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Abstract 

Model checking is an increasingly popular technique for the formal verification of 

concurrent systems. The application of model checking is limited due to the state- 

space explosion problem - as the number of components represented by a model in- 

creases, the worst case size of the associated state-space grows exponentially. As 

such, models of realistic systems are often too large to feasibly check. Over the last 

15 years, symmetry reduction techniques for model checking have been developed 

and, in a restricted setting, have been shown to be effective in reducing the state- 

space explosion problem. Current techniques can handle limited kinds of symme- 

try, e. g. full symmetry between identical components in a concurrent system. They 

avoid the problem of automatic symmetry detection by requiring the user to spec- 

ify the presence of symmetry in a model (explicitly, or by annotating the associated 

specification using additional language keywords), or by restricting the input lan- 

guage of a model checker so that only symmetric systems can be specified. Addi- 

tionally, computing unique representatives for each symmetric equivalence class is 

easy for these limited kinds of symmetry. 
We present a theoretical framework for symmetry reduction which can be 

applied to explicit state model checking. The framework includes techniques for 

autonzatic symmetry detection using computational group theory, which can be ap- 

plied with no additional user input. These techniques detect structural symmetries 

induced by the topology of a concurrent system, so our framework includes exact 

and approximate techniques to efficiently exploit arbitrary symmetry groups which 

may arise in this way. These techniques are also based on computational group 

theoretic methods. 

We prove that our framework is logically sound, and demonstrate its gen- 

eral applicability to explicit state model checking. By providing a new symmetry 

reduction package for the SPIN model checker, we show that our framework can be 

feasibly implemented as part of a system which is widely used in both industry and 

academia. Through a study of SPIN users, we assess the usability of our automatic 

symmetry detection techniques in practice. 
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Chapter 1 

Introduction 

Over the last 25 years, temporal logic model checking [32,26,130,134,145] has 
become one of the most popular techniques for formal verification of concurrent 
hardware and software systems. Given a finite-state model which captures the es- 
sential behaviour of a concurrent system, and a temporal logic property which de- 
scribes some requirement of the system, a model checking algorithm determines 

whether or not the property holds in the initial state (or states) of the model. Fur- 
thermore, if the property does not hold, the model checker outputs a counter-example 
-a behaviour of the model which violates the given property. Model checkers can 
therefore be used to automatically find subtle defects in complex concurrent sys- 
tem designs, or to prove the absence of certain defects, increasing confidence in the 
system. n-ie fact that model checking is, in principle, a fully automated technique 
makes it more appealing to designers than other formal methods such as develop- 

ment by specification and refinement, or mechanical theorem proving. 
Although model checking has proved successful in both industry and 

academia, the technique is hindered by the state-space explosion problem. This is 

where, in the worst case, the number of reachable states of a model grows expo- 
nentially with the number of components of the system being modelled. Consider 

a system comprised of it identical components, each of which occupies one of k 
local states, for some n, k>0. A state of a model of this system can be viewed as 
a tuple (11,12f 

... In),, where li E 11,2,..., k}, (I <i< n). Thus there are V po- 
tential states in the model. Although in practice it is unusual for every state to be 
reachable, it is typical for the number of reachable states to approach this upper 
limit. This means that memory and time constraints often prohibit model checking 
properties of systems with many components. 

A lot of model checking research concentrates on approaches to reduce the 
state-space explosion problem. Techniques such as symbolic model checking [18, 
128], partial-order reduction [67,1371, abstraction [301 and symmetry reduction [14, 
27,31,55,103] have been successfully used in the verification of large systems. 

Symmetry reduction is applicable when a system contains replicated com- 
ponents. Such replication, or symmetry, can result in portions of the state-space of 
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a model of the system being equivalent up to rearrangement of component identi- 
fiers. If symmetry is known to be present in a specification then model checking 
of certain properties can be performed over a quotient model, which is generally 
smaller than the unreduced model. The quotient model is usually constructed by 

converting each state encountered during search to a unique representative of its 

symmetric equivalence class. There are two main problems which must be over- 
come for a symmetry reduction technique to be useful: it must be possible to derive 

symmetries of a model from its associated high-level specification, and an efficient 
method of computing equivalence class representatives must be available. 

Existing techniques for exploiting symmetry in model checking assume that 
symmetries of a model are either known a priori [311, coded into the model through 
the use of special keywords [14,1031, or guaranteed to exist by restricting the in- 

put language so that there is full symmetry between multiple instances of a pa- 
rameterised component [1661. The first two approaches are potentially prone to 

error, and compromise the automation of model checking, which is one of its main 
strengths as a verification technique. With the third approach, the specification lan- 

guage is designed to suit one particular state-space reduction technique, which may 
restrict the style of specifications, and typically only full symmetry between identi- 

cal components can be captured in this way. Ideally, a model checking tool should 
be able to detect symmetry automatically from a high level system description. 

The problem of computing equivalence class representatives is usually 
avoided by only providing support for full symmetry, since in this special case rep- 

resentatives can be efficiently computed using techniques based on sorting. How- 

ever, many other kinds of symmetry commonly occur in models of concurrent sys- 
tems with a regular structure. For example, cyclic/dihedral groups are typically 

associated with systems which have uni/bi-directional ring structures, and wreath 
product groups occur when dealing with tree topologies. Efficient strategies for 

representative computation have been proposed for symmetry groups which are 
known to have certain structural properties [271. However, an autontated solution to 
the problem of classifying the structure of any group so that an appropriate strategy 
can be chosen is required. 

1.1 Contribution and Structure of the Thesis 

We provide a review of model checking and symmetry reduction literature in 
Chapters 2 and 3 respectively. In Chapter 4 we present a selection of examples 
for which symmetry detection and/or reduction using existing techniques is ei- 
ther difficult, or impossible. The rest of the thesis is divided into two parts, which 
respectively addresses research problems in automatic symmetry detection, and 
efficient exploitation of symmetry. 
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Chapters 5-8 are concerned with techniques for automatic symmetry detec- 
tion. Examples from Chapter 4 are used in Chapter 5 to highlight a correspondence 
between symmetries of the communication structure and symmetries of the model 
associated with a specification. We develop automated symmetry detection tech- 

niques for message passing specification languages in Chapter 7, using a small lan- 

guage which captures the essential features of the widely used Promela language. 
The approach involves computing the symmetry group of the static cliannel diagram 

of a specification (a graphical representation of potential communication in the un- 
derlying model), and using a computational group theoretic algorithm to compute 
a subgroup of these symmetries which induces automorphisms of the underlying 
model. In Chapter 8 we describe SymmExtractor, an implementation of these tech- 

niques for Promela, using the computational group theoretic package GAP. We eval- 
uate the usability of SymmExtractor using a set of Promela specifications written 
as solutions to two student assessed exercises. 

The problem of efficiently exploiting symmetries during model checking is 

addressed in Chapters 9- 11. In Chapter 9 we extend existing results on efficiently 

computing equivalence class representatives for certain kinds of symmetry group 

under a simple model of computation, and present a computational group theoretic 

approach to classifying an arbitrary symmetry group so that an appropriate sym- 

metry reduction strategy can be chosen. Given a set of group generators, the classi- 
fication algorithm analyses the structure of the group, identifying it as a wreath or 
disjoint product of subgroups (which are in turn analysed), or as a basic symmetry 

group. For certain kinds of basic symmetry groups, exact, efficient symmetry reduc- 
tion strategies are available. Otherwise we propose an approximate strategy based 

on local search. This strategy does not provide optimal reduction, but is sound, as 

well as being fast in practice. For symmetry groups which decompose as a product 
of basic groups, a composite symmetry reduction strategy is selected. In Chapter 10 

we then consider a more realistic model of computation, and show that exact sym- 
metry reduction strategies under the simple model of computation are no longer 

guaranteed to provide optimal reduction. We show how to extend these strategies 
to achieve optimality, at the expense of polynomial time. In Chapter 11 we describe 
TopSPiN, a symmetry reduction package for the SPIN model checker, which incor- 

porates our (detection and reduction) techniques. We show significant reductions 
in verification time and space requirements for model checking safety properties 
for a variety of examples. 

1.2 Thesis Website and Source Forge 

The results in this thesis are illustrated using a variety of specifications of various 
concurrent systems. Some of these are given in Appendix A, but all are available 
online at the following URL: 
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http: //www. dcs. gla. ac. uk/people/personal/ally/thesis/ 

Release distributions of the three software tools presented in the thesis, SPIN-tO- 
GRAPE, SymmExtractor and TopSPiN, can also be downloaded from the above URL. 
The tools are open source and their source code can be downloaded from Source 
Forge: 

https: //sourceforge. net/projects/symmetryglasgow/ 

1.3 Notation for Equality and Assignment 

Throughout the thesis we make extensive use of the rromela specification lan- 

guage. Promela follows the C convention of using == to denote the boolean equal- 
ity operator and = assignment. For example, x= =5 is a boolean expression which 
evaluates to true iff x has the value 5. On the other hand, x= 5 is a statement which 
assigns x to the value 5. 

When writing mathematical equations and presenting algorithms, we prefer 
to use = to denote the equality operator, and := to denote assignment (the approach 
used by languages such as Ada and Pascal). Therefore the meaning of == and := is 

unambiguous, but the meaning of = depends on whether it occurs in a Promela. (or 
rromela-Lite) code fragment. The SMC language, discussed in Section 3.3.3, uses 
and == in the same way as rromela. 

1.4 Acknowledgment of Published Work 

Much of the original material in this thesis has been published by the author in a 
selection of co-authored papers. 

The survey of symmetry reduction techniques presented in Chapter 3 ap- 

pears in [132]; the SPIN-to-GRAPE tool of Chapter 4 was first presented in [49]. The 

automatic symmetry detection techniques of Chapter 7 are published (in a prelimi- 
nary form) in [48] and [42], in which the SymmExtractor tool is also introduced. The 

type reconstruction algorithm used by SymmExtractor (see Section 8.2) was devel- 

oped as part of the ETCH type checker [411. Chapters 9 and 10 introduce strategies 
for symmetry reduction which have been published in [44] and [46] respectively, 
while the TopSPIN symmetry reduction package is described in [43]. 

However, the content of this thesis is the work of the author, incorporating 
supervisory suggestions. 

Published work not included in the thesis 

We have published three papers related to symmetry reduction in model checking, 
the content of which are not included here. The topics covered by these papers are: 
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a symmetry reduction technique specific to featured networks [131], an approach 
to symmetry reduction for probabilistic, symbolic model checking [451, and a com- 
parison of techniques for exploiting symmetry in model checking and constraint 
programming [471. 

While these papers address interesting problems related to the role of sym- 
metry reduction in formal verification, they do not fit into the suite of automatic, 
general techniques for exploiting symmetry which we present here. 



Chapter 2 

Model Checking and the State Space Explosion Problem 

In this chapter we formally present temporal logic model checking, introducing the 
Kripke structure formalism used to model a concurrent system, together with the 
logic CTL* and its commonly used sub-logics, CTL and LTL. We give an overview 
of some standard model checking algorithms and tools. In particular, we describe 
the Promela specification language and its bespoke model checker, SPIN, Which are 
referred to frequently in Chapters 4-11. The chapter concludes with a discussion of 
techniques which have been developed to combat the state-space explosion prob- 
lem. 

We begin by describing the use of model checking in the development of 
reliable concurrent systems. 

2.1 The Model Checking Process 

Verification of a concurrent system design by temporal logic model checking tradi- 
tionally involves first specifying the behaviour of the system at an appropriate level 

of abstraction. The specification P is described using a high level formalism (often 

similar to a programming language), the semantics of which are an associatedfinite 
state model, M(P). A requirement of the system is specified as a temporal logic 

property, (P. 
A software tool called a model checker then exhaustively searches the finite 

state model M(P), checking whether 0 holds at each initial state. If 0 does not 
hold at some initial state, an error trace or counter-example is reported. Manual ex- 
amination of this counter-example by the system designer can reveal that P does 
not adequately specify the behaviour of the system, that 0 does not accurately de- 
scribe the given requirement, or that there is an error (bug) in the design. In this 
case, either P, 0, or the system design (and thus also P and possibly 0) must be 
modified, and re-checked. This process is repeated until the model checker reports 
that 0 holds in every initial state of M (P), in which case we say M (P) satisfies 
written M (P) [=- 0. The model checking process is illustrated by Figure 2.1. 
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Figure 2.1: The model checking process. 
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Figure 2.2: Traditional and modern approaches to model checking in the development 
of systerns (adapted fron-i 11561). 

Assuming that the specification and temporal properties have been con- 
structed with care., successful verification by model checking increases confidence 
in the system design, which can then be refined towards an implementation. Piis 
traditional approach is illustrated in the left hand side of Figure 2.2. 

In practice, software is often developed rapidly, without much initial testing 
or verification. In this case there is a need to apply model checking techniques to 
the source code of an existing system, in an attempt to correct logical design flaws. 
Semi-automatic abstraction techniques are used to extract a specification and logi- 
cal properties from source code so that the model checking process can be applied. 
This modern approach is illustrated on the right hand side of Figure 2.2. 
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2.2 Kripke Structures and Temporal Logic 

As discussed above, the model checking problem involves determining whether or 

not a finite state model describing the behaviour of a concurrent system satisfies 

a temporal logic formula specifying a desired safety or liveness property of the 

system. A Kripke structure is the common formalism for representing a finite state 

model, and temporal logic formulas are usually expressed in (a sub-logic of) CTL*, 

or the y-calculus. 
Let V= jV1iV2i 

... i Vk} be a finite set of system variables, where each vi 

ranges over a finite non-empty set Di of possible values. Then D=D, x D2 X 

... x Dk is the set of all possible system states. A Kripke structure is defined in 

terms of D as follows: 

Definition 1A Kripke structure M over D is a tuple. M = (S, So, R) where: 

1. S=D is a non-empty, finite set of states 
2. So gS is a set of initial states 
3. RCSxS is a transition relation 

A path in M from a state sES is an infinite sequence of states 7r = SO, S1, S2.... 

where so = s, such that for all i>0, (si-1, si) E R. For states s and t, it is common 

to denote the transition (s, t) by s-t. A state sES is reacizable if there is a path 

SO, S,,..., S,... in M where so E So. A transition (s, t) ER is reachable if s is a 

reachable state. 
We usually deal with Kripke structures which have a single initial state so E 

S, in which case we write M= (S, so, R). 1 

Figure 2.3 shows the reachable part of a Kripke structure for a model of two 

process mutual exclusion. The model consists of two processes, each with three 

local states N, T and C. Each process has a single state variable, sti say (i E 11,2}). 

Here V= IStli St2} and D, = D2 = IN, T, C}. 'Il-ie values N, T and C denote that 

a process is in the neutral, trying or critical state respectively. For AE IN, T, C} we 

abbreviate the proposition stj =A by Ai. Only if process i is in the trying state (i. e. 
Tj holds) and process j 34 i is not in the critical state (i. e. -Cj holds) can process i can 

move into the critical state. Thus in the model it is not possible for both processes to 

be in the critical state. That is, the mutual exclusion property holds. Note that there 

is a single initial state (indicated by an incoming edge with no predecessor state in 

Figure 2.3). In the initial state both processes are in the neutral state. 

1. Following the convention of e. g. [30,55,57,591, Definition 1 does not include a labelling functior-L 
Such a structure is sometimes referred to simply as a transition system 130]. We could equivalently de- 
fine states as being labelled with atomic propositions of the form (vi = di) (where di E Dj) [321. 
However, the above notation in which states are valuations of variables (and thus are implicitly la- 
belled) is convenient for presentation of our results, and is close to the representation of states used 
by explicit-state model dieckers. 
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Figure 2.3: Kripke structure for two-process mutual exclusion. 

2.2.1 CTL* 

To express properties of Kripke structures we introduce the branching time tem- 

poral logic CTL*. Me set of CTL* state and path formulas are defined inductively 

over a finite set of propositions over system variables. The quantifiers A and E are 

used to denote for all paths, and for some path respectively (where FO = -A-0). 
In addition, X, U, F and G represent the standard next-time, strong until (see e. g. 
[921), eventually and always operators (where EO = trueUO, and Go = -F-0 re- 
spectively). Note that we use p =ý- q to denote -p Vq irt the standard way. Let V 

and Di, (1 <i< k) be as above. Then: 

" true, false, (vi = di) and (vi 34 di) (for all vi E V, di E Di) are state formulas 

" if 0 and ip are state formulas, then so are -, 0,0 A ýp and 4) V ip 

" if 0 is a path formula, then AO and EO are state formulas 

" any state formula 0 is also a path formula 

" if 0 and ip are path formulas, then so are -0,0 A ip and 0V ýP, X0, OMP, FO 

and Go. 
Given (path or state) formulas 0 and 1P, T is a sub-formula of 0, written ip 9 0, 
if either ýP = 0, zP is an operand to one of the operators appearing in 0, or zP is 
bound to a quantifier appearing in ýp. The sub-formula ip is propositional if it is a 
state formula which does not include A or E. A maximal propositional sub-formula 
of 0 is a propositional sub-formula ip such that if C 0, where 0' is also a 
propositional sub-formula, then ip = ip'. 

The logic CTL* is the set of all state formulas. For a Kripke structure M, if 
the CTL* formula 0 holds at a state sES then we write M, s J-- 0 (or simply 
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s ý= 0 when the identity of the model is clear from the context). Otherwise we 
write M, s V= s. The relation ý= is defined inductively below. Note that for a path 
7r = so, sj, ... we definefirst (7r) = so and, for all i>0,7ri is the suffix of 7r starting 
from state si. 

"s true, and s K- false 

"s (vi = di) if and only if s= (el, e2, ... iek) and ej = di (1 <i< k) 

"s (vi 3A di) if and only if s= (el, e2, ... iek) and ej 34 di (1 <i< k) 

"s --, o if and only if s V= 0 

"s0A ip if and only if s and s 

"s0VV if and only if s or s ý= 

"s A0 if and only if 7r 0 for every path 7r starting at s 

"s EP if and only if 7r 0 for some path 7r starting at s 

" 7r 0, for any state formula 0, if and only iffirst(7r) ý= 0 

" 7r -, 0 if and only if 7r K0 

" 7r 0A ýp if and only if 7r 0 and 7r ý= ip 
" 7r 0V ip if and only if 7r 0 or 7r ý= ip 

" 7r OUip if and only if, for some i>0,7ri ý= ip and 7rj ý-- 0 for all 0j<i 

" 7r X0 if and only if 7ri 0 

" 7r F0 if and only if 7ri 0, for some i>0 

" 7r Go if and only if 7ri 0, for all i>0. 

Model checking involves determining the satisfaction of a temporal logic for- 

mula by a Kripke structure. The model checking problem can be specified globally or 
locally as follows [1341: 

Global model checking problem - Given a Kripke structure M and a CTL* for- 

mula determine the set of states in M that satisfy 0 (i. e. determine fSES 

. A4, s 0}). 

Local model checking problem - Given a Kripke structure A4, a CTL* formula 

and a state s in M, determine whether s satisfies 0 (i. e. M, s J-- 0). 

Recall the set So of initial states of a Kripke structure M. In practice we are 
typically interested in whether the initial states of a model satisfy a given property, 
so we say that the model M satisfies the CTL* property 0, denoted M if 
M, s ý-- 4) for all s (=- So. 

Returning to the mutual exclusion example of Figure 2.3, we can express the 
mutual exclusion property formally in CTL* as follows: 

Property I AG(-(Cl A C2)). 
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The Kripke structure clearly satisfies this property as (C, C) is not a reachable state. 
Property 1 is a safety property - it asserts that something (bad) never happens. A 
liveizess property on the other hand expresses that eventually something (good) 
must happen during an execution. For example, Property 2 below states that hav- 
ing reached its trybig region a process will eventually progress to its critical section 
(the progress property): 

ProPerty 2 AG (Ti =* 

To see that the Kripke structure does not satisfy this property, consider the infinite 

path starting at (N, N), followed repeatedlyby the cycle (T, N), (T, T), (T, C), (T, N). 
Process 1 waits in the trying region forever along this infinite path, violating 
Property 2. Thus this path is a counter-example which proves that M, (NjNj) ýL 
Property 2. 

We now define two sub-logics of CTL* which are commonly used in apph- 
cations of model checking. 

CTL 

The logic CTL (Computation Tree Logic) is the sub-logic of CTL* in which the tem- 

poral operators X, U, F and G must be immediately preceded by a path quantifier. 
For example the so-called reset property, AG(EF Restart), which asserts that from 

any state it is possible to get to the Restart state, is a CTL property. Efficient model 
checking algorithms exist for this sub-logic (see Section 2.3.1), which is expressive 
enough for the needs of most hardware verification problems, and thus is used 
almost exclusively in this area. 

LTL 

The logic LTL (Linear Temporal Logic) is obtained by restricting the set of CTL* for- 

mulas to those of the form A0, where 0 does not contain A or E. It cannot express 
e. g. the reset property (see above). On the other hand, the property A(FG Leader), 

which states that eventually the proposition Leader will hold forever, can be ex- 
pressed in LTL but not CTL. Although the model checking problem for LTL is 
NP-hard [32], LTL model checking can be performed on-the-fly using an automata- 
theoretic approach (see Section 2.3.2) which can be very efficient in practice. LTL is 
applied almost exclusively in software verification. 

Figure 2.4 illustrates the relationship between CTL, LTL and CTL*. Ex- 
ample properties (adapted from [321) in CTL n LTL, CTL \ LTL, LTL \ CTL and 
CTL* \ (CTL U LTL) are shown. For a debate on the relative benefits of CTL vs. LTL 
see [92]. 
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Figure 2.4: Relationship between the temporal logic CTL* and its sub-logics CTL and 
LTL, with example properties. 

2.2.2 y-calculus 

It is worth noting that properties of transition systems can also be expressed in the 

propositional p-calculus [1111. This powerful language is obtained by extending 
Hennessy-Milner logic (a simple modal logic) [79] with fixpoint operators. Tlie y- 
calculus is of interest to researchers in formal verification as many temporal logics 
(e. g. CTL*) can be encoded into it. 

Although symmetry reduction teclu-dques have been shown to be compati- 
ble with y-calculus model checking [55], we restrict our attention to CTL* and its 

sub-logics, which are expressive enough to describe most properties of interest, and 
are supported by widely used model checkers such as SPIN and SMV. 

2.3 Model Checking Algorithms 

We now describe standard explicit-state model checking algorithms for CTL and 
LTL, and indicate how they can be combined for CTL* model checking. 

2.3.1 CTL model checking 
The model checking algorithm for CTL [28,145] works by successively marking 
states which satisfy sub-formulas of the formula to be checked, starting with propo- 
sitional sub-formulas which are trivial to check. The particular form of the algo- 
rithm used depends on the formula. For illustration, we give here an example of 
how the algorithm proceeds to check formula 0, where 0 is A (01 U02) - 

For a state s, s ý= 0 if and only if either s satisfies 02 or s has at least one suc- 
cessor, s satisfies 01 and all successors of s satisfy 0. Initially all states are marked to 
indicate whether they satisfy 01 and/or 02- States which satisfy (p2 Can immediately 
be marked as satisfying 0. Each state is also marked with a number (0 say), denot- 
ing how many successors have yet to be marked as satisfying 0. Initially for each 
state s, nb is set to 0 if s ý= 0, or to the number of successors of s otherwise. In the 
latter case, each time a successor of s is marked as satisfying 0, nb is decremented 
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by one. When nb =0 for s, clearly s ý-- 0. When no states can be remarked, the 
algorithm terminates. If, at this point, all initial states are marked as satisfying 
then M ý= 0. 

The algorithm for determining whether a CTL formula 0 holds in a state s of 
M is linear in the size of the formula and the Kripke structure - the complexity is 
0 (10 1- (I SI+IR 1)), where 10 1 is the length of 0 [28]. An extension of the algorithm 
which only considers fair computations (see Section 3.6.2) is presented in [281. 

2.3.2 Automata-theoretic LTL model checking 

The model checking problem for LTL can be restated as: "given M and 0, does there 
exist a path of M that does not satisfy 0? " One approach to LTL model checking is 
the tableau approach described in [134]. However, we concentrate here on the more 
efficient automata-theoretic approach [119,176]. 

Definition 2 Afinite state automatm (FSA)A is a tupleA = (S, so, L, TF) where. 
1. S is a non-empty, finite set of states 
Z so ES is an initial state 
3. L is a finite set of labels 
4. TCSxLxS is a set of transitions 
5. FCS is a set of final states. 

A run of A is an ordered, possibly infinite, sequence of transitions 

(SOi 10t SI)i (Sli Ili S2)i 

where, for all i>0, Si E S, 1i EL and, (Si, 1j, Si+j) E T. An accepting run of A is a 
finite run in which the final transition (Sn 

-1, 
In-1, SO has the property that Sn E F. 

In order to reason about infinite runs of an automaton, alternative notions 
of acceptance, e. g. BUchi acceptance, are required. We say that an infinite run (of 

an FSA) is an accepting co-run (i. e. it satisfies Biichi acceptance) if and only if some 
state in F is visited infinitely often in the run. A Bfichi automaton is an FSA defined 

over infinite runs (together with the associated notion of BUchi acceptance). 
Every LTL formula can be represented as a Bdchi automaton (see for exam- 

ple [177], and references therein). In order to verify an LTL property AO, a model 
checker must show that all paths of a model M satisfy 0 (alternatively, find a 
counter-example, namely a path which does not satisfy 0). To do this, an automaton 
A representing the reachable states of M is constructed, together with an automa- 
ton &0 which accepts all paths for which -0 holds. The asynchronous product of 
the two automata, A' is constructed. (In practice A' is usually constructed implic- 
itly, by letting A and B-0 take alternate steps). Any accepting run of A' signifies 
an error. If there are no accepting runs, M ý= (P. Generally to prove LTL properties, 
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a depth-first search is used. As the search progresses, all states visited are stored 
(in a reduced form) in a hash array (or heap), and states along the current path are 
pushed on to the stack. 

If the property 0 to be verified is a safety property, say AG 1P, where 
ip does not contain the until operator U, then a depth-first search of A' is used. If 
a state is encountered at which T is false, then 0 is false and the current path (the 

current contents of the stack) provides a counter-example. If, on the other hand, 
0 is a liveness property, then determining the truth, or otherwise, of 0 relies on 
the ability to detect the presence of infinite accepting runs in A'. This is achieved 
either by using the classic approach of Tarjan [172] in wl-dch the strongly connected 
components are constructed and analysed separately for acceptance runs, or via a 
nested depth-first search [351. A nested depth-first search is more efficient than the 
classic approach in that it is not necessary to produce all acceptance runs, just a 
single acceptance cycle (if one exists). Suppose, for example 0 is A(GF p), for some 
proposition p. From any state s reached during an initial search at which -p holds, 

a second search is initiated to check for paths leading back to s, during which p 
remains false. If no such path exists, the original search resumes from s. 

The complexity of LTL model checking is exponential in the length of the for- 

mula to be checked: 0((ISI + JRJ) -2cý(101)). This is because the worst case automa- 
ton generated from an LTL formula 0 may have 2101 states. Although in the worst 
case this means that LTL model checking is much harder than CTL model checking, 
in most practical cases there is little performance difference [92, Appendix B1. 

2.3.3 Model checking for CTL* 

Model checking for CTL* was first introduced in [28]. A method for checking CTL* 

properties [541 involves the use of an LTL model checker on the sub-formulas of 
the property to be checked. T'l-te complexity of CTL* model checking is the same 
as for LTL model checking. However, due to the automata-theoretic approach for 
LTL model checking and the efficient CTL model checking algorithm, most model 
checkers are used to verify either CTL or LTL properties, but not both. 

2.4 Promela and SPIN 

Clearly it would be impractical to model complex concurrent systems directly as 
Kripke structures. In practice, a system is described using a high-level specifica- 
tion formalism which has Kripke structure semantics. A model checking tool takes 
as input a specification of a concurrent system, together with a property in some 
temporal logic. Using algorithms such as those outlined in Section 2.3, together 
with appropriate state-space reduction techniques (see Section 2.6), the tool checks 
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whether or not the associated model satisfies the property, providing a counter- 
example if the result is negative. Certain properties (such as absence of deadlock, 

or basic safety properties which can be expressed using specification-level asser- 
tions) can be checked without a temporal property. 

Me model checker SPIN (simple Promela interpreter) allows LTL reasoning 
about specifications written in Promela (process meta language). SPIN has been 

widely used in industry and academia for reasoning about communications pro- 
tocols. In this section we give an overview of Promela and SPIN, which are used for 
implementation and examples throughout Chapters 4-11. For an excellent Promela 
language reference, see [65]. Full details Of SPIN and Promela can be found in the 
SPIN reference manual [921. In Section 2.5 we briefly describe a selection of other 
model checking tools. 

2.4.1 Promela 

Promela is an imperative style specification language geared towards the descrip- 

tion of network protocols. In general, a Promela specification consists of a series 
of global variables, channel declarations and process type (proctype) declarations, 
together with an initialisation process. Desired logical properties of a specification 
are either presented using assertions embedded in the body of a proctype, or via a 
never claim -a special additional process which can be used for the verification of 
LTL properties. 2 

Each proctype in a Promela specification can be viewed as a finite automa- 
ton (see Section 2.3.2), and the model associated with this specification is the asyn- 
chronous product of the automata for all proctype instantiations. This global au- 
tomaton can be viewed as a Kripke structure, so we talk about the Kripke structure, 
rather than the automaton, associated with a Promela specification. 

Variables and channels 
Promela. includes flie following primitive data types: bit, byte, short and hit (numeric 
types); pid (a type for storing process identifier values), and bool (for boolean val- 
ues). Names for messages in a protocol can be defined using a single enumeration, 
called mtype. For example, the declaration: 

mtype = frequest, ack, grant, denyl 

defines four distinct message names for use in a protocol. User-defined record types 
can be constructed using the typede f keyword. The declaration 

typedef message I pid sender; pid receiver; mtype body; 

bit encrypted I 

defines a record type, message, with four fields: sender and receiver (which have type 

pid), body (an enumeration), and encrypted (a bit). Single-dimensional arrays can be 

2. Temporal properties can also be expressed using progress and accept labels in the body of a proc- 
type. We do not discuss these here. 
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declared using C-like syntax. For example: 
message A[51 

defines an array of length five, with element type message. Two-dimensional ar- 
rays can be declared indirectly using an array whose elements are instances of a 
record type which includes an array type as one of its fields. 

To facilitate the specification of protocols, Promela includes a chan data 

type to describe both synchronous and buffered channels. A channel declaration 

can have one of three forms. A declaration chan (name) = fxl of {(type),, 
(type)2, .... (type)k} (x > 0, k> 0) defines a new channel (referred to by (narne)). 
Each message to be sent on this channel must be a tuple of values, where the 

value at position i has type (type) i (1 <i< k). We refer to the elements of 
this tuple as message fields. If x>0 then the declaration defines a buffered, first- 
in first-out channel of length x. 'If x=0 then communication on the channel 
is synchronous. The component of the channel declaration of the form Cxi of 
I (type) 1, (tYPe) 2, .... (type)k} is called a channel initialiser. A channel declara- 
tionchan (name), = (nalne)2, on the other hand, does not define anew channel. 
Rather it defines a new channel reference, (name),, which refers to the channel re- 
ferred to by (name)2 (the name associated with a previous channel declaration). 
Finally, a declaration chan (name) defines a channel reference which is initially 

null. A useful feature of Promela is that, like the 7r-calculus [159], it supports the 
declaration of first-class channels: the type chan may be given as a message field 

type in a channel initialiser, so that channel references can be passed on the channel. 
This allows for specifications with dynamic communication structures. 

We say that a channel variable is globally instantiated if it is declared in global 
scope (outwith any proctype definition), and has a channel initialiser. 

A (non-channel) global variable declaration may be prefixed by the hidden 
keyword. TI-ds indicates to SPIN that the variable is a "scratch" variable, used only 
for intermediate computation within atomic or d- step blocks (see below). Ac- 

cordingly, to save memory, SPIN does not include the values of hidden variables in 
the data structure used to represent a state of the model associated with a specifi- 
cation. It is the responsibility of the user to ensure that hidden variables are used 
correctly; SPIN cannot check this automatically. It is particularly convenient to de- 

clare global constant data structures (e. g. fixed lookup tables) as hidden, so that 
they are not duplicated in every state of the global state-space. 

Processes and statements 
A Promela proctype is a parameterised process definition. A proctype consists of a 
name, an optional list of parameters and local variable declarations, and an ordered 
list of statements. Each proctype includes a built-in, read-only variable called _Pid, 
wWch records the identifier of a process (a non-negative integer). In addition, each 
proctype includes an implicit program coutiter variable, which stores the current 
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position of execution within the proctype body. This variable cannot be explicitly 
referred to. However, particular positions in the proctype body can be marked us- 
ing labels, which can then be used for control flow via goto statements (as in the 
C language). 

A specification usually includes a designated init process which is auto- 
matically instantiated at the start of verification, and which may instantiate further 

processes via run statementS. 3 A run statement consists of a proctype name, and 
a list of actual parameters for the proctype. Execution of a run statement causes 
an instance of the given proctype to be added to the pool of running processes. 
The init process is assigned _pid value 0 by SPIN, and processes identifiers are 
thereafter assigned in order of instantiation. 

The simple statements in a proctype fall into three categories: expressions, 
updates, and communication statements. An expression is a boolean expression over 
local and global variables, using the standard equality operators == and I =, re- 
lational operators <, <=, > and >=, and logical operators &&, II and !. Boolean 

expressions may also test the state of a buffered channel c using the len opera- 
tor (which returns the length of c); theoperators full, empty, nf ull and nempty 
which determine whether c is full, empty, not full or not empty respectively, 4, or via 
a channel poll expression (see [92] for details). Upon reaching an expression state- 
ment, a process may not continue execution until the expression evaluates to true. 
When ffids is the case, execution of the statement has no side-effe cts. The Promela 
keywork skip can be used in place of the expression statement true. An update 
is a statement of the form ývariable) = (expr). Such a statement is always executable 
(as long as the expression does not involve division by zero or an out-of-bounds 
array access), and updates the value of the given variable with the result of the 
expression. 

A conimunication statement involves sending on or receiving from a channel. 
A send statement has the form (chan) I (expressions), where (chan) is a channel vari- 
able and (expressions) is a comma-separated list of expressions. The type of each 
expression must match the type of the corresponding message field of the chan- 
nel to which the variable refers. A statement of this form is executable either if the 
channel is buffered and not full, or if the channel is synchronous and there is an- 
other process ready to receive on the channel. Sending on a buffered channel has 
the effect of adding a message to the buffer, and sending on a synchronous channel 
causes the list of expression values to be written to a corresponding list of variables 
offered by the receiving process. A receive statement has the form (chan) ? (variables), 
where (chan) is as before, and (variables) is a comma-separated list of distinct vari- 
ables. A receive statement is executable either if the channel is buffered and not 

3. Processes may also be instantiated using the active keyword- see [92] for details. 
4. The provision of both full and nfull (similarly empty and nempty) is necessary since, for 
reasons described in [921, it is illegal to write If ul I (c). 
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empty, or if the channel is synchronous and there is another process ready to send 
a message on the channel. Receiving on a buffered channel causes the given list of 
variables to be assigned to the associated field values of the next message on the 
buffer, which is also removed from the buffer. Receiving on a synchronous channel 
causes the list of variables to be overwritten by the (evaluated) list of expressions 
offered by the associated sender process. 

Our description of communication statements has not covered various fea- 
tures, including: non-destructive channel reading; sorted-send and random-receive 
operations; the eval operator, and the built-in, write-only '_' variable. These fea- 
tures are fully documented in the reference manual [921. 

Control flow 

The most basic control flow operator in Promela is '; ', which denotes sequence (as 
in most imperative languages). Following languages such as Pascal, '; ' is intended 
as a statement separator rather than a statement terminator, so strictly should not ap- 
pear at the end of a list of statements. However, the SPIN implementation relaxes 
this condition, and a terminating semi-colon is optional. Any occurrence of; ' can 
be equivalently replaced with the alternative separator '- >'. However, '- >' is usu- 
ally used to express a compound statement of the form guard -> update. 

To describe a system at an appropriate level of abstraction it is often conve- 
nient to specify that a particular sequence of statements should be executed as a 
single update. This can achieved using a d-step (deterministic step) or atomic 
block. A d_step block consists of one or more non-blocking, deterministic state- 
ments to be executed as a single transition. Examples of blocking statements in- 
clude channel operations, expression statements, and run statements (wl-dch may 
block due to an upper limit of 256 running processes imposed by SPIN). In addition, 
it is not legal for a goto or break statement (described below) to potentially cause 
a jump out of a d_step block. An atomic block is similar, but it is permissible 
for statements witl-dn an atomic block to involve non-deterministic choice, poten- 
tially block execution of the process, or cause a jump out of the block. The use of 
d_step over atomic, when applicable, results in more efficient use of memory 
during verification. 

Repetitive choice can be specified using a compound statement of the form 
do (options) od. The (options) part of this construct is a list of Promela fragments, 
separated by the :: token. A process executes a do. . od statement by repeatedly 
executing one of the options, if any are executable. A break or goto statement 
may be used to jump out of a do. . od loop. Non-repetitive choice can be specified 
similarly using an if .. fi construct. Examples of do. . od and if .. fi are pro- 
vided in Figure 2.5. The if .. fi example shows that the guards which determine 
executability of each option need not be mutually exclusive: if the guard (x==4) 
evaluates to true then either of the statement sequences which start with this guard 
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if 
linkI5 ... do 
(X--4) goto finish (counter<N) 
(X==4) (counter==N) break 
else -> skip od 

fi; 

finish: 

Figure 2.5: Condition, repetition and goto statements in Promela. 

mtype = IN, T, C) 
mtype st[61-N 

proctype usero 
do 

d step stl_pid)==N -> st[_pid]=T 
d7Step i3t[_pid]==T && 

(st[I)I=C && E3t[211=C && st[331=C && st[431=C && st[S)I=C) 
st[-Pid]=C 

d_step ( st[_pidl=. C -> stl_pid]=N 
od 

init ( 
atomic 

run usero; 
run usero; 
run usero; 
run usero; 
run usero; 

Figure 2.6: Promela specification of mutual exclusion with 5 processes. 

can be executed. The e1se keyword can be used to assert that a particular option 
should only be chosen if no other options are executable. The if .. fi example 
also illustrates the way flow of control can be organised using traditional goto 
statements and labels. 

Example 

We illustrate some of the features of Promela using the simple specification shown 
in Figure 2.6, which is a five-process version of the mutual exclusion protocol de- 

scribed in Section 2.2. The specification consists of: an enumerated type definition 
for the symbolic constants N, T and C; a global array st which is used to hold the 
state of each process; a user proctype, and an init process which instantiates a 
number of user processes. 

The body of the user proctype is a single do. . od statement. Each op- 
tion in tl-ds loop is a d-step block which is in turn comprised of a guard (e. g. 
st [_pid] ==N) followed by an update (e. g. st [_pid] =T). Each block is exe- 
cutable at a given state if its associated guard evaluates to true. A user process 
proceeds by repeatedly executing one of the d_s t ep blocks, if any are executable. 
In this example, the options within the do. . od statement are mutually exclusive. 
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never ( 
TO init: 

if 
(I(stll]==C) && stll]. =T) -> 90to accept-S4 
(1) -> goto TO-init 

fi; 
accept_S4t 

if 

:: (I(et[ll==C)) -> goto accept-84 
fi; 

Figure 2.7: Example never claim for the LTL property AG (Tj =: ý- (FC, )). 

so 

true 

Figure 2.8: Bilchi automaton representing the formula --, AG (Tj =* (FC1)). 

The init process instantiates five user processes via a sequence of run state- 
ments. n-te run statements are contained within an atomic block, to indicate that 
they should be executed as an indivisible block. 

Note that a Promela array with length I>0 is indexed using integers in 
the range 0... (1 - 1). However, in the mutual exclusion example, the five user pro- 
cesses have 

_pid variables with values in the range 1-5. Therefore the array st is 
declared with length 6, and position 0 of the array is unused. 

Figure 2.6 does not illustrate the declaration and use of channels. Appen- 
dices A. 2 and A. 3 contain Promela specifications which include buffered and syn- 
chronous channel declarations respectively. 

2.4.2 Reasoning about Promela specifications 

As mentioned above, simple logical properties of a Promela specification can be 

expressed using assert statements embedded in the body of proctypes, and more 
complex LTL properties can be expressed using a never claini process. The never 
claim corresponding to an LTL property 0 is a fragment of Promela code equiv- 
alent to a BiIchi automaton representing the formula -0 (see Section 2.3.2). Fig- 

ure 2.7 shows the never claim used to verify the progress property (Property 2, 
Section 2.2.1), for the simple mutual exclusion example. The propositions Tj and 
C, in the property are represented by propositions st [ 13 ==T and st [ 11 ==C re- 
spectively in the never claim. Figure 2.8 shows the associated Michi automaton 
for -iAG(Tl =ý- (FC, )). States so and sl of the automaton correspond to the labels 
TO-init and accept_S4 of Figure 2.7 respectively. A never claim can include an 
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Promela Generate verifier Compile and 
spec. using SPIN execute 

+ LTL or counter-example 
property 
0 

Figure 2.9: The SPIN verification process. 

expression of the form nattie Ul Wabel to refer that the program counter of process i, 

an instantiation of proctype iianie, is at the position of the specified label. 
Given a Promela specification (optionally including an associated never 

claim), SPIN generates aC program, pan. c. This program is called the verýfier gen- 
crated by SPIN. It includes data structures to represent states of the model asso- 
ciated with the input specification, and search algorithms for exploration of the 

state-space. The LTL model checking algorithm is based on the approach described 

in Section 2.3.2. Routines to implement various state-space reduction techniques 
(some of which are discussed in Section 2.6) are also incorporated in pan. c. As well 

as checking properties of a specification expressed using assertions and a never 

claim, SPIN can be used to search for deadlock states (from which no transitions orig- 
inate). 

In order to obtain a verification result, pan. c must be compiled and ex- 

ecuted. Figure 2.9 illustrates the process of LTL property verification using SPIN. 

Note that a conclusive verification result will only be obtained if memory permits. 
When checking a large state-space, the verifier may terminate having exhausted 

available memory without finding an error. 

2.4.3 Features Of SPIN 

A variety of built-in state-space reduction techniques are provided by SPIN. TTIC 

model checker also supports simulation of Promela specifications though a user 
interface. 

SPIN uses on-the-fly verificationand partial-order reduction techniques (dis- 

cussed in Section 2.6.3) to reduce the number of states which need to be explored 
during model checking. Additionally, the tool provides data-flow optimisation to 
identify points in the specification where variables become dead, and techniques for 

statement merging, both of which help reduce verification complexity. 
To reduce the per-state storage requirement, SPIN provides three state com- 

pression options (see Section 2.6.2), and automatically eliminates write-only vari- 

ables from the state-vector. 
Support for sophisticated simulation of Promela specifications is provided 

via the XSPIN user interface. Execution of a specification may be simulated ran- 
domly or interactively, or may be guided by a counter-example generated by a veri- 
fication attempt. The interface allows a user to step through a simulation run, track- 
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Figure 2.10: Simulation of a Promela specification using rneýsage sequence charts. 

ing the values of global and local variables and channels. In interactive mode, non- 
deterministic choices are resolved by the user. Channel-based communication be- 

tween processes may also be graphically illustrated using message sequence charts 
(MSCs). An MSC represents each process by a vertical tirite-line with a top box in- 
dicating the name of the process. Messages between processes are represented by 
diagonal arrows between time-lines, and indicate a partially ordered set of com- 
munication events. MSCs support visualisation of complex communications proto- 

cols, and can be a useful aid when understanding counter-examples produced by a 
model checker [138]. 

Figure 2.10 shows a screen-shot of the XSPIN interface. A Promela specifica- 
tion is loaded into the top-left pane. The bottom-left pane shows the status of the 

current simulation run, and the right-hand pane shows an MSC for the simulation. 
A user can also choose to display the current values of global and local variables in 

a separate window. 

2.5 Other model checkers 

We broadly classify model checkers into three categories: stajidard checkers, which 
check logical properties of high level specifications; real tittielprobabilis tic checkers, 
which allow performance evaluation, and direct model checkers, which aim to ver- 
ify source code. 
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2.5.1 Standard model checkers 
The explicit-state model checker Muro [40] uses a language based on a collection 
of guarded commands (condition/action rules), which are executed repeatedly in 

an infinite loop. The imperative-style language incorporates new data types, in- 
cluding multiset (for describing a bounded set of values whose order is irrelevant 
to the behaviour of the description) and scalarset (for describing a subrange whose 
elements can be freely permuted; see Section 3.3.2). The verifier performs a depth- 

or breadth-first search over the state-space to check for absence of deadlock, or sat- 
isfaction of safety properties expressed using assert statements, or ffivariatits. More 

complex temporal properties cannot be verified. 
TI-ie tool COSPAN [1131 uses an automata-theoretic approach to model 

checking. The system to be verified is modelled as a collection of coordinating pro- 
cesses described in the S/R (selection/resolution) modelling language. The verifier 
supports both on-the-fly explicit-state search and symbolic search using binary de- 

cision diagrams (BDDs - see Section 2.6.2). 
The most successful BDD-based symbolic model checker (see Section 2.6.2) 

is the CTL model checker SMV [1281. Systems are described using the SMV lan- 

guage, which has a precise semantics relating input specifications to their expres- 
sions as boolean formulas. SMV supports synchronous and asynchronous commu- 
nication, and provides for modular descriptions of re-usable components. NuSMV 
[251 is a re-implemented and extended version of SMV which includes a textual 
interaction shell and graphical user interface, as well as techniques for model par- 
titioning and LTL model checking. 

An enhanced version of SMV, RuleBase [81 is an industry-oriented tool for 
the verification of hardware designs. In an effort to make the specification of CTL 

properties easier for the non-expert, RuleBase supports its own language, Sugar, as 
well as standard hardware description languages such as VHDL and Verilog. 

In Sections 3.9.1 and 3.9.2 we discuss the implementation of symmetry re- 
duction techniques in standard model checking tools. 

2.5.2 Real time and probabilistic model checkers 

When modelling certain critical systems, it is essential to include some notion of 
time. If time is considered to increase in discrete steps (discrete-time), then exist- 
ing model checkers can be readily extended [3]. Tlie most widely used dense real- 
time model checker (in which time is viewed as increasing continuously) is UPPAAL 
[116]. Models are expressed as timed automata and properties defined in UPPAAL 
logic, a subset of timed computation tree logic (TCTL). UPPAAL uses a combination 
of on-the-fly and symbolic techniques so as to reduce the verification problem to 
that of manipulating and solving constraints. Another real-time model checker is 
KRONOS [1861 which is used to analyse real-time systems modelled in several timed 
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process description formalisms. A real-time extension to COSPAN [4] allows real- 
time constraints to be expressed by associating lower and upper bounds on the 
time spent by a process in a local state. 

The probabilistic symbolic model checker PRISM [83,114,1531 allows rea- 
soning about models of probabilistic systems. The tool supports discrete- and 
continuous-time Markov chains, as well as Markov decision processes, which al- 
low both probabilistic and non-deterministic behaviour. Properties are written in 
terms of probabilistic computation tree logic (PCTL), or continuous stochastic logic 
(CSL). Models can also be specified using PEPA (performance evaluation process 
algebra) [821 and converted to PRISM. 

We discuss symmetry reduction implementations for real time and proba- 
bilistic model checking tools in Section 3.9.3. 

2.5.3 Direct model checking tools 

Finite state model checking traditionally requires the manual construction of a 
model, via a specification language, which is then converted into a Kripke struc- 
ture for model checking. Recently there has been much interest in applying 
model checking directly to program source code written in languages such as Java 
[161] and C [1081. Early approaches to model checking Java software, e. g. Java 
PathFinder [77], involved the direct translation of Java code into Promela, and sub- 
sequent verification using SPIN. Thus these approaches were restricted to programs 
containing features supported by both Java and Promela (this is not the case for 
floating point numbers, for example). 

The BANDERA tool [34] avoids direct translation by instead extracting an ab- 
stracted finite-state model from Java source code. This model is then translated into 

a suitable modelling language (Promela or SMV) and model checked accordingly. A 

second-generation Java PathFinder tool [179] makes extensive use of the BANDERA 

abstraction techniques, and works directly with Java bytecode. 
The dSPIN tool [381 is an extension of SPIN which has been designed for mod- 

elling and verifying object-oriented software (in particular Java programs). In addi- 
tion to the usual features available with SPIN, the dSPIN tool allows for the dynamic 

creation of heap objects. 
The Bogor model checking framework [148] is used to check sequential and 

concurrent Java programs. Behavioural aspects of a program to be verified are first 

specified in JML (Java modelling language), which, together with the original Java 

program, is then translated into a lower-level specification for verification. Bogor 

exploits the canonical heap representation of dSPIN and is implemented as a plug-in 
for the Eclipse [33] integrated development environment. 

Various tools address the problem of direct model checking of C code. For 
example, BLAST (Berkeley lazy abstraction software verification tool) [801 uses 
counter-example guided abstraction refinement (see Section 2.6.3) for proving the 
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correctness of software. Microsoft's SDV (static driver verifier) tool uses the SLAM 
[5] analysis engine to analyse the source code of Windows device drivers. SDV in- 
volves a similar abstraction, verification and refinement loop to that of BLAST. 

The VeriSoft model checker [68] is used to verify concurrent processes ex- 
ecuting C code. Systematic search of the state-space allows the user to check for 
deadlock, assertion violations and livelocks. A stateless search is used, whereby only 
states along the current path are stored, together with as many states as possible in 
the remaining available memory As a result it is theoretically possible to verify 
systems of any size. However, the same path may be explored many times, and so 
search can be very slow. 

Recent versions of the SPIN tool allow C code to be embedded into Promela 

specifications. This feature allows Promela specifications to be automatically ex- 
tracted from C code [911. 

Symmetry reduction techniques have been used in various direct model 
checkers, as we discuss in Section 3.9.4. 

2.6 Tackling the State-space Explosion Problem 

As noted in Chapter 1, the major problem which limits the application of model 
checking is that of state-space explosion - as the number of components in a specifi- 
cation of a concurrent system increases, the associated model suffers combinatorial 
growth, quickly becoming too large to feasibly check. Since its conception, much re- 
search in model checking has concentrated on combatting the state-space explosion 
problem, and a variety of techniques have been proposed. 

We identify three approaches to tackling the problem. The first approach 
involves (usually manual) conversion of a specification into a more efficient speci- 
fication which captures the same essential behaviour, but has a smaller associated 
model. Techniques such as design abstraction and source code or communication 
structure optimisation follow this approach, and are discussed in Section 2.6.1. The 

second approach relies on a compact representation of states. The most success- 
ful technique of this kind is sYmbolic model checking; while state compression and 
supertrace verification have also proved useful in practice. These are discussed in 
Section 2.6.2. The final approach, discussed in Section 2.6.3, involves reducing the 
number of states which must be checked to verify a property, without specification- 
level modification. Techniques include on-the-fly model checking, partial-order re- 
duction, symmetry reduction, abstraction and compositional reasoning. 

2.6.1 Specification-level abstraction 

The following reduction techniques are applied at the source code level before veri- 
fication. They can therefore be used in conjunction with other state-space reduction 
techniques applied during verification. 



2.6: TACKLING THE STATE-SPACE EXPLOSION PROBLEM 38 

Design abstraction 
As discussed in Section 2.1 and illustrated by Figure 2.2, traditional model checking 
involves manual construction of an abstract high level specification which captures 
the behaviour of the system under verification. The size of the state-space asso- 
ciated with a specification depends crucially on the level of this abstraction. For 

example, a data-oriented abstraction of a communications protocol which distin- 

guishes the contents of individual packets will give rise to a much larger state- 
space than a control-oriented abstraction where packet contents are not specified. 
Thus good desigit abstractim is one of the key techniques for developing specifica- 
tions which have tractable associated state-spaces. According to Holzmann [92]: 

Choosing the right level of abstraction can mean the difference be- 
tween a tractable model with provable properties and an intractable 

model that is only amenable to simulation, testing, or manual review. 

An ideal design abstraction results in the construction of the smallest suf- 
ficient (associated) model wl-dch still allows verification to be performed [92]. De- 

sign abstraction is usually a manual process. However, teclu-dques based on pro- 
gram slicing [174] can be used to automatically remove fragments of a specification 
which cannot affect the temporal property to be verified [92]. n-ds process is ar- 
guably a form of design abstraction. 

Source code optimisation 
Common modelling pitfalls can lead to unnecessary state-space explosion. For ex- 
ample, neglecting to reset a counter variable at the end of a loop can result in many 
states which are identical except for the counter value. Assuming that the counter 
has no further use after the loop and will be reset if the loop is executed again, this 
duplication is redundant and could easily be avoided. 

When working with large models it may also be possible to reduce the size 
of the state-vector (the portion of memory required to represent a state) through 
careful use of advanced specification language features. For detailed source code 
optimisation strategies for Promela, see [92,154,1551. Certain modelling pitfalls 
can be compensated for by using automatic data-flow optimisation techniques (tra- 
ditionally used by optimising compilers). 

The distinction between design abstraction and source code optimisation is 
that changing the level of design abstraction may allow the elimination of data 
(variables) from a specification. Source code optimisation on the other hand in- 
volves appropriate management of data so that, at a given level of abstraction, the 
state-space is minimised. 



2.6: TACKLING THE STATE-SPACE EXPLOSION PROBLEM 39 

Communication structure optimisation 
The choice of communication structure for a specification can significantly affect 
the size of the state-space of the underlying model, when buffered channels are 
used. For example, modelling communication between two processes using two 
dedicated channels, rather than a single shared channel, increases the number of 
messages which may potentially be in transit so may result in a larger state-space. 
While a complex communication structure may be necessary to faithfully model a 
given system, the truth of a particular temporal property may not be affected by the 
choice of communication structure. In some cases it is possible to check a property 
over a smaller model with a simpler communication structure if it can be shown that 
the behaviour of the original model relevant to the property can be emulated by the 
reduced model [157,1581. A similar approach is suggested in [891. 

2.6.2 Compact state-space representation 

Symbolic model checking 
Symbolic model checking [181 is a method by which states and transitions of a 
model are represented symbolically (as opposed to explicitly) in order to save space. 
A particular symbolic approach, BDD-based encoding, has proved especially suc- 
cessful for the verification of CTL properties for very large systems [128]. 

A binary decision tree is a structure that is used to represent a boolean for- 

mula. Any assignment of truth values to the variables of the formula corresponds 
to a path down the tree from the root node to a terminal node, which is labelled 

either true or false. The value of this label determines the value of the function for 
this assignment of variables. A binary decision diagram (BDD) is obtained from a 
binary decision tree by merging isomorphic subtrees and identical terminals. Any 

set of states can be encoded as a BDD. Indeed, if S is a set of states encoded as a 
set of boolean tuples (on a set X), then for any fixed ordering of the elements of X, 
there is a unique BDD representing S [17]. 

An ordered binary decision diagram (OBDD) is a BDD which has a total or- 
dering applied to the variables labelling the vertices of the diagram. The size of 
the OBDD can vary greatly depending on the ordering used. Heuristics have been 
developed to find efficient orderings for a given formula (when such an ordering 
exists). Determining whether a given ordering is more efficient than another order- 
ing is NP-complete [11]. 

For a Kripke structure, both the set of states and the set of transitions can 
be represented by BDDs. All possible states are encoded, as opposed to all reach- 
able states. As the superfluous states are unreachable, they do not affect the result 
of model checking. Indeed, their presence may lead to a simplification of certain 
BDDs. In addition, it is possible to first compute the reachable states, R say, and 
then restrict the CTL model checking algorithm to R. 
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State compression 
Tlie SPIN model checker provides two lossless compression techniques - they guar- 
antee exhaustive search if memory permits. These techniques reduce the amount of 
memory required to store each state of a model, and thus allow larger state-spaces 
to be explored. 

The first compression technique is known as collapse compression [86]. This 

method works by storing separate state components for each process in the system, 
and a separate component for the global data objects of the system (channels and 
global variables). A global state is then composed from these state components 
using a small, unique index for each. 

The collapse method of compression can provide significant reduction in 

state-space storage requirements, and is fast. However, for models with large state- 
spaces, SPIN provides a heavy-weight compression scheme using a minimised au- 
tomaton representation of the state-space, somewhat similar to a BDD [901. As the 
state-space of a model is searched, the model checker builds an automaton which 
recognises states wl-dch have been previously seen. Thus on reaching a state, if the 
state is recognised by the automaton then the state has already been encountered, 
and search can backtrack. Otherwise the automaton is modified to recognise this 

new state in the future. The automaton is typically much smaller than the full state- 
space of the model, and in some cases memory requirements of the verifier are 
exponentially smaller than for standard search. However, the minimised automa- 
ton approach is considerably slower than search without compression, or search 
using collapse compression. 

For maximum lossless compression the two state compression techniques 

can be combined. 

Supertrace verification 
The compression techniques discussed above are both lossless, that is they guaran- 
tee exhaustive search if memory permits. In many applications of model checking, 
finding errors is the main focus of verification rather than proving absence of errors. 
For such applications SPIN provides a lossy compression technique called supertrace 
verification [87] (also known as bitstate hashing). Tl-iis technique is useful for explo- 
ration of large state-spaces, but does not guarantee full state-space coverage, as we 
discuss below. 

During search (without the supertrace technique), SPIN uses a hash table to 
store the state-space. When a state is encountered, a hash table lookup determines 

whether the state has been seen before; if it has not then it is added to a linked-list of 
states at its hash table slot. Supertrace verification is based on the observation that 
if the number of hash table slots greatly exceeds the number of reachable states 
then, assuming a good quality hash function, each state can be stored in a separate 
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slot. In this case, each slot of the hash table could be represented by a single bit - if 

a state is hashed to a slot in the table which is set to one then it can be assumed that 
this state has been seen before. This method vastly reduces the memory required to 
store states, and also leads to efficient hash table operations since linked-lists need 
no longer be searched. 

Although the probability of hash collision is low, when such collisions hap- 

pen the model checking algorithm will erroneously assume that a state has been 

visited before. Thus supertrace mode does not guarantee 100% coverage of the 
state-space, but can often provide good coverage of a state-space much larger than 
could be explored using standard search. A variant of supertrace mode, also imple- 

mented in SPIN is the hash-compact method [184]. 

2.6.3 Reducing state-space size 

Symmetry reduction 
Symmetry reduction for model checking is the main topic of this thesis. In Chap- 
ter 3 we provide a detailed summary of symmetry reduction theory, and a thorough 
survey of existing techniques and tools. 

On-the-fly model checking 
It is not always necessary to build the entire state-space in order to determine 

whether or not a specification satisfies a given property. 
If the property to be checked isfalse, only part of the state-space needs to be 

constructed, up to the point at which an error state (safety property) or a violating 
cycle (liveness property) is discovered. However, if there are no errors, the entire 
reachable part of the state-space must be constructed. This means that although 
debugging can be performed relatively easily, property verification very quickly 
becomes prohibitive. 

On-the-fly methods are most suitable for explicit-state model checking al- 
gorithms based depth-first search, and have been developed to check LTL, CTL 

and CTL* properties [10,176,178]. SPIN is an example of an on-the-fly LTL model 
checker. Approaches for combining on-the-fly techniques with symbolic model 
checking are restricted to the checking of safety properties [9]. 

Partial-order reduction 
The explosion of states and transitions in a model results from the interleaving of 
actions of distinct processes in all possible orders. In general, the consideration of 
such interleavings is crucial: bugs in concurrent systems often arise due to unex- 
pected ordering of actions. However, if a set of transitions are entirely independent 
and are ffivisible with respect to the property being verified, the order in which they 
are executed does not affect the overall behaviour of the system. (A transition is 
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invisible with respect to a property 0 if the truth of 0 is unaffected by the transi- 
tion. ) Partial-order reduction [53,67,137] exploits tl-ds fact, and considers only one 
representative ordering for any set of concurrently enabled, independent, invisible 
transitions. 

Partial-order reduction methods rely on determining a suitable subset of 
transitions to be considered at every state. As a result, rather than exploring a struc- 
ture M an equivalent (usually smaller) structure M' is explored, with fewer transi- 

tions and fewer states. The equivalence in this case is O-stutter equivalence (where 

0 is the property to be checked). If we regard states as being labelled with propo- 

sitions (as discussed in Footnote 1, page 20) then for two paths 7rl and 7r2, let 7rf 

and 7rO be the paths obtained from 7ri and 7r2 by restricting the set of labels to the 2 
propositions contained in 0. Then 7rf and 7rO are said to be O-stutter equivalent if 12 
they can both be reduced to a common path 7r by repeated application of the stut- 
tering operator. (The stuttering operator replaces two successive occurrences of a 
state s in a path by a single occurrence. ) 

Note that partial-order reduction can only be used to check properties which 
are closed under stuttering. All LTL properties which to not use the next-time (X) 

operator are closed under stuttering. 
For some systems, where all actions are dependent on one another, partial- 

order reduction cannot offer any improvement in verification space or time. In 

many realistic cases however, partial-order reduction can be extremely effective. 
For example, for some systems the growth of the state-space as the number of 
processes increases is reduced from exponential to polynomial when partial-order 
methods are used. In others the global state-space may increase with the growth of 
a parameter whereas the size of the reduced state-space remains unchanged [66]. 

Data abstraction 
In Section 2.6.1 we discussed the use of design abstraction for modelling a system 
at an appropriate level of detail so that property verification is tractable. We now 
discuss the more precise, formal notion of data abstraction. Data abstraction reduces 
the number of states in a model by restricting the set of values which variables may 
take. The resulting reduced Kripke structure Q is an abstraction of the original 
structure M: every execution in M has a corresponding execution in. Q. This idea 
has been formalised by various authors (e. g. [30,36,112]). We now summarise the 
approach presented in [301. 

Recall that a Kripke structure is defined over a set of variables V 
JV1 

1 V21 ---. - Vk}, and that Di denotes the domain of possible values for vi (1 <i< k). 
Formally, for each 1<i<k, let hi : Di --+ Di be a surjection. The surjection hi maps 
values of variable vi onto an abstract domain bi. Let f) = 51 X b2X 

"' X 5k. Then 
h: D --+ 

5 defined by h((di, d21 ... p dk)) = (hi (di), h2 (d2)i 
-, hk (dk)) is a surjec- 

tion mapping a state SES (= D) to an abstract state' ?EA This surjection can be 
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Figure 2.11: Mutual exclusion model reduced via abstraction. 

used to define a minimal abstract Kripke structure, each state of which is the image 

of a set of concrete states under h. 

Definition3 Q is the abstract Kripke structure over f) given by. 

0 9=f5 
go jh(s) :SE So} 
R J(h(s), h(t)) : (s, t) E R}. 

The abstract Kripke structure M may be significantly smaller than M. If 0 is Q 

a CTL* formula overQ then a corresponding formula C(O) can be interpreted over 
M. The formula C(O) is obtained by replacing every state sub-formula (vi = Wi) 

with the disjunction VJ(vi = di) : h(di) = iýi}, and (vi 34 Wi) with -, C(vi = ji). 

The sub-logic of CTL* consisting of formulas which do not use the path 
quantifier E is denoted ACTL*. Most temporal properties of interest in verification 
problems can be expressed in ACTL* (or even ACTL, the corresponding restriction 
of CTL). n-te next theorem shows that certain ACTL* properties of A4 can be proved 
by checking. Q. 

Theorem I Leto be an ACTL* fon-nula over M. Then. Q M ý= C Q 

With certain additional conditions on h, this result can be extended to apply to 
CTL*. 

We illustrate the abstraction approach using the mutual exclusion example. 
Recall from Section 2.2 that Di = IN, T, C} for iE 11,2}. Let bi = IN, C}, and 
define hi (N) = N, hi (T) =N and hi (C) =C for iE 11,2}. T1-ds abstraction maps 
both the neutral and trying regions onto a single neutral region. Figure 2.11 shows 
the abstract Kripke structure. A4 corresponding to the Kripke structure of Figure 2.3 
under this abstraction. 

Let 0= AG(-(Cl A C2)) (0 is Property 1 of Section 2.2.1). Clearly 0E 
ACTL*, and C(O) =0 (since our abstraction does not affect the critical region). 
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Thus 0 can be checked over Q. Note that Q satisfies the CTL* formula 1P = 
EG (NI A N2) - there is a path where the transition (N, N) --+ (N, N) is repeated 
forever. This formula is not in ACTL*, so we cannot conclude that the formula 
C(ip) = EG((Ni V Ti) A (N2 V T2)) is satisfied by M (it is easy to check that it 
is not). 

Note that Theorem 1 does not state that we can disprove properties of A4 by 
model checking Q. Indeed, given a counter-example for a property 0 in )R, there 
may be no corresponding counter-example for C(0) in M. For example, Q ýý- 
AF(Ci V C2), which states that the critical section will eventually be reached by 
one of the processes. Again this is shown via the path where (N, N) --+ (N, N) is 
repeated forever. It is easy to check that there is no corresponding counter example 
in M. 

Abstraction techniques have been used in conjunction with symbolic model 
checking to verify designs of industrial complexity. However, the user is required 
to manually specify the abstraction functions. This requires significant insight into 
the verification problem, compromising the automation of model checking. 

Recently there has been progress towards automating the use of abstraction 
as a state-space reduction technique. Counter-example guided abstraction refine- 
ment (CEGAR) [29] is an iterative process where a reduced model is derived from 

a high level specification using coarse (even arbitrary) abstraction functions. An 
ACTL* property 0 is checked over this abstract model. If 0 holds then the truth of 
C(0) for the unreduced model is established, otherwise a counter-example in the 
abstract model is reported. An algorithm is used to check whether a corresponding 
concrete counter-example exists in the original model. If so, then the falsity of C(0) 
has been established. Otherwise the counter-example is refuted, and information 

obtained from this counter-example analysis used to refte the abstract model, re- 
sulting in a larger (but still abstract) state-space which will not admit the spurious 
counter-example. In practice, the refinement will prohibit a whole class of spurious 
counter-examples. This process is repeated until a result is obtained, or the abstract 
model cannot be refined any further without exceeding resources. The CEGAR pro- 
cess is illustrated in Figure 2.12 (adapted from [163]). CEGAR is at the heart of the 
SLAM and BLAST software model checkers [5,801. 

Compositional vezification 
A concurrent distributed system is usually comprised of a number of components 
executing in parallel. It may be possible to verify that a property holds for a model 
of the system by checking components of the system individually using an assume- 
gitarantee proof strategy [142]. With this verification strategy, the typical syntax of a 
property is: (O)M (ýp), where 0 and ip are temporal formulas. This property states 
that if M is a model such that M ý= 0 then it must be the case that M ý-- ip. The 
parallel composition of components MI and M2 can then be checked using the 
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' Specification P 
with associated model 
M; ACTL* property 0 

Arbitrarily abstract' 
some variables of P 

Abstract model -ý Refine 

Model check 
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m 

Figure 2.12: The CEGAR process. 

(true) MI (tp) (IP)M2(0) 

(true). A41 11 M2(0) 

Figure 2.13: Proof strategy for compositional verification. 

\ Yes 

. A4 V-- 0 

inference rule of Figure 2.13 [32,73]. 
Practical compositional verification involves first decomposing a system 

into components MIiM 21 ---, Mn (n > 0), and finding an environment assump- 
tion Ai for each component Mi. Each environment assumption must capture 

enough of the behaviour Of M 11 A421 ... P Mn so that proving Mi 11 Ai ý= 0 for 

each i is sufficient to show that Mi 11 M2 11 ... 11 Mn ý= 0. The challenge in au- 
tomating these techniques is the derivation of adequate environment assumptions. 
n-ds can be achieved using methods for regular language learning [1361. 

Summary 

Model checking is an automated technique which can be used to reason about tem- 
poral properties of finite state concurrent systems by constructing a model repre- 
senting all system states. One of the major problems associated with model check- 
ing is state-space explosion. The main approaches to overcoming state-space ex- 
plosion involve construction of an efficient high level specification (using design 
abstraction and source code or communication structure optimisation), a reduction 
in state representation size (e. g. symbolic representation and state compression), 
or a reduction in the number of states or paths explored (e. g. symmetry reduction, 
partial-order reduction and data abstraction). 

, "Extract information forN, 
refinement from refutation 

of counter-example / 

No 

' Does corresponding-%, 
concrete counter-example 

exist in M? j 
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We have provided a formal definition of CTL* model checking, outlined 
basic model checking algorithms for CTL and LTL, and surveyed a selection of 
model checking tools and state-space reduction techniques. In particular, we have 
provided a detailed overview of the SPIN model checker and its input language, 
Promela. 



Chapter 3 

Symmetry Reduction 

Concurrent systems often contain many replicated components and, as a conse- 
quence, model checking may involve making a redundant search over equivalent 
areas of the state-space. For example, consider the Kripke structure shown in Fig- 

ure 2.3, associated with the Promela mutual exclusion specification of Figure 2.6 
(restricted to two processes). Though simple, this example clearly demonstrates the 
existence of symmetry within a Kripke structure. In terms of the mutual exclusion 
property AG (- (Cl A C2)) (Property 1), any pair of states (A, B) and (B, A), where 
A and B belong to IN, T, C}, are equivalent (state (A, B) will satisfy the mutual ex- 
clusion property if and only if (B, A) does). Most symmetry reduction techniques 
exploit this type of symmetry by restricting state-space search to equivalence class 
representatives, and often result in significant savings in memory and verification 
time [14,31,55,1031. 

The earliest use of symmetry reduction in automatic verification was in the 
context of high-level (coloured) Petri nets [95] where reduction by equivalent mark- 
ings was used to construct finite reachability trees. These ideas were later extended 
for deadlock detection and the checking of liveness properties in place/ transition 
nets [170]. 

3.1 Group Theory 

Symmetries of a Kripke structure (see Section 3.2) form a group, thus our descrip- 
tion of symmetry reduction techniques in this chapter, and the symmetry reduction 
techniques which we develop throughout the thesis, require some definitions and 
results from group theory. For more details, see e. g. [22,81,150]. 

3.1.1 Groups, subgroups and homornorphisms 

Definition 4A group is a non-empty set G together with a binary operation o 
GxG --+ G which satisfies: 

o For all a, 0, -y E G, it o (p oy) = (it o p) 0y 
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o There is an element id EG such that, for all aEG, a= id oa=ao id. The 
element id is called the ideiitity of G 
For all aEG there is an element AEG such that aooa= id. The 

element A is called the inverse of a, denoted tt-1. 

In practice, the binary operation o is usually composition of mappings, so we omit 
it, writing ap for aoP. 

Let G be a group and let H C- G. If ap EH for all a, PEH (i. e. H is closed 
under the binary operation) then H is also a group, and we say that H is a subgroup 
of G, denoted H<G. If H C: G then H is a proper subgroup of G, denoted H<G. 

Definition 5 Let XCG. 7hen (X) denotes the smallest subgroup of G which con- 
tains X, and is called the subgroup generated by X. If itli a21 ... j, ak EG then we use 
(ttli UZ ... I elk) to denote Q&1 

i IX2f ... tak})- 

For any group G, if XCG has the property that G= (X) then X is called 
a set of generators for G. It can be shown that if G is a finite group, there exists a 
generating set X for G with JXJ :S 1092 JGJ. As a result, it is often convenient to 
work with a small generating set for a large group. 

Definition 6 Let H be a subgroup of G, and let aEG. Then the set Hit E 
H} is a (right) coset of H in G. 

A similar definition can be given for left cosets of H in G. We will henceforth use 
coset to mean right coset. It can be shown that the set of cosets of H in G is a partition 
of G. A set of coset represeWatives for H in G is a subset of G wl-dch consists of exactly 
one element from each coset of H in G. 

Definition 7 Let a, AEG. 7lie element A-lap EG is called the conjugate of a by 0, 

and is denoted &P. Let H<G, and suppose that for all aEH and AEG, aP EH 
(i. e. H is closed under conjugation). Then H is a normal subgroup of G, and we 
write H<G. 

A mapping between two groups which preserves products of elements is 
called a homomorphism: 

Definition 8 Let (Gi, o), (G2, *) be groups. A homomorphism from Gi to G2 is a map- 
ping 0: Gj --+ G2 wlVdi satisfies, for all CG 0E G1, 

0(a 0 0) = 0(a) * O(P). 
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If 0 is injective then 0 is a monomorphism from G, to G2- If 0 is bijective then 0 is 

an isonwrphism from Gj to G2, and GI and G2 are said to be isomorphic, denoted 
Gi Sd G2- 

Isomorphic groups are algebraically indistinguishable, and in some sense 
can be thought of as equal - they differ only in that their elements may be labelled 
differently [811. However, two isomorphic groups may have distinct actions on a 
set (see Section 3.1.3), so for the purposes of this work it is important to regard 
groups which are isomorphic but whose elements are not presented in the same 
form, as distinct. 

The following standard theorem shows that if there is a monomorphism 
from a group Gi to a group G2 then G1 is isomorphic to a subgroup of G2: 

Theorem 2 Let G1, G2 be groups and 0: Gj -* G2 a monomoiphism. Then Gj 
O(Gi) !ý G2., where O(Gi) = 10(ci) :aE Gl}. 

3.1.2 Permutation groups 

Let X be a non-empty set. A permutation of X is a bijection a: X -+ X. The set 
of all permutations of X forms a group under composition of mappings, denoted 
Sym(X). Given a group H< Sym(X), we use moved(H) to denote the subset of 
X wl-dch is affected by H: MOved(H) = Ix EX: &(x) 34 x for some XE H}. 
For aE Sym(X) we use moved(a) to denote the set moved(fx}). The degree of a 
permutation group G is defined to be Imoved(G) 1, with the exception that the trivial 

group lid} is said tohave degreeone (even though Imoved(lid})l = 0). 
If X is finite then it can be shown that I Sym (X) I=IXJ!, and an element of 

Sym(X) can be conveniently expressed using disjoint cycleform. Let aE Sym(X). If 

a= id then we write id for a as usual. Otherwise, we can write a as a product of 
cycles as follows: 

et = (a,,, al, 2 ... a,,,, ) (a2,1 a2,2 ... 
a2A2) 

... (atj at, 2 at,,, ) 

where t>0,2 < si :5 IXI (1 <i< t), aq EX (1 :! ý i<t, 1<j :5 si), and the aij 

are all distinct. In this form, for xEX, if x= aq for some i and j then a (x) = aq, 
where j' =j+1 if j< si and j' =1 if j= si; otherwise a (x) = x. 

Definition 9 Let X be a non-empty set, G : ý, Sym(X), xEX, YCX, and Xa 

partition of X. 
The stabiliser of x in G is the setstabc; (x) = ja EG: a(x) = x}. 
The poititwise stabiliser of Y in G is the set stab*G , 

(Y) =fit EG: it(x) 

xVx E Y}= nXEY stabG (x). 

* Fora E G, definea(Y) = ja(x) :xE Y} 9 X. The setwise stabiliser of Y in G 
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is the set stabG (Y) = ja EG: a (Y) = Y}. 
The partition stabiliser of X in G is the set stabc; (X) = Ict EG: ci (Y) 

YVY E X}= nyE x stabG (Y). 

It is straightforward to show that stabG (X), stab* (Y), stabG (Y) and stabG (X) are all G 
subgroups of G. 

Definition 10 Let G :5 Sym(X) where X is a non-emply' set. The group G induces 

an equivalence relation =-=G on X thus: x _=r, y t* x= a(y) for some aEG. 
The equivalence class under -=G of an element xEX, denoted [XIG., is called the 

orbit of x under G. The group G is transitive if there is a single orbit, X. When not 
referring to a specific orbit representative, we typically denote an orbit 11, and say 
that QCX is non-trivial if Inj > 1. When considering actions of G on two distinct 

sets X and Y, it is sometimes convenient to write [x]C, for the orbit of xEX under 
G, and orbG (y) for the orbit of yEY under G. 

Two important classes of permutation groups are symmetric groups and 
cyclic groups: 

Definition 11 For n>0, the group Syni(II, 2, - -, tz}) is called the sYmmetric group 
of degree n, denoted Sn. From the above, we ha ve I Sn ifl. Sn is often referred to as 
thefull symmetry group. 

Definition 12 The cyclic group of degree n, denoted C, is the subgroup Of Sn gener- 
a ted by the cycle (12 ... n). 

3.1.3 Group actions on sets 
Fundamental to most applications of symmetry reduction in model checking is the 
idea that a group of permutations of a given set induces a group of permutations 
on another (usually larger) set. For example, a group of process identifier permuta- 
tions naturally induces a group of permutations of the set of states associated with 
a specification. We describe this idea formally using group actions. The following 
definition and theorem are adapted from [150]. 

Definition 13 We say that a group G acts on the non-empty set X if to each aEG 
and xEX there corresponds a unique elementa(x) EX and that, forall xEX and 
«, ß E G, 

(aß) (x) =a (ß (x» 
id(x) = x. 
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Theorem 3 Let G act on X. Then to each aEG there coiTesponds an element p,, E 
Syni(X) defined by p,, :x ý--* &(x), and the map p: G --* Sym(X) defined by 

p: a ý-* p,, is a homomorphism. 

We call the homomorpl-dsm p the permutation representation of G corresponding to 
the group action. 

3.1.4 Products of groups 

Certain groups can be described as products of their subgroups. Four important 
kinds of product are direct, disjoint, wreath and semi-direct products, which we 
introduce in Definitions 14,15,16-17 and 18 respectively. 

Let G be a group, and H1, H2,..., Hk subgroups of G (1 <i<k, k> 1). If 

G= HIH2 ... Hk = Jttla2 
... 14 : ai E Hi (1 <_ i< k)} then G is the product of the 

Hi. 

Definition 14 Let G be a group, and let Hi, H2,..., Hk be subgroups of G. Then G 
is the (internal) directproduct of the Hi, written G= Hi x H2 x ... x Hk, if Hj:! ý G 
(1 :! ý, i <- k), G is theproduct of the Hi, and Hi n Hj = lid} for all i ?ýj (1 < ij :5 k). 

Definifion15 Let G :5 Sym(X), where X is a non-emptyset. Suppose that G is the 

product of subgroups H1, H2,..., Hk, and that moved(Hi) n moved(Hj) =0 for all 
1<i 34 j<k. Then G is denoted H1 * H2 9 ... * Hk, and called the disjoint product 
of the Hi, and the Hi a disjointproduct decomposition for G. The disjointproduct is 

said to be non-trivial if G 34 Hi 34 lid} for all 1<i<k. 

Note that if G has two disjoint product decompositions such that the con- 
stituent subgroups of the second product are all subgroups of constituent sub- 
groups of the first, then we say that the second decomposition is finer than the 
first. 

It is easy to show that if G is the disjoint product of H1, H2,..., Hk then G is 
the direct product of these subgroups, thus disjoint products are a special case of 
direct products for permutation groups with a specific action. 

The following definition of the wreath product of two permutation groups, 
which we call the outer wreath product, is adapted from a definition given in [106] 

and allows us to construct a new permutation group from two arbitrary permuta- 
tion groups. 

Definition 16 Let H: 5 S. and K< Sd for some m, d > 0. Let X= 11,2,..., md}, 
and let JXI, X2,..., Xd} be a partition of X into equal-sized subsets, with jXjj =m 
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and Xi = (1 <i< d). We define an 
action for K, and d distinct actions for H, on X. 

For 0EK and xEX, suppose xE Xi for some 1<i<d, so that x 
(i - 1)m +t for some 1<t<m. Define P(x) = (P(i) - 1)m + t. Let o, be the 

permutation representation corresponding to this action of K on X. 

For aEH, xEX and 1<i<d, suppose xE Xj for some 1<d, so 
that x=U- 1)m +t for some 1 

-< 
t <- m. Define a(x) =x if i 34 j and a(x) = 

0- 1)m + a(t) otherwise. Leto-i be thepermutation representation corresponding 
to this action of H on X. 

The outer wreath product of H and K is the group HIK< Sym(X) defined as 
follows: HIK= 10(P)Lrl (al)V2(a2) 

... tTd(Czd) :AEK, Ui EH (1 <i< d)}. 

Note that in the above definition, each of the o-i permutes a different set of 
the partition and a permutes the partition. 

The next definition, which we call the inner wreath product, allows us to 
identify an existing group as a wreath product of subgroups. It is similar to, 
but more general than Definition 16: the requirement that X must be the set 
11,2,..., md} partitioned into contiguous subsets is lifted. 

Definition 17 Let H :5S,, and K <- Sd for some m, d>0. Let X be a set with 
IXI = md, and IX1, X2,..., Xd} a partition of X into equal-sized subsets, where 
jXjj =m and Xi has theform Xi = jXiliXi, 2i ... J, xi, m} for some xij EX (1 <i<d, 

<j< ni). We define an action for K, and d distinct actions for H, on X. 

For AEK and xEX, suppose xE Xi for some 1 <- i <- d, so that x= xi, t 
for some 1<t<m. Define fi(x) = xp(j), t. Let o, be thepermutation representation 
corresponding to this action of K on X. 

For aEH, xEX and 1 <- i <_ d, suppose xE Xj for some 1<j !ýd, so that 

x= xj, t for some 1<t<m. Define a(x) =x if i0j and a (x) = xi,, (t) otherwise. 
Let oj be thepermutation representation corresponding to this action of H on X. 

If G= jk7(A)LT1(CQ)LT2(Ct2) 
... LTd(CZd) :0EK, ai EH (1 <i< d)} then G is 

the intier wreath product of H and K, also denoted HIK. 

For neatness, we do not use notation to distinguish inner and outer wreath 
products, and explicitly state the type of product referred to when necessary. Note 
that we can unambiguously refer to the outer wreath product of two permutation 
groups, but must specify the partition X= JXI, X2,..., Xd} when reasoning about 
an inner wreath product. We refer to the triple (H, K, X) as a wreath product de- 

compositioit for G, and say that the decomposition is iion-trivial if both H and K are 
non-trivial. 

It is clear that any inner wreath product HIK (with associated partition) is 
identical, up to renaming of points, to the outer wreath product HýK. The order of 
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HIK depends on the orders of H and K, and the degree of K: 

Theorem 4 If G is an inner or outer wrea th product HIK then IGI=IH Id X IKI, 

where d is the degree of K. 

Definitions 16 and 17 describe wreath products with the imprimitive actioit 
[22]. There are other definitions of wreath products with other kinds of action, and 
it is important to note that the results on wreath products which we present in 
Section 9.4 are specific to the imprimitive action. 

Direct products and wreath products are both generalised by serni-direct 
products: 

Definition 18 Let G be a group, Na normal subgroup of G and Ha subgroup of 
G. Suppose G= NH and NnH= lid}. Then G is a semi-direct product of N and H, 
denoted NxH. 

3.1.5 Graphs and automorphisms 

An widirected1directed graph (referred to as a graphldigraph) is a pair (V, E) where 
V is a set of vertices and Ea set of edges - unordered /ordered pairs of vertices. 
An edge of a graph is written as a set I u, v} whereas a digraph edge is written as a 
pair (u, v) (U, VE V). A hypergraph is a pair (V, E) where V is a set of vertices and 
EC 2V a set of hyper-edges. 

A digraph (V, E) is bipartite if V=V, U V2, where V1 CV and V2 CV are 
disjoint non-empty sets and, for (U, V) E E, uEV, and vE V2, or uE V2 and vE V1. 

A colourbig of (di/hyper)graph (V, E) is a mapping C: V --+ K, where K is a 
finite set of colours. A coloured (di/hyper)graph is a triple (V, E, C) such that (V, E) 
is a (di/hyper)graph and Ca colouring of (V, E). 

If IF = (V, E) is graph/hypergraph and aa permutation of V, then for any 
e= JV1 

1 V21 ... f Vn, } E E, a acts on e thus: 

ci(e) = j&(vj), a(v2),..., a(v )}. 

The action of a on the edges of a digraph is defined similarly, and the ordering must 
be preserved in this case. 

Definition 19 Let F= (V, E, C) be a coloured (dilhyper)graph and aa pennu ta- 
tion of V. Then a is an automorphism of F if the following conditions are satisfied: 

For aU eEE, a(e) EE 
For all vEV, C(v) = C(a (v)). 

An automorphism of an un-coloured (di/hyper)graph is a permutation of V which 
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satisfies the first condition in the above definition. The set of all automorphisms 
of a (di/hyper)graph IF forms a group under composition of mappings, denoted 
Aut(r). 

3.1.6 GAP and GRAPE 

GAP (groups, algorithms and programming) [63] is a computational algebra system 
which provides data structures and algorithms for working with a variety of alge- 
braic structures. In particular, GAP includes a large library of permutation group 
algorithms. Given generators (specified in disjoint cycle form) for a permutation 
group G acting on the set J1,2,..., n}, GAP functions can be used to compute, 
for example, subgroups of G with particular properties (such as point- and set- 
stabilisers); the orbits of G on 11,2,..., n}; coset representatives for a subgroup H 

of G, and homomorphisms from G to another group. The fundamental permutation 
group algorithms which GAP uses are described in [ 19,162]. 

On its own, GAP provides little support for graph-theorefic computation. 
GRAPE (graph algorithms using permutation groups) [168] consists of a set of func- 
tions which can be imported into GAP, including a function to compute the auto- 
morphism. group of a directed, coloured graph. This function interfaces with the 
naut (no automorphisms, yes) program [126], which uses the most efficient algo- Y 
rithm currently known for finding the automorphism group of a graph [125]. 

For further details of the techniques used by GRAPE and nauty see [169]. In 

subsequent chapters we make use of the following functions: 
AutGroupGraph (IF [, C]): GRAPE function which returns generators for the 

automorphism group of the directed graph IF (see Definition 19). The op- 

tional argument C allows a colouring on the vertices of F to be specified, in 

which case generators for the subgroup of automorphisms which preserve 
this colouring will be computed 

isomorphismGroups (G, H): GAP function which computes an isomor- 

phism between the groups G and H if they are isomorphic (see Definition 8), 

and returnsfail otherwise 

I somorphi c Subgroups (G, H): GAP function which computes all mono- 
morphisms (see Definition 8) from H into G up to conjugacy of the image 

groups. (Subgroups H and K of G conjugate if H= &-'Ka for some aEG. ) 

3.2 Symmetry Reduction Using Quotient Structures 

Definition 20 Let M (S, So, R) be a Kripke structure. An automorphism of M is 
a permutation a: SS which preserves the transition relation and set of initial 
states. That is cc satisfies the following conditions: 
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I. For all s, tES, (s, t) ER =ý. (it (s), it (t)) ER 
Z it (SO) = SO. 

The set of all automorphisms of a Kripke structure M forms a group under com- 
position of mappings, denoted Aut(M). 

In a model of a concurrent system with many replicated processes, Kripke 

structure automorphisms may involve the permutation of process identifiers or 
data values throughout all states of the model. On the other hand, a model may in- 
clude a data structure which has geometrical symmetry [881, in which case Kripke 
structure automorphisms involve applying the geometrical symmetries through- 
out all states of the model. In each of these cases there is group G which permutes a 
(typically small) set of process identifiers, data values or nodes of a data structure, 
and an action of G on S (see Definition 13). Let p be the permutation representa- 
tion corresponding to this action (see Theorem 3). The group of automorphisms 
of M hiduced by G is p(G), the image of G under the permutation representation. 
Given it E G, rather than referring to the automorphism p. of M we sometimes 
say simply that it is an automorphism of M. 

Given a subgroup G of Aut(M), the orbits of S under G (see Definition 10) 
can be used to construct a quotietit Kripke structure MC; as follows: 

Definition2l The quotient Mpk-c structure MG of M with respect to G is a tuple 
M c; (Sc;, SG, RG) where. 

SG = (rCPG (S) S6 S) (where rePG (S) is a unique represen ta tive Of [S] G) 
0 " SG ý (rMG(S) S r= SO) 

" RG = ((nVG(S)*rePG(t)): (Slt) iE R). 

If G is non-trivial then the quotient structure Mc; is smaller than M. For any 
SES, the size of [s1c; is bounded by JGJ, and so the theoretical minimum Size Of SG 
is ISIIJGI. Since for highly symmetric systems we may have IGI = W, where it is 
the number of components, symmetry reduction potentially offers a considerable 
reduction in memory requirements. 

To give an example of a quotient structure, for the mutual exclusion example 
shown in Figure 2.3, observe that swapping the process indices I and 2 throughout 
all states is an automorphism of the structure. If a denotes this automorphisin then 
for this example Aut(M) = (it, id}, where id is the identity mapping. Choosing 
a unique representative from each orbit we obtain the quotient Kripkc structure 
MA,, #(M) illustrated by Figure 3.1. 

It can be, shown 131,551 (see Theorem 5 below) that a model and its quotient 
model sa tisfy the same srintetric CTV formulas. A CTL* formula 0 is symmetric, or 
invariant, with respect to a group G if for every maximal propositional sub-formula 
f appearing in 4) (see Section 2.2.1), and for every it E G, M, s ý= f 4* M, a (s) H f. 
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rigure 3.1: Quotient Kripke structure for two-process mutual exclusion. 

Theorem 5 If M and MG denote a model and its quotient model with respect to 
a group G wspvctively, then M, s ý= 0 4* Mc;, repG(s) 1-- 0, for every synunctric 
CTL* formula 0. 

Theorem 5 is proved by establishing a correspondence between the paths of M and 
MG, and using induction on the structure of CTL* formulas 131,551. An analogous 
result holds for symmetric jw-calculus formulas [551. 

Since, by Condition 2 of Definition 20, the initial states of M are preserved 
by G, we have the following corollary: 

Corollary 1 Mith the same conditions as Theorem 5, M ý= 0 4* Mc; ý= 0. 

Corollary I is similar to Theorem I (see Section 2.6.3) which shows that properties 
of a Kripke structure can be inferred by proving properties of a structure which 
has lxvn reduced by data abstraction. There are two key differences. Theorem I 
is restricted to ACTV formulas, while Corollary I applies to any C7L* formula 
which is symmetric. Tn addition, unlike Theorem 1, Corollary I can be used to find 
errors as well as prove properties since, in this case, the implication is two-way. 
Consider the two-process mutual exclusion property AG(-(Cl A C2)) (Property I 
of Section 2.2.1). Let us call this property 01. Clearly 01 is symmetric with respect to 
the automorphism group G= fit, id), where it is defined as above. Thus the Kripke 
structure M (represented by Figure 2.3) satisfies 4), if and only if the quotient struc- 
ture MC; (represented by Figure 3.1) does. Therefore, to check the mutual exclusion 
property, it is sufficient to check the quotient model only. Note that Mc also sat- 
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Algorithm I Algorithm to construct a quotient Kripke structure. 
SG := (rcpG(s) :s r= So) 
unexplored: = (rtpG(s) :sE So) 
RG: =O 
while utiexplored j4 0 do 

remove a state s from unexplorcd 
foraII successor sta tes t of sdo 

add s --* repG(t) to RG 
if repr , 

(t) ý SG then 
add rqG(t) to SG 
add repG(t) to utiexplored 

end if 
end for 

end while 

isfies the property 9ý2 defined as AG(-C2). However, as 0 is not symmetric with 
respect to the automorphism group, we cannot infer the truth (or other"ViSe) of 02 
for M. (Indeed, clearly MK 9ý2. ) The progn-ss property AG(Tj =* (FCI)) (Prop- 

erty 2 of Section 2.2.1) is also not symmetric - it refers to process I in an asymmetric 
way. Consider Property 3 lxlow, a weaker version of the progress property. 

Property 3 AG ((TI V T2) =ý- (F(Cl V C2))). 

This asserts that if some process is in the trying region then eventually sonte (but 
not necessarily the same) process will reach the critical section. This property is 
symmetric with respect to Aut(M), and it is easy to check that it holds for both M 
and MC;. 

Algorithm I (adapted from 155,103]), shows how a quotient structure can be 
constructed incrementally if symmetries of the Kripke structure can be identified 
before search. The successors of a given state are determined by the transition rules 
of a high level specifiQ-ktion. Note fluit to determine a unique element rVPC; , 

(s) for 
each orbit lslc;, we require a canonicalisation function. We discuss the problem of 
constructing such a canonical isation, function in Section 3.4. Using Algorithm 1 it 
may be possible to build the quotient structure even though the original structure 
is intractably large. 

An approach that is suggested for symmetry reduction during automata- 
based model checking involves the construction of an annotated quotient structure 
(AQS) 155,164). In this case there is a labelled edge between representative states 
n7ir. (s) and n-pc; (t) for every edge that exists (in M) from repc, (s) to an element 
of ItIG. If (rt7)G(s), t') were such an edge (in M) then the edge (in the annotated 
quotient structure) would be labelled with a permutation it such that it (repG(t)) = 
t'. Not only is it possible to unuind the original structure M from the (annotated) 
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quotient structure, but it is also possible to check properties expressed in bidexed 
CTL* - an extension to CTL* in which properties include the indexed quantifiersfor 
all processes orfor some process. In addition, properties to be checked are not required 
to be symmetric with respect to the group G. We discuss the use of AQSs to verify 
properties under fairness assumptions in Section 3.6.2. 

3.3 Identifying Symmetry 

The first step which must be accomplished by any method which exploits symme- 
try is the identification of symmetries in a model. Let M be a Kripke structure. An 

obvious approach to solving this problem would be to construct M, and then to 
find a symmetry group G of M using a standard algorithm (e. g. nauty [1251). These 

symmetries could be used to reduce M to a quotient model, M C;. 
This approach is flawed in two ways. Firstly, finding automorphisms of a 

Kripke structure is equivalent to checking for state-space isomorphism, which for 
large state-spaces is a hard problem (no polynomial time algorithm is known [125]). 
Secondly, if enough resources were available to construct M then symmetry reduc- 
tion would be unlikely to be of much benefit. Indeed, the power of reduction tech- 

niques is that they allow a reduced model to be checked even when the unreduced 
model is intractable. 

Thus the problem is to find symmetries of M without building M explic- 
itly. We now discuss four approaches to symmetry identification: explicit specifica- 
tion of symmetry group generators, specification of symmetries via a purpose-built 
scalarset data type, restriction of the specification language to guarantee symme- 
try between components, and inference of symmetry by communication structure 
analysis. 

3.3.1 Manual specification of a symmetry group 

The problem of symmetry detection can be avoided altogether by requiring the user 
to manually specify generators for a symmetry group [27,69,1351. Uds approach 
requires expert user knowledge of symmetry reduction theory, and is prone to er- 
ror. Nevertheless, if used with care then providing the option to specify symme- 
try manually allows symmetry reduction to be applied when the user can identify 

symmetries in a specification which are not recognised by an automated approach. 

3.3.2 Scalarsets 

A popular approach to symmetry detection involves annotation of the system de- 

scription via a purpose-built data type [103]. The data type is called a scalarset, 
and acts as documentation that certain symmetries are present in a specification 
expressed in the Muro description language [40]. 
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Definition 22 A scalarset is an integer sub-range with restricted operations as fol- 
lows: 

1. An array with a scalarset index type can only be indexed by a scalarset vari- 
able of exactly the same type 

2. A term of scalarset type must be a variable reference. (A scalarset may not 
appear as an operand to + or any other operator in a term) 

3. Scalarset variables may only be compared using =, and in such cases, must 
be of exactly the same type 

4. For all assignments d :=t, if d is a scalarset variable, t must be a term of 
exactly the same scalarset type 

5. If a scalarset variable is used as an index of a for statement, the body of the 
statement is restricted so that the result of the execution is independent of 
the order of the iterations. 

The restrictions are sufficient to ensure that consistent permutation of 
scalarset variables in all states corresponds to an automorphism of the state-space. 
Furthermore, violations of the restrictions can be detected in polynomial time [1031. 
As the above conditions refer to general language features, they can clearly be 

adapted to apply to other specification formalisms. 
Given a specificationP containing a scalarset S which represents the integer 

sub-range 10, n- 1} (for some it > 0), any permutation of 10, it - 1} 

naturally induces a permutation of the associated state-space. This is best illus- 
trated by an example. Let x and y be variables of P with scalarset and non scalarset 
type respectively, and A an array with scalarset index type and element type. Let 
t be a state of the model associated with P, and let t. x, t. y and t. A[i] denote the 
values of x, y and element i of A (0 <i< it - 1) at state t respectively. Let as be 

any permutation of 10, n- 1}. Then as is defined to act on state t such that: 
as(t). x = as(t. x); as(t). y = t. y, and as(t). A[i] = as(t. A[asl(i)]). For a precise, 
recursive definition of this action, and a proof of the following theorem, see [1031. 

Theorem6 Given a specification containing a scalarset S, everypermutation as on 
the states of the state-space M derived from the specification is an automorphism 
of M. 

Corollary 2 If a specification P has scalarsets S1, S2,..., Sk (k > 0), there are sym- 
metries in the state graph A4 and we can use the symmetryý-reduced state graph 
M r, to perform verification, where G is the group of all permutations of the states 
with respect to S1, S2, ---i Sk- 
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atomic f 
j=0; 
do J==A break 

J<A body; J++ 

od. 

Figure 3.2: Synthesising af or loop with scalarset index variable in Promela. 

If I Si I is the size of scalarset Si (1 <i< k), then the symmetry group G has 

order JS111 x JS21! X***X jSkj! 
- 

To illustrate the need for Condition 5 of Definition 22, let S be a scalarset 
type with range 10, n- 1}. Consider a loop with counter variable j of type S, 

and let k be a global variable of the same scalarset type. Including an assignment 
k: = j at the end of the loop body means that the final value of k will be n-1. TTds, 
distinguishes the value n-1 from the other values in the range of S, thus the range 
cannot be safely permuted. 

An example of the use of scalarsets with Muro is in the verification of the 
Needham-Shroeder public key protocol [133]. The protocol involves a set of Ini- 
tiator processes and a set of Receptor processes. Each Initiator process is identified 
by the variable Initiatorid which is used to index an array storing the state of each 
Initiator process. The Initiatorid variable is also used as an index within a for loop 

containing the rules determining the behaviour of each Initiator process. As the 
Initiator processes behave symmetrically, by declaring the Initiatorid variable with 
a scalarset type, symmetry reduction can be automatically performed. Similarly, a 
scalarset type can be used to identify symmetry between the Receptor processes. 

Scalarsets have been used to implement symmetry reduction teclu-dques for 

the SPIN model checker via the SymmSpin tool [14] (see Section 3.9.1). Unlike Muro, 

the Promela language does not include af or construct. However, af or loop which 
uses a scalarset index variable can be synthesised using the Promela. do. . od con- 
struct within an atomic block, as shown in Figure 3.2. In the figure, j is a scalarset 
variable which has range 10, A- 1} for some A>0. The loop body con- 
sists of a sequence of statements between the condition j <A and the increment 
j ++, which must satisfy Condition 5 of Definition 22. In particular, this condition 
implies that the body must not include any potentially blocking statements (e. g. 
send/receive statements). Although the assignment i=0 violates Condition 4 of 
Definition 22, since the loop is enclosed in an atomic block the value of j is not 
visible until after execution of the loop. At this point j is assigned to A, which 
SymmSpin uses as a default value for a scalarset variable within this range. Thus 

symmetry between scalarset values is not broken by the assignment j=0. 
Figure 3.3 illustrates how scalarsets can be used to specify symmetry in the 

Promela. mutual exclusion example of Figure 2.6.1 In this specification, a constant 
1. Note that in order to avoid modification of the Promela, parser, SymmSpin requires information 
about scalarsets to be supplied in a separate file 1141 (see Section 3.9.1). For simplicity and readability, 
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mtype (N, T, C) 

const A=5; 
scalar PID(A]; 

mtype st[PIDI =N 

proctype user(PID i) 
PID j=A; 
bool critical-empty false; 

do d step E3t[il-=N st[i]=T 
d7step st[il==T 

critical_empty - true; 
j=0, 

do j<A -> 
critical-eMPty = critical-eMpty && st(jll=C; 
j++ 
else -> break; 

od; 
j=A; 
if critical-eMPty -> st[i]=C 

else -> skip; 
fi, 
critical_empty = false; 

d_step st[i]==C -> st[i]=N 
od 

init ( 
PID i A; 
atomic 

i=0; 
do i<A run user(i); i++ 

else break; 
od 

Figure 3.3: Identifying symmetry in a mutual exclusion example using scalarsets. 

A is defined to represent the number of user processes in the specification, and a 

scalarset of size A named PID is introduced via the declaration scalar PID[Al. 

Since A is set to 5, the P ID type is a scalarset with range 10,1,2,3,4}. Rather than 

using the built in 
_pid 

constant, the user proctype now takes a parameter i, which 
has type PID. Tlie array st of mtype values is indexed by the PID type, indicated 

by the occurrence of PID in the declaration of st. 
It is necessary to modify the syntax of the original Promela specification 

to satisfy the conditions of Definition 22. In particular, the boolean expression 

of Figure 2.6 (with re-indexing) (st [01! =C && st [ 11 i =C && st [21 1 =C && 

st [31 1 =C && st [41 1 =C) does not obey Condition 1- literal values cannot be 

used to index an array of scalarset type. The modified specification computes the 

expression using a do. . od loop (as described above), storing the result in a boolean 

variable, critical-empty. Only if this variable holds the value trite can the pro- 

cess enter the critical state. Note that re-modelling the mutual exclusion protocol 

we have included this information in the specification. 
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this way changes the semantics of the underlying model slightly. We discuss this in 
Section 4.2. 

The use of scalarsets described above exploits component symmetry (sym- 

metry between the processes themselves). The scalarset approach can also be used 
to exploit data symmetry. A scalarset that is used to denote data symmetry is referred 
to as a data scalarset. 

Definition 23 A scalarset S is a data scalarset in a specification P if S is not used as 
an array index or for statement index. 

If a protocol uses a data scalarset, then it is said to be data independent [1831. 
In this case, symmetry reduction can be used to reduce an infinite state-space (in 

which data is unbounded) to a finite state-space (with bounded data) thus: 

Theorem7 If Pisa specification, S thename of a data scalarsetin P and P, and P2 

are specifications identical to P except that S is declared to be of size Nj in Pi and 
N2 in P2, then there exists NS >0 such that the symmetry-reduced state graphs of 
P, and P2 are isomorphic whenever Ni ý! Ns and N2 ý: Ns. 

However this application of scalarsets is seldom required as data abstrac- 
tion (see Section 2.6.3) can be used to eliminate redundant data values [30]. Data 

symmetry reduction will be discussed again in Section 3.8. 
The original scalarset approach [1031 only considered the verification of sim- 

ple safety properties of the form AG (--, error). However, scalarsets have been suc- 
cessfully used to exploit symmetry during the verification of more general LTL for- 

mulas [14]. A major drawback to scalarsets is that they only allow the specification 
of total (or full) symmetries (where all processes of a given type are interchange- 

able), so could be applied to a system of processes connected as a clique, say, but 

not, for example, as a ring or tree. An alternative data type, called circularset [101] 

and additional extensions to the scalarset data type [49] have been proposed to han- 
dle systems with ring structures and more general systems respectively. However, 
these alternatives share with the scalarset approach the problem that the user must 
identify symmetry in the model and select an appropriate data type to specify the 
presence of this symmetry. This means that symmetry reduction using scalarsets is 

not a "push button" reduction technique. 
We say that symmetries of a model are specified using scalarsets, since given a 

specification with scalarset annotations it is trivial to determine a symmetry group 
for the underlying model. 
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Program 

Module user = 5; 

st[user) = 0; 

u of user: ( 
st[u) 0 -> st[u] = 1; 
st[u] 1& ALL(v of user. - stlvl != 2) -> st[u] = 2; 
st [u] == 2 -> st Cul = 0, 

Figure 3.4: An SMC specification of mutual exclusion with five processes. 

3.3.3 Input language restriction 

The problem of detecting structural symmetry between components can be made 
trivial by restricting the input specification language in such a way that fun sym- 
metry is guaranteed between processes which have the same type. 

This is the approach to symmetry detection used by the SMC (symmetry- 
based model checker) tool [166] (see Section 3.9.1). Figure 3.4 shows the mutual 
exclusion example with five processes, expressed in the SMC language. The values 
0,1 and 2 are used to represent the local states N, T and C respectively. Note that the 
boolean expression to check that the critical section is empty is expressed succinctly 
as ALL (v of user: st Cv] != 2). This expression preserves the semantics of 
the original Promela specification. 

The model associated with an SMC specification with m module types 
and ki instantiations of module type i (1 <i< m) is guaranteed to have 
k1! x k2! X ... x k,! component symmetries. The corresponding group of symme- 
tries is the disjoint product (see Section 3.1.4) of groups Sk, (1 <i< ni), each of 
which permutes one set of module indices. The modules of SMC are essentially 
analogous to the scalarsets of Muro [166], and index variables (variables wl-dch take 
module indices as values) must satisfy similar conditions to those of Definition 22. 
Only full symmetry between components of the same type can be identified using 
the SMC language. 

We say that symmetries of a model are specified using a restricted input lan- 
guage since, by declaring multiple instances of a given module type, the user indi- 
cates the presence of symmetry and it is then trivial to determine the corresponding 
group of permutations. 

Capturing symmetry by input language restriction is crucial to the ap- 
proach of exploiting symmetry using generic representatives [45,57,58,601 (see Sec- 
tion 3.5.2). 

3.3.4 Communication structure analysis 

Let I= 11,2,. .. ' n} be a set of process identifiers, for some n>0. For simple 
concurrent specifications consisting of a finite number of isomorphic (identical up 
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to renaming) processes executing in parallel and communicating via shared vari- 
ables, a subgroup of the automorphism group of M can be determined from the 
comniunicatioit relatioii of the specification 155]. The comniunicatioti relatioit CR of the 
specification P =11iz17 pi is defined as the undirected graph CR = (1, E), where 
Iij} EE iff processes pi and pi share a variable (ij E 11). 

Theorem 8 If M is the Kripke structure associated with P=II jEj7pi where all pi 
are normal and isomorphic (see [55]) then Aut(CR) !ý Aut(M). 

The group Aut(CR) may be automatically computed since CR is typically small 
compared to M, or may simply be known in advance. 

Theorem 8 applies to systems in which all variables are shared between at 
most two processes, and all processes are of the same type. This result is gener- 
alised [27] to remove this restriction via the introduction of the coloured hypergraph 
HG(? ) of a shared variable specification P (see Section 3.1.5). The node set of the 
hypergraph HG(P) is 11 and there is a hyper edge wC 17 if the specification P has 

a variable shared by all process pi, iEw. Each node is assigned a colour, so that 
two processes pi and pj are isomorphic iff nodes i and j have the same colour in the 
coloured hypergraph. Two processes are isomorphic in this case if they are of the 
same process type, and have equivalent sets of transitions. 

Theorem 9 If M is the Kripke structure associated with a specification? = 
then Aut(HG(P)) :ý Aut(M). 

In Chapter 7 we prove a similar result for a richer specification language 
(Theorem 13) which shows that Kripke structure automorphisms can be derived 
by computing automorphisms of the static channel diagram of a specification, which 
assumes a message passing model of computation. In the context of hardware veri- 
fication, a related approach [1241 uses GAP for identifying symmetries in structural 
descriptions of digital circuits. 

3.3.5 A note on the complexity of automatic symmetry detection 

As noted at the start of Section 3.3, for symmetry reduction to be useful it must be 
possible to determine symmetries of the model M associated with a specification 
without actually constructing M. Ideally we would like an automatic symmetry 
detection technique to compute all symmetries of M by static analysis of a specifi- 
cation P without placing restrictions on the form of P. However, in order to avoid 
complexity equivalent to that of checking a safety property of the form AG p (for 
some proposition p) it is iiecessary to restrict the form of specifications, or to reject 
certain potential symmetries which cannot be efficiently checked as belonging to 
Aut(M). We illustrate why tl-ds is the case using a simple Promela example. 
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breaksym. 
if 

_pid=-l 
&& <expr> 

special =1 
else -> skip 

fi; 

Figure 3.5: Promela example to illustrate the general complexity of automatic symme- 
try detection. 

Let P be a Promela specification consisting of it instantiations of a user proc- 
type, for some ii > 1. Suppose that each user has a local variable, special, which is 

set to 0 on declaration. We use speciali to denote the local variable special of process 
i. Suppose that the body of every user process contains the conditional statement 
shown in Figure 3.5, where (expr) is an arbitrary boolean expression (which may 
refer to global variables and channels of the specification). Suppose the statement 
special =1 is the only assignment to special (after declaration), that appears 
in the definition of a user, and _pid==l 

the only guard which treats process identi- 
fiers asymmetrically. Clearly this statement cannot be executed by a user with _pid 
not equal to 1. Assume that the rest of the specification does not differentiate indi- 

vidual processes in any way. 
If it is impossible for user 1 to reach breaksym with (expr) evaluating to 

true, then clearly any permutation of process identifiers will induce an automor- 
phism on the associated model M. Otherwise, user 1 will be able to execute the 

statement special = 1, leading to a state s with s [-- (special, = 1). By the 

above discussion it is clear that, for any i>1 and any reachable state t in M, 

t ý& (speciali = 1). 'Ilierefore any process permutation a for which a(l) 34 1 can- 
not induce an automorphism on. M. If a is such a permutation then determining 

whether a induces an automorphism of M is equivalent to checking the temporal 

property AG (-, (user[1]@breaksym A (expr))). 
Thus an effective symmetry detection technique for Promela. must either re- 

strict the use of the specification language so that this asymmetric use of process 
identifiers is not allowed, or conservatively assume that certain process permu- 
tations do not induce automorphisms of M. In Chapters 7 and 8 we develop an 
efficient automatic symmetry detection technique for Promela which aims to place 
as few restrictions as possible on the form of a specification, and to detect a large 

subgroup of Aut(M) in practice. 

3.4 Exploiting Symmetry with a Simple Model of Computation 

The crux of exploiting symmetry when model checking is that during search, when 
a state t is reached, it is necessary to test whether a state u has already been reached 
such that t =-G u (i. e. t= a(u) for some et E G). This is known as the orbit problem 
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[31], and is central to all model checking methods that exploit symmetry. Tech- 

niques must be used to either solve the orbit problem efficiently, or to find some 
kind of approximate solution. 

On encountering a state t, Algorithm 1 (Section 3.2) checks whether there is 

some aEG such that it (t) E SG by checking whether repG (t) E SG, where rep is a 
function which computes a unique representative of [t) G. Since the algorithm only 
stores representative states, if some state u with u : -: G t has been encountered then 
rePG(u) E SG- Since rePG(U) = rePG(t) (which follows from [u]G = NO, the test 
rePG (t) E SG returns true, and search can backtrack. 

For simple concurrent systems it is common to reason about states us- 
ing a single integer variable for each component, representing the valuation of 
the local variables of the component [27,57,591 (we justify this formally in Sec- 

tion 9.1). Using the notation preceding Definition 1 (Section 2.2), we have a set 
V= JV1, V21 ---, Vn} of variables, where for each i the domain Di of vi is a finite set 
LCZ. A state s is then a vector in Ln. An element it E Sn acts naturally on a state 

2 S =-- (XI # X21 ... i Xn) E Ln as follows: a (s) = (Xa-I (1)i XLY-I (2), ... iXet-I(n)) . 
Let < denote the usual lexicographic ordering on vectors in L": for S, tE Ln 

where s= (Xi i x2i ---, Xn), t= (Y1, Y2, ---, Yn), S<t if s=t or there is some 
1<i<n such that xj = yj for each 1<j<i, and xi < yi. When attempting 
to exploit symmetry with this model of computation, it is convenient to use the 
lexicograpl-dcally least element in the orbit as a representative. 

Definition 24 The constructive orbit problem (COP) [27,106] Given a group G 
S,, and a state sE L", find the lexicographically least element in the orbit of s. 

In other words, the COP is the problem of computing min< [SIG- 

Theorem 10 [27,106] The COP is NP-hard. 

Despite this discouraging result, it has been shown that the COP can be 

solved efficiently for certain classes of symmetry group. Furthermore, it may be 

possible to efficiently compute an approximate solution to the COP, resulting in a 
quotient model which uses multiple representatives from each orbit. 

3.4.1 "Easy" classes of groups 

For the following classes of automorphism group G (acting on a model of a system 
of it processes), the COP can be solved in polynomial time [27,1061: 

G has order polynomial in n, for example a cyclic or dihedral group, or the 
group associated with an nxn torus 

2. This action makes sense provided the local state of a component does not include variables which 
take component identifiers as values. In Chapter 10 we consider this more complex case. 
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*G is the symmetric group S,, 

"G is a disjoint product or wreath product of groups for which the COP is 

polynomial time solvable 
"G is generated by transpositions. 

Note that, when G is the symmetric group S,,, the lexicographically least (lex4east) 

element of the orbit of a state can be obtained by sorting the state-vector. When G 
has order polynomial in it the COP can be solved by enumerating the orbit of a 
state. In the other cases, the lex-least element is found by sorting segments of the 
state-vector individually. This is discussed further in Chapter 9. 

3.4.2 Multiple representatives 

Requiring that every element of a given orbit [s] G is mapped to the same represen- 
tative of [SIG ensures that symmetry reduction is optimal in terms of space require- 
ments. However, if unique representatives cannot be efficiently computed then the 
time requirements for model checking with symmetry may be prohibitive. 

Suppose we relax the uniqueness condition so that, for an orbit [SIG, any 
state in [SIG is mapped to one of a small set of representatives: 

rePG(ISIG) = frePG(t) :tE [SIG} 9 ISIG- 

This ensures that a quotient structure includes at least one state from each orbit [SI Gý, 
and symmetry reduction is sound (i. e. Theorem 5 still holds). Provided the sets of 
representatives are sufficiently small compared to the orbits themselves, symmetry 
reduction can still be effective. 

Clearly we can no longer select the minimal element of [S] G as repG (s). How- 

ever, we can often compute representatives of individual states very efficiently by 

choosing repG(S) =f (s) where f: S --+ S is a normalisationfunction which maps all 
states to states no larger than themselves. A good normalisation function is one for 

which, for all s, f (s) is "almost" the minimum state in [SIG - Using a normalisation 
function in this way provides an approximate solution to the COP. 

Symmetry reduction options which use multiple orbit representatives are 
provided by Muro and SymmSpin, as discussed in the next section. We propose a 
general approximate solution to the COP based on local search in Chapter 9. 

3.4.3 Using orbit representatives in practice 
The scalarset method [103] assumes the existence of a canonicalisation function (in 

which states are replaced by a uttique equivalence class representative) or a nor- 
malisation function (in which a subset of states are used as multiple representative 
states). For symmetry reduction in Muro a suitable canonicalisation function [1021 

applies all permutations to a state s and returns the lexicographically smallest im- 
age. An approach using a normalisation function is also suggested, in which the 
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state-vector is split into two parts. For a given state, a permutation a is selected that 
produces the lexicographically smallest image of the first (most significant) part of 
the associated state-vector. The representative state chosen is the concatenation of 
the image of the two parts of the state vector (under a). 

The use of normalisation and canonicalisation functions with scalarsets is 
extended 1141 using heuristics to choose the order in which variables are posi- 
tioned in the state-vector. This ordering determines, for example, which variables 
are most significant and appear in the first (leftmost) part of the split state-vector. 
One approach, the sorted strategy, involves the identification of an array indexed by 
a scalarset type (the main array) and placing it in the leftmost position of the state- 
vector. In another approach, the segmented strategy, the lexicographically smallest 
image of the second part of the state-vector, with respect to all of the permutations 
that canonicalise the first part, is used in the representative state. There is trade off 
between reduction in memory requirements and faster verification for the sorted 
and segmented strategies. The segmented strategy yields canonical representatives, 
but is more computationally expensive than the sorted strategy. On the other hand, 

use of the sorted strategy may result in several states from the same equivalence 
class being explored. In Chapter 9 we generalise the segmented strategy to apply to 
arbitrary symmetry groups. 

Two other approaches, pc-sorted and pc-segmented, are suggested for sys- 
tems in which no suitable main array exists but the process identities are of type 
scalarset. In this case a main array is constructed, containing the program counters. 
A prototype implementation of this approach is implemented in the SymmSpin 

package [14], which we discuss in Section 3.9.1. 
A canonicalisation function is suggested, again within the context Of SPIN 

[135], for systems with any (user-specified) symmetry. Though less restrictive than 
the scalar-set approach (full symmetry is not required and more general operations 
on permutable variables are permitted), a canonicalisation function must be con- 
structed manually by the modeller for every individual model, thereby limiting 
the applicability of the method. 

3.5 Combining Symmetry Reduction with Symbolic Representation 

If BDI)s are used to represent the state-space of a model then exploiting symmetry 
using the approach described in Section 3.2 becomes more complex, as the orbit re- 
lation of a symmetry group must be represented as a BDD. The orbit relation of a 
group G is the set of pairs I (s, t) : S, tES, S =- G t} - It can be shown that the min- 
imum size of a BDD representing the orbit relation induced by a transitive group 
(see Definition 10, Section 3.1.2) is exponential in the minimum of the number of 
components in a system and the number of states in one component [31]. The result 
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is extended to the class of separable groups, which subsumes the class of transitive 
groups [106]. Since transitive groups occur commonly in models of concurrent sys- 
tems, the combination of standard symmetry reduction techniques with symbolic 
model checking is limited. We now discuss some methods which avoid the con- 
struction of the orbit relation for symbolic model checking. 

3.5.1 Multiple representatives and symbolic model checking 
By using multiple representatives from each orbit, the problem of computing the 
orbit relation can be avoided to some extent [27,311. The idea is similar to the idea 
of using multiple representatives discussed in Section 3.4.2, but depends on a spe- 
cific subset of automorphisms. If G is a set of Kripke structure automorphisms, a 
subset C of G is chosen which is closed under inverses and contains the identity 

element. The set of representatives Rep is selected so that each orbit has at least one 
element in Rep and, for every SES, there is some aEC such that a (s) E Rep. The 

size of Rep (and consequently the size of the resulting quotient model) depends crit- 
ically on the choice of C, which must be chosen carefully according to the structure 
of the system being verified [27]. The state-space of the quotient model is not re- 
duced (with respect to the original model) as much as with unique representatives. 
However, the use of multiple representatives reduces the size of the BDDs required 
to store the state-space, and thus are more effective when symbolic representation 
of states is used. 

In practice, BDDs reduced through multiple representatives may still be in- 
tractably large. Approaches using generic representatives or computing represen- 
tatives dynamically, which we discuss in Sections 3.5.2 and 3.5.3 respectively, have 
been shown to outperform the multiple representatives approach [58,59]. 

3.5.2 Generic representatives 

For symbolic model checking of fully symmetric systems using BDDs, a method 
which uses generic representatives avoids both the orbit problem and construction 
of the orbit relation [57]. This method involves translating the specification for a 
model into a reduced specification, which can be explored using standard symbolic 
model checking algorithms. The idea of generic representatives is best explained 
using an example. For a basic model of mutual exclusion with three processes, the 
states (N, N, T), (T, N, N) and (N, T, N) are all equivalent. This is because there are 
two processes in the neutral local state and one in the trying local state in each of the 
three global states. The generic representative of these states is (2N 1T). A generic 
representative indicates how many processes are in each local state, but does not re- 
fer to individual processes. Thus the reduced specification abstracts from processes 
to counters, with one counter for each local state indicating the number of processes 
currently in that state. 
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Figure 3.6: Symmetry-reduced model for two-process mutual exclusion using generic 
representatives. 

byte no 
- 

N. 5; 
byte no 

- 
T=O; 

byte no7 C=O, 

init 
do 

:: d step I no 
- 
N>O -> no N--; no 

- 
T++ 

:: d7step f no T>O && n: ==O -> noý 0ý-c 
_T--; 

noý_C++ 
d7step ( no7C>O -> no-C--; noý_N++ 

od 

Figure 3.7: Generic form of five-process mutual exclusion. 

The translation rules defined for fully symmetric specifications (where sym- 
metry is guaranteed by input language restriction) ensure that the state-space of the 
translated specification is isomorphic to the quotient structure associated with the 
original specification. Figure 3.6 shows the Kripke structure for two-process mu- 
tual exclusion using generic representatives. Notice that the structure is identical to 
the quotient structure of Figure 3.1, except for the change of variables. 

Figure 3.7 shows the translated version of the five-process mutual exclusion 
specification of Figure 2.6. The associated Kripke structure, shown in Figure 3.8, 
has 11 states, whereas the original specification has a state-space of size 112. 

TI-te generic representatives approach is extended [581 to include systems 
with global shared variables. The translation of a specification into reduced form 
is polynomial in the length of the specification and the approach compares well 
to those using unique or multiple representatives. However, benefits of this ap- 
proach can be negated due to the local state explosio? z problem, where the number 
of potential local states of a process is exponential in the number of local variables. 
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5N 4N IT 3N 2T 2N 3T IN 4T )-ý 5T 

4NlC )--o. (3NITlC)---m. (2N2TlC)---P. (IN3TlC)-ý 4NIC 

Figure 3.8: Kripke structure associated with the specification of Figure 3.7. 

Since the reduced specification requires one counter per local state, BDD repre- 
sentations which require bits to be reserved for each counter become infeasible. 
Techniques have been proposed to limit local state explosion based on live vari- 
able analysis (similar to the data flow optimisations provided by SPIN [92]) and local 

reacliability analysis [601. The generic representatives approach is also limited as it 

only applies to fully symmetric systems which are simple enough to be amenable 
to counter abstraction [591. 

The generic representatives approach has been applied to provide symmetry 
reduction for probabilistic symbolic model checking [45] (see Section 3.9.3). 

3.5.3 Dynamic computation of representatives 
Another approach to combining symmetry reduction techniques with symbolic 
representation (for CTL model checking) involves determining orbit representa- 
tives dynamically during fixpoint iterations [59]. Instead of building the orbit re- 
lation for a model, this approach works by computing transition images with re- 
spect to the unreduced structure, then mapping the new states to their respective 
representatives. This approach is not restricted to fully symmetric systems, and can 
handle data symmetry (see Section 3.8) as well as process symmetry. A potential 
bottleneck here is the operation of swapping bits in the BDD representation of the 
model, which must be performed repeatedly during representative computation. 
The complexity of such swaps depends exponentially on the distance, in the BDD 

variable ordering, between the variables to be swapped. To avoid this problem, 
permutations are expressed as a product of transpositions of adjacent elements. Ex- 

perimental results show that this approach outperforms the use of multiple and 
generic representatives (see Sections 3.5.1 and 3.5.2 respectively) when applied to a 
queueing lock algorithm and a buggy version of a cache coherence protocol. 

3.5.4 Under-approximation 

Model checking algorithms that use depth-first search (DFS) can be adapted so 
that the first element of an orbit encountered during the search is chosen as the or- 
bit representative [166]. However, this approach is not suitable for symbolic model 
checking techniques as DFS is very inefficient in the context of BDD state represen- 
tation. 
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On-the-fly orbit representative selection is possible during symbolic reacha- 
bility analysis by combining symmetry reduction with a technique known as under- 
approxiniation [7], where only a subset of reachable states is considered at each step 
of symbolic verification. This approach to symmetry reduction can be used forfal- 
sificatioti of temporal properties, but cannot generally provide verification. 

3.6 Combining Symmetry Reduction with Other Techniques 

Basic symmetry reduction does not take into account the more sophisticated tech- 
niques associated with model checking. In this section we discuss the combination 
of symmetry and partial-order reduction, and the modification of symmetry reduc- 
tion techniques to successfully handle fairness. 

3.6.1 Symmetry and partial-order reduction 
Partial order reduction (see Section 2.6.3) and symmetry reduction are orthogonal 
reduction techniques. They can therefore be successfully used in conjunction, re- 
sulting in larger savings in memory and verification time. 

The combination of the two techniques was first suggested in the context of 
Petri nets [1751. This approach applies to the stubborn sets method of partial-order 
reduction and is restricted to deadlock detection. 

The idea of combining two reductions simultaneously is extended to veri- 
fication of next-time free LTL properties by model checking [53]. Indeed, an algo- 
rithm is given for combining partial-order reduction and any bisimulation preserv- 
ing equivalence. When the equivalence is the orbit relation the algorithm proceeds 
as follows: from any state s an ample set of transitions is calculated. The orbit repre- 
sentatives of any states reachable via these transitions are then explored. A similar 
algorithm, combining the persistent sets method of partial-order reduction with 
symmetry reduction is used within the stateless search technique implemented in 
VeriSoft [69] (see Section 3.9.4). 

3.6.2 Exploiting symmetry under fairness assumptions 

Fairness is vital for proving liveness, properties, as it reflects the basic requirement 
that processes are executing at an indefinite but positive speed [56]. Two important 
kinds of fairness are weak fairness and strong fairness. Given a Kripke structure M, 

an infinite path 7r of M is stronglyfair if each process that is enabled infinitely often 
executes infinitely often. A path 7r is weaklyfair if any process that is continuously 
enabled executes infinitely often. 

Fairness is generally incompatible with basic symmetry reduction meth- 
ods because the progress of an individual process along a path of the quotient 
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structure cannot be tracked in the usual way. For example, consider the transi- 
tion (C, T) --+ (N, T) in the two-process mutual exclusion Kripke structure (Fig- 

ure 2.3) which results from process 1 leaving the critical section. The transition is 
represented in the quotient Kripke structure (Figure 3.1) by (C, T) --+ (T, N). The 

quotient transition indicates that one of the processes leaves the critical section, but 
there is no information as to which process this is. 

This fundamental problem is overcome when the automata theoretic ap- 
proach using annotated quotient structures is used, in the context of fair indexed 
CTL* properties [56,164]. An annotated quotient structure MG is used together 
with an automaton A which accepts only fair computations. An efficient algorithm, 
based on finding maximal strongly connected components (MSCCs) [172] (see Sec- 
tion 2.3.2) is presented for model-checking fair indexed CTL* formulas under the 
assumption of strong and (by implication) weak fairness. Correctness results (in- 

cluding liveness properties) are verified for a resource controller example using a 
prototype (fair) model checker. Comparison with an unreduced model indicates an 
exponential reduction in the number of stored states. 

This approach to symmetry reduced model checking has been extended to 
the on-the-fly case [74] in which MG xA is checked during construction. The ap- 
proach also exploits state symmetries [55]. A state symmetry of a state s is a permuta- 
tion aE Aut(M) on process indices such that a (s) = s. If processes i and j have the 
same local state in global state s, and if a (i) = j, then only the transitions made from 

state s by process i need to be considered, saving space and computation time. The 

resulting algorithm is exploited in SMC [166], which we discuss in Section 3.9.1. 
A parallel approach to model checking with symmetry reduction and weak 

fairness [131 combines the weak fairness algorithm implemented in SPIN [921 (based 

on the Choeka flag algorithm [24]) with a symmetry reduction algorithm [12] based 

on the nested depth first search (NDFS) approach to model checking [931. As well 
as exploiting the usual advantages over the MSCC algorithms, the NDFS approach 
is compatible with approximate verification techniques, such as the hash-compact 

method and supertrace verification (see section 2.6.2). 

3.7 Exploiting Symmetry in Less Symmetric Systems 

Many systems which occur commonly in practice are comprised of several simi- 
lar, but not all identical processes. An example is the readers-writers problem [571, 

where m reader processes and n writer processes access a shared resource, for some 
m'? z > 0. 

A writer always has priority over a reader when both are trying to access 
the shared resource. If M is a model of this system, then M is not fully symmet- 
ric. In fact Aut(M) is SJU.., m) * S{nt+1, m+2_, m+nj (see Definition 15, Section 3.1.4) 
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- readers can be permuted, writers can be permuted, but readers cannot be inter- 
changed with writerS. 3 However, the state graph is symmetric in every sense except 
for transitions from a state where two processes are attempting to access the shared 
resource. 

It is possible to exploit tl-ds kind of almost symmetry during model checking. 
Indeed, by defining different classes of symmetry, such as near or rougli symmetry 
[57], or virtual symmetry [52], it is still possible to infer temporal logic properties 
of the system by model checking a suitable quotient graph using the entire group 
S,, +n as the automorphism group. 

3.7.1 Near and rough symmetry 
Suppose M is a model of a system, and I the set of process identifiers associated 
with M. Then a permutation Ci E Sym(T) is said to be a near automorphism of M 
if, for every transition s --+ t of M, either a (s) --+ a (t) is a transition of A4 or s is 
totally symmetric with respect to Aut(M). (That is, s is invariant under Aut(M). ) 
The model M is said to be nearly synimetric if it has a suitable group of near auto- 
morphisms G,,. 

If, on the other hand, Gr is a subgroup of Sym(T), then. A4 is roughly sym- 
metric with respect to Gr if for every pair of states s and s' where s =-G, s', any 
transition from s is matched by a transition from s' provided the associated local 
transition (from s') would involve a process with the highest priority. If A4 is a 
nearly (roughly) symmetric model with respect to group Gn (Gr) then, despite the 
lack of complete symmetry, it can be shown that symmetry reduction with respect 
to Gn (G, ) preserves all symmetric CTL* properties [571. 

3.7.2 Virtual symmetry 

Both near and rough symmetry are subsumed by the notions of virtual and stroiig 
virtual symmetry [52]. As well as systems with static priorities (which can already 
be described via rough symmetry) virtual symmetry applies to systems where re- 
sources are asymmetrically shared according to dynamic priorities. 

The symmetrisation RG of a transition relation R by a group G is defined by: 

RG = ja(s) --+ cz(t) : tt EG and s --+ tE R}. 

Intuitively, symmetrising a transition relation can be thought of as the process of 
adding transitions wl-dch are missing due to asymmetry in the system. 

A structure M is said to be virtually symmetric with respect to a group G, 

acting on S if for any s --+ tE RG., there exists Ci E G, such that s -+ LY(t) E R. In 

addition, if for any s --+ t (=- RG,,, there exists a in Fix(s, G, ) (the largest subgroup 

3. Assuming there are no symmetries other than those which permute process ids. 
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of G, which fixes s) such that s- a(t) E R, then M is said to be strongly virtually 
symnietric with respect to G,. If a Kripke structure M is (strongly) virtually sym- 
metric with respect to a group G,, model checking of symmetric properties can be 
performed over MQ, 152]. A procedure is given to identify the case where a Kripke 
structure is strongly virtually symmetric with respect to a group G,. This procedure 
involves local counting of transitions which are present in RG,, but absent in R. Vir- 
tual symmetry has been successfully combined with the generic representatives 
approach (see Section 3.5-2) for the case where processes are fully interchangeable 
with respect to virtual symmetry [182]. This allows symmetry-reduced symbolic 
model checking of partially symmetric systems, using the NuSMV model checker 
[25] (see Section 2.5). 

3.7.3 Automata theoretic approaches 

A method involving the symmetry reduction of models with little or no symmetry 
uses guarded annotated quotient structures (GQSs) [164,165]. These structures ex- 
tend the annotated quotient structures [55,56,74] discussed in Section 3.2. Suppose 
M is the Kripke structure of a system, and M' DM is obtained from M by adding 
transitions (in a similar manner to the process of symmetrisation described above), 
so that M' has more symmetry than M. A guarded annotated quotient structure 
for M can be viewed as an annotated quotient structure for M', with edges la- 
belled to indicate wl-dch processes can make the transition (in M). Thus the original 
edges of M can be recovered from the representation of M'. A temporal property 
0 can be checked over the guarded annotated quotient structure by unwinding 
the structure, even if 0 is not symmetric with respect to the automorphisms used 
for reduction. This approach potentially allows large factors of reduction to be ob- 
tained since a larger group of automorphisms is used than would be possible using 
standard quotient structure reduction. Indeed, experimental results, using the SMC 
model checker 11661, show how the GQS method is applied effectively to a system 
of prioritised processes. 

A recent extension to the GQS approach [1671 involves (symmetry reduced) 
model checking of exte? ided CTL (CCTL) properties (which involve an additional 
construct, COUNT, for specifying the number of components in a given state). TI-ds 
extended logic is more expressive than indexed CTL (see Section 3.2). 

Properties are again not restricted to being fully symmetric in an alternative 
automata theoretic approach [21, but must be partially symmetric. For example, con- 
sider the following property: "if some process is waiting for a resource then it will 
get it, provided none of the processes with higher identity will require the resource 
in the future". To check the satisfaction of a formula 0 for a model M, with set of 
states S, a set of equivalence relations are first computed between states of B, the 
Bdchi automaton representing 0. If G is a symmetry group of M, one equivalence 
relation is defined for every element of G. Two states bl, b2 EB are equivalent with 
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respect to aEG if and only if the predecessors and successors of b, are mapped 
to the predecessors of b2 and the successors Of b2 respectively (and vice versa). The 

quotient graph is then constructed by applying the equivalence relations to the 
pairs of states (s, b) ESxB. The approach is extended [75] to partially symmetric 
models by representing the model itself as the synchronised product of a symmet- 
ric model and an asymmetric Bilchi automaton. The method is illustrated using 
well-formed Petri nets. 

3.8 Exploiting Data Symmetry 

Most of the symmetry reduction methods described in this paper relate to struc- 
tural symmetry. However, as discussed in Section 3.3, another form of symmetry, 
namely data symmetry, can be exploited to increase the effectiveness of model 
checking. In Section 3.3 we discussed the application of scalarsets to exploit data 

symmetries. 
As software specifications often involve large data structures with vast num- 

bers of potential values, it may be impossible to check that properties hold for every 
feasible assignment of values to the data set. That is, it may not be possible to check 
the properties for every interpretation of the model. It is therefore desirable to only 
check representative models for each equivalence class of interpretations. This use 
of data equivalence is exploited for software analysis using the Nitpick specifica- 
tion tool [1041. 

3.9 Implementations of Symmetry Reduction 

In this section we list the major tools for which symmetry reduction has been im- 

plemented. This is not intended as an exhaustive exposition, but as a selective il- 
lustration. 

3.9.1 Explicit state methods 

Muro 

TI-ic Muro specification language is the first language to have been augmented with 
the scalarset data type (see Section 3.3). As a result, the Muro verification system 
[40] is the first to implement symmetry reduction using scalarsets [1031 and has 
inspired many of the other implementations discussed in this section. 

An automorphism group for the state-space is determined statically from 
the Muro specification and consists of all permutations of scalarset values. The 
lexicographically smallest member of each orbit is used as the orbit representative 
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and a suitable canonicalisation function (see Section 3.4.3) is used to map every 
state to its orbit representative. 

Murp has been used to verify a number of highly symmetric algorithms, 
for example PetersoWs n-process mutual exclusion algorithm [140] (see Section 4.3) 
and a lock implementation for the Stanford DASH multiprocessor [1171. 

A prototype extension of Muro includes two alternative classes of algorithm 
for representative computation [107]. The first class of algorithms transforms each 
state encountered during search to a characteristic graph, and derives a canonical 
state representative from the canonical form of this graph. The nauty graph isomor- 
phism tool [125] is used to perform canonicalisation operations. The other class of 
algorithms uses ordered partitions on states, and during canonicalisation considers 
only permutations which are compatible with the partitioning of a given state. This 

approach mimics the partitioning approach commonly usedby graph isomorphism 
algorithms [1251. 

smc 

The Symmetry based Model Checker (SMC) [164,166] is an explicit state model 
checker which has been specifically designed for the verification of highly symmet- 
ric systems. Exploiting both process symmetry and state symmetry, in addition to 
proving safety properties, SMC is the only model checker that can be used to effec- 
tively verify liveness properties under both strong and weak fairness assumptions. 
Symmetry is detected via input language restriction (see Section 3.3.3). Variables in 
the simple SMC language are either global variables accessed identically by pro- 
cesses of the same type, or arrays indexed by process identifiers (index variables) 
and manipulated via universal or existential quantification (see the ALL statement 
of Figure 3.4). 

Model checking is performed using a technique [74] involving annotated 
quotient structures (AQSs) (see Sections 3.2 and 3.6.2). The AQS can be constructed 
either in advance or on-the-fly. For on-the-fly construction, it is also possible to store 
the edges of the AQS during construction. If the edges are not stored considerable 
space savings can be made. However, verification time is increased dramatically. 

The AQS is constructed incrementally, and the first state of an orbit encoun- 
tered during search is used as the representative for that orbit. State symmetries of 
a state s are detected by partitioning the processes within each module type into 
equivalence classes. A leader process is chosen from each equivalence class, and 
only transitions from s made by one of the leader processes are explored. 

Reached states are stored in a hash table, and a hashing function is used 
which always hashes equivalent states to the same location, and desirably hashes in- 
equivalent states to different locations. For a state s, the hashing function returns 
Checksum(s) mod b, where b is the hash-table size. The checksurn for a state is com- 
puted from the values of variables in that state. Each time a state is to be stored 
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at a position in the hash-table, a check is made to see if the state is equivalent to 
any other state in that position in the table. Two states with differing checksums 
cannot be equivalent, so SMC performs the pre-test of comparing checksums be- 
fore checking the equivalence of two states. In many cases this quickly shows the 
inequivalence of states. 

To check whether two states with equal checksums are equivalent, a poly- 
nomial time bounded, randomised algorithm is used which runs in quadratic time. 
This algorithm sometimes falsely reports that two equivalent states are not equiva- 
lent, which may result in the construction of a larger-than-optimal AQS (but is not 
unsafe - see Section 3.4.2). 

SMC has been used to check the correctness of the link layer part of the IEEE 

standard 1394 Firezvire protocol [971, and also a resource controller example. The 

resource controller example shows that exploiting state symmetry can speed up 
verification considerably when the number of processes is high. Recent extensions 
of SMC [165,167] enable partially symmetric systems with priorities to be verified 
over a GQS, and properties to be expressed in CCTL (see Section 3.7.3). 

SymmSpin 

Symmetric SPIN (SymmSpin) [14] is a symmetry reduction package for the SPIN 

model checker [921. To allow process symmetry of a system to be specified, the 
scalarset data type [1031 is used. As noted in Section 3.3.2, to avoid modifying 
the Promela parser, rather than directly extending the Promela language with the 
scalarset data type, all of the symmetry information is provided (by the user) in a 
separate file. This is referred to as the system description file, and identifies which 
variables have scalarset type. 

SymmSpin uses a script [84] to modify the verifier generated by SPIN for a 
given specification (see Section 2.4.2), adding symmetry reduction via a represen- 
tative function which, for a given state, computes an orbit representative for the 
state. For a given orbit the representative is the least element with respect to a 
specified canonicalisation function or one of the minimal elements computed via 
a normalisation function (see Section 3.4.3). During search SymmSpin stores the 
original states on the stack and representative states on the heap (see Section 2.3.2). 
This means that counter-example traces generated by SymmSpin correspond to 
real counter-example traces through the model, rather than the representatives of a 
counter-example trace. 

Experiments using SymmSpin show that for certain models the factor of re- 
duction gained is close to the theoretical limit [14]. These experiments also show 
that the combination of symmetry and partial-order reduction can be effective. A 
prototype extension of SymmSpin for symmetry reduced model checking under 
weak fairness [13] has also been developed, as discussed in Section 3.6.2. 

In Chapter 11 we present a symmetry reduction package which follows the 
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SymmSpin approach of adding symmetry reduction algorithms to the verifier gen- 
erated by SPIN. 

Other SPIN-based implementations 

An extension to SPIN is proposed [391 to allow symmetry reduction of models of 
systems of replicated processes. The specification language Promela is augmented 
with two additional keywords, ref and public which identify reference variables and 
local variables with public scope respectively. These variables may hold the ad- 
dresses of other processes for communication purposes or represent process ids. 
Orbit representatives are computed by a process called pseudo sorting in which the 
parts of the state-vector corresponding to the individual processes are sorted lexi- 

cographically. As the original state-vector ordering depends on the order in which 
variables are declared, the efficiency of the sorting algorithm depends on the initial 
declaration ordering. 

3.9.2 Symbolic methods 

SMV 

As a symbolic model checker, SMV [128] does not lend itself to symmetry reduction 
of the state-space. This is because the symbolic representation of the orbit relation 
as a BDD is prohibitively large (see Section 3.4). However, symmetry reduction on 
the cases associated with a property to be proved for a system is achieved via the use 
of scalarsets [127]. In order to exploit abstraction techniques available with SMV, a 
method called temporal case splitting is used to break a given property down into 

a parameterised set of assertions. This addresses state explosion, but may result 
in an unwanted side-effect, namely case explosion. Declaring variables as scalarsets 
enables SMV to sort the assertions into equivalence classes. Specifically, if we have 
two assertions 01 and ý2 where 02 is obtained from 01 by some permutation of 
scalarset values, then 01 holds if and only if 02 holds. Thus for a given param- 
eterised set of assertions, it is only necessary to check a representative subset of 
assertions. This representative subset is chosen in such a way that every assertion 
in the original parameterised set can be mapped to a representative assertion via 
permutation of scalarset values. 

symm 

One purpose-built symbolic model checker that exploits symmetry reduction meth- 
ods for the verification of CTL specifications is Symm [27]. Symm uses a simple input 
language based on a shared variable model of computation and allows the user to 
give symmetries of the system to be verified. 

To avoid computing the orbit relation, symmetry reduction is implemented 
using the multiple orbit represeWatives approach (see Section 3.5.1). Symm has been 
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used to verify the IEEE Futurebus arbiter protocol 1961 which controls a number 
of prioritised components competing for a resource. Each individual process is de- 

scribed via a module. Modules with the same priority can be permuted. 

Other symbolic implementations 

The RuleBase model checker [8] has been experimentally extended with symme- 
try reduction techniques for under-approxiniation 171 (see Section 3.5.4). Generators 
for a symmetry group of the verified system are supplied by the user. The gener- 
ators which are genuine symmetries of the system, and under which the checked 
property is invariant, are retained by the model checker for exploitation during 

search. Experimental results show that RuleBase performs significantly better for 
the checking of liveness properties when symmetry reduction is applied. However, 

no improvement in performance has been shown for safety properties. 
An experimental model checking system, UTOOL [60], has been developed 

for the investigation of techniques to combine symmetry reduction with symbolic 
representation. This toot uses the input language of Muro and performs symbolic 
verification, exploiting symmetry wherever possible. UTOOL avoids constructing 
the orbit relation through the use of generic representatives, or through dynamic 

representative computation (see Sections 3.5.2 and 3.5.3 respectively). Though less 

efficient, for the purposes of comparison UTOOL also implements symmetry re- 
duction using pre-computed multiple representatives (see Section 3.5.1). 

3.9.3 Real-time and probabilistic methods 
UPPAAL 

The real time model checking tool UPPAAL has been extended to exploit symmetry 
[78], using scalarsets [103]. As the main purpose Of UPPAAL is to perform reachabil- 
ity analysis, symmetry reduction using scalarsets is an obvious choice: the original 
scalarset theory was developed in the context of reachability analysis rather than 
the checking of temporal logic properties. However, the soundness of symmetry re- 
duction does not follow directly, since the UPPAAL language is very different from 
that of Muro. Hence soundness is proved separately for UrrAAL. 

The implementation of symmetry reduction in UPPAAL involves the devel- 

opment of an efficient algorithm for the computation of a canonical representative 
for a state. This is particularly challenging since UPPAAL represents sets of clock 
valuations symbolically using a difference bounded matrix (DBM). 

The scalarsets for a given model define a set of state swaps for the model. 
Each state swap is an automorphism of the model, and the set of all state swaps 
can be used to compute a canonical state representative. In order to simplify the 
computation of representatives, two assumptions are made. The first is that an ar- 
ray indexed by scalarsets does not contain elements of scalarset type. The second 
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is that a timed automaton in a UPPAAL model may only reset its clock to the value 
zero. TI-ds assumption ensures that individual clocks can always be ordered using 
the order in which they were reset; this is called the diagonal property and leads to a 
total ordering on states. Note that the diagonal property is important as, for a given 
total ordering, minimisation using state swaps of a general DBM is at least as hard 

as testing isomorphism for strongly regular graphs [78]. A state is minimised using 
the state swaps defined by scalarsets in the model, together with this total ordering. 
This minimised state is a canonical representative for the original state. 

Experimental results for Fischer's mutual exclusion protocol show that ex- 
ponential savings can be gained by exploiting symmetry. Further experiments for 

an audio/video protocol and for a distributed agreement algorithm are also en- 
couraging. Since symmetry reduction in UPPAAL makes use of scalarsets, only total 
symmetries can be exploited. 

RED 

Another (symbolic) real time model checker to support symmetry reduction is RED 
[181]. The symmetry reduction algorithm uses relations between pointers to define 

an ordering among processes. This ordering is then used to compute a represen- 
tative by sorting the associated orbits. Every permutation is constructed via suc- 
cessive composition of transpositions. This can lead to an over approximation of 
the reachable state-space (the "anomaly of image false reachability"). For this rea- 
son using RED with symmetry reduction is only useful for checking that a state is 

not reachable. The performance of RED (with symmetry reduction) is compared to 
that of Muro [40] (with symmetry reduction) and SMC [166] for three benchmark 

systems [1811. Since it manages to successfully combine symbolic techniques with 
symmetry reduction, as the number of processes increases, RED dramatically out- 
performs the other model checkers. 

PRISM 

As with standard symbolic model checking, a symmetry reduction technique for 

probabilistic symbolic model checking must avoid construction of the orbit re- 
lation (see Section 35). PRIsm-symm, a prototype extension to the PRISM model 
checker, uses an approach based on dynamic representative computation [591 (see 
Section 3.5.3) to build symmetry-reduced probabilistic models [115]. This approach 
requires initial construction of the unreduced model as a multi-terminal BDD 
(MTBDD) which is then reduced using an algorithm based on bubble sort. 

Although this approach cannot handle models with intractably large MTBDD 
representations, it is useful in the case where it is possible to build but not verify 
properties of an unreduced model. This situation occurs due to the additional space 
overhead associated with probabilistic verification algorithms over standard model 
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checking algorithms. Experimental results for four case studies [115 ] show that this 

symmetry reduction technique can speed up model checking and facilitate verifi- 
cation of larger systems. Surprisingly, in certain cases the MTBDD for the quotient 
model is larger than the MTBDD for the unreduced model, due to loss of regularity 
as a result of permuting rows of the probabilistic transition matrix. 

An alternative approach to exploiting symmetry in probabilistic model 
checking uses generic representatives (see Section 3.5.2) [451. A fully symmetric 
PRISM specification is automatically translated into generic form using the GRIP 
(generic representatives in PRISM) tool. The resulting specification can then be di- 

rectly checked using PRISM. This method avoids constructing an MTBDD for the 

original model, so can be applied to larger examples than the techniques of [1151. 

3.9.4 Direct model checking 
dSPIN 

An on-the-fly state-space exploration algorithm exploiting both process and heap 

object symmetry in Java programs has been implemented in the dSPIN model 
checking tool [99]. For dynamic systems modelled using dSPIN, the number of state 
components may grow along an execution path. Therefore, rather than applying 
symmetry reduction with respect to a fixed permutation group, a family of groups 
is considered. A suitable group is selected at each execution step. Orbit representa- 
tives are calculated using a similar set of heuristics to those used by SymmSpin. 

Bogor 

A symmetry reduction technique has been developed for the Bogor model check- 
ing framework [148], which is used to model check Java programs. The symmetry 
reduction methods used in Bogor [1491 are based on those implemented in dSPIN, 
but use more efficient heuristics [1001 for state-vector sorting. 

States contain both thread and heap information and these different parts of 
the state (the thread and the heap state) are sorted separately. Threads are sorted by 

comparing associated program counters which does not always produce a unique 
ordering, but heap states can be sorted in a canonical way. For every heap state s, 
there is an associated set of memory locations, 11,, 12,,,. .. ' 1,,,, say It is possible to 

sort the indices of the memory locations (for a given s) by ordering the traces asso- 
ciated with each pair (s, 1j,, ), 1 :5i<r. The trace for pair (s, 1j,, ) is the smallest of 
all of the incoming chains (pairs of thread identifiers and variable sequences) which 
can themselves be ordered in a natural way. The sorting of the location indices pro- 
duces a strictly ordered list of integers. If G is a symmetry group acting on the heap 

elements, then the ordered list associated with state s is identical to the correspond- 
ing list for any s' in the same orbit of G as s. Thus the index sorting function is a 
canonicalisation function (see Section 3.4.3). 



3.9: IMPLEMENTATIONS OF SYMMETRY REDUCTION 83 

VeiiSoft 

The VeriSoft model checker [681 verifies C code directly via a stateless search. As 
such, the symmetry reduction methods implemented in VeriSoft [691 rely on equiv- 
alences between sequences of transitiotis rather than between states. 

In order for equivalent transitions to be identified, labels are added to tran- 
sitions, so the model is a labelled transition system. Two transitions are equivalent 
with respect to a given symmetry group G if their respective labels are equivalent 
with respect to G. This concept can be easily extended to sequences of transitions. 
Symmetry reduction is used to prune transitions on-the-fly. If, for some state s and 
aEG, transitions a and a (a) are enabled at s and a fixes s, then only one of a or 
a (a) need be explored. This is similar to the notion of state symmetry described in 
Section 3.6.2. Given that s is not stored explicitly, it is not straightforward to check 
that a fixes s. However, assuming that a fixes the initial state so, if w is the sequence 
of transitions leading from so to s, then it can be shown that a (s) =s if and only if w 
and a (w) are equivalent with respect to a partial-ordering of transitions. Thus, by 

combining symmetry reduction with partial order reduction techniques (see Sec- 
tion 2.6.3) the problem of checking that a (s) =s is overcome. 

Other direct model checking implementations 

A limited form of symmetry reduction is applied [118] within the second gener- 
ation Java PathFinder tool UPF2) [179] (see Section 2.5) which model checks Java 
bytecode directly. Like dSPIN, JPF2 is capable of handling dynamic structures (al- 
though, unlike dSPIN, data is not allocated dynamically). States are composed of a 
static area, a dynamic area and a thread area, each of which is represented as an 
array. Two states are considered to be equivalent if a permutation applied to the 
static and dynamic area arrays of the first state gives the corresponding arrays of 
the second. A canonicalisation function is used which imposes a simple ordering 
(calculated during model checking) on the static and dynamic areas of the states. 

Summary 

Symmetry reduction techniques involve avoiding the exploration of areas of the 
state-space which are symmetrically equivalent to those already visited. We have 

given an overview of symmetry reduction techniques for model checking and how 
they relate to other reduction approaches. We have also surveyed implementations 

of these techniques, both for existing model checkers (e. g. SPIN and Muro) and 
purpose-built checkers (e. g. SMQ. This survey identifies three clear areas for re- 
search, which we address in the remainder of the thesis. 

The identification of symmetries involves finding symmetries of a model 
without building the model explicitly. Detection of full symmetry between iden- 
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tical components can be achieved by annotating a specification with the scalarset 
data type, or by appropriately restricting the input language. On the other hand, 

with a shared variable model of computation, component symmetries may be de- 

rived via analysis of the communication structure of a high level specification. In 
Chapters 7 and 8 we develop fully automatic techniques for the detection of ar- 
bitrary component symmetries under a message passing model of computation, 
based on communication structure analysis. 

The crux of exploiting symmetry in explicit state model checking is the (con- 

structive) orbit problem: it must be solved efficiently, or a good approximate so- 
lution must be available. In Chapters 9- 11 we present exact and approximate 
strategies for solving the COP for an arbitrary group of component symmetries. 



Chapter 4 

Analysing Symmetry in Simple Concurrent Systems 

In this chapter we introduce a software tool, SPIN-to-GRAPE, which we have de- 

veloped to allow comprehensive analysis of small state-spaces using the computa- 
tional graph theoretic package GRAPE (see Section 3.1.6). We apply SPIN-to-GRAPE to 
five example specifications, in each case highlighting the disadvantages of specify- 
ing symmetry using scalarsets (with SymmSpin) or via input language restriction 
(with the SMC language). For the first three examples we emphasise the manual 

effort which may be required at the specification level to specify symmetry. The 

subsequent examples exhibit fairly complex symmetry groups which are beyond 

the scope of these techniques. We also use the examples to illustrate the change in 

symmetry resulting from modifications to the specifications. 
These examples motivate the development of autoniatic symmetry detection 

techniques in Chapters 7 and 8, which can handle arbitrary types of structural sym- 
metry and do not require annotation at the specification level by the user. 

4.1 SPIN-to-GRAPE 

The SPIN-to-GRAPE tool uses SPIN to construct the state-space associated with a 
Promela specification and produces a directed graph representation which can be 

input to the graph theoretic package GRAPE. GRAPE can then be used to compute 
the automorphism. group of the state-space. We briefly describe the algorithm used 
by SPIN-to-GRAPE. 

Among the options which SPIN provides for running verifications on Promela 

specifications is the verbose compile-time directive. TI-ds option writes every step of 
a verification run to standard output. Running a verification to search for invalid 

end-states on a deadlock-free specification with the verbose option, and no partial- 
order reduction (or other options which change the structure of the state-space), 
results in a textual description of the Kripke structure associated with the specifica- 
tion. In order to manipulate the Kripke structure as a directed graph using GRAPE 

we have designed a tool, SPIN-to-GRAPE, which takes relevant verbose output and 
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7: Down - program non-accepting [pids 
New state 3 
Pr: 5 Tr: 5 
Pr: 5 Tr: 6 

Pr: 5 Tr: 7 
7: BV save 

7: proc 5 exec 7,10 to 10, D STEP 
8: Down - program non-accepting [pids 
Stack state 1 
8: Up - program 
sy-restor 

5-01 

non-accepting Ctauýol 
5-01 

8: proc 5 reverses 7,10 to 10, D-STEP Cabit=O, adepth=O, tau=0,0] 
Pr: 4 Tr *5 
7: ev save 

7: proc 4 exec 5,10 to 10, D- STEP 
8: Down - program non-accepting [pids 
New state 4 
Pr: 5 Tr: 5 
Pr: 5 Tr: 6 
Pr: 5 Tr: 7 
8: ev save 

8: proc 5 exec 7,10 to 10, D- STEP 
9: Down - program non-accepting Epids 
New state 5 

non-accepting (tau=Ol 
5-01 

non-accepting Etau=Ol 
5-01 

Figure 4.1: Example of verbose output produced by SPIN. 

produces a description of a graph for GRAPE. Figure 4.1 shows a fragment of verbose 
output corresponding to the mutual exclusion specification of Figure 2.6. 

The SPIN-to-GRAPE tool is a PERL [180] program based on Algorithm 2, 

which traces the steps taken by SPIN when performing the state-space search. The 

algorithm uses a separate stack for each process in the model. Every time a line 

in the input file (created from the verbose output) indicates that a process has ex- 

ecuted a statement (for example the line 7: proc 5 exec 7 ... in Figure 4.1), 

the current state number is pushed on to the stack for that process. When a line of 
input indicates that a process has reversed (when search backtracks, e. g. the line 

8: proc 5 reverses 7 ... in Figure 4.1), a value is popped from the stack of 
that process, and the current state number is set to this value. Every time a line of 
input is found which specifies that a new or old state has been reached (indicated 
by New state x or Stack state x respectively, where x is a state number), a 
line of GRAPE code is generated specifying that a transition should be added to the 

graph. The file produced as output from SPIN-to-GRAPE can be loaded into GAP, and 
the AutGroupGraph () function of GRAPE used to find the automorphism group 
of the state-graph. Note that the graph representation produced by SPIN-to-GRAPE 
does iiot include information about the values of variables at each state: each node 
of the graph is represented by an integer. 

Though SPIN-to-GRAPE is useful for working with Promela specifications 
that exhibit small state-spaces, the complexity of the nauty algorithm means that 
it is not generally feasible to analyse models with more than around 15,000 states 
(though the performance of nauty in practice depends intimately on the structure 
of the input graph [1251). 
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Algorithm 2 Algorithm used by SPIN-to-GRAPE to construct the state-space of a 
model from a SPIN output file 

open input and output files 
current: = 1 
for each line in input file do 

if line signifies new state s then 
output edge current --+ s 
current :=s 

else if line signifies old state s then 
output edge current --+ s 

else if line indicates process p executes then 
push current on stack for p 

else if line indicates process p reverses then 
current := pop from stack for p 

end if 
end for 
close input and output files 

To accompany SPIN-to-GRAPE we have written a GAP function for com- 
puting quotient state-spaces - QuotientKripke (IF, G). This function takes a di- 

rected graph F representing a Kripke structure M, together with a subgroup G of 
Aut(M), and returns a directed graph representing the quotient Kripke structure 
MG. As discussed in Section 3.2, the theoretical minimum size of ISGI (the number 
of states in the quotient structure) is IS111GI (where ISI is the number of states in the 

original structure). The QuotientKripke () function allows us to determine, for 

small models, the factor of reduction available by exploiting symmetry in practice. 

4.2 Simple Mutual Exclusion Example 

Recall the simple mutual exclusion example, used for illustration in Chapters 2 

and 3. The Promela. specification for mutual exclusion with five processes is shown 
in Figure 2.6. A modified specification, annotated with scalarsets for use with 
SymmSpin, is given in Figure 3.3 and discussed in Section 3.3.2. A version of the 
specification in the SMC language is given in Figure 3.4 and discussed in Sec- 
tion 3.3.3. 

4.2.1 Comparing the original specification with the SymmSpin version 
In the initial specification (Figure 2.6), a process in its trying state is either blocked 
(if some process is in the critical state), or can move to the critical state. In the mod- 
ified specification (Figure 3.3), a trying process can always make a transition to 
check if the critical section is free, moving to the critical state if it is, remaining 
in the trying state otherwise. Figure 4.2 shows the model for the modified mutual 
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Figure 4.2: Mutual exclusion Kripke structure associated with the SymmSpin specifi- 
cation. 

exclusion protocol when restricted to two processes. ' The semantic difference is 
illustrated by the self-loop transitions in Figure 4.2 which are not present in Fig- 

ure 2.3, the Kripke structure for the original specification. The re-modelling of the 

protocol has resulted in a more abstract underlying model which sittiu lates the orig- 
inal (it adds behaviour). To verify that the symmetry reduction process preserves 
this behaviour, observe the self-loop transition in Figure 4.3, the quotient Kripke 

structure for the modified protocol under symmetry. It is difficult to see how this 

semantic difference could be avoided when using scalarsets to specify symmetry. 
The SymmSpin specification is also more complex than the original. There 

are several additional variables: for each user process there is a flag to test whether 
the critical section is empty, a loop counter and an id parameter. The init process 
also uses a loop counter. This added complexity makes the specification more diffi- 

cult to understand and increases the size of the state-vector for the associated model 
from 36 to 56 bytes. Through careful use of hidden variables (see Section 2.4.1) it is 

possible to reduce the state-vector to the original size, but this requires significant 
additional manual effort and expert knowledge of Promela. Furthermore, hidden 

variables can easily be misused, as SPIN does not check for cases where a hidden 

variable actually contains relevant state information 192]. 

1. The local variables i, j and critical_entpty are not included in the figure as i is a constant process 
identifier, and j and critical-empty are or-dy manipulated widdn a d-st ep block, being reset to default 
values before the end of this block. 
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Figure 4.3: Quotient structure associated with the SymmSpin specification. 

4.2.2 SMC specification 

The SMC language is well suited to specifying this example (see Figure 3.4). The 

condition wbdch guards the transition of a process to the critical state is expressed 
using the ALL quantifier, which asserts that a boolean expression must hold for 

every process of a given module type. 

4.3 Peterson's Mutual Exclusion Protocol 

Although useful for illustration, the mutual exclusion example discussed above is 

very abstract, and does not specify how exclusive access to the critical section by 

contending processes is guaranteed. We now discuss a more realistic protocol. 
In Peterson's ii-process mutual exclusion protocol [1401, entry to the critical 

section is gained by a single process via a series of n-1 competitions. For each 
competition there is at least one loser, thus the mutual exclusion condition is satis- 
fied since at most one process can win the final competition. 

TI-ds protocol is used as an example for symmetry-reduced verification with 
the SymmSpin tool [141. We discuss the Symm. Spin specification, then present an 
alternative, semantically equivalent Promela specification which uses a smaller 
state-vector and is easier to understand. Though still symmetric, scalarsets cannot 
be used to directly specify symmetry in this enhanced specification. However, an 
equivalent SMC specification can be written. 

We then present a more realistic specification of the protocol, and Use SPIN- 
to-GRAPE to verify that the underlying model of this specification is symmetric. We 
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show that neither scalarsets nor the SMC language can specity the inherent (full) 

symmetry for this example. 

4.3.1 SymmSpin specification 
We have obtained the Promela specification and accompanying system description 
file which were used for experiments with SymmSpin (personal communication, D. 
Bosnacki, 2003). Adapted versions of these files are given in Appendix A. 1.12 The 
SymmSpin specification is based on a presentation of the algorithm in [123]. 

The system description file defines aP ID scalarset type of size 3. SymmSpin 

regards global declarations as being part of a virtual proctype called : system:. 
For this example the : sys t em: proctype includes two declarations which involve 

scalarsets. Theflag array is indexed by variables of type PID, and its elements are 
bytes. This array is used to track the status of each process in the competition. Spec- 

ifying that the index type of this array is PID indicates that the position of its el- 

ements (but not their values) should be affected by any permutation of the PID 

range. Additionally there is a global array tum which is indexed by the byte type, 

and contains PID values. Thus a PID permutation should affect the values of el- 

ements of this, array, but not alter their positions. The system description file also 

states that the user proctype has two local PID variables. 
Using SPIN-to-GRAPE to compute the symmetry group G of the state-space 

associated with this specification confirms that this use of scalarsets identifies all 

symmetries of the model. The symmetry group here is isomorpl-dC to S31 the sym- 

metric group on three points (see Definition 11). Furthermore, GRAPE can be used 

to show that the quotient state-space constructed by SymmSpin is identical to that 

computed using the QuotientKripke () function. 

4.3.2 A simpler, equivalent specification 

If we do not use scalarsets to annotate the Peterson specification, and therefore are 
not concerned with the restrictions of Definition 22 (see Section 3.3.2), we can write 
a simpler Promela specification of the protocol, as shown in Appendix A. 1.2. 

In this specification the user proctype uses the built-in 
_pid variable (see 

Section 2.4.1) rather than being parameterised with an identifier. Although this 

means the flag array must be declared with size 4 rather than 3 (since values of the 

_pid variable start at 1) and so one value of this array is wasted, use of the built-in 

identifier instead of a parameter reduces the state-vector size by one byte for each 
process. Entry to the critical section is now guarded by a single boolean expression 
rather than a loop. This is easier to read, and avoids the inclusion of loop counter 

variables in the state-vector. The init process is also simplified. Consequently, the 

2. We have applied some source code optimisation techniques (see Section 2.6.1) in order to compare 
the example fairly with an SMC specification and an alternative Promela specification. 
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simpler specification uses a 32 byte state-vector, whereas the original state-vector 
requires 44 bytes. We were not able to obtain a reduction in the state-vector for the 
original specification using hidden variables. 

To check that the original and simplified specifications have the same un- 
derlying model we used SPIN-to-GRAPE to generate both state spaces as directed 

graphs, and GRAPE to confirm that these graphs are isomorphic. For this compar- 
ison we disabled the data-flow and statement merging optimisations provided by 
SPIN (see Section 2.4.3), in which case both models have 11,318 states. 

It is interesting to note that applying data-flow optimisation and statement 
merging to the original specification results in a reduction to 6,143 states, whereas 
applying them to the simplified specification results in a model of just 2,636 states. 
Thus the simplification simultaneously reduces the state-vector size, and increases 

the factor of reduction obtained using the SPIN optimisations before symmetry re- 
duction is even applied. Using SPIN-to-GRAPE we find that the quotient structure 
associated with the simplified specification (with optimisations) has 494 states. 

4.3.3 SMC specification 

An SMC specification of the protocol is given as Appendix A. M. The specification 
is designed to be semantically equivalent to the Promela examples, and SMC ver- 
ifies that the associated model also has 11,318 states. As in our enhanced Promela 

specification, the need for a loop to compute the predicate that guards entry to the 
critical section is avoided via the SMC ALL quantifier. 

Although the SMC specification is difficult to read, this is due to the guarded 
command syntax of the language, rather than the method by which symmetry is 
handled. 

4.3.4 A more realistic specification 

The authors of [141 note that their specification uses atomicity in a somewhat unre- 
alistic manner: 

In our implementation the global predicate that guards the entry in 
the critical section is checked atomically As this guard ranges over 
allprocess: indices, the atomicity wasnecessary due to the restrictions 
on statements that can be used such that the state-space symmetryis 
preserved. 

Indeed, if the loop in the SymmSpin specification was not executed within 
an atomic statement, the boolean variable ok would be updated sequentially with 
respect to the process flags in a fixed order. This order would destroy symmetry 
between the processes. 

In Appendix A. 1.4 we give a Promela specification of the protocol where the 
predicate ok is computed non-atomically, and the process flags are considered in an 
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arbitrary order. This is achieved by each process using a local array, checked, indexed 
by process identifiers, to track whetherflag[j] has been considered for each 1<j !ý 
n. Making the order of this computation arbitrary means that the model checker 
will consider every possible ordering. This makes no assumptions about the order 
which an implementation of the protocol would use, making the specification very 
general. Additionally, not imposing an execution ordering preserves symmetry in 

the underlying model. The state-space associated with a two-process version of this 

specification is small enough that we can use SPIN-tO-GRAPE to identify a symmetry 
group of order 2. 

As noted in [14], the scalarset restrictions do not allow us to specify sym- 
metry in this more realistic specification. Also, we cannot write an equivalent SMC 
specification since the language does not allow an update to refer to a specific pro- 
cess of a given module type. This example shows that even if there isj'ull symmetry 
between identical processes, it may not be possible to specify this symmetry using 
scalarsets or a restricted input language. 

4.4 A Prioritised Resource-Allocator 

We now model a system which consists of n client processes, each of which requires 
access to a resource, and a resource allocator process which takes requests from the 
clients wishing to use the resource, granting access to one client at a time. Each 

client has a fixed priority level, and when faced with multiple requests the resource 
allocator grants access to the requesting client with the highest priority. When sev- 
eral requests are made with the same priority the resource allocator chooses non- 
deterministically which to satisfy. The system has a star topology, where the resource 
allocator process is the central node and all of the client processes communicate with 
thds process only. The model is similar to an example used for symmetry reduction 
in partially symmetric systems using GQSs [165] (see Section 3.7). 

Communication between a client and the resource allocator is controlled by 

a basic protocol. A client sends a request message to the allocator. When the allo- 
cator decides to allow this client access to the resource it sends back a confinnation 
message. Once the client finishes using the resource it sends a finished message to 
the allocator. There is one (asynchronous) communication channel between the re- 
source allocator and each client. In order to allow a comprehensive investigation of 
the state-space of the associated specification using SPIN-to-GRAPE, it is important 
that the number of states is kept to a minimum. To reduce the number of states re- 
sulting from the interleaving of events internal to each process, atomic statements 
are used so that each execution step takenby each process includes a send or receive 
event (this state-space reduction is also suggested in [69]). An additional channel, 
nullchan, is used as a default value for local channel variables. This channel is de- 

clared with capacity 0 in order to minimise the state-vector. 
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A Promela specification of the system with seven clients and three levels 

of priority is given in Appendix A. M. There are two, three and two clients with 
priority levels 0,1 and 2 respectively. 

4.4.1 Analysis of symmetry in the resource allocator specification 

The model M associated with the Promela specification ? with seven clients, as 
described above, has 1,921 states. Using our combination Of SPIN, SPIN-to-GRAPE, 
GAP and GRAPE we find that lAut(. A4)1 = 24. It is clear that these automorpl-dsms 
arise from the interchangeability of clients with the same priority level, and we can 
use GAP to show that Aut(M) is isomorphic to a direct product (see Definition 14) 

of symmetric groups: 

Proposition I Let M be the model associated with the resource allocator specifi- 
cation described above. Then Aut(M) - 

ýj S2 X S3 X S2- 

We used GAP to construct a group G ý_- S2 X S3 X S2 (GAP provides functionality to 

compute the direct product of permutation groups). The I somorphismGroups () 
function was used to show that Aut(M) ý_`- G. Each symmetric group consists of 
automorphisms which permute the identifiers of one set of similarly prioritised 
processes. The Quot ientKripke () function shows that IMAW(M) I= 337. 

In general, for a resource allocator specification with n processes and k pri- 
ority levels (k, n> 0), if mi denotes the number of clients which have priority level 

Ei - i (0 <i<k, k 61 m- = n) then it is clear that Aut(M) will be isomorphic to the =0 I 

group FIO: 5i<k Sm, where 11 denotes the direct product. 
mj>l 

4.4.2 Re-modelling for SymmSpin and SMC 

Symmetry in this example can be handled using scalarsets or input language re- 
striction by separating the client processes into three distinct process types, cliento, 
clietal and clieW2, according to their priority level. To specify the example using 
scalarsets for use with SymmSpin, three separate scalarset types can be declared. 
The client proctype declarations will be essentially the same, and the resource allo- 
cator process will also involve duplicated code. 

We have specified the example using SMC in Appendix A. 2.2. Due to the 
major differences between the Promela and SMC languages, the SMC specification 
does not generate exactly the same state-space as the Promela specification (the 
SMC state-space is larger). However, both specifications model the same essential 
behaviour. Note that the three client modules in the SMC specification are almost 
identical, and that statements of the resource allocator module are separated into 
three similar blocks, one for each client module type. 
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Figure 4.4: Inter-process sharing in the resource allocator specification. 

4.4.3 Sharing between client processes 
No communication between client processes takes place in our model of the re- 
source allocator. Consider an alternative specification where client processes can 
share the resource. If client i is configured to share with client j then on receiving a 
cwlýflrniatioii message (i. e. gaining access to the resource), client i uses the resource 
then checks to see if client j has sent a request to the resource allocator. If this is the 
case, client i intercepts the request and gives client j access to the resource. When 

client j finishes using the resource it sends afiiiished message as usual. Client i inter- 

cepts thisfiiiished message, and sends its ownfiiiished message back to the resource 
allocator. Appendix A. 2.3 shows a Promela specification of the resource allocator 
system where client 3 shares with client 4, client 4 with client 5, and client 5 with 
client 3. 

Let M' denote the model associated with this specification. Our automated 
setup shows that lAut(M') I= 12, thus the degree of symmetry in the Kripke struc- 
ture is reduced by enabling sharing between certain processes. This is because there 
is now a cyclic relationship between clients 3,4 and 5 due to the configuration of the 

additional sharing functionality. This cyclic relationship is illustrated by Figure 4.4. 
We can use GAP to show that Aut(M') - where C3 is the cyclic group ý' S2 X C3 X S21 

of order 3 (see Definition 12). 
It is not possible to specify this product of symmetric and cyclic groups using 

SymmSpin or SMC as cyclic symmetries cannot be handled by either teclu-dque. 
The resource allocator example illustrates that while priority information 

can be conveniently embedded within a specification, in order to specify symme- 
try between components of the same priority level using SymmSpin or SMC it is 
necessary to explicitly partition distinctly prioritised process into separate process 
types. This results in duplicated code, and makes the task of adding or removing 
priority levels laborious. Additionally, altering the communication structure to al- 
low h-iter-process sharing changes the nature of symmetry in the associated model. 
The resulting symmetry group cannot be specified using either technique. 
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Figure 4.5: Flow of control in a three-tiered architecture. 

4.5 A Three-Tiered Architecture 

A common software engineering design pattern for distributed systems is the three- 
tiered arcliftecture. Components in such an architecture are separated into three lay- 

ers, a layer of clients, a layer of servers and a layer of data storage systems. The typ- 
ical flow of messages for such a system is shown in Figure 4.5 (adapted from [171]). 
TI-ds pattern is common in the e-business domain, where customers buy products 
or make bookings over the Internet. A set of servers at various geographical loca- 
tions deal with customer (client) requests and communicate with a central (possibly 

replicated) database. 
Our next specification is of a simple three-tiered system consisting of three 

process types: client, server and database. Each client process is parameterised by an 
input channel name, and a channel name associated with a server process. The server 

processes are parameterised by two channel names. The first of these channels is 

used to receive requests from client processes, and the second to send queries to 

the database. A client process loops continuously, sending a request message and a 

reference to its incoming channel to the server to which it is connected, and wait- 
ing until a result message is received on its incoming channel. Similarly each server 

process continuously repeats the actions of receiving a request and channel refer- 

ence from a client, sending a query to the database and receiving data, then sending 
a result back to the client on the given channel. The database process continuously 
receives queries from the servers and returns data. All the channels in the specifi- 
cation are synchronous, to minimise the state-space sufficiently to allow us to use 
SPIN-to-GRAPE for analysis. 

The configuration we consider consists of a database, three servers, and 
eight clients. There are three blocks of clients, two of size three, one of size two. 
Each block is associated with a distinct server. The Promela specification is given 
as Appendix A. 3 and the topology illustrated by Figure 4.6. 

4.5.1 Analysis of symmetry in the three-tiered specification 
Let P denote the three-tiered specification of Appendix A. 3, and M the associated 
model. The model is small enough to allow comprehensive analysis using our au- 
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Figure 4.6: Topology of the three-tiered architecture specification. 

tornated setup. This configuration of processes is interesting as there are multiple 
servers as well as multiple clients, and the tree of processes is not perfectly bal- 

anced, a feature which is reflected in the symmetry of the underlying model. 
We have used our automated setup to prove the following result: 

Proposition 2 Let M be the model associated with the three-tiered specification 
described above. Then Aut(M) C-- (S3 I S2) X S2- 

Here S3 I S2 denotes the outer wreath product of S3 and S2 (see Definition 16). As 
for direct products, GAP provides functionality for computing the wreath product 
of two permutation groups. 

The original Kripke structure has 2,021 states. The QuotientKripke 
function reveals that the quotient structure with respect to Aut(M) has 107 states. 
This is a significant factor of reduction which, for realistic sizes of model, could 
prove extremely effective in combatting state-space explosion. However, the kind 

of symmetry exhibited by this specification cannot be specified using scalarsets or 
input language restriction. 

Intuitively, the reason that Aut(M) (S3 I S2) X S2 is that there are two 
blocks of three identical client processes (giving rise to the subgroup S3 I SA and a 
single block of two client processes (giving rise to the subgroup S2). Consider the 

model M associated with an arbitrary configuration of this three-tiered system. Let 
k be the maximum number of clients connected to any server in the configuration, 
and let mi denote the number of servers which are connected to i clients for each 
1<i<k. Since, for any i>0, Si = Si I S1, the above discussion and result clearly 

gencralises to give: 
Aut(M) rj (Si ý S., )). 

I<i<k 
MiAO 

In [106], the automorphism group of an arbitrary rooted tree is described, 
which could be used to generalise the above argument to systems with more than 
three tiers. 

10 11 12 
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Figure 4.7: A 4-dimensional hypercube. 

4.5.2 Mixed modes of communication in the three-tiered specification 
As noted above, all communication in our three-tiered architecture specification 
is modelled using synchronous channels, so that messages are passed via a hand- 

shake between sender and recipient, with no buffering. Consider a modified ver- 
sion of the specification where the channel which clieitt& clieW9 and clientlo use 
to send requests to server3 (channel cl_se_2) is changed to be an asynchronous 
buffer with size 1. 

For the Kripke structure M associated with the original specification we 
have Aut (M) ýJ: (S3 I S2) X S2. Let M' be the Kripke structure associated with the 

altered specification. Analysis using SPIN-to-GRAPE reveals that Aut( 1) - 
S3 X M ýj 

S3 X S2. which is smaller than (S3 ? S2) X S2. This is because the modified channel 

means that it is no longer possible to permute server processes 2 and 3, and their 

associated channels. 

4.6 Message Routing in a Hypercube Network 

A popular topology used in the implementation of switch-based multi-computers 
is the hypercube [171]. The following definition is adapted from [173]: 

Definition 25 The it -dimensional hypercube (where it > 1) is a graph G= (V, E) 

where 
0V= 10,1}" 

oE= If x, y} : x, yEV differ in exactly one bit}. 

A 4-dimensional hypercube can be displayed graphically as two cubes, as 
shown in Figure 4.7. In a switch-based multi-computer using a hypercube topology, 
messages are routed between the processors. Algorithm 3 is a simplified version of 
a routing algorithm described in [61]. For xi E 10,1}, we use 7, to denote 1- xi 
(the complement of xi). Each node has an ii-bit process identifier. On receiving a 
message, a node in the hypercube checks the id of the intended recipient. If this is 
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Algorithm 3 Basic algorithm for message routing in a hypercube network. 
Behaviour of node x= (xj, x2,. .., x,, ): 

while true do 
receive message destined for node y= (Yl i Y21 - Yn) 
if x=y then 

process message 
choose a new destination node y 

end if 
choose iE 11,2,..., n} such that xi 0 yi 
forward message to neighbour (xl,..., x,, ) 

end while 

the same as its own id then it processes the message, and chooses a new destina- 
tion. Otherwise (or after a new destination has been chosen) the node forwards the 
message to a neighbour whose id has one more bit in common with the id of the 
intended recipient. 

In our final example we model a system where messages are routed through 
a hypercube network using Algorithm 3. Appendix A. 4.1 gives the Promela spec- 
ification for message passing in a 3-dimensional hypercube. The processes are de- 
fined via a node proctype, parameterised by an input channel and n output channels 
(where n is the dimension of the hypercube), each of which is the input channel for 

a distinct neighbour. Global variables record the destination and current position 
of the message. Communication is achieved via a channel for each node in the hy- 

percube, and the init process sends the first message to a non-deterministically 
chosen node. To ensure that the state-space of the model is small enough to analyse, 
only one message is passed through the network at a time. 

In our specification the identifier of a node is an integer i in the range 
1,2,..., it. This represents the n-bit vector i-1 (viewed as a binary number). The 

subtraction is necessary since SPIN assigns process ids starting from 1 rather than 
0 (wl-dch is reserved for the init process). Given a message destined for node pro- 
cess k, node process i computes the bitwise exclusive-or of k-1 and i-1. If there is 
aI in position in of the result then the message can be forwarded to the neighbour 
of i with id j such that i-1 and j-1 (viewed as binary numbers) differ only bit in. 
The node process non-deterministically chooses one such suitable neighbour. 

4.6.1 Analysis of symmetry in the hypercube specification 
The automorphism group of an n-dimensional hypercube is well understood, 
and is derived in [761. For any permutation &E Sn, we define the action of Lt 
on x= (X1, X21 ... i Xn) by a(x) = (Xa(l), Xa(2)i ---, X,, (n)). For each 1<i<n, 
define the ith complennentation permutation ri by -ri(x) = Let 
Kn = (711 721 ... # IN), the group generated by all combinations of the ri. The au- 
tomorphism group of the n-dimensional hypercube is the semi-direct product Of Sn 
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and K,,, denoted &X Sn (see Definition 18, Section 3.1.4). It can be shown that 
JKn X SnI = jKnj x jSnj = 2n X I,!. 

When analysing the nature of the symmetry in our hypercube specification 
we would have liked to have used a configuration with at least four dimensions 

as a case study. However, the state-space of even the 4-dimensional configuration 
proved too large to analyse using our setup (1.6 x 107 states) so we restrict ourselves 
to the 3-dimensional configuration (a cube). This problem demonstrates the rapid 
explosion of a state-space, and hence the need for techniques such as symmetry 
reduction. 

Proposition 3 Let M be the model associated with the 3-dimensional hypercube 

specification described above. Then Aut(M) c-- K3 M S3- 

Again we have proved this result using our automated setup. The original 

Kripke structure has 15,409 states. Using QuotientKripke () we find that the re- 

sulting quotient structure has 411 states. Again the factor of reduction is encourag- 

ing. As with the three-tiered architecture example, the kind of symmetry exhibited 

by this specification cannot be specified using existing techniques. 

Our specification of message routing in a hypercube involves arithmetic op- 

erations on variables which have pid type. Process ids are used as operands in 

bit-wise exclusive-or operations in order to determine how the packet should be 

routed. Approaches to exploiting symmetry usually prohibit these kind arithmetic 

operations, e. g. Condition 2 of Definition 22 prohibits this use of scalarset vari- 

ables. This example shows that restrictions on the use of process identifiers in arith- 

metic operations are not always necessary for the preservation of symmetry. In Sec- 

tion 7.6.2 we discuss the problem of automatically identifying cases where process 

ids can be used as operands to arithmetic expressions without breaking symmetry. 

Let M be the model associated with a configuration of the hypercube speci- 

fication with n dimensions for some n ý: 1. It would seem likely, from the previous 

discussion, that the above result generalises to give Aut(M) ý-- Kn x Sn. 

4.6.2 Message routing in a hypercube with a fixed initiator 

Recall that in the hypercube specification the packet is first sent non-deterministic- 
ally by the init process on one of the channels in the system. Such non- 
determinism in a model can often lead to a blow up of states, and a common ap- 
proach to improve efficiency would be to remove this non-determinism. Indeed, 

altering the specification so that the init process always sends the packet on the 

channel associated with node process 1 results in a model with 8,866 states, com- 
pared with 15,409 states in the original model. 3 

3. Applying Us modification to t1w 4-dimensional specification results in a reduction from 1.6 x 107 
to 8.9 x 106 states. However, the smaller state-space is still too large for analysis Using SPIN-to-GRAPE. 
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SPIN-to-GRAPE shows that the resulting automorphism group of the altered 
model M' is isomorphic to a subgroup of the automorphism group of a cube. More 

specifically, Aut(M') stabK3 AS3(0)Owhere stabK3,, s3(O) is the stabiliser of iiode 0 
(0,0,0) (see Definition 9, Section 3.1.2). 

Interestingly, the QuotientKripke 0 function shows that the quotient 
structure corresponding to M'has 1,669 states, whereas that corresponding to M 
has size 411. For this example, although removing non-determinism from the spec- 
ification results in a reduction of size in the Kripke structure, the corresponding 
reduction in symmetry means that the quotient structure of the altered model is 
actually larger than the quotient structure of the model with no alterations. 

Summary 

We have introduced SPIN-to-GRAPE, a software tool which allows automorphisms 
of small state-graphs associated with Promela. specifications to be explicitly com- 
puted. We have used SPIN-to-GRAPE to study five Promela examples. The first three 

examples highlight disadvantages of using scalarsets or input language restriction 
(via the SMC language) to specify symmetry. Our modified specification of Peter- 

son's mutual exclusion protocol is an example for which there is full symmetry 
between components, and yet neither SymmSpin nor SMC can be used to express 
it. The final two examples exhibit fairly complex symmetry groups which decom- 

pose as wreath or semi-direct products of subgroups. This type of symmetry cannot 
be specified using scalarsets or the SMC language. 

By making modifications to the example specifications and analysing the 
corresponding changes in symmetry in the underlying models, we have observed 
that the automorphism group of a model depends on the communication struc- 
ture of its high level specification. In addition, we have shown that modiýring a 
specification may reduce its state-space but result in a loss of symmetry, so that the 
corresponding quotient model is larger than the quotient model associated with 
the original specification. 



Chapter 5 

Channel Diagrams 

In Chapter 4 we identified a relationship between the communication structure of 
a Promela specification and the automorphisms of its associated model. In the re- 
source allocator specification, allowing client processes to communicate with each 
other in order to share the resource reduces symmetry in the underlying model; 
making one of the communication links asynchronous in the three-tiered arcl-dtec- 
ture specification destroys some of the original symmetry, and fixing the initiating 
process in the 3-dimensional hypercube specification results in a corresponding re- 
duction in symmetry. 

One formal notion of the communication structure of a Promela specifica- 
tion is its chamiel diagram [1571. In this chapter we show for each of the example 
specifications discussed in Chapter 4 that there is a correspondence between au- 
tomorphisms of the channel diagram and automorphisms of the Kripke structure 
associated with a Promela. specification. This correspondence is the motivation for 
the automatic symmetry detection techniques developed in Chapters 7 and 8, based 

on static chamiel diagram analysis. 

5.1 Channel Diagram Associated with a Promela Specification 

The channel diagram [157] associated with a Promela specification is a graphical 
representation of its channel-based communication structure. The definition we 
present here is adapted from the original presented in [157]. 

Given a Promela channel declaration chan c= [a I of {Tj , T2, ..., Tk}, 
a is the capacity and IT,, T2,..., Tk} the message type of c. Note that {T1.. T2., ---. ' Tk} 
denotes an ordered list of types rather than a set. We use the set-based notation 
throughout for consistency with Promela. TI-ie signature of c, denoted signature(c) 
is the pair (a, ITI, T2, ..., Tk}). For example, if a channel A is declared as follows: 
chan A= [31 of Imtype, byte} then signature(A)=(3, Imtype, byte}). 

Let P be a Promela specification in which all process are instantiated atom- 
ically by the init process, and all channels are globally instantiated (see Sec- 
tion 2.4.1). Let Vp denote the set of process identifiers and Vc the set of global chan- 
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nel names in P. For iE Vp let proctype(i) be the name of the proctype of which 
process i is an instantiation. 

Definition 26 If M= (S, so, R) is the Kripke structure associated with P then the 

clianitel diagram of P is a coloured, bipartite digraph CV(P) = (V, E, C) where: 
*V= Vp U VC is the set of process identifiers and channel names in P 

o Fori E Vp andc E VC, 
(i, c) EE iff there is a reachable transition (s, t) ER which involves 

process i sending a message on channel c 
(c, i) EE iff there is a reachable transition (s, t) ER which involves 

process i receiving a message on channel c 
C is a colouring function defined by C(v) = proctype(v) if VE Vp, and 
C(v) = signature(v) if VE VC. 

Note that while it may not be possible to determine the operations involved in a 
transition (s, t) by examination of s and t alone (e. g. if the transition results from 

execution of an atomic block), this information can always be obtained from ex- 
arnination of s and t in the context of the specification P. 

Examples of channel diagrams are given throughout Sections 5.2 and 5.3. 
When displaying a channel diagram as a figure we use ovals and rectangles to 

represent processes and channels respectively. I The type of a process is given by its 

proctype name, and channel signatures are indicated using a key. 

5.1.1 Deriving channel diagrams 

Since Definition 26 depends on the transition relation R, construction of CV(P) in 

general requires exploration of the reachable states of M. Thus we can only de- 

rive the channel diagram for a specification if its associated model is tractable. The 

channel diagrams used for illustration in this chapter have been manually derived 
from their associated Promela specifications via simulation With SPIN. This process 
could be automated by adding code to log the use of channels during verification 
to the pan. c: file produced by SPIN (see Section 2.4.2). 

In Chapter 7 we define the static channel diagram of a specification, which 
can be efficiently constructed by syntactic inspection of P. 

5.1.2 Channel diagram automorphisms 
An automorphism of the channel diagram CD(P) = (V, E, C) is an automor- 

pl-dsm of the directed, coloured graph (V, E, C) (see Definition 19, Section 3.1.5). 

1. In the original presentation of channel diagrams, ovals were used for channels and rectangles 
for processes [157]. The notation was changed by mistake in [42,48,49]. To be consistent with work 
published from this thesis we use the modified notation. 
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chan one_ýtwo - Ell of lint); chan two-one = Ell of lint); 

proctype node(chan in; chan out) ( 

pid x; 
if 

in? ... 
outl ... 

init j 
atomic 

run node(one 
- 

two, two_one); 
run node(two-one, one-two); 

Figure 5.1: A fragment of a Promela specification. 

The group of all automorphisms of CDOP) is denoted Aut(CD(P)). We can com- 

pute Aut(CD(P)) by inputting CD(P) to GAP. The vertices of Vp are directly 

represented using the integers {1,2,. n}; the vertices of VC are represented by 
I it + 1, it + 2,. . ., n+ ni}, where I Vc I m. The group Au t (CD (p)) is computed 
by the GRAPE function AutGroupGraph 0 (see Section 3.1.6). The colouring C is 

specified as an argument to this function. 

An element aE Aut(CD(P)) has a natural action on M, the model asso- 
ciated with P, which we illustrate using an example. Let P be a Promela spec- 
ification, part of which is shown in Figure 5.1, with associated model M. Fig- 

ure 5.2 shows the channel diagram for P. It is easy to check that Attt(CV(P)) 
lid, (12) (one-two two-one)}. A state s of M has the form: 

s= (contents of one_two, contents of two_one, ini, out,, xi, pcl, 
in2, OUt2, X21 P02)' 

where yj denotes the value of variable y of node process i. The internal program 
counter variable for process i is denoted pci. For it E Aut(CV(P)), the state et(s) 
has the form: 

a(s) = (contents of a(one_two), contents of a(two-plie), a(ingj)), a(out, (j)), 
l*x(l))p PC, %(J)ý C4(illa(2)), Ci(OUta(2))-- it(X&(2))ý PCa(2))* 

n-ie values of the variables of node i at s are initially those of node a (i) at a (s), 
then ci is applied to the values of the channel and process id variables xi, ini and 
outi. Similarly, the contents of channel c at s are those of channel a(c) at a(s). If a 
process id variable has value yi =0 then we define a (yi) = 0. 

Concretely, suppose s= ([ 1, [5], two 
- one, one_two, 0,10, one_two, 

two_one, 1,8) and a= (1 2) (one_two two_one). Then a (s) = ([51, [ ], two_one, 
one_two, 2,8, one_two, two_one, 0,10). 
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Figure 5.2: Channel diagram associated with the Prometa code fragment of Figure 5.1. 

Key to channel signatures 

(0, (. typ. )) 

(0, (mtype, chan)) 
null 

sel II se2 I se3 

ser-ver2 ) (' server, ) (I server4 

C11 I/ (I c12 I\I c13 II c14 I/ 11 c15 I\I c16 II c17 1/II CIS 

cliellh5 )( client6 )( cliepit7 )( clientR )( clientg )( clientlo )( clientl, 

Figure 5.3: Channel diagram for three-tiered architecture specification. 

We show that in some cases elements of Aut(CE)(P)) induce autoniorphisills 

of M with this natural action. 

5.2 Channel Diagrams for the Channel-based Specifications 

We first consider the channel diagrams associated with the three-tiered architec- 
ture, hypercube and resource allocator specifications (see Sections 4.5,4.6 and 4.4 

respectively), since in these specifications processes communicate using channels 
rather than variables. 

5.2.1 Three-tiered architecture channel diagram 

Recall from Section 4.5 the three-tiered architecture example, the Promela specifi- 
cation of which is given in Appendix A. 3. Figure 5.3 shows the channel diagram 

associated with this specification. 
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We use GRAPF to compute the following generating set for the group 
Aiit(CD(P)): 

Aut(CD(P)) = ((5 6) (cll c12), (6 7) (c12 c13), (8 9) (c14 c15), 
(9 10) (c15 c16), (11 12) (c17 c18), 
(5 8) (cll c14) (6 9) (c12 c15) (7 10) (c13 c16) 

(2 3) (sel se2) (cl_se_ 1 cl_se_2». 

Note that the last two lines in the presentation of this generating set denote 

a single group element. We can see from Figure 5.3 that the first generator of this 

group, the permutation (5 6) (M c12) is an automorphism of CE) (P) since swap- 
ping clients 5 and 6 and simultaneously swapping the associated channels c1l and 
c12 leaves the structure and colouring of the channel diagram unchanged. Pie other 
generators can similarly be verified to be automorphisms of CE)(P). 

Our automated setup shows that the groups AW(M) and AW(CD('P)) are 
isomorphic, thus there is a direct correspondence between channel diagram and 
Kripke structure automorphisms for this example. 

Now consider the three-tiered specification with mixed modes of commu- 
nication, discussed in Section 4.5.2. The difference between this specification and 
the original is that the signature of channel cl_se_2 (the channel which client 
processes 8,9 and 10 use to send requests to server process 3) is changed from 
(O, f mtype, chanj) to (1, jmtype, chanj). Let P' denote the modified specifica- 
tion, with associated model AT. We observed in Section 4.5.2 that AW(. AA') is a 
smaller group than Aiit(M), since changing this channel signature destroys sym- 
metry between servers 2 and 3. Since channel nodes are coloured accord ing to their 

signature, this change in symmetry is reflected in the automorphisms of the channel 
diagram associated with the specification: we find that AW(M) ý--- AW(CE)(P'))- 

5.2.2 Channel diagram for the hypercube specification 

The channel diagram for the 3-dimensional hypercube specification (see Section 4.6 

and Appendix A. 4.1) is showii in Figure 5.4. Recall that the init process initially 

seiids the packet to a iion-deterministically chosen node, thus there are edges from 
the node representing the init process (with identifier 0) to every channel in the 
diagram. For neatness this is simplified in Figure 5.4. 

The channel diagram CD(P) is essentially a cube. Since the itode processes 
in P are all identical, we expect any automorphism of the channel diagram to cor- 
respond to an automorphism of the underlying Kripke structure, and indeed this 
is the case. As with the three-tiered architecture example, GRAPE shows that the 
groups Alit(M) and AW(CE)(P)) are isomorphic. 

In Section 4.6.2 we considered a modified specification where the init pro- 



5.2: EXAMPLES OF CHANNEL DIAGRAMS 106 

Key to channel signatures 

F-7 (1, (. typý)) 
linkl 

-, -I 
link2 

node, )zzt- ---71-( node2 

link3 ý. 
_ 

I\ 
--ý 

link4 

110de3 11 --7"1( node4 

link5 L- II\ -1 link6 

node5 I node6 

link7 I-- \\ 
--I 

link8 

node7 )---- node8 

Figure 5.4: Channel diagram for 3d hypercube specification. 

cess always sends the packet initially to tiodc process 1. Let P' denote this modified 
specification and A4' its associated model. We found that this modification resulted 
in a corresponding loss in symmetry, since node process 1 is no longer equivalent 
to the other nodes. 'Hie channel diagram CD(P') is identical to CD(P) except that 

the only edge from the node representing the init process is that to the channel 

node labelled link]. Removal of the other edges results in a loss of symmetry in the 

channel diagram, and the relationship between symmetries of the channel diagram 

and symmetries of the Kripke structure is maintained. Using our automated setup 

we find that Atit(. A4') Aut(CD(P)). 

5.2.3 Channel diagram for the prioritised resource allocator 

Figure 5.5 shows the channel diagram for the prioritised resource allocator speci- 
fication discussed in Section 4.4. The specification is given in Appendix A. 2.1. The 

priority level of each client is also indicated in Figure 5.5, though this information 
is not part of the channel diagram. 

Let P denote the resource allocator specification and M its associated 
model. Recall from Section 4.4.1 that Aut(M)j = 24. Inputting the channel dia- 
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Key to channel signatures 

(I, (. typý)) 

(0, j typý 1) 

f 
-I' I 'xi gil; g 

linkl II link2 II link3 II link4 II link5 II link6 II link7 

priorities: 

Figure 5.5: Channel diagram for resource allocator specification. 

gram CD(P) to GRAPE, and computing its automorphism group reveals that: 
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A tit(CD(P)) = ý(l 2)(linkl link2), (2 3)(link2 link3),..., (6 7)(link6 Iink7)), 

and JAW(CD(P)) I=5,040. Since JAW(M)l ý4 jAut(CD(P))j, there is not a direct 

correspondence between Kripke structure and channel diagram automorphisms. 
This is because priority levels, which induce asymmetry between components, are 

not encoded in the channel diagram. 

However, we can use the function I somorphi c Subgroups (AW(CE)(P)), 

AW(M)) to show that there is a monomorphism (see Definition 8, Section 3.1.1) 

which maps AW(M) to a subgroup G of AW(CD(P)). ByTheorern 2 (Section3.1.1), 

G ý_- AW(M). G is clearly the subgroup of AW(CD(P)) which preserves the prior- 
ity information indicated in Figure 5.5. 

Let P' denote the resource allocator specification where certain clients share 
the resource (see Section 4.4.3), with associated model AT. The corresponding 
channel diagram, CD(P'), is shown in Figure 5.6. The cyclic relationship between 

clients 3,4 and 5 resulting from the configuration of process sharing (illustrated by 
Figure 4.4) is captured by the additional edges in Figure 5.6 compared with Fig- 

ure 5.5. 
We showed in Section 4.4.3 that Atit(M') is smaller than Attt(M): introduc- 

ing sharing reduces the symmetry inherent in the model. This reduction in symme- 
try is reflected in the channel diagram: we have JAW(CD(P)) I= 144. Again there 
is a monomorphism from AW(AT) to a subgroup of Aut(CD(P')). 
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Key to channel signatures 

(1, J. typý)) 
= 

(0, (. type)) 

re ource 
allocatoF8 

Iink2 ImU I 

TIink4 

Imb li? ik6 

Qtný,, Qtnl, nl, ) Qýý 
__) priorities: 001 

I link7 I 

clien17 
2 

Figure 5.6: Channel diagram for resource allocator specification with resource sharing 
enabled. 

Figure 5.7: Form of channel diagram for the Mutual exclusion examples. 

5.3 Channel Diagrams for the Mutual Exclusion Examples 

The Promela specifications of the simple mutual exclusion protocol (see Sections 2.2 

and 4.2) and Peterson's mutual exclusion protocol (see Section 4.3) do not involve 

channels. Instead, processes communicate via global arrays. However, each of these 

examples still has a well-defined associated channel diagram consisting of just a 

set of process nodes - both the sets VC and E of Definition 26 are empty. Figure 5.7 

shows the general form of the channel diagram associated with an it-process mu- 
tual exclusion specification (either the simple example, or Peterson's protocol). 

Although the channel diagram of Figure 5.7 is trivial, its automorphism 

group is the group S, since all tiser processes are interchangeable. This group is 

isomorphic to the group of Kripke structure automorphisms for a mutual exclu- 

sion protocol with it processes. 

5.4 Approximating Channel Diagrams 

As discussed in Section 5.1.1, construction of CD(P) requires exploration of the 

reachable states of A4, which is precisely what model checking with symmetry 

reduction aims to avoid. 
In Chapter 6 we introduce Promela-Lite, a specification language based on 

Promela. In Chapter 7 we define the static channel diagram SCD(P) associated 

with a Promela-Lite specification P and show that SCD(P) can be efficiently com- 
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puted by static analysis of P. The static channel diagram is an approximation of 
the channel diagram associated with a specification. We then show that there is a 
general correspondence between automorphisms of SCD(P) and automorphisms 
of M, the model associated with P. 

Summary 

We have defined the channel diagram of a Promela specification (first introduced 
in [1571), and used our automated setup to show for the examples of Chapter 4 that 
there is a correspondence between automorphisms of the channel diagram CD(P) 

and automorphisms of the Kripke structure M associated with a Promela. specifi- 
cation P. We have discussed the limitations associated with channel diagrams and 
motivated the use of the static channel diagram, an approximation of the channel 
diagram that can be efficiently computed via static analysis of P. 



Chapter 6 

Promela-Lite 

The examples of Chapter 4 and the correspondence between channel diagram and 
Kripke structure automorphisms observed in Chapter 5 motivate us to develop au- 
tomatic symmetry detection techniques for Promela, which are not restricted to full 

symmetry, based on analysis of a structure similar to the channel diagram. This is 
the topic of Chapters 7 and 8. In order to support our techniques with a formal 

proof, we first present Promela-Lite, a specification language which captures the es- 
sential features of Promela. The Promela language includes a large set of keywords 

and language features which facilitate the specification of complex communica- 
tions protocols. The downside of this is that proving properties about Promela spec- 
ifications is laborious, requiring many case-by-case arguments. Rigorous proofs are 
also hindered by the lack of a formal definition of the semantics of Promela as im- 

plemented by SPIN. 

Promela-Lite is a smaller specification language that includes core Promela 
features such as parameterised processes, first-class channels and global variables, 
but omits many language features such as enumerated types, record types, arrays 
and rendez-vous channels. We are able to present a full grammar and type sys- 
tem for this smaller language, and define precise Kripke structure semantics for 
Promela-Lite specifications. In Chapter 7 we use the semantics to rigourously prove 
the correctness of our symmetry detection techniques for a Promela-like language. 
Promela-Lite and Promela are similar enough that it is not too great a leap of faith 
to accept that our results can be applied to Promela, for which a rigorous proof is 
not practical (as discussed above). In addition, omitting certain omate features of 
Promela from Promela-Lite makes our proof easier to understand, and thus easier 
to transfer to other specification formalisms. 

It is important to stress that we do not intend to implement a Promela-Lite 
model checker, or for users to write Promela-Lite specifications in practice (though 
we do illustrate the language with an example specification). While it may seem 
that the restricted syntax of Promela-Lite does not meet our aim of reducing the 
restrictions placed on the form of a specification, the restricted syntax is only for 
case of presentation of our results. Our Promela implementation (see Chapter 8) 
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lifts most of these restrictions. 
The name Promela-Lite was inspired by Featherweight Java, a calculus which 

captures the core object oriented features of Java (classes, methods and inheritance), 
but omits most features of the full language [981. 

We define the syntax and type system of Promela-Lite in Sections 6.1 and 6.2 

respectively. In Section 6.3 we present Kripke structure semantics for the language, 

and prove that a well-typed Promela-Lite specification has a well-defined associ- 
ated Kripke structure. 

6.1 Syntax 

6.1.1 A note on BNF 

We use the standard Backus-Naur form (BNF, see e. g. [1]) to specify the syntax of 
Promela-Lite. BNF notation can be used to specify the grammar of a language via 
a sequence of production rules (also called non-terminals). A production rule (prod) 

has the form: 

(prod) :: = Aj, j AI, 2 ... 
Aj,, 

ý 
I A2,1 A2,2 

... 
A2, s2 

Ak, l Ak, 2 ... 
AkSk 

where each A ij is either a production rule, or a terminal symbol. The terminal sym- 
bols include language keywords such as do, operators such as : :, variable names 
and literal values. A BNF grammar must have a designated initial production rule. 
A seWetice in the language is a sequence of terminal symbols which conforms to the 
structure of the initial rule. 

Let (prod) be a BNF production rule. We use the following shorthand no- 
tation to refer to occurrences of (prod) on the right hand side of other production 
rules: 

" (prod)? denotes an optional occurrence of (prod) 

" (prod) * denotes a sequence of zero or more occurrences of (prod) 

" (prod) + denotes a sequence of one or more occurrences of (prod) 

" (prod-list, V) denotes a o-separated list of one or more occurrences of (prod), 
i. e. 
(prod-list, V) :: = (prod) 

I (prod) o (prod-list, V) 

6.1.2 Syntax of types 

The syntax of Promela-Lite data types is surnmarised in Figure 6.1 (see Figure 6.3 
for details of the (name) production rule). The initial production rule for this gram- 
mar is (type), and we refer to a sentence in the language of types as a type. The 
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(type) :: = int 
pid 
(chantype) 
(typevar) 

(chantype) (recursive)? chan f (type-list, 

(recursive) rec (typevar) 

(typevar) :: = (name) 

Figure 6.1: Promela-Lite type syntax. 

chan 

chan 
I 

chan 
int 

chal 
int 

int 

Figure 6.2: Infinite tree representing the recursive type recX. chan I X, int}. 

language includes two primitive data types, int and pid, representing integer val- 
ues and process id values respectively. Basic channel types have the form chan IT}, 

where T denotes a comma-separated list of types. The types which comprise T may 
themselves be channel types, thus Promela-Lite support first-class channels. 

It can be useful for a channel of type T to accept a channel of type T as one of 
its arguments. In this case, T is a recursive type - its form is self-referential. Accord- 
ingly, Promela-Lite includes syntax for recursive channel types (the (recursive) rule 
of Figure 6.1). For example, consider a type T of the form rec X. chanIX, int}. Then 
T denotes a channel which accepts messages consisting of two fields: a channel of 
type T, and an integer. This recursive type can be unfolded by removing the initial 
'rec X. 'and substituting'X'for the original expression, resulting in the type expres- 
sion cluinfrec X. chanIX, int}, int} (which can in turn be unfolded). The resulting 
types are the same, and intuitively they represent the type illustrated as an infinite 
tree in Figure 6.2. We discuss the implicit use of recursive types in Promela in Sec- 
tion 8.2.2. We use chan IT} to refer to an arbitrary channel type, since a channel type 
of the form rec X. cluzn I ... } can always be unfolded into this form. In Section 8.2.2 
we discuss an algorithm for minimising recursive types by converting them to a 
canonical form. We say that two recursive types are equal if they are identical after 
minimisation. 

The name W used in the above example is a type variable, and is said to be 
bound, as it is introduced by the prefix We X. ' and then occurs within the scope 
of this prefix. A type variable which is not bound is said to be ftee. A well-formed 
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type is one for which there are no free type variables. The types int, chanjint} and 
rec X. cliaii JX, itzt} are all well-formed; the type chaii JX} is not. Note that a type 
such as rec X. int is well formed; this type unfolds to int. 

6.1.3 Syntax of the language 

A Promela-Lite specification consists of a series of channel and global variable dec- 
larations, one or more proctypes, and an init process. The syntax is given in Fig- 

ure 6.3. The initial production rule is (spec), and we have simplified the presenta- 
tion of the rules (name) and (number). We refer to a valid Promela-Lite sentence as 
a specification. In the (guard) production rule, m denotes an operator taken from the 
set I -j< j< =1 >, > =}. For simplicity, we have not included the division operator 
in Promela-Lite. This is to avoid the need for detailed semantics for division-by- 

zero errors in Section 6.3, an issue which is orthogonal to the symmetry detection 
techniques which we present in Chapter 7. 

A channel declaration chan c= (a] of IT} (according to the (channel) rule 
of Figure 6.3) defines a buffered channel c with type chan IT} and length a. This is 
similar to a globally instantiated channel in Promela (see page 28). We define the 
signature of c by signature(c) = (a, IT}). This is similar to the notion of channel 
signatures for Promela specifications defined in Section 5.1. We refer to channels 
declared in this way as static channels. The name of a static channel cannot be 

re-assigned (either by appearing on the left hand side of an assignment, or as an 
argument to a channel receive operation). If signature(c) = (a, IT}) we use cap(c) 
to denote the capacity of c, which is equal to a. 

A global variable declaration Tx=a associates a name x with a type TE 
lint, pid} and an initial value a. 

A Promela-Lite proctype is a parameterised process definition. A proctype 
has a list of parameters, and a set of statements contained in a do... od loop. - For 

simplicity we do not allow proctypes to declare local variables. In Promela, param- 
eters to a proctype and local variables are treated identically, thus any local variable 
can be equivalently declared as a parameter, with an initial value supplied as a run 
statement argument. For this reason we use the terms parameter and local variable 
interchangeably throughout this chapter and Chapter 7. 

Each statement has the form atomic I (guard) -> (update-list, Exe- 
cutability of the statement is decided by (guard), a boolean expression over vari- 
ables and channels of the specification. The effect of a statement is determined 
by (update-list, '; '), which is a sequence of updates to variables and channels. The 
atomic block which surrounds the guard and updates indicates that executing the 
statement results in a single transition of the system. Keywords to determine the 
length, fullness and emptiness of channels are provided by the language. 

The init process consists of a set of run statements. Each run statement 
instantiates a process of a given proctype, assigning initial values to all of its lo- 
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(spec) :: = (channel)* (global)* (proctype)+ (init) 

(channel) :: = (name) =[ (number) I of (type-list, 

(global) :: = (type) (name) = (number) ; 
(proctype) :: = (name) ( (param-list, do (statement-list, od 
(param) :: = (type) (name) 

(statement) :: = atomic { (guard) -> (update-list, Y) 

(guard) :: = (expr) x (expr) 
nfull ( (name) ) 
nempty ( (name) 
i (guard) 
(guard) && (guard) 
(guard) 11 (guard) 
( (guard) ) 

(update) : -= skip 
(name)= (expr) 
(name) ? (name-list, 
(name) I (expr-list, 

(init) init { atomic (run-list, 

(run) run (name) ( (arg-list, ', ')? 

(arg) :: = (name) 
(number) 
null 

(expr) :: = (name) 
(number) 

_pid 
null 
len ( (name) 
( (expr) ) 
(expr) o (expr) (where oE I+, 

(name) :: = an alpha-numeric string, which may include'_', and must start with a letter or 
with '-' 

(number) :: = an integer 

Figure 6.3: Syntax of Promela-Lite. 
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judgements 
r F- o r is a well-formed type environment 
F i- T T is a well-formed type in r 
rT TI, T2,..., Tk are well-formed types in F 
r e: T e is a well-formed expression of type T in F 
r iF: T el, e2,. . ., ek are well-formed expressions of types 

TI, T2,..., Tk respectively in r 
rý-f OK f is a well-formed Promela-Lite fragment in r 
rH fi OK (1 < i: 5 1) fl, f2,..., fi are well-formed Promela-Lite fragments in r 

General form of a type rule 
ri H Ji F2 I- J2 ... r, H (other conditions) (rule name) IF ý- j 

Figure 6.4: Notation for type rules. 

cal variables. The atomic block surrounding the run statements indicates that all 
processes in the specification are instantiated simultaneously, If process i is an in- 

stantiation of proctype p, we write proctype(i) = p. 
There is a special channel literal, null, which denotes an undefined channel 

reference, intended for use as a default value. The typing rules of Section 6.2 pre- 
vent the use of null for communication. The value 0 can be used as a default value 
for variables with pid type. Like Promela, each Promela-Lite process has a built in 

constant, _pid, which records its run-time instantiation number. This is defined as 
the position of its run statement in the init process. 

An example Promela-Lite specification is given in Figure 6.8 and discussed 
in Section 6.5. 

6.2 TýTe System 

We present a type system for Promela-Lite, using the notation of [23], adapted with 
shorthand notation from [98]. In Section 6.3 we present Kripke structure semantics 
for Promela-Lite specifications, and show that if P is a well-typed Promela-Lite 

specification then it has a well-defined associated Kripke structure (Theorem 11). 
A typhig etivironmetit r is an ordered list of distinct variables and their types, 

and has the form x1 : T1, X2 : T2 ...... Xk : Tk. Here x: T reads "x has type T". The 

empty typing environment is denoted 0, and the set of variables declared in typing 

environment r is denoted dom (r). We associate with ra set sc(r) consisting of the 

names of all static channels declared in r. We define sc(O) =0 (the first 0 denotes 

the empty typing environment, the second an empty set). 
Figure 6.4 surnmarises the forms of type judgement which we use, together 

with the general form of a typing rule. The judgements can be used to assert that an 
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environment r is well-formed, a type T is well-formed in r (see Section 6.1.2), an ex- 
pression is well-formed and has type T in F, and a fragment of a specification (e. g. a 
proctype declaration or a statement) is well-formed in IF. Intuitively, an expression 
or fragment is well-formed if it can be attributed clear semantics (so, for example, 
the expression '5+true' is not well-formed, whereas '5+6' is a well-formed expres- 
sion with type ffit), and an environment is well-formed if it is comprised of sensible 
variable declarations. Formally, asserting that an environment, type, expression or 
fragment is well-formed just means that it is regarded as legal by the type system. 
Given a language together with a type system and formal semantics, the intuitive 
and formal notions of well-formedness coincide if we can prove a theorem show- 
ing that well-formed sentences in the language are well behaved according to the 
semantics. 

For brevity, we use IF T to assert that types T1, T2,..., Tk are well-formed 
in r, and r ý- 7: T to assert that for 1<i<k, expression ei is well-formed and has 
type Ti in F. Similarly, r ý- fi OK (1 <i <_ 1) asserts that Promela-Lite fragments 
fl, f2,. . ., fi are all well-formed in r. A typing rule consists of a horizontal line, with 
a list of judgements and other conditions above the line, and a single judgement 
below. If the judgements and conditions above the line all hold then the truth of the 
judgement below the line can be inferred. 

Figure 6.5 gives a complete set of typing rules for Promela-Lite. The value 
?i referred to by rule T-PID-LITERAL is the number of processes in the specifica- 
tion, and is determined by the number of run statements in the init process. For 

presentation of the type system we introduce a tuple type, to represent the form of 
arguments for a proctype. A proctype which accepts an ordered list of arguments 
of types T1, T2,..., Tk has type (T1, T2,..., Tk). The symbols a and 7 refer to literal 

values; e, ei and F to expressions; c to a static channel; p to a proctype name; x 
and Y to local/global variable names (x could also be a proctype name in T-VAR); 

ui to updates; gi to guards, and ri to run statements. In rule T-PROCTYPE we use 
p (T Y) as shorthand for a proctype name together with a list of formal parameters 
X1, X2, ---0 Xk, where xi has type Ti (1 <i< k). We use alldiff (xi, X2. Xk) to assert 
that xi :A xj if i 34 j (i. e. the xi are all different). 

The rules T-SEND and T-RECV require that the fullness /emptiness of a chan- 
nel is checked before it can be used for communication. Note that in both rules the 
guard g and/or updates U2. U1 can be omitted (for conciseness this is not indi- 
cated in Figure 6.5). 

A literal value in the range 10, it} has both type pid and int according 
to the type system. We say that such a literal occurs in a pid coittext if it is assigned 
to a pid variable, sent as a pid argument on a channel, passed as a pid argument in a 
run statement, or compared with a pid variable using == or I =. We say that a literal 
a has type pid if it occurs in a pid context, otherwise it has type ffit. 
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Environment 

3 -, (T-ENv-0) I t-0 I t-- Ixe aomki) (T-ENV-X) 10F, 
x: T ý- oI 

a EIL (T-INT-LITERAL) I r-* ae ju, i,..., nk 
, (T-PID-LITERAL) 

a: int F ý- a: pid 

ro ýrl PrOC"e SCope (T- PID) 
r I- e: T (T-PARENTHESlS-e) 

F ý- 
_pid: pid r ý- (e) :T 

rFo r ý- T, 
T-NULL) 

rx: Tr' Fo 
(T-VAR) 

r ý- null : chan ITI ' Fx: Tr'F x: T 

r ý- el : int rF e2: int oE (+, 
(T-ARITH) 

rFc: clwn fTj 
(T-LEN) 

r ý- e, o e, : in tF ý- len (c) - int 

i t- el : int i t-- e2 : int MEI<, <-, >, >= f (T-REL) 
F ý- el m e2 OK 

F ý- el :Tr I- e2 :T ME (=-, 1=1 TA (TI, T2,. .., 
TO 

(T-EQ) 
F ý- el D4 e2 OK 

r ý- g oy. (T-PARENTHESIS7g) 
r ý- gOK (T-NOT) 

r I- (g) OK rý- IgOK 

r ý- g, oK r ý- g, OK (T-AND) 
r t- gý OK r ý- g2 OK (T-OR) 

rP gi &&gl-, OK rPg, g2 37 
Bas "ic -u p-Ta -te -s 
I F-x: 'i I ý- e: Tx 14 Sc(r) T --pL (TI, T2,..., I j) 

(T-ASSIGN) 
F ý- 0 (T-SKIP) 

rPx= eOK r ý- skip OK 

F ý- gOK r i- ui oy, (l !, ý i ! ý, i) 
(T-UPDATE) 

r ý- atomic f9- ý- lil, U2; ... ; Ul I OK 

r goK rx: chanM r ý- 7: T rF uj OK (2! 5 i! ý 1) 
(T-SEND) 

FF atomic (g) && nful 1 (X) ->C 17; U2; ... ; Ul I OK 

r i- g oK r ý- x: chanf-T) r ý- 7: -T 
r ý- Ui OK (2 -! 5 i! 5 1) alldiff(T) fTj n sc(r) =0 (T-RECV) 
atomic ( (g) && nempty (X) ->C? T; U2; ... ; ul )OK 

- 

r, x: T F- (global)* (proctype) -' (init) OK 
n- a: TTE fint, pid) x tt do? n(F) (T-GLOBAL) 
r I- Tx-a; (global)* (proctype) + (init) Ox 

r, c: chanfTJ ý- (diannel)* (global)* (proch 
. Ipe)+ (init) OK 

rý-T c Q! dom(r) a>0 (T-sc) 
rF chan c- (a] of IT}; (channel) *(global)* (prochjpe)+ (init) 0_ 

rf-T Fj: T ý- si OK (1: 5 i< 1) 
r, p: (T) I- (procývpe)* (init) OK jp, Tj n dom(F) =0 alldiff(p, *K) 

(T-PROCTYPE) 
r ý- proctype p (T T) ( do s, -* : S2 ... :: sl od I (pmctjipe) * (init) OK 

r ý- P: (T) rý-T: T TCZUfnulllux(r) 
(T-RUN) 

r ý- lUn p (W) OK 

r ý- ri OK (1 :5i< k) 
(T-INIT) 

r ý- init atomic ( rl; r2; ... ; rk OK 

Figure 6.5: Type system for Promela-Lite. 
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A Promela-Lite spedfication P has one of the three forms: 
1. chan c= [a] of (channel)* (global)* (proctype) '(init) 

2. Tx=a; (global) * (proctype) ' (init) 
3. proctype p (T 7) 1 do s, S2 sl od } (proctype)* (init) 

depending on whether or not there are any channel or global variable declarations 
in P. Depending on which formP takes, one of the typing rules T-SC, T-GLOBAL 

or T-PROCTYPE is applicable. We say that P is well-typed if 0 ý- P OK. We now 
present Kripke structure semantics for Promela-Lite, and show that these seman- 
tics unambiguously define the model associated with a well-tYPed Promela-Lite 

specification. 

6.3 Kripke Structure Semantics 

Let P be a Promela-Lite specification with n processes for some n>0 (i. e. there are 
it run statements in the init j atomic I ... }} block). We now detail the seman- 
tics of P as a Kripke structure M. We show that if P is well-typed according to the 
type system of Section 6.2 then the Kripke structure M is well-defined. 

For a well-formed type T, let lit(T) denote the set of all possible literal val- 
ues which can have type T in the specification P. Thus lit(int) = Z1, lit(pid) = 
10,1,..., n} and lit(clzanjT}) = Ic :c is the name of a static channel with 
c: c1wiijT}} U (null}. Note that typing rule T-NULL ensures that null is a literal 

value for any well-formed channel type. 
We define the doniaiii of a variable or static channel as follows. If x is a global 

or local variable of type T then the domain of x is lit (T). If c is a static channel with 
sig? iature(c) = (1, JT1, T2,..., Tkj) (for some k, I> 0) then the domain of c is the set: 

1[(al, l, al, 2,..., al, k)i 
(azl, 42,2, ---, a2, k),..., (a.,,, a., 2,..., a,,, k)] 

:<m<1, aij E lit(Tj) (1 <i<m, 1<j: 5 k)}. 

This set consists of all possible sequences of messages for the channel, including 
the empty sequence [ ]. 

Let p be a proctype in P, and xa parameter of P. Suppose that proctype(i) 
p for some i (1 :5i <- it). We use p[i]. x to denote the local variable x for tl-ds process. 
If c is a channel with type chaitITI, T2,..., Tk}, we use das a shorthand for a message 
(a,, a2, - .., ak) on c (where ai : Ti, 1<i< k). 

6.3.1 States of a specification 
A state of a Promela-Lite specification P can be expressed as an ordered tuple con- 
sisting of a value for each variable in the specification, using the notation preceding 
1. In practice, lit (int) is a finite range of integers which can be represented using a fixed word size. 
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chan A- Ell of ipid, chanfint)); chan B- 121 of {int); chan c= [21 
of (int); pid leader = 0; 

proctype user(chan(int) in; chanfint) out; int x) { 

init ( 
atomic 

run UBer(B, C, O); 
run user(C, B, O); 

Figure 6.6: Part of a simple Promela-Lite specification. 

Definition 1 (Section 2.2), where the domain of each variable is as described above. 
However, it is more convenient to reason about a state as a set of propositions. 

If s is a set consisting of exactly one proposition of the form (x = a) for each 
variable x in P (where a is a value in the domain of x), then s can be converted into 

a state by writing the value of each variable and static channel as an appropriately 
ordered tuple. Thus we can equivalently (and more conveniently) reason about a 
state as a set of assignments to variables. 

Figure 6.6 shows part of a simple Promela-Lite specification with three static 
channels, A, B and C, a global variable leader and two instantiations of a user 
proctype. If we order the static channels and global variables as they appear in the 
specification, and order the local variables of user 1 before those of user 2, then an 
example state of the associated model is: 

([(1, B) ], [4,5], [ ], 1, B, C, 0, C, B, 0). 

Using the equivalent set-based notation we have: 

s=f (A =[ (1, B) 1), (B = [4,5]), (C =[ 1), (Icader = 1), 
(user[1]. iiz B), (user[1]. out C), (user[1]. x 0), 
(user[2]. in C), (user[2]. out B), (user[2]. x 0)}. 

We will use the latter notation in the rest of this chapter, and in Chapter 7. 
The set S of (potential) states of M consists of every possible assignment to vari- 
ables and channels of P. As discussed in Footnote 1 (page 118), the range of allowed 
integer values is finite, thus S is a finite set. 

6.3.2 Initial state 

The values with which global variables are assigned on declaration, together with 
the parameter values which are passed to proctypes in run statements, determine 
the initial state of M. 

For a global variable x with x: T, let init(x) denote the value in lit(T) to 
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which x is assigned at its declaration. For a local variable p[i]. x with p[i]. x : T, let 
hdt(p[i]. x) denote the initial value in lit(T) to which x is assigned in the ith run 
statement. M has a single initial state so, defined thus: 

so = f(c=[]): cisastaticchannelnameinP}U 
I (x = fitit (x)) :x is a global variable of P} U 
I (p[i]. x = hift(p[i]. x)) :x is a parameter of proctypep 
instantiated by the ith ruit statement (1 <i< n)} 

6.3.3 Expression evaluation 

We define a function evalp, i which takes a state sES and an expression e of the 
form (expr) (see Figure 6.3), and returns the value of e when evaluated at s in the 
context of process i with proctype(i) = p. Let sES be a state of M. Then: 

" evalp, j (s, x) =a if (x = a) Es (i. e. x is a global variable) 

" evalpj (s, x) =a if (p [il. x = a) Es (i. e. x is a local variable of p) 
" evalp, j (s, c) =c if c is a static channel name or null 
" evalpj (s, a) =a if aEZ 
" evaIp, j(s, _pid) =i 
" evalpi(s, len W)=m if c is a static channel and (c d2,..., d, *, ]) 

s (0 <m :5 cap(c)) 
" evall,, i (s, 1 en (nu 11) )=0 

" evalp, j (s, 1 en W)= evalp, j (s, len (c)) if (p[i]. x = C) Es 

" evalpj(s, (e) )= evalp, i(s, e) 

" evalp, j (s, el o e2) = evalp, j (s, el) o evalpj (s, e2) (where 0E 
As discussed in Footnote 1 (page 118), lit(int) is a finite range of integers in prac- 
tice. Let min(int) and tnax(int) denote the minimum and maximum values in tl-ds 

range, and assume min(int) < 0. If the result evalp, i(s, el) o evalpj(s, e2) falls out- 
with the allowed range, we define evalpi(s, el o e2) = ((evalp, i(s, el) o evalp, i(s, e2) + 
Iminj) mod (max - min)) - Iminj. This definition means that the result of such a 
calculation is truncated so that e. g. nwx(int) +1= min(int). This follows the ap- 
proach used by SPIN to deal with out-of-range operations in Promela specifications 
[921. 

6.3.4 Satisfaction of guards 
We use the evalpj function to define a relation [--pi between states and guards which 
determines whether a guard holds at a given state. For a guard g of the form (guard) 
(see Figure 6.3) and a state sES, with p and i as above, s ý--pj g means that the 
state s satisfies the guard g in the context of p and i. The relation 1---p, i is defined as 
follows: 
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s ý=pj elm e2 iff evalp, i(s, el) m evalp, i(s, e2) (where ME 

>=})2 

S F--pi nf ul 1(c) iff (c d2*,. dm*l) Es and cap(c) > m, where c is a 

static channel 

"S ý--pj nempty(c) iff (c [d*,, a2,. 41) Es and m>0, where c is a static 

channel 

"S ý=pj nfu11(x)/nempty(x) iff (p[i]. x = c) Es and s ý=pj nfull(c)/ 

nempty(c), where x is a locally declared channel of p 

"s ý=P, i Ig iff s V=o g 

"s ý=pj gI &&g2 iff s ý=pj gI and s ý=pj g2 

"S 1--p, i 91 1192 iff S ý=pj gj or s ý=pj 92 

"s ý=P, i (g) iff S 1--P, i g. 

6.3.5 Effect of updates 

For a proctype p, variable name x and process identifier i wiffi proctype(i) = p, 
define: 

var(x) 
x if x is a global variable 
p[i]. x if x is a local variable 

For each update u described by the (update) rule in Figure 6.3, the effect of 
u on a state s (in the context of a process i with proctype p) is given in Figure 6.7. 
In each case we define the update u, the conditions under which u applies, and 
the result of applying u to s (denoted execpj (s, u)). Given a sequence of updates 
Uli U21 ---i Uk and a state s the rules of Figure 6.7 can be applied repeatedly to 
define the state reached by executing the ui in sequence, starting in state s. The 

resulting state is denoted execp, j(s, U1; U2; ... ; Uk), where execp, i(s, ul; U2; ... ; Uk) 

execp, i (... execpj (execp, i (s, u 1) 1UA, ---I Uk) - 
Note that for certain updates it may be the case that none of the rules of 

Figure 6.7 are applicable. For example, suppose (c = [dj, d2,..., d, *nD E s, where 
m= cap(c), i. e. the static channel c is full in state s. In this case there is no rule 
which defines the effect of executing 'clei, e2, -.., ek',, since a condition of the rule 
for sending on static channels is that the channel must not be full. We say that 
execp, i(s, u) is undefined if no rule of Figure 6.7 is applicable. 

A state s is well-defined if it can be equivalently expressed as a tuple. 
This is the only the case if it contains exactly one proposition for each variable 
of P. Thus for the state resulting from an update to be well-defined it must be 
the case that the rule corresponding to the update removes propositions about a 
distinct set of variables, then adds one proposition for each variable. For an arbi- 
trary Promela-Lite specification this is not necessarily the case. Consider an update 

2. Strictly, m on the right hand side of'iff'is =, 0,: 5 or >-if >o on the left hand side is ==,! =, <=Or 
>. respectively. 
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U Conditions on s Resulting state execy,, i(s, u) 
'skip' none 

- 
5 

'x - e' S (var(x) = a; 7EF (s\f(var(x) =a) 1) Uf(var(x) =evai,,, i(s, e)) I 
'ciej, e2,..., ek' 

-77171,472- ES 

s ý--pý nfull(c) J(C (evalpj(s, ej), eval,, (s, e2),..., 
evalp,, (s, ek))])) 

C? Xl, X2, ---, Xk' 
--ýc 7- F7-1- arl,. Jal, 2,..., alk), 

r: s (var(xi) = bi), (var(x2) = b2),..., (var(Xk) = bk)I)U 

s pi empty(c) {(c (var(xi) = al, l), (Var(x2) = al, 2), 
(-r(Xi) = bi) Es (1 <j< k) 

.... 
(var(xk) = alk)l 

(Pjij. X = C) ES execp, i(s, 'c lej, e2-.., eý) (if well-defined) 
I 'X? XI, X2, ---, Xk' (p[II. X = C) E5 exec,,, (S, 'C? xl, x2,. -., xj) (if wellmdefined) 

Figure 6.7: Update execution rules. Eadi rule is interpreted in the context of process i 
which is an instantiation of proctype p. 

#c? x, x', where c is a static channel and x is a global variable. Suppose (x = a) E s, 
(c = [(al, a2)1) Es and al ýý a2. The rule for executing receive updates constructs 
state execpj(s, 'c? x, x) by removing (x = a) from s, then adding the propositions 
(x = a, ) and (x = a2)- Thus execpj(s, 'c? x, x1) is not well-defined. 

The following theorem states that, for a well-typed Promela-Lite specifica- 
tion P, if the guard associated with a statement of P is satisfied at state sEM, 
then the rules of Figure 6.7 lead to a well-defined next-state t. In other words, the 
theorem shows that execution of a well-typed specification at a given state can al- 
ways progress if some process has a guard which is true at the state. The proof is 

presented in Appendix B. 1. 

Theorem 11 (Progress theorem) Let P be a well-typed Promela-Lite specification 

with associated model M, sa state of M, atomic fg-> ul; U2; ... ul Ia state- 

ment of proctype p, and i the identifier of an instantiation of p. Supposes ý=pj g. 
Then execpi(s, UI; U2; ... ; ul) is well-defined. 

From now on, when we refer to a Promela-Lite specification P we assume 
that P is well-typed. 

6.3.6 Deriving a Kripke structure 

Let P be a Promela-Lite specification. The states S and initial state so of M are 

as defined above. The transition relation R is defined as follows. Let sES and 
let atomic {g -> Ul; U2; ... ; uk I be a statement of proctype p in P. Suppose 

process i is an instantiation of p. If s ý=pj g then (s, execp, i(s.. Ul; U2; ... ; Uk)) E R. By 
Theorem 11, execpj (s, U 1; U2; ... ; Uk) is well-defined. 
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6.4 Promela-Lite - Promela 

Promela-Lite is not a subset of Promela since it includes extended notation for chan- 
nel types, and the built-in null constant. 

Let P be a Promela-Lite specification. Then P can be converted into a 
Promela specification as follows. Firstly, unfold all recursive type expressions in 
? so that they have the form chan IT} (where the types comprising T may be re- 
cursive). Secondly, replace every type expression of the form chanfT} with chan. 
Finally, add the declaration chan null =[01 of IT} to the beginning of the 
specification, where T is any Promela type (e. g. bit). 

The Promela-Lite semantics described in Section 6.3 are based on: the se- 
mantics for Promela described informally in [92], four years of SPIN use, and the 
SPIN source code. The semantics have been designed so that if P is a well-typed 
Promela-Lite specification and P' the corresponding Promela specification then P 

and P' have the same associated model. In Appendix C. 1 we discuss, in detail, the 
Promela features which Promela-Lite omits. 

6.5 Example: Load-balancing 

To illustrate Promela-Lite we now discuss an example specification of a message 
passing system, given in Figure 6.8. The specification consists of three server pro- 
cesses, six client processes and three loadbalancer processes. A particular client has 
been blocked by the system, indicated by the global pid variable blocked_client. 

A loadbalancer process continuously receives requests sent by client pro- 
cesses. A requestconsists, of twoparts: the identity of a client (derived from its 

_pid 
variable), and the input channel of the client. If the message is from the blocked 

client then the loadbalancer sends back the value 0, indicating that the request has 
been denied. Otherwise the loadbalancer forwards the name of the input channel of 
the given client to the server with the shortest queue of incoming messages (choos- 
ing non-deterministicaRy between servers which share the shortest queue length). 
On receiving a client channel name, a server uses it to send the value 1 to the client, 
whid-i abstractly represents the result of the request. 

The specification has a dynamic communication structure since channel ref- 
erences are passed between processes. 

Summary 

In order to allow the rigorous development of automatic symmetry detection tech- 
niques for Promela, we have presented the syntax, type system and Kripke struc- 
ture semantics for Promela-Lite, a specification language which captures the essen- 
tial features of Promela, but is easier to work with in practice. We have illustrated 
Promela-Lite using a specification. of a loadbalancing system. 



6.5: EXAMPLE: LOAD-BALANCING 124 

chan sel - [3) of (chan(int)); 
chan se2 - 131 of (chan(int)); 

chan se3 = [31 of (chan(int))l 

chan lbi - Ell of (pid, chanjint)); 
chan lb2 - [I] of lpid, chanfint)); 
chan lb3 - [11 of (pid, chan(int)); 

chan cll = (11 of (int); chan c12 = [11 of (int); 
chan c13 - [11 of (int); chan c14 - Ill of (int); 
chan C15 - Ell of (int); chan c16 - Ill of (int); 

pid blocked_client - 9; 

proctype loadbalancer(chan[pid, chan(int)) in; 
chan(int) client-link; pid client_id; int pc) 

do 
atomic pc=-l && nempty(in) -> in? client-id, client_link; 

pc -2 
atomic pc--2 client 

- 
idl-blocked client -> pc -3 

atomic pc=-2 client id==blocked7client && 
nfull(client-link) -> client_linkIO; pc =4 

atomic pc.. 3 && len(sel)<=Ien(se2) && len(se1)<=len(se3) 
&& nfull(sel) -> seliclient 

- 
link; pc -4) 

atomic pc=-3 && len(se2)<=len(seI) && len(se2)<=len(9e3) 
&& nfull(se2) -> se21client 

- 
link; pC =4) 

atomic pc. =3 && len(se3)<=len(sel) && len(se3)<-len(se2) 
&& nfull(se3) -> se3tclient-link; pc -4) 

atomic pc--4 -> client-id = 0; client-link - null; pc =I 
od 

proctype server(chanichanfint)) in; chan(int) client-link; int pc) 
do 

atomic pc-=l && nempty(in) -> in? client_link; pc =2 
atomic pc-=2 && nfull(client-link) -> client_link1l; 

pc -3) 
atomic pc--3 -> client-link - null; pc =1 

od 

proctype client(chan(int) in; chan(pid, chan(int)) lb; 
int response; int pc) 

do 
atomic pc--l && nfull(lb) -> lbl_pid, in; pc -2 
atomic pc--2 && nempty(in) -> in? response; pc -3 
atomic pc--3 -> response = -1; pc =1 

od 

init ( 
atomic 

run server(sel, null, l); run server(se2, null, 2); 
run server(se3, null, 3); run loadbalancer(lbl, null, 0,1); 
run loadbalancer(lb2, null, 0,1); run loadbalancer(lb3, null, 0,1); 
run client(cll, lbl, -1,1); run client(cl2, lbl, -1,1); 
run client(cl3, lb2. -I, I); run client(cl4, lb2, -1,1); 
run client(cl5, lb3, -1,1); run client(cl6, lb3, -1,2); 

Figure 6.8: Promela-Lite specification of a loadbalancing system. 



Chapter 7 

Finding Symmetry by Static Channel Diagram Analysis 

The examples in Chapter 4 have led us to identify some problems with existing 
symmetry detection teclu-tiques using scalarsets and input language restriction. 
These approaches cannot handle certain kinds of symmetry which arise from the 
communication structure of a system, and they place undue restrictions on the form 

of specifications; in particular the way in which process identifiers may be used. In 
Chapter 5 we established a correspondence between channel diagram automor- 
pl-dsms and Kripke structure automorphisms, for these example specifications. 

In this chapter we introduce the static cliannel diagram of a Promela-Lite spec- 
ification. This diagram type is similar to the channel diagram, but can be extracted 
by syntactic inspection of a specification even if the associated model is intractably 
large. We formally establish a general correspondence between automorphisms of 
the static channel diagram and automorphisms of the Kripke structure associated 
with a Promela-Lite specification. 

We present a symmetry detection technique based on this correspondence, 
which can be surnmarised as follows: generators for a group of candidate symme- 
tries for a Promela-Lite specification are found by analysing the static channel di- 

agram of the specification. These generators are checked individually against the 

specification to see if they induce valid automorphisms of the associated model. 
Starting with the set of candidate generators which are valid, the largest possible 
subgroup of candidate symmetries which are all valid is computed. These symme- 
tries can then be used for reduced model checking. 

Unlike previous approaches to symmetry detection, our approach can de- 
tect arbitrary component symmetries arising from the communication structure of 
a specification. The approach can be fully automated (as we demonstrate in Chap- 
ter 8), and requires no additional information from the user. The only requirement 
is that the specification satisfies certain restrictions wl-dch are formally described 

using the type system of Section 6.2. The restrictions can be automatically checked, 
and are less strict than those imposed by the scalarset data type or the SMC input 
language. 

At the end of this chapter we discuss various ways in which the technique 
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could be extended to further reduce restrictions on the form of a specification, and 
to capture symmetry between global variables. We emphasise that the static chan- 
nel diagram is merely used as a heuristic for finding a good group of candidate 
symmetries, and discuss other possible diagram types. 

7.1 Static Channel Diagrams 

Let P be a Promela-Lite specification with n processes. Let Vp = {1,2,..., ii} be the 
set of process identifiers, and VC the set of static channel names for P. Recall from 

rules T-SEND and T-RECV (Figure 6.5, Section 6.2) that a Promela-Lite statement 
involves at most one send or receive update, and this update must appear at the 
beghu-dng of the sequence of updates for the statement. 

Definition 27 The static channel diagram associated with P is a coloured, bipartite 
digraph SCV (P) = (V, E, C) where: 

"V= Vp U VC is the set ofprocess; identifiers and static channel names inP 

" For iE Vp, cE VC and proctype (i) = p, 
(i, c) EE iff p has a statement of the form 'atomic {g-> (name) i el, e2, 

.... ek; U2; ... ; ul }'where (name) is c, or (name) is a parameter of p 
initialised with value c 
(c, i) EE iff p has a statement of the form 'atomic Ig-> (name) ? xl., X2. 

-, Xk; U2; ... ; ul }'where (name) is c, or (name) is a parameter of p 

mitialised with value c 
C is a colouring function defined by C(v) = proctype(v) if VE Vp, and 
C(v) = signature(v) if VE Vc. 

The difference between the static channel diagram of a Promela-Lite specification 
and the channel diagram of a Promela specification (Definition 26, Section 5.1) 
is that the channel diagram records all possible channel-based communication, 
whereas the static channel diagram records potential communication on certain 
channels. The static channel diagram of a specification can be seen as a static ap- 
proximation of the communication structure for the specification. It does not cap- 
ture communication arising from dynamic passing of channel references, and edges 
of the diagram may result from send/receive updates which in practice cannot be 

executed in any reachable state of M. 

7.1.1 Deriving static channel diagrams 

Given a Promela-Lite specification P, SCD(P) can be efficiently derived via a sin- 
gle pass of P. The node set and colouring can be deduced immediately from the 
declaration of static channels and the run statements. 



7.1: STATIC CHANNEL DIAGRAMS 127 

If a proctype p involves an explicit send /receive on static channel c then ail 

edge (i, c) I (c, i) is added to the diagram for each iG V1, such that pwctype(i) = 1). 
Each channel parameter x of p is marked as a send parameter and/or a receive pa- 

rameter if 1) contains an update of the form X! C1, e2, ---i ek and/or X? X1, X2, ..., Xk- 
For each iE V1, with proctype(i) = p, suppose the actual value for x in the ith run 

statement is c (where c is a static channel name). If x is marked as a send/receive 

parameter then an edge (i, c) / (c, i) is added to the diagram. 
The next result follows from the above discussion: 

Proposition 4 Let P be a Promela-Lite specification. The complexity of deriving 

SCD('P) fromP is linear in the size of P. 

Therefore, unlike deriving the channel diagram of a Promela specification (Sec- 

tion 5.1.1), it is possible to derive SCD(P) from a Promela-Lite specification P 

even if A4 is intractably large. 
Figure 7.1 shows the static channel diagram for the Promela-Lite specifica- 

tion of the loadbalancer system, given in Figure 6.8. The graphical notation is sim- 
ilar to that for channel diagrams introduced in Section 5.1. Note that there are no 
outgoing edges from the server processes to the clietit input channels. This is because 

communication from a server process to a clietit channel is achieved dyllaillically, us- 
ing the channel reference passed to a server by one of the loadbalancer processes. 

The state-space associated with the corresponding Promela version of the 

specification (derived using the method described in Section 6.4) is intractably 
large, thus we cannot compute its associated channel diagram. 

Figure 7.1: Static channel diagram associated with the loadbalancer specification (Fig- 

Lire 6.8). 
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7.2 Static Channel Diagram Automorphisms 

An automorphism of the static channel diagram SCV (P) = (V, E, C) is an au- 
tomorphism of the directed, coloured graph (V, E, C) (see Definition 19, Sec- 
tion 3.1.5). The group of all automorphisms of SCV(P) is denoted Aut(SCV(P)). 
This is analogous to the notion of a channel diagram automorphism (see Sec- 
tion 5.1.2). For it E Aut(SCV(P)) we define a(0) =0 and a(nuil) = null, 
where 0 and null are the default values used by variables of type pid and chait 
respectively. 

Since SCV(P) is a small graph (its size is proportional to the size of P), 
the group Aut(SCV(P)) can be efficiently computed directly using a standard al- 
gorithm such as nauty [125], or via GRAPE as described in Section 5.1.2 (for chan- 
nel diagrams). Let P denote the loadbalancer specification of Figure 6.8. The static 
channel diagram SCV(P) is shown in Figure 7.1. Using GRAPE we find: 

Aut(SCV(P)) = ((7 8) (cll c12), (9 10) (c13 c14), (1112) (cI5 c16), 
(4 5) (Ibl 1b2) (7 9) (cll c13) (8 10) (c12 c14), 
(5 6) (1b2 1b3) (9 11) (c13 c15) (10 12) (c14 c16), 
(12) (sei se2), (2 3) (sei se2». 

Recall that i is the pid of the ith proctype inistantated in the init process. 
It is straightforward to check that each generator of this group is indeed 

an automorphism of SCD(P). We have used GAP to show that Aut(SCV(P)) C-- 

S3 X (S2 I S3). Intuitively, the wreath product group S2 I S3 arises due to symmetry 

within each of the three blocks of clients (the group SA combined with symmetry 
between the three blocks (the group SA The group S3 on the left hand side of 
the direct product corresponds to permutation of the server processes (and their 

associated channels). 
We now define the image of P under an element of Aut(SCD(P)), and an 

action of Aut(SC*D(P)) on the states of M. 

7.2.1 Image of P under &E Aut(SCD(P)) 

Let P be a Promela-Lite specification and aE Aut(SCD('P)). The specification 
a (P) is obtained from P by replacing every applied occurrence of a static channel 
name c with a(c); every occurrence of a value aE in a pid context 
(see Section 6.2) with it (a), and permuting the order of run statements so that run 
statement i appears in position tt(i) in a (P) (1 <i< n). 

Similarly, given an expression e, guard g, update u or statement s of 'P, the 
expression a (e), guard a (g), update a (u) or statement a (s) is obtained by replacing 
every static channel name c and pid literal a with a (c) and a (a) respectively. 
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7.2.2 Action of Aut(SCD(P)) on the states of M 

Let it E Aut(SCV(P)). We first define the effect of a on propositions which refer to 
variables and static channels of P: 

" Let (x = a) be a proposition referring to a global variable x with xT and 
aE lit(T). If T= pid then a ((x = a)) = (x =a (a)), otherwise a ((x a)) = 
(x = a). (Note that the Promela-Lite type system ensures that TEI hit, pid}. ) 

" Let (p[i). x = a) be a proposition referring to a local variable x of process 
i, with x: T and aE lit(T). If T= pid or T= clwnlT} then &((p[i]. x = 
a)) = (p[&(i)) = a(a)). Otherwise a((p[i]. x = a)) = (p[a(i)] = a). Since 

a preserves the colouring of processes according to their proctype, process 
a(i) is also an instantiation of proctype p and therefore the local variable 
p [a (i) ]. x exists. Thus the action of a is well-defined. 

" Let (c = [XI, ir2,..., be a proposition referring to a static channel c with 
signature (1, I-T}) where 0: 5 m<1. Then a((c = [dl, X2,.. = (a(c) = 

If d, = (aj, a2P-, ak) then 4' = (bj, b2,..., bk) where 
bi = it (ai) if Tj = pid or Ti = clian{U} and bi = ai otherwise. The action of a 
is well-defined as a preserves the signature of static channels. 
Let M= (S, so, R) be the model associated with P. Recall that a state sES 

is a set of propositions, one for each variable and static channel of P. The state a (s) 
is defined as follows: a (s) =fa (z) :zE s}. 

For all SES and a, P E Aut(SCV(P)), it is clear that (ap)(s) = a(fi(s)) 
and id(s) = s, therefore thedefinitionof a(s) is anaction of Aut(SCD(P)) on S (see 
Definition 13, Section 3.1.3). 

7.3 Correspondence Result 

Let p be the permutation representation of Aut(SCD(P)) corresponding to its 

action on S. By Theorem 3 (Section 3.1.3), p(Aut(SCD(P))) :! ý Sym(S). Now 
Aut(M) :5 Sy? ii(S), but we cannot, in general, say anything about the relationship 
between p(Aut(SCD(P))) and Aut(M) with respect to the subgroup relation. 

In this section we define what it means for an element of Aut(SCD(P)) to 
be valid for P, and show that the set of all valid elements of Aut(SCD(P)) form a 
subgroup G :5 Aut(SCV(P)). We prove that if aE Aut(SCD(P)) is valid for P 
then p(a) E Aut(M). Thus p(G) :5 Aut(M). The relationship between the various 
groups is illustrated in Figure 7.2. 

7.3.1 Valid elements of Aut(SCD(P)) 

We say that two Promela-Lite specifications P, and P2 are equivalent, and write 
P, =- P2, if they are identical up to re-arrangement of statements in the do... od 
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Aut(SCD(*P)) 

.......... 
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p(ALt(SCD(P))) 

Figure 7.2: Relationship between valid automorphisms of SCE)(P) and aUtOrnor- 
phisins of AA. 

construct, and operands to the commutative, associative operators +, *, && and 
For brevity, we then say that PI and P2 are identical "up to re-arrangement". 

An element aC Atit(SCD(P)) is valid forP if a(P) =- P. 

Theorem 12 Let G= ja E Aut(SCD(P)) :a is valid for Pl. Then G< 

Aut(SCD(P)). 

Proof Since id(P) = P, clearly id(P) -- 'P, thus id E G. Associativity is inher- 

ited from Aitt(SCD(P)). Let a, ýEG. Then it (P) and P(P) are identical to P up 
to re-arrangement. It follows that aý(P) -- 

V (by successively applying the rear- 

rangements of a to those of ý), i. e. aý E G. Since AW(SCD(P)) is finite, aI= iyk 
for some k>0, thus a1cG by the above argument. The result follows. 0 

If H is a subgroup of Aut(SCE)(P)) such that every element of H is valid 
for P we say that H is valid for P. The group G of Theorem 12 is the largest valid 

subgroup of Aut(SCD(P)). 
To check whether 'P -- a(P) for aC Aut(SCE)(P)), we use a function 

iiontialise. The specification iiontialise(P) is obtained from P by sorting the state- 

meiits in the do ... od loop of a proctype and the operands of commutative oper- 

ators, using the natural ordering on strings. It is clear that if two specifications are 
equal after normalisation then they are equivaletit. Thus aE A11t(SCD('P)) is valid 
for P if i zoritin list, (P) = tiorittalise(ix(P)). This provides an efficient, conservative 
test of validity for elements of Aut(SCE)(P)). Since the complexity of sorting a list 

of length k is 0(klog(k)), we have: 

Proposition5 Thecomplexity of checking whether'P =- a(P) is O(IPI log(IPI)). 
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7.3.2 Main result 

In this section we prove the following theorem: 

Theorem 13 Let P be a Promela-Lite specification, and aE Aut(SCD(P)). If a is 

valid for P then p(a) E Aut(M). 

For case of presentation, we shall use a(s) rather than p(a) (s) to denote the image 

of s under the element p(a). The proof of Theorem 13 uses two technical lemmas, 

proofs of which are given in Appendix B. 2. 

Lemma 1 If aE Aut(SCD(P)) and g is a guard in P then 

a(s) a(g). 

Lemma2 Letul, u2 ...... uk be updates of P, aE Aut(SCD(P)) and sa state such 
thatexecp, i(s.. UI; U2; ... ; uk) is well-defined. Then 

execp, jt(j)(a(s)j a (Ul); C02); ... ; ft(Uk)) = a(execpi(s.. u,; U2; ; Uk))- 

Proof of Theorem 13 By Definition 20 (Section 3.2), we must show that (i) if (s, t) E 
R then (a (s), a (t)) E R, and (ii) a (so) = so. 

If (s, t) ER then there is a process with pid i such that proctype(i) =p 
(for some proctype p), and a statement z in p such that the guard of z holds for 

process i at s, and execution of the updates of z by process i at s leads to state t. 
Since it (P) =- P the statement a (z) (possibly re-arranged) also appears in proctype 
p. By Lemma 1, the guard of a (z) holds for process a (i) at a (s), and by Lemma 2, 
execution of the updates of a(z) by process a(i) at a(s) leads to state a(t). Therefore 
(a (s), a (t)) E R. 

We must show that for any proposition (v = d) in so, a ((v = d)) E so also. 
In so, all static channels are empty, so for any static channel c, the propositions 
(c =[ ]) and a ((c =[ ])) = (a (c) =[ ]) both belong to so. For each global variable 
x, (x = xo) E so, where xo is the initial value for x (specified at declaration). If x: ifit 
then a ((x = xo)) = (x = xo) E so. If x: pid then we must have a (xo) = xo (since 
a(P) =- P), so a((x = xo)) = (x = a(xo)) = (x = xo) E so. 

For any local variable x, suppose xo is the initial value given for x in run 
statement i. Then (p[ij. x = xo) E so. Let yo be the initial value given for x in run 
statement a(i), so that (p[a(i)]. x = yo) E so. If x: hit then, since P a(P), the 
value for x in run statements i and a(i) must be the same, i. e. xo yo. So we 
have a((p[i]. x = xo)) = (p[a(i)]. x xo) = (P[a(i)]-X = yo) E so. Suppose that 
x: pid or x: cliaiff. Then, since Pa (P), the value for x in run statement a (i) 
is the image under a of the value for x in run statement i, i. e. yo =a (xo). We have 
A((p[i]-X = Xo)) = (p[a(i)]. x = a(xo)) = (P[It(i)]. x = yo) E so. M 
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7.4 Finding the Largest Valid Subgroup of AW(SCD(P)) 

We showed in Section 7.3.1 (Theorem 12) that the set G consisting of all elements of 
Aut(SCD(P)) which are valid for P is a subgroup of Aut(SCD(P)). G is thus the 
largest subgroup of Aut(SCD(P)) which is valid for P. 

In this section we present an algorithm to find this subgroup. First we es- 
tablish some preliminary results. For the relevant group theoretic definitions, see 
Section 3.1. 

Lemma 3 Let X be a set of generators for Aut(SC*D(P)). Let X' EX 
a is valid for P}. Then (XI) is valid for P. 

Proof By definition of G, X' C G. Therefore (X') < G, and the result follows. 0 

Lemma 4 Suppose H< Aut(SCD(P)) is valid for P and aE Aut(SCD(P)) is 

valid for P. Then (H U ja}) is valid for P. 

Proof Since H is valid for P, H <- G. Similarly, since a is valid for P, aEG. Thus 
HU ja} C G. It follows from Lemma 3 that (H U ja}) :5G. 0 

Our algorithm for finding G starts with a known valid subgroup H of 
Aut(SCV(P)), and adds valid coset representatives (see Definition 6, Section 3.1.1) 
to the generators of H to obtain successively larger valid subgroups. The following 
lemma is used to determine when G has been found. 

Lemma 5 Suppose H< Aut(SCD('P)) and His valid for?. Let jaliLx2---., Lxkj 
be a set of coset representatives for H in Aut(SCV(P)), where oil E H, ai E 
Aut(SCD(P)) \H for2 <- i 

-< 
k and k= JAut(SCD(P))j1jHj. SUPPOSea2i ... i Nk 

are not valid for P. Then H is the unique largest valid subgroup of Aut(SCD(P)) 
(i. e. H= G). 

Proof Since H is valid for P, H :5G. Suppose HCG. Then there exists aEG 
with a ýt H. So Ha is a right coset of H in Aut(SCE)(P)), and Ha = Hai for some 
2: 5 i<k. Since it E G, Hit C G, so Hai CG and thus ai E G. This is a contradiction 
since G is valid for P and ai, by hypothesis, is not. Hence H=G. 0 

Algorithm 4 can be used to compute the largest valid subgroup G of 
Aut(SCD(P)). 

Theorem 14 Algorithm 4 computes the largest valid subgroup ofAut(SCD(? )). 

Proof By Lemmas 3 and 4, the group H computed by Algorithm 4 is valid for 
P. The group H is the largest subgroup of Aut(SCV(P)) which is valid for P by 
Lemma 5. E 
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Algorithm 4 Algorithm to find the largest valid subgroup of Aut(SCD(P)) 
X: = generators of Aut(SCD(P)) 
H: = Q& E X: a(P) -= P}) 
U: = representatives of right cosets, of H in Aut(SCV(P)) except H 
while U ýý 0 do 

U: = U ja} 
if Lx(P) P then 

H := (H U I&}) 
if lAut(SCD(P))IIIHI < JUI then 

U := representatives of right cosets of H in Aut(SCD(P)) except H 
end if 

end if 
end while 

We illustrate Algorithm 4 using the loadbalancer example. Let P be the spec- 
ification of Figure 6.8. Generators for Aut(SCD (P)) computed by GRAPE are given 
in Section 7.2. The generators which do not fix the process identifier 9 are not valid 
for P since, if a is one of these generators, the declarationpid blocked_client 

-9 in Pis replaced withpid blocked 
- client = a(9) in a(P), and a(9) 0 9, 

thus a (P) 0- P. The other generators are valid for P, therefore: 

H= ((78)(cllcl2), (1112)(cl5cl6), 

(12) (sel se2), (2 3) (sel se2» 

is valid for P. GAP tells US that jAut(SCD(P))j = 288 and IHI = 24, so there 
are jAut(SCV(P))j1jHj = 12 cosets of H in Aut(SCD(P)). We can use GAP 
to compute representatives al. a2, ... all for the 11 cosets of H in Aut(SCD(P)) 

which are distinct from H. We find that the first nine of these are not valid for 
P, but alo = (4 6)(lbl 10)(7 11)(cll c15)(8 12)(cI2 c16) is valid for P. This el- 
ement is added to the generators of H, and we find IHI = 48, so there are now 
JAW(SCV(P)) II IHI =6 cosets of H in Aut(SCV(P)). However, it is more effi- 
cient to check the final original coset representative all than to compute and check 
a new set of coset representatives. This is the purpose of the innermost conditional 
statement in Algorithm 4. We find that all is not valid for P, thus: 

H= ((78)(cllcl2), (1112)(cl5cl6), 

(12) (sei se2), (2 3) (sei se2), 
(4 6) (Ibl 1b3) (7 11) (cll c15) (8 12) (c12 c16» 

is the largest subgroup of Aut(SCD(P)) which is valid for P. 
Algorithm 4 performsbadly if the initial group H is small, and Aut(SCD(P)) 

very large. If H is the largest valid subgroup then (JAut(SCD(P)) I 11HI) -1 coset 
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representatives must be checked. We discuss the implementation of Algorithm 4, 
together with a group theoretic optimisation, in Section 8.3.3. 

7.5 Generalising static Channel Diagram Automorphisms 

Let P be a Promela-Lite specification with associated model M. We have shown 
that automorphisms of M can be derived from the group Aut(SCD('P)). We now 
define a group Aut('Y(P)) such that Aut(SCV(P)) :5 Aut('Y(P)), and show that 

our techniques can be generalised so that automorphisms of M can be derived 
from Aut(Y(P)). 

Definition 28 'T(P) is a colouredgraphY(P) = (V, OC) where: 
V= Vp U VC is the set ofprocess identifiers and static channel names in P 
C is a colouring function defined by C(v) = proctype(v) if vE Vp, and 
C(v) = sigizature(v) if vE VC. 

The graph T(P) could be obtained from SCD(P) by removing all of the 

edges of SCD(P), although it is trivial to obtain V from P. The group Aut(T(P)) 
is the subgroup of Syni(V) which preserves the colouring C, i. e. Aut('Y(P)) = lei E 
SyM(V) : C(V) = C(a(v)) VVE V}. 

The techniques presented in fl-ds chapter were motivated by the correspon- 
dence between channel diagram and Kripke structure automorphisms observed 
in Chapter 4. However, if Aut(SCD(P)) is replaced with Aut('Y(P)) consistently 
throughout Sections 7.3 and 7.4, the correspondence result still holds, and Algo- 

rithm 4 can be used to find the largest valid subgroup of Aut('Y(P)). 
We show that the largest valid subgroup of Aut("Y(P)) is the same as the 

largest valid subgroup of Aut(SCD(P)): 

Theorem 15 Let P be a Promela-Lite specification, and G the largest subgroup of 
Aut('Y(P)) which is valid for P. Then G :ý Aut(SCD(P)) and G is the largest 

subgroup of Aut(SCD(P)) which is valid for P. 

Proof T(P) = (V, 0, C) and SC*D(P) = (V, E, C), where V= Vp U VC. Let aEG. 
Suppose a V: Aut(SCD(P)). Since aE Aut('Y(P)), a preserves the colouring C, 
therefore there must be an edge (U, V) EE such that (a (u), a (v)) ký E. By definition 

of SCD(P), we have (u, v) = (i, c) or (u, v) = (c, i) for some iE Vp and CE VC. 
Suppose (u, v) = (i, c). By Definition 27 (Section 7.1) there is a proctype 

p in P such that proctype(i) =p and p contains a statement z which involves a 
write on a static channel c or on a local variable of p initialised with value c in run 
statement i. Since a(P) =- P, the statement a(z) (possibly re-arranged) also appears 
in proctype p. If z involves a write on static channel c then a (z) involves a write on 
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static channel a (c). If z involves a write on a local variable of p initialised with value 
c in run statement i then a (z) involves a write on the same variable which, since 
a (P) =- P, is initialised with value a (c) in run statement a (i). In both cases, since 
proctype(a(i)) = p, (a (i), a (c)) E E. If (u, v) = (ci) then, by a similar argument, 
(it (c), a (i)) E E. 

This is a contradiction, so we must have (u, v) EE=: ý- (a (u), a (V)) E E, i. e. 
aE Aut(SCD(P)). The result follows. N 

We have G< Aut(SCV(P)) :! ý Aut('Y(P)), where G is the largest valid 
subgroup of Aut(IF(P)). Since Aut(SCD(P)) is usually smaller than Aut('Y(P)) it 
is more practical to search for G in Aut(SCD(P)) than Aut('Y(P)). For example, 
let P be the loadbalancing specification (see Figure 6.8). Then IF(P) is obtained by 

removing all the edges from SCD(P) shown in Figure 7.1. Any permutation which 
maps a process /channel node coloured with a given proctype name or channel sig- 
nature to a similarly coloured process/channel node is an automorphism of T(P). 
Using GRAPE we find: 

Aut(Y(P))= ( (12), (23), (45), (56), (78), 

(8 9), (9 10), (10 11), (1112), 

(cI5 c16), (c14 c15), (c13 c14), 
(cl2 c13), (cll c12), (lb2 10), 

(Ibl lb2), (se2 se3), (sel se2) 

and jAut(T(P)) I= 671,846,400. None of the generators of Atit(ly(p)) are valid 
for P. On the other hand, in Section 7.4 we showed that jAut(SCD(P))j = 
288, and that the initial valid subgroup generated by the valid generators of 
Aut(SCD(P)) has size 24. The largest valid subgroup of Aut(SCE)(P)) (and thus 
of Aut(Y(P))) was shown to have size 48. Computing within Aut(SCD(P)) rather 
than Aut(T(P)) reduces the problem of searching the whole of Aut('Y(P)) for 48 
elements to searching a small set of coset representatives in a much smaller group. 

Aut(SCD(P)) can be thought of as a good upper bound for valid symme- 
tries, from which the least upper bound G can be computed. An open research 
problem is to determine whether there is an alternative diagram to SCD(P), F(P) 
say, such that for any Promela-Lite specification P, IF(P) can be extracted from P 
in polynomial time and Aut(F(? )) = G, the largest valid subgroup of Aut("Y(P)). 

7.6 Extending the Techniques 

The Promela-Lite syntax and type system place fewer restrictions on the use 
of pid literals and expressions than those associated with scalarset variables in 
Muro/SymmSpin (see Definition 22, Section 3.3-2), or index variables in SMC (see 
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Guards (ctd. ) 
r-e: pid- rý-aEJO, 1,..., ný V4EJ<, <=, >, >=j (T-RELATIONAL-PID-LIT) 

FFeD<aOK 

rFe: pid r ý- aE 10, nj NE J<, <=, >, >=I (T-RELATIONAL-LIT-PID) 
F ý- a Doe OK 

Figure 7.3: Typing rules to allow pid expressions to be compared with literal values 
using relational operators. 

Section 3.3.3). In particular, literal pid values can be referred to explicitly in expres- 
sions and updates. However, relational and arithmetic operations involving pid ex- 
pressions are still not allowed. The techniques presented in this chapter can handle 

arbitrary kinds of symmetry which arise from the static channel diagram of a spec- 
ification, but symmetry between global variables cannot be detected, and the check 
for validity of static channel diagram automorphisms, is not as sophisticated as it 

could be. 
We now outline some ways in which certain restrictions on the use of pid 

expressions can be relaxed, and sketch how the static channel diagram can be ex- 
tended to allow symmetries between global variables to be captured. We then illus- 
trate the conservative nature of our validity check. 

7.6.1 Allowing relational operators with pid arguments 
Since lit(pid) is a finite set of integers Q0,1,..., n}), if e is an expression with 
e: pid and aE {O, n}, the guard e<a can be re-written as a disjunction: 
(e==OJJe==1JJ ... e==a - 1) (where a-1 denotes a value rather than an arith- 
metic expression). The guards e>a, e<=a, e>=a, a<e, a>e, a<=e and a>=e 
can be expanded in a similar way. 

Suppose we extend the type system to include the typing rules given in Fig- 

ure 7.3. These rules allow expressions of pid type to be compared relationally with 
pid literals. Let P' be a Promela-Lite specification which is well-typed in this ex- 
tended type system. Let P be the specification obtained from P' by expanding ev- 
ery guard exa or axe (where e: pid is either a variable name or _pid, and 
aE 10,1,... , n}) using the method described above. Clearly P' is a Promela-Lite 

specification which is well-typed with respect to the original type system, and P' 

and P have identical associated models. Thus our symmetry detection techniques 
can be applied to P to obtain a group of static channel diagram automorphisms 
suitable for symmetry reduction when model checking P'. 

This straightforward expansion technique makes Promela-Lite less restric- 
tive and so allows our automatic symmetry detection techniques to apply to a 
wider range of specifications. 
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7.6.2 Symmetrically invariant operations 

The Promela-Lite type system prohibits the use of process identifiers in arithmetic 
operations (rule T-ARITH). This restriction is typical of techniques for symmetry 
identification (see Sections 3.3.2 and 3.3.3). However, as discussed in Section 4.6.1 
for the hypercube example, it is not necessarily the case that arithmetic operations 
of this kind destroy symmetry. 

An arithmetic operation involving only literal integers and pid variables 

XliX2i ... I Xk can be thought of as a function f (xi, X2. ... i Xk). Given an element aE 
Aut(SCD(? )), if k is small then it is feasible to check whether a (f (a,, a2, ... 1170) _" 
f (a(aj), a(a2). -.., a(ak)) for every combination of values ai E 11,2,..., n}. If this 

is true we say that f is itivariant under a. 
For example, in a uni-directional ring network with five processes, the up- 

date next = (current %- 5) +1 could be used to find the neighbour or the process 
identified by ctirrent. Let aE Aut(SCV(P)) have the form (1 234 5)A, where 
A is a permutation of static channels. It is easy to check that, for any value of 

curretit E 11,2,3,4,5}, &((curreizt%5) + 1) = (a(current)%5 + 1). 

Suppose we extend the type system to allow an update of the form x 
f(XlýX21 

... i Xk) where X. X1 f ... i Xk are pid variables, as long as the enclosing state- 

ment has a guard of the form g && xi I=0 && X2! =0 && ... && Xk I= 0. This ensures 

that the operation f is not applied to arguments which have the value 0, which rep- 

resents a default pid value. 
If P is well-typed according to the extended type system, we can replace a 

statement of the form atomic {g && xi I =0 && X21 =0 && ... && Xk! =0 -1 ... ; 

X=f (X1oX21 
---i Xk); ... 

I (where X. X1i ... i Xk are variables with type pid) with Ilk 
distinct statements, each of the form: 

atomic g && xl==al && X2==a2 && ... && Xk==ak 

... ;xf (a,, a2, .... ak) ; ... 
} 

where ai E 11,2,. it 1 (1 <i< n) and f (a,, a2, ak) is the value of f for this 

input. Since f only involves the xi and constant values, this value can be statically 

computed for each statement. If the resulting specification is well-typed according 

to the original type system (i. e. if each value f(al, a21..., ak) E lit(pid)) then the 

standard symmetry detection technique can be applied. In this case the complexity 

of checking whether a is valid for P is still polynomial in the size of P, but the size 

of P is now 0 (Ilk) where k is the highest arity of any arithmetic function involving 

pid variables. Using the above example, the statement: 

atomic Ig && current 0-> next =(current%5)+I; ... 
is replaced by five statements: 

atomic g && current==1 next = 2; ... 
atomic g && current==2 next = 3; ... 
atomic g && current==3 next = 4; ... 
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atomic g && current==4 next = 5; ... 
atomic g && current==5 next = 1; ... 

Clearly this approach is not practical if k is large, in which case more sophis- 
ticated techniques are required. 

7.6.3 Capturing symmetry between global variables 

If global variables are used for communication in a specification P then automor- 
phisms of the associated model M may arise due to permutations of the variables. 
The symmetry detection techniques presented earlier cannot handle this kind of 
symmetry, since the static channel diagram SCD(P) does not capture the relation- 
sl-dp between processes and global variables. 

We now sketch an extension of our technique to deal with this kind of sym- 
metry, based on the notion of an extended static channel diagram. For a Promela-Lite 

specification P, let VG denote the set of global variable names for P. 

Definition 29 Let SCD(P) = (V', E', C') be the static channel diagram associated 
with P. The extended static channel diagram associated with P is a coloured, tripartite 
digraphl ESCD (P) = (V, E, C) where: 

9V= Vp U VC U VG is the set of process identifiers, static channel names and 
global variable names in P 

" Ife E E' thene EE 
" For iE Vp, xE VG and proctype(i) = p, 

- (i, X) EE iff p has an update of the form x=e 

- (X, i) EE iff p has an update of the form y=e where the expression e 

refers to global variable x 

"C is a colouring function defined by C(v) = C'(V) if VE V', and C(v) 

type (V) if VE VG - 

This definition is identical to Definition 27 (Section 7.1) except that SSCD ('P) 

includes nodes for global variables, and edges between process identifiers and 
global variables. An edge from a process identifier to a global variable node is in- 

cluded if the process can potentially update the variable; an edge from a global 
variable node to a process identifier is included if the result of an update made by 

the process can potentially be affected by the value of the variable. 
TI-ic group Aut(ESCD(P)) is the set of all automorphisms of the di- 

rected, coloured graph ESCD(P) (see Definition 19, Section 3.1.5). Given aE 
Aut(ESCD (P)), the definition of a (P) is similar to the case where aE SCD (P), ex- 
cept that each applied occurrence of a global variable name x in P is replaced with 

1. The definition of a tripartite digraph is a natural extension of the definition of a bipartite digraph 
given in Section 3.1.5. 
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&(x) in a(P), a declaration int x= init(x) is replaced with int x= init(a(x)), and 

a declaration pid x= iWt(x) is replaced with pid x= a(init(&(x))). 
If M= (S, so, R) is the model associated with P, the action of Aut(ESCD (P)) 

on S is similar to that of Aut(SCD(P)), except that if x is a global variable then 

a((x = a)) = (a(x) = a) if x: int, and a((x = a)) = (a(x) = a(a)) if x: pid. 
The statements and proofs of Lemmas 1 and 2 and Theorem 13 are readily 

adapted to show that, for aE Aut(ESCV(P)), if a(P) =- P then p(a) E Aut(M). 

It is trivial to modify the computational group theoretic approach of Section 7.4 in 

order to compute the largest valid subgroup of Aut(ESCD(P)). 

7.6.4 Extending the notion of validity 
In the following example we show that our notion of validity may be unneces- 
sarily restrictive. Let P be a Promela-Lite specification with associated model M, 

pa proctype of P, x, y, z local variables of p with x: pid and y, z : int, and 
aE Aut(SCD(P)). Suppose a maps 2 to 1 and 1 to 2, and a(P) =- P, so that 

p(a) E Aut(M). 
Assume that the body of p begins with the fonowing two statements: 

atomic x==l && y1 =3 && z1 =4 -> x=O; 
atomic x==2 && y1 =3 && z! =4 -> x=O; 

so that the body of p in a (P) begins with the same statements in a different order. 
Clearly we can re-write these statements as follows: 

atomic x==1 && y! =3 && z1 =4 -> x=O; 
atomic x==2 && (! (y==3 II z==4) ) -> x=O; 

without changing M. In this case, we still have p (a) E Aut(M). However, the body 

of p in a (P) now begins with the statements: 
atomic {x==2 &&yl=3 &&ZI=4 ->X=O; } 

atomic I x==1 && (I (y==3 11 Z==4) ) -> X=O; 

Assuming that P does not happen to also include these statements, the bodies of p 
in P and a (p) are not the same up to re-arrangement, i. e. a (P) # (P). 

Nevertheless, our approach to checking the validity of elements is safe and 
fast, and is sufficient for most sensibly written specifications. It would be possible 
to extend our techniques to employ a more sophisticated equivalence check, e. g. by 

using a theorem prover. 

Summary 

We have defined the static chamiel diagram SCD(P) associated with a Promela-Lite 

specification P, and shown that it can be efficiently computed via a single pass of 
P. After defining a group action of the automorphism group Aut(SCD(P)) on the 
states S of M, the model associated with P, we have proved that there is a largest 
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valid subgroup G :5 Aut(SCD(P)) for which p(G) :ý Aut(M), where p is the 

permutation representation of the group action. Furthermore, we have presented 
a computational group theoretic algorithm for computing the group G. This tech- 
nique allows a subgroup of Aut(M) to be efficientlY derived from the specification 
P, to be subsequently used for symmetry reduction. 

We have shown that our teclu-dque can be generalised to apply to any sub- 
group of Aut("Y(P)), but that Aut(SCD(P)) can be a good candidate group for 

efficient symmetry detection. We have discussed extensions to the approach which 
allow certain relational and arithmetic operations involving process identifier vari- 
ables, and the detection of symmetry between global variables. In addition, we 
have suggested how the notion of valid automorphisms could be extended. 



Chapter 8 

SymmExtractor - an Automatic Symmetry Detection Tool for 
Promela 

In this chapter we describe SymmExtractor, an automated symmetry detection tool 
for Promela which we have developed, based on the static channel diagram anal- 
ysis techniques of Chapter 7. After providing an overview of the tool, we discuss 
the restrictions on the form of a Promela. specification which must be satisfied be- 
fore SymmExtractor can be applied. We then discuss two problems related to type- 

checking which SymmExtractor solves: how to deduce the type of an incompletely 

specified channel in order to check the validity of static channel diagram automor- 
phisms, and how to convert recursive channel types to a canonical form to allow 
comparison when constructing a static channel diagram. 

We discuss the way in which the GAP and saucy tools are used to com- 
pute the largest valid subgroup of Aut(SCD(P)), and provide experimental results 
showing how SymmExtractor performs on a variety of specifications based on the 

motivating examples of Chapter 4. 
In order to assess the practical feasibility of the restrictions imposed by 

SymmExtractor we have carried out a user study, applying SymmExtractor to a 
set of Promela examples written as solutions to two student assessed exercises. 
We present the results of this evaluation, which highlight some mismatches be- 
tween the restrictions imposed by SymmExtractor and the specification styles used 
in practical Promela examples. 

8.1 An Overview of SymmExtractor 

SymmExtractor is a Java program based on a Promela parser generated using the 
SableCC compiler generation framework [621. The Promela. grammar is adapted 
from a BNF grammar presented in [92], with the SPIN source code used to resolve 
ambiguity in the grammar specification. 

The abstract syntax tree representation of the input specification is type- 
checked, and type reconstruction is used to obtain the fun types of all chan- 
nels in the specification. Reconstructed channel types which are recursive are then 
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Figure 8.1: The automatic symmetry detection processes used by SymmExtractor. 

converted to a minimised canonical form. The typed abstract syntax tree is then 

checked to see whether it satisfies certain restrictions imposed by the theory of 
Chapter 7. If these restrictions are satisfied then the static channel diagram SCD('P) 

for the specification P is derived, and its automorphisms are computed using the 

saucy program [371. Algorithm 4 of Section 7.4 is then used to compute the largest 

subgroup of Aut(, 5CD(P)) which is valid forP. Checking validity depends on the 

reconstructed type information obtained by SymmExtractor, and GAI, is used to 

calculate sets of coset representatives. 
The automatic symmetry detection process is summarised in Figure 8.1. The 

SymmExtractor implementation is embedded in our symmetry reduction package 
TopSPIN (see Chapter 11), and is available online. Instructions on how to use Symm- 

Extractor are included in the TopSi'IN manual, Appendix C. 2. We discuss various 

aspects of our automatic symmetry detection process in the remainder of this chap- 
ter. 

8.1.1 Summary of the restrictions imposed by SymmExtractor 

As discussed in Chapter 6, Promela includes a number of language features which 
are not included in Promela-Lite. Most of these features could be handled by a 
straightforward extension of the results of Chapter 7, and are therefore supported 
by SymmExtractor. On the other hand, there are certain features of Promela for 

which the theory of Chapter 7 cannot obviously be extended. These features are 
not supported by SymmExtractor. 

Appendix C. ] provides a detailed summary of non-Promela -Lite features 

which SymmExtractordoes and does not support. We now summarise the restric- 
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tions on the form of a Promela specification which SymmExtractor requires, and 
automaticallY checks: 

1. The ini t process must have the form 
init I 

atomic 
run (name)j(... 

run (nameY-); 

run (name),, (... 
(statement-list, '; ') 

(statement-list, 

The fist (statemetit-list, '; ')of statements within the atomic block must con- 
sist of assignments of literal values to distinct variables. This is explained in 
Section 8.3.2. The it run statements must be the only run statements occur- 
ring in the specification. 

2. All global channel declarations must include a channel initialiser (see Sec- 
tion 2.4.1), and names of global channels must be treated as constants. 

3. Variables of type pid must only be assigned to values in the range 10,1, ..., n}, 
to other pid variables or to the 

_pid constant, and may not be used as 
operands to arithmetic operators. 

4. An array must either be indexed by pid variables and literal values in 
the range 10, n}, or by byte variables and literal values in the range 
10,1,. .., 255}. The former case is only permissible if the array is declared 

with size it + 1. 
5. The assignment x=y, where x and y are chait variables, is only permissible 

if x and y have the same channel type and x is not a static channel. Similarly, 

supplying a chatz variable x as a send/receive argument to a channel is only 
permissible if the type of x matches the corresponding field type for the 
channel (and in the receive case, x must not be a static channel). 

In Section 8.5 we investigate the implications of these restrictions in practice by 

studying a set of Promela specifications written as solutions to student assessed 
exercises. 

8.2 Typechecking Promela 

When designing Promela-Lite, to case presentation of our theoretical results we in- 
cluded notation for fully specifying channel types, and for defining recursive types. 
In Promela, the type of a first-class channel can only be partially specified using a 
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chan A- [I] of (chan); 

chan B- (11 of (pid, int); 

proctype 00 ( 

chan C; 
A? C, 
C13,4, 

proctype Ro 
AIB; 

Figure 8.2: Promela example where type information is partially specified. 

channel initialiser, and while recursive types cannot be explicitly declared, they can 
be used implicitly as we demonstrate in Section 8.2.2. 

We now show that full type information for a Promela specification can be 

obtained using type reconstructioti, and that resulting recursive types can be stored 
canonically via a minimisation process. This complete type information allows the 
theoretical results of Chapter 7 to be applied to Promela specifications. 

8.2.1 Reconstructing channel types 

As noted in Section 6.4, a key difference between Promela-Lite and Promela is that 
channel types in Promela-Lite are fully specified, whereas certain Promela channel 
types are only partially specified. 

Consider a Promela specification P which includes the fragment of code 
shown in Figure 8.2. The local variable C of Q is declared to be a channel, but the 
type of messages it accepts is unspecified. Messages for channel A are references 
to channels, but the type of these channels is not specified in the initialiser for A. 
The type for channel B is fully specified -B: chan 1pid, int}. A value for C is ob- 
tained via the statement A? C, by which C is assigned to some global channel name 
which has been sent on A by another process (an instantiation of proctype R, for 

example). Let a= (3 4). We cannot deduce the form of a (P) without knowing the 
complete type of C. If C: chan (pid, pid} then the statement 'C ! 3,4' is replaced in 
a (P) with 'C Ia (3), a(4)', i. e. 'C! 4,3'. On the other hand if B: chan1pid, int} then 
the corresponding statement in a(P) is'C I a(3), 4', i. e. 'C 14,4'. 

Complete type information for A and therefore C can be obtained using 
constraint-based type reconstruction (also known as type inference) [141]. We explain 
this process using the Promela fragment of Figure 8.2. 

The channel type information which is available from the specification is 
recorded, and is annotated with type variables Xj, iEN, which record missing 
type information, as shown in the top left panel of Figure 8.3. 

Each time a channel name is used for communication in the specification, a 
constraint is posted. For example, the statement A? C implies that channel A must 
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accept single-field messages where the field has the same type as C. We know al- 
ready that A accepts single type messages of type chan X1,1 and we know that 
C: clum X2, so we can post the constraint chan X2 = chan X1. Constraints are posted 
similarly for the other communication statements. We use the notation pidlint to 
denote a type which is either int or pid, and use this notation to handle the literal 

values 3 and 4 which (out of context) can be assigned either type. The constraints 
for our example, together with the statements from which they arise, are shown in 
the top right panel of Figure 8.3. 

The resulting system of constraints is then solved using a process known as 
unification. This process checks whether the system is consistent, and if so provides 
concrete values for type variables. If we attempt to unify the constraints X2 = X1, 
X2 = lpidlint, pidlint} and X, = lpid, int}, then since X2 is a tuple of size 2, X, 

must also be a tuple of size 2. Furthermore, each entry of the tuple for X2 must 
match the corresponding entry in X1. This is the case since pidlint matches pid in 
the first case, and pidlint matches int in the second. Since X1 = lpid, int} is a stricter 
constraint than X2 = lpid lint, pidlint}, lpid, int} is taken as a concrete value for X1 

and X2. The unification process is illustrated in the middle panel of Figure 8.3. 
If the constraints shown in Figure 8.3 are the only constraints which arise 

from P relating to channels A, B and C, then the complete types for A, B and C are 
reconstructed as shown at the bottom of the figure, by substituting type variables 
for their concrete values. Armed with this additional type information, with a= 
(3 4) as above, we can unambiguously assert that the statement 'C! 3,4' should 
be replaced with 'C 14,4' in a (P). This example shows that type reconstruction is 

critical to our automatic symmetry detection techniques. 
Unification fails when the system of constraints is inconsistent: in this case 

the unification process should stop and report a type error. Unification of consistent 
constraints may not provide a concrete value for all type variables if, for example, 
a channel is never used. If we declare chan A=[ 11 of I chan}, but never use A, 
then A will be assigned the type chanjchan Y} where Y is a type variable, but no 
constraints relating to Y will be posted. For the purposes of automatic symmetry 
detection we can simply assign Y= lint} in this case. 

For a more general description of constraint-based type reconstruction, see 
[141]. Our implementation is based on an algorithm described in [1]. 

8.2.2 Dealing with recursive types 

Let P be a Promela specification. Recall from Definition 27, Section 7.1, that two 
channel nodes in the static channel diagram for P are coloured the same if they 

1. Note that the type expression dian X, denotes a channel with accepts a tuple of messages, where 
both the arity of the tuple and the type of each message field are unknown. This is different from 
the expression dian [XI a channel with this type accepts messages comprised of a single field of 
unknown type. 
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Initial type information, Constraints posted based 
annotated with type variables on channel usage 

A: clian1clian Xj} A? C --+ chan X2 = chan X, 
B chanlpid, int} C? 3,4 X2 = 1pidlint, pidlint} 
C clian X2 I AIB chanXj=chanjpidjntj 

Solution to system of constraints 

chan X2 = chan X1 A X2 = lpidlint, pidlint} A chan X, = chanfpidint} 
X2 = XI A X2 = lpidlint, pidlint} A X1 = 1pid, int} 
X, = X2 = 1pid, intj 

Reconstructed channel types 

A: chanjcIianjpid, int}} B: chanlpid, int} C: chanfpid, int} 

Figure 8.3: Type reconstruction for a simple example. 

have the same channel signature. In order to construct the colouring function asso- 
ciated with SCD (P) it is necessary to be able to compare channel types for equality. 

TI-ds is straightforward, unless the types are recursive (see Section 6.1.2). Al- 
though Promela does not include syntax for specifying recursive channel types, 
they can be implied by channel usage. Consider the channel declaration chan A= 
[11 of (chan}, and the statement A! A. Using constraint-based type reconstruc- 
tion, we record that A: clzanIchaii X} from the declaration of A, where X is a type 
variable. We then post the constraint X= Ichan X} according to the statement 
AIA. Since X appears on both sides of this equation, X is defined recursively. We 

can assign to A the recursive type rec X. chan I X}. This kind of channel usage has 
been employed in realistic Promela specifications, e. g. a specification of a telephone 
system [20]. 

Due to the manner in which type reconstruction works, we may end up with 
the same recursive type appearing in many different forms. Suppose that a specifi- 
cation includes channels A, B and C, and that after applying type reconstruction 
we find A: recX. chanjXint}, B: chanfchanfrecX. chanIX, int}, int}, int} and 
C: rec X. clian jcliaii {chan JX, int}, ffit}, ffit}. The types for A, B and C are an the 
same, and are intuitively represented by the infinite tree shown in Figure 6.2, Sec- 
tion 6.1.2. 

In order to compare recursive types for equality, we first convert them to 
a minimal, canonical form. This is achieved using an algorithm for minimisation 
of deterministic finite automata [122]. The algorithm requires a type to be rep- 
resented as a directed graph; this is illustrated on the left of Figure 8.4 for the 
type cliaii Ichaii frec X. clia? iIX, iizt}, int}, int}. The largest bisimulation on this graph 
is then computed. This relation partitions the graph nodes into equivalence classes. 
The type graph for the minimised type expression is the quotient graph with re- 
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Figure 8.4: Minimisation of the recursive type chanfchan{recX. chanIXint}, int}, int}. 

spect to the bisimulation equivalence relation, shown on the right of Figure 8.4. 
As we have explained, recursive type minimisation is necessary for static 

channel diagram extraction. In addition, when a Promela specification is not well- 
typed, minimising recursive type expressions can make type error messages easier 
to understand. 

8.3 Obtaining Static Channel Diagram Automorphisms from a 
Promela Specification 

Given a Promela specification P, the static channel diagram SCD(P) is defined 
analogously to the static channel diagram for a Promela-Lite specification (Defini- 
tion 27, Section 7.1). SCD(P) can be extracted from P in linear time, as discussed 
in Section 7.1.1. 

8.3.1 Computing Aut(SCD(P)) 

For illustration in Chapter 5 we used the GRAPE package to compute static channel 
diagram automorphisms. GRAPE interfaces with the nauty graph automorphism 
package[126]. 

For efficiency and ease of implementation, SymmExtractor uses saucy [37], 
a graph automorphism program based on nauty, to compute Aut(SCD(P)). We 
chose sa ucy over na u ty as we found it easier to program with. Additionally, sa ucy 
has been shown to perform better than nauty when applied to large, sparse graphs 
[37]. We have found that static channel diagrams are typically sparse (though they 
may not be large). Our implementation uses a prototype extension of saucy which 
can handle directed graphs (personal communication, P. Darga. and I. L. Markov, 
2007). 

8.3.2 Checking the validity of an element of Aut(SCD(P)) 

As discussed in Section 8.2.1, application of an element aE Aut(SCD(P)) to P 
requires information about the types of message arguments to channel variables 
which may not be directly available from the specification. This information is 
available after type reconstruction has been applied to P. 



8.3: OBTAINING STATIC CHANNEL DIAGRAM AUTOMORPHISMS 148 

The notion of validity for Promela specifications is slightly different to that 
for Promela-Lite specifications. Promela specifications P, and P2 are equivalent 
if they are identical up to re-arrangement of operators to commutative operands, 
options in do ... od statements, options in if ... fi statements, and statements 
which appear after the run statements in the init I atomic I ... }} block. 
Each of these statements assigns a distinct variable to a literal value (see Sec- 
tion8.1.1), and theyare enclosed in anatomic block, so their order does not matter. 
The intended use of these statements is for initialising pid-indexed arrays, such as 
the array of priority levels in the resource allocator example (see Section 4.4). 

Once the specification a (P) has been obtained, checking whether'P =- a (P) 
involves an in-order traversal of the abstract syntax tree for each specification, 
sorting the operands to commutative operators and the options of do. .. od and 
if ... fi statements, and sorting the initilisation statements described above. If 
P =- a (P) then the specifications should be identical after this normalisation pro- 
cess has been applied. 

8.3.3 Using GAP to compute the largest valid subgroup 

In order to compute the largest valid subgroup of Aut(SCV(P)), SymmExtractor 

uses a GAP implementation of Algorithm 4 (Section 7.4). The Java and GAP COM- 
ponents of SymmExtractor communicate using redirected standard input and out- 
put. Given a group G and a subgroup H of G, GAP provides a function to effi- 
ciently compute right coset representatives of H in G. The number of generators of 
Aut(SCD(P)) is typically small, and so initial generators for the valid group H are 
found quickly by checking each generator of Aut(SCD(P)) for validity against the 
specification P. 

As discussed in Section 7.4, Algorithm 4 performs badly if the initial group 
H is small, and Aut(SCD(P)) is very large. Our implementation includes a heuris- 
tic which can be applied to try to combat this problem. If the size of the initial 

valid subgroup H can be increased, fewer coset representatives need to be con- 
sidered. An initial approach for increasing the size of H involved taking a set A 

of random elements of Aut(SCD(P)) \H and checking the validity of each ele- 
ment of A against P, adding the valid ones to the generators of H. However, when 
Aut(SCD(P)) is large, the probability of a random element being valid for P may 
be small. In this case a better approach is, for each AEA and each generator a of H, 
to check the validity of the element A-lap (the conjugate of a by A, see Definition 7, 
Section 3.1.1), adding each valid element A-lap to the generators of H (if it is not al- 
ready contained in H). Adding random conjugates to the generators of H can work 
well in practice: discarding invalid generators of Aut(SCD(P)) often results in a 
group which can permute disjoint sets of processes and channels; adding random 
conjugates to this group can provide mappings between these disjoint sets. 

Recall the prioritised resource allocator specification of Section 4.4. Consider 
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Key to channel signatures 

(1, (. typý)) 

= (G, (. Lypý)) 
nuIkhan 

linkl II litiV II link3 II link4 

priorities: 

link5 II link6 II link7 

ýý Qýý Q! n 
00 0 

Figure 8.5: Static channel diagram for a prioritised resource allocator specification. 

Already in H NotvalidforP Valid forP and notin H 
(1 2) (6 7) (6 7) (4 6) (2 3)TI (2 7) 
(2 3) (5 7) (1 2) (4 6) (5 6)ý, (1 5) 
(5 6) (5 7) (2 3) /31 (2 4) (6 7)01 (3 5) 

(1 2)022 (3 5) 
(5 6)ý2 (1 6) 
(6 7)ý' (3 5) 

Figure 8.6: Conjugation of the generators of H by elements ýj = (1 6 5)(2 7 3), 
/), = (1 3742 5) and , 133 = (1 65732 4). For brevity, (i j) is used to denote 
(I . j) (linki linkj). 

a version of the specification with seven clictit processes, where client 4 has priority 
level 1, and all other clients have priority level 0. The static channel diagram for 

such a specification is shown in Figure. 8.5. Using saucy to compute a generating 

set for this group, and using (i j) to denote the element (i ffllitzki Iinkj) we find 

that: 

Aut(SCD(P)) = ((1 2), (2 3), (3 4), (4 5), (5 6), (6 7)), 

and jAW(SCP(P))j = 5040. However, as clietit 4 is distinguished by its differing 

priority level, the generators (3 4) and (4 5) are not valid for 'P. Removing these 

elements from the generating set has the effect of eliminating any permutations 
which map clicia processes in the set 11,2,31 to the set J5,6,71, arid vice-versa. 
The result is a significantly smaller group H, with IHI = 36. 

We can use GAP to pick three random elements of Alit(SCD(P)), say 
(1 6 5)(2 7 3), 02 ý (1 3742 5), ý3 = (1 65732 4). Figure 8.6 shows 
the elements obtained by conjugating each generator a of H by one of the Pi (i. e. 
computing ýj laýj, which we abbreviate to 0). 
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Observe that these random conjugates yield six elements of G which are 
valid for P, but do not belong to H. Adding any one of these elements to the 
generators of H to give the group H' say, we find that IH'I = 720 whereas 
IHI= 36. Thus by considering 12 random conjugates, we have reduced the prob- 
lem of checking JAut(SCD(P))J1JHJ = 140 coset representatives to checking 
JAut(SCD('P))J1JH'J = 7. 

We cannot say anything about how well this approach works in general, and 
it is likely to be problem-specific. However, it can be a useful optimisation when 
Aut( SCD (P)) is large and H, the initial valid subgroup, is small but non-trivial. 

The user can set a time-out period, after which the search for the largest valid 
subgroup will terminate, returning the valid subgroup computed so far. Symm- 
Extractor provides feedback to the user by displaying the number of cosets which 
need to be checked, in the worst case. This feedback indicates whether it is worth 
waiting a little longer for a larger valid subgroup to be computed. 

8.4 Experimental Results 

We now present experimental results running SymmExtractor on a variety of 
Promela specifications, based on the examples described in Chapter 4. We divide 
the specifications into sixfamilies, and refer to an individual specification as a coll- 
figuratioii of one of the families. For convenience, we introduce some shorthand 
notation for referring to configurations. 

8.4.1 Specification families and configurations 
The families of specifications we consider are: simple mutex, Peterson, Peterson with- 
out atomicity, resource allocator, three-tiered architecture and hypercube. 

The simple mutex, Peterson and Peterson without atomicity families consist of 
versions of mutual exclusion protocols based on the examples presented in Sec- 
tions 2.4.1,4.3.2 and 4.3.4 respectively (with Promela examples given in Figure 2.6 

and Appendices A. 1.2 and A. 1.4). A configuration of one of these families is iden- 
tified via the number n of processes considered in the specification. 

A configuration in the resource allocator family is a version of the resource 
allocator specification introduced in Section 4.4 and Appendix A. 2.1. We consider 
two kinds of configuration. A configuration is identified by the signature ao-al- 

... -ak-li where ai >0 (0 :ýi< k) if there are k>1 distinct priority levels and 
client processes 1,2,..., ao have priority level 0, ao + 1, ao + 2,..., a, have priority 
level 1, etc. A configuration is referred to as alternating x, where x>0 is even, 
if there are two priority levels, x client processes, and the priority level alternates 
between 0 and 1 every three client processes. For example, alternating 10 denotes 
a 10-client configuration where client processes 1,2,5,6,9 and 10 have priority 
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level 0 and client processes 3,4,7 and 8 have priority level 1. The resource allo- 
cator specifications reveal an interesting problem. If an array of size it +1 is in- 
dexed using only literal values in the range O-n then it is not possible to deter- 

mine whether the index type of the array should be pid or byte. This is true of the 
priorities array in the resource allocator specification (see Appendix A. 2.1). By 
default, SymmExtractor conservatively assigns the index type for such an array to 
be byte. This causes symmetry detection to return a trivial group for the resource 
allocator examples. We overcome this problem by incorporating an assertion of 
the form assert (priorities [_pid] <n) (where n is the number of client pro- 
cesses) in one of the atomic blocks in the body of the client proctype. Since 

-pid 
has type pid, this makes the index type of the array unambiguous. 

A configuration in the three-tiered architecture family is a version of the three- 
tiered architecture specification introduced in Section 4.5 and Appendix A. 3. A con- 
figuration with k server processes (k > 0) and ai >0 client processes connected to 
server i (1 <_ i <_ k) is identified via the signature a, -a2-- .. -ak. For example, 5-5-5-5 
denotes a configuration with 5 servers and 20 clients, 5 connected to each server. 

Recall that the hypercube specification of Section 4.6 and Appendix A. 4.1 

involves arithmetic operations on variables which have pid type. This was dis- 

cussed in Section 4.6.1. However, we used SPIN-to-GRAPE to check that the symme- 
try group associated with the hypercube specification is isomorphic to the group of 

automorpl-dsms of a 3-dimensional cube, which is in turn isomorphic to the group 
of automorphisms of the channel diagram associated with the specification (see 

Section 5.2.2). SymmExtractor is based on the type system of Figure 6.5, Section 6.2, 

which does not allow pid variables to be operands in arithmetic expressions. In or- 
der to apply SymmExtractor to examples based on the hypercube specification, we 
have used teclu-dques similar to those described in Section 7.6.2 to re-model the 

specification without these arithmetic expressions in a semantics-preserving way. 
The re-modelled version of the 3-dimensional hypercube specification is given in 

Appendix A. 4.2. As discussed in Section 7.6.2, this specification is much longer than 

the original. A configuration of the hypercube family is a version of the modified hy- 

percube specification. A configuration is identified via the number n of dimensions 

of the hypercube. Note that configuration it is comprised of 21 node processes. 

8.4.2 Results and discussion 

For various configurations of the families described in Section 8.4.1, Figure 8.7 re- 
ports the following figures: 

" jAut(SCE)(P))j -size of the automorphism group of the static channel dia- 

gram associated with configuration P 

" IHI - size of the initial subgroup generated by the valid generators of 
Aut(SCD(P)) 
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ConfigurationP I lAut(SCD(P))l I IHI I IGI I saucytime Ffi-nd largest ti-m-el 

simple mutex 
5 120 0.03 0.07 
10 3.6 x 106- 0.03 0.20 
20 2.4 x 1018 0.03 0.59 
40 8.1 x 103ý1 0.03 1.64 

Peterson 
3 6 0.03 0.06 
6 720 0.02 0.16 
9 362880 0.04 0.30 
12 4.8 x 108 0.03 0.56 

Peterson without atomicity 
3 6 0.03 0.08 
6 720 0.08 0.25 
9 362880 0.03 0.52 

1 
12 4.8 x 101 0.03 0.89 

resource allocator 
3/4 5040 144 144 0.03 1.52 

2/2/3 5040 24 24 0.03 5.24 
5/5 3.6 x 106 14400 14400 0.05 8.34 

3/3/4 3.6 x 1011 864 864 0.03 114.49 

alternating 10 3.6 x 106 32 
. 

17280 0.03 18.12 

alternating 12 4.7 x 106 64 - 1-518400 1 0.04 314.87 

alternating 14 8.7 x 107r' 128 2.9 x 106 0.06 > 12 hours 

alternating 16 2.1 x 10TT'- 256 1.6 x 10' 0.05 > 12 hours 

three-tiered architecture 
3/3/2 144 0.04 0.09 
3/3/3 1296 0.05 0.14 
4/4/3 6912 0.05 0.17 
4/4/4 82944 0.05 0.26 

5/5/5/5 5.0 x W, 0.07 0.55 

hypercube 
2d 8 2 4 0.04 0.59 
3d 48 2 8 0.03 2.50 
4d 384 2 16 0.04 99.11 
5d 3840 2 32 0.08 7171.57 

Figure 8.7: Experimental results for automatic symmetry detection. For each configu- 
ration the sizes of Aut(SCD(P)), H and G are given, together with the time (in sec- 
onds, unless otherwise stated) to compute Aut(SCD(P)) using saucy, and to compute 
the largest valid subgroup G using GAP. Experiments were performed on a PC with a 
2.4GHz Intel Xeon processor and 3Gb or main memory. 
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2 conjugates 5 conjugates 1 10 conjugates 
Configuration I IHI I time I 

__LHI----L 
time I IHI I timp e 

resource allocator 
altemating 10 192 9.86 2880 9.32 17280 8.50 
alternating 12 34560 39.14 518400 32.66 518400 33.59 
alternating 14 414720 

, 
172.3 2.9 x 10'3 115.45 2.9 x 10'3 116.39 

alternating 16 1.6 x 109 539.65 1.6 x 109 541.86 1.6 x 107- 543.87 
hypercube 

2d 2 0.65 2 0.79 4 0.84 
3d 4 1.85 8 1.60 8 1.98 
4d 4 71.26 16 23.10 16 26.73 
5d 8 3409.03 16 1786.33 32 957.79 

Figure 8.8: Optimised symmetry detection using random conjugates. 

* IGI - size of the largest valid subgroup of Aut(SCD(P)), computed using 
Algorithm 4 (Section 7.4) 

" saucy time - time (in seconds) taken by saucy to compute generators for 
Aut(SC*D(P)) 

" find largest time - time (in seconds) taken to compute G given generators 
forAut(SCD(P)). 
When all generators of Aut(SCD(P)) are valid, Aut(SCD(P)), H and G are 

equal, so there is no need to use Algorithm 4. This is indicated by'=' in Figure 8.7. 
When IGI could notbe computed within 12 hours, the entry'> 12 hours'appears in 
the table. In these cases, the configuration is given in italics, as the group G has been 

successfully computed by other means, which we discuss below. All experiments 
were performed on a PC with a 2.4GHz Intel Xeon processor and 3Gb of main 
memory. 2 

The'saucy time'column shows that, for all the configurations we tried, there 
is a minimal overhead associated with using saucy to compute Aut(SCD(P)), re- 
gardless of how large this group is. 

Configurations from the three mutual exclusion families, as well as three- 
tiered architecture configurations, show that automatic symmetry detection is very 
efficient when all generators of Aut(SCD(P)) are valid. In this case the ' fiiui largest 
time' column reports the time taken to check validity of these generators against 
the input specification P. The results for the simple mutex configuration with 40 
processes, and configuration 5-5-5-5 in the three-tiered architecture family (which in- 
volves 25 processes) show that SymmExtractor is robust enough to handle large 
Promela specifications. 

Results for the first four resource allocator configurations shown in Figure 8.7 
illustrate cases where the initial valid subgroup H turns out to be the largest valid 
subgroup of Aut(SCD(P)). In these cases, since H y'- Aut(SCD(P)), it is necessary 
2. All of the Promela specifications used for these experiments are available online in ard-tived form 
(see Section 1.2). 
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to run Algorithm 4 to confirm that H is indeed the largest valid subgroup. This is 
time-consuming for the 3-3-4 configuration. 

The alternating resource allocator and hypercube specifications illustrate a strict 
containment relationship: lid} cHcGc Aut(SCD(P)). Although the number 
of cosets of H in Aut(SCV(P)) may be large, if G is significantly larger than H 
then the number of coset representatives which need to be checked for validity 
diminishes rapidly as valid representatives are found. However, for the alternating 
14 and alternating 16 configurations the number of cosets of H in Aut(SCD(P)) is 

so large that G could not be computed within 12 hours. Note that the size of G in 
these larger examples has been computed with the aid of random conjugates, as 
discussed below. 

In Section 4.6.1 we computed the automorphism group of the Kripke struc- 
ture associated with the 3-dimensional hypercube specification. (The results of Sec- 

tion 4.6.1 are the same if we re-run SPIN-to-GRAPE using the modified specifica- 
tion considered here. ) We used GAP to show that this group is isomorphic to the 

automorphism group of a cube - the group K3 X S3., which has order 48. If P is 

the 3-dimensional lzypercube specification, it is not surprising that Aut(SCD(P)) C-- 
K3 x S3 (given the similar result for Aut(CV(P)) described in Section 5.2.2), and 
the results of Figure 8.7 confirm that JAut(SCD(P))J = 48 also. It is surprising, 
therefore, that G, the largest valid subgroup of Aut(SCD(P)), has order 8. Symm- 

Extractor describes Aut(SCD(P)) in terms of three generators as follows: 

Aut(SCD(P)) = ((23)(litik2litik3)(67)(Iiiik6litik7), 

(3 5) (Iink3 link5) (4 6) (Iink4 link6) 

(12) (linkyl link2) (3 4) (link3 link4) (7 8) (5 6) (link5 link6) 

Qink7 link8)). 

The first two of these generators are invalid. To see why this is the case, 
for the generator it = (2 3)(Ibzk2 link3)(6 7)(1hik6 link7), consider the first run 
statement of P: 

run node(linkl, link2, link3, link5); 

By the definition of a (P) in Section 7.2.1, the first run statement of a (P) is: 
run node(linkl, link3, link2, link5); 

The fact that these run statements are not identical implies that P# a(P). Sim- 
ilarly, the second generator above is shown to be invalid for P. The largest valid 
subgroup G can be shown to be isomorphic to the subgroup K3 of K3 M S3. For 

each of the hypercube configurations we have analysed we see a similar result: 
jAut(SCD(P))j = JK, x S,, l = 2n x n!, IHI = 2, and IGI = I&I = 2n (where 

it is the dimension of the hypercube). SymmExtractor does not detect a symmetry 
group isomorphic to Kn x Sn (which, for the 3-dimensional case, we have identified 
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Configuration PI lAut(SCD(P))l I IHI I IGI I saucytime I find largest time 
resource allocator sharing L 864 4 12 0.03 4.47 

three-liere;; - ým I xed 72 
1 

0.05 0.08 
, ,e ix hypercu ixed 6 1 1 0.03 1.08 

rigure 8.9: Applying SymmExtractor to the modified resource allocator, thrce-tiered ar- 
chitecture and Itypercube specifications. 

as a symmetry group for the associated model) due to the definition of validity given 
in Section 73.1. It may be possible to relax this notion (as discussed in Section 7.6-4) 
to automatically detect larger symmetry groups for the Itypercube specifications. 

While the elimination of arithmetic expressions from the specification is un- 
related to this validity issue, re-modelling the specification to avoid arithmetic 
on pid variables results in a much larger specification; this problem was noted 
in Section 7.6.2. The complexity of checking whether it E Aut(SCD(P)) is valid 
for P is proportional to the size of P, and is therefore time-consuming for the 
4- and 5-dimensional Itypercube specifications. This explains the lengthy compu- 
tation of G for the 5-dimensionzal configuration, despite the fact that the ratio 
jAut(SCV(P))j1jHj is not large (compared to that for e. g. the altenzatitig 12 re- 
sourceallocator configuration, for which the time to compute G is much less). 

Results using the random cx)njugates optimisation 
The alteniating resource allocator configurations and the hypercube configurations 
are examples when, the initial valid subgroup H is non-trivial, but the search for 
G involves checking a significant number of coset representatives. To alleviate this 
problem we tried increasing the size of H using random conjugates as described in 
Section 8.3.3. 

For each of the relevant specifications, Figure 8.8 shows the size of H, en- 
larged using two, five and ten random conjugates, and the resulting time to find G. 
The sizes of Aut(SCD(P)) and G are as in Figure 8.7. The results show that this op- 
timisation can Ix, useful in practice: symmetry detection using conjugates is faster 
in all cases. The speed-up is particularly noticeable for the alteniating 12 resource 
allocator and 5-dimensional Ity1wrcube configurations, and it was possible to detect 
symmetry for the alicniating 14 and 16 resource allocator configurations, which were 
Previously intractable. 

Applying S)7nmExtractor to modified versions of the specifications 
In Sections 4.4.3,4.5.2 and 4.6.2 we considered modifications to the resource allo- 
cator, three-fieredarchitectureand hypercube specifications respectively, and used 
Sri-N-to-GRArr to see the effect of these modifications on the associated automor- 
phism groups. 
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Figure 8.9 shows the results of applying SymmExtractor to these modified 
specifications. Symmetry detection is effective for the three-tiered architecture spec- 
ificition with mixed modes of communication, and the resource allocator specifica- 
tion which features sharing between client processes, and the symmetry groups 
obtained in each case conform to the groups computed using SPIN-to-GRAPE in SeC- 
tions 4.4.3 and 4.5.2 respectively. 

For the hypercube specification with a fixed initiator SymmExtractor does 
not detect any non-trivial symmetry, and must enumerate Aut(SCD(P)) to de- 
termine this. Recall from Section 4.6.2 that the symmetry group associated with 
this modified specification is isomorphic to stabK3. s3(0). Since the symmetry group 
which SymmExtractor computes for the original specification is isomorphic to K3 
rather than K3 M S3* it not surprising that the group computed for the modified 
specification corresponds stabK3(o) = {id). 

8.5 Using T%vo Student Assessed Exercises to Evaluate SymmExtractor 

The SymmExtractor tool can handle more general kinds of symmetry than Symm- 
Spin or SMC, places fewer restrictions on the form of specifications, and does not 
require annotation of a specification with additional data types. 3 However, Symm- 
Extractor still places some restrictions on the form of specifications, as summarised 
in Section 8.1.1. Due to the fundamental difficulty of automatic symmetry detection 
(see Section 3.3.5), these restrictions are not unreasonable. Nevertheless, it is impor- 
tant to assess the impact of the restrictions on the practical use of SymmExtractor. 

We present an evaluation of SymmExtractor based on a set of example solu- 
tions to two assessed exercises from the Modelling Reactive Systetns final year course 
at the University of Glasgow. We discuss the ethical issues involved in using stu- 
dentprograms forrescarch, present the designof our evaluation, and propose some 
changes to SymmExtractor, and directions for future work, based on the evaluation 
results. As well as providing insight into the challenges of automatic symmetry 
detection, the chapter is a novel case study in formal methods evaluation. 

8.5.1 The Modelling ReactIve Systems course 
Modellitkj Reactive Systc-nis (MRS) is a final year 20-lecture formal methods course 
at the University of Glasgow. 111c primary focus of the course is on the theory 
and practice of model checking, and students Use SPIN in practical sessions. The 
main prerequisite for MRS is a discrete mathematics course for computing science, 

3. Arguably, making a distinction between the pid and byte data types, which SPIN regards as inter- 
changeable, means that the use of the pid type is a form of symmetry-related annotation. However, 
this primitive type, Is already part of the sjxýdfication langmage, and is simple to use. 
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which covers the basics of set theory, predicate logic, relational algebra and meth- 
ods of proof. In addition, students are required to have passed first year mathemat- 
ics courses on calculus and algebra, as well as multiple computing science courses 
on programming, data structures and algorithms. Almost 20% of the assessment 
for MRS is via a practical exercise which involves specifying a reactive system us- 
ing Promela, then reasoning about the specification with SPIN. We now describe the 
practical assignments which were set for sessions 2004/2005 and 2005/2006. 

Telephone Exchange 
The MRS practical exercise for 2004/2005 involved producing three versions of a 
specification for a two user telephone system. Version one was a naive model, ver- 
sion two a model in which acknowledgments were included, and version three a 
model in which call clear-down was made to be asymmetric (only the initiator of a 
call could terminate the call). Intuitively, a Promela specification of a two-user tele- 

phone exchange should exhibit one non-trivial symmetry which switches the local 

states of the users (and their associated channels) throughout all global states. Tllus 

solutions to this modelling task provide a good set of Promela examples with which 
to evaluate the restrictions imposed by SymmExtractor. Furthermore, the associ- 
ated state-spaces are small enough for SPIN-to-GRAPE (see Section 4.1) to compute 
all state-space symmetries present in a given specification, which can be compared 
with those detected by SymmExtractor. 

P%a il way Signa Hing Sys tem 
The practical exercise for 2005/2006 involved designing a specification of a rail- 
way system consisting of two train processes, eight gate processes and a controller 
process. The trains were each to travel around one of two circular tracks which 
intersected along a section, as illustrated in Figure 8.10. The trains were to commu- 
nicate with the controller process to indicate their approach to and departure from 
the gates, and the controller process in turn was to communicate with the gates to in- 

struct them to raise and lower, as appropriate. The communication protocol was to 
be designed in such a way as to avoid the two trains having access to the section of 
shared track simultaneously. The diagonal grey line of Figure 8.10 illustrates sym- 
rnetry in the structure of the system. We would expect a model of such a system to 

exhibit one non-trivial automorphism corresponding to simultaneously swapping 
the local states of gates 0 and 4,1 and 5,2 and 6,3 and 7, and trains 1 and 2. 

8.5.2 Ethical approval 
Before we, describe how we have used solutions to the practical exercises for MRS 
to evaluate SYmmExtractor, we outline the ethics procedure we have followed. 
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Figure 8.10: Layout of railway signalling system. 

To ensure that our user study is ethical, we have followed the Glasgozt) EtIzics 

Code check-list [144]. This is a 12-point check-list distilled from the ethical standard 

of the British Psychological Society [161, and focuses on the issues which are most 

relevant to computing science projects. Compliance with most of the points on the 

check-list was straightforward. The following points required some care: 

9 All participants explicitly stated that they agreed to take part. Students 

who allowed us to use their solutions in the study were provided with an 
information sheet detailing the aims of the study, and asked to sign a consent 
form. The information sheet and consent form given to students in session 
2005/2006 are included as Appendix D, and are adapted from a standard 

example [143]. The intended usage of students' solutions is detailed in Sec- 

tion 8.5.3. 

The researcher conducting the experiment is not in a position of authority 

or influence over any of the participants. As the solutions formed part of 
the course assessment, it was important that the consent of students was not 

sought until after solutions had been assessed and returned. This assured 

students that their decision to take part in the study could I-lave no effect 

oil their score for the exercise, and encouraged thern to answer the assessed 
questions in exactly the same way as they would have otherwise. 

A further ethical concern is that the assessed exercises should be designed to meet 
the intended learning outcomes of the course and not to meet research aims (unless 

these overlap). In addition, since assessment has been shown to narrow students' 
focus [151, care must be taken to ensure that an assessment biased towards the 

research interests of the course director does riot restrict bread th of learning. In our 
case the exercises had been set to meet the course aims before we designed our 
evaluation. 
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The study was approved by the ethics committee of the Faculty of Informa- 
tion and Mathematical Sciences at the University of Glasgow (ref. FIMS00203). We 

obtained signed consent forms from 17 students from session 2004/2005, and 12 
students from session 2005/2006. The average class size for these years was 35. 

8.5.3 Methods 

For each specification in the sample set we gathered the following data by a com- 
bination of automatic and manual analysis: 

1. Size of the unreduced state-space (computed using SPIN) 
2. State-space symmetries computed by SPIN-to-GRAPE, and size of the result- 

ing quotient state-space (if feasible) 
3. Symmetry breaking features of the specification, and modifications required 

to restore symmetry (documented by experimenter) 
4. Violations of restrictions imposed by SymmExtractor (as reported by the 

tool) and modifications required to satisfy restrictions (documented by ex- 
perimenter) 

5. Symmetries detected by SymmExtractor. 
We also used our symmetry reduction package TopSPiN, which is described in 
Chapter 11, to check that our symmetry reduction results agree with the quotient 
state-spaces produced independently by SPIN-to-GRAPE. 

Symmetry breakingfeatu res are aspects of a specification which destroy the in- 

tuitive symmetry discussed in Section 8.5.1. When SPIN-to-GRAPE showed absence 
of this expected symmetry in a given specification, the experimenter manually ex- 

amined the specification to identify symmetry breaking features. In the cases where 
it was not feasible to use SPIN-to-GRAPE for state-space analysis, the experimenter 
looked for certain commonly occurring symmetry breaking features. 

We classify the modifications of 4 above as minor if they could be avoided 
by a straightforward extension of SymmExtractor, medium if they would be un- 
necessary if SymmExtractor could capture symmetry between global variables (as 
discussed in Section 7.6.3), or major if they could only be avoided by significant 
development of the theory of Chapter 7 on which SymmExtractor is based. 

8.5.4 Results 

Telephone exchange 
We refer to the individual components of a three part solution as specifications. Of 
the 51 specifications analysed, just over half did not exhibit the expected symmetry 
due to symmetry breaking features. In most cases this was because run statements 
were not surrounded by an atomic block; for other examples the telephone users 
were initialised asymmetrically (e. g. ha? tdset variables for users 1 and 2 were set to 
up and dowit respectively, destroying symmetry between users). In all cases it was 
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Figure 8.11: Typical static channel diagram for the telephone examples. 

possible to restore symmetry by trivial modifications, with a negligible effect on 
the global state-space. With these modifications, SymmExtractor was able to de- 
tect symmetry immediately from 23 of the resulting specifications. A further 13 re- 
quired modifications which we classified as minor; these included replacing locally 
instantiated channels with globally instantiated channels, and removing channel 
instantiation statements from record declarations. Another seven specifications re- 
quired medium modifications (as described above). The final eight specifications 
required major modifications. These modifications have identified a problem with 
the usability of SymmExtractor, which involves the way that arrays indexed by 

process identifiers are accessed. This is discussed further in Section 8.5.5. An exam- 
ple of a typical specification which required major modifications, together with our 
re-modelled version, can be found in Appendix A. 5. 

After necessary modifications, SymmExtractor was able to efficiently detect 

symmetries for all specifications. Figure 8.11 shows the typical static channel dia- 

gram structure associated with the example solutions. 

Railway signalling system 
The 12 Promela solutions to the railway signalling exercise all resulted in large 

state-spaces. Thus for these examples it was not possible to use SPIN-to-GRAPE to 

compute symmetries of the global state-space. However, in six of the solutions the 

experimenter was able to identify the common symmetry breaking feature of run 
statements occurring outwith an atomic block. 

SymmExtractor proved to be ineffective in detecting symmetry for this set 
of examples (after fixing symmetry breaking features): in all cases, specifications 
required major modifications. We illustrate the kind of re-modelling required for 
SymmExtractor to be applicable to these solutions using an example. 

Figure 8.12 shows part of Promela specification which is typical of the set 
of solutions for this exercise. Specifically, the figure includes a train proctype and 
the init process, but omits proctypes for gate, sliared_gate and controller processes. 
Figure 8.13 shows the portion of the example after re-modelling. Full versions of 
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mtype - japproaches, leaves, lower, raise, atgate, faraway, up, down); 

chan control link - 101 of (mtype, byte); 
chan gate_lia (8) - 101 of (mtype); 

mtype bar[81 = down; 
bool on shared track[2) false; 
bool sh7ared_track_open false 

proctype train(byte current_gate, id) 
mtype position - atgate; 
control_linklapproaches, current-gate; 
do :: atomic ( position=. faraway -> 

if :: current_gate-=3 -> current-gate - 0; assert(id - 0) W 
current_gate. =7 -> current-gate - 4; assert(id == 1) 
else -> current_gate++; 

fi; 
control-linklapproaches, current-gate; position=atgate) 

atomic f (bar[current_gate1==up && position==atgate)-> 
if (current_gate - (id 4)) -> on_shared_track(id] true 

else -> skip 
fi; 
position - faraway; control linkileaves, current-gate; 
if (current_gate == (id 4+ 1)) -> 

on shared tracklid) - false 
else -> eiip 

fi 

od 

init 
atomic 

run controllerol run sharedgate(O); run gate(l), run gate(2); 
run gate(3): run sharedgate(4); run gate(S); run gate(6); 
run gate(7); run train(2,0); run train(6,1); 

Figure 8.12: Typical example of a solution to the railway signalling problem. 

both Promela specifications are given in Appendix A. 6. 
In the original specification, a train process is instantiated with an id which 

is either 0 or 1. Similarly, the eight gate processes are instantiated with an id in 
the range 0-7. A train is also instantiated with the identifier of the gate at which it 
starts. Recall from Section 8.1.1 that SymmExtractor requires processes to use their 
built-in 

_pid variable, rather than being passed an id as a parameter, and that 
processes instantiated by the init process are assigned identifiers in order, starting 
from 1. Comparing lines marked (*) in the original and modified specifications 
illustrates this. Instead of referring to gates 3 and 0, in the re-modelled specification 
we refer to gates 5 and 2. This is because the 

_pid values for gate and shared-gate 
processes are in the range 2-9. Similarly, instead of asserting that id= = 0, we now 
assert that 

-Pidm=10, since the 
_pid value for the first train process in the re- 

modelled specification is 10. 
The major disadvantage of this modification is that train processes must now 

index into the on-shared-track array using their 
_pid variable, which is in the 

range 10-11, and thus the array mustbe declared with size 12. The first ten positions 
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of this array are unused, but still form part of the state-vector. 
Another significant re-modelling step is illustrated by the lines marked 
Recall from Section 8.1.1 that SymmExtractor does not allow variables of 

type pid to be used in arithmetic operations. Thus the expression current-gate 
== (id*4+1) must be re-modelled. In the original specification this expression 
can be re-written as a disjunction: (id==O&&current_gate==1) II (id==l&& 
current_gate==5), since id is either 0 or 1. In the re-modelled specification tl-ds 
translates to: 

(_pid==lo&&current_gate==3)11(_pid==11&&current_gate==7). 

In the re-modelled specification, to avoid the use of a global array of chan- 
nels (another restriction of SymmExtractor), gate and shared_gate proctypes are pa- 
rameterised by a channel. For details of this re-modelling, see the online specifica- 
tions. 

After this heavy-weight re-modelling, SymmExtractor can be used to find 

valid static channel diagram automorphisms for the specification of Figure 8.13. 
However, the process of symmetry detection is slow for this example. Tl-te static 
channel diagram for the specification is shown in Figure 8.14. SymmExtractor com- 
putes generators for Aut(SCD(P)) as follows: Aut(SCD(P)) = 

(3 4) (gate-litzk_ 3 gate_ link_4), (4 5) (gate 
- 

link_ 4 gate_ link-5), 

(5 7) (gate_li? ik_ 5 gate_ litzk_7), (7 8) (gate 
_link_ 

7 gate_ link_8), 

(8 9) (gate_link_ 8 gate_ link_9), (2 6) (gate 
_liizk _2 gate_ litzk_6), 

(1011) ). 

Here lAut(SCV(P)) I= 2880. However, the largest possible subgroup computed 
by SymmExtractor has order 2, and consists of the identity and the element: 

(2 6) (gate_li? tk-2 gate_li? ik_6) (3 7) (gate_link_3 gate-link-7) 
(4 8) (gate_li)tk_4 gate_litzk_8) (5 9) (gate_link_5 gate_li? ik-9) (10 11). 

Thus SymmExtractor must search the group Aut(SCD(P)) to find this single non- 
trivial valid symmetry. Clearly if there were more processes in the specification 
Aut(SCV(P)) would be would be larger, and fl-ds search might not be feasible. For 
this example, the random conjugates optimisation presented in Section 8.3.3 does 

not help, as the initial valid subgroup is trivial. 

8.5.5 Outcomes of the evaluation 

The evaluation has led to some straightforward changes to the documentation and 
design of SymmExtractor, as well as some interesting open research questions. We 
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mtype - japproaches, leaves, lower, raise, atgate, faraway, up, down), 

chan control_link [01 of (mtype, pid); 
chan gate_link_2 [01 of (mtype); 

... ; chan gate_link_9 = [01 of jmtype); 

mtype bar(121 = down; 
bool on 

- 
shared_track[121 - false; 

bool shared_track_open = false 

proctype train(pid current_gate) 
mtype position = atgate; 
control_linklapproaches, current-gate; 
do atomic j position-faraway -> 

if current_gate=. 2-> CUrrent_gate=3 
current_gate==3-> CUrrent_gate=4 
current_gate==4-> CUrrent_gate=5 
current_gate-=5 -> current-gate 2; assert(_pid 10) 
current_gate==6 -> current_gate=7 
current_gate=-7 current_gate=8 
current_gate==8 current_gate=9 
current_gate==9 current-gate=6; assert(_pid == 11) 

fi; 
control-link [approaches, current-gate; position=atgate) 

atomic ( (bar[current-gatel==up && position==atgate) 
if ((_pid=-Io && current_gate 2)11 

(_pid==ll && current_gate 6)) 
on 

- 
shared_trackl_pid) = true 

else -> skip 
fi; 
position - faraway; control_linklleaves, current-gate; 
if ((_pid==10 current_gate - 3)11 

(_pid-=ll current-gate-7)) -> 
on shared track[_pid] = false 
else -> siip 

fi 

od 

init 
atomic 

run controllero; run sharedgate(gate_link 2); 
run gate(gate 

- 
link_3), run gate(gate_link_47; 

run gate(gate_link_5); run sharedgate(gate_link_6); 
run gate(gate_link 

- 
7); run gate(gate 

- 
link 

- 
8); 

run gate(gate_link_9), run train(4); run train(8); 

Figure 8.13: Re-modelled version of the railway signalling specification. 
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Figure 8.14: Static channel diagram for the modified railway signalling specification. 

have extended the SymmExtractor documentation with a short set of modelling 
guidelines based on the problems encountered when applying the tool to this set 
of examples (see Appendix C. 2.3). It is clear that the tool would be more useful if it 

could handle symmetry between global variables, as discussed in Section 7.6.3. 
The line marked (**) in Figure 8.13 illustrates a case where using a pro- 

cess identifier in an arithmetic operation does tiot destroy symmetry in the underly- 
ing model. 'Thus an open research question is: under what conditions is it possible 
to relax this restriction of SymmExtractor? We outlined a possible solution to this 

problem in Section 7.6.2. 
As discussed in Section 8.5.4, for the re-modelled railway signalling exam- 

ple, Aut(SCD(P)) is much larger than the valid subgroup which SymmExtractor 

eventually computed. For this example, the static channel diagram does not reflect 
the communication structure of the system very well. As discussed in Section 7.5, 
it would be interesting to investigate other graphical representations derived from 
Promela specifications which may better reflect the symmetry present in examples 
such as this one. 

A major challenge which the evaluation results have presented is to find 

techniques to automatically determine the relationship between numeric identifiers 

passed as parameters to processes by the user (and used to access arrays), and the 

run-time id values which SPIN assigns to processes. This was a problem associated 
with some of the telephone specifications, and with all of the railway signalling 
solutions. 

The problem is that the built-in 
_pid variable indicates the instantiation 

number of a process with respect to all processes, not with respect to a given proc- 
type. Therefore. the first traht process in Figure 8.13 has 

-pid value 10, even though 
it is the first traiii process to be instantiated. This means that if the 

_pid variable 
is used as an index for an array of values relevant to processes of a given proctype, 
the array must be as large as the highest id of any instantiation of this proctype, and 
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tI-ds may significantly increase the space requirement for each state of the model. 
An elegant solution to this problem would greatly improve the usability of Symm- 
Extractor. 

Summary 

We have described SymmExtractor, an automatic symmetry detection tool for 
Promela based on the techniques presented in Chapter 7. In particular, we have dis- 
cussed the way in which SymmExtractor uses type reconstruction and bisimulation 
minimisation to handle incomplete channel types and recursive types respectively. 
We have described the way in which the saucy and GAP tools are used to find the 
largest valid group of static channel diagram automorpl-dsms for a Promela speci- 
fication. 

Experimental results show that the overhead of applying SyrnmExtractor 
to detect Kripke structure automorphisms before search is minimal, except when 
Atit(SCD(P)) is large and the largest valid subgroup of Aut(SCD(P)) is small. 
We have suggested an optimisation based on random conjugates to help overcome 
this problem, and shown that this optimisation can help with symmetry detection 
for practical examples. 

We have presented the methods and results of a user study to asses the 
feasibility of the restrictions on the form of a Promela specification which Symm- 
Extractor imposes. This evaluation has identified some cases where SymmExtractor 
is over-restrictive and cannot detect symmetries which SPIN-to-GRAPE has shown to 
exist. The evaluation results have identified some challenging open research prob- 
lems in the area of automatic symmetry detection. 



Chapter 9 

Exact and Approximate Strategies for Symmetry Reduction 

In Chapters 7 and 8 we have been concerned with the problem of detecting au- 
tomorphisms of the Kripke structure associated with a Promela specification. We 

now turn our attention to the problem of efficiently exploiting symmetry in order 
to verify large systems using model checking. 

As discussed in Section 3.4, given a symmetry group G, a common approach 
to ensuring that equivalent states are recognised during search is to convert each 
newly encountered state s into MillASIGi the smallest state in its orbit (under a 
suitable total ordering ý), before it is stored. However, the problem of computing 
min<[SIG for an arbitrary group (where! ý is the lexicographic ordering on vectors), 
known as the constructive orbit problem (COP), is NP-hard [27] (see Definition 24 and 
Theorem 10, Section 3.4). 

Existing symmetry reduction packages, such as SymmSpin [14] and SMC 
[166], are limited as they can only exploit full symmetry between identical compo- 
nents of a system. This eases the problem of identification of symmetry, and the 
COP can be solved efficiently for this special case. However, as illustrated in Chap- 
ter 4, the automorphism group associated with a Kripke structure may be more 
complex. Since the automatic symmetry detection techniques of Chapters 7 and 8 

can detect arbitrary kinds of symmetry arising from the static channel diagram of a 
specification, it is important to have techniques to solve the COP efficiently using 
information about the structure of G, or to provide an efficient, approximate solution 
to the COP (see Sections 3.4.1 and 3.4.2 respectively) when no such information is 
available. 

In this chapter we generalise existing techniques for efficiently exploiting 
symmetry under a simple model of computation, and give an approximate strat- 
egy for use with symmetry groups for which fast, exact strategies cannot be found. 
We use computational group theory to automatically determine the structure of a 
group as a disjoint/wreath product of subgroups before search so that an appro- 
priate symmetry reduction strategy can be chosen. 
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9.1 A Model of Computation Without References 

We refer to a process, global variable or buffered channel in a concurrent system as 
a conipoixid. We now justify the claim made in Section 3.4 that we can reason about 
states of a concurrent system using a single integer variable for each component. 

Let V= Ivi, v2,..., v1} be the set of variables associated with a concurrent 
system, and Di the finite domain of vi (1 <i< 1). Let m= maxIlDil :1<i< 
1}. Then we can enlarge each Di so that I Di I=m, and assume without loss of 
generality that Di = 11,2,..., m} (1 <i< 1). Let M= (S, so, R) be a Kripke 

structure defined in terms of D=D, x D2 X ... x D, (see Definition 1, Section 2.2). 
Suppose V is partitioned into n subsets, V1, V2,..., Vn for some n>0, where 

each set Vi consists of the variables associated with a single component i of the 

system. Then, for 1<i<n, Vi = JViji Vi, 21 --.,, vi)J, for some Vq EV and 
1i > 0, such that 1i = 1. If component i is a global variable, Vi consists of a 

single variable. If component i is a buffered channel with capacity t then Vi con- 

sists of t variables, one for each place in the buffer. On the other hand, if i is a 

process, Vi is the set of local variables for that process. Then D Dij 

where Dij is the domain of vq, for 1<i< it, 1<j :5 Ii. Let f be the size of 
the largest Vi. For 1<i< it, define a map Oi :D --+ 11,2,. 

. .' mf } as follows: 

for any state s= (dl,,, dl, 2,..., d1j1, d2j, d2,2,..., d2J2i-.., dn, 1, dn, 2, -.., dn, 1,, ) E D, 

Oi(d)= d- -mi-1. Define O(s) = (01(s), 02(s),..., On(s)). Itis straightforward to 

check that 0 is injective. We can define a Kripke structure M' = (S', so, R') thus: 

S'= O(D) 

so =0 (SO) 

9 R' =f (0 (S), 0 (t» : (5, t) G 
Tlie structure M' is obtained from M by representing all variables for a 

given component by a single variable with a larger domain. Clearly M' is essen- 
tially the same as M: since 0 is injective and is (trivially) a surjection. from D to O(D), 

we can always translate a state of M' back to a unique state of M. 
The above argument justifies the assumption made throughout this chapter 

that a Kripke structure representing a system of n components can be defined in 
terms of a set of ii variables, each with finite domain LcZ, so that a state is 

a vector in Ln. We compare states using ! ý, the natural lexicographic ordering on 
vectors (see Section 3.4). Throughout, let I= 11,2,..., n}. 

9.1.1 Action of Sn on states 

Let G !ýS,, and s= (XI 
i X2t ... i Xn) E Ln. Assuming that components in the system 

do not hold references to one another, we can define the state a (s) as follows: 

= (x_1(1), X_1(2),. . 
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database 

servers 

clients 
10 11 

Figure 9.1: Communication structure for a three-tiered architecture. 

In Chapter 10 we consider a more realistic model of computation where compo- 
nents may hold references to one another, and present a corresponding action of 
S, Throughout this chapter we use Mill[SIG to denote min<[S]G, the <-Minimum 

state in the orbit of s under G. 

9.1.2 Symmetry detection 

We assume that generators for a symmetry group G have been computed via the 

communication structure associated with a high level specification, or have been 

provided explicitly. To make our results general, we do not assume that symmetry 
has necessarily been detected using the techniques of Chapter 7. 

For illustration, throughout this chapter we consider a system with a three- 
tiered architecture based on the example in Section 4.5. Figure 9.1 shows a possible 
communication graph for this system, which we assume has been extracted from a 
specification of the system by some symmetry detection tool. Let M3T be a model of 
the system. Using the GRAPE program, we compute G3T# the automorphism. group 
of the communication graph in terms of generators: 

G3T ý-- ((12), (23), (45), (56), (78), (89), (1011), 

(12 13) (14) (2 5) (3 6), (13 14) (4 7) (5 8) (6 9)). 

Note that the last two elements of the generating set of G3T are products of trans- 

positions. We assume that p(G3T) : ý, Aut(M3T) (where p is the permutation repre- 
sentation of G3T on the states Of M3T), and will use this group and its subgroups 
as examples to illustrate some of our techniques. 

9.2 Exploiting Basic Symmetry Groups 

9.2.1 Efficient application of permutations 
Before we discuss symmetry reduction strategies, we consider the problem of ap- 
plying a permutation a to a state s (i. e. computing a (s)). 

Direct application of a permutation a to a state s= (X1iX2t 
... iXn) clearly 

requires exactly ii operations: we must compute x,, (j) for each i. On the other 
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hand, applying a transposition (i j) to s is a constant time operation - the local 

states xi and xj are simply exchanged. 

Lemma 6 Let aES, Then a can be expressed as a product of at most it -1 trans- 
positions. 1 

Proof If a is a cycle (a, a2 ... a) for some m <- iz then a can be expressed as 

* product of m-1 transpositions: a= (a, a2) (a, a3) ... 
(a, am) (where 1< ai !ý 

* for each 1 <_ i :: ý m) 1811. Suppose a is instead a product of I disjoint cycles, 

Itli tt2 iti, for some I>0, where cycle ai has length mi (I <i< 1). We have 

rI 
_i=l mi < ii. Since each ai can be written as a product of mi -1 transpositions, a 
can be written as a product of li., (mi - 1) <n-1 transpositions. N 2 

In Section 11.3 we provide experimental evidence that representing a per- 
mutation a as a list of transpositions, and computing a (s) by successively applying 
these transpositions, speeds up symmetry reduction by a significant constant fac- 

tor. 

9.2.2 Enumerating small groups 

The most obvious strategy for computing Mi"[SIG is to consider each state in 
[s]G, and return the smallest. This can be acl-deved by enumerating the elements 
a (S), aEG. If G is small then this strategy is feasible in practice, and provides an 
exact symmetry reduction strategy. The SymmSpin package provides an enumera- 
tion strategy for full symmetry groups, which is optimised by generating permuta- 
tions incrementally by composing successive transpositions. 

We generalise this optimisation for arbitrary groups using stabiliser chains. A 

stabiliser chain for G is a series of subgroups of the form G= GM > G(2) > ... > 

GM = lid}, for some k>1, where GW = stabG(i-1)(X) for some XE moved(GO-1)) 
(2 <i< k). If U(i) is a set of representatives for the cosets of GW in G(i-1) (2 <_ i <_ 

k), then each element of G can be uniquely expressed as a product Uk-lUk-2 ... Ulf 

where Ili E U(') (1 <i< k) [191. Permutations can be generated incrementally 

using elements from the coset representatives, and the set of images of a state s 

under G computed using a sequence of partial images (see Algorithm 5). To ensure 

efficient application of permutations, the coset representatives are stored as a list of 

transpositions, applied in succession, as described above. 
GAP provides functionality to efficiently compute a stabiliser chain and as- 

sociated coset representatives for an arbitrary permutation group. Although this 

approach still involves enumerating the elements a (s) for every aEG (and is thus 

infeasible for large groups), calculating each it (s) is faster. The experimental results 

1. This is a well known fact for which we could not find an explicit proof. We include on here for 
the sake of completeness. 
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Algorithm 5 Computing Mill [SIG using a stabiliser diain. 
Mif? [SIG :=S 
for all ul E U, do 

S1 := Ul(s) 
for all U2 E U2 do 

S2 : -= U2(SI) 

for all uk E Uk do 

Sk := Uk(Sk-1) 
if Sk < min[sIG then 

"liti[SIG : ý-- Sk 
end if 

end for 

end for 
end for 

of Section 11.3 show an improvement over basic enumeration. Additionally, it is 
only necessary to store coset representatives, rather than all elements of G. 

Stabiliser chains are used extensively in computational group theory 119,63], 

and have been utilised in symmetry breaking approaches for constraint program- 
ming [64]. We are, to our knowledge, the first to apply these techniques to model 
checking. 

9.2.3 Minimising sets for G if G S,, (m < n) 
For systems where there is full symmetry between components, the smallest state in 
the orbit of s= (X1 i X2 Xn) can be computed by sorting the tuple s lexicograph- 
ically [14,271. For example, for a system with four components, sorting equiva- 
lent states (3,2,1,3) and (3,3,2,1) yields the state (1,2,3,3), which is clearly the 
smallest state in the orbit. Since sorting can be performed in polynomial time, this 
provides an efficient solution for the COP when G= Sn- 

Recall the group G3T of automorphisms of the communication graph of Fig- 
ure 9.1. Consider the subgroup: 

H= ((1213)(14)(25)(36), (1314)(47)(58)(69)). 

n-iis group permutes server components 12,13 and 14, with their associated blocks 
of client components. It is clear that H is isomorphic to S1. the symmetric group on 
3 objects. However, we cannot compute Mill [SIH by sorting s in the usual way, since 
this is equivalent to applying an element aE S16 to s, which may not belong to H. 

We can deal with a group G acting in this way using a minimising set for 
G. Using terminology from [59], G is said to be nice if there is a small set XCG 
such that, for any SES, s= min[s] ý* S :! ý a(s) VaEX. In this case we call X 
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Algorithm 6 State minimisation using a minimising set X. 
min: = s 
repeat 

mill' := min 
fora EX do 

if LY(min') < min then 
min: = a(min) 

end if 
end for 

until min'= mitt 

a miiiindshig set for G. If a small minimising set X can be found for a large group 
G, then computing the representative of a state involves iterating over the small 
set X, minimising the state until a fix-point is reached. At this point, no element of 
the minimising set maps the state to a smaller image, thus the minimal element has 
been found. This approach is described by Algorithm 6. 

We show that for a large class of groups which are isomorphic to S.. for 

some m< it, a minimising set with size polynomial in m can be efficiently found. 
This minimising set is derived from the swap permutations used in a selection sort 
algorithm. As discussed in Definition 10 (Section 3.1.2), we use orbc, (i) rather than 
[i] G to refer to the orbit of iEI under G. This is to avoid confusion between orbits 
of states and orbits of component identifiers. 

Theorem 16 Suppose that I GI = m!; every non-trivial orbit of I under G has size 
m; for any iEI, stabG(i). fixes exactly one element from each orbit, and if ij belong 
to the same orbit then for any kE1, stabG(i) and stabGU) both fix ki=j. 
Then there is an isomozphism 0: S,, --+ G such that I(i j)O :1<i<j m} is a 
minimising set for G. 

Proof Assume, without loss of generality, that all orbits of -T under G are non- 
trivial. Let (Ili n21 ---, rld be the orbits, and say r1l jXli X2t ---, X, }. 

For 1<i<M let Ci = Iz EI: a(z) zV cc E stabG(xj)}. By our 
hypothesis, ci n qj =0 when i 5A j, and it is clear that every kEI belongs to some 
Ci. We call the Ci columm. 

For 1 :! ý, i<d, we can write ni as Oi = jzj'l, zi, 2,... I zim} where zij E Cj (1 < 
j :5 m), (and so xi = z1j). For 1<i<m, define aij = (ZlJ Zlj) (Z2, i Z2, j) ... 

(Zd, i Zdj)- 
It can be shown that aij E G. The element aij transposes the elements of column Ci 

with those of Cj. Let 0: S. --+ G be defined on generators by (i j)O = aij. It is easy 
to see that 0 is a monomorpl-dsm, and since IGm! = S. (by hypothesis), 0 is an 
isomorphism. 

Now consider states s and s', where s' a(s) for some aEG. Let i be the 
smallest index for wl-dch s (i) jA s'(i). Let j be the index such that j=a -1 (i). All 
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of the elements in the column containing j (column j' say) are mapped via a to 
the column containing i (column i' say). Then s' <s iff (i' j')O(s) < s. Hence s is 

minimal in its orbit iff (i j)O (s) ý: s for all i<j. So the set I (i j)O :1<i<j :5 m} is 

a minimising set for G. M 

Note that the minimising set is much smaller than G, and the conditions 
of Theorem 16 can be easily checked using GAP. Although testing two arbitrary 
groups for isomorphism can be very inefficient, if a set of m candidate columns is 
found, testing whether the action of G on the columns is isomorphic to S" can be 

performed efficiently using the GAP function I sNaturalSymmetricGroup (G). 
It may seem that the conditions of Theorem 16 are unnecessary, and that, 

given any isomorphism 0: S,, -+ G, the set I (i j) 0: I<i<j:! ý m} is a minimis- 
ing set for G. However, consider the group G below, which is a subgroup of the 

symmetry group of a hypercube (see Section 4.6): 

G= ((l 2) (5 6) (9 10) (13 14), (12 4 8) (3 6 12 9) (5 10) (7 14 13 11)) ý: S14 

G is isomorphic to S4. with an isomorphism 0: S4 --+ G defined on generators by 
(12 3 4)0 = (12 4 8) (3 6 12 9) (5 10) (7 14 13 11), (12)0 = (4 8) (5 9) (6 10) (7 11). 
The state s= (6,10,3,6,3,5,7,10,4,8,2,1,9,3) E {1,2,..., lo)14 can not be min- 
imised using the set I (i j)O :1 -< 

i<j< 4}. 

Theorem 17 If G satisfies the conditions of Theorem 16 and X=I (i j)O :1 <- 
i<j :5 m} then nfin[s]G can be computed in O(M3) time for any SE Ln, using 
Algorithm 6. 

Proof Clearly1XI = I(ij)0: 1 <i <j: ý m}1 = m(m-l)/2. 
A column entry Ci(s) for a state s with respect to a column Ci is a tuple of 

local states of s whose indices (in s) belong to Ci, viewed as an ordered list. Clearly 

we can order columns and column entries lexicographically. An element (i j)' EX 
has the effect of transposing two column entries for a given state. 

We say that Q is minimal in s if, for all Cj < Ci, Cj(s) :5 Ci(s). That is, no 
smaller column has a larger entry. Now suppose that the smallest column entry 
for s which is not minimal in s has index j and let i be the largest i such that Ci is 
minimal and Ci < Cj. Then clearly min{a(s) :aE X} = (i j)O(s). Hence, after 
the first iteration of the outer loop of Algorithm 6, the state min' has at least its first 
(left-most) column entry as small as possible. Similarly, after the second iteration 

mitt' has (at least) its first and second column entries as small as possible, and after 
m iterations all column entries are ordered in such a way that mitt' = min, in which 
case the outer loop terminates. 

We have shown that, in the worst case, Algorithm 6 involves iterating m 
times over a set of size O(M2). The result follows. M 
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Algorithm 7 Optimised state minimisation using a minimising set X. 

milt: = S 
repeat 

"till' := mill 
fora EX do 

if a(min) < miti then 
milt: = a(mill) 

end if 
end for 

until miii' = miii 

Each iteration of the outer loop of Algorithm 6 applies every element of X 
to min', the minimum state found by the previous iteration, and updates min' to 
the smallest image under X. Algorithm 7 works similarly, but updates the current 
minimum every time an element of X is found which yields a smaller image. We 
have found that this works better in practice. 

9.2.4 Local search for unclassifiable groups 
If G is large group then computing min[SIG by enumeration of the elements of G 

may be infeasible, even with the group-theoretic optimisations discussed in Sec- 
tions 9.2.1 and 9.2.2. If no minimising set is available for G, and G cannot be classi- 
fied as a composite symmetry group (see Sections 9.3 and 9.4) then we must exploit 
G via an approximate symmetry reduction strategy. 

We propose an approximate strategy based on gradient-descent local search, 2 

which has proved successful for a variety of search problems in artificial intelli- 

gence [152]. In this case the function min works by performing a local search of [SIG 

starting at s, using the generators of G as operations from which to compute a suc- 
cessor state. The search starts by setting t=s, and proceeds iteratively. On each 
iteration, a (t) is computed for each generator a of G. If t<a (t) for all a then a local 

minimum has been reached, and t is returned as a representative for [SIG- Other- 

wise, t is set to the smallest image a (t), and the search continues. In Section 11.3 we 
show that this local search algorithm is effective when exploring the state-spaces of 
various configurations of message routing in a hypercube network. 

There are various local search techniques which could be employed to at- 
tempt to improve the accuracy of this strategy. Random-restart local search [152] 
involves the selection of several random elements of [SIG in addition to s, and per- 
forming local search from each of them, returning the smallest result. In our case 
we could apply such a technique by finding the image of a state s under distinct, 

random elements of G (GAP provides functionality for generating random group el- 
ements). Another potential improvement would be to use simulated annealing [1091 
to escape local minima. 
2. TWs is referred to in [43,44] as hilldimbing local search 
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9.3 Exploiting Disjoint Products 

Certain kinds of symmetry groups can be decomposed as a product of subgroups. 
In this case it may be possible to solve the COP separately for each subgroup, 
providing a solution to the COP for the whole group. In particular, if a symme- 
try group permutes disjoint sets of components independently then the group can 
be described as the disjoint product of the groups acting on these disjoint sets (see 
Definition 15, Section 3.1.4). 

Disjoint products occur frequently in model checking problems. For exam- 
ple, the symmetry group associated with the resource allocator specification of Sec- 
tion 4.4 is a disjoint product of two groups, which independently permute com- 
ponents with priority levels 0 and 1 respectively. In our three-tiered architecture 
example (see Section 9.1.2), the group G3T can be shown to decompose as a disjoint 

product G3T = HI * H2 where: 

Hi = ((l 2), (2 3), (4 5), (5 6), (7 8), (8 9), 
(12 13) (14) (2 5) (3 6), (13 14) (4 7) (5 8) (6 9)) 

H2 = ((10 11)). 

If G is a disjoint product of subgroups H1, H2,..., Hk then min[SIG -` Mi? 4... 

Mb? [n1i11[S1HJ1f2 
... 

I Hk [271, so the COP for G can be solved by considering each 
subgroup Hi in turn. Even if it is necessary to enumerate over the elements of each 
Hi, it is more efficient to enumerate over the resulting Eki., I Hi I elements than the 
FIL, JHil elements of G. Furthermore, it may be that some or all of the Hi can be 
handled using minimising sets, or wreath product decompositions (see Section 9.4). 

However, the above result is only useful when designing a fully automatic 
symmetry reduction package if it is possible to automatically and efficiently de- 
termine, before search, whether or not G decomposes as a disjoint product of sub- 
groups. 

We present two solutions to this problem: a sound, incomplete approach 
which runs in polynomial time, and a sound, complete approach which in the 
worst case runs in exponential time. We show that the second approach can be 

optimised using computational group theory to run efficiently for the kind of sym- 
metry groups which arise in model checking problems. 

9.3.1 Efficient, sound, incomplete approach 
Let G= (X) for some X C- G with id V- X. Define a binary relation BC X2 as 
follows: for all ci, AEX (a, P) EB -ý* moved(a) n moved(A) 34 0. Clearly B is 
symmetric, and since for any aEG with a0 id, moved(a) 34 0, B is reflexive. It 
follows that the transitive closure of B, denoted B*, is an equivalence relation on X. 
We now show that if B* has multiple equivalence classes then each class generates 
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a subgroup of G which is a non-trivial factor for a disjoint product decomposition 

of G. 

Lemma 7 Suppose thatit, AEX, and that (a, B*. Then moved(ci)nmoved(p) 
0 and a and P commute. 

Proof If moved(a) nmoved(P) ýý 0 then (a, A) EBC B*, a contradiction, thus 

moved(a) nmoved(P) = 0. Therefore if al and P1 are cycles in the disjoint cycle 
forms of it and A respectively then al and Pi are disjoint and therefore commute. 
By repeatedly swapping disjoint cycles, it follows that ap = Pa. M 

Theorem 18 SUPPOSC Cli C21 ... i Ck are the equivalence classes of X under B* 

where k>2. For 1<i :5k let Hi (Q. Then G= Hl * H2 Hk, and 
Hi 34 lid} (1 <i< k). 

Proof Clearly HIH2... Hk 9 G. If it EG then a= a1eq ... 1Xd for some 

1XIi it2 Cid E X, d>0. By Lemma 7 we can arrange the al so that elements 
of Ci appear before those of Cj whenever i<j. It follows that G= HjH2... Hk. 

By Lemma 7, ? iioved(Hj) n nioved(Hj) =0 for 1 <- i 34 j : ý, k and so G 

H, * H2 * ... 9 Hk, where (since id ý X) the Hi are non-trivial. 0 

Consider the group G3T which is generated by the set X=1 (12), (2 3), (4 5), 
(5 6), (7 8), (8 9), (12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)(10 11)}. It is 

straightforward to check that the equivalence classes under B* for this example are 
as follows: 

C1 (12), (2 3), (4 5), (5 6), (7 8), (8 9), (12 13) (14) (2 5) (3 6), 
(13 14) (4 7) (5 8) (6 9)} 

C2 WO 11)b 

which generate the groups HI and H2 respectively, described at the start of Sec- 
tion 9.3. This is the finest disjoint product decomposition of G3T. 

The approach is incomplete as it does not guarantee the finest decomposi- 
tion of an arbitrary group G as a disjoint product. To see this, suppose that the ele- 
ment (12) (10 11) is added to the generating set for the group G3T. This causes the 
equivalence classes C1 and C2 to merge, and a non-trivial disjoint decomposition 
for G3T is not obtained. 

However, in practice we have not found a case in which the finest decompo- 

sition is not detected when generators have been computed by a graph automor- 
phism program. The approach is very efficient as it works purely with the genera- 
tors of G, of which there are typically few. 
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Algorithm 8 disjoint-deCompositim(G, 0) -G is a group and 0 its non-trivial orbits. 
forall artitionsJ01,02}of0do 

if GX1 <G and GC72< G then 
return disjoint-decompositio? z (GO', 01) o disjoint_decomposition(GO2,02) 

end if 
end for 
return 

9.3.2 Sound and complete approach 
We now present an algorithm for computing the finest non-trivial decomposition of 
G as a disjoint product of subgroups. The algorithm runs in exponential time in the 
worst case, but for many groups which arise in model checking problems we can 
obtain polynomial run-time via a computational group theoretic optimisation. We 

present three lemmas, the proofs of which can be found in Appendix B. 3. Through- 

out this section we use (variations of) n and 0 to refer to orbits and sets of orbits 
respectively. 

Let G :ýS., and 0 the set of all non-trivial orbits of G. For 0' C 0, any 
it EG can be written as it ---: U02 ... &sP1P2 ... Pt. where moved(ai) 9nE 0' for 

some n (1 <i< s) and ? iioved (Ai) 9 11 E (0 \ 0') for some n (1 <i< t). With LY 
in this form, the restrictioit of a to 0' is the permutation et of = a1&2 ... as. In general, 
ao' ý G. For H<G, the restrictioit of H to 0' is the group HO' = JaO' :aE H}. In 

general, HO' Z G. 

Lemma 8 Suppose G= HI * H2 where 111 54 lid} and H2 34 lid}. Then there are 
Sets 01. 

- 
02 of non-trivial orbits of G such that JOL, 02} is a partition of 0 and for 

iE 11,2}, Hi = GOi. 

Algorithm 8 is a recursive algorithm for computing a disjoint decomposition 

of G. If G can be decomposed, then by Lemma 8 there is some partition 101,02} 

of 0 such that G= GO, 9 GC'h. The algorithm detects when a partition with this 
property has been found, based on the following lemma: 

Lemma 9 If {01i 02} is a partition of 0 and GOi <G for iE {1,2} then G 

Go' o GO2. 

Once a decomposition of the form G= GO, * G02has been found, the 
groups GC71 and G02 are recursively decomposed. This guarantees the finest de- 
composition of G as a disjoint product, thus Algorithm 8 is complete. 

Computing GOi by restricting each generator of G to Oi is trivial. Testing 
whether GO' <G can be done in low-degree polynomial time using standard com- 
putational group theoretic data structures [191. Thus the complexity of Algorithm 8 
is dominated by the number of partitions of 0 which must be considered in the 
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worst case. If G does not decompose as a disjoint product then every partition of 0 

of size two must be considered. The number of such partitions is S(I 01,2), a Stirling 

number of the second kind [70], and it can be shown that S(I 0 1,2) = 2101-1 - 1. In 
the worst case, 10 1 may be n /2, thus the complexity of Algorithm 8 is 0 (2n). 

A computational group theoretic optimisation 
We can optimise the performance of Algorithm 8 for many commonly occurring 
symmetry groups by introducing the notion of depeWmit orbits: 

Definition 30 Let nl, n2 E 0. We say that n, is dependent on n2 if Istab* (r)2)011 G 
I Gcll 

Intuitively, 01 is dependent on n2 if fixing every point in r)2 has an effect 
on the action of G on nj. It is easy to show that r1l is dependent on 112 iff r)2 is 
dependent on f1j, so we say that two orbits are dependent if one is dependent on the 

other. We now show that dependent orbits must belong to the same element of the 

partition of Lemma 8: 

Lemma 10 Let {01,02} be a partition of 0 such that G= GO' 9 G02 (as in 
Lemma 8). Let fli, nj E0 be dependent. Then f ni, nj} 9 01 or jr)j, r)j} 9 02- 

Define a binary relation B C- 0x0 as follows: (ill, n2) EB if r1l and n2 

are dependent. We have already established that B is symmetric, and B is obviously 
reflexive. We have not determined whether B is, in general, transitive, so we use B* 
to denote the transitive closure of B. Suppose 101,02} is a partition of 0 with G= 
GO, 9 G02 (as in Lemma 8). ff C is an equivalence class of B*, called a depetidency 

class, then by Lemma 10 and induction, CC Oi for some i. 
Since Algorithm 8 depends critically on the size of the set 0, we can po- 

tentially improve performance by taking 0 to be the set of all dependency classes, 
rather than the set of all orbits, if there are fewer dependency classes. Computing 
the dependency classes involves computing pointwise stabilisers, which is a poly- 
nomial time operation [191. 

Examples 

We illustrate the sound and complete approach using a group for which the op- 
timisation above reduces the problem so that there is only one potential partition 
1011 02} to consider. We also give a pathological example for which our optimisa- 
tion does not help at all. 

Lot G be the following group: 

((l 2 3) (4 5 6) (7 8 9) (10 1112) (14 15) (17 18) (20 21), 
(2 3) (5 6) (8 9) (11 12) (13 14 15) (16 17 18) (19 20 21)). 
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Due to the manner in wl-dch the generators of G have been presented, applying the 

sound and incomplete approach of Section 9.3.1 does not yield a disjoint product 
decomposition. Using GAP, we find that G has seven non-trivial orbits: 

{11,2,3}, 14,5,6}, 17,8,9}, 110,11,12}, 113,14,15}, 116,17,18}, fl9,20,21} I 

and there are S (7,2) = 63 partitions of these orbits. However, analysing the orbits 
for dependency, we find that the orbits 01 = if 1,2,3}, f 4,5,6}, f 7,8,9}, f 10,11,12}} 

are all dependent, and 02 = if 13,14,15}, 116,17,18}, f 19,20,21}} are all depen- 
dent. There is only one partition of 0 which preserves these dependencies - the 

partition 101,02}- It is straightforward to check that 

G= Go' 9 
G02 

((1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,2)(4,5)(7,8)(10,11)) 

o ((13,14,15) (16,17,18) (19,20,21), (13,14) (16,17) (19,20)). 

This is an example for which the computational group theoretic optimisation is 

very effective. 
Now consider, for any even ii > 2, the following group: 

((l 2) (3 4), 

(34)(56), 

(it-6 it-5)(n-4 it-3), 
(n-3 it-2)(n-l n)). 

It is clear that G, has n/2non-trivial orbits: 0= JJ1,2}, J3,4}, J5,6},..., 
In - 1, n}}. It is not so obvious, but easy to check, that no two orbits are dependent. 
Hence the computational group theoretic optimisation does not reduce the number 
of partitions of 0 which must be checked to determine whether G" decomposes as 
a disjoint product. The number of partitions is S (J, 2) = 2n /2 - 1, and all of these 

must be checked since G,, does not decompose as a non-trivial disjoint product for 

any n (tl-ds can be proved by induction). However, this is not a group which we 
have encountered in association with a model checking problem. 

An open problem in this area is to determine whether there is a polynomial 
time algorithm for finding the finest disjoint product decomposition of an arbitrary 
group G. A possible approach is to find a stronger notion of dependent orbits, with 
the property that if C1, C2,..., Ch are the dependency classes of the orbits then G 

GC1 * GC2 * ... * GCk. 

n-ds problem is of computational group theoretic interest. From a model 



9A: EXPLOMNG WREATH PRODUCTS 179 

checking perspective, the sound and incomplete approach of Section 9.3.1 returns 
the finest disjoint product decomposition of groups whose generators have been 

automatically computed. The sound, complete approach, with our computational 
group theoretic optimisation, can efficiently handle all the types of symmetry group 
which we have observed in connection with model checking problems, regardless 
of the way their generators are presented. 

9.4 Exploiting Wreath Products 

Suppose that a symmetry group partitions the components of a system into subsets 
such that there is analogous symmetry within each subset, and symmetry between 
the subsets. Then the group can be described as the itmer wreath product of the group 
which acts on the subsets, and the group which permutes the subsets (see Defini- 
tion 17, Section 3.1.4). 

Wreath products occur in model checking problems when systems are mod- 
elled using a tree structure. In Section 4.5 we established that the symmetry group 
associated with the three-tiered architecture specification exhibits wreath product 
symmetry. Recall the group G3T introduced in Section 9.1.2. In Section 9.3, we 
showed that G3T decomposes as a disjoint product H, * H2. We now show that 
the factor HI of this product decomposes as an inner wreath product. 

We have HI :: 5 Sy? ii (X) where X= 11,2,..., 9,12,13,14}. Consider the fol- 
lowing partition JX1, X2, X3} of X, where we describe each Xi as an ordered set of 
elements X1 = Jxi, i, xi, 2,..., xi, 4} (as in Definition 17, Section 3.1.4): 

X, = 11,2,3,12} 

X2 = 14,5,6,13} 

X3 = 17,8,9,14} 

Taking K= S3 and H= S31 3 let LT be the permutation representation corre- 
sponding to the action of K on X and crI, LT2 and o, 3 those for H on X as in Defird- 
tion 17. Then: 

o, (K) = ((14)(25)(36)(1213), (47)(58)(69)(1314)) 

o, l (H) ((l 2), (2 3)) 

L72 (H) ((4 5), (5 6)) 
o, 3 (H) ((7 8), (8 9)) 

The group a(K) permutes the partition JXI, X2, X3}, whereas each group 
qj(H) permutes the set Xi. One can verify (using GAP) that H, = LT(K) o-I (H) a2 (H) 

L73 (H), i. e. HI =HIK. 
3. The group H can bethought of as the subgroup of Synl([1,2,3,41) which fixes the point 4. 
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Suppose that G : ý, S,, has a non-trivial (inner) wreath product decomposition 
(H, K, X) with associated permutation representations 0-, ol, 0'2,. . ., O'd for the ac- 
tions of K and H on 11,2,..., n} (where d=IX 1). For a state sE Ln it can be shown 
that min[s]G = min[min[... min [min [s],, (H)l oý(H) ... 

]o,, 
j(H)1o, (K) [271. This means that 

the COP for G can be solved by considering each subgroupcTi (H) in turn, followed 

by the subgroupLT(K). Even if we have to deal with these groups using enumer- 

ation, it is more efficient to enumerate over the resulting dx IHI + IKI elements 
than all JHIdJKJ elements of G. Furthermore, it may be possible to deal with the 

groups LT(K) and o-i(H) (I <i< d) efficiently using minimising sets or further 

disjoint/wreath decompositions. 

As with the similar result for disjoint products presented in Section 9.3, 
the result for wreath products is only useful for automatic symmetry reduction 
if we can automatically determine, before search, whether an arbitrary permuta- 
tion group is a wreath product. We present an algorithm to determine whether a 
group G decomposes as a wreath product for the case when G is transitive (see Def- 
inition 10, Section 3.1.2). We then propose an extension of our approach to the case 
where G may not be transitive. 

9.4.1 Wreath product decomposition for transitive groups 
If G is a transitive permutation group then we can determine whether G has wreath 
product structure by considering the block systems of G. We introduce some stan- 
dard definitions and results on block systems. See [85,150] for details. 

Definition 31 Let G !ý Syni(X) and YgX, where X is a non-empty set. Then Y is 

a block for G iff, for all aEG, a (Y) =Y or a (Y) nY=0. 

Essentially a block is a subset of X which is either fixed by an element of G, 

or moved completely by the element. The sets X, jx} (for any xE X), and 0 are 
always blocks for G, and are called trivial blocks. Given a non-empty block Y, it can 
be shown that the set jet(Y) :aE G} is a partition of G, each set in this partition 
is a block, and all the blocks have the same size. Such a partition is called a block 

system for G, generated by Y. In general, rather than singling out a specific block, we 
say that a partition X= JXI, X2,..., Xd} of X is a block system for G if each Xi is a 
block for G, and the blocks are all images of each other under G. A non-trivial block 

system is one for which the blocks are non-trivial. 

Definition 32 Let {Xj, X2,..., Xd} be a block system for G :5 Sym(X). For 1<i 
d, the group (stabG(Xi))X' is called the block stabiliser for Xi. 

This is the restriction of the group stabG (Xi) to the block Xj, and is analogous 
to the restriction of a group to a union of orbits in Section 9.3.2. This restriction is 
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well-defined since Xj is clearly an orbit of stabG(Xi). It can be shown that for any 
blocks Xi, Xj, (stabG (Xi))Xi and (stabG (Xj))Xj are identical up to renaming of the 

points on which they act. If I Xil =m we can identify all of the groups (stabG(Xi))X' 

with a group H<S by renaming points in the obvious way. We call H the block 

stabilizer for the system. 
The block stabiliser for Xi shows the effect of G on the points contained in 

Xi. The effect of G on the blocks, regarded as "black boxes", is characterised. by the 

block perniu ter: 

Definition 33 Let X=f XI, X2,..., Xd} be a block system for G :! ý, Sym(X). For 

aEG and Y9X define a(Y) =f a(x) :xE Y} in the usual way. It is easy to 
check that this is an action of G on X (see Definition 13, Section 3.1.3). Let o, be the 
permutation representation of this action so that a(G) :5 Syni(X). We can identify 
Syni(X) with Sd by renaming Xi as i (1 :! ý, i< d). The group obtained by regarding 
cr(G) as a subgroup of Sd is called the block permuter for X. 

The following important theorem in wreath product theory (see, for exam- 
ple, [1291 for a proof) shows that if G is a transitive permutation group which ad- 
mits a non-trivial block system then G is 

' 
contained in an (inner) wreath product. 

The theorem is followed by a straightforward lemma. 

Theorem 19 Let G :5 Syni(X) be transitive and Xa non-trivial block system for G. 
Let H and K be the block stabiliser and block permuter for X respectively. Den H 

and K are non-trivial and G is contained in the (hon-trivial) inner wreath product 
of H and K with associated partition X, i. e. G<HIK. 

Lemma 11 Let HIK be the inner wreath product of Theorem 19, with associated 
block system X. Leto,,, o, 2,..., od be the actions of H on X described in Definition 17 
Then oj(H) = (stabG(Xj))Xi, the stabiliser of block Xi (1 :ýi< d). 

Conversely to Theorem 19, we show that any inner wreath. product exhibits 
a block system. 

Lemma 12 Let G :5 Syiii(X) and suppose G is an inner wreath product HIK with 
associated partition X= IX1, X2,..., Xd}. Then X is a block system for G. 

Proof Let o, and aj, q2,..., vd be the permutation representations of the actions of 
K and H on X. Any element 9EG has the form 9ý 0(A)Lr1(&1)0'2(IX2) ... O'd(Cid) for 

some AEK, ltloit2i ---, &d E H. For any Xj E X, clearly cj(aj)(Xi) = Xj, therefore 
9 (Xi) = o, (A) (Xi). By definition of a, either o, (A) (Xi) = Xj, or o, (A) (Xi) n Xi 

The result follows. M 
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Algorithm 9 Computing a wreath product decomposition for a transitive permu- 
tation group G. 

for all non-trivial block systems X= JXI, X2,..., Xd} for G do 
K: = block permuter for X 
0: G --* K := permutation representation of action of G on X 
o,, (H) := (stabG(Xl))Xl 
if IGI = loI(H) Id IKI then 

for all iE 12,..., d} do 
cri(H) := (stabG(Xj))Xi 

end for 
for all monomorphisms or': K --+ G do 

if K= 0(o, (K)) then 
O': = cr, 
break 

end if 
end for 
return LT(K), oI(H),..., o-d(H) 

end if 
end for 
return fail 

The next theorem is a direct consequence of Theorem 19, Lemma 12 and 
Theorem 4 (Section 3.1.4). 

Theorem 20 Let G :5 Sym(X) be transitive. Then G can be decomposed as a non- 
trivial inner wreathproductH ? K, with associated partition X, iff X is a non-trivial 
block system for G, K and H are the block permuter and block stabiliser for X 

respectively, and IGI = IHIIXI IKI. 

The consequence of Theorem 20 is that our search for a non-trivial inner 
wreath product decomposition of an arbitrary transitive permutation group G boils 
down to searching the non-trivial block systems for G. Given a block system, we 
know that G is contained in the inner wreath product associated with the block 

system, and can determine whether G is tl-ds wreath product by checking the order 
of G. 

Algorithm 9.4.1 (the correctness of wl-dch follows from Theorem 20) can be 
used to find a non-trivial wreath product decomposition for a transitive group G, if 
one exists. Rather than returning a decomposition in the form (H, K, X), the algo- 
rithm returns the groups o, (K) and i7j(H) (1 <i< d), which are all that we require 
to solve the constructive orbit problem efficiently. 

For each non-trivial block system X, the block permuter K and a single 
block stabiliser (stabG(X, ))Xl are computed. Since (stabG(Xj))XI is isomorpl-dc to 
the block stabiliser for X it is sufficient to compare IGI with j(stabG(X1))X1jajKj 
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to determine (by Theorem 20) whether the current block system corresponds to 
a wreath product decomposition. In the case where equality of orders holds, by 
Lemma 11 the groups vj(H) can be computed as block stabilisers. The challenge 
is to compute a, the permutation representation of the action of K. We know that 
cr maps K to an isomorphic subgroup of G, therefore o- must be a monomorphism 
(see Theorem 2, Section 3.1.1). Furthermore, the restriction of o, (K) to act on the 
blocks, i. e. the group O(cr(K)), must be equal to K. Therefore a can be computed by 

considering (in the worst case) all monomorphisms from K to G. 

Efficiency 

We can compute 0, K and an individual block system for G, and determine the or- 
ders of K and (stabG (XI) XI) in polynomial time using algorithms presented in 185]. 
Although polynomial time algorithms are not available for computation of arbi- 
trary setwise stabilisers, a block stabiliser stabG (Xi) cait be computed in polynomial 
time [85], after which computing the restricted group (stabG(XMXi is straightfor- 
ward. The potential bottlenecks of Algorithm 9.4.1 are: the number of block systems 
which may need to be considered, and the computation of all monomorphisms 
from K to G. 

It can be shown (by counting chains of blocks) that an upper bound for the 

number of distinct block systems for a permutation group G is nlog2 n, where it is 

the degree of G (personal communication, P J. Cameron, 2007). This upper bound 
is not too large for the sizes of it which occur in model checking problems. 

Computing all monomorphisms from K to G can be achieved via the GAP 

function I somorphic Subgroups (G, K) (see Section 3.1.6). The complexity of 
this algorithm is not documented, but it is not a polynomial-time algorithm (per- 

sonal communication, S. Linton, 2007). An alternative algorithm for computing 

o, (K) is presented as part of a constructive proof [110, Lemma 2.41, though this al- 

gorithm does not appear to be more efficient than I somorphic Subgroups. Note 

that it is only necessary to compute the monomorphism. o, if G does indeed de- 

compose as an inner wreath product. The benefits wl-dch can result from having a 

wreath product decomposition for G may therefore justify fl-ds computation. 
We have observed that in many practical examples o- is the mapping defined 

by: a(p) (xq) = xp(i)j, where each block Xi has the form JX1., X2., _.. I xm} with xi :ý 

xj whenever i<j. Our implementation of Algorithm 9.4.1 tries this simple pre-test 
for a before resorting to monomorphism. computation. 

9.4.2 Extending the approach to intransitive permutation groups 
The results of Section 9.4.1 provide a solution to the wreath product decomposition 
problem for transitive groups. However, wreath product groups which occur in 
model checking problems are not necessarily transitive. Consider the subgroup H, 
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of G3T (see Sections 9.3 and 9.1.2 respectively). H1 has two orbits, 11,2,..., 9} and 
112,13,14}. More generally, the symmetry group associated with a rooted tree is 

an intransitive wreath product [106]: nodes at differing depths in the tree, or nodes 
at the same depth which occur in non-isomorphic sub-trees, must be in separate 
orbits. Unfortunately, there is very little literature on intransitive wreath products. 
Even works which are dedicated to the topic of wreath products either assume 
transitivity throughout [1101, or only briefly discuss the intransitive case [129]. 

Transitivity is imposed in Section 9.4.1 due to Theorem 19. The need for tran- 
sitivity in the proof of Theorem 19 (see [1291) is unclear: it appears that transitivity is 

required simply because the theorem appears in the context of imprimitive permuta- 
tion groups, which are transitive by definition [150]. We conjecture that Theorem 19 
holds when the transitivity condition is omitted. 

Assuming this conjecture, there is a further problem: techniques for com- 
puting block systems are restricted to transitive groups [85]. We use an algorithm 
to work around this problem as follows: if G has f>1 distinct orbits then for 

each orbit rl we find a (possibly trivial) block system for Gn. We then attempt to 
construct a block for G which is the union of f blocks, one from each block system. 

Formally, assume that the orbits of G are n1, n2/ ..., [If, and assume with- 
out loss of generality that these orbits are non-trivial. For each ni, let blocks(ni) be 
the set of all block systems for Gni, excluding {ni} but including the trivial sys- 
tem fix} :xE ni}. For each X1 E blocks(ni), consider every set of block systems 
{X1, X2,..., Xf } such that Xi E blocks(ni), JXiJ = JX1 I for all i>1, and at least 

one Xi is non-trivial. We attempt to construct a block from the Xi as follows: Set 
B=X, where X, is any block in X1. Find a block X2 E X2 such that BU X2 is a 
block for G, and set B= X1 U X2. Continue this process until no suitable Xi exists, 
or B= X1 U X2 U ... U Xf is a block for G (Xi E Xi, 1<i< f). In the latter case, 
store the block system generated by B. 

Algorithm 9.4.1 can be applied to the set of block systems for G obtained via 
this process, to obtain an inner wreath product decomposition. 

The symmetry reduction package TopSPiN, described in Chapter 11, uses 
the techniques described above to compute wreath product decompositions for ar- 
bitrary groups. If our conjecture above proves to be incorrect, it is possible that 
our implementation may compute an erroneous wreath product decomposition for 

a group G. The worst case scenario then is that representative computation for G 

might result in multiple orbit representatives. This compromises the optimality, but 

not the soundness, of symmetry reduction. 

9.5 Direct and Semi-direct Products 

As noted in Section 3.1.4, disjoint products are a special case of direct product, and 
both direct and wreath products are examples of semi-direct products. It is natu- 
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ral to ask whether the idea of solving the COP efficiently by decomposing G as 
a disjoint/wreath product can be extended to apply to direct/semi-direct prod- 
ucts. We use the symmetry group of a 3-dimensional hypercube to provide counter- 
examples which show that a direct extension of the techniques is not possible. 

Recall the group K3 M S3. the symmetry group of a 3-dimensional hypercube 
(i. e. a cube), introduced in Section 4.6.1. For 1<i<8 we use the integer i to 

represent the node in a cube corresponding to the boolean vector for i_1.4 Then 
the groups K3 and S3 can be expressed using generators as follows: 

K3 ý ((l 2) (3 4) (5 6) (7 8), (13) (2 4) (5 7) (6 8), (15) (2 6) (3 7) (4 8)) 

S3 " ((2 3 5) (4 7 6), (2 3) (6 7)). 

Conjecture 1 If G :5 Sn and G=H, x H2 then, fOr SE Ln, nzin[s]c, 
min[min[s], -1,111, or miti[s]r, = min[niiyz[s]H, ]H,. 

Counterexample Consider the group G =-- K3 ý4 S3 :! ý- S8.. and the state s= 
(4,3,2,4,2,1,1,3). Using GAP, we can compute min[s1c; by enumeration of G, 

and we find that mhz[s]G = (1,2,2,4,3,1,4,3). Again using GAP, we find that 
nihi[s]K, = (1,2,3,1,3,4,4,2) =t say, and that mht[t]s, =t0 Mi? I[SIG- Similarly, 

we find that mi? i[nfi? t[s]sjK3= (1,2,2,4,3,4,1,3) 34 min[SIG- M 

Conjecture 2 If G=H, x H2 x ... X Hk :! ý Sn then, for sE L", mi? z[slc; 
Miil[- -- Mi? l["lhl[SIHJff,... IH, 

- 

Counterexample It is easy to show that the group K3 decomposes as a direct prod- 

uct - K3 = H, x H2 x H3, where: 

Hi = ((12) (3 4) (5 6) (7 8)) 

H2 = ((13) (2 4) (5 7) (6 8)) 

H3 = ((l 5) (2 6) (3 7) (4 8)). 

Consider the state s= (3,4,4,2,5,4,1,5). Using enumeration we find that 
miii[s]K3 = (1,5,5,4,4,2,3,4). However, mi? i[mi? t[min[sjHjHjHk = (3,4,4,2,5,4,1,5) 
for any distinct i, j, kE {1,2,3}. This shows that s cannot be minimised by consid- 
ering HI, H2 and H3 independently, no matter which order they are applied in. M 

Note that Conjectures 1 and 2 show simply that the COP for semi-direct 

4. We use the integers 11,2,..., 81 rather than 10,1,..., 71 so that we can present examples com- 
puted using GAP. 
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and direct products cannot, in general, be solved by straightforward application of 
techniques which work for disjoint and wreath products. Of course this does not 
mean that there is no way to efficiently solve the COP by exploiting this product 
structure. 

9.6 Choosing a Strategy for G 

The strategies we have presented for minimising a state with respect to basic and 
composite groups can be combined to yield a symmetry reduction strategy for the 
arbitrary group G by classifying the group using a top-down recursive algorithm. 

The algorithm starts by searching for a minimisirig set for G of the form 

prescribed in Theorem 16, so that min[s]G can be computed as described in Sec- 
tion 9.2.3. If no such minimising set can be found, a decomposition of G as a dis- 
joint/wreath product is sought. In this case the algorithm is applied recursively to 
obtain a minimisation strategy for each factor of the product so that nfin [SIG can be 

computed using these strategies as described in Sections 9.3 and 9.4 respectively. If 
G remains unclassified and IGI is sufficiently small, enumeration is used, otherwise 
local search (see Section 9.2.4) is selected. 

Summary 

In this chapter we have developed techniques for solving the constructive orbit 
problem, which is key to exploiting symmetry in explicit-state model checking. We 
have described a method for efficiently applying a permutation to a state, an op- 
eration which is fundamental to symmetry reduction. We have also shown that 
a basic symmetry reduction strategy based on enumeration can be optimised by 

representing a symmetry group using sets of coset representatives for a stabiliser 
chain. 

Previous approaches to symmetry reduction have exploited full symmetry 
groups by sorting states. We have generalised this idea using the concept of a min- 
imising set, and have shown how a minimising set for many commonly occurring 
groups which are isomorphic to fully symmetric groups can be computed. 

It has been established that the COP can be solved compositionally if a group 
can be decomposed as a disjoint/wreath product of subgroups [27]. However, these 
results are only useful for automated model checking if the decomposition process 
can be automated. We have proposed two approaches to decomposing a group as 
a disjoint product of subgroups. The first is sound, very efficient, but incomplete. 
However, we have found it to work well in practice when applied to groups which 
have been automatically computed using graph automorphism software. The sec- 
ond approach is sound and complete, but runs in exponential time. We have pro- 
posed a computational group theoretic optimisation for this approach which works 
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well for commonly occurring groups. We have shown how a wreath product de- 

composition for a transitive group can be found by examining non-trivial block sys- 
tems for the group. Based on a computational group-theoretic conjecture, we have 

extended this decomposition approach to apply to arbitrary imprimitive wreath 
products, and discussed the efficiency of the decomposition algorithm. 

We have shown that, in general, the COP cannot be solved compositionally 
for groups which decompose as direct or semi-direct products of subgroups by 

straightforward extension of the techniques for disjoint and wreath products. 



Chapter 10 

Extending Symmetry Reduction Strategies to a Realistic 
Model of Computation 

When components do not hold references to other components, the simple model of 
computation and the action of a permutation on a state described in Section 9.1 are 
sufficient to reason about concurrent systems. The model is common to numerous 
works on symmetry reduction for model checking (e. g. [27,57,59]), and is adequate 
for reasoning about input languages where components do not individually hold 

references to other components, e. g. the input languages of SMC [1661, SYMM [271 

and PRISM [83], or where components are specified using synchronisation skeletons 
157]. 

However, if components can hold references to one another then any permu- 
tation that moves component i will affect the local state of any components which 
refer to i. Sophisticated specification languages, such as Promela, include data- 
types to represent process and channel identifiers. Both the results presented in 
[271 on solving the COP for groups which decompose as disjoint/wreath products, 
and our results on minimising sets for fully symmetric groups (see Section 9.2.3) 
do not hold in general for this extended model of computation. We illustrate this 
using an example in Section 10.1.2. 

Thus for Promela specifications where local variables refer to process and 
channel identifiers, the efficient symmetry reduction strategies presented in Chap- 
ter 9 are not always exact; in some cases they may yield an approximate implementa- 
tion of the function min, as discussed in Section 3.4.2. This does not compromise the 
safety of symmetry reduced model checking, but means that symmetry reduction 
is not memory-optimal. 

For the simple case of full symmetry between identical components, the 
SymmSpin package deals with local variables which are references to component 
identifiers by dividing the local state of each component into two portions, one 
which does not refer to other components (the insensitive portion), and another 
which consists entirely of such references (the sensitive portion). A state is min- 
imised by first sorting it with respect to the insensitive portion. Then, for each sub- 
set of components with identical insensitive portions, every permutation of the sub- 
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set is considered, and the permutation which leads to the smallest image is applied. 
This is known as the segmented strategy. In tl-ds chapter we show that the segmented 
strategy can be generalised so that the exact strategies presented in Chapter 9 yield 
exact strategies under a more realistic model of computation. 

We present the constructive orbit problem with references (COPR), and show 
that polynomial time strategies for the COP under the simple model of compu- 
tation of Chapter 9 do not directly solve the COPR. We then present a computa- 
tional group theoretic approach based on the segmented strategy, which extends 
any strategy for solving the COP to a solution for the COPR. Our extension results 
in exact symmetry reduction, at the expense of polynomial time. However, exper- 
imental results, which we present in Section 11.3, demonstrate that in practice our 
approach is significantly more efficient than symmetry reduction by enumeration 
(see Section 9.2.2). We show that the COPR is polynomial-time equivalent to COP, 

and discuss the relationship between these problems and the computational group 
theoretic problem of finding the smallest image of a set under a group [121]. 

10.1 A Model of Computation With References 

As in Chapter 9, let I= 11,2,..., n} be the set of component identifiers for a con- 
current system. Suppose that the local state of a component is comprised of two 
parts, its coWrol state and its referetice state. 

Tlie control state of a component is determined by the values of all local 

variables of that component which are itot references to other components, e. g. a 
program counter or boolean flag. Without loss of generality (see Section 9.1), we 
can represent a local control state abstractly as an integer taken from a finite set 
Lc c Z. 

The reference state of a component is determined by the values of all local 

variables which are references to other components. For example, components in a 
leader election protocol may require a reference variable to (eventually) hold the 
identity of the leader; a user in a model of telephony may hold a reference to its 
current partner. Thus a reference state is a tuple in the set Lr = (I U 10})' for some 
m>0. Here m is the number of references held by a component, and 0 is used 
as a default value (e. g. to represent that the leader is unknown). Without loss of 
generality we can assume that all components have exactly m>0 reference local 
variables. 

Thus a global state sE (Lc x L,. )' has the form: 

rn, m)), 

where Ii E L, represents the control state of component i, and rij EIU 10} is the 
value of the jth reference variable of component i (i E 1,1 <j< M). 
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In the special case where m=0, i. e. when components do not hold ref- 
erences to one another, L, consists of a 0-tuple, and can thus be ignored. A state 
sEL, " then has the form s= (Ili 12/ -, 1,, ) described in Section 9.1. We refer to 

models of computation where nz >0 and m=0 as a model of computation with 
and without references, respectively. 

10.1.1 The Constructive Orbit Problem with References 

With the extended model of computation, in order to define a total ordering 
-< on S9 (L, x L, )", we define two projection mappings, ctrI and ref, pro- 
jecting a state on to its control and reference parts respectively For a state 
s= (11, (rij, rl, 2, ... . rl,, 

) 
. 

12, (r2,1 
. r2,2,, ..., r2, m) . ... , In, (rn, 1, rn, 2, rn, m)), arl(s) 

(Ils 12., 
---i 

In) and ref (s) = (rij, rl, 2,. .., rl,, ........ rn, m)- 

Definition 34 For s, tES, sýt if either s=t; ctrI(s) < ctrl(t); or ctrl(s) = 
ctrl(t) and ref (s) < ref (t). Here ref (s) and ref (t) are compared using the usual 
lexicographic ordering on vectors (similarly ctrl(s) and ctrl(t)). 

It is clear that -< is a total ordering on states. We write s -< t if s -< t and s jA t. We 

now extend the COP to the model of computation with references: 

Definition 35 The COP with ref erences (COPR) Given a group G :5S,, and a state 
sE (L, x L, )n, find min-. ([s] G, the -<-least element in the orbit of s under G. 

It is clear that the COPR is a generalisation of the COP: in the special case where 

ni =0 the COP and the COPR are identical. Since the COP is NP-hard (Theorem 10), 

the COPR is NP-hard by restriction. In fact, the two problems can be shown to be 

polynomial-time equivalent. An instance of the COP is trivially an instance of the 
COPR, and an instance of the COPR can be converted, in quadratic time, to an in- 

stance of the COP. The latter is achieved by replacing each component id reference 

rij by a vector of n binary values, which are all 0 unless rij =I>0, in which 
case the binary value I places from the right is one. For example, if it =8 and 
ri, j = 5, the value of rij is converted to the binary sequence 0,0,0,1,0,0,0,0. The 

n-5 5 
variables introduced to hold these values are modelled as components with binary 

valued local state. If convert denotes a function which performs this conversion, 
then placing the value one I places to the right ensures that, for states s and t, s :: ý t 
iff convert(s) :5 convert(t). Elements of the symmetry group G must also be trans- 
formed appropriately, so that if s is a state and it E G, the transformed element a' 
must satisfy convert (a (s)) = a'(convert (s)). 
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Algorithm 10 A COP strategy for S,, based on selection sort. 
a := id 
for all iEn- 1] do 

A: = id 
for all jE [i + n) do 

if (i j)a (s) < Pa (s) then 
A := (ij) 

end if 
end for 
a := pa 

end for 
return a 

10.1.2 Problems with references 
Recall the polynomial time strategies for the COP described in Chapter 9. Clearly 
the strategy based on enumeration extends immediately to a model of computation 
with references, if IGI is polynomial in ii. However, the other strategies are not 
immediately applicable. We show this for the COP strategy where G=S, ' and 
representatives are computed by sorting. Similar arguments can be applied for the 
other strategies. 

The proof that the COP for G=S,, can be solved by sorting a state s is based 

on the following lemma: 

Lemma 13 In the simple model of computa tion, there are no il 
i 
il 

ý 
i21 j2 EI where 

il < jl,, i2 < j2. 
- 

(i2 j2)(S) < sand (i, ji)(s) ý: s, but (i2 j2)(il il)(S) < (i2 j2)(S). 

However, this result does not hold in the presence of references. 

Lemma 14 Lemma 13 does not hold for the model of computation with references 
where the ordering: 5 is replaced with --<. 

Proof We prove Lemma 14 by counter-example. Suppose n=3, L, = 10,1}, and 
consider s= (1,0,0,2,0,2). Take ii = 2, ji = 3, i2 =1 and j2 = 3. Then we have 
(i2 j2) (s) = (0,2,0,2,1,0) -< S, (ij ji) (s) = (1,0,0,3,0,3) >- s. But (h j2) (il il) 
(13 2), and (13 2) (s) = (0,1,0,1,1,0) -< (i2 j2) (s). M 

This counter-example for the case n=3 can be extended to give a counter-example 
for any n> 3- consider ijjjj2andj2 as above, and s= (1,0,0,2,0,2,0,0,..., 0,0). 

Applying Algorithm 10 with < replaced by :ý to s= (1,0,0,2,0,2) gives the 
element (13) which does not minimise s, whereas enumeration Of S3 gives (13 2), 
which does. Thus this adaptation of Algorithm 10 does not yield an exact COPR 
strategy. 
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Suppose G :! ý S,, is a symmetry group and G' < S,,, is the group isomorphic 
to G obtained by the conversion of a COPR instance to a COP instance discussed in 
Section 10.1.1 (here it' >n is the number of components used in the representation 
of converted states). A polynomial time COP strategy for G does not in general 
yield a corresponding COPR strategy for G', as the action of G' on J1,2,..., n'} 
may be fundamentally different to that of G on 11,2,..., n}. For example, if G is the 
disjoint product of subgroups H and K then G' is the direct product of subgroups 
Wand K', but it may not be the case that H'and K' act disjointly on 11,2,..., n'}. 

We now show how a polynomial time exact COP strategy can be extended 
to an exact COPR strategy. The result is not a polynomial time strategy, but may be 

significantly more efficient than the enumeration strategy if G is large. 

10.2 Segmentation: Extending Strategies to a Model of Computation 
With References 

Our approach to extending a strategy for COP to one for COPR works by construct- 
ing a partitio? i of I from a given state, and enumerating the stabiliser of this partition. 

10.2.1 Segmenting a state 
We define a subset of [s]G whose elements have minimal control states. 

D efinition 36 Let smallr, (s) = It E [s] c; : ctrl(t) :: ý ctrl(u) VuE [s] r, } - 

Clearly Mill--([S] GE smallG (s). Given a state s, the vector ctrI(s) can be viewed as 
a state under a model of computation without references. The following result is a 
consequence of this observation and Definition 36: 

Lemma 15 For sES, t E smalIG(s) #>ctrl(t) =min< [ctrl(s)]G. 

For kEL, let S(k) = ji EI: Ii = k}, i. e. the set of indices of components which 
have control state k in s. Define the function seg acting on states by: 

seg(s) = IS(k) :kEL, }. 

Then clearly, for any state s, seg(s) is a partition of I. 

10.2.2 Symmetry reduction via segmentation 
So far we have defined a COP strategy for G to be a function f: S --+ S with 
the property that f (s) ": Mill< [SIG. Note that we can equivalently define a COP 
strategy with respect to a group G as a function f: S --+ G such that, for all sES, 
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Algorithm 11 Extending an exact COP strategy f for a group G to an exact COPR 
strategy. 

A: = f (ctrl (s)) 
H := stabG(seg(p(s))) 
a= id 
forall bEH do 

if bp(s) ap(s) then 

end if 
end for 
return ap 

if it =f (s) then a(s) = min< [s]c;. We adopt the latter definition for the rest of this 
chapter. 

For a group H acting on a set X, recall the definition of the stabiliser of a 
partition X of X (Definition 9, Section 3.1.2), denoted stabH(X). 

Lemma 16 If tE smalIG(S) and a (t) -< t for some aEG then aE stabc; (seg(t)). 

Proof Since tE smallc, (s) and a(t) -< t, by Definition 36 we have ctrI(t) = 

ctrl(it(t)) and ref(t) > ref(a(t)). Since arl(t) = Ctrj(a(t)), t(k) = &(t)(k) for all 
kEL, i. e. seg(t) = seg(a(t)). Thus a preserves seg(t), i. e. aE stabc; (seg(t)). 0 

Thus, if a state tE snialIG (S) is not the smallest element in [s] G under -< then 

search for a minimising element of G can be restricted to stabG (seg (t)). Note that 
if component indices i, j EXE seg(t), it is still necessary to consider elements of 
G which map i to j. TI-ius we cannot treat the elements of seg(t) as sequences and 
compute their pointwise stabiliser (which would be computationally easier). 

Suppose that we have an exact COP strategy f for G. Let A=f (ctrl(s)), so 
that fi(ctrl(s)) = min: 5[ctrI(s)jG. Clearly A(ctrl(s)) = ctrl(A(s)), and therefore by 
Lemma 15, p(s) E snialIG (s). By Lemma 16, the group H stabG (seg(A(s))) can 
now be enumerated to find an element a such that ap(s) bp(s) for all bEH. 

Thus we have proved the foflowing: 

Theorem2l Lets E S, G: S Sym(l), andletf bean exact COP strategy for G. 7hen 
Algorithm 11 is an exact COPR strategy for G. 

Figure 10.1 illustrates graphically the relationship between [s] G (represented 
by the outer ellipse) and its subset smalIG (S) (represented by the inner ellipse), and 
the process of computing an element of G which minimises s. We illustrate the 
approach further with an example. 

Let n, ni, L, and Lr and G be as in the example in Section 10.1.2. Let 
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[SIG 

- (ctrl(s 

cz H 

min--< [SIG 

sinall G (S) - [9 (S) IH 

ctrl(p(s)) - min<[ctrl(s)]c; H= stabc; (seg(p(s))) 

Figure 10.1: Symmetry redUction by segmentation. 

s= (1,2,0,1,0,1,2,1). Then ctrl(s) = (1,0,0,2), and applying Algorithm 10, we 
find that 13 = (1 3) satisfies O(ctrl(s)) = tWtz<[ctr1(s)jG. Applying ý to s gives 
t= (0,3,0,3,1,2,2,3), and seg(t) = 111,21,121,1311. It is easy to check that 

stabG(s, cg(t)) = ((1 2)), a group of order 2, and that applying (1 2) to t gives 

niin-ý[s, IG = (0,3,0,3,1,1,2,3). For this example, the application of 6 group ele- 

ments is required by Algorithm 10, followed by enumeration of a group of order 2. 

Computing iiiiii .ý 
[s] G by basic enumeration would have required the application of 

all 24 elements of G to s. 

10.3 Efficiency 

Assuming thatf can be computed in polynomial time (using strategies described 

in 1271 and Chapter 9), the efficiency of Algorithm 11 is dominated by computation 

of and iteration over H. 
Computing H= sh&G(stW(s)) is equivalent to computing the stabiliser of a 

set in a group. The most efficient algorithms available for computing set stabilis- 

ers involve backtrack search of the group using a base and strong generating set 
[191. Typically this search can be heavily pruned using both problem-independent 
heuristics, and heuristics based on properties of set stabilisers. Thus, despite the 

fact that no polynomial time algorithm is known for computing set stabilisers, the 

associated overhead is not large. Furthermore, as the experimental results of Sec- 

tion 11.3 show, the set Iseg(s) :scSI of all partitions of I which must be con- 

sidered during search, is often much smaller than the number of possible parti- 
tions of 1.1 Thus, re-computation of partition stabilisers can be avoided by caching 

1. The TIumber of such partitions is B,,, the nth Bell nuniber, which is dvfiý-tvd recursively by BO -I 
and B,, (', ')Bj forn -, 0[ 15 11. 
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partition-stabiliser pairs. 
In the worst case, H may have size I GI (e. g. when Iseg(s) I= 1), and IGI may 

be as large as W (in the case where G=S,, ). However, if the number of distinct 
component control states is reasonably large, many states s will have the property 
that Iseg(s) I= ii, in which case stabG(seg(s)) is the trivial group. 

Summary 

In order for our symmetry reduction techniques to be applicable to the Promela 
specification language, we have defined a realistic model of computation where 
components may hold references to one another. We have defined the COP with ref- 
eretices, and shown that although the COP and COPR are polynomial-time equiva- 
lent, polynomial time strategies for solving the COP for specific groups do not, in 
general, directly extend to solve the COPR. 

We have presented a technique for extending any COP strategy to solve 
the COPR by gencralising the segniented symmetry reduction strategy used by the 
SymmSpin tool [14]. The extended strategy involves applying the initial strategy, 
followed by an enumeration process to compute the minimum state in the set of 
states regarded as minimal by the initial strategy. Although the extended strategy 
does not run in polynomial time, it is more sophisticated than basic enumeration. 
For many states, solving the COPR involves applying a polynomial time COP strat- 
egy, then enumerating over a small (even trivial) permutation group. 



Chapter 11 

TbpSPIN -a Computational Group Theoretic Symmetry 
Reduction Package for SPIN 

In this chapter we describe TopSPIN, a symmetry reduction package which we have 
developed for the SPIN model diecker. TopSPIN uses SymmExtractor (see Chap- 
ter 8) for automatic symmetry detection, and the strategies presented in Chapters 9 

and 10 to exploit symmetry efficiently. 
We provide an overview of TopSPIN in Section 11.1, and present some exam- 

ples of the source code generated by TopSPIN for a selection of symmetry reduc- 
tion strategies hi Section 11.2. We present experimental results which demonstrate 
the effectiveness of our symmetry reduction techniques for a variety of Promela. 

specifications Section 11.3, and discuss some possible extensions to TopSPIN in Sec- 
tion 11.4. 

11.1 An Overview of TbpSPIN 

As described in Section 2.4.2 and illustrated by Figure 2.9, to check properties of 
a Promela specification SPIN converts the specification into aC source file, pan. c. 
This verifier is then compiled and executed, and the state-space thus generated is 
searched, resulting in a counter-example, an exhaustive search with an absence of 
counter-examples, or an incomplete search due to memory restrictions. 

TopSPIN follows the approach used by the SymmSpin symmetry reduction 
package [141 (see Section 3.9.1), where pan. c is generated as usual by SPIN, and 
then converted to a new file, syrnpan. c, which includes algorithms for symmetry 
reduction. With TopSPIN, because we allow for arbitrary system topologies, sym- 
metry must be detected before sympan. c can be generated. The process involved 
in generating sympan. c is summarised in Figure 11.1, which combines the process 
of Figure 2.9 with automatic symmetry detection and classification. 

The SymmExtractor tool (see Chapter 8) is used to extract the static channel 
diagram SCV(P) of the Promela specification P, and to compute the largest valid 
subgroup G :5 Aut(SCD(P)) with respect to P. The symmetry detection process is 
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Figure 11.1: The symmetry reduction process. 

illustrated in Figure 8.1, Section 8.1, and involves the construction of a syntax tree 

representation of P, annotated with type information. 
Based on the symmetry reduction strategy specified by the user (see below), 

or using the default. fast strategy, TopSPIN generates C algorithms for symmetry re- 
duction. The overall structure of this code is strategy-dependent, but the fine details 
(in particular the function which applies a permutation to a state) are specification- 
specific, and depend critically on the type information provided by Sym n-lEx tractor. 
These algorithms are merged with pan. c to form sympan. c, which can be com- 
piled and executed as usual. TopSi, IN is currently limited to the verification of safety 
properties, which can be expressed using assertions. 

TopSPIN provides four symmetry reduction strategies: enutneration, local- 

searcli, fiist, and segniented. The cnianeration and localsearch strategies use the gen- 
eral representative computation techniques presented in Sections 9.2.2 and 9.2.4 

respectively. The enioncration strategy provides exact symmetry reduction, thus is 

memory optimal. However, it may be very slow if G is large. TTie localsearch strategy 
is approximate (it does not guarantee computation of a unique representative from 

each equivalence class) but computationally inexpensive. With both thefiast and seg- 
niented strategies, TopSi, IN analyses the structure of G using a GAP implementation 

of the algorithms presented in Chapter 9, and generates routines for representative 
computation based on this structural information. If the fast strategy is selected 
then these routines may or may not provide exact symmetry reduction, depend- 
ing on whether processes in the input specification hold references to one another. 
If the stginentcd strategy is used then the representative computation routines are 
followed by a scgiiientation phase (as described in Chapter 10) which guarantees 
unique representatives (unless local search is selected for the initial representative 
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computation, in wl-dch case it is inadvisable to use the segmeWed approach). Note 
that TopSPIN implements the sound, incomplete approach of Section 9.3.1 for de- 

composing a group as a disjoint product. 
To allow the user to manually specify symmetry (e. g. when SymmExtractor 

is not capable of detecting it automatically), and to allow TopSPIN to be linked with 
alternative automatic symmetry detection tools, TopSPIN also accepts generators 
for a group of process and channel automorphisms specified (in disjoint cycle form) 
in an input file. The resulting group can still be automatically classified if thefast or 
segnietited strategy is used. 

In Sections 9.2.1 and 9.2.2 we discussed optimisations for efficient applica- 
tion of permutations, and efficient enumeration of a group respectively. TopSPIN 

uses these optimisations by default, but they can be disabled for purposes of com- 
parlson. 

11.2 Computing Representatives 

A key component of the pan. c: verifier is the store function. Given a single ar- 
gument s (a SPIN state-vector) the store function determines whether s already 
belongs to the set of previously stored states, adding it to the set if it is not. In sum- 
mary, TopSPIN adds a function rep to pan. c, and replaces each call of the form 

store W with a call store (rep (s) ). If rep returns a unique representative of 
[s] C; it is clear that by modifying every call to store in fl-ds way we ensure only 
a single state from each equivalence class is ever added to the state-space, result- 
ing in optimal symmetry reduction. Alternatively, rep may provide sub-optimal 
symmetry reduction by mapping [s] c; on to a small set of representatives. 

We now give some examples to illustrate the C code which TopSPIN gen- 
erates for the function rep, for a variety of symmetry reduction strategies. The 

examples use the standard C functions memcpy (a, b, c), which copies c bytes from 
the memory region pointed to by b to the memory region pointed to by a, and 
memcmp (a, b, c), which compares these memory regions, returning 0 if they are 
equal, a positive value if b is larger than a (viewed as a binary vector), and a neg- 
ative value otherwise. Tlie state type denotes a SPIN state-vector, and state* 
denotes a pointer to a state-vector. Each version of the rep function relies on a sub- 
sidiary function applyPermToS tat e. This function computes the image of a state 
under a given permutation. Its implementation is specification-specific, dependent 

on the location of pid and chaii variables and pid-indexed arrays. The type informa- 
tion gathered from the input specification during symmetry detection is critical to 
the generation of this function. If a symmetry group is specified manually then it is 

necessary for TopSPIN to type-check the input specification in order to successfully 
generate the applyPermTostate function. We do not give a code example for this 
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State* rep(State* 9) ( 
int 10, il, 12,13,14; 
State partiallmagesl5l; 

memcpy(min, 9, vaize); 

for(14-0; 14<2; 14++) ( 

memcpy(&partialImages[41, s, vsize); 
applyPermToState(&partialimageB[4l, coset_reps[4][i4l); 

for(13-0; 13<3; 13++) 1 

memcpy(&partialImagee[31, &partialImagefi[41, veize); 
applyPermToState(&partiallmages[33, COBet_reps[3][i3l); 

for(12-0; 12<4; 12++) ( 

memcpy(&partialImages[2], &partialImages[3l, vsize), 
applyPermToState(&partialImages[21, coset-reps[2](i2l); 

for(il. 0; il<5; il++) ( 

memcpy(&partialImages[ll, &partialimagei3l2], vsize); 
applyPermToState(&partiallmages[il, coi3et-repatiltill); 

for(iO=O; iOt6; 10++) ( 

memcpy(&partialImages[O], &partialimagestil, vaize); 
applyPermToState(&partiallmages[O], COBet-reps[01[iO]); 

if(meincmp(&partialImages[Ol, min, vsize)<O) 
memcpy(min, &partialImages[o], veize); 

return min; 

Figure 11.2: Representative computation for 6 process Peterson mutual exclusion pro- 
tocol via enumeration, using a stabiliser chain. 

function; for details see the TopSPIN source code (the location of which is given in 
Section 1.2), or examine the sympan. c file which TopSPIN generates for a given 
specification. For readability, we have tidied up the code examples in the following 

sections to some extent. 

11.2.1 Enumeration 

Figure 11.2 shows the rep function which TopSPIN generates given a specification 
of a 6-process version of Peterson's mutual exclusion protocol (see Section 4.3 and 
Appendix A. 1.1). Note that TopSPIN would, by default, choose a more efficient rep- 
resentative computation strategy for this example, as we show in Section 11.2.2. 

Recall the process of enumeration using a stabiliser chain, described in Sec- 
tion 9.2.2. The symmetry group for G in this example is S6, and GAP has been used 
to construct a stabiliser chain for G. The chain has length six, so there are five sets of 
coset representatives. The coset representatives are stored using a 2-dimensional ar- 
ray, cos et_reps. An array, part i al_images, is used to store images of the state 
s under consecutive coset representatives. The element partial_images [41 
is the image of s under an element of coset-reps [41, and for 0<i<4, 
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State* rep(State* s) 
int J; 

memcpy(min, a, voize); 
do ( 

memcpy(last-min, min, voize); 

for(J-0; J<15, J++) ( 

memcpy(tmp, min, voize); 
applyPermToState(tmp, minimising_set(JI); 
if(memcmp(tmp, min, vsize)<D) 

memcpy(min, tmp, veize); 

while(memcmp(min, laE3t-min, vsize)1.0); 
return min; 

Figure 11.3: Representative computation for 6 process Peterson mutual exclusion pro- 
tocol, using a minimising set. 

partial_images Ul is the image of partial_images (i + 11 under an ele- 

ment of coset_reps Ul. The final image of s under an element of G is stored in 

partial_images [01, and is compared with the smallest state in the orbit so far, 

min (a global variable), using the C function memcmp. 1 If partial_images [01 
is found to be smaller than min then the value of min is overwritten with this new 

minimum, using the memcpy function. 

The code shown in Figure 11.2 is essentially an implementation of Algo- 

rithm 5, Section 9.2.2, for the 6-process Peterson mutual exclusion example. 

11.2.2 Minimising sets 

As noted above, TopSPIN would not use enumeration for the Peterson mutual ex- 
clusion example by default. Rather, a minimising set for G would be computed 
using the techniques described in Section 9.2.3. Figure 11.3 shows the code for rep 
which is generated in this case. The function is essentially an implementation of 
Algoritl-un 7, Section 9.2.3. The (global) variables min, last-min and tmp are SPIN 

state vectors. The minimising set is stored as an array, minimising_set, and the 
algorithm proceeds by iterating over this array and minimising the state min, until 
min does not change. For this example the group is S6 and the minimising set has 

size 15, as predicted by the formula for minimising set size given in the proof of 
Theorem 17 (Section 9.2.3). 

11.2.3 Local search 

The code generated when the local search strategy (see Section 9.2.4) is chosen, ei- 
ther automatically by TopSPIN or manually for experimental purposes, is similar 
to that generated when a minimising set is used. Figure 11.4 shows the code gen- 
erated for the rep function when local search is applied to the Peterson mutual 
exclusion example with six processes. The key differences between Figure 11.3 and 
1. The argument vsize to memcmp is a global variable denoting the length of the state-vector. 
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State* rep(State* 9) 
int J; 

memcpy(min, a, vsize); 
do ( 

memcpy(last-min, min, vsize); 

for(J-0, J<5, J++) f 

memcpy(tmp, last 
- 

min, vsize); 
applyPermToState(tmp, genB[jl); 
if(memcmp(tmp, min, vsize)<O) 

memcpy(min, tmp, veize); 

while(memcmp(min, last-min, vsize)1-0); 
return min; 

Figure IIA: Representative computation using local search. 

Figure 11.4 are that a generating set gens for G is used, rather than a minimis- 
ing set, and that on each iteration of the inner loop a permutation is applied to 
last-min, rather than min. This ensures that the inner loop computes the small- 
est image of last-min under the generators of G. If this image is smaller than 
last-min then local search continues. Otherwise this local minimum is returned 
as a representative. 

11.2.4 Applying a composite strategy 
If TopSPIN computes a decomposition for G as a disjoint or wreath product of sub- 
groups (using the techniques of Sections 9.3 and 9.4 and the recursive classification 
algorithm described in Section 9.6) then the rep function consists of multiple sec- 
tions of code, one for each factor of the product. 

Consider a configuration of the resource allocator specification (see Sec- 

tion 4.4 and Appendix A. 2) consisting of three processes with priority level 0, 

and four with priority level 1. This is the specification denoted '34' in Section 8.4. 

The symmetry group associated with this example decomposes a disjoint product 
HI 9 H2 where HI and H2 are isomorphic to S3 and S4 respectively. These groups 
can be handled using minimising sets of size 3 and 6. Figure 11.5 shows the code 
for rep generated by ToPSPIN. 

11.2.5 The segmented strategy 
If the segnmited strategy is chosen then the function rep is generated as for the 
fast strategy, but the return statement is prefixed by a function call of the form 

segment (min). The code which is common to thefast strategy corresponds to the 
line A :=f (ctrl(s)) in Algorithm 11, Section 10.2.2. The segment call corresponds 
to the remainder of Algorithm 11. We give a high-level explanation of how the 
segment function is implemented. 

Before search, a variable of a proctype is classed as setisitive if it has type pid 
or clwn, or if it is an array indexed by values of type pid, otherwise it is classed as 
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State* rep(state* s) 
int J; 

memcpy(min, a, vaize); 

do ( 

memcpy(last-min, min, vsize); 
for(J-0; J<3; J++) ( 

memcpy(tmp, min, VBize); 
applyPermToState(tmp, minimising_set_l[jl); 
if (memcmp(tTnp, min, vsize) <0) 

memcpy(min, tmp, vaize); 

while(memcmp(min, last-min, vaize)1=0); 

do j 

memcpy(last-min, min, vsize); 
for(J=O; J<6; J++) ( 

memcpy(tmp, min, veize) 
applyPermToState(tmp, minimising_set_2[jl); 
if(memcmp(tmp, min, vsize)<O) 

memcpy(min, tmp, vsize); 

while(memcmp(min, laE; t-min, vsize)! =O); 

return min; 

Figure 11.5: Representative computation for a resource auocator specification which 
has an associated disjoint product group H, * H2, using two minimising sets. 

insensitive. In order to handle user-defined (possibly nested) records, and arbitrary 
arrays, distinct fields of a record variable are regarded as separate variables. Sim- 
ilarly, distinct elements of an array which is not indexed by values of type pid are 
treated as separate variables. A field of a buffered channel is classed as sensitive or 
insensitive in an analogous way. 

The segment function has a single state-vector parameter s. A partition 
seg(s) of process identifiers and static channel names is constructed from s as fol- 
lows. Process identifiers i and j are in the same partition if proctype (i) = proctype (j), 

and the insensitive variables of i and j are equal at s. Buffered channels c and d are 
in the same partition if signature(c) = signature(d), c and d have the same length at 
s, and the insensitive fields of c and d are equal at s. Synchronous channels have no 
state, and thus need not be included in the partition. 

GAP is used to compute the subgroup H= stabc; (seg(s)), and returns a 
set of coset representatives for efficient enumeration of H (see Section 11.2.1). The 

minimum image of s under H is computed using these coset representatives us- 
ing a routine similar to that shown in Figure 11.2, Section 11.2.1. As mentioned 
in Section 10.3, we optimise the performance of the segment function by caching 
partition-stabiliser pairs. When a partition is computed, before calling on GAP to 
compute the associated stabiliser, a lookup is made to a table of stabilisers, indexed 
by partitions. If the partition has been encountered before then there is no need 
to re-compute the stabiliser. Experimental results in Section 11.3 show that explo- 
ration of a large state-space may result in only a few distinct partitions. 
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The segmented strategy is the only strategy which requires communication 
with GAP during search. Due to the technical difficulty of calling external processes 
from aC program, the current implementation of TopSPIN provides a GAP function, 
Veri fy () , which starts the sympan executable as a slave process. Unfortunately, it 
is not possible (to our knowledge) to pass command-line arguments to Sympan this 
way, so parameters such as the maximum search depth must be changed manually 
in sympan. c, which requires some expert knowledge. Communication between 

sympan and GAP takes place via a text stream, using a simple bespoke protocol. 

11.3 Experimental Results 

We demonstrate the effectiveness of our symmetry reduction techniques by apply- 
ing TopSPIN to a selection of Promela specifications. We categorise these specifica- 
tions into families in Section 11.3.1. In Section 11.3.2 we discuss the type of symme- 
try associated with each family, which determines the strategy chosen by TopSPIN 
when the fast option is selected. In Section 11.3.3 we discuss the experimental re- 
sults. 

11.3.1 Specification families and configurations 
We consider each of the specification families used for experiments with Symm- 
Extractor in Section 8.4, and use the notation introduced in Section 8.4.1 to denote 

configurations of these families. In order to fully illustrate TopSPIN we use two 
additional families of Promela specifications: an email system, and a loadbalancer 

which forwards requests from a pool of clients to a pool of servers in a fair manner. 
The email example is adapted from [211. A configuration of the system con- 

sists of n clietit processes, which communicate by sending messages to a mailer pro- 
cess via a iietwork channel component. The client components are instantiations of 
the same parameterised process and thus behave identically, so there is full sym- 
metry between clients. Components in a Promela specification of the system use 
reference variables to keep track of the sender and recipient of a given message. An 
email configuration with it clients is denoted n. 

Components of a configuration in the loadbalancer family are a set of m server 
and n client processes with associated communication channels, and a loadbalancer 

process (with a dedicated input channel). The load of a server is the number of 
messages queued on its input channel. Client processes send requests to the load- 
balancer, and if any of the server channels are not full, the loadbalancer forwards a 
request nondeterministically to one of the least loaded server queues. Each request 
contains a reference to the input channel of its associated client process, and the 
server designated by the loadbalancer uses this channel to service the request. A 
loadbalancer configuration with m server and n client processes is denoted m-n. 
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For purposes of comparison, we have slightly modified some specifications 
in order to be able to verify reasonably large examples withow symmetry reduction. 

11.3.2 Symmetry groups associated with each family 

The simple mutex, Peterson, Peterson without atomicity and entail specifications all ex- 
hibit groups which are isomorphic to S, where n is the configuration size. For the 
mutual exclusion examples, the group actually is Sn - there is full symmetry be- 
tween the competing processes, and no channels. The symmetry group associated 
with an entail it specification consists of all permutations of the n client processes 
which simultaneously permute their corresponding input channels. For configura- 
tions in each of these families, TopSPIN automatically classifies the associated sym- 
metry group, and computes a minimising set (see Section 9.2-3). The resulting code 
for representative computation is similar to the example given in Figure 11.3, Sec- 
tion 11.2.2. 

Given a resource allocator configuration denoted ao-al -ak-1 i the corre- 
sponding symmetry group is a disjoint product HI * H2 9 ... * Hk, where Hi ý'- S,, i_l 
for each 0 :ýi<k. The group Hi consists of all permutations of client processes 
with priority level ai-i which simultaneously permute the client communication 
channels. TopSPIN automatically computes this disjoint product decomposition and 
identifies a minimising set for each factor of the product. Code for representative 
computation is produced in a similar manner to the example given in Figure 11.5, 
Section 11.2.4. 

The symmetry group associated with an m-n loadbalancer configuration is 

also a disjoint product. The group has the form Hi * H2, where Hi ý--- S. and 
H2 2ýý Sn permute the server and client components respectively (simultaneously 

permuting their corresponding input channels). Once again, TopSPIN outputs code 
for representative computation by computing a minimising set for each factor of 
this product. 

We consider three-tiered architecture specifications which are balanced - that 
is, there are in server components, and a block of it client components connected 
to each server component (for some m,? z > 0). Given a configuration n-n-... -11 

in the three-tiered family, the associated symmetry group decomposes as an inner 
wreath product HIK, where H '--' Sn and K S, The wreath product contains 
in copies of H, each of which permutes client processes and channels within one 
of the blocks. The group K permutes the in server components. An element of K 
which maps server i to server j also maps the block of clients connected to server i to 
the block of clients connected to server j. TopSPIN uses the techniques of Section 9.4 
to automatically compute this wreath product decomposition, and then computes 
distinct minimising sets for each copy of H and a minimising set for K. Code for 
the resulting composite strategy is again similar to the example given in Figure 11.5, 
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Section 11.2.4. 
For configurations in the hypercube family, we manually specify generators 

for a group of symmetries. This is due to the inability of SymmExtractor to auto- 
matically detect the complete group of symmetries for these examples, as discussed 
in Section 8.4.2. The hypercube examples exhibit fairly large groups, which camiot 
be decomposed as disjoint/wreath products, and for which no minimising set can 
be found by our methods. Using thefast strategy, TopSPIN selects local search (see 
Section 9.2.4) to handle this type of symmetry, and outputs code for representative 
computation similar to the example given in Figure 11.4, Section 11.2.3. 

11.3.3 Results and discussion 

Figure 11.6 contains experimental results for various configurations of the above 
families. For each configuration, we give the number of model states without sym- 
metry reduction (orig), with memory optimal symmetry reduction using the enu- 
meration strategy (red), and with symmetry reduction using thefast strategy (fast). 
When the number of model states is the same using the enumeration andfast strate- 
gies, '='appears in the fast column. State-space sizes which are larger than 106 are 
given to the nearest hundred-thousand, with the exception of the Peterson without 
atomicity 4 configuration (as discussed below). The use of state compression (see 
Section 2.6.2) is indicated by the number of states in italics. This option was se- 
lected for three configurations to allow verification without symmetry reduction. 

Verification times (in seconds) are given for the enumeration strategy with 
and without the group-theoretic optimisations of Section 9.2.2 (basic and enum 
respectively), for thefast (fast) option, as well as for the case where symmetry re- 
duction is not applied (orig). The size of the symmetry group (I G J) and the time, in 

seconds, taken by GAP to classify this group (classify time) are also given. 
Verification attempts which exceed available resources, or do not terminate 

within 15 hours, are indicated by'-. All experiments are performed on a PC with a 
2.4GHz Intel Xeon processor, 3Gb of available main memory, running SPIN version 
4.2.3 .2 For the email 7 and loadbalancer 3-7,4-6 and 5-7 configurations, the size of the 
reduced state-space was computed using the segmented strategy, for which timing 
information is given in Figure 11.6 and discussed below. 

For all specification families except the hypercube family, the application of 
symmetry reduction allows the verification of larger configurations - even using 
state compression, memory requirements were quickly exceeded when symmetry 
reduction was not applied. In all cases, the enumeration strategy without optimi- 
sations is significantly slower than the optimised enumeration strategy, which is in 
turn slower than the strategy chosen by TopSPIN. 

2. An ard-dve of the Promela specifications used for the experiments is available online (see Sec- 
tion 1.2). 
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three-tiered architecture 
3-3 103105 5 72 2656 4 2 
44 1.1 x lop 37 1152 5012 276 E1 08 108 0.44 2 

3-3-3 2.54 x 107 4156 1296 50396 4228 ]1ý9 19 0.41 19 
444 - - 82944 - - 0.51 1 130348 104 

email 
3 23256 0.1 6 3902 0.9 0.8 0.16 3908 0.2 
4 852641 9 24 36255 13 6 0.16 3&560 2 
5 3.04 x 10' 3576 120 265315 679 253 0.13 315323 40 
6 720 1.7 x 101 - 13523 0.14 2.3 x 106 576 
7 5040 9.3 x 10' - - 0.14 1.53 x 101 6573 

loadbalancer 
2-6 2.37xIO' 1585 1440 23474 656 265 0.32 31066 5 
2-7 - 10080 44137 10314 4376 0.32 61245 16 
3-6 - 4320 125126 13468 5024 0.25 256204 57 
3-7 - 30240 293657 - - 0.28 685167 213 
4-6 - 17280 527548 - 0.29 1.7 x 101 487 
4-7 - - 120960 1.2 ý. 10' 0.30 3.7 x 1017- 1583 

ypercu e 
. 3d 13181 0.3 48 308 0.6 0.3 0.07 468 1 0.2 
4d 380537 18 384 1240 58 34 0.07 6986 13 
5d 9.6xl(P 2%5 3840 3907 7442 5241 0.10 90442 946 

Figure 11.6: Experimental results for symmetry reduction with TopSPIN. For each con- 
figuration, state-space sizes are given for verification without symmetry reduction 
(states orig), with full symmetry reduction (states red) and using the fast strategy 
(states fast). Time for verification (in seconds) is also given in each case. The columns 
time basic and time enum refer to full symmetry reduction without and with com- 
putational group-theoretic optimisations. The size of the group G and the time (in 
seconds) taken to classify the structure of G (classify time) are also shown for each 
configuration. 



11.3: EXPERIMENTAL RESULTS 207 

Processes in the simple mutex configurations do not hold references to one 
another, so the fast strategy provides exact symmetry reduction, as expected. In 
contrast, the difference between the fast and enumeration strategies is especially 
marked for the simple mutex 10 configuration, where the symmetry group is much 
larger than even the unreduced state-space. Configurations in all the other fami- 
lies consist of processes which do hold references to one another, in which case the 
fast strategy does not promise exact symmetry reduction even when the associated 
symmetry group can be classified appropriately (see Section 10.1.2). However, for 
the Peterson, resource allocator and three-tiered architecture specifications, exact sym- 
metry reduction is obtained using thefast strategy (at least for the configurations to 
which we could feasibly apply the enumeration strategy). 

Exact symmetry reduction using thefast strategy is not obtained for the email 
or loadbalancer configurations, or for the Peterson without atomicity 4 configuration. 
Nevertheless, a large factor of reduction is gained by exploiting symmetry in this 
way, and verification is fast. The difference in model sizes using thefast and enu- 
meration strategies for the Peterson without atomicity 4 configuration is small. 

As discussed above, TopSPIN uses local search when the fast strategy is ap- 
plied to the hypercube specifications. This requires storage of more states than the 
enumeration strategy, but is considerably faster and still results in a greatly reduced 
state-space. 

Figure 11.7 shows the time taken for symmetry reduction using the seg- 
mented strategy, applied to the email and loadbalancer configurations. The (reduced) 

model sizes are given in the states red column of Figure 11.6. The email and load- 
balancer configurations are suitable for the segmented strategy since thefast strategy 
does not provide optimal symmetry reduction, and the symmetry group associ- 
ated with each configuration can be classified using the techniques of Chapter 9. 
Using the polynomial time COP strategy obtained via this classification, together 
with the techniques of Chapter 10, we obtain exact symmetry reduction more effi- 
ciently than via enumeration. Indeed, for larger configurations in each family, the 
segmented strategy allows us to feasibly construct a memory-optimal reduced state- 
space, which was not possible using straightforward enumeration. Recall that the 
segmented strategy works by applying a polynomial time COP strategy to a state, 
computing a partition associated with the resulting state, and enumerating the sta- 
biliser of this partition to find the unique representative. Since many different states 
may exhibit the same partition, TopSPIN stores a table of stabiliser subgroups, in- 
dexed by partitions, as discussed in Section 11.2.5. Figure 11.7 records the number 
of distinct partitions which were computed for each entail and loadbalancer configu- 
ration. Note that for all configurations this number is much smaller than the num- 
ber of reduced model states. 
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Configuration time segmented no. ýpartiýtions 

email 
3 0.2 5 
4 4 7 
5 71 9 
6 1600 11 
7 50970 13 

loadbalancer 
2-6 28 94 
2-7 266 259 
3-6 271 330 
3-7 2722 451 
4-6 2378 884 
4-7 29779 1296 

Figure 11.7: Results for the segmented strategy applied to email and loadbalancer config- 
urations. 

11.4 Extending TopSPIN 

The main limiting feature of TopSPIN is that it does not allow symmetry-reduced 
verification of LTL properties. The symmetry group derived by SymmExtractor is, 
by construction, an invariance group for a temporal property embedded in a spec- 
ification as a never claim. This is a result of the fact that the never claim is just a 
Promela process. If a is a static channel diagram automorphism under wl-dch a 
given property 0 is not invariant then a will not preserve the structure of the never 
claim for 0, and so a will be (correctly) judged as invalid by SymmExtractor. 

A solution to the problem of combining symmetry reduction with LTL model 
checking in SPIN is presented in [13]. The next step in the development of TopSPIN 
is to implement this solution for the general kinds of symmetry supported by 
TopSPIN. TI-ds will involve adapting the nested depth-first search algorithm which 
SPIN uses to check LTL properties, so that only representative states are considered. 

In Section 11.2.5 we explained that use of the segmented strategy requires 
communication between sympan and GAP during search, and currently relies on 
GAP being the master process, starting symp an as a slave process. It should be pos- 
sible to change this so that sympan starts GAP, which would be more natural, and 
would avoid the current problem of passing command-line arguments to sympan. 

There is some overhead associated with passing data between GAP and 
sympan using a text stream during a verification run. We could remove this over- 
head by implementing C versions of the small number of GAP functions which are 
used by the segmented strategy, in particular the algorithms associated with comput- 
ing setwise stabilisers. However, the GAP implementation has been refined over a 
number of years by experts in computational group theory, and reportedly includes 
many optimisations (some based on randomisation) which are not documented in 
the literature. For this reason, it is likely that any savings in communication over- 
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head would be lost to a reduction in efficiency. As a proof-of-concept, we imple- 

mented the Schreier-Sims algorithm (a fundamental algorithm on which most tech- 

niques for computing with permutation groups are based) in C, from a description 

given in [19]. While our implementation produced correct results, it was signifi- 
cantly slower than GAP. 

The segmetited strategy introduces the challenge of managing communica- 
tion between sympan and GAP via a simple protocol. It would be interesting to 
describe the control aspects of this protocol using Promela, and improve our con- 
fidence in TopSPIN by eliminating any potential deadlocks in the protocol which 
SPIN may find. 

Summary 

We have described TopSPiN, a computational group-theoretic symmetry reduction 
package for the SPIN model checker. TopSPIN provides automatic symmetry detec- 
tion using SymmExtractor, and also allows the user to manually specify symme- 
try. For efficient symmetry reduction (and to allow experimental comparison with 
naive approaches), TopSPIN provides a variety of strategies for representative com- 
putation, based on the techniques of Chapters 9 and 10. 

We have given an overview of the tool, and discussed each of the symme- 
try reduction strategies in some detail, providing examples of the C code which 
TopSPIN generates for representative computation. We have provided experimen- 
tal results for a variety of Promela specifications which illustrate the practical effec- 
tiveness of our computational group-theoretic symmetry reduction methods; both 

over verification without symmetry, and symmetry-reduced verification using ba- 

sic enumeration. In addition, we have discussed some directions for future devel- 

opment of TopSPIN, the most important of which is to provide support for LTL 
model checking. 



Chapter 12 

Conclusions and Open Problems 

The original contribution of this thesis can be divided into two parts: techniques 
for automatic symmetry detection in model checking, and methods for efficiently 
exploiting arbitrary symmetry groups in explicit-state model checking. The goal 
of these methods is to combat the state-space explosion problem, which limits the 
application of model checking to relatively small systems. We have presented in- 
depth theoretical results in each area, and backed up our theory with robust soft- 
ware tools and convincing experimental results. 

Having provided an overview of model checking and a detailed survey of 
symmetry reduction techniques in Chapters 2 and 3 respectively, we illustrated 

some problems with existing symmetry detection and reduction techniques in 
Chapter 4 via a selection of example Promela specifications. In order to analyse 
symmetry in the models associated with these specifications we introduced the 
SPIN-to-GRAPE tool. 

We identified two major problems with existing techniques for identify- 
ing symmetry, namely the necessity for the user to annotate a specification with 
symmetry-related keywords (or to use an appropriately restricted specification lan- 

guage), and the limitation of being able to identify only fun symmetry groups. To 
overcome these restrictions we proposed a method for automatic symmetry detec- 
tion based on static chamiel diagram analysis, in Chapter 7. This method was moti- 
vated by a correspondence between Kripke structure automorphisms and chartnel 
diagram automorphisms, which we investigated for specific examples in Chapter 5. 
To present our results rigourously without obscuring them in the complexity of 
Promela we introduced a smaller language, Promela-Lite, in Chapter 6. We have 
used the techniques of Chapter 7 to develop SymmExtractor, an automatic symme- 
try detection tool for Promela, described in Chapter 8. Experimental results show 
that SymmExtractor is mostly efficient, using group-theoretic optimisations to deal 
with certain difficult input specifications. We have assessed the usability of Symm- 
Extractor by applying the tool to a set of example specifications written as solutions 
to a student assessed exercise. The study reveals some ways in which the tool could 
be improved, and provides a case study in formal methods evaluation. 



12.1: OUTSTANDING IMPLEMENTATION ISSUES 211 

Our symmetry detection methods allow identification of groups which are 
more complex than full symmetry groups. This leads to the constructive orbit prob- 
lem (COP), which involves computing orbit representatives with respect to arbitrary 
symmetry groups. In Chapter 9 we presented an optimised method for enumerat- 
ing small groups, and a generalisation of techniques for dealing with full symme- 
try groups by sorting, based on minimising sets. The minimising sets approach al- 
lows us to automatically and efficiently handle a large class of commonly occurring 
groups which are isomorphic to symmetric groups. We have extended the applica- 
tion of techniques for handling disjoint/wreath product groups by presenting al- 
gorithms to automatically determine disjoint/wreath product decompositions for 
arbitrary groups. To deal with large groups which cannot be classified using min- 
imising sets or decomposed as products we have proposed an approximate tech- 
nique for computing representatives based on local search. The results of Chap- 
ter 9 are based on a simple model of computation where components do not hold 

references to one another. For many practical systems this is not the case. In Chap- 
ter 10 we introduced the constructive orbit problem with references, and showed that 
any algorithm for solving the COP can be extended to solve the COPR. However, 
this extension comes at the expense of polynomial time complexity. In Chapter 11 
we presented TopSPIN, a symmetry reduction package for the SPIN model checker 
which uses SymmExtractor for automatic symmetry detection, and provides a vari- 
ety of symmetry reduction strategies based on teclu-dques from Chapters 9 and 10. 
Using several families of Promela specifications, we have presented experimental 
results which show the effectiveness of our techniques. 

Throughout the thesis we have suggested improvements to each of our soft- 
ware tools, and have identified a number of areas for further theoretical investi- 
gation. We now summarise these implementation and research issues in the hope 
that they may lead to further research and development on symmetry reduction 
techniques for model checking. 

12.1 Outstanding Implementation Issues 

W-dle we have emphasised the importance of implementing our ideas, there are 
several features and optimisations which we have not had time to incorporate in 
our tool set. 

In Sections 7.6.1,7.6.2 and 7.6.3 we proposed straightforward extensions to 
our symmetry detection techniques for: allowing certain relational operations with 
pid arguments; supporting arithmetic expressions which involve pid variables, and 
capturing symmetry between global variables respectively. The user study of Sec- 
tion 8.5 showed that these extensions (particularly support for global variable sym- 
metry and arithmetic expressions over pid variables) would improve the usabil- 
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ity of SymmExtractor. The additional functionality should be relatively straightfor- 
ward to implement. 

As discussed in Section 11.4, our symmetry reduction package TopSPIN does 

not currently support the verification of LTL properties. This is not a research issue: 
the problem of combining symmetry reduction with LTL verification has already 
been investigated [13]. Nevertheless, for TopSPIN to be of interest to the SPIN COM- 
munity as a whole, facilities for LTL model checking under symmetry should be 
implemented. 

The segmented strategy (see Section 11.2.5) could also be improved. Currently 
if this strategy is chosen it is necessary to launch the sympan executable from 
within the GAP system. This is somewhat counter-intuitive, and poses problems 
with passing command-line arguments (e. g. to set the maximum search depth) to 
sympan. n-ie performance of this strategy could potentiallybe improved by linking 

sympan with compiled GAP code, rather than requiring sympan to communicate 
with GAP using a text stream during a model checking run. 

12.2 Research Problems Arising from the Thesis 

In Section 7.5 we observed that although the symmetry detection techniques of 
Chapter 7 are motivated by the concept of a static channel diagram - in turn mo- 
tivated by the cliannel diagram concept, presented in Chapter 5 and inspired by 
[157] - there is nothing fundamentally important about the static channel diagram 
definition. By introducing the structure Y(P), we showed that the main results 
of the chapter (contained in Sections 7.3 and 7.4) hold when Aut(SCV(P)) is re- 
placed with any subgroup G of Aut('Y(P)). In defence of static channel diagrams, 

we showed that they do provide an upper bound for the largest valid subgroup 
of Aut('Y(P)) (see Theorem 15, Section 7.5). An interesting question for future re- 
search is whether there exists a structure F(P) (say) which can be extracted from 
P in polynomial time, such that Aut(I'(P)) is exactly the largest valid subgroup 
of Aut(IF(P)). Such a structure would eliminate the need for Algorithm 4 in Sec- 
tion 7.4, which computes the largest valid subgroup of Aut(SCD(P)). Experimen- 
tal results with SymmExtractor (see Section 8.4) show that this algorithm is the 
bottleneck for our automatic symmetry detection method. Although the random 
conjugates optimisation described in Section 8.3.3 can, in some cases, reduce this 
bottleneck, the desired structure F(P) would remove it completely. 

We showed in Section 7.6.4 (using a contrived example) that the notion of va- 
lidity used by SymmExtractor could potentially be relaxed. The current test for de- 
ciding whether a static channel diagram automorphism is valid for an input speci- 
fication is somewhat conservative, but is correspondingly efficient. While we have 
found that our notion of validity is usually acceptable in practice, applying Symm- 
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Extractor to the hypercube example (see Sections 4.6 and 8.4.2) identified a situ- 
ation where the group of automorphisms, computed by SymmExtractor is signifi- 
cantly smaller than the group of automorphisms computed using SPIN-tO-GRAPE. 
This practical example suggests that a less restrictive notion of validity is worth 
investigation. 

The main research challenge identified by the user study of Section 8.5 is 
to find techniques to automatically determine the relationship between numeric 
identifiers passed as parameters to processes by the user, and the run-time _pid 
values wl-ddi SPIN assigns to processes. This is a Promela-specific issue, arising due 
to the need to index into arrays using process identifiers, but an elegant solution 
would greatly improve the practical usability of SymmExtractor. 

In Section 9.3 we presented two approaches to computing disjoint prod- 
uct decompositions for arbitrary permutation groups, motivated by the fact that, 
given such a decomposition, we can compute equivalence class representatives un- 
der the whole group by applying the factors of this decomposition separately. The 
sound and incomplete approach described in Section 9.3.1 works extremely well 
for groups which have been computed automatically using a graph automorphism. 
program, so this approach is implemented in TopSPIN. We illustrated the fact that 
the approach is not complete using a simple example. From a group-theoretic per- 
spective, it is desirable to have a sound and complete solution to this problem. We 

presented one such solution in Section 9.3.2, but showed that, in the worst case, 
it has exponential time complexity. An area for future research would be to fur- 
ther analyse the complexity of this problem, aiming to find a polynomial time al- 
gorithm. Since the sound, incomplete approach used by TopSPIN in Solving this 
problem works well in practice, tl-ds open problem may be of more interest to the 
computational group theory community than to the model checking community. 
Similarly, a topic for future research includes determining the exact complexity of 
the wreath product decomposition problem which we investigated in Section 9.4. 

We provided counter-examples in Section 9.5 showing that the composi- 
tional approach to computing orbit representatives with respect to disjoint/wreath 

products does not directly extend to direct/semi-direct products. As noted in Sec- 
tion 9.5 these counter-examples do not mean that the structure of direct/ semi-direct 
product groups cannot be exploited in some other way to compute representatives 
efficiently, and this would be a potential direction for future work. The family of 
hypercube automorpl-dsm groups provide motivation: the group K, x S, is a semi- 
direct product, and & in turn is a direct product of n groups of order 2. 

A recent approach to symmetry breaking in constraint programming re- 
quires a solution to a problem related to the COP [105]. During search, symmetry 
breaking is performed by backtracking when the partial assignment of variables 
at a given node is determined not to be lexicographically least in its orbit under a 
symmetry group G. The approach relies on a variant of an algorithm for finding 
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the smallest image of a set under a permutation group [121]. This problem can be 

shown to be polynomial time equivalent to the COP, and the smallest image algo- 
rithm can be used to solve arbitrary COP instances. Though the algorithm is not 
polynomial time, it exploits the structure of G in order to perform better than basic 

enumeration. The smallest image algorithm is general, and does not rely on spe- 
cific features like minimising sets or disjoint decompositions as ours does. There- 
fore we expect our techniques will be more efficient for these special cases (and 
indeed preliminary experiments using GAP confirm this). Nevertheless, a poten- 
tially beneficial area for future work would be to replace basic enumeration with 
the smallest image algorithm. In particular the approach to symmetry reduction us- 
ing segmeittatioti, presented in Chapter 10 to deal with systems where components 
hold references to one another, relies on an enumeration phase during represen- 
tative computation. It may be possible to significantly speed up this technique by 

using the smallest image algorithm instead of this enumeration step. 

12.3 The Future 

We conclude with three open problems which have proved to be beyond the scope 
of this thesis, but which we believe are important to the applicability and effective- 
ness of symmetry reduction techniques for practical model checking. These are: ex- 
ploiting partial symmetries, over-exploiting symmetry, and using parallel processing 
technology for efficient representative computation. 

Partial symmetry reduction 
The importance of techniques for the exploitation of partial symmetry (in the con- 
text of hardware verification) is neatly summarised in [51]: 

In conversations we have had with industrial hardware engineers, it 

comes out that while symmetry reduction is often applicable due to 
thepresence of manysimilar subcomponents, there are also many in- 

stances where it is not - quite - applicable. 7hat is, the systems are 
not genuinely symmetric but "approximately" symmetric, for exam- 
ple, because of one different component or slight differences among 
all components. This Emits thescope of utility ofsymmetry reduction 
techniques. 

Our experience concurs with this statement. Although we have shown the 
effectiveness of our symmetry reduction techniques using a number of convincing 
examples, we have had to eliminate many more promising-looking case-studies 
which turned out to be almost, but not quite, symmetric. 
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We surveyed several approaches to handling partial symmetry in Sec- 
tion 3.7. The main drawback of the notion of virtual symmetry presented in [52] 
is the problem of deriving, at the specification level, a group of virtual symme- 
tries for a Kripke structure. In addition, virtual symmetry reduction techniques 
still require the property under consideration to be invariant under the group of 
virtual symmetries. Methods for exploiting partial symmetry using guarded anno- 
tated quotient structures 1165] are potentially more promising, being able to handle 

asymmetric properties as well as asymmetric models. Still, there is little indication 

of how general partial symmetries can be detected at the source level. General, ef- 
ficient techniques for automatic partial symmetry detection would greatly increase 
the applicability of symmetry reduction in model checking. 

Ovcr-exploiting symmetry 
When model checking a very large state-space, it may be acceptable to use an uii- 
sou? zd reduction technique which efficiently covers a large portion of reachable 
states, but does not provide 100% coverage. This is exemplified by the supertrace 
method provided by SPIN, which reduces the storage requirement for a state to a 
single bit at the expense of complete verification [871. This kind of reduction tech- 
nique is useful when we are interested in finding errors in a system, rather than 
proving absence of errors. 

In a symmetry reduction context, it may be possible to provide more effi- 
cient verification either by exploiting a super-group of Kripke structure automor- 
phisms, or by computing representatives in such a way that several orbits are rep- 
resented by a single state. Suppose that we have a group G :! ý Aut(M), but can- 
not find an efficient reduction strategy for G. If we can find a group G', with an 
efficient reduction strategy, such that Gc G', then performing symmetry reduc- 
tion with respect to G' will give at least the factor of reduction obtained using G. 
However, if Aut(M) C G' (or Aut(M) and G' are incomparable) this approach 
exploits more symmetry than actually exists in the model. Nevertheless, the ap- 
proach may quickly discover counter-examples to the property being checked. This 
is valuable if unreduced verification exhausts available resources before finding a 
counter-example, but sound symmetry reduction is too time-consuming to be fea- 

sible. The idea of using a representative computation function which maps several 
states to the same representative follows a similar philosophy. 

Parallel symmetry reduction 
If we want to achieve sound, complete symmetry reduction under a model of com- 
putation with references then, with current techniques, we may have to resort to 
enumeration of large groups. Recall that the segmented approach to representative 
computation, presented in Chapter 10, improves basic enumeration by exploiting 
symmetry group structure, but still requires enumeration of partition stabilisers. 
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Given a group G and state s, computing Mill [SIG by enumerating G is inher- 

ently parallelisable. If we have n processing units then we can split G into n equally- 
sized disjoint subsets X1, X2,. .., X, Processing unit i can be used to independently 

compute si = mittla(s) : it E XJ (1 <i< n), thus the si can be computed in 

parallel. It is clear that Mill[SIG = Mil? JS1iS2i 
... oSn}. It seems natural to extend 

the eimmeratiott and segmewed strategies in TopSPIN to run on multiple processing 
units, using a parallel programming system for C such as Sieve [120,147]. Further 

research effort would be required to improve more sophisticated representative 
computation algorithms via parallel technology. Note that parallel approaches to 
model checking (see e. g. [146]) do not remove the need for symmetry reduction 
teclu-iiques. Distributing a task over a number of processing units promises, in the 
best case, a linear reduction in verification time and a linear increase in available 
memory On the other hand, symmetry reduction using a large group may offer an 
exponential state-space reduction, so it is sensible to utilise parallel technology for 
this purpose. 

12.4 Summary 

We have summarised the results of the thesis, and outlined areas for further re- 
search and development of the thesis topics. In addition, we have proposed three 
areas for future research into symmetry reduction for model checking. 

The techniques we have developed in this work are useful for the verifica- 
tion of genuinely symmetric systems with large state-spaces, using standard com- 
puting platforms. We hope that the next generation of symmetry reduction tech- 
niques will be able to use parallel processing technology to over-exploit partially 
symmetric systems with very large state-spaces. 



Appendix A 

Example Specifications 

This appendix is comprised of Promela and SMC specifications, together with sys- 
tem description files for SYmmSpin specifications, used as examples throughout 
the thesis. These examples are also available online (see Section 1.2). 

A. 1 Peterson's Mutual Exclusion Protocol 

We give various specifications of Peterson's mutual exclusion protocol. See Sec- 
tion 4.3 for a discussion of these specifications. 

A. 1.1 SymmSpin specification 
System description 
This description indicates to SymmSpin where scalarset types appear in the 
Promela. specification below. 

conBt N3 

scalar PID[N] 

proctype : system: ( 

bytes flag[PIDI; 

PID turn [byte] ; 

proctype user(PID) 
PID i; 

PID J; 

Prom ela specification 

#define N3 
#define PID byte 

byte flag[N]; 

PID turn[N]i 
byte inCR - 0; 
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proctype user (PID i) ( 

PID j-N; 

byte k; 
bool ok; 

do k-1; 
do :: k<N 

flag (i) . k; 

turn [k] - i; 

again: atomic ( 

ok - true; 

j-0; 

do jN -> 
if j I= i 

ok - ok && (flag[j] < k) 

else -> skip 
fi; 
J++ 

else -> break 

od; 

if ok 11 turn[k] I= i 

else j=N; goto again 
fi; 
j-N; 

k++ 

else -> break 

od; 

atomic ( inCR++; assert(inCR == 1) ); inCR--; 
flag(il - 0; 

od; 

/* initialize flags and start the processes */ 

init ( 

atomic( 
byte i-0; 
do i<N -> flag(i) = 0; 

turn(i] = N; run user(i); 
i++ 
else break 

od; 

A. 1.2 Simpler, equivalent Promela specification 

byte flag(41 01 

pid turn(31 4; 
byte inCR -0 

proctype user () ( 
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byte k; 
bool ok; 

do k=1; 
do :: k<3 

flag[_pid] = k; 
turn[k] 

_pid; 
again: atomic 

ok ((_pid=. I)ll(_pidi-1 flag[ll<k))&& 
((_pid==2)11(_pidi=2 flag[21<k))&& 
((_pid==3)11(_pid! =3 && flag[33<k)); 

if ok 11 turn[k] I. 
_pid 

else -> goto again 
fi 

k++ 

else break 

od; 

atomic ( inCR++; assert(inCR - 1) ); inCR--; 
flag[-pid] . 0; 

od; 

/* start the processes */ 

init ( 

atomic( 
run usero; 
run usero; 
run usero; 

A. 1.3 SMC specification 

Program 

Module process 

flag[process]=O; 
k[procesel-0; 

pc[process]=I; 
inCR[proce8s]. O; 
turnl[process]. O; 
turn2[procesel-0; 
turn3[process]. O; 

p of process; 

P: i 

pc[p]-=l -> k[p]-l, pctpl=2; 
pc[pl=-2 & k(p] <3 -> pc[p]-3, 
pc[pl=-3 -> flag[p]. k[p], pC[pl-4; 
pC[pl--4 & k[pl. -i -> ALL(q of process: turnl[q]=O), 
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turni[pl=l, pc[p]=S; 

pc[p].. 4 & k(p].. 2 ALL(q of process- turn2[q]=O), 

turn2 (p] =1, pc [p] =5; 
pC[pl=-4 & k[pl==3 ALL(q of process: turn3[q]=O), 

turn3[pl=l, pc[p]=S; 

pc[pl-=5 & k[pl. =l & (ALL(q of process: p==q I (pl=q & flag[ql<k[pl)) 

turnl[pl==O) -> pc[pl=6; 

pclpl=-5 & k[pl--2 & (ALL(q of process: p==q I (pl=q & flag[ql<k[pl)) 

turn2[p]=-O) -> pc[pl=6; 

pclpl--5 & k[pl. -3 & (ALL(q of process: p==q I (pl=q & flag[ql<klpl)) 

turn3[pl==O) -> pc[pl=6; 
PCEPI--5 & klpl-=l & (I(ALL(q of process: p==q I (pl=q & flag[ql<k[pl)) 

I turni[p]. =O)) -> pc[pl=5; 

pc[pl--5 & k[pl-=2 & MALL(q of process: p==q I (pl=q & flag[q)<k[pl)) 

I turn2[pl==O)) -> pc[pl=5; 

pclpj=. 5 & k[pl==3 & MALL(q of process: p==q I (pl=q & flag[ql<klp))) 

I turn3[pl==O)) -> pclpl-5; 

pc[p]-6 -> klpj=k[pl+l, pc[pl=2; 

pc[pl=-2 & (I(k[pl<3)) -> pc[pl=7; 

pc[pl=. 7 ALL(q of process. - inCR[ql=inCR[q] + 1), pc[pl-8; 

pc[pl==B ALL(q of process: inCR[q]=inCR[q] - 1), pc[pl=9; 

pc[pl-=9 flag[pl-0, pc[pl=l; 

A. 1.4 More realistic Promela specification 

byte flag[41 - 0, 

pid turn[31 - 0; 
byte inCR -0 

proctype usero f 

byte k, 

bool checked[41 - false; 

bool ok - false; 

do k-1; 
do :: k<3 
flag[_pid] - k; 

turn[k] 
_pid; 

again- atomic 
ok - true; checked[_pid]=true 

do Ook 11 checked[ll&&checked[21&&checked[31) 
atomic f 

do checked(l] checked[l] = false; 

checked[21 checked[2] - false; 

checked[31 checked[31 = false; 

else -> break; 

od; 
break 

dstep 

Ichecked[l] -> ok = ok && flagIll<k; 

checked[l]=true 
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dstep ( 

ichecked[21 ok = ok && flag[21<k; 

checked[21=true 

dstep 

Ichecked[3] ok = ok && flag[3]<k; 

checked[31. true 

od; 
if atomic ok 11 turn[k] I= 

_pid -> ok - false 

atomic else -> ok - false; goto again 
fi; 
k++ 

else -> break 

od; 

atomic ( inCR++; assert(inCR - 1) ); inCR--; 
flag[_pid] - 0; 

od; 

/* start the processes */ 

init ( 

atomic( 
run usero; 
run usero; 
run usero; 

A. 2 Resource Allocator 

This section includes Promela and SMC specifications of a resource allocator sys- 
tem, which is described in Section 4.4. 

A. 2.1 Promela specification 

mtype = frequest, confirmation, finished); 

chan linki - Ill of (mtype); 

chan link2 = Ell of Imtype); 

chan link3 m (1) of (mtype); 

chan 1ink4 - Ill of (mtype); 

chan linkS = Ell of (mtype); 

chan link6 = [11 of {mtype), 

chan link7 = Ell of (mtype); 

chan nullchan = [01 of (mtype); 

pid resource_user = 0; 
byte priorities[81; 

hidden byte priority-level; 

proctype client(chan link) 
do :: linktrequest; 
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atomic ( link? confirmation; resource_UBer = _pid 
); 

atomic I reBource_user = 0; linkifinished ) 

od 

proctype resource_allocatoro I 

chan client_chan - nullchan; 

do atomic f 

(linkl? [recluestllllink2? [requeBtjlllink3? [requestliI 

link4? [requestllllink5? [requestllllink6? [requestllI 

link7? [requestl); 

priority_level = 2; 
do priorities[ll==priority_ýlevel && linkl? [request] 

client-chan = linkl; break 

priorities[21==priority_level && link2? (request) 

client-chan = link2; break 

priorities[31==priority_level && link3? [requeBtl 

client-chan = link3; break 

priorities[41==priority_level && link4? [request] 

client-chan = link4; break 

priorities[53-priority_ýlevel && link5? Crequest] 

client-chan = link5; break 

priorities[61==priority-level && link6? frequest] 

client-chan = link6; break 

priorities[71==priority_level && link7? [request] 

client-chan = link7; break 

else -> priority_level-- 
od; 
client-Chan? request; 

client_chaniconfirmation; 
d. step ( client-chan? finished; client-chan = nullchan 

od 

init ( 

atomic 
run client(linkl); 
run client(link2); 
run client(link3); 
run client(link4); 
run client(link5); 
run client(link6); 
run client(link7), 
run resource_allocatoro; 

priorities[l) - 0; 

priorities[21 - 0; 

prioritieB[3] - 1; 

priorities[41 - 1; 

prioritieB[51 = 1; 

prioritieB(61 - 2; 

prioritieB[71 - 2, 
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A. 2.2 SMC specification 

Program 

Module clientO - 2; 

Module clientl - 3; 

Module client2 - 2; 

Module resourceallocator 

linkO[client01 - 0; 
linkl[clientl) - 0; 
link2[client2) - 0; 

resourceuser[) - 0; 

dO of clientD; 
dl of clientl; 
d2 of client2; 

cO of cliento: j 
linkO[cOl 0 -> linkO[cO] - 1; 
linkO[cO] 2& resourceuser(I == 0 

resourceuserl) - resourceuEser(] + 
link0tcOl -2& resourceuser[I -- I 

resourceuser[I = resourceuBer[I-1, linkO(cOl - 3; 

cl of clienti: I 
linki[cil 0 -> linkl[cll - 1; 
linkl[cl) 2& resourceuser[I -0 

resourceusert) - resourceuser[]+l; 
linkl[cll .. 2& resourceuser(I .-I 

resourceuser(I - resourceuser[I-1, linkltcll - 3; 

c2 of client2: j 

link2[c2l 0 -> link2[c2l - 1; 
link2tc2l 2& resourceuserl] .0 

resourceuser[I - resourceuserl]+l; 
link2lc2l .. 2& resourceusert) -- 1 

resourceuseril - reeourceuser[I-1, link2[c2l - 3; 

r of resourceallocator: 

link2 [c2) -- 1 -> link2 [c2) - 2, 
link2[c2) -- 3 -> link2[c2) - 0; 

linkltcll -. 2& ALL(d2: link2[d2]. =0) -> linkl[cll . 2, 
linkl[cll -. 3 -> linkl[cll - 0, 

link01c0) -. 1& ALL(d2: link2[d2)--0) & ALL(d1: linkl(dil. -0) 
linkO(c01 - 2; 

linkotcol -- 3 -> linkO(c01 - 0; 
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A. 2.3 Promela specification with sharing 

mtype . (request, confirmation, finished); 

chan linkl - Ell of (mtype); 

chan link2 - (1) of (mtype); 

chan link3 - Ell of (mtype); 

chan link4 - Ill of (mtype), 

chan linkS - [11 of jmtype); 

chan link6 - (13 of (mtype); 

chan 1ink7 - Ell of (mtype); 

chan nullchan - 101 of {mtype); 

pid resource_user - 0; 
byte priorities[91; 

hidden byte priority_level 

proctype client(chan link) 

do linkirequest; 

atomic link? confirmation; resource-user - _pid 
atomic resource user = 0; 

if 
_pid==3 

&& link4? [request] link4? request; 
link4lconfirmation; 
link4? finished 

_pid==4 
&& link5? [requeBtl link5? request; 

linkSiconfirmation; 
link5? finiBhed 

_pid=-5 
&& link3? [request] link3? request, 

link3iconfirmation; 
link3? finished 

:: else -> skip 
fi; 
linkifinished 

od 

proctype resource_allocatoro ( 

chan client_chan - nullchan; 

do atomic ( 

(linkl? [requestlillink2? Erequestlillink3? [requestllI 

link4? lrequei3t]lllinkS? [requestllllink6? [recluestliI 
link77[requestl); 

priority_level - 2; 
do prioritiesfil. -priority_level && linkl? Crequest] 

client-chan - linkl; break 

priorities[21-=priority_level && link2? Erequest) 

client-chan - link2; break 

priorities[31--priorityjevel && link3? lrequest] 

client-chan - link3; break 

priorities[43--priority_ýIevel && link4? Erecluest] 

client-chan - link4; break 

priorities[51. =priority-level && link5? (request) 

client-chan - link5; break 

prioritiee[61--priority_level && link6? [request] 

client-chan - link6; break 
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priorities[71. =priority_level && link7? [request] 

client_chan = link7; break 

else -> priority_level-- 
od; 
client-chan? request; 

client_chaniconfirmation; 
d, 

_step 
( client_chan? finished; client_chan = nullchan 

od 

init f 

atomic 
run client(linkl); 
run client(link2); 
run client(link3); 
run client(link4); 
run client(link5); 
run client(link6); 
run client(link7); 
run resource_allocatoro, 

priorities[l] - 0; 
priorities[2] - 0; 
priorities[3] - 1; 

priorities[41 - 1; 

priorities[S] - 1; 

priorities[61 - 2; 

priorities[71 - 2; 

A. 3 Three-tiered Architecture 
The following specification models a system with a three-tiered architecture, which 
is discussed in Section 4.5. 

mtype - frequest, response, query, result); 

chan db 
- 

link - [01 of (mtype, chan), 

chan c1-se-1 - [01 of (mtype, chan), 
chan cl_se_2 - [01 of imtype, chan); 

chan cl_se 
-3- 

[01 of Imtype, chan); 
chan cli - [0] of {mtype); 

chan c12 . 10) of Imtypel; 

chan c13 - [01 of imtype), 

chan c14 - (0) of (mtype)i 

chan c15 - [01 of imtype), 

chan c16 - [0] of fmtype); 

chan c17 - [01 of (mtype), 

chan c18 - [0] of (mtype); 

chan sel - [01 of {mtype); 

chan se2 - [01 of (mtype); 

chan se3 - [01 of Imtype); 

chan null - [01 of (mtype) 
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proctype client(chan in; chan link) 

do :: linkirequeBt, in; 
in? response 

od 

proctype server(chan in; chan c-link) 

chan current-client=null; 
do :: c-link? request, current-client; 

dbý_linklquery, in; 
in? result; 
current-clientireBponse; 
current-client=null 

od 

proctype database(chan link) 

chan current_server-null; 
do :: link? query, current_server; 

current-serverlresult; 
current-server=null 

od 

init ( 

atomic 
run database(db. 

_link); 
run server(sel, cl-se - 

1); 
run server(se2, cl_sq_2); 
run server(se3, cl_se - 

3); 
run client(cli, cl_sq_l); 
run client(cl2. cl-se - 

1); 
run client(cl3, cl-se-1); 
run client(cl4, cl_se_2); 
run client(cl5, cl_se_2); 
run client(cl6, cl-se_2); 
run client(Cl7, cl_se_3); 
run client(clS, cl_se_3) 

A. 4 Message Routing in a Hypercube 

The specifications below model message passing in a hypercube network, and are 
discussed in Sections 4.6 and 8.4.1 respectively. 

A. 4.1 Original Promela specification 

/* Determines whether position i of byte bv is set to 1 
#define IS_I(bv, i) (bv&(l<<i)) 

mtype - [packet); 
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chan linkl - Ell of (mtype); 

chan link2 - Ell of fmtype); 

chan link3 - (1) of imtype); 

chan link4 - (13 of (mtype); 

chan link5 - Ell of (mtype), 

chan link6 - Ell of fmtype), 

chan link7 - (1) of {mtype), 

chan link8 - Ill of imtype); 

pid dest - 0; 

pid current - 

inline choose_destinationo 
if 

_pidt-1 
dest -2 

_pidl-2 
dest -2 

_pidl-3 
dest -3 

_pidl-4 
dest -4 

_pidl-5 
dest -5 

_pidl-6 
dest -6 

_pidl-7 
dest -7 

_pidl-8 
dest -8 

fi 

inline choose_next-dimensiono 
if 

IS_1(((_pid-l)^(dest-1)), O) chosen_ditnension =0 
IS-1(((_pid-l)^(dest-1)), l) chosen_dimension =1 
IS_I(((_pid-l)^(dest-1)), 2) chosen_dimension =2 

assert(chosen_dimension<3); 

proctype node(chan in; Chan outO; Chan outl; Chan out2) ( 

byte chosen_dimension - 4; 

loop: 

atomic 
in? packet; current - _pid; if dest.. 

_Pid -> choose-destinationo 
else -> skip 

fi 

atomic choose_next-dimensiono; 
if chosen_dimension 0 outOlpacket 

chosen_dimension I outlipacket 
chosen_dimension 2 out2lpacket 

fi; 

chosen_dimension - 4; 

current - 0; 

goto loop 

init ( 

atomic 
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run node(linkl, link2, link3, link5); 
run node(link2, linkl, link4, link6); 
run node(link3, link4, linkl, link7); 
run node(link4, link3, link2, link8); 
run node(link5, link6, link7, linkl); 
run node(link6, link5, link8, link2); 
run node(link7, link8, link5, link3); 
run node(link8, link7, link6, link4); 
if 

linklipacket; dest -I 
link2lpacket; dest -2 
link3lpacket; dest -3 
link4lpacket; dest -4 
link5lpacket; dest =5 
link6lpacket; dest -6 
link7tpacket; dest -7 
link8lpacket; dest -8 

fi 

A. 4.2 Re-modelled specification which does not involve arithmetic onpid 
variables 

mtype - fpacket); 

chan linkl - Ill of (mtype); 

chan 1ink2 - Ill of (mtype), 

chan link3 . (11 of (mtype); 

chan 1ink4 - Ill of (mtype); 

chan 1ink5 - (1) of (mtype); 

chan 1ink6 - Ill of (mtype); 

chan 1ink7 - (1] of {mtype); 

chan 1ink8 - [1) of jmtype); 

pid dest - 0; 

pid current -0 

inline choose_destinationo 
if 

_pidl-I 
dest -1 

_pid1.2 
dest -2 

_pidi-3 
dest -3 

_pidl-4 
dest -4 

_pidl-5 
dest -5 

_pidl-6 
dest -6 

_pidl-7 
dest -7 

_pidl-8 
dest =8 

fi 

inline choose_next-dimensiono ( 

if 
_pid--l 

&& dest--2 if chosen_dimension =0 fi 

_pid. -i && dest-3 if chosen_dimension -I fi 

_Pid--l 
&& dest--4 

if :: chosen_dimension -0:: chosen_dimension -1 fi 

_pid--l 
&& dest-5 if :t chosen_dimension -2 fi 

_pid=-l 
&& dest--6 
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if :: chosen_dimension -0:: chosen_dimension =2 fi 

_Pid-=l 
&& dest--7 -> 

if :: chosen_dimension -Iz: chosen_dimension =2 fi 

_Pid==l 
&& dest-8 -> 

if chosen_dimension =0 
chosen_dimension =I 
chosen_dimension =2 

fi 

_Pid--2 
dest-l if :: chosen_dimension =0 fi 

_pid==2 
dest-3 

if :: chosen_dimension -0:: chosen_dimension =I fi 

_Pid--2 
dest--4 if :: chosen_dimension =1 fi 

_Pid--2 
dest=. S 

if :: chosen_dimension -0:: chosen_dimension =2 fi 

_Pid==2 
dest--6 if :: chosen_dimension =2 fi 

_pid-=2 
dest--7 

if chosen_dimension =0 
chosen_dimension =I 
chosen_dimension =2 

fi 

_pid==2 
&& dest-8 

if :: chosen 
- 

dimension -1:: chosen_dimension =2 fi 

_pid=. 
3 && dest-l if :: chosen_dimension =1 fi 

_pid--3 
&& dest-2 

if :: choBen_dimension =0:: chosen_dimension =I fi 

_Pid--3 
&& dest-4 if chosen_dimension =0 fi 

_pid=-3 
&& dest-5 

if :: chosen_dimension - chosen_dimension -2 fi 

_Pid=-3 
&& dest-6 -> 

if chosen_dimension -0 
chosen_dimension -1 
chosen_dimension =2 

fi 

_Pid==3 
&& dest-7 if :: chosen_dimension =2 fi 

_Pid==3 
&& dest-8 

if :: chosen_dimension =0 chosen_dimension =2 fi 

_Pid-4 
&& dest--l -> 

if :: chosen_dimension =0 chosen_dimension =1 fi 

_Pid=-4 
&& dest-2 if chosen_dimension -I fi 

_pid. =4 && dest-3 if chosen_dimension =0 fi 

_pid-=4 
&& dest--5 

if chosen_dimension -0 
chosen_dimension =I 
chosen_dimension =2 

fi 

_pid. -4 && dest-6 
if :: chosen_dimension -I chosen_dimension =2 fi 

_pid-=4 
&& dest-7 -> 

if :: chosen_dimension -0 chosen_dimension =2 fi 

_pid=-4 
&& dest-. 8 if chosen_dimension =2 fi 

_Pid--S 
&& dest-l if chosen_dimension =2 fi 

_Pid--S 
&& dest-2 

if :: chosen_dimenBion -0 chosen_dimenBion =2 fi 

_pid.. 
5 && deBt==3 -> 

if :: chosen_dimension -I chosen_dimension =2 fi 

_pid-=5 
&& dest-4 -> 

if chosen_dimension -0 
chosen_dimension =1 
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:. - chosen_dimension -2 
fi 

_pid.. 
5 && dest-. 6 if chosen 

- 
dimension =0 fi 

_Pid--5 
&& dest--7 if chosen_dimension =I fi 

_pid--5 
&& dest-. 8 

if :: chosen_dimension =0 chosen_dimension =I fi 

_Pid--6 
&& dest-1 -> 

if :: chosen_dimension -0 chosen_dimension =2 fi 

_pid--6 
&& dest--2 if :: chosen_dimension -2 fi 

_Pid--6 
&& dest-3 

if chosen_dimension -0 
chosen_dimension -1 
chosen_dimension -2 

fi 

_Pid--6 
&& dest=-4 -> 

if :: chosen_dimension -1:: chosen_dimension =2 fi 

_Pid--6 
&& dest-5 if :: chosen_dimension -0 fi 

_Pid--6 
&& dest--7 

if :: chosen_dimension -0:: chosen_dimension -1 fi 

_Pid--6 
&& dest-8 if :: chosen_dimenBion -I fi 

_Pid--7 
&& destp-1 

if :: chosen_dimension -I:: chosen_dimension -2 fi 

_Pid--7 
&& dest-2 -> 

if :: chosen_dimension -0 
t: chosen_dimension -1 
:: chosen_dimension -2 

fi 

_pid--7 
&& dest-3 if :: chosen_dimension =2 fi 

_pid--7 
&& dest. -4 

if :: chosen 
- 

dimension -0:: chosen_dimension =2 fi 

_pid--7 
&& dest--5 if :: chosen_dimension =1 fi 

_Pid=-7 
&& dest-6 

if :: chosen_dimension -0:: chosen_dimension -1 fi 

_pid. -7 dest-8 if :: chosen_dimension =0 fi 

_Pid--8 
dest--l 

if chosen_dimension =0 
chosen_dimension -1 
chosen_dimension -2 

fi 

_Pid--8 
&& dest--2 

if :: chosen_dimension -I chosen_dimension =2 fi 

_pid.. 
8 && dest-3 -> 

if :: chosen_dimension =0 chosen_dimension =2 fi 

S: _pid--8 
&& dest--4 if :: chosen_dimension =2 fi 

_Pid--8 
&& dest-5 

if :: chosen_dimension =0:: chosen_dimension -1 fi 

_Pid--8 
&& dest.. 6 if chosen_dimension -I fi 

_pid--8 
&& dest--7 if chosen_dimension =0 fi 

fi; 

assert(chosen_dimension<3) 

proctype node(chan in, chan outO; chan outl; chan out2) ( 

byte chosen_dimension - 

loop: 

atomic 
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in? packet; 
current - _pid; 
if dest---Pid -> choose 

_destinationo 
else -> skip 

fi 

atomic 
choose_next-dimensiono; 
if chosen_dimension 0 outO! packet 

chosen_dimension 1 outlipacket 
chosen_dimension 2 out2lpacket 

fi; 

chosen_dimension - 4; 

current -0 

goto loop 

init I 

atomic 
run node(linkl, link2, link3, link5); 
run node(link2, linkl, link4, link6); 
run node(link3, link4, linkl, link7); 
run node(link4, link3, link2, link8); 
run node(links, link6, link7, linki); 
run node(link6, link5, link8, link2); 
run node(link7, link8, link5, link3); 
run node(link8, link7, link6, link4); 
if linklipacket; dest =I 

link2lpacket; dest =2 
link3lpacket; dest -3 
link4lpacket; deBt -4 
linkSipacket; dest -5 

:t link6lpacket; dest =6 
link7lpacket; dest -7 
linkSipacket; dest -8 

fi 

A. 5 Telephony 

The following Promela code provides part of an example telephone specification 
which cannot be handled by SymmExtractor, and a re-modelled version which can. 
They are discussed in some detail in Section 8.5.4. 

A. 5.1 Original telephone specification 

mtype -( alert, answer, cutoff, ack ). 

chan link12 - [0) of ( mtype ); 

chan link21 - (0) of ( mtype ), 
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bool idle_st[21 - true; 
bool dial_st[21; 
bool calling-st[2); 
bool ringing_et[21; 
bool talking_st(21; 
bool finish_st[21, 

proctype user(chan in, out; byte id) ( 

mtype response; 
bit is-caller; 

idle: 

assert(idle_st[id] && Idial_st(id) && ! calling_st[id] && 
Iringing-stEid) && Italking_st[idl); 

is-Caller = 0; 
do :: atomic ( 

idle_st[id] - 0; 
dial-stlid) 

goto dial 
in? alert 
outlack; 
atomic ( 

idle_st [id] = 0; 

ringing-stfid] -1 

goto ringing 
od; 

dial: 

assert(lidle_sttid] && dial 
- 

st[id] && Icalling_st[id] && 
Iringing_st[id] && Italking_st[idl); 

do outlalert; 
in? response; 
if :: response - ack 

atomic ( 

dial_st[id] = 0, 

calling-st[id] 

is-caller 

goto calling 

1: response - alert 
atomic ( 

dial-st lid] = 0; 
talking-st(id] -I 

goto talk 
fi 

atomic 
dial-st[id) - 0; 
finish-st(id] 

goto finish 

od, 

etc. 
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init ( 

atomic 
run user(link2l, linkl2, O); 
run user(linkl2, link2l, l); 

A. 5.2 Telephone specification after re-modelling 

mtype -( alert, answer, cutoff, ack )I 

chan link12 - [0] of mtype 
chan link21 - (0) of mtype 

bool idle_st[31 - true; 
bool dial-st(3]; 
bool calling_st(31; 
bool ringing-st[3]; 
bool talking_st(33; 
bool finish_Bt[31; 

proctype user(chan in, out) I 

mtype response; 
bit is-caller; 

idle: 

assert(idle_stt_pid] && Idial_st[_pid) && Icalling_st[_pid] 
Iringing-st(_pid] && italking-stl_pid]); 

is-Saller - 0; 
do :: atomic ( 

idle_stl_pid] - 0; 
dial-Bt[-Pid] -1 

goto dial 
in? alert 
outlack; 
atomic ( 

idle_st[_pid] - 0; 
ringing-eti_pid] -1 

goto ringing 

od; 

dial: 

assert(lidle_st(_pid] && dial_st[_pidi && Icalling-stf_pid] && 
Iringing-st(_pid] && italking_st[_pidl); 

do :: outialert; 
in? response; 
if :: response -- ack 

atomic ( 

dial-st[-Pid] - 0; 

calling_stl_pid] -1 

is-Caller - 2; 
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goto calling 
:t response -- alert 

atomic j 

dial-stl-pid] - 0; 

talking_st(_pid] 

goto talk 
fi 

atomic 
dial_et(_pid] - 0; 
finish_st[_pid] -I 

goto finish; 

od; 

etc. 

init j 

atomic 
run user(link2l, linkl2); 
run user(link22, link2l); 

A. 6 Railway Signalling System 

The Promela code below provides full versions of a specification railway signalling 
system which is discussed in Section 8.5.4. 

A. 6.1 Original railway signalling system 

mtype - (approaches, leaves, lower, raise, atgate, faraway, up, down); 

chan control 
- 

link 101 of (mtype, byte); 

chan gate_link 181 [01 of (mtype)j 

Tntype bar[81 - down; 
bool on_shared_track[2] - false; 
bool shared_track_open - false 

proctype train(byte current_gate, id) 

mtype position - atgate; 

control-linklapproaches, current-gate; 
do :: atomic ( 

position--faraway 
if :: current_gate--3 -> current-gate - 0; assert(id=. O) 

current_gate. -7 -> current-gate - 4; assert(id.. l) 

else -> current_gate++; 
fil 

control-linklapproaches, current-gate; position = atgate) 
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od 

atomic j 
(bartcurrent_gatel-up && position==atgate) 
if (current_gate=. (id*4)) -> on_shared_track[id] = true 

else -> skip 
fil 
position - faraway; control-linkileaves, current_gate; 
if (current_gate.. (id*4+1)) -> on_shared_track[id] = false 

else -> skip 
fi 

proctype controllero ( 

mtype message; 
byte current_gate; 

do :: control-link? message, current-gate 
if atomic j 

message. -approaches 
gate_link(current-gate]lraise 

atomic 
mes sage- leaves 

gate_link(current-gate]llower 

fi 

od 

proctype gate(byte id) ( 

mtype message; 

do : -. gate_link[idl? message 
if atomic j 

message. -lower 
bar[id] . down 

atomic 
Tnessage. -raise bar[id] - up 

od 
fi 

proctype shared, 
_gate(byte 

id) 

mtype message; 

do :. - gate_link(id]? message 
if :: atomic ( 

message-. lower 

bar[id] - down; 

assert(shared_track_open); 
shared_track_open - false 
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message. -raise 
lock: if atomic f 

((Ion_shared_track[Ol) (Ion_shared_track[l]) 

(Ishared_track_open)) 

shared_track_open = true; bar[id] = up 

else -> goto lock 

fi 

fi 

od 

init f 

atomic 
run controllero, 
run sharedgate(O); run gate(l), run gate(2); run gate(3); 

run shared_gate(4); run gate(S); run gate(6); run gate(7); 

run train(2, O)i run train(6,1); 

A. 6.2 Railway signalling system after re-modelling 

mtype - (approaches, leaves, lower, raise, atgate, faraway, up, down), 

chan control-link [01 of (mtype, pid); 
chan gate_link-2 (01 of (mtype); 

chan gate_link 
-3 

[0) of fmtype); 

chan gate_link_4 [01 of (mtypel; 

chan gate_link 
-5 

[0] of (mtype), 

chan gate_link-6 [01 of (mtype); 

chan gate_link'7 [0) of imtype); 

chan gate_link 
-8 

[0) of imtype); 

chan gate_link-9 [0) of imtype); 

mtype bar(12) - down, 
bool on-ahared_track[121 - false; 

bool shared track_open = false 

proctype train(pid current-gate) 

mtype position = atgate; 

control_linklapproaches, current'gate; 
do atomic j 

position-faraway 
if current_gate==2-> current-gate =3 

current_gate-=3-> current_gate -4 
current_gate==4-> current-gate 5 

:1 current_gate==S -> current-gate 2; assert(_pid==10) 
:: current_gate=-6 -> current_gate 7 

1: current_gate==7 -> current_gate 8 

current_gate. =8 -> current_gate 9 

current_gate==9 -> current_gate 6; assert(_pid==Il) 
fi; 

control linklapproaches, current-gate; position = atgate 
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atomic j 
(bar[current_gatel. -up && position=-atgate) 
if ((_pid. -lo && current_gate=-2)11 

(_pid--Il && current_gate=. 6)) 
on_shared_trackt_pid) - true 
else -> skip 

fi; 
position - faraway; control-linkileaves, current-gate; 
if ((_pid--10 && current_gate--3)11 

(-Pid=-Il && current-gate--7)) 
on shared - 

track[_pid] = false 
el; e -ý, skip 

fi 

od 

inline send(id, msg) 
if 

id--2 gate_link_21msg 
id--3 gate_link_31msg 
id--4 gate_link_41msg 
id--5 gate_link-Simsg 
id--6 gate_link-6imsg 
id--7 gate_link-7! msg 
id--8 gate_link_81MBg 
id--9 gate_link-91meg 

fi 

proctype controllero 

mtype message; 
pid current-gate; 

do :: control_link? message, currentý_gate 
if atomic ( 

message--approaches 
send(current_gate. raise) 

atomic 
message-. leaves 
send(current_gate, lower) 

fi 
od 

proctype gate(chan link) 

mtype message; 

do :: link7message -ý- 
if atomic message-. lower bar[_pid] = down 

atomic message. -raise barl_pid] = up 
fi 

od 
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proctype sharecý_gate(chan link) ( 

mtype message; 

do link? message 
if atomic 

message--lower -> bar[_pid] - down; 
assert(shared_track_open); shared, _track_open - false 

message. -raise 
lock: if atomic I 

((Ion_shared_track[101) && (Ion_shared_trackE111) 
&& (Ishared_track_open)) -> 

shared_track_open - true; bar[_pid] - up 

else -> goto lock 

fi 
od 

fi 

init ( 

atomic 
run controllero; run sharedgate(gate link_2), 
run gate(gate_link_3); run gate(gate_link_4); 
run gate(gate_link_5); run sharecLgate(gate_link_6); 
run gate(gate_link_7); run gate(gate_link-8); 
run gate(gate_link_9); run train(4); run train(8); 



Appendix B 

Proofs Omitted from the Text 

B. 1 Proof of the Promela-Lite Progress Theorem (Theorem 11, 
Section 6.3.5) 

The proof of Theorem 11 relies on the following lemma: 

Lemma17 LctP, M ands beasin thestatementof Theorem 11. Letu bean update 
appearing in a statement of proctype p, and suppose proctype(i) =p-Ifuls'skip' 
or'x - el then execpi (s, u) is wefl-defined. 

Proof If u is 'skip' then the definition of execp, i(s, u) places no conditions on s, and 
execpj(s, u) = s. 

Let r be the typing environment comprised of entries for the global variables 
and static channels of P, proctypes appearing before p in P, and the local variables 
of p. If u has the form 'x - e', where x is an identifier and e an expression then, since 
r ý- u OF, x is not a static channel name, and both x and e have type T where T is 
a well-formed type which is not the type of a proctype (rule T-ASSIGN). Thus x is 
the name of a global variable or a local variable of p. 

If x is the name of a global variable then we must have (x = a) Es for some 
aE lit(T). Therefore, according to Figure 6.5, execpXs, u) = (s \f (x = affl Uf (x 

eva1p, j(e))}, which is clearly well-defined. 
On the other hand if x is the name of a local variable then (p[i]. x = a) Es 

for some aE lit(T), and we have execpj(s, u) = (s \ J(p[i]. x = a)}) Uf (p[i]. x 
evalp, i(e)}. Again, this is a well-defined state. The result follows. 0 

Proof of Theorem 11 Let r be the typing environment as defined in the proof of 
Lemma 17, and let (stnint) denote the Promela-Lite statement atomic {g->u, 

U2; ... U1 }- 

Suppose ul has the form skip or x-e. Then by Lemma 17, execO(til) is 
well-defined. 

Suppose u1 has the form xIF. Then x has type chan {-T} in r, so x is either 
a local variable of p, or a static channel name. There is no typing rule from which 
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17 ý- U1 OK can be inferred, thus rule T-UPDATE cannot be used to infer that F ý- 

(stmnt) oK Thus IF ý- (StMt) OK Must follow from rule T-SEND. Therefore the guard 

g musthave the form W &&nfull(x), orjustnfull(x) (see Section 6.2). Since, 

by hypothesis, s Hr, ig, we must haves [--p, i nfull W. Suppose x is a static chan- 

nel name, so that (x = [a,, 42, ..., 
d, *@ E s, where 0 :ým< cap(x). The conditions 

on s required by the rule for execp, i(s, ul) are satisfied. It is easy to see that the result- 
ing state is well-formed. If x is a local variable of p then (p[il. x = c) E s, where c is a 

static channel name or null. However, s F-pj nfull (x) <* s J--pj nfull (null), 

and we cannot have s Hpi nf ull (null) (see page 121). Thus c is a static channel 

name, and execpj (s, u 1) = execpj (s, c! "j), which is well-defined by the above argu- 

ment. 
Suppose ul has the form x? Y. Then by a similar argument (using the fact 

that the xi must be distinct, and that no xi is a static channel name), execp, i (s, ul) is 

well-defined. 
We have shown that execpj(s, uj) is well-defined. Suppose that execp, i(... 

execp, i(execp, i(s, Ul), U2)i. --,, Uj) is well-defined for some 1 <- j<1. The type rules 
for statements (T-UPDATE, T-SEND and T-RECV) ensure that uj+l has the form 

sk ip or x=a. By Lemma 17, execp, i (execpi ( 
... execpj (execpj (s, U 1) 1 U2) i---, Uj), Uj + 1) 

is well-defined. Since execpj(s, uj) is well-defined, it follows by induction that 

execp, i( ... execpj(execp, j (S. 
-UOiU2) ... Al) = eXeCpi(S, U1; U2; ... ; ul) is well-defined. 

M 

B. 2 Proof of Lemmas 1 and 2 (Section 7.3.2) 

The proof of Lemma 1 depends on the following two sub-lemmas: 

Lemma18 Let it E Aut(SCD(P)) and let e bean expression in P with e: int. 7hen 

evalp, i(s, e) = cvaIp,,, (j)(a(s), a(e)). 

Proof The Promela-Lite syntax (Figure 6-3) and type system (Figure 6.5) restrict the 
form of expressions with type int to simple expressions of the form: 

1. a, where aEZ 
2. x, where x is a local or global variable of type hit 
3. len(null) 
4. len (c), where cis a static channel name 
5. len W, where x is a local variable of type chaii 

or an arithmetic combination of the above. Since a only acts on static channel names 
and values of type pid, if e is a simple expression of one of the first three forms 

above, clearly a(e) =e and evalpj(s, e) = evalp,, (j)(a(s), a(e)) = evalp, gj)(ft(s), e). 
If e has the form 1 en W where c is a static channel, and (c = [di, d2, ---, 41) E 

s then a(e) has the form len(a(c)), (a(c) =E a(s), and 
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evalp, j (s, e) = evalp, & (j) 
(ei (s), a (e)) = m. If e has the form 1 en W where x is a 

local variable of P and (x = c) E s, with ca static channel name or null, 
then evalpj(s, e) = evalpj(s, len (c) ). By the above argument, evalpj(s, len (C) 

evalp,,, (j) (a (s), 1 en (a (c)) )= evalpA(i) (a (s), a (e)). 

If e is an arithmetic combination of simple expressions, then clearly by in- 
duction the result holds. M 

Lemma 19 Let e be an expression with e: pid or e: chan IT}. 7hen 

evalp, &(j)(a(s), a(e)) = ei(evalpi(s, e)). 

Proof The form of expressions of type pid are restricted to: a where aE lit(pid) and 
a occurs in a pid context, _pid, or x where x is a global/local variable with type 
pid. 

Suppose e has the form a where aE lit(pid) and a occurs in a pid context. 
Then a(e) = a(a). We have eva1P,, (0(&(s), a(e)) = evalp,, ý(j)(a(s), a(a)) = a(a) = 
a(evalp, j(s, a)) = a(evalp, j(s, e)). 

If e has the form 
_pid 

then evalpa(i)(a(s), a(e)) = evalM(j)(Cc(s), _pid) = 
a (i) =a (evalpj (s, 

_p 
i d)) =a (evalpj (s, e)). 

Now suppose e has the form x where x is a global variable with x: pid. 
Suppose that (x = a) E s, so that (x = a(a)) E a(s). Then evalpt(i)(a(s), tt(e)) = 
evalp, a(i)(it(s), x) = &(a) = a(evalpi(s, x)) = a(evalpj(s, e)). The cases where x is a 
local variable with x: pid is similar. 

The form of expressions of type chan IT} is restricted to: c where c is a static 
channel name; null, and x where x is a local variable with type chan{T}. 

If e has the form null then evalp, &(j)(a(s), a(e)) = evalpA(j)(a(s), null) 
null = a(null) = a(evalpj(s, e)). 

The arguments for the cases where e is a static channel name, or e is a lo- 

cal/global variable with type chanfT}, are analogous to those where e is a pid lit- 

eral, or e is a local/global variable with type pid. 0 

Proof of Lemma 1 

Base cases: Suppose g has the form el==e2. By type rule T-EQ we must have el :T 
and e2: T for some type T. 

" If T= itit then by Lemma 18 evall,, i(s, ej) = evalp,,, (j)(&(s), a(ej)) for 
jE 11,2}. We have s ý--pj el==e2 -ý* eval;,, i(s, el) = evalp, i(s, e2) 
evalp,, (j)(ix(s), &(ej)) = evalp,, t(j)(a(s), &(e2)) '#> tt(S) [--p,,, (i) a(ej)==A(e2). 

" If T= Pid then by Lemma 19 evalpgj)(a(s), ix(ej)) = &(evalpj(s, ej) for 
jE 11,2}. We have s 1--p, i el==e2 ý-* evalpi(s, el) = evalp, i(s, e2) 4* 
a(evalp, i(s, effl = a(evalp, j(s, e2)) 4* evalP, (i)(a(s), &(ej)) = evalp,. (j)(it(s), 
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a(e2)) 4* a(s) ý=,,,, (j) a(ej)==a(e2). 
If T= cluzn IT} the result follows similarly using Lemma 19. 

This completes the argument for the case where g has the form el = =e2, and the case 
where g has the form el I =e2 is similar. 

If g has the form el < e2 then the type system requires that el : int and 
e2 : int (rule T-REQ. We have s ý=pj el < e2 4* evalpj(s, el) < evalp, i(s, e2). 

and a(s) ý=p,,, (j) a(el) < a(e2) -ý* eval PAO 
(a(s), a(effl < evalp, &(j)(a(s), a(e2)). By 

Lemma 18, evalp, i(s, el) = eva1p4(j)(t%(s), a(ej)) and evalp, i(s, e2) = evalp,,, (j)(a(s), 

ci(e2)). Therefore evalpi(s, el) < evalp, i(s, el) <* evalp4(j)(a(s), a(effl < evalp,,, (j) 
(a(s), a(e2)), i. e- S [--pi el < e2 'ý* Ci(S) Pp,,, (i) a(el) < a(e2). The cases el <= e2, 

el > e2 and el >= e2 are similar. 

Suppose g has the form nf ull(c) where cis a static channel name. Suppose 

(c = [fij, a2,. -., 
irkj) Es forsomeO :5k <- cap(c). Then (a(c) =E 

ci(s). Thens ý--pjnfull(c) #> cap(c) >k 4-* a(s) ý--p,,, (j) nfull(a(c)). 

Ifghas theformnfull(x) where xisa localvariable of pwithx: chanIT} 

then suppose (p[i]. x = null) E s. Then (p[a(i)]. x = null) E a(s), and we have 

s ýLpj nfuli(x) and ei(s) ý'-p,,, (j) nfuli(x). Suppose instead (p[i]. x = c) Es 

where c is a static channel name. Then (p[a(i)j. x = a(c)) E a(s). We have S [: --pi 

nf ull(x) -ý* s [--pi nf ull(c) ý#> a(s) ý=p4(j) nf ull(ci(c)) (by the above argument 

for static channels) 4* a(s) ý=p,,, (j) nf ull(x). 

The cases nempty(c) and nempty(x) where c is a static channel name and 

xa local variable with x: clian IT} are similar. 
Inductive step: 

Suppose the result holds for all guards of length less than ni for some m>1. 

Let gi, g2 be guards with length less than m. 

If g has the form ig, then s ý=pj g 4* s K-pi gi <* a(s) V=p,,, (i) a(gj) (by 

inductive hypothesis) -ý* a(s) ý=p4y) ! a(gi) <* a(s) a(g). If g has the form 

(gl) the result follows similarly. 

If g has the form gi && g2 then s ý=pj g <* s 1--pi gi and s Pp, i g2,4* 

a(s) ý=p,, (j) a(gj) and a(s) ý=p,,, (j) a(g2) (by inductive hypothesis) <* tt(s) ý=p,,, (j) 

4(91) && a(92) 't* it(S) ý=p, 
cqj) a(g). If g has the form g, g2 the result follows 

similarly. M 

The proof of Lemma 2 uses the following sub-lemma: 

Lemma 20 Let u be an update of P, aE Aut(SCD (P)) and sa state such that 
exec,, j (s, u) is well-defined. Then execp,,, (j) (a (s), a (u)) =a (execpj (s, u)). 

Proof If u is skip the result is immediate. 

Suppose u has the form x=e, and let var(x) be defined as in Figure 6.7. 
Define a (var(x)) =x if var(x) = x, and a (var(x)) = p[a(i)]. x if var(x) = p[i]. x. 
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If x: int then suppose (var(x) = a) E s. Then &((var(x) = a)) = (var(x) = 
a) E a(s) also. Suppose evalpi(s, e) = b. Then eva1p, (i)(a(s), Ci(e)) = bbyLemma 18. 
We have a((var(x) = b)) = (var(x) = b), and so 

execp, et(j)(a(s), 'x = tt(e)) = (it (s) \{ (var (x) = a) }) UI (var (X) = b) } 

= a((s\f(var(x)=a)})Ul(var(x)=b)}) 

= a(execpi(s, 'x = e). 

If x: pid, then suppose (var(x) = a) E s. Then a((x = a)) = (a(var(x)) = 
tt(a)) E a(s) also. Suppose evalp, i(s, e) = b. Then eva1p,,, (j)(tt(s), a(e)) = a(b) by 

Lemma 19. We have a ((var (x) = b)) = (a (var (x)) = cz (b)), and so 

execp,,, (i)(ci(s), 'x = it(e)') = (a(s) \ f(a(var(x)) = a(affl) 
f(a(var(x)) = a(b))} 

it ((s \f (var(x) = affl Uf (var(x) 

a(execp, i(s, 'x = e). 

The argument is similar if x: chan IT). 
Suppose u has the form xI el, e2, ek, and suppose x is a static chan- 

nel name, with x: chaitjTj, T2,..., Tk} so that ej : Tj (1 <j :5 k). Suppose 
(x = [a,, d2,. - -, 4,1) Es for some m< cap(x). Then a ((x = [tTI, 42,..., 41)) = 
(a(x) [dj', d2,..., dm*]) E a(s). For 1<j :5k, let bi denote evalpi(s, ej), and 
let dj by if Tj = bit, and dj = a(bj) otherwise. Using Lemmas 18 and 19, we 
have dj = evaIp,,, (j)(a(s), a(ej)). Thus (dj, d21. -., dk) = (bl, b2, -,., bk)a (using the 

notationof Section 7.2.2). Then execp,. (j)(a(s), 'a(x) ! ci(ej), a(e2),..., a(ek)') = 

lr2, ---, 
d. *al) }) U (a(s) \ 1('t(x) = Pla a2 

(it (x) = [a I e, d2*', 
..., 

(di, d2/ 
--., 

dk) 

d, eil)}) U (tý (S) \1 (04 W tr?, ... Im 

tý((S \I (X = 

I (x = [iTl, a-2, (bi, b2,. 
. ., 

bk) 

= &(execp, j(s, lxlej, e2,..., ekl)). 

If x is a local variable of p then suppose (x = C) E s, where c is a static chan- 
nel name. Therefore (x = a(c)) E a(s), and execP,, (0(a(s), 'x! a(el), a(e2),..., a(e0l) 

execp, &(i)(a(s), 'tt(c)! a(el), it(e2)1..., a(ek)') &(execPXs, 'clej, e2j,..., ek)) (bY 
the above argument) = a(execpj(s, 'x lei, e2,..., el)) 

Suppose u has the form X? Xl, X2.... Xk, and suppose x is a static chan- 
nel name, with x: cluzn f T1, T2,. . ., Tk} so that xj : Tj (1 <j:! ý k). Suppose 
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(x = [(al, l, al, 2,..., alk), X2.,. 
--I dn*, ]) Es for some m< cap(x), and (var(xj) 

bj) Es (1 <j : ý, k). Define dij = aij if Tj = ffit, a, nd dij LX(alj) otherwise 
(1 <j :5 k). Then (dj, j, dl, 2,. dik) = (al, j, al, 2, ... I alk)l (using the notation of 
Section 7.2.2), and a((var(xj) alj)) = (oz(var(xj) = d1j) (1 <j:! ý k). Similarly, 

define dj = by if xj : bit, and dj = a(bj) otherwise. Then a((var(xj) = bj)) = 
(a(var(xj)) dj). We have a((x == (a(x) = 

E a(s), and a((var(xj) = bj)) = (a(var(xj)) = 
dj) E a(s) (1 j :5 k). Then execp, &(i)(ty(S)t'a(X)? Xl, X21..., x 1) = k 

= (ci(s) \ f(it(x) = 
(a(var(xl)) = dl), (a(Var(X2)) = d2)i ... , 

(it(var(Xk)) = dk)}) U 
f(a(x) = [d2',..., (a(var(xl)) = dl, l), (tt(var(X2)) = dl, 2), 

..., 
(a(var(Xk)) " dlk)} 

= (a(s) \ J(ci(x) = [(al, l, al, 2 a lk)', d2,. 

a((var(xi) = bl)), a((var(X2) = b2)),..... a((var(Xk) = bk))}) U 

f(ci(x) == aj, j)), ix((var(X2) = al, 2)), 

..., it((var(Xk) = alk))} 

=a ((s \f (x = [(al, l, al, 2,..., alk), 
(var(xl) = bl), (var(X2) = b2), 

..., 
(var(Xk) = bk)}) U 

J(x = [d2*,..., (var(xi) = a,,, ), (var(X2) = al, 2),..., 

(var(Xk) = alk)}) 

ci (execp, i (s, 1 X? XloX21 I 

If x is a local variable of p then suppose (x = C) E s, where c is a static 
I channel name. Therefore (x = a(c)) E a(s), and execpa(j)(a(s)j'X? X1iX2,, Xk) 

execp, a(j)(a(s)o'1t(C)? X1, X2. ... oXki) = a(execpi(s/ C? Xlt XL - Xk)) (by the above ar- 
gument) = &(execpj(s, 'X? X1, X21 ... OXkM- M 

Proof of Lemma 2 As defined on page 121, execp,,, (i)(it(s), L%(Ul); t%(U2); ... ; It (Uk)) 

= execp,,, (i) ( ... execP, a(i)(execpA(j) 
(tt (s), a (Ul))# ly (U2)) 

... i it (Uk)) 

= execp,, %(i) ( ... execp,, (i) (it (execpi (s, u 1)), & (U2)) 
... I Ci (Uk)) 

(by Lemma 20) 

execp,, (i) ( ... a(execpj(execpj(s.. Ul)# U2)) ... itt(Uk)) 
(by Lemma 20) 

a (execp, i (... execp, i(execpi(s. U1)., U2) ---. - Uk)) 

(by repeated application of Lemma 20) 

u(execpj(sUI; U2; ... ; uk))- M 
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B. 3 Proofs of Lemmas 8- 10 (Section 9.3.2) 

Proof of Lemma 8 Let 01 be the set of orbits of Hi, for iE 11,2}. Clearly any xE 
moved(G) belongs to moved(Hi) or moved(H2), and moved(Hi) = UOj. In addition, 
moved (Hj) n moved (H2) = 0, so 101,02} is a partition of 0. For iE 11,2}, every 
xE moved(Hi) must belong to a non-trivial orbit of Hi, thus moved(Hi) 9 UOj. But 

clearly if x belongs to a non-trivial orbit of Hi, i. e. xE Oi, then xE moved(Hi), so 
moved(Hi) = UOi. Let a= C402 E G, where ai (=- Hi (i E 11,2}). Then ft", OMd(H, ) 

aj, so Gmotvd(Hi) C Hi. Clearly Hi 9 G""'d(H, ) = GOi. The result follows. 0 

Proof of Lemma 9 Since U01 and U02 are disjoint, we have moved(GOI) n 
moved(G02) = 0. Let Cz E G. Then a can be written as a product of disjoint, mu- 
tually commutative permutations, each acting on a distinct orbit of G. Therefore 

C4 = C41 L12, where iti acts on the orbits of Oi, i. e. ai E GOi for iE 11,2}. We have 

shown that G= GC71 GO2. The result follows 0 

Proof of Lemma 10 Suppose, without loss of generality, that f1i E 01. If Qi V- 01 

then we must have Qj E 02. Since f1i and nj are dependent, stab* ([1j)r4 C: G4, so G 
there exists aEG such that ani 0 id, ani 34 id, and arl, V- (stabý(nj))R. 

The permutation a can be expressed in as a product aiAlajA2, where ai only 

acts on fli, Al acts on 01 \ jnj}, aj only acts on r1j, and 02 acts on 02 \ Inj}. Now 

G GO, * G02, so every element -r of G can be expressed uniquely as a product 

'Y 7172 where 71 E GO', 72 E GO2, and lyl, -r2 E G. For the element a, we have 

71 aip, and 'Y2 " &jA2- It follows that &jP2 E G. Therefore (aiA1ajP2) (ajP2) -1 E 

G, i. e. aiplajA2P2 -1 EG (using the inverse rule), i. e. aip, = 6, say, belongs to G. -1aj 

Clearly 6n, = &'Oi, but JE stab* (nj). It follows that an, E stab*G(ni)R. This is a G 

contradiction. It follows that f1j E 01.0 



Appendix C 

SymmExtractor and TopSPIN 

In Appendix C. 1 we survey the features of Promela which are not part of Promela- 
Lite, discussing whether or not they are supported by SymmExtractor. We provide 
a brief guide to the installation and use of TopSPIN (which incorporates Symm- 
Extractor) in Appendix C. 2. In Appendix C. 2.3 we present a set of modelling guide- 
lines to aid the construction of Promela specifications for use with SymmExtractor 

and TopSPIN. These guidelines are based on findings of the user study of Sec- 
tion 8.5. 

CA Promela vs. Promela-Lite in the Context of SymmExtractor 

Promela features which are not part of Promela-Lite but are supported by Symm- 
Extractor are discussed in Appendix C. M. In Appendix C. 1.2 we discuss features 

of Promela which are not currently supported by SymmExtractor but could be han- 
dled relatively easily. In Appendix C. 1.3 we list Promela features which cannot be 
handled by simple extensions to the theory of Chapter 7, and would require addi- 
tional research effort to be supported by our implementation. 

CIA Supported omissions 
All of the Promela features discussed in the following categories are supported by 
SymmExtractor despite not being part of Promela-Lite. In most cases it is obvious 
that the teclu-dques presented in Chapters 6 and 7 could be extended in a trivial (if 
laborious) manner to handle the features. We provide a brief justification for cer- 
tain more complex cases and note some features which are supported by Symm- 
Extractor but not TopSPIN. 

Types and variables 
SymmExtractor supports the following Promela/non-Promela-Lite features which 
relate to types and variables: 

* Primitive data types bit, bool, mtype, byte and short 
o Arrays indexed using the byte type 
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" User-defined record types 

" Boolean literals true and f alse 
" Local variables (in addition to parameters) 
" The built-in '_' variable for the receipt of 'don't care' (scratch) message 

fields. 
Arrays which are indexed using the pid data type are also supported. These 

are slightly more complex: a static channel diagram automorphism acting on a state 
of a specification should permute the positions of elements of a pid-indexed array 
in the obvious way. Also, an expression of the form A [d] in a specification P, where 
A is a pid-indexed array and da literal pid value, should be replaced with the ex- 
pression A[a(d)) in a(P), where it E Aut(SCD(P)). 'It is clear that the results of 
Chapter 7 could be extended to handle arrays with pid index type. As discussed in 
Section 8.1.1, an array should be indexed using either byte or pid, but not both. 

Promela allows the declaration of synchronous channels, which are not part 
of Promela-Lite. Formally extending the Promela-Lite semantics and the results of 
Chapter 7 to take into account synchronous channels would be straightforward, 
but laborious. They are supported by SymmExtractor. 

Control structures and expressions 
SymmExtractor supports the full range of Promela control structures, together with 
some forms of expression which are not included in Promela-Lite: 

" Separation of statements using ; or -> 
" Conditional if fi constructs 
" Nested do. . od constructs (Promela-Lite specifications include a single, 

mandatory, top-level do. . od construct) 
Label definitions, and statements of the form goto (label) 

" break, else, unless, provided and timeout 
" Condition expressions of the form ((boolean-expr) -> (expr) (expr 

" Expressions as statements 
" Receive poll expressions. 

A Promela specification which uses these language features can be trans- 
lated into a less elegant but equivalent Promela-Lite specification, via the introduc- 
tion of an explicit program counter variable. ,t, -I 

To manage the complexity of a specification, Promela allows the inclusion 
of inline macros, similar to procedures in an imperative language. Macro invoca- 
tions are expanded by SPIN using textual replacement before verification. Symm- 
Extractor deals with inline macros similarly. 

Promela-Lite includes the atomic keyword, but the type system of Sec- 
tion 6.2 ensures that the statements within an atomic statement cannot block. In 
Promela it is possible, and permissible, for blocking to occur within an atomic 
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sequence. The semantics for this are rather complex, but are clearly orthogonal to 
symmetry-related issues. Therefore, unrestricted atomic blocks are supported by 
SymmExtractor. 

Handling d_step blocks is more complex. Recall from Section 2.4.1 that 
a d_step block must not involve non-determinism. This cannot be statically 
checked, so the verifier generated by SPIN for a given specification checks for non- 
determinism within d_step blocks during search. If non-deterministic choice is 
possible in a d_step block then the first executable choice is taken by the verifier, 
and a warning generated. This means that options to if .. fi and do. . od state- 
ments are not, in general, commutative within a d_step block. For this reason, 
when checking whether P =- a(P) as described in Section 8.3.2, SymmExtractor 
does not sort the options of if fi and do. . od statements which occur within 
d_stepblocks. I 

Opera tors 

The following Promela operators are not part of Promela-Lite, but are supported 
by SymmExtractor: 

empty and f ul 1 

" Non-destructive channel read operator 
" Bitwise, modulo and division operators 
" eval operator (and receipt of messages corresponding to literal values). 

Simulation features 

The Promela. keywords printf, STDIN, show and priority can be used to aid 
simulation of a specification, but have no effect on verification. SymmExtractor ig- 

nores the use of these keywords in a Promela specification. ' 

Reasoning mechanisms 
SymmExtractor supports property specification using assert statements, never 
claims, accept/progress labels, and trace/notrace constructs (see [921 for de- 
tails of these). 

Since never claims and trace/notrace constructs are Promela processes they 
can be handled by the existing theory of Chapter 7. Furthermore, a group of valid 
static channel diagram automorphisms is, by default, an invariance group for the 
property represented by a never claim or trace/notrace construct (see Section 11.4). 

Note that the TopSPIN symmetry reduction package is currently limited to 
the verification of simple safety properties expressed via assertions, as discussed 
in Section 11.4. It does not support never claims, accept/progress labels or 
trace/notrace constructs. 
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Miscellaneous 

Unlike Promela, Promela-Lite does not include syntax for comments. Symm- 
Extractor allows specification to include Promela style comments, which obviously 
has no effect on symmetry. 

The hidden keyword can be used to tell SPIN to exclude a global variable 
from the state-vector (see Section 2.4.1). The value of a hidden variable x at a given 
state s during search depends only on the previously visited state, not on the state 
s itself. Thus, in general, no assumptions can be made about the value of x at s, 
unless x is known to be a constant, and hidden variables are intended to be used as 
"'scratch" variables witl-dn atomic statements [921. SymmExtractor supports use of 
the hidden keyword (by ignoring its occurrence) and, like SPIN, places the respon- 
sibility of its correct usage on the user. 

A global variable can be prefixed with the local keyword to tell the SPIN 

partial-order reduction algorithm that the variable is accessed by a single process 
as if it were local to that process. Since this keyword has no relation to symmetry it 
is allowed, and ignored, by SymmExtractor. II 

Promela includes keywords xr and xs, which stand for exclusive receive and 
exclusive setid respectively. A process can include a declaration xr (tiame), where 
(tiame) is the name of a previously declared channel, to indicate that only this 
process can receive messages on the channel. The xs keyword is used similarly. 
Providing SPIN with this information can lead to more efficient partial-order reduc- 
tion. It is not possible to check, statically, whether xs and xr are used correctly, 
but incorrect uses are flagged by SPIN during verification. These keywords do not 
affect the presence of symmetry in the model associated with a specification, so are 
supported by SymmExtractor. However, there is a problem with exploiting xs /xr 
information in conjunction with symmetry reduction. Let P be a Promela specifi- 
cation with associated model M, and ca channel in P. Suppose c is marked xs by 

process 1, and there is some valid aE Au t (SCD (P)) with a (1) =2 and a (c) = c. 
Assume that there is exactly one transition (s, t) in M, which involves process 1 

sending on c. Then the transition (a (s), a (t)) involves process 2 sending on c, vio- 
lating the xs assertion on c. Clearly this is the only such transition. When model 
checking without symmetry reduction, both (s, t) and (it (s), a (t)) win be consid- 
ered, and the xs violation detected. However, with symmetry reduction only one of 
these pairs of transition will be considered, so this violation of the xs assertion will 
not be detected. An analogous argument can be given for xr. Therefore TopSPIN 

should not strictly be applied to specifications which use xs and xr assertions. 

C1.2 Omissions which could be supported 
Our implementation requires Promela processes to be instantiated Using run state- 
ments within an init process. However, Promela also allows multiple copies of 
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a given proctype to be instantiated by prefixing the proctype keyword with 
active [k], where k>0 is the number of processes of the proctype to be in- 
stantiated. Use of this keyword changes the way in which run-time process iden- 
tifiers are assigned by SPIN, thus changes the way a static channel diagram is con- 
structed. With some effort, our implementation could be modified to accommodate 
this method of instantiating processes. 

Promela supports an unsigned numeric type. A declaration of the form 
unsigned x: y declares an integer variable x which takes non-negative values 
which can be represented using y bits. Clearli the Use of this data type will have no 
effect on our symmetry detection/reduction techniques. However, SymmExtractor 
is integrated with an enhanced Promela type checker (see Section 8.2), which does 
not currently support the unsigned data type. A temporary fix for this omission is 
to replace each occurrence of the unsigned keyýword with one of the other numeric 
types during symmetry detection. 

Though not strictly part of the Promela language, SPIN supports Promela 
specifications which include C-style #def ine macros. SyTmExtractor could easily 
be extended to handle tl-ds kind of macro by applying the C pre-processor to a 
specification before parsing. 

SymmExtractor does not allow channel InItialisers to be associated with 
channels which are declared locally to a proctype. This is to simplify the identifica- 
tion of channels for inclusion in the static channel diagram. In a specification where 
processes are created dynamically, local channel initialisers result in dynamic in- 
stantiation of channels, which does not fit comfortably with the static channel dia- 

gram concept. However, since SymmExtractor requires a fixed number of running 
processes, it would be possible to extend SymmExtractor to allow locally initialised 
channels. 

For simplicity, SymmExtractor does not currently support arrays of chan- 
nels. Further implementation work could remove this restriction. 

C. 1.3 Omissions which cannot currently be supported 
As noted above, it is hard to see how a specification where processes are created dy- 

namically fits in with the static cliatinel diagram concept on which SymmExtractor is 
based. This is not to say that specifications with dynamic process creation do not ex- 
hibit symmetry: indeed, SPIN-to-GRAPE can be used to check that the "Agents and 
Servers" specification of [921, which involves dynamic process creation, exhibits 
a non-trivial automorphism group. Extending our techniques to identify symme- 
try with a dynamically changing pool of processes will require further theoretical 

work, perhaps building on techniques for this problem developed for the dSPIN 

model checker [99] (see Section 3.9.4). For the time being, specifications which in- 

volve dynamic process creation can be re-modelled using the approach described 
in Appendix C. 2.3. 



C. 2: TopSPIN INSTALLATION AND USER GUIDE 251 

Package URL Version 
Java runtime environment http: //java. sun. com/ 1.5.006 
JUnit library (j unit. jar) http: //junit. org/ 3.8.1 
GAP System http: //gap-system. org/ 4.4.6 
SPIN model checker http: //spinroot. com/ 4.2.6 
GNU C Compiler (gcc) -T http: //gcc. gnu. org/ 

Figure CA: TopSPIN prerequisites. 

Promela provides alternative channel operators'! !' (sorted send) and '? V 
(random receive). Sending data on a buffered channel using' I ! 'causes messages to 
be queued on the channel in sorted order. Messages can be retrieved from the buffer 
hi a random order using '? V. These operators provide a useful alternative to FIFO 

channel semantics. They also aid state-space reduction: storing channel contents in 

a sorted manner can be seen as a form of state canonicalisation. However, storing 
pid messages in a sorted queue imposes an ordering on the set lit(pid). It is not 
immediately clear whether this ordering has an effect on symmetry, so for the time 
being SymmExtractor does not support the 'I !' and '? V operators. 

Recent versions Of SPIN allow C code to be embedded in a Promela specifi- 
cation, and certain variables from the C part of the specification to be included in 
the SPIN state-vector. Automatic symmetry detection for this mix of C and Promela 
is beyond the scope of this thesis, but is certainly an interesting area for further 

research. 

C. 2 TbpSPIN Installation and User Guide 

We provide instructions on how to obtain and configure TopSPIN, together with 
details of the third-party packages required by the tool, in Appendix C. 2.1. In Ap- 

pendix C. 2.2 we provide a brief guide to the use of TopSPIN. Some modelling guide- 
lines are given in Appendix C. 2.3. 

C. 2.1 Installing and configuring Top SPIN 

Prerequisites 

TopSPIN is written in Java and GAP, interfaces with the GAP and SPIN packages, and 
produces C code which must then be compiled. The Java implementation requires 
the JUnit library. Figure CA summarises the packages which must be installed be- 
fore TopSPIN can be used, providing URLs for each. The version of each package 
wl-dch we have used for development of TbpSPIN is also given. 

In addition, TopSPIN uses a prototype extension of saucy which has been 

extended to handle directed graphs. TI-ds functionality will eventually be available 
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from the saucy website [1601. For the time being, a source distribution of saucy with 
the required extended functionality is provided with TopSPIN-1 

Downloading the software 
The TopSPIN release distribution is available online as an archive from the Software 

page at the following URL: 
http: //www. dcs. gla. ac. uk/people/personal/ally/thesis/ 

The files are compressed using the Linux utilities gzip and tar, and should 
be extracted using standard tools. After extraction, move the TopSPIN folder 

and its contents to a suitable location (e. g. C: \Program Files\TopSPIN under 
Windows), and navigate to this folder. TI-te folder should contain TopS PIN. j ar, 
together with the sub-folders lib, saucy, Common and TempFiles. Copy the 

junit. j ar file into the lib folder. 

Setting up a GAP workspace 
In order to start GAP efficiently, TbpSPIN requires a GAP workspace to be set up. Full 

details of GAP workspaces are available online [63]. Essentially, a workspace is an 
image of a GAP session with a selection of libraries and files already loaded and 

ready to be executed. In our case, the workspace consists of the GAP files used for 

automatic symmetry detection and classification. 
Navigate into the Common folder. Start GAP and type: 
Read("WorkspaceGenerator. gap'l); 

foUowed by: 

SaveWorkspace(Ilgapworkspacell); 
Ensure that these commands are typed exactly as shown. Entering the second com- 
mand should result in true being printed to the console. Exit GAP by typing quit; 
(ensuring that the semi-colon is included in this command). 

Compiling saucy 
Navigate into the saucy folder, and type make. Assuming that gcc is correctly 
installed, this is all that should be required to compile the saucy program. 

Setting up a configuration file 

TbpSPIN uses a textual configuration file, corif ig. txt to locate GAP, saucy, var- 
ious common files and a folder for temporary files, during execution. Symmetry 
detection and reduction options are also specified in tl-ds file. 

The structure of corif ig. txt is summarised in Figure C. 2. Example con- 
figuration files for Windows and Linux systems are given in Figures C. 3 and CA 

1. Permission for including the saucy distribution with TopSPIN has been granted by Paul Darga, 
lead developer of saucy. 
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Line Description Default 
gap path to GAP n/a 
saucy path to saucy n/a 
tempfiles path to TopSPINTempFiles folder n/a 
common path to TopSPIN Common folder n/a 
timebound bound, in seconds, for largest 

valid subgroup computation 
no bound 

conjugates number of random conjugates to be used 0 
transpositions boolean indicating whether permutations 

should be applied as transpositions 
true 

stabiliserchain boolean indicating whether to use a 
stabiliser chain for enumeration 

true 

strategy symmetry reduction strategy fast 
symmetryfile path to file containing 

s mmetry group generators 
n/a 

Figure C. 2: Structure of a TbpSPIN configuration file. 

gap=C: \gap4r4\bin\gap. bat 
saucymC: \Documents and Settings\Ally D\TopSPIN\saucy\saucy. exe 
tempfiles-C: \Documents and Settings\Ally D\TopSPIN\TempFiles\ 
common=C: \Documents and Settings\Ally D\TopSPIN\Common\ 
timebound=0 
conjugates. 0 
transpositions-true 
stabiliserchain=true 
strategy-fast 

Figure C. 3: A TbpSPIN configuration file for Windows. 

respectively. Users should create their own configuration file based on their spe- 
cific setup and symmetry reduction needs. The configuration options related to 
symmetry detection and reduction are described in Appendix C-2-2. 

C. 2.2 Using SymmExtractor and TopSPIN 

The TopSPIN jar file can be executed to: typecheck a specification to see if it is suit- 
able for symmetry reduction; detect symmetries of a specification (i. e. run Symm- 
Extractor), or add symmetry reduction algorithms to the C code generated by SPIN 
for a given specification. Note that in all cases the conf ig. txt file must be in 
the current directory. We use TOPSPINPATH to denote the TopSPIN folder (e. g. 
C: \Program Files\TopSPIN) and SPECIFICATION the Promela specification 
to which TopSPIN is being applied (e. g. loadbalancer. p). 

Typechecking a specification 
To typecheck a spedfication, type: 

java -jar TOPSPINPATH/TopSPIN. jar check SPECIFICATION 

Detecting symmetry 
To apply SymmExtractor to find symmetries associated with a specification, type: 
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gap. /users/grad/ally/Scripte/gap 
saucy-/usere/grad/ally/TopSPIN/Baucy/saucy 
ternpfiles-/usere/grad/ally/TopSPIN/TempFiles/, 
common. /users/grad/ally/TopSPIN/Common/ 
timebound-10 
conjugates-4 
transpositions-true 
stabiliserchain-true 
strategy-enumerate 

Figure CA: A TbpSPIN configuration file for Linux. 

java -jar TOPSPINPATH/TopSPIN. jar detect SPECIFICATION 
For certain specifications, the search for the largest valid subgroup of symmetries 
for a given specification may be time-consuming. A bound of x seconds for this 

search can be specified by adding the line: 

timeboundmx 

to conf ig. txt. If no bound is required then add the line timebound= 0 to the file. 

To specify that x ': 2! 0 random conjugates should be used for symmetry detection 

(see Section 8.3.3), add the line: 

conjugates-x 

Using the TopSPIN strategies 
Assuming that a specification exhibits a non-trivial group of static channel diagram 

automorphisms, TopSPIN can be used to generate a verifier with symmetry reduc- 
tion algorithms by typing: 

java -jar TOPSPINPATH/TopSPIN. jar-SPECIFICATION 

All being well, this should generate files called sympan. c and group. o. 
The sympan. c file can then be compiled to an executable using gcc: 

gcc -o sympan -DSAFETY -DNOFAIR syrnpan. c group. o 
Other SPIN compile-time options can be included as usual: the -DSAPETY and 
-DNOFAIR options are merely examples. Except when the segmented strategy is 
used, verification using the resulting sympan executable is performed as with the 
pan executable produced normally using SPIN. The special case of the segmented 
strategy is described below. 

To specify which of the enumeration, localsearch, fast or segmented strate- 
gies should be used, adjust the strategy line of conf ig. txt accordingly. The 
usetransposit ions and uses tabili serchain options can be set to true or 
false depending on whether efficient application of transpositions and efficient enu- 
meration using a stabiliser chain, respectively, is desired. 

Symmetry can be specified manually via a line of the form: 

symmetryfile=FILENAME 
where FILENAME is the name of a file containing generators for a group which 
acts on processes identifiers and static channel names. Examples of such files are 
available online (see Section 1.2) in the archive of files used for experiments with 
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TopSPIN. 
If the segnicitted strategy is selected then it is necessary to execute sympan 

from wiffiin GAP. To do this, copy the sympan executable to the TopSPIN Common 
directory; navigate to this directory; start GAP, and type: 

Read(I'Verify. gap'l); 
followed by: 

Verify(I'sympan"); 

C. 2.3 Modelling guidelines 
The user study of Section 8.5 has identified some common specification features 

which can render a model asymmetric, as well as some limitations of Symm- 
Extractor wl-dch require further research and implementation work. We present 
some modelling guidelines to help users avoid unnecessary loss of symmetry, and 
work around the existing limitations of SymmExtractor and TopSPIN. 

Avoiding symmetzy breaking features 

TopSPIN is capable of exploiting total symmetries associated with Promela, specifi- 
cations. For the tool to work effectively it is important to ensure that symmetry is 

not destroyed by an unnecessarily asymmetric specification style. 
Ensure that processes in a specification are started simultaneously. TopSPIN 

requires that all run statements are enclosed in an atomic block, within the 
init process. This ensures that all processes are instantiated together. Without the 

atomic block the processes would be instantiated in afixed order, 
I which would 

destroy any symmetry between processes. 
Do not configure processes asymmetrically, unless faithful modelling de- 

pends on this. For example, when modelling a telephone network where individual 

user processes transition between local states idle, dial, calling, ringing and talk (say), 

ensure that all user processes start in the same local state, unless there is a good 
reason for doing otherwise. An asymmetric initial configuration may significantly 
reduce the size of the symmetry group associated with a. specification, leading to 
less effective symmetry reduction. 

Working within the limits of the tools 
. 

TopSPIN and SymmExtractor aim to cope with as much of the Promela. language as 
possible. However, there are currently various features of the language which are 
not supported. In our experience, it is generally possible to re-model a specifica- 
tion so that it falls into the set of specifications accepted by the tools. We provide 
here a few re-modclling guidelines regarding: the use of statement separators; dy- 
namic process creation, and the use of built-in process identifiers over user-defined 
identifiers. 
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proctype Po ( 

/* body */ 

proctype 00 

run PO; 

Figure C. 5: Skeleton Promela specification with dynamic process creation. 

Due to limitations with the automatic parser generator used in the devel- 

opment of TopSPIN, the tool follows strictly the use of statement and declaration 

separators defined in the Promela grammar [92]. The grammar states that sepa- 
rators should be used as such, rather than as statement/declaration terminators. 
SPIN relaxes this restriction, allowing separators to be used optionally as termina- 
tors. When using an existing Promela specification with TbpSPIN it is usual to have 

to modify the way in which semi-colons are used, to some extent. In particular, a 
semi-colon must follow the closing brace of an atomic block if the block forms part 
of a list of statements. 

Dynamic process creation is not supported by TopSPIN. If a specification re- 
lies on dynamic process creation then it may be possible to re-model the processes 
as shown in Figures C. 5 and C. 6. Figure C. 5 shows a specification which instanti- 

ates copies of proctype P dynamically. Assuming that 3 is an upper bound for the 

number of instances of P which should be running at any time, Figure C. 6 shows 

an alternative way of expressing the specification. The proctype P now includes a 
channel parameter, and an instance of P waits until it can receive on this channel 
before executing its body. Its body is identical to the original, except that it includes 

a final goto statement after whdch it returns to its initial configuration. 2 The init 

process instantiates three copies of P, each with a distinct synchronous channel. In- 

stead of instantiating a copy of P, the proctype Q now offers the literal value 1 to 

all channels on which instances of P may be listening. The example of Figures C. 5 

and C. 6 can be adapted to handle multiple process types, with any fixed upper 
bound for each process type. 

For symmetry to be detected, it is important for proctypes to use their built- 

in 
_pid variable rather than a user-defined process identifier. This is illustrated 

in Figures C. 7 and C. 8. Processes in Figure C. 7 are parameterised by a byte identi- 
fier, which they use to index the st array. SymmExtractor is not yet sophisticated 

enough to work out the correspondence between the id parameter and the built-in 

identifier for each process. However, the specification can be converted into a form 

2. This goto statement should really be part of anatomic block which also resets any local variables 
of the proctype to their initial values. 
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which SymmExtractor can handle, as shown in Figure CA The disadvantage here 

6 that p"tion 0 of the array at 6- un-used, meaning that an array of size three 

rather than two Is requimd, increasing the state-vector size by one byte. On the 

other hand, eliminating the id variables reduces the state-vector by two bytes, so 
the w-modelling works well for this example. 
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mtype - {N, T, C) 
mtype st[2]. N 

proctype user(byte id) 
do 

d_step stlidl==N -> st[id]=T 
dstep st[idl==T && st[O]I=C && st[lll=C -> st[id]=C 
dstep st[idl==C -> st(id]=N 

od 

init ( 
atomic 

run user(O); 
run user(l); 

Figure C. 7: Promela specification which uses user-defined process identifiers. 

mtype = (N, T, C) mtype st[31=N; 

proctype usero 
do 

dstep E3t[_pidl==N -> st[_pid]=T 
dj3tep st[_pidl==T && st[ll! =C && st[21! =C -> st[_pid]=C 
dstep st[_pid]-=C -> st[_pid]=N 

od 

init I 
atomic 

run usero; 
run usero; 

Figure C. 8: Re-modelled specification which uses the 
_pid variable. 



Appendix D 

Ethics Consent Form and Information Sheet 

The following two pages contain copies of the consent form and information sheet 
for the user study described in Section 8.5.2. The forms included here are those 

given to students from session 2005/2006, and are adapted from a standard exam- 
ple [143]. The forms given to students from session 2004/2005 are very similar. 
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Participant Consent Form: Symmetry in Promela Models 

The aim of this experiment is to investigate structural symmetry arising in typical Promela 
models of distributed systems. 

The experiment will involve allowing the experimenter to analyse your assessed exercise 
submission for Modelling Reactive Systems 4, after it has been formally assessed. The 
analysis is concerned with the structure of the state space underlying your solutions, not with 
the semantic correctness of the solutions. 

All results will be held in strict confidence, ensuring the privacy of all participants. No 
personal participant information will be stored within the data. Data will be stored online in a 
password protected computer account. 

A feedback email message will be sent to all participants, after the data has been analysed. 

Your participation in this experiment will have no effect on your marks for any subject at this, 
or any other university. 

Please note that it is the Promela language, not you, that is being evaluated. You may 0 
withdraw from the experiment at any time without prejudice, and any data already recorded 
will be discarded. 

IT you have any further questions regarding this experiment, please contact: 

Alastair Donaldson 
Computing Science Department 
Lilybank Gardens 
ally@dcs. gla. ac. uk 

I have read the information sheet, and agree to voluntarily take part in this experiment: 

Name: Email: 

Signature: Date: 

This studv adheres to the BPS ethical guidelines, and has been approved by the FIAIS ethics 
committee of The University of Glasgow (ref., FIMS00203). RVIsfyou arefree to discuss 
yourparticipation in this study with the researcher (contactab7e on 330 4236 ext. 0049), if 
you wouldlike to speak to someone not involved in the studyyou may contact the chairs of 
the FIMS Ethics Commillee: (s. gat-rods. schweinberget)@psy. gla. ac. uk 
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Information Sheet: Symmetry in Promela Models 

The aim of this experiment is to investigate structural symmetry arising in typical Promela 
models of distributed systems. 

The experiment will involve allowing the experimenter to analyse your assessed exercise 
submission for Modelling Reactive Systems 4, after it has been formally assessed. 

Verification of systems using the SPTN model checker is limited, since a moderate si7cd 
ge state space; too large to exhaustively search Promela model may give rise to a very larg 

using a top of the range platform. If a model exhibits structural replication, or symmepy (e. g. 
many clients communicating with a single server), then it may be possible to verify properties 
of the system without resorting to exhaustive search. 

During our research we have developed techniques for automatically detecting and exploiting 
symmetries of Promela models. Our techniques are limited by certain assumptions about the 

way users typically model systems with Promela. This study aims to assess the validity of 
these assumptions. We plan to exhaustively analyse your Promela programs to work out all 
symmetries of the underlying state space, and compare these symmetries with those detected 
by our more efficient methods. Additionally, if symmetries exist, we will look at the 
reduction in search time and space gained by exploiting these symmetries. 

All results will be held in strict confidence, ensuring the privacy of all participants. No 
personal participant information will be stored within the data. Data will be stored online in a 
password protected computer account. 

A feedback email message will be sent to all participants, after the data has been analysed. 

Your participation in this experiment will have no effect on your marks for any subject at this, 
or any other university. 

Please note that it is the Promela language, not you, that is being evaluated. You may 
withdraw from the experiment at any time without prejudice, and any data already recorded 
will be discarded. 

If you have any further questions regarding this experiment, please contact: 

Alastair Donaldson 
Computing Science Department 
Lilybank Gardens 
ally@dcs. gla. ac. uk 

This sluctv adheres to the BPS ethical guidelines, and has heen approved hy the FIMS ethics 
commillee of The University of G7asgow (ref. - FIVS00203). nilstyou arefiree to discuss 
yourparticipation in this stu4y with the researcher (contactable on 330 4236 ext. 0049), if 
you would like to speak to someone not involved in the studyyou may contact the chairs of the 
FIMS Ethics Commillee: (s. garrods. schweinherger)Cap5ýv. gla. ac. uk 



Acronyms 

* BNF Bakus-Naur form 

" COP Constructive orbit problem 
" COPR Constructive orbit problem wiffi references 
" CTL Computation tree logic 

" CTL* Extended computation tree logic 

" ETCH Enhanced type checker 
" GAP Groups, algorithms and programming 
" GRAPE Graph algorithms using permutation groups 
" LTL Linear temporal logic 

" MRS Modelling reactive systems course 
* nauty No automorphisms, yes 
" SMC Symmetry-based model checker 
" SymmSpin Symmetric SPIN 

" SPIN Simple Promela interpreter 

" SPIN-to-GRAPE A tool for analysing symmetry in Promela specifications 

" TopSPIN A symmetry reduction package for SPIN 



Mathematical Notation 

0H9K Disjoint product of H and K 

0HýK Wreath product of H and K 

0HxK Direct product of H and K 

0HxK Semi-direct product of H and K 

*H<GH is a subgroup of G 

0H4GH is a normal subgroup of G 

* moved(H) Set of points permuted by H 

* moved(a) Set of points permutedby element ci 
0 aP Conjugate A-1cip of a by 

0 C,, Cyclic group of order n 
* S, Symmetric group of degree ii, or isomorphic subgroup of the 

group associated with an n-dimensional hypercube 

0 stabG(x) Stabiliser of the point x in G 

0 stabG(X) Setwise stabiliser of X in G 

0 stab*G(X) Pointwise stabiliser of X in G 

0 stabG(X) Stabiliser of partition X in G 

0 [SIG Orbit of states under G 

0 orbG (i) Orbit of component identifier i under G 

0 rl An orbit 
00A set of orbits 
0 GIn Restriction of G to act on orbit 11 

0 GC7 Restriction of G to act on the union of 0 

*M Kripke structure 
*P High level specification (e. g. in Promela, Promela-Lite or SMC) 

* CV(P) Channel diagram associated with P 

* SCV(P) Static channel diagram associated with P 

* Aut(CD(P)) Group of channel diagram automorphisms 
9 Aut(SCD(P)) Group of static channel diagram automorpl-dsms 
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