 

muscle stem cells, which have been previously documented. Cell bodies normally 

appear to the periphery of the junction, and it is possible that they are arising from 

sources outwith the junction, before differentiating into TSCs once they reach the 

NMJ. If this is correct, it would be the first time that these stem cells have been shown 

to differentiate into TSCs, and may offer new insights into nerve recovery. However, 

it would not explain why processes emerge from the pre-terminal nerve bundle prior 

to the appearance of the cell bodies. 
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Following recovery, the junction remained relatively unchanged over the following 

few months. Although more TSCs were present at the junction following injury, their 

number remained remarkably stable for the following 12 months, and the structure of 

the junction did not undergo significant changes. This confirms the stability of the 

junction following TSC injury, and that the process of recovery is very successful. 

 

One of the aims of this study was to develop a disease model of immune mediated 

injury at the NMJ, where chronic antibody exposure caused constant TSC injury as 

may occur in conditions such as CANOMAD. In this system, it was thought that TSC 

return to the junction would be inhibited, and the effects of chronic depletion could be 

identified. However, repeat application of antibody during TSC recovery did not 

inhibit repopulation. Instead, the junction behaved as if the axon had been injured, 

with TSC process formation, and remodelling despite the axon appearing 

morphologically unchanged. It is possible that returning TSCs do not have the same 

ganglioside, or complement regulator phenotype as their predecessors, and this could 

alter their behaviour in response to antibody exposure. If this were the case, it would 

illustrate the protective mechanisms that exist to limit immune-mediated injury in the 

PNS. In the actual disease however, constant antibody exposure may overwhelm, or 

exhaust these protective mechanisms. The returning TSCs may not be damaged, but 

the junction could experience significant disruption by the protective process. Further 

experiments looking at different repetitive dosing regimes may elucidate this further.  

 

However, it is unlikely that this study would illustrate the effects of chronic TSC 

depletion at the mammalian NMJ (as was shown in the frog by Reddy and 
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colleagues). This could be described by using inhibitors of cell division to prevent 

cells returning to the NMJ, and would offer insights into basic mammalian 

physiology, and the role of TSCs in neuromuscular function. 

 

7.4 Human tissue as a disease target in anti-ganglioside antibody-mediated 

disease 

 

After it was shown that mouse NMJs are susceptible to anti-ganglioside antibody-

mediated injury, experiments were conducted on human tissue to identify if human 

NMJs were also a potential site of injury. These studies would bridge the gap between 

the animal models and human disease, in addition to offering TSCs as a new disease 

target at the NMJ. 

 

It was shown that serum from patients with MFS behaves in a very similar way to 

antibodies to complex gangliosides raised in the mouse, and that TSCs can also be 

injured by human serum. This study supports previous data that mouse antibodies to 

complex gangliosides are very similar to human antibodies, and can be used as an 

alternative to human serum in animal models. It also shows that human antibodies can 

produce TSC injury, albeit in the mouse NMJ, and suggests that the TSC could 

potentially be a disease target in MFS. 

 

However, species differences in ganglioside composition make it difficult to correlate 

findings in the mouse with human. As a result, a series of human muscles were 

obtained intra-operatively, and the binding patterns of anti-ganglioside antibodies 

were compared on these tissues.  
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These experiments show that antibodies to complex gangliosides did not bind to 

human NMJs, although anti-GM1 antibodies do bind to NMJs in peroneus longus, 

and also intramuscular nerve bundles. To investigate this further, ganglioside 

distribution was mapped using cholera toxin and neuraminidase. These experiments 

supported the anti-ganglioside antibody work, by identifying concentrations of GM1 

at the NMJ and nerve bundles of peroneus longus, and the NMJ of intercostals, but 

not other muscles. Complex gangliosides were not concentrated in any site in the 

muscles under examination.  

 

This result is very surprising, since it would suggest that human NMJs do not have 

significant levels of complex gangliosides. This is unlikely as both botulinum and 

tetanus toxins both exert their effects at the NMJ via complex gangliosides. However, 

sample size in this study was limited due to practical difficulties, with only one or two 

muscles being harvested from each patient group. This very small sample size makes 

it difficult to extrapolate the data to a whole population. Also, despite numerous 

staining protocols using different blocking solutions, it was not possible to reduce 

background staining. However, colleagues in Glasgow have since implimented a new 

method using copper sulphate to reduce autofluorescence, and these technical 

modifications may well identify new staining patterns that were not evident 

previously. 

 

Despite these difficulties, these studies cannot exclude the possibility that human 

NMJs may be a source of injury in anti-ganglioside mediated disease, and that TSCs 

may be involved in injury at this site.  
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7.5 Future directions 

 

A number of options for further experiments arise from the results of this series of 

experiments. 

 

Firstly, there is a need for clarification and extension of a number of issues arising 

from these studies: 

 

1) Although the role of anti-ganglioside antibodies is widely acknowledged in the 

pathogenesis of MFS, the mechanism of injury appears to be complement 

dependent and an understanding of the mechanisms behind this aspect of the 

injury are crucial for fully understanding disease pathogenesis. The role of 

complement regulators at the mouse NMJ has not, however been fully 

explored, and this model would provide a useful paradigm for further studies 

in this area. In particular, it would be interesting to repeat these experiments 

with different concentrations of human serum to see if a difference in antibody 

effect is evident between different complement regulator knockout strains. 

This study could then be expanded to include other knockout strains and may 

offer important insights into the mechanisms that protect the mouse junction 

from injury. Although it is not possible to directly compare mouse and human 

tissue directly, these insights into complement regulator function in the mouse 

could be used to guide further studies in the human. 

2) The CK mouse model presents an ideal method for studying the response of 

the PNS to immune mediated injury, and it would be interesting to examine 
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the effects of other anti-ganglioside antibodies at this site. The effects of 

injuring the terminal axon would be of particular interest, especially 

comparing the changes of isolated terminal axon injury with more proximal 

damage, for example following nerve crush. This may offer insights into 

axonal regeneration, and understanding recovery in MFS. However, the 

system could also be adapted to examine other antibodies that may exert their 

action elsewhere, for example at nodes of Ranvier in models of AMAN. It 

could also be used to test the effects of patient sera. 

3) Axon integrity during TSC repopulation in the CK mouse model was assessed 

by CFP fluorescence in these studies. However, this data could be greatly 

strengthened by more detailed studies of axon structure and function. For 

example, electron microscopy studies of the NMJ at various time points during 

TSC recovery would illustrate more subtle changes to axon structure that may 

not be evident at the light microscope level. Additionally, electrophysiological 

measurements of the junction during the recovery phase would also illustrate 

if the axon were functionally intact. This would identify whether the axon 

function was maintained in the absence of TSCs. Both of these experiments 

would be impractical in sternomastoid due to practical intra-operative 

difficulties, and other muscles should therefore be considered, for example 

soleus. Animal surgery restrictions prevented more detailed consideration of 

this area within this study. 

4) Despite using several markers of cell division, the origin of returning TSCs 

was not identified in this study. Clearly this is very important to understand 

the response of the NMJ to injury, and its subsequent recovery. One of the 

most helpful investigations may be electron microscopy, to visualise the 
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returning processes, and their associated cells. Their location, and morphology 

at EM level may provide an indication of their source. Immunofluorescence 

markers may also help to discriminate the origin of the returning cells, but 

clearly further work needs to be conducted in this important area. 

5) The stimulus for TSC repopulation was not demonstrated in these 

experiments. Again, it was not possible to study this in greater detail, but it 

would be interesting to identify the stimulus to gain a greater understanding of 

the mechanisms of NMJ recovery following injury. 

6) The effects of chronic TSC depletion were not addressed specifically in this 

investigation, as it was not possible to injure returning Schwann cells with the 

antibody. To gain a better understanding of disease, it is important to 

understand why these returning cells were not injured, and why the junction 

behaved as if it were denervated. To examine this further, TSC recovery could 

be prevented by using mitosis inhibitors to inhibit repopulation, but again 

these experiments were not possible within the timescale of the study 

7) A significant limitation of work using human tissue was the small number of 

samples obtained for each muscle group. Unfortunately, it was not possible to 

expand these sample populations due to time constraints, but it is crucial to 

continue these studies using samples obtained from different patients, with 

differing pathologies, to increase the significance of the data. This data could 

be used to map the distribution of gangliosides in human tissue, which is 

crucial for examination of antibodies at this site, and fully understanding the 

pathogenesis of MFS. 
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In a broader context, this information could be brought together to eventually 

establish an accurate mouse model of both MFS and CANOMAD. Mouse and human 

anti-ganglioside antibodies could be tested using in vivo methods to examine injury 

and subsequent recovery in the PNS. This could specifically address several 

hypotheses surrounding injury in MFS: 

 

a) The true pathological role of anti-ganglioside antibodies in the PNS 

could be established by demonstrating whether damage mediated by 

these antibodies actually causes clinical motor and sensory deficits.  

b) The response of the immune system to antibody-mediated injury could 

be described in more detail, by possibly showing macrophage 

recruitment to the NMJ to remove cellular debris for example. 

c) Recovering Schwann cells could offer insights into protective 

mechanisms that prevent further immune mediated injury. These may 

be relevant when developing new therapies, in addition to 

understanding basic Schwann cell biology. 

 

 7.6 Summary 

 

The aim of my study was to identify whether the TSC was a disease target in anti-

ganglioside antibody-mediated injury, and these experiments provide evidence to 

support this hypothesis. In particular, these experiments illustrate the susceptibility of 

mouse TSCs to anti-ganglioside antibodies, and also describe the response of the NMJ 

to this injury. The study uses a new mouse model system to show that TSC recovery 



 278

alters the behaviour of the NMJ in response to antibody injury, which may have 

significant implications for disease progression and long-term recovery.    

 

It was also shown for the first time that serum from a patient with MFS can produce 

acute TSC injury in the mouse model, and highlights the similarity between human 

anti-ganglioside antibodies, and those raised in the mouse confirming the latter’s 

suitability for experimental use. 

 

Finally, the study examines the distribution of gangliosides for the first time in a 

series of human muscle tissues, in an attempt to identify new disease targets. The 

study also shows binding of anti-ganglioside antibodies to human NMJs for the first 

time, suggesting that the NMJ, and in particular TSCs, may be implicated in disease 

pathogenesis.  
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Appendix 1: Commonly Used Solutions 

 
 
A1.1 10x PBS 
 
NaCl     80g 
 
KH2PO4    2g 
 
Na2HPO4.12H2O   29g 
 
KCl     2g 
 
Dilute in dH20 to a final volume of 1 litre, pH 7.4. Dilute 1:10 in dH20 for use. 
 
 
 
A1.2 10x Ringer’s solution 
 
NaCl     66g 
 
KCl     3.36g 
 
NaHCO3    21g 
 
NaH2PO4    1.38g 
 
Glucose    21.86g 
 
MgCl2     10ml 
 
Dilute in dH20 to a final volume of 1 litre, pH 7.4.  
 
Dilute 1:10 in dH20 for use. 
 
Bubble with O2 for 5 minutes, and add 2ml/litre 1M CaCl2 before use. 
 
 
 
A1.3 0.1M glycine 
 
Glycine    0.375g 
 
Make up to 50ml in PBS 
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A1.4 ELISA 
 
 
A1.4.1 Substrate solution 
 
0.1M Citrate    14ml 
 
0.2M Na2PO4    16ml 
 
dH20     30ml 
 
15mg O-Phenylenediamine tablet 1 
 
30% hydrogen peroxide  20µl  
 
 
A1.4.2 Bicarbonate coating buffer 
 
Na2CO3    0.79g 
 
NaHCO3    1.46g 
 
dH20 to a final volume 500ml, pH 9.6 
 
 
 
A1.5 Antibody purification buffers 
 
 
A1.5.1 Binding buffer 
 
0.1M sodium phosphate buffer with 0.15M NaCl, adjusted to pH 7.4 
 
 
A1.5.2 Tris-HCl 
 
1M (12.1g) Tris base in 100ml H20 made up to pH9 with HCl 
 
 
A1.5.3 Elution buffer (0.1M citric acid) 
 
1.92g anhydrous citric acid in 100ml H20, pH 3-6. 
 
 
A1.5.4 Phosphate buffer solution (0.1M NaH2PO4) 
 
19ml of 0.2M NaH2PO4.2H20 and 81ml of 0.2M Na2H2PO4 diluted to 200ml in dH20. 
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A1.6 Standard antibody blocker 
 
 
Triton X-100   0.3g 
 
10% sodium azide  1ml 
 
Bovine serum albumin 0.2g 
 
dH20 to a final volume of 100ml.  
 
To make final concentration of 0.3% Triton X-100, 0.2% BSA and 0.1% sodium 
azide. 
 
 
 
A1.7 Copper sulphate buffer 
 
Copper sulphate  10mM 
 
Ammonium acetate   50mM 
 
In dH20 to pH5.0 
 
 
 
A1.8 Coomassie blue 
 
Coomassie Brilliant Blue R 2.5g 
 
Ethanol   455ml 
 
dH20    455ml 
 
Glacial acetic acid  90ml 
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Appendix 2: Animal surgery protocols 
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Appendix 3: Patient consent documentation 
 

SOUTHERN GENERAL HOSPITAL NHS TRUST 

CONSENT FOR RETENTION OF NERVE AND MUSCLE TISSUES 

PATIENT INFORMATION SHEET 

You are being asked to give permission for small amounts of the nerve or muscle 

tissue that is being removed during the course of your biopsy to be retained for 

research purposes. 

 

• Diseases of the nerves, called ‘peripheral neuropathy’ are an important cause of 

paralysis, sensory loss, disability and death, affecting many millions of people 

worldwide in a wide variety of ways. In most cases, detailed scientific information 

about the causes are unknown and research is needed to understand this and thereby 

develop new treatments.  

• Many cases of peripheral neuropathy have an ‘autoimmune’ basis, in which the 

body’s own immune mistakenly attacks the nerves, causing tissue damage and 

nerve malfunction. The research your nerve or muscle will be used for aims to 

identify the cause of autoimmune neuropathy by examining tissue samples from 

affected subjects and control groups in whom the nerves are normal, and thereby 

identifying the key factors that lead to the disease. 

• All research projects are approved and monitored under the guidance of the SGH 

NHS Trust Ethics Committee. 

 
What we wish to do 
You are about to undergo an operation in which nerve or muscle tissue will be removed. 
The tissue that will be removed from you will be examined by pathologists to provide 
information about your condition. From these specimens, small amounts that are not 
required for diagnostic purposes will be set aside for our research on the nerves in the 
tissues. 
 
What are the risks and benefits to you? There are no risks to you over and above the 
surgery you already require to treat your condition. No extra tissue will be removed from 
you that is not already part of your treatment. There will be no benefit to you directly. 
 
Can you refuse?  You are free to refuse to take part in the study. You do not have to give 
any reason. All of you routine treatment will continue as usual. (Consent overleaf) 
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SOUTHERN GENERAL HOSPITAL NHS TRUST 

CONSENT FOR RETENTION OF NERVE AND MUSCLE TISSUES 

SHEET FOR SIGNATURE 

 
        Please circle   
Have you read the information sheet overleaf? Yes   No 
Have you had an opportunity to ask 
questions and discuss this study?   Yes   No 
Have you received satisfactory answers to 
all your questions?     Yes   No 
Have you received enough  
information about the study?    Yes   No 
 
Who have you spoken to concerning the study? 
 
Dr/Mr/Ms 
             
 
Do you understand that you are free to withdraw from the study  - 
 
        Please circle   
at any time?      Yes   No 
without having to give a reason   Yes   No 
and without affecting your future medical care? Yes   No 
 
Do you agree to participate in this study?  Yes   No 
 
Signed.............................................................................  Date............................. 
Name in Block Letters........................................................  Date............................. 
Signature of Witness..........................................................  Date............................. 
Name in Block Letters........................................................  Date............................. 
 
 
This investigation aims to study human nerve and muscle tissue in surgical specimens in 
order to understand the causes of peripheral neuropathy and related disorders. 
 
 
       (Patient information overleaf) 
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Appendix 4: Publication 
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