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Abstract 

The herpes simplex virus type 1 (HSV-1) UL25 protein (pUL25) is a minor capsid 

protein that is essential for packaging the full-length viral genome into 

preformed precursor capsid.  It is also important in virus entry and recently has 

been implicated in the egress of the virus from the cell (Coller et al., 2007, 

Preston et al., 2008).  The crystallographic structure of an N-terminally 

truncated form of pUL25 (residues 134-580) has been determined to 2.1 Å, 

revealing a protein with a novel fold that consists mostly of α-helices and a few 

minor β-sheets (Bowman et al., 2006).  An unusual feature of the protein is the 

presence of numerous flexible loops extending out from the stable core and its 

distinctive electrostatic distribution.  Five of the extended loops contain 

unstructured regions, L1-L5, with three additional unstructured amino acids, L6, 

located at the carboxyl terminus of the protein (Bowman et al., 2006). Four 

potentially functional clusters of residues, C1-C4, were identified on the surface 

of the protein using evolutionary trace analysis (Lichtartge & Sowa, 2002).   

To examine the function of the protein in relation to its structure, site-directed 

mutations were engineered into the UL25 gene in a protein expression plasmid.  

A series of mutant proteins was generated, each protein containing a deletion of 

the unstructured residues in one of the six regions, L1-L6.  Another set of mutant 

proteins were constructed with each member containing substitutions of 

selected amino acids within one of the four potentially functional clusters, C1-

C4, or substitutions of the three disordered amino acids in L6.  The amino acid 

substitutions were generally to alanine, but in one case where the SIFT program 

predicted alanine would not affect the function of the protein an alternative 

residue was substituted.  To determine the functional significance of the 

uncrystallised part of pUL25, residues 1-133, three deletion mutant proteins that 

spanned this region (pUL25Δ1-45, pUL25Δ1-59 and pUL25Δ1-133) were included 

in the study.   

Although an existing UL25 null mutant, KUL25NS, was available at the beginning 

of the project for analysis of the mutant proteins, it had been made by the 

insertion of multiple stop codons in the UL25 ORF and as a result some UL25 

sequences were still present within the virus genome.  Consequently, during 
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complementation assays recombination between the UL25 sequences in the 

KUL25NS genome and the transfected expression plasmid generated low levels of 

wild-type (wt) progeny virus.   To improve the sensitivity of the assay, a new 

deletion mutant, ΔUL25MO, was created that lacked the entire UL25 gene.  This 

mutant failed to form plaques in non-permissive Vero cells and grew well in the 

complementing cell line, 8-1.  However, contrary to previously published work, 

electron microscopic (EM) analysis revealed that DNA-containing capsids as well 

as A- and B-capsids were present in the nuclei of both ΔUL25MO- and KUL25NS-

infected cells.  As expected, none of the progeny from ΔUL25MO-infected Vero 

cells expressing the wt pUL25 formed plaques on non-permissive cells.  Of the 17 

mutant UL25 proteins screened in the complementation assay, nine failed to 

complement the growth of ΔUL25MO in Vero cells.  

Three of the non-complementing mutant proteins, pUL25-C4A, pUL25-L3 and 

pUL25-L6, altered the phenotype of ΔUL25MO in a transient DNA packaging 

assay, allowing the mutant virus to package full-length genomes in U2OS cells 

co-infected with ΔUL25MO and a mammalian baculovirus vector containing the 

mutant UL25 gene.  These results indicate that viral assembly was disrupted in 

these cells following DNA packaging.  Five mutant proteins, pUL25-C3B, pUL25-

L5, pUL25Δ1-45, pUL25Δ1-59 and pUL25Δ1-133 did not change the pattern of 

DNA encapsidation of ΔUL25MO in this system, suggesting that C3, L5 and the N-

terminal region are critical for packaging virus DNA.  Since C3 and L5 regions are 

on different sides of pUL25, it is likely that these regions and possibly the N-

terminal domain of pUL25 represent different interfaces for protein-protein 

interactions important for DNA packaging.  To determine at which point in the 

virus growth cycle these post-packaging blocks occurred, EM was used to 

investigate the pattern of virus assembly in ΔUL25MO-infected cells expressing 

pUL25-C4A, -L3 or –L6 and fluorescent in-situ hybridisation (FISH) analysis was 

performed to establish the distribution of virus DNA in these cells.  The results 

showed that in ΔUL25MO-infected cells expressing pUL25-C4A or –L3, the C-

capsids failed to exit the nucleus, whereas in the cells expressing pUL25-L6 the 

C-capsids were seen in both the nucleus and the cytoplasm.  The FISH data 

confirmed the EM observations, and viral DNA was detected only in the nuclei of 

ΔUL25MO–infected cells expressing the C4 or L3 mutant proteins, but in the 

nuclei and cytoplasm of the mutant virus-infected cells expressing pUL25-L6.  
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These studies show that the C4 and L3 regions of pUL25 are important for egress 

of the C-capsids from the nuclei, whereas the L6 region is essential for virus 

assembly after the C-capsids are released into the cytoplasm.  The C4 and L3 

regions of pUL25 are situated in close proximity to each other on the surface of 

pUL25, with the wt residues mutated in pUL25-C4A lying along a loop adjacent 

to L3.  The similar phenotypes of the mutant proteins generated for the C4 and 

L3 suggest that these two regions may represent a single functional interface of 

pUL25 that is critical for nuclear egress of C-capsids during HSV-1 infection.  The 

62 carboxyl-terminal region of the UL36 gene product (pUL36) has previously 

been shown to contain a capsid-binding domain (CBD) that interacts with pUL25 

(Coller et al., 2007).  A GST-pull down assay was used to determine whether the 

mutations in the post-packaging mutant proteins, pUL25-C4A, -L3, –L6, or the 

control packaging-competent mutant protein, pUL25-L5, disrupted the 

interaction of pUL25 with the CBD of pUL36.  However, all of these mutant 

proteins and the wt pUL25 bound to the pUL36 CBD GST fusion protein.   

In summary, three different classes of pUL25 mutants, each of which affect a 

different essential function of pUL25, have been identified, revealing that pUL25 

is indeed a versatile viral protein.  These mutants provide the first evidence that 

this DNA packaging protein is crucial for virus assembly at two different stages 

after DNA encapsidation, one in nuclear egress of C-capsids and the other in the 

assembly of the virus in the cytoplasm.   
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Alanine   Ala   A  Non-polar (hydrophobic) 

Arginine  Arg   R  Basic 

Asparagine  Asn   N  Polar (neutral) 

Aspartic acid  Asp   D  Acidic  

Cysteine  Cys   C  Polar (neutral) 

Glutamine  Gln   Q  Polar (neutral) 

Glutamic acid Glu   E  Acidic  

Glycine  Gly   G  Polar (neutral) 

Histidine  His   H  Basic 

Isoleucine  Ile   I  Non-polar (hydrophobic)  

Leucine  Leu   L  Non-polar (hydrophobic) 

Lysine   Lys   K  Basic 

Methionine  Met   M  Non-polar (hydrophobic) 

Phenylalanine Phe   F  Non-polar (hydrophobic) 

Proline  Pro   P  Non-polar (hydrophobic) 

Serine   Ser   S  Polar (neutral) 

Threonine  Thr   T  Polar (neutral) 

Tryptophan  Trp   W  Non-polar (hydrophobic) 

Tyrosine  Tyr   Y  Polar (neutral) 

Valine   Val   V  Non-polar (hydrophobic) 
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Nucleotide abbreviations 

 

Base      One letter code 
 
Adenine (Purine)     A 

Cytosine (Pyrimidine)    C 

Guanine (Purine)     G 

Thymidine (Pyrimidine)    T 

Uracil (Pyrimidine)     U   
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1 Introduction 

1.1 Introduction to herpesviruses 

1.1.1 Classification of herpesviruses 

Herpesviruses are a large diverse group of double-stranded DNA (dsDNA) viruses 

with a wide range of host species, including most vertebrate and at least one 

invertebrate.  Few herpesviruses naturally infect more than one species and it is 

likely that the 200 herpesviruses identified so far only reflects a small proportion 

of the probable number in existence (Pellet & Roizman, 2007).  Historically, 

members of the herpesvirus family were identified by their virion morphology, 

which consists of four distinct layers (Section 1.2) (Davison, 2002, Pellet & 

Roizman, 2007).  In addition to virion structure, members of the family exhibit 

the following common biological characteristics:  

• They all encode a large range of enzymes and proteins involved in nucleic 

acid metabolism, DNA synthesis and the processing of proteins.   

• Viral DNA replication, capsid assembly and encapsidation of viral DNA 

occur in the nucleus, while further viral maturation takes place in the 

cytoplasm of the infected cell.   

• The production of infectious viral progeny invariably leads to destruction 

of the infected cell.   

• They all share the ability to maintain a dormant or latent persistent 

infection throughout the lifetime of the host.  Latent viruses express only 

a subset of viral genes and retain the capacity to replicate and cause 

disease on reactivation.   

Although family members share these features, different herpesviruses also 

display considerable variation with respect to other biological properties:  they 

differ in the clinical manifestations of the diseases they cause, their host cell 
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range in vitro and the length of their replicative cycle.  In addition, the specific 

cell type in which the different herpesviruses remain latent varies.   

Since the advent of DNA sequencing technology, the traditional approach for 

classifying family members on biological criteria has been replaced by 

classification based primarily on DNA sequence homology and genome 

organisation (Davison, 2002, McGeoch et al., 2006).  On this basis a new order 

has been established, Herpesvirales, which has divided the former Herpesviridae 

family into three distinct lineages (Davison et al., 2009).  The revised 

Herpesviridae family retains the herpesviruses that infect mammals, birds and 

reptiles, while the new family Alloherpesviridae comprises viruses with fish or 

amphibian hosts and the other new family Malacoherpesviridae currently 

includes a single virus that infects marine bivalves (Davison et al., 2005, 

McGeoch et al., 2006).  The family Herpesviridae has been further          

classified into the subfamilies Alphaherpesvirinae, Betaherpesvirinae and 

Gammaherpesvirinae.  Eight distinct human herpesviruses have been identified 

so far and there are representatives from each of the three subfamilies (Table 

1.1).   

Currently there is an extensive catalogue of sequence data for herpesvirus 

genomes, which range in size from 124-241 kilo base pairs (kbp) with an 

estimated one gene per 1.5-2 kbp of herpesvirus genome (Davison et al., 2003, 

McGeoch et al., 2006).  The DNA sequence information allowed the reassessment 

of herpesvirus classification on the basis of gene conservation, positioning and 

arrangement of gene clusters relative to one another, the arrangement of 

terminal sequences or the presence of nucleotides subject to methylation 

(McGeoch et al., 2006, McGeoch et al., 2005, Pellet & Roizman, 2007).  In the 

light of these data the original system proved to be remarkably accurate, since 

only a few viruses had to be re-classified.  Two human herpesviruses, HHV-6 and 

HHV-7, were reassigned to the Betaherpesvirinae subfamily following amino acid 

and DNA sequence comparisons.  In addition, DNA sequence information enabled 

the construction of a phylogenetic tree illustrating the common ancestral origin 

of the herpesvirus family (Figure 1.1).       



Virus Common Name  Abbreviation Subfamily Genera Genome Size 
(kb) Disease 

HHV-1 Herpes simplex virus type 1 HSV-1 Alphaherpesvirinae Simplexvirus 152 Cold sores  

HHV-2 Herpes simplex virus type 2  HSV-2 Alphaherpesvirinae Simplexvirus 152 Genital ulcers 

HHV-3 Varicella-zoster virus  VZV Alphaherpesvirinae Varicellovirus 125 Chicken pox, shingles 

HHV-4 Epstein-Barr virus  EBV Gammaherpesvirinae Lymphocryptovirus 172 
Infectious mononucleosis, 
Burkitt’s lymphoma, 
Hodgkin’s disease. 

HHV-5 Human cytomegalovirus  HCMV Betaherpesvirinae Cytomegalovirus 236 
Disseminated disease in 
neonates and in immuno-
compromised individuals  

HHV-6 Human herpesvirus 6 HHV-6 Betaherpesvirinae Roseolovirus 160 Exanthema subitum 
(Infant rash) 

HHV-7 Human herpesvirus 7 HHV-7 Betaherpesvirinae Roseolovirus 145 Exanthema subitum 
(Infant rash) 

HHV-8 Kaposi’s sarcoma-associated 
herpesvirus  KSHV Gammaherpesvirinae Rhadinovirus 170 Associated with Kaposi’s 

sarcoma 

 
 

Table 1.1 Human herpesviruses and their classification and associated diseases (Pellet & Roizman, 2007; Davison et al., 2009)  



Figure 1.1 Phylogenetic relationships and taxonomy of major herpesviruses

The diagram shows branching patterns and not evolutionary relationships (adapted from 
Pellet & Roizman 2007).
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1.1.1.1 Alphaherpesvirinae 

The main features for members of this subfamily are: they display a variable 

host range in vitro, with the ability to infect a variety of cell lines in culture; 

they have a relatively short replicative cycle of less than 24 hours (h); spread 

rapidly in tissue culture; show a strong cytopathic effect (CPE) in infected cells 

and establish latency primarily in sensory ganglia.  The subfamily is further 

divided into the four genera: Simplexvirus, which includes herpes simplex virus 

type 1 (HSV-1) and type 2 (HSV-2); Varicellovirus, which includes varicella-zoster 

virus (VZV); Mardivirus and Iltovirus, members of which infect avian hosts 

(Pellet & Roizman, 2007).   

1.1.1.2 Betaherpesvirinae   

Members of this subfamily have a restrictive host range in vitro and in vivo.  The 

reproductive cycle is long, infection progresses slowly in culture and infected 

cells often become enlarged (cytomegalia).  Carrier cultures can be readily 

established in which cells survive following infection.  In the natural host the 

virus is maintained in the latent form in a wide range of cell types including 

secretory glands, lymphoreticular cells, kidneys and other tissues.  This 

subfamily contains the genus Cytomegalovirus, which includes human 

cytomegalovirus (HCMV) and the genus Roseoloviruses, which include human 

herpesvirus type 6 (HHV-6) and type 7 (HHV-7) (Pellet & Roizman, 2007).     

1.1.1.3 Gammaherpesvirinae 

Herpesviruses within this subfamily are characterised by a limited experimental 

host range, restricted to the family or order to which the natural host belongs.  

In culture all members replicate in lymphoblastoid cells and are usually specific 

for either T or B lymphocytes.  Latent infections also occur frequently within 

lymphoblastoid tissue.  However, some viruses in this group produce a 

productive or lytic infection in other cell types, such as epithelioid and 

fibroblastic cells.  Two genera in this subfamily have viruses that infect humans.  

The Epstein-Barr virus (EBV) as a member of Lymphocryptovirus, whereas 

Rhadinovirus includes human herpesvirus type 8 (HHV-8), also known as Kaposi’s 

sarcoma-associated herpesvirus (KSHV).  Recent evidence indicates that 
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members of the genus Lymphocryptovirus consist of two major lineages that 

have coevolved with their hosts: viruses of the Old World (humans, chimpanzees) 

and New World (marmosets) primates (Gerner et al., 2004, McGeoch et al., 

2005, Pellet & Roizman, 2007).  

1.1.2 Human herpesviruses and disease 

So far eight human herpesviruses have been identified and characterised (Table 

1.1). Generally symptoms in infected individuals are asymptomatic and 

consequently lead to widespread transmission of the virus in early life.  

Exceptions to these are infections with VZV, which is the causative agent of 

chicken pox, or HSV-2 causing neonatal, disseminated herpes infections.  In most 

other cases symptoms are largely the consequences of the re-emerging latent 

virus.  The most extensively studied herpesvirus is HSV-1, and in populations that 

have been analysed usually 50-90% of individuals are infected.  Primary infection 

by HSV-1 can occur at a number of sites, but the classic route is through mucosal 

membranes of the mouth and nose, leading to latent infection of the trigeminal 

ganglia.  Reactivation of the latent virus is often associated with stress, 

exposure to UV light, fever, tissue damage or immuno-suppression, resulting in 

the appearance of the characteristic cold sore lesions at, or close to, the site of 

primary infection (Roizman et al., 2007).  In some cases the reactivated virus 

can cause more severe conditions such as HSV-1 encephalitis, which can be fatal, 

or keratoconjunctivitus that can result in blindness.  In the case of latent VZV 

infections, reactivation is restricted to a single nerve tract where it causes the 

painful condition referred to as shingles.  Immuno-compromised individuals, such 

as transplant or AIDS patients, are particularly at risk from infections due to 

reactivated virus, including life-threatening conditions from reactivated HCMV.  

In addition, two gammaherpesviruses, EBV and KSHV, have been linked to 

neoplastic transformations that include Burkitt’s lymphoma (EBV) and Kaposi’s 

sarcoma (KSHV) (Pellet & Roizman, 2007).  Since the work carried out in this 

thesis relates to the prototypical herpesvirus, HSV-1, the following discussions 

will focus predominately on this virus.   
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1.2 HSV-1 virion architecture 

The mature or infectious virion consists of four morphologically distinct 

structural components.  The central core comprises the linear dsDNA genome, 

which is enclosed within a protective icosahedral capsid that together form the 

nucleocapsid.  The capsid in turn is embedded in a protein matrix known as the 

tegument and, finally, the tegument is surround by a lipid bilayer or envelope 

containing several viral glycoproteins (Roizman et al., 2007, Wildy et al., 1960).  

A generalised representation and a detailed electron micrograph of the 

herpesvirus structure are shown in Figure 1.2.     

1.2.1 Genome 

The HSV-1 genome consists of a single linear dsDNA molecule, which is 

approximately 152 kbp in length, has a GC content of 68% and contains at least 

75 open reading frames (ORFs) (McGeoch et al., 1993).  The viral genome 

consists of two covalently linked regions designated long (L) and short (S), which 

each contain unique sequences, termed UL and US, respectively.  The UL region is 

107.9 kbp and the Us region is 13 kbp long, and both regions are bordered by 

inverted repeat sequences.  The terminal and internal repeats flanking UL are 

referred to as TRL and IRL, respectively, whilst those flanking US are known TRS 

and IRS, respectively.  Genes in the unique and repeated sequences have prefixes 

UL, US, RL or RS and are numbered according to their relative position in the 

genome (Roizman et al., 2007).  Each of the inverted repeats flanking the UL or 

US regions are composed of various combinations of repeat elements termed a, b 

and c.  The a and b repeats are found in TRL and their inversions (a’ and b’) in 

IRL, and the a and c elements are found in TRS and their inversions (a’ and c’) in 

IRS.  Multiple a sequences are frequently found in TRL and also at the junction of 

IRL and IRS, but in the opposite orientation to the terminal a sequences (McGeoch 

et al., 1988).  Thus the HSV-1 genome can be written as anb-UL-b’a’mc’-US-ca, 

where n and m represent variable copies of the a sequence (Roizman et al., 

2007).  An illustrated version of the HSV-1 genome is shown Figure 1.3.  As a 

consequence of the inverted repeats at either end of the UL and US 

recombination can occur during viral replication, resulting in the inversion of 

one region relative to the other and the formation of four genome isomers 



Figure 1.2 Structure of the HSV-1 virion

The HSV-1 virion is composed of four structural elements.  The 
double-stranded DNA genome is packaged into the icosahedral 
capsid.  The tegument surrounds the capsid and consists of a 
collection of proteins that are organised into at least two layers, one 
which interacts with the envelope proteins and one that is closely 
associated with the capsid.  The envelope is a lipid bilayer infused 
with viral glycoproteins and encloses both the tegument and the 
DNA containing capsid.
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Figure 1.3 The HSV-1 genome structure

The HSV-1 genome (A) consists of the L and S domains, shown in (B).  The L and S 
domains each contains a unique sequence, UL and US, respectively, which is flanked 
by inverted repeats (TRL/IRL and TRS/IRS).  The genome contains the a sequence at 
the end of each terminal repeat (aL and aS) and this sequence is also present at the L-S 
junction in an inverted orientation (a').  The TRL has a variable number of a sequences 
(an) and there is also a variable number at the L-S junction (a'm).  The b sequence is 
only present in TRL and in an inverted position in IRL.  Similarly, the c sequence is only 
found in TRS and in an inverted orientation in IRS.  (C) The arrows indicate the relative 
orientation of the four possible genomic isomers of HSV-1 that result from inversion of 
the L and S domains during DNA replication.  P indicates the prototype and no inversion 
of either L or S domains, IL indicates inversion of the L region and IS indicates inversion 
of the S region, while ILS signifies that both L and S domains are inverted.    
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(Figure 1.3), which exist in equimolar amounts in HSV-1 populations.  The role of 

the various genome isomers during viral replication is unknown, since HSV-1 

mutants with specific repeat sequences removed and their genomes frozen in 

any given isomeric form still remained viable in culture (Roizman et al., 2007).  

Herpesvirus genomes in general can be divided into seven groups on the basis of 

the overall arrangement of their repeat sequences and unique regions, and the 

HSV-1 genome is typical member of group 6 (Davison & McGeoch, 1995).  An 

illustration of the various genome structures found in herpesvirus and a summary 

of their salient features are shown in Figure 1.4.   

  

1.2.2 The capsid  

The virus genome is packaged into an icosahedral capsid, consisting of protein 

subunits that self-assemble around a scaffold core in the nuclei of infected cells.  

The proteins required for capsid formation are conserved within the 

Herpesviridae and a list of the genes that encode them in HSV-1 are shown in 

Table 1.2 (Steven et al., 2005).   

 

Gene Protein MW (kDa) Description 

UL18 VP23 34 Structural component of triplexes 

UL19 VP5 15 Structural component of hexons and pentons 

UL26 VP21 40 Minor scaffolding protein 

UL26 VP24 26.5 Maturational protease 

UL26.5 VP22a 34 Major scaffolding protein 

UL35 VP26 12 Accessory protein located on hexon tips 

UL38 VP19C 50 Structural component of triplexes  

 
Table 1.2 HSV-1 genes encoding proteins involved in capsid assembly 
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Figure 1.4 Herpesvirus genome structures

The genome structures of herpeviruses, defined by Roizman (1992) and Davison & 
McGeoch (1995), are illustrated.  The unique regions are indicated by the letter U, with 
the long and short unique regions denoted as UL and US, respectively .  The repeat 
units are depicted by boxes and their orientation is indicated by the arrowheads.  Group 
0 genomes each consists of a single unique coding region and no repeat units.  An 
example is tree shrew herpesvirus (Koch et al., 1985).  The group 1 genomes each 
consists of a single unique region and single direct repeat sequences at each terminus.  
An example being channel catfish virus (Davison, 1992).  Each group 2 genome also 
contains a single unique region, but has multiple copies of repeat units at each terminus.  
An example is herpesvirus saimiri (Albrecht et al., 1992).  The group 3 genomes each 
has multiple repeat units located at each terminus and an internal repeat unit in the 
opposite orientation at the junction of the UL and US domains.  An example is the 
cottontail rabbit herpesvirus (Cebrian et al., 1989).  Group 4 genomes are similar to 
group 3 genomes, but the internal repeats show no similarity to the end terminal repeats  
and the gammaherpesvirus EBV has a genome with this arrangement (Baer et al., 
1984).  Group 5 genomes each has two unrelated inverted repeats flanking the UL and 
US regions respectively, however, the ones at either end of the UL domain are much 
smaller than those at each end of the US domain.   An example of this group is VZV 
(Davison & Scott, 1986).  Group 6 genomes are similar to group 5 genomes, but they 
contain additional repeat units termed a sequences that are located at each terminus of 
the genome and at the junction of the UL and US region in the opposite orientation.  In 
addition, the inverted repeats flanking the UL domain are much larger than those 
contained in group 5 genomes.   Both HSV-1 and HSV-2 have genomes of this type 
(Roizman, 1979).            



Chapter 1 26

1.2.2.1 Icosahedral symmetry  

Crick & Watson (1956) were the first to point out that due to the limited coding 

capacity of the viral genome, it was economical to construct capsids from a 

small number of protein subunits.  In the case of the spherical viruses, a closed 

shell could be achieved by using the symmetry of Platonic polyhedra, for 

example tetrahedron, octahedron or icosahedron.  So far only examples of 

icosahedral capsids have been found, perhaps because the most economical way 

to build a symmetric shell, of maximal internal volume using nonsymmetric 

protein molecules, is to arrange the proteins in identical equilateral triangular 

structures that can be joined to form an icosahedron.    An icosahedron has 20 

triangular faces and 12 vertices related by two-, three- and fivefold axes of 

rotational symmetry (Figure 1.5).  In the simplest packing arrangement, each 

triangular face of the capsid comprises three identically placed proteins (x 20 

faces = 60), with each of the 60 subunits (asymmetric units) interacting with 

their neighbour in an identical (equivalent) environment.  Consequently, 

although the volume in such a capsid depends on the size of the protein, it is 

still quite small and can only package a small genome.  Larger genomes, such as 

HSV-1, require larger capsids and therefore must contain more than 60 protein 

subunits.  The apparent contradiction of the structural properties of larger 

particles was accounted for by the theory of quasi-equivalence developed by 

Caspar & Klug (1962).  They proposed that when a capsid contained more than 

60 subunits, each subunit occupied a quasi-equivalent position, where the 

bonding properties of subunits in different structural environments are similar, 

but not identical as in the case of the 60-subunit structure.  In a larger 

structure, such as the HSV-1 capsid, five subunits make fivefold symmetric 

contact at each of the 12 vertices, forming the pentons.  The additional subunits 

are interposed between the pentons and arranged with six-fold symmetry, 

forming the hexons.  The addition of the hexons allows the size of the shell to 

increase without disrupting the basic geometry of the icosahedral capsid.   In 

such a structure, each subunit can be present in one of three different structural 

environments.  Nevertheless, all subunits bond to their neighbours in similar 

ways.  Another important concept introduced by Caspar & Klug (1962) was the 

triangulation number, T, a mathematical means used to describe the number of 
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Figure 1.5 Icosahedron

An icosahedron has 20 equilateral triangular faces and 
12 vertices related by 2-, 3- and 5-fold symmetry.
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structural units required per triangular face that would be needed to assemble 

an icosahedron in a given structure. 

1.2.2.2 Capsid structure 

A reconstruction of the HSV-1 capsid has been determined to a resolution of 8.5 

Å and is illustrated in Figure 1.6 (Zhou et al., 2000).  The capsid has a diameter 

of 125 nm and is approximately 15 nm thick.  The genes encoding the major 

proteins of the capsid are summarised in Table 1.2.  Three viral proteins, VP5, 

VP23 and VP19C, are essential for HSV-1 capsid formation.  The major capsid 

protein, VP5, assembles into 161 subunits or capsomers, which are connected to 

each other at the innermost layer of the shell cavity to form the capsid floor 

(Baker et al., 1990).  Capsomers can be subdivided into two populations of 150 

hexons and 11 pentons, which form the structural units of the T=16 icosahedral 

capsid (Wildy et al., 1960).  Eleven of the 12 vertices of the HSV-1 capsid are 

occupied by pentons, each comprising identical populations of five VP5 

molecules.  The twelfth capsid vertex is occupied by a cylindrical portal made 

up of 12 molecues of UL6, forming a channel through which viral DNA is 

packaged into the capsid and possibly released (Chang et al., 2007, Deng et al., 

2007, Homa & Brown, 1997, Newcomb et al., 2001, Valpuesta & Carrascosa, 

1994).  The hexons, composed of six VP5 molecules, form the edges and faces of 

the icosahedron and are decorated by the small non-essential protein VP26 

(Zhou et al., 1994).  In contrast to pentons, there are three quasi-equivalent 

populations of hexons (Figure 1.7).  The hexons lying adjacent to the pentons 

are known as peripentonal or P hexons, while those located on the faces of the 

icosahedron are termed C hexons and ones situated on the edges are referred to 

as E hexons.  The hexons and pentons are interconnected by a heterotrimeric 

complex of proteins known as the triplex, composed of two copies of VP23 and 

one copy of VP19C, which form their connections by interacting with the middle 

and floor domains of the surrounding capsomers (Newcomb et al., 1993, Trus et 

al., 1995).  Triplexes, like hexons, can be divided into quasi-equivalent 

populations (termed Ta, Tb, Tc, Td, Te and Tf) based on their location within 

the icosahedral lattice (Zhou et al., 1994).  The positions of the quasi-equivalent 

hexons and triplexes on the surface lattice of the capsid are illustrated in Figure 

1.7.    



o
Figure 1.6 Reconstruction of the HSV-1 capsid to 8.5 A

Shaded surface view of the T=16 HSV-1 capsid, which has a 
diameter of 1250 A and is 150 A thick.  The capsid shell 
consists of 161 capsomers, with 150 hexons (blue) forming 
the faces and edges, 11 pentons (red) forming the vertices, 
and 320 triplexes (green) lying between adjacent capsomers 
(adapted from Zhou et al., 2000).                                                                                              

o o



Figure 1.7 Surface lattice of HSV-1

T h e  p o s i t i o n  o f  t h e  q u a s i - e q u i v a l e n t  
capsomers and triplexes.  The peripentonal, 
edge and central hexons (pale blue circles) 
a re  denoted by  the  le t te rs  P,  E and C,  
respectively.  The pentons are positioned at 
the vertices and are indicated by the dark 
blue circ les and the number 5.   The six 
triplexes Ta-Tf (green triangles) are denoted 
a-f (adapted from Heyman et al., 2003).
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1.2.2.3 Capsid scaffold 

Assembly of the HSV-1 capsid requires not only the structural proteins VP5, 

VP19C and VP23, but involves the participation of the scaffolding proteins, 

VP22a and VP21, which form the scaffold, or core, and the maturational 

protease, VP24.  The scaffolding proteins direct the fidelity of the maturing 

capsid’s assembly, with the structural proteins co-assembling with and around 

the core, which interacts directly with VP5 (Hong et al., 1996, Thomsen et al., 

1995).  In contrast to the other capsid proteins, which are encoded in separate 

transcriptional units, the scaffolding proteins are encoded by two in-frame 

overlapping genes, UL26 and UL26.5 (Liu & Roizman, 1991), the arrangement of 

which is illustrated in Figure 1.8.  As a consequence of their gene organisation, 

the UL26.5 gene product preVP22a (the major scaffolding protein) has an 

identical sequence to the C-terminal 329 amino acids of the UL26 precursor 

protein, preVP21/VP24 (Figure 1.8).  The 635 amino acid preVP21/24 has an N-

terminal protease fragment (VP24), several oligomerisation domains, and a VP5 

binding site located at the C-terminus (Deckman et al., 1992, Hong et al., 1996, 

Liu & Roizman, 1992).  During capsid assembly, the UL26 protein is incorporated 

into the structure and the intrinsic protease activity (VP24) it contains cleaves 

either autoproteolytically or in trans (Liu & Roizman, 1993, Preston et al., 

1983).  Cleavage at the R site (A247-S248) of the UL26 precursor molecule 

releases two products, the N-terminally located functional protease, VP24 (M1-

S247), and the C-terminal encoded scaffolding protein preVP21 (S248-R635).  A 

second cleavage event is initiated by the maturational protease at the 

maturation or M site (A610-S611) present in the C-terminal portion of the 

scaffolding proteins, preVP21 and preVP22a, which are attached to the inner 

capsid shell via the VP5 binding domains located in each protein at the C-

terminus (Hong et al., 1996, Robertson et al., 1996).  Although the scaffolding 

proteins participate in capsid assembly, they are removed during capsid 

maturation by cleavage at the M site of preVP21 and preVP22 to release VP21 

(S348-A610) and VP22 (M307-A610), respectively, while the protease (VP24) 

remains in the capsid shell (Figure 1.8) (Homa & Brown, 1997, Roizman et al., 

2007).  Activity of the protease, VP24, is required for the assembly of DNA-

containing capsids (Preston et al., 1983; Gao et al., 1994).    



--Figure 1.8 Structural organisation of the HSV-1 scaffolding genes and their proteolytic products  

(A) The scaffolding proteins are encoded by two overlapping genes, UL26 and UL26.5.  As a 
consequence of their gene organisation, the UL26.5 gene product, pre-VP22a, has an identical 
sequence to the C-terminal 329 amino acids of the UL26 encoded protein (M307-R635).  For 
convenience these residues are also labelled as M307-R635 in the UL26.5 illustration and are 
highlighted in both scaffolding proteins in green and red.  The red portion indicates the VP5 binding 
domain.  (B) During capsid maturation the UL26 encoded protein is cleaved at the R site to release the 
VP24 maturational protease (residues M1-A247) and preVP21 (S248-R610).  Cleavage of preVP21 at 
the M site results in removal of the VP5 binding domain (S611-R635) and releases the minor 
scaffolding protein VP21 (S248-A610) from the capsid.  (C) Cleavage of preVP22a at the M site 
removes the VP5 binding domain (S611 – R635) and releases the major scaffolding protein VP22a 
(M307-A610) from the capsid.    
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1.2.2.4 Capsid forms                          

In the nuclei of infected cells, electron microscopic studies have identified three 

forms of angularised HSV-1 capsids, which have been classified as A-, B- and C-

capsids (Gibson & Roizman, 1972).  Although the capsids have the same basic 

icosahedral structure that was described previously, they can be separated by 

sucrose density gradient ultracentrifugation.  The differences in density and 

morphology between the three capsid forms are due to the material contained in 

the cavity of their shells.  C-capsids, which contain the virus genomes, are the 

successful end product of DNA packaging that will eventually form part of the 

infectious virion.  A- and B-capsids are considered the abortive or dead-end 

products of failed DNA packaging events.  A-capsids are empty shells that lack 

DNA and scaffolding proteins, while B-capsids also lack DNA but are filled with a 

core of cleaved scaffolding proteins, primarily VP22a (Homa & Brown, 1997, 

Newcomb et al., 1996, Rixon & McNab, 1999, Sherman & Bachenheimer, 1988, 

Trus et al., 1996).  An additional capsid form has been identified, the procapsid, 

which is the precursor of the other three types and will be discussed in detail in 

Section 1.3.4.  An illustration of all four capsid forms is shown in Figure 1.9    

1.2.2.5 Accessory capsid proteins 

Maturation of the procapsid to the angularised capsid involves large cooperative 

conformational changes (Section 1.3.4).  In addition to providing increased 

stability, these changes create new binding sites that are required for 

downstream reactions and optimal infectivity.  Reconfiguration of the hexons 

during maturation generates new binding sites on the outer surface of the 

mature capsid shell that VP26 interacts with.  The precise role of this protein is 

unclear, since it is dispensable and does not appear to confer additional stability 

to the assembling capsid.  However, its absence does reduce infectious virion 

production (Desai et al., 1998, Newcomb et al., 1993).  In addition to the 

structural and scaffolding proteins, a number of viral proteins have been 

identified as minor components of the HSV-1 capsid.  Most of these minor capsid 

constituents are involved in DNA packaging and include the proteins encoded by 

the UL6, UL15, UL17, UL28, UL25 and UL33 genes, which will be discussed 

further in Section 1.3.5.2.   



VP5
VP19C + VP23
pUL6
pUL26.5 (preVP22a)
pUL26 (VP24 + preVP21)
VP26

Procapsid

B-capsid

A-capsid

C-capsid

DNA packaging and 
capsid maturation

Figure 1.9 Alternative HSV-1 capsid forms

The procapsid is the immature spherical form that during viral DNA packaging and maturation 
switches to the more angularised capsid.  C-capsids are the successful end product of DNA 
encapsidation.  B-capsids are dead-end products that lack DNA but are filled with a core of 
cleaved scaffolding proteins.  A-capsids are empty shells that lack DNA and scaffolding proteins 
and are considered the abortive products of failed DNA packaging events.  The hexons on the 
procapsid shell, highlighted in light blue, and the pentons (mid-blue) are coordinated by the 
triplexes made up of heterotrimers of VP19C and VP23 (green).  The inner shell of the procapsid 
is composed of the scaffolding proteins pUL26.5 (red) and pUL26 (red and grey).  During 
maturation, the protease is released by autoproteolysis from pUL26 and processes the C termini 
of the scaffolding proteins attached to the inner capsid shell wall.  The conformational switch in 
capsid morphology creates binding sites for VP26, which are located at the tips of hexons 
(yellow).  The UL6 gene product is arranged as a single dodecamer at the portal (pink) and is the 
channel where viral DNA is inserted into the capsid during encapsidation (adapted from Trus et 
al., 2007).
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1.2.3 The tegument  

In contrast to the symmetrical uniformity of the capsid, the tegument is a 

largely unstructured proteinaceous layer that is located between the capsid and 

outer envelope (Figure 1.2).  More than 15 viral proteins are present in the 

tegument and there is some evidence that cellular components are also 

incorporated (Del Rio et al., 2005, Grünewald et al., 2003).  Many of the 

tegument proteins share no sequence homology between alpha-, beta- and 

gammaherpesviruses and their origin and evolution remains unclear.  Indeed, 

many can be deleted without obviously affecting virion structure (Homa & 

Brown, 1997, Mettenleiter, 2002, Steven & Spear, 1997).    An important 

function of the tegument is to carry with it an assortment of already synthesised 

viral proteins that following infection can assist the virus in managing the host 

environment.  These proteins include, the UL41 encoded virion host shut off 

protein (vhs) that acts by shutting off host cell protein synthesis, and VP16, 

which is encoded by UL48 and that stimulates expression of HSV-1 immediate-

early genes (Cambell et al., 1984, Pellet & Roizman, 2007).  

Information from cryo-EM and 3D reconstructions have revealed that the 

tegument, although regarded as largely amorphous, is composed of at least two 

distinct layers referred to as the inner and outer tegument layers.  The outer 

layer is asymmetrically organised, heterogeneous and interacts with the 

cytoplasmic domains of viral membrane proteins, while the inner layer is tightly 

associated with the vertices of the capsid and displays a more ordered 

icosahedral morphology (Gibson & Roizman, 1972, Zhou et al., 1999).  One of the 

constituents of the inner tegument layer is the UL36 encoded protein (pUL36), 

which is highly conserved among the herpesviruses and is essential for viral 

morphogenesis (Desai, 2000, Klupp et al., 2002).  Since pUL36 has been 

demonstrated to be tightly associated with the capsid at the pentons and also 

directly interacts with VP5, the protein was suggested as a good candidate for 

the icosahedrally ordered tegument observed in cryo-EM reconstructions (Gibson 

& Roizman, 1972, Zhou et al., 1999).  Subsequently, a functionally conserved 

capsid-binding domain (CBD), located in the last 62 amino acids of HSV-1 and PrV 

pUL36, was identified, which specifically bound to the minor capsid protein 

pUL25 that is predicted to be situated adjacent to the capsid vertices (Coller et 
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al., 2007, Trus et al., 2007).  More recently this interaction was confirmed, and 

a second domain in pUL36 (residues 2037–2353) that interacts with pUL25 has 

also been identified (Pasdeloup et al., 2009).  Indications that these interactions 

may act as the link that binds the capsid to the tegument in the infectious virion 

has been provided using an HSV-1 UL36 null mutant (Roberts et al., 2009), since 

in cells infected with the pUL36 deletion mutant, C-capsids lacking tegument 

accumulated in the cytoplasm and no enveloped capsids were observed in the 

cytosol.    

1.2.4 The envelope 

The outer boundary of the virion is formed by the envelope (Figure 1.2), a lipid 

bilayer that is created from host cell membranes during viral assembly, and 

which is thought to originate at the trans-Golgi network (Mettenleiter, 2002).  

The envelope contains numerous protrusions of virally encoded glycoproteins 

that function during viral entry, egress and cell-to-cell spread (Beitia Ortiz de 

Zarate et al., 2004, Farnsworth & Johnson, 2006, Farnsworth et al., 2007).  HSV-

1 encodes at least 11 glycoproteins (Table 1.3) and the total copy number of 

these proteins can exceed 1,000 per virion (Pellet & Roizman, 2007). 

1.2.5 L-particles 

L-particles resemble virions in size and shape, but are simply enveloped 

tegument structures that lack capsids (Szilágyi & Cunningham, 1991).  They have 

been detected in all alphaherpesviruses examined for their presence and their 

existence indicates that tegument proteins have an intrinsic ability to self-

assemble in the absence of capsids (McLauchlan & Rixon, 1992).  L-particles are 

formed in productive infections and in instances where virus assembly is blocked 

and can be easily purified (Rixon et al., 1992).  Since they have an envelope, L-

particles retain the capacity to penetrate cells and have proved to be a useful 

experimental tool for analysing the viral constituents of the tegument.  Their 

existence in nature has been hypothesised to facilitate HSV-1 infections, for 

example, by acting as decoys during the host’s immune response, by 

complementing partially defective co-infecting virions, or by enhancing 

reactivation of latent virus (Dargan et al., 1995, McLauchlan et al., 1992).          



Gene Protein Function of protein 

UL1 gL Interacts with gH and is required for membrane fusion and viral entry. 

UL10 gM Forms a complex with UL49A and is present in cellular and virion membranes.  
It is thought to be involved in secondary envelopment. 

UL22 gH Interacts with gL and is required for membrane fusion and viral entry.  It is also 
thought to play a role during egress and cell-to-cell spread.  

UL27 gB Forms dimers and is required for membrane fusion and the initial attachment 
of the virus via heparan sulphate. 

UL44 gC Involved in the initial attachment of the virus to the cell membrane via heparan 
sulphate.  

UL53 gK Involved in cell fusion and required for efficient virus exocytosis. 

US4 gG Involved in egress and cell-to-cell spread. 

US5 gJ Non-essential for virus replication in cell culture. 

US6 gD Involved in cell receptor binding, cell fusion and viral entry. 

US7 gI Involved in the acquisition of the viral envelope during secondary envelopment 
and forms a complex with gE. 

US8 gE Involved in the acquisition of the viral envelope during secondary envelopment 
and forms a complex with gI. 

 
Table 1.3 HSV-1 glycoproteins  
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1.3 HSV-1 replication  

Productive infection by HSV-1 can be divided into several stages, which are 

described below and are summarised in Figure 1.10.  In permissive tissue culture 

cells, from initial infection to the release of infectious progeny, HSV-1 

replication takes approximately 18–20 h.   

1.3.1 Entry 

1.3.1.1 Cell binding and fusion   

HSV-1 can enter cells in two ways.  The primary pathway involves fusion of the 

envelope with the plasma membrane and transport of released capsids to the 

nuclear pore.  The secondary pathway involves endocytosis of the enveloped 

capsid and although this auxiliary pathway has been defined experimentally in a 

few cell lines, its role in natural infections is unclear (Roizman et al., 2007).  

However, both routes of entry share an initial and reversible attachment of the 

virion to the cell surface that is mediated by the viral glycoproteins.  HSV-1 first 

attaches to the cells by the interaction of gC, and to a lesser extent gB, to cell-

surface glycosaminoglycans (GAGs) such as heparan sulphate (Herold et al., 

1991, Shieh et al., 1992, WuDunn & Spear, 1989).  HSV-1 gD then binds to 

specific cell receptors to stabilise the virion-cell interaction.  At least three 

different types of receptors have been identified.  These are nectins, herpes 

virus entry mediator (HVEM), and a selected form of 3-O-sulphated heparan 

sulphate, none of which act as co-receptors during entry.  Finally, gD together 

with gB, gH and gL, enable the viral envelope to fuse with the cellular plasma 

membrane to allow penetration of the viral capsid and tegument into the cell 

(Cai et al., 1988, Campadelli-Fiume et al., 2000, Forrester et al., 1991, Ligas & 

Johnson, 1988, Spear & Longnecker, 2003, Turner et al., 1998).  Binding and 

fusion appear to be distinct events, since binding has been demonstrated to be 

reversible and viruses eluted from the cell surface are still infectious (Bender et 

al., 2005).   
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Figure 1.10 Lytic replication cycle of HSV-1 

(1) The virion binds to the host cell membrane via specific interactions between the viral glycopro-
teins and the plasma membrane.  The viral envelope then fuses with the host cell membrane 
releasing the capsid and tegument proteins into the cytoplasm.  (2)  The capsid containing the 
inner tegument proteins is transported via microtubules to the nucleus where the capsid binds to 
the nuclear pore complex and releases the viral DNA into the nuclear compartment.  (3) The outer 
tegument is released into the cytoplasm and virion host shut-off (vhs) protein causes degradation 
of host messenger RNA (mRNA).  (4) Another component of the outer tegument, VP16, localises 
to the nucleus where it activates HSV-1 gene expression and where viral genes are expressed in 
a tightly regulated cascade.  (5) Viral DNA circularises in the nucleus prior to replication and gene 
expression.  (6) The viral DNA is transcribed by host RNA polymerase II to give first the IE gene 
transcripts (α mRNA), a process which is stimulated by VP16.  The viral mRNAs are exported to 
the cytoplasm for translation on cellular ribosomes and five of the six IE or α proteins act to 
regulate viral gene expression in the nucleus.  (7)  The IE proteins transactivate the E (β) gene 
products.  (8) The E  proteins are involved in replicating the viral DNA molecule, with the vast 
majority of progeny DNA genomes forming concatemers.  (9) Viral DNA synthsis stimulates L (γ) 
gene expression.  (10) The L  proteins are mainly structural proteins involved in assembling the 
procapsid in the nucleus.  (11) The concatemeric progeny DNA is cleaved into monomeric unit-
length genomes that are packaged into the preformed procapsids.  During DNA encapsidation the 
procapsid undergoes extensive conformational remodelling to form the mature angularised DNA-
containing C-capsid.  (12) The C-capsid exits the nucleus by budding into the perinuclear space 
and then fuses with the outer nuclear membrane and is released into the cytoplasm.  Tegument is 
assembled around the capsid and is initiated by an interaction of the UL36 protein with the capsid 
vertices.  The tegumented capsids subsequently acquire an envelope by budding into the trans-
golgi network, a process that involves the interaction of the tegument with the cytoplasmic tails of 
the viral glycoproteins gD, gE/gI and gM.  The enveloped virion finally exits the cell via the 
secretory pathway, a stage that is thought to involve the viral glycoprotein gK (adapted from 
Roizman et al., 2007).          



Chapter 1 33

1.3.1.2 Capsid translocation to the nucleus 

Following penetration, the outer layer of tegument proteins quickly dissociates 

from the capsid and the tegument proteins involved in host-cell management are 

transported to the appropriate cellular compartments (Luxton et al., 2005).  Vhs 

localises in the cytoplasm, while VP16 makes its way to the nucleus 

independently of the capsid (Batterson & Roizman, 1983, Taddeo et al., 2006).  

The capsid, containing the residual inner layer of tegument proteins comprising 

pUL36 and pUL37, is transported along microtubules from the periphery of the 

cell to the nuclear pore complex (NPC).  This process is mediated by an 

interaction between as yet unknown capsid-associated protein and the cellular 

motor protein dynein, together with the co-factor dynactin (Dohner et al., 2002, 

Sodeik et al., 1997).  Sodiek et al. (1997) reported that the microtubules 

interact with the pentons on incoming capsids.  Several HSV-1 proteins have 

been proposed as the interaction sites for dynein, but the prime candidates are 

likely to be the inner tegument or outer capsid proteins.  Strong contenders are 

the large tegument protein, pUL36 and the minor capsid protein encoded by 

UL25 (pUL25) that is located on the external shell (Newcomb et al., 2006, 

Thurlow et al., 2006, Trus et al., 2007).  In PrV, pUL36, pUL37 and pUL25 remain 

linked with the capsid during its transport across the cytoplasm to the NPC 

(Granzow et al., 2005, Kaelin et al., 2000, Luxton et al., 2005).   

Once the capsid arrives at the nucleus it docks at the NPC.  The component 

proteins of the NPC are termed nucleoporins and these multiprotein structures 

selectively control the passage of material through the nuclear envelope 

(reviewed in Lim & Fahrenkrog, 2006).  The first evidence that virus DNA is 

uncoated at the nuclear pores came from studies with a temperature-sensitive 

(ts) mutant of UL36, tsB7.  At the non-permissive temperature (NPT), cells 

infected with tsB7 accumulate capsids containing DNA at the NPC.  When the 

infected cells are shifted to the permissive temperature (PT), DNA is released 

from the capsids and virus gene expression follows (Batterson et al., 1983, Knipe 

et al., 1981).  Subsequently, protolytic cleavage of pUL36 has been 

demonstrated to be required for release of the HSV-1 DNA into the nucleus 

(Jovasevic et al., 2008).  A second HSV-1 ts mutant, ts1249, which has a 

mutation in the essential DNA packaging gene UL25, has a phenotype similar to 

that of tsB7, suggesting that pUL25 is required for uncoating the genome 



Chapter 1 34

(Preston et al., 2008).  Recently, Pasdouloup et al. (2009) identified the 

nucleoporin CAN/Nup214 as the nuclear receptor for incoming HSV-1 capsids in 

infected cells and showed, using an immunoprecipitation assay, that pUL25 

interacted directly with the protein.  In addition, they demonstrated binding of 

pUL25 to the large tegument protein pUL36 and the portal protein pUL6, both of 

which have key roles in virus DNA release (Batterson et al., 1983, Jovasevic et 

al., 2008, Newcomb et al., 2007).  Taken together these results suggest that 

pUL25 is the interface on the capsid that binds incoming capsids to the NPC and 

triggers the release of virus DNA into the nucleus.  It is in the infected cell 

nucleus that HSV-1 gene expression, DNA replication, capsid assembly, DNA 

packaging and egress takes place (Shahin et al., 2006, Strang & Stow, 2005, 

Strang & Stow, 2007).          

1.3.2 Gene expression 

Upon entering the nucleus the linear HSV-1 genome rapidly circularises with the 

help of cellular factors and virus gene expression is initiated.  During the lytic 

cycle of infection a molecular hallmark of herpesviruses is the temporally 

ordered sequence of RNA polymerase II-directed gene transcription (reviewed in 

Roizman et al., 2007).  The virus genes can be divided into three classes, named 

immediate early (IE or α), early (E or β) and late (L or γ), depending on their 

pattern of transcription.  Although the precise kinetics of viral gene expression is 

dependent on the cell type infected and the MOI, in general the initiation of 

expression of the IE genes starts approximately 30 minutes post-infection (hpi) 

at 37oC.  The IE proteins produced are responsible for propelling the 

transcription cascade forward by activating expression of the next set of virus 

genes.  There are six IE proteins, designated ICP0, ICP4, ICP22, ICP27, ICP47 and 

US1.5.  The ICP0, ICP4, ICP22 and ICP27 products each play important regulatory 

roles in viral gene expression of E and L gene products, but IE proteins are also 

involved in modulating the host antiviral defence system or exploiting the cell’s 

machinery for productive virus infection.  Transcription of IE genes does not 

require prior viral protein synthesis, since their promoters are recognised by host 

transcription factors and RNA polymerase II.  The HSV-1 protein VP16, however, 

has an important role in expression of IE genes following its interaction with two 

host cell proteins.  On its release from the incoming capsids, VP16 binds to a 
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cellular protein called host cell factor (HCF) and is transported to the nucleus.  

Within the infected cell nucleus, the VP16-HCF complex binds to a cellular 

transcription factor, Oct-1 (octomer DNA-binding protein), and the stable 

interaction of VP16 with Oct-1 promotes Oct-1 binding to viral DNA (Hughes et 

al., 1999).  Oct-1 binds to the octomer core sequence present in the promoters 

of all IE genes, while VP16 binds to Oct-1 and the adjacent HSV-1 sequences, 

forming an activator complex (Gaffney et al., 1985, O'Hare et al., 1988).  ICP0 is 

a transcriptional activator that stimulates viral gene expression and viral 

infection, which has been proposed to be involved in controlling the balance 

between lytic and latent HSV-1 infection, such that in its absence the latent 

state is favoured (Hagglund & Roizman, 2004, Preston & Nicholl, 1997, 

Samaniego et al., 1998).  There is accumulating evidence to suggest that  blocks 

the infected cell’s repression of viral transcription by disrupting nuclear 

substructures known as ND10 domains.  The disruption of ND10 sites during HSV-

1 infection is caused by the -induced degradation of cellular proteins, which are 

important components of ND10 sites, by  interacting with the ubiquitin-

proteasome pathway (Everett et al., 2007, Everett et al., 2006).     

Expression of the E genes requires the IE transactivator, ICP4, and in its absence 

the synthesis of E and L virus gene transcripts is blocked (DeLuca et al., 1985).  

The mechanism that ICP4 uses to activate E and L gene transcription is unclear, 

although it does contain a DNA binding site that is essential for its 

transactivation function (DeLuca & Schaffer, 1988).  In addition, evidence 

suggests it functions by enhancing the assembly of transcription complexes onto 

the viral promoters (Grondin & DeLuca, 2000).  If unrestrained, IE transcription 

would be expected to compete with E gene expression during viral replication 

and overwhelm the initiation of E mRNA translation.  Three mechanisms are 

thought to play a role in shutting off of IE gene expression.  First, ICP4 represses 

its own transcription by binding to specific sequences located across its own 

transcription initiation site (Faber & Wilcox, 1986).  Second, during the 

productive infection, E gene products down-regulate IE expression, and finally, 

one of the functions of vhs is to synchronise sequential viral gene expression.   

Expression of E genes reaches a peak at approximately 4-8 hpi and the products 

generated are required during DNA replication and nucleotide metabolism.  Two 

groups of E proteins, β1 and β2, have been identified.  The β1 proteins are 
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expressed a short time after the onset of IE protein synthesis, while the β2 

proteins are transcribed later and include DNA polymerase.  Since the β2 proteins 

require ICP27 for their activation, this may explain their expression kinetics 

(McCarthy et al., 1989).  ICP27 is a multifunctional IE regulatory protein that not 

only initiates viral gene expression but also represses it in the presence of ICP4 

(Panagiotidis et al., 1997).  In addition, it contributes to the shut-off of host 

protein synthesis during productive infection by preventing mRNA splicing of host 

gene transcripts and has a role in promoting nuclear export of viral mRNA 

(reviewed in Roizman et al., 2007).    

L genes are also activated by IE proteins, but it is only after DNA replication that 

their expression reaches its peak at approximately 8–10 hpi, with their gene 

products being required for virion assembly, DNA packaging and egress.  Similar 

to E genes, the L genes can be divided into two groups termed γ1 (leaky/late) 

and γ2 (true late) genes.  The γ1 proteins are expressed prior to viral DNA 

synthesis, while the onset of viral DNA replication is required prior to the 

expression of the proteins encoded by the true late genes.  The ultimate goal of 

L gene expression is to express large amounts of structural proteins for the 

assembly of progeny viral particles.  The relatively abundant major capsid 

protein, VP5, is a product of both γ1 and γ2 L gene transcripts during infection, 

while the tegument protein pUL36 is expressed by a true late gene (Roizman et 

al., 2007).   

1.3.3 DNA replication 

DNA replication initiates on the circular viral DNA molecules that accumulate in 

the infected cell nucleus in specialised structures known as replication 

compartments, which are located next to sub-nuclear structures termed ND10 

domains (Qinlan et al., 1984).  New ND10 domains also assemble around 

incoming viral genomes and these are thought to play an essential part in the 

cell’s defence mechanism against viral infection (Everett, 2006, Everett & 

Murray, 2005, Everett et al., 2006).  However, as infection progresses the ND10 

structures are degraded by a mechanism involving the IE viral protein .  In 

addition to the E gene products required during DNA synthesis, replication 

compartments also contain the HSV-1 proteins necessary for capsid assembly and 
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DNA packaging and as a consequence are thought to be the sites of viral DNA 

cleavage and encapsidation (de Bruyn Kops et al., 1998, Lamberti & Weller, 

1998).  

 

Herpesvirus genomes contain three origins of replication that consist of two 

copies of oriS, located in the IRS and TRS regions of the viral genome, and one 

oriL that is situated in the centre of the UL region.  The apparent reason(s) for 

these three potential origins of replication in the viral genome is currently 

unclear, since mutant viruses lacking oriL or both copies of oriS are still viable 

(Polvino-Bodnar et al., 1987, Roizman et al., 2007).  In addition to the cis-acting 

origins of replication, seven trans-acting proteins are required during viral DNA 

replication.  Three of these proteins, encoded by UL5, UL8 and UL52, are 

components of the heterotrimeric helicase-primase complex.  Two of the 

proteins form a heterodimeric DNA polymerase complex, comprising the 

catalytic subunit encoded by UL30 and its processivity factor encoded by UL42.  

The remaining two trans-acting replication proteins are the single-stranded DNA 

binding protein expressed by UL29, also referred to as ICP8, and the origin-

binding protein encoded by UL9 (pUL9).  

 

A model based on the current information available for HSV-1 DNA replication 

has been proposed and is illustrated in Figure 1.11.  After the viral DNA 

molecules have entered the cell nucleus, the circular genomes generated serve 

as templates for DNA synthesis.  Binding of pUL9 in association with ICP8 to the 

origin sequences initiates the preliminary theta (bi-directional) mode of 

replication that quickly switches to a sigma or rolling-circle form by an unknown 

mechanism.  Evidence that replication is initially bi-directional comes from 

observations that viral DNA accumulates with nonlinear kinetics during early DNA 

synthesis and that cellular topoisomerase II is also required at this stage, 

suggesting a need for decatenation of circular progeny molecules (Hammarsten 

et al., 1996).  Following binding, the ATP-dependent helicase activity of pUL9 is 

stimulated by its interaction with ICP8, inducing a distortion in the DNA and the 

formation of a single-stranded stem loop structure that is subsequently coated 

with ICP8.  Separation of the two DNA strands then permits access of the 

helicase-primase complex, which is recruited to the origin by its interaction with 

pUL9, ICP8 or both, and the DNA polymerase complex to establish a replication 
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Figure 1.11 Model for HSV-1 DNA replication

(1) Input DNA is circularised on entry into the nucleus.  (2) pUL9, 
the origin binding protein, initially binds to specific elements in the 
origin (either oriL or oriS) and begins to unwind the DNA. pUL9 
then recruits ICP8, the ssDNA binding protein, to the unwound 
ssDNA. (3) pUL9 and ICP8 recruit the five remaining viral DNA 
replication proteins to the replication fork.  (4) The helicase-primase 
proteins and the viral polymerase complex assemble at each 
replication fork for initial rounds of theta form replication.  (5) 
Replication switches to the rolling circle mode by an unknown 
mechanism.  pUL9 is not necessary for rolling circle replication, 
because this process is origin independent.  (6) Rolling circle DNA 
replication produces long head-to-tail concatemers of viral DNA, 
which are the substrates for DNA cleavage and packaging 
(adapted from Roizman et al., 2007).   
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fork (reviewed in Lehman & Boehmer, 1999 and Roizman et al., 2007).  

However, once DNA replication is initiated the origin binding protein is no longer 

required (Schildgen et al., 2005).  The origin-dependent theta replication 

switches to an origin-independent rolling-circle and/or recombination-mediated 

replication mechanism that produces progeny DNA in the form of head-to-tail 

concatemers (Jacob et al., 1979).   

 

1.3.4 Capsid assembly  

A feature of herpesviruses is that DNA replication, capsid assembly and DNA 

encapsidation all occur in the nucleus of the infected cell.  Therefore, prior to 

capsid assembly the structural and scaffolding proteins that are translated in the 

cytoplasm must be transported to the nucleus.  However, only VP19C and 

preVP22a can localise to the nucleus independently, which suggests that these 

proteins contain a nuclear localisation signal (NLS).  The other structural 

proteins, VP5, VP23 and VP26, are transported to the nuclear compartment via 

direct or indirect interactions with either or both VP19C and preVP22a (Desai & 

Person, 1996, Nicholson et al., 1994, Rixon et al., 1996).  The distribution of the 

capsid proteins in the nucleus during virus infection has been studied using 

confocal microscopy techniques (de Bruyn Kops et al., 1998, Ward et al., 1996).  

This has revealed that capsid proteins accumulate at punctate foci within 

nucleus known as replication compartments.   

A possible common ancestry between herpesviruses and dsDNA bacteriophages, 

such as T4, P22 and λ, has been revealed by similarities in their capsid structure 

and in the way capsids are formed (Baker et al., 2005, Booy et al., 1991, 

Davison, 1992, Trus et al., 2004).  Since the process of capsid assembly and DNA 

encapsidation has been extensively studied and is well defined in the large 

dsDNA bacteriophages (Baker et al., 2005, Hendrix, 2005, Johnson & Chiu, 2007, 

Rixon, 2008, Steven et al., 2005), this information has provided a framework for 

studying these processes in HSV-1.  In its basic features the pathway for capsid 

assembly and DNA packaging in HSV-1 resembles that in the large dsDNA 

bacteriophage.  In both systems the capsid proteins and internal scaffolding 

proteins co-assemble to form a spherical and mechanically fragile intermediate 

empty shell, termed the procapsid.  Following DNA replication, the 
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concatemeric viral DNA molecules formed are cleaved into unit-length genomes.  

The sequence of events that yield progeny virions proceeds through the 

overlapping events of capsid maturation, DNA packaging and the release of 

cleaved scaffolding proteins from the maturing capsid.  The procapsid is the key 

site of maturation and its surface shell undergoes a morphological transition into 

the mature capsid, which stabilises the particle and enables it to withstand the 

increasingly high pressure that is imposed on it as the viral genome is inserted 

during encapsidation.   

1.3.4.1 Procapsid assembly 

An understanding of the mechanism of how the structural and scaffolding 

components of the capsid assemble advanced significantly with the development 

of the baculovirus expression system.  Baculoviruses naturally infect anthropods 

and baculovirus vectors that express foreign genes at high levels in cultured 

insect cells, such as Spodoptera frugiperda (Sf cells) have been developed.  By 

analysing the structures formed in Sf cells infected with various combinations of 

baculoviruses expressing the capsid shell proteins and the products of the 

scaffolding genes, the essential viral proteins required during capsid assembly 

were identified (Tatman et al., 1994, Thomsen et al., 1994).  Closed icosahedral 

capsids were detected in insect cells co-infected with baculoviruses expressing 

the capsid shell proteins VP5, VP19C, VP23 and the scaffolding proteins encoded 

by either UL26 or UL26.5.  These experiments revealed that the expression of 

UL35 (encoding VP26) was not essential for capsid formation.  Omission of the 

UL26 gene product from the system resulted in a high number closed icosahedral 

capsids with large internal cores, due to the presence of intact preVP22a, which 

was not cleaved in the absence of the maturational protease.  In cells expressing 

preVP22a alone, a large number of core-like structures formed indicating that 

this scaffolding protein could self-assemble in the absence of other capsid 

proteins, a property not observed when preVP21 was expressed on its own 

(Preston et al., 1994).  In the absence of preVP22a, fewer capsids were detected 

in the baculovirus expression system and no distinct core was apparent.    

Nevertheless, in mammalian cells infected with an HSV-1 mutant that did not 

express preVP22a, infectious virions were still produced but at significantly 

reduced yields relative to the wt virus (Gao et al., 1994).  These results 

suggested that although the UL26 polypeptide could still serve as a scaffold 
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during capsid formation, it formed a less effective one than those containing 

preVP22a.  However, no intact capsids were formed when both UL26 and UL26.5 

gene products were absent, indicating that the presence of a scaffolding protein 

was required for the assembly of a closed icosahedral capsid (Gao et al., 1994, 

Preston et al., 1994, Tatman et al., 1994, Thomsen et al., 1994).                 

The baculovirus expression system and analysis of the capsid protein interactions 

from recombinant baculovirus-infected cell extracts led to the development of 

an in vitro based model for capsid assembly (Desai & Person, 1996, Newcomb et 

al., 1999, Newcomb et al., 1994, Preston, 2002, Rixon et al., 1996). In the in 

vitro system, closed angularised icosahedral capsids formed in samples of mixed 

cell extracts containing capsid shell proteins and the scaffolding proteins 

incubated at 27oC for 12 h (Newcomb et al., 1994).  The requirements for cell-

free assembly, in terms of input viral gene products, were the same as for 

assembly in insect cells co-infected with multiple baculovirus vectors expressing 

HSV-1 structural proteins.  Optimal assembly required the major capsid protein, 

the triplex proteins and the major scaffolding protein.  By immunoprecipitating 

the complexes formed in the in vitro assembly reaction mixtures and analysing 

them under the electron microscope, several intermediate capsid forms were 

identified (Newcomb et al., 1996).  During progressively longer periods of 

incubation, partial capsids, followed by closed spherical capsids, termed 

procapsids, and finally angularised icosahedral capsids were observed.  While 

the various capsid structures all contained VP5, VP19C, VP23 and the scaffolding 

proteins preVP22a and VP21, procapsids were found to be more labile at low 

temperatures than the angular capsids formed.  In addition, upon continued 

incubation of purified procapsids in vitro they underwent an energy-independent 

conformational change and spontaneously formed angularised capsids.  These 

observations, which were consistent with the prohead maturation events 

reported in dsDNA bacteriophages, led Newcomb et al. (1996) to propose a 

model for HSV-1 capsid assembly.  The capsid assembly model is illustrated in 

Figure 1.12 and begins with formation of the partial capsid that consists of 

angular segments of the closed structure, and then proceeds through the more 

fragile and closed spherical procapsid intermediate to the stable and mature 

icosahedral capsid.   



Figure 1.12 Model for HS-1 capsid assembly

The major events in HSV-1 viral assembly are illustrated and show the relationship between capsid assembly, maturation 
and DNA packaging.  The open boxes represent the major capsid protein (VP5) that makes up the hexons and pentons, 
the triplexes are denoted by crescents and the scaffolding proteins by triangles.  Similar to bacteriophage systems, HSV-1 
capsids contain a portal vertex, which is known to associate with scaffold.  These observations have prompted the 
suggestion that the capsid assembly in HSV-1 is initiated through an interaction between the portal complex and the major 
scaffolding protein, UL26.5 (Newcomb et al., 2003).  Although not precisely defined, the cleavage and release of the 
scaffolding proteins is concomitant with DNA packaging.  On completion of DNA encapsidation the portal channel is 
sealed by an unkown mechanism, followed by the final stages of viral assembly (adapted from Rixon and Chiu, 2003). 
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1.3.4.2 Procapsid structure and maturation 

The procapsids identified in the cell free capsid assembly system were confirmed 

as intermediates in HSV-1 capsid assembly by characterising capsids formed in 

cells infected with the HSV-1 temperature-sensitive (ts) protease mutant, ts1201 

(Rixon & McNab, 1999).  Cryo-EM analysis and image reconstruction techniques 

showed that procapsids were spherical with a T=16 icosahedral symmetry and 

had a looser architecture than the more angularised mature HSV-1 capsid (Figure 

1.13) (Heymann et al., 2003, Newcomb et al., 1999, Newcomb et al., 2000, Trus 

et al., 1996).  In the procapsid there is little interaction between the 

neighbouring VP5 hexon and penton subunits, with contact between the 

capsomers being coordinated exclusively by the surrounding triplexes.  Within a 

given capsomer the main intersubunit contacts take place in the innermost layer 

of the capsid cavity, where the VP5 subunit floor domains form rings.  The result 

is that the trans-hexonal channel, which is a small circular opening in the 

mature capsid, is considerably wider in the procapsid.  The more porous and 

fragile architecture of the procapsid is a consequence of this loose association 

between its components (Newcomb et al., 1996, Newcomb et al., 2000).  As the 

procapsid matures, the conformational changes that take place results in 

enhanced interactions between the floor domains of neighbouring capsomers.  

These contacts are reinforced by the triplexes, which transform into molecular 

clamps overlying the trigonal points at which three capsomers come together in 

the floor domains.  In addition, the highly asymmetric hexons present in the 

procapsid are transformed into the symmetric configurations detected in the 

mature capsid (Heymann et al., 2003).  The precise kinetics of capsid maturation 

in vivo is unknown, but thin sections of infected cells do not reveal procapsids 

except when the protease is inactivated, implying that they mature shortly after 

assembly (Rixon et al., 1988). 

Capsid maturation overlaps with viral DNA packaging and is initiated by the 

protease clipping the terminal peptide at the M site in the assembled scaffolding 

proteins, disrupting their interaction with the outer shell (Section 1.2.2.3). The 

successful end product of procapsid maturation is the mature angularised 

nucleocapsid, which has lost its internal scaffold and contains a viral genome.  

Although the link between DNA packaging and loss of the scaffold has been 

shown, the prompt that initiates scaffold cleavage and expulsion is still unclear 



Procapsid CapsidA

B

Figure 1.13 Comparison of the HSV-1 procapsid and capsid

(A) The colour illustration show the difference in shape between the spherical 
procapsid and the more angularised capsid. The capsomers are highlighted in 
blue and the triplexes in green.  (B) Outside (1 and 2) and inside (3 and 4) views 
of reconstructions of the HSV-1 procapsid (1 and 3) and capsid (2 and 4).  All 
views are shown looking along a 3-fold icosahedral axis.  The procapsid retains 
some icosahedral symmetry, which is apparent by the hexagonal arrangement of 
the capsomers seen in the internal view (3).  The procapsid subunits are less 
clearly defined than those of the capsid.  In addition, the contacts between the 
individual subunts are looser and the continuous floor is absent, since there are is 
no contact at the bases of the capsomers in the procapsid.    
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(Church & Wilson, 1997, Dasgupta & Wilson, 1999, Preston et al., 1983, Rixon & 

McNab, 1999).  In bacteriophage systems the transformation from procapsid to 

mature capsid is promoted by the electrostatic repulsive forces exerted by 

packaged DNA on the inner capsid surface (Conway et al., 2001).  In the HSV-1 

system, it has been suggested that these forces alter the ionic environment 

within the capsid cavity, triggering the dissociation of the scaffold from the shell 

(McClelland et al., 2002).   In addition, the physical force exerted on the capsid 

shell as more DNA is packaged during encapsidation would be expected to 

facilitate changes in procapsid maturation.     

1.3.5 DNA encapsidation 

DNA encapsidation requires two linked events, cleavage of the replicated head-

to-tail concatemeric viral DNA into unit-length genomes and packaging of these 

DNA molecules into capsids (Ladin et al., 1980, Ladin et al., 1982).  As well as 

the maturational protease, seven trans-acting virus-encoded proteins, UL6, 

UL15, UL17, UL25, UL28, UL32 and UL33 are essential during the process 

(reviewed in Baines & Weller, 2005).  When cells are infected with HSV-1 

mutants lacking the function of any of these genes, apart from UL25, capsid 

formation and DNA replication takes place, but no DNA packaging occurs.  By 

analogy to the extensively studied bacteriophage system, it is presumed that 

HSV-1 encodes a multicomponent enzyme, the terminase, which links the DNA to 

the procapsid and cleaves the DNA precisely into unit-length genomes.  After the 

initial cleavage of the concatemeric viral DNA, the cleaved DNA is inserted 

through the unique vertex, or portal, and is driven into the maturing capsid by 

the terminase complex and ATP hydrolysis, with concomitant loss of the internal 

scaffold.  A second cleavage event occurs to release a monomeric viral genome 

that is stably encapsidated as a consequence of the interaction of viral gene 

products with the maturing capsid, resulting in the successful production of the 

precursor of the infectious virion (reviewed in Baines & Weller, 2005).    

1.3.5.1 Cleavage and packaging signals 

In addition to the essential trans-acting viral proteins that direct the site-

specific DNA cleavage and packaging process, cis-acting viral DNA sequences 

termed Pac1 and Pac2 are also involved and have been mapped to the Ub and Uc 



Chapter 1 43

domains of the a sequences, respectively (Varmuza & Smiley, 1985).  In various 

herpesvirus strains the sequences within the a region consist of a series of direct 

repeat units (DR) and unique regions (Uc or Ub), arranged as DR1-Uc-DR4m-DR2n-

Ub-DR1, where m and n designate variable numbers of repeats (Figure 1.14).  

The size of these components and the type of direct repeat units (DR1, DR2 or 

DR4) present can vary between strains, but are thought to be consistent within a 

strain.  In HSV-1 strain 17 syn+ the a sequence encompasses a region of 

approximately 400 base pairs (bp) in length, containing only the DR1 and DR2 

direct repeat units (Figure 1.14).  A single a sequence is flanked by DR1, while 

junctions containing more than one a sequence share a single intervening DR1 

(Davison & Wilkie, 1981, Mocarski & Roizman, 1981, Mocarski & Roizman, 1982).  

Lying internally to the DR1 repeats are two unique regions, Ub and Uc, which 

contain highly conserved packaging elements termed Pac1 and Pac2, 

respectively (Deiss et al., 1986, Nasseri & Mocarski, 1988).   

Upon entry, the linear viral genomes fuse at their terminal sequences and 

generate the circular DNA molecules that are the substrate for viral DNA 

replication.  Fusion at the terminal a sequences creates a Uc-DR1-Ub junction 

(Figure 1.14) that has been demonstrated to be the minimal packaging signal 

required during DNA encapsidation (Hodge & Stow, 2001, Nasseri & Mocarski, 

1988, Stow, 2001).  Cleavage of the concatemeric viral DNA occurs within the 

DR1 repeat, although the actual sequence of DR1 is not important.  The cleaved 

concatemeric end consists of a truncated DR1 with 18 of its 20 bp plus a single-

nucleotide 3’ overhang and in HSV-1 strain 17 syn+ this is followed by Uc (Pac2), 

DR2, Ub (Pac1), DR1 and UL sequences (Mocarski & Roizman, 1982).  After 

association of the cleaved DNA termini with the capsid portal the viral genome is 

inserted into the capsid shell in the direction of the UL to Us region.  The second 

cleavage is dependent on the Pac1 motif and occurs in such a way that the DNA 

being packaged is terminated by a single bp of DR1 with a 3’ nucleotide 

overhang.  Consequently, the terminus of the unpackaged cleaved concatemeric 

DNA is identical to the terminus generated following the first cleavage event and 

as a result would be expected to initiate the next round of DNA packaging (Stow, 

2001).     
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Figure 1.14 HSV-1 genome and structure of the a sequences

(A)The positions of the a sequences in the HSV-1 genome are highlighted in red and their relative 
orientations are indicated by the arrowheads.  For simplicity only a single a sequence is shown at the L 
terminus and L/S junction.  (B) Generation of the minimal cleavage/packaging signal Uc-DR1-Ub upon 
fusion of a sequences.  (C) The cleavage site in concatemeric DNA is situated close to one end of the 
DR1 sequence as indicated.
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1.3.5.2 Components of the packaging machinery 

Mutational analysis of the seven essential packaging genes, UL6, UL15, UL17, 

UL25, UL28, UL32 and UL33, provided evidence that, although DNA cleavage and 

DNA packaging were linked, they were distinct events in the process of DNA 

encapsidation.  In cells infected with null mutants of UL6, UL15, UL17, UL28, 

UL32 or UL33 the concatemeric DNA produced is neither cleaved or packaged 

into capsids, resulting in an accumulation of B-capsids that contain processed 

scaffolding proteins (Lamberti & Weller, 1996, Lamberti & Weller, 1998, Patel et 

al., 1996, Reynolds et al., 2000, Salmon & Baines, 1998, Yu et al., 1997).  In 

contrast in cells infected with a UL25 null mutant, DNA cleavage occurs and DNA 

packaging is initiated but less than unit-length viral genomes are stably 

encapsidated and there is an overrepresentation of empty A-capsids (Stow, 

2001).   

1.3.5.2.1 The portal vertex (UL6) 
 
In the dsDNA bacteriophages, such as Φ29, T4, P22 and epsilon15, the portal 

complex is located at a unique vertex on the icosahedral capsid shell and 

consists of a dodecameric ring of portal protein (Chang et al., 2006, Jiang et al., 

2006, Lander et al., 2006).  Evidence has accumulated that indicates the UL6 

gene product (pUL6) forms the portal or channel through which viral DNA is 

inserted into the capsid and presumably is released during HSV-1 entry.  The 

protein is a component not only of the procapsid, but also of the angularised A-, 

B- and C-capsid forms and the mature virion, which suggests that pUL6 is an 

integral part of the capsid shell and its association is unaffected by capsid 

maturation or DNA packaging (Patel et al., 1996, Sheaffer et al., 2001).  

Subsequently, immunogold-labelling experiments revealed that HSV-1 pUL6 was 

present at one of the twelve vertices of B-capsids from HSV-1 infected cells 

(Newcomb et al., 2001).  To determine if pUL6 could actually form ring-like 

structures that resembled portals, soluble pUL6 was purified from insect cells 

infected with recombinant baculovirus expressing the protein (Newcomb et al., 

2001).  The samples were examined by EM and revealed a uniform population of 

rings with an internal diameter of 5 nm and external diameter of 16.4 nm.  The 

dimensions of the ring-like structures corresponded closely to the diameters 
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observed of the portal complexes of the dsDNA bacteriophages, which range in 

size from 14.5 nm – 17.5 nm externally and 2.5 nm – 4.5 nm internally (Bazinet & 

King, 1985, Valpuesta & Carrascosa, 1994).  Further analysis to determine the 

mass of the individual pUL6 rings using dark-field scanning electron microscopy, 

revealed a homogenous population with an oligomeric state that equalled 12, 

the same number determined for bacteriophage dodecameric portal complexes 

(Bazinet & King, 1985, Valpuesta & Carrascosa, 1994).  Similar to the portal 

proteins of the bacteriophage T4, pUL6 associates with the scaffolding proteins.  

Newcomb et al. (2005) used an in vitro capsid assembly assay to demonstrate 

that pUL6’s interaction with the scaffold protein was essential for incorporation 

of the portal into the capsid.  However, from the data discussed in Section 

1.3.4.1 it is clear that capsid assembly can occur in the absence of pUL6.  

Newcomb et al. (2005) also showed that capsids containing portals only formed 

when portals were present at the initiation of capsid assembly, any delay in the 

availability of portals at this stage resulted in the formation of capsids lacking 

portals.   

The mass of a single portal subunit in HSV-1 is 74 KDa, making the entire mass of 

the portal approximately 888 kDa, which is similar in size to the 747 KDa penton 

(Newcomb et al., 2001, Zhou et al., 2000).  The equivalent size of the vertices 

has presented a challenge in determining the location and structure of the portal 

in the HSV-1 capsid using electron microscopy coupled with 3-dimensional (3D) 

reconstruction.  A recent study used electron cryotomography to reveal the 

organisation of the HSV-1 portal in B-capsids treated with 6 M urea, which does 

not remove the portal protein but selectively removes proteins associated with 

the other 11 vertices (Chang et al., 2007).  The portal in HSV-1 appears to be 

organised in a similar manner to those observed in some of the dsDNA 

bacteriophage capsids, specifically P22 and Epsilon15.  In these systems the 

majority of the portal extends inwards into the interior of the capsid shell, while 

the remainder of the structure does not extend far but lies predominately flat 

against the external capsid shell (Figure 1.15).  Since the structure is lodged 

deep within the shell, this may explain the difficulties that have been 

encountered until recently in detecting the HSV-1 portal. 
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Figure 1.15 The HSV-1 portal

(A) The HSV-1 portal structure (magenta) is shown in the context of the 
icosahedral averaged tomographic map of the capsid shell (green).  The 
density represented by magenta is 14 nm tall and 11 nm wide.  (B) 
Various views of a 3D reconstruction of the 12 mer HSV-1 portal at 16 Å 
resolution.  (C) Interior view of a capsid model at 18 Å resolution.  A 
penton of VP5, the major capsid protein, was computationally excised 
and replaced by the portal shown in magenta (adapted from Trus et al., 
2004 and Chang et al., 2007). 
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1.3.5.2.2 Putative terminase complex (pUL15, pUL28 and pUL33) 
 
By analogy with the muticomponent terminases of the bacteriophage systems, 

the HSV-1 terminase would be predicted to specifically recognise DNA ends 

within the viral genomes, and have the ability to cleave and link these DNA 

molecules to the capsid at the portal.  Since the encapsidation of DNA requires 

energy, the putative HSV-1 terminase would also be expected to mediate the 

DNA packaging process by translocating the DNA into the capsid cavity by ATP 

hydrolysis (Dasgupta & Wilson, 1999).  The first indication that the UL15 gene 

product (pUL15) was involved in DNA packaging and may form part of the HSV-1 

terminase complex came from observations that the gene shared sequence 

homology with the ATP binding motif of the bacteriophage T4 terminase subunit, 

gp17 (Davison, 1992, Davison et al., 1992).  Confirmation that the UL15 gene 

product was essential during DNA encapsidation was provided by analysis of two 

UL15 null viruses, in which the UL15 gene was either truncated or replaced by a 

LacZ insertion (Baines et al., 1997, Yu et al., 1997).  These studies revealed that 

in non-permissive cells infected with the mutant virus, viral DNA cleavage or 

packaging did not occur.  The idea that the UL15 gene product formed the 

ATPase subunit of the HSV-1 terminase was reinforced when a mutant pUL15, 

encoding a mutation in the putative ATP binding domain, failed to support DNA 

encapsidation when expressed in HSV-1 UL15 null mutant-infected non-

permissive cells (Yu & Weller, 1998b).  More recent evidence that UL15 encodes 

a terminase function has been provided by mutational analysis of the conserved 

UL15 sequences shared with the ATPase subunits of phage terminase, which 

revealed that DNA encapsidation was impaired in cells infected with HSV-1 

mutant viruses expressing pUL15 with a point mutation in one of the four 

conserved regions (Przech et al., 2003).  Since the mutated pUL15s associated 

with capsids localised to replication compartments, these residues are likely to 

be directly required for cleavage and packaging of viral DNA.  

 

The components of the putative HSV-1 terminase have been identified by protein 

interaction studies, which have established that pUL15 interacts with two other 

essential DNA packaging proteins encoded by UL28 (pUL28) and UL33 (pUL33) 

(Abbotts et al., 2000, Beard et al., 2002, Koslowski et al., 1999, Yu & Weller, 

1998b).  These observations led to the suggestion that in contrast to the two 

subunit bacteriophage terminases, the putative HSV-1 terminase is a 
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heterotrimeric complex of pUL15, pUL28 and pUL33.  Direct binding between 

pUL15 and pUL28 was originally demonstrated when HSV-1 pUL15 was shown to 

relocate PrV pUL28 to the nucleus when the proteins were transiently expressed 

together in un-infected cells (Koslowski et al., 1997).  A study using co-

immunoprecipitation assays subsequently showed pUL33 also formed a complex 

with pUL15 and pUL28 in virus-infected cells (Beard et al., 2002).  A further 

study using immunoprecipitation assays demonstrated that pUL28 was required 

for the interaction of pUL15 with pUL33, while the presence of pUL33 enhanced 

the binding of pUL15 to pUL28 (Yang & Baines, 2006).  An indirect interaction 

between pUL15 and pUL33 was confirmed by co-immunoprecipitation analysis on 

HSV-1 UL28 null mutant-infected cells (Jacobson et al., 2006).  In addition, 

experiments have revealed that the putative heterotrimeric terminase of HSV-1 

was assembled in the cytoplasm of infected cells, and that a nuclear localisation 

signal present in pUL15 was necessary for the import of the complex into the 

nucleus (Yang et al., 2007).    

 

A potential terminase complex would be predicted to interact with capsids and 

indeed components of the putative HSV-1 terminase have been found to 

associate with the different capsid forms.  Both pUL15 and pUL28 have been 

detected on procapsids, the capsid substrate required during the DNA cleavage 

and packaging process, and on A-, B- and C-capsids (Sheaffer et al., 2001).  In 

addition, pUL33 has been observed on all three forms of angularised capsid, but 

its association with capsids is independent of that of pUL15 or pUL28 (Beard & 

Baines, 2004).  Although the location of the pUL15 and pUL28 on the HSV-1 

capsid is not known, both proteins have been shown to interact with the UL6 

portal protein, an observation that supports the suggestion that pUL15 and 

pUL28 form part of the terminase complex (White et al., 2003).  Studies have 

shown that as the capsid matures in infected cells, decreasing concentrations of 

pUL15, pUL28 and pUL33 are detected, suggesting that the putative terminase’s 

association with the capsid may be transient (Beard et al., 2004, Salmon et al., 

1998, Sheaffer et al., 2000, Sheaffer et al., 2001, Taus et al., 1998, Yu & Weller, 

1998a).  Approximately about the time of the first cleavage event during DNA 

encapsidation, epitopes encoded by the first 35 aa of pUL15 are proteolytically 

removed (Salmon et al., 1999).  Sequence analysis of this portion of UL15 has 

revealed that it has a potential coiled-coil motif that may mediate protein-



Chapter 1 48

protein interactions, removal of this segment during DNA encapsidation could 

release the protein and mediate the terminase activity (Baines & Weller, 2005, 

McGeoch et al., 1988). 

 

An in vitro DNA binding activity for the putative pUL28 terminase subunit was 

suggested, when the purified protein bound to a novel ssDNA structure formed 

by the HSV-1 DNA Pac1 cleavage signal.  In addition, pU28 also bound to the DNA 

structures induced by the Pac1 motif of HCMV with only slightly less affinity, and 

mutations in sequence elements within the HMCV Pac1 motif eliminated DNA 

cleavage and packaging and prevented DNA binding by HSV-1 pUL28 (Adelman et 

al., 2001).  Consequently, it was claimed that this provided indirect evidence 

that HSV-1 pUL28 recognises Pac1 sequences in vivo.  However, the DNA binding 

activity associated with pUL28 has not been confirmed, and these experiments 

could not be repeated (Dr N. Stow, personal communication).  In addition, since 

the Pac1 sequence is required for the second cleavage event and the correct 

production of S-termini during HSV-1 DNA encapsidation, the observations 

suggested that Pac1 DNA binding by pUL28 occurs later during cleavage and 

packaging (Hodge & Stow, 2001).  However, there is evidence that pUL28 may 

also be required during the early stages of encapsidation, since mutants lacking 

UL28 demonstrate defects in the initiation of the DNA cleavage and packaging 

reaction (Addison et al., 1990, Tengelsen et al., 1993).  No in vitro DNA 

packaging system exists to verify that pUL15, pUL28 and pUL33 comprise the 

HSV-1 terminase.  Nevertheless, a substantial body of evidence does exist to 

suggest these proteins possess the predicted functional profiles of the 

constituents of such a complex.  

1.3.5.2.3 UL32 
 
Characterisation of two UL32 mutants, tsN20 and hr64, confirmed that the gene 

was essential for HSV-1 cleavage and packaging (Lamberti & Weller, 1998, 

Schaffer et al., 1973).  The UL32 protein (pUL32) is a cysteine rich, zinc-binding 

protein, which although required for encapsidation has an indirect role during 

DNA cleavage and packaging, since it is not directly associated with capsids (Al-

Kobaisi et al., 1991, Chang et al., 1996, Lamberti & Weller, 1998, Reynolds et 

al., 2000).  In the absence of pUL32, capsids did not appear to accumulate in 

replication compartments and this observation led to suggestions that the 
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protein functioned during capsid transport (Lamberti & Weller, 1998).  However, 

subsequent experiments in our laboratory do not support this suggestion (Dr V. 

Preston, personal communication).    

1.3.5.2.4 UL17 
 
UL17 was first recognised as an essential HSV-1 DNA cleavage and packaging 

protein following analysis and characterisation of a UL17 null mutant.  In 

contrast to wt virus-infected cells where B-capsids are dispersed within the 

nucleus, in the HSV-1 UL17 null-infected cells the B-capsids accumulated in large 

aggregates around the periphery of the nuclei (Roizman et al., 2007, Salmon & 

Baines, 1998, Taus et al., 1998).  On the basis of these observations it was 

suggested that the UL17 protein (pUL17) was involved in pathways that either 

directly transported capsids through the nucleus or produce capsids competent 

for intranuclear transport.  Initially, it was proposed that pUL17 was a 

component of the tegument since it was readily detected L-particles (Section 

1.2.5) and virions, and this finding was later confirmed using a more potent anti-

pUL17 antibody in Western blot analysis of virions and related particles (Salmon 

et al., 1998, Thurlow et al., 2005).  Subsequently pUL17 was identified as a 

minor component of the procapsid and the angularised A-, B- and C-capsids 

(Goshima et al., 2000, Thurlow et al., 2005).  Thus, it appears that UL17 is 

present in two different structural components of the mature virus particle, the 

capsid and the tegument.  A recent report demonstrated that pUL17 was present 

at higher concentrations on C-capsids compared to B-capsids and that its 

presence on capsids was required for efficient binding of the DNA packaging 

protein encoded by UL25 (Thurlow et al., 2006).  Additional viral proteins have 

been implicated in delaying the transformation of the spherical procapsid to the 

angularised capsid in infected cells, since in vitro procapsids formed from the 

capsid shell and major scaffolding proteins angularise more readily than in vivo 

procapsids (Newcomb et al., 1999, Newcomb et al., 2000, Rixon & McNab, 1999).  

In addition, in virus-infected cells and in the absence of DNA packaging, the HSV-

1 procapsid spontaneously angularises.  Given that UL17 is an essential DNA 

packaging gene and appears to be required at an earlier stage of DNA 

encapsidation than pUL25, Thurlow et al. (2006) suggested that pUL17 was a 

strong candidate for preventing premature angularisation by stabilising the 

procapsid during DNA encapsidation.  
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1.3.5.2.5 UL25 
 

The HSV-1 UL25 gene product is a minor capsid protein that, in contrast to the 

other essential DNA packaging genes, functions during the later stages of the 

process.  UL25 was initially classified as an essential DNA encapsidation gene 

following characterisation of two ts mutants, ts1204 and ts1208 (Addison et al., 

1984).  One mutant, ts1208, failed to produce C-capsids at the NPT, while ts1204 

had two defects, a reversible defect during the initial stages of infection and 

another that was evident during DNA packaging.  Because ts1204 contained two 

ts lesions, one of which lay outside the UL25 ORF, the UL25 ts mutation was 

transferred into wt virus and the mutant ts1249 was isolated.  Indirect 

immunofluorescence assays and in-situ hybridisation analysis of virus-infected 

cells revealed that ts1249 was not impaired in penetration of the host cell but 

had an uncoating defect at the NPT.  When ts1249-infected cells were initially 

grown at the PT to allow uncoating of the viral genome and subsequently 

transferred to the restrictive temperature, a DNA packaging defect was 

observed, suggesting that pUL25 was involved not only during viral entry but also 

during DNA encapsidation (Preston et al., 2008).  

 

Confirmation that UL25, unlike the other essential cleavage/packaging genes, 

was involved in DNA encapsidation during the later stages came from studies 

involving the UL25 null mutant, KUL25NS (McNab et al., 1998, Stow, 2001).  In 

virus-infected cells lacking the UL25 protein (pUL25), B-capsids were present 

and an accumulation of A-capsids were observed, which are the by-products of 

failed DNA packaging events (McNab et al., 1998).  In addition, considerably 

more genomic L termini were generated than S terminal sequences in KUL25NS-

infected cells.  Since the direction of packaging is generally regarded to be in 

the direction of the L to S termini, the results suggested that packaging was 

initiated but failed to go to completion and was aborted prior to the second 

cleavage event (Stow, 2001, Varmuza & Smiley, 1985).  Although, DNA-

containing capsids were not observed in KUL25NS-infected Vero cells 

characterised by McNab et al. (1998) packaged viral DNA, shorter than unit-

length, was subsequently detected in the mutant-infected cells by Stow (2001).  

This work led Stow (2001) to suggest that HSV-1 pUL25 is critical for the 

retention of full-length viral DNA in capsids.   
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When large amounts of DNA are tightly packaged into the confines of the capsid 

shell the packaging rate decreases as the immature capsid is filled, indicating 

that a large internal energy is generated that creates an increased potential 

force for DNA exit (Smith et al., 2001).  Stow (2001) proposed that by binding to 

capsids pUL25 could stabilise the capsid against the internal forces generated as 

increasing amounts of DNA are packaged.  However, alternative mechanisms 

have been suggested to explain the means that pUL25 uses to retain full-length 

viral genomes in C-capsids.  Ogasawara et al. (2001) carried out experiments 

which indicated that pUL25 bound to the a sequence of the HSV-1 genome.  They 

proposed that pUL25 functioned by physically plugging the portal, thereby 

retaining the packaged DNA in C-capsids.  However, to date no DNA binding 

activity has been confirmed for pUL25.  Indeed, experiments carried out within 

our lab failed to detect binding of purified pUL25 to DNA (Dr N. Stow, personal 

communication).  It has also been suggested that pUL25 enhances the activity of 

the packaging machinery by stabilising the terminase complex that drives the 

DNA into the capsid shell.  Nevertheless in support of Stow’s (2001) hypothesis, 

conformational changes do occur on the maturing capsids that create or expose 

new binding sites, such as the VP26 binding sites on hexons following procapsid 

maturation.  It is therefore conceivable that new pUL25 binding sites also 

become available during capsid maturation, which allows the protein to stabilise 

the structure thereby overcoming the expected tendency of the DNA to exit the 

shell.  Consistent with this idea is the observation that increasing concentrations 

of the protein are observed in the maturing capsid forms.  Very little pUL25 is 

detected on procapsids, greater amounts are observed on B-capsids and DNA-

containing C-capsids contain the highest levels (Ogasawara et al., 2001, Sheaffer 

et al., 2000, Sheaffer et al., 2001).  In the light of these results, Sheaffer et al. 

(2001) proposed that the recruitment of pUL25 was inversely related to level of 

scaffold protein present in the maturing capsid.  While procapsids contain a full 

complement of unprocessed scaffolding proteins, B-capsids have a cleaved 

scaffolding core and mature C-capsids contain no scaffold.  Thus, this latter 

model predicts that the sequential addition of pUL25 to the maturing capsid, 

with concomitant loss of the scaffolding proteins during DNA packaging, 

stabilises the structure enabling the mature C-capsid to retain its full DNA cargo.  

This system is not unprecedented and is analogous to the functions of the head 

stabilising proteins of bacteriophage λ, gpW and gpD (Maxwell et al., 2000, 
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Perucchetti et al., 1988).  During DNA packaging of phage λ the head expands by 

approximately 20%, exposing binding sites that gpD interacts with on the surface 

lattice of the icosahedral shell (Imber et al., 1980).  Once packaging is 

complete, gpW also interacts with the DNA-filled heads to stabilise them.  

Similar to pUL25, both gpD and gpW are dispensable for procapsid assembly but 

are essential for stable encapsidation of the viral genome and, like pUL25, the 

requirement for gpD is redundant if less than unit-length genomes are packaged 

(Perucchetti et al., 1988, Sternberg & Weisberg, 1977a, Sternberg & Weisberg, 

1977b).  Although there is no head expansion in HSV-1, like gpD and gpW, pUL25 

has been predicted to bind to different regions on the icosahedral capsid shell 

(Trus et al., 2007).  

 

The UL25 protein is not only involved in DNA packaging but is also important 

during DNA entry and has been implicated in egress (Coller et al., 2007, 

Pasdeloup et al., 2009, Preston et al., 2008).  The binding partners that interact 

with the multifunctional pUL25 together with crystallographic structure for the 

protein are discussed in Section 1.4.    

 

1.3.5.3 Packaged state of viral DNA    

In the HSV-1 virion the encapsidated DNA is so densely packed within the capsid 

shell that it exists in a liquid-crystalline state (Booy et al., 1991).  It is a 

remarkable achievement that viral DNA is packaged to a near-crystalline state, 

since entropic, electrostatic and bending energies of the DNA must be overcome.  

A study using optical tweezers to pull on single DNA molecules as they are 

packaged into the phage heads of Φ29 allowed a quantitative estimate of the 

build-up of the internal force that the prohead experiences as it is filled (Smith 

et al., 2001).  The force on the prohead starts to build only after approximately 

half of the Φ29 genome is already packaged.  However, the estimated pressure 

transmitted to the phage head on completion of the packaging of the viral 

genome suggests that the capsid must have a tensile strength that is similar to a 

typical aluminium alloy (Smith et al., 2001).   

Packaged DNA inside HSV-1 virions is organised into concentric layers (Figure 

1.16), a configuration that has been compared to the ‘spooling’ model of DNA 



Figure 1.16  Central cross-section of a cryo-EM reconstruction of HSV-1

The resolution of the virion reconstruction is 20 Å. The central cross-section 
(100 Å thick) through the structure is viewed along the two-fold axis, and is 
coloured radially as indicated on the colour bar below the virion.  The 
packaged viral DNA (red) is seen as concentric shells of density inside the 
capsid shell, with the spacing between the layers being 26 Å.  The capsid floor 
is shown in yellow and the triplexes and middle domains of the capsomers are 
indicated in green.  The outer domains of the capsomers together with the 
tegument densities associated with pentons are coloured blue and purple, 
respectively (adapted from Zhou et al., 1999). 
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packaging proposed for bacteriophage T7 where the strands are packaged in a 

hexagonal lattice (Cerritelli et al., 1997, Zhou et al., 1999).  This arrangement 

suggests that once the DNA has been inserted through the portal, it is packaged 

into the confines of the capsid cavity by wrapping around the inner surface of 

the shell and organising itself layer upon layer.  However, as the DNA is 

progressively packaged the layers become less ordered the further they are from 

the outer shell (Harrison, 1983).  Although the DNA appears to be closely 

associated with the inner shell, the structure of the packaged DNA shows no 

icosahedral symmetry that would indicate it specifically interacts with the 

capsid proteins (Zhou et al., 1999).  In the bacteriophage HK97 the inner floor of 

the capsid shell is highly charged (Wikoff et al., 2000).  Therefore, it has been 

suggested that in viral capsids the energy of the encapsidated negatively 

charged DNA may be lowered by its close association with the positively charged 

inner capsid floor (Tzlil et al., 2003).  However, to date there is no information 

on the charge present in the inner floor of the HSV-1 capsid.   

1.3.5.4 Model of HSV-1 DNA encapsidation  

Based on the current information outlined above, a model for HSV-1 packaging 

has been proposed and is illustrated in Figure 1.17 (Baines & Weller, 2005).  In 

addition to the concatemeric viral genomes generated following DNA replication, 

two other substrates, procapsids and the terminase are required for DNA 

encapsidation.  The procapsids, which contain the unprocessed scaffolding 

proteins preVP21 and preVP22a, are assembled within the nucleus close to or 

within replication compartments.  The putative terminase consists of pUL15, 

pUL28 and pUL33 and binds to the viral DNA concatemers via the pUL28 subunit.  

The terminase/DNA complex then binds to the capsid predominately through an 

interaction with the portal protein, pUL6.  The terminase scans the DNA for the 

appropriate Pac2 cleavage signal and at fixed distance from this site an initial 

cleavage event releases an L terminal genomic end.  The cleaved S terminal end 

that is not bound to the capsid is degraded.  The DNA cleavage and packaging 

reactions are initiated by protease activation and scaffold cleavage and the 

processed products VP21 and VP22a are released, while the protease (VP24) 

remains in the capsid.  Concurrently, the L-terminal viral DNA is inserted 

through the portal and translocation of the L/S junction followed by the S-

terminal end of the viral genome into the capsid is achieved by the energy 



Figure 1.17 HSV-1 DNA cleavage and packaging model

(1) The immature capsid is assembled in the nucleus.  (2) The procapsid is delivered to the 
replication compartment, the site of DNA encapsidation.  (3) The putative terminase, which consists 
of a heterotrimeric complex of the UL15, UL28 and UL33 gene products, binds the viral DNA 
concatemers via the UL28 protein subunit, and the DNA/terminase complex docks with the capsid 
at the portal.  The DNA is scanned by the terminase and the DNA concatemer is cleaved at the 
Pac2 signal.  A genomic L terminal end from the cleaved DNA concatemer is then inserted into the 
cavity of the capsid via the portal channel, and DNA packaging commences with the hydrolysis of 
ATP.  (4) Concomitantly as the DNA is packaged into the capsid, the cleaved scaffolding proteins, 
VP21 and VP22a, are released.  (5) The UL28 protein cleaves the DNA concatemer again, this 
time at the Pac1 motif, leaving a unpackaged L terminus and an encapsidated unit-length viral 
genome.  During the final stages of DNA encapsidation, the structure is stabilised by the 
association of the UL25 protein to the binding sites that are exposed during capsid maturation 
(adapted from Steven et al., 2005).  
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supplied through ATP hydrolysis, which is mediated by the terminase associated 

pUL15.  As the procapsid matures, pUL17 is added to prevent premature 

angularisation, which would inhibit DNA packaging.  In addition, pUL28 cleaves 

the viral DNA again, on this occasion using the Pac1 cleavage signal, generating 

the packaged S-terminus of the full-length viral genome.  At the same time the 

internal scaffold is lost and pUL25 is added to the outer shell through its 

interaction with pUL17, stabilising the structure and resulting in the production 

of the mature C-capsid.   

1.3.6 Egress 

Once DNA encapsidation is complete, unit length DNA-containing C-capsids must 

cross the nuclear membrane to complete the assembly of the infectious virus 

particle in the cytoplasm.  The nuclear envelope consists of an inner and an 

outer nuclear membrane (INM and ONM, respectively) that are traversed by 

multiple nuclear pore complexes (NPCs) and lined by a meshwork of 

intermediate filaments comprising the nuclear lamina.  Three proteins, encoded 

by US3, UL31 and UL34, allow the C-capsid to escape the egress barrier 

presented by the nuclear membrane.  Following the release of the naked C-

capsid into the cytoplasm, tegument proteins bind to the capsid and direct the 

transport of the particle to the site of secondary envelopment, where further 

tegument proteins are added prior to envelopment and the release of mature 

virions from the cell by exocytosis (reviewed in Mettenleiter, 2006, Roizman et 

al., 2007).   

1.3.6.1 Nuclear egress and primary envelopment       

Three different models have been proposed for nuclear egress of C-capsids, 

which have been designated the ‘envelopment/de-envelopment’, the ‘luminal’ 

and the ‘nuclear pore’ pathways, each of which are illustrated in Figure 1.18 

(Johnson & Spear, 1982, Roizman et al., 2007, Skepper et al., 2001, Wild et al., 

2005).  A prerequisite for capsid egress is the engagement of the C-capsid with 

INM.  Two of the proposed pathways, the envelopment/de-envelopment and the 

luminal model, involve budding of the capsid at the INM and result in enveloped 

capsids within the perinuclear space.  In the luminal or single envelopment 

model, the primary envelope retains its integrity and the enveloped virus 
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Figure 1.18 Models for egress of HSV-1 from the host cell

The proposed pathways for maturation of filled capsids from the nucleus to the exterior of the 
infected cell are illustrated.  In the double envelopment pathway, C-capsids undergo primary 
envelopment at the inner nuclear membrane (INM), then de-envelopment at the outer nuclear 
membrane (ONM), followed by secondary envelopment at cytoplasmic membranes.  The 
enveloped viral particles are then transported in vesicles to the plasma membrane. Fusion of 
the vesicle with the plasma membrane releases the virion into the extracellular space.  In the 
single envelopment model, the C-capsid is enveloped at the INM, enters a vesicle at the ONM 
and is then transported to the plasma membrane where the virion is released.  In the nuclear 
pore model, C-capsids exit the nucleus through enlarged nuclear pores and become envel-
oped by budding into cytoplasmic vesicles, which are transported to the plasma membrane 
where the virion is released (adapted from Roizman et al., 2007).   
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particle is transported via the secretory pathway to the extracellular space 

(Roizman et al., 2007).  In the envelopment/de-envelopment or double 

envelopment model the primary envelope is subsequently lost by fusion with the 

ONM, resulting in de-envelopment and release of ‘naked’ capsids into the 

cytosol, followed by subsequent secondary envelopement at the trans-Golgi 

network (Stackpole, 1969). 

A third pathway, the nuclear pore model, for nuclear capsid egress was 

suggested following analysis of bovine herpesvirus type 1-infected cells using 

high pressure freeze-fracturing (Wild et al., 2005).  In these studies the nuclear 

pores appeared enlarged, with nuclear material including capsids, protruding 

into the cytoplasm of the infected cells.  These observations led to the proposal 

that capsids escape the nucleus via dilated NPC (Figure 1.18).  Such a pathway 

suggests that the general integrity of the NPC is violated in order to 

accommodate this process (Leuzinger et al., 2005).  However, subsequent 

findings have indicated that NPC morphology is unaffected and that their gating 

function remained intact until late infection (Hofemeister & O'Hare, 2008, 

Mettenleiter et al., 2006).  In support for these studies, nuclear capsid egress 

does not appear to be conditional on the alterations to the NPC that occur late 

during infection (Nagel et al., 2008).  In the single envelopment pathway all the 

components of the primary enveloped particle must be part of the mature 

virion, equally, all the constituents of the mature particle would be expected to 

be components of the primary enveloped particle.  Inconsistent with this idea is 

the observation that neither of the two major components of primary enveloped 

capsids, pUL31 and pUL34, have been detected on mature virions (Fuchs et al., 

2002a, Klupp et al., 2000, Reynolds et al., 2002).  Conversely, other tegument 

and envelope proteins that are constituents of mature virions have not been 

detected on primary enveloped viral particles (Granzow et al., 2004).  Further 

support for a double envelopment mechanism of capsid egress is demonstrated 

not only by the difference in the protein composition between primary 

enveloped and mature virions but also in differences observed between their 

lipid envelope.  Unlike the nuclear membrane seen in perinuclear virions, in 

mature virions the lipid membrane resembles those observed in Golgi-derived 

vesicles (Van Genderen et al., 1994).     
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Translocation of naked or enveloped capsids into the cytoplasm requires at least 

three viral proteins encoded by UL34, UL31 and US3 (Poon et al., 2006, Reynolds 

et al., 2004, Reynolds et al., 2001, Reynolds et al., 2002).  The proteins encoded 

by UL31 (pUL31) and UL34 (pUL34) are essential for primary envelopment and in 

the absence of either, intranuclear capsids do not access the INM.  Both UL31 

and UL34 are structurally and functionally conserved throughout Herpesviridae, 

UL34 encodes a type II transmembrane protein that is present in nuclear 

membranes and in primary envelopes, and physically interacts with pUL31 (Fuchs 

et al., 2002a, Lake & Hutt-Fletcher, 2004, Reynolds et al., 2002, Sanchez & 

Spector, 2002).  Since the passage of C-capsids through the INM is obstructed by 

the nuclear lamina network, the pUL34/pUL31 complex is required for 

conformational alterations to the nuclear lamins (Mou et al., 2008, Reynolds et 

al., 2004, Simpson-Holley et al., 2005).  The network of nuclear lamins is 

loosened by phosphorylation, predominately by pUL31/pUL34 recruitment of the 

cellular protein kinase C and the HSV-1 kinase encoded by US3 (pUS3) (Mou et 

al., 2008, Muranyi et al., 2002, Park & Baines, 2006).  EM studies have shown 

that, in the absence of HSV-1 or PRV pUS3, enveloped particles accumulate in 

the perinuclear space, indicating that primary envelopment takes place but de-

envelopment is impaired (Reynolds et al., 2002, Wagenaar et al., 1995).  It 

appears that expression of pUS3 in infected cells promotes but is not essential 

for nuclear egress, since in cultured epithelial cells the absence of pUS3 only 

mildly reduces the titre of extracellular virions (Klupp et al., 2007).   

1.3.6.2 Tegumentation and secondary envelopment      

Following nuclear egress, the C-capsid acquires its full complement of tegument 

proteins and the final or secondary envelope.  By conventional EM analysis 

cytosolic capsids appear ‘naked’, however, immunolabelling studies have 

revealed that pUL36 and pUL37 are closely associated with cytoplasmic C-capsids 

(Fuchs et al., 2002a).  Whether these proteins are added during primary 

envelopment and remain associated with the translocated capsid, or whether 

they are recruited after nuclear egress remains unclear.  However, structural 

analysis of HSV-1 has indicated that there is a clear distinction between the 

envelope-associated amorphous outer tegument layer and the icosahedrally 

arranged capsid-associated inner tegument layer (Zhou et al., 1999).  In 

addition, the stoichiometric proportions of the inner tegument proteins are 
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relatively constant, whereas the outer tegument proteins can show considerable 

variation (Del Rio et al., 2005, Michael et al., 2006).   

Studies have indicated that in the absence of pUL36 in PrV, the movement of 

virus particles to the site of secondary envelopment is blocked during egress 

(Luxton et al., 2006).  Since PrV and HSV-1 pUL36 appear to be functionally 

conserved, the results suggest that pUL36 may be linked to cytoplasmic capsid 

transport, which is dependent on microtubules in virus-infected cells (Coller et 

al., 2007).  This possible role for pUL36 during exit is supported by observations 

that during entry a few tegument proteins, including pUL36 and pUL37, remain 

associated with incoming capsids during their transport along microtubules to 

the NPC (Antinone & Smith, 2006, Granzow et al., 2005, Luxton et al., 2005).  

While both pUL36 and pUL37 are essential for virion morphogenesis (Section 

1.2.3), pUL37 is dispensable during entry but may play an accessory role in 

pUL36 function, for example, by increasing the mobility of the capsid along the 

microtubule network (Krautwald et al., 2009, Leege et al., 2009, Roberts et al., 

2009).  Herpesvirus capsids are connected to the envelope via the outer 

tegument proteins.  The UL36 protein appears to play a pivotal role during viral 

assembly by acting as the link between the capsid and tegument components, 

since the capsid-tegument interaction is suggested to be mediated through an 

association between pUL36 and capsid-associated pUL25 (Section 1.2.3).   

Cytoplasmic structures termed ‘assembly compartments’ have been defined as 

the sites of secondary envelopment for several herpesviruses, in particular for 

HCMV (Das et al., 2007, Sanchez et al., 2000).  How partially tegumented 

capsids are directed to the assembly compartments for secondary envelopment 

is unclear.  It is apparent, however, that subsequent layers of outer tegument 

are added to the viral particle in an ordered manner not only during 

nucleocapsid transport through the cytoplasm but also at the site of secondary 

envelopment (reviewed in Mettenleiter, 2006).  Interestingly, the production of 

L-particles within infected cells where tegumentation of cytoplasmic C-capsids is 

impaired suggests that secondary envelopment is not dependent on the presence  

of nucleocapsids (McLauchlan & Rixon, 1992).  Whereas entry requires dynein-

mediated minus-end microtubule-directed transport, egress is dependent on 

kinesin-mediated plus-end directed movement (reviewed in Lyman & Enquist, 



Chapter 1 58

2009).  The difference in tegument composition between the incoming and 

outgoing viral particles has been suggested to influence the direction of capsid 

transport (Luxton et al., 2005).  

The final stage in viral assembly is the acquisition of the secondary envelope, 

followed by transport of vesicles containing the enveloped particle to the plasma 

membrane and the subsequent budding of these structures at the plasma 

membrane to release the virus to the extracellular matrix.  The tegumented 

capsids in the cytoplasm of the infected cell gain their final envelope from 

vesicles that are derived from the trans-Golgi network and where the viral 

glycoproteins are acquired (Harley et al., 2001, Mettenleiter, 2004).  A complex 

network of protein-protein interactions, which are summarised in Figure 1.19, 

drives primary envelopment, de-envelopment, tegumentation and secondary 

envelopment by budding at the trans-Golgi network.  The conservation of the 

complex interactions between tegument proteins across the alphaherpesviruses 

is highlighted by the observation that HSV-1 pUL11 interacts with HSV-1 and PrV 

UL16 encoded proteins (pUL16), and PrV pUL16 in turn complexes with PrV UL21 

encoded protein (pUL21), which suggests the formation of a tripartite complex 

(Klupp et al., 2005, Loomis et al., 2003, Yeh et al., 2008).  The HSV-1 UL11 

encoded tegument protein plays an important role during viral exit, since a 

deletion mutant of pUL11 has been shown to be deficient in egress (Baines & 

Roizman, 1992).  In addition, pUL11 has been suggested to direct tegument 

proteins to the secondary envelopment site (Baines & Roizman, 1992, Fulmer et 

al., 2007).  Indeed, the protein appears to show intrinsic targeting properties, 

since a fusion protein of HSV-1 pUL11 and HIV-1 gag was found to be directed to 

the Golgi apparatus instead of the plasma membrane, while the protein itself 

has been demonstrated to localise to a cytoplasmic site overlapping the ER-Golgi 

intermediate compartment (Bowzard et al., 2000, Sanchez et al., 2000).  It has 

been proposed that pUL11 binds to membranes via N-terminal myristoyl and 

palmitoyl lipid side chains attached to the protein at conserved sites, which are 

essential for efficient packaging of the protein into virions (Baird et al., 2008, 

Koshizuka et al., 2007, Loomis et al., 2006).   

As mentioned above, viral glycoproteins are present on trans-Golgi derived 

vesicles prior to secondary envelopment, since they are transported to this 

compartment to undergo post-translational modifications following translation 
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Figure 1.19 Molecular interactions during HSV-1 egress

The numbers indicate primary envelopment (1), de-envelopment (2), 
and secondary envelopment (3).  The rectangles represent the 
designated gene and solid lines or direct contacts between them 
denote physical interactions, whereas arrows indicate functional 
effects.  Dotted lines indicate suggested but not firmly established 
interactions.  In the case of glycoproteins only direct contacts 
resulting in complex formation are depicted.  Proteins that are 
conserved in all three herpesvirus subfamilies are marked in orange 
(adapted from Mettenleiter, 2006).
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on the ribosomes of the endoplasmic reticulum.  Nucleocapsids are connected to 

the envelope by the tegument through interactions between tegument proteins 

and the cytoplasmic tails of the envelope glycoproteins.  In PrV the UL49 

encoded outer tegument protein, pUL49, binds to the cytoplasmic domains of gE 

and gM.  Deletion of both these glycoproteins genes results in the accumulation 

of cytoplasmic C-capsids embedded in tegument and the inhibition of secondary 

envelopment (Brack et al., 1999, Fuchs et al., 2002a).  In addition, this 

interaction is required for the inclusion of pUL49 into mature virions.  In HSV-1, 

pUL49 also binds to gE and gM, although only the interaction with gE is essential 

during virion morphogenesis.  HSV-1 pUL49 also interacts with another tegument 

protein, VP16 expressed by UL48, which in turn binds to the cytoplasmic tail of 

gH and gD.  VP16 has been proposed as the protein that links the inner and outer 

layers of tegument during virion morphogenesis through its interaction with 

pUL36 (Fuchs et al., 2002b, Kamen et al., 2005, Mossman et al., 2000).  

Nevertheless, the link between inner and outer tegument proteins may involve 

multiple proteins, since there is a significant degree of redundancy found 

between the networks of interactions that occur among tegument proteins and 

between tegument and envelope proteins (reviewed in Mettenleiter, 2006).   

1.3.7 Latency 

One of the defining features of herpesviruses is their ability to establish a life-

long latent infection in the host.  Unlike the persistent lytic infection, no viral 

progeny are produced during latent infections and only very limited amounts of 

gene transcription can be detected in infected cells.  Latency can be divided 

into three stages; establishment, maintenance and reactivation (Rock, 1993).  

Following primary infection, HSV-1 enters sensory neurons in the dorsal root 

ganglia by fusion at the axonal termini and is transported via retrograde axonal 

transport to the nucleus of the neuronal cell body.  Once in the neuron, the viral 

DNA persists in the nucleus in a circular episomal form for the lifetime of the 

host.  Periodic reactivation of infectious virus can occur in the neurons 

harbouring latent HSV-1 in response to external stimuli.  The virus then passes 

down the axons by anterograde axonal transport to replicate near the site of the 

initial infection (reviewed by Roizman et al., 2007).   
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Although lytic gene expression has been detected at very low levels in latently 

infected cells, the only abundant viral mRNAs transcribed during latency are the 

latency associated transcripts (LATs) (Wagner et al., 1995).  Despite extensive 

research, the precise role of LATs during latency is controversial and remains 

unclear.  Expression of the LAT gene transcription unit (Figure 1.20) is controlled 

by a latency specific promoter (LAP) and splicing of its primary 8.3 kb transcript 

yields several RNA species.  The 8.3 kb transcript accumulates at low levels in 

latently infected neurons, while the 2.0 kb and 1.5 kb introns derived from the 

primary transcript are abundant and stable (Wagner et al., 1988).  However, 

since no LAT-encoded protein has been conclusively demonstrated to exist, one 

recent investigation has focused on the idea that the LAT might function as a 

primary microRNA (miRNA) transcript (Drolet et al., 1997, Umbach et al., 2008).  

These miRNA molecules are single-stranded non-coding RNA structures, which 

vary in length from between 21-23 nucleotides and are partially complementary 

to mRNA, while their main function is to regulate gene expression.  Umbach et 

al. (2008) demonstrated that the LAT transcript encodes four distinct miRNAs in 

HSV-1 infected cells, one of which is transcribed in an antisense orientation to 

ICP0, the virus IE transcriptional activator that is important for productive HSV-1 

replication and is thought to have a role in reactivation from latency (Everett, 

2000).  They found the miRNA associated with ICP0 was able to reduce the 

protein’s expression, thereby increasing the possibility that the virus in infected 

neurons entered and maintained latency.  In addition, they identified another 

HSV-1 encoded miRNA that showed partial complementarity to ICP4 mRNA and 

reduced the expression of the gene (Umbach et al., 2008).  Similar to ICP0, ICP4 

can also promote the reactivation of HSV-1 from latency, thus the presence of at 

least two primary HSV-1 miRNA may assist the establishment and maintenance of 

the latent state in infected neurons (Halford et al., 2001, Umbach et al., 2008).   

1.4 UL25 protein stucture  

HSV-1 pUL25 is a 580 residue, 62.7 KDa minor capsid protein, and the 

crystallographic structure of an N-terminally truncated form of the protein 

(UL25nt), corresponding to the residues 134-580, has been determined to 2.1 Å 

(Bowman et al., 2006).  Large quantities of soluble protein are required as a 

starting material for crystallographic studies.  However, initial attempts to 
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Figure 1.20 Map of the latency-associated transcript (LAT) gene

(A) The HSV-1 genome structure is shown.  The UL and US denote the unique sequences of the 
long (L) and short (S) components of the genome, respectively.  The unique regions are flanked 
by the inverted repeats (TRL/TRS and IRL/IRS).  The a sequences are highlighted in red.  (B) 
Expanded view of L and S junction showing the relative position of the LAT promoter (LAP).  (C)  
Locations and orientations of transcripts of the L-S junction region are denoted by arrows.  
These include the LAT primary transcript at 8.3 kb and the two transcripts, 2.0 kb and 1.5 kb, 
which are stable intron transcripts derived from the full-length 8.3 kb RNA.  The LATs are 
transcribed antisense and at least partially complementary to the gene encoding ICPO (adapted 
from Roizman et al., 2007).  
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express and purify the full-length pUL25 as a GST fusion protein in sufficient 

quantities necessary for crystallography were unsuccessful.  Secondary-structure 

analysis predicted the presence of a long unstructured loop in the N-terminal 

region of pUL25.  When sequences encoding this loop were removed from the 

construct, the resulting GST-fusion protein containing the pUL25 residues R45-

V580 was soluble and expressed to high levels in E. coli.  During the purification 

of this fusion protein, removal of the GST tag by protease digestion resulted in a 

secondary cleavage event that released a stable fragment of 48 KDa, referred to 

as UL25nt, which formed crystals that defracted.  To date, the structure of 

UL25nt is the only herpesvirus DNA packaging protein that has been solved.  It 

exists as a monomer in the crystal, and the first ordered N-terminal residue is 

A134.  UL25nt has a novel fold that consists of a box-shaped core comprised 

mostly of α-helices, with a few minor β-sheets, and a striking feature of the 

molecule is the presence of numerous loops that emanate from the core of the 

protein, some of which extend for some distance (Figure 1.21).     

Interestingly, five of the extended loops (L1-L5) in the UL25nt crystal contain 

disordered residues, with an additional unstructured region, containing three 

amino acids (L6) situated at carboxyl terminus of the protein (Figure 1.21).  

Regions that are referred to as disordered or unstructured are areas of the 

crystallised protein that are missing from the resulting electron density maps 

determined by X-ray crystallographic studies.  For successful crystallography 

experiments, the corresponding atoms in the different protein molecules must 

be uniformly spaced throughout the crystallised protein, which leads to a regular 

diffraction pattern from these atoms.  If a region is dynamically flexible or 

adopts different structures in different molecules in the crystal, then the atoms 

in the same region are not uniformly spaced and therefore fail to diffract.  The 

unstructured residues contained in the regions L1-L6 are shown in Table 1.4.  

The crystal structure of UL25nt does not include the N-terminal 133 residues of 

pUL25.  The secondary-structure prediction for this region suggests it is 

composed of a long α-helix (residues 48-110), preceded by a 45-residue 

unstructured N-terminal loop (Bowman et al., 2006).  Analysis of the 

electrostatic surface potential of UL25nt revealed an interesting distribution of 

surface charges, with one face of the protein being essentially electropositive 

while the opposing face is essentially electronegative (Figure 1.22).  The 



Figure 1.21 Ribbon diagram of UL25nt

The secondary structure elements are coloured red (α-helices), blue (β-
strands), green (extended loops) and grey (disordered loop regions).  N 
and C labels identify the amino- and carboxyl-terminal ends, respectively.  
The unstructured looped out regions, L1-L5, are indicated, and the L6 
unstructured residues located at the C-terminus are shown.  
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Figure 1.22 Electrostatic surface charge of UL25nt

(A) A space fil l ing model showing the electrostatic 
surface representation of the electronegative face of 
UL25nt.  (B) A 180o rotation of the view in panel A, 
showing the electropositive face of UL25nt (adapted 
from Bowman et al., 2006). 
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significance of the charged faces in UL25nt is unclear, but they may play a role 

in interactions of pUL25 with other proteins.  Since pUL25 has been reported to 

bind DNA, the basic face may mediate this association, perhaps at some point 

during DNA packaging or during entry and release of the viral genome from the 

capsid at the NPC (Ogasawara et al., 2001, Bowman et al., 2006).   

 
 

 

Loop Region Residues   Unstructured residues 

L1 H247 – T259 A249 – D254 

L2 V325 – A347 R335 – G345 

L3 A415– D437  P417 – A425 

L4 Q475 – S490 P479  – T483 

L5 R509 – P516 R511 – N513 

L6 L577 – V580 S578 – V580 

 
Table 1.4 Residues in the extended loops (L1-L5) and the unstructured L6 region of UL25nt. 
 

1.4.1 The predicted functional interfaces 

UL25 is one of approximately 40 core genes conserved among all members of the 

family of Herpesviridae (Davison, 2002).  The sequence alignment of the UL25 

protein homologues from the eight human herpesviruses revealed that the N-

terminal 133 residues, in particular residues 1-45 that were predicted to be 

unstructured, were the least conserved part of pUL25.  Within the UL25nt 

portion of the protein, 24 residues were identified that were completely 

conserved in the eight human herpesviruses.  However, subsequent mapping of 

these residues onto the known structure of UL25nt showed that they were 

mostly hydrophobic core residues situated in the interior of the protein.  

Therefore, these amino acids are more likely to be critical for maintaining the 

structural integrity of the protein.   
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To identify important functional interfaces on the surface of UL25nt, an 

evolutionary trace (ET) analysis was performed on a multiple-sequence 

alignment of UL25 and homologous protein sequences.  ET was developed by 

Lichtarge et al. (1996) and exploits the fact that residues important for the 

structure of a protein tend to be strongly conserved across species.  The ET 

algorithm uses phylogenetic information to identify conserved amino acids 

within a protein family and then maps this information in the context of an 

atomic structure (Lichtartge & Sowa, 2002).  The method has been successful in 

identifying functional sites in a wide range of proteins (Chakravarty et al., 2005, 

Mikalek et al., 2003, Sowa et al., 2001).  The phylogenetic tree for UL25nt is 

shown in Figure 1.23.  Partitioning of the tree divides the set of proteins into a 

number of classes; each containing related sequences derived from a node 

within that partition.  Residues that are important for the protein’s structural 

integrity usually are highly conserved and show the least variation in a family of 

related proteins, while residues that are functionally important are less well 

conserved but are invariant among a group of closely related proteins or 

subgroup.  Clustering of these specific residues onto the structure of the protein 

implies a functional interface, since evolutionary divergence and functional 

specificity is associated with changes in the amino acid composition.  By 

examining the pattern of conservation within a family of related proteins, ET 

analysis can reveal relationships that conventional sequence comparisons do not.  

At P07, there are nine protein classes defined that are distributed across the 

three herpesvirus subfamilies and contain more than a single member (Figure 

1.23).  Mapping of the class-specific residues at this level on the surface of 

UL25nt identified four clusters (C1-C4) of particular interest.  The class-specific 

surface residues and the cluster to which they were assigned to are listed in 

Table 1.5, and illustrations of the four clusters and their constituent amino acids 

on the surface of UL25nt are shown in Figure 1.24.  All four potential binding 

interfaces contain both charged and uncharged residues.  Three of the four 

clusters are located on or near areas where there are disordered flexible loops 

and it is conceivable that these unstructured loops become ordered upon binding 

to another protein partner.  C1 resides are on the same face as C2, which 

traverses the entire molecule and lies adjacent to L5.  C3 is situated at the 

opposite end of the molecule from C1, near L3, whereas C4 also lies next to L3 

but is located on the face 180º from C1 and C2.  The wide distribution of the 
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Figure 1.23 Evolutionary trace of herpesvirus UL25 homologues

P01 to P10 represent the different partitions of the ET phylogenetic 
tree.  The branches defining the three herpesvirus subfamilies are 
labelled α, β and γ.  The numbers 1-9, which are highlighted in red, 
denote the nine protein classes at P07 that contain more than a single 
member.  The virus species are listed next to the tree and the names 
in boldface are human viruses (adapted from Bowman et al., 2006).  



 
 
 
 
 

Cluster Cluster Residues 

C1 G225 R288 R305 P327 G331 H348 R362 G363 N365 

C2 R148 D150 N152 D156 L214 N508    

C3 G169 S170 G172 R180 G202 R203 K206 P413  

C4 R390 N396 Y398 D400 L402 R552    

 
Table 1.5 The residues within the four clusters (C1-C4) of pUL25 identified in the structural analysis 
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Figure 1.24  UL25nt predicted functional amino acid clusters

Space-fi l l ing models of UL25nt, with the exterior residues 
identified by the evolutionary trace for each cluster highlighted in 
red.  The position of the residue argine 484 (Arg 484) in UL25nt is 
indicated as a reference point.
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predicted binding sites on UL25nt, its flexible architecture and distinctive 

electrostatic pattern, are consistent with an intrinsically plastic and dynamic 

protein that is capable of accommodating the multiple roles that pUL25 is 

implicated in.   

1.5 The binding partners of pUL25 

The HSV-1 UL25 gene product is a multifunctional capsid protein that is essential 

during viral DNA packaging (Section 1.3.5.2.5), is important for viral entry and 

has been implicated during viral egress.  In addition, it interacts with an 

assortment of virus and cellular encoded proteins that are required during these 

processes (Table 1.6).  The UL25 protein is located on the capsid surface and 

binds to the structure in increasing amounts as the capsid matures during DNA 

packaging, with the highest concentrations of pUL25 identified on C-capsids 

(Newcomb et al., 2006, Ogasawara et al., 2001, Sheaffer et al., 2001, Thurlow 

et al., 2006, Trus et al., 2007).  This observation led to the proposal that pUL25 

stabilises the C-capsid by attaching to binding sites that are exposed on the 

surface of the capsid as it matures during DNA packaging.  In support of this 

model was the finding that removal of viral DNA from C-capsids led to a 

reduction in the amount of pUL25 attached to the A-capsids that were generated 

(Trus et al., 2007).  The binding of pUL25 to capsids is also dependent on the 

presence of another essential DNA packaging protein, pUL17, since B-capsids 

lacking pUL17 contain low levels of pUL25 (Thurlow et al., 2006).   Similarly, 

reduced levels of pUL17 are found on capsids isolated from non-permissive cells 

infected with a UL25 null mutant.  These two observations led to the suggestion 

that pUL25 and pUL17 interact with each other (Thurlow et al., 2006).   

A subsequent study involving cryoelectron microscopy and image reconstruction 

provided further evidence that pUL25 binds to pUL17.  Extra mass was identified 

on the surface of the wt C-capsid, adjacent to the pentons at the capsid 

vertices, which was not seen on wt and UL25-null mutant A-capsids.  This extra 

mass, referred to as the C-capsid specific component (CCSC), was proposed to 

be a complex of pUL25 and pUL17 (Trus et al., 2007).  Additional contact points 

were also identified for pUL25 on the capsid that were calculated to be located 
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at the triplexes and peripentonal hexons surrounding the penton.  These findings 

are corroborated by observations that pUL25 interacts directly with the triplex 

protein VP19C and the major capsid protein, VP5 (Ogasawara et al., 2001).  Trus 

et al. (2007) proposed that the predicted triplex and hexon interaction sites for 

pUL25 are the binding sites, which are exposed as a consequence of the 

conformational changes induced in the capsid during DNA packaging.  In addition 

they suggested that, as a consequence of the pUL25 binding to pUL17, VP19C 

and VP5, during capsid maturation, the shell is stabilised during encapsidation of 

full-length viral genomes.   

UL25 protein partners  Reference 

pUL6 Pasdeloup et al., 2009 

pUL17 Thurlow et al., 2006; Trus et al., 2007 

pUL36 Coller et al., 2007; Pasdeloup et al., 2009 

VP5 Ogasawara et al., 2001 

VP19C Ogasawara et al., 2001 

Nucleoporin CAN/Nup214 Pasdeloup et al., 2009 

Nucleoporin hCG1 Pasdeloup et al., 2009 

   Table 1.6 UL25 protein binding partners 

 

Immunofluorescence studies have demonstrated that the capsid-binding domain 

(CBD) of the HSV-1 large tegument protein pUL36 requires the presence of pUL25 

for its recruitment onto capsids, indicating a role for pUL25 during 

tegumentation (Coller et al., 2007, Lee et al., 2006).  Co-immunoprecipitation 

experiments have confirmed that the CBD, which consists of the 62 amino acid 

carboxyl-terminal region of pUL36, interacts directly with pUL25 (Coller et al., 

2007).  Previous studies have shown that the CBD of PrV pUL36 localises to 

nuclear capsid assembly sites when transiently expressed as a GFP-fusion protein 

in virus-infected cells (Lee et al., 2006).  Although not addressing the site of 

tegumentation, Coller et al. (2007) proposed that the interaction between 

pUL25 and pUL36 is the initial step necessary for tegument acquisition during 

virus assembly.      
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1.6 The aims of the study 

Although the 3D crystal structure of the N-terminally truncated form of pUL25 

(UL25nt, residues 134-580) has been determined, the lack of structural similarity 

to a known protein has made it difficult to deduce the function of the protein 

with reference to the structural information alone (Bowman et al., 2006).  ET 

analysis had identified clusters of external residues, which are likely to be 

important during protein interactions, and flexible loops that may be essential in 

accommodating the conformational alterations necessary for these interactions.  

The UL25 encoded gene product is a multifunctional protein that is important at 

a number of stages during the virus life cycle and has several protein partners 

that are also involved at these points of the HSV-1 growth cycle.  The aim of the 

project was to exploit the 3D crystallographic information for HSV-1 pUL25 by 

engineering site-directed mutations into selected regions of the gene and 

characterising the resulting mutant proteins in order to relate the protein’s 

structure to its function.  It was anticipated that by determining the effect the 

mutations had on the function of pUL25 the project would lead to a better 

understanding of the protein’s role(s) during HSV-1 lytic infection.  
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2 Materials and methods 

2.1 Materials 

2.1.1 Chemicals and reagents 

The chemicals and reagents used for EM analysis were purchased from Agar Aids 

or TAAB laboratories.  All other chemicals and reagents were obtained from 

Sigma-Aldrich Co. Ltd, unless otherwise stated below or in subsequent sections. 

Chemical Supplier 

Acetic acid Rhone-Poulenc Ltd 

Acrylamide solution (40% w/v) Bio-Rad Laboratories 

Acrylamide: N, N’methylene-bis acrylamide Solution, 19:1 
(40% w/v) Bio-Rad Laboratories 

Ammonium persulphate Bio-Rad Laboratories 

BDMA  Bio-Rad laboratories 

Blotting paper Whatman International Ltd 

Butanol Prolabo 

Chloroform Prolabo 

Copper grids Agar Aids 

Dimethyl sulphoxide (DMSO)  BDH laboratory Supplies 

DNA (lambda) 1 Kb ladder New England Biolabs 

ECL reagent GE Healthcare 

EDTA (ethylenediaminetetraacetic acid disodium salt) BDH 
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Chemical Supplier 

Ethanol Prolabo 

Epon 812 Resin TAAB 

Glacial acetic acid Prolabo 

Glass fibre discs Whatman International Ltd 

Glutaraldehyde Agar Scientific 

Hydrochloric acid Rhone-Poulenc Ltd 

IPTG (Isopropyl β-D-1-thiogalactopyranoside) Gibco BRL 

Lipofectamine reagent Invitrogen 

Methanol Prolabo 

Optimem BDH 

Osmium tetroxide TAAB 

PCR tubes Applied Biosystems 

Plus reagent Invitrogen 

Mini protease inhibitor tablets Boehringer Mannheim 

Rainbow markers GE Healthcare 

Surfact-AmpsTM NP40 Pierce 

Uranyl acetate BDH 

X-omat film Kodak Ltd 
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2.1.2 Enzymes 

New England Biolabs, Sigma-Aldrich Co. Ltd, or Roche Diagnostics Ltd supplied 

the restriction enzymes and DNA modifying enzymes. 

2.1.3 Antibiotics  

The antibiotics used in this study together with their suppliers are listed below: 

 

Antibiotic Supplier 

Ampicillin Smithkline Beecham Research 

Chloramphenicol Sigma-Aldrich Co. Ltd 

Gentamicin Life Technologies 

Kanamycin Sigma-Aldrich Co. Ltd 

Penicillin Life Technologies  

Streptomycin Life Technologies  

Tetracycline Sigma-Aldrich Co. Ltd 

2.1.4 Tissue culture cell lines  

Vero cells (Rhim and Schell, 1967):  These African green monkey kidney cells 

were obtained from the American Type Culture Collection and supplied by Dr. V. 

Preston.  

8-1 cells (McNab et al., 1998):  This Vero cell line, which expressed the HSV-1 

packaging gene UL25 under the control of the HSV-1 ICP6 promoter, was 

obtained from Dr P. Desai and supplied by Dr V. Preston.  

Sf21 cells (Vaughn et al., 1977):  This insect cell line was derived from pupal 

ovarian tissue of the fall armyworm (species Spodoptera frugiperda) and 

obtained from the MRC Virology Unit’s Cytology Department. 

U2OS cells (Ponten and Saksela, 1967): This epithelial cell line was cultured 

from the cancerous bone tissue of a human female suffering from osteosarcoma.  
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It was obtained from the American Type Culture Collection and supplied by Dr V. 

Preston. 

2.1.5 Tissue culture medium and growth conditions  

Tissue culture media were obtained from Gibco BRL and media supplements 

were purchased from Life Technologies, except for human serum (HS), which 

was supplied by MP Biomedicals LLC.  The growth medium and supplement 

requirements for each of the cell lines used were as follows: 

Vero and 8-1 cells were grown at 37oC in atmosphere containing 5% CO2 in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 1X penicillin 

(pen)/streptomycin (stp) (100 units/ml pen and 100 μg/ml stp) plus 10% (v/v) 

foetal calf serum (FCS).  

U2OS cells were grown under the same conditions as Vero and 8-1 cells except 

that a concentration of 5% (v/v) FCS was used. 

Sf21 cells were cultured at 28oC in TC100 medium supplemented with 1X 

pen/stp and 5% (v/v) FCS. 

2.1.6 HSV-1 stocks 

Wild-type (wt) HSV-1 strain 17 syn+ (Brown et al., 1973): This virus was obtained 

from the MRC Virology Unit’s virus stocks. 

ΔUL25MO: This deletion mutant lacks the complete UL25 ORF (nucleotide 

sequences 48,813 to 50,555 in the HSV-1 strain 17 syn+ genome) and contains in 

its place the rpsL-neo antibiotic selection cassette (Chapter 3).  

KUL25NS (McNab et al., 1998): This UL25 null mutant was a gift from Dr P. Desai 

and was supplied by Dr V. Preston.  The virus has a 14bp SpeI linker containing 

stop codons in all 3 open reading frames inserted at codon 104 of the UL25 ORF. 

MRUL25MO: Marker rescuant of ΔUL25MO (Section 3.3.2).  
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2.1.7 Baculoviruses 

The 11 recombinant baculoviruses listed below were used in this study.  AcUL25-

Δ1-45, -Δ1-59, -Δ1-133 and AcUL17 were supplied by Dr V. Preston and the 

remaining viruses were constructed during this project using the procedure 

outlined in Section 2.2.12.  The inserted genes in each virus were under the 

control of the HCMV IE promoter.   

Baculovirus  Expressed HSV-1 Protein 

AcpCI None 

AcWTUL25 pUL25  

AcUL25-C3B pUL25-C3B 

AcUL25-C4A pUL25-C4A 

AcUL25-L3 pUL25-L3 

AcUL25-L5 pUL25-L5 

AcUL25-L6 pUL25-L6 

AcUL25Δ1-45 pUL25Δ1-45 

AcUL25Δ1-59 pUL25Δ1-59 

AcUL25Δ1-133 pUL25Δ1-133 

AcUL17 pUL17 

               

2.1.8 E. coli strains and culture medium 

DH5α (Life Technologies): This strain of E. coli contains the endA and recA 

mutations.  The endA mutation prevents the degradation of the plasmid DNA by 

eliminating endonuclease I activity in the bacterial cell, thereby improving the 

quality of the DNA preparations.  The recA mutation enhances the stability of 

the plasmid by reducing homologous recombination between plasmid DNAs 

within the bacterial cell.   

DH10Bac: This strain of E. coli contains the baculovirus shuttle vector (bacmid), 

bMON14272, and a helper plasmid, the mini-F replicon pMON7124.  

Electrocompetent DH10Bac cells (Section 2.2.5) were used to create the 

recombinant baculoviruses.  Bacteria were grown in the presence of 50 μg/ml 
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kanamycin (km) to maintain the bacmid and 10 μg/ml tetracycline (tet) to 

maintain the helper plasmid. 

DH10B: This is a transformation competent strain of E. coli used as the host 

bacteria for the mutation of a bacterial artificial chromosome (BAC) possessing a 

copy of a mutated HSV-1 strain 17 syn+ genome (fHSVΔpac) (Saeki et al., 1998) 

lacking the packaging signals.  The bacteria containing the BAC were maintained 

in the presence of 15 μg/ml of chloramphenicol (cm) and 50 μg/ml of stp.    

BL21: This strain was used for expression of the GST tagged fusion proteins and 

was purchased from Stratagene.   

E. coli culture medium 

E. coli strains were cultured in L-broth containing the appropriate antibiotic, if 

required, for selection of the desired plasmid, BAC or recombinant bacmid.   

2.1.9 Plasmids  

pGEM-T Easy: This plasmid was used as a vector for cloning PCR products.  The 

plasmid was obtained from Promega as a linearised DNA molecule with a 3’-

terminal thymidine residue added to both ends.  Since the Taq polymerase used 

in the PCR reactions described in this thesis adds a single deoxyadenosyl residue 

to the 3’ ends of the PCR products produced, the PCR fragments were directly 

cloned into pGEM-T Easy (Figure 4.4) without further enzymatic manipulation.   

pFBpCI: This plasmid was produced by Professor R. Everett from the MRC 

Virology Unit, Glasgow (Sourvinos & Everett, 2002)  and was made by inserting a 

BglII/EcoRI fragment, containing the promoter and enhancer sequences from 

pCI-neo (Promega), into BamHI/EcoRI digested pFastBac Hta (Life Technologies) 

(Figure 5.2).  The plasmid was used as a cloning plasmid for the UL25 ORF, as a 

mammalian expression vector and as a baculovirus transfer vector for the 

production of the recombinant baculovirus. 

pGX37: This plasmid contains the HSV-1 strain 17 syn+ BamHI G fragment, (HSV-1 

strain 17 syn+ nucleotides 52589-60363), inserted into the BamHI site of the 
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plasmid vector pAT153 (Abbotts et al., 2000)).  The BamHI G probe used in 

Southern blot hybridisation was purified from the BamHI-digested pGX37 vector. 

pGX2: This plasmid contains the HSV-1 strain 17 syn+ BamHI K fragment (HSV-1 

strain 17 nucleotides 123461-129403) inserted into the BamHI site of pAT153.  

The BamHI K fragment in this plasmid has a single a sequence. 

pGX292: This plasmid contains the HSV-1 strain 17 syn+ BamHI U fragment 

inserted into the BamHI site of pAT153.  BamHI U spans the HSV-1 strain 17 syn+ 

nucleotides 48635 – 50929, which contains the entire UL25 ORF.    

pBE1: This plasmid was derived from pGX2 and was constructed to detect the 

joint spanning region and the L terminus of the HSV-1 genome (Stow, 2001).  It 

contains sequences corresponding to HSV-1 strain 17 syn+ nucleotides 596 to 

2905 of TRL (Figure 5.1). 

pST17: This plasmid, like pBE1, was derived from pGX2 but was constructed to 

detect the joint spanning region and the S terminus of the HSV-1 genome (Stow, 

2001).  It contains sequences corresponding to HSV-1 strain 17 syn+ nucleotides 

148825 to 151857 of TRS (Figure 5.1). 

pGEX-2TNMCR: This plasmid was produced by Professor R. Everett from the MRC 

Virology Unit, Glasgow, and was derived from a commercially available plasmid, 

pGEX2T (Pharmacia).  The vector was designed for inducible, high-level bacterial 

expression of proteins or protein fragments as fusions with Schistosoma 

japonicum glutathione S-transferase (GST).  Expression of GST fusion proteins 

was under the control of the IPTG-inducible tac promoter.   

2.1.10 Antibodies 

Anti-pUL25 MAb166: The mouse monoclonal antibody (MAb) was raised against 

purified HSV-1 UL25-His tagged protein (Thurlow et al., 2005) and diluted 

1:1000. 
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Anti-pUL25 RAb335: The rabbit polyclonal antibody was raised against purified 

HSV-1 UL25 (residues 342 – 580) GST fusion protein (Thurlow et al., 2006) and 

diluted 1:1000.  

Anti-pUL17 MAb203: The MAb was raised against purified HSV-1 UL17-NusA 

tagged protein (residues 154-703) (Thurlow et al., 2005) and diluted 1:1000.  

Anti-GST antibody:  The goat polyclonal antibody was raised against purified 

GST (GE Healthcare) and diluted 1:2000. 

Anti-goat IgG hrp-conjugate:  The donkey polyclonal antibody was raised 

against purified goat IgG conjugated to horseradish peroxidase (Santa Cruz 

Biotechnology) and diluted 1:80000.      

Protein A hrp-conjugate: protein A-horseradish peroxidase (Sigma-Aldrich) was 

diluted 1:1000. 

Anti-mouse IgG hrp-conjugate: The goat polyclonal antibody was raised against 

mouse IgG and conjugated to horseradish peroxidase (Sigma-Aldrich) and diluted 

1: 1000.   

Anti-mouse IgG FITC-conjugate: The goat polyclonal antibody was raised against 

purified mouse IgG and conjugated to the fluorophore FITC (Sigma-Aldrich) and 

diluted 1:100.   

2.1.11 Buffers and solutions 

Common solutions Constituents 

Acid wash 0.14 M NaCl, 0.1M glycine pH 3.0 

Alkaline transfer solution 0.4 M NaOH, 0.6 M NaCl 

Antibody buffer A 5% (w/v) marvel, 0.05% (v/v) Tween-20 in PBS 

Antibody buffer B 2% (w/v) marvel, 0.05% (v/v) Tween-20 in PBS 

Boiling mix (3X) 6% (w/v) SDS, 30% (v/v) glycerol, 0.3% (w/v) bromophenol blue, 
210 mM β-mercaptoethanol 

Buffer A  50 mM Tris HCl pH 7.5, 100 mM NaCl, 5% Glycerol, 0.1% Triton 
X100 

Chloroform:Isoamyl alcohol 24 parts choloroform:1 part isoamyl alcohol (v/v) 
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Common solutions Constituents 

CLB (Cell lysis buffer) (2X) 20 mM TrisHCl pH 7.5, 2 mM EDTA, 1.2% SDS 

DABCO soluition 25% DABCO in dH2O, stored at -20oC 

Denhardt’s solution 0.02% Ficoll 400, 0.02% polyvinylpyrrolidone, 0.02% bovine serum 
albumin 

DNA loading buffer (4X) 0.1 M EDTA, 0.25% (w/v) bromophenol blue, 50% (w/v) sucrose 

Elution buffer 500 mM NH4Acetate, 1 mM EDTA, 0.1% SDS  

Epon 812 resin mix 150 μl DBMA, 10 ml Epon 812 resin 

EZ lysis buffer 100 mM TrisHCl pH 8.0, 100 mM KCl, 10% glycerol, 1% NP40.  1 
mini protease tablet per 10 ml buffer 

Hybridisation buffer  50% formamide, 10% dextran sulphate and 4X SSC (1X SSC is 
0.15 M NaCl, 0.015 M sodium citrate) 

Loening’s buffer (1X) 40 mM NaH2PO4, 36 mM Tris, 1mM EDTA 

Lead citrate solution 1.33g Pb(NO3) 2, 1.76g Na3(C6H5O7).2H2O, 30 ml boiled and 
cooled dH20 

Membrane wash buffer 0.2X SSC, 0.1% SDS 

Mowiol mounting solution 2.4g Mowiol 4-88, 6g glycerol, 6 ml dH20, 12 ml 0.2 M Tris HCl pH 
8.5, 10% DABCO solution 

Neutralising solution  0.5 M TrisHCl pH 7.0 

PBS (Phosphate-buffered 
saline) 

170 mM NaCl, 3.4 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 
7.2 

PBS-1% FCS PBS containing 1% Foetal calf serum 

10X Phosphate buffer 58 mM Na2HPO4, 17 mM NaH2PO4, 68 mM NaCl pH 7.5 

Protease 20 mg/ml grade XIV protease 

RGB (4X Resolving gel 
buffer) 1.5 M TrisHCl pH 8.8, 0.4% (w/v) SDS 

RNase mix (200X) 1 mg/ml RNaseA, 10000 u/ml RNase T1 in TE 

Sonication buffer 20 mM TrisHCl pH 7.5, 0.1% NP40,, 10% glycerol, 1 miniprotease 
tablet per 7 ml of buffer 

RSB (Reticulocyte 
standard buffer) 10 mM TrisHCl pH 7.5, 10 mM KCl, 1.5 mM MgCl2 

SGB (4X Stacking gel 
buffer) 488 mM TrisHCl pH 6.8, 0.4% (w/v) SDS 

Southern prehybridisation 
buffer 0.5 M sodium phosphate buffer pH 7.4, 7% SDS 

SSC (20X)  3 M NaCl, 0.3 M sodium citrate 

Tank buffer (1X)  52 mM Tris, 53 mM glycine, 0.1% SDS 

TBE (Tris-borate-EDTA) 90 mM Tris base, 89 mM boric acid, 1 mM EDTA 

TBS (Tris-buffered saline) 137 mM NaCl, 5 mM KCl, 0.7 mM NaH2PO4, 5.5 mM glucose, 25 
mM TrisHCl pH 7.4 

Towbin buffer 25 mM Tris, 192 mM glycine, 20% (v/v) methanol 

Triton 1X buffer 0.1% Triton X100 diluted in PBS and 1 miniprotease tablet per 7 
ml of solution 

Trypsin 0.25% (w/v) trypsin (Sigma-Aldrich) dissolved in TBS 

Versene 0.6 mM EDTA, 0.002% phenol red in PBS 

X-gal solution 20 mg/ml X-gal in dimethyl formamide 
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2.1.12 Oligonucleotides 

Oligonucleotides for PCR amplification and sequencing were synthesised and 

purified by either Sigma-Genosys or MWG Biotech.  

2.1.13 Radiochemicals 

5’ (α32P) dCTP and 5’ (α32P) dGTP, at 10 μCi/μl (3000 Ci/mMole), were 

purchased from GE Healthcare, UK.  

2.1.14 Commercial kits 

The commercial kits used in this study are listed in below or in the relevant 

sections. 

Commercial Kits Supplier 

AdvantageTM-GC 2 PCR Kit Clontech 

Counter-Selection BAC Modification Kit Version 2.4 (June 2005) Gene Bridges 

pGEM-T Easy Vector System Promega 

Qiagen Plasmid Purification – QIAGEN-tip 100 (3rd Edition June 2005) Qiagen 

QIAprep Spin Miniprep Kit Qiagen 

QIAQuick Gel Extraction Kit Qiagen 

 
 
2.1.15 Computer software 

Computer software used for analysis in this study and the manufacturer or web 

link is listed below:  

Computer Software Link/Manufacturer 

ET analysis http://www-cryst.bioc.cam.ac.uk/~jiye/evoltrace/evoltrace.html 

Protein Bank Database http://www.rcsb.org 

SIFT Analysis http://sift.jcvi.org 

Webcutter http://rna.lundberg.gu.se/cutter2/ 

Chimera  http://www.cgl.ucsf.edu/chimera 

http://www.cgl.ucsf.edu/chimera/
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2.2 Methods 

2.2.1 DNA cloning and manipulation  

2.2.1.1 Restriction endonuclease digests 

Typically, 1 μg of plasmid DNA was digested with 10 units of the desired 

restriction endonuclease (REN) in a 20 μl reaction volume containing the 

appropriate restriction buffer and 2 μg BSA (if recommended) for 1-4 hours (h) at 

the recommended temperature.  For double digests both RENs were added to 

the same reaction provided the enzyme conditions were compatible, if not, two 

sequential reactions were carried out.  In this instance the DNA was digested 

with the first REN in a reaction volume of 20 μl at the recommended 

temperature for 1-2 h.  This was followed by the addition of the second REN and 

modification of the REN buffer in a final volume of 30 μl.  The incubation was 

continued for a further 1-2 h at the second enzyme’s recommended 

temperature.  All REN digests were confirmed by gel electrophoresis (Section 

2.2.3.1). 

2.2.1.2 Polymerase chain reaction (PCR) 

Each PCR was set up in thin-walled 0.2 ml PCR tube using the enzyme, buffer 

and dNTP mix from the Clontech AdvantageTM-GC 2 PCR kit.  A typical PCR 

reaction mix contained 50 ng of template DNA with the forward and reverse 

primers at a concentration of 100 pmoles/μl in a total volume of 50 μl.  The 

PCRs were performed using Applied Biosystems GeneAmp PCR System 9700 

thermocycler running the following programmes: 

PCR –cycle1 

Step 1: 1 cycle 95oC for 5 min 

Step 2: 35 cycles 95oC for 30 sec 

 58oC for 1 min 

 68oC for 2 min 

Step 3: 1 cycle 68oC for 7 min 

Step 4 Hold at 4oC 
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PCR-cycle2 

Step 1: 1 cycle 95oC for 5 min 

Step 2: 30 cycles 95oC for 30 sec 

 68oC for 3 min 

Step 3: 1 cycle 68oC for 7 min 

Step 4 Hold at 4oC 

 

2.2.1.3 Annealing overlapping oligonucleotides 

Each oligonucleotide was supplied as a lyophilised powder and resuspended in 

the appropriate amount of dH2O to give a final concentration of 100 pmoles/μl.  

The two oligonucleotides were mixed together and diluted to a final 

concentration of 10 pmoles/μl in 1X T4 ligase buffer (BRL) in a total volume of 

50 μl.  The reaction mix was heated to 100oC for 5 minutes (min) and allowed to 

cool slowly to room temperature (RT).  The sample was stored at –20oC until 

required. 

2.2.2 Ligation of DNA fragments 

2.2.2.1 Standard ligation 

Purified insert and vector DNA fragments were mixed at a 3:1 molar ratio in a 10 

μl reaction volume containing 1 unit of T4 DNA ligase and 1X T4 ligase buffer 

(BRL).  The reaction was incubated overnight at 16oC followed by storage at       

-20oC until required. 

2.2.2.2 Ligation of PCR products 

Typically, a molar ratio of 3:1 of gel-purified PCR product to pGEM-T Easy vector 

was used for the ligation reactions.  The identity of the cloned PCR product was 

confirmed by analytical REN digestion and DNA sequencing. 
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2.2.2.3 Ligation of overlapping oligonucleotides 

Annealed overlapping oligonucleotides, which were prepared as outlined in 

Section 2.2.1.3, were routinely diluted 1:3 or 1:10 in dH20 and 1 μl was used in 

the ligation reaction.  

2.2.3 DNA analysis and purification 

2.2.3.1 Separation and purification of restriction endonuclease (REN) 
fragments on agarose gels 

Routine analysis of DNA REN digests was carried out on 1% agarose gels in 1X 

TAE.  The gels were prepared by heating the agarose mixture in a microwave 

oven until the agarose was dissolved.  After the solution had cooled to 55-60oC, 5 

μl ethidium bromide (10 mg/ml) was added and the solution, which was then 

poured into a horizontal gel kit containing a 14-well comb.  When the gel had set 

it was submerged in 1X TAE buffer, the comb was removed and the samples, 

containing 4X DNA loading buffer (1:4 loading buffer:sample), and the 

appropriate size markers were added to the wells.  The gel was electrophoresed 

in a BRL horizontal electrophoresis apparatus at 100 V for 30-40 min.  The DNA 

fragments were visualised under long-wave UV light and excised from the gel 

using a sterile scalpel.  DNA fragments were purified from agarose gel slices 

using the Qiagen Qiaquick Gel Extraction kit in accordance with the standard 

protocol supplied. 

2.2.3.2 Separation and purification of REN fragments on polyacrylamide gels 

Separation 

DNA fragments of less than 500 bp were resolved on 5% polyacrylamide gels.  

The gels were prepared by mixing 8.3 ml 40% acrylamide bis-acrylamide (19:1) 

(Bio-Rad), 4.2 ml 40% acrylamide, 5 ml 10X TBE, 100 μl TEMED, 700 μl 10% 

ammonium persulphate in a final volume of 100 ml.  The mixture was 

immediately poured between glass plates and a 12-well comb inserted.  Once 

the gel had set the samples to be analysed were mixed with 4X DNA loading 

buffer and loaded onto the gel.  The samples were run alongside a 100 bp ladder 
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and electrophoresed in 1X TBE at 100 V for 30-40 min, before the bromophenol 

blue dye front reached the bottom of the gel.  The DNA fragments were stained 

by submersing the gel for 30 min in a 100ml solution of 1X TBE containing 5 μl of 

ethidium bromide (10 mg/ml).  The DNA was visualised under long-wave UV light 

and the DNA fragment was excised from the gel using a sterile scalpel. 

Purification 

The excised fragment was transferred to a 0.5 ml reaction tube, containing a 

small aperture in the bottom, and the tube placed inside a 1.5 ml reaction tube.  

After the sample had been centrifuged at 13000 rpm for 5 min in a 

microcentrifuge, 400 μl of elution buffer (Section 2.1.11) was added to the 

pulverised gel in the 1.5 ml reaction tube, and the mixture incubated overnight 

at 42oC.  The polyacrylamide gel was removed from the mixture by filtering the 

sample through a glass fibre disc, pre-soaked briefly in elution buffer and placed 

in a 2 ml syringe.  Two volumes of ethanol (200 μl) were added to the filtered 

sample and the tube was placed on dry ice.  After 1 h incubation the sample was 

centrifuged at 13000 rpm in a bench-top microcentrifuge for 10 min and the 

supernatant discarded.  The DNA pellet was dissolved in 300 μl of sodium 

acetate pH 5.5 and 600 μl of ethanol was added to the solution to precipitate 

the DNA.  The mixture was chilled on dry ice for 30 min prior to centrifugation at 

13000 rpm for 10 min.  The supernatant was removed and the DNA pellet was 

washed in 70% ethanol.  The centrifugation step repeated and the supernatant 

was removed and discarded.  The DNA pellet was left to air dry for 5 to 10 min 

at RT and then dissolved in 30 μl 10mM TrisHCl pH 8.0.  Typically, 3 μl of the 

sample was analysed on an agarose gel (Section 2.2.3.1) to determine the yield 

and purity of the eluted DNA fragment, while the remainder of the sample was 

stored at -20oC until required.  

2.2.3.3 Plasmid DNA preparation 

Plasmid DNA was routinely isolated from bacterial clones using 1.5 ml of a 5 ml 

overnight bacterial culture (Section 2.2.4).  The culture was transferred into a 

1.5 ml reaction tube and the bacteria centrifuged for 1 min at 13000 rpm in a 

bench-top microcentrifuge.  The supernatant was discarded and the pelleted 
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bacteria were processed using the QIAprep Spin Miniprep Kit (Section 2.1.14) 

according to the manufacturer’s instructions.  The final concentration of the 

plasmid DNA was determined by measuring the absorbance at 260 nm (A260), 

based upon an A260 value of 1.0 corresponding to a dsDNA concentration of 50 

μg/ml.  The identity of the plasmid DNA was confirmed by an analytical REN 

digest (Section 2.2.1.1) and DNA sequencing (Section 2.2.3.4).  The plasmid 

stocks were stored at -20oC until required. 

2.2.3.4 DNA sequencing  

All DNA sequencing was carried out commercially by Geneservices Ltd. 

2.2.4 Growth and maintenance of E. coli bacteria 

2.2.4.1 Culture of E. coli 

For the production of small-scale E. coli cultures a tube containing 5 ml of L-

broth supplemented with the appropriate antibiotic was inoculated with a single 

isolated bacterial colony and the culture grown overnight at 37oC in the orbital 

shaker at 225 rpm.  These cultures were used in the preparation of small 

amounts of plasmid DNA (Section 2.2.3.3).  The small-scale bacterial culture was 

also used as a starter culture for large-scale plasmid DNA production.  A volume 

of 2.5 ml of the overnight culture was added to 250 ml of L-broth, containing the 

appropriate antibiotics, and the sample incubated as before at 37oC overnight. 

2.2.4.2 Storage of E. coli 

A small-scale culture of E. coli was grown as outlined above (Section 2.2.4.1).  

After overnight incubation 900 μl of the cell suspension was transferred to a 1.5 

ml cryotube and mixed with 100 μl DMSO, frozen on dry ice and stored at -70oC.  

2.2.5 Preparation and transformation of electrocompetent E. coli 

Prior to preparation each of the E. coli stocks was thawed from long-term 

storage at -70oC.  The bacterial suspension was streaked onto L-broth agar plates 

containing the appropriate antibiotics.  Following overnight incubation at 37oC a 
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single colony was selected from each strain and used to produce the following 

electrocompetent bacteria.  

2.2.5.1 E. coli DH5α  

A single colony of E. coli DH5α was inoculated into a 50 ml starter culture of L-

broth and incubated at 37oC in the oribital shaker at 225 rpm.  The following day 

20 ml of the starter culture were added to 1 litre of pre-warmed L-broth and the 

culture incubated as before until an OD600 of 0.5 to 0.6 was reached.  The 

contents were then transferred to six pre-chilled 250 ml Falcon tubes and 

incubated on ice for 30 min, followed by centrifugation at 3000 rpm for 25 min 

in a Sorvall SLA-1500 rotor.  The bacterial pellets were vigorously resuspended in 

200 ml of ice-cold sterile dH20.  The bacterial suspensions were centrifuged 

again at 3000 rpm and the supernatants were subsequently discarded.  The dH2O 

wash was repeated twice more.  After the final wash the combined cell pellet 

was vigorously resuspended in 20 ml of sterile dH20 containing 10% glycerol 

(v/v).  The cell suspension was transferred to a pre-chilled 50 ml SS34 tube and 

centrifuged at 5800 rpm in a Sorvall SS34 rotor for 15 min at 0oC.  After 

centrifugation the supernatant was discarded and the cell pellet was 

resuspended in 2 ml ice-cold sterile 10% glycerol.  Aliquots (80 μl) of the 

competent bacteria were stored at -70oC until required. 

Aliquots of electrocompetent E. coli DH5α were removed from -70oC storage and 

thawed slowly on ice immediately prior to electroporation using a Hybaid Cell 

Shock Electroporator.  A 1 μl volume of the appropriate ligation reaction was 

added to each aliquot of DH5α.  The mixture was transferred into a pre-chilled 

Gene Pulser cuvette (Bio-Rad), placed into the Hybaid Cell Shock CS 100 system 

set at 1.8 kV and the machine activated.  The bacteria were subsequently 

resuspended in 1 ml of unsupplemented L-broth, transferred to a 25 ml universal 

and incubated in the orbital shaker at 37oC for 1 h.  The bacterial suspension 

was diluted 1:10 in unsupplemented L-broth and a 100 μl aliquot was plated onto 

an L-broth agar plate containing the appropriate antibiotic, followed by 

incubation overnight at 37oC.  Plasmid DNA was prepared from the recombinant 

bacteria obtained as outlined in Section 2.2.3.3. 
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2.2.5.2 E. coli DH10Bac  

Electrocompetent DH10Bac cells were prepared and transformed essentially as 

described for DH5α (Section 2.2.5.1), except DH10Bac were grown in the 

presence of 50 μg/ml km and 10 μg/ml tet and following electroporation they 

were incubated for 4 h at 37oC.  Serial dilutions of 10-1 to 10-3 of the bacterial 

suspension were prepared.  A 100 μl sample of each dilution was plated onto L-

broth agar plates containing 50 μg/ml km, 7 μg/ml gentamicin (gm), 10 μg/ml 

tet, 100 μg/ml X-gal and 40 μg/ml IPTG and the plates incubated at 37oC for 48 

h.  White bacterial colonies, unable to express functional β-galatosidase, were 

streaked onto fresh supplemented agar plates and incubated at 37oC overnight.  

Bacmid DNA was prepared from the recombinant bacteria obtained as outlined in 

Section 2.2.12.1. 

2.2.5.3 E. coli DH10B 

A single colony of E. coli DH10B carrying fHSVΔpac was inoculated into 50 ml of 

L-broth, supplemented with 15 μg cm and 50 μg of stp, and grown overnight at 

37oC.  A 30 μl aliquot of the bacterial suspension was inoculated into a universal 

containing 1.4 ml of L-broth and the antibiotics described above.  After 

incubation at 37oC for 2 h on a platform shaker at 1000 rpm the bacterial 

suspension was transferred to a pre-chilled reaction tube and centrifuged at 

11000 rpm for 30 sec at 4oC.  The bacterial pellet was resuspended in 1 ml of 

ice-cold dH2O and centrifuged as before.  The electrocompetent bacteria were 

resuspended in a residual volume of the supernatant (30 μl) and stored on ice 

prior to transformation as outlined in section 2.2.8. 

2.2.5.4 E. coli BL21  

A single colony of E. coli BL21 was inoculated into 5 ml L-broth and incubated at 

37oC in the orbital shaker at 225 rpm overnight.  A 30 μl aliquot of the overnight 

culture was inoculated into 1.4 ml of L-broth in a universal and the culture 

incubated as before.  After 2-3 h incubation the culture was transferred to a 

pre-chilled reaction tube and the bacteria pelleted by centrifugation at 13000 

rpm for 30 sec in a microcentrifuge located in the 4oC cold room.  The 
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supernatant was discarded and the pellet was resuspended in ice-cold dH2O, 

followed by centrifugation at 13000 rpm for 30 sec.  The wash was repeated 

twice more.  After the final wash the bacterial pellet was resuspended in a 

volume of 30 μl of the residual supernatant and the remaining supernatant was 

discarded. The bacterial suspension was stored on ice prior to transformation as 

outlined in Section 2.2.5.1.   

2.2.6  Maintenance and passage of tissue culture cells 

2.2.6.1 Mammalian cell lines 

Cells were grown overnight in in a 175 cm2 tissue culture dish and the confluent 

cell monolayer was rinsed with 20 ml of versene, followed by a brief wash in 20 

ml of 1X trypsin (diluted in versene) at RT.  The trypsinised cells were detached 

from the culture vessel by gentle agitation and resuspended in 10 ml of fresh 

medium.  Typically, 1/5th of the total volume of resuspended Vero or 8-1 cells 

and 1/3rd of the total volume of resuspended U2OS cells was seeded into a new 

flask.  The cells were passaged every 3-4 days.   

2.2.6.2 Insect cell line 

Cells were grown overnight in a 175 cm2 tissue culture dish. Confluent Sf21 

monolayers were detached from the flask by agitation alone and resuspended in 

10 ml of fresh medium.  Generally, 2 ml of the cell suspension was seeded into a 

fresh flask and the cells passaged every 3-4 days. 

2.2.6.3 Counting cells    

Tissue culture cells were diluted 1:10 in cell culture medium and counted in a 

haemocytometer (Neubauer) under an inverted light microscope (Olympus). 
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2.2.7 Complementation analysis 

2.2.7.1 Transfection of mammalian cells 

Duplicate transfections were prepared for each DNA sample that was analysed.  

Vero cells were seeded at a density 1 x 105 cells/well in 24-well tissue culture 

dishes and incubated at 37oC.  The following day 0.5 μg of the appropriate 

recombinant plasmid DNA was diluted in Optimem to a final volume of 21 μl in a 

0.5 ml reaction tube and mixed with 4 μl of Plus reagent.    After 15 min at RT 

25 μl of diluted Lipofectamine (1 μl Lipofectamine + 24 μl Optimem) was added 

to each sample and the mixture was incubated for a further 15 min at RT.  

During the incubation the Vero cell monolayers were washed twice with 

unsupplemented growth medium and then overlaid with 200 μl of the same 

medium.  The transfection mix (50 μl) was added to each cell monolayer and the 

cells incubated at 37oC for 3 h.  The transfection mix was removed from the 

transfected cells and 1 ml of supplemented growth medium was added to each 

monolayer.  One set of transfected cells was incubated overnight at 37oC and 

crude mammalian protein extracts were prepared (Section 2.2.7.2).  The other 

set of transfected cells was incubated at 37oC for a further 2 h prior to virus 

infection and subsequent analysis using the complementation yield assay 

described in Section 2.2.7.3.  

2.2.7.2 Production of crude mammalian protein extract  

The transfected cell monolayer (Section 2.2.7.1) in each well of the 24-well 

tissue culture dish was washed in 1 ml of PBS followed by the addition of 500 μl 

of fresh PBS.  Each cell monolayer was scraped into PBS and the suspension was 

transferred to a reaction tube.  After the sample had been centrifuged at 6000 

rpm for 30 sec in a bench top microcentrifuge, the cell pellet was resuspended 

in 20 μl dH2O and the cells lysed by the addition of 10 μl of 3X boiling mix.  The 

cell lysate was then stored at –20oC, if necessary.  To determine the level of the 

recombinant proteins produced, a 15 μl sample of the cell lysate was analysed 

by Western blotting (Section 2.2.18.2).   
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2.2.7.3 Complementation yield assay 

The transfection mix was removed from each sample prepared in Section 2.2.7.1 

and the transfected cells were washed once with 1ml of growth medium.  Each 

monolayer was infected with 100 μl HSV-1 UL25 null virus (ΔUL25MO) at a 

concentration of 2 PFU/cell and incubated at 37oC for 1 h.  To ensure that the 

virus was equally absorbed over the cell monolayer and that the cells did not dry 

out, the tissue culture dishes were gently rocked every 15 min throughout the 

incubation.  After viral absorption, the cells were treated with acid as described 

in Section 2.2.7.4, followed by incubation in 1 ml of growth medium at 37oC.  

The next day each cell monolayer was scraped into the medium and transferred 

to a 15 ml Falcon tube prior to sonication at 4oC.  The yield of the progeny virus 

produced was determined by titrating the virus on 8-1 cells (Section 2.2.10).    

2.2.7.4 Acid wash of cell monolayers 

The acid wash was carried out in order to eliminate residual viral particles from 

the cell surface after viral absorption.  The viral inoculum was removed from 

each monolayer, the cells were washed twice with 1 ml 0.14 M NaCl and then 

overlaid with 1 ml acid wash (Section 2.1.11) for 1 min at RT.  The acid wash 

was promptly removed after incubation.  The cells were washed with 1 ml of 

growth medium, then overlaid with 1 ml of fresh medium and incubated at 37oC.  

2.2.8 Generation of HSV-1 UL25 null mutant (ΔUL25MO) 

To generate the new HSV-1 UL25 null virus the commercially supplied Counter-

Selection BAC Modification Kit (Gene Bridges version 2.4, 2005) was utilised.  

The manufacturer’s recommended controls were included throughout the 

procedure to ensure that the techniques were correctly applied. A synopsis of 

the methodology and theory behind the strategy is outlined in Section 3.2.  A 

revised and amended version of the manual used in the procedure can be seen at 

the link below:   

http://www.genebridges.com/gb/pdf/K001%20Q%20E%20BAC%20Modification%20

Kit-version2.6-2007-  
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2.2.8.1 Transformation of DH10B carrying fHSVΔpac with the Red/ET 

plasmid (pRed/ET) and expression of recombination enzymes   

A 1 μl (20 ng) aliquot of the Red/ET plasmid (pRed/ET) (Gene Bridges) was 

electroporated into 30 μl of freshly prepared electrocompetent DH10B cells 

(Section 2.2.5.3) containing the HSV-1 strain 17 syn+ BAC (fHSVΔpac).  After 

electroporation the bacteria were resuspended in 1 ml of L-broth and incubated 

at 30oC for 70 min in a platform shaker at 1000 rpm.  The transformed DH10B 

culture was plated onto L-broth agar plates, supplemented with 15 μg/ml of cm 

and 3 μg/ml of tet, and incubated at 30oC for 18-24 h.  Since tet is light sensitive 

the agar plates containing this antibiotic were wrapped in tin foil during 

incubations.  Following incubation a well-isolated single colony was selected and 

inoculated into 50 ml of L-broth containing cm/tet and the culture was 

incubated at 30oC for 18-24 h on the platform shaker at 1000 rpm.  The next day 

duplicate samples (one set for the induced cultures and one set for the 

uninduced cultures), were prepared by adding 30 μl of the overnight culture to 

1.4 ml of L-broth supplemented with cm/tet.  The duplicate bacterial 

suspensions were incubated at 30oC for 2 h on a platform shaker at 1000 rpm 

until the OD600 reached 0.3.  The expression of the genes mediating Red/ET 

homologous recombination was induced by adding 50 μl of 10% L-arabinose to 

one set of samples (induced) and shifting the temperature from 30oC to 37oC.  

Both the induced and uninduced cultures were incubated at 37oC for 45-60 min 

on a platform shaker at 1000 rpm.  After incubation the induced and uninduced 

bacterial suspensions were prepared for electroporation as described in section 

2.2.5.3.  The competent bacteria were subsequently transformed with the PCR 

product, rps-L neo-PCR1, as described below.  

2.2.8.2 Step 1 of the Counter-Selection BAC Modification procedure:- 
insertion of rpsL-neo-PCR1 selection cassette into the HSV-1 BAC 

(fHSVΔpac )  

A 2 μl (200 ng) aliquot of the rpsL-neo-PCR1 product (Section 3.2.2) was 

electroporated into the induced and uninduced bacteria as described in Section 

2.2.5.3.  After electroporation 1 ml of L-broth was added to each cuvette and 
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the bacterial suspension was divided between two universals, representing the 

recombinant and non-recombinant samples.  The non-recombinant samples for 

the induced and uninduced suspensions were retained on ice.  The recombinant 

samples from the induced and uninduced cultures were incubated at 37oC for 70 

min on the platform shaker at 1000 rpm to allow recombination between the 

PCR product and fHSVΔpac to take place.  After incubation each of the four 

cultures was streaked onto an L-broth agar plate supplemented with 15 μg/ml 

cm, 3 μg/ml tet and 15 μg/ml km and incubated at 30oC for 36-48 h.  Bacterial 

colonies from the recombinant induced samples were each inoculated into 100 μl 

of L-broth, supplemented with cm/tet/km, and incubated for 1-2 h at 30oC on a 

platform shaker at 1000 rpm.  After incubation four aliquots of each overnight 

culture were used as follows: an aliquot was prepared for storage (Section 

2.2.4.2) and the other aliquots were used for the functional analysis of the rpsL-

neo-PCR1 cassette (Section 2.2.8.3), preparation of recombinant BAC DNA 

(Section 2.2.8.4) and step 2 of the Counter-Selection BAC Modification procedure 

(Section 2.2.8.5). 

2.2.8.3 Functional analysis of the rpsL-neo-PCR1 selection cassette 

To verify the km resistance (kmR) of selected colonies from the induced 

recombinant plates (Section 2.2.8.2) each colony was replica plated onto L-broth 

agar plates containing either cm/tet and 50 μg/ml stp or cm/tet/km and 

incubated at 37oC for 2 days.  Bacteria containing an inserted and functional 

rpsL-neo-PCR1 cassette within the BAC should display kmR and sensitivity to stp 

(stpS). 

2.2.8.4 Preparation of BAC DNA and confirmation of correct insertion of the 
rpsL-neo-PCR1 selection cassette 

BAC DNA was prepared from bacterial cultures that were kmR and stpS.  A 30 μl 

aliquot of bacterial culture from the 30oC incubation described in Section 2.2.8.2 

was transferred into 2 ml of L-broth supplemented with cm/km and the sample 

incubated at 37oC on the platform shaker at 1000 rpm.  After an overnight 

incubation the culture was inoculated into 100 ml of L-broth containing cm/km 

and incubated again at 37oC in the orbital shaker at 225 rpm overnight.  A 
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modified version of the QIAGEN-tip 100 protocol (Section 2.1.14), designed for 

the production of very low-copy number plasmids, was utilised for the 

preparation of the BAC DNA.  Following the manufacturer’s instructions, 100 ml 

of the bacterial culture was used, along with proportional amounts of the 

reagents supplied with the QIAGEN-tip 100 kit for the preparation of DNA.  Each 

purified BAC DNA sample was resuspended in a final volume of 50 μl 10 mm 

TrisHCl pH 8.0 and stored at 4oC until required. 

2.2.8.5 Step 2 of the Counter-Selection BAC Modification procedure:- 
replacment of the rpsL-neo-PCR1 selection cassette with the non-
selectable PCR product (non-sm) 

An aliquot of each of the 100 μl kmR/stpS cultures from the 1-2 h 30oC incubation 

described in Section 2.2.8.2 was used for Step 2 of the BAC counter-selection 

procedure (Section 3.2.6).  A 300 μl aliquot of L-broth, supplemented with 

cm/tet/km, was added to each sample and the cultures were incubated at 30oC 

overnight on a platform shaker at 1000 rpm.  A 30 μl aliquot of each of the cell 

cultures was transferred to a tube containing 1.4 ml of L-broth, supplemented 

with the same antibiotics as before, and the incubation continued at 30oC until 

the OD600 was 0.3.  The bacterial culture was divided into the uninduced control 

and the induced samples.  A volume of 50 μl of 10% L-arabinose was added to 

each of the induced samples, to initiate the expression of the genes mediating 

Red/ET recombination, and Step 2 of the procedure was started by shifting the 

temperature from 30oC to 37oC.  Both the induced and uninduced cultures were 

incubated at 37oC for 45-60 min on a platform shaker at 1000 rpm and 

subsequently prepared for electroporation (Section 2.2.5.3).  A 2 μl aliquot of a 

1:2 dilution of the overlapping nucleotide non-sm (Section 3.2.5) was added to 

each sample and the DNA electroporated.  Following electroporation 1 ml of L-

broth was added to each cuvette and each culture was divided into two, one 

representing the recombinant sample and the other representing the non-

recombinant sample.  The induced and uninduced non-recombinant samples 

were retained on ice as controls.  The induced and uninduced recombinant 

cultures were incubated at 37oC for 70 min on the platform shaker at 1000 rpm 

to allow recombination between non-sm and the inserted rpsL-neo-PCR1 product 
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contained in fHSVΔpac.  After incubation each culture was replica plated onto L-

broth agar plates containing cm/tet/stp or cm/tet/km. 

2.2.8.6  Transfection of 8-1 cells with HSV-1 BAC DNA containing the rpsL-
neo-PCR1 cassette   

UL25 expressing (8-1) cells were seeded at a density of 5 x 105 cells/dish on 35 

mm dishes and incubated at 37oC.  The following day 5 μl of HSV-1 BAC DNA and      

0.5 μg of the BamHI K fragment, purified from plasmid pGX2, were diluted in 

100 μl Optimem prior to the addition of 3 μl of Plus reagent.  The solution was 

mixed and incubated at RT for 15 min.  A 3 μl aliquot of Lipofectamine mix, 

diluted in 100 μl of Optimem, was added to each sample and the transfection 

mix was incubated for a further 15 min at RT.  During the incubation the medium 

was removed from the monolayers and the cells were washed with 1 ml of 

Optimem.  The transfection mix was added to each dish containing 800 μl 

Optimem and the cells were incubated at 37oC.  After 4.5 h the medium was 

removed and the cells were washed with 1 ml of fresh medium prior to being 

overlaid with 2 ml of growth medium and incubated at 37oC.  After 2-3 days 

incubation the monolayer was scraped into the growth medium, and the viral 

particles were released by sonication.  The virus was plaque-purified (Section 

2.2.9) and a large-scale virus stock prepared.   

2.2.9 Virus plaque purification  

Eighty percent sub-confluent cell monolayers, seeded in 35 mm tissue culture 

dishes, were overlaid with 100 μl of the sonicated viral preparation (Section 

2.2.8.6).  The dishes were incubated at 37oC for 1 h and the dishes were gently 

rocked every 15 min to stop the cells drying out.  After viral absorption the cells 

were overlaid with 2 ml of methyl cellulose medium, to reduce the spread of the 

resulting plaques, and incubated as before for another 2-3 days.  Well-isolated 

plaques were picked from the virus-infected monolayers and transferred into 1 

ml of growth medium, then frozen on dry ice before being stored at –70oC.  The 

titres of the plaque-purified stocks were determined as described in Section 

2.2.10 prior to large-scale viral production (Section 2.2.11).   
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2.2.10 Titration of HSV-1 stocks (plaque assay) 

Serial tenfold dilutions of the virus sample were prepared and 100 μl aliquots 

from each dilution were added to 80% sub-confluent cell monolayers.  After 

incubation at 37oC for 1 h with intermittent rocking, the cells were overlaid with 

2 ml of DMEM supplemented with 2% FCS, 3% human serum and 1X pen/stp.  

Human serum was added to the growth medium during the viral titrations to 

neutralise any unabsorbed virus and to prevent secondary plaque formation.  

Following incubation at 37oC for 2-3 days the medium was removed from the 

cells and replaced with 1 ml of Giemsa stain per dish.  After 20 min at RT the 

stain was washed off the cells under gently running water and the plaques 

counted using a dissecting microscope.  The virus titre was determined by the 

following calculation: 

Titre = number of plaques on 10-n dilution x 10n+1 x 10n+1 PFU/ml.  

2.2.11 Large scale production of HSV-1 stocks 

Four 850 cm2 roller bottles, containing 80% sub-confluent monolayers, were each 

infected with virus at a concentration of 0.01 PFU/cell in a 40 ml volume of 

medium and incubated at 37oC.  After 3-4 days the virus-infected cells were 

harvested into the medium by agitation and pelleted by centrifugation at 1,500 

rpm in a Sorval RT7 centrifuge for 10 min at 4oC.  The supernatant was 

centrifuged at 12000 rpm in a Sorval RC 5B Plus centrifuge for 2 h at 4oC to 

concentrate the cell-released virus.  The resulting pellets of cell-released virus 

were combined in a total volume of 5 ml of medium, dispersed in a bath 

sonicator and divided into aliquots, which were subsequently frozen on dry ice 

and stored at -70oC.  The virus-infected cell pellet was resuspended in 5 ml of 

medium, disrupted by bath sonication and the cell debris removed by 

centrifugation at 3000 rpm in a Sorval RT7 centrifuge for 10 min at 4oC.  The 

supernatant, containing the cell-associated virus, was divided into aliquots and 

frozen on dry ice prior to storage at -70oC.      
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2.2.12 Generation of recombinant baculoviruses 

The recombinant baculoviruses were generated using the Bac-to-Bac system 

from Life Technologies and a synopsis of the procedure used is described in 

Section 5.2. 

2.2.12.1 Preparation of recombinant bacmid DNA 

Recombinant bacmid DNA was isolated from transformed DH10Bac using a 

modified version of the Qiagen Plasmid Purification QIAGEN-tip 100 procedure 

(Section 2.1.14).  A single white colony was inoculated into 5 ml of L-broth 

containing 50 μg/ml km, 7 μg/ml gm and 10 μg/ml tet and incubated at 37oC.  

The following day 1.5 ml of the bacterial suspension was transferred to a 

reaction tube and the cells were pelleted by centrifugation at 13000 rpm for 1 

min.  The cell pellet was resuspended in 300 μl of ice-cold solution P1 (Qiagen), 

gently mixed in 300 μl of solution P2 (Qiagen) and the lysate was incubated at 

RT for 5 min.  Subsequently, 300 μl of P3 (Qiagen) solution was slowly added to 

the sample, producing a white precipitate that contained both protein and E. 

coli genomic DNA.  The sample was incubated at 4oC for 5-10 min prior to 

centrifugation at 13000 rpm for 10 min.  The supernatant was transferred to a 

fresh reaction tube and 800 μl of isopropanol was added.  The samples was 

mixed and placed on ice for 5-10 min prior to centrifugation for 15 min at 13000 

rpm.  The residual salt was washed off the pelleted DNA by the addition of 500 

μl of 70% ethanol.  The sample was centrifuged for 5 min at 13000 rpm and the 

supernatant discarded.  The bacmid DNA pellet was air dried for 5 min, then 

resuspended in 40 μl 10 mM TrisHCl and stored at 4oC until required. 

2.2.12.2 Transfection of Sf21 cells with the modified BAC DNA 

Sf21 cells were seeded onto 35 mm dishes at a concentration of 1 x 106 cells per 

dish and incubated at 28oC overnight.  A 10 μl aliquot of the prepared 

recombinant bacmid DNA (Section 2.2.12.1) was added to 6 μl of Lipofectamine 

diluted in 100 μl of Optimem and incubated at RT for 15 min.  This was followed 

by the addition of 4 μl of Plus diluted in 100 μl of Optimem.  The transfection 

mix was then incubated for a further 15 min at RT.  During the incubation the 
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Sf21 monolayers were washed twice with Optimem and overlayed with 300 μl 

Optimem.  The transfection mix was added to the cell monolayers and the dishes 

placed inside a sealed sandwich box containing a small amount of dry ice.  After 

incubation at 28oC for 5 h the transfection mix was replaced with growth 

medium and the incubation continued for a further 3 days.  The medium was 

then transferred to a 15 ml Falcon tube and the residual Sf21 cells were 

removed by centrifugation at 1,500 rpm for 5 min at 4oC in a bench top 

centrifuge.  The supernatant containing the cell-released virus was retained and 

stored at -70oC. 

2.2.12.3 Production of high-titre baculovirus stocks 

Four 850 cm2 roller bottles of Sf21 cells were each seeded at a density of 2 x 105 

cells/ml in a total volume of 300 ml of growth medium and incubated at 28oC.  

After two days, when the cells had reached a density of 5 x 105 cells/ml, they 

were infected with the recombinant baculovirus at a multiplicity of infection 

(MOI) of 0.1 PFU/cell (1.5 x 107 PFU) and the incubation was continued for a 

further 6 days.  The virus-infected cells were removed from the medium by 

centrifugation at 3000 rpm in a Sorval RT7 centrifuge for 10 min at 4oC.  The 

clarified supernatant was centrifuged at 12000 rpm in a Sorval RC 5B Plus 

centrifuge for 2 h at 4oC.  The resulting viral pellet was resuspended in 2-3 ml of 

growth medium, sonicated, divided into aliquots and fast-frozen on dry ice prior 

to storage at -70oC. 

2.2.12.4 Titration of baculovirus stocks  

Sf21 cells were seeded onto 35 mm dishes at a density of 1 x 106 per plate in 2 

ml of growth medium and incubated overnight at 28oC.  The next day the 

medium was removed and 100 μl of serial tenfold dilutions of the viral sample 

was added to the cells.  The dishes were incubated at RT for 1 h with periodic 

rocking.  The cells were then overlaid with 1.5 ml of TC100 growth medium 

containing 1.5% (w/v) LGT agarose, prewarmed to 45 oC.  When the agarose had 

set 1.5 ml of TC100 growth medium was added to each dish and the incubation 

continued at 28oC.  At 4-5 days post-infection the liquid overlay was removed 

and the cell monolayers were overlaid with 1 ml TC100 medium containing 2% 

neutral red and incubated for 3-4 h at 28oC.  After the stain was removed, the 
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dishes were inverted overnight at 28oC.  The following day the plaques were 

counted using the dissecting microscope. 

2.2.12.5 Preparation of baculovirus protein extract from insect cells 

Sf21 cells were seeded into a 175cm2 flask at a density of 3 x 107 cells in 40 ml of 

growth medium and incubated at 28oC.  The following day the cells were 

infected with the appropriate recombinant baculovirus at a MOI of 5 PFU/cell.   

After incubation at 28oC for 2 days the cells were detached from the flask into 

the medium by gentle agitation and pelleted by centrifugation at 3000 rpm in a 

Sorval RT7 centrifuge for 10 min at 4oC.  The supernatant was discarded and the 

cells were washed twice in PBS, before being resuspended in 1 ml of sterile 1X 

phosphate buffer (Section 2.1.11) containing protease inhibitors (Boehringer 

Mannheim).  The cell suspension was sonicated and then centrifuged at 35000 

rpm for 30 min in a TLA 100.2 rotor using a BECKMAN TL-100 centrifuge.  The 

supernatant, containing the protein extract, was retained and divided into 

aliquots prior to fast-freezing on dry ice and storage at –70oC.   

2.2.12.6 Baculovirus infection of mammalian cells 

U2OS cells were seeded onto 35 mm dishes at a density of 8 x 105 cells per dish 

and incubated at 37oC.  After incubation overnight the cell density was assumed 

to be 1.6 x 106.  The medium was removed from the monolayers and the cells 

were singly infected with baculovirus at an MOI of 50 PFU/cell in a final volume 

of 100 μl or infected with two viruses, each at an MOI of 25 PFU/cell/ in a final 

volume of 50 ul.  After absorption of the virus at RT for 1 h the inocula were 

removed and the cells were washed twice with fresh growth medium.  The cells 

were then infected with ΔUL25MO at an MOI of 2 PFU/cell in a final volume of 

100 μl.  After virus absorption at 37oC for 1 h the inocula were removed and the 

cells were washed twice with fresh medium.  The cells were overlaid with 2 ml 

of growth medium and incubated at 37oC for 18-24 h.  If the cells were to be 

analysed using immunofluorescence (Section 2.2.12.8 and 2.2.17.2) they were 

seeded at a density of 1 x 105 cells onto 13 mm glass coverslips placed at the 

bottom of a 24-well dish and overlaid with 1 ml of growth medium.  After 

overnight incubation at 37oC, viral infection of the cells was carried out as 

described above.  
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2.2.12.7 Preparation of baculovirus protein extract from mammalian     
cells  

U2OS cells were grown on 35 mm tissue culture dishes and infected with the 

appropriate baculovirus stock as described in Section 2.2.12.6.  At 24 hpi the cell 

monolayers were scraped into the growth medium, and each transferred to a 1.5 

ml reaction tube.   The cells were pelleted, by centrifugation at 2000 rpm for 1 

min, resuspended in TBS containing protease inhibitor tablets and the 

centrifugation step was repeated.  The cell pellet was mixed with 500 μl ice-

cold EZ lysis buffer and placed on ice for 20 min, with periodic vortexing.  A 20 

μl aliquot, referred to as the total protein sample (TP), was transferred to a 

reaction tube containing 10 μl 3X boiling mix and stored at -20oC until required.  

The remaining lysed cells were clarified by pelleting the cell debris at 35000 rpm 

for 20 min at 4oC in a TLA 100.2 rotor, using a BECKMAN TL-100 ultra centrifuge.  

After centrifugation another 20 μl sample, referred to as the soluble protein 

extract (SP), was transferred to a reaction tube containing 10 μl of 3X boiling 

mix and stored at -20oC until required.    

2.2.12.8 Assessment of the efficiency of baculovirus infection using an 
immunofluoresence assay 

Baculovirus-infected U2OS cell monolayers were prepared as described in 

Section 2.2.12.6.  The monolayers, grown on the coverslips placed in 24-well 

plates, were washed twice with PBS and then carefully overlaid with 1 ml PBS 

containing 5% (v/v) formaldehyde, 2% (w/v) sucrose in a fume hood at RT.  After 

10 min the monolayers were washed three times with PBS prior to 

permeabilisation of the cells with 1 ml PBS containing 0.5% NP40 10% sucrose.  

Following incubation for 5 min at RT the cells were washed three times with 

PBS-1% FCS (Section 2.1.11).  With the cell monolayer facing down, the 

coverslips were each transferred on to a 20 μl droplet of the UL25 monoclonal 

antibody MAb166, diluted 1:500 in PBS-1% FCS, placed in the well of the lid from 

a 24-well dish.  The coverslips on the lid were put inside a sealed box to reduce 

evaporation and incubated for 1 h at RT.  Unbound antibody was subsequently 

removed by immersing each coverslip three times in PBS-1% FCS for 5 min at RT.  

Each coverslip was then transferred to a 20 μl droplet of the secondary antibody 
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anti-mouse IgG conjugated to FITC, diluted 1:100 in PBS-1% FCS, and incubated 

for 1 h as before.  Unbound antibody was removed by washing each coverslip 

three times in PBS-1% FCS.  The cell nuclei were stained with 20 μl propidium 

iodide solution (20 μl propidium iodide in 20 ml PBS) for 2 min at RT and the 

coverslips were again washed three times in PBS-1% FCS, followed by two rinses 

in dH2O to remove any residual salt remaining from the PBS washes.  With the 

cell monolayer facing up, the coverslips were transferred onto Whatman’s 

number 1 blotting paper and allowed to dry.  Each coverslip was subsequently 

transferred, with the cell monolayer facing down, onto a 5 μl droplet of Mowiol 

(Harco) mounting fluid on a glass slide.  The cells were examined using the Zeiss 

Axioplan 2 confocal microscope and the images were obtained using the 

associated LSM 510 software.    

2.2.13 Sterility of viral stocks 

The sterility of the viral stocks was checked by streaking a small sample onto a 

blood agar plate.  The plate was sealed with ParafilmTM and incubated at 37oC 

for up to 5 days.  Contaminated viral stocks were discarded. 

2.2.14 Detection of full length packaged viral DNA  

2.2.14.1 Preparation of total and DNase I resistant viral DNA  

DNA preparation for Southern blots 
 
U2OS cells, seeded onto 35 mm dishes, were grown and infected with the 

appropriate baculovirus, as described in Section 2.2.12.6.  Following incubation 

at 37oC for 24 h the medium was removed and 2.3 ml of ice-cold TBS was added 

to each monolayer.  The cells were scraped into the TBS,  placed in a 15 ml 

Falcon tube and dispersed by vortexing.  Each cell suspension was divided into 

two 1 ml aliquots and transferred to reaction tubes labelled (A) and (B), with 

sample (A) representing the total viral DNA content of the cells and sample (B) 

representing the DNase I resistant (packaged) DNA fraction of the cells.  Both 

aliquots were centrifuged at 13000 rpm in a bench top microfuge for 12 sec and 

the supernatant discarded.  A 184 μl aliquot of RSB containing 0.5% NP40 was 

added to sample (A) and the mixture vortexed.  This was immediately followed 
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by the addition of 184 μl of 2X CLB containing 1 mg/ml of protease.  The sample 

was mixed by gentle inversion of the reaction tube and incubated at 37oC for     

1 h.  A 184 μl aliquot of RSB containing 0.5% NP40 and 200 μg/ml DNase I was 

added to sample (B), followed by incubation at 37oC for 20 min, with occasional 

vortexing.  Subsequently, 184 μl of 2X CLB containing 1 mg/ml of protease was 

added to (B) and the incubation continued for 1 h. 

Following incubation, 32 μl of 4 M NaCl, 50 mM EDTA solution was added to (A) 

and (B) samples and the DNA was sequentially extracted with phenol and 

chloroform:isoamyl alcohol.  After the addition of phenol the sample was mixed 

by rotation for 15 min.  The organic and aqueous phases were subsequently 

separated by centrifugation at 13000 rpm for 1 min and the DNA-containing top 

phase was transferred to a fresh reaction tube.  A 400 μl aliquot of 

chrolofrom:isoamyl alcohol (24:1) was added to the DNA solution and the sample 

mixed by rotation for 15 min.  The DNA-containing top phase was removed and 

the DNA was precipitated from the solution by adding 1 ml of ethanol to each 

sample, mixing and then placing them overnight at –20oC.  The following day the 

samples were centrifuged at 13000 rpm for 10 min, after which the DNA pellet 

was allowed to air dry for 5-10 min.  A 160 μl and 80 μl aliquot of 10 mM TrisHCl 

pH8.0 containing 1X RNase was added to each of the (A) and (B) samples, 

respectively.  After the DNA was dissolved thoroughly by incubating the samples 

for 6 h at 37oC, the samples were stored at 4oC until required. 

DNA preparation for pulse field gels 
 
U2OS cells were grown on 35 mm dishes as outlined in Section 2.2.12.6, except 

that after virus-absorption the residual virus was removed from the cells by an 

acid wash (Section 2.2.7.4).  DNA was prepared from infected U2OS cells in 

essentially the same manner as for Southern blots except for the following 

modifications.  The amount of RSB containing 0.5% NP40 and the amount of 2X 

CLB containing 1 mg/ml of protease added to samples (A) were reduced to 100 

μl.  Similarly, the amount of RSB containing 0.5% NP40, plus 200 μg/ml DNase I, 

and the amount of 2X CLB containing 1 mg/ml of protease added to sample (B) 

were reduced to 100 μl.  The samples were carefully mixed throughout, and 

both phenol extraction and ethanol precipitation of the DNA were omitted to 

minimise shearing of the high molecular weight DNA.  The DNA molecules 
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obtained were separated using pulse field gel electrophoresis as described in 

Section 2.2.16. 

2.2.14.2 Preparation of a 32P-labelled DNA probe 

DNA was labelled with 32P using Roche’s Random Primed DNA Labelling kit.  

Briefly, 500 ng of plasmid DNA in a total volume of 9 μl was boiled for 10 min 

and chilled on ice before the addition of 20 μCi of α-32P dCTP, 20 μCi of α-32P 

dGTP, 3 μl dNTP mix, 2 μl 10X reaction mix containing random primers and 1 

unit of Klenow in a final volume of 20 μl.  After incubation at 37oC for 1 h the 

reaction was stopped by the addition of 5 μl 0.2 M EDTA pH 8.0 and diluted to a 

final volume of 50 μl with 25 μl 10 mM TrisHCl pH 8.0.  Unincorporated 32P-

labelled nucleotides were removed from the sample using a Microspin Sephadex 

G-50 spin column, following the manufacturer’s instructions.  The probe was 

diluted by the addition of 40 μl 10 mM Tris pH 8.0 and subsequently denatured 

by the addition of 20 μl 1 M NaOH.  After incubation at RT for 5 min the reaction 

was neutralised by the addition of 20 μl 1 M HCl.   

2.2.15 Southern blots 

2.2.15.1 DNA digestion and electrophoresis 

Following digestion of a 36 μl aliquot of DNA with BamHI the reaction was 

stopped by the addition of 10 μl of DNA loading buffer.  Subsequently, the 

sample was loaded onto a 0.8% agarose gel in 1X Loening’s buffer (Section 

2.1.11) and the DNA separated by electrophoresis at 15-20 V overnight in a BRL 

horizontal electrophoresis apparatus.  To confirm that the DNA was both 

completely digested and that equal amounts had been loaded into each well, the 

gel was examined under short wave UV light the following day and the ethidium 

bromide-stained DNA photographed using a gel documentation system (Bio-Rad) 

prior to Southern blot transfer (Section 2.2.15.2).  
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2.2.15.2 Southern blot transfer 

DNA was denatured by immersing the gel in 400 ml of alkaline transfer solution 

for 15-30 min and then transferred to a Hybond-XL membrane (Amersham) by 

capillary transfer in alkaline transfer solution overnight at RT.  The following day 

the membrane was removed from the gel and soaked in 100 ml of neutralising 

solution for 15 min with occasional agitation.  The membrane-bound DNA was 

cross-linked by exposure to 120 mJ/cm2 UV light in a Stratalinker (Stratagene).  

The membrane was then placed in a Hybaid bottle containing 50 ml of Southern 

blot prehybridisation buffer.  After incubation in the Hybaid oven at 68oC for 1-2 

h the solution was replaced with 20 ml Southern blot prehybridisation buffer 

containing 0.01 mg/ml of denatured sheared calf thymus DNA and the incubation 

continued for a further 3-5 h.  The purified denatured 32P-labelled probe 

(Section 2.2.14.2) was added to the solution and the hybridisation carried out at 

68oC for a further 16-24 h.  The radioactive solution was removed and the 

membrane was washed with 50 ml Southern blot prehybridisation buffer at 68oC 

for 45 min.  This was followed by two 30 min washes with membrane wash 

buffer (Section 2.1.11) at 68oC and final rinse of the membrane with dH2O.  The 

Hybond-XL membrane was exposed to a phosphorimager screen and the screen 

was analysed on a Bio-Rad Personal Molecular Imager FX using Quantity One 

software.    

2.2.16 Pulse field gels  

DNA was prepared and treated with DNase as described in Section 2.2.14.1.  A 25 

μl aliquot of each DNA sample was analysed on the Bio-Rad DR-II apparatus as 

recommended by the manufacturer.  Using a wide-bored tip, DNA samples were 

loaded onto a 1% agarose (Bio-Rad: pulse field gel electrophoresis [PFGE] 

certified) gel in 0.5X TBE buffer.  The DNA was resolved with a voltage gradient 

of 6 volts/cm for 18 h at 14oC, with a linear time switch gradient from 1 to 15 

sec.  After electrophoresis the gel was stained with ethidium bromide and 

photographed.  The DNA fragments were transferred onto a Hybond-XL 

membrane by Southern blotting (Section 2.2.15.2).     



Chapter 2 100

2.2.17 Analysis of viral assembly in infected cells 

2.2.17.1 Electron microscopy   

Cells were grown on 35 mm dishes and infected at 37oC with the appropriate 

baculovirus as outlined in Section 2.2.12.6.  At 24 hpi the medium was removed, 

the cells were washed twice with 1 ml of PBS and then fixed by the addition of 

500 μl of 2.5% glutaraldehyde in PBS overnight at 4oC.  The following day the 

cells were rinsed twice with 1 ml of PBS and incubated at RT in 200 μl of osmium 

tetroxide, with occasional rocking of the dishes.  After 1 h the monolayers were 

washed twice with PBS, scraped into 0.5 ml of PBS and each transferred to a 1.5 

ml reaction tube.  The cells were pelleted by centrifugation at 3000 rpm for 5 

min and then each sample was resuspended in 0.5 ml of 1% SeaPlaque agar 

(Lonza) pre-warmed to 50oC.  The samples were spun at 5000 rpm for 5 min in a 

swing-out rotor in a Beckman Microfuge 12 to ensure the pellet formed at the 

bottom of the reaction tube.  Following centrifugation the samples were left at 

4oC for 1-2 h to allow the agar to set.  The bottom of the tube was then cut off 

to release the agar embedded cell pellet and the cell/agar plugs were trimmed 

to approximately 2 mm3.  Each agar plug was transferred to a beem capsule and 

the pellets were dehydrated by sequential 1 h incubations at RT in increasing 

concentrations (30, 50, 70, 90, 100%) of ethanol, with a final incubation at RT 

overnight in 100% ethanol.  The following day the ethanol was carefully removed 

from each sample and replaced with freshly prepared Epon 812 resin mix 

(Section 2.1.11).  The samples were incubated overnight at RT, with the lids of 

the beem capsules left open to allow residual ethanol to evaporate from the 

mix.  The next day the cell pellets were drained and fresh Epon 812 resin mix 

added.  The samples were incubated overnight at RT before being labelled and 

placed in an embedding oven at 65oC for 2 days to allow the resin to harden.       

The embedded samples were sectioned using an ultra-microtome (Leica Ultracut 

E) and the thin sections mounted onto 400 mesh uncoated copper grids by Dr F. 

Rixon or Mr J. Aitken at the MRC Virology Unit.  The sections were each 

subsequently stained in 100 μl of a saturated solution of uranyl acetate in 90% 

ethanol for 1 h, and washed twice by immersion in 300 μl of sterile dH2O for 5 

min.  The excess water was drained off each grid, by carefully blotting the grid 
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onto Whatman’s no. 1 filter paper.  Each grid was subsequently transferred into 

100 μl lead citrate solution (Section 2.1.11) and stained for 1 min, followed by 

three 10 min washes in sterile dH2O and then dried.  The grids were examined at 

80 KV using a JEOL 100S electron microscope.           

2.2.17.2 Fluorescent in-situ hybridisation (FISH) 

To determine the location of viral DNA within the cell, the U2OS cells on 

coverslips were infected with the appropriate baculovirus and prepared as 

outlined in Section 2.2.12.6.  Following overnight incubation at 37oC the cells 

were washed twice with 1 ml of PBS-1% FCS and then fixed in 1 ml of pre-chilled 

95% ethanol containing 5% acetic acid at –20oC for 5 min.  After fixation the cells 

were carefully rinsed three times with 1 ml of PBS-1% FCS and stored at 4oC until 

required.  Preparation of the Cy3-labelled cos56 probe, containing HSV-1 strain 

17 syn+ nucleotide sequences 79,442-115,152, and FISH were carried out by Mrs 

J.  Murray from the MRC Virology Unit (Cunningham & Davison, 1993, Everett et 

al., 2007).  The probe was labelled by nick translation using Cy3-dCTP 

(Amersham), following the manufacturer’s protocol.  After DNase I treatment 

the cells were incubated for 30 min at 37°C in 20 µl hybridisation buffer (Section 

2.1.11) per coverslip in a humidified microarray hybridisation chamber (Camlab).  

The coverslips were removed from the chamber, drained and incubated in 20 μl 

hybridisation buffer containing the probe at a concentration of 1 ng/µl for 2 min 

at 95°C to denature the probe.  The coverslips containing the probe were then 

placed in the humidified chamber and the hybridisation was continued overnight 

at 37°C.  The cells were washed at 60°C for 5 min with 2x SSC and once with 2x 

SSC at RT.  After two washes with PBS-1% FCS, the coverslips were incubated in 

PBS-1% FCS containing 1 μg/ml DAPI for 2.5 min.  The cells were then washed 

three times with PBS-1% FCS, air dried, and mounted in Citifluor AF1 (Citifluor 

Ltd) on glass slides.  The prepared slides were examined using a Zeiss LSM 510 

confocal microscope with 405 and 543-nm laser lines, scanning each channel 

separately under image capture conditions that eliminated channel overlap.  The 

images were exported for analysis as tagged-image format files and then 

processed using Adobe Photoshop.   
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2.2.18 Protein analysis  

2.2.18.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were resolved by electrophoresis on 10% SDS-polyacrylamide gels in 1X 

RGB (Section 2.1.11) prepared from a stock solution of 30% w/w acrylamide:0.8% 

bisacrylamide (37.5:1) (Protogel, National Diagnostics).  The resolving gel layer 

was polymerised by the addition of 200 μl of 10% ammonium persulphate and 20 

μl TEMED and cast into the Mini Protean II gel sandwich (Bio-Rad) to 

approximately 5 mm below the gel comb slot.  The gel solution was overlaid with 

1X RGB.  After the gel had polymerised, the 1X RGB solution was removed and 

the resolving gel was overlaid with 5% polyacrylamide in 1X SGB (Section 2.1.11) 

containing the polymerisation reagents.  The comb was inserted into the solution 

and gel was allowed to polymerise at RT.  Boiling mix (3X) (Section 2.1.11) was 

added to the protein samples at a final concentration of 1X, and the samples 

were heated to 100oC in a boiling water bath for 3 min shortly before they were 

loaded onto the gel.  The molecular weight markers used were either Rainbow 

Markers (Amersham Pharmacia) or MagicMark (Life Technologies).  The proteins 

were separated by electrophoresis in 1X Tank buffer (Section 2.1.11) at 200 V 

until the tracking dye had reached the bottom of the resolving gel.  The gels 

were then prepared for Western blotting (Section 2.2.18.2).  

2.2.18.2 Western blotting  

Protein transfer and detection 
 
Proteins separated by SDS-PAGE (Section 2.2.18.1) were transferred onto a 

Hybond-ECL membrane using a Mini Protean II blotting apparatus (Bio-Rad), 

according to the manufacturer’s instructions.  Transfer of the protein to the 

Hybond-ECL membrane was carried out in 1X Towbin buffer (Section 2.1.11) at 

100 V for 1-2 h.  To block non-specific protein-binding sites, the Western blot 

was transferred into blocking buffer (5% (w/v) dried skimmed milk powder, 

0.05% (v/v) Tween-20 in PBS) and incubated overnight at 4oC with gentle 

shaking.  The following day the blot was placed in fresh blocking buffer, 

containing the appropriately diluted primary antibody (Section 2.1.10), and 

incubated for 1-4 h at RT with gentle shaking.  Unbound primary antibody was 
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removed by rinsing the blot twice in wash buffer (0.05% (v/v) Tween-20 in PBS), 

followed by incubation in fresh wash buffer for 15 min at RT with gentle shaking.  

The blot was washed twice more in wash buffer for 5 min at RT and subsequently 

placed in the appropriate secondary antibody solution (Section 2.1.10) diluted in 

2% (w/v) dried skimmed milk powder, 0.05% (v/v) Tween-20 in PBS and 

incubated for 1 h at RT with gentle shaking.  Unbound secondary antibody was 

washed off the blot as outlined for the unbound primary antibody.  Bound 

antibody was detected using an ECL chemiluminescence kit (Amersham) with 

Kodak X-OMAT autoradiograph film.   

Stripping antibodies from Hybond-ECL membranes 
   
After Western blotting the Hybond-ECL membrane was stored in PBS 

supplemented with 0.05% (v/v) Tween-20 at 4oC.  To remove the antibodies the 

Western blot was immersed in a solution containing 100 mM β-mercaptoethanol, 

2% SDS and 2.5 mM Tris HCl pH 6.0 and incubated at 55oC for 1 h with gentle 

shaking.  The membrane was then washed extensively in wash buffer at RT.  

2.2.19 GST-fusion protein expression and GST pull-down assay  

2.2.19.1 Induction of GST-UL36CBD and GST proteins expressed in E. 
coli BL21  

E. coli BL21 cells were transformed (Section 2.2.5.4) with either the GST 

expression plasmid, pGEX-2TNMCR (Section 2.1.9), or the recombinant pGEX-

2TNMCR plasmid containing the pUL36 capsid binding domain (UL36cbd), pGEX-

UL36cbd (Section 7.1.1).  Single colonies were selected from the recombinants 

obtained and inoculated into 10 ml of L-broth, supplemented with 100 μg/ml 

amp.  After the samples had been incubated overnight at 37oC, a 2.5 ml aliquot 

from each culture was inoculated into 250 ml of amp containing L-broth and the 

bacterial suspensions were incubated at 37oC in the oribital shaker at 225 rpm 

until the OD600 reached 0.4-0.6.  At this point 1ml of each culture, representing 

the uninduced sample, was removed and stored at 4oC for further analysis by 

SDS-PAGE.  Expression of the GST-fusion proteins was induced in the remainder 

of each culture by the addition of IPTG to a final concentration of 0.2 mM.  After 

the induced cultures had been incubated for 3 h at 37oC, a 1 ml aliquot was 
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removed from each sample and stored at 4oC for further analysis.  The 

remainder of each culture was used for protein purification (Section 2.2.19.2).  

The 1 ml uninduced and induced samples were removed from 4oC storage and 

centrifuged at 13000 rpm for 5 min at RT.  The bacterial pellets were 

resuspended in 100μl of 10mM TrisHCl pH8.0 and 5μl of each sample was 

resolved by SDS-PAGE (Section 2.2.18.1).    

2.2.19.2 Purification of GST-UL36CBD and GST proteins from E. coli 
BL21  

The induced bacterial culture retained for protein purification (Section 2.2.19.1) 

was centrifuged at 5000 rpm in a SORVAL RC 5B Plus for 10 min at 4oC.  After 

centrifugation the bacterial pellet was resuspended in 2.5 ml of sonication 

buffer (Section 2.1.11) and placed on ice.  Subsequently, the bacterial cells 

were lysed by sonication using a Branson sonifier 450 soni-probe, with the 

machine giving five 15 sec bursts set at 90% intensity.  Following sonication the 

sample was centrifuged in a SORVAL RC 5B Plus at 6000 rpm for 30 min at 4oC, 

and the supernatant was retained for analysis.  The pellet was resuspended in 

sonication buffer and the sample was resonicated for two 15 sec bursts at the 

same intensity as before.  The cell debris was subsequently removed by 

repeating the previous centrifugation step.  The supernatants obtained were 

pooled and were clarified further by centrifugation at 30000 rpm for 30 min at 

4oC in TLA 100.2 rotor using a BECKMAN TL-100 ultra centrifuge.  The 

supernatants containing the soluble GST-UL36CBD or GST protein extracts were 

divided into 500μl aliquots, frozen on dry ice and stored at –70oC until required.      

2.2.19.3 GST pull-down assay 

Aliquots of 200 μl of either the GST or GST-UL36cbd protein extracts (bait 

proteins) or the target protein extracts expressing the wt pUL25 or mutant UL25 

proteins, which were prepared as described in Section 2.2.12.5, were mixed 

with 400 μl of Triton 1X buffer (Section 2.1.11).  Gluthathione-Sepharose 4B 

beads were rehydrated in PBS-A to make a 1:1 (v/v) slurry according to the 

manufacturer’s instructions (GE Healthcare) and 50 μl of the suspension was 

added to each sample and mixed by rotation for 1.5 h at 4oC.  The samples were 

then centrifuged at 13000 rpm for 30 sec at 4oC.  The beads that had been 
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incubated with the bait protein extracts were retained and washed three times 

with 100 μl of Triton 1X buffer.  After each wash the beads were concentrated 

by centrifugation as described above.   The washed beads were resuspended in 

100 μl of Triton 1X buffer and each sample transferred to a fresh 1.5 ml reaction 

tube.  The beads were again concentrated by centrifugation and the supernatant 

discarded.  Beads that had been incubated with the target protein extracts were 

discarded but the supernatants were retained.  This procedure was used to pre-

clear the target protein lysates of any aggregated or insoluble proteins that 

could bind non-specifically to the bait-bound beads.  A 300 μl volume of the pre-

cleared target protein extract was added to the tubes containing the bait-bound 

beads, and the samples were mixed by rotation at 4oC for 1.5 h.  The beads were 

pelleted by centrifugation at 13000 rpm for 30 sec at 4oC, washed three times in 

750 μl of Buffer A (Section 2.1.11).  The beads were concentrated by 

centrifugation and the supernatant discarded.  A volume of 40 μl of Triton 1X 

buffer was added to each sample together with 10 μl of 3X boiling mix prior to 

storage of the samples at –20oC.  Before the samples were loaded onto an SDS-

polyacrylamide gel they were heated to 100oC for 3 min to elute the bound 

proteins, and the beads were removed by centrifugation at 13000 rpm for 1 min 

at RT.  A 25 μl aliquot of each supernatant was loaded onto an SDS-

polyacrylamide gel and the presence of a particular protein was detected by 

Western blot analysis (Section 2.2.18.2).     
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3 Generation of the HSV-1 UL25 deletion mutant 

ΔUL25MO 

3.1 Introduction 

An existing HSV-1 UL25 null virus, KUL25NS (McNab et al., 1998), which was 

constructed by the insertion of an in-frame stop codon in the UL25 open reading 

frame, was available at the beginning of this study (Figure 3.1).  However, the 

problem with KUL25NS is that during complementation assays recombination can 

occur between the UL25 sequences in KUL25NS and the UL25 sequences present 

in the expression plasmid, resulting in the production of wt progeny.  The 

presence of wt virus among the progeny makes it difficult to distinguish between 

non-functional mutant constructs and those that have a low level of activity.  To 

increase the sensitivity of the functional assay, an HSV-1 UL25 deletion mutant 

was generated using the Counter-Selection BAC Modification kit, supplied by 

Gene Bridges (Section 3.2).  This kit utilises homologous recombination in vivo in 

E. coli to introduce mutations into BACs, which are large stable genetic 

elements that are replicated in E. coli vectors and can harbour foreign DNA 

sequences of up to 300 kb.  The BAC used in this study (fHSVΔpac) has the cm 

resistance gene, ensuring the BAC is maintained in the E. coli host strain DH10B 

in the presence of chloramphenicol, and contains a mutant HSV-1 strain 17 syn+ 

genome lacking the packaging signals.  The mutated HSV-1 containing BAC was 

transfected into UL25-expressing 8-1 cells together with the a sequence to 

generate the HSV-1 UL25 deletion virus ΔUL25MO.     

3.2 The Counter-Selection BAC Modification technique  

3.2.1 Red/ET recombination 

Conventional methods of DNA cloning and manipulation rely on the use of 

restriction enzymes and DNA ligases to construct novel combinations of DNA 

molecules in vitro.  Restriction enzymes generally cut on average about every 

250-4000 bp, limiting manipulations to only short segments of DNA.  Rare cutting 

enzymes are available which can produce fragments of up to approximately 50 
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Figure 3.1 Strategy used by McNab et al. (1998) to create a UL25 null mutant

The HSV-1 genome is shown at the top with long and short unique region 
sequences labelled as UL and US, respectively.  Below, the 6,282 bp EcoRI (E) - 
SnaBI (S) fragment is expanded, which contains the UL25 ORF specified by 
sequences 48,813 to 50,555.  This fragment was cloned into a vector and the single 
NotI (N) site present was converted to a SpeI site by insertion of a 14 bp linker.  The 
linker contained stop codons in all three reading frames.  The NotI site is located at 
codon 104 of the UL25 ORF,  therefore insertion of the SpeI linker would terminate 
translation of UL25 at this point (adapted from McNab et al., 1998).
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kb, but ligating these in vitro is difficult.  The advent of PCR reduced the 

reliance on restriction enzymes but amplifying pieces of DNA larger than 10 kb is 

difficult, and the technique also suffers from poor fidelity that becomes more 

significant the larger the sequence being amplified.  The Counter-Selection BAC 

Modification procedure was designed to address some of the limitations by using 

the Red/ET recombination system, which is also referred to as lambda-mediated 

recombination.  Red/ET recombination relies on homologous recombination in 

vivo in E.coli strains that express the phage-derived protein pair, Redα and 

Redβ, an exonuclease and DNA annealing protein, respectively.  A functional 

interaction between Redα and Redβ is necessary for the proteins to catalyse the 

homologous recombination event, which is illustrated in Figure 3.2.  This process 

is assisted further by the lambda encoded Gam protein that inhibits the RecBCD 

exonuclease activity of E.coli.  The advantage of this approach is that a range of 

modifications, such as insertions, deletions or substitutions, can be precisely 

introduced at any target site as the regions of homology can be chosen freely in 

DNA molecules of any size.  Since the recombination event is carried out in vivo, 

it is considered inherently more accurate than PCR, because the endogenous 

proofreading and repair machinery of E. coli are constantly monitoring the 

process.   

3.2.2 RpsL-neo counter-selection system 

The technique relies on the rpsL gene, which encodes the S12 ribosomal protein, 

and stp selection.  Bacterial resistance to high concentrations of stp is the result 

of recessive mutations in the rpsL gene.  However, if both the wt and mutant 

alleles of rpsL are expressed in the same strain of E. coli, the strain is sensitive 

to stp (stpS).  The rpsL-neo counter-selection cassette (Figure 3.3) used in the 

BAC modification procedure exploits this feature by introducing the wt rpsL gene 

and hence conferring stpS to the host bacteria that were previously stpR.  An 

additional antibiotic marker, km, is also carried on the rpsL-neo cassette and 

consequently both positive and negative drug selection markers are introduced 

into the host. 



Double-stranded break

Redα = 5'        3'
'                    exonuclease

Redβ =  Single stranded 
              binding protein

Joint molecule formation

DNA replication

Figure 3.2  Red/ET recombination

A functional interaction between Redα and Redβ is required to catalyse 
the homologous recombination event.  The double-stranded break (DSB) 
is initiated by the protein pair.  First, Redα digests one strand of the DNA 
from the DSB, leaving the other strand as a 3' ended single-stranded 
DNA overhang.  Redβ then binds to and coats the single-stranded DNA 
and then aligns with homologous DNA.  Once the protein-nucleic acid 
f i lament is  a l igned i t  acts as a pr imer for  DNA repl icat ion.   The 
recombination enzymes can be expressed from the plasmid pRed/ET and 
are therefore transferrable to any E.coli strain (adapted from the Counter-
Selection BAC Modification manual, version 2.4, June 2005). 
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Figure 3.3 A schematic representation of the rpsL-neo counter-selection cassette 

 

Counter-Selection BAC Modification is essentially a two-step approach.  In the 

first step the rpsL-neo cassette (rpsL-neo) flanked by homology arms is inserted 

by a Red/ET mediated recombination event into the target DNA, conferring 

kmR/stpS onto the host bacteria.  In the second step the counter-selection 

cassette is replaced with markerless (non-selectable) DNA using Red/ET 

recombination, and the host bacteria containing the markerless DNA are 

identified by their kmS/stpR.  The recombination events are initiated in the host 

bacteria after transformation with the Red/ET expression plasmid, pRed/ET, 

which is shown in Figure 3.4.  This plasmid carries the genes specifying the 

recombination proteins Redα and Redβ that are under the control of the 

arabinose-inducible pBAD promoter and also contains the tet resistance marker, 

conferring tet resistance (tetR) to the host cell.  The experimental approach 

used is summarised in Figure 3.5 and the methods employed are described in 

detail in Section 2.2.8.   

For the counter-selection technique to work it is important that the E.coli strain 

used in the procedure carries a mutated rpsL gene and consequently is stpR.  

Prior to using the Counter-Selection BAC Modification kit, DH10B bacteria 

carrying the HSV-1 BAC were plated onto L-broth agar supplemented with stp, 

cm, km or tet to verify they were indeed stpR, cmR, kmS and tetS.  Subsequently, 

the DH10B bacteria were transformed with pRed/ET and grown at 30oC in order 

to maintain the temperature sensitive plasmid within the host cells.  To induce 

expression of the Redα and Redβ genes from the pRed/ET plasmid in DH10B cells 

L-arabinose was added to the bacterial culture and the incubation temperature 

was shifted from 30oC to 37oC.    



Figure 3.4 Map of Red/ET expression plasmid pRed/ET  

The plasmid carries the lambda red alpha and beta genes that 
express the Red/ET recombination proteins, which together with 
the gam and recA genes are located in a polycistronic operon 
under the control of the inducible promoter pBAD.  Expression of 
the Red/ET recombination proteins is induced by L-arabinose 
activation of pBAD at 37oC.  The pBAD promoter is both positively 
and negatively regulated by the product of the araC gene.  AraC is 
a transcriptional regulator that forms a complex with L-arabinose 
and allows transcription to begin.  In the presence of glucose, or 
the absence of arabinose, transcription is blocked by the AraC 
dimer.



Figure 3.5 Flow diagram of the experimental outline for the generation of the UL25 null   
HSV-1 BAC 

(A) The E. coli strain DH10B carrying the HSV-1 BAC (fHSV∆pac) was transformed with the 
expression plasmid pRed/ET.  The chloramphenicol marker (cm) highlighted in brown is 
shown on the HSV-1 BAC together with the homology regions (hm) highlighted in blue.   The 
expression of genes mediating Red/ET recombination was induced by the addition of L-
arabinose and a temperature shift from 30oC to 37oC.  

(B) Following induction of the Red/ET recombination enzymes, step 1 of the Counter-
selection BAC Modification technique was carried out.  The bacteria were prepared for 
electroporation and the linear rpsL-neo counter-selection/selection cassette (rpsL-neo-PCR1 
PCR product) flanked by HSV-1 homology arms (shown in blue) was electroporated into the 
bacteria.  Red/ET recombination inserts the functional cassette into the target locus in the 
fHSV∆pac BAC.  Only colonies carrying the modified BAC will survive km selection and will 
also become stpS.

(C) Following selection of kmR/stpS colonies and verification that they contained a modified 
BAC, step 2 of the Counter-selection BAC Modification technique was performed.  The 
expression of genes mediating Red/ET was induced by the addition of L-arabinose and a 
temperature shift from 30oC to 37oC, after which the bacterial cells were prepared for 
electroporation.  The non-selectable DNA fragment (Non-sm) consisting of sequences from 
the right and left homology arms of the selection cassette was electroporated.  Red/ET 
recombination should replace the rpsL-neo-PCR1 selection/counter-selection cassette with 
the markerless Non-sm fragment.  Only colonies that have lost the cassette will grow on stp 
containing plates and will also be kmS.  
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3.2.3 Generation of the rpsL-neo counter selection cassette 
flanked by homology arms (rpsL-neo-PCR1) 

To target the UL25 gene of fHSVΔpac, a PCR product (rpsL-neo-PCR1) that 

contained the rpsL-neo counter-selection cassette flanked by sequences 

homologous to 50 bp immediately upstream and downstream of the UL25 ORF 

was generated.  The 1.4 kb rpsL-neo-PCR-1 fragment was produced using the 

forward primer PRC1-For and the reverse primer PRC1-Rev (Table 3.1) and 

amplified from the rpsL-neo DNA template supplied by the manufacturer using 

the PCR-cycle1 conditions described in Section 2.2.1.2.  The purified 1.4 kb rpsL-

neo-PCR-1 PCR product obtained is shown in Figure 3.6.   

3.2.4 Step 1 - insertion of rpsL-neo-PCR1 into fHSVΔpac  

Following incubation at 30oC overnight, DH10B bacteria containing fHSVΔpac 

that had been transformed with the pRed/ET expression plasmid (Section 

2.2.8.1), and control cells consisting of E.coli strain HS996 that contained a 

control BAC (pBeloBAC11) and pRed/ET, were divided into two aliquots. One 

bacterial suspension from each E. coli strain was induced by the addition of 

arabinose to express the genes mediating Red/ET recombination, while the other 

bacterial suspension acted as a control and remained uninduced.  To allow 

expression of the genes mediating the Red/ET recombination enzymes, the 

induced and uninduced samples were incubated at 37oC for 45-60 min (Section 

2.2.8.1).  Step 1 of the BAC modification procedure was initiated by 

electroporating the purified 1.4 kb rpsL-neo-PCR-1 PCR product into the induced 

and uninduced DH10B cells.  In addition, the induced and uninduced aliquots of 

HS996 cells were transformed with an rpsL-neo PCR product that had 

complementary sequences to pBeloBAC11 and was supplied by Gene Bridges.  

Following transformation of DH10B and HS996 with their respective rpsL-neo PCR 

products the induced and uninduced bacterial suspensions were subsequently 

divided into two further aliquots, representing the recombinant and non-

recombinant samples.  To allow recombination of the rpsL-neo PCR product into 

the BAC DNA contained in the host cell, the recombinant samples from each 

bacterial strain were incubated at 37oC for 70 min, while the non-recombinant 

control samples were stored on ice.  A summary of the experimental outline and 



 
 
 

 

Primer ID Primer Sequence 

PCR1-For 5’-GACAACGACCGCAGTTCTCGTGTGTTATTTTCGCTCTCCGCCTCTCGCAGGGCCTGGTGATGATGGCGGGATCG-3’ 

PCR1-Rev 5’-TCTTGTTTTTTCTCCCTAATGCCCCCTCCCCCCTCGCCCACCACCCACTATCAGAAGAACTCGTCAAGAAGGCG-3’ 

Non-smF 5’-GCAGTTCTCGTGTGTTATTTTCGCTCTCCGCCTCTCGCAGΔTAGTGGGTGGTGGGCGAGGGGGGAGGGGGCATTAGGGAGA-3’ 

Non-smR 5’-TCTCCCTAATGCCCCCTCCCCCCTCGCCCACCACCCACTAΔCTGCGAGAGGCGGAGAGCGAAAATAACACACGAGAACTGC-3’ 

 
 

Table 3.1 Oligonucleotides used to generate the DNA fragments required for the Counter-Selection BAC Modification procedure  

The PCR primers, PCR1-For and PCR1-Rev, were used to generate rpsL-neo-PCR1 and contained 50 bp of HSV-1 homology directly upstream and downstream of the 
UL25 ORF and 24 bp of homology to the rpsL-neo cassette template (highlighted in red).  The complementary oligonucleotides Non-smF and Non-smR were annealed to 
produce the non-selectable overlapping oligonucleotide, Non-sm.  The symbol Δ represents the deleted UL25 ORF sequences.   
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Figure 3.6  Gel photograph showing the purified rps-neo-PCR1 PCR 
product

0.5, 1 and 2 µl aliquots of the purified 1.4 kb rpsL-neo-PCR1 product were 
run on a 1% TAE gel to determine the purity and concentration of the 
fragment obtained.  Band sizes were estimated using a 1 kb DNA ladder 
(New England Biolabs), the sizes of the bands upto 3.0 kb are shown on the 
left of the diagram. 
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the bacterial samples generated are illustrated in Figure 3.7.  Following 

incubation, the DH10B and HS996 induced and uninduced recombinant and non-

recombinant samples were plated onto L-broth agar containing tet/cm/km.  As 

expected, the uninduced recombinant and non-recombinant bacterial samples 

remained kmS, reflecting the presence of an unmodified BAC in DH10B and HS966 

cells.  The efficiency of Red/ET recombination in the procedure is determined 

by the ratio of recombinant to non-recombinant kmR colonies produced by the 

induced bacterial suspensions during the experiment.  The observed frequency 

was close to the expected frequency of 100 recombinant: 1 non-recombinant 

colony per plate, signifying that the majority of induced recombinant E.coli 

isolates had successfully undergone Red/ET recombination.  To verify the 

fidelity of the amplified rpsL-neo-PCR1 product present in the induced 

recombinant bacteria and to confirm that the bacteria were kmR/stpS, fifteen 

kmR DH10B colonies were selected for replica plating onto L-broth agar plates 

containing either tet/cm/km or tet/cm/stp.  Included in the screen were five 

colonies of the kmR HS996 bacteria that were predicted to contain a modified 

BAC, and two kmS DH10B bacteria containing unmodified BACs.  The results, 

shown in Table 3.2, revealed that only one of the kmS DH10B colonies was also 

stpR and therefore contained an unmodified BAC.  However, the results 

confirmed that nine of the recombinant DH10B and three of the recombinant 

HS996 colonies selected were kmR/stpS and therefore contained fully functional 

rpsL-neo cassettes.   

3.2.5 Verification of the modified HSV-1 BAC by Southern blot 
analysis 

To confirm that the rpsL-neo-PCR1 product was inserted at the correct location 

within the modified fHSVΔpac BACs, DNA was prepared from each of the nine 

kmR/stpS DH10B clones and digested with BamHI.  The BamHI fragments were 

separated on an agarose gel and analysed by Southern blotting.  The DNA bound 

to nylon membrane was probed with the 32P-radiolabelled rpsL-neo-PCR1 

fragment to detect any rpsL-neo-PCR1 sequences present in the modified BAC 

DNAs.  The expected BamHI restriction digest patterns of the modified and 

unmodified HSV-1 BACs were obtained using Vector NTi software (Invitrogen).  

The digested wt HSV-1 or HSV-1 BAC DNA contains the 2,294 bp BamHI U 
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Figure 3.7 DH10B and HS966 samples generated during Step 1 of the 
Counter-Selection BAC Modification procedure

(A) Bacterial cultures of E. col i  strains DH10B and HS966, each 
containing their respective BACs and pRed/ET, were grown at 30oC 
overnight and then divided into two aliquots.  (B) Expression of the genes 
mediating Red/ET expression were ‘induced’ in one of the bacterial 
suspensions by the addition of arabinose, while the control cells remained 
‘uninduced’.  Both bacterial suspensions were then incubated at 37oC for 
45-60 min to allow expression of the Red/ET recombination enzymes and 
then electroporated with their respective rpsL-neo PCR products as 
indicated.  (C) The induced and uninduced bacter ia l  cel ls were 
subsequently divided into two further al iquots, representing the 
recombinant and non-recombinant samples for each strain.  The 
recombinant samples for induced and unin-duced DH10B and HS966 
were incubated at 37oC for 70 min, while the non-recombinant bacterial 
suspensions for the induced and uninduced samples were stored on ice 
for 70 min.  (D) After incubation each bacterial culture was plated onto L-
broth agar containing tet/cm/km.



Step 1 Results Modified BAC 
Colony stpR kmR kmR/ stpS  

Recombinant DH10B Colonies 

1 + +  

2 - + Positive  

3 - -  

4 + +  

5 - + Positive 

6 - + Positive 

7 - -  

8 - + Positive 

9 - -  

10 - + Positive 

11 - + Positive 

12 - + Positive 

13 + +  

14 - + Positive 

15 - + Positive 

Recombinant HS996 Colonies 

1 - + Positive 

2 - + Positive 

3 - -  

4 - -  

5 - + Positive 

Non-recombinant DH10B Colonies 

1 + -  

2 - -  
 
 
Table 3.2 Counter-Selection BAC Modification Step 1 results for DH10B and HS996 cells 
with modified BACs 
  
The table shows DH10B and HS996 clones obtained after replica plating them onto L-broth agar 
containing either kanamycin or streptomycin after Step 1 of the BAC Modification Counter-
Selection procedure.  The bacterial colonies that screened positive for kanamycin resitance (kmR) 
and streptomycin sensitivity (stpS) are ones that contained a modified BAC with the functional rpsL-
neo-PCR1 product. 
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fragment (nucleotide sequences 48,635-50,929) spanning the UL25 gene of the 

HSV-1 strain 17 syn+ genome  (McGeoch et al., 1988).  When the rpsL-neo-PCR1 

product is recombined in this region of the HSV-1 genome, two BamHI 

fragments, 1,873 bp and 863 bp, are obtained instead of the wt BamHI 2,294 bp 

fragment.  A representative phosphorimage of a Southern blot is shown in Figure 

3.8.  Lanes 1-3 of the image, containing the BamHI-digested unmodified BAC 

DNA control (kmS/stpR DH10B) samples, show the expected 2,294 bp BamHI U 

fragment, whereas the remaining lanes (4-13) display the profiles of BamHI-

digested modified BAC DNAs.  Lane 4 of the Southern blot contains the positive 

control consisting of digested kmR/stpS HS996 modified BAC DNA, which shows 

the expected BamHI fragment of 8,907 bp generated by the insertion of the 

rpsL-neo PCR product. Lanes 5-13 of the Southern blot contain digested BAC DNA 

preparations from the nine recombinant kmR/stpS DH10B clones.  Although the 

BamHI 1,873 bp fragment was present in all nine kmR/stpS DH10B samples, it was 

most clearly visible in lanes 6 (clone 14), and 9-13 (clones 10, 8, 6, 5 and 2, 

respectively).  Lane 9, 10 and 13 also contained a BamHI U fragment, which is 

most clearly visible in lane 13, indicating that these samples had a mixture of 

both modified and unmodified BAC DNAs.  However, the presence of the BamHI 

1,873 bp fragment and the absence of the BamHI U fragment in the remaining 

samples suggest that these BACs contain the inserted rpsL-neo-PCR1 cassette 

with the concomitant deletion of the UL25 ORF.  

3.2.6 Generation of the non-selectable DNA product (Non-sm) 

In the second stage of the Counter-Selection procedure the rpsL-neo cassette in 

the BAC is replaced with the non-selectable DNA.  Two complementary 

oligonucleotides, Non-smF and Non-smR (Table 3.1), were annealed (Section 

2.2.1.3) to produce the non-selectable, or markerless, product Non-sm.  The 80 

bp Non-sm fragment contains HSV-1 sequences present in the right and left HSV-

1 homology arms of the rpsL-neo-PCR1 product to allow insertion by homologous 

recombination of the annealed overlapping oligonucleotide into fHSVΔpac, with 

the concomitant excision of the rpsL-neo-PCR1 cassette, to produce an HSV-1 

BAC lacking the UL25 ORF.  
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Figure 3.8  Southern blot of BamHI digested BAC DNAs from Step 1

The phosphorimage shows the BamHI digested BAC DNA samples from 
Step 1 of the Counter-Selection BAC Modification procedure.  Lane 1 is 
a negative control of an unmodified HSV-1 BAC from a DH10B clone.  
Lanes 2 and 3 are negative controls of an unmodified HSV-1 BAC from 
kmS/stpR DH10B clones.  Lane 4 is a positive control of a modified BAC 
containing a rpsL-neo cassette from the kmR/stpS HS996 colony 1 
(Table 3.2).  Lanes 5-13 are the recombinant kmR/stpS DH10B clones 
listed in Table 3.2, with the colony numbers for each clone indicated 
above the lanes.  The position of the 2,294 bp BamHI U fragment is 
indicated.
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3.2.7 Step 2 - replacing the rpsL-neo-PCR1 cassette with the non-

selectable (Non-sm) DNA in fHSVΔpac  

The second stage of the procedure was initiated by the addition of L-arabinose 

and induction of the Red/ET proteins in kmR/stpS modified BAC containing DH10B 

samples 11 and 12 and the control kmR/stpS HS996 samples 1 and 5 (Table 3.2).  

Subsequently, electrocompetent DH10B were transformed with the annealed 

overlapping oligonucleotide Non-sm (Section 2.2.1.3), and the electrocompetent 

HS996 were transformed with a BAC-repair oligonucleotide (Gene Bridges) 

designed to replace the rpsL-neo product inserted in the modified pBeloBAC11.  

Each transformed E. coli strain was divided into two aliquots with one 

representing the recombinant sample, which was incubated at 37oC to allow 

Red/ET recombination to proceed, and the other representing the non-

recombinant sample, which was retained on ice.  Following incubation for 70 

minutes the recombinant and non-recombinant samples from each bacterial 

strain were plated onto L-broth agar containing tet/cm/stp and the results are 

shown in Table 3.3.   

 

Bacterial colonies per plate  

Step 2  
Recombinant (StpR)  Non-recombinant  (StpR) 

Ratio 
(Rec:Non) 

DH10B  

11 1.5 x 105 9.0 x 103 16:1 

12 1.6 x 104 1.5 x 103 10:1 

HS996  

1 9.2 x 103 8.0 x 102  11:1 

5 1.0 x 104 9.0 x 102 11:1 

Table 3.3 The ratio of DH10B and HS996 recombinant:non-recombinants colonies obtained 
in step 2 of the Counter-Selection BAC Modification procedure  
 

As in step 1 of the technique, a high ratio of about 100 recombinant: 1 non-

recombinant colonies is indicative of efficient Red/ET recombination.  The 

frequency of recombination observed was lower than expected for both the 

experimental and control samples tested.  At this stage of the procedure 
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successful Red/ET recombination should result in the removal of the inserted 

rpsL-neo PCR product present in the host’s modified BAC and its replacement 

with the non-selectable DNA fragment.  Positive bacterial recombinants are 

selected on the basis of being kmS/stpR.  The antibiotic integrity of two of the 

stpR DH10B and two of the HS966 recombinants obtained in step 2 (Table 3.3) 

was tested by replica plating them onto to L-broth agar containing either 

tet/cm/km or tet/cm/stp.  Unexpectedly, the stpR DH10B and HS996 colonies 

tested had acquired dual drug resistance and were both kmR and stpR.  Additional 

attempts to obtain the desired recombinants at this stage produced the same 

results.  

3.3 Construction of ΔUL25MO and its marker rescuant 

MRUL25MO  

3.3.1 ΔUL25MO 

Results from the Southern blot analysis of the modified fHSVΔpac DNA (Section 

3.2.5) revealed that the rpsL-neo-PCR1 cassette was present, replacing the UL25 

ORF, and confirming that an HSV-1 UL25-deleted BAC had been created.  

Column-purified BAC DNA was prepared from E. coli carrying one of the modified 

BACs analysed by Southern blotting (lanes 6 in Figure 3.8, colony 14 from Table 

3.2) and transfected together with the HSV-1 BamHI K fragment, which was 

added to repair the deleted a sequences encoding the Pac signals in the 

modified fHSVΔpac, into UL25 expressing 8-1 cells.  Three of the viral plaques 

that formed were plaque-purified and each of their viral titres was determined 

as outlined in Section 2.2.4.  The stock with the highest titre was selected and 

subsequently referred to as ΔUL25MO.  The yield of ΔUL25MO was compared to 

KUL25NS, the original HSV-1 UL25 null mutant, by infecting 8-1 cells with virus 

at MOI of 5 PFU/cell.  After incubation for 24 hrs at 37oC the cells were 

harvested and the progeny virus was titrated on complementing (8-1) and non-

complementing (Vero) cells.  As expected, ΔUL25MO and KUL25NS both failed to 

form plaques on Vero cells.  In the complementing cells, although the size of the 

plaques obtained for both HSV-1 UL25 mutants were similar, ΔUL25MO produced 



Chapter 3 114

a yield that was approximately ten-fold lower than KUL25NS (Table 3.4).  The 

experiment was repeated twice more and the results produced were similar.   

 

Yield of virus from 8-1 cells (PFU/ml) 
Virus  

Non-complementing cells (Vero) Complementing cells (8-1) 

ΔUL25MO  <102 5.0 x 107 

KUL25NS  <102  5.1 x 108 

 
Table 3.4 Growth of HSV-1 UL25 null viruses on non-complementing and complementing 
cells 

A complementation assay (Section 2.2.7) was carried out to determine how well 

transiently expressed wt UL25 protein (pUL25) complemented the growth of 

ΔUL25MO and KUL25NS.  Vero cells were transfected with either the wt UL25 

expressing recombinant plasmid (pFB-UL25) or the empty vector control (pFBpCI) 

and subsequently infected with ΔUL25MO or KUL25NS at an MOI of 5 PFU/cell.  

At 24 hpi the cells were harvested and the progeny viruses were titrated on Vero 

and 8-1 cells.  The results obtained are shown in Table 3.5 and are the average 

of three independent experiments.  The progeny virus from ΔUL25MO-infected 

Vero cells expressing wt pUL25 did not form plaques on Vero cells, whereas some 

of the progeny from KUL25NS-infected Vero cells expressing wt pUL25 produced 

plaques on the non-complementing cells.  Furthermore, the total yield of virus 

from ΔUL25MO-infected Vero cells expressing wt pUL25 on 8-1 cells was 

approximately ten-fold higher than that obtained from KUL25NS-infected Vero 

cells expressing pUL25.   

Yield of virus (PFU/ml) 
Virus Plasmid 

Vero cells 8-1 cells 

pFBpCI < 101 (+/- 0.6) < 101  (+ /- 1.0) 
KUL25NS 

pFB-UL25 2.6 x 101 (+ /- 0.3) 4.6 x 105 (+/- 1.1) 

pFBpCI < 101  (+ /- 0) < 101  (+ /- 0) 
ΔUL25MO 

pFB-UL25 < 101  (+ /- 0) 3.3 x 106 (+/- 1.3) 
 

 
Table 3.5 Complementation efficiencies of HSV-1 UL25 null viruses 
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3.3.2 MRUL25MO 

To confirm that there were no secondary mutations in the ΔUL25MO genome 

that affected its viability, a marker rescuant of the virus was generated.  The 

plasmid pGX292 was digested with BamHI to release the HSV-1 strain 17 syn+ 

BamHI U fragment (nucleotide sequences 48,635-50,929), which contains the 

entire UL25 ORF (McGeoch et al., 1988).  Marker rescue of the deleted UL25 

sequences in ΔUL25MO is obtained by homologous recombination between the 

complementary sequences of the HSV-1 BamHI U fragment and the ΔUL25MO 

genome.  Vero cells were seeded into a well of a 24-well dish (Section 2.2.7.1) 

and transfected with BamHI-digested pGX292 and subsequently infected with 5 

PFU/cell of ΔUL25MO (Section 2.2.7.3).  After 24 h at 37oC the cells were 

harvested and the ability of the progeny virus to grow on Vero cells was 

determined.  A single well-isolated plaque was picked and the virus was plaque 

purified (Section 2.2.9) twice on Vero cells prior to the production of a high titre 

stock of the marker rescuant virus, which was referred to as MRUL25MO.  To 

compare the growth characteristics and phenotypes of ΔUL25MO, MRUL25MO and 

wt HSV-1, the yield of the viruses were compared in duplicate on complementing 

and non-complementing cells grown on 35 mm tissue culture dishes.  Each of the 

cell monolayers were infected with 10 PFU/cell of wt HSV-1, ΔUL25MO or 

MRUL25MO virus and incubated at 37oC.  After 1 h, the cells were treated with 

acid to remove residual input virus (Section 2.2.7.4) and then overlaid with 

supplemented DMEM and incubated at 37oC.  At 24 hpi the cells were harvested 

and the progeny viruses were titrated onto 8-1 cells (Table 3.6).  HSV-1 and 

MRUL25MO grew to comparable levels on permissive and non-permissive cells, 

confirming that the marker rescuant contained no deleterious secondary 

mutations.  As expected, ΔUL25MO grew on 8-1 cells but failed to grow on Vero 

cells, confirming that the mutation is lethal for growth.   
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Yield of virus on 8-1 cells (PFU/ml) 
 

Virus  
Growth in Vero cells Growth in 8-1 cells 

wt HSV-1  5.7 x 108 4.9 x 108 

MRUL25MO 3.3 x 108  2.25 x 108 

ΔUL25MO <101 4.0 x 108 

 
Table 3.6 Yield of HSV-1 viruses from non-complementing and complementing cells 

 
 

3.3.3 Single-step virus growth of HSV-1 viral stocks 

Replicate 35 mm tissue culture dishes of complementing cells were infected with 

10 PFU/cell of wt HSV-1, ΔUL25MO or MRUL25MO virus.  After 1 h at 37oC the 

cells were treated with acid wash and then overlaid with supplemented DMEM 

and incubated at 37oC.  At 3, 6, 12 and 24 hpi the cells were harvested and the 

progeny virus was titrated onto 8-1 cells.  The single-step growth analysis was 

performed only once, but demonstrated that ΔUL25MO and MRUL25MO exhibited 

similar growth patterns and grew to titres comparable to wt HSV-1 (Figure 3.9), 

indicating that no secondary mutations were contributing to the growth defect 

of ΔUL25MO.      

3.4 Discussion 

During the first step of the Counter-Selection BAC Modification technique no 

problems were encountered and the rpsL-neo selection/counter-selection 

cassette was readily inserted at the correct position in the HSV-1 fHSVΔpac 

genome.  Despite several attempts, I was unsuccessful in completing the second 

step of the procedure in which the inserted cassette is replaced with non-

selectable DNA that should result in the seamless deletion of the UL25 ORF in 

HSV-1 fHSVΔpac.  The inserted rpsL-neo cassette in the modified BACs of the 

host cells allows both positive and negative antibiotic selection of the 

recombinants obtained.  The cassettes are then replaced with the desired 

markerless DNA by a second recombination event and subsequent antibiotic 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Comparison of the growth of wt HSV-1, ΔUL25MO and MRUL25MO in 8-1 cells 
 
Single-step virus growth.  Replicate 35 mm dishes of complementing cells were infected with 10 
pfu/cell of HSV-1 strain 17 syn+, ΔUL25MO or MRUL25MO.  After 1 h at 37oC the cells were 
treated with acid to remove residual input virus and overlaid with supplemented DMEM and the 
incubation was continued at 37oC.  At 3, 6, 12 and 24 hpi the cells were harvested and the progeny 
virus were titrated onto 8-1 cells. 
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counter-selection to obtain stpR/kmS bacteria.  An inherent problem with the 

system used here appears to be the potential for spurious recombination events.  

Viral genomes contain a high number of repeated sequences and intramolecular 

recombination between them could result in the loss of the markers used in the 

system’s selection process (Tischer et al., 2006).  To ensure that the techniques 

for the system were being applied correctly, the manufacturer’s additional 

controls were included throughout the procedure.  However, the stpR 

recombinant colonies obtained in step 2 for both the DH10B and the control 

HS996 bacterial cells were shown to be stpR and kmR.  Subsequently, several 

colleagues using the same method encountered similar problems and also 

detected only stpR/kmR colonies at the second stage.  They also confirmed that 

non-specific recombination events were occurring in fHSVΔpac DNA.  Recent 

improvements to the technology by Tischer et al. (2006), in which the 

recombination event is targeted to specific sequences, has resulted in the 

successful production of mutated HSV-1 virus.  The difficulties encountered using 

the Counter-Selection BAC Modification system led to baculovirus vectors being 

used for subsequent functional analysis of the HSV-1 UL25 mutants generated.   

The ability of the UL25 expressing 8-1 cell line to complement the growth of 

ΔUL25MO suggested that no secondary mutations were contributing to growth 

defects of the mutant virus.  This was confirmed by single-step growth analysis 

on complementing cells, which showed that ΔUL25MO, MRUL25MO and wt HSV-1 

grew to comparable levels (Figure 3.8).  However, a ten-fold reduction in the 

yield of ΔUL25MO in comparison to the original HSV-1 UL25 null mutant KUL25NS 

was observed in 8-1 cells when the viral stocks were titrated on to 

complementing cells (Section 3.3).  The replication efficiency of ΔUL25MO might 

be compromised, since the virus was obtained from the HSV-1 BAC fHSVΔpac 

(Saeki et al., 1998) that lacks oriL.  In addition, the presence of the rpsL-neo 

cassette that replaces the UL25 ORF in the viral genome may also affect the 

viability of ΔUL25MO.  UL25 lies in a nested transcription region with UL26, a 

capsid maturation protease, and the transcription levels of UL26 may be 

affected as both UL25 and UL26 share 3’ co-terminal transcripts.  However, none 

of these possibilities seems likely, since the yield of ΔUL25MO from 

complementing cells was comparable to the yields observed for its marker 

rescuant, MRUL25MO, which were in turn similar to the yields obtained for wt 
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HSV-1 strain 17 syn+ (Table 3.6).  Alternatively, the disparity in yields observed 

between the two HSV-1 UL25 null mutants might be due to strain variations 

between the HSV-1 KOS derived KUL25NS and the HSV-1 strain 17 syn+ derived 

ΔUL25MO virus.  Although ΔUL25MO gave lower yields of virus in 8-1 cells in 

comparison to KUL25NS, it performed better in transient complementation 

assays than KUL25NS.  Since KUL25NS can produce a low level of wt virus as a 

consequence of recombination during complementation experiments, using 

ΔUL25MO increased the sensitivity of the assay making it easier to distinguish 

between non-functional and poorly complementing UL25 mutants.  
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4 Generation and complementation analysis of the 
mutant pUL25s  

4.1 Introduction 

As discussed previously (Section 1.4.1), Bowman et al. (2006) used both the 3D 

structural information and ET analysis of the N-terminally truncated version of 

pUL25 (residues 134-580) to identify four clusters of amino acids (C1-C4) on the 

surface of pUL25 that were predicted to be involved in protein-protein 

interactions.  Their study also revealed five looped out regions (L1-L5) 

containing unstructured residues, and three residues at the carboxyl terminus of 

pUL25 that were also disordered (L6).  The aim of the work described in this 

chapter was to relate the structure of pUL25 to its function by constructing a 

series of mutant UL25 genes and to characterise the expressed proteins.  

Specifically, amino acids within C1, C2, C3 and C4, were targeted as well as the 

unstructured residues in L1-L6.  Initially, residues mutated in C1, C2, C3 and C4 

were substituted with alanine. Since alanine is the smallest chiral amino acid, 

substitution with this residue will remove side-chain atoms that are present on 

the wt residue.  The observed effect of this removal during analysis is typically 

interpreted to indicate the contribution of the deleted side chain to the stability 

of any protein-protein interactions.  Alanine substitution is also considered to be 

a relatively conservative change due to the ambivalent nature of the amino acid.  

Since it is only slightly hydrophobic it can reside both inside and outside a 

protein molecule.  The codons of several residues within a cluster were mutated 

simultaneously to increase the probability of creating a functionally impaired 

pUL25.   

Although the amino acid sequence normally codes for the 3D structure of a 

protein, it may code for an entirely unfolded protein, or protein region, as 

indicated by the unstructured residues identified in the L1-L6 regions of pUL25.  

These disordered portions of a protein molecule are often highly flexible areas 

that are involved in molecular recognition.  To examine the functional roles of 

the unstructured portions of the molecule, a panel of deletion mutant proteins, 

pUL25-L1 – pUL25-L6, were generated that lacked the unstructured amino acids 
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of their particular regions.  Deletion mutants were created in preference to 

those with substitutions or insertions of additional amino acids at the disordered 

regions in order to increase the possibility of observing a phenotypic affect.  The 

absence of unstructured residues in a looped out region of the protein may 

compromise its flexibility and, as a consequence, affect the ability of pUL25 to 

interact with other proteins.  As well as an L6 mutant protein lacking the 

unstructured residues, an additional L6 mutant was constructed by substituting 

two of the three unstructured amino acids (S578 and V580) with alanine, since 

the wt residue at position 579 was alanine.    

To assess the functional impact of each of the mutant UL25 proteins generated, 

their ability to complement the growth of the HSV-1 UL25 null virus, ΔUL25MO, 

in non-permissive cells was examined.  Three deletion mutant proteins, 

pUL25Δ1-45, pUL25Δ1-59 and pUL25Δ1-133 were also included in the study to 

establish the significance of the uncrystallised portion of UL25 (residues 1-133).  

The plasmid constructs expressing these proteins were supplied by Dr V. Preston.   

4.2 Methods used for site-directed mutagenesis  

To create the mutated UL25 fragments, which were used to construct the 

mutant UL25 genes, either annealed complementary oligonucleotides were 

prepared or PCR was performed.  Convenient REN cloning sites, located 

upstream and downstream from the target residues, were included in the 

mutated fragments generated and used to transfer the sequences into the UL25 

gene.  If possible, additional REN sites were introduced by silent mutagenesis 

into the nucleotide sequence of the PCR primers or the complementary 

oligonucleotides.  These sites were useful for detecting plasmid constructs 

containing the mutated UL25 fragment.  The additional REN sites, which did not 

alter the protein sequence of the gene, were identified in the UL25 ORF using 

the Webcutter bioinformatics program (http://rna.lundberg.gu.se/cutter2/).  

When the distance between the cloning sites was less than 90 bp, overlapping 

oligonucleotides were prepared.  When the distance between the cloning sites 

was greater than 90 bp and the mutated residues were not sufficiently close to 

one of the cloning sites to amplify the required UL25 fragment in a single PCR, a 

two-step approach, referred to as overlap extension PCR (Ho, 1989), was used.  

http://rna.lundberg.gu.se/cutter2/
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Summaries of the single-step and overlap extension PCR procedures are 

illustrated in Figure 4.1 and Figure 4.2, respectively. 

Dr. V. Preston had previously cloned the wt HSV-1 strain 17 syn+ UL25 ORF into 

pFBpCI to produce the recombinant plasmid, pFB-UL25 (Figure 4.3).  The pFB-

UL25 construct was used as the template DNA to generate and amplify the 

mutated UL25 fragments during PCR.  Each purified PCR product was subcloned 

into the pGEM-T Easy vector (Figure 4.4) and plasmid DNA was prepared from 

each of the isolates obtained.  The DNA samples containing UL25 inserts were 

identified with the appropriate REN digestion, and DNA sequencing with the M13 

DNA sequencing primers (Table 4.1) verified that the recombinant pGEM-T Easy 

DNAs contained the desired UL25 mutations.  To generate the recombinant 

plasmids, the purified PCR REN fragment from recombinant pGEM-T Easy plasmid 

or the annealed overlapping oligonucleotide was ligated to REN fragments from 

pFB-UL25.  The recombinant constructs produced, together with the mutated 

residues present in the UL25 gene, are listed in Table 4.2.  Prior to further 

analysis the entire UL25 mutant gene in each of the recombinant pFBpCI 

constructs was sequenced, using the DNA sequencing primers pFB-Forward and 

Reverse (Table 4.1), to confirm that each construct contained the expected 

UL25 nucleotide sequence with the desired alterations.  A summary of the 

cloning procedures used is illustrated in Figure 4.5.  In addition to containing the 

HCMV IE promoter that allows the expression of foreign proteins in mammalian 

cells, pFBpCI is also a baculovirus transfer vector.  This plasmid was selected on 

the basis that recombinant baculoviruses were required for subsequent 

experiments to investigate the DNA packaging and capsid assembly functions of 

the encoded mutant UL25 proteins (Section 5.2).   

4.3 Cluster mutants  

4.3.1 C1 mutant construct (pFB-UL25-C1) 

The nucleotide sequence that specifies three (R362, G363 and N365) of the nine 

residues in C1 is located between the REN sites DdeI (1100 bp) and NruI (1199 

bp) of pFB-UL25 (Figure 4.6).  A fragment was generated using the PCR primers 

C1-F that encoded the mutations R363A, G363A and N365A and the cloning site 



Figure 4.1  Site-directed mutagenesis by PCR

PCR is a cyclic process of double-stranded separation of the target DNA by heat denaturation, 
specific hybridisation or annealing of short oligonucleotide primers to the single-stranded DNA, and 
synthesis of double-stranded DNA by DNA polymerase (Saiki et al., 1985).  This process is 
illustrated in the boxed area of the diagram.  The full-length mutated DNA is amplified during 
subsequent amplification cycles to produce multiple copies of the fragment.  In site-directed 
mutagensis using PCR, the target gene is amplified using a flanking primer (Primer A) and a  
primer (Primer B), which overlaps the target area and contains the required mutation.  The primer 
pair are designed such that the amplified product can be REN digested and the full-length UL25 
gene reconstructed in a ligation reaction with vector and wt UL25 REN fragments.   
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Figure 4.2  Site-directed mutagenesis by overlap extension PCR

Two fragments of the target gene are amplified in two separate PCRs (PCR 1 and 2).  Both PCRs 
use a set of flanking (F1 and R2) and mutagenic primers (F2 and R1), with PCR 1 using the primer 
pair, F1 and R1, and PCR 2 using the F2 and R2 primers.  The fragments produced from each 
reaction contain a region of overlap where, in both products, the desired mutations are located.  
During PCR 3 the fragments from PCR 1 and 2 are mixed, denatured and annealed at the regions 
of overlap to form heteroduplexes that are extended, as indicated by the dashed lines, to form 
full-length double-stranded mutant DNA .  The full-length DNA is subsequently amplified during 
PCR 3 using the flanking primers, F1 and R2. 

mutated PCR product

PCR 3

F1

R2

amplifed

5'

5'3'

3'

F2

R2

5'

3' 5'

3'



pFB-UL25
8046 bp

HSV-1 sequences

pFBpCI

UL25 ORF

EcoRI (8)

Xba I (2147)

 

 

 

Figure 4.3 Plasmid map of pFB-UL25 

The green-hatched arrow represents the HSV-1 sequences inserted in the pFBpCI backbone, with 
the UL25 ORF denoted by the block green arrow.  The position of the unique REN sites, EcoRI and 
XbaI, are highlighted in red.  

 

 

 

 

 



Figure 4.4 pGEM-T Easy vector map

The position of the REN sites and the location of the ampicillin (Amp) gene, f1 origin of 
replication (f1 ori) and origin of replication (ori) are shown.  The broken arrow 
represents the site where the vector has been linearised with EcoRI and a T has been 
added to both 3’ ends (position 60 bp on the map) (adapted from Promega Technical 
Manual).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DNA Sequencing Primers 

pGEM-T Easy primers 

M13 Forward 5’-TCACACAGGAAACAGCTATGAC-3’ 

M13 Reverse 5’-CGCCAGGGTTTTCCCAGTCACGAC-3’  

pFB-UL25 primers 

pFB-Forward 
 
5’-TCTCCACAGGTGTCCACTCC-3’  
 

pFB-Reverse 5’-TTCTCGACAAGCTTGGTACC-3’ 

 
 

Table 4.1 DNA sequencing primers 
 

 



Plasmids Expressed protein Substituted residues in UL25 
pFB-UL25 pUL25       
pFB-UL25-C1 pUL25-C1 R362A G363A N365A    
pFB-UL25-C2 pUL25-C2 R148A D150A N152A D156A   
pFB-UL25-C3A pUL25-C3A G169A S170A G172A    
pFB-UL25-C3B pUL25-C3B G169A S170A G172A G202V R203A K206A 
pFB-UL25-C4A pUL25-C4A N396A Y398A D400A L402A   
pFB-UL25-C4B pUL25-C4B R390A N396A Y398A D400A L402A  
pFB-UL25-L6sub pUL25-L6sub S578A V580A     

Plasmids Expressed protein Deleted residues in UL25 
  From To Number of deleted residues   
pFB-UL25-L1 pUL25-L1 A249 D254 6   
pFB-UL25-L2 pUL25-L2 R335 G345 11   
pFB-UL25-L3 pUL25-L3 P417 A425 9   
pFB-UL25-L4 pUL25-L4 P479 T483 5   
pFB-UL25-L5 pUL25-L5 R511  N513 3   
pFB-UL25-L6 pUL25-L6 S578 V580 3   
pFB-UL25Δ1-45 * pUL25Δ1-45 M1 R45 45   
pFB-UL25Δ1-59 * pUL25Δ1-59 M1 R59 59   
pFB-UL25Δ1-133 * pUL25Δ1-133 M1 V133 133   

Plasmids Expressed protein Combination mutant  
pFB-UL25-C1L2 pUL25-C1L2 C1 mutations R362A, G363A and N365A and L2 deleted residues A249-D254 

 
 

Table 4.2  List of the pFB-UL25 constructs generated and their mutated residues 
(constructs marked * were supplied by Dr V. Preston)                                                                       



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Summary of the cloning strategies and methods used to generate the mutant 
UL25 constructs 
 
The mutated UL25 sequences were generated either by using primers containing the required 
nucleotide changes in a PCR reaction (Section 2.2.1.2) with pFB-UL25 as a template (1) or by 
annealing complementary (overlapping) oligonucleotides (Section 2.2.1.3) containing the desired 
mutations (2).  The PCR products were resolved on 5% polyacrylamide gels and the purified 
fragments (Section 2.2.3.2) were sub-cloned into the pGEM-T Easy vector (Section 2.1.9).  The 
ligated DNA (Section 2.2.2) was electroporated into DH5α (Section 2.2.5) and DNA samples were 
prepared from the ampicillin resistant colonies using the QIAprep spin miniprep protocol (Section 
2.1.14).  Each plasmid isolate was screened for the presence of the desired UL25 insert using REN 
analysis (Section 2.2.1.1) and by DNA sequencing (Section 2.2.3.4) with the primers M13 forward 
and reverse (Table 4.1).  PCR products with the correct UL25 insert were released from pGEM-T 
Easy recombinants using the appropriate REN digests and purified.  Mutant pFB-UL25 plasmids 
were generated by ligating the appropriate gel purified pFB-UL25 fragments to the mutated UL25 
fragments and electroporating the DNA into DH5α.  DNA was prepared from the recombinant pFB-
UL25 clones using the QIAprep spin miniprep protocol and recombinants containing the correct 
UL25 sequences were identified using REN analysis and by DNA sequencing with the pFB-UL25 
sequencing primers, pFB-Forward and pFB-Reverse, shown in Table 4.1.   
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Figure 4.6 Plasmid maps of pFB-UL25-C1 and pFB-UL25-C2 
   
The REN sites used in the construction and analysis of each plasmid are shown.  The green-
hatched arrow represents the HSV-1 sequences inserted in the pFBpCI backbone, with the UL25 
ORF denoted by the block green arrow.  Multiple cutting REN sites are coloured black and unique 
REN sites are highlighted in red.  
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DdeI, and C1-R that contained the NruI site (Table 4.3A).  The purified PCR 

product was cloned into pGEM-T Easy and plasmid DNA was prepared from the 

isolates obtained.  The recombinant pGEM-T Easy DNA was identified by the 

presence of a single NruI site located in the UL25 gene.  DNA samples from these 

plasmids were sequenced using the M13 sequencing primers, which revealed that 

one contained the desired mutations.  The 99 bp UL25 insert was released from 

the pGEM-T Easy recombinant by digestion with DdeI plus NruI.  The purified 

fragment was ligated to the pFB-UL25 EcoRI-DdeI 1092 bp and NruI-EcoRI 6855 bp 

fragments and then electroporated into DH5α.  Plasmid DNA samples, prepared 

from five recombinant bacterial clones, were digested with EcoRI plus NruI, and 

EcoRI alone.  Three of the plasmids produced the expected 1191 bp EcoRI-NruI 

and 8046 bp EcoRI fragments.  One of the plasmids was selected and renamed 

pFB-UL25-C1. 

4.3.2 C2 mutant construct (pFB-UL25-C2) 

The nearest convenient cloning sites flanking the codons specifying four (R148, 

D150, N152 and D156) of the six residues in the C2 region were NotI (336 bp) and 

KpnI (559 bp), which are shown in Figure 4.6.  Since the distance between the 

two REN sites and the desired mutations was too great to use either annealed 

overlapping oligonucleotides or to amplify the mutated sequences in a single 

PCR, overlap extension PCR (Ho, 1989) was utilised (Figure 4.2).  Unlike the 

single-step PCR procedure used previously, where two primers and one PCR 

reaction are required, overlap extension PCR uses four primers and three 

separate PCR reactions to introduce the desired site-specific mutations.  In the 

first PCR, one pair of primers amplifies the DNA that includes the mutations 

together with the upstream sequences.  The forward, or flanking, primer in this 

PCR contains the wt sequences and an appropriate REN cloning site, while the 

reverse primer contains the desired mutations.  In the second PCR, the primer 

pair amplifies the DNA that includes the mutations and the downstream 

sequences, with the forward primer in this pair containing the required 

mutations and the reverse, or flanking, primer containing the wt sequences and 

an appropriate REN cloning site.  The products generated during these initial two 

PCRs contain a region of overlap located at the site of the mutations.  These two 

fragments are mixed during a third PCR cycle and denatured and annealed at the 



 
Table 4.3A – The primers used to generate the UL25 mutant constructs listed 
 
Bases highlighted in red are the base pair changes resulting in substitutions of amino acids within the UL25 protein.  The bases highlighted in green are nucleotide 
changes used to adjust the percentage of G + C bases in a primer so that a pair of primers had an equal percentage.  The REN sites included in the primers are underlined 
and their respective names are shown underneath.   

UL25 Mutant Primer ID C1 – C2 Primers  

C1-F 
 
5’-TTCCTCAGCGCTGCACATGCCCTATTCCTGTGGGAGGACCAGACTCTGC-3’ 
            DdeI 

pFB-UL25-C1 

C1-R 
 
5’-ACGTTACCGTTCGCGAGAAGACGCTGGATAACGCCCAGGGCCGTTATGG-3’     
                                 NruI 

C2-F1 
 
5’-CGAAACGTACATGAAATTGCAGGTGCTCTAGAAGCACTAGAAACAGCAGCGGCCGCCGCCGAAGAGGCGGATGC-3’ 
                                                                                                                                                 NotI 

C2-R1 
 
5’-CGTACACCATGTGTAGCAGAGCTACAGGAAGTGCAGTAGCATATGCTAGCGGCGGGTCGTTGCGCACGATCTGG-3’      
 

C2-F2 
 
5’-CAGATCGTGCGCAACGACCCGCCGCTAGCATATGCTACTGCACTTCCTGTAGCTCTGCTACACATGGTGTACGC-3’  
 

pFB-UL25-C2 

C2-R2 
 
5’-GGTCAGGGGAAAATCTGTAATAGTACGATCCTGGATAGTGCGGTACCAGGTCCCGAACACCACCCCCGACGAGC-3’ 
                                                                                                               KpnI 
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region of overlap to generate heteroduplexes, which are subsequently extended 

to form full-length double-stranded mutant DNA.  The full-length DNA is 

amplified during the third PCR cycle, using the two flanking primers from PCR 

reaction one and two that contain the REN cloning sites. 

To mutate the four C2 codons using overlap extension PCR, the flanking primers 

C2-F1 and C2-R2 (Table 4.3A), containing the cloning sites NotI (336 bp) and KpnI 

(559 bp) respectively, and the mutagenic primers C2-F2 and C2-R1 (Table 4.3A), 

containing the desired mutations and including overlapping sequences at their 

3’-ends, were constructed.  Two initial PCR reactions, PCR1 and PCR2, were 

performed using the primers C2-F1 and C2-R1, and C2-F2 and C2-R2, 

respectively.  The purified 165 bp PCR1 fragment and 223 bp PCR2 fragment 

were denatured and annealed during the third PCR cycle (PCR3) and extended, 

using the flanking primers C2-F1 and C2-R2 from PCR1 and PCR2, respectively, to 

form the full-length double-stranded mutant DNA.  The purified PCR3 315 bp 

product was subsequently ligated to pGEM-T Easy and electroporated into DH5α.  

Recombinant plasmids, prepared from pGEM-T Easy isolates, were identified by 

the presence of a single SmaI site that was located in the UL25 sequences.  

Three recombinant plasmids, which contained a single SmaI site, were digested 

with KpnI plus NotI.  One of the plasmids produced the expected 223 bp 

fragment, indicating that it contained the UL25 insert.  DNA sequencing of this 

plasmid verified that the UL25 insert encoded the mutated residues R148A, 

D150A, N152A and D156A.  The purified 223 bp fragment was subsequently 

ligated to the pFB-UL25 KpnI- XbaI 1588 bp and XbaI-NotI 6235 bp fragments to 

produce pFB-UL25-C2.                                            

4.3.3 C3 mutant constructs (pFB-UL25-C3A and pFB-UL25-C3B) 

Two C3 mutant constructs were generated.  The first construct, pFB-UL25-C3A, 

encoded three mutated residues and the second, pFB-UL25-C3B, encoded six 

mutated residues of the eight amino acids assigned to the cluster.   
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4.3.3.1 pFB-UL25-C3A              

The KpnI (559 bp) and NotI (336 bp) sites in the UL25 gene flanked the 

nucleotide sequences specifying three of the six residues in C3 (Figure 4.7).  

These two REN sites were incorporated in the PCR primers used to create the 

fragment encoding the three missense mutations G169, S170 and G172.  The 

primer C3A-F (Table 4.3B) contained the wt sequences upstream from the 

mutated codons and included the unique NotI (336 bp) site.  The reverse primer 

C3A-R (Table 4.3B) encoded the mutated residues G169A, S170A and G172A and 

wt sequences downstream of these mutations that encompassed a KpnI (559 bp) 

site.  Initial attempts using these primers and the PCR-cycle1 cycle (Section 

2.2.1.2) to obtain the required PCR product produced various sized fragments, 

none of which corresponded to the size of the predicted 284 bp PCR product.  To 

increase the specificity of the reaction a new PCR programme, PCR-cycle2 

(Section 2.2.1.2), was used that had a higher annealing temperature than PCR-

cycle1.  A PCR product of the correct size was identified and the purified 

fragment was cloned into pGEM-T Easy.  DNA was prepared from the 

recombinant bacterial clones and those containing UL25 inserts were identified 

by the presence of a single SmaI in the UL25 gene.  The recombinant plasmids 

containing a single SmaI site were digested with KpnI plus NotI and several 

produced a 223 bp fragment, confirming the presence of the PCR fragment.  DNA 

sequencing verified that one of the recombinant plasmids encoded a UL25 insert 

with the desired mutations.  The purified KpnI-NotI 223 bp insert from this 

bacterial clone was ligated to the pFB-UL25 KpnI-XbaI 1588 bp and XbaI-NotI 

6235 bp fragments and the ligated DNA was electroporated into DH5α.  Plasmid 

DNA samples, prepared from the recombinant bacterial clones and the control 

plasmid (pFB-UL25), were digested with KpnI plus NotI and EcoRI plus XbaI.  A 

recombinant plasmid contained the expected KpnI-NotI fragments of 223 bp, 

1619 bp and 6204 bp and the EcoRI-XbaI fragments of 2139 bp and 5907 bp and 

was named pFB-UL25-C3A.   

4.3.3.2 pFB-UL25-C3B              

Preliminary complementation experiments indicated that pUL25-C3A supported 

viral growth in non-permissive cells infected with ΔUL25MO.  A new construct 



pFB-UL25-C3A
8046 bp

UL25 ORF

Eco RI (8)

Xba I (2147)

Not I (336)

Kpn I (559)

Kpn I (2178)

 
 

pFB-UL25-C3B
8046 bp

UL25 ORF

BtsI (613)

BspHI (645)

Eco RI (8)

Xba I (2147)

 
 
 
Figure 4.7 Plasmid maps of pFB-UL25-C3A and pFB-UL25-C3B 
 
The REN sites used in the construction and analysis of each plasmid are shown.  The green-
hatched arrow represents the HSV-1 sequences inserted in the pFBpCI backbone, with the UL25 
ORF denoted by the block green arrow.  Multiple cutting REN sites are coloured black and unique 
REN sites are highlighted in red.  
   
  

 
 

 



                 

 

UL25 Mutant Primer ID C3 – C4 Overlapping Oligonucleotides and Primers  

C3A-F 
 
5’-GAAACGTACATGAAATTGCAGGTGCTCTAGAAGCACTAGAAACAGCAGCGGCCGCCGCCGAAGAGGCGGATGC-3’                    
                                                                                                                                 NotI 

pFB-UL25-C3A 

C3A-R 
 
5’-AGTCTTGAATAGTACGGTACCAAGTTCCAAATACTACTGCTGAAGCTGCGGTCGCCCCCGGCCCGCGTACACC-3’ 
                                            KpnI 

C3B-F 
 
5’-GACTTTCGGGACGTCGCTATGTCCGCGACCTT-3’ 
   BtsI                                                                       BspHI 

pFB-UL25-C3B 

C3B-R 
 
5’-CATGAAGGTCGCGGACATAGCGACGTCCCGAAAGTCGG  -3’ 
     BspHI                                                                               BtsI 

 
C4A-F 

 

          
5’-CGAACGGCGCAGTGGCGGCCGCACGCGCTAACAACCGCCTGCA-3’ 
     NruI                                     NotI                                                   PstI 

pFB-UL25-C4A 

C4A-R 
 
5’-GGCGGTTGTTAGCGCGTGCGGCCGCCACTGCGCCGTTCG-3’ 
    PstI                                           NotI                                      NruI 

 
C4B-F 

 

          
5’-TCTGTTCCTCAGCCGGGGCCACAACCTATTCCTGTGGGAGGACC-3’ 
                       DdeI 

pFB-UL25-C4B 

C4B-R 
 
5’-ACAGTTCGCGAGGAGTGCCTGGATAACGCCCAGGGCCGTTATGG-3’ 
                     NruI 

Table 4.3B – The overlapping oligonucleotides and primers used to generate the UL25 mutant constructs listed 
  
Bases highlighted in red are base pair changes resulting in substitutions of amino acids in the UL25 protein.  The bases highlighted in green are nucleotide changes used 
to adjust the percentage of G + C bases in a primer so that a pair of primers had an equal percentage.  The REN sites included in the primers are underlined and their 
respective names are shown underneath.   



Chapter 4 125

pFB-UL25-C3B was therefore created, containing the mutations in pFB-UL25-C3A 

(G169A, S170A and G172A) together with additional mutations, specifying 

substitutions at residues G202, R203 and K206 (Figure 4.7).  Substituting alanine 

at the mutated sites in pUL25-C3A resulted in a minimal reduction in the 

observed function of the protein.  As discussed earlier (Section 3.1), due its size 

and neutral nature, alanine is generally regarded as the preferred choice of 

amino acid when performing mutational analysis by substitution of any particular 

residue in a protein.  The problem with this general mutational approach is that 

it does not incorporate information specific to the protein of interest.  To help 

address this problem a bioinformatics program, SIFT (http://sift.jcvi.org), which 

had been brought to my attention at this time, was used.   Given a particular 

protein sequence, SIFT analysis will predict a list of residues that are considered 

tolerant or intolerant at each position along a protein sequence, hence the name 

SIFT, sorting intolerant from tolerant.  SIFT is a multi-step procedure that 

searches for and chooses similar sequences, makes an alignment of these 

sequences and then calculates scores based on the amino acids appearing at 

each position in the alignment.  The analysis of any particular residue is based 

on the conservation of each amino acid along the protein sequence and the 

physical properties of the residue at that position.  Tolerated amino acids, which 

included the wt residue, are predicted not to alter the protein’s function.  

Conversely, intolerant residues are predicted to affect the protein’s function if 

the amino acid is positioned at a functional interface.   

Prior to creating pFB-UL25-C3B, SIFT analysis was used to determine the 

predicted tolerant and intolerant residues at positions G202, R203 and K206.   

Although SIFT predicted that two of the residues, R203 and K206, would be 

intolerant to alanine substitution, the program calculated that the substitution 

of G202 with alanine would be tolerated and, therefore, would be expected not 

to alter the protein’s function.  From the list of intolerant residues that were 

suggested at position G202, valine was chosen as the amino acid substitute since 

its physical properties were the most closely related to alanine.  Consequently, 

two overlapping oligonucleotides, C3B-F and C3B-R (Table 4.3B), containing the 

necessary nucleotide changes for the substitutions G202V, R203A and K206A and 

the complementary ends of the REN cloning sites BtsI (613 pb) and BspHI (645 

bp) were constructed.  The annealed BtsI-BspHI 32 bp fragment was ligated to 
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the pFB-UL25-C3A EcoRI-BtsI 605 bp fragment, which encoded the G169A, S170A 

and G172A mutated residues, the pFB-UL25 BspHI-XbaI 1502 bp fragment and the 

XbaI-EcoRI 5907 bp fragment.  The ligated DNA was electroporated into DH5α 

and plasmid DNA samples were prepared from the recombinant bacterial clones.  

Double digestion of two recombinant plasmids with EcoRI and XbaI produced two 

fragments, one of 2139 bp in size and the other of 5907 bp.  These fragments co-

migrated on an agarose gel with the two fragments from pFB-UL25 digested with 

the same enzymes, indicating that the complete UL25 gene was present in each 

of the mutant constructs.  One of these plasmids was selected for further 

analysis and referred to a pFB-UL25-C3B.   

4.3.4 C4 mutant constructs (pFB-UL25-C4A and pFB-UL25-C4B)  

Two mutant constructs were generated for C4.  The plasmid pFB-UL25-C4A 

encoded four mutated residues and pFB-UL25-C4B specified five mutated 

residues of the six amino acids assigned to the region (Table 4.2).  These two 

constructs were created at the same time and it was only evident during 

subsequent complementation analysis that the four mutated residues encoded in 

pFB-UL25-C4A were sufficient to alter the function of pUL25.    

4.3.4.1 pFB-UL25-C4A 

This plasmid encoded four mutated amino acids N396A, Y398A, D400A and   

L402A from the C4 region of the protein.  The annealed complementary 

oligonucleotides, C4A-F and C4A-R (Table 4.3B), included the nucleotide changes 

for the desired amino acid substitutions, an additional NotI (1213 bp) site and 

the complementary ends of the cloning sites NruI (1199 bp) and PstI (1242 bp) 

(Figure 4.8).  The annealed 43 bp oligonucleotide was ligated to the purified 

pFB-UL25 XbaI-NruI 7098 bp and XbaI-PstI 905 bp fragments.  To obtain the XbaI-

PstI 905 bp fragment, pFB-UL25 was digested with EcoRI in addition to XbaI and 

PstI, in order to remove a 929 bp PstI-PstI fragment that was difficult to 

separate from the 905 bp XbaI-PstI fragment on a 1% TAE gel.  EcoRI cut the 

unwanted PstI-PstI 929 bp fragment into two products (265 bp and 664 bp) that 

were easily resolved from the required XbaI-PstI 905 bp fragment after 

electrophoresis on an agarose gel.  The ligation mixture was electroporated into 

DH5α and plasmid DNA was prepared from the recombinant bacteria.  The DNA 
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Figure 4.8 Plasmid maps of pFB-UL25-C4A and pFB-UL25-C4B.   

The REN sites used in the construction and analysis of each plasmid are shown.  The green-
hatched arrow represents the HSV-1 sequences inserted in the pFBpCI backbone, with the UL25 
ORF denoted by the block green arrow.  Multiple cutting REN sites are coloured black and unique 
REN sites are highlighted in red.  
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samples and the control plasmid (pFB-UL25) DNA were digested with NotI to 

confirm that the DNA fragment with the mutations and the NotI site was 

present.  One of the recombinant DNAs produced the two expected fragments, 

877 bp and 7169 bp, which verified that it contained the additional NotI site 

together with the mutated UL25 sequences and this plasmid was renamed pFB-

UL25-C4A (Figure 4.8). 

4.3.4.2 pFB-UL25-C4B 

The pFB-UL25-C4B construct contained the mutations in pFB-UL25-C4A, encoding 

N396A, Y398A, D400A, L402A substitutions and specified an additional alanine 

substitution at R390 in the UL25 protein.  The REN sites, DdeI (1100 bp) and NruI 

(1199 bp), were conveniently located 5’ and 3’ of R390 codon, respectively 

(Figure 4.8).  The NruI site, together with the nucleotide changes required for 

the R390A mutation, were included in the PCR primer C4B-R (Table 4.3B) and 

the DdeI cloning site was incorporated into the primer C4B-F (Table 4.3B).  The 

99 bp PCR product was purified and cloned into pGEM-T Easy.  Two recombinant 

plasmids were obtained and digested with NruI and DdeI.  The REN digested 

plasmid DNAs were separated on a 5% polyacrylamide gel, and the presence of 

the expected 99 bp fragment confirmed that the correct HSV-1 NruI-DdeI insert 

had been cloned.  DNA sequencing of one of the pGEM-T Easy recombinants 

verified it contained the UL25 sequences specifying the R390A mutation.  The 

purified NruI-DdeI 99 bp fragment was subsequently ligated to the purified pFB-

UL25-C4A NruI-EcoRI 6855 bp fragment, containing the mutated residues N396A, 

Y398A, D400A and L402A, and to the pFB-UL25 EcoRI-DdeI 1092 bp fragment.  

The ligated DNA was electroporated into DH5α and the recombinant plasmids 

obtained were digested with NruI and EcoRI.  One of the recombinant plasmids, 

which produced the expected fragments of 1191 bp and 6855 bp, was selected 

for further analysis and renamed pFB-UL25-C4B.   

4.4 Loop mutants 

The disordered residues deleted in each of the six regions (L1-L6) are shown in 

Table 4.2. 
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4.4.1 L1 mutant construct (pFB-UL25-L1) 

A PCR product that contained a deletion of the nucleotides encoding the L1 

unstructured residues A249-D254, and included the cloning sites PstI (672 bp) 

and BsaWI (772 bp) flanking the deletion, was produced using the primers L1-F 

and L1-R (Table 4.3C).   Initial attempts to generate the required PCR product 

with L1-F and L1-R using the PCR-cycle1 cycle were unsuccessful.  The UL25 

fragment was successfully amplified after repeating the experiment using the 

PCR-cycle2 cycle, which increased the specificity by raising the annealing 

temperature from 58oC used during PCR-cycle1 to 68oC.  The purified 116 bp PCR 

product was sub-cloned into pGEM-T Easy and plasmid DNA was prepared from 

the recombinant bacteria obtained.  Recombinant plasmids containing the 

correctly mutated UL25 insert were identified by REN analysis and confirmed by 

sequencing the DNA samples. The purified HSV-1 100 bp PstI-BsaWI insert was 

subsequently ligated to the pFB-UL25 EcoRI-NruI 6855 bp, EcoRI-PstI 664 bp and 

BsaWI-NruI 409 bp fragments and the DNA was electroporated into DH5α.  

Plasmid DNAs prepared from ten recombinant bacterial clones and the control 

pFB-UL25 DNA were digested with EcoRI and XbaI.  Three plasmids produced the 

expected EcoRI-XbaI fragments, 2121 bp and 5907 bp, giving the same pattern of 

digestion as the control pFB-UL25 plasmid.  One of these plasmids was used for 

subsequent analysis and was renamed pFB-UL25-L1 (Figure 4.9).    

4.4.2 L2 mutant construct (pFB-UL25-L2) 

To remove the DNA sequences specifying the unstructured residues in L2 two 

overlapping oligonucleotides, L2-F and L2-R, were designed (Table 4.3C).  The 

annealed fragment contained the cohesive ends of the cloning sites AatII (1020 

bp) and DdeI (1067 bp), an additional NotI (1051 bp) site and a 33 bp deletion 

that removed the sequences encoding the unstructured residues R335–G345 of L2 

(Figure 4.9).  The annealed 47 bp oligonucleotide was ligated to the purified 

pFB-UL25 NotI-XbaI 6253 bp, NotI-AatII 684 bp and DdeI-XbaI 1029 bp fragments 

and the ligation mixture was electroporated into DH5α.  Plasmid DNAs were 

prepared from six recombinant bacterial colonies and together with the control 

plasmid (pFB-UL25) were digested with NotI.  Each of the recombinant plasmid 

DNA samples produced two fragments of the expected size (7298 bp and 715 bp), 



 
 
 

 

UL25 Mutant Primer ID L1 – L3 Overlapping Oligonucleotides and Primers 

L1-F 
 
5’-TAATATTATCCCTGCAGGCGTGCGGCCGGCTGTATGTGGGCCAGCGCCACTATTCC-3’ 
                                 PstI 

pFB-UL25-L1 

L1-R 
 
5’-ATATGACCGGAGCGCGΔCCCGTGCGTGTTTCGGTACAGCAGGTAGAGACACAACACG-3’     
                  BsaWI 

L2-F 
 
5’-CCCCΔGTGGCGCACCACGACGACATAAACCGCGCGGCCGCCGCGTTCC-3’  
 AatII                                                                                   NotI                           DdeI 

pFB-UL25-L2 

L2-R 
 
5’-TGAGGAACGCGGCGGCCGCGCGGTTTATGTCGTCGTGGTGCGCCACΔGGGGACGT-3’ 
     DdeI                           NotI                                                                                          AatII 

L3-F 
 
5’-TAGGCATGCTGATTCCTGGAGCCGTCΔTCCGGATCCGACTCGGGGGCCATCAAGAGCGGAGACAACAATCTGG -3’ 
              NspI                                                            BamHI     

pFB-UL25-L3 

L3-R 
 
5’-ATATAGCAGTAAGACGTACTAGTGCTGCTTGGCGGGCCCCCGATGACATATCCACCACCCGCCGCGTCGACC-3’ 
                                                                                           ApaI              

Table 4.3C  The overlapping oligonucleotides and primers used to generate the UL25 mutant constructs listed  
 
The symbol Δ represents deleted UL25 sequences. The REN sites included in the primers are underlined and their respective names shown underneath.  Bases 
highlighted in bold are the silent base pair changes used to introduce REN sites without altering the protein sequence.  The bases highlighted in green are nucleotide 
changes used to adjust the percentage of G + C bases in a primer so that a pair of primers had an equal percentage. 



pFB-UL25-L1
8028 bp

UL25 ORF

BsaWI (772)
Deletion (A249-D254)

NruI (1181)

EcoRI (8)

XbaI (2129)

Pst I (672)

PstI (1224)

PstI (2141)

Pst I (7789)

 

pFB-UL25-L2
8013 bp

UL25 ORF

AatII (57)

AatII (1020)

DdeI (1067)

Deletion (P335-D345)

NotI (1051)

EcoRI (8)

Xba I (2096)

NotI (336)

 
 
Figure 4.9 Plasmid maps of pFB-UL25-L1 and pFB-UL25-L2   
The REN sites used in the construction and analysis of each plasmid are shown, together with the 
location of the deleted (unstructured) residues from the looped out regions.  The green-hatched 
arrow represents the HSV-1 sequences inserted in the pFBpCI backbone and the block green 
arrow represents the UL25 ORF.  Multiple cutting REN sites are coloured black and unique REN 
sites are highlighted in red.    



Chapter 4 129

confirming they contained an additional NotI site, which was present in the 

mutated UL25 insert.  One of the plasmids was selected for further study and 

renamed pFB-UL25-L2.    

4.4.3 L3 mutant construct (pFB-UL25-L3) 

A PCR product containing a 27 bp deletion of sequences specifying the nine 

unstructured residues (P417-A425) of L3, the cloning sites NspI (1252 bp) and 

ApaI (1474 bp) flanking the deletion, and an additional BamHI (1273 bp) site was 

produced using the primers L3-F and L3-R (Table 4.3C).  The purified PCR 

product was ligated to pGEM-T Easy and the DNA was electroporated into DH5α.  

Plasmid DNA was prepared from a series of recombinant bacterial clones and 

digested with BamHI, which does not cut pGEM-T Easy, and those containing the 

desired UL25 insert were linearised.  DNA sequencing of the positively identified 

recombinants confirmed that one encoded the required deletion.  The purified 

222 bp NspI-ApaI mutated fragment was ligated to the pFB-UL25 EcoRI-NspI 1244 

bp and ApaI-EcoRI 6553 bp fragments.  To detect the recombinant plasmids 

containing the mutated fragment, DNA was prepared from six bacterial clones 

and digested with BamHI.  Five of the recombinant pFB-UL25 plasmids produced 

the three expected BamHI fragments of 838 bp, 1259 bp and 5922 bp, verifying 

that they contained the UL25 insert with the additional BamHI site.  One plasmid 

was selected for further analysis and referred to as pFB-UL25-L3 (Figure 4.10).            

4.4.4 L4 mutant construct (pFB-UL25-L4) 

Overlapping oligonucleotides, L4-F and L4-R (Table 4.3D), were constructed that 

when annealed contained DrdI (1391 bp) and ApaI (1486 bp) cohesive ends, an 

additional XbaI (1434 bp) site and a deletion of 15 bp removing the codons of the 

five unstructured residues (P479-T483) of L4 (Figure 4.10).  The annealed 95 bp 

fragment was ligated to the purified pFB-UL25 EcoRI-DrdI 521 bp, DrdI-DrdI 862 

bp and ApaI-EcoRI 6553 bp fragments and the DNA was electroporated into 

DH5α.  Plasmid DNA samples from two recombinant bacterial clones were 

digested with KpnI and XbaI.  Only one produced the expected fragments KpnI-

KpnI 6427 bp, KpnI-XbaI 875 bp, XbaI-XbaI 698 bp and XbaI-KpnI 31 bp that 



pFB-UL25-L3
8019 bp

UL25 ORF

NspI (1252)

NspI (1687)

Deletion (P417-A425)

BamHI (1273)

EcoRI (8)

Xba I (2120)

Apa I (1474)

BamHI (14)

BamHI (2111)

 

pFB-UL25-L4
8031 bp

UL25 ORF

DrdI (1699)

Deletion (P479-T483)
XbaI (1434)

DrdI (1391)

DrdI (529)
EcoRI (8)

Xba I (2132)

Apa I (1486)

Kpn I (559)

Kpn I (2163)

 
 
 
 
Figure 4.10 Plasmid maps of pFB-UL25-L3 and pFB-UL25-L4 
 
The REN sites used in the construction and analysis of each plasmid are shown, together with the 
location of the deleted (unstructured) residues from the looped out regions.  The green-hatched 
arrow represents the HSV-1 sequences inserted in the pFBpCI backbone and the block green 
arrow represents the UL25 ORF.  Multiple cutting REN sites are coloured black and unique REN 
sites are highlighted in red.    



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.3D – The overlapping oligonucleotides used to generate the UL25 mutant constructs 
listed 
   
The symbol Δ represents deleted UL25 sequences. The REN sites included in the primers are 
underlined and their respective names shown underneath.  Bases highlighted in bold are the silent 
base pair substitutions used to introduce or eliminate REN sites without altering the protein 
sequence.  The REN sites eliminated from UL25 are shown in grey.     
 



 

UL25 Mutant Primer ID L4 – L6 Overlapping Oligonucleotides 

L4-F 

 
5’-CGGTCGAGCTGACCCAGCTATTTCCCGGCCTGGCCGCCCTGTGTCTAGACGCCCAGGCGGGGCGGΔCGG 
      DrdI                         no PvuII site                                                           XbaI 
 
CGGGTGGTGGATATGTCATCGGGGGCC-3’ 
                                                          ApaI pFB-UL25-L4 

L4-R 

 
5’-CCCGATGACATATCCACCACCCGCCGΔCCGCCCCGCCTGGGCGTCTAGACACAGGGCGGCCAGGCCGGG 
ApaI                                                                                                             XbaI   
                                                                
AAATAGCTGGGTCAGCTCGACCGCC-3’ 
      no PvuII site                         DrdI 

L5-F 
 
5’-CGCCAGGCGGCGCTGGTGCGCCTCACCGCCCTCGAGCTCATCAACCGCACCΔCCCACCCCT-3’ 
ApaI                                                                               XhoI                                                     BstXI 

pFB-UL25-L5 

L5-R 
 
5’-GTGGGΔGGTGCGGTTGATGAGCTCGAGGGCGGTGAGGCGCACCAGCGCCGCCTGGCGGGCC-3’ 
     BstXI                                                XhoI                                                                                    ApaI 

L6-F 
 
5’-TTGTACTTTTTATGTCTGGGGTTCATTCCACAGTACCTGΔTAGT-3’ 
NspI                                                                                                     XbaI   

pFB-UL25-L6 

L6-R 
 
5’-CTAGACTAΔCAGGTACTGTGGAATGAACCCCAGACATAAAAAGTACAACATG-3’ 
      XbaI                                                                                                              NspI    

L6sub-F 
 
5’-TTGTACTTTTTATGTCTGGGGTTCATTCCACAGTACCTG GCGGCCGCT TAGT-3’ 
NspI                                                                                                     NotI                XbaI   

pFB-UL25-L6sub 

L6sub-R 
 
5’-CTAGACTAAGCGGCCGCCAGGTACTGTGGAATGAACCCCAGACATAAAAAGTACAACATG-3’ 
      XbaI                   NotI                                                                                                          NspI 
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indicated the pFB-UL25 DrdI-DrdI 862 bp fragment was inserted in the correct 

orientation.  This plasmid was subsequently named pFB-UL25-L4.     

4.4.5 L5 mutant construct (pFB-UL25-L5) 

Overlapping oligonucleotides, L5-F and L5-R (Table 4.3D), were produced that 

when annealed contained the ApaI (1501 bp) and BstXI (1561 bp) cohesive ends, 

an additional XhoI (1531 bp) site, and a deletion of 9 bp encoding the 

unstructured residues (R511–N513) of L5 (Figure 4.11).  The 60 bp annealed 

product was ligated to the pFB-UL25 XbaI-ApaI 7400 bp, BstXI-NspI 144 bp and 

NspI-XbaI 433 bp fragments and the DNA was electroporated into DH5α.  Plasmid 

DNAs prepared from six recombinant bacterial isolates were digested with XhoI, 

with two producing fragments of 5880 bp, 1378 bp, 622 bp and 157 bp, which 

confirmed that they contained the additional XhoI site.  One was selected and 

subsequently renamed pFB-UL25-L5.  

4.4.6 L6 mutant constructs (pFB-UL25-L6 and pFB-UL25-L6sub) 

L6 consists of three unstructured residues (S578-V580) located directly at the 

carboxyl terminus of the UL25 ORF.  Initially, the mutant construct pFB-UL25-L6 

was created that contained a deletion of sequences encoding S578-V580.  

Preliminary complementation studies indicated that the pUL25-L6 failed to 

complement the growth of ΔUL25MO.  To determine if alanine residues located 

at all three codons elicited the same functional impact as the deletion mutant, 

pFB-UL25-L6sub encoding the amino acid substitutions S578A and V580A in the 

UL25 ORF was generated. 

4.4.6.1 pFB-UL25-L6 

The primers L6-F and L6-R (Table 4.3D) were annealed to give an oligonucleotide 

that included a deletion of the 9 bp encoding the unstructured residues of L6, 

and the cloning sites NspI(1714) and XbaI(1756) flanking the deletion (Figure 

4.12).  The annealed 42 bp fragment was ligated to the pFB-UL25 EcoRI-BstXI 

1562 bp, BstXI-NspI 144 bp and EcoRI-XbaI 5901 bp fragments and the ligated 

DNA was electoporated into DH5α.  Recombinant plasmid DNA was prepared 

from the bacterial isolates and digested with NotI, those containing the 



pFB-UL25-L5
8037 bp

UL25 ORF

Deletion (R511-N513)
XhoI (1531)

BstXI (1561)

BstXI (2075)
NspI (1705)

EcoRI (8)

XbaI (2138)

ApaI (1501)

XhoI (153)

XhoI (2153)

XhoI (8033)

 
 

 

 

 
Figure 4.11  Plasmid map of pFB-UL25-L5 

The REN sites used in the construction and analysis of each plasmid are shown, together with the 
location of the deleted (unstructured) residues from the looped out regions.  The green-hatched 
arrow represents the HSV-1 sequences inserted in the pFBpCI backbone and the block green 
arrow represents the UL25 ORF.  Multiple cutting REN sites are coloured black and unique REN 
sites are highlighted in red.    

   

 

 

 

 

 

 

 



pFB-UL25-L6
7649 bp

UL25 ORF

Not I (336)

NspI (1252)

BstXI (1570)

Not I (1753)
Deletion (S578-V580)

XbaI (1765)

Eco RI (8)

 

pFB-UL25-L6sub
7658 bp

UL25 ORF

Not I (336)

NspI (1252)

BstXI (1570)

Not I (1753)

XbaI (1765)

EcoRI (8)

 
 
 
 
Figure 4.12 Plasmid maps of pFB-UL25-L6 and pFB-UL25-L6sub 
 
The REN sites used in the construction and analysis of each plasmid are shown, together with the 
location of the deleted (unstructured) residues in pFB-UL25-L6.  The block green arrow represents 
the UL25 ORF.  Multiple cutting REN sites are coloured black and unique REN sites are highlighted 
in red.    
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expected UL25 insert were linearised and produced a fragment of 7649 bp.  One 

of these recombinants was selected for further analysis and named pFB-UL25-L6.  

4.4.6.2 pFB-UL25-L6sub 

This mutant was constructed in the same manner as pFB-UL25-L6, using the 

overlapping oligonucleotides, L6sub-F and L6sub-R (Table 4.3D) that specified 

the amino acid substitutions S578A and V580A and contained an internal NotI site 

(Figure 4.12).  Recombinants containing the mutated UL25 insert and the 

additional NotI site were identified by the production of two NotI fragments of 

1417 bp and 6241 bp.  One of these recombinants was selected for further 

analysis and named pFB-UL25-L6sub. 

4.5 Combination mutant (pFB-UL25-C1L2) 

As referred to in Section 1.4, pUL25 and pUL17 interact to form the C-capsid- 

specific component (CCSC) (Trus et al., 2007).  Specific residues in pUL25 have 

been speculated to be the sites of the protein that interact with the capsid 

during the formation of the CCSC (A. Steven, personal communication).  The 

predicted amino acids included H348, R362 and G363 from C1 and H323 and 

G324, which lie in the extended L2 region of pUL25 (Table 1.4).  Substitutions 

affecting two of the residues, R362A and G363A, were encoded in the UL25 gene 

within pFB-UL25-C1, whereas pFB-UL25-L2 has a deletion in UL25 that removes 

the codons specifying the unstructured residues R335-G345 that are adjacent to 

H323 and G324 in L2.  To determine the functional impact of these mutations in 

combination, a construct containing both the C1 and L2 mutated residues was 

generated.  The purified fragments pFB-UL25-C1 DdeI-XbaI 1047 bp, pFB-UL25-L2 

EcoRI-DdeI 1059 bp and pFB-UL25 EcoRI-XbaI 5907 bp were ligated and the 

ligated DNA was electroporated into DH5α.  Recombinant plasmid DNA was 

prepared from the bacterial isolates and analysed by REN digestion and DNA 

sequencing.  One of the plasmids, pFB-UL25-C1L2 (Figure 4.13), had the correct 

REN pattern and the expected UL25 sequence containing the desired mutations.    



 

pFB-UL25-C1L2
8013 bp

UL25 ORF
AatII (57)

AatII (1020)

DdeI (1067)

Deletion (P335-D345)

NotI (1051)

C1 substitutions

L2 deletion

Eco RI (8)

Xba I (2147)

Not I (336)

 
 
 
 
 
Figure 4.13 Plasmid map of pFB-UL25-C1L2 
The REN sites used in the construction and analysis of the plasmid are shown and the positions of 
two of the fragments used to generate the complete plasmid are indicated.  The block grey arrow 
represents the pFB-UL25-L2 AatII-DdeI fragment (L2 deletion) that contained the deleted 
(unstructured) residues from pFB-UL25-L2.  The second fragment contained the mutated residues 
from pFB-UL25-C1 in the DdeI-XbaI fragment from this plasmid (C1 substitutions) and is denoted 
by the hatched grey arrow.  The green-hatched arrow represents the HSV-1 sequences inserted in 
the pFBpCI backbone, with the UL25 ORF highlighted by the block green arrow.  Multiple cutting 
REN sites are coloured black and unique REN sites are highlighted in red.  
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4.6 Complementation assay 

This assay determines the ability of proteins supplied in trans to complement 

the growth of a mutant virus lacking a functional version of the protein, under 

conditions non-permissive for input virus replication.  The yield of the progeny 

virus is subsequently determined by titrating the virus under permissive 

conditions.  Vero cells were transfected with either pFB-UL25, the empty vector 

pFBpCI or individual mutated pFB-UL25 plasmids and subsequently infected with 

ΔUL25MO (Section 2.2.7.3).  After incubation at 37oC for 24 h the cells were 

harvested and the viral yields were determined on 8-1 cells and expressed as a 

percentage of the yield obtained from positive control cells containing pFB-UL25 

(Figure 4.14).  Eight of the 17 mutants analysed had a minimal effect on the 

ability of the protein to support virus growth, giving yields of over 40% of the wt 

pUL25 positive control level in the complementation assay.  The remaining nine 

mutant proteins displayed significantly lower levels of complementation that 

were 5% or below that of the positive control sample.  For each of the 

complementation assays performed, a duplicate set of cell monolayers from the 

experiment was harvested and the proteins contained in the cell lysates were 

separated by SDS-PAGE on 10% polyacrylamide gels.  The proteins were blotted 

onto nitrocellulose membrane and incubated with primary anti-pUL25 antibody.  

The blot containing the N-terminally truncated pUL25 proteins was screened 

with anti-pUL25 RAb335, which was raised against pUL25 residues 342-580.  

Whereas, the other blots were screened with anti-pUL25 MAb166, which 

recognises an epitope located between pUL25 residues 59-133.  Although no 

loading control was used to determine the quantities of the proteins expressed 

in each sample, Western blot analysis confirmed the expression of pUL25 in each 

of the cell lysates analysed, confirming that the cells had been successfully 

transfected with the recombinant plasmid.  A representative image for each of 

the samples analysed during complementation analysis is shown Figure 4.15. 

4.7 Discussion 

UL25 must interact with its essential protein partners to ensure production of 

functional capsids and hence infectious virions.  Eight of the UL25 mutant 

proteins examined retained the ability to complement the growth of ΔUL25MO, 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.14 Complementation of ΔUL25MO by mutant UL25 proteins 
 
Vero cell monolayers in 24 well tissue culture dishes were transfected with a plasmid expressing a 
mutant UL25 protein.  As a positive control, cells in one well were transfected with pFB-UL25 
expressing the wt protein and as a negative control, cells in another well were transfected with the 
empty vector pFBpCI that did not express pUL25 instead of a plasmid expressing a mutant UL25 
protein.  Subsequently, each of the wells was infected with ΔUL25MO, and after virus absorption the 
cells were acid washed to remove residual viral particles from the cell surface.  Following incubation at 
37oC for 18 h, cells were harvested and the yield of ΔUL25MO determined on 8-1 cells.  For each 
plasmid, the average yield of the viral progeny obtained from three independent experiments was 
calculated and expressed as a percentage of the average yield obtained from ΔUL25MO-infected cells 
expressing pFB-UL25.  Error bars represent the standard deviation of the mean.  
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Figure 4.15 Western blot analysis of pUL25 in the complementation 
assays

Vero cell monolayers seeded in a 24-well dish were transfected with a 
plasmid expressing a mutant UL25 protein.  As a positive control cells in 
one well were transfected with pFB-UL25 expressing the wt protein and 
as a negative control, cells in another well were transfected with the 
empty vector pFBpCI that did not express pUL25.  Following incubation 
a 37oC for 18 h, cell lysates were prepared from the harvested cells and 
the proteins were separated by SDS-PAGE on 10% polyacrylamide gels 
and blotted onto nitrocellulose.  UL25 proteins in A, B and D were 
detected using primary MAb166 antibody and secondary hrp-conjugated 
anti-mouse antibody.  UL25 proteins in C were detected using primary 
RAb335 antibody and secondary hrp-conjugated protein A.    
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and reasonable virus yields of over 40% of the yield from the wt positive control 

sample were produced (Figure 4.14).  Several possibilities are suggested by these 

observations.  The corresponding wt residues of the mutated amino acids in 

pUL25-C1, -C2, -C3A, -L1, -L2, -L4, -L6sub and -C1L2 may not be essential for 

the interactions required during viral assembly.  Alternatively, the number of 

predicted functional residues mutated in each of the clusters, or the size of the 

deletion in the looped out regions, may be insufficient to produce a functional 

impact.  For instance, pUL25-C1 contained only three mutated residues of the 

nine predicted functional amino acids for C1, and pUL25-C2 contained four 

mutated residues out of the possible six for C2.  In addition, the mutated 

residues in the cluster regions may be tolerated as defined by SIFT analysis.  

Certainly, retrospective SIFT analysis on the amino acids mutated in pUL25-C1, 

pUL25-C2 and pUL25-C3A predicted that several of the alanine substitutions 

included in each of these constructs would be tolerated, and thus would be 

expected not to alter the protein’s function.  Ideally, if time had allowed, new 

C1 and C2 constructs would have been created that contained the additional 

mutated residues from the list of predicted functional amino acids for these 

regions.  In addition, SIFT analysis would have been used to potentially optimise 

the type of amino acid substitution performed at each of the target sites in the 

new constructs.    

Nine of the 17 mutant proteins analysed displayed significant reductions in the 

efficiency of complementation of the growth of ΔUL25MO, and virus yields of 5% 

or less of the level observed for the positive control sample were obtained 

(Figure 4.14).  These mutant proteins were pUL25-C3B, -C4A, -C4B, -L3, -L5, -L6 

and the three N-terminal deletion mutants, pUL25Δ1-45, pUL25Δ1-59 and 

pUL25Δ1-133.  Since the residues mutated in UL25 are located on the surface of 

the protein they are unlikely to affect the overall structure of the protein.  

Consequently, the reduction in complementation observed in ΔUL25MO-infected 

Vero cells expressing the individual mutant proteins listed above suggests that 

the wt residues mutated in each of the proteins, are crucial to the function of 

pUL25.  Two of the loop mutants, pUL25-L5 and pUL25-L6, with the smallest 

number of deleted residues (3 each), produced a profound effect on the ability 

of the protein to complement, and virus yields of less than 1% of the wt yield 

were obtained.  In contrast, ΔUL25MO-infected Vero cells expressing pUL25-L2 
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produced a mean complementation level of 68%, despite the protein having an 

11 amino acid deletion in L2.  The unstructured portions of the protein are 

assumed to relate to the molecule’s flexibility, which in turn influences the 

conformational parameters the protein requires to function effectively.  Since 

the large deletion of the unstructured residues in pUL25-L2 was tolerated, 

alterations in the flexibility of the protein appear to be localised with little long-

range impact on the function of the highly flexible pUL25 (Bowman et al., 2006).  

The level of complementation of ΔUL25MO by pUL25-C3A was comparable to the 

value obtained for the positive control.  However, by expanding the number of 

mutated residues within the C3 region of UL25 from the three in pUL25-C3A 

(G169A, S170A and G172A) to the six in pUL25-C3B, which contained the 

additional mutated residues G202V, R203A and K206A, the mean 

complementation efficiency was reduced from 92% to 2%, respectively.  A study 

is presently under way to determine if the two groups of mutated residues 

G169A, S170A, G172A plus G202V, R203A, K206A, contained in pUL25-C3B work 

in concert with each other or if the mutated amino acids G202V, R203A and 

K206A operate independently to produce the low levels of complementation 

observed with pUL25-C3B. 

The mutant pUL25-C1L2 (Section 4.5) had been created to examine the 

combined effects of the mutations contained in pUL25-C1 plus pUL25-L2 on the 

properties of pUL25.  A combination of the mutations was chosen since they 

either contained, or were close to, residues that were predicted to be the 

interaction sites on pUL25, which were involved in the formation of the CCSC 

(Trus et al., 2007).  In the complementation analysis the mutations in pUL25-

C1L2 had little effect on the protein’s ability to support viral growth, and virus 

yields of over 68% of the wt positive control level were produced.  However, the 

results do not conclusively rule out the possibility that these regions may be 

important during viral assembly.  The mutant pFB-UL25-C1 encodes mutations 

for only two of the possible three residues in C1 identified as significant for 

CCSC formation, while pUL25-L2 was chosen because the deleted amino acids in 

this protein were in close proximity to the two residues in L2 that were 

predicted to be the interaction sites for the formation of the CCSC on mature 

capsids.  Further experiments are required that specifically target the proposed 

interaction residues for CCSC formation on mature capsids.  Analysis of a single 
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mutant construct containing the appropriate SIFT selected substitutions at H348, 

R362, G363, H323 and G324 would help to clarify the functional significance of 

the amino acids identified. 

Complementation assays with pUL25-C4B and –C4A generated virus yields of less 

than 1% of the wt positive control level.  Since pUL25-C4A contained only four of 

the five mutated residues in pUL25-C4B, this demonstrated that one or more of 

the wt residues N396, Y398, D400 and L402 mutated in pUL25-C4A was 

functionally important.  The amino acids mutated in pUL25-C4A are located 

along a loop on the surface of UL25, which lies adjacent to the extended looped 

out region, L3 (Figure 4.16).  Since the pUL25-L3 protein also failed to 

complement the growth of ΔUL25MO, the combined results for pUL25-C4A and 

pUL25-L3 suggests that this whole area of the protein is essential for viral 

assembly.   

 

 
 
 
 

 



C terminus

Figure 4.16  Ribbon diagram of UL25nt

The location of the wt residues, N396, Y398, D400 
and L402, which are mutated in pUL25-C4A and 
and their proximity to L3 are illustrated.
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5 Ability of the mutant pUL25s to support DNA 
packaging  

5.1 Introduction 

As discussed in Section 1.3.5.2.5, UL25 has been shown to play an important role 

during the later stages of viral DNA packaging prior to the release of capsids into 

the cytoplasm.  The available evidence supports a model for DNA packaging in 

which the viral genome is inserted into the capsid in the direction of the L to S 

terminus (McVoy et al., 2000, Stow, 2001).  Stow (2001) used the original UL25 

null mutant, KUL25NS, to analyse HSV-1 DNA packaging in Vero and BHK cells in 

the absence of UL25 and showed that the proportion of encapsidated DNA 

present as full-length genomes was much lower than the values obtained in wt 

virus-infected cells.  Consequently, in KUL25NS-infected cells there was a 

significant overrepresentation of the L terminus and underrepresentation of the 

S terminus of the packaged HSV-1 genome (Figure 5.1).  The aim of the 

experiments carried out in this section was to determine the effect of each of 

the eight non-complementing mutant proteins pUL25-L3, -L5, -L6, -C3B, -C4A, 

Δ1-45, Δ1-59 and Δ1-133 on the ability of ΔUL25MO to encapsidate unit-length 

viral DNA in non-permissive U2OS cells.   

The UL25 mutant genes were initially cloned into the plasmid pFBpCI (Figure 

5.2), which had been selected on the basis that it could also be used as a 

baculovirus transfer vector.  Transfection of Vero cells with plasmid DNA was a 

convenient method of introducing the UL25 gene into cells for screening the 

expressed mutant UL25 proteins for their ability to complement the growth of 

ΔUL25MO.  However, the efficiency of transfection and the level of expression of 

the UL25 proteins in individual cells were variable.  To determine whether the 

mutant proteins altered the packaging phenotype of ΔUL25MO in non-permissive 

cells, a system was required in which the majority of the cells expressed the 

recombinant pUL25.  Various mammalian cell lines, in particular human 

osteosarcoma cell lines such as U2OS, have been reported to be efficiently 

transduced by a recombinant baculovirus containing a reporter gene under the 

control of the HCMV IE promoter (Condreay et al., 1999, Song et al., 2003).  
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Figure 5.1 The structure of the HSV-1 genome 

The HSV-1 genome is represented at the top and shows the positions 
of the unique (UL and US) and repeated regions (TRL, IRL, IRS and 
TRS).  The locations of the BamHI fragments S, K and Q are indicated 
and the positions of the a sequence are shown in red.  The expanded 
representation of the BamHI K (joint-spanning) fragment and the 
terminal fragments S and Q are shown along the bottom.   The shaded 
boxes represent the regions within these fragments that correspond to 
the inserts in the plasmids pBE1 and pST17.  32P-labelled pBE1 and 
pST17 were used as probes to determine the genomic location of the 
BamHI f ragments generated and analysed by Southern b lo t  
hybridisation during the DNA packaging assays carried out in Section 
5.3 (adapted from Stow, 2001).
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Figure 5.2 Plasmid map of pFBpCI 

The HCMV IE promoter and enhancer, polyhedrin promoter, ampicillin and gentamicin genes are 
represented by different coloured arrows.  The position of the right and left arms of the Tn7 
transposon (Tn7R and Tn7L, respectively) are shown by the black arrows, while the grey arrow 
represents the position of the SV40 polyadenylation signal (SV40 pa).  The positions of the unique 
EcoRI and XbaI sites are highlighted in red.     
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Furthermore, provided cells were infected with recombinant baculovirus at a 

high MOI, a reproducible number of transduced cells could be achieved.  An 

additional safety feature of this system is that recombinant baculovirus 

infections are contained, since mammalian cells are non-permissive for 

baculovirus replication (Kost et al., 2005).  To perform the packaging assay a 

series of recombinant baculoviruses were generated, each expressing one of the 

eight non-complementing mutant UL25 proteins under the control of HCMV IE 

promoter.  Two control recombinant baculoviruses were also constructed, one 

expressing the wt UL25 protein, AcWTUL25, and one expressing no foreign 

proteins, AcpCI.  

5.2 Generation of the baculovirus expressing the 
recombinant pUL25s 

The recombinant baculoviruses were produced using the Bac-to-Bac system (Life 

Technologies) and an overview of this procedure is shown in Figure 5.3.  Based 

on a method developed by Luckow et al. (1993), the system takes advantage of 

the site-specific transposition properties of the Tn7 transposon to generate 

recombinant bacmid DNA.  The bacmid was propagated in E.coli DH10Bac 

containing the helper plasmid pMON7124, which confers tetR to the bacterial 

cells and encodes a transposase enzyme providing the Tn7 transposition function 

in trans (Barry, 1988).  The mutated and wt UL25 genes were cloned into the 

baculovirus transfer vector pFBpCI downstream of the HCMV IE promoter, which 

controls the expression of the recombinant UL25 genes in mammalian cells 

(Figure 5.2).  The mini-Tn7 in pFBpCI contains the expression cassette, which is 

flanked by the right and left arms of Tn7 and includes the gmR gene.  Following 

transformation of E. coli DH10Bac with the recombinant pFBpCI, site-specific 

transposition occurs between the mini-Tn7 region from the recombinant plasmid 

gene and the receptor attTn7 sites in the baculovirus genome within the bacmid.  

Transposition of the recombinant gene to the attTn7 attachment site disrupts 

the expression of β-galactosidase from the LacZα gene in the bacmid, thereby 

allowing blue/white recombinant selection on medium containing the 

colourimetric substrate X-gal and the inducer IPTG.  Transformants are also 

selected for kmR, gmR and tetR, which confirms the presence of the bacmid, 

pFBpCI and the helper plasmid, respectively.   



Figure 5.3  Experimental outline used to generate the recombinant baculovirus

The recombinant baculovirus were generated using the Bac-to-Bac system (Life Technologies).

(A)  A wt or mutant UL25 gene was cloned into the baculovirus transfer vector, pFBpCI, 
downstream of the HCMV IE promoter within the mini-Tn7. 

(B)  The recombinant vector was electroporated into electrocompetent E. coli DH10Bac cells that 
contained the baculovirus shuttle vector, bMON14272, which encodes the LacZα gene possessing 
a mini-attTn7 site.

(C)  The helper plasmid pMON7124 provided the Tn7 transposition function in trans, allowing 
transposition of the UL25 gene into, and disruption of, the LacZα gene in the bacmid.  Bacteria, 
containing recombinant bacmids, were plated out onto L broth agar supplemente with tet, km and 
gm, which selects for bacteria carrying the bacmid, pFBpCI and the helper plasmid respectively.  In 
addition, the plates contained X-gal so that recombinant bacmids with the LacZα-- phenotype could 
be identified.

(D)  The recombinant bacmid DNA was transfected into insect cells, resulting in the production of 
infectious recombinant baculovirus, which expressed the UL25 gene under the control of the 
HCMV IE promoter in mammalian cells.      
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Bacmid DNA encoding the modified UL25 gene was isolated from kmR, gmR and 

tetR bacteria using an adapted alkaline lysis procedure (Section 2.2.12.1).  To 

obtain infectious recombinant baculovirus, bacmid DNA was transfected into 

Sf21 cells (Section 2.2.12.2) and the cells were incubated at 28oC for three days.  

The progeny viruses were harvested and amplified to produce high-titre virus 

stocks, as described in Section 2.2.12.3.  Each of the recombinant baculoviruses 

generated and the proteins they express are listed in Table 5.1 (The N-terminal 

deletion mutants AcUL25Δ1-45, Δ1-59 and Δ1-133 were supplied by Dr V. 

Preston).  To confirm that each baculovirus expressed UL25 protein in 

mammalian cells, U2OS cells were infected with baculovirus expressing wt UL25 

or a mutant protein.  As a negative control a sample of cells was infected with 

baculovirus AcpCI.  After 24 h at 37oC, the cells were harvested and each sample 

was analysed for UL25 protein expression using the Western blotting technique 

described in Section 2.2.18.2.  The proteins expressed by AcUL25-C3B, -C4A,      

-L3, -L5 and –L6 were screened with anti-UL25 MAb166, which recognises an 

epitope located between pUL25 residues 59-133.  Since this epitope was not 

present in the N-terminally truncated proteins, the proteins expressed by 

AcUL25-Δ1-45, -Δ1-59 and -Δ1-133 were screened with anti-UL25 RAb335, which 

was raised against UL25 residues 342-580.  The images obtained for the Western 

blots are shown in Figure 5.4, and demonstrate that each UL25 recombinant 

baculovirus expressed a UL25 protein of the correct size. 

To confirm that the infection efficiency of each of the recombinant baculovirus 

in mammalian cells was similar, U2OS monolayers were infected with virus at 

MOI of 50 PFU per cell and prepared for immunofluorescence as outlined in 

Section 2.2.12.6.  To detect virus-infected cells in each sample, the mounted 

monolayers were probed with the appropriate anti-UL25 primary antibody at a 

concentration of 1:500 and secondary FITC-conjugated anti-mouse antibody at a 

concentration of 1:100.  To identify all of the cells in each sample the cell nuclei 

were stained with propidium iodide and then visualised using the confocal 

microscope.  The total number of cells and the number of cells infected with 

baculovirus were counted in a selected area of each coverslip.  For each 

recombinant baculovirus the proportion of virus-infected cells ranged from     

41% to 47% of the total number of cells counted (data not shown), verifying that 
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Figure 5.4  Western analysis of baculovirus- infected U2OS cell 
extracts for UL25 expression 

U2OS cells were infected with the baculovirus at an MOI of 50 PFU/cell 
and incubated overnight at 37oC.  Cell extracts were prepared and the 
proteins were separated by SDS-PAGE and then analysed by Western 
blotting.  No loading control was used during this experiment.  Blot (A) 
was screened with pr imary ant i-pUL25 MAb166 ant ibody at a 
concentration of 1:1000 and secondary hrp-conjugated anti-mouse 
antibody at 1:1000 dilution.  Blot (B) was screened with primary anti-
pUL25 RAb335 antibody at a concentration of 1:1000 and with 
secondary hrp-conjugated protein A antibody at 1:1000 dilution.  The 
white arrowheads indicate the position of the wt or truncated UL25 
proteins. 
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each virus stock showed a similar and therefore comparable efficiency of 

infection.    

  
Baculovirus Expressed HSV-1 UL25 Protein 

AcpCI None 

AcWTUL25 pUL25  

AcUL25-C3B pUL25-C3B  

AcUL25-C4A pUL25-C4A   

AcUL25-L3 pUL25-L3  

AcUL25-L5 pUL25-L5   

AcUL25-L6 pUL25-L6   

AcUL25Δ1-45 pUL25Δ1-45   

AcUL25Δ1-59 pUL25Δ1-59  

AcUL25Δ1-133 pUL25Δ1-133  

 

 

 

 

 

 

Table 5.1 List of recombinant baculoviruses 

 

5.3 Viral DNA packaging assay  

The DNA packaging assay of Stow (2001) was used to determine whether any of 

the mutant UL25 proteins expressed by the recombinant baculoviruses listed in 

Table 5.1 could alter the DNA packaging phenotype of ΔUL25MO in U2OS cells.  A 

summary of the assay is shown in Figure 5.5.  At 24 hpi the cells were harvested 

and total and DNase-resistant DNA samples were prepared as described in 

Section 2.2.14.1.  Since DNase I treatment should degrade all of the DNAs 

present in virus-infected cells, except the encapsidated viral DNA, the DNase-

resistant fraction represents the DNA that has been stably packaged.  DNA 

samples from both the total and DNase-resistant fractions were digested with 

BamHI.  The fragments were separated on a 0.8% agarose gel and analysed by 

Southern blot hybridisation (Section 2.2.15) using either 32P-labelled pBE1 or 

pST17 probes.  Figure 5.1 shows the genomic location of each of the BamHI 

fragments that hybridised to the HSV-1 sequences present in pBE1 and pST17.  

During the packaging process the replicated concatemeric viral DNA is cleaved 



Recombinant 
Baculovirus UL25MO

U2OS 
Cell

24 h @ 37oC

Cell Lysis 

DNA Extraction

Total DNA

Cell Lysis + 
DNaseI

Packaged DNA
(DNase-resistant) 

DNA Extraction

BamHI-digested and analysed 
by Southern blotting using 

32P-labelled pBE1 or pST17

Figure 5.5  Summary of the packaging assay

U2OS cells infected with a recombinant baculovirus and    UL25MO were 
incubated at 37oC for 24 h.  The cells were harvested and divided into two 
aliquots.  One aliquot of infected cells, which represented the total DNA 
fraction, was lysed and the DNA was extracted.  The other infected cell 
sample was lysed and treated with DNaseI prior to DNA extraction.  This 
fraction represented the packaged DNA.  Duplicate DNA samples from both 
the total and packaged fractions were digested with BamHI, the fragments 
were separated on a 0.8% agarose gel and then transferred by blotting onto 
nitrocellulose.  The DNA was hybridised to 32P-labelled pBE1 or pST17.
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into monomeric units, which, when digested with BamHI, give rise to the 

terminal BamHI S and Q fragments.  The pBE1 probe hybridises to the BamHI S 

fragment, which is located in the RL region of the L terminus, and the joint-

spanning BamHI K fragment of the HSV-1 genome.  The pST17 probe recognises 

the BamHI Q fragment, which is located in the HSV-1 RS region of the S terminus, 

and the BamHI K fragment.  In non-permissive cells infected with an HSV-1 UL25 

null mutant, viral DNA is cleaved and encapsidation of the DNA is initiated but 

fails to go to completion.  As a consequence, in packaged DNA digested with 

BamHI the L terminus (BamHI S) is overrepresented and S terminus (BamHI Q) is 

underrepresented relative to the joint-spanning fragment, BamHI K (Stow, 

2001).   

Representative phosphorimages of total and DNase-resistant DNA samples 

analysed by Southern blot hybridisation are shown in Figure 5.6.  Inspection of 

the images revealed that in ΔUL25MO-infected cells expressing any of the five 

UL25 mutant proteins, pUL25-L5, -C3B, Δ1-45, Δ1-59 and Δ1-133, the DNA 

packaging profile of ΔUL25MO was indistinguishable from the one obtained from 

the negative control sample, in which cells were co-infected with AcpCI and 

ΔUL25MO.  In the DNase-resistant samples the L terminal fragment (BamHI S) 

was present but the joint-spanning K fragment was detectable in considerably 

reduced amounts (Figures 5.6, B, lanes 2,4 and 6; F, lanes 2-5).  The S terminal 

fragment (BamHI Q) was also present at low levels in these DNA samples (Figure 

5.6 D, lanes 2, 4 and 6; C and D lanes, 2-5).  In contrast, in ΔUL25MO-infected 

cells expressing pUL25-L3, -L6 or –C4A the DNA packaging profile of ΔUL25MO 

was comparable to the pattern from positive control sample expressing the wt 

pUL25 protein, where both the BamHI S and Q fragments were detected in 

similar amounts in the DNase-resistant DNA samples (Figure 5.6 B and D, lanes 1, 

3, 5 and 7).  To quantify the results the amounts of radioactivity in the bands 

corresponding to the joint fragment and the L and S terminal fragments (BamHI 

K, S and Q, respectively) were measured in DNase-resistant samples.  When 

calculating the amount of radioactivity in BamHI S, the measurements included 

the major fragment, which had a single copy of the a sequence and the higher 

molecular weight fragments containing two or three copies.  The ratio of joint to 

terminal fragment was calculated for each recombinant baculovirus-infected cell 

sample from three independent packaging assays and the results are summarised 
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Figure 5.6 Southern blots of the packaging assays

U2OS monolayers were co-infected with the recombinant baculovirus 
indicated and   UL25MO.  At 24 hpi the cells were harvested and total and 
DNase-resistant DNAs were prepared.  Duplicate samples were digested 
with BamHI and the fragments were resolved by electrophoresis through 
0.8% agarose gel and transferred onto Hybond-XL membranes.  The 
membranes were hybridised to either 32P-labelled pBE1 (RL probe) or 
pST17 (RS) probe as shown.  The position of the joint-spanning (BamHI K) 
and terminal fragments (BamHI S and Q) detected are indicated.   
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in Table 5.2.  In cells co-infected with the negative control baculovirus, AcpCI 

and ΔUL25MO the DNA packaging profile was similar to the one previously 

reported by Stow (2001) for KUL25NS-infected cells alone, with a ratio of 3.5:1 

overrepresentation of the L terminal fragment, BamHI S, and a ratio of 0.6:1 

underrepresentation of the S terminal fragment, BamHI Q, relative to the joint-

spanning BamHI K fragment.  In addition, in ΔUL25MO-infected cells expressing 

pUL25-C3B, -L5, Δ1-45, Δ1-59 and Δ1-133 the BamHI digested packaged viral DNA 

samples produced ratios of the L and S terminal fragments relative to BamHI K 

that were similar to the ratios observed in the negative control sample (Table 

5.2), indicating that the mutant proteins expressed by AcUL25-C3B, -L5, Δ1-45, 

Δ1-59 and Δ1-133 failed to support encapsidation of full-length viral DNA in 

ΔUL25MO-infected cells.  By contrast, the ratios obtained from BamHI-digested 

packaged DNA from cells co-infected with ΔUL25MO and baculovirus expressing 

pUL25-C4A, -L3 or –L6, were comparable to the positive control, indicating that 

the defect in each of these proteins did not affect their ability to support 

packaging of full-length DNA.   

5.4 Pulse-field gel electrophoresis (PFGE) of 
encapsidated viral DNA 

To confirm that the genomic termini present in the DNase-resistance samples 

from ΔUL25MO-infected cells expressing pUL25-C4A, -L3 or –L6 resulted from 

encapsidation of mature unit-length genomes, each of the fractions were 

analysed by PFGE (Section 2.2.16) together with the DNase-resistant fraction 

from ΔUL25MO-infected U2OS cells expressing wt UL25.  PFGE is a technique 

used to separate large DNA molecules greater than 50 kb, which is the limit for 

the separation of DNA fragments by electrophoresis on standard agarose gels.  

U2OS monolayers were co-infected with ΔUL25MO and either AcWTUL25, AcpCI, 

AcUL25-L3, AcUL25-L6 or AcUL24-C4A, or singly infected with wt HSV-1, 

AcWTUL25 or ΔUL25MO.  At 24 hpi the cells were harvested, and DNase-resistant 

DNA was carefully prepared as described in Section 2.2.14.1 to minimise DNA 

shearing.  The DNAs were resolved by PFGE, transferred to Hybond-N membrane 

and hybridised to 32P-labelled HSV-1 pGX2, which contains the BamHI K 

fragment.  The phosphorimage obtained is shown in Figure 5.7 and reveals that a 

major band, corresponding to the full-length 152 kb HSV-1 genome, was 



 
 

Ratio relative to BamHI K  
Recombinant baculovirus Packaging 

competent Terminus 
Exp 1 Exp 2 Exp 3 

Mean ratio 
Mean ratio 
relative to 

AcWTUL25 
L  1.3 1.8 1.6 1.6 1.0 AcWTUL25 + S  0.9 1.0 1.0 1.0 1.0 
L  4.3 2.7 2.7 3.5 2.2 AcpCI - S  0.6 0.6 0.6 0.6 0.6 
L  3.5 4.7 1.2 3.1 1.9 AcUL25-C3B - S  0.7 0.5 1.1 0.7 0.7 
L  1.8 2.0 1.4 1.7 1.0 AcUL25-C4A + S  1.0 0.7 0.8 0.8 0.8 
L  2.3 2.1 1.8 2.0 1.3 AcUL25-L3 + S  1.1 0.7 0.9 0.9 0.9 
L  3.5 5.0 2.1 3.5 2.2 AcUL25-L5 - S  0.5 0.5 0.5 0.5 0.5 
L  1.8 1.0 1.1 1.3 0.8 AcUL25-L6 + S  1.0 0.7 0.9 0.9 0.9 
L  4.0 4.0 5.5 4.5 2.8 AcUL25-Δ1-45 - S  0.5 0.7 0.5 0.6 0.6 
L  6.5 6.4 9.2 7.4 4.6 AcUL25-Δ1-59 - S 0.7 0.6 0.4 0.6 0.6 
L  7.1 7.4 10.3 8.3 5.2 AcUL25-Δ1-133 - S  0.8 0.5 0.5 0.6 0.6 

 
 

Table 5.2 Quantification of the L and S terminal fragments encapsidated during packaging assays 
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Figure 5.7 PFGE analysis of packaged DNA

U2OS monolayers were co-infected with the recombinant 
baculovirus indicated and    UL25MO.  At 24 hpi the cells were 
harvested and DNase-resistant DNA was prepared, using a 
gentle method without phenol extraction to reduce shearing.  
After the DNA molecules had been separated by PFGE, the 
DNA was blotted onto Hybond-N membrane and hybridised to 
32P labelled pGX2, which contains the HSV-1 BamHI K 
fragment.  The position of the 152 kb viral genomes are 
indicated by the black arrowheads. 
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detected in packaged DNA from cells infected with either the wt HSV-1 virus 

(lane 3) or co-infected with AcWTUL25 and ΔUL25MO (lane 6).  In addition, a 152 

kb band was also observed in the packaged DNA from cells co-infected with 

ΔUL25MO and AcUL25-L3, –L6 or –C4A (lanes 8, 9 and 10).  In contrast, no full-

length encapsidated DNA was evident in the negative control sample from cells 

co-infected with AcpCI and ΔUL25MO (lane 7), or in the other control samples 

from cells infected with either AcWTUL25 or ΔUL25MO alone (lanes 4 and 5).  

5.5 Discussion 

The ratio of L and S terminal fragments to joint fragment detected in BamHI 

digested packaged DNA samples from ΔUL25MO-infected U2OS cells expressing 

pUL25-L3, -L6 or -C4A were similar to values obtained for mutant-infected cells 

expressing the wt protein.  The results suggested that unit length genomes were 

encapsidated in ΔUL25MO-infected cells expressing these mutant proteins.  

These observations were confirmed by PFGE analysis of the packaged DNA 

extracted from cells co-infected with ΔUL25MO and AcUL25-L3, -L6 or –C4A, 

which showed that full-length HSV-1 DNA molecules were present in these 

samples.  The evidence presented here indicates that the UL25 mutant proteins, 

pUL25-C4A, -L3 and –L6, do not disrupt viral assembly during DNA packaging but 

at some stage after encapsidation.  In contrast, in ΔUL25MO-infected cells 

expressing pUL25-C3B, pUL25-L5, pUL25Δ1-45, pUL25Δ1-59 or pUL25Δ1-133, the 

L terminal region from the HSV-1 genome was overrepresented and the S 

terminal region was underrepresented.  These results signified that the mutated 

residues contained in pUL25-C3B, the unstructured region of L5 (residues 511-

513) and the first 45 residues in the N-terminal portion of UL25, are critical for 

HSV-1 packaging of unit-length DNA.   

Using the imaging program Chimera (http://www.cgl.ucsf.edu/chimera/), five 

of the six residues that were mutated in pUL25-C3B were located in or near a 

deep cleft situated in the C3 region of UL25 and their position on the molecule is 

indicated in Figure 5.8.  The image shows that four of the residues mutated in 

pUL25-C3B are situated directly in the crevice, with G169, S170 and G172 

present on one side of the cleft and R203 lying directly opposite, while the fifth 

residue (R202) lies along the ridge at the entrance to the cleft.  It is easy to 
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Figure 5.8 The C3 cleft of UL25 

The image shows a solid surface representation of wt pUL25 
and indicates the locations of the five residues in the C3 cleft 
that were mutated in pUL25-C3B.  Four of the amino acids 
are situated directly in the crevice, with R203 lying on the 
opposing face from G172, S170 and G169.  The fifth residue, 
G202, is positioned along the ridge at the entrance to the 
cleft.
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envisage an essential protein partner of pUL25, which is required during DNA 

packaging, docking with pUL25 at this region and interacting directly with the 

important residue(s) that have been identified here.  The position of C3 relative 

to L5, which contains the unstructured residues deleted in pUL25-L5, is indicated 

in Figure 5.9.  On the view shown L5 is situated on the front face of the 

molecule, while C3 lies on the opposing side at the base of the protein, 

approximately 1800 from L5.  Since each of these regions appear to be some 

distance apart and on opposite sides of the structure, it is possible that the C3 

and L5 regions interact with different binding partners that are required during 

DNA packaging.   

Since the N-terminal region of pUL25 (residues 1-133) is not included in the 

crystallographic structure of the protein, the position of this region relative to 

L5 and C3 is unclear.  However, the predicted secondary structure for this 

portion of UL25 includes a long alpha helix (residues 48-110) preceded by a 45-

residue unstructured N-terminal loop, which may become structured following 

protein binding.   Although sequence analysis of this region revealed that the N-

terminal loop is the least conserved portion of the protein (Bowman et al., 

2006), from the data presented here it does appear to be essential for packaging 

the full-length genome.  This finding is supported by a recent report by Cockrell 

et al. (2009), who constructed an HSV-1 mutant expressing an N-terminally 

truncated pUL25 lacking the first 50 residues, and showed that failure of the 

virus to replicate in Vero cells was due to aberrant cleavage of the US end of the 

viral genome during packaging.   They also provided evidence that residues 1-50 

of the protein mediated capsid attachment of UL25 in vitro.   

The work presented here indicates that UL25 contains at least three distinct 

regions, the N-terminal portion, L5 and C3, which are critical for the protein 

interactions necessary for efficient encapsidation of unit-length viral DNA.   

However, further analysis is necessary to clarify if the mutations contained in 

pUL25-C3B, pUL25-L5 and pUL25Δ1-45 disrupt a single functional interface on 

the protein, or if each interacts with a different binding partner during viral DNA 

packaging.     

    



Figure 5.9 Ribbon diagram of UL25nt with C3 and L5

The position of L5 relative to the C3 region is indicated.  The 
location of C3 is highlighted by the broken circle.  On the 
view shown, C3 is located on the opposing face, 
approximately 180o from L5.  
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6 The effect of pUL25-L3, -L6 and -C4A on virus 
assembly in ΔUL25MO-infected U2OS cells  

6.1 Introduction 

The finding that the non-complementing mutant proteins, pUL25-L3, -L6 or -C4A, 

altered the DNA packaging phenotype of ΔUL25MO, allowing the mutant to 

encapsidate unit-length viral DNA, indicated that virus assembly was disrupted 

after DNA packaging.  The aim of the experiments described here was to 

determine at which point(s) during viral assembly these post-packaging blocks 

occurred.  Two different approaches were used, ΔUL25MO-infected U2OS cells 

expressing pUL25-L3, -L6 or –C4A were examined under the electron microscope 

to investigate the patterns of virus assembly, and fluorescent in-situ 

hybridisation (FISH) analysis was carried out on the cells to determine the 

distribution of virus DNA.    

6.2 Electron microscopic (EM) analysis 

U2OS cells were co-infected with ΔUL25MO and AcWTUL25, AcpCI, AcUL25-L3,    

-L6 or -C4A (Section 2.2.12.6).  At 24 hpi the cells were harvested and 

embedded in resin.  Thin sections of the virus-infected cells were prepared, 

stained with uranyl acetate and osmium tetroxide, and examined under the 

electron microscope (Section 2.2.17.1).  Representative images from the 

samples analysed are shown in Figure 6.1A-6.1F.  In the positive control sample, 

in cells co-infected with ΔUL25MO and AcWTUL25, C-capsids were found in both 

the nuclear and cytoplasmic compartments as expected (Figure 6.1A).  In the 

negative control sample, in cells co-infected with ΔUL25MO and AcpCI, DNA-

containing capsids were seen in the nuclei but not in the cytoplasm (Figure 

6.1B).    In ΔUL25MO-infected cells expressing either pUL25-C4A or pUL25–L3, 

the pattern of virus assembly resembled that of the negative control where DNA-

containing capsids were detected in the nuclei but not in the cytoplasm (Figure 

6.1C and D).  In contrast, in ΔUL25MO-infected cells expressing pUL25-L6 the 

distribution of virus capsids was similar to that observed in the positive control, 

and DNA-containing C-capsids were detected in both the nuclear and 



Figure 6.1A Cells co-infected with    UL25MO and AcWTUL25

Monolayers of U2OS cells were co-infected with 2 PFU/cell    UL25MO and 50 
PFU/cell AcWTUL25.  At 24 hpi cells were fixed and prepared for EM (Section 
2.2.17.1).  The nucleus (nuc), cytoplasm (cyt) and nuclear membrane are 
labelled.  As expected, in infected cells expressing wt pUL25, free A- and B-
capsids were located only in the nuclear compartment, while free C-capsids 
were present in the nuclear and cytoplasmic compartments.  C-capsids located 
in vesicles are highlighted by the green arrowhead.  The size bar represents 
500 nm. 
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Figure 6.1B Cells co-infected with    UL25MO and AcpCI

Monolayers of U2OS cells were co-infected with 2 PFU/cell    UL25MO and 50 
PFU/cell AcpCI.  At 24 hpi cells were fixed and prepared for EM (Section 
2.2.17.1).  The nucleus (nuc), cytoplasm (cyt) and nuclear membrane are 
labelled.  DNA-containing capsids (white arrowhead) were present in the 
nuclear compartment, but not the cytoplasm of infected cells.
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Figure 6.1C Cells co-infected with    UL25MO and AcUL25-C4A

Monolayers of U2OS cells were co-infected with 2 PFU/cell   UL25MO and 50 
PFU/cell AcUL25-C4A.  At 24 hpi cells were fixed and prepared for EM (Section 
2.2.17.1).  The nucleus (nuc), cytoplasm (cyt) and nuclear membrane are 
labelled.  DNA-containing C-capsids (white arrowhead) were retained in the 
nucleus of infected cells.
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Figure 6.1D Cells co-infected with    UL25MO and AcUL25-L3

Monolayers of U2OS cells were co-infected with 2 PFU/cell   UL25MO and 50 
PFU/cell AcUL25-L3.  At 24 hpi cells were fixed and prepared for EM (Section 
2.2.17.1).  The nucleus (nuc), cytoplasm (cyt) and nuclear membrane are 
labelled.  Free DNA-containing C-capsids (white arrowhead) were retained in 
the nucleus of infected cells.
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Figure 6.1E Cells co-infected with    UL25MO and AcUL25-L6

Monolayers of U2OS cells were co-infected with 2 PFU/cell   UL25MO and 50 
PFU/cell AcUL25-L6.  At 24 hpi cells were fixed and prepared for EM (Section 
2.2.17.1).  The nucleus (nuc), cytoplasm (cyt) and nuclear membrane are 
labelled.  DNA-containing C-capsids (white arrowhead) were present in the 
nuclear and cytoplasmic compartments of infected cells.  Some cytoplasmic 
capsids surrounded by dense material (blue arrowhead), but not in vesicles, 
were also observed.



Figure 6.1F Cells co-infected with    UL25MO and AcUL25-L6

Monolayers of U2OS cells were co-infected with 2 PFU/cell   UL25MO and 50 
PFU/cell AcUL25-L6.  At 24 hpi cells were fixed and prepared for EM (Section 
2.2.17.1).  The nucleus (nuc), cytoplasm (cyt) and nuclear membrane are 
labelled.  The enveloped C-capsids located in vesicles in the cytoplasm are 
indicated by the green arrowheads and a C-capsid located in the nucleus is 
labelled.
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cyt
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cytoplasmic compartments of infected cells (Figure 6.1E).  Interestingly, groups 

of cytoplasmic C-capsids in ΔUL25MO-infected U2OS cells expressing pUL25-L6 or 

the wt protein were frequently found embedded in dense material (Figure 6.1E), 

a feature not observed in Vero or U2OS cells infected with wt HSV-1.  In 

addition, enveloped virus particles were found in cytoplasmic vesicles in 

ΔUL25MO-infected U2OS cells expressing wt pUL25 and to a lesser extent in the 

mutant-infected cells containing pUL25-L6.  An image showing the enveloped C-

capsids seen in ΔUL25MO-infected cells expressing pUL25-L6 is shown in Figure 

6.1F.       

The finding that the nuclei of U2OS cells co-infected with ΔUL25MO and AcpCI 

contained DNA-containing capsids, in addition to A- and B-capsids, was in 

contrast to earlier findings by McNab et al. (1998), who failed to detect DNA-

containing capsids in the nuclei of UL25 null KUL25NS-infected Vero cells.  The 

data from the packaging assays and the PFGE analysis described in this thesis 

confirmed that virus DNA was packaged in U2OS cells co-infected with ΔUL25MO 

and AcpCI, although most of the encapsidated DNA was less than unit-length.  In 

view of the different results obtained for the HSV-1 UL25 null mutants, the 

pattern of capsid assembly of ΔUL25MO was compared with that of KUL25NS in 

Vero cells, together with wt HSV-1-infected Vero cells.  As expected, C-capsids 

were detected in the nuclei and cytoplasm of wt virus-infected cells.  However, 

in contrast to the previous results of McNab et al. (1998), DNA-containing capsids 

in addition to A- and B-capsids were detected in the cell nuclei of KUL25NS-

infected Vero cells and in the nuclei of ΔUL25MO-infected Vero cells (Figure 

6.2).  However, no cytoplasmic C-capsids were observed in cells infected with 

either mutant. 

6.3 Fluorescent in-situ hybridisation (FISH) analysis 

To substantiate the conclusions from the EM data for the three post-packaging 

mutants, pUL25-L3, -L6 and -C4A, the distribution of the virus DNA in the 

infected U2OS cells was analysed using FISH (Section 2.2.17.2).  U2OS cells were 

infected with ΔUL25MO and the recombinant baculoviruses as described above 

and the cells were prepared for FISH analysis.  FISH is technique that detects 

and localises specific DNA sequences within the cell by using a fluorescent DNA 
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Figure 6.2 Vero cells infected with KUL25NS or    UL25MO

Monolayers of Vero cells were infected with 2 PFU/cell KUL25NS (top) or   UL25MO 
(bottom).  At 24 hpi cells were fixed and prepared for EM (Section 2.2.17.1).  The 
nucleus (nuc), cytoplasm (cyt) and nuclear membrane are labelled.  The DNA 
containing capsids in the nucleus are indicated by the blue arrowheads and the A- and 
B-capsids are labelled. The size bar represents 250 nm.  
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probe.  The viral DNA probe used in this study consisted of HSV-1 sequences 

79,442-115,152, which lie outwith the UL25 ORF, to eliminate the possibility of 

detecting baculovirus DNA containing the HSV-1 UL25 gene in the cells.  To 

visualise the virus DNA, the HSV-1 DNA probe was labelled by nick translation 

with cy3-dCTP, and to highlight the cell nuclei the cells were counterstained 

with DAPI (4’, 6’-diamidino-2-phenylindole) (Everett & Murray, 2005).  A 

representative image obtained for each sample is shown in Figure 6.3.  As 

expected, co-infection of cells with ΔUL25MO and AcWTUL25 gave rise to 

fluorescently labelled virus DNA in both in the nuclear and cytoplasmic 

compartments of the cell (Figure 6.3A).  In the negative control sample, where 

cells were co-infected with ΔUL25MO and AcpCI, fluorescence from the labelled 

DNA was visible only in the nucleus as predicted (Figure 6.3B).  In virus-infected 

cells expressing pUL25-L3 or pUL25-C4A the viral DNA was detected only in the 

nuclei, whereas in samples expressing pUL25-L6, viral DNA was observed in both 

the nuclear and cytoplasmic compartments of the infected cells (Figure 6.3C, D 

and E).  These results support the data obtained from the electron microscopic 

study.   

6.4 Discussion 

DNA-containing capsids as well as A- and B-capsids were detected in the nuclei 

of both KUL25NS and ΔUL25MO-infected Vero cells.  The reason for the anomaly 

between the observations made by McNab et al. (1998) in KUL25NS-infected Vero 

cells and the results obtained during this study is unclear.  However, the 

presence of DNA-containing capsids in the nuclei of HSV-1 UL25 null-infected 

cells is in agreement with a recent report on the pattern of virus assembly of 

another HSV-1 UL25 deletion mutant, HSV-1-ΔUL25.  In the non-permissive rabbit 

kidney cell line RK13 infected with this mutant, numerous electron-dense DNA-

containing capsids were seen in the nuclei but not the cytoplasm (Kuhn et al., 

2008).  In addition, DNA-containing capsids were also detected in the nuclei of 

cells infected with a BHV-1 UL25 null mutant and in the nuclei of cells infected 

with a PrV UL25 null mutant (Desloges & Simard, 2003, Klupp et al., 2006, Kuhn 

et al., 2008).  The electron microscopic results on ΔUL25MO and KUL25NS are 

also consistent with the data from the DNA packaging experiments presented in 

this thesis and earlier findings by Stow (2001), showing that in the absence of 



Figure 6.3 Spread of viral DNA within the cell

Monolayers of U2OS cells were co-infected with 2 PFU/cell  UL25MO and 50 PFU/cell AcWTUL25 (A), 
AcpCI (B), AcUL25-C4A (C), AcUL25-L3 (D) or AcUL25-L6 (E).  At 24 hpi cells were fixed and  
prepared for confocal microscopy (Section 2.2.17.2).  The viral DNA was visualised by FISH using 
Cy3-labelled probe (orange) and the nuclei were stained with DAPI (blue).   
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pUL25 the cleaved HSV-1 DNA is encapsidated, although the packaged DNA is 

shorter that the full-length viral genomes.   

In ΔUL25MO-infected U2OS cells expressing the mutant proteins pUL25-L3, -L6 or    

–C4A, the UL25 null mutant acquired the capacity to encapsidate full-length viral 

DNA but failed to produce infectious virus particles.  The EM and FISH data from 

ΔUL25MO-infected cells expressing pUL25-C4A or pUL25-L3 demonstrate that the 

wt UL25 residues mutated in these proteins are essential for egress of mature C-

capsids from the nuclear compartment during infection.  In contrast, the three 

unstructured amino acids that were deleted in pUL25-L6 are critical for viral 

replication after nuclear egress and once the capsids have been released into 

the cytoplasm.  These results indicate that pUL25 has at least two further 

distinct roles to play during virus assembly in addition to DNA-packaging.   

Using Southern blot analysis Stow (2001) demonstrated that in non-permissive 

cells infected with KUL25NS less than unit-length DNA was stably packaged in 

the nuclear capsids and that these DNA-containing capsids were not translocated 

to the cytoplasm.  These observations led to the suggestion that pUL25 is 

important during nuclear egress.  However, a possible mechanism for the failure 

of the DNA-containing capsids to exit the nucleus in UL25 null-infected cells is 

that encapsidated full-length DNA may be necessary for the conformational 

changes required that allow more pUL17 and consequently pUL25 to bind, 

stabilising the structure and triggering primary envelopment.  The results 

obtained in this study with ΔUL25MO-infected U2OS cells expressing pUL25-C4A 

or pUL25-L3 revealed that after full-length DNA is packaged, pUL25 is required 

for egress of capsids from the nucleus.   

In a non-permissive rabbit kidney cell line (RK13) infected with a PrV UL25 null 

mutant, although capsids failed to exit the nucleus, DNA-containing capsids were 

found in close association with the INM (Klupp et al., 2006).  These results 

suggest that the lack of pUL25 does not affect the transport machinery required 

to relocate capsids to the site of primary envelopment at the INM, but does 

affect the ability of the capsids to bud into the INM.  In contrast, in RK13 cells 

infected with the HSV-1 UL25 mutant, HSV-1-ΔUL25, DNA-containing capsids 

were dispersed throughout the nuclei and were not found frequently lining the 

INM (Kuhn et al., 2008).  Similarly, in ΔUL25MO-infected cells expressing either 
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pUL25, pUL25-C4A, -L3 or –L6, and in the negative control sample C-capsids were 

dispersed throughout the nuclear compartment and did not appear to be 

specifically associated with the INM during infection (Figure 6.1A-6.1E).  In 

addition, since no capsids were observed in the perinuclear space this suggested 

that there was a defect during primary envelopment in virus-infected cells 

expressing pUL25-C4A or -L3.  Therefore, it is not clear whether C-capsids 

trapped in the nuclei of virus-infected cells expressing either pUL25-C4A or 

pUL25-L3 were unable to be transported to the site of envelopment, or lacked 

the ability to interact with the proteins essential for primary envelopment, 

pUL31 and/or pUL34, or other viral or cellular proteins required during this 

process.  As discussed in Chapter 4, the residues mutated in pUL25-C4A and 

pUL25-L3 lie in close proximity to one another, along a loop on the surface of 

UL25nt and illustrated in Figure 4.17.  Since both regions lie in the same area of 

pUL25 and ΔUL25MO has a similar phenotype in U2OS cells expressing either 

pUL25-C4A or pUL25-L3, it is conceivable that each mutated region disrupts the 

same functional interface of the protein.  Potentially, one or more of the wt 

residues that were mutated in pUL25-C4A could be directly involved in the 

interactions that are required during primary envelopment.  In contrast, the 

region that is deleted in pUL25-L3 may operate indirectly, by changing the 

conformation of the protein and blocking the ability of pUL25 to establish new 

interactions that are critical during egress.  Since HSV-1-C4A and –L3 have 

recently been constructed in the lab, it would be interesting to determine 

whether these two mutant viruses complement, which would clarify if the C4 

and L3 regions of pUL25 do indeed constitute a single interaction site. 

In ΔUL25MO-infected cells expressing pUL25-L6, some of the C-capsids located in 

the cytoplasm were surrounded with a dense material that may reflect the 

presence of tegument (Figure 6.1E).  None of these capsids were enveloped and 

located inside vesicles, which would be expected following secondary 

envelopment.  Since cytoplasmic C-capsids were often detected in clusters 

embedded in dense material, a feature that was not observed in wt HSV-1-

infected Vero or U2OS cells or in U2OS cells co-infected with ΔUL25MO and the 

negative control baculovirus, AcpCI, it is possible that some of the material 

associated with cytoplasmic C-capsids could be aggregates of pUL25.  In U2OS 

cells the UL25 gene in the recombinant baculovirus is under the control of the 
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powerful HCMV IE promoter, therefore higher levels of pUL25 may be present in 

the U2OS cells than in wt virus-infected Vero cells.  Although envelopment of C-

capsids was observed in cells expressing pUL25-L6, there were fewer enveloped 

virus particles both inside the cell and on the cell surface than in ΔUL25MO-

infected U2OS cells expressing wt pUL25.  Consistent with these observations, 

the mutant-infected cells expressing pUL25-L6 contained more angularised 

capsids in the cytoplasm than cells expressing the wt protein.  Since the original 

complementation experiments had been performed in non-permissive ΔUL25MO-

infected Vero cells expressing pUL25-L6, the presence of enveloped particles in 

ΔUL25MO-infected U2OS cells did raise some concern that pUL25-L6 may 

complement the growth of the mutant virus in these cells.  However, subsequent 

complementation analysis confirmed that the defect in pUL25-L6 was also 

apparent in U2OS cells expressing the pUL25-L6 mutant protein (M. Murphy, 

personal communication).  In addition, electron microscopic studies with a new 

mutant HSV-1-UL25-L6 virus that had been generated in our lab corroborated the 

findings with ΔUL25MO-infected U2OS cells expressing the pUL25-L6 mutant 

protein (V. Preston, personal communication).  

L6 is made up of three unstructured residues that are located directly at the C-

terminus of pUL25, which may become structured during the correct protein-

protein interaction.  Interestingly, these last three residues of pUL25 (S578, 

A579 and V580) form a potential class I PDZ domain-binding motif.  The 

sequence requirements for the different PDZ-binding motifs are outlined in 

Table 6.1.  PDZ domains are modular protein interaction domains that are 

approximately 90 amino acids long, which bind the C-termini of target proteins 

in a sequence-specific manner.  Their structural features allow them to mediate 

specific protein-protein interactions that underlie the assembly of large protein 

complexes involved in signalling and subcellular transport (Ham & Hendriks, 

2003, Hung & Sheng, 2002).  They are amongst the most common protein 

domains represented in sequenced genomes and have been recognised in 

numerous proteins from organisms as diverse as bacteria, plants, yeast, 

Drosophilia and metazoans (Ponting, 1997).  Interestingly, the three C-terminal 

residues from one of the head stabilising proteins of bacteriophage λ, gpW, 

which are thought to be unstructured, display sequence specificity for a Class     

II PDZ domain-binding motif and are critical for the protein’s            



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             X = unspecified amino acid          φ = a hydrophobic amino acid   

PDZ Binding Motifs 

Class C-terminal Sequence 

Class I X-S/T-X-φ-COOH 

Class II X-φ-X-φ -COOH 

Class III X-D/E-X-φ-COOH 

Class I - UL25 loop 6 L-S-A-V-COOH  

Table 6.1 Classes of PDZ domain-binding motifs 
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activity (Maxwell et al., 2000).  The PROSITE bioinformatics program 

(http://www.expasy.org/prosite/) searches a given protein sequence for 

patterns that reflect protein domains, including PDZ domains.  Since pUL25 

contains sequences that form a PDZ domain-binding motif and evidence indicates 

that pUL36 interacts with pUL25 (Coller et al., 2007, Pasdeloup et al., 2009), 

PROSITE was used to search the protein sequences of HSV-1 strain 17 syn+ pUL36, 

and pUL37 for PDZ domains.  However, no potential PDZ domain sequences were 

found in either tegument protein.   

Intriguingly, a sequence alignment of alphaherpesviruses pUL25 homologues 

showed that 75% contained potential Class I or II PDZ binding motifs at the C-

terminus (Table 6.2).  In addition, across the alpha-, beta- and 

gammaherpesviruses subfamilies, approximately 73% of the C-terminal 

sequences of the UL25 homologues analysed also contained either Class I or II 

potential PDZ binding motifs.  The other L6 construct generated, pFB-UL25-

L6sub, consisted of substitutions S579A and V580A that, together with A579, 

formed a potential Class II PDZ-binding motif at the C-terminus of UL25 (L-A-A-A-

COOH).  The mutant protein expressed by pFB-UL25-L6sub during 

complementation analysis retained the ability to support the growth of 

ΔUL25MO, producing complementation yields of 80% in comparison to the wt 

positive control (Figure 4.14).  Although the wt pUL25 contains a Class I PDZ 

binding motif there is evidence that single PDZ domains may recognise and bind 

to more than one class of PDZ binding motif (Ham & Hendriks, 2003, Sheng & 

Sala, 2001).  However, a mutant pUL25 containing sequences that do not form a 

PDZ domain-binding motif at the C-terminal L6 region would need to be 

generated and analysed in order to clarify the relevance of such a motif during 

HSV-1 replication.   

    



 

 

Alphaherpesviruses C-terminal sequence  PDZ binding motif  

HSV-1 L-S-A-V-COOH Class I 

HSV-2 L-S-V-A-COOH Class I 

HHV-3 A-S-T-P-COOH - 

SuHV-1 F-A-A-A-COOH Class II 

CeHV-1 L-S-A-A-COOH Class I 

CeHV-2 L-S-T-A-COOH Class I 

CeHV-9 T-S-V-A-COOH Class I 

CeHV-16 L-S-T-A-COOH Class I 

 
BoHV-1 
 

T-S-A-V-COOH Class I 

BoHV-5 T-S-A-V-COOH Class I 

EHV-1 T-S-A-M-COOH Class I 

EHV-4 T-S-A-M-COOH Class I 

GaHV-1 Q-R-G-V-COOH - 

GaHV-2 I-S-T-L-COOH Class I 

MeHV-1 V-S-A-P-COOH - 

PsHV-1 V-T-I-A-COOH Class I 

 
Table 6.2 Potential PDZ binding-domains at the C-terminus of alphaherpesvirus UL25 
homologues 
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7 Interaction of mutant pUL25s with the capsid-
binding domain of pUL36 

7.1 Introduction 

The aim of the experiments described in this section was to determine the 

ability of the UL25 mutant proteins, pUL25-C4A, L3, -L5 and -L6 to interact with 

the CBD of HSV-1 pUL36 (pUL36cbd) identified by Coller et al. (2007).  These 

workers showed that the carboxyl terminus of the UL36 tegument protein is 

functionally conserved in HSV-1 and PrV and is a capsid-binding domain.  Using a 

mutant virus screen they found that pUL25 was essential for association of the 

pUL36cbd with nuclear capsids.  The results from co-immunoprecipitation 

experiments confirmed that pUL25 interacted directly with the CBD and the full 

length pUL36 (Coller et al., 2007, Pasdeloup et al., 2009).  To investigate 

whether any of the mutant UL25 proteins failed to interact with pUL36cbd, 

which consists of the 62 carboxyl-terminal residues of the tegument protein, a 

GST pull-down assay was set up.  An outline of the GST-gene fusion system and 

the GST pull-down assay is described in Section 2.2.19.     

7.1.1 Construction of GST-UL36cbd expression plasmid 

 A DNA fragment specifying the HSV-1 pUL36cbd (amino acids 3104–3164) was 

cloned into the plasmid pGEX-2TNMCR in frame with the GST gene, enabling the 

GST tag to become fused to the N-terminal region of the expressed pUL36cbd 

(Everett et al., 1997).  The DNA fragment encoding the pUL36cbd was generated 

by PCR using the HSV-1 cosmid Cos14, which contained the entire UL36 ORF, as a 

DNA template, and the primers 36cbd-F and 36cbd-R that incorporated the 

cloning sites EcoRI and BamHI, respectively,  (Table 7.1) (Cunningham & Davison, 

1993).  In addition, an internal NruI site was introduced by silent mutagenesis 

into the nucleotide sequence of 36cbd-F.  The 198 bp PCR fragment, which was 

amplified using the PCR-cycle1 (Section 2.2.1.2), was purified and ligated to 

pGEM-T Easy.  The ligated DNA was electroporated into DH5α and plasmid DNA 

was prepared from the isolates obtained.  Since NruI does not digest pGEM-T 

Easy sequences, the recombinant pGEM-T Easy plasmids were identified by the 
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presence of the single NruI site located in the sequences encoding pUL36cbd.  

DNA samples from these plasmids were sequenced using the M13 sequencing 

primers (Table 4.1), and one was identified that contained the desired PCR 

product.  The HSV-1 insert was released from the pGEM-T Easy recombinant by 

digestion with EcoRI plus BamHI, and the purified HSV-1 fragment was then 

ligated to the 4921 bp pGEX-2TNMCR EcoRI-BamHI fragment.  The ligated DNA 

was electroporated into electrocompetent DH5α and plasmid DNA was prepared 

from the isolates obtained.  Since NruI does not cut pGEX-2TNMCR, only 

recombinant plasmid DNAs containing the HSV-1 insert (pGEX-UL36cbd) were 

linearised with NruI.  One plasmid isolate containing a single NruI site was 

selected and used in protein expression experiments.   

 

 

Primer ID pUL36cbd Primers  

36cbd-F 
 
5’-TGGAATTCCCCGTATCGGCAAACGCAGTTCTGTCGCGACGCTACGTGC-3’  
           EcoRI                                                               NruI 

36cbd-R 
 
5’-TAGGATCCGCCCAGTAACATGCGCACGTGATGTAGGCTGGTCAGCACG-3’   
          BamHI 

Table 7.1 The primers used to generate the PCR fragment encoding pUL36cbd 
 

7.1.2 GST pull-down assay 

To express the desired proteins, electrocompetent E. coli BL21 were 

electroporated with either pGEX-UL36cbd, which encoded the GST tagged 

pUL36cbd, or pGEX-2TNMCR, which encoded the GST protein alone, as described 

in Section 2.2.19.1.  Initially, the expression of GST and pGST-UL36cbd in the 

transformed E. coli BL21 cells was poor, but by increasing the IPTG 

concentration from 0.1mM to 0.2 mM and by extending the incubation period for 

IPTG induction from 2 h to 3 h at 37oC, both proteins were detected at levels 

sufficient for analysis (Figure 7.1).   

The GST pull-down assays were carried out according to the method described in 

Section 2.2.19.3.  Essentially, the soluble extracts containing bacterially 

expressed GST or pGST-UL36cbd (bait proteins) were mixed with Glutathione-

Sepharose 4B beads.  The GST protein bound beads served as a control to 



Figure 7.1 Expression of GST and pGST-UL36cbd in E. coli

Western blot analysis of E. coli BL21 lysates expressing GST (lanes 1 and 2) or 
pGST-UL36cbd (lanes 3 and 4).  E. coli BL21 transformed with pGEX2TNMCR or 
pGEX-UL36cbd were grown at 37oC to an O.D of 0.4-0.6 and either harvested 
(uninduced samples) or treated with 0.2mM IPTG for 3 h at 37oC (induced samples).  
Bacterial lysates were prepared, the proteins were separated by SDS-PAGE and 
analysed by Western blotting using anti-GST antibody.  The arrow head indicates the 
protein band that corresponds to the predicted size of GST (26 kDa) in lane 2 or 
pGST-UL36cbd (32 kDa) in lane 4.
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confirm that there was no non-specific binding of the target protein lysates to 

the GST tag during the assay.  The beads with the bound bait proteins were 

concentrated and washed extensively to remove any non-specifically bound 

proteins.  Duplicate samples of pre-cleared baculovirus-infected Sf21 cell 

lysates, containing expressed wt pUL25, pUL25-C4A, -L3, -L5, or -L6, were 

subsequently mixed with the GST or the pGST-UL36cbd charged beads.  A 

negative control lysate sample, derived from AcpCI-infected Sf21 cells, was 

included.  After the samples had been incubated at 4oC for 1.5 h, the beads 

were washed extensively.  The proteins were eluted from the beads, separated 

by SDS-PAGE and analysed by Western blotting, using anti-GST antibody or anti-

pUL25 MAb166 as primary antibodies followed by secondary anti-goat hrp-

conjugated antibody and anti-mouse hrp-conjugated antibody, respectively.  

Since the detergent concentration and the concentration of fusion and target 

proteins applied can affect the proteins pulled down during the assay, these 

conditions were optimised prior to experimental analysis.  Aliquots of the 

baculovirus-infected cell extracts were mixed with Glutathione-Sepharose 

beads, the beads were removed and the extracts were analysed by SDS-PAGE to 

estimate the amount of pUL25 present in each of the extracts so that equivalent 

concentrations of each target protein could be used in the assay (data not 

shown).  Similarly, aliquots of the bacterial extracts were mixed with 

Glutathione-Sepharose beads, the beads were washed and the eluted proteins 

were analysed by SDS-PAGE to determine the amount of bait protein in the 

extract.   

A control experiment was performed to ensure that the expressed wt pUL25 

specifically bound to pGST-UL36cbd beads and not to GST charged glutathione 

beads.  AcWTUL25-infected and AcpCI-infected Sf21 protein samples were each 

incubated with beads charged with GST or pGST-UL36cbd, and the results of the 

protein interaction assays are shown in Figure 7.2.  The appropriate bait protein 

was detected in all samples (Figure 7.2 blot A, lanes 1-4).  In the GST pull-down 

assay using target protein samples with, or without, pUL25, no pUL25 band was 

detected in the protein blot probed with anti-pUL25 MAb166 (Figure 7.2 blot B, 

lanes 2 and 4), confirming that pUL25 did not bind to GST.  Similarly, in a pGST-

UL36cbd pull-down assay using target protein samples with no pUL25 probed 

with MAb166, no band of the expected size of pUL25 was observed in the blot 



Figure 7.2 GST pull-down assay to determine the specificity of binding of wt pUL25 to 
pGST-UL36cbd 

The GST pull-down assay was carried out according the method described in Section 2.2.19.3.  
AcWTUL25-infected U2OS cell extracts containing wt pUL25 (lanes 1 and 2) and AcpCI-infected 
U2OS cell extracts (lanes 3 and 4) were incubated with Glutathione beads charged with pGST-
UL36cbd (lanes 1 and 3) or GST (lanes 2 and 4).  The beads were washed and the co-precipitated 
proteins were analysed by SDS-PAGE followed by Western blotting.  Blot A was stained with anti-
GST antibody at a concentration of 1:2000 followed by the secondary anti-goat hrp-conjugated 
antibody diluted at 1:80,000.  Blot B was stained with anti-pUL25 MAb166 at a concentration of 
1:1000 followed by seondary anti-mouse hrp-conjugated antibody diluted at 1:1000.
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(Figure 7.2 blot B, lane 3).  However, a protein with a molecular weight of 

approximately 62 KDa was present when the AcWTUL25-infected cell sample was 

used in a pGST-UL36cbd pull assay (Figure 7.2 blot B, lane 1), confirming that 

the CBD of pUL36 interacted with wt pUL25.           

The results of the GST pull-down assay to determine whether pGST-UL36cbd 

formed stable interactions with the target mutant proteins, pUL25-C4A, -L3, -L5 

or –L6, are shown in Figure 7.3.  The pGST-UL36cbd was detected in the pGST-

UL36cbd pull-down assay protein samples eluted from the beads and analysed by 

Western blotting using anti-GST antibody, confirming the presence of the fusion 

protein (Figure 7.3 blot A).  Similarly, the GST protein was present in GST pull-

down assay protein samples eluted from the beads (Figure 7.3 blot B).  To 

determine the ability of the mutant UL25 proteins to form stable interactions 

with the GST fusion protein, duplicate pGST-UL36cbd and GST pull-down protein 

samples eluted from the beads were separated by SDS PAGE, and analysed by 

Western blotting using anti-pUL25 MAb166 antibody.  As expected, in the pGST-

UL36cbd pull-down assay a band of the predicted size for pUL25 (62 KDa) was 

present in the wt pUL25 protein extract but not in the negative control extract 

lacking pUL25, confirming that the UL25 MAb166 reacted specifically with pUL25 

(Figure 7.3 blot C, lanes 1 and 2).  In addition, a band of approximately 62 KDa 

was also detected in each of the mutant protein extracts eluted from the beads 

in the pGST-UL36cbd pull-down assay (Figure 7.3 blot C, lanes 3-6).  No protein 

bands of the size of pUL25, however, were observed in the GST blot.  The results 

indicate that wt and mutant UL25 proteins formed stable interactions with 

pGST-UL36cbd.   

7.2 Discussion 

The data presented here indicate that the mutations present in pUL25-C4A, -L3, 

-L5 and –L6 do not disrupt the interaction of UL25 with the CBD of pUL36.  

Although the GST pull-down assay is an important instrument for determining 

protein interactions, the results have to be interpreted carefully.  The presence 

of the GST tag may alter the conformation of the fusion protein in a manner that 

exposes or conceals potential interaction sites.  In addition, the amounts of 

fusion and target protein applied in the assay may not reflect physiological 



Figure 7.3 GST pull-down assay to determine the interaction of pUL25-L3, -L5, -
L6 and -C4A with pGST-UL36cbd 

The GST pull-down assay was carried out according the method described in Section 
2.2.19.3.  Pre-cleared baculovirus-infected U2OS cell extracts containing either wt 
pUL25, no pUL25, pUL25-L3, -L5, -L6 or -C4A (lanes 1, 2, 3, 4, 5 or 6, respectively in 
blots A, B, C or D) were incubated with Glutathione beads charged with pGST-
UL36cbd (blots A and C) or GST (blots B and D).  The beads were washed and the 
co-precipitated proteins were analysed by SDS-PAGE followed by Western blotting.  
Blots A and B were incubated with anti-GST antibody and blots C and D were 
incubated with anti-pUL25 MAb166 and subsequently with secondary hrp-conjugated 
antibody as described in Figure 7.2.
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concentrations of the proteins found in vivo.  Both of these factors may produce 

aberrant results that lead to incorrect conclusions about the absence or 

presence of an interaction.   

The wt residues mutated in pUL25-L5 are essential during packaging of full-

length viral DNA (Section 5.3).  Perhaps it is not surprising that pUL25-L5 and 

pUL36cbd interact, since the pUL25-L5 mutation would be predicted to affect a 

functional interface that interacts with the capsid.  The presence of pUL25 on 

capsids is required for efficient binding of the pUL36cbd onto capsids (Coller et 

al 2007), therefore, the pUL25 functional interface involved in capsid 

interactions and pUL36cbd-binding may be distinct.  The packaging assays 

performed during this study identified three distinct regions essential for 

encapsidation, the N-terminal portion of UL25 (residues 1-45), C3B and L5 

(Section 5.3).  Recent work has demonstrated that the N-terminal portion of 

pUL25, amino acids 1-50, contains a capsid-binding domain (Cockrell et al., 

2009).  In addition, the CCSC identified on C-capsids using cryo-electron 

microscopy and image reconstruction techniques was predicted to be a complex 

of pUL25 and pUL17, with additional contact points for pUL25 calculated to be 

on the triplexes and hexons (Trus et al., 2007).  Since pUL25 has been shown to 

interact directly with all three proteins, it is possible that the protein 

incorporates more than one capsid-binding interface, one of which could be 

associated with the L5 region (Ogasawara et al., 2001; Thurlow et al., 2006).  

Clearly, characterisation of a mutant HSV-1 expressing pUL25-L5 would resolve 

this.     

The post-packaging mutants pUL25-C4A, -L3 and –L6 would be expected to bind 

to capsids during encapsidation, since ΔUL25MO-infected cells expressing these 

proteins produced mature C-capsids (Section 5.3).  The wt residues mutated in 

pUL25-C4A and pUL25-L3 are essential for nuclear egress of C-capsids, while the 

pUL25-L6 mutation disrupts viral replication once the C-capsids have been 

released into the cytoplasm (Section 6.2).  Although each of these post-

packaging UL25 mutant proteins still interacted with pUL36cbd during the GST 

pull-down assay, an alternative pUL25 binding domain (pUL25 BD II) has recently 

been identified in HSV-1 pUL36 between residues 2037-2353 (Pasdeloup et al., 

2009).  In addition, the N-terminal portion of the protein has been reported to 

associate with capsids in virus-infected cells (Roberts et al., 2009).  It is possible 
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that either pUL25-C4A, -L3 or –L6 failed to bind to pUL36 at an alternative site.  

Certainly, the EM observations suggested that secondary envelopment was 

disrupted in ΔUL25MO-infected cells expressing pUL25-L6, since fewer enveloped 

viral particles were seen in the cytoplasm of these cells (Section 6.2), which may 

indicate a disruption during the earlier stage of tegumentation.   
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8 General Discussion 

The overall aim of the work carried out in this thesis was to relate the function 

of pUL25 to the 3D structural information available for the protein.  Fourteen 

UL25 constructs were generated and a total of 17 UL25 mutant proteins were 

characterised to determine the effect of the mutations on the function of pUL25 

(Table 4.2).  The results of this study are summarised in Table 8.1 and show that 

there were three different classes of pUL25 mutants that failed to complement 

the growth of the UL25 null mutant ΔUL25MO.  One category of mutant had 

lesions that affected the role of pUL25 during DNA packaging, whereas the 

mutants in the two other groups had no effect on the DNA packaging function of 

the protein.  Interestingly, the post-packaging mutants disrupted a pUL25 

function required either for the exit of C-capsids from infected nuclei or during 

virus assembly after C-capsids were released into the cytoplasm.  The two novel 

phenotypes displayed by ΔUL25MO in non-permissive cells expressing the post-

packaging mutant proteins demonstrates for the first time that pUL25 is not only 

important for DNA encapsidation but also has essential roles at later stages of 

virus maturation.  

Three regions of pUL25, C3, L5 and the N-terminal domain from residues 1-45, 

were identified as critical for the encapsidation of full-length viral genomes.  

The UL25 encoded gene product is predicted to stabilise the maturing capsid by 

attaching to binding sites that become available during DNA packaging, and 

recent work by Trus et al. (2007) suggested that pUL25 attaches to C-capsids by 

interacting with different proteins, VP5 present in the peripentonal hexon, the 

triplex subunit, Ta, and pUL17.  Studies using mutant viruses or immunological 

assays have provided further evidence that pUL25 interacts with VP5, VP19C and 

pUL17 (Newcomb et al., 2006, Ogasawara et al., 2001, Pasdeloup et al., 2009, 

Thurlow et al., 2006).  While additional work is necessary to confirm that C3, L5 

and the N-terminal domain represent distinct functional interfaces, it is possible 

that the three regions identified here represent each of the potential UL25 

capsid-binding sites proposed by Trus et al. (2007).  Indeed, Cockrell et al. 

(2009) recently confirmed that the N-terminal portion of UL25 (residues 1-50) 

constitutes a capsid-binding domain.  To determine if any of the mutant UL25 

proteins disrupted the interaction with wt pUL17, the proteins were expressed in 



 

UL25 protein Complement 
ΔUL25MO 

 
Full-length DNA Packaging  

 
Virus location 

(EM) 
Viral DNA location 

(FISH) 
Interaction with  

UL36 CBD 

pUL25 + + cytoplasm cytoplasm + 

pUL25-C1 +     

pUL25-C2 +     

pUL25-C3A +     

pUL25-C3B +     

pUL25-C4A - + nucleus nucleus + 

pUL25-C4B -     

pUL25-L6sub +     

pUL25-L1 +     

pUL25-L2 +     

pUL25-L3 - + nucleus nucleus + 

pUL25-L4 +     

pUL25-L5 - -   + 

pUL25-L6 - + cytoplasm cytoplasm + 

pUL25Δ1-45 - -    

pUL25Δ1-59 - -    

pUL25Δ1-133 - -    

pUL25-C1L2 +     

 
Table 8.1 Summary of the characteristics of the UL25 proteins 
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U2OS cells co-infected with AcWTUL25 or individual mutant AcUL25 recombinant 

baculoviruses and AcUL17 or were singly infected with each virus and 

immunoprecipitation assays were performed.  Although acceptable amounts of 

the wt and mutant UL25 proteins were generated by the recombinant 

baculovirus in these cells, the levels of pUL17 expressed were substantially less 

than those of pUL25 and an interaction between the two wt proteins could not 

be demonstrated with UL17 MAb (data not shown).  It was unclear why the levels 

of pUL17 under the control of the HCMV IE promoter were low, although this was 

a reproducible finding.  Unfortunately, there was insufficient time to investigate 

this further and complete the experiments.  Mutant HSV-1 viruses encoding the 

C3B or L5 mutant proteins are currently being constructed in the laboratory.  

The availability of these mutant viruses will allow the levels of mutant pUL25 

present on purified capsids from mutant virus-infected cells to be compared 

with purified wt B-capsids and help to determine if the mutant pUL25s bind to 

capsids.  In addition, immunoprecipitation assays can be carried out on the 

mutant virus-infected cells to establish whether the mutant pUL25s interact with 

pUL17. 

Recent immunoprecipitation experiments have shown that pUL25 binds to pUL6, 

which is the structural unit that comprises the dodecameric portal and where 

the viral DNA is inserted during packaging (Pasdeloup et al., 2009).  Although 

pUL25 has been demonstrated to lie adjacent to the pentons, its association 

with pUL6 indicates that protein may also be located at the unique vertex 

occupied by the portal, which is consistent with pUL25’s function during DNA 

packaging (Newcomb et al., 2006, Pasdeloup et al., 2009).  In addition to its 

predicted indirect role of stabilising the maturing capsid during DNA packaging, 

pUL25 may also bind directly with packaging machinery at the portal to ensure 

full-length viral genomes are encapsidated.  It is therefore possible that C3, L5, 

the N-terminal region of pUL25, or a combination of these regions, is required 

for the interaction of the protein with pUL6.   

Although the UL25 mutant ts1249 has an uncoating defect at the NPT, the 

mutant also displays a packaging defect if ts1249-infected cells are grown at the 

PT to allow uncoating of the viral genome prior to incubation at the NPT.  The 

ts1249 phenotype is the result of the replacement of the negatively charged 

glutamic acid at position 233 in pUL25 with a positively charged lysine residue.  



Chapter 8 159

To determine if this mutation was structurally linked to the functional interfaces 

C3 and L5 involved in DNA packaging or to any of the other predicted functional 

clusters or unstructured portions of UL25, the ts1249 E233K mutation was 

located with respect to these regions on the UL25nt crystal structure using the 

Chimera structural imaging program (http://www.cgl.ucsf.edu/chimera).  The 

glutamic acid residue, which is highly conserved among the alphaherpesvirus 

UL25 homologues, was found on the surface of pUL25 near a looped out region 

that is distinct from L1-L5.  Since the glutamic acid residue does not lie close to 

any of the clusters identified by Bowman et al. (2006), it is unlikely that the 

ts1249 mutation affects the same functional interface as the ones identified 

here.   

The residues mutated in pUL25-C4A and -L3 disrupted the function required for 

nuclear egress of C-capsids when the proteins were expressed in ΔUL25MO-

infected cells.  As discussed in Chapter 6, the mutated regions of C4 and L3 may 

fail to interact with the transport machinery required to move C-capsids to the 

site of primary envelopment or affect the ability of the capsids to bud into the 

INM.  The obvious binding partners for pUL25 at this point during virus assembly 

are the proteins that are essential during primary envelopment, pUL31 and 

pUL34.  However, it is possible that other viral or cellular protein partners are 

required by pUL25 at this stage of the HSV-1 growth cycle, with a prime 

candidate viral protein being pUL36, although the point at which pUL36 

associates with the capsid is controversial.  Coller et al. (2007) showed that the 

transiently expressed pUL36cbd-GFP fusion protein bound to capsids in the 

nuclei of virus-infected cells.  The small size of the CBD (62 amino acids), 

however, enabled the fusion protein to passively diffuse through nuclear pores.  

Whether full-length pUL36 enters the nucleus and binds to nuclear capsids during 

infection is debatable.  In three separate studies it was reported that pUL36 was 

excluded from the nucleus, present in reduced levels in the nucleus relative to 

the cytoplasm, or evenly distributed throughout the nucleus and the cytoplasm 

(Klupp et al., 2002, Klupp et al., 2006, McNab & Courtney, 1992).  Experiments 

using cell fractionation and capsid purification suggested that full-length HSV-1 

pUL36 was associated with intranuclear HSV-1 capsids (Bucks et al., 2007).  

However, a subsequent study reported that no large proteins indicative of pUL36 

were detected in preparations of purified nuclear HSV-1 capsids (Trus et al., 

http://www.cgl.ucsf.edu/chimera/


Chapter 8 160

2007).  The idea that pUL36 attaches to capsids in the cytoplasm is supported by 

observations using UL36 null mutants.  Ultrastructural analysis of non-permissive 

cells infected with an HSV-1 pUL36 deletion mutant, KΔUL36, revealed an 

accumulation of unenveloped nucleocapsids in the cytoplasm, with no obvious 

defects in DNA packaging or nuclear egress (Desai, 2000).  In addition, a similar 

phenotype has been described for the PrV pUL36 deletion mutant PrV-ΔUL36F 

(Fuchs et al., 2004).  Consistent with these findings, a recent study 

demonstrated that removal of the entire HSV-1 UL36 ORF did not prevent 

efficient egress of capsids from the nucleus (Roberts et al., 2009).  Electron 

microscopic analysis of UL36 null mutant ARΔUL36-infected U2OS cells confirmed 

that this mutant had the same phenotype in these cells as reported previously 

(data not shown) (Roberts et al., 2009).  Therefore, in the light of the phenotype 

displayed by the UL36 null mutants, it is unlikely that expression of the mutant 

C4 or L3 proteins in ΔUL25MO-infected cells affects pUL25’s interaction with 

pUL36 in the nucleus and at a stage that would influence nuclear egress of C-

capsids.  This conclusion is supported by the results of an interaction assay using 

the pGST-UL36cbd fusion protein showing that these two UL25 mutant proteins 

retained the capacity to interact with the C-terminal end of pUL36. 

 

An alternative explanation for the phenotypes observed in ΔUL25MO-infected 

cells expressing C4 and L3 mutant proteins, is that there may be additional 

capsid-binding sites for pUL25 that are distinct from those required during DNA 

packaging.  Consistent with this idea is the suggestion by Trus et al. (2007) that 

there is a ‘hidden’ population of pUL25 present on C-capsids, in addition to the 

pUL25 associated with CCSC at the pentons.  It is possible that binding of this 

alternative UL25 protein population to C-capsids, for example at the portal, 

triggers the appropriate exit machinery necessary for the mature capsids to 

leave the nucleus.  Since HSV-1-UL25-C4A and -L3 mutants have subsequently 

been generated, it is now feasible to determine the amounts of pUL25 present 

on the C-capsids purified from mutant virus-infected cells in comparison to the 

level of the protein on C-capsids from wt HSV-1 infected cells.  

Characterisation of pUL26-L6, which is the sole member of the third class of 

pUL25 mutants, led to the identification of unstructured wt residues that are 

essential for virus assembly following nuclear egress of C-capsids.  In thin 
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sections of ΔUL25MO-infected cells expressing pUL25-L6 examined under the 

electron microscope, more naked capsids were seen in the cytoplasm and fewer 

enveloped virus particles were observed in comparison to mutant-infected cells 

expressing the wt pUL25.  These results suggest that the wt residues mutated in 

L6 are important for virus assembly at some point between tegumentation and 

secondary envelopment.  One possibility is that the unstructured residues in the 

L6 region of pUL25 may be required for the interaction of pUL25 with pUL36.   

However, the results of a GST pull-down assay using the fusion protein pGST-

UL36cbd indicated that the pUL25-L6 mutant protein interacted with the C-

terminal end of pUL36 (Chapter 7).  Since there is another pUL25 binding site 

available on pUL36 (BD II), it is possible that the L6 protein fails to bind to this 

site or potentially a third site at the N-terminus (Pasdeloup et al., 2009, Roberts 

et al., 2009).  If this were the case, it would suggest that the large UL36 

tegument protein (335.8 KDa) requires more than one attachment site in order 

for it to function properly.  As a consequence of this partial binding of the pUL36 

to capsids, reduced amounts of the protein may be present on the capsid or 

pUL36 may be incorrectly folded on the capsid.  This in turn could lead to a 

reduced number of enveloped virus particles as a result of slower transport of 

capsids to the site of secondary envelopment in comparison to ΔUL25MO-fected 

cells expressing wt pUL25, and/or inefficient envelopment (Desai, 2000, Fuchs 

et al., 2002a).  Further studies of the interactions of the other pUL25 binding 

domains of pUL36, BD II and the predicted domain at the N-terminus, with the 

packaging competent mutant proteins (pUL25-C4A, -L3 and –L6) identified here 

may help to clarify when and where pUL36 attaches to the capsid in infected 

cells, and whether these mutant proteins have impaired interaction with pUL36. 

The functional screens used in the current study did not investigate whether any 

of the mutant proteins generated affected the release of the virus genome from 

the capsid and it is possible that the L6 mutation, like ts1249, disrupts two 

different functions of pUL25.  Although the L6 residues do not lie near the 

ts1249 mutation, they could affect the same function but not necessarily the 

same interface.  There are several possible explanations for the uncoating 

phenotype of ts1249.  The ts1249 E233K mutation could destabilise a critical 

interaction site of pUL25 with, for example, the nucleoporins CAN/Nup214 or 

hCG1.  Support for this idea has come from observations that ts1249 capsids 
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produced at the PT fail to bind to isolated nuclei at the NPT but associate with 

them at the PT (Dr. D. Pasdeloup, personal communication).  An alternative 

explanation for the phenotype of ts1249, which is similar to the pUL36 mutant 

tsB7 phenotype (Section 1.3.1.2), is that the interaction between pUL25 and 

pUL36 is altered in the ts1249-infected or tsB7-infected cells, leading to failure 

to release virus DNA from the capsid or the inability to expose UL25-NPC binding 

sites.  The UL36 protein is a large protein and it is possible that it could interact 

with several functional interfaces of pUL25.  Experiments are underway in the 

lab to determine if the HSV-1-UL25-L6 mutant virus has an uncoating defect 

using the same approach that was used to investigate whether capsids lacking 

pUL36 were able to initiate infection (Roberts et al., 2009). 

The ET analysis used by Bowman et al. (2006) has proved to be an extremely 

powerful tool for identifying important functional interfaces on the pUL25 

structure.  Two of the four predicted functional ET clusters (C3 and C4) were 

found to be essential for the function of the protein, with the mutational 

analysis of selected residues in C4 identifying a novel function for pUL25 during 

the egress of capsids from the nucleus.  Further mutagenesis of the two other ET 

clusters, C1 and C2, is necessary in order to investigate the functions of these 

predicted interfaces.  SIFT analysis of the potentially functional amino acids in 

the C1 and C2 constructs generated here, calculated that two of the alanine 

substitutions in each of the C1 and C2 mutant proteins may be tolerated and, 

therefore, are unlikely to disrupt the function of the mutant proteins they 

expressed.  In addition, only three of the nine possible functional residues were 

mutated in the C1 construct created.  The tactical approach used to determine 

the functional significance of the unstructured amino acids in L1-L6 by creating 

deletion mutants was validated following analysis of the two L6 proteins, one of 

which encoded a deletion while the other contained missense mutations.  The 

deletion of the wt residues in pUL25-L6 altered the function of the protein 

significantly, whereas the substitution of the same wt residues in pUL25-L6sub 

produced no major defect when expressed in ΔUL25MO-infected cells.  By 

deleting unstructured residues, three of the six disordered regions targeted were 

shown to be essential for the protein’s function, enabling two new important 

roles to be identified for pUL25 in addition to DNA packaging. 
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Further analysis of the mutant viruses that have either been generated, HSV-1-

UL25-C4A, -L3 and -L6, or is in progress, HSV-1-UL25-C3B and –L5, will help to 

confirm and extend the phenotypes identified during this study.   
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