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Abstract

Ecologists would like to understand how compleypigysists in nature. In this thesis | have
taken two fundamentally different routes to studgsystem stability of model ecosystems:
classical community ecology and classical poputatezology. In community ecology
models, we can study the mathematical mechanisnstabflity in general, large model
ecosystems. In population ecology models, fewecispeare studied but greater detail of
species interactions can be incorporated. Withigsehalternative contexts, this thesis
contributes to two consuming issues concerningstability of ecological systems: the
ecosystem stability-complexity debate; and the esw$ cyclic population dynamics.

One of the major unresolved issues in communityloggois the relationship
between ecosystem stability and complexity. In 19%farles Elton made the conjecture
that the stability of an ecological system was dedipo its complexity and this could be a
“wise principle of co-existence between man andumtwith which ecologists could
argue the case for the conservation of nature [fasp&cies, including man. The earliest
and simplest model systems were randomly consttueted exhibited a negative
association between stability and complexity. Timding sparked the stability-complexity
debate and initiated the search for organisingcppies that enhanced stability in real
ecosystems. One of the universal laws of ecologlyasecosystems contain many rare and
few common species. In this thesis, | present gicalyarguments and numerical results to
show that the stability of an ecosystem can inee&ath complexity when the abundance
distribution is characterized by a skew towards yname species. This work adds to the
growing number of conditions under which the nagastability - complexity relationship
can been inverted in theoretical studies.

While there is growing evidence that the stabitiomplexity debate is progressing
towards a resolution, community ecology has beconueeasingly subject to major
criticism. A long-standing criticism is the reliam®n local stability analysis. There is
growing recognition that a global property calledrrpanence is a more satisfactory
definition of ecosystem stability because it testy whether species can coexist. Here |
identify and explain a positive correlation betweabe probability of local stability and
permanence, which suggests local stability is sebeteasure of species coexistence than
previously thought. While this offers some reliedmaining issues cause the stability-
complexity debate to evade clear resolution andeleeommunity ecology in a poor
position to argue for the conservation of naturaéibity for the benefit of all species.

In classical population ecology, a major unresolveslie is the cause of non-

equilibrium population dynamics. In this thesisise models to study the drivers of cyclic
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dynamics in Scottish populations of mountain hgtespus timiduy for the first time in
this system. Field studies currently favour the dtiipsis that parasitism by a nematode
Trichostrongylus retortaeformigirives the hare cycles, and theory predicts that t
interaction should induce cycling. Initially 1 usedsimple, strategic host-parasite model
parameterised using available empirical data to ttes superficial concordance between
theory and observation. | find that parasitism doobt account for hare cycles. This
verdict leaves three options: either the paransgtean was inadequate, there were missing
important biological details or simply that parasitio not drive host cycles.

Regarding the first option, reliable informationr feome hare-parasite model
parameters was lacking. Using a rejection-samphipgroach motivated by Bayesian
methods, | identify the most likely parameter septedict observed dynamics. The results
imply that the current formulation of the hare-ste& model can only generate realistic
dynamics when parasite effects are significanttgda than current empirical estimates,
and | conclude it is likely that the model contaamsinadequate level of detail.

The simple strategic model was mathematically elegad allowed mathematical
concepts to be employed in analysis, but the me@el biologically naive. The second
model is the antipode of the first, an individualsbd model (IBM) steeped in biological
reality that can only be studied by simulation. thmost highly detailed tactical models
are developed as a predictive tool, | instead &iralty perturb the IBM to study the
ecological processes that may drive populationesyol mountain hares. The model allows
delayed responses to life history by linking masétrody size and parasite infection to the
future survival and fecundity of offspring. By sgstatically removing model structure |
show that these delayed life history effects arakiedestabilising and allow parameters
to lie closer to empirical estimates to generateoked hare population cycles.

In a third model | structurally modify the simpleéategic host-parasite model to
make it spatially explicit by including diffusionf anountain hares and corresponding
advection of parasites (transportation with hosthm initial simulations | show that the
spatially extended host-parasite equations are tabfgenerate periodic travelling waves
(PTWSs) of hare and parasite abundance. This isndyrn#ocumented behaviour in these
widely used host-parasite equations. While PTWsarew potential scenario under which
cyclic hare dynamics could be explained, furthethematical development is required to
determine whether adding space can generate realistamics with parameters that lie
closer to empirical estimates. In the general thesscussion | deliberate on whether a
hare-parasite model has been identified which eacdnsidered the right balance between

abstraction and relevant detail for this system.
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Chapter 1. General introduction

In 1958 Charles Elton identified that a “wise pipile of co-existence between man and
nature” was needed to argue the case for naturgeogation under the intensifying press
of humanity. He recognised that it was not likelyright, that animals would be put before
humans, nor that preservation of the natural was$dsomething of pure intrigue or
aesthetic pleasure should come at the cost of hismaival. However he did identify a
practical reason for the conservation of diversibgcause it tends to promote ecological
stability”, giving resistance to our crops, foresfssheries etc. against destructive
population explosions and invasive species. Eltogflections provide a noble motivation
to study the stability of ecosystems. In contenipdathe coupling of ecological diversity
and stability he continues,

“for if this can be shown to be anywhere near tlght it will have to be admitted that there is

something very dangerous about handling cultivdtedi as we handle it now, and even more

dangerous if we continue to go farther down thesgmé road of ‘simplification for efficiency’...the

whole matter is supremely important to the futurewery species that inhabits the world”.

Stability - complexity relationships

Elton was not able to provide proof of the couplobejween stability and diversity, only a

list of observations which appeared to supportréhaionship (Elton, 1958). He called for

additional research and threw down the gauntleédologists to provide a reason for

ecosystems to be respected. It is understandadileftine that the relationship between the
diversity and stability of ecosystems has beendajritbe most consuming topics in ecology
for decades.

Early on the message was clear, even close to d¢giman, 1991), that ecological
diversity and stability went hand in hand. An eanlgtion of ecosystem stability was
Odum’s (1953) stability principle based on the sectaw of thermodynamics, that states
that energy spontaneously tends to flow only froemnd concentrated in one place to
becoming dispersed. He wrote:

“According to this concept any natural closed systehether the earth itself or a smaller unit, such
as a lake, tends to change until a stable statd, seif-regulating mechanisms is developed. Self-
regulating mechanisms ...bring about a return to teonty if a system is caused to change from the
stable state by a momentary outside influence”.

The major contribution of Robert MacArthur, the maho came to be considered
the father of theoretical ecology, was made in 19&&ng Odum’s stability principle, he
argued that if the amount of choice energy hasliowing paths up through the food web
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is greater, then the effect of excesses in enemycaused by overpopulation of one
species, will have a lower impact on the rest ef tommunity (MacArthur, 1955). This
paper has been cited as proving that the staldiiitgrsity relationship should be positive,
including by MacArthur’s professor G. Evelyn Hutehon in his seminal paper on the
diversity of animals (Hutchinson, 1959). In fact dAathur does not provide a
mathematical proof, which May (1971) picked up tinthis work, cogent and insightful
though it is, is not (as it is sometimes mistakebd) a "formal [mathematical] proof of the
increase in stability of a community as the numbielinks in its food web increases".”
(May’s quote is taken from Hutchinson (1959)). Tirvet mathematical modelling was
undertaken by Gardner & Ashby (Gardner and AshB®y0) on generic systems with
connected dynamic components that were assumegld@bdmuilibrium, which May’s 1971
paper, subsequent Nature paper (1972b) and booK3)1&xpanded in a specifically
ecological context. They used simple linear dynanoc which ecosystem complexity and
stability could be defined unambiguously: complexds the number of interacting
components (species), the degree of connectaneedetinteracting components and the
strength of these interactions; and defined a stalystem as one which returned to
equilibrium after a perturbation. With both matheéicel and computational support, they
showed that more complex models had a vanishindgpaibty of being stable. The
prevailing view was challenged — were ecosysterablestbecause of complexity, or in
spite of complexity? Despite the final comment iayk$ 1971 paper:

“That stability may usually go with complexity irhe natural world, but not necessarily in

mathematical models, is not really paradoxical.nlture we deal not with arbitrary complex

systems, but rather with ones selected by a lodgrdricate process... mathematical theorems tend

to deal with general complex systems, which aréecamother matter”,
most ecologists did perceive a paradox at the eaftecology.

On the one hand, it could be argued that the paraldeing resolved. May'’s
argument became a prediction that the ecosystamtstes we observe should contain
structure that enhances stability. Fundamentalogamdl realities lacking from the simple
dynamical models were highlighted (Lawlor, 1978, bBas, 1974) and observing
universality across food webs would identify commorganising principles across
different ecosystems. For example, many empiricaliess agree that low connectance and
a skew towards weak interaction strengths (fewngtronany weak) are common features
of large, real ecosystems (Berlow, 1999, Paine21Bascompte et al., 2006, De Ruiter et
al., 1995). This property has been attributed t® #nchitectural features of omnivory
(Emmerson and Yearsley, 2004), compartmentalisgi@manek and Stary, 1979, Krause
et al., 2003) and long loops (Neutel et al., 20&2)ch non-random patterning can increase
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the stability of competitive communities (Jansed Kiokkoris, 2003, Rozdilsky and Stone,
2001) and food webs (Neutel et al., 2002, De Rugteal., 1995, McCann et al., 1998,
Emmerson and Yearsley, 2004), allowing complexesystto persist. Another non-random
pattern in ecosystems is the ubiquity of inequityspecies abundances (McGill et al.,
2007). The species abundance distribution is adomhtal measure of ecosystem structure
and biodiversity (Magurran, 2004) yet it is rardiljked to the dynamical properties of
ecosystems. How relative commonness and rarity ctaffestability - complexity
relationships has remained an open question. dhimssf the focus aChapter 2.

On the other hand, it may be argued that the paratiales resolution because it
has been almost impossible to synthesise theorly fiiidings from the field. While
theoreticians were making predictions about “whatdkof communities we observe and
those we do not” (Pimm, 1991), how was an empireadlogist supposed to test this?
Further, the interaction strengths that theoratgere using were difficult to estimate in
the field and not what empiricists typically measi{Berlow et al., 2004). Consequently,
ecological stability became a sizeable and comiglitaubject in which “rarely did two
ecologists look at the same question” (Pimm, 19B&j.example, Elton (1958), who took
his notions of stability largely from the field, phed all of the following: population
variability, population recovery, the ease of ineasand the consequences of invasion
(Pimm, 1991) Going by the definitions given by Grimm & Wiss&P@9), MacArthur was
thinking about resistance (dynamics staying esaintinchanged despite the presence of
disturbance) whereas May was talking about proltabdf resilience (returning to
reference state after a temporary disturbance).

An obvious criticism of Gardner & Ashby (1970) aNthy’s (1971) mathematical
models is that ecological systems are not simpleaohyc systems. Unlike physical or
chemical processes from which the mathematics waptad, ecological systems are not
largely deterministic but are a unique mixture etetministic and stochastic forces to
comparable degrees (Bjornstad and Grenfell, 20Bdjthermore, ecological systems do
not have linear dynamics but contain gross noralities, which were left out ‘as a first
step’ (Gardner and Ashby, 1970) for the sake ofherattical tractability. In fact the
models are extremely general because they areriBedaapproximations (by Taylor
expansion) at the equilibrium point of unspecifezgpiations of multispecies dynamics. But
this generality requires that the equilibrium psiare assumed to be feasible. To check
feasibility, a specific set of equations does hawvée defined - the simplest and most
familiar globally defined multispecies populatiomogith model is Volterra’s (1926)
formulation of the classic Lotka-Volterra (LV) edisms. (The distinction between local

and general or global and specific applies to Lsetkad \Volterra’s alternative formulations
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of the LV equations (Haydon and Lloyd, 1999), arfuahl | discuss further in Chapter 2.)
Both local and global models of ecosystem dynarhebge been used extensively in the
study of stability - complexity relationships. Byapting either approach, ecologists take
an equilibrium viewpoint of ecosystems and can amkasure whether an equilibrium
point is stable against very small perturbations #rus does not guarantee global stability
(Law and Blackford, 1992). In 1987, De Angelis & Mfdnouse voiced the concern:
“The equilibrium view of ecological systems, whibhs always had a fair number of skeptics, now
seems unsatisfactory to a large fraction, perhapsagrity, of ecologists. This dissatisfaction,
expressed clearly by Reddingius (1971), Caswell7)9Murdoch (1979), Connell and Sousa
(1983), and Wiens (1984a), among others, doesingelon the mere question of system stability,

but on whether it is valid to define the existemfean equilibrium state at all, stable or unstable”

(references found therein).

The mathematical intractability of global stability multispecies systems means
the equilibrium viewpoint has been the nucleus floeoretical study of ecosystem
properties. However local stability analysis exesidhe possibility of instability in the
face of a large perturbation or the existence ofequilibrium attractors (e.g. a periodic or
chaotic attractor). The general consensus is thatra satisfactory definition of ecosystem
stability is a global property called permanencetest of species coexistence which
requires only that densities of rare species tenthdrease (Law and Blackford, 1992).
While the permanence has its own restrictions, mastiously that demographic
stochasticity could push trajectories which passelto the boundary to extinction, its
strength lies in asking basic globally qualitatigeiestions of coexistence without
dependence on understanding the complicated qatiwditbehaviour of the ecosystem
dynamics:

“There is a sense in which we have been asking mbreur ecological models than may be
necessary to predict the configurations of spetied live together. The distinction between
equilibrium and non-equilibrium dynamics is secanda the question as to whether a set of species
can live together in the first place. Arguably weuld do better to find the configurations of specie
that cause the whole of boundary of the phase dpa@pel orbits that are not on the boundary, for
it is at the boundary that questions of coexistdreee ultimately to be settled. Informal ideas glon
these lines were suggested by Lewontin (1969), Ma/&mith (1969), Holling (1973), and Connell
and Sousa (1983), and in recent years the notisrbban given formal definition and extensively
studied by mathematicians (reviewed by Hofbauer @igsnund 1988)” Law & Blackford (1992,
references found therein).

Yet despite these advances, the relationship betweemanence and ecosystem
complexity has only been addressed in a singlerd@een and Cohen, 2001). Ghapter

3 | present the second study on permanence-complexationships. Chen and Cohen
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(2001) found permanence decreased with complexity as did the early theoretical
models using local stability analysis — but theaythvere explored in a similarly general
framework. This opens up the question of how lecal global stability are correlated, and
the important question of ‘how much confidence sttave have in a theoretical ecology
based on asymptotic [local] stability analysis?h{#&rson et al., 1992). By measuring the
probability of local stability alongside permanendeam able to study locally stable
systems which are unstable in the face of a laggeugbation (which I term ‘fragile’) and
systems at non-equilibrium attractors (e.g. a pkci@r chaotic attractor) and how they
correlate with aspects of complexity.

Periodic fluctuations in the numbers of mountain hares
In the bridging paragraph between Robert May's 8)9Book chapter on stability -
complexity relationships and his chapter on stébé cycles in few species models, May
wrote:
“In the models just considered, all the interaciiometween and within species were either
represented by grossly simple equations or elsemsuised in the vicinity of equilibrium... It is
difficult to effect any multispecies discussion ethise. In this chapter, attention is restricted to
models with but a few species, and considerablyemietail is put into the description of the
dynamical interactions between populations”.
Over 35 years later this paragraph sums up the s@amstion | have taken from studying
mathematical mechanisms of stability in generagdamodel ecosystems (Chapters 2 and
3) into the use of lower dimensional models to gttite specific biological mechanisms
that cause cyclic dynamics in Scottish populatiohthe mountain hare (Chapters 4 to 6).
The hare system is simply a low dimensional subkathigher dimensional system, yet |
am forced to make the sharp transition from commtyuacology to population ecology,
from a discipline which is strongly mathematicaldagiata poor to one which is more
empirical and data rich.

The reasons for cyclic dynamics in Scottish mounkares are unclear, and this is
the first attempt at using modelling to explore $bke causes. Below | intertwine some
historical context of population cycle researchhwjitstifications of the three modelling
approaches | have taken. The first model (Chap}eis & simple ordinary differential
equation (ODE) model of two interacting speciese Tlhamework is mathematically
elegant and allows ecologists to employ mathematmacepts for analysis of the dynamic
properties of the inter-specific interaction, bla¢ tmodel is biologically naive and cannot

incorporate potentially important detail. The setanodel is therefore the antipode, an
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individual based model steeped in biological rgaliat can only be studied by simulation
(Chapter 5). The third model explores the influent@adding a spatial dimension to the
simple ODE model (Chapter 6).

A fundamental mathematical contribution to the ustéding of population cycles
is the notion that persistent patterns of reasgnagular oscillations in natural ecosystems
are stable limit cycles (May, 1973, May, 1972a)niticycles are closed loop trajectories
with a fixed amplitude and period around an ungtagjuilibrium point and, as with a point
attractor if it is stable, trajectories in the redgurhood are attracted towards it. While this
behaviour is qualitatively distinct from other typef dynamics in a deterministic setting,
damped cycles can also be stochastically sustaiié@ mathematical causes of
deterministic stable limit cycles are easily ob#dile from any text on nonlinear dynamics
(e.g. Hilborn, 2000): they are not possible witkiagle linear dynamic equation, but (at
minimum and is not guaranteed) require the addionon-linearity in the form of a time
delay e.g. delay-differential equation or differenequation (although this is then not
strictly a one-dimensional system (Hilborn, 2006)) by adding a coupled interacting
variable. The implication for ecologists is that fmpulations to exhibit stable limit cycles
requires dependence of the current species desiiityr on (1) an earlier density of the
same species or (2) the density of other speciessd two factors are often described in
the ecological literature as ‘intrinsic’ and ‘exisic’ drivers of population cycles. Both
types of factor have been implicated as the drieérsyclic populations of an upland UK
bird species, the red grouskgopus lagopus the interaction with a parasite which
reduces fecundity and increases mortality (exitinddobson and Hudson, 1992b, Hudson
et al.,, 1998, Hudson et al., 1992); and delayeditiedependent changes in aggression
and rate of young male recruitment (intrinsic) (lgles$ al., 1996).

The work on red grouse has been successful ingakisynthetic approach to the
study of population cycles, by using a combinattbtime series analysis, experimentation
and mathematical modelling. Mountain hare cyclesSaotland have only really gained
attention in the last few years with initiation msearch by Scott Newey and Simon
Thirgood at the Macaulay Institute in Aberdeenhaligh knowledge of the system has
been greatly underpinned by many natural histoaca specific population studies since
the 1960s (e.g. Flux, 1962, Hewson, 1962). Durmg itecent focus on cyclic dynamics in
mountain hares, time series of hare shooting rec@mam across Scotland have been
analysed to statistically confirm that about hdlpopulations are temporally cyclic, with a
range of periods from 4 to 15 years and charati&ily high amplitude with coefficients
of variation of 0.39 to 1.80 (Newey et al., 2007Bjeld experiments and surveys have
been conducted (Newey et al., 2005, Newey and dbdg2004, Newey et al., 2004) and
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the currently favoured explanation implicates atriegic driver of cycles - the interaction
with a helminth parasit@richostrongylus retortaeformighat reduces female fecundity
(Newey et al., 2007a). Mathematical modelling hast yet been directed at this problem
and, while this approach cannot directly test thagpitism hypothesis, modelling can assist
in determining whether this interaction is capabfegenerating observed population
dynamics. InChapter 4, | use a simple ordinary differential equation ©Dnodel of the
interaction between a host and macroparasite (MualyAanderson, 1978, Anderson and
May, 1978) to test whether deterministic realisiaze stable limit cycles can be generated
with parameters based on the best available erapdata.

Although density dependence is accepted as an tergodriver of population
cycles, this has not always been the case. As thithrelationship between ecological
stability and complexity, it was Charles Elton wiased the challenge to ecologists to
explain the phenomenon of population cycles. Inskisinal paper (Elton, 1924) ‘Periodic
fluctuations in the numbers of animals: their caused effects’, which was based mainly
on the periodic fluctuations of Norwegian lemmiraged snowshoe hares, he argued that
cycles must be driven by climatic fluctuations hesmof the synchrony of the fluctuations
across huge areas. Despite theoretical interesyafic dynamics that pre-dates Elton’s
paper (Lotka, 1925, Volterra, 1926), and Nicholg€oBailey’s (1935) account of both the
mathematics and the biological mechanisms behisdcinpopulation cycles, mammal
population cycles and models that were able to yedcyclic dynamics were studied
largely independently: “the generality and impodanof density dependent feedback
mechanisms in creating fluctuations was not fullgerstood at that time” (Lindstrom et
al., 2001). By the 1950s, a major cleavage sptitidas which, on one side, thought that
cycles were driven by density independent procesdesh forced populations to obey
environmental conditions, whilst the other sideuad) for density dependent processes
which acted independently or tracked changes irethironmental conditions (Lindstrom
et al.,, 2001). More recently there has been a gmwealisation that both density-
dependent processes and environmental variabiligpe real population dynamics
(Lundberg et al., 2000), and there are numerouswawhich stochastic and deterministic
processes can interact to generate regular fluohsteven if they are not strictly stable
limit cycles (Kaitala et al., 1996, Roughgarden739Lundberg et al., 2000, Bjornstad and
Grenfell, 2001).

Related to this, there has also been a growingf@alonsideration and testing of
multiple causes of cyclic dynamics. Single-factgpdtheses have been continually put
forward since Elton’s (1924) paper, as expressed.ibgstrom et al. (2001): “one can

expect a hypothesis to be raised approximatelyyefaur years” and for which they
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sceptically note that “different taxa or systemserseto have attracted different
hypotheses...it is impossible to judge whether thagsenomic/system differences are real
or simply reflect different emphases by researamteon different continents”. The ability
to explore and contrast multiple factors may calyadepend on the scale and scope of
studies, and there are few studies which have neh&gOne important success has been
the Klaune Boreal Forest Ecosystem Project, thege#dr ever terrestrial ecological
experiment which ran from 1986 to 1996 in the sauéistern Yukon (Krebs et al., 2001b).
Using a factorial experimental design the projastdtangled the relative importance of
some of the strongest candidates for control oflfwyear snowshoe hare cycles. Indeed,
no one factor was singled out and instead foodpmedation were found to act together to
drive the hare cycles. Furthermore, since the Kdugiroject, an intrinsic factor has been
proposed to act synergistically with food and pteatato drive cycles, based on striking
differences in the reproductive output of captieenéle populations from low and high
phases of the cycle (Sinclair et al., 2003, Krebalg 2001a). Similarly the most recent
work on red grouse has synthesised the intrinstt extrinsic factors into a multifactor
hypothesis to offer the following explanation féreir cycles: under conditions of high
grouse density, elevated testosterone levels (asdceted increases in male aggression)
lead to suppression of the grouse immune systentharsdincreased parasitism (Mougeot
et al., 2005, Redpath et al., 2006).

For modelling mountain hare population dynamice, @DE model is general and
strategic (Chapter 4) but it is also purely detaistic and ecologically naive. It also
considers only a single-factor hypothesis (parasiti for cycles. There is substantial
evidence from a range of mountain hare studies @daw1968, Flux, 1970, lason, 1990
and Scott Newey pers. comm.) that maternal ‘qualifjuences the birthdate of young
which in turn influences offspring ‘quality’. Suahaternal effects can generate delayed
responses to density and thus can potentially dpepulation cycles (Inchausti and
Ginzburg, 2009). While each of the flaws of the OmDBdel could be tackled individually
by developing a suite of more complex mathematicatlels, instead | develop a highly
tactical model that envelops much of the ecologicabmplexity Chapter 5). Elements
of the structure are systematically modified or oged to dissect out their dynamical
influences. Demographic stochasticity is incorpedatincreasing the realism of the model
and permitting stochastically sustained stabletloycles.

In Chapter 6, | consider a spatial extension to the ODE mounteire-parasite
interaction model of Chapter 4. The strategic modsl classical, non-spatial population
dynamics were adapted from the mathematics of phlgemical disciplines to tackle

population dynamical problems. With this derivatcame three fundamental assumptions
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which are sufficiently realistic in models of siragbhysiochemical systems but are often
violated in the ecological context (Czaran, 199Bixst, populations consist of large
numbers of individuals. Second, all individualstbé same population are identical in
every dynamically relevant respect. Third, the nmest of the individuals is such that the
population as a whole can be treated as a perfetdgd system such that each individual
experiences the same environment. Relaxing themgagns can affect the stability of
populations and coexistence of interacting speaied,lead to spatial patterning (Hassell et
al., 1991, Turing, 1952, Bascompte and Sole, 1995).

For the mountain hare F retortaeformissystem, the initial aim is to study the
impact of space on the ODE model dynamics withotrbducing population structure or
specifying scale (and therefore only the third egsiion of perfect mixing need be relaxed
for our purposes). While space can be introducegliaitly, for example using
metapopulation models (Levins, 1969), direct spatxéension of the classical non-spatial
models is ideally suited for assessing the impéaspace on population dynamics because
it allows comparison of predictions with the noratal counterpart (Czaran, 1998). In
spatially explicit models, density has a locatiord ahus it is local rather than overall
density which is influenced by (and influences) tymamics. The spatial dimension can
be introduced as a discrete variable using patcim@dnce models (represented by an ODE
for each patch) or continuous space using reachiffunsion models (represented by partial
differential equations (PDE)). The main theoreti@dVantage of continuous-space models
is the deterministic and tractable nature as a meamproviding theoretical insights and
generic understanding of spatial dynamics (Keelamgl Rohani, 2007). However the
mathematics behind these formalisms is complex aiteh highly technical (Murray,
1993). Perhaps this is why, despite its widespegaadication in ecology, the simple host-
parasite ODE model (May and Anderson, 1978) adopte@hapter 4 has never been
spatially extended in continuous time and the texyl spatial dynamics remain
unexplored. During the course of my Ph.D candiddcyvas approached by a
mathematician, Dr. Steve Webb at the Universitystsathclyde, with the proposal of co-
developing a PDE model of the mountain hare — jaraystem. This is presented and
studied in Chapter 6.
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Chapter 2. Species abundance distributions and model ecosystem

resilience - interactivity relationships

Abstract

Despite the fact that the species abundance distib is a fundamental measure of
ecosystem structure and biodiversity, and the decadf debate over the relationship
between ecosystem stability and complexity, theatfbf inequity in species abundances
on stability - complexity relationships has remalra open question. Rarely do models
link a static property like the abundance distiitmutto the dynamical properties of
ecosystems. Here, we review different approachescésystem modelling using Lotka-
\olterra equations, emphasising the different aggions made in the way that Lotka and
\Volterra derived them. Then we synthesise analyticguments with numerical results on
the role of variance in abundance distributions emosystem stability - complexity
relationships. The analytical approaches are twtpl& tools that couple resilience (the
rate of return to a locally stable equilibrium ppstturbation) with complexity (measured
as interactivity) of any ecosystem whose equilitoridynamics are captured by a Jacobian
matrix. The results show that the resilience otaosystem can increase with interactivity
when the abundance distribution is characterized lskew towards many rare species.
Further, some natural distributions are more in@dpue than others, and we found that
more equitable ecosystems were on average mordiemesthan their less even
counterparts. This study suggests that changeletpecies abundance distribution are
likely to alter the dynamical properties of a reabsystem. We discuss further ways in
which abundance distributions may influence stgbticomplexity relationships, and the
limitations and extensions of the analytical apphes used.
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1. Introduction

The stability of model ecosystems has traditionafien related to ecosystem structure via
three forms of complexity: the number of links vifitthe ecosystem, the strength of those
links and species richness (May, 1972b). Specamess directly relates biodiversity to
stability and enables the study of the effect aidbsersity loss and gain on stability (e.qg.
Borrvall et al., 2000, Dunne et al., 2002). Theeotkey component of biodiversity is
species abundance and its relative distributiom vedely adopted measure of ecosystem
structure (Magurran, 2004). However, models thak lithe dynamic properties of
ecosystems with the relative abundance of specgeescarce (see Hubbell, 2001 ch3 for a
review).

A variety of relative abundance distributions haween observed, from highly
inequitable (e.g. a plant community in a subalgorest) to relatively equitable (e.g. a bird
community in a deciduous forest) (Whittaker, 19M@pdels of species abundance envelop
the full breadth of observed distributions, and tgacally split into statistical models that
describe patterns observed in real communities aokbgical models that reference an
ecological process in order to explain naturalriistions (Magurran, 2004). However,
most of these models are criticised for being sthgcause they omit any clear link to
population dynamics (Hubbell, 2001), leaving obwogquestions that remain poorly
addressed.

Classical dynamical theory in community ecologygédy based on Lotka-Volterra
equations (LVE), offers a means of exploring relaships between dynamic properties of
ecosystems and relative abundance distributionsdé&pite the LVE having comprised the
core approach to the theoretical study of ecosystgoperties for decades, these
relationships remain poorly understood. Recentlylsé and colleagues (2003, 2006)
developed a framework, by extension of the LVE,dadicting the abundance distribution
and other ecosystem properties. However, this yhisanot yet fully linked with ecosystem
stability. The primary aim of this chapter is teeube LVE to address the question of how
ecosystem stability - complexity relationships depen the equitability of relative species
abundances.

In this chapter we refer to model ecosystems vaitlally stable equilibria as stable,
and compare the relative stability of ecosystemsnisasuring their resilience to a
perturbation from equilibrium. Even though globahlkslity is a more satisfactory
definition of ecosystem stability (Jansen and Sigdhul998, Law and Blackford, 1992),
the tractability of local stability analysis of &ar (or linearised) differential equation
models has advanced the theoretical study of etmsyproperties. This chapter reviews,

synthesises and advances some aspects of thatigrodkn
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Reasoning that stability - complexity relationshipgy be affected by the relative
commonness and rarity of species takes us badietorigins of the stability - complexity
debate. A paradox at the centre of ecology wasestdny reports of negative relationships
between the probability of local stability and cdaxity in randomly filled Jacobian
matrices (May, 1972b, May, 1971), an observatioat tbhallenged the conventional
intuitive arguments developed by ecologists (EIM®58, MacArthur, 1955, Odum, 1953).
However these Jacobians were not as general akipned because all diagonals of the
Jacobian matrix had an identical value, therebyiragsy no difference in intraspecific
interactions within species. Led by the patternsmtbin real webs, equilibrium dynamical
theory has explored the stabilising effects of nmmdom interactions between species
(Haydon, 2000, Rozdilsky and Stone, 2001) and thistribution (Emmerson and
Yearsley, 2004, Neutel et al., 2002, Jansen andkétk 2003, Kokkoris et al., 2002),
rather than the stabilising effects of interactionithin species. Intraspecific interactions
are self-regulatory processes generated througdttddensity-dependent processes, and
under some conditions indirect feedback loops, ¢batribute to self-regulation which can
confer stability not only to individual populatiodynamics but also to community
dynamics (Yodzis, 1980, Saunders, 1978, SaunderBamin, 1975). If variation in the
diagonal elements of the Jacobian is permittedjilgtacan increase with complexity
(Haydon, 2000).

Interspecific variability in density dependencesas naturally under at least two
rationales: if some species are considered strosggfyregulating compared to others e.g.
autotrophs vs. heterotrophs (McCann, 2000), andhére is variation in species
abundances. Positive stability - complexity relasioips can result when variance in
intraspecific interactions stem from specifying aditdphs and heterotrophs (Haydon,
1994). However, the effect of variability in abunda has not been studied and, given the
ubiquity of inequity in the relative abundance digition of ecosystems (McGill et al.,
2007), may also permit stability to increase witmplexity. Haydon’s (1994) result, for
reasons discussed in 83ai, applies to two typeowiplexity, the number of links within
the ecosystem and the strength of those linkstlar@fore we restrict our investigation to
these, and combine into a single term ‘interagtiivhich we define precisely in 83ai of
the chapter).

There are at least two reasons why studies oflittksbetween relative abundance
of species and model ecosystem stability have menhlxlosely explored. First, species
abundances also feature in the interspecific intema terms of the LVE where their
distribution affects the variance and covariancacstre of the Jacobian with their own

potential effects on stability (Emmerson and YearsP004, Jansen and Kokkoris, 2003,
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Kokkoris et al.,, 2002). Second, the LVE can gererat wide range of abundance
distributions depending on the detailed distribngioof the underlying parameters that
describe the nature of species interactions (Wiksoal., 2003) thus making it difficult to
control variance in the abundances. In this stugyao encountered this problem and
apply a solution: a method that permits direct grssient of the equilibrium relative
abundance distribution. This method has been adapta handful of previous studies but
they have either assumed all species abundancesigentical and omitted to check the
plausibility of intrinsic growth rates (Chen andi@m, 2001), or have applied it to a very
limited set of trophic relations (Emmerson and ey, 2004, Pimm and Lawton, 1978).
Here we explore the resilience - interactivity tielaships of more generally structured
ecosystems with plausible species intrinsic growths.

In this chapter we offer an analytical synthesigpguted by numerical results on
the role of variance in the relative abundancerifisions on stability-interactivity
relationships of ecosystems modelled using the LMEstly (82), we clearly define how
we modelled our ecosystems, emphasising the disimbetween Lotka and \olterra’s
view of the LVE and how we measured feasibility @odsystem stability (following calls
for clarity in community modelling (Fowler and Lisglom, 2002)). Then we ask our
primary question in 83: do equitable ecosystemsehdiferent stability-interactivity
relationships to inequitable? Using numerical analgical approaches we show that they
do. In 83& we revisit the analytical argument put forwardHbgydon (1994). In 83ig we
present a novel analytical argument that showslgyaban increase with interactivity if
the diagonal elements of the Jacobian are notignin 83b, we show numerically that
variance in the diagonals of Jacobian matricesgemerate positive relationships between
average stability and interactivity. These resultsemphasise that assuming identical
values is unjustified and can potentially resulirisleading conclusions. In 83c we present
positive stability-interactivity relationships foecosystems with variance in their
equilibrium relative abundance distribution. Figallhe discussion (84) is split into two
parts. In 84a we discuss how the species abunddistdbution influences stability -
complexity relationships, and in 84b we discuss lihetations and extensions of the
analytical approaches used here for studying #abitomplexity relationships.

2. Modelling ecosystems using the Lotka-Volterra equations (LVE)
(2A) LOTKA VS. VOLTERRA: GENERALITY VS. ECOLOGICAL TRANSPARENCY
Randomly constructed model ecosystems (GardnerAahtdy, 1970, May, 1972b) were

embraced as a starting point and a simple matheahdtamework for investigating the
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organisational constraints within real ecosystehret tmay contribute to an association
between complexity and stability (Lawlor, 1978, Malghton, 1978). Soon after their
inception, fundamental ecological realities whitkeyt lacked were highlighted (Lawlor,
1978), most critically the feasibility of the egbiium point i.e. positive equilibrium
abundances (Roberts, 1974). In order to imposeeteiction of feasibility, a specific set
of equations had to be defined.

Although the formulations of Lotka (1925) and Voite (1926) share an identical
mathematical structure for the population dynaroias species in an ecosystem,

—‘:Ni(b,+2a1 ij fori=1,..n, Eqn 2.1

they were derived independently using two fundamigndifferent sets of assumptions
(Haydon and Lloyd, 1999, Pimm, 1982, Real and Lewif91). The application and
interpretation of the LVE depends on whose viewadopted: the model can either
represent the linearization of the per capita ghovettes of each species at a non-trivial
equilibrium (Lotka’s) or they are the globally amalble dynamic equations (\Volterra’s).
Lotka’s formulation has the often underapprecideature of generality: any system of
equations (not even the variables need to be $peécHdlthough here we assumNgeto be
relative species abundance) can be approximatedg(ugaylor expansion) around a
desired point. The drawback is that the paramdieasid g; are functions of derivatives
evaluated at a particular equilibrium; they are sgétem-wide and therefore cannot be
provided with any clear ecological interpretatidblterra, however, formulated the global
dynamics of an ecosystem as a set of non-lineatens, leading to parameters with clear
ecological meaningaf per capita interaction strengths,intrinsic growth rates) and with
which the whole state space dynamics could be exgldAssuming a particular form for
the dynamics within the full state space is of seuikely to be a gross oversimplification
of reality. In the same spirit as Emmerson & Yeayq2004), in this chapter the LVE are
applied to question the real world rather than exteuit.

(2B) MODEL FORMULATION
(2bi) Lotka’s formulation
The stability properties of the equilibrium poiM'f follow from the eigenvalues of the

Jacobian matrixz. For dynamics given by the expression
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OINi—NF(N)
dat

where thd~; are the per capita rates of increase for eachiespebe elements @ are the

partial derivatives ofiN/dt with respect td\; {g; =0(N;F) /0N, ‘Ni:N} )

91 Y - Oy
G = 9.21 9.22 9.21 '
gnl gnZ e gnn

For Lotka’s ecosystems, the functions describing pler capita rates of increase are

unspecified, allowing us to specify the elementshaf Jacobian directly. Withous; the
equilibrium point is indeterminate and cannot beakied for feasibility N, > 0).

Lotka’'s ecosystems were used to conduct a numestaly of the effect of
variance in the Jacobian diagonal elements onenesé - interactivity relationships (83b).
Ecosystem interactivity (see 83ai for a formal digiton) was controlled by the number and
magnitude of Jacobian off-diagonal elements, andystem resilience is formally defined
in §2bv.

(2bii) Volterra’s formulation

\olterra’s ecosystems were used to conduct a ngalestudy of the effect of variance in
the equilibrium species abundances on resiliennteractivity relationships (83c). In this
formulation, the per capita growth ratds)(are specified in Eqn 2.1 and the Jacobian

matrix takes the form:

ailN; alZNl anN1
G= alez azzNz amNzl

ayN, a,N, -~ a,N,
The equilibrium point is determined by setting Exyh to zero (in matrix form\" = -A™b,
whereA is the matrix of per-capita interaction strengémsl b is the vector of intrinsic

growth rates). Typically, the parameters, the el@s@f A andb, are assigned and the

feasibility of the equilibrium abundancé checked. However, this approach does not
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permit control over variance in abundance. An ahéve is to assign a feasibie andA,
and calculatédb (Chen and Cohen, 2001, Emmerson and Yearsley,, Z8®4nerson and
Raffaelli, 2004). By setting all per-capita intrasfic interactions ;) to identical values
(here -1) variance in the diagonal of the Jacolsatietermined solely by the abundance
distribution. This also controls for the potentyalitabilising effect of variance in the
distribution ofa; values (Haydon, 1994).

We adopted this method but adapted it to permitrobover interactivity as well as
abundances, assigning the off-diagonals elementheflacobiang() rather than per-
capita interspecific interactionsy;). The Jacobian matrix of our \olterra ecosystems

therefore took the form:

=N, g, - Oy
o< N o
On O _N;

The a; parameters were recovered by calculatingAhmatrix (= [diag\")]'G). Theb;
values were then computetd € -AN") and checked for plausibility (autotrofh > 0,
heterotropty; < 0: Pimm (1982); Emmerson & Yearsley (2004)).

(2biii) Model ecosystem size and structure

As a compromise between structural generality amdpaitational tractability, ecosystems
were modelled with ten species £ 10). They contained paired interactions of comesu
and resource species and a cascade trophic studéined by no loops (Cohen and
Newman, 1985) or discrete subwebs. The cascadbkit¢rgpucture fits webs where body
size tends to equal trophic level (Warren and Lawti®87, Cohen et al., 1993) and was
constructed by placing negative effects of consgnmmn resource species above the
diagonal of the Jacobia@. The number of interactions between species divioe the
number of topologically possible links (excludingnaibalism) gave the connectarCef

the ecosystem. The binary connectance mé&tnxas checked for no discrete subwebs (all

@100

elements of the matri were non-zero). The strength of an interspeaifieraction was

measured as the magnitude of an off-diagonal elemiethe Jacobiarﬂgij‘#j). In the

numerical studies, interactivity was varied by dagjng connectance and mean absolute

interspecific interaction strengtl\'gﬂ _, MAIIS for brevity).

i#]j
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(2biv) Species abundance distributions

Variance in the diagonal elements of the Jacob@mi) for Lotka’s ecosystems, and
variance in relative equilibrium abundances fort®oh ecosystems, was generated using
the beta probability density function (Fig 2.1).eTheta distribution is continuous with a
finite range between 0 and 1, and by varying onampater we were able to generate
distributions which were equitable (all identicatpd low inequity (var = 0.008) or high
inequity (var = 0.041). Assigning uneven distribas was undertaken hierarchically, such
that species one in the model ecosystem was assigegreatest abundance and speties
the smallest. In this way, species which were numedatory than prey had a smaller

Jacobian diagonal element or abundance.

(2bv) Ecosystem stability

The dynamic local stability of the equilibrium poils described by tha eigenvalues of
the JacobiarG: stable if all real parts of the eigenvalues aegative. One of the long-
standing issues in the stability - complexity debhas been over the correct sampling
space for Jacobians (Haydon, 1994, Saunders, Ba8)ders and Bazin, 1975). Here we
sampled only those with stable equilibria and camgaetween samples (where some
aspect of the structure was changed) using thepaalof the dominant (most positive)

eigenvalue ReA,). Re/, is related to the rate of return of the locallgdé system to

equilibrium following a (small) perturbation, deifiig the ‘resilience’ of an ecosystem

(McCann, 2000). The more negative the dominantreigiee of the model ecosystem, the

faster its return rate and therefore the more iegsilit is to perturbation. Resilience is

affected by a trade off between positivity and niegs in the real parts of all eigenvalues

because the sum of the real parts of eigenvaluestherefore the mean of the eigenvalues,
n n

is determined by the sum of the tra(cE Re( )= Z g; J . We wanted the mean to stay the
i=1 i=1

same for each Jacobian and therefore the tracestmaslardised to ensure its sum was

always -1.
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3. Do equitable ecosystems have different stability-interactivity relationships

to inequitable?

(3A) ANALYTICAL STUDY OF THE EFFECT OF VARIANCE IN THE DIAGONAL ELEMENTS OF THE JACOBIAN

ON RESILIENCE - INTERACTIVITY RELATIONSHIPS

We first looked at how resilience may be affectgdvariance in the diagonal elements of
Jacobian matrices (va(). Here we describe two analytical results whicbvg that when
var(gi) > 0, the resilience of a complex system is ablentrease with interactivity. The
first is the well-established Gersgorin disc theang we outline the relevant aspects of the
theory. The second is the variance of the distidloubf the real parts of eigenvalues, a

novel approach based on an equation introducecebing (1975).

(3ai) Gersgorin disc theory

Gersgorin disc theory describes the distributioeigénvalues in the complex (imaginary-
real) plane (Gersgorin, 1931). It was developed981 by Semyon Aranovich Gersgorin
(1901 —1933), a Soviet (born in Belarus) mathenaatjcalthough only relatively recently
applied to community ecology for the first time {(fthara, 1983). Elements relevant to the
study of stability - complexity relationships arevisited here (Haydon, 1994, Haydon,
2000), whilst proofs and other aspects of the theamn be found in Varga (2004) and
Brualdi & Mellendorf (1994). For an x nJacobian matriG there aren Gersgorin discs
D;.....D,, one corresponding to each row. A Gersgorin dssdefined over the complex
plane such thdD; is centred at the value of the diagonal elemgptdnd has a radius;)
which is equal to the sum of the absolute valuagt®bff-diagonal elementgj in theith

row:

n
L=y ‘gij‘ Eqn 2.2
i=1

j#i

Thus the positions of discs are set by the diagetehent whereas the radii of discs

depend on the number and magnitude of off-diagelehents (Fig 2.2a). We define the
mean radiusK) of Gersgorin discs as the interactivity of anscbem.

Three theorems shape the distribution of eigengatiig¢he Jacobian matrix in the
complex plane. The first is Gersgorin’s first cgctheorem which states that every
eigenvalue must lie within at least one of the @Gern# discs. The second is Gersgorin’s
second circle theorem which states thatof the discs form an isolated connected domain

then preciselys eigenvalues are found within this domain (Fig 212)us Gersgorin discs
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define an eigenvalue inclusion region. The thirdhiat the sum of the real parts of the
eigenvalues must equal the sum of the tré% Re( ):igii) which intuitively
i=1 i=1

constrains the eigenvalues to balance about thigecehall discs with respect to the real
axis. Thus, when the diagonal terms are identical(d@i) = 0) and discs are centred in the
same place, the dominant eigenvalue must be maitiygothan, or at most equal to, the
diagonal value. However, when the discs are postodifferently (vagi) > 0), the
dominant eigenvalue can be more negative than ahewof the most positive diagonal
element. The GerSgorin discs provide bounds on hegative the dominant eigenvalue,
and therefore how resilient the ecosystem, can be.

To usefully apply these theorems to eigenvaluegaafsystems with increasing
interactivity requires the numerically supportedsiamption that the variance of the
distribution of the eigenvalues within a disc iogortional to the radius of the disc
(Haydon, 1994). In an ecosystem where speciesatt@nore strongly or with a greater
number of other species, the GerSgorin discs vallehlarger radii. When the discs are
centred in the same place (\@)(= 0), as the radii of the discs increase, ratilg/stems
can become less resilient but not more so. In ashtihen discs are centred at different
points along the real axis (vgff > 0), the trade off between positivity and negatiin
the real parts of eigenvalues allows the dominaat part to become more negative with
increasing disc radius. In this way, ecosystemlieesie can increase with ecosystem
interactivity (Haydon, 2000).

(3aii) Variance in the distribution of real parts of eigenvalues

Levins (1975) presented a formula for the variaoicthe distribution of eigenvalues of a
matrix (for derivation see Jorgensen et al., 200d)ich we apply to the Jacobian matrix
G:

var(A)= var@; J+ (- 1)g g forij =1,.n Eqgn 2.3

wheren is the matrix orderg; are the diagonal elements;, (i # j) are the off-diagonal

elements and is the spectrum (vector of eigenvalues)Gf Since eigenvalues can be
complex numbers, imaginary parts can causely&w(take negative values. However, it is
the real part of the dominant eigenvalue that datees whether a system returns to
equilibrium and Levins’ formula can be modified és&ppendix for derivation) to give the

variance in the real parts of the eigenvalueG:of
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var(Red )= vargy; ¥ 0- 1 g + (Im §  forij, =1,.n. Eqn 2.4

where Im4 are the imaginary parts of the eigenvalues. Intely, if the mean of the
eigenvalues is fixed, we expect, in general, tts part of the dominant eigenvalue, and
therefore ecosystem resilience, to decrease aRe@r{ncreases.

Using Egn 2.4, we see that var(Recannot take a negative value, allowing clearer

comprehension of how each of the terms contribotethe sum. The second term

((n—l)gij Yi ) encapsulates all three traditional measures ofptmxty (the number of

interacting species, the degree of connectanceeleetwspecies and the strength of these
interactions), and will increase in magnitude witbreases in any of them. The sign of this
term depends on the types and strengths of inteifgpeteractions ¢;). Competitive or
mutualistic interactions will contribute positivealues whilst consumer-resource
interactions will contribute negative values. Ire tabsence of the third term (i.e. if the
eigenvalues are all real numbers) then increasiegnumber or strength of consumer-
resource interactions provides a necessary anitisaff condition for positive resilience -
complexity relationships. However when eigenvalaes complex, increasing consumer-

resource interactions can only reduce variancehen real parts of eigenvalues if the

associated increase in the third term, the measqafired imaginary partdmA)?, is
smaller than the decrease in the second term.Hbtigntuitive, or clear from GerSgorin
disc theory, under which circumstances this would thue. We therefore employ a
numerical study to investigate whether the behavauthe eigenvalues can be readily
understood in the ways suggested by these theofdrasmaginary parts render Eqn 2.4 a
necessary but insufficient condition for increasmagilience with complexity of model

ecosystems.

(3B) NUMERICAL STUDY OF THE EFFECT OF VARIANCE IN THE DIAGONAL ELEMENTS OF THE JACOBIAN

ON RESILIENCE - INTERACTIVITY RELATIONSHIPS

Model ecosystems were generated using Lotka’s flationm of the LVE (see 82bi). For
different values of Jacobian diagonal variance iateractivity (MAIIS and connectance)
we sampled 1000 stable Jacobians and recorded/eatdr of the real parts of eigenvalues
(Rel). We present these data in Fig 2.3 in three wiaigs 2.3i-iii (columns 1-3) show the

distributions of real parts of the dominant eigdnga(ReA,) providing an impression of

the range of resilience; in Figs 2v3(column 4) these distributions are summarisedey t
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average resilienceRe/, ; Figs 2.3v (column 5) show the mean variance in the full @ect

of the real parts of eigenvaluesr(Red ).

The distributions of real parts of dominant eigdnga (Figs 2.3-iii) confirmed the
analytical result that when variance is presenthie Jacobian diagonal, locally stable
systems are able to be more resilient when intergcis greater. Average resilience -
interactivity relationships generally reflected sthiFigs 2.3v). We also observed that
average resilience tended to be higher when thex® lawer variance in the Jacobian
diagonal (Figs 2.8/, and the variance in the real parts of eigenwlsbowed
qualitatively similar patterns to resilience (FR)8v).

There is clearly complexity in the results showrFig 2.3 which requires further
consideration. First, in Figs 2.3xcaverage resilience levelled-off to the same medunev
as connectance was increased. This suggests thragaveigenvalue behaviour was
governed similarly in these systems. We noticeg #t@red the common feature of having
large discs united as a single domain that extermexnt into the positive half of the
complex plane (Table 2.1). As a result of samplordy stable Jacobians, this would
restrict the most dominant eigenvalue to fall witld constant region of the real axis
despite increasing connectance. This would alsdagxpvhy we saw average resilience
level-off for high varg;) at high values of MAIIS (Table 2.1, Fig 2.3vecircles).

Second, when MAIIS > 1, for vag() = O (Fig 2.3.av, asterisks), we observed a
positive resilience - interactivity relationshipathconflicted with GerSgorin theory. As
MAIIS was increased from 1 to 1000, the variancéhim real parts of eigenvalues tended
to zero (Fig 2.3.a@) revealing that all real parts of eigenvalues @vged on the diagonal
elements @ = -0.1). In Fig 2.3.c we set MAIIS equal to oneinvestigate further, and
found that average resilience levelled-off as cotaree increased (Fig 2.3W. and
variance in the eigenvalues did not tend to zerig (E3.cv). We deduce that the
unexpected result was caused by an increase mg#treather than number of interactions,
and return to discuss this finding in 84b.

(3C) NUMERICAL STUDY OF THE EFFECT OF VARIANCE IN THE RELATIVE ABUNDANCE DISTRIBUTION ON
RESILIENCE - INTERACTIVITY RELATIONSHIPS

Model ecosystems were generated using Volterraradtation of the LVE (see 82bii). As
for Fig 2.3, for each measure of interactivity (neatance and MAIIS), the vectors of real
parts are presented in three ways: Figd-#i4(columns 1-3) show the full distributions of

real parts of the dominant eigenvalugefl,;) providing an impression of the range of
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resilience; in Figs 2.4z (column 4) these full distributions are summaribgdhe average
resilience,ReA, ; Figs 2.4v (column 5) show the mean varianc@yr(Red ).

We did not find feasible ecosystems where gar(vas zero or intermediate and
interactivity was low (Fig 2.4a). (It is ironic th&easible systems with no variance in
intraspecific interaction strengths, as assumetay (1972b), are difficult to find dbw
levels of complexity.) The resilience - interadiyvirelationships for different relative
abundance distributions (Fig 2.4) showed stronglaiities to those found for varying the
diagonal elements of Jacobians generated usingaisofirmulation of the LVE (Fig 2.3):
the distributions of dominant real parts showed tlaaiance in the abundance distribution
can allow locally stable systems to become mordiees when interactivity is greater
(Figs 2.4i-iii ); patterns in average resilience (Figsi2)4and the variance in the real parts
of eigenvalues (Figs 2¥). generally reflected this; and average resiliermeled to be

higher when abundance distributions were more abj@t(Fig 2.4v).

4. Discussion

(4A) THE SPECIES ABUNDANCE DISTRIBUTION AND STABILITY - COMPLEXITY RELATIONSHIPS

The main aim of this chapter was to explore howsgstem stability - complexity
relationships depended on the evenness of spduigglances. Despite the fact that one of
the universal laws of ecology is that ecosystemstaio many rare and few common
species (McGill et al., 2007), and the decadesatfate over the relationship between
ecosystem stability and complexity (McCann, 2008 effect of inequity in species
abundances on stability - complexity relationships remained an open question. In this
chapter we modelled interacting species using tlessic LV equations, measured
complexity as the ecosystem interactivity (connectéaand mean interaction strength) and
measured stability as the resilience of ecosysteEmgerturbation from a locally stable
equilibrium. In LV model ecosystems, the equilibniabundance distribution lies on the
diagonal of the Jacobian matrix where it contributespecies self-regulation terms, and in
the study of stability - complexity relationshighe diagonal elements have traditionally
been assigned identically (Gardner and Ashby, 18¥dy, 1972b). Firstly, we presented
analytical arguments based on GerSgorin disc thandyvariance of eigenvalues to show
that resilienceanincrease with interactivity in the general casa the diagonal elements
were inequitable. Secondly, we presented suppontagerical results which further
showed that ecosystem resilience canaverageincrease with ecosystem interactivity.
Then, we specifically attributed inequity in theaglonal elements to differences in
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equilibrium abundances and presented numericaltseshowing that ecosystems with
even abundance distributions had different resiben interactivity relationships to
ecosystems with uneven distributions. We found tesilience increased with interactivity
in LV model ecosystems where the abundance disimibwas strongly skewed towards
rare species.

Whilst variation in species abundances is ubig@it@cross communities and
ecosystems (McGill et al., 2007), there are difierdegrees of inequity. Although these
differences may depend to a large extent on theplsagn frame and definition of
community (Loehle, 2006), empirical links betweerevenness and various characteristics
of communities are well documented. More even ithstions have been linked to
communities which are later in succession, lesgestdrl to human disturbance and less
open to immigration (McGill et al., 2007). The mb@deosystems in this chapter were
purposely constructed to allow stability to be dile comparable (see §82bv). We found
that more equitable ecosystems were on average negikent than their less even
counterparts.

The species abundance distribution is typicallyligtt as an emergent community-
level property of the LV ecosystem model, like lieaice in this work. We initially tried to
study resilience - interactivity relationships thgy, by generating a pool of ecosystems
from randomly parameterised interaction strengtig iatrinsic growth rates (see 8§2bii)
and separating out the most equitable and inedeitabosystems. This approach was
abandoned because these ‘extremes’ were rarelyetezed, and an alternative approach
was adopted where variance in abundances couldristied. Recently, however, Wilson
and colleagues (2003, 2006) have made it possibdnalytically approximate the mean
and variance of the abundance distribution as atifum of the statistical properties of
interaction parameters (Wilson et al., 2003). Theguations link species abundance
distributions to the interactivity of LV ecosystem$¥hey have found that species
abundance distributions were relatively insensitivevariation in per-capita interspecific
interactions &;) (Wilson et al., 2003), but that stronger mean-gagita interspecific
interactions &;) resulted in less even communities, whether thesee competitive
(Wilson et al., 2003) or resource-consumer commesli{Wilson and Lundberg, 2006).
The picture is complicated because their less ali@éitcommunities also contained fewer
species, and species richness is an element ofsteaos complexity which has been shown
to have strong effects on resilience (lves and €&agy, 2007, McCann, 2000).
Nonetheless their results imply that interactivitt only affects resilience, as shown here,

but also variance in the abundance distributionclviiself affects resilience and generates
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quantitatively (or even potentially qualitativelyifferent resilience - interactivity
relationships.

When ecosystems are modelled using Lotka’s locahditation of the LVE the
only constraints placed on the Jacobian matrix thee distribution and structure of
elements as directly assigned by the investigatbereas, when using Volterra’s global
formulation the investigator is able to select be@os on the basis of feasibility of the
equilibrium abundances and plausibility of intrmgirowth rates. We found that feasible,
plausible \olterra-type Jacobians showed no diffeee in resilience - interactivity
relationships from feasibly indeterminate Lotkadyjacobians. This suggests that feasible,
plausible Jacobians and feasibly indeterminatehlans had the same structure or, if their
covariance structures were distinct, it did notnse® affect resilience - interactivity

relationships.

(4B) LIMITATIONS AND EXTENSIONS OF THE ANALYTICAL APPROACHES FOR STUDYING STABILITY -
COMPLEXITY RELATIONSHIPS

A question that arises with using Gersgorin diseotly to explore ecosystem stability is
whether systems with non-zero variance in theiol@mn diagonals (vagf) > 0) and large
discs relative to this variancg &> var@;)) (so that superficially they appear to be centred
in the same place) have similar stability to systemith large discs whichre centred in
the same place (va) = 0). This appeared to be the case when largs diere generated
by increasing the number of interactions but noemvitarge discs were generated by
increasing the strength of interactions. We comjecthat this conflicting result may be
explained because Jacobians with all diagonal elesridentical and magnitudes smaller
than off-diagonalsdj) are associated with eigenvalues that behavethkee of skew
symmetric matrices.

A matrix M is skew-symmetric (or antisymmetic) if all diagbmatries are zero
and its transpose is also its negatii! = -M. The eigenvalues of skew-symmetric
matrices are purely imaginary (or zero). This tlyeextends to diagonals that are all the
same scalar value (k): & = (M+kl) theni(G) = A(M) + A(kl) wherel is the identity
matrix, and eigenvalues Now the eigenvalues have a non-zero real paralok k. In our
Jacobians there was a further difference that gamerspecific interactiongy() were not
of equal strength ¢; # g;). However, we found that a large difference in niagle
between the sum of the off-diagonal elements atehked to reduce the variance in the
real parts of the associated eigenvalues, in alainfashion to the distribution of

eigenvalues of a skew-symmetric matrix.
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Although this finding has not been reported presiguits ecological relevance is
questionable because ecosystems with identicalaspécific, and sign-symmetric
interspecific, interaction strengths are not réalisHowever, skew-symmetric matrices are
shown here to exist in the model ecosystems gesteray both Lotka and \olterra’s
formulations of the LVE which underpin much comntyndynamical theory. Further,
Jacobian matrices that approach skew symmetry tdbiawe eigenvalues that conform to
the assumption that the variance of real partsgenealues increase with GerSgorin disc
radius. This is a critical assumption in the apglan of GerSgorin disc theory to the
stability - complexity debate.

GerSgorin discs are an example of an eigenvaldasion set: they define an area
in the complex plane in which the eigenvalues niestBrauer Cassini ovals (Brauer,

1947) are another eigenvalue inclusion set thae met yet been applied in an ecological

context. The theorem has two parts. Part |: formayrix G :[gij]D(C”X”, n=2, and any

eigenvalue in the spectrum (vector of eigenvaloés) (A OspecG)),
(1) A0K; (G)={z0C:|z- g|tfe- g;|< ry} Eqn 2.5

whereKj is the called thei,{)-th Brauer Cassini oval for the matiix g; andg; are thedth

and jth diagonal elements angl andr; are the sums of the absolute values of the off-
diagonal elements in théh and jth rows (equivalent to GerSgorin disc radidqn 2.2).
Part Il: as Eqn 2.5 is true for eatin spe¢G), then

(2) speG) 0K(G) = |J K(G),

where/C is the Brauer set. The advantage of Brauer Cassialis is that they always

define an area that is smaller than the GerSgasicsda simple example is given in Fig

2.5) and may offer novel qualitative insights. leaample K; can consist of two disjoint
components (Brauer Cassini ovals may not be oin‘a{lg) - g; ‘ >2.r [, (Varga, 2004).

Thus when ecosystem interactivity is low and var&im intraspecific interactions is high,
the trade off between positivity and negativitythie real parts of eigenvalues may be much
more restricted, and therefore potential resiliemceh lower, than predicted by GerSgorin

disc theory (Fig 2.5). The disadvantage is the watmn for large ecosystems is
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n .. . - .
r% Cassini ovals compared withGerSgorin

computationally expensive since there éz

discs.

The equation for the variance in the distributiohreal parts of eigenvalues
(var(ReAd), Egn 2.4) is a simple mathematical argument #ags when variance in the
intraspecific interaction strengths (W@ is greater than zero, the resilience of an
ecosystem is able to increase with complexity. Thads not just for ecosystem
complexity as measured by interactivity (connectaand mean interaction strength) but
also for the third traditional measure of ecosystemmplexity, species richness, although
this has yet to be tested numerically. Eqn 2.4 siggests how to modify the off-diagonal
structure in order to minimize the value of thelrpart of the dominant eigenvalue
(maximise resilience). Firstly, for a given setiterspecific interactions, resilience can be
maximised by decreasing variance in the intraspedifteractions, vag;). Secondly,
conditional on a fixed value of va(, increasing the number or strength of competitive
mutualistic interactions will only decrease resitie whilst it is only by increasing the
number and/or strength of consumer-resource irtierec that resilience can be

maximised.

We have presented two lines of analytical argumard supporting numerical
results showing that the resilience of LV ecosysteran increase with their interactivity.
The use of LV equations and measuring stabilitynfien equilibrium viewpoint are open to
criticism. Further, we have only considered oneetgb interaction between species that
occur in ecosystems. (Interestingly, the analytemguments conflict in their predictions of
how different interaction types (mutualistic, cortippee) should influence resilience -
interactivity relationships and it would be intdieg to reconcile these two theories.)
Nonetheless, we have linked the stability of LV ®&tems with the equilibrium species
abundance and shown that ecosystem resiliencencagase with interactivity when the
abundance distribution approximates the ubiquitoatiral pattern, skew towards many
rare species. This work suggests that changesetsbcies abundance distribution are
likely to alter the dynamical properties of a reabsystem. The LV framework could offer
a means of exploring the loss of biodiversity, #rnts of changes to abundance

distributions, on ecosystem stability and its irogtions for conservation.
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Table 2.1. Spillover and union in Gersgorin discs. RangedM#fllS over which: (A)

there was union of discs into a single domain; @YySgorin discs were large enough for

one or more to spillover into the positive quadraetels of‘gij ‘#j were determined from

Jacobians as sampled for Fig 2.3a and Fig 2.4atheckfore can be used in the

interpretation of results presented in these figuBee Fig 2.2a for an example of spillover

and Fig 2.2b for an example of union and spillover.

Variance in Jacobian diagonal
0 Intermediate (0.008) High (0.041)
(A) union 0.001-1000 0.1-1000 1-1000
(B) spillover 0.1-1000 0.01-1000 0.001-1000
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0.7

!

abs(Jacobian diagonal, gﬁ)
or equilibrium abundances, N.

2 4 6 8 10
Ranked species number
Figure 2.1. Equitable and inequitable relative distributiorsed to assign the absolute
values of the Jacobian diagonal in 83b and equilbrspecies abundances in 83c. Three
levels of variance in these distributions were nilede zero (asterisks); low (variance =
0.008, no marker) and high (variance = 0.041, apetes). Distributions were modelled
using the beta probability density function (sejtit=1, W=1 for zero variance W=3 for

low variance, W=10 for high variance).
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Figure 2.2. GerSgorin discs in the complex plane. (a) An exdamphere discs are
separated and form isolated domains. The isoladisl annotated to illustrate that each
discD; is centred at the diagonal element ofitheow in the Jacobian matrig;(, crosses)
and has a radius;) equal to the sum of the absolute values of theliafjonal elements in
theith row. If a disc does not overlap to form a coneeéacdomain, then the associated
eigenvalue (dots) must lie within the disc, otheemvit could lie anywhere within the
domain created by the overlapping discs. (b) Am®da of a connected domain with an

empty disc. Jacobians were generated using Lofkasulation with ‘gij ‘iij =0.1,C=

0.3, varg;) = 0.041.
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Figure 2.3. Effect of variance in the diagonal elements oblgtalacobians (vag()) on
the relationship between model ecosystem resili¢€Resl,) and interactivity as measured
by: (a) MAIIS whereC = 0.3; (b) connectand@ where MAIIS=0.1 and (c) connectanCe
where MAIIS=1. {-iii) Distributions of real parts of dominant eigen\esyReA,) of 1000
stable Jacobians where) yar@i) = O; (i) var@i) = 0.008 andiii) var(@;i) = 0.041. {v)

Average stability Red, ) measured as the meah $EM) of the distributions shown i (

iii). (v) Mean variance £ SEM) of the real parts of all eigenvalues \Re@d ). Var(i) = 0
(asterisks), vagf;) = 0.008 (no marker) and vaj = 0.041 (circles). SEMs are small and
not clearly visible. An algorithm ensured the meand variance of interaction strengths

remained constant across connectance levels (@hiast and Kokkoris, 2008).
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Figure 2.4. Effect of variance in the equilibrium relative alance distributionN’) on
ecosystem stability at different levels of interaty. (a) Interactivity measured as MAIIS
with C = 0.3. For each x = [-2 -1 0 1 2] where MAIISZ1@e searched up to 10000
candidate Jacobians for one that was stable, feaail had a plausible vector (see
82bii). This established the range over which wentlsampled 1000 Jacobians at six

intervals. (b) Interactivity measured as connectanbere MAIIS=0.1.i¢iii ) Distributions

of real parts of dominant eigenvalueRe(,) of 1000 Jacobians wheré) gar(N") = 0

(i) var(N") = 0.008, andiif) var(N") = 0.041. iv) Average stabilityﬁ) measured as
the mean £ SEM) of the distributions shown ii(i). (v) Mean varianceX SEM) of the
real parts of all eigenvalues v&éA). Var(N') = 0 (asterisks), vaN') = 0.008 (no
marker) and vam{’) = 0.041 (circles). SEMs are small and not cleasible. An
algorithm ensured the mean and variance of interastrengths remained constant across
connectance levels (Christianou and Kokkoris, 2008jtially for each level of
interactivity we searched through up to 10000 maaeisystems looking for a plausible
vector of intrinsic growth rate®) with three autotroph(> 0) at the base of ecosystems.
This established the range over which we then saasnp000 Jacobians at six intervals and

recorded each vector of the real parts of eigemsa(Rel).
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Figure 2.5. Brauer Cassini ovals (broken lines) and Gersgdisas (solid lines) for the
-1 -0.25 -0.2

matrix |0.25 -0.5 -0.25. The eigenvalues (dots) were [-0.25 -0.5 -0.75he T
0.25 0.25 0

diagonals of the matrix are the centres of thesdasw foci of the ovals (crosses). In this

example each Brauer Cassini oval does not formvahsthape but two figure of eights and

two small circles. The ovals form a smaller eigénganclusion region than the Gersgorin

discs. Ovals calculated with assistance from Gil{2009).
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Appendix: derivation of the variance of eigenvalues in terms of their real and

imaginary parts
Y
var(A) =A% -4

(1) Finding the mean of eigenvalues

_ A
A= Z LAt A4, for j=1,2.n
n n

When adding complex numbers, the real parts arecaddparately from the imaginary
parts:

T (Red, + Rel, + ..Ra )+( Ind,+ ImM,+ ..IM)i

n

When dividing a complex numbea}Jr;bI :E+Pi , therefore

7= (ZRe)I) . (z Im/1)i

If the complex variables are eigenvalues, then dbmplex eigenvalues will come in

conjugate pairs. The mean of the imaginary parthefeigenvaluegy_ ImA/n)i will be

zero, and therefore the mean eigenvalue will etheamean real part:

/T:(ZReAj).

(2) Finding the vector of squared eigenvalues

AZZZMMJ-)
n

If 4;is a complex eigenvalue, it will have a conjug?eiteFor any complex conjugate pair
AZ+A7 =2(ReA ¥ - 2(ImA, ¥

Therefore

> (17%)=2((ReA ¥) -2 (m4; )

- Z((Re)lj )2) Z( (Im4; )2)

n n

(3) The variance of eigenvalues A in terms of the variance of real parts and the

mean of squared imaginary parts
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2
var(/1)=Z(R:/1)2—(Z Re)lj -2 (Im )2

n n

var(1)= var(Rel (I §

(4) The variance of the real parts of eigenvalues

var(d)=var@; )+ (- 1)(g g ) (see Jorgensen {, 2000 #49} for derivation)

var(Red )= varg  (Im ¥

var(Red )= varg; ¥ 0- DG g * (Im §



35

Chapter 3. On the generality of stability - complexity relationships in

Lotka-Volterra ecosystems

Abstract

Ecologists aim to understand how complexity pessistnature. In theoretical ecology,
local stability is a widely used measure of ecamyspersistence and has made a major
contribution to the ecosystem stability - complgxitebate over the last few decades.
However, permanence is coming to be regarded asor@ msatisfactory definition of
ecosystem persistence and has relatively receatigrbe available as a tool for assessing
the global stability of Lotka-Volterra communitieddere we document positive
relationships between permanence and Lotka-\Voltewd web complexity and report a
positive correlation between the probability of dbcstability and permanence. We
investigate further the frequency of discrepancyrifauted to fragile systems that are
locally stable but not permanent or locally unstagystems that are permanent and have
cyclic or chaotic dynamics) and the causes of nenmranence at the boundary of the state-
space and correlate them to aspects of compléalgy.find that locally stable interior
equilibria tend to have all locally unstable bourydequilibria. Since a locally stable
boundary is inconsistent with permanent dynamius, ¢an explain the observed positive
correlation between local interior stability andmpanence. Our key finding is, at least in
Lotka-Volterra ecosystems, that local stability nieeya better measure of persistence than

previously thought.
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Introduction

Ecologists aim to understand the conditions undbichva community of interacting
species survives as a whole and in the long terrmprdctise, much of the research into the
question of long term coexistence of species hgarded this as an equilibrium problem.
From a theoretical perspective it has been thetapdity of local (also known as
asymptotic or neighbourhood) stability analysist thas ensured the pervasiveness of the
equilibrium view point: ‘even if other definitiors stability are more attractive, if they are
not tractable then the ecologist cannot adopt ttvim profit’ (Hutson and Schmitt, 1992).
The deficiencies of local stability analysis arenmanous and well known (Anderson et al.,
1992, Haydon, 1994, Law and Blackford, 1992, Berletnval., 2004) and there is little
reason to believe that the natural world is in Bguiim. A more satisfactory definition of
ecosystem stability is a global property callednpammence, which requires only that
densities of rare species tend to increase. Thé&samaof permanence was, however,
intractable until recent attention from mathemams (reviewed in Hofbauer and Sigmund,
1988) enabled Law and colleagues (Law and Blackf@a892, Law and Morton, 1993,
Law and Morton, 1996) to provide a non-technicasaliption of a method for Lotka-
\Volterra (LV) communities that has made permaneaialysis accessible as a tool to
ecologists.

Despite permanence analysis being made tractabéedimgists for more than a
decade, there are only a handful of theoreticalmamity studies in which permanence has
been used as well as, or in place of, local stghiEmmerson and Yearsley, 2004, Chen
and Cohen, 2001, Vandermeer, 2006, Kristensen,)2@& area where permanence will
contribute to theoretical community ecology is e tbongoing debate over the relationship
between stability and complexity of ecosystemsthim 1970s, theoreticians reported that
three measures of complexity, species richnesstl@dhumber and mean strength of
interactions between species, decreased the phbpati local stability in randomly
parameterised large complex systems (May, 1972kdr@a and Ashby, 1970). Recently,
Chen & Cohen (2001) were the first to systematjcaktplore permanence in a similarly
general framework. They studied two of the measwiesomplexity, the number of
interactions and species, and found that increasdsoth reduced the probability of
permanence in ecosystem models. However, the tieadrecology literature based on
local stability has moved the stability - complgxitebate on a great deal since the early
1970s, finding numerous conditions under which dexipy/ can be locally stabilising as
well as destabilising (Borrvall et al.,, 2000, Jansand Kokkoris, 2003, Rozdilsky and
Stone, 2001, Haydon, 1994, Haydon, 2000, Neutal.e2002). The aim of this chapter is

to bring closer together the vast literature onalostability and the nascent use of
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permanence, which we attempt in three ways. Farstdetermine permanence-complexity
relationships in model ecosystems of enhanced galloplausibility (for example, Chen
& Cohen (2001) assumed equal equilibrium speciem@nces and did not ensure the
presence of autotrophs), and by studying the efféc$pecies interaction strengths on
permanence. Second, we investigate the match awdedancy between predictions of
local stability and permanence, and third, we stidyreasons for non-permanence.

The mean interaction strength is a traditional mea®f ecosystem complexity
(May, 1972b) and we relate it here to permanencéhi® first time. However, taking the
average neglects the natural variability of intéoac strengths. In real ecosystems the
range of interaction strengths can span nine omfensagnitude (Wootton, 1997) and the
distribution is commonly observed to be skewed towaveak interactions (Fagan, 1997,
Goldwasser and Roughgarden, 1993, Paine, 1992,tdpdi997, De Ruiter et al., 1995).
Such variability has been identified as an impdr@eterminant of stability under some
conditions. In competitive communities, greateriaace in strengths of competitive
interactions can increase the probability of stgbflansen and Kokkoris, 2003). The non-
random patterning of weak interactions in omniverdoops increases local stability in
empirical food webs (Neutel et al., 2002) and peremze in special sets of trophic
relations (Emmerson and Yearsley, 2004). Furthem-equilibrium dynamics were
stabilized when complexity was added via a spe@essumer) with weak interactions
(McCann et al., 1998). It is unclear however whethe skew towards weak interactions
will influence permanence in more generally struetiecosystem models.

How much do predictions differ between local sigpbibnd permanence? Using
two examples of simple communities Anderson e{1#192) found the parameter space for
community coexistence measured by local stabiligs vgubstantially smaller than that
under permanence. Permanent but locally unstablememities represent those which
must have some form of non-equilibrium asymptothdwviour e.g. cyclical or chaotic
orbits. Here we characterise how the likelihoochoh-equilibrium dynamics varies with
ecosystem complexity. Communities may also admaallg stable behaviour in the
absence of permanence (Chen and Cohen, 2001, Hoflzand Sigmund, 1988). We
characterise these as ‘fragile’ and study how tiedability of encountering such fragility
varies with ecosystem complexity. If the match distrepancy between local stability and
permanence can be understood, then we may be alligempt to answer an important
guestion for ecology which was posed by Andersoal.e{1992): ‘how much confidence
should we have in a theoretical ecology based pmi®tic stability analysis?’.

In discussing complexity, we will examine the prdgs of the Jacobian matrix:

order (species richness), number of elements (nupfliateractions between species) and
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magnitude of elements (strength of interactionie Jacobian governs the local dynamics
around a specified equilibrium point and thus wk uge ecosystem complexity to refer to
the properties of the Jacobian of the interior idguiim. The criterion of permanence rests
on the boundary: densities of rare species wilttemincrease if the boundaries of the
positive orthant repel the ecosystem dynamics awtnythe interior (Law & Blackford
1992). For clarity, we stress here the distinctioetween permanence and global
asymptotic stability - permanence applies to abitsrand initial conditions where all
species are present, but does not require thatlats converge on the interior equilibrium
point. However, since LV ecosystems have a uniguelibrium point, model ecosystems
which are both permanent and locally stable mwsst bé globally asymptotically stable. If
an ecosystem is not permanent then there mustlbasdtone attractor on the boundary. In
this chapter we explore the way in which the prdigbof equilibrium and non-
equilibrium attractors on the boundary changes wabsystem complexity and relate this
to the probability of permanence and local stapditthe ecosystem.

The results presented in this chapter are arraageghd three sets of questions.
The first set of questions is on permanence-conitgleglationships: (1.1) does relaxing
assumptions made by Chen & Cohen (2001) affect toatp-permanence relationships?
(1.2) what is the relationship between mean absohierspecific interaction strength and
permanence? and (1.3) what is the effect of skevards weak interspecific interaction
strengths on permanence? The second set is ondtatality analysis and permanence:
(2.1) are local stability and permanence correlat@d?) does the proportion of permanent
ecosystems with non-equilibrium dynamics changd wiamplexity? and (2.3) does the
probability of fragility change with complexity? &hthird set is based on the boundary
equilibria: (3.1) is non-permanence caused by éxyitim or non-equilibrium attractors on
the boundary? and (3.2) does the probability déast one locally stable boundary follow
the same relationship with complexity as the prdiigbof stability of the interior

equilibrium?

Methods
MODEL ECOSYSTEMS
We constructed model ecosystems as Chen and C@abéd)(did, using the familiar LV

equations which describe the population dynamigsinferacting species,
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ﬂ:Ni(q+qu ij fori=1,...n. Egqn 3.1

The equations were adopted as the global dynanfidhieo ecosystensensu\olterra
(1926), rather than the more general but locallgliagble formulation of Lotka (1925).
This means we can define the parameters in Eqnw#il unambiguous ecological
interpretationsd; is the intrinsic growth rate of thiéh species andy is the per-capita
effect of thejth species on thigh species and are the elements of the per-cagéeaction
matrix A. At the interior equilibrium poinAN” = -b, and the Jacobian matri@ has a

simple form:

ailN; alZNl anN1
G= a21.N2 aZZ,NZ az‘,Nz. Eqn 3.2

anlNr: an2 Nkn o am I\*ln

The elements of the diagonal of the Jacobian mafgix where i=j) represent
intraspecific interaction strengths and the offgtiaal elementsg wherei # ) represent

interspecific interaction strengths in the viciniti/the equilibrium pointN). It is the off-
diagonal elements of the Jacobiag)( rather than the per-capita interactioag),(which
we refer to in the subsequent analyses as intafgp@ateraction strengths.

Model ecosystems were generated that containeddpaiteractions of consumer
and resource species (Chen and Cohen (2001) aisideoed scenarios with unpaired
interactions) with no discrete subwebs and a castraghic structure defined by no loops
(Cohen and Newman, 1985). The cascade trophictsteugvas implemented by placing
negative effects of consumers on resource spegjesljove the diagonal of the Jacobian
matrix, and positive effects of resource speciesamsumersg) below. The complexity
of each model ecosystem was defined by the pregedf the Jacobian at the interior
equilibrium point: species richnesy,(connectanceq), which measures the proportion of

actual interactions between species relative tot@hologically possible interactions

(excluding cannibalism), and mean absolute int&ifipeinteraction strength‘gij ‘iij,

MAIIS for brevity).

There are two approaches to generating the Jacabiainix at the interior
equilibrium point under Volterra’s formulation ofj& 3.1. Given the per-capita interaction
matrix A, they differ by whether the equilibrium poimd’) or the intrinsic growth rate®Y
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are assigned. We followed Chen and Cohen (200BsbigningN’, and calculating (=-
AN’). Chen and Cohen (2001) showed that the probgbilft an ecosystem being
permanent decreased with increasing species rishaied connectance. In their model

ecosystems they assigned a unity equilibrium p@iit= 1) and the non-zero elements of

their per-capita interaction matri were drawn from a uniform random distribution e t
interval (-1,0) for eacly; anda; (i <j) and in the interval (0,1) for eaeh (i > |).

Chen & Cohen (2001) made two ecologically unrealistssumptions in their
model ecosystems, the consequences of which weirgaithey assumed all equilibrium
abundances were equal and, by omitting to checketigbility of intrinsic growth rates(
vector), they did not ensure the presence of aaybts b > 0). We constructed four sets of
model ecosystems:.

1. The first set kept the assumptions and parametiemnsaf Chen & Cohen (2001), with

the exception that we set equilibrium abundandes) (to be 0.5, for consistency with

subsequent parameterisation.

2. The second set ensured feasibility of intrinsicvglorates by defining a quarter of all
species as autotrophb; & 0) and the remaining as heterotrophbs< 0), with the
autotrophs positioned at the base of the ecosystem.

3. The third set ensured the feasibility of intringrowth rates and relaxed the assumption

of equal N, by allowing theN. to vary uniformly in the interval (0, 1). In thi®t the

per-capita interactions were drawn from a unifoamdom distribution in the interval (-
1,0) for eachs;, (-2,0) for eachs; (i < j) and (0,2) for eacly (i > j). The intervals

were chosen to ensure the mean of the intraspe(@% and interspecific interaction

strengths ‘(gij‘ j ) remained constant across all sets.

iz

4. Modelling ecosystems by assignifg also permits specification of the off-diagonals
elements of the Jacobiagj(wherei # j) as independent random variates, allowing
direct manipulation of the interspecific interacticstrengths. Model ecosystem

construction was equivalent to that for the thied as described above, except the
interspecific interaction strengthsjsgﬂﬂ) were assigned using randomly distributed

uniform values from the interval (-1,0) for eagh(i < j) and (0,1) for eachydi > j).

STABILITY ANALYSES
Local stability of the equilibrium point is detemeid by the eigenvalues of the Jacobian

matrix: stable if all real parts of the eigenvalaes negative. The Jacobians for the interior
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and boundary equilibria are calculated differenthor the interior equilibrium, the

Jacobian elements are straightforward (Eqn 3.2)e@th boundary at least one of the
species has an abundance set to zero, thereforealihedances of the remaining
subcommunity at the boundary equilibrium poikt)(need to be determined and checked

for feasibility (M; > O for alli where M, #0). For the boundary equilibria, calculation of

the diagonal elements of the Jacobian (see Appdadiyrther details) becomes,

gii:b"'i:l"?}'v!

J#

if the ith species is missind = 0). The boundary at which all species abundaaces
zero M; = 0 Oi ) is the trivial equilibrium point. The Jacobian asdiagonal matrix
containing only the intrinsic growth rateb)(and, since the eigenvalues of a diagonal
matrix are the diagonal elements, its eigenvaluesthe b vector. In all LV model
ecosystems which contain any autotropbs> 0) the trivial point must therefore be
unstable.

An ecosystem was defined as permanent if it satisfivo conditions: an average
Lyapunov function existed near the boundary of $hete space, and the system was
dissipative (Law and Blackford, 1992). If an averagyapunov function exists the
boundary repels all trajectories into the positivthant of state space, and if a system is
dissipative then trajectories cannot tend to itfiniTherefore the system is permanent
because it is bounded within the positive orthdhie dissipativity condition is satisfied
here because our LV model ecosystems have altegliiating speciesaf < 0) and only
consumer-resource interactions (Law and Blackf@8$2). To test our model ecosystems
for the existence of an average Lyapunov functia wged Jansen’s (1987) sufficient
condition as laid out by Law & Blackford (1992) \sed as a linear programming problem
in MATLAB (version 7 release 14, The MathWorks nc.

Results

PERMANENCE-COMPLEXITY RELATIONSHIPS

Unless otherwise stated, the default constructiomcosystems was six species§), for
computational tractability, and a connectan@=Q.4) and mean absolute interspecific
interaction strength (MAIIS=0.5), to match thatGfien & Cohen (2001).
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1.1 The effect of relaxing assumptions made by Chen & Cohen (2001) on
permanence-complexity relationships

Chen & Cohen (2001) assumed all equilibrium abundsamwere equal and did not ensure
the presence of autotrophs ¢ 0) in their model ecosystems. With these twaiaggions
intact we started by reconstructing Chen & Cohef2601) negative permanence-
complexity relationships for species richness &iba line with circles) and connectance
(Fig 3.1b line with circles). Ensuring the feasililof intrinsic growth rates did not affect
the qualitative results but did cause a small imeeein the probability of permanence (Fig
3.1a, b lines with stars). Randomly generatingeteilibrium abundances\() as well as
ensuring the feasibility of intrinsic growth ratg¢sg 3.1a, b dashed lines) generated results
very close to those where the assumptions of CinenGohen (2001) were intact. We
conclude that relaxing assumptions made by Chero&e@ (2001) does not qualitatively
affect permanence-complexity relationships. Subseganalyses (sections 1.3-3.2, Figs
3.2-3.5) are based only on Jacobians with thesgeadlassumptions.

Directly assigning the interspecific interactiogg Wherei # j ) had no qualitative

and a small quantitative effect on the trends (Rds, b solid line with no marker).
Directly assigning the interspecific interactionadhthe advantage of permitting direct

control over the interspecific interaction strergytfg; where i # j) and therefore was

adopted for subsequent analyses (sections 1.Fg<23.2-3.5).

1.2 The relationship between mean absolute interspecific interaction strength
(MAIIS) and the probability of permanence

For a connectance of 0.4, increasing MAIIS showedlear effect on the probability of
permanence, with all probabilities close to one. ¥&ted whether this was true for a
higher level of connectance of 0.9, and found a-livear increase in the probability of

permanence with MAIIS (Fig 3.1c).

1.3 The effect of skew towards weak interspecific interaction strengths on the
probability of permanence

The distribution of interaction strengths in reaogystems is skewed towards weak
interactions (Berlow et al., 2004). Variance in @bte interspecific interaction strengths
(VAIIS for brevity) was increased by skewing thetdbution from which strengths were
drawn towards small values (Fig 3.2a). Therefore dheater the VAIIS, the greater the
skew towards weak interactions. The relationshipveen the probability of permanence
and VAIIS depended on the level of VAIIS: at low N& the relationship with the
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probability of permanence was negative, whilstraater VAIIS the relationship with the
probability of permanence was positive (Fig 3.Zius the probability of permanence
may increase with skew in ‘empirical-looking’ dibtutions of interaction strengths.

We examined the robustness of this u-shaped patierass other values of
complexity (Fig 3.2c-e). Increased species richr{egs 3.2c) and connectance (Fig 3.2d)
increased the depth of the u-shaped curve, wiitcseased MAIIS increased the depth and
shifted the trough of the u-shaped curve to gre#elS values (Fig 3.2e). The value of
VAIIS at which the inversion from a negative to pieg relationship occurred appeared to
correspond approximately with MAIIS. We determinge inversion point for several
values of MAIIS and found they were correlated hattin a simple way (Fig 3.2f).

PERMANENCE AND LOCAL STABILITY

2.1 Correlation between local stability and permanence

The probabilities that model ecosystems had a llpsthble interior (dotted lines), were
permanent (solid lines) and were both permanentlacally stable (dashed lines) with
increasing complexity were all correlated (Fig 3aBhough there were differences in their
probabilities (Fig 3.3). Not all ecosystems thateviecally stable were permanent, and not
all permanent ecosystems were locally stable. Tiferehce between the dashed lines and
the solid lines gave the probability that model sstems were globally but not locally
stable (studied further in section 2.2). The ddfere between the dashed lines and the
dotted lines gave the probability of finding modelosystems which were locally stable

but not permanent (studied further in section 2.3).

2.2 The relationship between the proportion of permanent ecosystems with
non-equilibrium dynamics and ecosystem complexity

A permanent ecosystem with an unstable interioriliegum has non-equilibrium
dynamics. The relationship between the proportibreansystems with non-equilibrium
dynamics and species richness depended on thedéwglecies richness (Fig 3.4a solid
line). For smaller ecosystems, the relationship pa@stive, whereas for larger ecosystems
the relationship was negative with larger permaremdsystems tending towards being
locally stable. The relationship between conneaaacd the proportion of ecosystems
with non-equilibrium dynamics was positive at redaly low connectance (below about %
connected) (Fig 3.4b solid line). At higher conaeck levels and all values of MAIIS (Fig
3.4c solid line), the proportion stayed roughly stamt. The relationship between the

proportion of ecosystems with non-equilibrium dymesrand VAIIS depended on the level
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of VAIIS. When VAIIS was low, the relationship wassitive, whereas when VAIIS was

high the relationship was negative (Fig 3.4d, slid).

2.3 The relationship between the probability of fragility and ecosystem

complexity

Ecosystems which are locally stable but not permiaaee unlikely to be robust to large
perturbations, and described here as ‘fragile’. kloay, it is necessary to bear in mind that
the permanence method used here is only suffid@nsystems with more than three
species (Law and Blackford, 1992) and there mayrmetected permanent ecosystems.
Assuming, if there were undetected permanent etasgs that their proportion changed
proportionally with changes in complexity, then tlelowing observations hold. Larger
ecosystems were increasingly likely to be fraghey(3.4a dashed line), as were more
connected ecosystems (Fig 3.4b dashed line). Tdleapility of fragility stayed roughly
constant with increasing MAIIS (Fig 3.4c dashec)iand did not show a consistent trend
with VAIIS (Fig 3.4d dashed line).

THE BOUNDARY EQUILIBRIA AND PERMANENCE

3.1 Non-permanence and attractors on the boundary

Non-permanent ecosystems must result from attrgcteither equilibrium or non-
equilibrium, on the boundary. Both types of attoactvere found to occur with non-
permanence in our model ecosystems (Fig 3.5). Téwredse in the probability of
permanence with species richness and connectaite8. (&, b) was attributed to increases
in both types of attractor on the boundary (Figa3.B). In contrast, the increase in the
probability of permanence with increased MAIIS (Bid.c) was attributed to a decreased
probability of at least one locally stable boundaince there was a roughly constant
probability of non-equilibrium attractors on theumalary (Fig 3.5¢). The probability of
permanence decreased initially then increased whiw towards weak interspecific
interaction strengths (measured as VAIIS, Fig 3.2Zbg initial decrease was attributed to
changes in both types of attractor on the bounddnie the increase was mostly attributed

to a decrease in the probability of at least owallg stable boundary (Fig 3.5d).

3.2 The relationship between the probability of a locally stable boundary and
ecosystem complexity
The probability of at least one locally stable baanry and the probability of a locally

stable interior had opposite relationships with ptarity of the interior equilibrium point
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(compare dashed line in Fig 3.3 with light grey ddwh area in Fig 3.5). In the model
ecosystems studied here (Figs 3.3-3.5) the mealpapildy of finding a locally stable
ecosystem that had all locally unstable boundanyiliega was 0.94 (SD 0.04). Thus,
locally stable ecosystems tended to have all Ipaatistable boundary equilibria. Since
permanent ecosystems must have repelling boundamjileia, local stability increased

the probability that an ecosystem was also perntanen

Discussion
In this chapter we use permanence and local dtalilialysis as tools to examine three
aspects of the ecosystem stability - complexityatiebThe first explored permanence-
complexity relationships in more ecologically pléoks and generally structured
ecosystems than previously. We showed that relaasgumptions made by Chen and
Cohen (2001) had no qualitative effect on permagepecies richness or permanence-
connectance relationships, that increasing meamlwbsnteraction strength had a positive
effect on permanence and that skew towards weagraictions may increase the
probability that an ecosystem is permanent. Therseconsidered how much predictions
differed between local stability and permanenceatwdaused those differences and how
they varied with complexity. We found that localsitity and permanence were correlated
and that discrepancy was attributable to both leafjocally stable but not permanent)
ecosystems and those which were permanent withegaribrium dynamics (permanent
but locally unstable). The probability of findinchese ecosystems changed with
complexity, and did not show the same patterns.tiid focused on the boundary of the
state-space. We found that non-permanence was ccdysdoth equilibrium and non-
equilibrium attractors on the boundary, and thangje in the probability of a locally stable
boundary could not simply be attributed to chamgbaundary complexity. In fact, locally
stable ecosystems tended to have all locally ulestabundary equilibria, meaning that
local stability increased the probability of perraane. Below we discuss the implications
of these findings and draw conclusions about thenerality for theoretical ecology.
Permanence is an ecosystem property that confelosigtability by requiring only
that the densities of rare species must increasa (And Blackford, 1992). The first
systematic study of the permanence of ecosystenmslation to changes in ecosystem
complexity was by Chen & Cohen (2001). They inceelathe complexity of ecosystems as
measured by the species richness and connectancdoand that the probability of
permanence declined. We have shown that this pagepbust to the inclusion of obligate

autotrophs and variation in the equilibrium spe@bsndances. It seems that larger, more
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connected ecosystems are generally less likelyetgpdrmanent than smaller, sparsely
connected ecosystems.

A third long-standing measure of ecosystem complexhe mean strength of
interactions (abbreviated to MAIIS) between spefiay, 1972b), had a positive effect on
the probability of permanence. The probability @td! stability behaved similarly, a result
which is consistent with recently reported positieationships across some mean values
for LV competitive communities where the varianceimteraction strengths were held
constant (Jansen and Kokkoris, 2003), as was dere This result is intriguing because it
is contrary to analytical arguments based on te&idution of eigenvalues in the complex
plane (Haydon, 1994, May, 1972b). One argumentiepmlements of Gersgorin disc
theory (Gersgorin, 1931). GerSgorin discs are eefiby the Jacobian matrix and exist in
the complex (imaginary-real) plane where, in tuhey define the region in which the
eigenvalues of the Jacobian must lie. If this regwerlaps with the positive half of the
complex plane then there is a greater than zerbabibity that the real part of the
dominant (most positive) eigenvalue is positive &mel system is locally unstable. The
radius of the discs is determined by the sum ofabsolute values of the interspecific
interaction strengths. Therefore increasing MAWSreases disc size and overlap with the
positive half of complex plane, thus decreasing ghabability of stability. (For a fuller
introduction to the GerSgorin disc theory and psooéfer to Varga (2004) and for
ecological application see Haydon (1994, 2000) arhpter 2.) It appears that this
analytical argument is challenged by our numenieallts for increasing MAIIS. When a
similar argument was applied to a different measidrecosystem stability (relative local
stability), numerical results have shown both presti (Haydon, 1994) and unpredicted
behaviour (Chapter 2). The unpredicted behavious atributed to the violation of a
central assumption, that the variance of real pafresgenvalues increases with Gersgorin
disc radius, as a result of skew symmetry in theoldian matrix. It seems that this key
assumption has also been violated here, but in dhge by increasing the mean of
interaction strengths whilst keeping the varianoestant. Further investigation is required
to link this particular Jacobian construction tetrieted eigenvalue variance.

The patterning of relative interaction strengths peeviously been shown to have
profound effects on dynamical properties of ecamyst For example, randomly permuting
interaction strengths of modelled real webs hagirdental effects on local stability
(Neutel et al., 2002, Emmerson and Raffaelli, 20@tizis, 1981, De Ruiter et al., 1995).
Further, theoretical studies suggest weak intevastican be stabilising if there are
particular configurations of strong and weak intéicms (Emmerson and Yearsley, 2004,
Haydon, 2000, McCann et al., 1998, Neutel et @02. We found that increasing the
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skew towards weak interactions initially decreabetl then increased the probability of
local stability and permanence, and this invergmmint was dependent on the mean
interaction strength. Our results agree with thalyais of LV competitive communities by
Jansen & Kokkoris (2003) who also observed a u-sthapirve for the probability of local
stability. As for Jansen & Kokkoris (2003), no matting in the magnitudes of the
interaction strengths was specified, suggestingskew towards weak interactions can be
stabilising (both locally and globally) in more geally structured ecosystems.

Returning to the question posed by Anderson gtLl8P2): ‘how much confidence
should we have in a theoretical ecology based gmpotic stability analysis?’, we have
found numerical results that provide good evidetita suggest ecologists should be
confident in qualitative findings from local statyl analysis of LV ecosystems. Our
numerical results show the probability of localbdity and permanence are strongly
correlated. The quantitative correspondence wasl gb@ome parameterisations (e.g. few
species, low connectance, low VAIIS), whilst atesthit was poor (e.g. mid VAIIS). More
importantly they showed the same qualitative changigh ecosystem complexity. The
reason for the numerically-based correlation ifodews: if an ecosystem is locally stable
then there is a high probability it has unstablaroaries (94% for the ecosystems studied
here) and, since stable boundaries are detrimdotgbermanence, a locally stable
ecosystem is a strong candidate for permanence.

However, local stability analysis did consistenttyassify some permanent
ecosystems as unstable, and some locally stableystemns were not permanent. We
examined further those ecosystems which possessedoom of stability but not both.
Those that were locally stable but not permaneméwbharacterised as fragile ecosystems.
The probability of fragility was influenced by egssem species richness, connectance and
variance of interaction strengths (Fig 3.4). Irg&atV ecosystems local stability may be
less likely to imply permanence than in the smattedel ecosystems studied here because
the probability of fragility increased linearly \Wispecies richness. Those ecosystems that
were globally but not locally stable must have madh-equilibrium attractors e.g. limit
cycles or chaotic attractors. Their probability waluenced by ecosystem species
richness, connectance and variance of interactremgths (Fig 3.4). Extrapolation of the
results shown here for relatively small ecosystésk2 species) suggests that permanence
implies local stability in large LV ecosystems.

As ecosystem complexity changes it may be expetttat the complexity and
number of boundary equilibria would be affectedthiése changes result in an increase in
the probability of at least one boundary being llgcstable then this would be detrimental

to permanence. If the changes in the complexitgaadary equilibria follow changes in
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ecosystem complexity then they would show similacal stability - complexity
relationships. This line of reasoning predicts thatmanence-complexity relationships
should be opposite to local stability - complexitgnds. We found that the converse is the
case, that changes in local stability and permanerere correlated and the probability of
a locally stable interior and probability of at$e¢@ne locally stable boundary had opposite
relationships with ecosystem complexity. We havpla@&red this finding because locally
stable equilibria have a high probability of havialtylocally unstable boundaries, but we
have not explored how the complexity of boundanyildaria changed with complexity of
the interior equilibrium. Further, it may also beected that an increase in the number of
boundaries would increase the probability of astiesme boundary being locally stable and
be detrimental to permanence. Although we did mptietly study this, we observed that

increasing the dimensionalityn)( of ecosystems increased the number of boundary

equilibria (since the number of boundary equilibd{(m fork = 1,...n) yet the effect
on stability was comparable to increasing the cotamee where was not changed. Our
results suggest that there is little evidence fetrang effect of the number of boundaries
on the probability of stability.

Permanence is a more satisfactory definition ofsgst®m stability than local
stability because it is a global criterion and isrenempirically tractable than local stability
(Anderson et al., 1992, Berlow et al., 2004). THemion of permanence as a measure of
ecosystem stability by both empiricists and theoiats would facilitate the translation of
data into model coefficients (Berlow et al., 20@&)d aid alignment on the stability -
complexity debate. However, the application of pemence in ecology is currently
restricted to LV equations and only as a sufficienterion when communities contain
more than three species (Law and Blackford, 198@jthermore, all species modelled in
LV equations are assumed to have a linear (typturiktional response. This special
stipulation means LV communities have a unique ldgaggium point. The introduction of
plausible non-linearities may result in multipléenor equilibria and it is unclear how
robust our findings would be to this form of incsed generality. Nonetheless the LV
framework underpins much community dynamical thesmmyl this chapter has generalised
results on permanence in LV ecosystems with inesk@&sological reality than previously
and reports positive permanence-interaction sthengfationships without citing special
ecosystem architecture. Our key finding is numérgsadence that ecologists should be

confident in qualitative findings from local statylanalysis of LV ecosystems.
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Figure 3.1. The probability of permanence with increasing ctampy: (a) species
richnessn, (b) connectanc&€ and (c) mean absolute interspecific interacticengjth,
MAIIS. In (c) C was fixed at 0.9 because wh@x0.4 the probability of permanence
across MAIIS values was ~1. Each point was baseat tgast 1000 ecosystems and where
not varied or specifieah=6, C=0.4, MAIIS=0.5 and variance in absolute interspeci
interaction strengths (VAIIS) was 0.08. All Jacotsawere not diagonally dominant.
Circles represent Jacobians structured as in Ch@&wol&en (2001) with equal equilibrium

abundances (her& = 0.5) and no criteria on feasibility of intrinsgrowth rates If
vector). Stars represent Jacobians with criterigherfeasibility ofb included (the number

of autotrophs was calculated as rounidl(). Dashed lines represent Jacobians with a
feasibleb and randomly generated equilibrium abundandss)( Solid lines with no
marker represent Jacobians with criterisbpmandomly generated equilibrium abundances

(N;) and directly assigned Jacobian off-diagonal elem@; wherei # j ).
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Figure 3.2. The probability that ecosystems were permanenskasv towards weak
interactions was increased. (a) Probability dessitof gamma distributions used to
generate skew towards weak interaction strengthsanketers of the gamma distribution
were varied to generate a range of distributiorth wariances in interspecific interaction
strengths (VAIIS) from 0.01 to 30 with a constargan (MAIIS) of 0.5. (b) Probability of
permanence in ecosystems with interspecific intenag assigned using the increasingly
skewed distributions, wher€=0.9 andn=6. We tested the generality of the u-shaped
pattern for ranges of (c) species richnessl(dashed linen=8 dotted line) (d) connectance
(C=0.5 dashed lineC=1 dotted line) and (e) MAIIS (0.25 dashed linejdtted line). (f)
The relationship between MAIIS and the value of MAl(not logged) at which the
inversion from a negative to positive permanenceéls/Aelationship occurred (trough in
u-shaped curve). Each point in (b-f) was basedtdeast 1000 ecosystems, and where not
varied or specifieti=6, C=0.4 and MAIIS=0.5. No Jacobians were diagonallgna@nt.
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Figure 3.3. The probability that ecosystems were permaneit ahacally stable interior
equilibrium point or were both permanent and localiable, with increasing complexity.
() species richness, (b) connectance&s, (c) mean absolute interspecific interaction
strength (MAIIS) and (d) variance of absolute igpacific interaction strengths (VAIIS).
Parameters as for Figs 3.1 and 3.2b. Each poinbased on 10000 model ecosystems.
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Figure 3.4. The probability an ecosystem was permanent bulliocinstable and the
probability an ecosystem was locally stable butpetnanent with increasing complexity.
(a) Species richness, (b) connectancé&s, (c) mean absolute interspecific interaction
strength (MAIIS) and (d) variance of absolute ispexcific interaction strengths (VAIIS).
Parameters as for Figs 3.1 and 3.2b. Each pointbassd on 10000 model ecosystems.

Note scale on y-axis IS different from other figaire
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Figure 3.5. Attractors on the boundary that cause non-pern@menhe probability of
non-permanence is one minus the probability of peence (solid line). The area above
the line was shaded to indicate the likelihood tiat-permanence was caused by one or
more locally stable boundary equilibria (light grasea) or one or more non-equilibrium
attractors on the boundary (dark gray area), asptmity was increased (a) species
richness, (b) connectanc€, (c) mean absolute interspecific interaction giter{MAIIS)

and (d) variance of absolute interspecific intacacstrengths (VAIIS). Parameters as for

Figs 3.1 and 3.2b. Each point was based on 100@&Inecosystems.
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Appendix: Elements of the Jacobian matrix for interior and boundary

equilibria of the Lokta-Volterra equations

The Lotka-Volterra equations (Eqn 3.1):

=N+ qu)

The off-diagonal elements of the Jacobian are #rggb derivatives of the RHS of

Eqgn 3.1 with respect t§; where j #i :

g, =27 - 0 (NW+Z%N»

=a1'jN

This expression is the same for interidW,(= N*) or boundary equilibria ), = M,),
exceptM; = 0 for boundaries wheid; is absent and thug=00i# | .

The diagonal elements of the Jacobian are theapdgrivatives of the RHS of Eqn

3.1 with respect td; where now | =i :

adNt_
2= NG+ 3 1)

9; =
=m+iawwwum

=h+> g N +2q N

i
At the interior equilibriumI{"),

B+ 8 N)=0

=g N
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n
If we have a boundary equilibriunv( then (b + Z g M, ) will not necessarily
[

be zero. IfM,= 0 then,

gn=b+§a}'\4-

J#
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Chapter 4. Can parasites drive population cycles in mountain hares?

Abstract

Understanding the drivers of population fluctuasias a central goal of ecology. Although
well-established theory suggests parasites cam dsrelic population fluctuations in their
hosts, field evidence is lacking. Theory preditiatta parasite that loosely aggregates in
the host population and has stronger impact on feesindity than survival should induce
cycling. The helmintilrichostrongylus retortaeformis the UK’s only native lagomorph,
the mountain hare, has exactly these properties,tla hares exhibit strong population
fluctuations. Here we use a host-parasite modedrpaterised using available empirical
data to test this superficial concordance betweenryy and observation. In fact, through
an innovative combination of sensitivity and stipilanalyses, we show that hare
population cycles do not seem to be driven by thmgite. Potential limitations in our
parameterisation and model formulation, togethethwdossible secondary roles for
parasites in determining hare demography are disdusimproving our knowledge of
leveret biology and the quantification of harvegtemerge as future research priorities.
With the growing concern over the current managenoérmountain hares for disease
control in Scotland, understanding their populatioivers is an important pre-requisite for

the effective management of this species.
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Introduction

Understanding what drives population cycles israre¢ goal of ecology, yet despite more
than 75 years of debate there is no clear consemsukeir causation (Turchin, 2003).
There is however a growing view that trophic intti@ns play an important role
(Berryman, 2002). Whilst predator-prey and herbgvplant systems have been well
studied, the role of parasites has received ldsgatain. Despite a strong theoretical basis
that parasites can drive host cyclic dynamics (Asaole and May, 1978), empirical support
is limited. While parasite mediated effects areutftd to contribute to unstable dynamics
in Soay sheepvis aries(Gulland, 1992) and Svalbard reind&angifer tarandugAlbon

et al., 2002), empirical evidence that parasitesdravze cyclic dynamics in their wild host
is currently limited to the red grous@Hrchostrongylus tenuisystem (Hudson et al., 1998,
but see Lambin et al., 1999).

The mountain hare is the only lagomorph speciewenéd the UK with Scotland
containing 99% of the UK population (McGradySted¢dak, 1997). Mountain hares are
believed to be under threat from habitat loss aadnientation, local over-exploitation,
hybridization and competition with the introducedwn hare and a growing concern over
large-scale culls of mountain hares to control gidnd louping ill (Battersby, 2005,
Kinrade et al., 2008, Macdonald et al., 1998, Mdy&teed et al., 1997). Mountain hares
are listed in Annex V of the EC Habitats Direct(1®92) requiring the UK to ensure their
conservation status and sustainable managememsponse to growing concerns over the
long term conservation status and current manageofid¢ie species, in 2007 the mountain
hare was made a UK Biodiversity Action Plan (BARedes. The factors causing
fluctuations and long term changes in the number distribution of mountain hares
remain unknown and complicate attempts to inforrnaggment through analysis of
patterns in abundance. A greater understandingh®fspecies population dynamics is
essential for their sound management.

Scottish populations of mountain hares on grouserlaod are characterized by
large amplitude fluctuations of variable regulantyth a mean periodicity of 9.2 years
(Newey et al., 2007b). The reasons for cyclic dyiwamemain unclear (Newey et al.,
2007a). Mountain hares are non-territorial and aoiciteractions are not thought to be
important (Flux, 1970, Hewson, 1976), and thereasvidence of food limitation (Keith,
1983). Mammalian and avian predators are contraltechoorland managed for red grouse
in Scotland and therefore, unlike the situatiorfsagandinavia, predators are not thought to
be important in driving mountain hare populatioddeWey et al., 2007a). Hares are,
however, susceptible to parasite infections, intipaar the helminthTrichostrongylus

retortaeformisand recent field studies have demonstratedthegtortaeformiss loosely
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aggregated in the mountain hare population (Newey.,€2005) and that parasite mediated
effects on survival are small compared to parasitieiced reductions in host fecundity
(Newey and Thirgood, 2004, Newey et al., 2004).sEhieatures of the mountain hare. -
retortaeformis system are consistent with characteristics thadlyéinal host-parasite
models suggest can lead to instability and popaiatycles (May and Anderson, 1978).
Major advances in understanding causes of popualatymamics have come from
synthesising modelling and empirical work (Kendllal., 1999, Turchin, 2003). Here we
combine empirical field experiments, time-seriealgsis, and modelling to assess whether
parasites can drive mountain hare population cydesange of observed dynamical
patterns have been quantified from time seriesyarsalcross-sectional studies, and field
experiments to generate a list of characteristmperties with which to compare with
modelled population dynamics. Hare population d@ssfluctuate from 20-200 hares Km
(Hewson, 1976, Watson et al., 1973), with a ranigpeniods between four and 15 years
(Newey et al., 2007b)I. retortaeformisburdens average approximately 2000 worms per
individual (Newey et al., 2005). Our approach wasantrast these listed properties with
equivalent characteristics in modelled mountainehpopulations in order to: (a) test
whether our current empirical understanding supgpearasite driven hare dynamics; (b) in
the case that it does not, identify plausible patem changes which would lead to
population dynamics with the observed propertiesdétermine whether small changes in
parameters can account for the wide diversity ofeobed dynamics across Scottish
populations; and (d) improve our understanding lté system and prioritise future

empirical research activities.

Methods

We used a variant of the classic Anderson & May noaarasite model (Anderson and
May, 1978, May and Anderson, 1978) introduced bgkbiann & Kretschmar (1991)
which describes continuous growth equations foiost Ipopulation of densityd which

interacts with a parasite populatidh,

dH kH )
——=—oP-bH+aH
at 2 (5P+kHj =qn 4.1

dP JH P(k+1
op ~(u+ a+b)—a—| —= 4.2
dt {HO+H G+ a+b) aH( k ﬂ =
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Parameters are defined in Table 4.1. The struattithe model encapsulates important
elements of the system that include: (a) the negéatinomial distribution of parasites
among hosts (Newey et al., 2005) described by the@nnparasite load/H and aggregation
parameterk, (b) a transmission rate dependent on host density,(e@ntiost fecundity
modelled through the use of a multiplicative term avoid biologically meaningless
negative host birth rates (Diekmann and Kretzschir@81).

Point estimates and plausibility envelopes for peaterising Eqns 4.1 and 4.2 are
given in Table 4.1. The data sources and methodstohation are described in Appendix
4.1. Rather than strict confidence envelopes, fd&isanges of parameters were most
practically based on the best available empirigfgirmation.

The dynamical properties of the parameterised mageé derived using standard
analytical techniques and numerical simulationse(réo the Appendix 4.2 for further
details). Elasticity analyses were performed to gara the proportional effects of

changing each parameter in Table 4.1 on dynamroglgpties of the model populations.

Results

MODEL PARAMETERISATION WITHIN EMPIRICALLY DEFINED PLAUSIBILITY ENVELOPE

Parameterising the model with the point estimatesgnted in Table 4.1 resulted in rapidly
damped oscillations to a stable equilibrium poifteve parasite burdens were far greater
than those found in mountain hare populations &ig, c). Elasticity analysis identified
that: an increase in hare intrinsic mortaliby ¢r parasite-reduced hare fecundiéy or a
decrease in hare intrinsic fecundity (vould bring about a simultaneous reduction in both
stability and parasite burdens. Increasing parasiteced hare mortalityof reduced
parasite loads but was stabilizing while the paeagpiarameters (fecundityl)( adult
mortality () and transmission inefficiencyHg)) had little effect on equilibrium parasite
load or stability. A new modified parameter set wdentified by increasing the values of
hare intrinsic mortality ify and parasite-reduced hare fecundiy and decreasing hare
intrinsic fecundity &) to empirically plausible limits (Table 4.1). Theanulated population
dynamicsmaintained a weakly stable equilibrium hare denshgracterized by weakly
damped oscillations with a period within the obgervange (Fig 4.1b, d). However, these
changes could not bring parasite loads down seffity to be consistent with those found

in mountain hares.
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PARAMETER CHANGES WHICH GENERATE DYNAMICS WITH THE OBSERVED PROPERTIES

We reverse engineered changes to the modified gaearset that would reduce parasite
loads whilst maintaining all other dynamical prdpes in the vicinity of those observed.
Using elasticity analysis the key parameters iremheining equilibrium parasite load were
identified as hare intrinsic fecundity)( parasite-reduced hare fecundiy, hare intrinsic
mortality (o) and parasite-induced hare mortality) (vith some interactions also being
important. Fig 4.2 shows the four parameters plogiairwise revealing that to generate
stable limit cycles with the observed propertieguiees either one of two possible
parameter set modifications, both of which requitereasing a parameter outside its
plausibility envelope set by empirical data. To gfate observed dynamics the effect of the
parasite on hare fecundity)(can be increased by approximately ten fold. Akively
hare intrinsic mortality if) can be increased by about 0.8 adult hares per (yeducing
mean hare life span by about 0.8 years) combinddavsmall increase in parasite-induced
mortality () within the plausible envelope.

As we will discuss, we believe parasite-reducediriéity () and hare intrinsic
mortality (©®) may have been empirically underestimated. Inéngaparasite-reduced
fecundity ¢) from 0.0001 to 0.001 hare paradiresulted in a qualitative change from a
stable point to a stable limit cycle with a 15 yg@ariod (Fig 4.3a, d). Increasing hare
intrinsic mortality p) from 0.61 to 1.40 yedr(annual survival of 0.25 - 0.54) resulted in a
stable limit cycle with a period of 18 years. Supsntly increasing parasite-induced
mortality () to 0.000014 reduced the period of the limit cydel5 years (Fig 4.3b, e).
Increasing parasite-induced mortality) @lone generated rapidly damped oscillations with
a small period. It was not possible to obtain theesved population dynamics by changing
hare intrinsic fecundityd) alone.

For both sets of dynamics shown in Fig 4.3(a, d g 4.3(b, e) the peak parasite
loads were unrealistically high ()Qwhich, if we assume that the parasite load aptak
of the cycle corresponds to maximum parasite laadsited in the field, should be around
16,000 worms per hare. Parasite loads of a morestreaamplitude were obtained by
increasing parasite-induced mortality) @bove 0.00004 (Fig 4.4a), which lies well within
the plausibility envelope. Additionally, the simtédd hare populations shown in Fig 4.3(a,
d) and 4.3(b, e) spend most years at numbers nmelokvkhe lower observed limit for hare
density. Changes in parasite fecundity g¢nd transmission inefficiency() affected the
amplitude of hare oscillations but not of parasitedens (Fig 4.4b and c¢). Thus, a set of
parameters was identified that produced realisyinachics in both hare and parasite

populations (Fig 4.3c, f).
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CAN SMALL CHANGES IN PARAMETERS ACCOUNT FOR VARIABILITY IN DYNAMICAL PROPERTIES?

Scottish populations of mountain hares exhibit dendiversity of observed dynamics. We
used the model to look for parameters that may aargss Scotland and affect period of
cycles and amplitude of limit cycles within plaugismall changes in their value. Fig 4.5
shows the sensitivity analysis of stability andip@érto small changes in individually
varied parameters around the system which genera@dtic dynamics (Fig 4.3c, f).
Stable limit cycles occurred where the system edsthe boundary from stable to
unstable, and amplitude increased with increasmsgability. Variation in hare intrinsic
fecundity @), parasite-reduced hare fecundidy, (parasite-induced hare mortality) (@and
adult parasite mortalityuf could account for the range of periods observeadhatural
populations. Variation in all parameters in Fig éXgept adult parasite mortality)(could
account for variability in stability and amplitudeat occur across the species range in
Scotland. Finally, although the parasite transrarsgiarametersi.(andHo) were not found
to influence stability or period, the amplitudetbé hare density limit cycle was sensitive

to small changes in their value (Fig 4.4).

Discussion

This model of the mountain hareT- retortaeformisinteraction cannot predict observed
population dynamics of mountain hares with reaigtarasite burdens within the broad-
range of parameter space we judge to be plausite.now discuss three possible
interpretations of this observation. 1) Parasitestlhe main drivers of hare cycles, but the
model, while including the key elements of the rattion, represents them insufficiently
realistically. 2) Parasites are the main driverhafe cycles and the model has altogether
omitted important ways in which the parasites iaflce hare demography. 3) Parasites are

indeed not the main drivers of hare cycles.

ARE KEY ELEMENTS OF THE INTERACTION REPRESENTED SUFFICIENTLY REALISTICALLY?

To represent the hare-parasite system sufficiergblistically requires both adequate
model parameterisation and formulation. As sevefralur plausible parameter ranges were
based on small sample sizes or indirect data ssuites possible that our estimated
parameter ranges are wrong. The key difficultyoigind a model where the dynamics are
unstable and parasite loads realistic. Parasitdelmgr were particularly sensitive to the
level of parasite-induced hare mortality),(and our estimate was based on a single study
(Newey and Thirgood, 2004). However, the study tbaimost no difference in survival
between parasite-reduced and untreated hares (Newe¥hirgood, 2004) and increasing
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parasite-induced mortalitya) while lowering parasite burdens towards more isgal
levels, has a strong stabilising influence on #wilting dynamics.

Parasite burdens were also sensitive to hare fégu(a), parasite-reduced hare
fecundity ¢) and hare mortality b). Here, fecundity was used as the measure of
recruitment and leveret pre and post-natal moiealivere not included because the effect
on parasites at these stages is unknown (but s¢seion). Mountain hares are killed for
sport, pest and disease control but this mortadityot included in the current analysis. The
relationship between density and harvesting hasyabbeen studied in mountain hares
(Newey et al., 2007a). Game harvesting bags ao®d groxy for population abundance in
red grouse (Cattadori et al., 2003) but therekislyito be more inconsistency across years
in mountain hares. If, as suspected, the relatipnsbtween mountain hare density and
harvesting is not density dependent, then the stumedel formulation holds and hare
mortality rate ) should be increased. Decreasing hare recruitrs&etigthening parasite
suppression of hare recruitment or higher hare afitytis destabilising and reduces
parasite burdens, but to attain realistic dynaraitarge parasite-induced mortality raag (
is still required.

If our estimate of parasite-induced hare mortgfity is reasonable then it seems
unlikely that a key element of the parameterisahas been omitted, and now we query
the formulation of our model. Hare recruitment gadasite development were represented
as purely continuous processes. Time delays andosality are well-known to be
destabilising to the population dynamics of infeas diseases (Altizer et al., 2006,
Greenman et al., 2004), and both occur in mountames and the parasité.
retortaeformis Mountain hares do not mature in their year othbbyut in the following
year, and the breeding season is restricted totatdoe months of the year (Flux, 1970).
retortaeformisis a direct life-cycle parasite; eggs voided ie host’s faeces develop to an
infective stage outside the host over a periodno¢ which depends on climatic conditions
(Crofton, 1948). Although it is well establishedatithe developmental time lag has a
destabilising influence on model host dynamics (Mawl Anderson, 1978) the current
model does not incorporate a time delay in parasiteuitment. In favourable conditions
development time is short and the assumption ofigibte time delay in relation to
changes in hare densities is reasonable. Howewalaienent may last several months
over winter. We have explored discrete-time forrtiates of our model which
incorporated: a step function that restricted heproduction (at an accordingly increased
rate) to a nine month breeding season; a deldyeimiaturation of leverets until the start of
their first breeding season; and a simple delagt (tanged between one and 12 weeks) in

parasite maturation that was constant across tae With these alternative formulations
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damping times increase but we still don't recovastained limit cycles within the
plausible parameter ranges. However, we don'’t hag® as far outside these ranges as we

do with the purely continuous time formulation.

ARE IMPORTANT WAYS IN WHICH THE PARASITES INFLUENCE HARE DEMOGRAPHY OMITTED?

The red grouse 7. tenuissystem in Scotland has similar characteristicuiest as the
mountain hare 7. retortaeformissystem, such as low predation, greater paragitiecesl
fecundity than survival, and range of parasite bosd Yet in applying a similar approach
as here, Dobson & Hudson (1992b) were able to dem® grouse cycles. A striking
difference is that parasite effect sizesd) were estimated at around 30 times greater for
grouse than those estimated here. As parasitet effetecundity §) was calculated from
seven week old brood sizes, we now discuss theilpldgsthat parasites may affect
aspects of hare recruitment other than the numb@raoshed in females.

Parasites may have a larger impact on recruitnteonugh influences on leveret
survival, growth rate, or timing of breeding. Thenihg of breeding is important for
reproductive success in mammals (e.g. Clutton-Breickl., 1982) and is influenced by
parasite infection in a range of species (Allanded Bennett, 1995, Feore et al., 1997,
Mulvey et al., 1994). Time of first breeding in nmain hares is influenced by
temperature, female age, size and weight with pldeger and heavier females attempting
to breed earlier than those younger and smallex(RI970). Young born earlier in the year
have a longer growing season, enter the winteriaeand larger than late born young and
have higher over-winter survival and greater futi@®undity (lason, 1989a, lason, 1990).
Thus females may seek to breed earlier to produmes,nhigher quality young and we
suggest future studies could profitably investigat@aternal effect of parasite load on the
timing of breeding, survival and growth of leverets

Maternal effects may destabilise population dynamend promote cycles
(Beckerman et al., 2002). To model this would regua new hare-parasite model
formulation that could encapsulate: a maternal gy effect on the birthdate of young; a
maternal parasite load effect on the birthdate aing; adult body sizes determined by
birthdate; and adult hare mortality related to betye. This additional parasite-mediated
effect may reduce the extent to which parameteesl @ deviate from our point estimates
to generate realistic dynamics. However, they meqa move from simple ordinary
differential equation formulations of host-parasilgnamics to a partial differential
equation model or individual based approach, wiscbeyond the scope of the current

chapter.



Do parasites drive hare cycles? Chapter 4, 64

Other forms of environmental variation that woukhd to sufficiently large stochastic
variation in the parameters of the host-parasitdehat realistic frequencies could result in
the generation of sustained limit cycles of a sti@i magnitude from the damped
oscillations predicted by the deterministic modéhwever, there is as yet no empirical
data to inform the magnitude, covariation, or frexgies of these stochastic processes.

A SECONDARY ROLE FOR PARASITES?

If parasites are not the main driver of mountaireh@ycles, could they still have a role in
hare population dynamics? Parasitic nematodes afy Steep increase the depth of
population crashes initiated by winter food shaetgGulland et al., 1993). Similarly,
reduction of parasitic nematodes from a red grgusgulation (Hudson et al., 1998)
arguably does not remove a tendency to cycle (Larabal., 1999, Tompkins and Begon,
1999) but parasites might deepen the extent ofsgravashes rather than determine their
frequency. This notion is supported by our analyselsich showed that hare cycle
amplitude was very sensitive to parasite transaisgarameters whereas period was

relatively insensitive.

CONCLUSION

Despite the observation of large parasite burdansiountain hares, and the perceived
absence of predation and food-limitation, we hawentl limited support for parasite-

driven hare cycles. The results of our sensitiabalysis suggest that lower recruitment
rates, stronger parasite suppression of recruitroentaised adult hare mortality than

currently realised, would allow a closer fit betwemodel predictions and observed
dynamics. Therefore we identify leveret biology ahd quantification of harvesting of

hares for sport, pest and disease control as wsgaiorities. If parasites do drive hare
cycles, the model presented here suggests thatirmerstanding of the full effects of

parasites on hare demography is importantly incetepl
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Table 4.1. Parameter estimates and plausible limits frondfekperiments and related
host-parasite systems with which to parameterize tmare - Trichostrongylus
retortaeformis model. Values in bold generate dynamics closestthiuse observed

(modified parameter set).

Symbol Parameter Unit Lower .. Point estimate Uppe'r .. Data source
plausible limit plausible limi
Intrinsic fecundity of adult
a hares (in absence of year® 1.8 2.3 2.8 Newey et al. (2004)
parasites)
Parasite-induced reduction in hare Newey & Thirgood
0 hare fecundity parasite™ 0.000016 0.0001 (2004)
Intrinsic mortality of adult .
b hares (in absence of year! 0.08 0.35 0.61 Newey & Thirgood
. (2004)
parasites)
Parasite-induced hare 1 Newey & Thirgood
a mortality year 0 0.000008 0.0001 (2004)
Hobbs unpublished,
A Parasite fecundity year™ 80 1000 2800 Flux (1970), see
Appendix 4.1
Newey et al. (2005),
Transmission inefficiency Newey & Thirgood
Ho constant hare 13500 38200 66800 (2004), Newey et al.
(2004)
- Dobson & Hudson
I Adult parasite mortality year® 0 0001 for elasticity 1.2 (1992), based on T.
analysis) :
tenuis.
Negative binomial 0.57 (0.5in
k parameter/ degree of 0.5 model, see 2 Newey et al. (2005)

overdispersion Appendix 4.2)
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Figure 4.1. Simulated population dynamics based on the engbiméormation available

on the hare-parasite interaction (Table 4.1). Tloelehwas parameterized in (a, c) using
our point estimates and in (b, d) with the modifigmrameter set chosen to be the best
fitting combination within the identified plausiltit envelope. The time series are shown
in the top row (a, b) where the solid line représéne hare population size (hares pef)km
and the dashed line is parasite load per haredyhamics in state space are shown in the

bottom row (c, d).
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Figure 4.2. Parameter changes required to obtain dynamicglepties observed in wild
hare populations are given by the distance betweestar and the polygon. The star is the
position of the modified parameter set, the clogesget to observed dynamics within the
empirically determined plausibility envelope, whitee polygon represents the observed
range of dynamics specified by the observed eqiiilib hare densities (20-200 Kin
equilibrium parasite load (1000-3000), and periddonur to 15 years (period contours
indicated). Stability contours are shown (dasheedi value of real part of dominant
eigenvalue -0.1 (stable), 0, and 0.1 (unstable}h wiable limit cycles occurring at low
positive values. Other parameters were held cohatahe modified values.
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Figure 4.3. Simulated population dynamics after parameter gasiio get closer to the
observed dynamical properties. (a, d) Parasiteeestiinare fecundityy, increased from
0.0001 to 0.001 hare parasitegb, e) Hare intrinsic mortalityp, increased from 0.61 to
1.40 year* and parasite-induced mortality, from 0.000008 to 0.000014 yé&arBoth
resulted in a stable limit cycle which passed thgrounrealistically high parasite and low
hare numbers. (c, f) Realistic population dynangeserated usin@ = 1.8;b = 0.61;6 =
0.001;0 = 0.000047 = 600. For the time series (top row), the soln Irepresents the hare
population size (hares per Kmwhilst the dashed line is parasite load per hBue.the
limit cycles in state space (bottom row), the valowithin the limit cycle is indicated by

the length of the dashes, one per year.
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Figure 4.4. The effect of small, plausible changes in pararsate the amplitude of the
limit cycles. (a) Increasing from our point estimate of 0.000008 (largest limytle) to
0.00004 (medium limit cycle) reduces the parasitalloscillation to below 16,000 worms
per hare (straight line). The cycle shrinks furthew is increased to its upper plausible
limit of 0.000104 (smallest limit cycle). (b) Fldsiity in A and (c) Hp controls the
amplitude of the hare oscillation. Three limit aglare presented in both (b) and (c) where
the middle limit cycle was generated using poininegte values of or Hy, either side of
limit cycles generated by settimgor Hp to their lower or upper plausible limit. Other
parameters were kept constamt 1.8,0 = 0.001,b=0.61,0. = 0.00004x = 0,k = %.
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Figure 4.5. The effect of small, plausible changes in pararsate stability and period.
One parameter was varied at a time, while others Wweld at values for the system which
generated realistic dynamics (Fig 4.3c, f): paeasitluced hare mortalityz) was varied
from its point estimate to upper plausible limhigre intrinsic fecundityd), hare intrinsic
mortality (b) and adult parasite mortality:)(were varied from lower to upper plausible
limits; degree of overdispersiork)(values %2, 1, 2; Parasite-reduced fecundiywas
varied from its point estimate to 0.001 hare pagasand follows the opposite path &0
The vertical line aRelmax= 0 marks the boundary between a stable (negativetunstable
(positive) equilibrium.
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Appendix 4.1: Parameter estimation
Where possible, field data from mountain haresdoti&nd were used, otherwise data were
drawn from closely related systems. Both males fanthles were included in the model

population because both sexes are hosts to thsifgapapulation.

a, Intrinsic fecundity of hares (in absence of parasite) (year’')

Data from hares for which parasite burdens weresored at the end of the breeding
season (Newey et al.,, 2004) were used to estimateiah fecundity. We regressed

estimated annual fecundity against parasite bufdethe female hares and extrapolated
back to zero parasites. The estimate was halvaddount for males in the population at an
assumed ratio of 1:1. Thaswvas set at 2.3 with a 95% confidence interval.8f-12.8.

0, Parasite-induced reduction in hare fecundity (hare parasite’’)

Data from hares which were treated for parasitésr o the breeding season showed
treated hares had significantly lower parasite soadd higher fecundity (Newey and
Thirgood, 2004). The same data was reanalysed regthyi relating parasite burden and
fecundity to estimate the effect of an individuarasite on fecundity. The effect was
estimated from the absolute value of the (negatbiepe of the regression line between
fecundity and parasite burden as 0.000031 haresvpan per year, although the link
between parasite load and fecundity when analysethis way was not statistically
significant €131 = 0.15,p = 0.703). The estimate was halved to account falesin the
population at an assumed ratio of 1:1. The lowaugible limit was taken as zero and the

upper 95% confidence limit was 0.0001 hares penwoer year.

b, Intrinsic hare mortality (in absence of parasite) (year”)

Survival of adult hares was recorded over the thmatf a parasite reduction experiment
where adult female mortalityn(= 13) of parasite reduced hares was 0.23 (SE @\€)
eight months (Newey and Thirgood, 2004). Convertimg to annual mortality results in
an estimate of 0.35 hares per yE&4% CIl 0.08-0.61). Death of around one third afelsa
per year is consistent with the average life expent of hares of three years (Hewson,
1976).

a, Parasite-induced adult hare mortality (vear)

In the parasite treatment experiment carried outN&wey et al. (2004) almost no
difference in adult hare mortality was found betwelee treated (0.23 with SE 0.10=
13) and untreated groups (0.24 with SE 0r08,11). However, there was a difference in
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the mean parasite load between groups, so thatpsaekite added over the treated mean
parasite load (1125 worms per hare) could contilboitthe death of as much as 0.0001 of
a hare per worm. The mean estimate was 0.0000@& Iper worm, which translates into

an unrealistic burden of 125000 worms requiredtaksingle hare.

A, Parasite birth rate (year)

Parasite birth rate is specified here as the nurobe&ggs produced per adult worm per
year. In the absence of dataTrretortaeformidgn hare hosts, we estimated this parameter
from a combination of sources on closely relatest kgstems.

Parasite egg production was estimated from a staddiset kindly provided by R.
Hobbs (unpublished) oi. retortaeformisin the wild European rabbitOfyctolagus
cuniculs (L.)). The slope of the regression line betwdenriumber of adult worms and
corresponding egg production per gram of faecemattd per worm as 0.05 eggs wérm
gram® (95% Cl 0.01-0.09) and was significantly differdmim zero Fy1, = 7.01,p =
0.021). To calculate per worm daily egg productiegg numbers per faecal gram were
multiplied by daily production of hard faeces inrém Daily hard faecal production has
been quantified at approximately 58g (range 25-B& F1970)). Annual egg production
was thus approximated at 1000 eggs per worm per (geapirically estimated range 80-
2800). Our measure of egg production for retortaeformisin hares is much lower
compared td. tenuisin grouse whicttan shed up to 40000 eggs per gram of faeces (Shaw
et al., 1989).

Ho, Transmission efficiency constant (hare)
This parameter reflects the proportion of eggs dwahot go on to complete their life cycle
and re-enter the host. During the part of thedifele from parasite egg to adult there are
many sources of mortality. These are hard to iieatid measure-, removes the need to
quantify survival at each stage by clumping thehtagdether, and simply estimating the
proportion which are lost and do not reach adukthoo

The method used here provides a crude estimdtg afd is based on Eqn 4.2. We
assume that there is no hypobiosis (arrested deweot of larvae in the host) so that
during the early stages of reinfection parasitesdezs are small, such that terms 2 and 3 in
Eqgn 4.2 are negligible. This gives an equation tfee reinfection rate per host post-

treatment £):
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which can be rearranged to isolaig

_ IP—gH
&

H, Eqn 4.3

The parasite reduction experiments (Newey and ®bolg 2004, Newey et al., 2004)

provided estimates of post-treatment reinfectiolesdor three different years and two
different seasons. Hare densities for these sit® wstimated using distance sampling.
The mean parasite load for adult hares was cagmlliladm a cross sectional study of 587
hares across 30 central Scotland estates (Newaly, @005). Yearly loss of parasites was
averaged over the sites to give a megrof 38200 with empirically estimated range 13500
to 66800.

u, Adult parasite mortality (yed)

Nematode gut parasites of the gerlughostrongylushave similar life cycles (Olsen,
1986). In the related host-parasite system of redsge and’. tenuis worms are thought to
live as long as their grouse hosts (Hudssinal. 1992). In absence of data for
retortaeformisin hares we assume that adult worms only die wherhost dies, and set
=0.

k, Negative binomial parameter, measure of parasjgregation among hosts

The parasite is negatively binomially distributadamng hosts (Newey et al., 2005). The
degree of aggregation is described by the paramkedéthe distribution, estimated to be
0.57 in adult hares (both male and female) with timigrestimates available for individual
months from December to May giving a range aroums mean of 0.37 to 2.26. These
values suggest the parasite is mildly aggregateshgrhares when compared with a range
of wildlife host-parasite systems (Shaw et al.,899%he structure of the model (Eqns 4.1-
4.2) placek as an exponent in the hare growth equation. Matheahanalysis is greatly

facilitated by assuming might range between 0.5 and 2.
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Appendix 4.2: Analysis
This section describes how the dynamical propenieshe parameterized model were

derived using analytical techniques and numericalikations.

EQUILIBRIUM HARE AND PARASITE DENSITY

Mean density is assumed to correspond to the amtequilibrium density. To solve for the
interior equilibrium density, the derivatives in1i&g4.1-4.2 are set to zero and a solution
for H andP sought. However, manipulation of Eqn 4.1 was nexlbefore being able to

achieve this. Firstly, Eqn 4.1 was dividedHy

Therefore at equilibrium:

k k
O=—m<—b+a( j
X+K

wherex is the parasite load at equilibrium:

Eqn 4.4

Analytical solutions for the interior equilibriunomt can now be obtained by substituting
X into dH/dt = 0. This is straightforward for the special cakes Y2, 1 and 2, which
sufficiently covers the range of empiricl values (see above). Setting= %2 and
rearrangingdH/dt = 0 results in a cubic equationxn

0= (2a%0)x> + (4bad + a?)x* + (2b*d + 2ba)x +b* — a2,

fork=1,

0=(ad)x* +(bd+a)x+b-a,
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while fork = 2,
0=(ad?)x® + (4ad +bd?)x* + (4a + 4bd)x + 4b - 4a,

andx is recovered as the only positive, real solutiow the equilibrium hare density can

be isolated in terms of the constant

(y+b+a)Ho+a(k:ley(

+1

H*= >
/1—(,u+b+a)—a(jx

Kk

and from Eqgn 4.4P*=xH* . The host-parasite equilibrium point was termeasiiele if hare

and parasite population sizes were greater than(gér> 0,P* > 0).

STABILITY

Linear equilibrium stability analysis was used tder the stability of the modelled

dynamics. In a two dimensional system, populatibosnded from both extinction and
growth to infinity must have a stable dynamicalisture which, in this case, is either a
stable equilibrium point or stable limit cycle (Rmann and Kretzschmar, 1991). We
rejected those regions of parameter space in wiiehpopulations either go extinct or
grow to infinity. Stability of the interior equilium point was determined by constructing
the Jacobian matrixd{ which contains the growth equations differentiadgth respect to

each of the host and parasite:

H oH
J=|0H P

op oP

oH oP
where

X * K * * k+l
LRI DT
oH P * +kH ) H > oP*+kH *
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I % k+1
a_H: —a—aﬁ(—kH j
oP OP*+kH *

. 42
6_P:/1P* H, : +a(k+1) P i
oH (Ho+H*) k JH*

P _ JH _(ﬂ+a+b)_2a[k+1jp
P Hy+H* k JH*

From J the eigenvalues associated with the equilibriuatest can be calculated and the
dominant (most positive) eigenvalue indicates toall stability of the equilibrium point. A
negative dominant eigenvalue denotes a stable poohthe magnitude determines the rate
of damping to equilibrium. Growth equations thabgurce oscillatory dynamics will have
complex conjugate eigenvalues. Where a pair of éexngigenvalues cross the imaginary
axis of the complex plane we can expect to sealaestimit cycle with an increase in
amplitude as the eigenvalues move deeper intodbiiye real half of the complex plane.
Close to the bifurcation the period of the osaitlas can be approximated from the natural
frequency (e.g. James, 2001), given by the imaygipart of the dominant eigenvalug)(
Period =277/ w. More accurate estimation of the period of osimia systems far from the
bifurcation and the amplitude of stable limit cyglevere determined by numerical

simulation.

ELASTICITY ANALYSIS

Elasticity analysis was used to compare the prapuat effects of each parameter in Table
4.1 on dynamical properties of the model populatidrhis permitted identification of key
parameters in determining each property. Elasti@tyalysis considers only linear
perturbations and therefore is only valid withie fbcal vicinity of a specified point in the
multidimensional parameter space. Thus elasticig wecalculated when the parameters
were changed. In the analyses, parameter spaceangded betweer 10 @ parameter
values using a Sobol’ sequence (Sobol' (1967), Ceede by J. Burkhardt
http://people.scs.fsu.edu/~burkardt/index.html).e TBobol' sequence is a quasi-random
sampling method, which permits more uniform sangplai multidimensional parameter

space than uncorrelated random points (Press é08l2).
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Chapter 5. Dissecting the drivers of population cycles: interactions

between parasites and mountain hare demography

Abstract

There is growing awareness that the cyclic popalatiynamics in vertebrate species are
driven by a complex set of interactions rather thaingle causal factor. For the mountain
hare, population cycles have been characteriseaghout much of its circumpolar
distribution but the reasons for this dynamical debur remain unknown. Empirical
research in the Scottish uplands demonstratesrtaatoparasitism, maternal effects on the
vital rates of offspring, and a seasonal enviroriinare potentially important ecological
processes in this system, and all these processetheoretically increase the propensity
for cyclic dynamics. Here we incorporate these @gichl details into an individual-based
model (IBM) of a mountain hare population infecteda gut nematoddichostronglyus
retortaeformis First, we establish a model that captures meamackeristics of observed
mountain hare time series and parasite intensi8esond, by systematically removing
model structure we dissect out dynamical influerafematernal effects. The model allows
delayed responses to life history by linking maa¢body size and parasite infection to the
future survival and fecundity of offspring. We falthat these delayed life history effects
(DLHEs) were weakly destabilising and allowed pagters to be closer to empirical
estimates in order to generate observed hare populaycles. We therefore suggest
DLHESs could be important processes in host-paragtéems. Third, by modifying model
structure we investigated the dynamical influende tloe mechanism of parasite
transmission. We found that the mechanism had angtmfluence on host population
stability. We identify a ‘best fit' mechanism andsclss the implications for parasite
aggregation mechanisms, host movement and nat@edjrgphical variation in host

population dynamics.
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Introduction

In order to break down complexity and understarmtgss drivers, theoretical ecologists
use abstractions of ecological processes. A proatssh has captured the attention of
ecologists since inception of the field is cycliopplation dynamics (Elton, 1924), yet
despite the intervening 85 years of research tleestill no clear consensus as to what
processes drive cyclic dynamics (Turchin, 2003)e ™auses of population cycles can
include trophic interactions, individual variabjlit environmental variation and the
complex interplay between these factors and populatiemography (Bjornstad and
Grenfell, 2001, Lundberg et al., 2000, Sutherlarg96, Beckerman et al., 2002).

Simple mathematical models show that direct effeastsmacroparasites can
potentially drive population cycles (Anderson andyM1978, May and Anderson, 1978),
although empirical support for their role in dediaimg host populations is limited to a
few species (Svalbard reindeer: Albon et al., 20®@ay sheep: Gulland, 1992, Gulland
and Fox, 1992, red grouse: Hudson et al., 1998,sbluckt al., 1992). The parasitic
nematodeTrichostrongylus retortaeformidhias been implicated as a driver of cyclic
population dynamics in a small mammal found in $oettish uplands, the mountain hare
Lepus timidugNewey and Thirgood, 2004). However, a simple nhadelies the parasite
effect is too weak to account for sustained hargdesyand realistic parasite intensities
(Townsend et al., 2009, Chapter 4).

Trophic interactions are considered to play an irtgmt role in driving population
cycles (Turchin, 2003, Berryman, 2002). The effaftsrophic interactions may manifest
themselves at the population level either direotlyndirectly as a function of immediate
and delayed responses to either density or tdhigory effects (Beckerman et al., 2002).
While an immediate life history effect is a chamgg@opulation demography in response to
the current environment, a delayed life historyeefff (DLHE) occurs in the future,
changing future population demography as the resluthe current environment. Thus
maternal effects, which transmit individual lifestory responses between generations, can
give rise to DLHEs (Beckerman et al., 2002). DLHia®1 generate individual variability,
or a lag in the density dependence (delayed dedsipgndence), with significant effects
on the stability of population dynamics (Beckermanal.,, 2002, Benton et al., 2001,
Lindstrom and Kokko, 2002).

Observations suggest that delayed life historyceff¢DLHES) may play a role in
mountain hare population dynamics, and the seasamatonment that characterises the
Scottish uplands is echoed in patterns of mourttare and parasite demography. In the
next section we give details of the empirical enicke that DLHES and seasonality are

important structural elements of the system.
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ECOLOGY OF THE MOUNTAIN HARE - T. RETORTAEFORMIS SYSTEM
In a wide variety of organisms, the life-historgits of offspring, such as growth rate,
survival, size, age at first reproduction and affsp fecundity, depend on maternal
condition and provisioning (Benton et al., 2001 agigérences therein). In mountain hares,
the timing of breeding is important for reproduetisuccess, as it is for many vertebrate
species (e.g. Clutton-Brock, Guinness & Albon, 1982ountain hares in Scotland begin
breeding in February (Flux, 1970; Hewson, 1976) #mal timing of first breeding is
determined by winter temperature, female age, aim weight with older, larger and
heavier females attempting to breed earlier (Hewd®68; Flux, 1970). Young born
earlier in the year have a longer growing seasoterehe winter heavier and larger than
late born young and therefore have a higher chahaever-winter survival and greater
future fecundity when they enter the breeding paiioh in the following year (Hewson,
1968; lason, 1989a, 1989b, 1990). Females maytedwmieed earlier in the year to produce
young with greater survival and reproductive pasnt

Although it has not been studied for mountain hapegasitic infections are an
important influence on the timing of breeding inramge of vertebrates (Allander and
Bennett, 1995, Feore et al., 1997, Mulvey et aP94). While parasite reduction
experiments suggest that female mountain hares higth parasite infections early in the
breeding season shed fewer ova (Newey and Thirdfififl), this direct parasite effect has
been shown, using a simple analytical model of hiaee - T. retortaeformissystem,
unlikely to be strong enough to account for susi@ihare cycles and realistic parasite
intensities (Townsend et al., 2009, Chapter 4). i@, if maternal parasite infection also
delayed the timing of breeding, the resulting maéeffect would constitute an additional
‘indirect’ parasite effect that may increase themll impact of parasites on hares. Since
the level of nematode infections are thought talépendent on host densities because of
an increase in transmission rates (Arneberg etl8Pg8), the result would be a delayed
density dependent effect of the parasite on thed, hegh a tendency to destabilise
population dynamics (Turchin, 2003). In this chapte explicitly include maternal effects
by making the timing of first breeding in a modebuntain hare population dependent on
female body size and level of parasite infectiarg the timing of breeding a determinant
of offspring body size, which in turn influencesutidsurvival and fecundity (Fig 5.1a). We
examine the model population for the presence dfiB4 via their dynamical impact.

In host-parasite systems seasonal variation in deshographics and parasite
transmission can destabilise the population dynsiaind increase the likelihood of cycles

(Altizer et al., 2006, Greenman et al., 2004). loumtain hare populations, reproduction is
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restricted to nine months of the year and seaguatgérns have been recorded in host vital
rates. Adult mortality peaks in late winter — eadlgring (lason, 1989b, Flux, 1970),
pregnancies peak in spring (Flux, 1970, Hewson0},9and mortality in leverets peaks
with the onset of winter (lason, 1989b, Flux, 1970ansmission of. retortaeformis as
with most direct life-cycle intestinal parasitegpénds on the production of and host
encounters with parasite infective stages in therenment and decay rate of external life
history stages (Altizer et al., 2006). For speaiethe family Trichostrongylidaginfective
stage development and survival depends criticallytemperature and humidity (Olsen,
1986). ForT. retortaeformisn Scotland, eggs mostly survive the winter resgltn a mass
hatching in spring (Crofton, 1948). Large numbees raintained throughout the summer
because the rapid rate of hatching more than cosapes for the increased death rate due
to higher temperatures and desiccation of lanadest (Crofton, 1948). Susceptibility of
the population to infection is also expected taease in spring and summer as a result of
raised testosterone levels in males, naive immuskems of juveniles and a combination
of the periparturient rise in females with sharech@ing habitat with juveniles (Cattadori
et al.,, 2005). We incorporate seasonality via & Haeeding season and pulses of hare

mortality, recruitment and parasite transmission.

A TACTICAL APPROACH

Here we adopt an individual based modelling (IBManiework to develop a tactical
highly detailed model that encompasses a largeedegfr ecological detail. This approach
allows us to incorporate leveret biology, suspedEs and seasonality An IBM
approach requires being explicit about parasitestrassion mechanisms. One of the key
features of parasitic infection, especially of nemdas with a direct life cycle, is the
aggregated distribution of parasites between hastsh that a few hosts harbour the
majority of parasites (Shaw et al., 1998). Severfécts are thought to contribute to
aggregation: host heterogeneities, clumping ofcinde events and the positive feedback
of the reinfection process (Rosa and Pugliese, 2802w and Dobson, 1995). In the
Anderson & May analytical framework (Anderson andw 1978, May and Anderson,
1978), the effect of aggregation is accounted fgrdssuming a negative binomial
distribution of parasites between hosts. In an IBMwever, the infection status of each
host must be tracked explicitly. Although Croftdt948) carried out intensive studies in
Scottish grasslands on the availability of infeetlarvae ofT. retortaeformisto hosts, no
study has looked at transmission within and betwieemountain hare host. We devise

three parasite transmission mechanisms and teshgfeet on hare population dynamics.
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The first task of this chapter is to present a nt@urhare -T. retortaeformismodel
which is able to generate realistic mountain hamgugation cycles and parasite intensities.
Rather than reproduce the dynamics of a partidudeie population, we judge model fit
based on characteristic dynamical properties ifledtfor Scottish populations (Newey et
al., 2005, Newey et al., 2007b). The second tastoistudy the dynamical effect of
removing or modifying structure in this base mod#ie results are focused around four
specific questions about how parasites may drive bgcles and the diversity in dynamics
we observe: a) does making the timing of breediegeddent on maternal body size and
parasite burden generate DLHEs? b) Do DLHEs redheestrength of direct parasite
effects necessary to reproduce observed dynamigsMoev do different parasite
transmission mechanisms affect the dynamics? d)t@anvide geographical diversity of

observed dynamics across Scottish populationsdoxeeed?

Methods

THE MODEL

Fig 5.1b is a schematic outline of the IBM showihg chronological order of events in the
time step of one year. The fine details of the nhade provided in the supplementary
material, and model parameters are summarizeddle Tal. The model runs on an annual
cycle of eight principal steps with the chronol@jiorder of events chosen to reflect the
natural sequence of identified seasonal pulsesaire ladult mortality, reproduction,
juvenile mortality, recruitment and parasite trarssion. Reproduction takes place within
a breeding season such that leverets can be bdynbetween ¥ March and 3%
September. Hare and parasite populations are “sedswnce a year after adult mortality
was imposed but before the start of the breediag®e close enough to harvesting time
(often in December after the close of the grouss@e (Hewson, 1970)) to be comparable
to hare bag data used in the time-series analf/fiewey et al. (2007Db).

The model links individual hare attributes to theurvival, fecundity, time of
breeding and vital rates of offspring (Fig 5.1a). &dult hare with few parasites and a large
body size was more likely to survive the winterg(A.1a, links G and H, details in
Appendix 5.4) and reproduce earlier in the yeakdiB & C, see Appendix 5.2). Females
could have up to three litters and the birthdateseoond and third litters depended on the
gestation period and a randomly determined interlperiod (see Appendix 5.2). Females
with fewer parasites tended to have more offspriingk D, see Appendix 5.3 and
Supplemental Fig 5.1) but having larger litterslyear the year reduced the size of later
litters (link E, see Appendix 5.3).
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Leverets born earlier in the breeding season hageloto grow before winter and
attained a larger size (link A, details in Appendixl). However, leveret survival was
calculated as an accumulation of daily survivaksand therefore earlier born leverets had
a lower chance of surviving to the onset of wir(tatk F). Therefore a female that began
breeding had smaller leverets, she was able to laager litters later in the year with a
higher chance of surviving to the onset of winker.data were lacking on leveret biology,
the value for daily survival rateDLS) was reverse engineered as part of the model
selection process.

Parasite transmission was controlled by parasi@nidity @), transmission
inefficiency Ho) (details in Appendix 5.5) and the mechanism ahsmission, of which

we devised three alternatives (see ‘Structural ghsuho the best fit model’).

CHARACTERISING REAL HARE TIME SERIES AND PARASITE BURDENS

We summarised the dynamics of hare and parasitelggopns in Scotland using the mean
and range of four characteristics: the period ot hgcles, the amplitude of hare cycles,
mean parasite infection and the extent of stasistiwer-dispersion in the distribution of
parasites between hares (as summarized by theanelparameter of the negative binomial
distribution,k) (Table 5.2). Empirical estimates for period amtbétude were taken from
analyses by Newey et al. (2007b) of hare game ibagderiesr{ = 56, median length = 37
years). For statistics on parasites, we compilddtaset of burdens for 654 hares sampled
over 4 years from cross-sectional surveys condumte?Zd estates (Newey et al., 2005) and
data presented in Boag and lason (1986). The buldg#nbution from each of the 29
estates was fitted with a negative binomial distitmn, the parameters of which are mean
burden and. By assuming that different estates have sepa populations and their
parasite infections are not synchronised, the na@gnrange of mean burdens &nidr the

29 estates should provide an idea of the variatidcottish populations.

CHARACTERISING SIMULATED HARE TIME SERIES AND PARASITE BURDENS

Characteristics of simulated hare time series ardgite burdens were estimated as for
empirical data. Where variation in empirical andnglated data characteristics were
compared, mean parasite infection and dispersiprwere estimated by sampling an

individual year within a time series. Otherwise dirseries were characterised from more
than just a single sample year, with estimatesntakefive yearly intervals. Time series

simulations ran for 37 years (after a minimum bumrof 50 years in simulations to remove

transient dynamics), the mean and range for pematlamplitude was estimated from 56
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simulated time series and the mean and range of im@@en and parasite dispersiéh (
from 29 time series.

Simulations of model mountain hare populations dphbwever, also be classified
as implausible. Given that the observed maximure dansity is 200 kifi (Watson et al.,
1973, Hewson, 1976), simulations which reached Haresities of greater than 400 hares
km? were considered implausible. Extinction resultingm demographic stochasticity
was prevented by permitting some immigration, batutations which exhibited near
annual extinction frequencies were judged impldasi transition from equilibrium
dynamics to sustained cycles or as an increaskeiramplitude of sustained cycles was

regarded as a reduction in stability.

MODEL PERFORMANCE

Model performance was judged on the fit of the datad population dynamics to the four
observed characteristic properties of hare timesend parasite burdens. The model with
the ‘best fit’ structure and parameters was seteotethe basis of match to mean observed
values. This took into account demographic stoatiasby running the model 200 times
to quantify the 95% confidence interval for eacharelcteristic estimated from the
simulated data. The mean observed values werereeta fall within these intervals. The
best fit model was also required to exhibit sustdinycles and have realistic mean annual

values of hare mortality rate, hare recruitmerg,rptvenile burdens and litter sizes.

STRUCTURAL CHANGES TO THE BEST FIT MODEL

We investigated the DLHES on model mountain haneufagion dynamics in three ways.
First, by comparing the best fit model with modetsere the links between female body
size and parasite burden and timing of breedinggwemoved. Removal of the body size-
timing link (B in Fig 5.1a) would leave an indireeffect of parasite burden on size
(through links C-A) which could complicate interfagon of results, therefore we
investigated models where the burden-timing link Was removed and where both links
were removed (see Appendix 5.2 for how birthdats ealculated). Second, we measured
the increase in the overall parasite effect onrdiy (0) that was required to recover
observed dynamicsdé was estimated from the simulated data as the shifp¢he
relationship between parasite burden and ova stmetlyvas increased by manipulating the
direct parasite effect on fecundity (link D in Figla) via the burden thresholds for
allocating ova shed in the second litter (see Sampphtal Fig 5.2). Third, by comparing
the best fit model with a model without burden #ir@lds for ova shed (removed link D),
thus leaving only the DLHES to impact female ha@uhdity (link E).
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Three transmission mechanisms were devised fomitdel (see Appendix 5.5 for
details) and their dynamical effects compared.ha first mechanism, parasite recruits
entered a pool from which they were allocated antbegvhole hare population (‘global’)
in each transmission pulse. The second mechanigpresented local transmission,
recognising that hares maintain home ranges (RI8X%0) and therefore new parasites may
be more likely to reinfect the same host, or thispsing they produce. In the third
mechanism, hares were given a lifetime dose ofstesaas leverets rather than annual
augmentation of infection. This was consideredaagible governing mechanism because
hares only live for three years on average (Hew&6ii6) and added infections after the

first year may be relatively low in fertility (Skping et al., 1991).

CHANGES TO THE PARAMETERISATION OF MODELS

The characteristics of hare time series and pardmitdens from the best fit model and
models with structural changes were examined adresplausible ranges of parameters
(Table 5.1). Parameter combinations were generas#nly a Sobol' sequence (Sobol,
1967) because this technique allowed us to sangkamneter space more uniformly than if
samples were taken at random (Pegtsal. 1992). This was particularly important givae
small numbers of samples=29 for calculation of parasite burden statistind a=56 for
calculation of hare time series statistics).

Elasticity analysis was performed on the best ttlel to compare the proportional
effects of changing parameters on the charactepstiperties of simulated hare time series
and parasite burdens. Given the large number @inpeters in the model, the analysis was
conducted on a select few parameters of inter@sictdoarasite effect on mortality)(and
overall parasite effect on fecundig), parasite transmission parametérsp) and leveret
survival LS (DLS multiplied by the length of the breeding seasdPrameters were
sampled from empirically determined plausibilitynges (Table 5.1) except for the
empirically unquantifiedDLS which was explored across the range 0.990-0.9@Boan

which was an emergent parameter from the model.

Results

The structure and parameterisation of the besinétlel (in which all DLHE links are
enabled) are reported in Table 5.1. Fig 5.2 isnaukited hare and parasite time series
showing sustained cycles. The dynamical charatteyidor 200 such time series are
summarised in Fig 5.3. The mean values of periodpliéude, mean burden, parasite

dispersion from real hare and parasite data fahiwithe 95% confidence intervals of the
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simulated data characteristics (Fig 5.3), and spoaded well to the mean simulated
values (Table 5.2). Mean simulated values for #ropl of hare cycles was 9.5 years, with

amplitude 0.77, parasite burdens of 2759 and pgardspersion of 0.75.

DOES MAKING THE TIMING OF BREEDING DEPENDENT ON MATERNAL BODY SIZE AND PARASITE BURDEN
GENERATE DELAYED LIFE HISTORY EFFECTS (DLHES)?

Simulations of hare and parasite population dynamith the parasite infection-timing of
breeding link (Fig 5.1a, link C) removed reduces d@mplitude of hare density fluctuations
(amplitude =0.73, Fig 5.4a). Further removing tlebsize-timing link (Fig 5.1a, link B)
reduces the amplitude further (amplitude = 0.68,3=#4b). The distributions of dynamical
characteristics for simulations where parametenewampled across plausible parameter
space suggest that, compared to the best fit madhan links were removed amplitudes
tended to be smaller (Fig 5.5b) and parasites weoee dispersed (Fig 5.5d), while
parasite burdens (Fig 5.5c) and period (Fig 5.8agléd to be larger. Exploring the effects
of structural changes on the plausibility of simethdynamics and the propensity of cyclic
dynamics we found no major differences betweerbtst fit model and models where the
links were removed (Table 5.3). These results sstgbat the links between maternal body
size and parasite burden generated DLHESs that ingithsweak destabilising effects on

the model hare population dynamics.

Do DLHES REDUCE THE STRENGTH OF DIRECT PARASITE EFFECTS NECESSARY TO REPRODUCE
OBSERVED DYNAMICS?

The relationship between hare cycle amplitude aretadl parasite effect on fecundity)(

for simulations where DLHEs were removed is showifrig 5.6. With the burden-timing
link removed, increasing hare cycle amplitude from3 (as estimated in the absence of
this link, Fig 5.4a) to the observed mean 0.81 irequan increase it of 0.00006 yeat,
whilst in the absence of both linkswas required to be increased by almost twice this
amount (0.00011 yeay to increase amplitude from 0.63 (estimated inahsence of both
these links, Fig 5.4b) to 0.81.

A simulation in which the direct effect of parasiten female fecundity was
removed and only DLHEs affected fecundity showede hdensity fluctuating close to
equilibrium (Fig 5.4c). Sampling across parameperce, more time series were plausible
and the highest percentage for all models (10%)ewem-cyclic (Table 5.3). All time
series exhibited amplitudes below the mean obseva&de (Fig 5.5b) and mean burdens
were mostly higher than the observed mean (Fig) 5tbas lowering the overall fit to real
characteristics of hare time series and parasitdelms (Table 5.3). These results suggest
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that the direct parasite effect on fecundity hadtrangly destabilising effect on hare
population dynamics, in contrast to the weakerrgudiparasite effects on fecundity caused
by the DLHES.

HOW DO DIFFERENT TRANSMISSION MECHANISMS AFFECT THE DYNAMICS?

The best fit model allocated 90% of parasites lgga@kelf-infection or within family) and
10% on a population-wide (‘global’) scale (Tabl&)5A simulation where parasite recruits
were allocated to hares solely on a global scaletdhted around a relatively small
equilibrium hare density and ranged from non-cytticsmall amplitude ten year period
cyclic dynamics (Fig 5.4d). In contrast, when pastars were allowed to vary within
plausible limits, amplitudes ranged widely (Fig l.5However, 95% of runs generated
plausible dynamics compared to 77% for the besmbdel (Table 5.3), suggesting that
global distribution of parasites generally had absising effect on model hare dynamics.
The poor fit to observed characteristics (Tablg &8s caused by a tendency towards long
periods and large burdens (Fig 5.5a, c).

A model with locally distributed parasites genetlatene series that varied from
non-cyclic to high amplitude ten year cycles (Figej. When parameters were allowed to
vary within plausible limits, the lowest percentagletime series were plausible (45%,
Table 5.3) and parasites were more strongly oveedsed (lowerk) than the mean
observed value (Fig 5.5d). These results suggest lvansmission tended to have a
destabilising effect on hare dynamics.

A model developed to allocate lifetime burdenseteelets generated dynamics that
were starkly different from other models considerdthen parameterized with best fit
parameters, the model exhibited non-cyclic dynarnaica high equilibrium hare density
(Fig 5.4f). In contrast, across parameter spaceamtycs were generally found to be cyclic
(Table 5.3, although they appeared more irregdian tthe smooth cycles seen for other
model structures) with periods and mean burdensealive upper observed limits (Fig
5.5a, ¢) and amplitudes below the lower observedit l{Fig 5.5b). This structural

modification resulted in the lowest fit to obsendyghamical characteristics (Table 5.3).

CAN THE WIDE GEOGRAPHICAL DIVERSITY OF OBSERVED DYNAMICS ACROSS SCOTTISH POPULATIONS BE
RECOVERED?

Although the characteristics of the best fit moagdquately captured the mean empirically
determined values (Fig 5.3), we investigated whretie model could reflect the observed
geographical diversity in hare dynamics. Variatimerated by demographic stochasticity
in repeated simulations matched reasonably well dhserved range in hare cycle
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amplitudes and mean burdens (Table 5.2). Variagjenerated by changing parameters
widened the range for all characteristics, imprgvihe match to real ranges of period,
amplitude and parasite dispersion (Table 5.2). Giveat variability in period is a
distinctive feature of Scottish mountain hare papah dynamics (Newey et al., 2007b),
our analyses suggest that period was particulargiive to leveret survival and the direct
parasite effects on hare fecundity and survivabl@®.4). Variation generated by changing
parameters worsened the match to the observed cdmgean burdens with unrealistically
high numbers of 10being reached (Table 5.2). We found that poorrigvsurvival and
strong parasite-induced hare mortality were asgagtiavith more realistic burden levels
(Table 5.4). Realistic mean burdens were also &dsdc with the local parasite
transmission mechanism and the presence of DLHig(Bc).

The best fit model did not generate sufficient a&@oin in k, the dispersion of
parasites amongst hares (Table 5.2). The strubtuchlanged models also failed to
reproduce the observed range (Fig 5.5d). L&gevell dispersed parasites) was most
strongly associated with a strong parasite effetthare mortality 4¢) and parasite
transmission parameters Hy), as would be expected (Table 5.4). It is theeefoossible
that the variation ik was restricted in the simulated data becauseetievariation in,
and Hp was based on small, under-representative sampés ¢fownsend et al., 2009,
Chapter 4).

Discussion

We explored the direct and delayed effects of araparasite on host population dynamics
using the host-parasite interaction between monnt@res andrl. retortaeformisas a
model system. We developed an IBM of an infectedt hmopulation which could
reproduce host time series and distribution of gigeantensities with mean characteristics
taken from empirical studies of mountain hares éotland. The model was structured to
allow delayed responses to life history by linkmgternal body size and parasite infection
to the future survival and fecundity of offspring/e found these maternal effects could
generate DLHEs that had a weak destabilising efbechare population dynamics. The
nature of individual based modelling required folatimg explicit mechanisms of parasite
transmission. As this was unknown, we devised amdpared three different mechanisms
and found the best fit was a combination of locad population-wide transmission. While
the best fit model was able to reproduce the mgaardical behaviour, an adequate model
of mountain hare population dynamics should alsacdygable of replicating the natural

diverse array of behaviours. We found that, witllistic variation in parameter values, the
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best fit model could capture the observed variatiothree of the four studied dynamical
characteristics.

DLHESs can increase the propensity for complex dynarby generating delayed
density dependence and individual variability (Berckan et al., 2002). In simple dynamic
models, the transmission via maternal inheritarfcaverage individual ‘quality’ has been
shown to be a plausible cause of forest lepidopteyales (Ginzburg and Taneyhill, 1994)
and microtine rodent cycles (Inchausti and Ginzpbd®@P8) by causing delayed density
dependence. Delayed density dependence is detectsinlg time series analysis and has
been identified in cyclic Scottish mountain harmdi series (Newey et al., 2007b).
However, delayed density dependence has many [@tesdurces: it is classically
associated with endogenous factors including direiects of trophic interactions
(Turchin, 2003), but can also be generated by teatiyoautocorrelated environmental
noise (Lundberg et al., 2000). It is currently asthonpossible for time series analysis to
distinguish among competing potential causes (Bac&r et al., 2002). While this work
does not prove that DLHES are acting in mountane ip@pulations, we found that DLHES
could have a destabilising effect on the dynanfigarevious model required an increase in
the direct effect of parasites on fecundity outsifiéhe empirically estimated envelope to
generate hare population cycles (Townsend et @09 2Chapter 4), while the presence of
DLHESs reduced the increase in this parameter nape$s generate realistic dynamics.
The reduction in this required increase was appresely 1x1¢' year', a large amount
given the ‘combined’ parasite effect on fecunditylfas been empirically estimated in the
order of 1¢* to 10° year (Townsend et al., 2009, Chapter 4, Newey and Thig@004).
DLHEs allowed parameters to be closer to empiriestimates in order to generate
observed hare population cycles, and could be itapbrprocesses in host-parasite
systems.

The DLHESs could have a stronger effect on the pmsipe for cyclic dynamics than
estimated here. In comparison to the direct paradfect on fecundity, the DLHEs had a
relatively weak destabilising impact. We note, heare that their impact may have been
greater if the effect on time of breeding was maubge sensitive to female fitness through
a more biologically realistic mechanism. In the 1Bt{e timing of litters subsequent to the
first was determined by an inter-litter period whiwas drawn from a uniform random
distribution of between 1 and 60 days. While impipal postpartum oestrus allows female
hares to copulate within just a few hours of patitur (Hoglund, 1957), the 60 day upper
limit was reverse engineered to generate distalngtiof pregnancies and birthdates that
were realistically spread across the breeding seésloix, 1970, Hewson, 1970). While

some variability is expected in inter-litter perjadaking it strongly stochastic may have
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effectively decoupled the impact of timing of thest litter on the timing of subsequent
litters.

It is common practice in the theoretical invesiigatof the complex population
dynamics to compare the match of modelled to ré&ak tseries using dynamical
characteristics. This method of goodness of fiopen to criticism (Kendall et al., 1999),
especially where just a single aspect of the tienes, such as the period (Dobson and
Hudson, 1992a), is abstracted. We have taken pipisoach but used two characteristics of
hare populations, period and amplitude of cycles] &wo characteristics of parasite
distributions between hares, mean infection anélle¥ aggregation. We have generally
found during our investigations that, while it edatively easy to obtain realistic periods, it
is most difficult to capture realistic mean infectilevels. Both the elasticity analysis
performed here and on a previous analytical modielvisend et al., 2009, Chapter 4)
agree that intensity of parasite infection is stifgraffected by the parasite’s effect on host
mortality, but experimental studies do not suppogtrong effect (Newey and Thirgood,
2004). The IBM introduced leveret survival and itiiged it as a potentially important
determinant of parasite intensity in adult hardsisBuggests that host age-structure may
be an important aspect of this host-parasite systath future models should separate
leveret and adult demography.

Host population dynamics depend on the mechanisosimg aggregation in
parasites between hosts (Rosa and Pugliese, 28@@)egation is a characteristic feature
of macroparasites distributions (Shaw et al., 1998) a pattern which is likely to result
from several factors, most notably host heterogeseiclumping of infection events and
the positive feedback of the reinfection processs@Rand Pugliese, 2002, Shaw and
Dobson, 1995). Here, we explicitly modelled mechars of parasite transmission. A
population-wide (‘global’) mechanism was the IBMuaglent of the multiple infections
term in the model of Pugliese et al. (1998), wrilhe local transmission mechanism
combined all three aggregation factors to someesegk previous study has compared the
effect of host heterogeneity (in immunity) and ched infections and found the model
with clumped infections tended to be less stabteséRand Pugliese, 2002). We have found
that the model which included more aggregationctfféended to have more aggregated
parasites between hosts and less stable host piopulgnamics.

We found a mixture of local and population-wide gsiie transmission was
optimal, and this could have interesting implicaidor the effects of host movement on
population dynamics. The best fit model for the mtain hare -T. retortaeformissystem
used a mix of predominately local transmission wéthsmall percentage (10%) of

population-wide transmission. The predominance adall transmission suggests the
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observed distribution of burdens arises largelynfiadividual differences between hosts,
their local environment and/or infection pressurlis corresponds reasonably well to
what is known about the local movements of mountaires — they maintain home ranges
but these are not exclusive and they often feedgaide other hares (Flux, 1970). In fact,
any factors influencing host heterogeneities, har@vement or the longevity of.
retortaeformisfree-living stages could result in variation iretbalance of local-global
transmission. Varying degrees of locally and glbbalistributed infections between
mountain hare populations in the UK, or within orass years in the same population, is a
plausible mechanism for generating the wide rarideie population dynamics observed.

In contrast, allocating lifetime parasite infecsoto newborn hosts gained limited
support as the governing mechanism of transmiggitime mountain hare-parasite system.
Since each cohort had a different mean parasiebusccording to parasite availability in
their year of birth, this transmission mechanisnmegated a cohort effect where each
generation had similar life histories in terms efcdndity and survival. One of the
consequences for the population dynamics was redugst cycle amplitude compared to
the other models. In deterministic analytical medéehe introduction of a cohort effect
increases individual variability and this is dediaimg when the underlying deterministic
dynamics are stable and stabilising to non-equilfbrdeterministic dynamics (Lindstrom
and Kokko, 2002). However, in an IBM, a cohort effpresumably aggregates individual
variability from more idiosyncratic variation. Fher, we do not have a deterministic
counterpart making it difficult to determine whéfieet on stability should be expected, but
the reduction in individual variability in parasiteurdens appears to contrast with
analytical model results — tending to reduce thelaute of cyclic dynamics. The lifetime
burden allocation mechanism was proposed becautbe @hort average lifespan of hares
and the lower fertility of more recently acquireargsites (Hewson, 1976, Skorping et al.,
1991). The unrealistic dynamics resulting from ti@&ismission mechanism suggests that
the additional infections picked up by adult haresugh their lifetime are important to the
parasite population.

The model presented here captured mean charaicen$treal mountain hare time
series and the level of infection of the nematoal@giteT. retortaeformisand much of the
empirically observed diversity in these charactiss Further natural variation could be
accounted for by population differences in the ie¢aof local and population-wide
parasite transmission. The model included direcagte effects on the fecundity and
survival, links between maternal body size and gdurden on the timing of breeding,
leveret biology, seasonality in hare reproductioecruitment, mortality and parasite

transmission, and modelled mechanisms for parasitesmission. As has been shown for
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red grouse, snowshoe hares, Soay sheep and SvRlemdeer (Gulland et al., 1993, Ives
and Murray, 1997, Albon et al., 2002, Mougeot et 2003, Krebs et al., 2001a), the effect
of parasites on mountain hares likely forms para @omplex set of interactions that lead
to population cycles. Further work is needed tovjgi® better parameter estimates and to
provide empirical estimates for important life-aycstages, for example, we included
immigration in the model to prevent stochastic motions, although this was not based on
dispersal data. Mountain hare populations in Snodtlare harvested for sport and
increasingly to attempt to control tick-borne dseaDispersal, harvesting and population
control likely have significant effects on hare ptations and ongoing field and modelling

work are exploring these issues.
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Table 5.1. Individual based model parameter values and thleinsible ranges used in
model analyses. Where possible, parameters weareagstl from empirical data sources,

otherwise parameters were reverse engineered dimengest fit model selection process.

Reverse

Parameter Units \églsﬁitu;%%g; engineer- PI;L:]SQ;I;IE Source
ed?
Model population site area km? 20
Min. hare body size (hindfoot mm 115 unpublished data
length)
Max. hare body size (hindfoot mm 150 unpublished data
length)
Min. adult hare mortality in ear? 0.08 Townsend et al.
absence of parasites Y ' (2009), Chapter 4
Max. adult hare mortality in eart 0.61 Townsend et al.
absence of parasites y ' (2009), Chapter 4
. Macdonald, Mace &
Max. hare lifespan years 10 Rushton (1998)
Earliest recorded birth date o;g;(-:r‘ 7th March Hewson (1970)
Latest birthdate for 1% litter 14th May Flux (1970)
Latest birthdate of the year 31st Sept Flux (1970)
Length of breeding season days 203
Borg, Hoglund &
Gestation period days 50 Notini (1952),
Hoglund (1957)
Minimum inter-litter gap days 1 Hoglund (1957)
Added variation in inter-litter gap days rourloéguggg Yes
Size of 1% litter leverets 1-2
Based on Flux
Size of 2™ litter leverets 0-6 (1970), lason (1990)
) . and Hewson (1976)
Size of 3" litter leverets 0-6
] e ond g ova or 0
Pre-natal mortality in 2™ litter embryos 8% lason (1990)
Pre-natal mortality in 3" litter ova or 2% lason (1990)
embryos
Date after which litters were
affected by preceding litter sizes 8th June lason (1990)
Reduction in proceeding litters for ova or
each leveret born in 1* litter embryos 0.7 lason (1990)
Reduction in 3" litter for each ova or
leveret born in 2™ litter embryos 0.5 lason (1990)
0.990- Upper limit on
Daily leveret survival rate (DLS) day™ 0.994 Yes 0 098 annual survival 50%
' from Hewson (1976)
Method for setting burden In(;:(;?;istlggef?s;
thresholds for ova shed in 2™ litter P Yes
) on ova shed
(see Supp. Fig 5.1) with burden
Proportion of parasites distributed 0.9 Yes
locally
Parasite-induced hare mortality (a) year 0.00005 Yes 0-0.0001
Parasite fecundity in spring pulse year 440 30-1230
(Aspring)
Parasite fecundity in autumn pulse year? 560 40-1540 Townsend et al.
(Aautumn) (2009), Chapter 4
Transmission inefficiency in spring 13500-
pulse (HOuping) hare 60000 Yes 66800
Transmission inefficiency in 13500-
autumn pulse (Hoaywmn) hare 20000 Yes 66800
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Table 5.2. Mean (and range) of four characteristic propertiésreal and simulated

mountain hare time series and parasite burdensrdar to assess whether the best fit

model could capture the mean observed values aodisbcgeographical diversity in the

characteristic properties, the table presents thanand range of these properties from (i)

empirical sources, (ii) repeated simulations of thest fit model with best fit

parameterisation (Fig 5.3) and (iii) simulationgtod best fit model where parameters were

varied within plausible ranges (Fig 5.5).

Observed time series

Simulated time series from best fit model

(i) Empirical

(ii) Stochastically

(iiiy Parameter

Property Units estimate Source generated generated
variation variation
Period of hare 9.2 9.5 12.3
cycles years (4-15) Newey et al. (2007b) (9-13) (7-24)
Amplitude of hare
- 0.81 0.77 0.79
cycles (coefficient ) Newey et al. (2007b) _ )
of variation) (0.39-1.80) (0.58-1.41) (0.05-1.72)
Mean annual adult Based on reanalysis
1 1936 . 2759 20186
hare burden_of T. hare (190-4957) pf datasets described (42-7705) (140-164460)
retortaeformis in Newey et al.
L . (2005) and Boag and
Parasite dispersion 1.16 lason (1986). See 0.75 0.60
(k) (0.19-5.55) Methods. (0.46-1.26) (0.28-1.36)
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Table 5.3. The effect of structural changes on the stabditynodelled dynamics and fit
to four characteristic properties of observed mawnthare time series and parasite
burdens. For each model, time series were geneuatldb6 plausible (did not go extinct
or reach implausible hare densities) runs wereidda (i) The % of total runs collected
that were implausible. (ii) The % of total runsttiagere plausible and non-cyclic according
to an ACF correlelogram (see text). (iii) The %tatal runs that were plausible and cyclic
according to an ACF correlelogram. (iv) The % daydible runs whose characteristics fell
within the observed ranges of period, mean burdehparasite dispersion. Amplitude was
omitted to acknowledge that random exogenous fgrcem cause dampened oscillations
to persist as regular fluctuations (Kaitala et #096). (v) The % of plausible runs whose
characteristics fell within the observed rangepe@ifod, mean burden, parasite dispersion
and amplitude. Model structures abbreviate as: fite@est), parasite burden-timing link
removed (-BT), burden-timing and size-timing lildath removed (-BTST), direct parasite
effect on fecundity removed (DPF=0), population-evidarasite transmission (Global),
local transmission (Local), burdens allocated othaeng lifetime (Once). Fit to observed
was based on the period (for cyclic time series) amplitude of full 37 year time series
and mean values of parasite dispersion and meatemurom five yearly estimates to
avoid autocorrelation between estimates in consecwyears. Parameters that were not

varied as part of the perturbations were kept htegaset for the best fit model.

No. . . Fit to observed
Model series Dynamical stability (% of total runs) (% of plausible runs)

(i) Implausible (i) Non-cyclic (iii) Cyclic (iv) Exc. (v) Inc.

amplitude amplitude
Best 79 16 6 77 32 15
-BT 82 33 2 65 40 13
-BTST 71 21 1 77 43 13
DPF=0 60 7 10 83 25 0
Global 59 5 3 92 20 0
Local 124 55 5 40 46 9
Once 77 23 9 68 3 0
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Table 5.4. Elasticity analysis showing the proportional effetchanges in parameters of
the best fit model on four characteristic propertef mountain hare time series and
parasite burdens. Only the three coefficients \lid largest absolute values are shown.
The overall parasite effect on fecund{®) was negative, therefore to ease interpretation
the strength (magnitude) of the effect was usdthenanalysis. Period and amplitude were
estimated from the full 37 year time series, whiatasite dispersion and mean burden
were mean values of five yearly estimates (fiverlyelaasis used to avoid autocorrelation
between estimates in consecutive years). The asalgs based on 305 plausible runs of

the best fit model.

. Parasite
! Amplitude Mean . ;
Period V) burden dispersion
(k)
Controlled parameters

Leveret survival (LS) -0.5 0.3 114

Parasite-induced adult hare mortality (a) -0.7 -1.0 -6.3 0.2
Spring parasite fecundity (Aspring)

Spring transmission inefficiency (HOspring) 3.0 0.1
Autumn parasite fecundity (Aautumn) 0.1

Autumn transmission inefficiency (HOautumn)
Emergent parameter

Strength of overall parasite effect on hare fecundity (6) 0.2 0.3
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Figure 5.1. Schematic diagrams showing structure in the mof@gl.Modelled links
between individual hare attributes and hare pouidadynamics. Thin arrows constitute a
model which does not contain any maternal effeatsurvival and fecundity. (b) Outline
of the order of events that the hare populatioregepces over a year in the IBM.
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Figure 5.2. Simulated population dynamics from a single runhef best fit model of (a)
hares and (b) parasites. (c) The sustained cytlstie space. Hares cycled with a ten year
period and amplitude of 0.79. Parasites were Oigied between hares with a mean of
2400 worms ané of 0.80.
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Figure 5.3. Summary statistics for four characteristic propsrof mountain hare time

series and parasite burdens: (a) period of haréesydb) amplitude of hare cycles
(measured as the CV of the time-series), (c) mearasgie burden and (d) parasite
dispersionk. Frequency histograms were generated from 200lations of the best fit

model. For each distribution the 95% percentilernvdl is shown (thick grey lines), and

the mean observed value (dotted line). In (a, bh estimate was based on the full 37 year

time series, whereas in (c) and (d) annual estenatre taken every five years to avoid

autocorrelation between estimates in consecutiaesye
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Figure 5.4. Simulated hare and parasite population dynamid®wong structural

changes to the best fit model: (a) burden-timimg iemoved; (b) both the burden-timing
and size-timing links removed; (c) the direct effet parasites on fecundity removed; (d)

parasite recruits globally distributed across th®l hare population; (e) parasite recruits

distributed locally within hare families; (f) bunde allocated once during a hare’s lifetime.

Hare time series shown in the insets, note diftesenles. Parameters that were not varied

as part of the perturbations were kept at valuekséhe best fit model (Table 5.1).
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Figure 5.5. Comparing variation in four characteristic prop=tof mountain hare time
series and parasite burdens across different maahelsto the observed variation (range
covered by light grey boxes, mean marked with daey line). Parameters were varied
within the plausible parameter envelope. The charatics are (a) period (for cyclic time
series), (b) amplitude of hare cycles, (c) mearéunrand (d) parasite dispersianviodel
structures abbreviate as: best fit (Best), parasieden-timing link removed (-BT),
burden-timing and size-timing links both remove®TST), direct parasite effect on
fecundity removed (DPF=0), population-wide parasitansmission (Global), local
transmission (Local), burdens allocated once duifegme (Once). Parameters that were

not varied as part of the perturbations were kepakues set for the best fit model.
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Figure 5.6. The relationship between the amplitude of harelesyand the ‘overall’
parasite effect on hare fecundity when maternaogdfon leveret birthdate were removed
from the best fit model. Parasite-reduced fecun@ifytakes a negative value, therefore to
ease interpretation the strength (magnitude) ofetifect is graphed. When the burden-
timing link was removed (filled circles) the regsem coefficient for the slope was -1428
year (224=-7.61, p<<0.001) and intercept 0.19%;{s+~-2.37, p=0.03). When both the
burden-timing and size-timing links were removepggo circles) the regression coefficient
for the slope -1598 yeat,(4=-6.26, p<<0.001) and the intercept was not significantly
different from zero.
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Appendix 5.1: Body size
The adult size a juvenile attained was determingdikthdate. Since late born leverets
show some compensatory growth (lason, 1989a), aliogar relationship was used to

link birthdate (days aftdBeariest, X, See Appendix 5.2) and end of season juvenile size:

HFL,

int 2

HFL = HFL__ - : X
(Length of breeding seasdn)

whereHFL;y is the difference betwedtFL.x andHFL,in, and the breeding season lasted
for 203 days (latest birthdates estimated at ar@ifdeptember (Flux, 1970)).

Appendix 5.2: Birthdate

All females had a first litter. The timing of theest litter lay between the earliest recorded
birth date of the yeaB{aries) 7th March (Hewson, 1970) and the latest for st fitter of
the breeding seasoBs(jaees) 14th May (Flux, 1970). The number of days aBgfesswhen

a female gave birthx] was related to her body sitd-L; and parasite loaB; (Fig 5.1a)

according to:

R N HFLmax - HFLi . Bl,latest B Bearliest if |:? < Pmax
Pmax HFLint 2
. Egn. 5.1
1+ PPl HFL | (Bres = Beanest) 05 p
HFL,, .

wherePnaxis 16,000 the maximum parasite burden recordéderiield (dataset described
in Newey et al(2005)), andHFL;.; is the difference betweetFL nax andHF L.

The birthdates of succeeding litters, up to a maxmof three, depended on the
gestation period of 50 days (Borg et al., 1952, [tidd, 1957) and an inter-litter gap, the
interval until the proceeding pregnancy. Althougbstpartum oestrus allows females to
copulate just a few hours after parturition (Hogluh957) the distribution of pregnancies
across the breeding months (Flux, 1970, HewsonQ)18iid bell-shaped HFL distribution
(lason, 1990; Newey, unpublished data) suggesthiea¢ may be considerable variance in
inter-litter gaps. To allow variation across fensatee model included a parameter for the
upper limit of a uniform random distribution fromhweh inter-litter gaps could be
generated and added to the fixed period of one Thg. value of the upper limit was
reverse engineered as part of the model selectmregs.
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In the model where the effect of burden on birtedaais removed, the number of
days after the earliest birthdatBe{iies) When a female gives birthx)(was a modified

version of Eqn 5.1:

HFL,,, — HFL,
X:( e~ HFL,

HFLint j( a,latest - Bearliest)

When both the burden-timing and size-timing linksrgvremoved then day of birtk) (vas

a uniform random variate between zero and thetlaigbdate for the first litterRy jates)-

Appendix 5.3: Litter size

Although a detailed field study of breeding mounthares in Scotland categorised litters
according to the time of year (lason, 1990), far todelling process it was logical to label
litters in sequence of birth. Litter size was anmded integer value of the number of ova
shed minus reductions due to previous litters mprnesatal mortality. The number of ova
shed depended on litter, parasite loads and tleeo$igrevious litters in the current year. In
mountain hares the first litter is smaller thangeeding ones (Angerbjorn and Flux, 1995)
whilst later litters can potentially reach six. Téfre the number of ova shed was set as
either one or two for the first litter and up t& sva in proceeding litters.

Previous litters can impact on the number born aterl litters (lason, 1990).
Empirical data suggests litter two is only affecbgditter one after early June (lason’s cut-
off of 8" June was used in the model). Litters two and three reduced by 0.7 for each
leveret born in litter one, whilst 0.5 young werddcted from litter three for each leveret
born to litter two. Prenatal mortality was not dpglto the smaller ®Llitters but litter-
specific prenatal mortalities were assigned toXHditter and & litter using mean values
of 8% and 2% respectively (lason, 1990). Sincerlisizes can be as large as six, although
usually less (Flux, 1970, Hewson, 1976), the nundberva shed in litter three was set at
six ova and deductions made according to previttas sizes and prenatal mortality.

The effect of parasites on the number of ova sheudeiak after April/May (Newey
and Thirgood, 2004, Newey et al., 2004) and theeefeas only permitted to affect th& 1
and 2% litters in the model. Thresholds were used tocalle hares with ova shed according
to their parasite burden. We considered two conediptdifferent ways to construct these
thresholds and used the best available data o .tmetortaeformisdistribution among
mountain hares to generate the six thresholds deedseparate zero and six ova shed

(Supplemental Fig 5.1). Modelling the effect of gmtes on the size of the first litter was
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simpler because all females shed only one or tvainwhe first litter and therefore only
the threshold between one and two ova needed tpalkmmeterized. The value of the
threshold in litter one and the method for allawgtthresholds in litter two were reverse

engineered as part of the model selection process.

Appendix 5.4: Adult hare mortality
Intrinsic mortality (in absence of parasites) wapehdent on body size, where each
individual was allocated a rate according to admeelationship between the confidence
intervals of the empirically estimated populatiomlue of intrinsic hare mortality
(Townsend et al., 2009, Chapter 4) and body sizéhis way the smallest hares (HFL 115
mm) had the highest mortality (0.61 y&aand the largest hares (HFL 150 mm) had the
lowest mortality (0.08 yed). Mortality rate for an individual hare was fixéttoughout its
adult life. Hares surviving to age ten were assutoeadle (Macdonald et al., 1998).

Adult mortality occurred once a year with a proligbcalculated from the sum of
intrinsic hare mortality in the absence of parasitnd per parasite direct effect on

mortality (@) multiplied by parasite burden.

Appendix 5.5: Parasite transmission

The parasite population was monitored by recordingdens within hares. Transmission
was calculated from two components, the birth temnu the host density-dependent
mortality term, taking the general form from thergmte equation in the host-parasite
model of Anderson and May (1978):

H

P(t) = A.P(t=1)

Two transmission phases were permitted to accoomntséasonality in parasite
burdens (Boag and lason, 1986). In the spring pylaeasite burdens of the breeding
population were augmented. In the autumn pulset athrin burdens were augmented and
leveret burdens initiated. For simplicity in the aieg the year was divided according to the
breeding season (treated as ‘summer’ and constit&6% of the year) and the empirical
estimate ofT. retortaeformisfecundity of 1000 yeadr (Townsend et al., 2009, Chapter 4)
was split between pulses in proportion to theiration. Since the survival term was a rate,
Ho, was not split over seasons but sampled withiplasisible range as part of the model
selection process. Adult parasite mortality wasiaes] to be zero.
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Three transmission mechanisms were devised for rtioglel. In the first
mechanism, parasite recruits entered a pool fronchwthey were allocated among the
whole hare population. The pool size was calculatdg the birth term from the parasite

equation in the host-parasite model of AndersonMag (1978):

H
H,+H

1-p)AP(-1)

wherel = number of eggs per parasik®, = transmission inefficiency constamt,= hare
density andP = parasite population andyl= proportion of parasite pool distributed
globally (see below). The pool was apportioned asing a uniform broken stick
distribution, augmenting adult hare burdens antibitmg burdens of leverets.

The second mechanism represented local transmjssemognising that hares
maintain home ranges (Flux, 1970) and therefore pavasites may be more likely to
reinfect the same host. The parasite burd@naf adult hard was augmented according

to:

H
Ho+H

yAP(t-1).

This was adapted to account for indirect verticah$mission to leverets sharing the same
space as their mothers. To augment adult hare bsirde

B
(yAea—n+{ﬂHj(%j

and to initiate leveret burdens:

B
ane- (2
n-1

Wheren is family size (mother + no. leveretg),is how evenly parasites are distributed
within a family (¢ = 0, mother gets all the parasitgs= 1, parasites allocated evenly
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among mother and offspring) amds the proportion of the parasite pool distribul@chlly

(y = 0, parasites distributed population wide only,1, parasites distributed locally only).
In the third mechanism, hares were given a lifetoioge of parasites as leverets

rather than annual augmentation of infection. Rerascruits entered a pool from which

they were allocated among the leveret populatiorthis way each cohort had a different

mean parasite burden according to parasite avitjain that year and variation was

generated across years where there were diffemat parasite pools. For this mechanism,

autumn parasite fecundity was adjusted to the drempirical estimate of 1000 yéar
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Supplemental Figure 5.1. Schematic diagrams showing the conceptual diffaren
between two approaches to setting burden threshnoldle allocation of fecundity in
female hares. (a) In the first approach the maxirmumber of parasites (14962) in a
dataset ofl. retortaeformisourdens in 654 hares (dataset described in Netaly(@005))
was split equally into seven bins. In this wayeméle’s 2 litter size was reduced by one
ovum for approximately every 2100 parasites in lneden. (b) This assumes a constant
per-parasite effect with increasing burden. (c)hie second approach, the same number of
hares was assumed to fall into seven bins. Cornelipg burdens at the thresholds of these
bins were identified using a c.d.f. of a negatiugimial distribution withk = 0.55 andg =
0.00026 (these were the available estimates poothé reanalysis by estate that is
described in the main text). This generated thieshat 100, 350, 770, 1420, 2490 and
4530 parasites. (d) This models per-parasite eftectova shed as increasing with

increasing burden.
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Supplemental Figure 5.2. Manipulation of burden thresholds in the allocatmf ova
shed to female hares in the second litter. Theatahe lines, the smaller the increments

between thresholds and the stronger the paras#et eh fecundity.
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Chapter 6. Periodic travelling waves in a simple host-parasite model

parameterised using approximate Bayesian inference

Abstract

Cyclic population dynamics in mountain hares hagerbdocumented in nature, but an
empirically informed simple host-parasite model mad been able to predict realistic

dynamics. Potential inadequacies in the model mvestigated in this chapter. First, we
lack reliable information about model parametergréeHwe use a rejection-sampling
approach motivated by Bayesian methods to idenkiey most likely parameter set to

predict observed dynamics. The results imply that ¢urrent formulation of the hare-

parasite model can only generate realistic dynamiusn parasite effects are significantly
larger than current empirical estimates. We corelidht the model probably contains an
inadequate level of detail. Therefore, second, tnecturally modify the model to make it

spatially explicit by including diffusion of mountahares and corresponding advection of
parasites. From initial simulations we show thag¢ tpatially extended host-parasite
equations are able to generate periodic traveNMimyes (PTWSs) of hare and parasite
abundance. This is a newly documented behaviouhése widely used host-parasite
equations. While PTWSs are a new potential scenamer which cyclic hare dynamics

could be explained, further mathematical develognenmequired to determine whether
adding space can generate realistic dynamics vethnpeters that lie closer to empirical

estimates.
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1. Introduction

Population variability may be explained under atitude of ecological theories. One set
of theories arises from the interaction of a hoghva macroparasite, and uses simple
mathematical models to demonstrate that macropesasan drive population cycles in
host species (Anderson and May, 1978, May and Asaaerl978). No matter what form
the theoretical basis takes, the challenge rea@ly ih the confrontation with data, with
essentially two outcomes. In the case of host-tarasodelling, an empirically informed
model parameterised with best available data eitjegrerates realistic host population
dynamics and infection levels, as is the case thighred grouse and a nematode parasite,
Trichostrongylus tenuigDobson and Hudson, 1992), or the predicted dyocsutio not lie
within the spectrum of dynamics observed, as isdige with the mountain hareT-
retortaeformissystem (Townsend et al., 2009, Chapter 4). Indtier scenario, it may be
concluded that parasites are not driving host sydiowever, failure to predict observed
dynamics may also arise from inadequate paramatienms or missing important biological
details causing structural inadequacies in the inimdeulation. Potential inadequacies in
the mountain hare T. retortaeformismodel are investigated in this chapter: by using
statistical techniques to identify a parameter thett generates observed population
dynamics; and by extending the model into the apdimension.

Mountain haresl(epus timidusare the UK’s only native lagomorph with 99% of
the UK population found in Scotland. Like their Anoan cousin, the snowshoe hare
(Lepus americanys mountain hares exhibit cyclic dynamics (Newey akt 2007b)
although unlike the snowshoe hare the cause of tawumare cycles is not yet well
understood. There is little evidence to suggest tieavy predation (Hewson, 1976) or
food-limitation (Keith, 1983) are responsible. Moain hares co-inhabit heather moorland
with red grouse, a species which also exhibitsicymbpulation dynamics. Grouse cycles
are thought to be driven by the nematode pardsitenuis(Hudson et al., 1998, Hudson et
al., 1992, Dobson and Hudson, 1992b), territogiglMoss et al., 1996), or an interaction
of both (Mougeot et al., 2003). In comparison, ntaimhares are non-territorial (Flux,
1970, Hewson, 1976) but they do suffer from higbvptence and intensity of a parasite of
the same genus, retortaeformisThe discovery that parasites reduce fecundifydottish
hare populations (Newey and Thirgood, 2004, Neweyale 2004) has led to the
suggestion ofT. retortaeformisas a driver of mountain hare population dynamits i
Scotland. Recently, however, a simple mathematealntain hare -T. retortaeformis
model based on the Anderson and May framework (Aswteand May, 1978, May and

Anderson, 1978) has suggested the empirically estichparasite effect on fecundity was
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not strong enough to predict parasite intensitied account for sustained population
cycles (Townsend et al., 2009, Chapter 4).

In the vast majority of biological systems we laediable information about
parameters of models. The challenge is particuladyte for parameterising dynamical
models of wildlife host-parasite systems becauskependent data are required from
studies of host demographics, parasite transmisaimmh manipulative experiments to
quantify parasite induced effects. Even if pradtdifiiculties are overcome, small sample
sizes may make parameter confidence intervals tde te easily infer the role of parasites
in driving the dynamics. An alternative is to usptimisation techniques to estimate
parameters simultaneously, either within the frexdigse maximum likelihood or Bayesian
framework. Bayesian statistical inference has twg &dvantages over other optimisation
techniques. First it is able to provide the probgbdistribution of parameters, whereas
most conventional optimisation algorithms proviadygoint estimates (Toni et al., 2009),
and second, Bayesian inference integrates existifgmation on parameters (Clark,
2007) while frequentist approaches typically negileformation gained from independent,
empirical (and often hard-earned) data. In thisptdrawe use a rejection-sampling
approach motivated by Bayesian methods to iderhiy most likely parameter set to
predict observed dynamics with the mountain hareretortaeformismodel.

Spatial structure has commonly been excluded frawhetypal models of
population dynamical systems despite the fact ¢#eatogical processes are unavoidably
spatio-temporal. Spatial structure can be expjicittorporated into mathematical models
as either a continuous variable or as a discretmbla. Modelling space as a discrete
variable, for example using coupled map latticeas@g#ll et al., 1991) or coupled oscillator
models (Sherratt et al., 2000), makes simulatidatively straightforward but has a
restricted mathematical underpinning that limite thuantitative study of dynamical
behaviour (Sherratt, 2001). The simplest way t@iporate continuous space is to add one
dimensional dispersal to each component equatioth@ftemporally dynamic model,
which assumes individuals diffuse through theiriemment at a specified rate. This
constitutes a simple reaction-diffusion model, véheach species equation has a reaction
component which models the birth and death prosessthat species (also known as the
‘kinetics’) and the dispersal component. These ggus can generate a range of spatio-
temporal dynamics, such as travelling wave frop&sjodic travelling waves and spatio-
temporal chaos (Sherratt and Smith, 2008).

Periodic travelling waves are a naturally obserpb@nomenon in some cyclic
species including red grouse (Moss et al., 2008)samowshoe hares (Smith, 1983). Theory

on reaction-diffusion equations suggests that they be caused by dispersal acting on
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cyclic populations (Smith et al.,, 2008). Howeveril@treaction-diffusion equations are
commonly used to model dynamical population groetfuations coupled by a trophic
interaction, the dispersal of a parasite is cleady independent of the movement of its
host and therefore may be more appropriately medddly advection (transportation) of
the parasite by the host. One aim here is to datermhether periodic travelling waves are
predicted by a reaction-diffusion-advection modelh@ mountain hareF. retortaeformis
system.

In this chapter, we give an overview of the re@etsampling approach we used to
infer the most likely parameter combination to gate realistic temporal dynamics with
the current formulation of the mountain hare retortaeformignodel. Then we extend the
model to include host dispersal and parasite athrecHare and parasite population
dynamics are presented for both the non-spatiaspatal models parameterised with best

empirical estimates and most likely estimates frejaction-sampling.

2. Methods

(2A) THE HOST-PARASITE MODEL

The non-spatial model was a variant of the May &dérson (1978) deterministic model
for macroparasite infections which are detrimetdddoth host fecundity and survival, that
was derived by Diekmann & Kretschmar (1991) to prévthe possibility of a negative
birth rate. The model describes continuous growghagons of a host population of

densityH which interacts with a parasite populatién

dH kH )

—= _gP-bH+aH

at (5P+ kHj Egn 6.1
dP_ gl _H —(u+a+ b)—aﬁ(—kJrlj Eqn 6.2
dt H,+H HU k

Parameters are defined in Table 6.1. Standard ncahézchniques were used to solve the
equations (MATLAB ODE solver ode45 based on anieidRunge-Kutta (4, 5) formula)
and simulate dynamics of the parameterised mod®lul8tions included a burn-in period
of 50 years and post burn-in period of 37 yearsréaisons explained in 82d. Stability of
the interior equilibrium point was determined usimgar equilibrium stability analysis by
constructing the Jacobian matrix and assessin@gbeciated eigenvalues (see Appendix

4.2 of Chapter 4 for further details). A negatiealrpart of the dominant (most positive)
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eigenvalue (Rd, ) denotes a stable point and its magnitude detesnihe rate of

dom
damping to the equilibrium. Values for parasitepdision k) were restricted to 0.5, 1 and
2 in order to obtain analytical solutions for thguéibrium point (see Appendix 4.2 of
Chapter 4).

(2B) EMPIRICAL PARAMETER ESTIMATION

Point estimates and plausibility envelopes for peaterising Eqns 6.1-6.2 using empirical
evidence are given in Table 6.1. For most paramefee data sources and means of
estimation have been described elsewhere (see Appéri of Chapter 4 for estimation of
a, b, 4, Hoandu, and Methods of Chapter 5 for estimatiorkpfwhilst two parameters(

0) were estimated by reanalysing available data fgg#endix). As formal confidence
limits were not available for all data sources,iatawn in parameters was defined by a
plausible envelope. Both male and female individifarmed the model hare population

since both sexes are hostdtaetortaeformis

(2C) PARAMETER ESTIMATION USING REJECTION-BASED APPROXIMATE BAYESIAN INFERENCE

Bayesian methods require a prior distributia(®), which reflects prior belief i.e.
uncertainties in parameters in the ve@pand a likelihood function K|p) of the observed
datay, the probability that the observed data occuremithe parameter sét Bayes’
formula yields the posterior distribution @®() of the parameters as

P@O|y)O P(y|0)7®). The likelihood function is typically chosen dedarg on the

dynamical model (Patwardhan and Small, 1992, Reésa.e2003). Recently however,
approximate Bayesian methods have been developerkewthe evaluation of likelihood is
replaced by a simulation-based procedure. ApprotdrBayesian computation (ABC) is a
family of computational techniques that use re@egampling of parameter combinations
based on their ability to simulate a data set (Earal., 2009) or capture observed summary
statistics of a simulated data set (Beaumont g2@02). The approach was conceived with
the aim of inferring posterior distributions fooshastic, complex models where likelihood
functions were computationally intractable or tamstty to implement (Beaumont et al.,
2002, Marjoram et al., 2003, Plagnol and Tavar@42M™ickerson et al., 2006). However
ABC methods are attractive for inferring posterthistributions of deterministic models
also, because they combine the computational coewves of summary statistics with the
advantages of the Bayesian paradigm, and are glaséhted to standard Bayesian

inference in systems of ordinary differential eguiag (Toni et al., 2009).
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The simplest approach to implementing ABC is to wsaejection sampler
(Pritchard et al., 1999). Although there are masphssticated sampling methods using
Markov chain Monte Carlo (MCMC) and sequential Mor€arlo (SMC) algorithms
(Marjoram et al., 2003, Sisson et al., 2007), theults are comparable in deterministic
models (Toni et al., 2009). The disadvantage ofrdjection sampler is that it samples
from the prior distribution only, and therefore Milave low acceptance rates (and high
computational cost) when the posterior is veryeddht from the prior. However, if this is
not the case then rejection sampling is very easymplement and the algorithm can be
parallelised (run on multiple computers simultarsdputo speed up acceptances.

Where data are high dimensional, information can chetured using lower
dimensional summary statistics and these can lsttossompare data sets. As measures of
agreement between simulated and real time setidgs, gommon practice to compare
dynamical properties (also known as probes) sudheaperiod of cycles (Kendall et al.,
1999). We adopt such descriptors as summary statisee §82d), denoted hereSgfor
i=1,....,n wheren is the number of statistics), with which to condugjection sampling.

The ABC scheme for data summarised by vector of summary statis8as as follows:

Al.Generate parameter vectbfrom n(0)

A2.SimulateD’ from the model (Eqn 6.1 and 6.2) with parametetoed
A3.Calculate summary statistic vect8r

A4.Calculate distanceg(S, S') betweerSandS

A5.Acceptf if p<e&, wheree is the tolerance. Return to Al.

ABC rejection sampling was developed to use digabetween observed and
simulated summary statistics, whereas we found dt wnore appropriate to provide
intervals of acceptable summary statistics (see $able 6.2). The sampling scheme was
modified to reject those simulations which have swary statistics that fall outside the

intervals:

B1l.Generate parameter vectbfrom n(0)
B2.Simulate D' from the model (Eqn 6.1 and 6.2) with parametetord
B3.Calculate summary statistic vect8r

B4.Accept if § < § < §, for all i, where§ is the observed lower value afd is the

observed upper value of each summary statgtiReturn to B1.
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Parameter combinations were generated from prsatrilbutions and those which simulated
plausible time series with the observed summanystts were accepted. Choice of prior
distributions was a reflection of two requiremenist, priors needed to capture the
probability densities suggested by the empiricéh daee 82b), and thus hyper-parameters
(mean and variance) for prior distributions wereosdgn to reflect the empirically
determined point estimates and plausible interBble 6.1). Second, previous work has
suggested that realistic dynamics require changepatameters outside the plausible
envelope (Townsend et al., 2009, Chapter 4) anefibre, for the majority of parameters,
prior distributions were broader than the plausibtervals. Plausibility of simulations was
determined by persistence of both species and mabto hare and parasite abundances.
Given that the observed maximum hare density is l20@s krf (Watson et al., 1973,
Hewson, 1976) and maximum parasite intensity i90®,parasites hafe simulations
which reached four times these figures during tbe+tn period, and two times these
figures after the burn-in period, were consideraglausible.

Posterior distributions were generated from thdectibn of accepted parameter
combinations. Posterior parameter distributionsnandtidimensional, but for visualisation
they were plotted as one-dimensional marginal idistions. The mean of the marginal
distributions was used as an estimate of the ‘rlikety’ parameter value to generate

realistic population dynamics.

(2D) SUMMARY STATISTICS OF HARE AND PARASITE TIME SERIES
Observed dynamical properties were used as sumstatigtics for conducting parameter
estimation using approximate Bayesian inference @2c) and to judge model fit to
observed (Table 6.2). Mountain hare population dyina in Scotland are recorded as
game bag time series which have a median leng8Y gfears. Each time series has been
statistically classified as cyclic or non-cyclicdasummarised by hare cycle period and
amplitude (Newey et al., 2007b). The levelTofetortaeformisnfection in hares has been
recorded in several studies (Newey et al., 2005agBand lason, 1986) and recently
reanalysed to provide the mean and variation ofrmetensities for populations across
Scotland (Chapter 5).

We used two different vectors of summary statistecgccept or reject candidate
simulations (step B4 in ABC scheme 82c) and theeefabtained two sets of posterior

parameter distributions. The first vector contaitt@eée summary statistics:
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period of hare cycles (years 1
S= hare density (hareskin ) | S = 20 S§= 20,
mean infection (parasites harg ) 1375 2

and the second vector contained five summary statis

period of hare cycles (years) 4 15 |
hare density (hares kin ) 20 200
S=| mean infection (parasites hare )S =|1375| S =| 2497.
amplitude of hare cycles 0.39 180
| stability, Red,, ] | >0 | | o ]

The first vector of summary statistics accepteddiently cyclic time series as realistic,
recognising that random exogenous perturbationsdcoause dampened oscillations to
persist as regular fluctuations (Kaitala et al9@) The more stringent second set required
the model to generate stable limit hare cycles \itrealistic amplitude. Given that the
bounded solutions of Egns 6.1 and 6.2 are expéotpdssess either a stable equilibrium
point or stable limit cycle (Diekmann and Kretzs@iml991) and plausible simulations
were numerically bounded (see §2c), we assumedltaasible simulations with a locally

unstable equilibrium point (R&g,,,>0) must exhibit a stable limit cycle.

All model summary statistics were derived from gille (see §82c) simulated time
series of annually recorded hare density and mei&ation, with the exception of local
stability (see 82a). Mean hare density, mean iideclevel and the amplitude of hare
cycles were estimated over the non-transient 37 {ig@e series. Mean infection was
calculated for each year and then averaged over3theears. In case of damped
oscillations, the first 37 years of the hare tiredes (at the start of the burn-in period) was
used to classify cyclic dynamics and calculatequerPeriodicity, period and amplitude of
hare time cycles were estimated as for real da¢av@y et al., 2007b).

(2E) SPATIAL EXTENSION
Random movement of hares and parasites were mddsllattaching a diffusion term, to

denote local dispersal of hares, to the host egugkqn 6.1):

-@i=—ap—bH+aH(
ot

kH jk_aJH

, Eqgn 6.3
oP+kH ox
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where Jy is the hare fluxJ, =-D,0H/dx, i.e. we assume that hares move down a

population gradientx is the one-dimensional space coordinate Badis the diffusion
coefficient for hares. In the absence of any dattakeDy = 0.5 although we expetly
to influence the dynamics. Assuming parasites naividie same velocity as the hares we

attach an advection term to Eqn 6.2 to give:

%_T:P{H;TH —(,u+a+b)—a5(kT+lﬂ—aix(—§ JH) Eqn 6.4
The movement of parasites in space only occurpassive convection with the hosts, so
that the flux of the parasites at any point is gi\®y P multiplied by the host velocity,
Ju/H.

We used the method of lines to reduce the systethaioof a coupled system of
ordinary differential equations (ODEs) (see Appe&n@i2 for a full description of the
numerical scheme). We used a central differenceoappation for the diffusion term in
the hare equation and second order accurate fhitelis for the convection term in the
parasite equation. The boundary conditions for bwhes and parasites were no-flux at
both left and right boundaries and the resultinggS0vere solved using a fourth order

Runge-Kutta method. We assume exponentially degaymnspace) initial conditions:
H(x,t=0)=P(x,0)= Aexpt<{ X,

where A and ¢ are positive constants, taken to be 1 and 2 résphc Note that the
parameterA affects the time course of the evolution but haseffect on the ultimate
solution. Varyingé will affect the advancing front speed and the ctéde of the periodic
travelling wave when supported. The spatio-tempalaiamics of Egns 6.3-6.4 were
simulated under three parameter sets, the emppaal estimates (82b) and the two sets
of parameter estimates obtained from approximate&an inference (82c), and inspected

for periodic travelling waves.

3. Results
(3A) TEMPORAL DYNAMICS
Table 6.1 presents the empirically-sourced poinimedes and plausible intervals for

parameters of the non-spatial host-parasite mdttgig 6.1-6.2). Parameterising the model
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with the point estimates generated damped osoiflat{Fig 6.1a, d). Summary statistics of
this time series showed that while period and karesity were within observed ranges, the
level of mean infection was much greater than sg@allevels (Table 6.2).

We used ABC to identify the most likely parametetr given the observed summary
statistics. The acceptance rate under summarstatatiector 1 was 0.1%, and 0.006%
under summary statistic vector 2. Running the ABResne under summary statistic vector
1 (period, hare density and mean infection) geedrttie posterior parameter distributions
shown in Fig 6.2. From these posteriors the mdstl\li parameter combination was
estimated using the mean of the distributions @#&bl). With these parameters, the model
exhibited cyclic transient dynamics that were sjigrdamped (Fig 6.1b, e) with a realistic
period, mean hare density and annual mean infecfilable 6.2). Running the ABC
scheme under summary statistic vector 2 (perioe dansity, mean infection, amplitude,
stability) generated the posterior distributions f@rameters given in Fig 6.3. The time
series simulated from the model populated withrtiwest likely parameter set from these
posteriors (Table 6.1) exhibited a stable limit leyqFig 6.1c, f) with realistic
characteristics (Table 6.2), although the mean ctida level for this particular
combination of parameters was slightly outsidecinafidence envelope.

The parameter posterior distributions also providgdrmation about parameters
and their role in the hare and parasite interactitodel. Given that point parameter
estimates captured period and mean hare densitydbuthean infection levels (Table 6.2),
the posteriors in Fig 6.2 reflect changes to patarmenecessary to drive mean infection
down to realistic levels. Since only values of gaasite effect on mortality) from the
right tail of the prior distribution (I6to 10°% were accepted by the ABC algorithm (Fig
6.2b), the results imply that a 100 to 1000 foldr@ase in the parasite effect on mortality
(o) from empirical estimates would be necessary thuce intensities sufficiently given
this model. Lower intrinsic hare fecunditg, (Fig 6.2a) and a stronger parasite effect on
fecundity ¢, Fig 6.2d) were also implicated as likely elemeotsa system with lower
parasite intensities.

The posteriors in Fig 6.3 show that for the modefj¢nerate sustained cycles also
required a 10 to 100 fold increase in parasiteceften fecundity §, Fig 6.3d) from
empirical estimates, and was more likely when passvere more dispersed among hares
(largerk, Fig 6.3h). The destabilising nature of these paoameters are well known from
stability analysis, as the equilibrium point carlydoe stable ifu<dk (May and Anderson,
1978). It appears therefore that the large parastheced mortality rateo) required for
observed infection levels has a stabilising eftacthe dynamics that must be balanced by

a strong parasite-reduced fecundit). (In conclusion, the hare-parasite model can only
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generate realistic sustained cycles where paradiexts are significantly larger than

current estimates.

(3B) SPATIO-TEMPORAL DYNAMICS

Simulations of the spatio-temporal dynamics of kaend parasites under different
parameter sets showed two distinct patterns. Paeaisiag the model with empirical point
estimates (Table 6.1) generated a travelling wavees and parasites as the hares diffuse
(and parasites advect with the hares) from leftright across the domain from the
boundary (Fig 6.4). In the wake of this wave frdsdth hares and parasites evolve to their
non-oscillatory equilibrium states. Parameterigimg model with the most likely estimates
from posteriors generated using summary statistior 1 (Table 6.1) also generated a
wave front followed by spatially homogenous dynanicesults not shown). Under
parameters estimated using summary statistic vecidiable 6.1), however, a travelling
wave front was followed by periodic travelling wavahere oscillations in hare and

parasite numbers occurred in both space and tilges(b).

4, Discussion

In this chapter we have identified the most likprameter set for a simple host-parasite
model to reproduce realistic population cycles ioumtain hares interacting with a
nematode parasite. We used a technique based ooxapate Bayesian computation and
this work constitutes one of the first applicatidagdynamical systems in ecology (Toni et
al., 2009). This was done under two definitionsreélistic’ hare and parasite population
dynamics, in which one definition recognised thahdom exogenous forcing could
maintain cycles in damped oscillatory deterministymamics (Kaitala et al., 1996). The
results imply that the current formulation of thardrparasite model can only generate
realistic dynamics when parasite effects are digpnitly larger than current empirically
determined estimates. We then structurally modififedmodel to make it spatially explicit
by including diffusion of mountain hares and copasding advection of parasites. From
initial simulations we have shown that the spatiagktended host-parasite equations are
able to generate periodic travelling waves (PTWso aknown as periodic plane
wavetrains) of hare and parasite abundance. Thisiesvly documented behaviour in these
widely used host-parasite equations. Our resuliggest that the population cycles
observed in mountain hares in Scotland are eithatigdly homogenous oscillations as
predicted by the most likely parameter set withdiffusion or, with diffusion, the

observed temporal cycles are formed by periodicetliag waves.
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Travelling waves in natural populations are a leegn phenomenon associated
with temporally cyclic populations of a prey or hepecies (Hassell et al., 1991, Hassell et
al., 1994, Ranta and Kaitala, 1997, Sherratt andh$Sr2008). Although travelling waves
have become renowned in relation to the invasiaraycs of exotics or initial spread of
infectious diseases (e.g. Jeltsch et al., 199&8sehmay be transient phenomena or
distinguished as single wave fronts (Lundberg et 2000). More permanent travelling
waves are hard to demonstrate empirically becawsection in field studies requires
extensive spatio-temporal data and specialisedststat techniques (Sherratt and Smith,
2008). Nonetheless, where this has been done,héey commonly been found (Sherratt
and Smith, 2008), and in a range of taxa (Mos$.e2@00, Lambin et al., 1998, Tenow et
al., 2007, Bjornstad et al., 2002). Two of the sgedor which PTWSs have been identified
in natural populations, the red grouse (Moss e2aD0) and the autumnal moth (Tenow et
al., 2007), are also hypothesised to have pardsiten temporal cycles (Tanhuanp&a,
2002, Hudson et al., 1998). However, the effectparbsites on their spatial dynamical
behaviour has not yet been explored. Here we hawedstrated the possibility of PTWs
arising directly from the presence of the parasiteur host system.

The spatially extended host-parasite model predehtre adds to a range of
theoretical models for cyclic populations which atde to numerically simulate PTWs
(e.g. Hassell et al., 1991, Sherratt et al., 2000 majority of theoretical studies of
periodic wave behaviour, including the present wtutave been qualitative and not
guantitative. The major exception is oscillatorgaon-diffusion equations as a result of
mathematical advances over the last few decadesrédh) 2001, Dunbar, 1983, Kopell
and Howard, 1973, Sherratt, 1994). The speciatiogiship between the space and time
dependence of a periodic travelling wave meansstiation is a function of a single
‘travelling wave’ variable. Reaction-diffusion sgsts modelled using PDEs can be
rewritten in terms of the travelling wave variabtgying rise to a system of first order
ODEs. PTWs correspond to a limit cycle solutiontieése ODEs. The simplicity and
widespread application of the host-parasite modsduhere makes conducting the
equivalent analysis a natural mathematical goadi #ms is ongoing work. There are
several reasons why this may be of interest.

First, to determine whether the inclusion of dispéris a sufficient structural
change to the hare-parasite model to predict teatignamics within the empirical ranges
of parameter plausibility. Initial investigation ggests parameters within the empirical
envelope can generate a PTW (Supplemental Fig léut whether the properties of these
dynamics match observed values requires the negessathematical development

described above. The system of ODEs are requirgddatify wave characteristics such as
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wave speed, stability (unstable waves typically aligy into spatio-temporal chaos,
whereas stable waves persist over large domainsamgdtimes (Smith et al., 2006)),
amplitude and the temporal and spatial periodd®ticles (Sherratt, 2001).

Second, to determine whether dispersal acting oncyolic populations is able to
generate PTWSs. The assumption in population cycidiess is generally that populations
exhibit cycles even in the absence of dispersalvé¥er the abundance of a species in
space influences the density an individual expegsenthus affecting density dependent
processes and, potentially, population stabilifM\ can be occur in models which are
non-oscillatory without diffusion such as excitalsigstems (Sherratt and Smith, 2008).
Further, in reaction-diffusion equations, diffusirestabilities can destabilise a uniform
spatial state into wave-like patterns (also knowth& Turing effect) (Czaran, 1998, Levin,
1976, Turing, 1952). In our simulations, the pareaneombination that exhibited PTWs
also exhibited a stable limit cycle in the reactkinetics, but it is unclear whether the
spatial extension could destabilize non-oscillatempporal dynamics. Further analysis of
the model would allow us to determine whether spaceeases the region of parameter
space where unstable dynamics occur.

Third, this modelling work coincides with ongoinglfl research into the dispersal
of mountain hares, and it would be useful to haveaael within which the quantitative
effect of diffusion rates on the dynamics couldexglored. A brief consideration of the
effect of hare diffusion rateP() on the PTWs shown in Fig 6.5, suggests that slowe
diffusion increases spatial amplitude and periodpf@emental Fig 6.2), whilst faster
diffusion of hares has the opposite effect (Supplatad Fig 6.3). However the dispersal
rates we have considered do not yet have any erapbiasis. Relating diffusion in the
model to real hare movement forces considerationthef spatial scale of interest,
something which we have left unspecified in thisidgt to simplify mathematical
tractability and analysis. In Scotland, mountaimehhabitat is fragmented into upland
islands, so it will be important to determine th#uence of the size of the spatial domain
on the predicted spatio-temporal dynamics of alsipgpulation. To consider a spatial
scale larger than an upland island would necesspgapulation structuring and a move
away from the PDE model to a model formulation vdibcrete space. Preliminary data on
hare movements suggest mountain hare habitat slaralinked by rare dispersal events
which may enhance the likelihood of PTWs on a gaplgical scale. Sherratt et al. (2000)
used coupled oscillator models to show that weapetsal between local populations
could generate PTWs across individually oscillatpapulations of Kielder forest field
voles, while the spatial heterogeneity was loshvgtrong dispersal. Empirical data on

spatially referenced mountain hare abundance inléab has previously been used to
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guantify broad geographical variation in temporalehpopulation dynamics (Newey et al.,
2007b), and warrants revisiting to study spatiogeral patterns.

Fourth, having the mathematics in place is necgdsamake a detailed assessment
of wave generation mechanisms (Sherratt, 2001). #ist be generated in an ecological
population, just as impurities are required for PSIWW oscillatory chemical reactions
(Sherratt and Smith, 2008). Reaction-diffusion eys require spatial noise in parameters,
invasion of enemy species or certain ‘hostile’ babany conditions in order to generate
PTWs (Sherratt, 2001, Sherratt and Smith, 2008)vé¥er these were not aspects of our
simulations, suggesting a new mechanism of wavergéon.

In contrast, the minimal mathematics required far implementation of ABC is an
attractive feature of this technique to ecologistgyeneral. ABC offers the benefits of
standard Bayesian inference without the need toesgpor calculate parameter likelihoods,
although there is a cost in the degree of transgsgrn the modelling process. Also, these
methods are in development and accordingly shoelddplied with care. For example, as
yet there is no systematic method for identifyimgl @assessing the adequacy of summary
statistics as replacements for full data sets. §imging more statistics brings posteriors
closer to the full data posterior (Plagnol and Tay2004), although it may be better to
have fewer statistics with clear independence (l&#rad al., 1999). Hickerson et al. (2006)
state that summary statistics should clearly shostrang correspondence with parameter
values’. Although their meaning is unclear, the mary statistics used here were shown to
capture substantial information about parametersemsitivity analyses (Townsend et al.,
2009, Chapter 4). However, despite ongoing issuds ABC and the particularly simple
version adopted here, results from our implememadippear robust. A previous parameter
sensitivity analysis has been used to guide thectian of changes to parameters with
similar conclusions as found here concerning thed@quacy of empirical parameters
(Townsend et al., 2009, Chapter 4). Both approadaidisated that parasite effects were
critical for stability and mean infection intens#i, and showed that the current (non-
spatial) hare-parasite model required much stropgeasite effects to be able to generate
realistic dynamics.

This chapter began by presenting a situation whesgecies with cyclic population
dynamics has been documented in nature but forhwaic empirically informed model
could not predict realistic dynamics. The aim wasptogress by engaging with two
constructive criticisms of the model. The first what model structure was adequate but
parameterisation was inadequate. In the case ahtheatain hare-parasite system, whilst

the parameters can only be loosely quantified usimgent empirical data, we have a much
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clearer picture of the time series. By using a metkhat rejects time series without
realistic dynamics we have shown that the necegsargmeter values, in particular for
parasite effect sizes, are very different from erogi estimates. It is therefore likely that
the model is lacking important detail, the secofhdhe constructive criticisms. A recent
attempt at modelling an infected population of Barelividually included seasonality and
leveret biology and found that delayed life histeffects could theoretically strengthen the
parasite effect on hare recruitment (Chapter 5}this chapter, the structure of the model
was changed by allowing hares and parasites tasdéificross space and we identified a
new potential scenario under which cyclic hare dyiea could be explained - periodic
travelling waves. However, to determine whetherimgldspace can generate realistic
dynamics with parameters that lie closer to emairiestimates, further mathematical
development is required. Once this is achieved,cai@dd even compare the ability of
different models, such as the spatial host-parasiteel and individual-based model, to
simulate realistic dynamics by using the approxen8ayes factor within the ABC
framework (Toni et al., 2009). In fact the simubatibased method of ABC means the
approach can be applied to models of arbitraryolgichl complexity (Hickerson et al.,
2006, Beaumont et al., 2002), which in the futurewd also include human exploitation

of mountain hares.
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Table 6.1. Model parameter estimates from empirical data cemirand approximate

Bayesian inference.

Most likely Most likely

Empirical estimates estimates
- . Lower ) Upper using using
Parameter Description Units plausible limit point plausible limit summary summary
estimates " "
statistic statistic
vector 1 vector 2
Intrinsic fecundity of
a hares (in absence of year® 1.1 2.3 3.4 1.7 1.8
parasites)
a Parasite-induced .1 0 0.000008  0.000104  0.000541  0.000310

hare mortality

Intrinsic mortality of
b adult hares (in year! 0.08 0.35 0.61 0.40 0.41
absence of parasites)

Parasite-induced hare

0 reduction in hare L1 0 0.000017 0.000166 0.000175 0.000716
fecundity parasite

A Parasite fecundity year! 80 1000 2800 1160 1170

Ho Hgf’f‘li’l‘gf‘ffé‘o nstant hare 13500 38200 66800 35900 38200

u ﬁ%ﬂ;ﬁgagne year™ 0 0 12 0.6 06
Negative binomial

- 1.16 (1 for
k parameter/ parasite 0.85 analyses) 1.47 1 2

dispersion
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Table 6.2. Summary statistics of real and modelled mountaire landT. retortaeformis

population dynamics. Model parameterisation frorold@®.1.

Variation Model parameterisation
- . in i ; i i
Characteristic of dynamics observed Empirical point Most likely estimates Most likely estimates
estimates using summary using summary
values statistic vector 1 statistic vector 2
. 4-15
Period (years) (range) 6 4 7
Mean hare density (hares km™?) 20-200 65 91 62
(range)
Annual mean infection averaged 1375-2497
over time series (parasites hare’)  (95% CI) 79129 1793 2618
Amplitude of hare cycles 0.39-1.80 - 1.62
(range)
Stability (real part of dominant [0,00] 005 032 0.16

eigenvalue)
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Figure 6.1. Population dynamics of the non-spatial mountaireharf. retortaeformis

model parameterised with estimates using empirda@ia sources and approximate

Bayesian inference. Simulated time series (top ramg dynamics in state space (bottom

row) of the model parameterised with (a, d) emplrigoint estimates, (b, €) most likely

estimates using summary statistic vector 1 and) foost likely estimates using summary

statistic vector 2. For the time series, the stihé represents the hare population size

(hares per ki) whilst the dashed line is mean parasite intertyhare.
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Figure 6.2. Parameter prior distributions based on empiricatadand posterior
distributions based on ABC using summary statiggctor 1. Parameter combinations
sampled from the priors (solid lines) were accepted posteriors (histograms) if they
generated feasible and plausible runs that hadriadpef hare cycles, hare density and
mean parasite intensity that fell within the obseninterval (summary statistic vector 1).
Amplitude of hare cycles and local stability of tbguilibrium point were not included as
criteria. (a) Intrinsic hare fecundity, (b) parasibduced hare mortality (c) intrinsic hare
mortality, (d) parasite effect on hare fecundity) parasite fecundity, (f) transmission
inefficiency, (g) adult parasite mortality and @grasite dispersion among hares. The black
bars in (h) represent the prior. Posteriors wergsethaon 6192 simulations. Prior
distributions were empirically informed: a~gam(15,0.1533), a~logn(-11.7,1.5),
b~gam(7,0.05)0~logn(-11.0,1.5) /~gam(4,250),Ho~gam(10,3820)x~unif(0,1.2) andk
could take the value 0.5, 1 or 2 with equal proligbi
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Figure 6.3. Parameter prior distributions based on empiricatadand posterior
distributions based on ABC using summary statiggctor 2. Parameter combinations
sampled from the priors (solid lines) were accepted posteriors (histograms) if they
generated feasible and plausible runs that hadnatalble equilibrium point and realistic
amplitude, period of hare cycles, mean hare demsithannual mean infection (summary
statistic vector 2). Posteriors were therefore l@sstiof those in Fig 6.2 and based on 335
simulations. (a) Intrinsic hare fecundity, (b) materinduced hare mortality (c) intrinsic
hare mortality, (d) parasite effect on hare fectypde) parasite fecundity, (f) transmission
inefficiency, (g) adult parasite mortality and (@grasite dispersion among hares. The black

bars in (h) represent the prior. Priors as in F& 6
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Figure 6.4. The spatial mountain hare T retortaeformismodel parameterised with
empirical point estimates generates a wave frortanés and parasites. (a, d) A snapshot
(t=100) of the wave front as it moves along the oineedsional spatial domain from left
to right. The wave front leaves in its wake equililm population levels. In (b, e, ¢ and f)
the wave front and succeeding equilibrium dynanaies shown in both time and space,
with hare abundances indicated in (c) and meansparkads in (f). The dynamics were

initialised with exponentially decaying initial cditions (see 82e of main text).
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Figure 6.5. Spatio-temporal dynamics of the spatial mountareh T. retortaeformis
model parameterised with the most likely estimatsig summary statistic vector 2. A
wave front moves across the spatio-temporal domim succeeding periodic travelling
waves (PTWs). These dynamics correspond to cyaiigpbral dynamics in the non-spatial
model (Fig 6.1c, f). (a, d) A snapsh¢t100) of the PTWs as they moves along the one-
dimensional spatial domain from initial conditioasthe left boundary. In (b, c, e, f) the
PTWs are shown in time and space, with hare abwedamdicated in (c) and mean
infection levels in (f).
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Appendix 6.1: Re-analysis of empirical parameter estimates

a, Intrinsic fecundity of hares (in absence of parasite) (year’')

To estimate intrinsic fecundity we used data onviddal intensities ofT. retortaeformis
and female annual fecundity measured by counteehtumber of ova shed at the end of
the breeding season (Newey, Thirgood & Hudson, R0B#eviously intrinsic fecundity
was estimated from the intercept of a linear regoesof ova shed on parasite intensity
(Chapter 4, Appendix 4.1). This failed to accowntrion-normal errors in the residuals as
a result of the count data and therefore we rerestid intrinsic fecundity using a Poisson
regression. To account for males in the populatioan assumed ratio of 1:1, the estimate
was halved. The point estimate matched the prewstimate of 2.3 young per year, but

had a wider 95% CI of 1.1 to 3.4 young per yeatr.

0, Parasite-induced reduction in hare fecundity (hare parasite™’)

Hares which were treated for parasites prior tobleeding season had significantly lower
parasite intensities and higher fecundity, measwa®dcounts of ova shed by females
(Newey & Thirgood, 2004). In a previous analysidtué data, parasite reduced fecundity
was estimated from the slope of a linear regressioparasite intensity vs. ova shed
(Chapter 4, Appendix 4.1). We regressed this datagua Poisson regression with an
identity link function, which permitted us to obtaihe slope of a linear regression but
accounting for Poisson distributed errors. The klteovalue of the (negative) slope gave
an estimate of parasite reduced fecundity, onceeshato include males, of 0.000017 hares
per parasite. The lower plausible limit was taksernzaro and the upper 95% confidence

limit was 0.000166 hares per parasite per year.
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Appendix 6.2: Numerical scheme for the spatial host-parasite model

(1) Spatial Discretisation
The real intervalO,L] is divided intoN intervals of lengthdx and we use the standard

notationP;(t) as an approximation &f(jdx,t) for j=0,1,..,N. Similarly defined idH(t).

(2) Treatment of the hare equation
The PDE is of a standard reaction-diffusion typd @&ndiscretised using a second order

accurate central difference scheme,

_kH
OP+kH

H., -2H, +H
aa—:I:DH = 32 "1—aP—bH+aH(

k
j,szLmN

In order to satisfy the prescribed no-flux boundawpditions and to maintain second order

accuracy, we set the fictitious valuds=H; andHy+1=H n.1.

(3) Treatment of the parasite equation

The parasite equation has a reaction term and wectian term. A first order upwind

semidiscretisation could be used and that wouldntasi positivity but could also

introduce a large amount of numerical diffusionlegs the spatial discretisation is
sufficiently fine. On the other hand, high orderaal discretisations often lead to
oscillations in solutions which may break the pwgyt requirement when the solutions
values are small. Instead we dise limiters which we now describe.

We denote the velocity of the convective flux atgrointj by
w=—"=t—} j=0,1..N

We define the derivative of H at grid point j usiogntral differences as standard. Eet

denote the semidiscretised convective flux at gauohtj, i.e.

f,=wP, j=0,1..N

J J
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and we introduce the semidiscretised general fluxction F;,,,, which is a function of the

fluxes f surrounding gird poinf. Using a central difference approximation for gpatial

derivative, the convection term can be approximatethe expression

1

&(Fm/z_ Fj—1/2)l j=01..N

The semidiscretisation of the parasite equation thelds

oP_ 1 AH aP(k+1 .
ot _&(Fiﬂ/z - Fj—1/2)+ P{ H, +H _'u_a_b_F(Tﬂ' ]=0,1,..N
We setF_,,, = F.,,, =0 to ensure that the no-flux boundary conditionssatesfied. It no

only remains to choose the flux functiofs,,, . To this end, we define the function

: fo—f +e

=m0 % i=201,..N
o -1 te

which encapsulates the ratio of the gradients wfefs about grid point Note that the
quantity ¢ is a small number that ensures thats well defined even when the fluxes
surrounding gird poinj are identical. For simplicity, we set10™°. Consistent with the

boundary conditions we set , = f,,, =0. Finally we introduce dimiter function ¢(r)

and define the general flux function for a non-riegavelocity as
.1 .
Fj+l/2 - fj +Eﬂrj )(fj - fj _1), j=0,1,..N-1

However, for a negative velocity<0 we reflect all the indices abojtl/2 to obtain

1 .
Fj+l/2 = fj+1+_¢(r_j(fj+1_ fj+]), ]=0,,..N-1

j+1

We choose a van Leer’s flux limiter function, naynel
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r+|r|

A=

Note thatg(r) =0 would be equivalent to a first-order upwind disisagion.

(4) Numerical integration of the ODE system
The spatial discretisation described above redtle$DE system to a system of ODES

which we solve using a fourth order Runge-Kuttahodt
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Supplemental Figure 6.1. Periodic travelling waves (PTWSs) generated witktie
empirical parameter plausible envelope. Parameters empirical point estimates, as for
Fig 6.4, except the parasite-reduced hare fecundiyas increased to the empirically
determined upper plausible limit (Table 6.2). (pRAdnapshottE100) of the PTWSs. (b, c,
e, f) The PTWs in time and space.
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Chapter 7. General discussion

Ecologists would like to understand how compleypigysists in nature. In this thesis | have
taken two fundamentally different routes to studgsystem stability of model ecosystems:
classical community ecology and classical popufatiecology. One of the major
unresolved issues in community ecology is the imahip between ecosystem stability
and complexity. Lacking a resolution to this fundantal question leaves community
ecology in a poor position to argue for the conagon of natural diversity for the benefit
of all species, including humans. Below | discussvimy results in Chapters 2 and 3
contribute to this debate over stability - compigxielationships and its resolution. In
classical population ecology, a major unresolvesiigsis the cause of non-equilibrium
population dynamics. In Chapters 4 to 6 | use nwdel study the drivers of cyclic
dynamics in Scottish populations of mountain hai@sthe first time in this system. After
summarising the findings | discuss whether a mdded been identified which can be
considered the right balance between abstractidmedavant detail for this system. During
the discussion | deliberate on the utility of therkwpresented in this thesis, as this aspect

has been of increasing importance to me duringtiiese of my Ph.D candidacy.

The stability - complexity debate

In 1958 Charles Elton made the conjecture thatsthbility of an ecological system was
coupled to its complexity (Elton, 1958). The exgies in mathematical terms forced
clarity and precision upon the conjecture, andi¢edefinitions of stability and complexity.

The earliest and simplest model systems were ralydoonstructed and exhibited a
negative association between stability and complefay, 1971, Gardner and Ashby,
1970). This finding sparked the stability - complgxdebate and initiated the search for
organising principles that enhanced stability il ecosystems (Lawlor, 1978).

Since the debate began, the negative relationsdspbben inverted in theoretical
studies under numerous conditions. In this thdsidentify further novel conditions for
positive stability - complexity relationships: fésnce increases with interactivity if there
is high variance in the abundance distributionfah@ abundance distribution is even but
there is skew symmetry in the community (Jacobmalrix (Chapter 2); the probability of
permanence and local stability increases eithdr watiance in the interspecific interaction
strengths, or with the mean if the variance is leeldstant (Chapter 3). In fact it seems that
one does not have to venture too far from the waigrandomly constructed model
ecosystems to find conditions under which stabitign increase with complexity. This
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leads to the question of at what point do sucheision conditions’ constitute a resolution
of the stability - complexity debate?

First, ‘inversion conditions’ must be supportedrbgl food web patterns. Research
presented here (Chapter 2 and 3) and in other estu@iansen and Kokkoris, 2003,
Kokkoris et al., 2002, Haydon, 1994, Haydon, 200@s shown that the statistical
properties (i.e. mean and variance) of the distidinuof interactions within and between
species have strong effects on the stability of eh@dosystems. These can be related to
real food web patterns: variance in the interspedanteraction strengths to the common
community property of skew towards weak links (Berl 1999, Paine, 1992, Bascompte
et al., 2006, De Ruiter et al., 1995), and variaimcéhe intraspecific interactions to the
ubiquitous unevenness of the relative abundanddhdison (McGill et al., 2007). Skew
symmetry and increasing mean with constant variameenversion conditions which are
more difficult to link to documented real patterns.

Second, patterns must be reflected in real food stglcture. Numerous studies
have revealed that community and interaction medriceflecting the structure of real
communities have a special internal configuratiomiclv, when randomised, has
detrimental effects on stability (Emmerson and &elff, 2004, Yodzis, 1981, De Ruiter et
al., 1995). Some promising structures which cordebility have been identified as
common features of real food webs, such as slowfastcenergy channels (McCann et al.,
1998, Rooney et al., 2006) and low biomass ratokmg trophic loops (Neutel et al.,
2002, Neutel et al., 2007). In the webs studied\buytel et al. (2002), interaction strengths
were organised in trophic loops such that weakslitdénded to aggregate in longer loops.
This patterning made their food webs much morelsttéian randomised counterparts and
explains three common observations in real foodswvebedators tend to feed on several
types of prey; there are many weak and few stratgyactions between species (Berlow,
1999, Paine, 1992, Bascompte et al., 2006, De Reifital., 1995); and biomass generally
decreases with trophic level (Elton, 1927).

The work of Neutel et al. (2002) is significant hase it demonstrates a link
between structure, the uneven distribution of alnod, the uneven distribution of
interactions and stability in real food webs: aerachievement. An interesting aspect of
their study was the way in which they determined telative stability of real and
randomised Jacobian matrices. Rather than asdigineatlements of the Jacobian matrix
and analyse local stability of the full system \tfided the off-diagonal elements and then
determined how much intraspecific interaction (deieed by the size of diagonal
elements) was required for the matrix to becomallpstable. The patterning Neutel et al.

(2002) describe required only a relatively smathrée of intraspecific stabilisation. While
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their study focused on patterns in off-diagonahedats which (pretty much) guarantee the
local stability of real matrices, | have studiecdhy of how patterns in the diagonal
elements affect the relative stability of stabletnoas (Chapter 2), and show that high
variance in the diagonal elements can allow stgbito increase with food web
interactivity. Since intraspecific interaction stgths are (in part) determined by species
abundances, the off-diagonal configuration of Neateal’s. (2002) Jacobians combined
with the abundance pyramid reflected in the diagef@ments is a plausible architecture
that allows complex food webs to persist and cenfaiability as their interactivity
increases.

Nevertheless, revealing the pattern is not the saseunderstanding the
mechanism. A third requirement for the resolutidrih@ stability - complexity debate is
mechanistic explanation of the underlying procesg@sh generate observed patterns (and
their statistical properties) in real webs. These rauch more complicated to show than
community patterns and structure, which is why they rarely uncovered in empirical
studies (lves and Carpenter, 2007). The majoritytheforetical studies on stability -
complexity relationships use the community (Jacmbienatrix to makeassociations
between introduced changes or patterning in theixrtatchanges in the eigenvalues of the
matrix. The GerSgorin disc theory | adopt in Cha@ehas assisted me a great deal in
visualising how the properties of the matrix deteenthe distribution of eigenvalues.
However, | am yet to grasp how the translationaafi@gical order into eigenvalues occurs.
A mechanism has been proposed for models of spaethkmall trophic structures where
the community matrix was not used. McCann et &98) used nonlinear models to study
non-equilibrium dynamics and proposed that wealeradtions stabilise community
dynamics by generating negative covariances thaipda strong destabilising consumer-
resource interactions (McCann, 2000). Polis (198R8)ues that research like that of
McCann et al. (1998) is evidence that ecologists @ogressing well in providing the
“theoretical basis for the paradigm shift that @wmtaking over ecology”. The paradigm
shift he refers to is the one from ‘complexity issthbilising’ to a ‘cohesive role of
complexity’. | consider the work of McCann et &908), along with that of Neutel and
colleagues (Neutel et al., 2002, Neutel et al., 7200 be about the closest theoretical
community ecologists have come to resolving thbilia- complexity debate.

While there is growing evidence that the stabilitycomplexity debate is
progressing towards a resolution, community ecology become increasingly subject to
major criticism. Recently there has been consideraebate over whether community
ecology is a weak science that should be abanddeeduse it is so complex and

contingent that it can only very occasionally letd generalisation (Lawton, 1999,



General discussion 141

Simberloff, 2004). A more long-standing criticismithe heavy reliance on the assumption
that communities are at equilibrium and assesswoiestability is often made only close to
the equilibrium point. Judson (1994) sums up thgueeent that, with an equilibrium
approach, generality is a holy grail:
“If even the simplest nonlinear equations can ofgére rise to chaotic and therefore intrinsically
unpredictable behaviours (May, 1974), then the haferiving simple, general laws for systems in
which nonlinearity is the norm must be illusory”
However we can circumvent the understanding of dmamed quantitative dynamics with
a global property called permanence, at leastenrdistricted, though widely used \Volterra
formulation of the Lotka-Volterra (LV) equation: Chapter 3 | find that the probabilities
of local stability and permanence correlate closeith changing ecosystem complexity
suggesting that local stability is a better measirpersistence than previously thought.
We should therefore have greater confidence initgtise results from local stability
analysis, such as stabilising food web structurBl@idtel et al. (2002, 2007) and inversion
of the stability - complexity relationship by skeiespecies abundance distributions
(Chapter 2). However, the question which will alwdgllow from results on such grossly
simple equations is whether the ball game is cotapidifferent when realistic non-
linearities (e.g. functional responses other thyge tl) are incorporated. | was relieved to
find the close correlation between local stabidityd permanence (otherwise | would have
had cause to question much of theoretical ecolagg)may find myself relieved again.
Although much progress has been made towards dutiesoof the stability -
complexity debate, the complexity of the problemtowes to divide ecologists. A recent
review of stability-diversity (species richnesshat®nships by Ives and carpenter (2007)
sums up some of the arguments. First, in simplerdteal models, different measures of
stability can show opposite stability-diversity agbnships in response to the same
perturbation. Moreover, not all empirical studiesvé found positive stability-diversity
relationships — of 59 reported diversity-stabiligfationships from 52 studies, 14% found
negative associations and 17% found no or ambiguelasonships. Ives and Carpenter
(2007) conclude bleakly that they do not find, arecannot expect, a resolution:
“...the absence of a resolution reflects the compjeri the problem. Much of the complexity
derives from the multiplicity of diversity-stabiitrelationships, depending on the definitions of
diversity and stability and on the context in whimth ecosystem is perturbed. We cannot expect a
general conclusion about the diversity-stabilitiatienship”.
The problem is complicated further by the fact thablogical complexity forms just a
fraction of many forces that govern stability inosgstems, others include species
composition, productivity, disturbance regimes,meie and edaphic factors (Tilman,
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1999). The future looks even more nebulous whenstaet to worry how to couple
dynamics of natural systems with human socio-ecansgstems (Liu et al., 2007).

What is also concerning is how rifts in opinion eapthe perception of community
ecologists to policy makers and the public. In 199@ Ecological Society of America
released a pamphlet on the importance of biodityetsiecosystem functioning (Naeem et
al., 1999). This was called a “propaganda documégtHutson and other sceptics of
ecosystem experiments of some of the authors opdénmephlet (Tilman, Lawton, Naeem
and others), with one sceptic (Wardle) claiminge“tiesults of these studies provide just
the answers that many environmentalists want to’ {{gaiser, 2000). Of course criticism
is justified if the science is not balanced, bt it was not about whether a large pool of
species is required for ecosystem functioning, fagther how this works — by lots of
species increasing the recruitment of a few keypmment species, or by the facilitation of
community properties (Loreau et al., 2001). On sitpee note, it is sometimes said that
debates and rifts can be seen as a sign of headtlyoung field in which ideas are growing
and paradigms challenged. On a less positive hatey concerned that ecologists are not
making a strong case for Elton’s concept of a “wsaciple of co-existence between man
and nature” in the protection of diversity for theomotion of ecological stability. Polis
(1998) reminds us of what would be possible:

“The understanding that complexity is vital to tinéegrity and stability of natural systems allows
ecologists to argue, more coherently, why we mussqrve the diverse elements and species that
coexist in a healthy, sustainable and well-fundtignecological community. Indeed, as we enter
what E.O. Wilson calls the ‘century of the envireemti, one crucial function of ecology is to
provide an unbiased, scientific basis on whichtjwali and social decisions can be made about how
best to treat our natural environment”.

From my generation’s perspective, Elton’s warningls the danger in the
simplification by humans and human domination afsgstems are playing out. Given that
the stability - complexity debate is neither suéfitly precisely posed or clearly resolved
enough to form the basis for policy developmeng #ngument for the conservation of
natural diversity for the benefit of all species shibe coming from elsewhere. The
alternative argument is fundamentally the same l&@nE but couched in a different
language: human well-being depends on ecosystewicagrwhich in turn depend on
biodiversity (Millennium Ecosystem Assessment, 2086ee, 2008, Daily, 1997). The
value of ecosystem services has been illustratiedapity through their loss or disturbance
and through efforts to substitute them with tecbggl(Daily, 1997).

The challenge ahead is to generate results thatsafel to society. Vitousek et al.

(1997) give a dramatic statistical summary of thteet of current human domination of
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the Earth, and Lubchenco (1998) expresses how thkaages “are so different in
magnitude, scale and kind from past changes trext eur best records and models offer
little guidance concerning the scale or even tharatter of likely responses to these
challenges”. Lubchenco (1998) calls for a ‘new abcontract for science’ that will require
much of science to refocus its energies and talenfroduce results that are useful to
society. In the UK, ecologists must form a strorges to policy in order to face the major
national issues of environmental concern, whicHughe agriculture, marine fisheries,
climate change, ecosystem function and land manege{8utherland et al., 2006).

What approach to studying ecology is best for fadhese challenges? Policy
makers want answers to general questions (Sutlledaal., 2006), but generalisation is
not a strength of community ecology (Lawton, 1988nberloff, 2004). The next section
discusses Chapters 4-6 in which a population egodggproach was taken to study the
stability of interacting species. The transitioanfr simple, strategic models of community
ecology was necessary to be able to include thessacy level of detail in the interactions
between two populations. However, while a poputagcology approach offers empirical
tractability, it has a poor track record in natuiedource management: the global fisheries
crisis is testament enough that future species geanant outside of the ecosystem context
is out of the question. We must study real comnemibut we appear largely unable to do
so. Perhaps one direction forward may be to finthiddle ground between the two

disciplines of population and community ecology.

Periodic fluctuations in the numbers of mountain hares

The cyclic population dynamics of mountain haresSecotland have recently gained
attention because field experiments had identdigubssible causal factor for the cycles: a
highly prevalent nematode parasite that reducedeitiendity of female hares (Newey and
Thirgood, 2004, Newey et al., 2004). The work pnésé in Chapters 4-6 constitute a first
attempt at using modelling techniques to explore tuestion: ‘Can parasites drive
population cycles in mountain hares?’ This questosms the title of Chapter 4, in which |
tested whether realistic hare stable limit cyclesl@d be generated with a simple strategic
ODE model parameterised with the best availableierap data. | found that parasitism
could not account for hare cycles. This verdictt I¢firee options: either the
parameterisation was inadequate, there were migsipgrtant biological details or simply
that parasites did not drive host cycles. The ramgichapters focused on incorporating
previously ignored ecological complexity that magosgly influence the dynamics. An

individual based model was developed to envelopt &fl this complexity, and found that
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maternal effects could be weakly destabilisingr@asing the propensity to cycle, but not
by very much) and that stability was very sensitivéhe parasite transmission mechanism
(Chapter 5). Another important ‘detail’ missing rimothe strategic models of classical

population dynamics was space. In collaboratiom \8iteve Webb, a mathematics lecturer
at the University of Strathclyde, we extended ttmm-gpatial model and found some

intriguing spatiotemporal patterns, although in@ clear as yet whether it increases the
likelihood of periodic behaviours in this systemh@&pter 6) and further analysis of the

spatial model that is not presented here suggést®as not. It must be concluded,

therefore, that the question ‘can parasites drieeimtain hare population cycles?’ has not
yet been answered. The following discussion touchms some of the possible reasons
for this and evaluates whether the process hasumssdal nonetheless.

In order to understand, predict and manage naluzeins (1966) asserts that
ideally we would like our models to maximise getigrarealism and precision, although
this is impossible and sacrifices have to be méadehe study of stability - complexity
relationships in communities of interacting speciesacrificed precision for the sake of
generality. This was appropriate because my intetag purely in qualitative results and |
could only obtain model parameters from fabricgisabability distributions. Whether the
models could be considered realistic depends oohndii Lotka’s or Volterra’s perspective
on the LV equations was adopted. In order to mtuelquantitative population dynamics
of mountain hares, generality had to be sacrifitmdprecision. This was appropriate
because my questions were quantitative and | hadsacto real data from which to
estimate model parameters. While realism was atguathieved in the IBM model, |
think that in order to answer the question at hawactimising realism in this system is not
the appropriate approach. Rather, a differentegisats required - to find the right balance
between abstraction and relevant detail (Berloal.e2004).

The usual technique for analysing the behaviougeferic models is to increase
the complexity of the simplest plausible model madl increments and to examine the
significance of that change in stepwise fashioncdntrast | have swung between the two
extremes, from the generic ODE model to the deihl-IBM. Another way of expressing
my approach was that it started with Einstein'studit “models should be as simple as
possible, but not more so” and in one step reaah®dst all the way to "the best material
model of a cat is another, or preferably the sara€, (Rosenblueth and Wiener, 1945). As
an attempt at justification therefore, the IBM muvas in part taken because my
supervisors encouraged me to gain experience aloj@ng a highly complex model, and

the process did make me appreciate the relative &fasanaging and interpreting a simple
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analytical model. Having gained this experiencefatyre approach to modelling will be
more incremental.

To consider the utility of the modelling work indang understanding of mountain
hare ecology | recently asked the empirical bidbgiho instigated our collaboration,
Scott Newey, to describe his perception of the ichpathe modelling component:

“The initial impetus for the Anderson & May harergsite modelling work was a question from a
colleague about whether the increased fecunditgrebd in parasite reduced females was sufficient
to drive cycles, especially given the small eff@etsurvival. This question was subsequently asked a
number of times when ever | gave a talk on thatkw®his pre-dated the time-series work, so we did
not know any of the detail about hare cycles. Thpdct of your modelling work has to been to
show that given our current understanding parasit@se are not sufficient to drive cycles that are
consistent with the nature of cycles observed linetseries of mountain hare harvest data, has
highlighted that other mechanisms are likely inealyand our paucity of knowledge on the parasite
side of the story.

The initial stimulus for the IBM work came morefn a hypothesis testing point of view. In
that a number of colleagues argued that the mogheoonly, important parasite mediated affects
may be indirect and act through influencing theirignof breeding and quality of young. A
secondary question was whether we could assesdrhpartant the timing and productivity of the
first litter was to overall population dynamics. fdd think the important finding was that delayed
effects have a destabilising effect, reducing theetled" parasite impact, but in themselves only
weakly destabilising. Again the IBM highlights aseaf ignorance and areas of future work, and the
finding that the transmission mechanism is potditiso critical to the model behaviour is also
really interesting (though how on earth you canrenesearch this in the field is some what

perplexing). Again the IBM suggests that parasitesnot the whole story.

Overall the models suggest that parasites likily p role in destabilising hare populations but
are not the whole story, and that there is a neduktter understand the parasitology and prenatal
effects of parasites.”

In conclusion, | think that the primary aim of feeumodelling work on mountain
hares should be to find a model that is considbgetheoreticians and empiricists alike to
be ‘the right balance between abstraction and asledetail’. During the review of the
PRSB paper one of the reviewers Kyrre Kausrud, B Btudent working on lemming
cycles at the Centre for Ecological and Evolutigraynthesis (CEES) at the University of
Oslo, suggested some intermediate dynamical modieleay in complexity between the
ODEs and IBM. Preliminary investigation of these dals indicated that adding
complexity to the ODE model meant parameters didneed to be stretched as far from
their current empirical estimates to obtain theeolsd hare dynamics. If an appropriately
balanced abstraction-detail model was identifiedoitild be a tool for investigating the

major pressures on the persistence of individualinteon hare populations in Scotland,
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including large-scale culls for tick control (Kima et al., 2008), changes in upland
ecosystem management practices (Kerlin, 2008) dinthte change (Anderson et al.,
2009). We may well need to increase the dimensiynaf the model to capture the
fluctuations of mountain hares or to study the iotyd the pressures hares are facing. This
would require transition from a single species pagon focus towards a more
community-based perspective, and once again itdotiar patch between population and

community ecology.
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