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Abstract 

Ecologists would like to understand how complexity persists in nature. In this thesis I have 

taken two fundamentally different routes to study ecosystem stability of model ecosystems: 

classical community ecology and classical population ecology. In community ecology 

models, we can study the mathematical mechanisms of stability in general, large model 

ecosystems. In population ecology models, fewer species are studied but greater detail of 

species interactions can be incorporated. Within these alternative contexts, this thesis 

contributes to two consuming issues concerning the stability of ecological systems: the 

ecosystem stability-complexity debate; and the causes of cyclic population dynamics. 

One of the major unresolved issues in community ecology is the relationship 

between ecosystem stability and complexity. In 1958 Charles Elton made the conjecture 

that the stability of an ecological system was coupled to its complexity and this could be a 

“wise principle of co-existence between man and nature” with which ecologists could 

argue the case for the conservation of nature for all species, including man. The earliest 

and simplest model systems were randomly constructed and exhibited a negative 

association between stability and complexity. This finding sparked the stability-complexity 

debate and initiated the search for organising principles that enhanced stability in real 

ecosystems. One of the universal laws of ecology is that ecosystems contain many rare and 

few common species. In this thesis, I present analytical arguments and numerical results to 

show that the stability of an ecosystem can increase with complexity when the abundance 

distribution is characterized by a skew towards many rare species. This work adds to the 

growing number of conditions under which the negative stability - complexity relationship 

can been inverted in theoretical studies.  

While there is growing evidence that the stability-complexity debate is progressing 

towards a resolution, community ecology has become increasingly subject to major 

criticism. A long-standing criticism is the reliance on local stability analysis. There is 

growing recognition that a global property called permanence is a more satisfactory 

definition of ecosystem stability because it tests only whether species can coexist. Here I 

identify and explain a positive correlation between the probability of local stability and 

permanence, which suggests local stability is a better measure of species coexistence than 

previously thought. While this offers some relief, remaining issues cause the stability-

complexity debate to evade clear resolution and leave community ecology in a poor 

position to argue for the conservation of natural diversity for the benefit of all species. 

In classical population ecology, a major unresolved issue is the cause of non-

equilibrium population dynamics. In this thesis, I use models to study the drivers of cyclic 
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dynamics in Scottish populations of mountain hares (Lepus timidus), for the first time in 

this system. Field studies currently favour the hypothesis that parasitism by a nematode 

Trichostrongylus retortaeformis drives the hare cycles, and theory predicts that the 

interaction should induce cycling. Initially I used a simple, strategic host-parasite model 

parameterised using available empirical data to test the superficial concordance between 

theory and observation. I find that parasitism could not account for hare cycles. This 

verdict leaves three options: either the parameterisation was inadequate, there were missing 

important biological details or simply that parasites do not drive host cycles.  

Regarding the first option, reliable information for some hare-parasite model 

parameters was lacking. Using a rejection-sampling approach motivated by Bayesian 

methods, I identify the most likely parameter set to predict observed dynamics. The results 

imply that the current formulation of the hare-parasite model can only generate realistic 

dynamics when parasite effects are significantly larger than current empirical estimates, 

and I conclude it is likely that the model contains an inadequate level of detail.  

The simple strategic model was mathematically elegant and allowed mathematical 

concepts to be employed in analysis, but the model was biologically naïve. The second 

model is the antipode of the first, an individual based model (IBM) steeped in biological 

reality that can only be studied by simulation. Whilst most highly detailed tactical models 

are developed as a predictive tool, I instead structurally perturb the IBM to study the 

ecological processes that may drive population cycles in mountain hares. The model allows 

delayed responses to life history by linking maternal body size and parasite infection to the 

future survival and fecundity of offspring. By systematically removing model structure I 

show that these delayed life history effects are weakly destabilising and allow parameters 

to lie closer to empirical estimates to generate observed hare population cycles.  

In a third model I structurally modify the simple strategic host-parasite model to 

make it spatially explicit by including diffusion of mountain hares and corresponding 

advection of parasites (transportation with host). From initial simulations I show that the 

spatially extended host-parasite equations are able to generate periodic travelling waves 

(PTWs) of hare and parasite abundance. This is a newly documented behaviour in these 

widely used host-parasite equations. While PTWs are a new potential scenario under which 

cyclic hare dynamics could be explained, further mathematical development is required to 

determine whether adding space can generate realistic dynamics with parameters that lie 

closer to empirical estimates. In the general thesis discussion I deliberate on whether a 

hare-parasite model has been identified which can be considered the right balance between 

abstraction and relevant detail for this system. 
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Chapter 1. General introduction 

In 1958 Charles Elton identified that a “wise principle of co-existence between man and 

nature” was needed to argue the case for nature conservation under the intensifying press 

of humanity. He recognised that it was not likely, or right, that animals would be put before 

humans, nor that preservation of the natural world as something of pure intrigue or 

aesthetic pleasure should come at the cost of human survival. However he did identify a 

practical reason for the conservation of diversity, “because it tends to promote ecological 

stability”, giving resistance to our crops, forests, fisheries etc. against destructive 

population explosions and invasive species. Elton’s reflections provide a noble motivation 

to study the stability of ecosystems. In contemplating the coupling of ecological diversity 

and stability he continues,  

“for if this can be shown to be anywhere near the truth, it will have to be admitted that there is 

something very dangerous about handling cultivated land as we handle it now, and even more 

dangerous if we continue to go farther down the present road of ‘simplification for efficiency’…the 

whole matter is supremely important to the future of every species that inhabits the world”.  

 

  

Stability - complexity relationships 

Elton was not able to provide proof of the coupling between stability and diversity, only a 

list of observations which appeared to support the relationship (Elton, 1958). He called for 

additional research and threw down the gauntlet to ecologists to provide a reason for 

ecosystems to be respected. It is understandable therefore that the relationship between the 

diversity and stability of ecosystems has been one of the most consuming topics in ecology 

for decades. 

Early on the message was clear, even close to dogma (Pimm, 1991), that ecological 

diversity and stability went hand in hand. An early notion of ecosystem stability was 

Odum’s (1953) stability principle based on the second law of thermodynamics, that states 

that energy spontaneously tends to flow only from being concentrated in one place to 

becoming dispersed. He wrote:  

“According to this concept any natural closed system, whether the earth itself or a smaller unit, such 

as a lake, tends to change until a stable state, with self-regulating mechanisms is developed. Self-

regulating mechanisms …bring about a return to constancy if a system is caused to change from the 

stable state by a momentary outside influence”. 

The major contribution of Robert MacArthur, the man who came to be considered 

the father of theoretical ecology, was made in 1955. Using Odum’s stability principle, he 

argued that if the amount of choice energy has in following paths up through the food web 
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is greater, then the effect of excesses in energy i.e. caused by overpopulation of one 

species, will have a lower impact on the rest of the community (MacArthur, 1955). This 

paper has been cited as proving that the stability-diversity relationship should be positive, 

including by MacArthur’s professor G. Evelyn Hutchinson in his seminal paper on the 

diversity of animals (Hutchinson, 1959). In fact MacArthur does not provide a 

mathematical proof, which May (1971) picked up on: “...this work, cogent and insightful 

though it is, is not (as it is sometimes mistaken to be) a "formal [mathematical] proof of the 

increase in stability of a community as the number of links in its food web increases".” 

(May’s quote is taken from Hutchinson (1959)). The first mathematical modelling was 

undertaken by Gardner & Ashby (Gardner and Ashby, 1970) on generic systems with 

connected dynamic components that were assumed to be at equilibrium, which May’s 1971 

paper, subsequent Nature paper (1972b) and book (1973) expanded in a specifically 

ecological context. They used simple linear dynamics for which ecosystem complexity and 

stability could be defined unambiguously: complexity as the number of interacting 

components (species), the degree of connectance between interacting components and the 

strength of these interactions; and defined a stable system as one which returned to 

equilibrium after a perturbation. With both mathematical and computational support, they 

showed that more complex models had a vanishing probability of being stable. The 

prevailing view was challenged – were ecosystems stable because of complexity, or in 

spite of complexity? Despite the final comment in May’s 1971 paper:  

“That stability may usually go with complexity in the natural world, but not necessarily in 

mathematical models, is not really paradoxical. In nature we deal not with arbitrary complex 

systems, but rather with ones selected by a long and intricate process… mathematical theorems tend 

to deal with general complex systems, which are quite another matter”,  

most ecologists did perceive a paradox at the centre of ecology.  

On the one hand, it could be argued that the paradox is being resolved. May’s 

argument became a prediction that the ecosystem structures we observe should contain 

structure that enhances stability. Fundamental ecological realities lacking from the simple 

dynamical models were highlighted (Lawlor, 1978, Roberts, 1974) and observing 

universality across food webs would identify common organising principles across 

different ecosystems. For example, many empirical studies agree that low connectance and 

a skew towards weak interaction strengths (few strong, many weak) are common features 

of large, real ecosystems (Berlow, 1999, Paine, 1992, Bascompte et al., 2006, De Ruiter et 

al., 1995). This property has been attributed to the architectural features of omnivory 

(Emmerson and Yearsley, 2004), compartmentalisation (Rejmanek and Stary, 1979, Krause 

et al., 2003) and long loops (Neutel et al., 2002). Such non-random patterning can increase 
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the stability of competitive communities (Jansen and Kokkoris, 2003, Rozdilsky and Stone, 

2001) and food webs (Neutel et al., 2002, De Ruiter et al., 1995, McCann et al., 1998, 

Emmerson and Yearsley, 2004), allowing complex systems to persist. Another non-random 

pattern in ecosystems is the ubiquity of inequity in species abundances (McGill et al., 

2007). The species abundance distribution is a fundamental measure of ecosystem structure 

and biodiversity (Magurran, 2004) yet it is rarely linked to the dynamical properties of 

ecosystems. How relative commonness and rarity affects stability - complexity 

relationships has remained an open question. This forms the focus of Chapter 2.  

On the other hand, it may be argued that the paradox eludes resolution because it 

has been almost impossible to synthesise theory with findings from the field. While 

theoreticians were making predictions about “what kind of communities we observe and 

those we do not” (Pimm, 1991), how was an empirical ecologist supposed to test this? 

Further, the interaction strengths that theoreticians were using were difficult to estimate in 

the field and not what empiricists typically measured (Berlow et al., 2004). Consequently, 

ecological stability became a sizeable and complicated subject in which “rarely did two 

ecologists look at the same question” (Pimm, 1991). For example, Elton (1958), who took 

his notions of stability largely from the field, implied all of the following: population 

variability, population recovery, the ease of invasion and the consequences of invasion 

(Pimm, 1991). Going by the definitions given by Grimm & Wissel (1999), MacArthur was 

thinking about resistance (dynamics staying essentially unchanged despite the presence of 

disturbance) whereas May was talking about probability of resilience (returning to 

reference state after a temporary disturbance).  

An obvious criticism of Gardner & Ashby (1970) and May’s (1971) mathematical 

models is that ecological systems are not simple dynamic systems. Unlike physical or 

chemical processes from which the mathematics was adapted, ecological systems are not 

largely deterministic but are a unique mixture of deterministic and stochastic forces to 

comparable degrees (Bjornstad and Grenfell, 2001). Furthermore, ecological systems do 

not have linear dynamics but contain gross non-linearities, which were left out ‘as a first 

step’ (Gardner and Ashby, 1970) for the sake of mathematical tractability. In fact the 

models are extremely general because they are linearised approximations (by Taylor 

expansion) at the equilibrium point of unspecified equations of multispecies dynamics. But 

this generality requires that the equilibrium points are assumed to be feasible. To check 

feasibility, a specific set of equations does have to be defined - the simplest and most 

familiar globally defined multispecies population growth model is Volterra’s (1926) 

formulation of the classic Lotka-Volterra (LV) equations. (The distinction between local 

and general or global and specific applies to Lotka’s and Volterra’s alternative formulations 



General introduction  4 

 

of the LV equations (Haydon and Lloyd, 1999), and which I discuss further in Chapter 2.) 

Both local and global models of ecosystem dynamics have been used extensively in the 

study of stability - complexity relationships. By adopting either approach, ecologists take 

an equilibrium viewpoint of ecosystems and can only measure whether an equilibrium 

point is stable against very small perturbations and thus does not guarantee global stability 

(Law and Blackford, 1992). In 1987, De Angelis & Waterhouse voiced the concern:  

“The equilibrium view of ecological systems, which has always had a fair number of skeptics, now 

seems unsatisfactory to a large fraction, perhaps a majority, of ecologists. This dissatisfaction, 

expressed clearly by Reddingius (1971), Caswell (1978), Murdoch (1979), Connell and Sousa 

(1983), and Wiens (1984a), among others, does not hinge on the mere question of system stability, 

but on whether it is valid to define the existence of an equilibrium state at all, stable or unstable” 

(references found therein).  

The mathematical intractability of global stability of multispecies systems means 

the equilibrium viewpoint has been the nucleus for theoretical study of ecosystem 

properties. However local stability analysis excludes the possibility of instability in the 

face of a large perturbation or the existence of non-equilibrium attractors (e.g. a periodic or 

chaotic attractor). The general consensus is that a more satisfactory definition of ecosystem 

stability is a global property called permanence, a test of species coexistence which 

requires only that densities of rare species tend to increase (Law and Blackford, 1992). 

While the permanence has its own restrictions, most seriously that demographic 

stochasticity could push trajectories which pass close to the boundary to extinction, its 

strength lies in asking basic globally qualitative questions of coexistence without 

dependence on understanding the complicated quantitative behaviour of the ecosystem 

dynamics:  

“There is a sense in which we have been asking more of our ecological models than may be 

necessary to predict the configurations of species that live together. The distinction between 

equilibrium and non-equilibrium dynamics is secondary to the question as to whether a set of species 

can live together in the first place. Arguably we would do better to find the configurations of species 

that cause the whole of boundary of the phase space to repel orbits that are not on the boundary, for 

it is at the boundary that questions of coexistence have ultimately to be settled. Informal ideas along 

these lines were suggested by Lewontin (1969), Maynard Smith (1969), Holling (1973), and Connell 

and Sousa (1983), and in recent years the notion has been given formal definition and extensively 

studied by mathematicians (reviewed by Hofbauer and Sigmund 1988)” Law & Blackford (1992, 

references found therein). 

Yet despite these advances, the relationship between permanence and ecosystem 

complexity has only been addressed in a single paper (Chen and Cohen, 2001). In Chapter 

3 I present the second study on permanence-complexity relationships. Chen and Cohen 
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(2001) found permanence decreased with complexity just as did the early theoretical 

models using local stability analysis – but then they were explored in a similarly general 

framework. This opens up the question of how local and global stability are correlated, and 

the important question of ‘how much confidence should we have in a theoretical ecology 

based on asymptotic [local] stability analysis?’ (Anderson et al., 1992). By measuring the 

probability of local stability alongside permanence, I am able to study locally stable 

systems which are unstable in the face of a large perturbation (which I term ‘fragile’) and 

systems at non-equilibrium attractors (e.g. a periodic or chaotic attractor) and how they 

correlate with aspects of complexity.  

 

 

Periodic fluctuations in the numbers of mountain hares 

In the bridging paragraph between Robert May’s (1973) book chapter on stability - 

complexity relationships and his chapter on stable limit cycles in few species models, May 

wrote:  

“In the models just considered, all the interactions between and within species were either 

represented by grossly simple equations or else summarised in the vicinity of equilibrium… It is 

difficult to effect any multispecies discussion otherwise. In this chapter, attention is restricted to 

models with but a few species, and considerably more detail is put into the description of the 

dynamical interactions between populations”.  

Over 35 years later this paragraph sums up the same transition I have taken from studying 

mathematical mechanisms of stability in general, large model ecosystems (Chapters 2 and 

3) into the use of lower dimensional models to study the specific biological mechanisms 

that cause cyclic dynamics in Scottish populations of the mountain hare (Chapters 4 to 6). 

The hare system is simply a low dimensional subset of a higher dimensional system, yet I 

am forced to make the sharp transition from community ecology to population ecology, 

from a discipline which is strongly mathematical and data poor to one which is more 

empirical and data rich.  

The reasons for cyclic dynamics in Scottish mountain hares are unclear, and this is 

the first attempt at using modelling to explore possible causes. Below I intertwine some 

historical context of population cycle research with justifications of the three modelling 

approaches I have taken. The first model (Chapter 4) is a simple ordinary differential 

equation (ODE) model of two interacting species. The framework is mathematically 

elegant and allows ecologists to employ mathematical concepts for analysis of the dynamic 

properties of the inter-specific interaction, but the model is biologically naïve and cannot 

incorporate potentially important detail. The second model is therefore the antipode, an 
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individual based model steeped in biological reality that can only be studied by simulation 

(Chapter 5). The third model explores the influence of adding a spatial dimension to the 

simple ODE model (Chapter 6). 

A fundamental mathematical contribution to the understanding of population cycles 

is the notion that persistent patterns of reasonably regular oscillations in natural ecosystems 

are stable limit cycles (May, 1973, May, 1972a). Limit cycles are closed loop trajectories 

with a fixed amplitude and period around an unstable equilibrium point and, as with a point 

attractor if it is stable, trajectories in the neighbourhood are attracted towards it. While this 

behaviour is qualitatively distinct from other types of dynamics in a deterministic setting, 

damped cycles can also be stochastically sustained. The mathematical causes of 

deterministic stable limit cycles are easily obtainable from any text on nonlinear dynamics 

(e.g. Hilborn, 2000): they are not possible with a single linear dynamic equation, but (at 

minimum and is not guaranteed) require the addition of non-linearity in the form of a time 

delay e.g. delay-differential equation or difference equation (although this is then not 

strictly a one-dimensional system (Hilborn, 2000)) or by adding a coupled interacting 

variable. The implication for ecologists is that for populations to exhibit stable limit cycles 

requires dependence of the current species density either on (1) an earlier density of the 

same species or (2) the density of other species. These two factors are often described in 

the ecological literature as ‘intrinsic’ and ‘extrinsic’ drivers of population cycles. Both 

types of factor have been implicated as the drivers of cyclic populations of an upland UK 

bird species, the red grouse (lagopus lagopus): the interaction with a parasite which 

reduces fecundity and increases mortality (extrinsic) (Dobson and Hudson, 1992b, Hudson 

et al., 1998, Hudson et al., 1992); and delayed density dependent changes in aggression 

and rate of young male recruitment (intrinsic) (Moss et al., 1996). 

The work on red grouse has been successful in taking a synthetic approach to the 

study of population cycles, by using a combination of time series analysis, experimentation 

and mathematical modelling. Mountain hare cycles in Scotland have only really gained 

attention in the last few years with initiation of research by Scott Newey and Simon 

Thirgood at the Macaulay Institute in Aberdeen, although knowledge of the system has 

been greatly underpinned by many natural historical and specific population studies since 

the 1960s (e.g. Flux, 1962, Hewson, 1962). During this recent focus on cyclic dynamics in 

mountain hares, time series of hare shooting records from across Scotland have been 

analysed to statistically confirm that about half of populations are temporally cyclic, with a 

range of periods from 4 to 15 years and characteristically high amplitude with coefficients 

of variation of 0.39 to 1.80 (Newey et al., 2007b). Field experiments and surveys have 

been conducted (Newey et al., 2005, Newey and Thirgood, 2004, Newey et al., 2004) and 
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the currently favoured explanation implicates an extrinsic driver of cycles - the interaction 

with a helminth parasite Trichostrongylus retortaeformis that reduces female fecundity 

(Newey et al., 2007a). Mathematical modelling has not yet been directed at this problem 

and, while this approach cannot directly test the parasitism hypothesis, modelling can assist 

in determining whether this interaction is capable of generating observed population 

dynamics. In Chapter 4, I use a simple ordinary differential equation (ODE) model of the 

interaction between a host and macroparasite (May and Anderson, 1978, Anderson and 

May, 1978) to test whether deterministic realistic hare stable limit cycles can be generated 

with parameters based on the best available empirical data.  

Although density dependence is accepted as an important driver of population 

cycles, this has not always been the case. As with the relationship between ecological 

stability and complexity, it was Charles Elton who raised the challenge to ecologists to 

explain the phenomenon of population cycles. In his seminal paper (Elton, 1924) ‘Periodic 

fluctuations in the numbers of animals: their causes and effects’, which was based mainly 

on the periodic fluctuations of Norwegian lemmings and snowshoe hares, he argued that 

cycles must be driven by climatic fluctuations because of the synchrony of the fluctuations 

across huge areas. Despite theoretical interest in cyclic dynamics that pre-dates Elton’s 

paper (Lotka, 1925, Volterra, 1926), and Nicholson & Bailey’s (1935) account of both the 

mathematics and the biological mechanisms behind insect population cycles, mammal 

population cycles and models that were able to produce cyclic dynamics were studied 

largely independently: “the generality and importance of density dependent feedback 

mechanisms in creating fluctuations was not fully understood at that time” (Lindstrom et 

al., 2001). By the 1950s, a major cleavage split factions which, on one side, thought that 

cycles were driven by density independent processes which forced populations to obey 

environmental conditions, whilst the other side argued for density dependent processes 

which acted independently or tracked changes in the environmental conditions (Lindstrom 

et al., 2001). More recently there has been a growing realisation that both density-

dependent processes and environmental variability shape real population dynamics 

(Lundberg et al., 2000), and there are numerous ways in which stochastic and deterministic 

processes can interact to generate regular fluctuations, even if they are not strictly stable 

limit cycles (Kaitala et al., 1996, Roughgarden, 1975, Lundberg et al., 2000, Bjornstad and 

Grenfell, 2001).  

Related to this, there has also been a growing call for consideration and testing of 

multiple causes of cyclic dynamics. Single-factor hypotheses have been continually put 

forward since Elton’s (1924) paper, as expressed by Lindstrom et al. (2001): “one can 

expect a hypothesis to be raised approximately every four years” and for which they 
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sceptically note that “different taxa or systems seem to have attracted different 

hypotheses…it is impossible to judge whether these taxonomic/system differences are real 

or simply reflect different emphases by research teams on different continents”. The ability 

to explore and contrast multiple factors may certainly depend on the scale and scope of 

studies, and there are few studies which have managed it. One important success has been 

the Klaune Boreal Forest Ecosystem Project, the largest ever terrestrial ecological 

experiment which ran from 1986 to 1996 in the south-western Yukon (Krebs et al., 2001b). 

Using a factorial experimental design the project disentangled the relative importance of 

some of the strongest candidates for control of the 10-year snowshoe hare cycles. Indeed, 

no one factor was singled out and instead food and predation were found to act together to 

drive the hare cycles. Furthermore, since the Kluane project, an intrinsic factor has been 

proposed to act synergistically with food and predation to drive cycles, based on striking 

differences in the reproductive output of captive female populations from low and high 

phases of the cycle (Sinclair et al., 2003, Krebs et al., 2001a). Similarly the most recent 

work on red grouse has synthesised the intrinsic and extrinsic factors into a multifactor 

hypothesis to offer the following explanation for their cycles: under conditions of high 

grouse density, elevated testosterone levels (and associated increases in male aggression) 

lead to suppression of the grouse immune system and thus increased parasitism (Mougeot 

et al., 2005, Redpath et al., 2006).  

For modelling mountain hare population dynamics, the ODE model is general and 

strategic (Chapter 4) but it is also purely deterministic and ecologically naïve. It also 

considers only a single-factor hypothesis (parasitism) for cycles. There is substantial 

evidence from a range of mountain hare studies (Hewson, 1968, Flux, 1970, Iason, 1990 

and Scott Newey pers. comm.) that maternal ‘quality’ influences the birthdate of young 

which in turn influences offspring ‘quality’. Such maternal effects can generate delayed 

responses to density and thus can potentially drive population cycles (Inchausti and 

Ginzburg, 2009). While each of the flaws of the ODE model could be tackled individually 

by developing a suite of more complex mathematical models, instead I develop a highly 

tactical model that envelops much of the ecologically complexity (Chapter 5). Elements 

of the structure are systematically modified or removed to dissect out their dynamical 

influences. Demographic stochasticity is incorporated, increasing the realism of the model 

and permitting stochastically sustained stable limit cycles. 

In Chapter 6, I consider a spatial extension to the ODE mountain hare-parasite 

interaction model of Chapter 4. The strategic models of classical, non-spatial population 

dynamics were adapted from the mathematics of physiochemical disciplines to tackle 

population dynamical problems. With this derivation came three fundamental assumptions 
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which are sufficiently realistic in models of simple physiochemical systems but are often 

violated in the ecological context (Czárán, 1998). First, populations consist of large 

numbers of individuals. Second, all individuals of the same population are identical in 

every dynamically relevant respect. Third, the movement of the individuals is such that the 

population as a whole can be treated as a perfectly mixed system such that each individual 

experiences the same environment. Relaxing the assumptions can affect the stability of 

populations and coexistence of interacting species, and lead to spatial patterning (Hassell et 

al., 1991, Turing, 1952, Bascompte and Sole, 1995).  

For the mountain hare – T. retortaeformis system, the initial aim is to study the 

impact of space on the ODE model dynamics without introducing population structure or 

specifying scale (and therefore only the third assumption of perfect mixing need be relaxed 

for our purposes). While space can be introduced implicitly, for example using 

metapopulation models (Levins, 1969), direct spatial extension of the classical non-spatial 

models is ideally suited for assessing the impact of space on population dynamics because 

it allows comparison of predictions with the non-spatial counterpart (Czárán, 1998). In 

spatially explicit models, density has a location and thus it is local rather than overall 

density which is influenced by (and influences) the dynamics. The spatial dimension can 

be introduced as a discrete variable using patch-abundance models (represented by an ODE 

for each patch) or continuous space using reaction-diffusion models (represented by partial 

differential equations (PDE)). The main theoretical advantage of continuous-space models 

is the deterministic and tractable nature as a means of providing theoretical insights and 

generic understanding of spatial dynamics (Keeling and Rohani, 2007). However the 

mathematics behind these formalisms is complex and often highly technical (Murray, 

1993). Perhaps this is why, despite its widespread application in ecology, the simple host-

parasite ODE model (May and Anderson, 1978) adopted in Chapter 4 has never been 

spatially extended in continuous time and the resulting spatial dynamics remain 

unexplored. During the course of my Ph.D candidacy I was approached by a 

mathematician, Dr. Steve Webb at the University of Strathclyde, with the proposal of co-

developing a PDE model of the mountain hare – parasite system. This is presented and 

studied in Chapter 6. 
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Chapter 2. Species abundance distributions and model ecosystem 

resilience - interactivity relationships 

 
Abstract 

Despite the fact that the species abundance distribution is a fundamental measure of 

ecosystem structure and biodiversity, and the decades of debate over the relationship 

between ecosystem stability and complexity, the effect of inequity in species abundances 

on stability - complexity relationships has remained an open question. Rarely do models 

link a static property like the abundance distribution to the dynamical properties of 

ecosystems. Here, we review different approaches to ecosystem modelling using Lotka-

Volterra equations, emphasising the different assumptions made in the way that Lotka and 

Volterra derived them. Then we synthesise analytical arguments with numerical results on 

the role of variance in abundance distributions on ecosystem stability - complexity 

relationships. The analytical approaches are two simple tools that couple resilience (the 

rate of return to a locally stable equilibrium post-perturbation) with complexity (measured 

as interactivity) of any ecosystem whose equilibrium dynamics are captured by a Jacobian 

matrix. The results show that the resilience of an ecosystem can increase with interactivity 

when the abundance distribution is characterized by a skew towards many rare species. 

Further, some natural distributions are more inequitable than others, and we found that 

more equitable ecosystems were on average more resilient than their less even 

counterparts. This study suggests that changes to the species abundance distribution are 

likely to alter the dynamical properties of a real ecosystem. We discuss further ways in 

which abundance distributions may influence stability - complexity relationships, and the 

limitations and extensions of the analytical approaches used. 
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1. Introduction 

The stability of model ecosystems has traditionally been related to ecosystem structure via 

three forms of complexity: the number of links within the ecosystem, the strength of those 

links and species richness (May, 1972b). Species richness directly relates biodiversity to 

stability and enables the study of the effect of biodiversity loss and gain on stability (e.g. 

Borrvall et al., 2000, Dunne et al., 2002). The other key component of biodiversity is 

species abundance and its relative distribution is a widely adopted measure of ecosystem 

structure (Magurran, 2004). However, models that link the dynamic properties of 

ecosystems with the relative abundance of species are scarce (see Hubbell, 2001 ch3 for a 

review). 

A variety of relative abundance distributions have been observed, from highly 

inequitable (e.g. a plant community in a subalpine forest) to relatively equitable (e.g. a bird 

community in a deciduous forest) (Whittaker, 1970). Models of species abundance envelop 

the full breadth of observed distributions, and are typically split into statistical models that 

describe patterns observed in real communities and biological models that reference an 

ecological process in order to explain natural distributions (Magurran, 2004). However, 

most of these models are criticised for being static because they omit any clear link to 

population dynamics (Hubbell, 2001), leaving obvious questions that remain poorly 

addressed.  

Classical dynamical theory in community ecology, largely based on Lotka-Volterra 

equations (LVE), offers a means of exploring relationships between dynamic properties of 

ecosystems and relative abundance distributions. Yet despite the LVE having comprised the 

core approach to the theoretical study of ecosystem properties for decades, these 

relationships remain poorly understood. Recently, Wilson and colleagues (2003, 2006) 

developed a framework, by extension of the LVE, for predicting the abundance distribution 

and other ecosystem properties. However, this theory is not yet fully linked with ecosystem 

stability. The primary aim of this chapter is to use the LVE to address the question of how 

ecosystem stability - complexity relationships depend on the equitability of relative species 

abundances.  

In this chapter we refer to model ecosystems with locally stable equilibria as stable, 

and compare the relative stability of ecosystems by measuring their resilience to a 

perturbation from equilibrium. Even though global stability is a more satisfactory 

definition of ecosystem stability (Jansen and Sigmund, 1998, Law and Blackford, 1992), 

the tractability of local stability analysis of linear (or linearised) differential equation 

models has advanced the theoretical study of ecosystem properties. This chapter reviews, 

synthesises and advances some aspects of that groundwork. 
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Reasoning that stability - complexity relationships may be affected by the relative 

commonness and rarity of species takes us back to the origins of the stability - complexity 

debate. A paradox at the centre of ecology was started by reports of negative relationships 

between the probability of local stability and complexity in randomly filled Jacobian 

matrices (May, 1972b, May, 1971), an observation that challenged the conventional 

intuitive arguments developed by ecologists (Elton, 1958, MacArthur, 1955, Odum, 1953). 

However these Jacobians were not as general as proclaimed because all diagonals of the 

Jacobian matrix had an identical value, thereby assuming no difference in intraspecific 

interactions within species. Led by the patterns found in real webs, equilibrium dynamical 

theory has explored the stabilising effects of non-random interactions between species 

(Haydon, 2000, Rozdilsky and Stone, 2001) and their distribution (Emmerson and 

Yearsley, 2004, Neutel et al., 2002, Jansen and Kokkoris, 2003, Kokkoris et al., 2002), 

rather than the stabilising effects of interactions within species. Intraspecific interactions 

are self-regulatory processes generated through direct density-dependent processes, and 

under some conditions indirect feedback loops, that contribute to self-regulation which can 

confer stability not only to individual population dynamics but also to community 

dynamics (Yodzis, 1980, Saunders, 1978, Saunders and Bazin, 1975). If variation in the 

diagonal elements of the Jacobian is permitted, stability can increase with complexity 

(Haydon, 2000).  

Interspecific variability in density dependence arises naturally under at least two 

rationales: if some species are considered strongly self-regulating compared to others e.g. 

autotrophs vs. heterotrophs (McCann, 2000), and if there is variation in species 

abundances. Positive stability - complexity relationships can result when variance in 

intraspecific interactions stem from specifying autotrophs and heterotrophs (Haydon, 

1994). However, the effect of variability in abundance has not been studied and, given the 

ubiquity of inequity in the relative abundance distribution of ecosystems (McGill et al., 

2007), may also permit stability to increase with complexity. Haydon’s (1994) result, for 

reasons discussed in §3ai, applies to two types of complexity, the number of links within 

the ecosystem and the strength of those links, and therefore we restrict our investigation to 

these, and combine into a single term ‘interactivity’ (which we define precisely in §3ai of 

the chapter).  

There are at least two reasons why studies of this link between relative abundance 

of species and model ecosystem stability have not been closely explored. First, species 

abundances also feature in the interspecific interaction terms of the LVE where their 

distribution affects the variance and covariance structure of the Jacobian with their own 

potential effects on stability (Emmerson and Yearsley, 2004, Jansen and Kokkoris, 2003, 
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Kokkoris et al., 2002). Second, the LVE can generate a wide range of abundance 

distributions depending on the detailed distributions of the underlying parameters that 

describe the nature of species interactions (Wilson et al., 2003) thus making it difficult to 

control variance in the abundances. In this study we also encountered this problem and 

apply a solution: a method that permits direct assignment of the equilibrium relative 

abundance distribution. This method has been adopted in a handful of previous studies but 

they have either assumed all species abundances were identical and omitted to check the 

plausibility of intrinsic growth rates (Chen and Cohen, 2001), or have applied it to a very 

limited set of trophic relations (Emmerson and Yearsley, 2004, Pimm and Lawton, 1978). 

Here we explore the resilience - interactivity relationships of more generally structured 

ecosystems with plausible species intrinsic growth rates. 

In this chapter we offer an analytical synthesis supported by numerical results on 

the role of variance in the relative abundance distributions on stability-interactivity 

relationships of ecosystems modelled using the LVE. Firstly (§2), we clearly define how 

we modelled our ecosystems, emphasising the distinction between Lotka and Volterra’s 

view of the LVE and how we measured feasibility and ecosystem stability (following calls 

for clarity in community modelling (Fowler and Lindstrom, 2002)). Then we ask our 

primary question in §3: do equitable ecosystems have different stability-interactivity 

relationships to inequitable? Using numerical and analytical approaches we show that they 

do. In §3ai, we revisit the analytical argument put forward by Haydon (1994). In §3aii , we 

present a novel analytical argument that shows stability can increase with interactivity if 

the diagonal elements of the Jacobian are not identical. In §3b, we show numerically that 

variance in the diagonals of Jacobian matrices can generate positive relationships between 

average stability and interactivity. These results re-emphasise that assuming identical 

values is unjustified and can potentially result in misleading conclusions. In §3c we present 

positive stability-interactivity relationships for ecosystems with variance in their 

equilibrium relative abundance distribution. Finally, the discussion (§4) is split into two 

parts. In §4a we discuss how the species abundance distribution influences stability - 

complexity relationships, and in §4b we discuss the limitations and extensions of the 

analytical approaches used here for studying stability - complexity relationships. 

 

 

2. Modelling ecosystems using the Lotka-Volterra equations (LVE) 

(2A) LOTKA VS. VOLTERRA: GENERALITY VS. ECOLOGICAL TRANSPARENCY 

Randomly constructed model ecosystems (Gardner and Ashby, 1970, May, 1972b) were 

embraced as a starting point and a simple mathematical framework for investigating the 
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organisational constraints within real ecosystems that may contribute to an association 

between complexity and stability (Lawlor, 1978, McNaughton, 1978). Soon after their 

inception, fundamental ecological realities which they lacked were highlighted (Lawlor, 

1978), most critically the feasibility of the equilibrium point i.e. positive equilibrium 

abundances (Roberts, 1974). In order to impose the restriction of feasibility, a specific set 

of equations had to be defined.  

Although the formulations of Lotka (1925) and Volterra (1926) share an identical 

mathematical structure for the population dynamics of n species in an ecosystem, 
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they were derived independently using two fundamentally different sets of assumptions 

(Haydon and Lloyd, 1999, Pimm, 1982, Real and Levin, 1991). The application and 

interpretation of the LVE depends on whose view is adopted: the model can either 

represent the linearization of the per capita growth rates of each species at a non-trivial 

equilibrium (Lotka’s) or they are the globally applicable dynamic equations (Volterra’s). 

Lotka’s formulation has the often underappreciated feature of generality: any system of 

equations (not even the variables need to be specified, although here we assume Ni to be 

relative species abundance) can be approximated (using Taylor expansion) around a 

desired point. The drawback is that the parameters bi and aij  are functions of derivatives 

evaluated at a particular equilibrium; they are not system-wide and therefore cannot be 

provided with any clear ecological interpretation. Volterra, however, formulated the global 

dynamics of an ecosystem as a set of non-linear equations, leading to parameters with clear 

ecological meaning (aij per capita interaction strengths, bi intrinsic growth rates) and with 

which the whole state space dynamics could be explored. Assuming a particular form for 

the dynamics within the full state space is of course likely to be a gross oversimplification 

of reality. In the same spirit as Emmerson & Yearsley (2004), in this chapter the LVE are 

applied to question the real world rather than emulate it.  

 

(2B) MODEL FORMULATION 

(2bi) Lotka’s formulation 

The stability properties of the equilibrium point (N*) follow from the eigenvalues of the 

Jacobian matrix G. For dynamics given by the expression 
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For Lotka’s ecosystems, the functions describing the per capita rates of increase are 

unspecified, allowing us to specify the elements of the Jacobian directly. Without Fi the 

equilibrium point is indeterminate and cannot be checked for feasibility ( *
iN  > 0). 

Lotka’s ecosystems were used to conduct a numerical study of the effect of 

variance in the Jacobian diagonal elements on resilience - interactivity relationships (§3b). 

Ecosystem interactivity (see §3ai for a formal definition) was controlled by the number and 

magnitude of Jacobian off-diagonal elements, and ecosystem resilience is formally defined 

in §2bv. 

 

(2bii) Volterra’s formulation 

Volterra’s ecosystems were used to conduct a numerical study of the effect of variance in 

the equilibrium species abundances on resilience - interactivity relationships (§3c). In this 

formulation, the per capita growth rates (Fi) are specified in Eqn 2.1 and the Jacobian 

matrix takes the form: 

 

* * *
11 1 12 1 1 1

* * *
21 2 22 2 2 2

* * *
1 1 2

n

n

n n n nn n

a N a N a N

a N a N a N

a N a N a N

 
 
 =
 
 
  

G

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

.  

 

The equilibrium point is determined by setting Eqn 2.1 to zero (in matrix form, N* = -A-1b, 

where A is the matrix of per-capita interaction strengths and b is the vector of intrinsic 

growth rates). Typically, the parameters, the elements of A and b, are assigned and the 

feasibility of the equilibrium abundances N* checked. However, this approach does not 
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permit control over variance in abundance. An alternative is to assign a feasible N* and A, 

and calculate b (Chen and Cohen, 2001, Emmerson and Yearsley, 2004, Emmerson and 

Raffaelli, 2004). By setting all per-capita intraspecific interactions (aii) to identical values 

(here -1) variance in the diagonal of the Jacobian is determined solely by the abundance 

distribution. This also controls for the potentially stabilising effect of variance in the 

distribution of aii values (Haydon, 1994).  

We adopted this method but adapted it to permit control over interactivity as well as 

abundances, assigning the off-diagonals elements of the Jacobian (gij) rather than per-

capita interspecific interactions (aij). The Jacobian matrix of our Volterra ecosystems 

therefore took the form:  

 

*
1 12 1

*
21 2 2

*
1 2

n

n

n n n

N g g

g N g

g g N

 −
 − =
 
 

−  

G

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

. 

 

 

The aij parameters were recovered by calculating the A matrix (= [diag(N*)]-1G). The bi 

values were then computed (b = -AN*) and checked for plausibility (autotroph bi > 0, 

heterotroph bi < 0: Pimm (1982); Emmerson & Yearsley (2004)). 

 

(2biii) Model ecosystem size and structure 

As a compromise between structural generality and computational tractability, ecosystems 

were modelled with ten species (n = 10). They contained paired interactions of consumer 

and resource species and a cascade trophic structure defined by no loops (Cohen and 

Newman, 1985) or discrete subwebs. The cascade trophic structure fits webs where body 

size tends to equal trophic level (Warren and Lawton, 1987, Cohen et al., 1993) and was 

constructed by placing negative effects of consumers on resource species above the 

diagonal of the Jacobian G. The number of interactions between species divided by the 

number of topologically possible links (excluding cannibalism) gave the connectance C of 

the ecosystem. The binary connectance matrix C was checked for no discrete subwebs (all 

elements of the matrix C100 were non-zero). The strength of an interspecific interaction was 

measured as the magnitude of an off-diagonal element of the Jacobian ( )ij i j
g

≠ . In the 

numerical studies, interactivity was varied by regulating connectance and mean absolute 

interspecific interaction strength (ij i j
g

≠
, MAIIS for brevity).  



Species abundance and ecosystem resilience  Chapter 2, 17 

 

 

(2biv) Species abundance distributions 

Variance in the diagonal elements of the Jacobian (gii) for Lotka’s ecosystems, and 

variance in relative equilibrium abundances for Volterra ecosystems, was generated using 

the beta probability density function (Fig 2.1). The beta distribution is continuous with a 

finite range between 0 and 1, and by varying one parameter we were able to generate 

distributions which were equitable (all identical), had low inequity (var = 0.008) or high 

inequity (var = 0.041). Assigning uneven distributions was undertaken hierarchically, such 

that species one in the model ecosystem was assigned the greatest abundance and species n 

the smallest. In this way, species which were more predatory than prey had a smaller 

Jacobian diagonal element or abundance. 

 

(2bv) Ecosystem stability 

The dynamic local stability of the equilibrium point is described by the n eigenvalues of 

the Jacobian G: stable if all real parts of the eigenvalues are negative. One of the long-

standing issues in the stability - complexity debate has been over the correct sampling 

space for Jacobians (Haydon, 1994, Saunders, 1978, Saunders and Bazin, 1975). Here we 

sampled only those with stable equilibria and compared between samples (where some 

aspect of the structure was changed) using the real part of the dominant (most positive) 

eigenvalue (Re dλ ). Re dλ  is related to the rate of return of the locally stable system to 

equilibrium following a (small) perturbation, defining the ‘resilience’ of an ecosystem 

(McCann, 2000). The more negative the dominant eigenvalue of the model ecosystem, the 

faster its return rate and therefore the more resilient it is to perturbation. Resilience is 

affected by a trade off between positivity and negativity in the real parts of all eigenvalues 

because the sum of the real parts of eigenvalues, and therefore the mean of the eigenvalues, 

is determined by the sum of the trace 
1 1

Re( )
n n

i ii
i i

gλ
= =

 = 
 
∑ ∑ . We wanted the mean to stay the 

same for each Jacobian and therefore the trace was standardised to ensure its sum was 

always -1. 
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3. Do equitable ecosystems have different stability-interactivity relationships 

to inequitable? 

(3A) ANALYTICAL STUDY OF THE EFFECT OF VARIANCE IN THE DIAGONAL ELEMENTS OF THE JACOBIAN 

ON RESILIENCE - INTERACTIVITY RELATIONSHIPS  

We first looked at how resilience may be affected by variance in the diagonal elements of 

Jacobian matrices (var(gii)). Here we describe two analytical results which show that when 

var(gii) > 0, the resilience of a complex system is able to increase with interactivity. The 

first is the well-established Geršgorin disc theory and we outline the relevant aspects of the 

theory. The second is the variance of the distribution of the real parts of eigenvalues, a 

novel approach based on an equation introduced by Levins (1975). 

 

(3ai) Geršgorin disc theory 

Geršgorin disc theory describes the distribution of eigenvalues in the complex (imaginary-

real) plane (Geršgorin, 1931). It was developed in 1931 by Semyon Aranovich Geršgorin 

(1901 –1933), a Soviet (born in Belarus) mathematician, although only relatively recently 

applied to community ecology for the first time (Sugihara, 1983). Elements relevant to the 

study of stability - complexity relationships are revisited here (Haydon, 1994, Haydon, 

2000), whilst proofs and other aspects of the theory can be found in Varga (2004) and 

Brualdi & Mellendorf (1994). For an n x n Jacobian matrix G there are n Geršgorin discs 

D1…..Dn, one corresponding to each row. A Geršgorin disc is defined over the complex 

plane such that Di is centred at the value of the diagonal element (gii) and has a radius (r i) 

which is equal to the sum of the absolute values of the off-diagonal elements (gij) in the ith 

row: 

 

1j

j i

n

i ijr g
=
≠

= ∑           Eqn 2.2 

 

Thus the positions of discs are set by the diagonal element whereas the radii of discs 

depend on the number and magnitude of off-diagonal elements (Fig 2.2a). We define the 

mean radius (ir ) of Geršgorin discs as the interactivity of an ecosystem.  

Three theorems shape the distribution of eigenvalues of the Jacobian matrix in the 

complex plane. The first is Geršgorin’s first circle theorem which states that every 

eigenvalue must lie within at least one of the Geršgorin discs. The second is Geršgorin’s 

second circle theorem which states that if s of the discs form an isolated connected domain 

then precisely s eigenvalues are found within this domain (Fig 2.2). Thus Geršgorin discs 
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define an eigenvalue inclusion region. The third is that the sum of the real parts of the 

eigenvalues must equal the sum of the trace 
1 1

Re( )
n n

i ii
i i

gλ
= =

 = 
 
∑ ∑ , which intuitively 

constrains the eigenvalues to balance about the centre of all discs with respect to the real 

axis. Thus, when the diagonal terms are identical (var(gii) = 0) and discs are centred in the 

same place, the dominant eigenvalue must be more positive than, or at most equal to, the 

diagonal value. However, when the discs are positioned differently (var(gii) > 0), the 

dominant eigenvalue can be more negative than the value of the most positive diagonal 

element. The Geršgorin discs provide bounds on how negative the dominant eigenvalue, 

and therefore how resilient the ecosystem, can be. 

To usefully apply these theorems to eigenvalues of ecosystems with increasing 

interactivity requires the numerically supported assumption that the variance of the 

distribution of the eigenvalues within a disc is proportional to the radius of the disc 

(Haydon, 1994). In an ecosystem where species interact more strongly or with a greater 

number of other species, the Geršgorin discs will have larger radii. When the discs are 

centred in the same place (var(gii) = 0), as the radii of the discs increase, resilient systems 

can become less resilient but not more so. In contrast, when discs are centred at different 

points along the real axis (var(gii) > 0), the trade off between positivity and negativity in 

the real parts of eigenvalues allows the dominant real part to become more negative with 

increasing disc radius. In this way, ecosystem resilience can increase with ecosystem 

interactivity (Haydon, 2000). 

 

(3aii) Variance in the distribution of real parts of eigenvalues 

Levins (1975) presented a formula for the variance of the distribution of eigenvalues of a 

matrix (for derivation see Jorgensen et al., 2000), which we apply to the Jacobian matrix 

G: 

 

var( ) var( ) ( 1)     for ,  = 1,....,ii ij jig n g g i j nλ = + −      Eqn 2.3 

 

where n is the matrix order, gii are the diagonal elements, gij ( )i j≠  are the off-diagonal 

elements and λ is the spectrum (vector of eigenvalues) of G. Since eigenvalues can be 

complex numbers, imaginary parts can cause var(λ) to take negative values. However, it is 

the real part of the dominant eigenvalue that determines whether a system returns to 

equilibrium and Levins’ formula can be modified (see Appendix for derivation) to give the 

variance in the real parts of the eigenvalues of G: 
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2var(Re ) var( ) ( 1) (Im )     for ,  = 1,....,ii ij jig n g g i j nλ λ= + − + .   Eqn 2.4 

 
where Im λ are the imaginary parts of the eigenvalues. Intuitively, if the mean of the 

eigenvalues is fixed, we expect, in general, the real part of the dominant eigenvalue, and 

therefore ecosystem resilience, to decrease as var(Re λ) increases.  

Using Eqn 2.4, we see that var(Re λ) cannot take a negative value, allowing clearer 

comprehension of how each of the terms contribute to the sum. The second term 

( )( 1) ij jin g g−  encapsulates all three traditional measures of complexity (the number of 

interacting species, the degree of connectance between species and the strength of these 

interactions), and will increase in magnitude with increases in any of them. The sign of this 

term depends on the types and strengths of interspecific interactions (gij). Competitive or 

mutualistic interactions will contribute positive values whilst consumer-resource 

interactions will contribute negative values. In the absence of the third term (i.e. if the 

eigenvalues are all real numbers) then increasing the number or strength of consumer-

resource interactions provides a necessary and sufficient condition for positive resilience - 

complexity relationships. However when eigenvalues are complex, increasing consumer-

resource interactions can only reduce variance in the real parts of eigenvalues if the 

associated increase in the third term, the mean of squared imaginary parts 2(Im )λ , is 

smaller than the decrease in the second term. It is not intuitive, or clear from Geršgorin 

disc theory, under which circumstances this would be true. We therefore employ a 

numerical study to investigate whether the behaviour of the eigenvalues can be readily 

understood in the ways suggested by these theorems. The imaginary parts render Eqn 2.4 a 

necessary but insufficient condition for increasing resilience with complexity of model 

ecosystems.  

 

(3B) NUMERICAL STUDY OF THE EFFECT OF VARIANCE IN THE DIAGONAL ELEMENTS OF THE JACOBIAN 

ON RESILIENCE - INTERACTIVITY RELATIONSHIPS 

Model ecosystems were generated using Lotka’s formulation of the LVE (see §2bi). For 

different values of Jacobian diagonal variance and interactivity (MAIIS and connectance) 

we sampled 1000 stable Jacobians and recorded each vector of the real parts of eigenvalues 

(Re λ). We present these data in Fig 2.3 in three ways: Figs 2.3.i-iii  (columns 1-3) show the 

distributions of real parts of the dominant eigenvalue (Re dλ ) providing an impression of 

the range of resilience; in Figs 2.3.iv (column 4) these distributions are summarised by the 
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average resilience, Re dλ ; Figs 2.3.v (column 5) show the mean variance in the full vector 

of the real parts of eigenvalues, var(Re )λ . 

The distributions of real parts of dominant eigenvalues (Figs 2.3.i-iii ) confirmed the 

analytical result that when variance is present in the Jacobian diagonal, locally stable 

systems are able to be more resilient when interactivity is greater. Average resilience - 

interactivity relationships generally reflected this (Figs 2.3.iv). We also observed that 

average resilience tended to be higher when there was lower variance in the Jacobian 

diagonal (Figs 2.3.iv), and the variance in the real parts of eigenvalues showed 

qualitatively similar patterns to resilience (Figs 2.3.v).  

There is clearly complexity in the results shown in Fig 2.3 which requires further 

consideration. First, in Figs 2.3.c.iv average resilience levelled-off to the same mean value 

as connectance was increased. This suggests the average eigenvalue behaviour was 

governed similarly in these systems. We noticed they shared the common feature of having 

large discs united as a single domain that extended over into the positive half of the 

complex plane (Table 2.1). As a result of sampling only stable Jacobians, this would 

restrict the most dominant eigenvalue to fall within a constant region of the real axis 

despite increasing connectance. This would also explain why we saw average resilience 

level-off for high var(gii) at high values of MAIIS (Table 2.1, Fig 2.3.a.iv circles). 

Second, when MAIIS > 1, for var(gii) = 0 (Fig 2.3.a.iv, asterisks), we observed a 

positive resilience - interactivity relationship that conflicted with Geršgorin theory. As 

MAIIS was increased from 1 to 1000, the variance in the real parts of eigenvalues tended 

to zero (Fig 2.3.a.v) revealing that all real parts of eigenvalues converged on the diagonal 

elements (gii = -0.1). In Fig 2.3.c we set MAIIS equal to one to investigate further, and 

found that average resilience levelled-off as connectance increased (Fig 2.3.c.iv) and 

variance in the eigenvalues did not tend to zero (Fig 2.3.c.v). We deduce that the 

unexpected result was caused by an increase in strength rather than number of interactions, 

and return to discuss this finding in §4b. 

 

(3C) NUMERICAL STUDY OF THE EFFECT OF VARIANCE IN THE RELATIVE ABUNDANCE DISTRIBUTION ON 

RESILIENCE - INTERACTIVITY RELATIONSHIPS 

Model ecosystems were generated using Volterra’s formulation of the LVE (see §2bii). As 

for Fig 2.3, for each measure of interactivity (connectance and MAIIS), the vectors of real 

parts are presented in three ways: Figs 2.4.i-iii  (columns 1-3) show the full distributions of 

real parts of the dominant eigenvalue (Re dλ ) providing an impression of the range of 
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resilience; in Figs 2.4.iv (column 4) these full distributions are summarised by the average 

resilience, Re dλ ; Figs 2.4.v (column 5) show the mean variance, var(Re )λ .  

We did not find feasible ecosystems where var(gii) was zero or intermediate and 

interactivity was low (Fig 2.4a). (It is ironic that feasible systems with no variance in 

intraspecific interaction strengths, as assumed by May (1972b), are difficult to find at low 

levels of complexity.) The resilience - interactivity relationships for different relative 

abundance distributions (Fig 2.4) showed strong similarities to those found for varying the 

diagonal elements of Jacobians generated using Lotka’s formulation of the LVE (Fig 2.3): 

the distributions of dominant real parts showed that variance in the abundance distribution 

can allow locally stable systems to become more resilient when interactivity is greater 

(Figs 2.4.i-iii ); patterns in average resilience (Figs 2.4.iv) and the variance in the real parts 

of eigenvalues (Figs 2.4.v) generally reflected this; and average resilience tended to be 

higher when abundance distributions were more equitable (Fig 2.4.iv).  

 

 

4. Discussion 

(4A) THE SPECIES ABUNDANCE DISTRIBUTION AND STABILITY - COMPLEXITY RELATIONSHIPS 

The main aim of this chapter was to explore how ecosystem stability - complexity 

relationships depended on the evenness of species abundances. Despite the fact that one of 

the universal laws of ecology is that ecosystems contain many rare and few common 

species (McGill et al., 2007), and the decades of debate over the relationship between 

ecosystem stability and complexity (McCann, 2000), the effect of inequity in species 

abundances on stability - complexity relationships has remained an open question. In this 

chapter we modelled interacting species using the classic LV equations, measured 

complexity as the ecosystem interactivity (connectance and mean interaction strength) and 

measured stability as the resilience of ecosystems to perturbation from a locally stable 

equilibrium. In LV model ecosystems, the equilibrium abundance distribution lies on the 

diagonal of the Jacobian matrix where it contributes to species self-regulation terms, and in 

the study of stability - complexity relationships, the diagonal elements have traditionally 

been assigned identically (Gardner and Ashby, 1970, May, 1972b). Firstly, we presented 

analytical arguments based on Geršgorin disc theory and variance of eigenvalues to show 

that resilience can increase with interactivity in the general case that the diagonal elements 

were inequitable. Secondly, we presented supporting numerical results which further 

showed that ecosystem resilience can on average increase with ecosystem interactivity. 

Then, we specifically attributed inequity in the diagonal elements to differences in 
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equilibrium abundances and presented numerical results showing that ecosystems with 

even abundance distributions had different resilience - interactivity relationships to 

ecosystems with uneven distributions. We found that resilience increased with interactivity 

in LV model ecosystems where the abundance distribution was strongly skewed towards 

rare species. 

Whilst variation in species abundances is ubiquitous across communities and 

ecosystems (McGill et al., 2007), there are different degrees of inequity. Although these 

differences may depend to a large extent on the sampling frame and definition of 

community (Loehle, 2006), empirical links between unevenness and various characteristics 

of communities are well documented. More even distributions have been linked to 

communities which are later in succession, less subjected to human disturbance and less 

open to immigration (McGill et al., 2007). The model ecosystems in this chapter were 

purposely constructed to allow stability to be directly comparable (see §2bv). We found 

that more equitable ecosystems were on average more resilient than their less even 

counterparts. 

The species abundance distribution is typically studied as an emergent community-

level property of the LV ecosystem model, like resilience in this work. We initially tried to 

study resilience - interactivity relationships this way, by generating a pool of ecosystems 

from randomly parameterised interaction strengths and intrinsic growth rates (see §2bii) 

and separating out the most equitable and inequitable ecosystems. This approach was 

abandoned because these ‘extremes’ were rarely encountered, and an alternative approach 

was adopted where variance in abundances could be controlled. Recently, however, Wilson 

and colleagues (2003, 2006) have made it possible to analytically approximate the mean 

and variance of the abundance distribution as a function of the statistical properties of 

interaction parameters (Wilson et al., 2003). Their equations link species abundance 

distributions to the interactivity of LV ecosystems. They have found that species 

abundance distributions were relatively insensitive to variation in per-capita interspecific 

interactions (aij) (Wilson et al., 2003), but that stronger mean per-capita interspecific 

interactions (aij) resulted in less even communities, whether these were competitive 

(Wilson et al., 2003) or resource-consumer communities (Wilson and Lundberg, 2006). 

The picture is complicated because their less equitable communities also contained fewer 

species, and species richness is an element of ecosystem complexity which has been shown 

to have strong effects on resilience (Ives and Carpenter, 2007, McCann, 2000). 

Nonetheless their results imply that interactivity not only affects resilience, as shown here, 

but also variance in the abundance distribution, which itself affects resilience and generates 
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quantitatively (or even potentially qualitatively) different resilience - interactivity 

relationships. 

When ecosystems are modelled using Lotka’s local formulation of the LVE the 

only constraints placed on the Jacobian matrix are the distribution and structure of 

elements as directly assigned by the investigator, whereas, when using Volterra’s global 

formulation the investigator is able to select Jacobians on the basis of feasibility of the 

equilibrium abundances and plausibility of intrinsic growth rates. We found that feasible, 

plausible Volterra-type Jacobians showed no difference in resilience - interactivity 

relationships from feasibly indeterminate Lotka-type Jacobians. This suggests that feasible, 

plausible Jacobians and feasibly indeterminate Jacobians had the same structure or, if their 

covariance structures were distinct, it did not seem to affect resilience - interactivity 

relationships.  

 

(4B) LIMITATIONS AND EXTENSIONS OF THE ANALYTICAL APPROACHES FOR STUDYING STABILITY - 

COMPLEXITY RELATIONSHIPS 

A question that arises with using Geršgorin disc theory to explore ecosystem stability is 

whether systems with non-zero variance in their Jacobian diagonals (var(gii) > 0) and large 

discs relative to this variance (r i >> var(gii)) (so that superficially they appear to be centred 

in the same place) have similar stability to systems with large discs which are centred in 

the same place (var(gii) = 0). This appeared to be the case when large discs were generated 

by increasing the number of interactions but not when large discs were generated by 

increasing the strength of interactions. We conjecture that this conflicting result may be 

explained because Jacobians with all diagonal elements identical and magnitudes smaller 

than off-diagonals (gij) are associated with eigenvalues that behave like those of skew 

symmetric matrices.  

A matrix M  is skew-symmetric (or antisymmetic) if all diagonal entries are zero 

and its transpose is also its negative, M T = -M. The eigenvalues of skew-symmetric 

matrices are purely imaginary (or zero). This theory extends to diagonals that are all the 

same scalar value (k): if G = (M+kI ) then λ(G) = λ(M ) + λ(kI ) where I  is the identity 

matrix, and eigenvalues λ. Now the eigenvalues have a non-zero real part of value k. In our 

Jacobians there was a further difference that paired interspecific interactions (gij) were not 

of equal strength (-gij ≠  gji). However, we found that a large difference in magnitude 

between the sum of the off-diagonal elements and k tended to reduce the variance in the 

real parts of the associated eigenvalues, in a similar fashion to the distribution of 

eigenvalues of a skew-symmetric matrix.  
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Although this finding has not been reported previously, its ecological relevance is 

questionable because ecosystems with identical intraspecific, and sign-symmetric 

interspecific, interaction strengths are not realistic. However, skew-symmetric matrices are 

shown here to exist in the model ecosystems generated by both Lotka and Volterra’s 

formulations of the LVE which underpin much community dynamical theory. Further, 

Jacobian matrices that approach skew symmetry do not have eigenvalues that conform to 

the assumption that the variance of real parts of eigenvalues increase with Geršgorin disc 

radius. This is a critical assumption in the application of Geršgorin disc theory to the 

stability - complexity debate.  

Geršgorin discs are an example of an eigenvalue inclusion set: they define an area 

in the complex plane in which the eigenvalues must lie. Brauer Cassini ovals (Brauer, 

1947) are another eigenvalue inclusion set that have not yet been applied in an ecological 

context. The theorem has two parts. Part I: for any matrix nxn
ijg= ∈  G ℂ , 2n ≥ , and any 

eigenvalue in the spectrum (vector of eigenvalues) of G ( ( )specλ ∈ G ), 

 

(1) { }( ) : : jjij ii i jz gK z z g r rλ −∈ = ∈ − ⋅ ≤ ⋅G ℂ      Eqn 2.5 

 

where Kij is the called the (i,j)-th Brauer Cassini oval for the matrix G, gii and gjj are the ith 

and jth diagonal elements and r i and r j are the sums of the absolute values of the off-

diagonal elements in the ith and jth rows (equivalent to Geršgorin disc radius, Eqn 2.2). 

Part II: as Eqn 2.5 is true for each λ in spec(G), then 

 

(2) 
,

( ) ( ) : ( )ij
i j N
i j

spec K
∈
≠

⊆ =G G G∪K , 

 

where K is the Brauer set. The advantage of Brauer Cassini ovals is that they always 

define an area that is smaller than the Geršgorin discs (a simple example is given in Fig 

2.5) and may offer novel qualitative insights. For example, Kij can consist of two disjoint 

components (Brauer Cassini ovals may not be ovals) if 2ii jj i jg g r r− > ⋅  (Varga, 2004). 

Thus when ecosystem interactivity is low and variance in intraspecific interactions is high, 

the trade off between positivity and negativity in the real parts of eigenvalues may be much 

more restricted, and therefore potential resilience much lower, than predicted by Geršgorin 

disc theory (Fig 2.5). The disadvantage is the calculation for large ecosystems is 
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computationally expensive since there are 
2

n 
 
 

 Cassini ovals compared with n Geršgorin 

discs. 

The equation for the variance in the distribution of real parts of eigenvalues 

(var(Reλ ), Eqn 2.4) is a simple mathematical argument that says when variance in the 

intraspecific interaction strengths (var(gii)) is greater than zero, the resilience of an 

ecosystem is able to increase with complexity. This holds not just for ecosystem 

complexity as measured by interactivity (connectance and mean interaction strength) but 

also for the third traditional measure of ecosystem complexity, species richness, although 

this has yet to be tested numerically. Eqn 2.4 also suggests how to modify the off-diagonal 

structure in order to minimize the value of the real part of the dominant eigenvalue 

(maximise resilience). Firstly, for a given set of interspecific interactions, resilience can be 

maximised by decreasing variance in the intraspecific interactions, var(gii). Secondly, 

conditional on a fixed value of var(gii), increasing the number or strength of competitive or 

mutualistic interactions will only decrease resilience whilst it is only by increasing the 

number and/or strength of consumer-resource interactions that resilience can be 

maximised.  

 

We have presented two lines of analytical argument and supporting numerical 

results showing that the resilience of LV ecosystems can increase with their interactivity. 

The use of LV equations and measuring stability from an equilibrium viewpoint are open to 

criticism. Further, we have only considered one type of interaction between species that 

occur in ecosystems. (Interestingly, the analytical arguments conflict in their predictions of 

how different interaction types (mutualistic, competitive) should influence resilience - 

interactivity relationships and it would be interesting to reconcile these two theories.) 

Nonetheless, we have linked the stability of LV ecosystems with the equilibrium species 

abundance and shown that ecosystem resilience can increase with interactivity when the 

abundance distribution approximates the ubiquitous natural pattern, skew towards many 

rare species. This work suggests that changes to the species abundance distribution are 

likely to alter the dynamical properties of a real ecosystem. The LV framework could offer 

a means of exploring the loss of biodiversity, in terms of changes to abundance 

distributions, on ecosystem stability and its implications for conservation. 
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Table 2.1. Spillover and union in Geršgorin discs. Ranges of MAIIS over which: (A) 

there was union of discs into a single domain; (B) Geršgorin discs were large enough for 

one or more to spillover into the positive quadrant. Levels of ij i j
g

≠
 were determined from 

Jacobians as sampled for Fig 2.3a and Fig 2.4a and therefore can be used in the 

interpretation of results presented in these figures. See Fig 2.2a for an example of spillover 

and Fig 2.2b for an example of union and spillover. 

 

 Variance in Jacobian diagonal 

 0 Intermediate (0.008) High (0.041) 

(A) union 0.001-1000 0.1-1000 1-1000 

(B) spillover 0.1-1000 0.01-1000 0.001-1000 
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Figure 2.1. Equitable and inequitable relative distributions used to assign the absolute 

values of the Jacobian diagonal in §3b and equilibrium species abundances in §3c. Three 

levels of variance in these distributions were modelled: zero (asterisks); low (variance = 

0.008, no marker) and high (variance = 0.041, open circles). Distributions were modelled 

using the beta probability density function (setting Z=1, W=1 for zero variance W=3 for 

low variance, W=10 for high variance). 
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Figure 2.2. Geršgorin discs in the complex plane. (a) An example where discs are 

separated and form isolated domains. The isolated disc is annotated to illustrate that each 

disc Di is centred at the diagonal element of the ith row in the Jacobian matrix (gii, crosses) 

and has a radius (r i) equal to the sum of the absolute values of the off-diagonal elements in 

the ith row. If a disc does not overlap to form a connected domain, then the associated 

eigenvalue (dots) must lie within the disc, otherwise it could lie anywhere within the 

domain created by the overlapping discs. (b) An example of a connected domain with an 

empty disc. Jacobians were generated using Lotka’s formulation with ij i j
g

≠
= 0.1, C = 

0.3, var(gii) = 0.041. 

(a) (b) 
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Figure 2.3. Effect of variance in the diagonal elements of stable Jacobians (var(gii)) on 

the relationship between model ecosystem resilience (Re dλ ) and interactivity as measured 

by: (a) MAIIS where C = 0.3; (b) connectance C where MAIIS=0.1 and (c) connectance C 

where MAIIS=1. (i-iii ) Distributions of real parts of dominant eigenvalues (Re dλ ) of 1000 

stable Jacobians where: (i) var(gii) = 0; (ii ) var(gii) = 0.008 and (iii ) var(gii) = 0.041. (iv) 

Average stability (Re dλ ) measured as the mean (± SEM) of the distributions shown in (i-

iii ). (v) Mean variance (± SEM) of the real parts of all eigenvalues var(Reλ ). Var(gii) = 0 

(asterisks), var(gii) = 0.008 (no marker) and var(gii) = 0.041 (circles). SEMs are small and 

not clearly visible. An algorithm ensured the mean and variance of interaction strengths 

remained constant across connectance levels (Christianou and Kokkoris, 2008). 

 

(a) 

(c) 

(b) 

(i) (ii) (iii) (iv) (v) 
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Figure 2.4. Effect of variance in the equilibrium relative abundance distribution (N*) on 

ecosystem stability at different levels of interactivity.  (a) Interactivity measured as MAIIS 

with C = 0.3. For each x = [-2 -1 0 1 2] where MAIIS=10x we searched up to 10000 

candidate Jacobians for one that was stable, feasible and had a plausible b vector (see 

§2bii). This established the range over which we then sampled 1000 Jacobians at six 

intervals. (b) Interactivity measured as connectance where MAIIS=0.1. (i-iii ) Distributions 

of real parts of dominant eigenvalues (Re dλ ) of 1000 Jacobians where: (i) var( *N ) = 0; 

(ii ) var( *N ) = 0.008, and (iii ) var( *N ) = 0.041. (iv) Average stability (Re dλ ) measured as 

the mean (±  SEM) of the distributions shown in (i-iii ). (v) Mean variance (±  SEM) of the 

real parts of all eigenvalues var(Reλ ). Var( *N ) = 0 (asterisks), var( *N ) = 0.008 (no 

marker) and var( *N ) = 0.041 (circles). SEMs are small and not clearly visible. An 

algorithm ensured the mean and variance of interaction strengths remained constant across 

connectance levels (Christianou and Kokkoris, 2008). Initially for each level of 

interactivity we searched through up to 10000 model ecosystems looking for a plausible 

vector of intrinsic growth rates (b) with three autotrophs (bi > 0) at the base of ecosystems. 

This established the range over which we then sampled 1000 Jacobians at six intervals and 

recorded each vector of the real parts of eigenvalues (Re λ). 

(a) 

 

(b) 

(i) (ii) (iii) (iv) (v) 
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Figure 2.5. Brauer Cassini ovals (broken lines) and Geršgorin discs (solid lines) for the 

matrix 

1 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0

− − − 
 − − 
  

. The eigenvalues (dots) were [-0.25 -0.5 -0.75]. The 

diagonals of the matrix are the centres of the discs and foci of the ovals (crosses). In this 

example each Brauer Cassini oval does not form an oval shape but two figure of eights and 

two small circles. The ovals form a smaller eigenvalue inclusion region than the Geršgorin 

discs. Ovals calculated with assistance from Gibson (2009). 
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Appendix: derivation of the variance of eigenvalues in terms of their real and 

imaginary parts 

 

( ) 22var λ λ λ= −  

 

(1) Finding the mean of eigenvalues 

1 2+ +...
     for   1,2...j n j n

n n

λ λ λ λλ = = =∑  

When adding complex numbers, the real parts are added separately from the imaginary 

parts: 

( ) ( )1 2 1 2Re Re ...Re Im Im ...Imn n i

n

λ λ λ λ λ λ
λ

+ + + + +
=  

When dividing a complex number 
a bi a b

i
c c c

+ = + , therefore 

( ) ( )Re Im
i

n n

λ λ
λ = +∑ ∑

 

If the complex variables are eigenvalues, then the complex eigenvalues will come in 

conjugate pairs. The mean of the imaginary parts of the eigenvalues ( )Im / n iλ∑  will be 

zero, and therefore the mean eigenvalue will equal the mean real part: 

( )Re j

n

λ
λ = ∑

. 

 

(2) Finding the vector of squared eigenvalues  

2 ( . )j j

n

λ λ
λ = ∑  

If λj is a complex eigenvalue, it will have a conjugate*
jλ . For any complex conjugate pair 

2 *2 2 22(Re ) 2(Im )j j j jλ λ λ λ+ = −  

Therefore 

( ) ( ) ( )2 2 2(Re ) (Im )j j jλ λ λ= −∑ ∑ ∑  

( ) ( )2 2

2
(Re ) (Im )j j

n n

λ λ
λ = −∑ ∑

 

 

(3) The variance of eigenvalues λ in terms of the variance of real parts and the 

mean of squared imaginary parts 
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22 2(Re ) Re (Im )
var( )

n n n

λ λ λλ ∑ ∑ ∑ = − − 
 

, 

2var( ) var(Re ) (Im )λ λ λ= −  

 

(4) The variance of the real parts of eigenvalues 

var( ) var( ) ( 1)( )ii ij jig n g gλ = + −  (see Jorgensen {, 2000 #49} for derivation) 

2var(Re ) var( ) (Im )λ λ λ= +  

2var(Re ) var( ) ( 1)( ) (Im )ii ij jig n g gλ λ= + − +  
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Chapter 3. On the generality of stability - complexity relationships in 

Lotka-Volterra ecosystems 

 

Abstract 

Ecologists aim to understand how complexity persists in nature. In theoretical ecology, 

local stability is a widely used measure of ecosystem persistence and has made a major 

contribution to the ecosystem stability - complexity debate over the last few decades. 

However, permanence is coming to be regarded as a more satisfactory definition of 

ecosystem persistence and has relatively recently become available as a tool for assessing 

the global stability of Lotka-Volterra communities. Here we document positive 

relationships between permanence and Lotka-Volterra food web complexity and report a 

positive correlation between the probability of local stability and permanence. We 

investigate further the frequency of discrepancy (attributed to fragile systems that are 

locally stable but not permanent or locally unstable systems that are permanent and have 

cyclic or chaotic dynamics) and the causes of non-permanence at the boundary of the state-

space and correlate them to aspects of complexity. We find that locally stable interior 

equilibria tend to have all locally unstable boundary equilibria. Since a locally stable 

boundary is inconsistent with permanent dynamics, this can explain the observed positive 

correlation between local interior stability and permanence. Our key finding is, at least in 

Lotka-Volterra ecosystems, that local stability may be a better measure of persistence than 

previously thought. 
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Introduction 

Ecologists aim to understand the conditions under which a community of interacting 

species survives as a whole and in the long term. In practise, much of the research into the 

question of long term coexistence of species has regarded this as an equilibrium problem. 

From a theoretical perspective it has been the tractability of local (also known as 

asymptotic or neighbourhood) stability analysis that has ensured the pervasiveness of the 

equilibrium view point: ‘even if other definitions of stability are more attractive, if they are 

not tractable then the ecologist cannot adopt them with profit’ (Hutson and Schmitt, 1992). 

The deficiencies of local stability analysis are numerous and well known (Anderson et al., 

1992, Haydon, 1994, Law and Blackford, 1992, Berlow et al., 2004) and there is little 

reason to believe that the natural world is in equilibrium. A more satisfactory definition of 

ecosystem stability is a global property called permanence, which requires only that 

densities of rare species tend to increase. The analysis of permanence was, however, 

intractable until recent attention from mathematicians (reviewed in Hofbauer and Sigmund, 

1988) enabled Law and colleagues (Law and Blackford, 1992, Law and Morton, 1993, 

Law and Morton, 1996) to provide a non-technical description of a method for Lotka-

Volterra (LV) communities that has made permanence analysis accessible as a tool to 

ecologists. 

Despite permanence analysis being made tractable to ecologists for more than a 

decade, there are only a handful of theoretical community studies in which permanence has 

been used as well as, or in place of, local stability (Emmerson and Yearsley, 2004, Chen 

and Cohen, 2001, Vandermeer, 2006, Kristensen, 2008). One area where permanence will 

contribute to theoretical community ecology is in the ongoing debate over the relationship 

between stability and complexity of ecosystems. In the 1970s, theoreticians reported that 

three measures of complexity, species richness and the number and mean strength of 

interactions between species, decreased the probability of local stability in randomly 

parameterised large complex systems (May, 1972b, Gardner and Ashby, 1970). Recently, 

Chen & Cohen (2001) were the first to systematically explore permanence in a similarly 

general framework. They studied two of the measures of complexity, the number of 

interactions and species, and found that increases in both reduced the probability of 

permanence in ecosystem models. However, the theoretical ecology literature based on 

local stability has moved the stability - complexity debate on a great deal since the early 

1970s, finding numerous conditions under which complexity can be locally stabilising as 

well as destabilising (Borrvall et al., 2000, Jansen and Kokkoris, 2003, Rozdilsky and 

Stone, 2001, Haydon, 1994, Haydon, 2000, Neutel et al., 2002). The aim of this chapter is 

to bring closer together the vast literature on local stability and the nascent use of 
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permanence, which we attempt in three ways. First, we determine permanence-complexity 

relationships in model ecosystems of enhanced ecological plausibility (for example, Chen 

& Cohen (2001) assumed equal equilibrium species abundances and did not ensure the 

presence of autotrophs), and by studying the effect of species interaction strengths on 

permanence. Second, we investigate the match and discrepancy between predictions of 

local stability and permanence, and third, we study the reasons for non-permanence. 

The mean interaction strength is a traditional measure of ecosystem complexity 

(May, 1972b) and we relate it here to permanence for the first time. However, taking the 

average neglects the natural variability of interaction strengths. In real ecosystems the 

range of interaction strengths can span nine orders of magnitude (Wootton, 1997) and the 

distribution is commonly observed to be skewed towards weak interactions (Fagan, 1997, 

Goldwasser and Roughgarden, 1993, Paine, 1992, Wootton, 1997, De Ruiter et al., 1995). 

Such variability has been identified as an important determinant of stability under some 

conditions. In competitive communities, greater variance in strengths of competitive 

interactions can increase the probability of stability (Jansen and Kokkoris, 2003). The non-

random patterning of weak interactions in omnivorous loops increases local stability in 

empirical food webs (Neutel et al., 2002) and permanence in special sets of trophic 

relations (Emmerson and Yearsley, 2004). Further, non-equilibrium dynamics were 

stabilized when complexity was added via a species (consumer) with weak interactions 

(McCann et al., 1998). It is unclear however whether the skew towards weak interactions 

will influence permanence in more generally structured ecosystem models. 

How much do predictions differ between local stability and permanence? Using 

two examples of simple communities Anderson et al. (1992) found the parameter space for 

community coexistence measured by local stability was substantially smaller than that 

under permanence. Permanent but locally unstable communities represent those which 

must have some form of non-equilibrium asymptotic behaviour e.g. cyclical or chaotic 

orbits. Here we characterise how the likelihood of non-equilibrium dynamics varies with 

ecosystem complexity. Communities may also admit locally stable behaviour in the 

absence of permanence (Chen and Cohen, 2001, Hofbauer and Sigmund, 1988). We 

characterise these as ‘fragile’ and study how the probability of encountering such fragility 

varies with ecosystem complexity. If the match and discrepancy between local stability and 

permanence can be understood, then we may be able to attempt to answer an important 

question for ecology which was posed by Anderson et al. (1992): ‘how much confidence 

should we have in a theoretical ecology based on asymptotic stability analysis?’. 

In discussing complexity, we will examine the properties of the Jacobian matrix: 

order (species richness), number of elements (number of interactions between species) and 
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magnitude of elements (strength of interactions). The Jacobian governs the local dynamics 

around a specified equilibrium point and thus we will use ecosystem complexity to refer to 

the properties of the Jacobian of the interior equilibrium. The criterion of permanence rests 

on the boundary: densities of rare species will tend to increase if the boundaries of the 

positive orthant repel the ecosystem dynamics away into the interior (Law & Blackford 

1992). For clarity, we stress here the distinction between permanence and global 

asymptotic stability - permanence applies to all orbits and initial conditions where all 

species are present, but does not require that all orbits converge on the interior equilibrium 

point. However, since LV ecosystems have a unique equilibrium point, model ecosystems 

which are both permanent and locally stable must also be globally asymptotically stable. If 

an ecosystem is not permanent then there must be at least one attractor on the boundary. In 

this chapter we explore the way in which the probability of equilibrium and non-

equilibrium attractors on the boundary changes with ecosystem complexity and relate this 

to the probability of permanence and local stability of the ecosystem. 

The results presented in this chapter are arranged around three sets of questions. 

The first set of questions is on permanence-complexity relationships: (1.1) does relaxing 

assumptions made by Chen & Cohen (2001) affect complexity-permanence relationships? 

(1.2) what is the relationship between mean absolute interspecific interaction strength and 

permanence? and (1.3) what is the effect of skew towards weak interspecific interaction 

strengths on permanence? The second set is on local stability analysis and permanence: 

(2.1) are local stability and permanence correlated? (2.2) does the proportion of permanent 

ecosystems with non-equilibrium dynamics change with complexity? and (2.3) does the 

probability of fragility change with complexity? The third set is based on the boundary 

equilibria: (3.1) is non-permanence caused by equilibrium or non-equilibrium attractors on 

the boundary? and (3.2) does the probability of at least one locally stable boundary follow 

the same relationship with complexity as the probability of stability of the interior 

equilibrium? 

 

 

Methods 

MODEL ECOSYSTEMS 

We constructed model ecosystems as Chen and Cohen (2001) did, using the familiar LV 

equations which describe the population dynamics of n interacting species, 
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1

n
i

i ij ji
j

dN
b a NN

dt =

 +=  
 

∑  for i = 1,…,n.      Eqn 3.1 

 

The equations were adopted as the global dynamics of the ecosystem sensu Volterra 

(1926), rather than the more general but locally applicable formulation of Lotka (1925). 

This means we can define the parameters in Eqn 3.1 with unambiguous ecological 

interpretations: bi is the intrinsic growth rate of the ith species and aij is the per-capita 

effect of the jth species on the ith species and are the elements of the per-capita interaction 

matrix A. At the interior equilibrium point AN* = -b, and the Jacobian matrix G has a 

simple form: 

 

* * *
11 1 12 1 1 1

* * *
21 2 22 2 2 2

* * *
1 2

n

n

n n n n nn n

a N a N a N

a N a N a N

a N a N a N

 
 
 =
 
 
  

G

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

.       Eqn 3.2 

 

The elements of the diagonal of the Jacobian matrix (gij where i j= ) represent 

intraspecific interaction strengths and the off-diagonal elements (gij where i j≠ ) represent 

interspecific interaction strengths in the vicinity of the equilibrium point (N*). It is the off-

diagonal elements of the Jacobian (gij), rather than the per-capita interactions (aij), which 

we refer to in the subsequent analyses as interspecific interaction strengths. 

Model ecosystems were generated that contained paired interactions of consumer 

and resource species (Chen and Cohen (2001) also considered scenarios with unpaired 

interactions) with no discrete subwebs and a cascade trophic structure defined by no loops 

(Cohen and Newman, 1985). The cascade trophic structure was implemented by placing 

negative effects of consumers on resource species (gij) above the diagonal of the Jacobian 

matrix, and positive effects of resource species on consumers (gji) below. The complexity 

of each model ecosystem was defined by the properties of the Jacobian at the interior 

equilibrium point: species richness (n), connectance (C), which measures the proportion of 

actual interactions between species relative to all topologically possible interactions 

(excluding cannibalism), and mean absolute interspecific interaction strength ( ij i j
g

≠
, 

MAIIS for brevity). 

There are two approaches to generating the Jacobian matrix at the interior 

equilibrium point under Volterra’s formulation of Eqn 3.1. Given the per-capita interaction 

matrix A, they differ by whether the equilibrium point (N*) or the intrinsic growth rates (b) 
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are assigned. We followed Chen and Cohen (2001) by assigning N*, and calculating b (=-

AN*). Chen and Cohen (2001) showed that the probability of an ecosystem being 

permanent decreased with increasing species richness and connectance. In their model 

ecosystems they assigned a unity equilibrium point ( *
iN = 1) and the non-zero elements of 

their per-capita interaction matrix A were drawn from a uniform random distribution in the 

interval (-1,0) for each aii and aij (i < j ) and in the interval (0,1) for each aij (i > j ).  

Chen & Cohen (2001) made two ecologically unrealistic assumptions in their 

model ecosystems, the consequences of which we examine. They assumed all equilibrium 

abundances were equal and, by omitting to check the feasibility of intrinsic growth rates (b 

vector), they did not ensure the presence of autotrophs (bi > 0). We constructed four sets of 

model ecosystems:.  

1. The first set kept the assumptions and parameterisation of Chen & Cohen (2001), with 

the exception that we set equilibrium abundances (*
iN ) to be 0.5, for consistency with 

subsequent parameterisation.  

2. The second set ensured feasibility of intrinsic growth rates by defining a quarter of all 

species as autotrophs (bi > 0) and the remaining as heterotrophs (bi < 0), with the 

autotrophs positioned at the base of the ecosystem.  

3. The third set ensured the feasibility of intrinsic growth rates and relaxed the assumption 

of equal *
iN  by allowing the *

iN  to vary uniformly in the interval (0, 1). In this set the 

per-capita interactions were drawn from a uniform random distribution in the interval (-

1,0) for each aii, (-2,0) for each aij (i < j ) and (0,2) for each aij (i > j ). The intervals 

were chosen to ensure the mean of the intraspecific ( iig ) and interspecific interaction 

strengths ( ij i j
g

≠
) remained constant across all sets. 

4. Modelling ecosystems by assigning N* also permits specification of the off-diagonals 

elements of the Jacobian (gij where i j≠ ) as independent random variates, allowing 

direct manipulation of the interspecific interaction strengths. Model ecosystem 

construction was equivalent to that for the third set as described above, except the 

interspecific interaction strengths (ij i j
g

≠
) were assigned using randomly distributed 

uniform values from the interval (-1,0) for each gij (i < j ) and (0,1) for each gij (i > j ).  

 
 
STABILITY ANALYSES 

Local stability of the equilibrium point is determined by the eigenvalues of the Jacobian 

matrix: stable if all real parts of the eigenvalues are negative. The Jacobians for the interior 
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and boundary equilibria are calculated differently. For the interior equilibrium, the 

Jacobian elements are straightforward (Eqn 3.2). At each boundary at least one of the 

species has an abundance set to zero, therefore the abundances of the remaining 

subcommunity at the boundary equilibrium point (M ) need to be determined and checked 

for feasibility (Mi > 0 for all i where 0iM ≠ ). For the boundary equilibria, calculation of 

the diagonal elements of the Jacobian (see Appendix for further details) becomes, 

 

1

n

ii i ij j
j
j i

g b a M
=
≠

= +∑  

 

if the ith species is missing (Mi = 0). The boundary at which all species abundances are 

zero (Mi = 0 ∀ i ) is the trivial equilibrium point. The Jacobian is a diagonal matrix 

containing only the intrinsic growth rates (b) and, since the eigenvalues of a diagonal 

matrix are the diagonal elements, its eigenvalues are the b vector. In all LV model 

ecosystems which contain any autotrophs (bi > 0) the trivial point must therefore be 

unstable.  

An ecosystem was defined as permanent if it satisfied two conditions: an average 

Lyapunov function existed near the boundary of the state space, and the system was 

dissipative (Law and Blackford, 1992). If an average Lyapunov function exists the 

boundary repels all trajectories into the positive orthant of state space, and if a system is 

dissipative then trajectories cannot tend to infinity. Therefore the system is permanent 

because it is bounded within the positive orthant. The dissipativity condition is satisfied 

here because our LV model ecosystems have all self-regulating species (aii < 0) and only 

consumer-resource interactions (Law and Blackford, 1992). To test our model ecosystems 

for the existence of an average Lyapunov function we used Jansen’s (1987) sufficient 

condition as laid out by Law & Blackford (1992), solved as a linear programming problem 

in MATLAB (version 7 release 14, The MathWorks Inc.). 

 

 

Results 

PERMANENCE-COMPLEXITY RELATIONSHIPS 

Unless otherwise stated, the default construction of ecosystems was six species (n=6), for 

computational tractability, and a connectance (C=0.4) and mean absolute interspecific 

interaction strength (MAIIS=0.5), to match that of Chen & Cohen (2001). 
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1.1 The effect of relaxing assumptions made by Chen & Cohen (2001) on 

permanence-complexity relationships 

Chen & Cohen (2001) assumed all equilibrium abundances were equal and did not ensure 

the presence of autotrophs (bi > 0) in their model ecosystems. With these two assumptions 

intact we started by reconstructing Chen & Cohen’s (2001) negative permanence-

complexity relationships for species richness (Fig 3.1a line with circles) and connectance 

(Fig 3.1b line with circles). Ensuring the feasibility of intrinsic growth rates did not affect 

the qualitative results but did cause a small increase in the probability of permanence (Fig 

3.1a, b lines with stars). Randomly generating the equilibrium abundances (N*) as well as 

ensuring the feasibility of intrinsic growth rates (Fig 3.1a, b dashed lines) generated results 

very close to those where the assumptions of Chen and Cohen (2001) were intact. We 

conclude that relaxing assumptions made by Chen & Cohen (2001) does not qualitatively 

affect permanence-complexity relationships. Subsequent analyses (sections 1.3-3.2, Figs 

3.2-3.5) are based only on Jacobians with these relaxed assumptions.  

Directly assigning the interspecific interactions (gij where i j≠ ) had no qualitative 

and a small quantitative effect on the trends (Figs 3.1a, b solid line with no marker). 

Directly assigning the interspecific interactions had the advantage of permitting direct 

control over the interspecific interaction strengths (gij where i j≠ ) and therefore was 

adopted for subsequent analyses (sections 1.3-3.2, Figs 3.2-3.5).  

 

1.2 The relationship between mean absolute interspecific interaction strength 

(MAIIS) and the probability of permanence 

For a connectance of 0.4, increasing MAIIS showed no clear effect on the probability of 

permanence, with all probabilities close to one. We tested whether this was true for a 

higher level of connectance of 0.9, and found a non-linear increase in the probability of 

permanence with MAIIS (Fig 3.1c). 

 

1.3 The effect of skew towards weak interspecific interaction strengths on the 

probability of permanence 

The distribution of interaction strengths in real ecosystems is skewed towards weak 

interactions (Berlow et al., 2004). Variance in absolute interspecific interaction strengths 

(VAIIS for brevity) was increased by skewing the distribution from which strengths were 

drawn towards small values (Fig 3.2a). Therefore the greater the VAIIS, the greater the 

skew towards weak interactions. The relationship between the probability of permanence 

and VAIIS depended on the level of VAIIS: at low VAIIS the relationship with the 
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probability of permanence was negative, whilst at greater VAIIS the relationship with the 

probability of permanence was positive (Fig 3.2b). Thus the probability of permanence 

may increase with skew in ‘empirical-looking’ distributions of interaction strengths. 

We examined the robustness of this u-shaped pattern across other values of 

complexity (Fig 3.2c-e). Increased species richness (Fig 3.2c) and connectance (Fig 3.2d) 

increased the depth of the u-shaped curve, whilst increased MAIIS increased the depth and 

shifted the trough of the u-shaped curve to greater VAIIS values (Fig 3.2e). The value of 

VAIIS at which the inversion from a negative to positive relationship occurred appeared to 

correspond approximately with MAIIS. We determined the inversion point for several 

values of MAIIS and found they were correlated but not in a simple way (Fig 3.2f).  

 
 
PERMANENCE AND LOCAL STABILITY 

2.1 Correlation between local stability and permanence 

The probabilities that model ecosystems had a locally stable interior (dotted lines), were 

permanent (solid lines) and were both permanent and locally stable (dashed lines) with 

increasing complexity were all correlated (Fig 3.3) although there were differences in their 

probabilities (Fig 3.3). Not all ecosystems that were locally stable were permanent, and not 

all permanent ecosystems were locally stable. The difference between the dashed lines and 

the solid lines gave the probability that model ecosystems were globally but not locally 

stable (studied further in section 2.2). The difference between the dashed lines and the 

dotted lines gave the probability of finding model ecosystems which were locally stable 

but not permanent (studied further in section 2.3). 

 

2.2 The relationship between the proportion of permanent ecosystems with 

non-equilibrium dynamics and ecosystem complexity 

A permanent ecosystem with an unstable interior equilibrium has non-equilibrium 

dynamics. The relationship between the proportion of ecosystems with non-equilibrium 

dynamics and species richness depended on the level of species richness (Fig 3.4a solid 

line). For smaller ecosystems, the relationship was positive, whereas for larger ecosystems 

the relationship was negative with larger permanent ecosystems tending towards being 

locally stable. The relationship between connectance and the proportion of ecosystems 

with non-equilibrium dynamics was positive at relatively low connectance (below about ¾ 

connected) (Fig 3.4b solid line). At higher connectance levels and all values of MAIIS (Fig 

3.4c solid line), the proportion stayed roughly constant. The relationship between the 

proportion of ecosystems with non-equilibrium dynamics and VAIIS depended on the level 
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of VAIIS. When VAIIS was low, the relationship was positive, whereas when VAIIS was 

high the relationship was negative (Fig 3.4d, solid line).  

 

2.3 The relationship between the probability of fragility and ecosystem 

complexity 

Ecosystems which are locally stable but not permanent are unlikely to be robust to large 

perturbations, and described here as ‘fragile’. However, it is necessary to bear in mind that 

the permanence method used here is only sufficient for systems with more than three 

species (Law and Blackford, 1992) and there may be undetected permanent ecosystems. 

Assuming, if there were undetected permanent ecosystems, that their proportion changed 

proportionally with changes in complexity, then the following observations hold. Larger 

ecosystems were increasingly likely to be fragile (Fig 3.4a dashed line), as were more 

connected ecosystems (Fig 3.4b dashed line). The probability of fragility stayed roughly 

constant with increasing MAIIS (Fig 3.4c dashed line) and did not show a consistent trend 

with VAIIS (Fig 3.4d dashed line). 

 
 
THE BOUNDARY EQUILIBRIA AND PERMANENCE 

3.1 Non-permanence and attractors on the boundary 

Non-permanent ecosystems must result from attractors, either equilibrium or non-

equilibrium, on the boundary. Both types of attractor were found to occur with non-

permanence in our model ecosystems (Fig 3.5). The decrease in the probability of 

permanence with species richness and connectance (Fig 3.1a, b) was attributed to increases 

in both types of attractor on the boundary (Fig 3.5a, b). In contrast, the increase in the 

probability of permanence with increased MAIIS (Fig 3.1c) was attributed to a decreased 

probability of at least one locally stable boundary, since there was a roughly constant 

probability of non-equilibrium attractors on the boundary (Fig 3.5c). The probability of 

permanence decreased initially then increased with skew towards weak interspecific 

interaction strengths (measured as VAIIS, Fig 3.2b). The initial decrease was attributed to 

changes in both types of attractor on the boundary, while the increase was mostly attributed 

to a decrease in the probability of at least one locally stable boundary (Fig 3.5d).  

 

3.2 The relationship between the probability of a locally stable boundary and 

ecosystem complexity 

The probability of at least one locally stable boundary and the probability of a locally 

stable interior had opposite relationships with complexity of the interior equilibrium point 
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(compare dashed line in Fig 3.3 with light grey shaded area in Fig 3.5). In the model 

ecosystems studied here (Figs 3.3-3.5) the mean probability of finding a locally stable 

ecosystem that had all locally unstable boundary equilibria was 0.94 (SD 0.04). Thus, 

locally stable ecosystems tended to have all locally unstable boundary equilibria. Since 

permanent ecosystems must have repelling boundary equilibria, local stability increased 

the probability that an ecosystem was also permanent. 

 

 

Discussion  

In this chapter we use permanence and local stability analysis as tools to examine three 

aspects of the ecosystem stability - complexity debate. The first explored permanence-

complexity relationships in more ecologically plausible and generally structured 

ecosystems than previously. We showed that relaxing assumptions made by Chen and 

Cohen (2001) had no qualitative effect on permanence-species richness or permanence-

connectance relationships, that increasing mean absolute interaction strength had a positive 

effect on permanence and that skew towards weak interactions may increase the 

probability that an ecosystem is permanent. The second considered how much predictions 

differed between local stability and permanence, what caused those differences and how 

they varied with complexity. We found that local stability and permanence were correlated 

and that discrepancy was attributable to both fragile (locally stable but not permanent) 

ecosystems and those which were permanent with non-equilibrium dynamics (permanent 

but locally unstable). The probability of finding these ecosystems changed with 

complexity, and did not show the same patterns. The third focused on the boundary of the 

state-space. We found that non-permanence was caused by both equilibrium and non-

equilibrium attractors on the boundary, and that change in the probability of a locally stable 

boundary could not simply be attributed to change in boundary complexity. In fact, locally 

stable ecosystems tended to have all locally unstable boundary equilibria, meaning that 

local stability increased the probability of permanence. Below we discuss the implications 

of these findings and draw conclusions about their generality for theoretical ecology. 

Permanence is an ecosystem property that confers global stability by requiring only 

that the densities of rare species must increase (Law and Blackford, 1992). The first 

systematic study of the permanence of ecosystems in relation to changes in ecosystem 

complexity was by Chen & Cohen (2001). They increased the complexity of ecosystems as 

measured by the species richness and connectance and found that the probability of 

permanence declined. We have shown that this pattern is robust to the inclusion of obligate 

autotrophs and variation in the equilibrium species abundances. It seems that larger, more 
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connected ecosystems are generally less likely to be permanent than smaller, sparsely 

connected ecosystems. 

A third long-standing measure of ecosystem complexity, the mean strength of 

interactions (abbreviated to MAIIS) between species (May, 1972b), had a positive effect on 

the probability of permanence. The probability of local stability behaved similarly, a result 

which is consistent with recently reported positive relationships across some mean values 

for LV competitive communities where the variance in interaction strengths were held 

constant (Jansen and Kokkoris, 2003), as was done here. This result is intriguing because it 

is contrary to analytical arguments based on the distribution of eigenvalues in the complex 

plane (Haydon, 1994, May, 1972b). One argument applies elements of Geršgorin disc 

theory (Geršgorin, 1931). Geršgorin discs are defined by the Jacobian matrix and exist in 

the complex (imaginary-real) plane where, in turn, they define the region in which the 

eigenvalues of the Jacobian must lie. If this region overlaps with the positive half of the 

complex plane then there is a greater than zero probability that the real part of the 

dominant (most positive) eigenvalue is positive and the system is locally unstable. The 

radius of the discs is determined by the sum of the absolute values of the interspecific 

interaction strengths. Therefore increasing MAIIS increases disc size and overlap with the 

positive half of complex plane, thus decreasing the probability of stability. (For a fuller 

introduction to the Geršgorin disc theory and proofs refer to Varga (2004) and for 

ecological application see Haydon (1994, 2000) and Chapter 2.) It appears that this 

analytical argument is challenged by our numerical results for increasing MAIIS. When a 

similar argument was applied to a different measure of ecosystem stability (relative local 

stability), numerical results have shown both predicted (Haydon, 1994) and unpredicted 

behaviour (Chapter 2). The unpredicted behaviour was attributed to the violation of a 

central assumption, that the variance of real parts of eigenvalues increases with Geršgorin 

disc radius, as a result of skew symmetry in the Jacobian matrix. It seems that this key 

assumption has also been violated here, but in this case by increasing the mean of 

interaction strengths whilst keeping the variance constant. Further investigation is required 

to link this particular Jacobian construction to restricted eigenvalue variance. 

The patterning of relative interaction strengths has previously been shown to have 

profound effects on dynamical properties of ecosystems. For example, randomly permuting 

interaction strengths of modelled real webs has detrimental effects on local stability 

(Neutel et al., 2002, Emmerson and Raffaelli, 2004, Yodzis, 1981, De Ruiter et al., 1995). 

Further, theoretical studies suggest weak interactions can be stabilising if there are 

particular configurations of strong and weak interactions (Emmerson and Yearsley, 2004, 

Haydon, 2000, McCann et al., 1998, Neutel et al., 2002). We found that increasing the 
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skew towards weak interactions initially decreased but then increased the probability of 

local stability and permanence, and this inversion point was dependent on the mean 

interaction strength. Our results agree with the analysis of LV competitive communities by 

Jansen & Kokkoris (2003) who also observed a u-shaped curve for the probability of local 

stability. As for Jansen & Kokkoris (2003), no patterning in the magnitudes of the 

interaction strengths was specified, suggesting that skew towards weak interactions can be 

stabilising (both locally and globally) in more generally structured ecosystems. 

Returning to the question posed by Anderson et al. (1992): ‘how much confidence 

should we have in a theoretical ecology based on asymptotic stability analysis?’, we have 

found numerical results that provide good evidence that suggest ecologists should be 

confident in qualitative findings from local stability analysis of LV ecosystems. Our 

numerical results show the probability of local stability and permanence are strongly 

correlated. The quantitative correspondence was good at some parameterisations (e.g. few 

species, low connectance, low VAIIS), whilst at others it was poor (e.g. mid VAIIS). More 

importantly they showed the same qualitative changes with ecosystem complexity. The 

reason for the numerically-based correlation is as follows: if an ecosystem is locally stable 

then there is a high probability it has unstable boundaries (94% for the ecosystems studied 

here) and, since stable boundaries are detrimental to permanence, a locally stable 

ecosystem is a strong candidate for permanence.  

However, local stability analysis did consistently classify some permanent 

ecosystems as unstable, and some locally stable ecosystems were not permanent. We 

examined further those ecosystems which possessed one form of stability but not both. 

Those that were locally stable but not permanent were characterised as fragile ecosystems. 

The probability of fragility was influenced by ecosystem species richness, connectance and 

variance of interaction strengths (Fig 3.4). In large LV ecosystems local stability may be 

less likely to imply permanence than in the smaller model ecosystems studied here because 

the probability of fragility increased linearly with species richness. Those ecosystems that 

were globally but not locally stable must have had non-equilibrium attractors e.g. limit 

cycles or chaotic attractors. Their probability was influenced by ecosystem species 

richness, connectance and variance of interaction strengths (Fig 3.4). Extrapolation of the 

results shown here for relatively small ecosystems ( ≤ 12 species) suggests that permanence 

implies local stability in large LV ecosystems.  

As ecosystem complexity changes it may be expected that the complexity and 

number of boundary equilibria would be affected. If these changes result in an increase in 

the probability of at least one boundary being locally stable then this would be detrimental 

to permanence. If the changes in the complexity of boundary equilibria follow changes in 
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ecosystem complexity then they would show similar local stability - complexity 

relationships. This line of reasoning predicts that permanence-complexity relationships 

should be opposite to local stability - complexity trends. We found that the converse is the 

case, that changes in local stability and permanence were correlated and the probability of 

a locally stable interior and probability of at least one locally stable boundary had opposite 

relationships with ecosystem complexity. We have explained this finding because locally 

stable equilibria have a high probability of having all locally unstable boundaries, but we 

have not explored how the complexity of boundary equilibria changed with complexity of 

the interior equilibrium. Further, it may also be expected that an increase in the number of 

boundaries would increase the probability of at least one boundary being locally stable and 

be detrimental to permanence. Although we did not explicitly study this, we observed that 

increasing the dimensionality (n) of ecosystems increased the number of boundary 

equilibria (since the number of boundary equilibria is
n

k

 
 
 

∑  for k = 1,…,n) yet the effect 

on stability was comparable to increasing the connectance where n was not changed. Our 

results suggest that there is little evidence for a strong effect of the number of boundaries 

on the probability of stability.  

Permanence is a more satisfactory definition of ecosystem stability than local 

stability because it is a global criterion and is more empirically tractable than local stability 

(Anderson et al., 1992, Berlow et al., 2004). The adoption of permanence as a measure of 

ecosystem stability by both empiricists and theoreticians would facilitate the translation of 

data into model coefficients (Berlow et al., 2004) and aid alignment on the stability - 

complexity debate. However, the application of permanence in ecology is currently 

restricted to LV equations and only as a sufficient criterion when communities contain 

more than three species (Law and Blackford, 1992). Furthermore, all species modelled in 

LV equations are assumed to have a linear (type I) functional response. This special 

stipulation means LV communities have a unique equilibrium point. The introduction of 

plausible non-linearities may result in multiple interior equilibria and it is unclear how 

robust our findings would be to this form of increased generality. Nonetheless the LV 

framework underpins much community dynamical theory and this chapter has generalised 

results on permanence in LV ecosystems with increased ecological reality than previously 

and reports positive permanence-interaction strength relationships without citing special 

ecosystem architecture. Our key finding is numerical evidence that ecologists should be 

confident in qualitative findings from local stability analysis of LV ecosystems. 
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Figure 3.1. The probability of permanence with increasing complexity: (a) species 

richness n, (b) connectance C and (c) mean absolute interspecific interaction strength, 

MAIIS. In (c) C was fixed at 0.9 because when C=0.4 the probability of permanence 

across MAIIS values was ~1. Each point was based on at least 1000 ecosystems and where 

not varied or specified n=6, C=0.4, MAIIS=0.5 and variance in absolute interspecific 

interaction strengths (VAIIS) was 0.08. All Jacobians were not diagonally dominant. 

Circles represent Jacobians structured as in Chen & Cohen (2001) with equal equilibrium 

abundances (here *
iN = 0.5) and no criteria on feasibility of intrinsic growth rates (b 

vector). Stars represent Jacobians with criteria on the feasibility of b included (the number 

of autotrophs was calculated as round(n/4)). Dashed lines represent Jacobians with a 

feasible b and randomly generated equilibrium abundances (*
iN ). Solid lines with no 

marker represent Jacobians with criteria on b, randomly generated equilibrium abundances 

( *
iN ) and directly assigned Jacobian off-diagonal elements (gij where i j≠ ).  

(a) (b) (c)  
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Figure 3.2. The probability that ecosystems were permanent as skew towards weak 

interactions was increased. (a) Probability densities of gamma distributions used to 

generate skew towards weak interaction strengths. Parameters of the gamma distribution 

were varied to generate a range of distributions with variances in interspecific interaction 

strengths (VAIIS) from 0.01 to 30 with a constant mean (MAIIS) of 0.5. (b) Probability of 

permanence in ecosystems with interspecific interactions assigned using the increasingly 

skewed distributions, where C=0.9 and n=6. We tested the generality of the u-shaped 

pattern for ranges of (c) species richness (n=4 dashed line, n=8 dotted line) (d) connectance 

(C=0.5 dashed line, C=1 dotted line) and (e) MAIIS (0.25 dashed line, 2 dotted line). (f) 

The relationship between MAIIS and the value of VAIIS (not logged) at which the 

inversion from a negative to positive permanence-VAIIS relationship occurred (trough in 

u-shaped curve). Each point in (b-f) was based on at least 1000 ecosystems, and where not 

varied or specified n=6, C=0.4 and MAIIS=0.5. No Jacobians were diagonally dominant. 

(d) (e) (f) 

(a) (b) (c) 
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Figure 3.3. The probability that ecosystems were permanent, had a locally stable interior 

equilibrium point or were both permanent and locally stable, with increasing complexity. 

(a) species richness n, (b) connectance C, (c) mean absolute interspecific interaction 

strength (MAIIS) and (d) variance of absolute interspecific interaction strengths (VAIIS). 

Parameters as for Figs 3.1 and 3.2b. Each point was based on 10000 model ecosystems. 

(a) (b) (c) (d) 
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Figure 3.4. The probability an ecosystem was permanent but locally unstable and the 

probability an ecosystem was locally stable but not permanent with increasing complexity. 

(a) Species richness n, (b) connectance C, (c) mean absolute interspecific interaction 

strength (MAIIS) and (d) variance of absolute interspecific interaction strengths (VAIIS). 

Parameters as for Figs 3.1 and 3.2b. Each point was based on 10000 model ecosystems. 

Note scale on y-axis is different from other figures.

(a) (b) (c) (d) 
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Figure 3.5. Attractors on the boundary that cause non-permanence. The probability of 

non-permanence is one minus the probability of permanence (solid line). The area above 

the line was shaded to indicate the likelihood that non-permanence was caused by one or 

more locally stable boundary equilibria (light gray area) or one or more non-equilibrium 

attractors on the boundary (dark gray area), as complexity was increased (a) species 

richness n, (b) connectance C, (c) mean absolute interspecific interaction strength (MAIIS) 

and (d) variance of absolute interspecific interaction strengths (VAIIS). Parameters as for 

Figs 3.1 and 3.2b. Each point was based on 10000 model ecosystems. 

(a) (b) (c) (d) 
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Appendix: Elements of the Jacobian matrix for interior and boundary 

equilibria of the Lokta-Volterra equations 

 

The Lotka-Volterra equations (Eqn 3.1): 

 

1

( )
n

i
i i ij j

j

dN
N b a N

dt =

= +∑  

 

The off-diagonal elements of the Jacobian are the partial derivatives of the RHS of 

Eqn 3.1 with respect to Nj where j i≠ : 
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This expression is the same for interior ( *
i iN N= ) or boundary equilibria ( i iN M= ), 

except Mi = 0 for boundaries where Mi is absent and thus gij  = 0  i j∀ ≠ .  

The diagonal elements of the Jacobian are the partial derivatives of the RHS of Eqn 

3.1 with respect to Ni  where now j i= : 

 

1

1

1

( )
( ( ))

( ) ( )

2

idN n
dt

ii i i ij j
ji i

n

i ij j i ii
j

n

i ij j ii i
j
j i

g N b a N
N N

b a N N a

b a N a N

=

=

=
≠

∂ ∂= = +
∂ ∂

= + +

= + +

∑

∑

∑

 

 

At the interior equilibrium (N*),  

 

*

1

( ) 0
n

i ij j
j

b a N
=

+ =∑  

*
ii ii ig a N=  

 



Local stability and permanence  Chapter 3, 55 

 

If we have a boundary equilibrium (M ) then 
1

( )
n

i ij j
j

b a M
=

+∑  will not necessarily 

be zero. If iM = 0 then, 

 

1

n

ii i ij j
j
j i

g b a M
=
≠

= +∑ . 

 

 



56 

Chapter 4. Can parasites drive population cycles in mountain hares? 

 

Abstract 

Understanding the drivers of population fluctuations is a central goal of ecology. Although 

well-established theory suggests parasites can drive cyclic population fluctuations in their 

hosts, field evidence is lacking. Theory predicts that a parasite that loosely aggregates in 

the host population and has stronger impact on host fecundity than survival should induce 

cycling. The helminth Trichostrongylus retortaeformis in the UK’s only native lagomorph, 

the mountain hare, has exactly these properties, and the hares exhibit strong population 

fluctuations. Here we use a host-parasite model parameterised using available empirical 

data to test this superficial concordance between theory and observation. In fact, through 

an innovative combination of sensitivity and stability analyses, we show that hare 

population cycles do not seem to be driven by the parasite. Potential limitations in our 

parameterisation and model formulation, together with possible secondary roles for 

parasites in determining hare demography are discussed. Improving our knowledge of 

leveret biology and the quantification of harvesting emerge as future research priorities. 

With the growing concern over the current management of mountain hares for disease 

control in Scotland, understanding their population drivers is an important pre-requisite for 

the effective management of this species. 
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Introduction 

Understanding what drives population cycles is a central goal of ecology, yet despite more 

than 75 years of debate there is no clear consensus on their causation (Turchin, 2003). 

There is however a growing view that trophic interactions play an important role 

(Berryman, 2002). Whilst predator-prey and herbivore-plant systems have been well 

studied, the role of parasites has received less attention. Despite a strong theoretical basis 

that parasites can drive host cyclic dynamics (Anderson and May, 1978), empirical support 

is limited. While parasite mediated effects are thought to contribute to unstable dynamics 

in Soay sheep Ovis aries (Gulland, 1992) and Svalbard reindeer Rangifer tarandus (Albon 

et al., 2002), empirical evidence that parasites can drive cyclic dynamics in their wild host 

is currently limited to the red grouse - Trichostrongylus tenuis system (Hudson et al., 1998, 

but see Lambin et al., 1999).  

The mountain hare is the only lagomorph species native to the UK with Scotland 

containing 99% of the UK population (McGradySteed et al., 1997). Mountain hares are 

believed to be under threat from habitat loss and fragmentation, local over-exploitation, 

hybridization and competition with the introduced brown hare and a growing concern over 

large-scale culls of mountain hares to control ticks and louping ill (Battersby, 2005, 

Kinrade et al., 2008, Macdonald et al., 1998, McGradySteed et al., 1997). Mountain hares 

are listed in Annex V of the EC Habitats Directive (1992) requiring the UK to ensure their 

conservation status and sustainable management. In response to growing concerns over the 

long term conservation status and current management of the species, in 2007 the mountain 

hare was made a UK Biodiversity Action Plan (BAP) species. The factors causing 

fluctuations and long term changes in the numbers and distribution of mountain hares 

remain unknown and complicate attempts to inform management through analysis of 

patterns in abundance. A greater understanding of the species population dynamics is 

essential for their sound management. 

Scottish populations of mountain hares on grouse moorland are characterized by 

large amplitude fluctuations of variable regularity with a mean periodicity of 9.2 years 

(Newey et al., 2007b). The reasons for cyclic dynamics remain unclear (Newey et al., 

2007a). Mountain hares are non-territorial and social interactions are not thought to be 

important (Flux, 1970, Hewson, 1976), and there is no evidence of food limitation (Keith, 

1983). Mammalian and avian predators are controlled on moorland managed for red grouse 

in Scotland and therefore, unlike the situation in Scandinavia, predators are not thought to 

be important in driving mountain hare populations (Newey et al., 2007a). Hares are, 

however, susceptible to parasite infections, in particular the helminth Trichostrongylus 

retortaeformis and recent field studies have demonstrated that T. retortaeformis is loosely 
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aggregated in the mountain hare population (Newey et al., 2005) and that parasite mediated 

effects on survival are small compared to parasite induced reductions in host fecundity 

(Newey and Thirgood, 2004, Newey et al., 2004). These features of the mountain hare - T. 

retortaeformis system are consistent with characteristics that analytical host-parasite 

models suggest can lead to instability and population cycles (May and Anderson, 1978). 

Major advances in understanding causes of population dynamics have come from 

synthesising modelling and empirical work (Kendall et al., 1999, Turchin, 2003). Here we 

combine empirical field experiments, time-series analysis, and modelling to assess whether 

parasites can drive mountain hare population cycles. A range of observed dynamical 

patterns have been quantified from time series analysis, cross-sectional studies, and field 

experiments to generate a list of characteristic properties with which to compare with 

modelled population dynamics. Hare population densities fluctuate from 20-200 hares km-2 

(Hewson, 1976, Watson et al., 1973), with a range of periods between four and 15 years 

(Newey et al., 2007b). T. retortaeformis burdens average approximately 2000 worms per 

individual (Newey et al., 2005). Our approach was to contrast these listed properties with 

equivalent characteristics in modelled mountain hare populations in order to: (a) test 

whether our current empirical understanding supports parasite driven hare dynamics; (b) in 

the case that it does not, identify plausible parameter changes which would lead to 

population dynamics with the observed properties; (c) determine whether small changes in 

parameters can account for the wide diversity of observed dynamics across Scottish 

populations; and (d) improve our understanding of the system and prioritise future 

empirical research activities. 

 

 

Methods 

We used a variant of the classic Anderson & May macroparasite model (Anderson and 

May, 1978, May and Anderson, 1978) introduced by Diekmann & Kretschmar (1991) 

which describes continuous growth equations for a host population of density, H which 

interacts with a parasite population, P: 

 

k

kH+δP

kH
aH+bHαP=

dt

dH







−−         Eqn 4.1 
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      Eqn 4.2 
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Parameters are defined in Table 4.1. The structure of the model encapsulates important 

elements of the system that include: (a) the negative binomial distribution of parasites 

among hosts (Newey et al., 2005) described by the mean parasite load P/H and aggregation 

parameter k, (b) a transmission rate dependent on host density, and (c) host fecundity 

modelled through the use of a multiplicative term to avoid biologically meaningless 

negative host birth rates (Diekmann and Kretzschmar, 1991). 

Point estimates and plausibility envelopes for parameterising Eqns 4.1 and 4.2 are 

given in Table 4.1. The data sources and methods of estimation are described in Appendix 

4.1. Rather than strict confidence envelopes, plausible ranges of parameters were most 

practically based on the best available empirical information. 

The dynamical properties of the parameterised model were derived using standard 

analytical techniques and numerical simulations (refer to the Appendix 4.2 for further 

details). Elasticity analyses were performed to compare the proportional effects of 

changing each parameter in Table 4.1 on dynamical properties of the model populations. 

 

 

Results 

MODEL PARAMETERISATION WITHIN EMPIRICALLY DEFINED PLAUSIBILITY ENVELOPE 

Parameterising the model with the point estimates presented in Table 4.1 resulted in rapidly 

damped oscillations to a stable equilibrium point where parasite burdens were far greater 

than those found in mountain hare populations (Fig 4.1a, c). Elasticity analysis identified 

that: an increase in hare intrinsic mortality (b) or parasite-reduced hare fecundity (δ) or a 

decrease in hare intrinsic fecundity (a) would bring about a simultaneous reduction in both 

stability and parasite burdens. Increasing parasite-induced hare mortality (α) reduced 

parasite loads but was stabilizing while the parasite parameters (fecundity (λ), adult 

mortality (µ) and transmission inefficiency (H0)) had little effect on equilibrium parasite 

load or stability. A new modified parameter set was identified by increasing the values of 

hare intrinsic mortality (b) and parasite-reduced hare fecundity (δ) and decreasing hare 

intrinsic fecundity (a) to empirically plausible limits (Table 4.1). The simulated population 

dynamics maintained a weakly stable equilibrium hare density characterized by weakly 

damped oscillations with a period within the observed range (Fig 4.1b, d). However, these 

changes could not bring parasite loads down sufficiently to be consistent with those found 

in mountain hares.  
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PARAMETER CHANGES WHICH GENERATE DYNAMICS WITH THE OBSERVED PROPERTIES  

We reverse engineered changes to the modified parameter set that would reduce parasite 

loads whilst maintaining all other dynamical properties in the vicinity of those observed. 

Using elasticity analysis the key parameters in determining equilibrium parasite load were 

identified as hare intrinsic fecundity (a), parasite-reduced hare fecundity (δ), hare intrinsic 

mortality (b) and parasite-induced hare mortality (α) with some interactions also being 

important. Fig 4.2 shows the four parameters plotted pairwise revealing that to generate 

stable limit cycles with the observed properties requires either one of two possible 

parameter set modifications, both of which require increasing a parameter outside its 

plausibility envelope set by empirical data. To generate observed dynamics the effect of the 

parasite on hare fecundity (δ) can be increased by approximately ten fold. Alternatively 

hare intrinsic mortality (b) can be increased by about 0.8 adult hares per year (reducing 

mean hare life span by about 0.8 years) combined with a small increase in parasite-induced 

mortality (α) within the plausible envelope. 

As we will discuss, we believe parasite-reduced fecundity (δ) and hare intrinsic 

mortality (b) may have been empirically underestimated. Increasing parasite-reduced 

fecundity (δ) from 0.0001 to 0.001 hare parasite-1 resulted in a qualitative change from a 

stable point to a stable limit cycle with a 15 year period (Fig 4.3a, d). Increasing hare 

intrinsic mortality (b) from 0.61 to 1.40 year-1 (annual survival of 0.25 - 0.54) resulted in a 

stable limit cycle with a period of 18 years. Subsequently increasing parasite-induced 

mortality (α) to 0.000014 reduced the period of the limit cycle to 15 years (Fig 4.3b, e). 

Increasing parasite-induced mortality (α) alone generated rapidly damped oscillations with 

a small period. It was not possible to obtain the observed population dynamics by changing 

hare intrinsic fecundity (a) alone. 

For both sets of dynamics shown in Fig 4.3(a, d) and Fig 4.3(b, e) the peak parasite 

loads were unrealistically high (105) which, if we assume that the parasite load at the peak 

of the cycle corresponds to maximum parasite loads counted in the field, should be around 

16,000 worms per hare. Parasite loads of a more realistic amplitude were obtained by 

increasing parasite-induced mortality (α) above 0.00004 (Fig 4.4a), which lies well within 

the plausibility envelope. Additionally, the simulated hare populations shown in Fig 4.3(a, 

d) and 4.3(b, e) spend most years at numbers much below the lower observed limit for hare 

density. Changes in parasite fecundity (λ) and transmission inefficiency (H0) affected the 

amplitude of hare oscillations but not of parasite burdens (Fig 4.4b and c). Thus, a set of 

parameters was identified that produced realistic dynamics in both hare and parasite 

populations (Fig 4.3c, f). 
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CAN SMALL CHANGES IN PARAMETERS ACCOUNT FOR VARIABILITY IN DYNAMICAL PROPERTIES? 

Scottish populations of mountain hares exhibit a wide diversity of observed dynamics. We 

used the model to look for parameters that may vary across Scotland and affect period of 

cycles and amplitude of limit cycles within plausibly small changes in their value. Fig 4.5 

shows the sensitivity analysis of stability and period to small changes in individually 

varied parameters around the system which generated realistic dynamics (Fig 4.3c, f). 

Stable limit cycles occurred where the system crossed the boundary from stable to 

unstable, and amplitude increased with increasing instability. Variation in hare intrinsic 

fecundity (a), parasite-reduced hare fecundity (δ), parasite-induced hare mortality (α) and 

adult parasite mortality (µ) could account for the range of periods observed in natural 

populations. Variation in all parameters in Fig 4.5 except adult parasite mortality (µ) could 

account for variability in stability and amplitude that occur across the species range in 

Scotland. Finally, although the parasite transmission parameters (λ and H0) were not found 

to influence stability or period, the amplitude of the hare density limit cycle was sensitive 

to small changes in their value (Fig 4.4). 

 

 

Discussion 

This model of the mountain hare - T. retortaeformis interaction cannot predict observed 

population dynamics of mountain hares with realistic parasite burdens within the broad-

range of parameter space we judge to be plausible. We now discuss three possible 

interpretations of this observation. 1) Parasites are the main drivers of hare cycles, but the 

model, while including the key elements of the interaction, represents them insufficiently 

realistically. 2) Parasites are the main drivers of hare cycles and the model has altogether 

omitted important ways in which the parasites influence hare demography. 3) Parasites are 

indeed not the main drivers of hare cycles.  

 

ARE KEY ELEMENTS OF THE INTERACTION REPRESENTED SUFFICIENTLY REALISTICALLY? 

To represent the hare-parasite system sufficiently realistically requires both adequate 

model parameterisation and formulation. As several of our plausible parameter ranges were 

based on small sample sizes or indirect data sources, it is possible that our estimated 

parameter ranges are wrong. The key difficulty is to find a model where the dynamics are 

unstable and parasite loads realistic. Parasite burdens were particularly sensitive to the 

level of parasite-induced hare mortality (α), and our estimate was based on a single study 

(Newey and Thirgood, 2004). However, the study found almost no difference in survival 

between parasite-reduced and untreated hares (Newey and Thirgood, 2004) and increasing 
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parasite-induced mortality (α) while lowering parasite burdens towards more realistic 

levels, has a strong stabilising influence on the resulting dynamics.  

Parasite burdens were also sensitive to hare fecundity (a), parasite-reduced hare 

fecundity (δ) and hare mortality (b). Here, fecundity was used as the measure of 

recruitment and leveret pre and post-natal mortalities were not included because the effect 

on parasites at these stages is unknown (but see next section). Mountain hares are killed for 

sport, pest and disease control but this mortality is not included in the current analysis. The 

relationship between density and harvesting has not yet been studied in mountain hares 

(Newey et al., 2007a). Game harvesting bags are a good proxy for population abundance in 

red grouse (Cattadori et al., 2003) but there is likely to be more inconsistency across years 

in mountain hares. If, as suspected, the relationship between mountain hare density and 

harvesting is not density dependent, then the current model formulation holds and hare 

mortality rate (b) should be increased. Decreasing hare recruitment, strengthening parasite 

suppression of hare recruitment or higher hare mortality is destabilising and reduces 

parasite burdens, but to attain realistic dynamics a large parasite-induced mortality rate (α) 

is still required. 

If our estimate of parasite-induced hare mortality (α) is reasonable then it seems 

unlikely that a key element of the parameterisation has been omitted, and now we query 

the formulation of our model. Hare recruitment and parasite development were represented 

as purely continuous processes. Time delays and seasonality are well-known to be 

destabilising to the population dynamics of infectious diseases (Altizer et al., 2006, 

Greenman et al., 2004), and both occur in mountain hares and the parasite T. 

retortaeformis. Mountain hares do not mature in their year of birth but in the following 

year, and the breeding season is restricted to about nine months of the year (Flux, 1970). T. 

retortaeformis is a direct life-cycle parasite; eggs voided in the host’s faeces develop to an 

infective stage outside the host over a period of time which depends on climatic conditions 

(Crofton, 1948). Although it is well established that the developmental time lag has a 

destabilising influence on model host dynamics (May and Anderson, 1978) the current 

model does not incorporate a time delay in parasite recruitment. In favourable conditions 

development time is short and the assumption of negligible time delay in relation to 

changes in hare densities is reasonable. However development may last several months 

over winter. We have explored discrete-time formulations of our model which 

incorporated: a step function that restricted hare reproduction (at an accordingly increased 

rate) to a nine month breeding season; a delay in the maturation of leverets until the start of 

their first breeding season; and a simple delay (that ranged between one and 12 weeks) in 

parasite maturation that was constant across the year. With these alternative formulations 
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damping times increase but we still don’t recover sustained limit cycles within the 

plausible parameter ranges. However, we don’t have to go as far outside these ranges as we 

do with the purely continuous time formulation.   

 

ARE IMPORTANT WAYS IN WHICH THE PARASITES INFLUENCE HARE DEMOGRAPHY OMITTED? 

The red grouse - T. tenuis system in Scotland has similar characteristic features as the 

mountain hare - T. retortaeformis system, such as low predation, greater parasite reduced 

fecundity than survival, and range of parasite burdens. Yet in applying a similar approach 

as here, Dobson & Hudson (1992b) were able to reproduce grouse cycles. A striking 

difference is that parasite effect sizes (α, δ) were estimated at around 30 times greater for 

grouse than those estimated here. As parasite effect on fecundity (δ) was calculated from 

seven week old brood sizes, we now discuss the possibility that parasites may affect 

aspects of hare recruitment other than the number of ova shed in females. 

Parasites may have a larger impact on recruitment through influences on leveret 

survival, growth rate, or timing of breeding. The timing of breeding is important for 

reproductive success in mammals (e.g. Clutton-Brock et al., 1982) and is influenced by 

parasite infection in a range of species (Allander and Bennett, 1995, Feore et al., 1997, 

Mulvey et al., 1994). Time of first breeding in mountain hares is influenced by 

temperature, female age, size and weight with older, larger and heavier females attempting 

to breed earlier than those younger and smaller (Flux, 1970). Young born earlier in the year 

have a longer growing season, enter the winter heavier and larger than late born young and 

have higher over-winter survival and greater future fecundity (Iason, 1989a, Iason, 1990). 

Thus females may seek to breed earlier to produce more, higher quality young and we 

suggest future studies could profitably investigate a maternal effect of parasite load on the 

timing of breeding, survival and growth of leverets.  

Maternal effects may destabilise population dynamics and promote cycles 

(Beckerman et al., 2002). To model this would require a new hare-parasite model 

formulation that could encapsulate: a maternal body size effect on the birthdate of young; a 

maternal parasite load effect on the birthdate of young; adult body sizes determined by 

birthdate; and adult hare mortality related to body size. This additional parasite-mediated 

effect may reduce the extent to which parameters need to deviate from our point estimates 

to generate realistic dynamics. However, they require a move from simple ordinary 

differential equation formulations of host-parasite dynamics to a partial differential 

equation model or individual based approach, which is beyond the scope of the current 

chapter.  
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Other forms of environmental variation that would lead to sufficiently large stochastic 

variation in the parameters of the host-parasite model at realistic frequencies could result in 

the generation of sustained limit cycles of a realistic magnitude from the damped 

oscillations predicted by the deterministic model. However, there is as yet no empirical 

data to inform the magnitude, covariation, or frequencies of these stochastic processes. 

 

A SECONDARY ROLE FOR PARASITES? 

If parasites are not the main driver of mountain hare cycles, could they still have a role in 

hare population dynamics? Parasitic nematodes of Soay sheep increase the depth of 

population crashes initiated by winter food shortage (Gulland et al., 1993). Similarly, 

reduction of parasitic nematodes from a red grouse population (Hudson et al., 1998) 

arguably does not remove a tendency to cycle (Lambin et al., 1999, Tompkins and Begon, 

1999) but parasites might deepen the extent of grouse crashes rather than determine their 

frequency. This notion is supported by our analyses, which showed that hare cycle 

amplitude was very sensitive to parasite transmission parameters whereas period was 

relatively insensitive.  

 

CONCLUSION 

Despite the observation of large parasite burdens in mountain hares, and the perceived 

absence of predation and food-limitation, we have found limited support for parasite-

driven hare cycles. The results of our sensitivity analysis suggest that lower recruitment 

rates, stronger parasite suppression of recruitment or raised adult hare mortality than 

currently realised, would allow a closer fit between model predictions and observed 

dynamics. Therefore we identify leveret biology and the quantification of harvesting of 

hares for sport, pest and disease control as research priorities. If parasites do drive hare 

cycles, the model presented here suggests that our understanding of the full effects of 

parasites on hare demography is importantly incomplete.  
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Table 4.1. Parameter estimates and plausible limits from field experiments and related 

host-parasite systems with which to parameterize the hare - Trichostrongylus 

retortaeformis model. Values in bold generate dynamics closest to those observed 

(modified parameter set). 

 

Symbol Parameter Unit 
Lower 
plausible limit  

Point estimate  
Upper 
plausible limit 

Data source 

a 
Intrinsic fecundity of adult 
hares (in absence of 
parasites) 

year-1 1.8 2.3 2.8 Newey et al. (2004) 

δ 
Parasite-induced reduction in 
hare fecundity 

hare 
parasite-1 0 0.000016 0.0001 Newey & Thirgood 

(2004) 

b 
Intrinsic mortality of adult 
hares (in absence of 
parasites) 

year-1 0.08 0.35 0.61 Newey & Thirgood 
(2004) 

α 
Parasite-induced hare 
mortality 

year-1 0 0.000008 0.0001 Newey & Thirgood 
(2004) 

λ Parasite fecundity year-1 80 1000 2800 
Hobbs unpublished, 
Flux (1970), see 
Appendix 4.1 

H0 
Transmission inefficiency 
constant hare 13500 38200 66800 

Newey et al. (2005), 
Newey & Thirgood 
(2004), Newey et al. 
(2004) 

µ Adult parasite mortality year-1 0 
0 (0.1 for elasticity 
analysis) 1.2 

Dobson & Hudson 
(1992), based on T. 
tenuis. 

k 
Negative binomial 
parameter/ degree of 
overdispersion 

 0.5 
0.57 (0.5 in 
model, see 
Appendix 4.2) 

2 Newey et al. (2005) 
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Figure 4.1. Simulated population dynamics based on the empirical information available 

on the hare-parasite interaction (Table 4.1). The model was parameterized in (a, c) using 

our point estimates and in (b, d) with the modified parameter set chosen to be the best 

fitting combination within the identified plausibility envelope. The time series are shown 

in the top row (a, b) where the solid line represents the hare population size (hares per km2) 

and the dashed line is parasite load per hare. The dynamics in state space are shown in the 

bottom row (c, d). 

(b) (a) 

(d) (c) 
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Figure 4.2. Parameter changes required to obtain dynamical properties observed in wild 

hare populations are given by the distance between the star and the polygon. The star is the 

position of the modified parameter set, the closest we get to observed dynamics within the 

empirically determined plausibility envelope, whilst the polygon represents the observed 

range of dynamics specified by the observed equilibrium hare densities (20-200 km-2), 

equilibrium parasite load (1000-3000), and period of four to 15 years (period contours 

indicated). Stability contours are shown (dashed lines: value of real part of dominant 

eigenvalue -0.1 (stable), 0, and 0.1 (unstable)) with stable limit cycles occurring at low 

positive values. Other parameters were held constant at the modified values.  

(a) (b) 

(c) 

(d) (e) 

(f) 

(c) 

(a) (b) 

(f) 

(d) 

(e) 
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Figure 4.3. Simulated population dynamics after parameter changes to get closer to the 

observed dynamical properties. (a, d) Parasite-reduced hare fecundity, δ, increased from 

0.0001 to 0.001 hare parasite-1. (b, e) Hare intrinsic mortality, b, increased from 0.61 to 

1.40 year-1 and parasite-induced mortality, α, from 0.000008 to 0.000014 year-1. Both 

resulted in a stable limit cycle which passed through unrealistically high parasite and low 

hare numbers. (c, f) Realistic population dynamics generated using: a = 1.8; b = 0.61; δ = 

0.001; α = 0.00004; λ = 600. For the time series (top row), the solid line represents the hare 

population size (hares per km2) whilst the dashed line is parasite load per hare. For the 

limit cycles in state space (bottom row), the velocity within the limit cycle is indicated by 

the length of the dashes, one per year. 

(a) (b) (c) 

(d) (e) (f) 



Do parasites drive hare cycles?  Chapter 4, 69 

 

 

 

 

 

 

Figure 4.4. The effect of small, plausible changes in parameters on the amplitude of the 

limit cycles. (a) Increasing α from our point estimate of 0.000008 (largest limit cycle) to 

0.00004 (medium limit cycle) reduces the parasite load oscillation to below 16,000 worms 

per hare (straight line). The cycle shrinks further as α is increased to its upper plausible 

limit of 0.000104 (smallest limit cycle). (b) Flexibility in λ and (c) H0 controls the 

amplitude of the hare oscillation. Three limit cycles are presented in both (b) and (c) where 

the middle limit cycle was generated using point estimate values of λ or H0, either side of 

limit cycles generated by setting λ or H0 to their lower or upper plausible limit. Other 

parameters were kept constant: a = 1.8, δ = 0.001, b = 0.61, α = 0.00004, µ = 0, k = ½. 

(a) 

(b) 

(c) 
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Figure 4.5. The effect of small, plausible changes in parameters on stability and period. 

One parameter was varied at a time, while others were held at values for the system which 

generated realistic dynamics (Fig 4.3c, f): parasite-induced hare mortality (α) was varied 

from its point estimate to upper plausible limit; hare intrinsic fecundity (a), hare intrinsic 

mortality (b) and adult parasite mortality (µ) were varied from lower to upper plausible 

limits; degree of overdispersion (k) values ½, 1, 2; Parasite-reduced fecundity (δ) was 

varied from its point estimate to 0.001 hare parasite-1 and follows the opposite path to α. 

The vertical line at Reλmax = 0 marks the boundary between a stable (negative) and unstable 

(positive) equilibrium. 
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Appendix 4.1: Parameter estimation 

Where possible, field data from mountain hares in Scotland were used, otherwise data were 

drawn from closely related systems. Both males and females were included in the model 

population because both sexes are hosts to the parasite population. 

 

a, Intrinsic fecundity of hares (in absence of parasite) (year-1) 

Data from hares for which parasite burdens were measured at the end of the breeding 

season (Newey et al., 2004) were used to estimate annual fecundity. We regressed 

estimated annual fecundity against parasite burden for the female hares and extrapolated 

back to zero parasites. The estimate was halved to account for males in the population at an 

assumed ratio of 1:1. Thus a was set at 2.3 with a 95% confidence interval of 1.8 – 2.8.  

 

δ, Parasite-induced reduction in hare fecundity (hare parasite-1) 

Data from hares which were treated for parasites prior to the breeding season showed 

treated hares had significantly lower parasite loads and higher fecundity (Newey and 

Thirgood, 2004). The same data was reanalysed by directly relating parasite burden and 

fecundity to estimate the effect of an individual parasite on fecundity. The effect was 

estimated from the absolute value of the (negative) slope of the regression line between 

fecundity and parasite burden as 0.000031 hares per worm per year, although the link 

between parasite load and fecundity when analysed in this way was not statistically 

significant (F1,31 = 0.15, p = 0.703). The estimate was halved to account for males in the 

population at an assumed ratio of 1:1. The lower plausible limit was taken as zero and the 

upper 95% confidence limit was 0.0001 hares per worm per year. 

 

b, Intrinsic hare mortality (in absence of parasite) (year-1) 

Survival of adult hares was recorded over the duration of a parasite reduction experiment  

where adult female mortality (n = 13) of parasite reduced hares was 0.23 (SE 0.10) over 

eight months (Newey and Thirgood, 2004). Converting this to annual mortality results in 

an estimate of 0.35 hares per year (95% CI 0.08-0.61). Death of around one third of hares 

per year is consistent with the average life expectancy of hares of three years (Hewson, 

1976).  

 

α, Parasite-induced adult hare mortality (year-1) 

In the parasite treatment experiment carried out by Newey et al. (2004) almost no 

difference in adult hare mortality was found between the treated (0.23 with SE 0.10, n = 

13) and untreated groups (0.24 with SE 0.09, n = 11). However, there was a difference in 
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the mean parasite load between groups, so that each parasite added over the treated mean 

parasite load (1125 worms per hare) could contribute to the death of as much as 0.0001 of 

a hare per worm. The mean estimate was 0.000008 hares per worm, which translates into 

an unrealistic burden of 125000 worms required to kill a single hare. 

 

λ, Parasite birth rate (year-1) 

Parasite birth rate is specified here as the number of eggs produced per adult worm per 

year. In the absence of data on T. retortaeformis in hare hosts, we estimated this parameter 

from a combination of sources on closely related host systems.  

Parasite egg production was estimated from a small dataset kindly provided by R. 

Hobbs (unpublished) on T. retortaeformis in the wild European rabbit (Oryctolagus 

cuniculus (L.)). The slope of the regression line between the number of adult worms and 

corresponding egg production per gram of faeces estimated per worm as 0.05 eggs worm-1 

gram-1 (95% CI 0.01-0.09) and was significantly different from zero (F1,12 = 7.01, p = 

0.021). To calculate per worm daily egg production, egg numbers per faecal gram were 

multiplied by daily production of hard faeces in hares. Daily hard faecal production has 

been quantified at approximately 58g (range 25-89 Flux (1970)). Annual egg production 

was thus approximated at 1000 eggs per worm per year (empirically estimated range 80-

2800). Our measure of egg production for T. retortaeformis in hares is much lower 

compared to T. tenuis in grouse which can shed up to 40000 eggs per gram of faeces (Shaw 

et al., 1989). 

 

H0, Transmission efficiency constant (hare) 

This parameter reflects the proportion of eggs that do not go on to complete their life cycle 

and re-enter the host. During the part of the life cycle from parasite egg to adult there are 

many sources of mortality. These are hard to identify and measure. H0 removes the need to 

quantify survival at each stage by clumping them all together, and simply estimating the 

proportion which are lost and do not reach adulthood. 

The method used here provides a crude estimate of H0 and is based on Eqn 4.2. We 

assume that there is no hypobiosis (arrested development of larvae in the host) so that 

during the early stages of reinfection parasite densities are small, such that terms 2 and 3 in 

Eqn 4.2 are negligible. This gives an equation for the reinfection rate per host post-

treatment (ε): 

 

dt

dP

H
=ε

1
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λ
ε= P

H + H

 
 
 

 

 

which can be rearranged to isolate H0: 

 

0

λP εH
H =

ε

−
          Eqn 4.3 

 

The parasite reduction experiments (Newey and Thirgood, 2004, Newey et al., 2004) 

provided estimates of post-treatment reinfection rates for three different years and two 

different seasons. Hare densities for these sites were estimated using distance sampling. 

The mean parasite load for adult hares was calculated from a cross sectional study of 587 

hares across 30 central Scotland estates (Newey et al., 2005). Yearly loss of parasites was 

averaged over the sites to give a mean H0 of 38200 with empirically estimated range 13500 

to 66800. 

 

µ, Adult parasite mortality (year-1) 

Nematode gut parasites of the genus Trichostrongylus have similar life cycles (Olsen, 

1986). In the related host-parasite system of red grouse and T. tenuis, worms are thought to 

live as long as their grouse hosts (Hudson et al. 1992). In absence of data for T. 

retortaeformis in hares we assume that adult worms only die when the host dies, and set µ 

= 0.  

 

k, Negative binomial parameter, measure of parasite aggregation among hosts 

The parasite is negatively binomially distributed among hosts (Newey et al., 2005). The 

degree of aggregation is described by the parameter k of the distribution, estimated to be 

0.57 in adult hares (both male and female) with monthly estimates available for individual 

months from December to May giving a range around this mean of 0.37 to 2.26. These 

values suggest the parasite is mildly aggregated among hares when compared with a range 

of wildlife host-parasite systems (Shaw et al., 1998). The structure of the model (Eqns 4.1-

4.2) places k as an exponent in the hare growth equation. Mathematical analysis is greatly 

facilitated by assuming k might range between 0.5 and 2. 
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Appendix 4.2: Analysis 

This section describes how the dynamical properties of the parameterized model were 

derived using analytical techniques and numerical simulations.  

 

EQUILIBRIUM HARE AND PARASITE DENSITY 

Mean density is assumed to correspond to the interior equilibrium density. To solve for the 

interior equilibrium density, the derivatives in Eqns 4.1-4.2 are set to zero and a solution 

for H and P sought. However, manipulation of Eqn 4.1 was required before being able to 

achieve this. Firstly, Eqn 4.1 was divided by H: 
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where x is the parasite load at equilibrium: 

 

 
*

*

H

P
=x           Eqn 4.4 

 

Analytical solutions for the interior equilibrium point can now be obtained by substituting 

x into dH/dt = 0. This is straightforward for the special cases k = ½, 1 and 2, which 

sufficiently covers the range of empirical k values (see above). Setting k = ½ and 

rearranging dH/dt = 0 results in a cubic equation in x: 

  

2222232 )22()4()2(0 abxbbxbx −+++++= αδααδδα ,   

 

for k = 1, 

 

abxbx −+++= )()(0 2 αδαδ ,  
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while for k = 2, 

 

abxbxbx 44)44()4()(0 2232 −+++++= δαδαδαδ ,  

 

and x is recovered as the only positive, real solution. Now the equilibrium hare density can 

be isolated in terms of the constant x: 

 

0 0

1
( )

*
1

( )

k
b H  + α H x

k
H =

k
λ b α x

k

µ α

µ α

+ + +  
 

+ − + + −  
 

  

 

and from Eqn 4.4, P*=xH* . The host-parasite equilibrium point was termed feasible if hare 

and parasite population sizes were greater than zero (H*  > 0, P* > 0).  

 

STABILITY 

Linear equilibrium stability analysis was used to infer the stability of the modelled 

dynamics. In a two dimensional system, populations bounded from both extinction and 

growth to infinity must have a stable dynamical structure which, in this case, is either a 

stable equilibrium point or stable limit cycle (Diekmann and Kretzschmar, 1991). We 

rejected those regions of parameter space in which the populations either go extinct or 

grow to infinity. Stability of the interior equilibrium point was determined by constructing 

the Jacobian matrix (J) which contains the growth equations differentiated with respect to 

each of the host and parasite: 

 

J = 
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From J the eigenvalues associated with the equilibrium states can be calculated and the 

dominant (most positive) eigenvalue indicates the local stability of the equilibrium point. A 

negative dominant eigenvalue denotes a stable point and the magnitude determines the rate 

of damping to equilibrium. Growth equations that produce oscillatory dynamics will have 

complex conjugate eigenvalues. Where a pair of complex eigenvalues cross the imaginary 

axis of the complex plane we can expect to see a stable limit cycle with an increase in 

amplitude as the eigenvalues move deeper into the positive real half of the complex plane. 

Close to the bifurcation the period of the oscillations can be approximated from the natural 

frequency (e.g. James, 2001), given by the imaginary part of the dominant eigenvalue (ω): 

Period = 2 /π ω . More accurate estimation of the period of oscillatory systems far from the 

bifurcation and the amplitude of stable limit cycles were determined by numerical 

simulation. 

 

ELASTICITY ANALYSIS 

Elasticity analysis was used to compare the proportional effects of each parameter in Table 

4.1 on dynamical properties of the model populations. This permitted identification of key 

parameters in determining each property. Elasticity analysis considers only linear 

perturbations and therefore is only valid within the local vicinity of a specified point in the 

multidimensional parameter space. Thus elasticity was recalculated when the parameters 

were changed. In the analyses, parameter space was sampled between %10± of parameter 

values using a Sobol’ sequence (Sobol' (1967), C++ code by J. Burkhardt 

http://people.scs.fsu.edu/~burkardt/index.html). The Sobol’ sequence is a quasi-random 

sampling method, which permits more uniform sampling of multidimensional parameter 

space than uncorrelated random points (Press et al., 1992).  
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Chapter 5. Dissecting the drivers of population cycles: interactions 

between parasites and mountain hare demography 

 

Abstract 

There is growing awareness that the cyclic population dynamics in vertebrate species are 

driven by a complex set of interactions rather than a single causal factor. For the mountain 

hare, population cycles have been characterised throughout much of its circumpolar 

distribution but the reasons for this dynamical behaviour remain unknown. Empirical 

research in the Scottish uplands demonstrates that macroparasitism, maternal effects on the 

vital rates of offspring, and a seasonal environment, are potentially important ecological 

processes in this system, and all these processes can theoretically increase the propensity 

for cyclic dynamics. Here we incorporate these ecological details into an individual-based 

model (IBM) of a mountain hare population infected by a gut nematode, Trichostronglyus 

retortaeformis. First, we establish a model that captures mean characteristics of observed 

mountain hare time series and parasite intensities. Second, by systematically removing 

model structure we dissect out dynamical influences of maternal effects. The model allows 

delayed responses to life history by linking maternal body size and parasite infection to the 

future survival and fecundity of offspring. We found that these delayed life history effects 

(DLHEs) were weakly destabilising and allowed parameters to be closer to empirical 

estimates in order to generate observed hare population cycles. We therefore suggest 

DLHEs could be important processes in host-parasite systems. Third, by modifying model 

structure we investigated the dynamical influence of the mechanism of parasite 

transmission. We found that the mechanism had a strong influence on host population 

stability. We identify a ‘best fit’ mechanism and discuss the implications for parasite 

aggregation mechanisms, host movement and natural geographical variation in host 

population dynamics. 
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Introduction 

In order to break down complexity and understand process drivers, theoretical ecologists 

use abstractions of ecological processes. A process which has captured the attention of 

ecologists since inception of the field is cyclic population dynamics (Elton, 1924), yet 

despite the intervening 85 years of research there is still no clear consensus as to what 

processes drive cyclic dynamics (Turchin, 2003). The causes of population cycles can 

include trophic interactions, individual variability, environmental variation and the 

complex interplay between these factors and population demography (Bjornstad and 

Grenfell, 2001, Lundberg et al., 2000, Sutherland, 1996, Beckerman et al., 2002).  

Simple mathematical models show that direct effects of macroparasites can 

potentially drive population cycles (Anderson and May, 1978, May and Anderson, 1978), 

although empirical support for their role in destabilising host populations is limited to a 

few species (Svalbard reindeer: Albon et al., 2002, Soay sheep: Gulland, 1992, Gulland 

and Fox, 1992, red grouse: Hudson et al., 1998, Hudson et al., 1992). The parasitic 

nematode Trichostrongylus retortaeformis has been implicated as a driver of cyclic 

population dynamics in a small mammal found in the Scottish uplands, the mountain hare 

Lepus timidus (Newey and Thirgood, 2004). However, a simple model implies the parasite 

effect is too weak to account for sustained hare cycles and realistic parasite intensities 

(Townsend et al., 2009, Chapter 4).  

Trophic interactions are considered to play an important role in driving population 

cycles (Turchin, 2003, Berryman, 2002). The effects of trophic interactions may manifest 

themselves at the population level either directly or indirectly as a function of immediate 

and delayed responses to either density or to life history effects (Beckerman et al., 2002). 

While an immediate life history effect is a change in population demography in response to 

the current environment, a delayed life history effect (DLHE) occurs in the future, 

changing future population demography as the result of the current environment. Thus 

maternal effects, which transmit individual life-history responses between generations, can 

give rise to DLHEs (Beckerman et al., 2002). DLHEs can generate individual variability, 

or a lag in the density dependence (delayed density dependence), with significant effects 

on the stability of population dynamics (Beckerman et al., 2002, Benton et al., 2001, 

Lindstrom and Kokko, 2002).  

Observations suggest that delayed life history effects (DLHEs) may play a role in 

mountain hare population dynamics, and the seasonal environment that characterises the 

Scottish uplands is echoed in patterns of mountain hare and parasite demography. In the 

next section we give details of the empirical evidence that DLHEs and seasonality are 

important structural elements of the system.  
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ECOLOGY OF THE MOUNTAIN HARE – T. RETORTAEFORMIS SYSTEM 

In a wide variety of organisms, the life-history traits of offspring, such as growth rate, 

survival, size, age at first reproduction and offspring fecundity, depend on maternal 

condition and provisioning (Benton et al., 2001 and references therein). In mountain hares, 

the timing of breeding is important for reproductive success, as it is for many vertebrate 

species (e.g. Clutton-Brock, Guinness & Albon, 1982). Mountain hares in Scotland begin 

breeding in February (Flux, 1970; Hewson, 1976) and the timing of first breeding is 

determined by winter temperature, female age, size and weight with older, larger and 

heavier females attempting to breed earlier (Hewson, 1968; Flux, 1970). Young born 

earlier in the year have a longer growing season, enter the winter heavier and larger than 

late born young and therefore have a higher chance of over-winter survival and greater 

future fecundity when they enter the breeding population in the following year (Hewson, 

1968; Iason, 1989a, 1989b, 1990). Females may seek to breed earlier in the year to produce 

young with greater survival and reproductive potential. 

Although it has not been studied for mountain hares, parasitic infections are an 

important influence on the timing of breeding in a range of vertebrates (Allander and 

Bennett, 1995, Feore et al., 1997, Mulvey et al., 1994). While parasite reduction 

experiments suggest that female mountain hares with high parasite infections early in the 

breeding season shed fewer ova (Newey and Thirgood, 2004), this direct parasite effect has 

been shown, using a simple analytical model of the hare - T. retortaeformis system, 

unlikely to be strong enough to account for sustained hare cycles and realistic parasite 

intensities (Townsend et al., 2009, Chapter 4). However, if maternal parasite infection also 

delayed the timing of breeding, the resulting maternal effect would constitute an additional 

‘indirect’ parasite effect that may increase the overall impact of parasites on hares. Since 

the level of nematode infections are thought to be dependent on host densities because of 

an increase in transmission rates (Arneberg et al., 1998), the result would be a delayed 

density dependent effect of the parasite on the host, with a tendency to destabilise 

population dynamics (Turchin, 2003). In this chapter we explicitly include maternal effects 

by making the timing of first breeding in a model mountain hare population dependent on 

female body size and level of parasite infection, and the timing of breeding a determinant 

of offspring body size, which in turn influences adult survival and fecundity (Fig 5.1a). We 

examine the model population for the presence of DLHEs via their dynamical impact. 

In host-parasite systems seasonal variation in host demographics and parasite 

transmission can destabilise the population dynamics and increase the likelihood of cycles 

(Altizer et al., 2006, Greenman et al., 2004). In mountain hare populations, reproduction is 
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restricted to nine months of the year and seasonal patterns have been recorded in host vital 

rates. Adult mortality peaks in late winter – early spring (Iason, 1989b, Flux, 1970), 

pregnancies peak in spring (Flux, 1970, Hewson, 1970), and mortality in leverets peaks 

with the onset of winter (Iason, 1989b, Flux, 1970). Transmission of T. retortaeformis, as 

with most direct life-cycle intestinal parasites, depends on the production of and host 

encounters with parasite infective stages in the environment and decay rate of external life 

history stages (Altizer et al., 2006). For species of the family Trichostrongylidae, infective 

stage development and survival depends critically on temperature and humidity (Olsen, 

1986). For T. retortaeformis in Scotland, eggs mostly survive the winter resulting in a mass 

hatching in spring (Crofton, 1948). Large numbers are maintained throughout the summer 

because the rapid rate of hatching more than compensates for the increased death rate due 

to higher temperatures and desiccation of larval stages (Crofton, 1948). Susceptibility of 

the population to infection is also expected to increase in spring and summer as a result of 

raised testosterone levels in males, naïve immune systems of juveniles and a combination 

of the periparturient rise in females with shared foraging habitat with juveniles (Cattadori 

et al., 2005). We incorporate seasonality via a hare breeding season and pulses of hare 

mortality, recruitment and parasite transmission.  

 

A TACTICAL APPROACH 

Here we adopt an individual based modelling (IBM) framework to develop a tactical 

highly detailed model that encompasses a large degree of ecological detail. This approach 

allows us to incorporate leveret biology, suspected DLHEs and seasonality An IBM 

approach requires being explicit about parasite transmission mechanisms. One of the key 

features of parasitic infection, especially of nematodes with a direct life cycle, is the 

aggregated distribution of parasites between hosts, such that a few hosts harbour the 

majority of parasites (Shaw et al., 1998). Several effects are thought to contribute to 

aggregation: host heterogeneities, clumping of infection events and the positive feedback 

of the reinfection process (Rosa and Pugliese, 2002, Shaw and Dobson, 1995). In the 

Anderson & May analytical framework (Anderson and May, 1978, May and Anderson, 

1978), the effect of aggregation is accounted for by assuming a negative binomial 

distribution of parasites between hosts. In an IBM, however, the infection status of each 

host must be tracked explicitly. Although Crofton (1948) carried out intensive studies in 

Scottish grasslands on the availability of infective larvae of T. retortaeformis to hosts, no 

study has looked at transmission within and between its mountain hare host. We devise 

three parasite transmission mechanisms and test the impact on hare population dynamics.  
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The first task of this chapter is to present a mountain hare - T. retortaeformis model 

which is able to generate realistic mountain hare population cycles and parasite intensities. 

Rather than reproduce the dynamics of a particular hare population, we judge model fit 

based on characteristic dynamical properties identified for Scottish populations (Newey et 

al., 2005, Newey et al., 2007b). The second task is to study the dynamical effect of 

removing or modifying structure in this base model. The results are focused around four 

specific questions about how parasites may drive hare cycles and the diversity in dynamics 

we observe: a) does making the timing of breeding dependent on maternal body size and 

parasite burden generate DLHEs? b) Do DLHEs reduce the strength of direct parasite 

effects necessary to reproduce observed dynamics? c) How do different parasite 

transmission mechanisms affect the dynamics? d) Can the wide geographical diversity of 

observed dynamics across Scottish populations be recovered? 

 

 

Methods 

THE MODEL 

Fig 5.1b is a schematic outline of the IBM showing the chronological order of events in the 

time step of one year. The fine details of the model are provided in the supplementary 

material, and model parameters are summarized in Table 5.1. The model runs on an annual 

cycle of eight principal steps with the chronological order of events chosen to reflect the 

natural sequence of identified seasonal pulses in hare adult mortality, reproduction, 

juvenile mortality, recruitment and parasite transmission. Reproduction takes place within 

a breeding season such that leverets can be born only between 7th March and 31st 

September. Hare and parasite populations are “censused” once a year after adult mortality 

was imposed but before the start of the breeding season, close enough to harvesting time 

(often in December after the close of the grouse season (Hewson, 1970)) to be comparable 

to hare bag data used in the time-series analysis of Newey et al. (2007b).  

The model links individual hare attributes to their survival, fecundity, time of 

breeding and vital rates of offspring (Fig 5.1a). An adult hare with few parasites and a large 

body size was more likely to survive the winter (Fig 5.1a, links G and H, details in 

Appendix 5.4) and reproduce earlier in the year (links B & C, see Appendix 5.2). Females 

could have up to three litters and the birthdates of second and third litters depended on the 

gestation period and a randomly determined inter-litter period (see Appendix 5.2). Females 

with fewer parasites tended to have more offspring (link D, see Appendix 5.3 and 

Supplemental Fig 5.1) but having larger litters early in the year reduced the size of later 

litters (link E, see Appendix 5.3).  
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Leverets born earlier in the breeding season had longer to grow before winter and 

attained a larger size (link A, details in Appendix 5.1). However, leveret survival was 

calculated as an accumulation of daily survival rates and therefore earlier born leverets had 

a lower chance of surviving to the onset of winter (link F). Therefore a female that began 

breeding had smaller leverets, she was able to have larger litters later in the year with a 

higher chance of surviving to the onset of winter. As data were lacking on leveret biology, 

the value for daily survival rate (DLS) was reverse engineered as part of the model 

selection process.  

Parasite transmission was controlled by parasite fecundity (λ), transmission 

inefficiency (H0) (details in Appendix 5.5) and the mechanism of transmission, of which 

we devised three alternatives (see ‘Structural changes to the best fit model’).  

 

CHARACTERISING REAL HARE TIME SERIES AND PARASITE BURDENS 

We summarised the dynamics of hare and parasite populations in Scotland using the mean 

and range of four characteristics: the period of hare cycles, the amplitude of hare cycles, 

mean parasite infection and the extent of statistical over-dispersion in the distribution of 

parasites between hares (as summarized by the relevant parameter of the negative binomial 

distribution, k) (Table 5.2). Empirical estimates for period and amplitude were taken from 

analyses by Newey et al. (2007b) of hare game bag time series (n = 56, median length = 37 

years). For statistics on parasites, we compiled a dataset of burdens for 654 hares sampled 

over 4 years from cross-sectional surveys conducted on 29 estates (Newey et al., 2005) and 

data presented in Boag and Iason (1986). The burden distribution from each of the 29 

estates was fitted with a negative binomial distribution, the parameters of which are mean 

burden and k. By assuming that different estates have separate hare populations and their 

parasite infections are not synchronised, the mean and range of mean burdens and k for the 

29 estates should provide an idea of the variation in Scottish populations.  

 

CHARACTERISING SIMULATED HARE TIME SERIES AND PARASITE BURDENS 

Characteristics of simulated hare time series and parasite burdens were estimated as for 

empirical data. Where variation in empirical and simulated data characteristics were 

compared, mean parasite infection and dispersion (k) were estimated by sampling an 

individual year within a time series. Otherwise time series were characterised from more 

than just a single sample year, with estimates taken at five yearly intervals. Time series 

simulations ran for 37 years (after a minimum burn-in of 50 years in simulations to remove 

transient dynamics), the mean and range for period and amplitude was estimated from 56 
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simulated time series and the mean and range of mean burden and parasite dispersion (k) 

from 29 time series.  

Simulations of model mountain hare populations could, however, also be classified 

as implausible. Given that the observed maximum hare density is 200 km-2 (Watson et al., 

1973, Hewson, 1976), simulations which reached hare densities of greater than 400 hares 

km-2 were considered implausible. Extinction resulting from demographic stochasticity 

was prevented by permitting some immigration, but simulations which exhibited near 

annual extinction frequencies were judged implausible. A transition from equilibrium 

dynamics to sustained cycles or as an increase in the amplitude of sustained cycles was 

regarded as a reduction in stability. 

 

MODEL PERFORMANCE 

Model performance was judged on the fit of the simulated population dynamics to the four 

observed characteristic properties of hare time series and parasite burdens. The model with 

the ‘best fit’ structure and parameters was selected on the basis of match to mean observed 

values. This took into account demographic stochasticity by running the model 200 times 

to quantify the 95% confidence interval for each characteristic estimated from the 

simulated data. The mean observed values were required to fall within these intervals. The 

best fit model was also required to exhibit sustained cycles and have realistic mean annual 

values of hare mortality rate, hare recruitment rate, juvenile burdens and litter sizes.  

 

STRUCTURAL CHANGES TO THE BEST FIT MODEL 

We investigated the DLHEs on model mountain hare population dynamics in three ways. 

First, by comparing the best fit model with models where the links between female body 

size and parasite burden and timing of breeding were removed. Removal of the body size-

timing link (B in Fig 5.1a) would leave an indirect effect of parasite burden on size 

(through links C-A) which could complicate interpretation of results, therefore we 

investigated models where the burden-timing link (C) was removed and where both links 

were removed (see Appendix 5.2 for how birthdate was calculated). Second, we measured 

the increase in the overall parasite effect on fecundity (δ) that was required to recover 

observed dynamics. δ was estimated from the simulated data as the slope of the 

relationship between parasite burden and ova shed, and was increased by manipulating the 

direct parasite effect on fecundity (link D in Fig 5.1a) via the burden thresholds for 

allocating ova shed in the second litter (see Supplemental Fig 5.2). Third, by comparing 

the best fit model with a model without burden thresholds for ova shed (removed link D), 

thus leaving only the DLHEs to impact female hare fecundity (link E). 
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Three transmission mechanisms were devised for the model (see Appendix 5.5 for 

details) and their dynamical effects compared. In the first mechanism, parasite recruits 

entered a pool from which they were allocated among the whole hare population (‘global’) 

in each transmission pulse. The second mechanism represented local transmission, 

recognising that hares maintain home ranges (Flux, 1970) and therefore new parasites may 

be more likely to reinfect the same host, or the offspring they produce. In the third 

mechanism, hares were given a lifetime dose of parasites as leverets rather than annual 

augmentation of infection. This was considered a plausible governing mechanism because 

hares only live for three years on average (Hewson, 1976) and added infections after the 

first year may be relatively low in fertility (Skorping et al., 1991).  

 

CHANGES TO THE PARAMETERISATION OF MODELS 

The characteristics of hare time series and parasite burdens from the best fit model and 

models with structural changes were examined across the plausible ranges of parameters 

(Table 5.1). Parameter combinations were generated using a Sobol’ sequence (Sobol', 

1967) because this technique allowed us to sample parameter space more uniformly than if 

samples were taken at random (Press et al. 1992). This was particularly important given the 

small numbers of samples (n=29 for calculation of parasite burden statistics and n=56 for 

calculation of hare time series statistics). 

Elasticity analysis was performed on the best fit model to compare the proportional 

effects of changing parameters on the characteristic properties of simulated hare time series 

and parasite burdens. Given the large number of parameters in the model, the analysis was 

conducted on a select few parameters of interest: direct parasite effect on mortality (α) and 

overall parasite effect on fecundity (δ), parasite transmission parameters (λ, H0) and leveret 

survival LS (DLS multiplied by the length of the breeding season). Parameters were 

sampled from empirically determined plausibility ranges (Table 5.1) except for the 

empirically unquantified DLS which was explored across the range 0.990-0.998 and δ 

which was an emergent parameter from the model.  

 

 

Results 

The structure and parameterisation of the best fit model (in which all DLHE links are 

enabled) are reported in Table 5.1. Fig 5.2 is a simulated hare and parasite time series 

showing sustained cycles. The dynamical characteristics for 200 such time series are 

summarised in Fig 5.3. The mean values of period, amplitude, mean burden, parasite 

dispersion from real hare and parasite data fell within the 95% confidence intervals of the 
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simulated data characteristics (Fig 5.3), and corresponded well to the mean simulated 

values (Table 5.2). Mean simulated values for the period of hare cycles was 9.5 years, with 

amplitude 0.77, parasite burdens of 2759 and parasite dispersion of 0.75. 

 

DOES MAKING THE TIMING OF BREEDING DEPENDENT ON MATERNAL BODY SIZE AND PARASITE BURDEN 

GENERATE DELAYED LIFE HISTORY EFFECTS (DLHES)?  

Simulations of hare and parasite population dynamics with the parasite infection-timing of 

breeding link (Fig 5.1a, link C) removed reduces the amplitude of hare density fluctuations 

(amplitude =0.73, Fig 5.4a). Further removing the body size-timing link (Fig 5.1a, link B) 

reduces the amplitude further (amplitude = 0.63, Fig 5.4b). The distributions of dynamical 

characteristics for simulations where parameters were sampled across plausible parameter 

space suggest that, compared to the best fit model, when links were removed amplitudes 

tended to be smaller (Fig 5.5b) and parasites were more dispersed (Fig 5.5d), while 

parasite burdens (Fig 5.5c) and period (Fig 5.5a) tended to be larger. Exploring the effects 

of structural changes on the plausibility of simulated dynamics and the propensity of cyclic 

dynamics we found no major differences between the best fit model and models where the 

links were removed (Table 5.3). These results suggest that the links between maternal body 

size and parasite burden generated DLHEs that had similar weak destabilising effects on 

the model hare population dynamics.  

 

DO DLHES REDUCE THE STRENGTH OF DIRECT PARASITE EFFECTS NECESSARY TO REPRODUCE 

OBSERVED DYNAMICS?  

The relationship between hare cycle amplitude and overall parasite effect on fecundity (δ) 

for simulations where DLHEs were removed is shown in Fig 5.6. With the burden-timing 

link removed, increasing hare cycle amplitude from 0.73 (as estimated in the absence of 

this link, Fig 5.4a) to the observed mean 0.81 required an increase in δ of 0.00006 year-1, 

whilst in the absence of both links δ was required to be increased by almost twice this 

amount (0.00011 year-1) to increase amplitude from 0.63 (estimated in the absence of both 

these links, Fig 5.4b) to 0.81.  

A simulation in which the direct effect of parasites on female fecundity was 

removed and only DLHEs affected fecundity showed hare density fluctuating close to 

equilibrium (Fig 5.4c). Sampling across parameter space, more time series were plausible 

and the highest percentage for all models (10%) were non-cyclic (Table 5.3). All time 

series exhibited amplitudes below the mean observed value (Fig 5.5b) and mean burdens 

were mostly higher than the observed mean (Fig 5.5c), thus lowering the overall fit to real 

characteristics of hare time series and parasite burdens (Table 5.3). These results suggest 
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that the direct parasite effect on fecundity had a strongly destabilising effect on hare 

population dynamics, in contrast to the weaker indirect parasite effects on fecundity caused 

by the DLHEs. 

 

HOW DO DIFFERENT TRANSMISSION MECHANISMS AFFECT THE DYNAMICS?  

The best fit model allocated 90% of parasites locally (self-infection or within family) and 

10% on a population-wide (‘global’) scale (Table 5.1). A simulation where parasite recruits 

were allocated to hares solely on a global scale fluctuated around a relatively small 

equilibrium hare density and ranged from non-cyclic to small amplitude ten year period 

cyclic dynamics (Fig 5.4d). In contrast, when parameters were allowed to vary within 

plausible limits, amplitudes ranged widely (Fig 5.5b). However, 95% of runs generated 

plausible dynamics compared to 77% for the best fit model (Table 5.3), suggesting that 

global distribution of parasites generally had a stabilising effect on model hare dynamics. 

The poor fit to observed characteristics (Table 5.3) was caused by a tendency towards long 

periods and large burdens (Fig 5.5a, c). 

A model with locally distributed parasites generated time series that varied from 

non-cyclic to high amplitude ten year cycles (Fig 5.4e). When parameters were allowed to 

vary within plausible limits, the lowest percentage of time series were plausible (45%, 

Table 5.3) and parasites were more strongly overdispersed (lower k) than the mean 

observed value (Fig 5.5d). These results suggest local transmission tended to have a 

destabilising effect on hare dynamics.  

A model developed to allocate lifetime burdens to leverets generated dynamics that 

were starkly different from other models considered. When parameterized with best fit 

parameters, the model exhibited non-cyclic dynamics at a high equilibrium hare density 

(Fig 5.4f). In contrast, across parameter space, dynamics were generally found to be cyclic 

(Table 5.3, although they appeared more irregular than the smooth cycles seen for other 

model structures) with periods and mean burdens above the upper observed limits (Fig 

5.5a, c) and amplitudes below the lower observed limit (Fig 5.5b). This structural 

modification resulted in the lowest fit to observed dynamical characteristics (Table 5.3). 

 

CAN THE WIDE GEOGRAPHICAL DIVERSITY OF OBSERVED DYNAMICS ACROSS SCOTTISH POPULATIONS BE 

RECOVERED? 

Although the characteristics of the best fit model adequately captured the mean empirically 

determined values (Fig 5.3), we investigated whether the model could reflect the observed 

geographical diversity in hare dynamics. Variation generated by demographic stochasticity 

in repeated simulations matched reasonably well the observed range in hare cycle 
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amplitudes and mean burdens (Table 5.2). Variation generated by changing parameters 

widened the range for all characteristics, improving the match to real ranges of period, 

amplitude and parasite dispersion (Table 5.2). Given that variability in period is a 

distinctive feature of Scottish mountain hare population dynamics (Newey et al., 2007b), 

our analyses suggest that period was particularly sensitive to leveret survival and the direct 

parasite effects on hare fecundity and survival (Table 5.4). Variation generated by changing 

parameters worsened the match to the observed range of mean burdens with unrealistically 

high numbers of 105 being reached (Table 5.2). We found that poor leveret survival and 

strong parasite-induced hare mortality were associated with more realistic burden levels 

(Table 5.4). Realistic mean burdens were also associated with the local parasite 

transmission mechanism and the presence of DLHEs (Fig 5.5c).  

The best fit model did not generate sufficient variation in k, the dispersion of 

parasites amongst hares (Table 5.2). The structurally changed models also failed to 

reproduce the observed range (Fig 5.5d). Large k (well dispersed parasites) was most 

strongly associated with a strong parasite effect on hare mortality (α) and parasite 

transmission parameters (λ, H0), as would be expected (Table 5.4). It is therefore possible 

that the variation in k was restricted in the simulated data because the real variation in α, λ 

and H0 was based on small, under-representative sample sizes (Townsend et al., 2009, 

Chapter 4). 

 

 

Discussion 

We explored the direct and delayed effects of a macroparasite on host population dynamics 

using the host-parasite interaction between mountain hares and T. retortaeformis as a 

model system. We developed an IBM of an infected host population which could 

reproduce host time series and distribution of parasite intensities with mean characteristics 

taken from empirical studies of mountain hares in Scotland. The model was structured to 

allow delayed responses to life history by linking maternal body size and parasite infection 

to the future survival and fecundity of offspring. We found these maternal effects could 

generate DLHEs that had a weak destabilising effect on hare population dynamics. The 

nature of individual based modelling required formulating explicit mechanisms of parasite 

transmission. As this was unknown, we devised and compared three different mechanisms 

and found the best fit was a combination of local and population-wide transmission. While 

the best fit model was able to reproduce the mean dynamical behaviour, an adequate model 

of mountain hare population dynamics should also be capable of replicating the natural 

diverse array of behaviours. We found that, with realistic variation in parameter values, the 
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best fit model could capture the observed variation in three of the four studied dynamical 

characteristics.  

DLHEs can increase the propensity for complex dynamics by generating delayed 

density dependence and individual variability (Beckerman et al., 2002). In simple dynamic 

models, the transmission via maternal inheritance of average individual ‘quality’ has been 

shown to be a plausible cause of forest lepidopteran cycles (Ginzburg and Taneyhill, 1994) 

and microtine rodent cycles (Inchausti and Ginzburg, 1998) by causing delayed density 

dependence. Delayed density dependence is detectable using time series analysis and has 

been identified in cyclic Scottish mountain hare time series (Newey et al., 2007b). 

However, delayed density dependence has many potential sources: it is classically 

associated with endogenous factors including direct effects of trophic interactions 

(Turchin, 2003), but can also be generated by temporally autocorrelated environmental 

noise (Lundberg et al., 2000). It is currently almost impossible for time series analysis to 

distinguish among competing potential causes (Beckerman et al., 2002). While this work 

does not prove that DLHEs are acting in mountain hare populations, we found that DLHEs 

could have a destabilising effect on the dynamics. A previous model required an increase in 

the direct effect of parasites on fecundity outside of the empirically estimated envelope to 

generate hare population cycles (Townsend et al., 2009, Chapter 4), while the presence of 

DLHEs reduced the increase in this parameter necessary to generate realistic dynamics. 

The reduction in this required increase was approximately 1x10-4 year-1, a large amount 

given the ‘combined’ parasite effect on fecundity (δ) has been empirically estimated in the 

order of 10-4 to 10-5 year-1 (Townsend et al., 2009, Chapter 4, Newey and Thirgood, 2004). 

DLHEs allowed parameters to be closer to empirical estimates in order to generate 

observed hare population cycles, and could be important processes in host-parasite 

systems. 

The DLHEs could have a stronger effect on the propensity for cyclic dynamics than 

estimated here. In comparison to the direct parasite effect on fecundity, the DLHEs had a 

relatively weak destabilising impact. We note, however, that their impact may have been 

greater if the effect on time of breeding was made more sensitive to female fitness through 

a more biologically realistic mechanism. In the IBM, the timing of litters subsequent to the 

first was determined by an inter-litter period which was drawn from a uniform random 

distribution of between 1 and 60 days. While in principal postpartum oestrus allows female 

hares to copulate within just a few hours of parturition (Höglund, 1957), the 60 day upper 

limit was reverse engineered to generate distributions of pregnancies and birthdates that 

were realistically spread across the breeding season (Flux, 1970, Hewson, 1970). While 

some variability is expected in inter-litter period, making it strongly stochastic may have 
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effectively decoupled the impact of timing of the first litter on the timing of subsequent 

litters.  

It is common practice in the theoretical investigation of the complex population 

dynamics to compare the match of modelled to real time series using dynamical 

characteristics. This method of goodness of fit is open to criticism (Kendall et al., 1999), 

especially where just a single aspect of the time series, such as the period (Dobson and 

Hudson, 1992a), is abstracted. We have taken this approach but used two characteristics of 

hare populations, period and amplitude of cycles, and two characteristics of parasite 

distributions between hares, mean infection and level of aggregation. We have generally 

found during our investigations that, while it is relatively easy to obtain realistic periods, it 

is most difficult to capture realistic mean infection levels. Both the elasticity analysis 

performed here and on a previous analytical model (Townsend et al., 2009, Chapter 4) 

agree that intensity of parasite infection is strongly affected by the parasite’s effect on host 

mortality, but experimental studies do not support a strong effect (Newey and Thirgood, 

2004). The IBM introduced leveret survival and identified it as a potentially important 

determinant of parasite intensity in adult hares. This suggests that host age-structure may 

be an important aspect of this host-parasite system and future models should separate 

leveret and adult demography.  

Host population dynamics depend on the mechanism causing aggregation in 

parasites between hosts (Rosa and Pugliese, 2002). Aggregation is a characteristic feature 

of macroparasites distributions (Shaw et al., 1998) and a pattern which is likely to result 

from several factors, most notably host heterogeneities, clumping of infection events and 

the positive feedback of the reinfection process (Rosa and Pugliese, 2002, Shaw and 

Dobson, 1995). Here, we explicitly modelled mechanisms of parasite transmission. A 

population-wide (‘global’) mechanism was the IBM equivalent of the multiple infections 

term in the model of Pugliese et al. (1998), while the local transmission mechanism 

combined all three aggregation factors to some degree. A previous study has compared the 

effect of host heterogeneity (in immunity) and clumped infections and found the model 

with clumped infections tended to be less stable (Rosa and Pugliese, 2002). We have found 

that the model which included more aggregation effects tended to have more aggregated 

parasites between hosts and less stable host population dynamics. 

We found a mixture of local and population-wide parasite transmission was 

optimal, and this could have interesting implications for the effects of host movement on 

population dynamics. The best fit model for the mountain hare - T. retortaeformis system 

used a mix of predominately local transmission with a small percentage (10%) of 

population-wide transmission. The predominance of local transmission suggests the 
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observed distribution of burdens arises largely from individual differences between hosts, 

their local environment and/or infection pressure. This corresponds reasonably well to 

what is known about the local movements of mountain hares – they maintain home ranges 

but these are not exclusive and they often feed alongside other hares (Flux, 1970). In fact, 

any factors influencing host heterogeneities, hare movement or the longevity of T. 

retortaeformis free-living stages could result in variation in the balance of local-global 

transmission. Varying degrees of locally and globally distributed infections between 

mountain hare populations in the UK, or within or across years in the same population, is a 

plausible mechanism for generating the wide range of hare population dynamics observed. 

In contrast, allocating lifetime parasite infections to newborn hosts gained limited 

support as the governing mechanism of transmission in the mountain hare-parasite system. 

Since each cohort had a different mean parasite burden according to parasite availability in 

their year of birth, this transmission mechanism generated a cohort effect where each 

generation had similar life histories in terms of fecundity and survival. One of the 

consequences for the population dynamics was reduced host cycle amplitude compared to 

the other models. In deterministic analytical models, the introduction of a cohort effect 

increases individual variability and this is destabilising when the underlying deterministic 

dynamics are stable and stabilising to non-equilibrium deterministic dynamics (Lindstrom 

and Kokko, 2002). However, in an IBM, a cohort effect presumably aggregates individual 

variability from more idiosyncratic variation. Further, we do not have a deterministic 

counterpart making it difficult to determine what effect on stability should be expected, but 

the reduction in individual variability in parasite burdens appears to contrast with 

analytical model results – tending to reduce the amplitude of cyclic dynamics. The lifetime 

burden allocation mechanism was proposed because of the short average lifespan of hares 

and the lower fertility of more recently acquired parasites (Hewson, 1976, Skorping et al., 

1991). The unrealistic dynamics resulting from this transmission mechanism suggests that 

the additional infections picked up by adult hares through their lifetime are important to the 

parasite population. 

The model presented here captured mean characteristics of real mountain hare time 

series and the level of infection of the nematode parasite T. retortaeformis, and much of the 

empirically observed diversity in these characteristics. Further natural variation could be 

accounted for by population differences in the balance of local and population-wide 

parasite transmission. The model included direct parasite effects on the fecundity and 

survival, links between maternal body size and parasite burden on the timing of breeding, 

leveret biology, seasonality in hare reproduction, recruitment, mortality and parasite 

transmission, and modelled mechanisms for parasite transmission. As has been shown for 
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red grouse, snowshoe hares, Soay sheep and Svalbard Reindeer (Gulland et al., 1993, Ives 

and Murray, 1997, Albon et al., 2002, Mougeot et al., 2003, Krebs et al., 2001a), the effect 

of parasites on mountain hares likely forms part of a complex set of interactions that lead 

to population cycles. Further work is needed to provide better parameter estimates and to 

provide empirical estimates for important life-cycle stages, for example, we included 

immigration in the model to prevent stochastic extinctions, although this was not based on 

dispersal data. Mountain hare populations in Scotland are harvested for sport and 

increasingly to attempt to control tick-borne disease. Dispersal, harvesting and population 

control likely have significant effects on hare populations and ongoing field and modelling 

work are exploring these issues.  
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Table 5.1. Individual based model parameter values and their plausible ranges used in 

model analyses. Where possible, parameters were estimated from empirical data sources, 

otherwise parameters were reverse engineered during the best fit model selection process. 

 

Parameter Units Value used in 
best fit model 

Reverse 
engineer-

ed? 

Plausible 
range Source 

Model population site area km2 20    

Min. hare body size (hindfoot 
length) mm 115   unpublished data 

Max. hare body size (hindfoot 
length) 

mm 150   unpublished data 

Min. adult hare mortality in 
absence of parasites 

year-1 0.08   Townsend et al. 
(2009), Chapter 4 

Max. adult hare mortality in 
absence of parasites year-1 0.61   Townsend et al. 

(2009), Chapter 4  

Max. hare lifespan years 10   Macdonald, Mace & 
Rushton (1998) 

Earliest recorded birth date of the 
year 

 7th March   Hewson (1970) 

Latest birthdate for 1st litter  14th May   Flux (1970) 

Latest birthdate of the year   31st Sept   Flux (1970) 

Length of breeding season days 203    

Gestation period days 50   
Borg, Höglund & 

Notini (1952), 
Höglund (1957) 

Minimum inter-litter gap days 1   Höglund (1957) 

Added variation in inter-litter gap days round(unif) 
~(0,59) 

Yes   

Size of 1st litter leverets 1 - 2   

Size of 2nd litter leverets 0 - 6   

Size of 3rd litter leverets 0 - 6   

Based on Flux 
(1970), Iason (1990) 
and Hewson (1976)  

Pre-natal mortality in 2nd litter ova or 
embryos 8%   Iason (1990) 

Pre-natal mortality in 3rd litter ova or 
embryos 

2%   Iason (1990) 

Date after which litters were 
affected by preceding litter sizes 

 8th June   Iason (1990) 

Reduction in proceeding litters for 
each leveret born in 1st litter 

ova or 
embryos 0.7   Iason (1990) 

Reduction in 3rd litter for each 
leveret born in 2nd litter 

ova or 
embryos 

0.5   Iason (1990) 

Daily leveret survival rate (DLS) day-1 0.994 Yes 0.990-
0.998 

Upper limit on 
annual survival 50% 
from Hewson (1976) 

Parasite burden threshold below 
which two ova shed in 1st litter 

parasites 500 Yes   

Method for setting burden 
thresholds for ova shed in 2nd litter 

(see Supp. Fig 5.1) 
 

Increasing per-
parasite effect 

on ova shed 
with burden 

Yes   

Proportion of parasites distributed 
locally 

 0.9 Yes   

Parasite-induced hare mortality (α) year-1 0.00005  Yes 0-0.0001 

Parasite fecundity in spring pulse 
(λspring) 

year-1 440   30-1230 

Parasite fecundity in autumn pulse 
(λautumn) 

year-1 560   40-1540 

Transmission inefficiency in spring 
pulse (Hospring) 

hare 60000  Yes 13500-
66800 

Transmission inefficiency in 
autumn pulse (Hoautumn) 

hare 20000  Yes 13500-
66800 

Townsend et al. 
(2009), Chapter 4 
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Table 5.2. Mean (and range) of four characteristic properties of real and simulated 

mountain hare time series and parasite burdens. In order to assess whether the best fit 

model could capture the mean observed values and Scottish geographical diversity in the 

characteristic properties, the table presents the mean and range of these properties from (i) 

empirical sources, (ii) repeated simulations of the best fit model with best fit 

parameterisation (Fig 5.3) and (iii) simulations of the best fit model where parameters were 

varied within plausible ranges (Fig 5.5). 

 

  Observed time series Simulated time series from best fit model 

Property Units (i) Empirical 
estimate Source 

(ii) Stochastically 
generated 
variation 

(iii) Parameter 
generated 
variation 

Period of hare 
cycles 

years 9.2  
(4-15) 

Newey et al. (2007b) 9.5 
(9-13) 

12.3 
(7-24)  

Amplitude of hare 
cycles (coefficient 
of variation) 

 0.81  
(0.39-1.80) 

Newey et al. (2007b) 0.77 
(0.58-1.41) 

0.79  
(0.05-1.72) 

Mean annual adult 
hare burden of T. 
retortaeformis 

hare-1 1936  
(190-4957) 

2759  
(42-7705) 

20186  
(140-164460) 

Parasite dispersion 
(k)  1.16  

(0.19-5.55) 

Based on reanalysis 
of datasets described 
in Newey et al. 
(2005) and Boag and 
Iason (1986). See 
Methods. 

0.75  
(0.46-1.26) 

0.60 
(0.28-1.36) 
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Table 5.3. The effect of structural changes on the stability of modelled dynamics and fit 

to four characteristic properties of observed mountain hare time series and parasite 

burdens. For each model, time series were generated until 56 plausible (did not go extinct 

or reach implausible hare densities) runs were obtained. (i) The % of total runs collected 

that were implausible. (ii) The % of total runs that were plausible and non-cyclic according 

to an ACF correlelogram (see text). (iii) The % of total runs that were plausible and cyclic 

according to an ACF correlelogram. (iv) The % of plausible runs whose characteristics fell 

within the observed ranges of period, mean burden and parasite dispersion. Amplitude was 

omitted to acknowledge that random exogenous forcing can cause dampened oscillations 

to persist as regular fluctuations (Kaitala et al., 1996). (v) The % of plausible runs whose 

characteristics fell within the observed ranges of period, mean burden, parasite dispersion 

and amplitude. Model structures abbreviate as: best fit (Best), parasite burden-timing link 

removed (-BT), burden-timing and size-timing links both removed (-BTST), direct parasite 

effect on fecundity removed (DPF=0), population-wide parasite transmission (Global), 

local transmission (Local), burdens allocated once during lifetime (Once). Fit to observed 

was based on the period (for cyclic time series) and amplitude of full 37 year time series 

and mean values of parasite dispersion and mean burden from five yearly estimates to 

avoid autocorrelation between estimates in consecutive years. Parameters that were not 

varied as part of the perturbations were kept at values set for the best fit model. 

 

Model No. 
series  Dynamical stability (% of total runs)  Fit to observed  

(% of plausible runs) 

   (i) Implausible (ii) Non-cyclic (iii) Cyclic  (iv) Exc. 
amplitude 

(v) Inc. 
amplitude 

Best 79  16 6 77  32 15 

-BT 82  33 2 65  40 13 

-BTST 71  21 1 77  43 13 

DPF=0 60  7 10 83  25 0 

Global 59  5 3 92  20 0 

Local 124  55 5 40  46 9 

Once 77  23 9 68  3 0 
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Table 5.4. Elasticity analysis showing the proportional effect of changes in parameters of 

the best fit model on four characteristic properties of mountain hare time series and 

parasite burdens. Only the three coefficients with the largest absolute values are shown. 

The overall parasite effect on fecundity (δ) was negative, therefore to ease interpretation 

the strength (magnitude) of the effect was used in the analysis. Period and amplitude were 

estimated from the full 37 year time series, whilst parasite dispersion and mean burden 

were mean values of five yearly estimates (five yearly basis used to avoid autocorrelation 

between estimates in consecutive years). The analysis was based on 305 plausible runs of 

the best fit model. 

 

  Period Amplitude 
(CV) 

Mean 
burden 

Parasite 
dispersion 

(k) 

Controlled parameters        

Leveret survival (LS)  -0.5 0.3 11.4  

Parasite-induced adult hare mortality (α)  -0.7  -1.0  -6.3 0.2 

Spring parasite fecundity (λspring)     

Spring transmission inefficiency (Hospring)     3.0  0.1 

Autumn parasite fecundity (λautumn)       0.1 

Autumn transmission inefficiency (Hoautumn)        

Emergent parameter        

Strength of overall parasite effect on hare fecundity (δ) 0.2 0.3   
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Figure 5.1. Schematic diagrams showing structure in the model. (a) Modelled links 

between individual hare attributes and hare population dynamics. Thin arrows constitute a 

model which does not contain any maternal effects on survival and fecundity. (b) Outline 

of the order of events that the hare population experiences over a year in the IBM.  
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Figure 5.2. Simulated population dynamics from a single run of the best fit model of (a) 

hares and (b) parasites. (c) The sustained cycles in state space. Hares cycled with a ten year 

period and amplitude of 0.79. Parasites were distributed between hares with a mean of 

2400 worms and k of 0.80. 

(a) 

(b) 

(c) 
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Figure 5.3. Summary statistics for four characteristic properties of mountain hare time 

series and parasite burdens: (a) period of hare cycles, (b) amplitude of hare cycles 

(measured as the CV of the time-series), (c) mean parasite burden and (d) parasite 

dispersion k. Frequency histograms were generated from 200 simulations of the best fit 

model. For each distribution the 95% percentile interval is shown (thick grey lines), and 

the mean observed value (dotted line). In (a, b) each estimate was based on the full 37 year 

time series, whereas in (c) and (d) annual estimates were taken every five years to avoid 

autocorrelation between estimates in consecutive years.  

 
(b) 

(c) (d) 

(a) 
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Figure 5.4. Simulated hare and parasite population dynamics following structural 

changes to the best fit model: (a) burden-timing link removed; (b) both the burden-timing 

and size-timing links removed; (c) the direct effect of parasites on fecundity removed; (d) 

parasite recruits globally distributed across the whole hare population; (e) parasite recruits 

distributed locally within hare families; (f) burdens allocated once during a hare’s lifetime. 

Hare time series shown in the insets, note different scales. Parameters that were not varied 

as part of the perturbations were kept at values set for the best fit model (Table 5.1). 

(a) 

(c) 

(e) 

(d) 

(b) 

(f) 
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Figure 5.5. Comparing variation in four characteristic properties of mountain hare time 

series and parasite burdens across different models and to the observed variation (range 

covered by light grey boxes, mean marked with dark grey line). Parameters were varied 

within the plausible parameter envelope. The characteristics are (a) period (for cyclic time 

series), (b) amplitude of hare cycles, (c) mean burden and (d) parasite dispersion k. Model 

structures abbreviate as: best fit (Best), parasite burden-timing link removed (-BT), 

burden-timing and size-timing links both removed (-BTST), direct parasite effect on 

fecundity removed (DPF=0), population-wide parasite transmission (Global), local 

transmission (Local), burdens allocated once during lifetime (Once). Parameters that were 

not varied as part of the perturbations were kept at values set for the best fit model. 

 

(a) (b) 

(c) (d) 
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Figure 5.6. The relationship between the amplitude of hare cycles and the ‘overall’ 

parasite effect on hare fecundity when maternal effects on leveret birthdate were removed 

from the best fit model. Parasite-reduced fecundity (δ) takes a negative value, therefore to 

ease interpretation the strength (magnitude) of the effect is graphed. When the burden-

timing link was removed (filled circles) the regression coefficient for the slope was -1428 

year (t2,29=-7.61, p<<0.001) and intercept 0.195 (t2,29=-2.37, p=0.03). When both the 

burden-timing and size-timing links were removed (open circles) the regression coefficient 

for the slope -1598 year (t2,29=-6.26, p<<0.001) and the intercept was not significantly 

different from zero.  
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Appendix 5.1: Body size 

The adult size a juvenile attained was determined by birthdate. Since late born leverets 

show some compensatory growth (Iason, 1989a), a curvilinear relationship was used to 

link birthdate (days after Bearliest , x, see Appendix 5.2) and end of season juvenile size: 

 

2int
max 2

.
(Length of breeding season)

HFL
HFL HFL x= −  

 

where HFLint is the difference between HFLmax and HFLmin, and the breeding season lasted 

for 203 days (latest birthdates estimated at around 31st September (Flux, 1970)).  

 

Appendix 5.2: Birthdate 

All females had a first litter. The timing of the first litter lay between the earliest recorded 

birth date of the year (Bearliest) 7th March (Hewson, 1970) and the latest for a first litter of 

the breeding season (B1,latest) 14th May (Flux, 1970). The number of days after Bearliest when 

a female gave birth (x) was related to her body size HFLi and parasite load Pi (Fig 5.1a) 

according to:  
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   Eqn. 5.1 

  

where Pmax is 16,000 the maximum parasite burden recorded in the field (dataset described 

in Newey et al. (2005)), and HFLint is the difference between HFLmax and HFLmin.  

The birthdates of succeeding litters, up to a maximum of three, depended on the 

gestation period of 50 days (Borg et al., 1952, Höglund, 1957) and an inter-litter gap, the 

interval until the proceeding pregnancy. Although postpartum oestrus allows females to 

copulate just a few hours after parturition (Höglund, 1957) the distribution of pregnancies 

across the breeding months (Flux, 1970, Hewson, 1970) and bell-shaped HFL distribution 

(Iason, 1990; Newey, unpublished data) suggest that there may be considerable variance in 

inter-litter gaps. To allow variation across females the model included a parameter for the 

upper limit of a uniform random distribution from which inter-litter gaps could be 

generated and added to the fixed period of one day. The value of the upper limit was 

reverse engineered as part of the model selection process. 



Dissecting hare cycles  Chapter 5, 103 

 

In the model where the effect of burden on birthdate was removed, the number of 

days after the earliest birthdate (Bearliest) when a female gives birth (x) was a modified 

version of Eqn 5.1: 

 

( )max
1,

int

.i
latest earliest

HFL HFL
x B B

HFL

 −= − 
 

 

 

When both the burden-timing and size-timing links were removed then day of birth (x) was 

a uniform random variate between zero and the latest birthdate for the first litter (B1,latest).  

 

Appendix 5.3: Litter size 

Although a detailed field study of breeding mountain hares in Scotland categorised litters 

according to the time of year (Iason, 1990), for the modelling process it was logical to label 

litters in sequence of birth. Litter size was a rounded integer value of the number of ova 

shed minus reductions due to previous litters minus prenatal mortality. The number of ova 

shed depended on litter, parasite loads and the size of previous litters in the current year. In 

mountain hares the first litter is smaller than proceeding ones (Angerbjörn and Flux, 1995) 

whilst later litters can potentially reach six. Therefore the number of ova shed was set as 

either one or two for the first litter and up to six ova in proceeding litters.  

Previous litters can impact on the number born in later litters (Iason, 1990). 

Empirical data suggests litter two is only affected by litter one after early June (Iason’s cut-

off of 8th June was used in the model). Litters two and three were reduced by 0.7 for each 

leveret born in litter one, whilst 0.5 young were deducted from litter three for each leveret 

born to litter two. Prenatal mortality was not applied to the smaller 1st litters but litter-

specific prenatal mortalities were assigned to the 2nd litter and 3rd litter using mean values 

of 8% and 2% respectively (Iason, 1990). Since litter sizes can be as large as six, although 

usually less (Flux, 1970, Hewson, 1976), the number of ova shed in litter three was set at 

six ova and deductions made according to previous litter sizes and prenatal mortality. 

The effect of parasites on the number of ova shed is weak after April/May (Newey 

and Thirgood, 2004, Newey et al., 2004) and therefore was only permitted to affect the 1st 

and 2nd litters in the model. Thresholds were used to allocate hares with ova shed according 

to their parasite burden. We considered two conceptually different ways to construct these 

thresholds and used the best available data on the T. retortaeformis distribution among 

mountain hares to generate the six thresholds needed to separate zero and six ova shed 

(Supplemental Fig 5.1). Modelling the effect of parasites on the size of the first litter was 
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simpler because all females shed only one or two ova in the first litter and therefore only 

the threshold between one and two ova needed to be parameterized. The value of the 

threshold in litter one and the method for allocating thresholds in litter two were reverse 

engineered as part of the model selection process. 

 

Appendix 5.4: Adult hare mortality 

Intrinsic mortality (in absence of parasites) was dependent on body size, where each 

individual was allocated a rate according to a linear relationship between the confidence 

intervals of the empirically estimated population value of intrinsic hare mortality 

(Townsend et al., 2009, Chapter 4) and body size. In this way the smallest hares (HFL 115 

mm) had the highest mortality (0.61 year-1) and the largest hares (HFL 150 mm) had the 

lowest mortality (0.08 year-1). Mortality rate for an individual hare was fixed throughout its 

adult life. Hares surviving to age ten were assumed to die (Macdonald et al., 1998).  

Adult mortality occurred once a year with a probability calculated from the sum of 

intrinsic hare mortality in the absence of parasites and per parasite direct effect on 

mortality (α) multiplied by parasite burden.  

 

Appendix 5.5: Parasite transmission 

The parasite population was monitored by recording burdens within hares. Transmission 

was calculated from two components, the birth term and the host density-dependent 

mortality term, taking the general form from the parasite equation in the host-parasite 

model of Anderson and May (1978): 

 

0

( ) . ( 1).
H

P t P t
H H

λ= −
+

 

 

Two transmission phases were permitted to account for seasonality in parasite 

burdens (Boag and Iason, 1986). In the spring pulse, parasite burdens of the breeding 

population were augmented. In the autumn pulse adult worm burdens were augmented and 

leveret burdens initiated. For simplicity in the model, the year was divided according to the 

breeding season (treated as ‘summer’ and constituting 56% of the year) and the empirical 

estimate of T. retortaeformis fecundity of 1000 year-1 (Townsend et al., 2009, Chapter 4) 

was split between pulses in proportion to their duration. Since the survival term was a rate, 

Ho was not split over seasons but sampled within its plausible range as part of the model 

selection process. Adult parasite mortality was assumed to be zero. 
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Three transmission mechanisms were devised for the model. In the first 

mechanism, parasite recruits entered a pool from which they were allocated among the 

whole hare population. The pool size was calculated using the birth term from the parasite 

equation in the host-parasite model of Anderson and May (1978): 

 

0

(1 ). . ( 1).
H

P t
H H

γ λ− −
+

 

 

where λ = number of eggs per parasite, Ho = transmission inefficiency constant, H = hare 

density and P = parasite population and 1-γ = proportion of parasite pool distributed 

globally (see below). The pool was apportioned out using a uniform broken stick 

distribution, augmenting adult hare burdens and initiating burdens of leverets. 

The second mechanism represented local transmission, recognising that hares 

maintain home ranges (Flux, 1970) and therefore new parasites may be more likely to 

reinfect the same host. The parasite burden (Pi) of adult hare i was augmented according 

to: 
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This was adapted to account for indirect vertical transmission to leverets sharing the same 

space as their mothers. To augment adult hare burdens: 
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and to initiate leveret burdens: 
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Where n is family size (mother + no. leverets), β is how evenly parasites are distributed 

within a family (β = 0, mother gets all the parasites, β = 1, parasites allocated evenly 
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among mother and offspring) and γ is the proportion of the parasite pool distributed locally 

(γ = 0, parasites distributed population wide only, γ = 1, parasites distributed locally only). 

In the third mechanism, hares were given a lifetime dose of parasites as leverets 

rather than annual augmentation of infection. Parasite recruits entered a pool from which 

they were allocated among the leveret population. In this way each cohort had a different 

mean parasite burden according to parasite availability in that year and variation was 

generated across years where there were different sized parasite pools. For this mechanism, 

autumn parasite fecundity was adjusted to the annual empirical estimate of 1000 year-1. 
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Supplemental Figure 5.1. Schematic diagrams showing the conceptual difference 

between two approaches to setting burden thresholds in the allocation of fecundity in 

female hares. (a) In the first approach the maximum number of parasites (14962) in a 

dataset on T. retortaeformis burdens in 654 hares (dataset described in Newey et al. (2005)) 

was split equally into seven bins. In this way, a female’s 2nd litter size was reduced by one 

ovum for approximately every 2100 parasites in her burden. (b) This assumes a constant 

per-parasite effect with increasing burden. (c) In the second approach, the same number of 

hares was assumed to fall into seven bins. Corresponding burdens at the thresholds of these 

bins were identified using a c.d.f. of a negative binomial distribution with k = 0.55 and p = 

0.00026 (these were the available estimates prior to the reanalysis by estate that is 

described in the main text). This generated thresholds at 100, 350, 770, 1420, 2490 and 

4530 parasites. (d) This models per-parasite effect on ova shed as increasing with 

increasing burden. 
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Supplemental Figure 5.2. Manipulation of burden thresholds in the allocation of ova 

shed to female hares in the second litter. The darker the lines, the smaller the increments 

between thresholds and the stronger the parasite effect on fecundity. 
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Chapter 6. Periodic travelling waves in a simple host-parasite model 

parameterised using approximate Bayesian inference 

 

Abstract 

Cyclic population dynamics in mountain hares have been documented in nature, but an 

empirically informed simple host-parasite model has not been able to predict realistic 

dynamics. Potential inadequacies in the model are investigated in this chapter. First, we 

lack reliable information about model parameters. Here we use a rejection-sampling 

approach motivated by Bayesian methods to identify the most likely parameter set to 

predict observed dynamics. The results imply that the current formulation of the hare-

parasite model can only generate realistic dynamics when parasite effects are significantly 

larger than current empirical estimates. We conclude that the model probably contains an 

inadequate level of detail. Therefore, second, we structurally modify the model to make it 

spatially explicit by including diffusion of mountain hares and corresponding advection of 

parasites. From initial simulations we show that the spatially extended host-parasite 

equations are able to generate periodic travelling waves (PTWs) of hare and parasite 

abundance. This is a newly documented behaviour in these widely used host-parasite 

equations. While PTWs are a new potential scenario under which cyclic hare dynamics 

could be explained, further mathematical development is required to determine whether 

adding space can generate realistic dynamics with parameters that lie closer to empirical 

estimates. 

 

 



Hares and parasites in space  Chapter 6, 110 

 

1. Introduction 

Population variability may be explained under a multitude of ecological theories. One set 

of theories arises from the interaction of a host with a macroparasite, and uses simple 

mathematical models to demonstrate that macroparasites can drive population cycles in 

host species (Anderson and May, 1978, May and Anderson, 1978). No matter what form 

the theoretical basis takes, the challenge really lies in the confrontation with data, with 

essentially two outcomes. In the case of host-parasite modelling, an empirically informed 

model parameterised with best available data either generates realistic host population 

dynamics and infection levels, as is the case with the red grouse and a nematode parasite, 

Trichostrongylus tenuis (Dobson and Hudson, 1992), or the predicted dynamics do not lie 

within the spectrum of dynamics observed, as is the case with the mountain hare - T. 

retortaeformis system (Townsend et al., 2009, Chapter 4). In the latter scenario, it may be 

concluded that parasites are not driving host cycles. However, failure to predict observed 

dynamics may also arise from inadequate parameterisation, or missing important biological 

details causing structural inadequacies in the model formulation. Potential inadequacies in 

the mountain hare - T. retortaeformis model are investigated in this chapter: by using 

statistical techniques to identify a parameter set that generates observed population 

dynamics; and by extending the model into the spatial dimension.  

Mountain hares (Lepus timidus) are the UK’s only native lagomorph with 99% of 

the UK population found in Scotland. Like their American cousin, the snowshoe hare 

(Lepus americanus), mountain hares exhibit cyclic dynamics (Newey et al., 2007b) 

although unlike the snowshoe hare the cause of mountain hare cycles is not yet well 

understood. There is little evidence to suggest that heavy predation (Hewson, 1976) or 

food-limitation (Keith, 1983) are responsible. Mountain hares co-inhabit heather moorland 

with red grouse, a species which also exhibits cyclic population dynamics. Grouse cycles 

are thought to be driven by the nematode parasite T. tenuis (Hudson et al., 1998, Hudson et 

al., 1992, Dobson and Hudson, 1992b), territoriality (Moss et al., 1996), or an interaction 

of both (Mougeot et al., 2003). In comparison, mountain hares are non-territorial (Flux, 

1970, Hewson, 1976) but they do suffer from high prevalence and intensity of a parasite of 

the same genus, T. retortaeformis. The discovery that parasites reduce fecundity in Scottish 

hare populations (Newey and Thirgood, 2004, Newey et al., 2004) has led to the 

suggestion of T. retortaeformis as a driver of mountain hare population dynamics in 

Scotland. Recently, however, a simple mathematical mountain hare - T. retortaeformis 

model based on the Anderson and May framework (Anderson and May, 1978, May and 

Anderson, 1978) has suggested the empirically estimated parasite effect on fecundity was 
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not strong enough to predict parasite intensities and account for sustained population 

cycles (Townsend et al., 2009, Chapter 4).  

In the vast majority of biological systems we lack reliable information about 

parameters of models. The challenge is particularly acute for parameterising dynamical 

models of wildlife host-parasite systems because independent data are required from 

studies of host demographics, parasite transmission and manipulative experiments to 

quantify parasite induced effects. Even if practical difficulties are overcome, small sample 

sizes may make parameter confidence intervals too wide to easily infer the role of parasites 

in driving the dynamics. An alternative is to use optimisation techniques to estimate 

parameters simultaneously, either within the frequentist maximum likelihood or Bayesian 

framework. Bayesian statistical inference has two key advantages over other optimisation 

techniques. First it is able to provide the probability distribution of parameters, whereas 

most conventional optimisation algorithms provide only point estimates (Toni et al., 2009), 

and second, Bayesian inference integrates existing information on parameters (Clark, 

2007) while frequentist approaches typically neglect information gained from independent, 

empirical (and often hard-earned) data. In this chapter we use a rejection-sampling 

approach motivated by Bayesian methods to identify the most likely parameter set to 

predict observed dynamics with the mountain hare - T. retortaeformis model.  

Spatial structure has commonly been excluded from archetypal models of 

population dynamical systems despite the fact that ecological processes are unavoidably 

spatio-temporal. Spatial structure can be explicitly incorporated into mathematical models 

as either a continuous variable or as a discrete variable. Modelling space as a discrete 

variable, for example using coupled map lattices (Hassell et al., 1991) or coupled oscillator 

models (Sherratt et al., 2000), makes simulation relatively straightforward but has a 

restricted mathematical underpinning that limits the quantitative study of dynamical 

behaviour (Sherratt, 2001). The simplest way to incorporate continuous space is to add one 

dimensional dispersal to each component equation of the temporally dynamic model, 

which assumes individuals diffuse through their environment at a specified rate. This 

constitutes a simple reaction-diffusion model, where each species equation has a reaction 

component which models the birth and death processes of that species (also known as the 

‘kinetics’) and the dispersal component. These equations can generate a range of spatio-

temporal dynamics, such as travelling wave fronts, periodic travelling waves and spatio-

temporal chaos (Sherratt and Smith, 2008).  

Periodic travelling waves are a naturally observed phenomenon in some cyclic 

species including red grouse (Moss et al., 2000) and snowshoe hares (Smith, 1983). Theory 

on reaction-diffusion equations suggests that they may be caused by dispersal acting on 
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cyclic populations (Smith et al., 2008). However while reaction-diffusion equations are 

commonly used to model dynamical population growth equations coupled by a trophic 

interaction, the dispersal of a parasite is clearly not independent of the movement of its 

host and therefore may be more appropriately modelled by advection (transportation) of 

the parasite by the host. One aim here is to determine whether periodic travelling waves are 

predicted by a reaction-diffusion-advection model of the mountain hare - T. retortaeformis 

system.  

In this chapter, we give an overview of the rejection-sampling approach we used to 

infer the most likely parameter combination to generate realistic temporal dynamics with 

the current formulation of the mountain hare - T. retortaeformis model. Then we extend the 

model to include host dispersal and parasite advection. Hare and parasite population 

dynamics are presented for both the non-spatial and spatial models parameterised with best 

empirical estimates and most likely estimates from rejection-sampling.  

 

 

2. Methods 

(2A) THE HOST-PARASITE MODEL 

The non-spatial model was a variant of the May & Anderson (1978) deterministic model 

for macroparasite infections which are detrimental to both host fecundity and survival, that 

was derived by Diekmann & Kretschmar (1991) to prevent the possibility of a negative 

birth rate. The model describes continuous growth equations of a host population of 

density H which interacts with a parasite population P: 
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Parameters are defined in Table 6.1. Standard numerical techniques were used to solve the 

equations (MATLAB ODE solver ode45 based on an explicit Runge-Kutta (4, 5) formula) 

and simulate dynamics of the parameterised model. Simulations included a burn-in period 

of 50 years and post burn-in period of 37 years for reasons explained in §2d. Stability of 

the interior equilibrium point was determined using linear equilibrium stability analysis by 

constructing the Jacobian matrix and assessing the associated eigenvalues (see Appendix 

4.2 of Chapter 4 for further details). A negative real part of the dominant (most positive) 
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eigenvalue ( Redomλ ) denotes a stable point and its magnitude determines the rate of 

damping to the equilibrium. Values for parasite dispersion (k) were restricted to 0.5, 1 and 

2 in order to obtain analytical solutions for the equilibrium point (see Appendix 4.2 of 

Chapter 4). 

 

(2B) EMPIRICAL PARAMETER ESTIMATION 

Point estimates and plausibility envelopes for parameterising Eqns 6.1-6.2 using empirical 

evidence are given in Table 6.1. For most parameters the data sources and means of 

estimation have been described elsewhere (see Appendix 4.1 of Chapter 4 for estimation of 

α, b, λ, H0 and µ, and Methods of Chapter 5 for estimation of k), whilst two parameters (a, 

δ) were estimated by reanalysing available data (see Appendix). As formal confidence 

limits were not available for all data sources, variation in parameters was defined by a 

plausible envelope. Both male and female individuals formed the model hare population 

since both sexes are hosts to T. retortaeformis. 

 

(2C) PARAMETER ESTIMATION USING REJECTION-BASED APPROXIMATE BAYESIAN INFERENCE 

Bayesian methods require a prior distribution π(θ), which reflects prior belief i.e. 

uncertainties in parameters in the vector θ, and a likelihood function P(y|θ) of the observed 

data y, the probability that the observed data occurs given the parameter set θ. Bayes’ 

formula yields the posterior distribution P(θ|y) of the parameters as 

( | ) ( | ) ( )P y P y π∝θ θ θ . The likelihood function is typically chosen depending on the 

dynamical model (Patwardhan and Small, 1992, Rosa et al., 2003). Recently however, 

approximate Bayesian methods have been developed where the evaluation of likelihood is 

replaced by a simulation-based procedure. Approximate Bayesian computation (ABC) is a 

family of computational techniques that use rejection-sampling of parameter combinations 

based on their ability to simulate a data set (Toni et al., 2009) or capture observed summary 

statistics of a simulated data set (Beaumont et al., 2002). The approach was conceived with 

the aim of inferring posterior distributions for stochastic, complex models where likelihood 

functions were computationally intractable or too costly to implement (Beaumont et al., 

2002, Marjoram et al., 2003, Plagnol and Tavaré, 2004, Hickerson et al., 2006). However 

ABC methods are attractive for inferring posterior distributions of deterministic models 

also, because they combine the computational convenience of summary statistics with the 

advantages of the Bayesian paradigm, and are closely related to standard Bayesian 

inference in systems of ordinary differential equations (Toni et al., 2009). 
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The simplest approach to implementing ABC is to use a rejection sampler 

(Pritchard et al., 1999). Although there are more sophisticated sampling methods using 

Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) algorithms 

(Marjoram et al., 2003, Sisson et al., 2007), the results are comparable in deterministic 

models (Toni et al., 2009). The disadvantage of the rejection sampler is that it samples 

from the prior distribution only, and therefore will have low acceptance rates (and high 

computational cost) when the posterior is very different from the prior. However, if this is 

not the case then rejection sampling is very easy to implement and the algorithm can be 

parallelised (run on multiple computers simultaneously) to speed up acceptances. 

Where data are high dimensional, information can be captured using lower 

dimensional summary statistics and these can be used to compare data sets. As measures of 

agreement between simulated and real time series, it is common practice to compare 

dynamical properties (also known as probes) such as the period of cycles (Kendall et al., 

1999). We adopt such descriptors as summary statistics (see §2d), denoted here as Si (for 

i= 1,…,n where n is the number of statistics), with which to conduct rejection sampling. 

The ABC scheme for data D summarised by vector of summary statistics S is as follows: 

 

A1. Generate parameter vector θ from π(θ) 

A2. Simulate D′  from the model (Eqn 6.1 and 6.2) with parameter vector θ 

A3. Calculate summary statistic vector ′S  

A4. Calculate distance ρ(S, ′S ) between S and ′S  

A5. Accept θ if ρ ε≤ , where ε is the tolerance. Return to A1. 

 

ABC rejection sampling was developed to use distance between observed and 

simulated summary statistics, whereas we found it was more appropriate to provide 

intervals of acceptable summary statistics (see §2d, Table 6.2). The sampling scheme was 

modified to reject those simulations which have summary statistics that fall outside the 

intervals: 

 

B1. Generate parameter vector θ from π(θ) 

B2. Simulate D′ from the model (Eqn 6.1 and 6.2) with parameter vector θ 

B3. Calculate summary statistic vector ′S  

B4. Accept if Sl < iS′  < Su for all i, where Sl is the observed lower value and Su is the 

observed upper value of each summary statistic Si. Return to B1. 
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Parameter combinations were generated from prior distributions and those which simulated 

plausible time series with the observed summary statistics were accepted. Choice of prior 

distributions was a reflection of two requirements. First, priors needed to capture the 

probability densities suggested by the empirical data (see §2b), and thus hyper-parameters 

(mean and variance) for prior distributions were chosen to reflect the empirically 

determined point estimates and plausible intervals (Table 6.1). Second, previous work has 

suggested that realistic dynamics require changes to parameters outside the plausible 

envelope (Townsend et al., 2009, Chapter 4) and therefore, for the majority of parameters, 

prior distributions were broader than the plausible intervals. Plausibility of simulations was 

determined by persistence of both species and reasonable hare and parasite abundances. 

Given that the observed maximum hare density is 200 hares km-2 (Watson et al., 1973, 

Hewson, 1976) and maximum parasite intensity is 16,000 parasites hare-1, simulations 

which reached four times these figures during the burn-in period, and two times these 

figures after the burn-in period, were considered implausible.  

Posterior distributions were generated from the collection of accepted parameter 

combinations. Posterior parameter distributions are multidimensional, but for visualisation 

they were plotted as one-dimensional marginal distributions. The mean of the marginal 

distributions was used as an estimate of the ‘most likely’ parameter value to generate 

realistic population dynamics. 

 

(2D) SUMMARY STATISTICS OF HARE AND PARASITE TIME SERIES 

Observed dynamical properties were used as summary statistics for conducting parameter 

estimation using approximate Bayesian inference (see §2c) and to judge model fit to 

observed (Table 6.2). Mountain hare population dynamics in Scotland are recorded as 

game bag time series which have a median length of 37 years. Each time series has been 

statistically classified as cyclic or non-cyclic and summarised by hare cycle period and 

amplitude (Newey et al., 2007b). The level of T. retortaeformis infection in hares has been 

recorded in several studies (Newey et al., 2005, Boag and Iason, 1986) and recently 

reanalysed to provide the mean and variation of mean intensities for populations across 

Scotland (Chapter 5).  

We used two different vectors of summary statistics to accept or reject candidate 

simulations (step B4 in ABC scheme §2c) and therefore obtained two sets of posterior 

parameter distributions. The first vector contained three summary statistics: 

 



Hares and parasites in space  Chapter 6, 116 

 

-2

-1

period of hare cycles (years) 4 15

        hare density (hares km ) 20 200

mean infection (parasites hare ) 1375 2497
l uS S

     
     = = =     
          

S , 

 

and the second vector contained five summary statistics: 
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The first vector of summary statistics accepted transiently cyclic time series as realistic, 

recognising that random exogenous perturbations could cause dampened oscillations to 

persist as regular fluctuations (Kaitala et al., 1996). The more stringent second set required 

the model to generate stable limit hare cycles with a realistic amplitude. Given that the 

bounded solutions of Eqns 6.1 and 6.2 are expected to possess either a stable equilibrium 

point or stable limit cycle (Diekmann and Kretzschmar, 1991) and plausible simulations 

were numerically bounded (see §2c), we assumed that plausible simulations with a locally 

unstable equilibrium point ( Redomλ >0) must exhibit a stable limit cycle.  

All model summary statistics were derived from plausible (see §2c) simulated time 

series of annually recorded hare density and mean infection, with the exception of local 

stability (see §2a). Mean hare density, mean infection level and the amplitude of hare 

cycles were estimated over the non-transient 37 year time series. Mean infection was 

calculated for each year and then averaged over the 37 years. In case of damped 

oscillations, the first 37 years of the hare time series (at the start of the burn-in period) was 

used to classify cyclic dynamics and calculate period. Periodicity, period and amplitude of 

hare time cycles were estimated as for real data (Newey et al., 2007b).  

 

(2E) SPATIAL EXTENSION 

Random movement of hares and parasites were modelled by attaching a diffusion term, to 

denote local dispersal of hares, to the host equation (Eqn 6.1):  

 

,
k

HJH kH
αP bH +aH

t δP+kH x

∂∂  = − − − ∂ ∂ 
      Eqn 6.3 
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where JH is the hare flux /H HJ D H dx= − ∂ , i.e. we assume that hares move down a 

population gradient, x is the one-dimensional space coordinate and DH is the diffusion 

coefficient for hares. In the absence of any data, we take DH = 0.5 although we expect DH 

to influence the dynamics. Assuming parasites move at the same velocity as the hares we 

attach an advection term to Eqn 6.2 to give: 

 

( )
1

H

k

k

P H P P
P b J

t Ho H H x H

λ µ α α ∂ ∂   = − + + − −    ∂ + ∂

+
   

    Eqn 6.4 

 

The movement of parasites in space only occurs via passive convection with the hosts, so 

that the flux of the parasites at any point is given by P multiplied by the host velocity, 

JH/H.  

We used the method of lines to reduce the system to that of a coupled system of 

ordinary differential equations (ODEs) (see Appendix 6.2 for a full description of the 

numerical scheme). We used a central difference approximation for the diffusion term in 

the hare equation and second order accurate flux limiters for the convection term in the 

parasite equation. The boundary conditions for both hares and parasites were no-flux at 

both left and right boundaries and the resulting ODEs were solved using a fourth order 

Runge-Kutta method. We assume exponentially decaying (in space) initial conditions: 

 

( , 0) ( ,0) exp( )H x t P x A xξ= = = − , 

 

where A and ξ are positive constants, taken to be 1 and 2 respectively. Note that the 

parameter A affects the time course of the evolution but has no effect on the ultimate 

solution. Varying ξ will affect the advancing front speed and the selection of the periodic 

travelling wave when supported. The spatio-temporal dynamics of Eqns 6.3-6.4 were 

simulated under three parameter sets, the empirical point estimates (§2b) and the two sets 

of parameter estimates obtained from approximate Bayesian inference (§2c), and inspected 

for periodic travelling waves. 

 

 

3. Results 

 (3A) TEMPORAL DYNAMICS 

Table 6.1 presents the empirically-sourced point estimates and plausible intervals for 

parameters of the non-spatial host-parasite model (Eqns 6.1-6.2). Parameterising the model 
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with the point estimates generated damped oscillations (Fig 6.1a, d). Summary statistics of 

this time series showed that while period and hare density were within observed ranges, the 

level of mean infection was much greater than realistic levels (Table 6.2). 

We used ABC to identify the most likely parameter set given the observed summary 

statistics. The acceptance rate under summary statistic vector 1 was 0.1%, and 0.006% 

under summary statistic vector 2. Running the ABC scheme under summary statistic vector 

1 (period, hare density and mean infection) generated the posterior parameter distributions 

shown in Fig 6.2. From these posteriors the most likely parameter combination was 

estimated using the mean of the distributions (Table 6.1). With these parameters, the model 

exhibited cyclic transient dynamics that were strongly damped (Fig 6.1b, e) with a realistic 

period, mean hare density and annual mean infection (Table 6.2). Running the ABC 

scheme under summary statistic vector 2 (period, hare density, mean infection, amplitude, 

stability) generated the posterior distributions for parameters given in Fig 6.3. The time 

series simulated from the model populated with the most likely parameter set from these 

posteriors (Table 6.1) exhibited a stable limit cycle (Fig 6.1c, f) with realistic 

characteristics (Table 6.2), although the mean infection level for this particular 

combination of parameters was slightly outside the confidence envelope. 

The parameter posterior distributions also provided information about parameters 

and their role in the hare and parasite interaction model. Given that point parameter 

estimates captured period and mean hare density but not mean infection levels (Table 6.2), 

the posteriors in Fig 6.2 reflect changes to parameters necessary to drive mean infection 

down to realistic levels. Since only values of the parasite effect on mortality (α) from the 

right tail of the prior distribution (10-4 to 10-3) were accepted by the ABC algorithm (Fig 

6.2b), the results imply that a 100 to 1000 fold increase in the parasite effect on mortality 

(α) from empirical estimates would be necessary to reduce intensities sufficiently given 

this model. Lower intrinsic hare fecundity (a, Fig 6.2a) and a stronger parasite effect on 

fecundity (δ, Fig 6.2d) were also implicated as likely elements of a system with lower 

parasite intensities.  

The posteriors in Fig 6.3 show that for the model to generate sustained cycles also 

required a 10 to 100 fold increase in parasite effect on fecundity (δ, Fig 6.3d) from 

empirical estimates, and was more likely when parasites were more dispersed among hares 

(larger k, Fig 6.3h). The destabilising nature of these two parameters are well known from 

stability analysis, as the equilibrium point can only be stable if α<δk (May and Anderson, 

1978). It appears therefore that the large parasite-induced mortality rate (α) required for 

observed infection levels has a stabilising effect on the dynamics that must be balanced by 

a strong parasite-reduced fecundity (δ). In conclusion, the hare-parasite model can only 
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generate realistic sustained cycles where parasite effects are significantly larger than 

current estimates. 

 
(3B) SPATIO-TEMPORAL DYNAMICS 

Simulations of the spatio-temporal dynamics of hares and parasites under different 

parameter sets showed two distinct patterns. Parameterising the model with empirical point 

estimates (Table 6.1) generated a travelling wave of hares and parasites as the hares diffuse 

(and parasites advect with the hares) from left to right across the domain from the 

boundary (Fig 6.4). In the wake of this wave front, both hares and parasites evolve to their 

non-oscillatory equilibrium states. Parameterising the model with the most likely estimates 

from posteriors generated using summary statistic vector 1 (Table 6.1) also generated a 

wave front followed by spatially homogenous dynamics (results not shown). Under 

parameters estimated using summary statistic vector 2 (Table 6.1), however, a travelling 

wave front was followed by periodic travelling waves where oscillations in hare and 

parasite numbers occurred in both space and time (Fig 6.5).  

 

 

4. Discussion 

In this chapter we have identified the most likely parameter set for a simple host-parasite 

model to reproduce realistic population cycles in mountain hares interacting with a 

nematode parasite. We used a technique based on approximate Bayesian computation and 

this work constitutes one of the first applications to dynamical systems in ecology (Toni et 

al., 2009). This was done under two definitions of ‘realistic’ hare and parasite population 

dynamics, in which one definition recognised that random exogenous forcing could 

maintain cycles in damped oscillatory deterministic dynamics (Kaitala et al., 1996). The 

results imply that the current formulation of the hare-parasite model can only generate 

realistic dynamics when parasite effects are significantly larger than current empirically 

determined estimates. We then structurally modified the model to make it spatially explicit 

by including diffusion of mountain hares and corresponding advection of parasites. From 

initial simulations we have shown that the spatially extended host-parasite equations are 

able to generate periodic travelling waves (PTWs, also known as periodic plane 

wavetrains) of hare and parasite abundance. This is a newly documented behaviour in these 

widely used host-parasite equations. Our results suggest that the population cycles 

observed in mountain hares in Scotland are either spatially homogenous oscillations as 

predicted by the most likely parameter set without diffusion or, with diffusion, the 

observed temporal cycles are formed by periodic travelling waves. 
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Travelling waves in natural populations are a long term phenomenon associated 

with temporally cyclic populations of a prey or host species (Hassell et al., 1991, Hassell et 

al., 1994, Ranta and Kaitala, 1997, Sherratt and Smith, 2008). Although travelling waves 

have become renowned in relation to the invasion dynamics of exotics or initial spread of 

infectious diseases (e.g. Jeltsch et al., 1997), these may be transient phenomena or 

distinguished as single wave fronts (Lundberg et al., 2000). More permanent travelling 

waves are hard to demonstrate empirically because detection in field studies requires 

extensive spatio-temporal data and specialised statistical techniques (Sherratt and Smith, 

2008). Nonetheless, where this has been done, they have commonly been found (Sherratt 

and Smith, 2008), and in a range of taxa (Moss et al., 2000, Lambin et al., 1998, Tenow et 

al., 2007, Bjornstad et al., 2002). Two of the species for which PTWs have been identified 

in natural populations, the red grouse (Moss et al., 2000) and the autumnal moth (Tenow et 

al., 2007), are also hypothesised to have parasite-driven temporal cycles (Tanhuanpää, 

2002, Hudson et al., 1998). However, the effects of parasites on their spatial dynamical 

behaviour has not yet been explored. Here we have demonstrated the possibility of PTWs 

arising directly from the presence of the parasite in our host system.  

The spatially extended host-parasite model presented here adds to a range of 

theoretical models for cyclic populations which are able to numerically simulate PTWs 

(e.g. Hassell et al., 1991, Sherratt et al., 2000). The majority of theoretical studies of 

periodic wave behaviour, including the present study, have been qualitative and not 

quantitative. The major exception is oscillatory reaction-diffusion equations as a result of 

mathematical advances over the last few decades (Sherratt, 2001, Dunbar, 1983, Kopell 

and Howard, 1973, Sherratt, 1994). The special relationship between the space and time 

dependence of a periodic travelling wave means the solution is a function of a single 

‘travelling wave’ variable. Reaction-diffusion systems modelled using PDEs can be 

rewritten in terms of the travelling wave variable, giving rise to a system of first order 

ODEs. PTWs correspond to a limit cycle solution of these ODEs. The simplicity and 

widespread application of the host-parasite model used here makes conducting the 

equivalent analysis a natural mathematical goal, and this is ongoing work. There are 

several reasons why this may be of interest.  

First, to determine whether the inclusion of dispersal is a sufficient structural 

change to the hare-parasite model to predict realistic dynamics within the empirical ranges 

of parameter plausibility. Initial investigation suggests parameters within the empirical 

envelope can generate a PTW (Supplemental Fig 6.1), but whether the properties of these 

dynamics match observed values requires the necessary mathematical development 

described above. The system of ODEs are required to quantify wave characteristics such as 
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wave speed, stability (unstable waves typically develop into spatio-temporal chaos, 

whereas stable waves persist over large domains and long times (Smith et al., 2006)), 

amplitude and the temporal and spatial periods of the cycles (Sherratt, 2001).  

Second, to determine whether dispersal acting on non-cyclic populations is able to 

generate PTWs. The assumption in population cycle studies is generally that populations 

exhibit cycles even in the absence of dispersal. However the abundance of a species in 

space influences the density an individual experiences, thus affecting density dependent 

processes and, potentially, population stability. PTWs can be occur in models which are 

non-oscillatory without diffusion such as excitable systems (Sherratt and Smith, 2008). 

Further, in reaction-diffusion equations, diffusive instabilities can destabilise a uniform 

spatial state into wave-like patterns (also known as the Turing effect) (Czárán, 1998, Levin, 

1976, Turing, 1952). In our simulations, the parameter combination that exhibited PTWs 

also exhibited a stable limit cycle in the reaction kinetics, but it is unclear whether the 

spatial extension could destabilize non-oscillatory temporal dynamics. Further analysis of 

the model would allow us to determine whether space increases the region of parameter 

space where unstable dynamics occur. 

Third, this modelling work coincides with ongoing field research into the dispersal 

of mountain hares, and it would be useful to have a model within which the quantitative 

effect of diffusion rates on the dynamics could be explored. A brief consideration of the 

effect of hare diffusion rates (DH) on the PTWs shown in Fig 6.5, suggests that slower 

diffusion increases spatial amplitude and period (Supplemental Fig 6.2), whilst faster 

diffusion of hares has the opposite effect (Supplemental Fig 6.3). However the dispersal 

rates we have considered do not yet have any empirical basis. Relating diffusion in the 

model to real hare movement forces consideration of the spatial scale of interest, 

something which we have left unspecified in this study to simplify mathematical 

tractability and analysis. In Scotland, mountain hare habitat is fragmented into upland 

islands, so it will be important to determine the influence of the size of the spatial domain 

on the predicted spatio-temporal dynamics of a single population. To consider a spatial 

scale larger than an upland island would necessitate population structuring and a move 

away from the PDE model to a model formulation with discrete space. Preliminary data on 

hare movements suggest mountain hare habitat islands are linked by rare dispersal events 

which may enhance the likelihood of PTWs on a geographical scale. Sherratt et al. (2000) 

used coupled oscillator models to show that weak dispersal between local populations 

could generate PTWs across individually oscillating populations of Kielder forest field 

voles, while the spatial heterogeneity was lost with strong dispersal. Empirical data on 

spatially referenced mountain hare abundance in Scotland has previously been used to 
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quantify broad geographical variation in temporal hare population dynamics (Newey et al., 

2007b), and warrants revisiting to study spatio-temporal patterns. 

Fourth, having the mathematics in place is necessary to make a detailed assessment 

of wave generation mechanisms (Sherratt, 2001). PTWs must be generated in an ecological 

population, just as impurities are required for PTWs in oscillatory chemical reactions 

(Sherratt and Smith, 2008). Reaction-diffusion systems require spatial noise in parameters, 

invasion of enemy species or certain ‘hostile’ boundary conditions in order to generate 

PTWs (Sherratt, 2001, Sherratt and Smith, 2008). However these were not aspects of our 

simulations, suggesting a new mechanism of wave generation.  

In contrast, the minimal mathematics required for the implementation of ABC is an 

attractive feature of this technique to ecologists in general. ABC offers the benefits of 

standard Bayesian inference without the need to express or calculate parameter likelihoods, 

although there is a cost in the degree of transparency in the modelling process. Also, these 

methods are in development and accordingly should be applied with care. For example, as 

yet there is no systematic method for identifying and assessing the adequacy of summary 

statistics as replacements for full data sets. Simply using more statistics brings posteriors 

closer to the full data posterior (Plagnol and Tavaré, 2004), although it may be better to 

have fewer statistics with clear independence (Kendall et al., 1999). Hickerson et al. (2006) 

state that summary statistics should clearly show a ‘strong correspondence with parameter 

values’. Although their meaning is unclear, the summary statistics used here were shown to 

capture substantial information about parameters in sensitivity analyses (Townsend et al., 

2009, Chapter 4). However, despite ongoing issues with ABC and the particularly simple 

version adopted here, results from our implementation appear robust. A previous parameter 

sensitivity analysis has been used to guide the direction of changes to parameters with 

similar conclusions as found here concerning the inadequacy of empirical parameters 

(Townsend et al., 2009, Chapter 4). Both approaches indicated that parasite effects were 

critical for stability and mean infection intensities, and showed that the current (non-

spatial) hare-parasite model required much stronger parasite effects to be able to generate 

realistic dynamics. 

 

This chapter began by presenting a situation where a species with cyclic population 

dynamics has been documented in nature but for which an empirically informed model 

could not predict realistic dynamics. The aim was to progress by engaging with two 

constructive criticisms of the model. The first was that model structure was adequate but 

parameterisation was inadequate. In the case of the mountain hare-parasite system, whilst 

the parameters can only be loosely quantified using current empirical data, we have a much 
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clearer picture of the time series. By using a method that rejects time series without 

realistic dynamics we have shown that the necessary parameter values, in particular for 

parasite effect sizes, are very different from empirical estimates. It is therefore likely that 

the model is lacking important detail, the second of the constructive criticisms. A recent 

attempt at modelling an infected population of hares individually included seasonality and 

leveret biology and found that delayed life history effects could theoretically strengthen the 

parasite effect on hare recruitment (Chapter 5). In this chapter, the structure of the model 

was changed by allowing hares and parasites to diffuse across space and we identified a 

new potential scenario under which cyclic hare dynamics could be explained - periodic 

travelling waves. However, to determine whether adding space can generate realistic 

dynamics with parameters that lie closer to empirical estimates, further mathematical 

development is required. Once this is achieved, we could even compare the ability of 

different models, such as the spatial host-parasite model and individual-based model, to 

simulate realistic dynamics by using the approximate Bayes factor within the ABC 

framework (Toni et al., 2009). In fact the simulation-based method of ABC means the 

approach can be applied to models of arbitrary biological complexity (Hickerson et al., 

2006, Beaumont et al., 2002), which in the future should also include human exploitation 

of mountain hares.  
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Table 6.1. Model parameter estimates from empirical data sources and approximate 

Bayesian inference. 

 

Parameter Description Units Lower 
plausible limit  

Empirical 
point 
estimates 

Upper 
plausible limit 

Most likely 
estimates 
using 
summary 
statistic 
vector 1  

Most likely 
estimates 
using 
summary 
statistic 
vector 2 

a 
Intrinsic fecundity of 
hares (in absence of 
parasites) 

year-1 1.1 2.3 3.4 1.7 1.8 

α Parasite-induced 
hare mortality year-1 0 0.000008 0.000104 0.000541 0.000310 

b 
Intrinsic mortality of 
adult hares (in 
absence of parasites) 

year-1 0.08 0.35 0.61 0.40 0.41 

δ 
Parasite-induced 
reduction in hare 
fecundity 

hare 
parasite-1 0 0.000017 0.000166 0.000175 0.000716 

λ Parasite fecundity year-1 80  1000  2800 1160 1170 

H0 
Transmission 
inefficiency constant hare 13500  38200  66800  35900 38200 

µ Adult parasite 
mortality year-1 0 0 1.2 0.6 0.6 

k 
Negative binomial 
parameter/ parasite 
dispersion 

 0.85  1.16 (1 for 
analyses) 

1.47  1 2 
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Table 6.2. Summary statistics of real and modelled mountain hare and T. retortaeformis 

population dynamics. Model parameterisation from Table 6.1.  

 

Model parameterisation 

Characteristic of dynamics 

Variation 
in 
observed 
values 

Empirical point 
estimates 

Most likely estimates 
using summary 
statistic vector 1  

Most likely estimates 
using summary 
statistic vector 2 

Period (years) 4-15  
(range) 

6 4 7 

Mean hare density (hares km-2) 20-200  
(range) 

65 91 62 

Annual mean infection averaged 
over time series (parasites hare-1) 

1375-2497  
(95% CI) 

79129 1793 2618 

Amplitude of hare cycles 0.39-1.80 
(range) 

- - 1.62 

Stability (real part of dominant 
eigenvalue) [0, ∞ ] -0.05 -0.32 0.16 
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Figure 6.1. Population dynamics of the non-spatial mountain hare - T. retortaeformis 

model parameterised with estimates using empirical data sources and approximate 

Bayesian inference. Simulated time series (top row) and dynamics in state space (bottom 

row) of the model parameterised with (a, d) empirical point estimates, (b, e) most likely 

estimates using summary statistic vector 1 and (c, f) most likely estimates using summary 

statistic vector 2. For the time series, the solid line represents the hare population size 

(hares per km2) whilst the dashed line is mean parasite intensity per hare. 

(a) (c) (b) 

(d) (f) (e) 
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Figure 6.2. Parameter prior distributions based on empirical data and posterior 

distributions based on ABC using summary statistic vector 1. Parameter combinations 

sampled from the priors (solid lines) were accepted into posteriors (histograms) if they 

generated feasible and plausible runs that had a period of hare cycles, hare density and 

mean parasite intensity that fell within the observed interval (summary statistic vector 1). 

Amplitude of hare cycles and local stability of the equilibrium point were not included as 

criteria. (a) Intrinsic hare fecundity, (b) parasite-induced hare mortality (c) intrinsic hare 

mortality, (d) parasite effect on hare fecundity, (e) parasite fecundity, (f) transmission 

inefficiency, (g) adult parasite mortality and (h) parasite dispersion among hares. The black 

bars in (h) represent the prior. Posteriors were based on 6192 simulations. Prior 

distributions were empirically informed: a~gam(15,0.1533), α~logn(-11.7,1.5), 

b~gam(7,0.05), δ~logn(-11.0,1.5), λ~gam(4,250), H0~gam(10,3820), µ~unif(0,1.2) and k 

could take the value 0.5, 1 or 2 with equal probability.  

(a) 

(c) 

(b) 

(d) 

(h) 

(e) (f) 

(g) 
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Figure 6.3. Parameter prior distributions based on empirical data and posterior 

distributions based on ABC using summary statistic vector 2. Parameter combinations 

sampled from the priors (solid lines) were accepted into posteriors (histograms) if they 

generated feasible and plausible runs that had an unstable equilibrium point and realistic 

amplitude, period of hare cycles, mean hare density and annual mean infection (summary 

statistic vector 2). Posteriors were therefore a subset of those in Fig 6.2 and based on 335 

simulations. (a) Intrinsic hare fecundity, (b) parasite-induced hare mortality (c) intrinsic 

hare mortality, (d) parasite effect on hare fecundity, (e) parasite fecundity, (f) transmission 

inefficiency, (g) adult parasite mortality and (h) parasite dispersion among hares. The black 

bars in (h) represent the prior. Priors as in Fig 6.2.  

 

(a) 

(c) 

(e) 

(b) 

(d) 

(h) 

(f) 

(g) 
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Figure 6.4. The spatial mountain hare - T. retortaeformis model parameterised with 

empirical point estimates generates a wave front of hares and parasites. (a, d) A snapshot 

(t=100) of the wave front as it moves along the one-dimensional spatial domain from left 

to right. The wave front leaves in its wake equilibrium population levels. In (b, e, c and f) 

the wave front and succeeding equilibrium dynamics are shown in both time and space, 

with hare abundances indicated in (c) and mean parasite loads in (f). The dynamics were 

initialised with exponentially decaying initial conditions (see §2e of main text). 

 

(a) (c) (b) 

(d) (f) (e) 
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Figure 6.5. Spatio-temporal dynamics of the spatial mountain hare - T. retortaeformis 

model parameterised with the most likely estimates using summary statistic vector 2. A 

wave front moves across the spatio-temporal domain with succeeding periodic travelling 

waves (PTWs). These dynamics correspond to cyclic temporal dynamics in the non-spatial 

model (Fig 6.1c, f). (a, d) A snapshot (t=100) of the PTWs as they moves along the one-

dimensional spatial domain from initial conditions at the left boundary. In (b, c, e, f) the 

PTWs are shown in time and space, with hare abundances indicated in (c) and mean 

infection levels in (f).  

 

(a) (c) (b) 

(d) (f) (e) 
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Appendix 6.1: Re-analysis of empirical parameter estimates 

 

a, Intrinsic fecundity of hares (in absence of parasite) (year-1) 

To estimate intrinsic fecundity we used data on individual intensities of T. retortaeformis 

and female annual fecundity measured by counts of the number of ova shed at the end of 

the breeding season (Newey, Thirgood & Hudson, 2004). Previously intrinsic fecundity 

was estimated from the intercept of a linear regression of ova shed on parasite intensity 

(Chapter 4, Appendix 4.1). This failed to account for non-normal errors in the residuals as 

a result of the count data and therefore we re-estimated intrinsic fecundity using a Poisson 

regression. To account for males in the population at an assumed ratio of 1:1, the estimate 

was halved. The point estimate matched the previous estimate of 2.3 young per year, but 

had a wider 95% CI of 1.1 to 3.4 young per year. 

 

δ, Parasite-induced reduction in hare fecundity (hare parasite-1) 

Hares which were treated for parasites prior to the breeding season had significantly lower 

parasite intensities and higher fecundity, measured as counts of ova shed by females 

(Newey & Thirgood, 2004). In a previous analysis of this data, parasite reduced fecundity 

was estimated from the slope of a linear regression of parasite intensity vs. ova shed 

(Chapter 4, Appendix 4.1). We regressed this data using a Poisson regression with an 

identity link function, which permitted us to obtain the slope of a linear regression but 

accounting for Poisson distributed errors. The absolute value of the (negative) slope gave 

an estimate of parasite reduced fecundity, once halved to include males, of 0.000017 hares 

per parasite. The lower plausible limit was taken as zero and the upper 95% confidence 

limit was 0.000166 hares per parasite per year. 
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Appendix 6.2: Numerical scheme for the spatial host-parasite model 

 

(1) Spatial Discretisation  

The real interval [0,L]  is divided into N intervals of length dx and we use the standard 

notation Pj(t) as an approximation of P(jdx,t) for j=0,1,..,N. Similarly defined is Hj(t).  

 

(2) Treatment of the hare equation 

The PDE is of a standard reaction-diffusion type and is discretised using a second order 

accurate central difference scheme, 

 

1 1

2

2
,     0,1,..., .

k
j j j

H

H H HH kH
D aP bH aH j N

t dx P kHδ
+ −− +∂  = − − + = ∂ + 

 

 

In order to satisfy the prescribed no-flux boundary conditions and to maintain second order 

accuracy, we set the fictitious values H-1=H1 and HN+1=HN-1.  

 

(3) Treatment of the parasite equation 

The parasite equation has a reaction term and a convection term. A first order upwind 

semidiscretisation could be used and that would maintain positivity but could also 

introduce a large amount of numerical diffusion, unless the spatial discretisation is 

sufficiently fine. On the other hand, high order spatial discretisations often lead to 

oscillations in solutions which may break the positivity requirement when the solutions 

values are small. Instead we use flux limiters, which we now describe. 

We denote the velocity of the convective flux at grid point j by 

 

,    0,1,..., .H
j

D H
w j N

H dx

∂= =  

 

We define the derivative of H at grid point j using central differences as standard. Let fj 

denote the semidiscretised convective flux at grid point j, i.e. 

 

,    0,1,..., .j j jf w P j N= =  
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and we introduce the semidiscretised general flux function 1/2jF +  which is a function of the 

fluxes f surrounding gird point j. Using a central difference approximation for the spatial 

derivative, the convection term can be approximated by the expression  

 

( )1/2 1/2

1
,    0,1,..., .j jF F j N

dx
+ −− =  

 

The semidiscretisation of the parasite equation then yields 

 

( )1/2 1/2
0

11
,    0,1,..., .j j

H P kP
F F bP j N

H H H kt dx

λ αµ α+ −
 +∂  − − − − −= + =  +∂   

 

 

We set 1/2 1/2 0NF F− += =  to ensure that the no-flux boundary conditions are satisfied. It no 

only remains to choose the flux functions 1/2jF + . To this end, we define the function  

 

1

1

,    0,1,..., ,j j
j

j j

f f
r j N

f f

ε
ε

+

−

− +
= =

− +
 

 

which encapsulates the ratio of the gradients of fluxes about grid point j. Note that the 

quantity ε is a small number that ensures that r j is well defined even when the fluxes 

surrounding gird point j are identical. For simplicity, we set ε=10-30. Consistent with the 

boundary conditions we set 1 1 0Nf f− += = . Finally we introduce a limiter function ( )rφ  

and define the general flux function for a non-negative velocity as 

 

1/2 1

1
( )( ),    0,1,..., 1.

2j j j j jF f r f f j Nφ+ −= + − = −  

 

However, for a negative velocity wj<0 we reflect all the indices about j+1/2 to obtain 

 

1/2 1 1 1
1

11
( ),    0,1,..., 1.

2j j j j
j

F f f f j N
r

φ+ + + +
+

 
= + − = − 

 
 

 

We choose a van Leer’s flux limiter function, namely 
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| |
( ) .

1 | |

r r
r

r
φ +=

+
 

 

Note that ( ) 0rφ =  would be equivalent to a first-order upwind discretisation. 

 

(4) Numerical integration of the ODE system 

The spatial discretisation described above reduces the PDE system to a system of ODES 

which we solve using a fourth order Runge-Kutta method. 
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Supplemental Figure 6.1. Periodic travelling waves (PTWs) generated within the 

empirical parameter plausible envelope. Parameters were empirical point estimates, as for 

Fig 6.4, except the parasite-reduced hare fecundity δ was increased to the empirically 

determined upper plausible limit (Table 6.2). (a, d) A snapshot (t=100) of the PTWs. (b, c, 

e, f) The PTWs in time and space. 

(a) (c) (b) 

(d) (f) (e) 
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Supplemental Figure 6.2. Slowing hare diffusion rate appears increases the spatial 

period and amplitude of periodic travelling waves (PTWs). Parameters as in Fig 6.5 except 

diffusion rate DH was reduced to 0.1. (a, d) A snapshot (t=100) of the PTWs. (b, c, e, f) The 

PTWs in time and space. 

(a) (c) (b) 

(d) (f) (e) 
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Supplemental Figure 6.3. Speeding up hare diffusion rate decreases the spatial period 

and amplitude of periodic travelling waves (PTWs). Parameters as in Fig 6.5 except 

diffusion rate DH was increased to 1. (a, d) A snapshot (t=100) of the PTWs. (b, c, e, f) The 

PTWs in time and space. 

 

(a) (c) (b) 

(d) (f) (e) 
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Chapter 7. General discussion 

Ecologists would like to understand how complexity persists in nature. In this thesis I have 

taken two fundamentally different routes to study ecosystem stability of model ecosystems: 

classical community ecology and classical population ecology. One of the major 

unresolved issues in community ecology is the relationship between ecosystem stability 

and complexity. Lacking a resolution to this fundamental question leaves community 

ecology in a poor position to argue for the conservation of natural diversity for the benefit 

of all species, including humans. Below I discuss how my results in Chapters 2 and 3 

contribute to this debate over stability - complexity relationships and its resolution. In 

classical population ecology, a major unresolved issue is the cause of non-equilibrium 

population dynamics. In Chapters 4 to 6 I use models to study the drivers of cyclic 

dynamics in Scottish populations of mountain hares, for the first time in this system. After 

summarising the findings I discuss whether a model has been identified which can be 

considered the right balance between abstraction and relevant detail for this system. During 

the discussion I deliberate on the utility of the work presented in this thesis, as this aspect 

has been of increasing importance to me during the course of my Ph.D candidacy. 

  

 

The stability - complexity debate 

In 1958 Charles Elton made the conjecture that the stability of an ecological system was 

coupled to its complexity (Elton, 1958). The expression in mathematical terms forced 

clarity and precision upon the conjecture, and led to definitions of stability and complexity. 

The earliest and simplest model systems were randomly constructed and exhibited a 

negative association between stability and complexity (May, 1971, Gardner and Ashby, 

1970). This finding sparked the stability - complexity debate and initiated the search for 

organising principles that enhanced stability in real ecosystems (Lawlor, 1978). 

Since the debate began, the negative relationship has been inverted in theoretical 

studies under numerous conditions. In this thesis, I identify further novel conditions for 

positive stability - complexity relationships: resilience increases with interactivity if there 

is high variance in the abundance distribution or if the abundance distribution is even but 

there is skew symmetry in the community (Jacobian) matrix (Chapter 2); the probability of 

permanence and local stability increases either with variance in the interspecific interaction 

strengths, or with the mean if the variance is held constant (Chapter 3). In fact it seems that 

one does not have to venture too far from the original randomly constructed model 

ecosystems to find conditions under which stability can increase with complexity. This 
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leads to the question of at what point do such ‘inversion conditions’ constitute a resolution 

of the stability - complexity debate? 

First, ‘inversion conditions’ must be supported by real food web patterns. Research 

presented here (Chapter 2 and 3) and in other studies (Jansen and Kokkoris, 2003, 

Kokkoris et al., 2002, Haydon, 1994, Haydon, 2000) has shown that the statistical 

properties (i.e. mean and variance) of the distribution of interactions within and between 

species have strong effects on the stability of model ecosystems. These can be related to 

real food web patterns: variance in the interspecific interaction strengths to the common 

community property of skew towards weak links (Berlow, 1999, Paine, 1992, Bascompte 

et al., 2006, De Ruiter et al., 1995), and variance in the intraspecific interactions to the 

ubiquitous unevenness of the relative abundance distribution (McGill et al., 2007). Skew 

symmetry and increasing mean with constant variance are inversion conditions which are 

more difficult to link to documented real patterns. 

Second, patterns must be reflected in real food web structure. Numerous studies 

have revealed that community and interaction matrices reflecting the structure of real 

communities have a special internal configuration which, when randomised, has 

detrimental effects on stability (Emmerson and Raffaelli, 2004, Yodzis, 1981, De Ruiter et 

al., 1995). Some promising structures which confer stability have been identified as 

common features of real food webs, such as slow and fast energy channels (McCann et al., 

1998, Rooney et al., 2006) and low biomass ratios in long trophic loops (Neutel et al., 

2002, Neutel et al., 2007). In the webs studied by Neutel et al. (2002), interaction strengths 

were organised in trophic loops such that weak links tended to aggregate in longer loops. 

This patterning made their food webs much more stable than randomised counterparts and 

explains three common observations in real food webs: predators tend to feed on several 

types of prey; there are many weak and few strong interactions between species (Berlow, 

1999, Paine, 1992, Bascompte et al., 2006, De Ruiter et al., 1995); and biomass generally 

decreases with trophic level (Elton, 1927).  

The work of Neutel et al. (2002) is significant because it demonstrates a link 

between structure, the uneven distribution of abundance, the uneven distribution of 

interactions and stability in real food webs: a rare achievement. An interesting aspect of 

their study was the way in which they determined the relative stability of real and 

randomised Jacobian matrices. Rather than assign all the elements of the Jacobian matrix 

and analyse local stability of the full system, they filled the off-diagonal elements and then 

determined how much intraspecific interaction (determined by the size of diagonal 

elements) was required for the matrix to become locally stable. The patterning Neutel et al. 

(2002) describe required only a relatively small degree of intraspecific stabilisation. While 
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their study focused on patterns in off-diagonal elements which (pretty much) guarantee the 

local stability of real matrices, I have studied theory of how patterns in the diagonal 

elements affect the relative stability of stable matrices (Chapter 2), and show that high 

variance in the diagonal elements can allow stability to increase with food web 

interactivity. Since intraspecific interaction strengths are (in part) determined by species 

abundances, the off-diagonal configuration of Neutel et al’s. (2002) Jacobians combined 

with the abundance pyramid reflected in the diagonal elements is a plausible architecture 

that allows complex food webs to persist and confers stability as their interactivity 

increases. 

Nevertheless, revealing the pattern is not the same as understanding the 

mechanism. A third requirement for the resolution of the stability - complexity debate is 

mechanistic explanation of the underlying processes which generate observed patterns (and 

their statistical properties) in real webs. These are much more complicated to show than 

community patterns and structure, which is why they are rarely uncovered in empirical 

studies (Ives and Carpenter, 2007). The majority of theoretical studies on stability - 

complexity relationships use the community (Jacobian) matrix to make associations 

between introduced changes or patterning in the matrix to changes in the eigenvalues of the 

matrix. The Geršgorin disc theory I adopt in Chapter 2 has assisted me a great deal in 

visualising how the properties of the matrix determine the distribution of eigenvalues. 

However, I am yet to grasp how the translation of ecological order into eigenvalues occurs. 

A mechanism has been proposed for models of special and small trophic structures where 

the community matrix was not used. McCann et al. (1998) used nonlinear models to study 

non-equilibrium dynamics and proposed that weak interactions stabilise community 

dynamics by generating negative covariances that dampen strong destabilising consumer-

resource interactions (McCann, 2000). Polis (1998) argues that research like that of 

McCann et al. (1998) is evidence that ecologists are progressing well in providing the 

“theoretical basis for the paradigm shift that is now taking over ecology”. The paradigm 

shift he refers to is the one from ‘complexity is destabilising’ to a ‘cohesive role of 

complexity’. I consider the work of McCann et al. (1998), along with that of Neutel and 

colleagues (Neutel et al., 2002, Neutel et al., 2007) to be about the closest theoretical 

community ecologists have come to resolving the stability - complexity debate.  

While there is growing evidence that the stability - complexity debate is 

progressing towards a resolution, community ecology has become increasingly subject to 

major criticism. Recently there has been considerable debate over whether community 

ecology is a weak science that should be abandoned because it is so complex and 

contingent that it can only very occasionally lead to generalisation (Lawton, 1999, 
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Simberloff, 2004). A more long-standing criticism is the heavy reliance on the assumption 

that communities are at equilibrium and assessment of stability is often made only close to 

the equilibrium point. Judson (1994) sums up the argument that, with an equilibrium 

approach, generality is a holy grail: 

“If even the simplest nonlinear equations can often give rise to chaotic and therefore intrinsically 

unpredictable behaviours (May, 1974), then the hope of deriving simple, general laws for systems in 

which nonlinearity is the norm must be illusory”  

However we can circumvent the understanding of complicated quantitative dynamics with 

a global property called permanence, at least in the restricted, though widely used Volterra 

formulation of the Lotka-Volterra (LV) equations. In Chapter 3 I find that the probabilities 

of local stability and permanence correlate closely with changing ecosystem complexity 

suggesting that local stability is a better measure of persistence than previously thought. 

We should therefore have greater confidence in qualitative results from local stability 

analysis, such as stabilising food web structure of Neutel et al. (2002, 2007) and inversion 

of the stability - complexity relationship by skewed species abundance distributions 

(Chapter 2). However, the question which will always follow from results on such grossly 

simple equations is whether the ball game is completely different when realistic non-

linearities (e.g. functional responses other than type I) are incorporated. I was relieved to 

find the close correlation between local stability and permanence (otherwise I would have 

had cause to question much of theoretical ecology) and may find myself relieved again.  

Although much progress has been made towards a resolution of the stability - 

complexity debate, the complexity of the problem continues to divide ecologists. A recent 

review of stability-diversity (species richness) relationships by Ives and carpenter (2007) 

sums up some of the arguments. First, in simple theoretical models, different measures of 

stability can show opposite stability-diversity relationships in response to the same 

perturbation. Moreover, not all empirical studies have found positive stability-diversity 

relationships – of 59 reported diversity-stability relationships from 52 studies, 14% found 

negative associations and 17% found no or ambiguous relationships. Ives and Carpenter 

(2007) conclude bleakly that they do not find, and we cannot expect, a resolution:  

“…the absence of a resolution reflects the complexity of the problem. Much of the complexity 

derives from the multiplicity of diversity-stability relationships, depending on the definitions of 

diversity and stability and on the context in which an ecosystem is perturbed. We cannot expect a 

general conclusion about the diversity-stability relationship”. 

The problem is complicated further by the fact that ecological complexity forms just a 

fraction of many forces that govern stability in ecosystems, others include species 

composition, productivity, disturbance regimes, climate and edaphic factors (Tilman, 



General discussion  142 

 

1999). The future looks even more nebulous when we start to worry how to couple 

dynamics of natural systems with human socio-economic systems (Liu et al., 2007).  

What is also concerning is how rifts in opinion impact the perception of community 

ecologists to policy makers and the public. In 1999, the Ecological Society of America 

released a pamphlet on the importance of biodiversity to ecosystem functioning (Naeem et 

al., 1999). This was called a “propaganda document” by Hutson and other sceptics of 

ecosystem experiments of some of the authors of the pamphlet (Tilman, Lawton, Naeem 

and others), with one sceptic (Wardle) claiming “the results of these studies provide just 

the answers that many environmentalists want to hear” (Kaiser, 2000). Of course criticism 

is justified if the science is not balanced, but the rift was not about whether a large pool of 

species is required for ecosystem functioning, but rather how this works – by lots of 

species increasing the recruitment of a few key component species, or by the facilitation of 

community properties (Loreau et al., 2001). On a positive note, it is sometimes said that 

debates and rifts can be seen as a sign of health in a young field in which ideas are growing 

and paradigms challenged. On a less positive note, I am concerned that ecologists are not 

making a strong case for Elton’s concept of a “wise principle of co-existence between man 

and nature” in the protection of diversity for the promotion of ecological stability. Polis 

(1998) reminds us of what would be possible:  

“The understanding that complexity is vital to the integrity and stability of natural systems allows 

ecologists to argue, more coherently, why we must preserve the diverse elements and species that 

coexist in a healthy, sustainable and well-functioning ecological community. Indeed, as we enter 

what E.O. Wilson calls the ‘century of the environment’, one crucial function of ecology is to 

provide an unbiased, scientific basis on which political and social decisions can be made about how 

best to treat our natural environment”. 

From my generation’s perspective, Elton’s warnings of the danger in the 

simplification by humans and human domination of ecosystems are playing out. Given that 

the stability - complexity debate is neither sufficiently precisely posed or clearly resolved 

enough to form the basis for policy development, the argument for the conservation of 

natural diversity for the benefit of all species must be coming from elsewhere. The 

alternative argument is fundamentally the same as Elton’s but couched in a different 

language: human well-being depends on ecosystem services which in turn depend on 

biodiversity (Millennium Ecosystem Assessment, 2005, Knee, 2008, Daily, 1997). The 

value of ecosystem services has been illustrated primarily through their loss or disturbance 

and through efforts to substitute them with technology (Daily, 1997). 

The challenge ahead is to generate results that are useful to society. Vitousek et al. 

(1997) give a dramatic statistical summary of the extent of current human domination of 
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the Earth, and Lubchenco (1998) expresses how these changes “are so different in 

magnitude, scale and kind from past changes that even our best records and models offer 

little guidance concerning the scale or even the character of likely responses to these 

challenges”. Lubchenco (1998) calls for a ‘new social contract for science’ that will require 

much of science to refocus its energies and talents to produce results that are useful to 

society. In the UK, ecologists must form a stronger link to policy in order to face the major 

national issues of environmental concern, which include agriculture, marine fisheries, 

climate change, ecosystem function and land management (Sutherland et al., 2006).  

What approach to studying ecology is best for facing these challenges? Policy 

makers want answers to general questions (Sutherland et al., 2006), but generalisation is 

not a strength of community ecology (Lawton, 1999, Simberloff, 2004). The next section 

discusses Chapters 4-6 in which a population ecology approach was taken to study the 

stability of interacting species. The transition from simple, strategic models of community 

ecology was necessary to be able to include the necessary level of detail in the interactions 

between two populations. However, while a population ecology approach offers empirical 

tractability, it has a poor track record in natural resource management: the global fisheries 

crisis is testament enough that future species management outside of the ecosystem context 

is out of the question. We must study real communities but we appear largely unable to do 

so. Perhaps one direction forward may be to find a middle ground between the two 

disciplines of population and community ecology. 

 

 

Periodic fluctuations in the numbers of mountain hares 

The cyclic population dynamics of mountain hares in Scotland have recently gained 

attention because field experiments had identified a possible causal factor for the cycles: a 

highly prevalent nematode parasite that reduced the fecundity of female hares (Newey and 

Thirgood, 2004, Newey et al., 2004). The work presented in Chapters 4-6 constitute a first 

attempt at using modelling techniques to explore the question: ‘Can parasites drive 

population cycles in mountain hares?’ This question forms the title of Chapter 4, in which I 

tested whether realistic hare stable limit cycles could be generated with a simple strategic 

ODE model parameterised with the best available empirical data. I found that parasitism 

could not account for hare cycles. This verdict left three options: either the 

parameterisation was inadequate, there were missing important biological details or simply 

that parasites did not drive host cycles. The remaining chapters focused on incorporating 

previously ignored ecological complexity that may strongly influence the dynamics. An 

individual based model was developed to envelop a lot of this complexity, and found that 
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maternal effects could be weakly destabilising (increasing the propensity to cycle, but not 

by very much) and that stability was very sensitive to the parasite transmission mechanism 

(Chapter 5). Another important ‘detail’ missing from the strategic models of classical 

population dynamics was space. In collaboration with Steve Webb, a mathematics lecturer 

at the University of Strathclyde, we extended the non-spatial model and found some 

intriguing spatiotemporal patterns, although it is not clear as yet whether it increases the 

likelihood of periodic behaviours in this system (Chapter 6) and further analysis of the 

spatial model that is not presented here suggests it does not. It must be concluded, 

therefore, that the question ‘can parasites drive mountain hare population cycles?’ has not 

yet been answered. The following discussion touches upon some of the possible reasons 

for this and evaluates whether the process has been useful nonetheless.  

In order to understand, predict and manage nature, Levins (1966) asserts that 

ideally we would like our models to maximise generality, realism and precision, although 

this is impossible and sacrifices have to be made. In the study of stability - complexity 

relationships in communities of interacting species, I sacrificed precision for the sake of 

generality. This was appropriate because my interests lay purely in qualitative results and I 

could only obtain model parameters from fabricated probability distributions. Whether the 

models could be considered realistic depends on which of Lotka’s or Volterra’s perspective 

on the LV equations was adopted. In order to model the quantitative population dynamics 

of mountain hares, generality had to be sacrificed for precision. This was appropriate 

because my questions were quantitative and I had access to real data from which to 

estimate model parameters. While realism was arguably achieved in the IBM model, I 

think that in order to answer the question at hand maximising realism in this system is not 

the appropriate approach. Rather, a different strategy is required - to find the right balance 

between abstraction and relevant detail (Berlow et al., 2004).  

The usual technique for analysing the behaviour of generic models is to increase 

the complexity of the simplest plausible model in small increments and to examine the 

significance of that change in stepwise fashion. In contrast I have swung between the two 

extremes, from the generic ODE model to the detail-rich IBM. Another way of expressing 

my approach was that it started with Einstein’s dictum “models should be as simple as 

possible, but not more so” and in one step reached almost all the way to "the best material 

model of a cat is another, or preferably the same, cat" (Rosenblueth and Wiener, 1945). As 

an attempt at justification therefore, the IBM route was in part taken because my 

supervisors encouraged me to gain experience of developing a highly complex model, and 

the process did make me appreciate the relative ease of managing and interpreting a simple 
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analytical model. Having gained this experience my future approach to modelling will be 

more incremental. 

To consider the utility of the modelling work in aiding understanding of mountain 

hare ecology I recently asked the empirical biologist who instigated our collaboration, 

Scott Newey, to describe his perception of the impact of the modelling component: 

“The initial impetus for the Anderson & May hare-parasite modelling work was a question from a 

colleague about whether the increased fecundity observed in parasite reduced females was sufficient 

to drive cycles, especially given the small effect on survival. This question was subsequently asked a 

number of times when ever I gave a talk on that work. This pre-dated the time-series work, so we did 

not know any of the detail about hare cycles. The impact of your modelling work has to been to 

show that given our current understanding parasites alone are not sufficient to drive cycles that are 

consistent with the nature of cycles observed in time-series of mountain hare harvest data, has 

highlighted that other mechanisms are likely involved, and our paucity of knowledge on the parasite 

side of the story. 

 The initial stimulus for the IBM work came more from a hypothesis testing point of view. In 

that a number of colleagues argued that the most, or the only, important parasite mediated affects 

may be indirect and act through influencing the timing of breeding and quality of young. A 

secondary question was whether we could assess how important the timing and productivity of the 

first litter was to overall population dynamics. Here I think the important finding was that delayed 

effects have a destabilising effect, reducing the "needed" parasite impact, but in themselves only 

weakly destabilising. Again the IBM highlights areas of ignorance and areas of future work, and the 

finding that the transmission mechanism is potentially so critical to the model behaviour is also 

really interesting (though how on earth you can ever research this in the field is some what 

perplexing). Again the IBM suggests that parasites are not the whole story. 

 Overall the models suggest that parasites likely play a role in destabilising hare populations but 

are not the whole story, and that there is a need to better understand the parasitology and prenatal 

effects of parasites.” 

In conclusion, I think that the primary aim of future modelling work on mountain 

hares should be to find a model that is considered by theoreticians and empiricists alike to 

be ‘the right balance between abstraction and relevant detail’. During the review of the 

PRSB paper one of the reviewers Kyrre Kausrud, a PhD student working on lemming 

cycles at the Centre for Ecological and Evolutionary Synthesis (CEES) at the University of 

Oslo, suggested some intermediate dynamical models midway in complexity between the 

ODEs and IBM. Preliminary investigation of these models indicated that adding 

complexity to the ODE model meant parameters did not need to be stretched as far from 

their current empirical estimates to obtain the observed hare dynamics. If an appropriately 

balanced abstraction-detail model was identified it could be a tool for investigating the 

major pressures on the persistence of individual mountain hare populations in Scotland, 
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including large-scale culls for tick control (Kinrade et al., 2008), changes in upland 

ecosystem management practices (Kerlin, 2008) and climate change (Anderson et al., 

2009). We may well need to increase the dimensionality of the model to capture the 

fluctuations of mountain hares or to study the impact of the pressures hares are facing. This 

would require transition from a single species population focus towards a more 

community-based perspective, and once again into the briar patch between population and 

community ecology. 
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