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Abstract

This thesis focuses on the issue of people in software maintenance and, in particular,

on software immigrants – developers who are joining maintenance teams to work with

large unfamiliar software systems. By means of a structured literature review this thesis

identifies a lack of empirical literature in Software Maintenance in general and an even

more distinct lack of papers examining the role of People in Software Maintenance. Whilst

there is existing work examining what maintenance programmers do the vast majority of it

is from a managerial perspective, looking at the goals of maintenance programers rather

than their day-to-day activities. To help remedy this gap in the research a series of

interviews with maintenance programmers were undertaken across a variety of different

companies. Four key results were identified: maintainers specialise; companies do not

provide adequate system training; external sources of information about the system are

not guaranteed to be available; even when they are available they are not considered

trustworthy. These results combine together to form a very challenging picture for software

immigrants. Software immigrants are maintainers who are new to working with a system,

although they are not normally new to programming. Although there is literature on

software immigrants and the activities they undertake, there is no comparative literature.

That is, literature that examines and compares different ways for software immigrants

to learn about the system they have to maintain. Furthermore, a common feature of

software immigrants learning patterns is the existence and use of mentors to impart system

knowledge. However, as the interviews show, often mentors are not available which makes

examining alternative ways of building a software immigrants level-of-understanding about

the system they must maintain all the more important. As a result the final piece of work

in this thesis is the design, running and results of a controlled laboratory experiment

comparing different, work based, approaches to developing a level-of-understanding about

a system. Two approaches were compared, one where subjects actively worked and altered

the code while a second group took a passive ‘hands-off’ approach. The end result showed

no difference in the level-of-understanding gained between the subjects who performed the

active task and those that performed the passive task. This means that there is no benefit

to taking a hands-off approach to building a level-of-understanding about new code in the

hostile environment identified from the literature and interviews and software immigrants

should start working with the code, fulfilling maintenance requests as soon as possible.
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Chapter 1

Introduction

Although the exact figure varies, current research [40] states that the majority of a soft-

ware system’s lifetime is spent in the maintenance phase. However, relative to this, the

least amount of research in Software Engineering has been done on the topic of Software

Maintenance. Furthermore, many still reference empirical research from 30 years ago [45]

as if it is current fact [68, 78, 61], despite the current state-of-practice having moved on.

This makes the examination of Software Maintenance of vital importance in the field of

Software Engineering as a whole.

Before informed decisions can be made about how to change, augment or otherwise aid

the Software Maintenance process, empirical data must be gathered on what happens

when Software Maintenance takes place. Given that Software Maintenance is a field that

is driven by the existence of actual systems needing to be maintained, the empirical data

must be continually updated or reduce in relevance over time. New approaches must be

compared, not just with other advocative research, but also against current practices to

discern their utility.

However, like Software Engineering and Computing Science as a whole [86, 76], Software

Maintenance has a demonstrable lack of papers containing either empirically based work

or empirical validation of work. Furthermore, examining the subject of the work shows

that the majority of Software Maintenance research focuses on the Product and Process

elements of Software Maintenance, with papers examining People forming less than a

tenth of all work published in the mainstream literature. This is a surprising result given

the vast reported differences in the ability of professional programmers [59]. In some

cases programmers were up up to 28 times more efficient than their peers. This seems

to show the great importance of People in the overall picture of Software Maintenance

yet, as stated, there is a lack of research focused on them. Particularly lacking is research

examining what maintainers do on a day-to-day basis: information that would surely be

useful in trying to formulate research goals to aid maintainers. Whilst there is data on

what type of work maintainers produce, this is a managerial overview of maintainers and

does not deal in the subtle complexities and practicalities that are involved in actually

performing maintenance.
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Although there is a need to increase the general body of knowledge about maintainers,

there is also scope to address specific areas. The topic chosen for this thesis is that of soft-

ware immigrants (those brought in to help maintain systems as described below in section

1.1.2). Software immigrants have a need to develop a level-of-understanding about the

system they have to maintain, yet they come into an environment that lacks any useful

sources of information. Although there is assorted literature of different approaches to

aiding software immigrants gain a level-of-understanding about a sub-system, there is a

lack of comparative literature that examines the utility of different approaches.

As such, after providing a solid foundation for the work, this thesis will present the work

of performing some comparative analysis of different approaches to software immigrants

building a level-of-understanding of a system.

1.1 Definitions

1.1.1 Hierarchy of Knowledge

I classify a programmer’s knowledge according to the pyramid shown in figure 1.1. Tech-

nical knowledge is the command and understanding of programming languages, databases

and related general programming knowledge. Domain knowledge is knowledge about types

of software systems and the problem areas they are addressing, for example, internet

banking systems, and how one would be designed and implemented. System knowledge is

knowledge about a particular software system that is in a domain, for example, Company

X’s internet banking system. Sub-system knowledge is specific, code level understanding

of a particular facet of a particular system, for example, the transaction processing part

of Company X’s internet banking system.

Sub−System

System

Domain

Technical

Figure 1.1: The Knowledge Pyramid

1.1.2 Software Immigrants

Software Immigrants are programmers who have just joined a team working on an es-

tablished software system. This term was first defined by Sim and Holt [63] in their

examination of how software immigrants learn about their new job, and is examined in
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greater depth in chapter 4. Software immigrants are not synonymous with novice pro-

grammers in that they can have many years of professional programming experience before

being brought to work with the current system.

Software immigrants will, for the most part, have firm technical knowledge. Some will

be familiar with the domain they are working in and will be able to carry over domain

knowledge. A few will have previously been working on a different part of the system and

so will be able to carry over system knowledge. No immigrant, however, will have sufficient

sub-system knowledge to be considered an expert on the sub-system. It is in aiding the

development of the software immigrants’ level-of-understanding about a sub-system that

is the specific topic investigated by this thesis.

1.1.3 Level-of-Understanding

The term Program Understanding (and the interchangeably used term Program Compre-

hension) is overloaded, which results in confusion for even experts in the field. Program

Understanding is used to refer to two related but conceptually very different ideas. The

first is the modelling and examination of what happens in a programmers mind as they

build up knowledge about a piece of code. In this sense, Program Understanding is refer-

ring to a process. The other topic is examining what a programmer knows after a period of

time working with a program: the end result rather than the process of how the knowledge

was obtained. So for example, the experiments of Daly et al. [17] and von Mayrhauser et

al [81] are both referred to as program understanding experiments, even though they are

measuring entirely different things. Therefore, to criticise the Daly et al. experiment on

the grounds that it fails to analyse the thought process of the subjects is a nonsequitur.

The literature seems to have more papers using of the term Program Understanding to

mean the first idea. To avoid confusion I will follow this convention. For the second

concept I will use the term level-of-understanding.

1.2 Thesis Statement

The environment in which software immigrants have to work is often more challenging

than common belief imagines. Limited empirical work does not show what are the best

approaches for software immigrants to take. It can be shown that the best way for software

immigrants to build a level-of-understanding about a system is to start working with the

code as soon as possible.

1.2.1 Measures of success

To test the thesis this dissertation will present a range of work which can be evaluated

against the following measures of success:

• Present evidence on the current state of mainstream software maintenance research

in relation to empirical research to show a gap in the literature

• Perform general work to help close the gap
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• Identify unresearched problems of software immigrants

• Compare and contrast different approaches for software immigrants to develop a

level-of-understanding about a system

This thesis is founded upon the assumption that there is insufficient empirical work being

performed in Software Maintenance. To validate this assumption, evidence is provided by

means of a systematic review of research trends in Software Maintenance. After demon-

strating a lack of literature, research that fits in that gap is performed, to use as a basis

for further research. This general work suggests a specific line of specialised enquiry which

itself needs to be further researched to understand its scope and problems. Finally, having

identified and specified a specific area of research, the final piece of research, which goes to

justifying the thesis statement, is performed by the means of a quantitative experiment.

1.3 Thesis Structure

Chapter 2 contains an analysis of the classic pieces of software maintenance research while

drawing attention to the gap of knowledge around People in software maintenance. A sys-

tematic literature review is presented to formally show the lack of empirical and People

oriented papers in mainstream software maintenance research.

Chapter 3 presents the results of interviewing a series of maintenance programmers, to

try and help remedy the lack of empirical papers about maintainers. Highlighted in this

chapter are the interesting research questions surrounding software immigrants.

Chapter 4 is a second literature review which focuses purely on the research published on

software immigrants, comparing it with the results of the interviews.

Chapter 5 presents the basis for designing, running and measuring the results of Software

Engineering experiment dealing with level-of-understanding issues.

Chapter 6 shows the design, implementation and results of a laboratory experiment

to measure the differences in programmers’ level-of-understanding from taking different

learning approaches to an unfamiliar system while.

Chapter 7 presents further possible work which could use this thesis as a basis.

Chapter 8 presents a summary and conclusions of the thesis.

1.4 Contribution

The contribution of this thesis can be split into three sections:

• Structured Literature Review — The research trends review of the literature is a

unique piece of work which bears comparison to similar studies in the domains of

Software Engineering and Computing Science. It paints a clear picture of the state
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of empirical research in software maintenance and it motivates the remainder of the

work in the thesis.

• Maintenance Programmer Interviews — The interviews are a partial replication of

the work of Singer [64] which showed broadly similar results. Due to the confirmation

of results of the replicated sections, this allows more confidence in the generalisability

of the results in the non-replicated section of the interviews. The interviews show

that the potential environment for software immigrants can often be harsher than

common belief and research in the field assumes.

• Finally, there is the experiment. With extensive reference to established experi-

mental guidelines it is shown to be a rigorous and robust design which uses the ap-

propriate statistics of survival analysis to calculate the quantitative results. These

are the necessary results to support the thesis statement of section 1.2. The design

and main results of the experiment have been presented at Empirical Assessment of

Software Engineering 2007 as Hutton and Welland [33].
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Chapter 2

Literature Review

2.1 Introduction

This chapter is divided into two main sections. The first starts with a brief overview of

what constitutes Software Maintenance, and then gives a thorough examination of the

two key pieces of research in the field: the Lientz, Swanson (& Tompkins) surveys and

Lehman’s Laws of Evolution. The second section poses two questions about the nature

of Software Maintenance research: whether there is enough empirical work and if there

is an equal proportion of work examining People in Software Maintenance as there is

examining the Product and Process aspects. These two questions are answered by means

of a systematic literature review of mainstream Software Maintenance publications.

2.2 What is Software Maintenance

Software Maintenance is the continued change of a computer program after it has been

released to users. The term covers not just the fixing of bugs and errors but the adap-

tation of the program to a changing environment and the accommodation of requests for

improvements from both within and outside the maintenance team.

2.2.1 What are the Components of Software Maintenance

Software Engineering is the study of People, Processes and Products (the 3Ps) [14]. The

study of Software Maintenance, being a subset of Software Engineering, is therefore also a

study of People, Processes and Products. ‘People’ covers everyone involved in the main-

tenance process: managers, programmers, testers, deployment specialists and customers.

‘Processes’ covers not only the formal processes that maintainers undertake (e.g. Water-

fall, Spiral model, XP etc.) but also tool usage and programming techniques. ‘Products’

covers the software system as well as all artefacts the maintainers use while carrying out

processes, such as documentation, maintenance request forms, and system logs.

The two classic pieces of research in Software Maintenance are the Lientz, Swanson (&

Tompkins) surveys of maintenance work [45, 44] and Lehman’s Laws of Software Evolution

[43]. The various papers that make up these two pieces of research are cited by hundreds of

6



other papers, and are the only two sources referenced in the software maintenance chapters

of the major Software Engineering text books [68, 78, 61]. The Lientz & Swanson survey

covers Processes and Product issues, and is cited by well over 3501 separate papers, while

Lehman’s Laws are primarily focused on Product issues with some material on Processes,

and is also cited by more than 350 papers. However, there is no ‘classic’ study, cited by

hundreds of papers, that deals with the People issues in Software Maintenance.

2.3 The Lientz, Swanson (& Tompkins) Surveys

There are two classic pieces of research in the field, which both take a management

level view of maintenance activity: i.e. they study what managers think is occurring

during maintenance. These are the Lientz, Swanson & Tompkins survey of 69 companies

from various sectors published in 1978 [45] (to be known as LST for brevity), analysis of

which made up the bulk of Tompkins PhD thesis, and the Lientz & Swanson larger scale

follow up survey of 467 companies, published in 1980 using the same methodology [44]

(to be known as LS). These surveys uncovered a large amount of information about how

maintenance was regarded at the time. Amongst all the data there are three key measures:

the percentage of time spent working on a system which is dedicated to maintenance; the

distribution of work over different types of maintenance; and a ranking of severity of

around 25 different problem areas. The first two results are widely referenced, while the

third receives rather less attention, despite the interesting information that it contains.

Nosek & Palvia (NP) performed a replication of the LS study with 51 companies in the

late 1980s [51] finding broadly similar results. For ease of reference, these three surveys,

using as they do identical methodology, will be referred to collectively as the original

surveys.

2.3.1 Percentage of Time Dedicated to Maintenance

One of the key results of the surveys is the proportion of time that is spent maintaining

systems rather than performing new development. The figures for this result in the three

studies are given in table 2.1. The Accuracy of Data column represents the percentage

of respondents who stated that their response was “Reasonably Accurate, based on good

data”. The other two categories were “A rough estimate, based on minimal data” and

“A best guess, not based on any data”.

The NP study shows that in the ten years between its survey and the LS survey, there was a

statistically significant increase in the proportion of time being spent on maintenance. The

LST study notes that their result of 48% is low in comparison to contemporary estimates.

Yet, at the same time, they also report that over 20% of their respondents allocated 85%

of their effort towards maintenance. This is a very large deviation from the average, and

in fact means that the average for the other 80% of respondents would be around 38%,

thus putting some of the respondents well below even the lowest estimates for effort in

software maintenance. The LS survey breaks down the average time by industrial sector,

which results in a range of proportions from 65.26% down to 26.25%, with a standard

1Citation numbers obtained by use of Google Scholar http://scholar.google.com
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deviation of around 23 points: this would leave some groups doing almost no maintenance

at all. The industrial sectors were split by a manufacturing/service industry distinction,

with metal fabrication, paper working and petroleum based industries being the largest

contingents of the Manufacturing industries and insurance, banking and governmental

departments being the largest Service industry groups. In general, Service industries

performed more maintenance than Industrial industries, with the the top groups being

data processing services, data processing equipment manufacturers, investment, banking

and insurance with a rage of percentages from 65% to 55%, while the bottom groups were

‘other service industries’, printing/publishing, chemical/allied, textiles and consultancy

with a range of 41% to 26%. Koskinen’s 2003 review of the literature on the topic leads

him to conclude that modern average maintenance effort has now easily risen to the area

of 70%, a view also shared by Pigoski [53]. This suggests that the figures produced in the

original surveys for the proportion of time spent on maintenance have become dated and

should only be used as a historical context to show a rising trend.

Study Percentage Accuracy of Data
LST 48.0 82.6
LS 48.8 52
NP 58 42

Table 2.1: Percentage of Department Time Spent on Maintenance (with accuracy of
answers)

2.3.2 Work Distribution over Maintenance Types

Probably the most widely quoted result for the LST and LS studies is the distribution

of work amongst four categories identified by Swanson: Perfective, Adaptive, Corrective

and Other [72]. Perfective maintenance is defined as improvements to documentation,

improving the efficiency of the system for non user requested reasons, and adding user en-

hancements. Adaptive maintenance is altering the system so it can accommodate change

to the environment in which it operates. Corrective maintenance is routine debugging and

emergency fixes. The ‘Other’ category covers tasks that result in change to the system

that do not fit into the first three categories.

The Nature of Swanson’s Categorisations

While the figures for these studies are widely quoted, there appears to be almost as

widespread as confusion as to exactly what the figures are. Of the major Software En-

gineering textbooks, Van Vliet [78] refers to the LS survey, but changes the figures by

whole percentage points. Schach [61] references the LST paper for the figures rather than

the larger scale LS study of the same period. Sommerville [68] references the LS and NP

studies but gives the numbers from LST, whilst folding the Other category into the figure

for Perfective maintenance.

These textbooks all focus on one particular aspect of the results: that fixing bugs is a

small proportion of what maintenance programmers do, while changes to functionality

(Adaptive and Perfective maintenance) are more important. However, I feel that this
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ignores the original tone of the Swanson categorisations, which make it clear that Correc-

tive and Adaptive maintenance should be considered together as unavoidable sources of

maintenance whilst Perfective maintenance represents voluntary reasons to make changes.

I think that, therefore, the more useful interpretation of the figures is that the LS and

NP surveys show that unavoidable sources of change are almost as common as voluntary

forms of change. I think that this is also the more important result from a managerial

point of view, as a knowledge of the relative amount of unavoidable work is of more use

for determining how well the department is performing than focusing on the amount of

Corrective maintenance performed. This is particularly pertinent considering that the

figure for Corrective maintenance seems to be highly dependent on system characteristics

(see the following section).

Interpreting changes between the LST/LS studies and the NP study is made difficult since

NP only presented partial data. They provide all the information needed to calculate the

Corrective maintenance category but exclude three subcategories needed for calculating

the Perfective and Adaptive percentages. As can be seen there is an increase in the figure

for Corrective maintenance over the three surveys, a difference of 35% between the LST

and NP studies.

Study Perfective Adaptive Corrective Other Accuracy of Data
LST 60.3 18.2 17.4 4.1 49.3
LS 51.3 23.6 21.7 3.4 30.0
NP 42+ 17+ 23 NA NA

Table 2.2: Percentage of Work Distribution by Maintenance Category (with accuracy of
answers)

Empirical Studies of Work Categorisation Based on Primary Sources

The data from the LS, LST and NP surveys were obtained by the same method: a

questionnaire administered to the department managers who based their answers on not

particularly good data. It would be interesting to determine if these figures would be vali-

dated by examining work categorisations in another, more direct, way. Three studies offer

this opportunity: Schach et al. [60], Mockus & Votta [47], and Abran and Nguyenkim [2]

which will be referred to as SEA, MV & AN respectively.

SEA took the CVS history for three products (gcc, the Linux kernel and RTP), and

hand classified every change to the system at both code and module level into Perfective,

Adaptive, Corrective or Other. The MV study started by producing a piece of software

that automatically classified change-log entries in a company’s CVS system, and then

used it to classify the work performed on a software system that the company maintained

into the categories Adaptive, Corrective, Perfective, Inspection and Other. The AN study

had access to two years’ worth of maintenance request and fulfilment reports from a com-

pany covering several different systems. These reports were then classified into Perfective,

Adaptive, Corrective and a 4th category, User Support. They do not include an Other

category.

9



Both AN and MV use the Swanson classifications differently from the way they were orig-

inally used. This is understandable given that the original Swanson classification does

not include User Enhancements, however, the LST study makes it quite clear that User

Enhancements are considered Perfective maintenance, saying specifically: “Perfective:

user enhancement, improved documentation, recoding for computational efficiency”. The

eight original sub-classifications that the original surveys use are: Emergency Program

Fixes, Routine Debugging, Change to input/output, Change to hardware/software, User

Enhancements, Programming Documentation Improvements, Computational Efficiency

Improvements, Other. Whilst the AN study states that they are using the Swanson cat-

egorisations, including a paraphrasing of the Adaptive category, their presentation of the

results does not match with this claim. At first glance (see table 2.3) their restatement

of the figures from the LS study looks like they have moved the User Enhancement sub-

classification from Perfective to Adaptive. However, they have done more than that: they

have also moved “Accommodation of change due to hardware and software change” to the

Perfective category, something that is totally unsupported either by Swanson’s original

classification or AN’s own restatement of the category. The MV study also redefines terms,

making Adaptive consist of User Enhancements as well as the Swanson sub-categories.

Furthermore, along with Perfective, Adaptive, Corrective and Other they introduce a 5th

category, Inspection, which covers changes to the code which were made due to code

inspections being performed. They state that these changes cover both Perfective and

Corrective changes.

Perfective Adaptive Corrective User Support
16 59 22 3

Table 2.3: Abran and Nguyenkim Restatement of Lientz and Swanson Study

Of greatest concern when it comes to comparing the results of the AN study to the original

surveys is their relabelling of the original surveys’ category Other as User Support. The

AN Study defines User Support as “work orders [which] do not request changes but

only information on the software components”. User Support requests do not in and of

themselves result in any work being done to the system. The original surveys did not

measure this, nor did they set out to measure it [73]. As a result, comparing, say, the AN

percentage for Corrective maintenance against the LS figure should not be done directly as

this User Support category does not exist in the original surveys’ figures. This additional

category will skew the other numbers in a downward direction, so I have attempted to re-

normalise the data to aid comparison with the other studies. I have done this by removing

the User Support category from the figures and then recalculating what proportion of work

each of the remaining categories contribute. In contrast to this, the SEA survey states

that it will use the Swanson categorisations as used in the original surveys, and does so.

Analysis of Differences

Given the difficulty of comparing the AN and MV figures to the original surveys’ figures,

I have used my suitably re-normalised figures for the AN study to provide a comparison

of Corrective with non-Corrective maintenance over all the studies in table 2.4. This is

10



the only direct comparison that can be made between the surveys. As can be seen, the

three primary source studies all produce a larger figure for Corrective maintenance than

the original studies, and, in the case of SEA, massively so. There are several possible

reasons for this. The LS study noted a correlation between system size and the amount of

Corrective maintenance performed, in that the larger the system was, the more Corrective

maintenance occurred. The average LS system was 53,000 lines of code. The average NP

system was 204,000 lines of code. In SEA, gcc is 850,000 lines of code, the Linux kernel

is around 1.8 million lines of code, while RTP is only 12,000 lines of code. RTP was the

system in the SEA study that most closely matched the LS survey, but the results were

still very significantly different (Adaptive: 13.8%, Corrective 42.8%, Perfective: 26.8%,

Other 16.7%). The MV system studied was two million lines of code. The AN study

examines four major programs (of over one million lines of code) and a selection (total

figure unreported) of packages and small applications. The small applications and pack-

ages had a (non re-normalised2) Corrective maintenance figure of 18% as opposed to the

large applications’ Corrective maintenance figure of 40%. This suggests, as the LS study

notes and the MV study states, that vastly increased system size results in a shifting of

the work proportions, increasing Corrective maintenance.

Another possibility (also briefly touched upon by the AN study) is that certain types of

software could have their own maintenance profiles, which are separate from the system

quality. The top types of systems surveyed by LS were Payroll Systems, Order Entry

and Bill & Invoicing. These types of systems tend to run in a predictable manner. gcc

and Linux, on the other hand, are both highly configurable pieces of software which

will receive extensive testing of corner cases in their day-to-day operation. Given the

entirely different characteristics of an operating system kernel and Payroll systems, it

seems reasonable to suggest that the type of maintenance work they might generate (both

voluntary and unavoidable) would be different. In the case of Linux and gcc, this would

result in a far higher figure for Corrective maintenance, but this should not cause concern

as the higher figure would be expected. These system-specific signatures could have been

hidden by the averaging of results in the original surveys, in a similar manner to the way

the LST average maintenance effort of 48% hides the departments with a maintenance

effort of 85%+. None of the original studies provide the standard deviations for their work

proportions, and the figures are also produced for the department as a whole rather than

individual programs, making it impossible to definitively determine if this is the case.

Study Corrective Percentage Non-Corrective Percentage
LST 17.4 82.6
LS 21.7 79.3
NP 23 77
AN 26 74
MV 33.5 66.5
SEA 70.1 29.9

Table 2.4: Corrective vs Non-Corrective

2The AN study lacks the data to accurately re-normalise these figures. However, the figures do not
need to be re-normalised in order to demonstrate the differences that are shown within the study itself.
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Definitions

Given the confusion over the naming and attribution of work categories, I feel it is incum-

bent on me to make clear what I consider the various categories to be. I would like to

use the Munro categorisation [48], which consists of four categories: Perfective, Adaptive,

Corrective and Preventative. In the Munro classifications, Perfective maintenance con-

sists solely of User Enhancement; Adaptive and Corrective are exactly the same as the

Swanson definitions; and Preventative maintenance consists of Swanson’s original Perfec-

tive category: “Performance Improvement, Documentation Updating and Code Structure

Improvement”. The three best features of such a classification system are that:

• it maintains the spirit of Swanson’s original classification by allowing the work to

be split into unavoidable and voluntary change;

• it stops User Enhancements dominating the other categories that make up Swanson’s

Perfective maintenance;

• results can be cleanly transformed into the LS classification and vice-versa without

confusing the numbers.

As a result, from this point on, I will be using the terms Perfective, Adaptive, Corrective,

Preventative in reference to this classification system.

2.3.3 Problem Areas in Maintenance

The third, and rather more under-reported result of the the original surveys, is what the

respondents perceived to be the biggest problems in managing software maintenance. The

LST survey asked respondents to rate 24 problem areas on a scale of one to five; the LS

and NP surveys removed one of those categories while adding a further three, creating a

total of 26 problem areas. The top ten responses for each category are presented in table

2.5. In the LST study half of the problem areas are considered technical problems, for ex-

ample “Adequacy of system design specification”, while the other half are non-technical,

management issues, for example “Meeting schedule commitments”. In the LS and NP

studies 12 of the areas are technical while 14 are non-technical, management issues. In

table 2.5 the asterisked problem areas are technical issues. As can be seen, in the LST

study, seven out of the top ten problem areas were non-technical in nature. In the LS and

NP studies, eight out of the top ten problem areas were non-technical. Of most interest

is that there is remarkable uniformity between the three studies - the top three problems

are the same in each survey - however, the addition of the “Insufficient User Training”

category to the LS and NP studies does affect the relative rankings slightly. Table 2.6

contains the rankings without the new category, showing that there is startling similarity

between the responses for all three surveys, with responses over the years only changing

by a few tenths or hundredths of a point. In tables 2.5 and 2.6 the highlighted cells are

those cells that deviate by three or more ranks from the previous study.

The number one perceived problem from all three surveys (with a score of 3.42, 3.20,

and 3.29 respectively) was User Demands for Enhancements. However, when performing
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Problem LST LS NP
Demand for Enhancements 3.42(1) 3.202(1) 3.289(1)
Documentation Quality* 2.99(2) 3.000(3) 3.173(2)

Competing Demands for Programmer Time 2.95(3) 3.034(2) 3.173(=2)
Original Program Quality* 2.94(4) 2.590(7) 2.577(10)

Meeting Schedule Commitments 2.79(5) 2.686(5) 2.647(7)
Lack of User Understanding of System 2.66(6) 2.608(6) 2.615(8)

Lack of Personnel 2.66(7) 2.576(8) 2.654(6)
Adequacy of System Specification* 2.52(8) 2.428(12) 2.769(5)
Maintenance Personnel Turnover 2.46(9) 2.233(14) 2.412(13)
Unrealistic User Expectations 2.45(10) 2.552(10) 2.808(4)

Program Processing Time Requirements* 2.31(11) 2.554(9) 2.423(12)
Inadequate User Training NA 2.762(4) 2.596(9)

Table 2.5: Rating of Top Problem Areas

Problem LST LS NP
Demand for Enhancements 3.42(1) 3.202(1) 3.289(1)
Documentation Quality* 2.99(2) 3.000(3) 3.173(2)

Competing Demands for Programmer Time 2.95(3) 3.034(2) 3.173(=2)
Original Program Quality* 2.94(4) 2.590(6) 2.577(9)

Meeting Schedule Commitments 2.79(5) 2.686(4) 2.647(7)
Lack of User Understanding of System 2.66(5) 2.608(5) 2.615(8)

Lack of Personnel 2.66(7) 2.576(7) 2.654(6)
Adequacy of System Specification* 2.52(8) 2.428(11) 2.769(5)
Maintenance Personnel Turnover 2.46(9) 2.233(13) 2.412(13)
Unrealistic User Expectations 2.45(10) 2.552(9) 2.808(4)

Program Processing Time Requirements* 2.31(11) 2.554(8) 2.423(12)

Table 2.6: Rating of Top Problem Areas Without Inadequate User Training

factor analysis3 [28], both LS and NP found that this was not a component of any of

the major problem factor groups (i.e. that it wasn’t correlated with any other variables,

not that it was just missing). One of the factor groups, User Knowledge, consisted of

the problems ‘Lack of User Understanding of System’; ‘Unrealistic User Expectations’;

‘Inadequate User Training’; ‘Lack of User Interest in the System’; and ‘Management Sup-

port’. This factor group encompasses all of the problems related to users apart from User

Requests for Enhancements. Nor did User Demands for Enhancements feature in any

of the other factor groups. This means that User Demands for Enhancement was not

linked to any measure of maintenance, an increase in it did not result in, say, an increase

(or decrease) in the amount of Perfective maintenance performed or an increase in the

amount of maintenance done on the system in total. This is particularly interesting for

two reasons. The first reason, is a corollary to, Glass [27] and Dekleva’s [19] work, which

portrays maintenance, and particularly User Enhancement, as a solution rather than a

problem; it is seen as a sign of success rather than failure. This view is also shared by

the AN study. The argument is that changes to a system are good because they show

that it is being used, and that it is considered useful enough that people want it to be

altered to cope with new problems. Conversely, it is a bad sign when users want a whole

new system when a current system could theoretically be extended to cope with the work.

The second reason the result is interesting is that this could also reflect the split of work

between unavoidable and voluntary maintenance mentioned in section 2.3.2. In that, the

amount of time spent on providing User Enhancements is primarily dictated not by how

much of a demand there is for the enhancements but more pragmatically by how much

time is available once the unavoidable work is done. As a result this is why User Demands

3factor analysis is the technique of trying to identify common groupings of variables whose increase
and decrease seem to be correlated
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for Enhancement is considered such a problem, managers are tightly constrained by their

ability to respond to user requests and as a result it is more their failure to fulfill demands

than the demands themselves that is considered problematic.

Something that must be borne in mind when examining these problem areas is that these

are perceived problems in managing maintenance from the managers’ perspective. It is

notable that “Management Support of System” is one of the lowest ranked problems (at

23rd, 24th, and 22nd respectively). The respondents evidently did not feel that they were

a particular problem. Managers’ observance of technical problems might very well be

through the filter of their programmers, and as a result, problems that are challenging for

the programmer might not be challenging for managing maintenance work.

2.3.4 The Most Difficult Work

Although the various studies cited are of a high level view, there are some People oriented

facts that can be learnt. Both the MV and AN studies analyse the “difficulty” of different

types of maintenance: the MV study by getting programmers to rate the difficulty of a

selection of changes, and the AN study by comparing the ratio of total change requests to

the total number of days taken to complete the requests, sorted into various categories.

The MV study showed that programmers thought that Corrective maintenance was the

most difficult type of maintenance to perform with Adaptive (which consists of the Swan-

son Adaptive category and User Enhancements) as the easiest category. Ratios of work

requests to work effort computed from the AN study produce ratios of 1.28 for Corrective

Maintenance, 1.27 for Perfective maintenance and 1.11 for Adaptive maintenance. The

AN study’s ordering of the difficulty of Corrective, Perfective, and Adaptive tasks is the

same as in the MV study. Although, as stated, the categories from the two studies are not

directly comparable, the dominant component of both Adaptive categories is User En-

hancement and the Corrective maintenance category is broadly similar. Combined with

the knowledge that providing User Enhancement is not a contributing factor for problems

in managing software maintenance, this allows it to said that Enhancing software is one

of the easiest tasks maintenance programmers can perform whilst Corrective maintenance

is the most difficult. This is a view also shared by Graves and Mockus [29] who thought

that Corrective maintenance required 1.8 times more effort than adding code.

2.3.5 Conclusion

Measurement of the goal–oriented results of maintenance programming is not as easy or

clear cut as is commonly thought. Confusing and mixed use of terminology, combined

with flawed interpretation of the original data, results in a concealment of the extent of

the changes in work distribution. Furthermore, these goal oriented studies do not encap-

sulate the actual work performed by maintenance programmers, but instead show their

end results, meaning that the findings are difficult to use to aid or judge maintenance

programmers’ day-to-day activity.

The biggest perceived problems of managing software maintenance are of a non-technical

nature, suggesting non-technical solutions. However, the biggest perceived problem, of
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Requests for User Enhancements, is arguably not even a problem at all. Furthermore,

these perceived problems have not changed over the years, suggesting either that software

maintenance research is not reaching practitioners, or it is solving the wrong problems.

However, what is clear from the literature is that maintenance consumes the largest pro-

portion of time (and thus resources) of an IT department, whether that proportion is 40

or 90 percent of the department’s time, and that that figure has been rising. This means,

therefore, that even 30 years after discovering the importance of Software Maintenance, it

is still being relatively ignored by researchers, and is the most relatively under-researched

field in Software Engineering.

2.4 Lehman’s Laws

Lehman’s Laws [43] are a series of properties that have been observed to hold true in

multiple real-world cases for the development and maintenance of large E-type software

systems. E-type systems [42] are defined as systems that are part of the world that they

are modelling, and that model themselves and the effects of at least some of their actions.

This differentiates them from S- and P-type systems which are systems that model an

abstract, formal domain to varying levels of correctness.

There were originally five laws, formulated mostly from the observation of the develop-

ment of OS/360, but over time three more laws have been added. Table 2.7 provides a

description of each law. The Laws could be said to be based on two key ideas: that E-type

systems must continually change to remain useful, and that the amount of change will be

of a similar amount during each time unit.

It is worth noting that many of these Laws are stated with the provision that they will

occur when there is no intervention. That is, the effects of these laws can be counteracted

if the organisation or team maintaining a system take an active effort to address the issue.

For example, law IV was broken by Orbix [55] because they took an active and directed

effort to change their maintenance process in a radical way, which, as a result, produced

a new dynamic.

Laws I and VI are realisations of the need to for E-type systems to continually change and

grow to accommodate user and real-world demands. Laws II and VII are the results of I

and IV, due to the continued changed the system loses its original structure and becomes

more complex and harder to work with. Laws III, IV, V and VIII deal with the concept

that there is only so much work that can be done, as work is performed in a saturated

environment. Software maintainers have a backlog of work requests so even working at

a theoretical maximum capacity would not result in any more work being done or work

being performed to a better standard.

These Laws, backed as they are by decades of empirical research, generally tend to hold

true, but breaking down systems into sub-systems can reveal interesting anomalies. Some

library sub-systems become so crucial that they develop a massive inertia to change. In my
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Law Description
I Continuing Change A system used in a real-world environment must

adapt to the environment or become progressively
less useful

II Increasing Complexity As a system changes its structure becomes more
complex

III Self-Regulation System attributes such as change in size and time
between releases are invariant

IV Constant Work Rate The average effective global effort on a system will
remain constant

V Conservation of Familiarity On average, the incremental growth tends to re-
main constant or to decline

VI Continued Growth The functionality offered by the system must in-
crease or it will become progressively less useful

VII Declining Quality As a system grows and changes the quality of the
system will decrease

VIII Feedback System The evolution process constitutes multi-level,
multi-agent feedback systems and must be treated
as such to achieve significant improvement

Table 2.7: Lehman’s Laws

interviews with maintenance programmers discussed in chapter 3, I discovered repeated

examples of sub-systems that were considered too important to risk touching. These

sub-systems did not share any commonalities between them except that they provided

some core functionality to the rest of the system. In addition, as SeeSoft [22] shows,

systems have hotspots: areas of code that attract most of the change. System averages

are therefore inapplicable for determining what the typical workload should be for any

one particular area.

Another area of interest is in work estimation. The Laws fundamentally state that the

amount of work done between each release is constant or declining. This is true when

viewing the average work between releases. However, when you examine charts of day-

to-day work [11] there are peaks and troughs, often of quite a severe nature, that occur.

So, while the average amount of work for the year might suggest that two maintainers are

needed, it might be that the actual day-to-day workload could generally be handled by

one, except on occasion when four maintainers might be necessary to deal with immediate,

urgent workload.

These laws suggest a rather pessimistic view of software, as, taken at face value, they

suggest that software will become bloated, complicated and unmanageable. However, as

stated above, all of these laws are stated with the assumption of there being no interven-

tion, so a system can be made smaller if time is dedicated to performing that task. Orbix

reduced its staff but increased the amount of work performed by radically restructuring

their maintenance process using Agile methodologies. Refactoring [24] can radically al-

ter the structure of a system, both reducing its size and complexity while increasing its

quality.

16



2.5 Structured Literature Review

Given the absence of any paper demonstrating the dominance of Process or Product issues

over People, one would expect to find that research papers were equally split between the

three fields, so that one third of the mainstream Software Maintenance research would

be about People. However, given general difficulty of finding quality papers on People

in Software Maintenance, I decided to examine this issue in more depth. As a result, I

undertook a comprehensive review of the literature.

2.5.1 Questions Asked

The exhaustive literature review was undertaken to answer two research trend questions.

The two hypothesised research questions are laid out below:

• Hypothesis One: There is sufficient empirical work in the field of software mainte-

nance.

• Hypothesis Two: There is an approximately equal proportion of of papers on People

in software maintenance as there is on Products and Processes.

Why Hypothesis One was Tested

Tichy et al. [76] and Zelkowitz and Wallace [86] have both performed research trend

reviews of the literature, respectively in Computing Science and Software Engineering.

Both papers are of the view that the amount of current empirical work is insufficient

when compared to other scientific fields. Furthermore, they find no compelling argument

for the lack of empirical work in Computing Science and Software Engineering. As a

result it is valuable to see if Software Maintenance has a higher or lower proportion of

empirical work. If Software Maintenance has a lower or equal proportion of empirical

work then that would suggest that the most useful direction for my future research would

be empirically based itself.

Why Hypothesis Two was Tested

Due to the nature of Software Maintenance (being split into People, Processes and Prod-

ucts), it is important that there is an equitable split of research effort on each of the three

aspects. This is especially true given the lack of any research definitively showing that one

aspect is more important than the others. The review focuses specifically on the People

aspect rather than Products or Processes, as this is the area that is suspected to show a

deficiency in research. If, as suspected, there is a lack of research focused on People, then

this would strongly suggest that any further work I undertake should be People focused.

2.5.2 Review Construction

Selection of Sources

A number of conferences and journals were selected that were considered to represent

mainstream software maintenance research. I then read every full length paper in these
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sources and classified them by four categories (Any Empirical, Empirically Based, Soft-

ware Maintainers, None) which are described below. Annual statistics, both quantitative

and relative, were then computed for each source and as an overall figure. This review

was then used as an instrument to answer the two hypotheses presented above.

Three sources were selected as reflecting mainstream software maintenance research:

• International Conference on Software Maintenance (ICSM) [87]

• European Conference on Software Maintenance (CSRM) [88]

• Journal of Software Maintenance and Evolution: Research and Practise (JSMERP)

[89]

The JSMERP and ICSM are the two premier publications for maintenance research and

it would be impossible to argue that they are not a primary resource for mainstream

Software Maintenance research. CSRM is large but slightly less prestigious then ICSM,

thus allowing a slightly lower quality of paper in which expands the review from simply

the cream of the crop without going all the way to the fringe of the subject. From these

sources I have selected only full length papers, that is, those papers of seven pages or

longer. I chose to do this as the short papers tended to be more speculative and lacking in

substance, and including them would have skewed the statistics. In my estimation, inclu-

sion of short papers would have reduced the ratio of empirical papers in the conferences.

This paper size restriction was ignored for the 1988 and 1985 ICSM conferences, as these

papers were mostly no longer than six pages, and as such counting only full length papers

would have excluded the majority of research presented at those conferences.

Each source was read from its founding date (ICSM: 1985; CSRM: 1997; JSMERP: 1989)

to the start date of my Ph.D term, 2001.

Methodology

In a standard systematic literature review, often only the abstract needs to be read to

determine if a paper should be included or excluded. In the case of this review it was

found that the abstract was often far from sufficient to determine if any empirical work

had been performed. This was a problem that Sjøberg et al. [66] had discovered in their

review of controlled Software Engineering experiments, where they stated that confusing

terminology resulted in many false positive identifications of papers. Kitchenham [37]

states that titles and abstracts are exceedingly important when performing systematic

literature reviews, however, in Software Engineering titles and abstracts are often insuffi-

cient for researchers to rely on, and the content of the paper must be read [8], which vastly

increases the length of time required for the review. In my particular case each paper had

to be read to establish its empirical content, although often the papers just needed to be

skim-read, in search of particular keywords (such as evaluation, case study, experiment,

test) in section headings or the main text. Papers that met this minimum requirement

where then reread in more detail to determine the amount and type of empirical con-

tent. This problem was also a factor in determining if an empirical paper discussed actual
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software maintainers. In the case of trying to determine if a paper fitted the Maintainer

Focused category (described below), a relaxed viewpoint was used: if there was doubt

as to whether it should be included or excluded it was included. As this category was

being used to determine if there was sufficient research in the the area, it was felt that

aggressively discarding papers might bias the result in a negative direction. With the

inclusive view, the final figure produced can be considered the largest possible amount

of work on People, so if it turned out to be below the one third boundary, it could be

confidently stated as being insufficient.

Classifications

Here I define the four categories that I used to categorise the papers from the three sources.

The categories are: Any Empirical; Empirically Based; Maintainer Focused; None. I have

classified each paper in the four categories using true/false.

Any Empirical

A paper would fall into the Any Empirical category if it has any measurements of a real

maintenance environment, or any empirical validation of the work it is presenting. It

would only be classified as such if the real world example is sufficiently realistic, unless

the paper states that the artefact under consideration is designed only for small situations.

Contrived programming examples are not counted, nor are toy examples (for example the

Sun Pet Store [46] or the oft referenced Gas Station [31]). Therefore, Processes which are

demonstrated on 50 line programs when their purported target is 50,000 line programs do

not count as containing any empirical work. Self-referential papers, for example, papers

reporting on a software tool that is being used to maintain the software tool, or a process

improvement methodology that is used to improve the process improvement methodology,

could be counted as Any Empirical. As it stands, I have classified those papers as Any

Empirical as long as they pass the size threshold. Formal controlled experiments of any

size are included in this category as they are covered by the Empirically Based definition,

the results of which are also included in this category (see below).

Empirically Based

For a paper to be Empirically Based, the primary purpose of the paper is to measure. A

significant portion of the paper is reporting on or analysing data gathered from experi-

mental or real-world maintenance situations. A tool paper that spends the overwhelming

majority of the paper presenting statistics or experience reports about the tool being used

by a real maintenance team, or experimental results comparing the tool with another ap-

proach, would be classified as Empirically Based. Any paper that is Empirically Based is

also counted in the Any Empirical category.

Maintainer Focused

This category is a direct mapping for analysing the proportion of papers on People in
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Software Maintenance. For a paper to be Maintainer Focused, a significant amount of

the paper should discuss issues related to maintainers and maintenance managers. Fun-

damentally, the paper should have some discussion, report or analysis of human issues

in Software Maintenance. This includes papers that primarily discuss other issues but

apportion some time to discussing actual maintainers and maintenance managers. As

with Any Empirical, there is a judgement call to be made: a paper about a new Process

that mentions in a couple of sentences how maintainers reacted to the implementation of

the process would not be judged to be Maintainer Focused. On the other hand, a Process

paper that discusses human factors in their own right would be classified as Maintainer

Focused, even though the bulk of the paper is discussing other issues.

None

This category is used when the paper does not fit any of the above categories.

2.5.3 Basic Discoveries

The classified results of the review for the three sources are presented in tables 2.8-2.10,

with table 2.11 containing the combined totals. The highlighted values are those that are

greater than the overall average for each category.

Differences and Similarities Between Sources

A Chi-Square test shows no significant difference in the number of Any Empirical or

Empirically Based papers between the three sources. However CSRM does have a sta-

tistically significant smaller ratio of Maintainer Focused papers. Given the CSRM has a

larger number of papers from smaller research groups this could indicate that performing

research that involves maintainers requires a relatively large amount of resources.

Trends

Examining ICSM, there is a general increase over the years in the number of papers

containing Any Empirical work as seen in table 2.8 and figures 2.1, the last eight years

containing above average amounts of Any Empirical work, rising to about 70% of all

work from about 50% in the first eight years. There is a similar, but slightly weaker

trend with the number of Empirically Based papers, with the number of papers having

increased from a particularly low point in the late 1980s / early 1990s. Conversely, there

is no discernible change in the number of papers about People, with the number of papers

classified as Maintainer Focused staying fairly constant over the years. There are similar

trends in JSMERP (table 2.10 and figure 2.3), with an increase in the number of papers

both containing some and containing primarily empirical work. From the perspective of

empirical research this is encouraging. This also matches the results of Zelkowitz and

Wallace who noted an increase in the number of papers containing empirical work over

the ten year time span that they examined.

The increasing volume of Any Empirical work must be balanced against the type of work
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that is producing that rise. If the rise is purely down to an increase in the number of Em-

pirically Based papers then it is not as encouraging as it could be. Although Empirically

Based papers are important, it is also important that advocative work, that is, research

proposing new Processes to follow or implement, provides empirical validation of the work

otherwise its value is unclear.

Thus it would be encouraging to show that the number of empirically validated papers was

growing as well as Empirically Based papers. Table 2.12 shows the percentage of papers for

each year that contained Any Empirical work but were not Empirically Based. Obviously

there are two reasons as to why the percentages could be high or low in the table: the

value could be high due to there being very few Empirically Based papers that year, which

would be a disappointing result; or it could be high due to there being a large number of

empirically validated papers which would be an encouraging result. To aid analysis, those

years with an above average amount of Empirically Based work have been highlighted.

Highlighted cells which have a large percentage are therefore the most encouraging results

for the amount of empirical validation occurring in software maintenance. ICSM, the

major source of papers, certainly shows an increase in the amount of Any Empirical work

and this increase still exists even when taking into account the increase in Empirically

Based papers.

Subjective Commentary

A lot of the papers that were classified as having Any Empirical work had poor lev-

els of empiricism. They mostly involved a simple demonstration of a process or tool to

show that it “worked”, with very little detail and often without even the most cursory

of comparison or analysis with other existing processes or tools that were in the same area.

As the year of publication approached 2000, there was a natural increase in the number

of papers mentioning the year 2000 problem, and an increase in the number of papers

reporting on the experience of what is termed “massive maintenance”. Massive mainte-

nance projects are ones that involve large scale, yet relatively unexpected, one-off need

for change, often on systems that have a very low annual change traffic. The year 2000

problem is a classic example of this. Massive maintenance is a slightly anomalous problem

area as it does not represent the typical day-to-day challenges that maintenance program-

mers face. However, the general rise of Any Empirical papers is not solely down to the

increase in massive maintenance papers, and their numbers are not so large as to have a

disproportionate affect on the results.

2.5.4 Hypothesis One: Comparison With Other Studies

In this section two well known studies of empirical work in software engineering and

computing science literature are compared with my own exhaustive review. The two

studies selected are Zelkowitz and Wallace [86] and Tichy et al. [76]. Their results are

interpreted and presented, in comparison with my own, in table 2.13. There is a third well

known study, by Glass et al. into research trends in Software Engineering, however, the

level of detail used by Glass et al. makes it impossible to pick out the empirical nature
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Year Total Papers Any Empirical Empirically Based Maintainer Focused
1985 28 17(61%) 10(36%) 5(18%)
1987 20 10(50%) 8(40%) 1(5%)
1988 53 20(38%) 13(25%) 3(6%)
1989 29 15(52%) 8(28%) 2(7%)
1990 25 12(48%) 7(28%) 3(12%)
1991 23 8(35%) 4(17%) 1(4%)
1992 32 14(44%) 8(25%) 3(9%)
1993 35 20(58%) 13(39%) 1(6%)
1994 42 29(69%) 13(31%) 4(10%)
1995 37 26(70%) 15(41%) 3(8%)
1996 34 22(65%) 13(38%) 2(6%)
1997 34 26(76%) 15(44%) 1(3%)
1998 36 29(81%) 18(50%) 4(11%)
1999 49 33(67%) 14(29%) 4(8%)
2000 25 19(76%) 9(36%) 1(4%)
2001 65 43(66%) 20(31%) 9(14%)
Total 568 344(61%) 189(33%) 48(8%)

Table 2.8: ICSM Data

Year Total Papers Any Empirical Empirically Based Maintainer Focused
1997 17 10(59%) 7(41%) 1(6%)
1998 24 15(63%) 4(17%) 0(%)
1999 18 11(61%) 3(17%) 0(%)
2000 23 18(78%) 9(39%) 1(4%)
2001 19 16(84%) 10(53%) 2(11%)
Total 101 70(69%) 33(33%) 4(4%)

Table 2.9: CSRM Data

Year Total Papers Any Empirical Empirically Based Maintainer Focused
1989 8 4(50%) 1(13%) 1(13%)
1990 14 6(43%) 4(29%) 2(14%)
1991 11 6(55%) 5(45%) 0(0%)
1992 13 2(15%) 2(15%) 1(8%)
1993 12 6(50%) 3(25%) 0(0%)
1994 16 4(25%) 2(13%) 1(6%)
1995 21 13(62%) 7(33%) 3(14%)
1996 19 13(69%) 8(42%) 1(5%)
1997 17 13(76%) 7(41%) 4(24%)
1998 18 13(72%) 10(56%) 5(28%)
1999 18 15(83%) 7(39%) 1(6%)
2000 16 10(63%) 8(50%) 0(0%)
2001 19 15(79%) 9(47%) 3(16%)
Total 202 120(59%) 73(36%) 22(11%)

Table 2.10: JSMERP Data

Total Papers Any Empirical Empirically Based Maintainer Focused
871 534(61%) 295(34%) 74(8%)

Table 2.11: Overall Data

22



Year ICSM CSRM JSMERP
1985 25 × ×

1987 10 × ×

1988 13 × ×

1989 24 × 37
1990 20 × 14
1991 18 × 10
1992 19 × 0
1993 19 × 25
1994 38 × 12
1995 29 × 29
1996 27 × 27
1997 32 18 35
1998 31 46 16
1999 38 44 44
2000 40 39 13
2001 35 31 32

Table 2.12: Percentage Any Empirical Work Minus Empirically Based Work

Figure 2.1: ICSM: Percentages of Papers in each Category
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Figure 2.2: CSRM: Percentages of Papers in each Category

Figure 2.3: JSMERP: Percentages of Papers in each Category
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of the papers examined. While the conclusions of Glass et al. are discussed, I do not

examine the details of the paper.

Overview of Studies

Zelkowitz and Wallace reviewed 612 papers, although that included book reviews and

conference reports, articles that I excluded without counting. Tichy et al. reviewed 256

computing papers plus another 147 non-computing papers. My study examined 871 pa-

pers. Both Zelkowitz and Wallace and Tichy et al. selected publications that they thought

represented mainstream, general research in their chosen area; the exact publications are

detailed below. Zelkowitz and Wallace selected three years, 1985, 1990 and 1995, and then

read all papers from the selected publications. Tichy et al. chose to select “recent” publi-

cations, which resulted in them selecting papers for some journals from 1991 to 1993, while

others only had papers selected from 1993. Once the year range for a journal/conference

was selected all papers were examined. In comparison, my study selected all full length

papers from the founding date of the selected publications to 2001.

Both Zelkowitz and Wallace and Tichy et al. examined the papers in more detail than

my own study. They looked at the exact form of empirical validation, if any, that the

paper used. In comparison, I was examining if the paper contained any empirical work

and examined it no closer. This allowed my study to examine more papers but gather

less information about them. Furthermore, my study covers a greater contiguous block

of time than either Zelkowitz and Wallace or Tichy et al. Whilst the selection of ’85,

90, 95 is probably going to give a reasonable indication of research trends over time,

it can be seen that if certain years from ICSM containing the largest peaks and troughs

had been selected then a skewed view of the change in research could have been produced.

Both the Zelkowitz and Wallace and Tichy et al. studies were performed by teams. This

provided two benefits as compared to my own study. The first is that the additional man-

power allowed them to go into more detail: rather than just determining the basic level

of empiricism, they determined what type of empirical approach was being used. The

second advantage is that multiple readers allow the classifications to be cross-checked.

This can help eliminate the risk of systematic classification errors as well as catching

random transcription errors.

The Zelkowitz and Wallace Review of Software Engineering

For each of the three selected years (1985, 1990 and 1995), Zelkowitz and Wallace read

all the papers in IEEE Transactions of Software Engineering, IEEE Software, and the

International Conference of Software Engineering. The papers were classified as to what

type of empirical method was used to validate the work presented. One category of

particular interest (and difficulty for analysis) is the Assertion classification. This was

the single largest category, with 192 of the 612 analysed papers categorised thusly. The

category is defined with explicitly damning language:

“There are many examples of developers being both experimenters and sub-

jects of study. Sometimes this happens during a preliminary test before a
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more formal validation of the technological effectiveness. But all too often

the experiment is a weak example favouring the proposed technology over al-

ternatives. As skeptical scientists, we would have to view these experiments

as potentially biased since the goal is not to understand the difference be-

tween two treatments, but to show that one particular treatment (the newly

developed technology) is superior. We call such experiments assertions.”

As can be seen, they encountered the same difficulty in determining “true” empiricism

as was encountered in my own study. Their solution was to ghettoise the research into

its own category, which does impede directly comparing my results to theirs. The Asser-

tion category contains a mixture of papers that I would have classified as Any Empirical,

Empirically Based or None. For the purposes of a rough comparison, I will categorise

Zelkowitz and Wallace Assertion figures as Any Empirical. This will result in the Any

Empirical figure being larger than it should be, however the true value cannot be known

and further analysis will be performed bearing in mind that the Any Empirical figure is

larger than it should be.

Zelkowitz and Wallace have two categories which would definitely be classified as not

meeting the criteria of Any Empirical: Not Applicable and No Experimentation. Together

they constitute 35% of the papers Zelkowitz and Wallace examined, although their Not

Applicable category includes papers that I excluded from my literature review, such as

book reviews, or conference reports. If the Not Applicable category is excluded, the No

Experimentation figure would constitute 30% of the remaining papers. The remaining

papers of the Zelkowitz and Wallace survey 33% of the total, are in categories that count

as Empirically Based. Combining the Assertion category with the Empirically Based

categories means that 70% of the papers are counted as Any Empirical.

Tichy et al. review of Computing Science

Tichy et al.’s “broad set” of computing science publications consisted of: ACM Trans-

actions of Computer Systems 1991-1993; ACM Transactions on Programming Languages

and Systems (1992-1993); Transactions of Software Engineering 1993; and SIGPLAN Con-

ference on Programming Language Design and Implementation 1993. They also sampled

74 random papers published by the ACM in 1993, rejecting 24 of them for either not

being peer reviewed research papers or because the papers were not available to them.

They compared their work to two other fields by analysing Neural Computation 1993 and

Optical Engineering 1994 and producing comparative figures. They classify papers into

five groups: Formal Theory; Design and Modelling; Empirical Work; Hypothesis Test-

ing and Other. Empirical Work and Hypothesis Testing map directly to my Empirically

Based category. Formal Theory consists of papers that present pure theoretical work,

that is, work which is entirely within the bounds of formal reasoning and mathematical

proofs. These are papers that do not require empirical work to be useful. The Other

category, from the point of view of determining their empirical content is ill-defined, and

is simply described as papers that do not fit into the previous four categories. However, it

can be determined that it does not contain any Empirically Based papers as they would

be covered by Empirical Work and Hypothesis Testing, nor did Tichy et al. feel it was
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necessary to measure the amount of Empirical work the papers contained in the same way

as they did for the Design and Modelling papers. As a result I decided to count the Other

category as containing no empirical work. So, the Formal Theory and Other categories

map to the None category. Design and Modelling covers all papers that may or may not

be counted as Any Empirical. For the Design and Modelling category, each paper was

examined to count the amount of empirical work that it contained. Five sub-categories

existed: 0%, <10%; <20%; <50% and >50%. The third category introduces problems

in comparing their results to my own. Twenty-two percent of the Design and Modelling

papers were identified as having between 20 and 50 percent of the paper being empirical

work. If this category is considered as only meeting the criteria of Any Empirical then

only 13% of papers that Tichy examined were Empirically Based. However, if this cate-

gory is considered sufficient to meet the Empirically Based criteria then 27% of papers are

Empirically based. The true determination is probably somewhere in-between these two

extremes as papers with say 21% empirical work and less likely to be empirically based

than papers with 49% of their content being empirical work. One final point to consider

is that Tichy et al. did not consider a demonstration of the system as empirical work.

This fact will result in them classifying less papers as containing empirical work than my

own approach which accepted as Any Empirical papers that provided a demonstration on

a realistic system.

Result

The key figure to examine when comparing my studies to the two other studies is None.

If the actual levels of empirical work in papers examined in the three studies is similar

then when comparing the figures of myself, Zelkowitz and Wallace and Tichy et al. it

would be expected that the Zelkowitz and Wallace figure for None would be lower than

my own which in turn would be lower than Tichy et al. This is due to the Zelkowitz and

Wallace standards for a paper being Any Empirical being looser than my own, which in

turn were looser that Tichy et al. As can be seen from table 2.13 this is exactly the case

with, respectively 30%, 39% and 48% of papers being identified as having no sufficient

empirical work at all. Conversely, the three studies are much more similar for what is

considered Empirically Based work, although once again, Tichy et al. is stricter than both

Zelkowitz and Wallace and myself. Comparing the values in table 2.13 shows a very close

match between Zelkowitz and Wallace and myself while Tichy et al. is, as expected, is a

few percentage points lower. Although if you take the stricter view of Empirically Based

the Tichy et al. study is vastly lower at 13%

The conclusion of Zelkowitz and Wallace [86], Tichy et al. [76] and Glass et al. [26] is

clear: too many papers are produced without evaluation. Zelkowitz and Wallace feel that

in the Software Engineering papers they examined, “validation was generally insufficient”.

Glass et al. state that “There is a severe decoupling between research in the computing

field and the state of the practise of the field”. Tichy et al. is even more firm, stating

that there is active apathy in producing empirical work:

“Naturally, they are quickly discouraged, and why bother if experimental work

is not rewarded and papers are accepted without it?”
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In comparison to non-computing fields, computing science and Software Engineering pro-

duce a far lower proportion of validated, empirical work. Given the similarity in figures,

it is safe to say that Software Maintenance also produces a far lower proportion of vali-

dated, empirical work. Both Zelkowitz and Wallace and Tichy et al. are scathing about

the quality of empirical work produced describing it as scant and minimal and mostly

lacking comparative analysis with either current research or the state of practice. My

own impressions of the research in Software Maintenance agrees with this view.

Study No Empirical Any Empirical Empirically Based
Tichy et al. (1995) 48% 52% 27%(13%)

Zelkowitz and Wallace (1998) 30% 70% 33%
Hutton (2007) 39% 61% 34%

Table 2.13: Study Comparison

Answering Hypothesis One

Given that this systematic review has produced a balance of empirical work similar to that

of Zelkowitz and Wallace and Tichy et al., and that they concluded that there was not

enough empirical work in their field, Hypothesis One is rejected: there is not a sufficient

level of empirical work in Software Maintenance.

2.5.5 Hypothesis Two: Balance of Research

The systematic review identified that only 8% of papers are Maintainer Focused, which

is far less than one third of all papers. As a result Hypothesis Two is also rejected: there

is not an equal proportion of papers published on People in Software Maintenance. Even

when examining Empirically Based papers alone, the majority of years sees less than

one third of all Empirically Based papers being Maintainer Focused. Overall, only 25%

of Empirically Based papers are Maintainer Focused. Given, as stated, the lack of any

paper that shows the dominance of Process or Product over People when it comes to

determining what components of Software Maintenance are important, and indeed the

evidence which promotes the importance of People [59, 7, 49], this strongly suggests that

my work should be focused on the People aspect of Software Maintenance.

2.5.6 Structured Literature Review – Conclusion

I have performed a systematic review of the mainstream Software Maintenance literature.

This review, in comparison with similar reviews in the fields of Software Engineering and

Computing Science in general, has highlighted two key points: there is a lack of empirical

work and validation in Software Maintenance and there is a lack of work examining the

role of People in Software Maintenance.

2.6 Conclusion

Analysing the landmark literature shows that while they present much useful informa-

tion about the Processes and Products involved in Software Maintenance, there is a lack
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of information about the role of People. Given the importance of People in Software

Maintenance, this gap in the research is an important issue. Empirical research is the

only mechanism available to obtain information about Software Maintainers. However,

in the field of Software Maintenance, like Software Engineering, and to a lesser extent

Computing Science as a whole there is a lack of empirical research. As a first step, before

attacking a particular issue, additions need to be made to the body of evidence that exists

about People in Software Maintenance - specifically, the role of programmers in Software

Maintenance and how they perceive the maintenance Process rather than a management

view.
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Chapter 3

Interviews With Maintenance

Programmers

3.1 Introduction

This chapter primarily covers a series of interviews undertaken with software maintainers

in 2003, 2004 and 2005. The intent was to gather a generalised view of maintenance to

compare with what little established literature there was. This chapter covers the format,

results and analysis of those interviews as well as comparison with the results of similar

studies. Finally, a future direction of research is identified based on the results of the

survey and the comparison to similar studies.

3.2 Motivation

Given the identified deficit of empirical papers examining People in Software Maintenance,

it was felt that it was important to help address this problem. Lacking in the literature,

apart from the work of Singer noted below, were descriptions of what maintenance pro-

grammers did on a day-to-day basis. Information about how maintainers behaved (beyond

examination of thought process for the development and validation of mental models of

program understanding) seems limited to being based on “common knowledge” rather

than being based on citable research.

A variety of approaches, as discussed in section 3.3.2, were considered, but it was decided

that a general survey of maintenance practitioners based on face-to-face interviews would

be carried out. Although general in nature, the questions were somewhat focused towards

the information gathering strategies of the maintainers, as this was considered to be the

field in which there was the greatest possibility for useful future research.
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3.3 Basis

3.3.1 Previous Studies

This survey is based on the work of Singer [64] and Singer et al. [65]. Singer performed

interviews across 10 corporate groups. Pairs of programmers were interviewed simultane-

ously. A basic questionnaire was administered, gathering some quantitative data about

the participants. Then an interview was undertaken which asked questions about the

work practices of the maintainers. The final section of the Singer interviews, trying to

identify a tools wish list, was found to be difficult to administer as the maintainers were

unaware of what potential tools could be delivered and as a result this section largely fell

by the way side. The work practice section of the interview was loosely structured: if a

maintainer identified something that they found particularly interesting the questioning

was allowed to drift onto that topic. However a core set of questions was retained and

mostly administered. From the work practice questions, four common features were iden-

tified: source code is king; documentation is untrustworthy; bug tracking systems contain

useful knowledge; and problem reproduction is problem solution.

Singer et al. focused on a single team within a single company to identify specific needs

to inform tool design. Their approach used multiple survey techniques to create a picture

of typical activity by the maintainers which would aid in the construction of a suitable

tool. The following techniques were used: a web questionnaire; longitudinal study by

interviews and shadowing of a software immigrant; general work practice survey similar

to the earlier Singer study administered to all members of the group; selective shadow-

ing of volunteer members of the group; analysis of company wide tool use statistics; and

think-aloud analysis of programmers’ actions. These multiple views of programmer activ-

ity were cross-referenced to produce a picture of the most common activities undertaken

by the maintainers. Searching was determined to be the most common activity, so a tool

was developed to aid the types of searches that the maintainers performed.

When performing a survey that attempts to identify trends that the researcher wishes to

extrapolate to the programming population as a whole, it is more important to survey

programmers across different companies than it is to increase the volume of programmers

surveyed. If one company is exceptional and 20 programmers from it are interviewed then

the exceptional nature will be repeated 20 times. On the other hand, if 10 programmers

from 10 different companies have the same problems, this allows a greater degree of

generalisability.

3.3.2 Suitability Of Interview Approach

There are many approaches to finding out what software engineers are doing “in the

wild”. Three approaches were considered: ethnographic study; questionnaire; and in-

terviews. Ethnography involves the study of subjects principally by the shadowing and

recording of information about them as they go about their day-to-day activities. A ques-

tionnaire based approach follows the simple approach of compiling a list of questions and

sending them out to a target population and then gathering the responses. The interview
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based approach involves arranging a series of face to face interviews with subjects, where

questions are posed and answers given and discussed by the interviewer and interviewee.

All the approaches have their benefits and drawbacks. In its favour, the ethnographic

approach produces a large volume of data and is the truest reflection of what the subjects

actually do. Set against this is the knowledge that subjects will be behaving differently

knowing that they are being watched and recorded. They are also exceedingly time inten-

sive for the ethnographer, to gather information on what a subject did for eight hours, they

must spend eight hours with the subject and then spend at least as long again categorising

and organising the gathered data before it becomes useful information. Questionnaires

allow the surveying of a large number of people with minimal time investment, as it is

little more effort to mail 500 copies of a questionnaire than it is to mail 200. Question-

naires, however, have problems with low response rates, and low response rates reduce the

generalisability of the results. Furthermore, the greater the complexity of the questions,

the less likely it is that questionnaires will be completed. Given the lack of access to the

researcher, unclear questions are a particular problem, in that inaccurate answers based

on faulty assumptions are worse than no answers at all. In some regards, interviews sit

between the deep time investment of the ethnographic approach and the quick and easy

nature of questionnaires. They cannot obtain the full range of information available to

the ethnographic method (which also includes the use of in-depth interviews to validate

the observational data), nor, in relation to questionnaires, can it access the same number

of subjects for the amount of time invested. However, the interview approach requires far

less time investment than ethnographic methods and it can gather far more detail than

questionnaire based methods. Not only that, but in the case of poorly worded questions,

discussion between interviewer an interviewee allows resolution of confusion and thus al-

lows useful data to be gathered where in a questionnaire confusion could result in poor

and misleading answers.

From the perspective of my thesis, the ethnographic method requires too much time

to gather a worthwhile, cross referencable amount of information. Furthermore, as a

researcher without reputation, it would be extremely difficult to find maintainers willing

to be shadowed and companies willing to let the shadowing occur. The questionnaire

approach does not give the depth of answer necessary to gain an informed picture of

what maintainers do on a day-to-day basis. Only by using free response questions could

the problem of preconceived notions affecting the outcome be avoided, and as the time

necessary to complete a questionnaire increases so the response rate decreases and the

time to analyse the results increases. Interviews offer a balance between time investment

and depth of response. By validating answers against other literature a in-depth picture

can be built up.

3.3.3 Question Adaptation

The questions used by Singer et al. in the work practices interview section of their survey

formed the basis of the questions used in my interviews, as well as being the foundation

of the Singer workplace study.
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An initial questionnaire was developed to discover both basic demographic information

about the subjects and to act as a gentle lead into the main interview questions which

started by getting additional system information. Like the Singer et al. study, program-

mers were asked to sketch and describe the layout of both the overall system and their

particular sub-system. This was done to give the interviewer an general idea about the

system. Although this consumed time and did not directly relate to the maintainers work

practices it was considered vital for providing a solid base for the remainder of the in-

terviews. With a knowledge of how the system operated the interviewer is able to ask

questions that are directly related to the system (for example, “how do you go about

fixing faults in component A?”, “do you do much work with component B”) and avoid

lines of questioning that are not directly relevant to the characteristics of the system. The

following sections, using references to described system, then try to examine the structure

of the current maintenance process and then the nature of information they use to perform

maintenance and now they go bout finding that information. The interview closes with

looking at things the maintainer finds lacking or problematic in the current environment.

The questions were based round the idea of the interviewer having a minimal amount of

knowledge about how maintenance is performed in the real-world. As a result questions

were with the assumption that discussion would take place as to exactly what the inter-

viewer was looking for. There is no assumption that there is a maintenance process in

place, or that it has any implied form, nor is there any assumption about documentation

quality or maintainer behaviour. As with the Singer (and Lethbridge) studies if the train

of thought of the interviewees diverged from the question then that line of thinking was

followed as the interviews are intended to find out what the programmer themselves find

most interesting/difficult about maintenance work. This is balanced against the core ele-

ment of the interviews, examining ways in which maintainers gather and use information

to develop their level-of-understanding about a system to perform work on it.

3.3.4 Interview Structure

I wanted to identify what the maintainers thought was most important, not what I had as

preconceived notions. Similarly to the the Singer study I wished to interview at least two

programmers at each company to help make comparisons but circumstances prevented

this in some cases. Companies, specific mangers and programmers were approached to

select themselves/others to take part in the interviews. The questions were e-mailed to

the participants ahead of time to allow them to determine what was and was not relevant.

The questionnaire section was either filled out pre interview or run through in the open-

ing minute of the interview. After confirming the details of the questionnaire the initial

system discussion was worked through and then the main questions were started. Most

interviews started tying to get a picture of the official maintenance process and after that

had been discussed information gathering strategies were the principle topic of discussion.

The interviewees were also contacted by e-mail after the interviews with follow up ques-

tions so that I could develop a fuller understanding of their work practices and thought
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processes, and also to confirm what I thought were the key points identified in the inter-

view.

3.4 Results

3.4.1 Brief Descriptions of Companies and Programmers

The following section provides an overview of the different companies, systems and pro-

grammers examined.

Company A

A small technology company focused around a single, highly configurable, commercially

available product which they maintain and enhance.

• Programmer 1 — The sole maintainer of the user interface component of the system.

• Programmer 2 — Works on the back-end tool support for the system along with

one other programmer.

Company B

A very large, multi-national, financial services organisation

• Programmer 3 — The head of a maintenance group primarily working on a key

internal financial transaction system.

• Programmer 6 — Works in a semi-independent maintenance group under the man-

agement of programmer 3. Works on a variety of systems including the key financial

transaction system.

Company C

A large multi-national commercial banking group.

• Programmer 4 — Works on the user-interface sub-system of a web banking system.

• Programmer 5 — Works with programmer 4 on the user-interface sub-system of a

web banking system.

Company D

A very large, multi-national, financial services organisation.

• Programmer 7 — Worked in a development and maintenance group primarily fo-

cused on a key internal financial transaction system.
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University E

A university Computing Science department.

• (Programmer 8) — Not fully interviewed due to not having enough experience with

the system.

• Programmer 9 — Working on a short term (One and a half month) contract in a

small group upgrading and bug-fixing some research project code.

Company F

A very large international defence contractor.

• Programmer 10 — Maintained a number of small-to-medium sized systems, often

embedded software, working with a number of often ad-hoc groups.

Company G

A very large financial information service and brokerage company.

• Programmer 11 — Maintained and developed numerous sub-systems all of which

interacted with, and formed part of, the companies main, commercially used, trans-

action processing system.

3.4.2 Basic Demographics

The questionnaire part of the survey was designed as a gentle lead in, however a small

amount of demographic information was collected, which is presented in tables 3.1 to 3.4.

Programmer 10 felt unable to answer the question of system age and experience with the

system as they maintained a variety of different system rather than being focused on a

single one. All but one of the programmers were male. All programmers indicated profi-

ciency with at least two programming languages but most were unsure as to how many

they should record as they felt they were ‘capable enough’ without necessarily having fully

mastered a language. As a result I have excluded that figure from the tables. System

age was split in a fairly normal distribution between the five age categories, most systems

being 3-8 years old. Like the Singer study programmers were unable to give lines-of-code

estimates for the size of the systems they worked on, most more able to talk about number

of modules or packages. This was in part due to the heterogeneous nature of the systems

and also due to the fact that, as section 3.4.4, demonstrates, maintainers specialise on

sub-systems and so do not have good level-of-understanding of parts of the system outside

their area of knowledge.

This information paints an image of the interviewed programmers as typical programmers

working on typical systems.
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18-25 26-35 35-45 46-55 55+
2 5 2 1 0

Table 3.1: Age Ranges

<1 1-3 3-8 8+
1 2 4 3

Table 3.2: Years of Professional Experience

3.4.3 Assignment

Maintenance Priority Levels

The various companies and programmers operate under a system of change request im-

portance. In some cases this was formally defined, as with Company G, while in others

it is just a intuition of the programmers, as with Company A. The other companies had

varying levels of formalisation of work importance. In general, the work can be split into

three levels:

1. Enhancement — features that are to be added in the next release. Something that

has to be done in the next quarter or half year.

2. Non-severe bug — small problems that can be worked around for now but need

to be fixed. Often only being experienced by one user, but could happen to more.

Seems to have a time frame of a week to be fixed and then will be rolled out either

in the next release or, more rarely, will be sent out in a special patch.

3. Severe bug — One that is causing the system to fundamentally fail. In the case

of financial institutions, this could be costing the company millions of pounds per

minute or the potential for large lawsuits from clients. These are “drop everything”

bugs that require the programmer to concentrate on nothing else. Will be released

to the live system as soon as possible and will have testing done on it after the fact.

Company G defined “Severe Bugs” very formally and gave programmers specified powers

to allow them to solve the problem. Specifically, programmers were allowed to contact

anyone they thought was important and demand their help to work on the problem. The

full weight of the company was behind them. I feel that this empowerment of program-

mers in this crucial situation is vitally important. Without it, the programmers could

be left paralysed, unsure of what they can and cannot do. With it, they can make sure

action is taken without repercussion. In company D having to get someone in to help

with “your” mess might be seen as a sign of weakness, but this type of reaction could be

potentially devastating for the well being of their company.

<1 1-3 3-8 8-15 15+
1 2 4 1 1

Table 3.3: Age of System
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<1 1-3 3-8 8+
1 6 2 0

Table 3.4: Time Working with System

Programmers at all organisations were also able to self-manage their workload to a fairly

significant degree. With the exception of a severe bug hitting their inbox they were fairly

interactively involved with their management for deterring priorities within the bounds

of testing and release deadlines. Due to the heavy formalism that surrounded the testing

and release processes at companies they were the only dates that mattered. As long as

the work was ready for these deadlines the companies didn’t mind how the work was

produced. This meant that there was very little that defined maintenance requests in

the companies, maintenance requests would exist, and be formally recorded but up until

the point they were completed there was little if any indication of how that work was

progressing bar informal discussion with management. This rests hand-in-hand with the

lack of coding conventions identified in section 3.4.5.

Poor Assignment Accuracy

There is an implicit, and sometimes not formally recognised, first step in the corrective

maintenance process that has been identified by all the programmers. After a bug has

been raised, there is the need to identify the area of the system where the bug is being

generated and thus the programmer whose responsibility it is to fix it. Programmer 7

stated that the largest problem in their group was the inability to raise a potential prob-

lem without also being assigned the task of fixing it. Programmer 1 stated that around

50% of all bugs assigned to him were not his responsibility and were ‘thrown back’ to

the group after initial investigation. He felt that this was because of the nature of his

system: being the GUI component, it was what customers experienced the most and

so thought of as the bug location when the true cause was deep in the back-end of the

system. Programmer 11 estimated that around 33% of bugs assigned to him would be

reassigned as the “true” cause was uncovered, with no guarantee that the bug would not

be reassigned a second time - and this was with a front line support desk that he rated

as “excellent”. Programmers 4 & 5 also spend a significant amount of time working out

if it is their sub-system or another part of the system as a whole that has the error. The

support desk tries to classify the bug and attach as much additional information that they

can get. Once again there is a tricky balance: maintenance requests need to be fulfilled

quickly, and time that is spent trying to accurately determine who should fix a bug could

be being spent actually fixing it. However, some of the maintenance programmers spent

a significant amount of time reassigning bugs. If the bug assignment had been more ac-

curate to begin with, multiple programmers’ time would have been saved.

All programmers found that the reproduction of errors was a difficult task, and they have

all developed a habit of checking to see if their particular sub-system is the source of the

error. Programmers 1, 4 & 5 all worked on user interface sub-systems, which, by their

nature, tended to attract erroneous bug reports from users. This is due to the fact that
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they were the visible portion of the system, so bug reports would often take the form of

“the wrong value is being displayed”, which initially, at least, would be classed as a UI

error. It is only after the programmers have gained access to more detailed information,

tested and attempted to recreate the bug, that they can see, for example, that they are

being passed bad data, and not that they are presenting it incorrectly. Programmer 11

has the issue of a very large multi-faceted system, of which no one person has a good

overview, meaning that a bug will often be passed through multiple programmers while

the true cause of the bad data is tracked down.

3.4.4 Discovery

Live System Information

The greatest similarity in the work habits of the maintenance programmers was the use

of program logs, and other live information, to aid debugging. Almost all the systems

that the programmers worked on produced logs of their execution, and it was those, along

with a description of the bug, that the programmers first consulted to help them find out

what was going on.

Programmers 1, 2, 3, 6 & 7 all made extensive and expert use of debuggers to debug

software. The debugger was often used to “zone” areas of the software under investiga-

tion, by which I mean that break & watch points were placed before and after pieces of

code suspected of being at fault, so that values could be watched going into and out of

the code. If correct values went into the code and incorrect values came out, then it was

that zone of code that was at fault. If correct values went in and out or an incorrect value

went in to the zone, then obviously another zone was at fault. Once an incorrect zone of

code was identified, the programmers would either try to divide the code into sub-zones,

iteratively working down to the exact line(s) of error, or by using knowledge of the code

place speculative break points at the suspected line(s) of error to try and catch the error

immediately. Programmer 7 also used the debugger to examine the final state of a system

using the core dump.

With the exception of company F’s system, all the systems maintained produced varying

levels of logging information. Company A’s system produced a very minimal amount of

logging, and what logs were there had been inserted on an ad-hoc basis by the maintain-

ers in areas that they had identified as being hot-spots or trouble areas. In companies

B, C & D the logs were more thorough, as the systems could potentially deal with large

amounts of money, so the system logs were a mandated part of the design of the systems.

Transactions were logged, and communication between sub-systems was recorded. Fun-

damentally, values would be known coming into and out of a sub-system. In company G,

logs had an even greater level of detail, in that every action that a user might undertake

would be logged, and every mouse click on the screen would be recorded, as well as the

same type of logs as in other companies being recorded but at an even greater level of

detail. Logs, no matter what level of detail they provided, were used as vital sources of in-

formation by all maintainers that had access to them. They allowed the dynamic analysis

that only executing the system could provide, but from a static context. They also aided
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in the problem of recreating bugs, an activity that is notoriously difficult. By referencing

log information, programmers could either negate the need to recreate the exact system

setup or get a headstart in how to recreate the conditions that caused the problem. At

company G, the detail allowed programmer 11 to ascertain whether the submitted bug

report was truthful or not: in one case the user’s complaint that “I didn’t get notice of

an important trade, the system is bugged”, was found to be false when, upon checking

the logs programmer 11 realised that the user was not even logged into his terminal at

the time the trade was offered.

This use of live system information was universal among all programmers. The level

of live system information available was variable but it was always used when available.

Programmers 4 & 5 just used program logs rather than the debugger. When questioned

about the debugger, programmer 4 stated that he “should probably use it more, but it is

difficult to set up” due to the nature of their sub-system. So the desire to use live system

information is still there, it is just the time investment that is a problem. I think that

the value of live system information is clear, but perhaps there is a potential for research

into how programmers use that information.

Maintainer’s Knowledge

All the programmers were experts on a specific part of the system that they maintained.

In Company A, programmer 1 had sole responsibility for the sub-system that he main-

tained, while programmer 2 was specialised in a part of a sub-system he maintained having

a working knowledge of the rest of the sub-system. Programmer 3 from Company B was

similar, although due to his position he had a greater understanding of the system as

a whole. In Company C, programmers 4 & 5 both covered the same sub-system in its

entirety in a similar way to programmer 1. Company A has had a history of programmers

specialising in one part of the system which did leave them vulnerable should a program-

mer have been “struck by lightning”. This is being rectified by a policy of cross training

to spread system knowledge around the company so that it is no longer held by a single

individual. However, this does not reduce the importance of the sub-system specialist’s

role, as they are still the primary source of work and knowledge about their particular part

of the system. At Company B the idea of cross training is already institutionalised and so

multiple programmers would have to be lost before parts of the system became unknown.

At Company C, both programmers interviewed covered the entirety of the sub-system, so

should one be lost then the other would be able to continue working with no significant

loss of knowledge about the system. In Company B, programmer 6 was, at the time of

interview, a one-person programming team, their partner having just taken a new job

leaving him as the sole source of knowledge for the system they maintained. While his

partner was still at the company, they practised a policy of reviewing each other’s code to

make sure neither of them became single points of failure. The problem of Programmer 6

being the sole source of knowledge was somewhat mitigated by the documentation policy

of the company, as detailed in section 3.4.6. Programmer 7 from Company D was similar

to the programmers from Company A. They all specialised in a single piece of the system,

and each sub-system they wrote became their responsibility to maintain. Programmer
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10 worked on a number of unrelated systems at Company F. On some he was the sole

maintainer, after the system had been written by someone else, while on others he worked

as part of a small team of no more than three people. Due to the institutionalised use of

code inspections, system knowledge was spread between maintenance programmers. In

Computing Department E, programmer 9 only had a small amount of time to work with

the system, as his group had made the decision to explicitly specialise in different sub-

systems as they would not have the time to learn it all. As a result, programmer 9 became

an expert about a particular sub-system in a similar manner to the other programmers

interviewed. Programmer 11 from Company G has a different set of circumstances which

are detailed below.

In general, the maintenance programmers interviewed specialised in their work. Although

company B had institutionalised cross training, that still did not stop programmers be-

coming individual points of failure, as in the case of programmer 6. Nor did it stop

programmers specialising, as programmer 3 still understood parts of the system much

better than any other programmer on the team, and his loss would significantly impact

productivity for code changes in his specialised sub-systems. However, although program-

mers specialised, each system would also have a programmer or manager who had a good

overall knowledge of it. This person would often be an original developer of the system

or a particularly long term maintainer. This person could be used by any maintainer to

answer questions about parts of the system they did not understand, especially design

rationale, without having to track down the specific person who knew exactly what that

part of the system was doing. For example, amongst the programmers I interviewed,

programmer 3 fulfilled these criteria.

Programmer 11 was in a seemingly different situation from the other programmers. Com-

pany G’s policies had led to the situation where each programmer had overlapping knowl-

edge of various sub-systems, so that no one programmer had irreplaceable knowledge

about any particular part of the system. However, the overall system was so large and

multi-faceted that there was no-one with an overview of the system, no-one to go to that

could pull it all together. There seems to have been a trade off that has taken place, even

if it is not a conscious one. No individual programmer is technically irreplaceable as their

knowledge is, generally, replicated across at least one other programmer, which is clearly a

desirable state of being for the company. However, the lack of an overall view means that

architectural changes to the system will be exorbitantly costly as dozens, if not hundreds,

of separate programmers will need to be consulted to put together a picture of the over-

all construction of the system. As a result this ironically creates “vertically integrated”

experts. Although several programmers understand how a particular function operates,

only one of them knows exactly how it operates in relation to a specific half dozen other

functions. This creates a situation where modules contain multiple variations of a single,

seemingly well understood function, as every programmer is too frightened to actually

change a function for fear of its unknown interactions with other parts of the system.

On large systems programmers specialise on one part of the system. Despite the problem

that creates, of risking individual programmers with knowledge, there are good practi-
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cal reasons for this. A programmer with specialised knowledge will be able to complete

work on a sub-system faster than a programmer with a more general knowledge of the

whole system. This approach also reflects the manner in which expertise naturally falls:

if a group of programmers were to start working on a system, all with a basic general

knowledge of it, as soon as one of them fixes a bug in a particular part of the system,

he will have gained a greater level-of-understanding of that sub-system than the other

programmers. This then makes him the natural choice to fulfil any other maintenance

request that is related to that sub-system, making him more and more specialised as work

continues.

Sub-system specialisation is not inherently a problem. However, there are two problems

that can be caused by sub-system specialisation, the first being trivial, but the second

being of greater concern. The first problem is of over specialisation: theoretically, a

programmer could spend so much time concentrating on “their” sub-system that they lose

knowledge of how the sub-system fits into the overall system. Without that knowledge the

programmer will become less effective as they will have to relearn knowledge about other

parts of the system when incorrectly targeted maintenance requests are sent to them. I

have not observed this from my interviews and it seems to me to be a theoretical problem

only. The second, more pressing problem, is of “sole” experts: if a single programmer is

an expert on one part of the system then they become single points of failure. If they

become unavailable for any reason, then they take the only source of expertise about the

sub-system with them. Company A has suffered exactly this problem: programmer 1 was

brought in to replace a programmer who was leaving the company. The plan was for the

outgoing programmer to teach programmer 1 about the sub-system of which he was the

sole maintainer in a three week period before he left. Instead, the outgoing programmer

took his three weeks of vacation time that he was due. Programmer 1 was left with

no guidance beyond what the system wide expert could give, and there was no-one who

understood the details of the inner workings of the sub-system. Maintenance work on the

sub-system effectively came to a halt for the time he took to learn about it.

3.4.5 Implementation

Adding New Code

Almost all programmers stated that they very rarely introduced new bugs into the sys-

tem when fixing old bugs, although their reasons for this were slightly different. For

programmers 1 & 2, they had such a firm grasp of their respective sub-systems that they

always knew what they were doing in relation to the rest of the sub-system. As they were

the ones responsible for their sub-system, they also know that any bugs they introduce,

they will have to fix. For programmers 3, 4 & 5, their low bug creation rate is due to

the extensive testing process that happens whenever code changes are introduced to the

production system. For programmers 4 & 5 this testing process normally takes up to

two months, so the knowledge that a badly written fix to feature X can result in the

testing being stopped after a month and a half, and the code coming back with a note

saying feature Y is now broken adds extra motivation above professional pride in their

work. Programmer 6 uses unit testing and stated that it was the single most useful thing
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that he had done. He claimed that it prevented them passing any buggy code onto the

testing phase. Programmer 7 stated that the group itself was very competitive, and that

individuals are expected to sink or swim by themselves, so there is a very strong desire

to prove that you are a competent programmer. This apparently leads to rigorous self

discipline. Programmer 10 stated that due to the maintenance process being so rigorous,

each change to the system was so small, well tested and inspected that it was very rare

for new bugs to be introduced. Programmer 11 stated that new bugs did get introduced

when making changes, but that the frequent roll-out and testing cycle the company used

meant that they were mostly spotted and fixed before they were redeployed to customers.

This is not to say that the programmers do not write buggy code: far from it. They are

human and thus will make mistakes and they spend a large amount of their time hunting

down and fixing errors that they have made. However, this result is that they rarely

produce buggy code that goes forward to formal testing or is rolled out to customers,

which is an entirely different issue. As can be seen from the graphs in Burk and Kung [11]

the number of corrective maintenance requests goes down over time, but if the maintainers

were continually writing buggy code that made it’s way into production then that line

would either remain constant or rise.

No Mandated Coding Conventions

Although a company may have a mandated software creation process, what that actually

meant for the programmers on a day to day basis was very little, except for programmer

10 who worked in a CMM level 5 environment and so had to produce a large amount of

documentation to accompany any work he did. In general programmers did not have to

jump though many hoops to produce code: I did not even discover a standard coding style

at any of the companies. In company A there has been much debate about a consistent

coding style and the pros and cons that it would have, but the decision at the time of the

interviews was still in limbo. Similarly there are no mandated tools that the programmers

use, and no particular IDE or text editor has been rolled out across the team or company.

At company A there are clusters of tool usage where the programmers have found them

agreeable and spread their usage around the company. There is a similar situation for

companies B, C, D, E & F as well, in that the programmers use similar tools not because

of mandating but because they find them useful. In most companies there was not even

a mandated language. In programmer 7’s overall team (in company D), some developed

sub-systems in Java, some in C++ and one group in C. The groups had the authority to

choose what they thought was the most appropriate language. At company G things were

slightly more constrained, as the central systems were written in Fortran and sub-systems

had to be written in C. The e-mail system the company uses is integrated into the change

request system, allowing anyone to track the status of change requests as attached to

individual programmers. However, programmers still had the choice of using whatever

development environment they liked with which to produce code.
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3.4.6 Learning

Documentation

The major difference between the programmers was the level of documentation they had

about the system. Company A had very little in-code and system level documentation

for the programmers to work with. The company had no policy on documentation, so

some programmers did document code and retroactively add documentation to previously

undocumented parts of the system when they worked, while others did not. On the other

hand, the team programmer 3 (company B) worked in had a rigorous documentation

policy. An accepted part of the maintenance policy for code is the updating of the doc-

umentation, both internal to the source code and external documentation. The external

documentation was kept in a Lotus Notes database with all the search and collaborative

facilities that that provides. This external documentation consists of design notes, e-mail

conversations, and anything that is linked to the piece of code to which the documenta-

tion relates. Company G had a similar but even more stringent system of automatically

collecting every e-mail relevant to a maintenance request, yet, at the same time, program-

mer 11 thought that the code level documentation for the system was very poor. For

programmers 4 & 5 (company C) there was architectural documentation, but it is so out

of date that they would advise newcomers to the system to ignore it. However, there was

code level documentation that was kept up to date by themselves and their team leader.

Programmer 9 (company E) had no documentation to work with. Part of their job brief

was to create documentation for the system, however, time constraints meant that he

decided not to do it. Programmers at companies C,D and G all had a similar comment

on the state of the documentation. They stated that it was terrible but improving. Small

scale, local group driven, Knowledge Bases (they each independently used his term) had

been created into which new information was being put. This represented a break from

legacy documentation attached to the system and the new information was considered of

a much higher quality. However, it could be that this is a short term improvement and

over time, as the volume of documentation increases, it starts to fall more and more out

of synch as the effort of updating it increases.

One possible reason for the lack of documentation relates to the programmer special-

isation. As a maintainer focuses on a particular area they develop a high level-of-

understanding about it, as a result they have the least need of any member of the team

to consult documentation about that part of the system. Even when looking at an area

of responsibility that they had not examined in a while none of the interviewees stated

that they needed documentation to help them, as beacons and connections to well under-

stood code were all the help they needed for jogging their memory about what the code

does. The paradox about the maintainers lack of need is that the maintainer is the person

best suited to create that documentation due to their high level-of-understanding. Unless

mandated by the company, this forms the crux of causes for documentation to fall by the

way side: there is no personal motivation for the maintainer. Even when re-examining

code that had not been worked on in a while the maintainers stated that they were able

to use references to code about which they had a high level-of-understanding as well as

picking out beacons and partial reminders to, relatively, quickly reconstruct rationale for

43



the code.

Training

Companies had varying approaches to teaching new maintainers about the system they

were to maintain. Almost all the companies had some form of introductory course where

basic technologies and company ethos were introduced, but when it came to teaching

about the software system in particular, approaches were a lot more spotty. As a direct

comparison, companies B & D are comparable in business objectives and company size.

Furthermore, the systems that the programmers I interviewed from these two compa-

nies were working on were broadly similar, being financial transaction servers for internal

trades. However, the company training policies were widely divergent. To start working

on the system for company B, a programmer has to serve a structured apprenticeship at

the head offices for several months under a mentor having to meet several milestones to

demonstrate a sufficient level-of-understanding. Before they are finally certified to work

on the system, they must demonstrate that they have met the prescribed milestones. For

the group examined in company D, the training is practically non-existent: after the ini-

tial orientation phase which does not deal with the specific software system at all, new

programmers were being asked to deal with change requests from the moment they took

their desk. Programmers are expected to get on with it and prove their worth by directing

their own learning. Being seen to ask the right kind of questions of the correct people was

another way of earning the group’s respect, although asking the wrong kind of questions

had a large social penalty attached. In companies A & C, it was intended that software

immigrants should learn under the wing of an experienced system maintainer, but as has

been discussed in 3.4.4, this might not be what happens in practice. The general view

of software system training in companies other than company B was as an afterthought:

it was considered that software immigrants would be able to ask questions and consult a

mentor.

The programmers were asked about how they would train new maintenance programmers

freshly assigned to their sub-system. All except programmers 7 & 11 recommended essen-

tially the same method. This was to start by giving the new programmer an overview of

the system as a whole: what the sub-systems do, how they communicate with each other,

explain the design rationale behind the system and sub-system construction, and who

the specialist is for each sub-system. They are then taught about the specific sub-system

that they are to maintain, again being given an overview, demonstrating its behaviour in

various typical modes of operation, and showing good starting points for debugging. This

training method shows a very top down approach to the teaching process. I believe this

shows that experienced maintenance programmers place a great deal of emphasis on high

level abstractions of the system, or at the very least that they consider them to be the

hardest thing to learn and most useful for an immigrant to learn.
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3.5 Comparison

Comparing my results with both the Singer general study and the Singer et al. study

there are a number of similarities.

3.5.1 Source Code is King

The primary similarity is the use of source code as the prime source of information. The

subjects in my study altered that somewhat: they believed that live system information is

the prime source of information, as one can misunderstand how an algorithm theoretically

operates but there can be no misunderstanding the actual results. If the actual results are

different to what is expected, then the flaw is in the programmer’s understanding of the

implementation of the algorithm rather than the algorithm itself. However, the statement

that “source code is king” is concordant with the lack of, and distrust of, external sources

of information. They only other source of information that is trusted anywhere near as

much as the source code is another maintainer’s expert knowledge of the system.

3.5.2 Documentation is not King

Also in line with the findings on my survey is Singer’s result of maintainers not trust-

ing the documentation. Similarly to my own results, Singer’s companies had varying

ways of dealing with documentation, from formal systems to entirely ad-hoc approaches.

Another observation was that documentation was useful for a high-level view of the sys-

tem. This keeps in line with my own findings which suggest that in general, at the high

level, systems remain fairly static: a pay-roll system is a pay-roll system no matter how

much additional functionality accretes, but as more detail is required the documentation

breaks down. The Singer study also echoed the view that programmers see limited value

in creating documentation when they are the sole expert on the part of a system they

are supposed to create documentation for. That said, the Singer study also showed that

bug-tracking databases were used and kept up-to-date. Singer offers the hypothesis that

the bug-tracking databases gave a higher perceived value than documentation or that the

bug-tracking databases are seen as a form of company wide communication. My inter-

views offer an alternative view. The bug-tracking databases that were used by companies

A, C & G were all integrated with the work assignment system. Bugs within the system

were assigned to specific programmers and the tracking system was used by management

to view and check progress. As a result it was in the maintainers’ best interest to give an

accurate view of their level of work to avoid being over-burdened.

The Singer et al. study raises a seemingly anomalous result when looking at the type

of work maintainers perform. In the study they surveyed 13 maintainers who all worked

on the same system. Six of them responded to an initial web survey where they had

to identify what major types of work they did in a free response manner. All six noted

that they looked at system documentation, and this was the only work type that was

universally identified (although there are some varying levels base assumptions amongst

the programmers as not all of them stated that they worked with the source code). Given
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the results of both my own and the Singer study, which show that programmers do

not trust documentation, this is highly interesting and suggests that these programmers

deviated from the norm. As a follow up, eight of the programmer’s (including the six who

responded to the web questionnaire) were shadowed for an hour each and their actions

recorded. Of the 356 total actions recorded only 12 involved looking at documentation.

As the Singer et al. study states this seems to suggest that the programmers find checking

the documentation so unusual that it sticks in their minds in a way that other activities

do not.

3.5.3 Training

The method interviewees suggested for training software immigrants bears comparison

with the work of Berlin [6], which examines the mentor immigrant relationship and what

kind of information the mentors pass on to immigrants. One of the main pieces of in-

formation shown to be passed on was design rationale: explaining why the software was

designed the way it was. This matches the type of information the interviewees said that

they would pass on to a hypothetical software immigrants.

3.5.4 Programmer Estimation of Work vs Managerial Estima-

tions of Work

In the Singer et al. study, programmers estimated their work split as being 57% bug-fixing

and 43% other work. In my study, the programmers’ general view was that they spent

more time fixing bugs than any other programming task, with only programmers 7&10

estimating that they spent more time on development than bug fixing. As noted, this

is not the same as spending the majority of their time fulfilling corrective maintenance

requests, this is time spent bug-fixing. These bugs could arise as they undertake perfective

maintenance.

3.5.5 Experience

The Singer study maintainers had a high average length of experience with the system

they were maintaining,the Singer average being 4.38 years on a single project. This is

similar to my maintainers, with the majority being in the 1-3 or 3-8 years of experience

with one system. Only programmer 9, who was working on a short term contract of a few

months, had less than one year of experience. An estimated average time with system

would be around three years.

3.6 Summary

There are a variety of interesting results from this survey, some of which are dealt with in

chapter 7. However, four of the results, also seen in the Singer study – relating to system

information and how it is gained, presented and stored – combine together to form an

interesting picture when related to software immigrants. The four results are:

1. Software Maintainers specialise in the section of the system they maintain.
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2. Companies do not have much, if anything, in the way of defined training processes

for new maintainers.

3. Exterior sources of information, documentation and mentors, are not always avail-

able. Even when documentation is available it is mostly of a very low quality and

is not trusted.

4. In the absence of useful exterior sources, maintainers trust live system information

above all else.

3.6.1 Result 1: Maintainers Specialise

The picture of typical maintenance this survey portrays is one where maintenance pro-

grammers are often the sole programmers in charge of individual parts of the system.

Whilst they have a generalised level-of-understanding about how the system as a whole

works, they may have no knowledge of the practical implementation of any sub-system

besides their own. However, for their own particular sub-systems, they embody a detailed

and high level-of-understanding. In many cases this high level-of-understanding does not

overlap with the understanding of other maintainers, as, even though multiple maintain-

ers may work on a single sub-system, the natural flow of maintenance requests will result

in maintainer having unique knowledge about particular parts of the system. As a result,

the loss of a maintainer means the loss of their unique knowledge of the sub-system.

3.6.2 Result 2: No Defined Training Process

With the exception of company B, none of the companies/maintenance groups had a de-

fined training process for letting software immigrants gain a level-of-understanding about

the system they would maintain. A software immigrant, after a short ‘introduction-to-

the-company’ training period, would effectively be left to their own devices to gain a

level-of-understanding about the system sufficient to perform useful work on it. This is a

similar result to the one found in the work of Taylor et al. [74], discussed in greater depth

in the following chapter, which also found little in the way of defined training method-

ologies for software immigrants in business. This lack of training is a clear gap in the

current state of practice in software maintenance. Given that software immigrants are

often brought in as direct replacements for departing team members, who have unique

knowledge, it is surprising that more thought has not been given to passing that knowledge

on to software immigrants.

3.6.3 Result 3: Exterior Sources of Information

Documentation is not always available, unless it is a strictly mandated policy of the

company (B, F, G), and even when documentation exists there is no guarantee as to

its quality. In company G, where every scrap of information about system development

and maintenance was saved, the quality of the documentation was rated as being very

low. In company F, even given that the company was at CMM level 5, there were still

gaps in the documentation that meant programmers had to be personally questioned in

order to discover any in-depth information about the system. Sometimes the necessary

47



programmer had left the company and the design rationale had to be reproduced from

scratch by using the code. Combined with result 1, this starts to form a challenging

picture for software immigrants. No system training is provided, the documentation that

is supposed to describe the system is either missing or inaccurate, and the only other

sources of information available, in the maintainer who works on that particular sub-

system, could well have been replaced by the software immigrant themselves, leaving no

source of information about the code other than the code itself.

3.6.4 Result 4: Programmers Trust Live System Information

This was the strongest result of both my own and the Singer studies: apart from knowl-

edgeable programmers the only source of information maintainers consider to be trust-

worthy is the source code itself. This means that even when documentation is available

maintainers do not consider it a trustworthy source of information. Furthermore, as the

results above show, programmers with specific knowledge of a sub-system are not always

available. This means that software systems are being maintained in environments where

there are no sources of trusted, useful information about the program apart from how

the program actually operates. This is a very challenging environment for software immi-

grants to come into as they do not have any current knowledge of how the system operates,

nor is there anything or anyone for them to consult. However, from my interviews this

does not seem to be a particularly uncommon occurrence, as both programmer 1 and

programmer 9 went through exactly this situation.

3.6.5 Discussion

These four results combine together to form a very challenging picture for the software

immigrants going into the typical maintenance team in a typical company: a rugged en-

vironment of minimal help and support, not because there is a lack of willingness but

because there is a lack of resources. The creation of these resources, be they better docu-

mentation or training manuals, is seen as a low priority as they would have to be created

by programmers who themselves would see little benefit from them. As a result, software

immigrants have to fend for themselves, and manage and create their own training, all

while being asked to fulfil maintenance requests.

3.7 Conclusion

The issue of the maintainers fresh to the group, the software immigrants, is one that

seems neglected by all but one of the companies in which I conducted interviews. Given

that software immigrants would certainly need to gain a level-of-understanding about a

sub-system before being able to perform useful work upon it, it seems strange that more

consideration has not been provided to this end. Whilst the nature of the companies

and teams surveyed seems very similar in nature to the companies of the Singer study,

the Singer study does not specifically address the issues of software immigrants. This

suggests that further reading is required to identify the type and volume of research that

is focused on software immigrants and the problems, and solutions to those problems,
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that they face. If this further reading demonstrates that the lack of training identified

is as common as it would appear to be, then this suggests that any further work should

be focused on examining approaches to try and address the lack of action by companies.

Principally, I would be looking at approaches to help develop software immigrants’ level-

of-understanding that rely only on having access to the source code with no assumptions

about the existence of external documentation or mentors. This challenging situation is

the worst case scenario for the software immigrants and by providing an approach that

works in such an environment then this can be augmented with other information sources

if they are available in practice.
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Chapter 4

Software Immigrants

4.1 Introduction

This chapter defines and examines the class of software maintainers known as software

immigrants. What literature that can be found about them is examined and analysed,

with particular attention paid to issues of staff turnover as well as formal and informal

methods of training.

4.2 Motivation

Chapter 3 raised several interesting issues. Of particular interest were the actions (and

inaction) that teams take to teach new hires (software immigrants) about the system they

are going to maintain. Only one company had anything approaching a formalised teach-

ing methodology, with the majority of companies using an informal mentoring system.

Although software immigrants form only a small part of the overall picture of Software

Maintenance, the interviews suggest that due to the specialising nature of maintainers,

software immigrants are brought in to replace specialists who are the only source of in-

formation and useful work on particular parts of the system. As a result, it becomes

important that the software immigrants gain knowledge of their area of responsibility as

swiftly as possible.

As a result a further literature review was considered appropriate to try to identify what

research had be done on the issues surrounding software immigrants, and to compare it

with the results of my own interviews.

4.3 Identification of Literature

Trying to examine issues pertaining to software immigrants is a difficult task due to

the small amount of material available. By reusing the literature base developed for

the systematic literature review in section 2.5 a small body of literature was identified.

For a paper to be considered to be about software immigrants it needed to have only a

fleeting mention of them. This is in contrast to the Maintainer Focused category from

50



the structured literature review where a paper need to have significant discussion about

the People aspect of Software Maintenance to be considered. The identified papers are

presented in chronological order in table 4.1. The papers titled in bold are papers that are

primarily about issues pertaining to software immigrants. The other papers are studies

that are about other aspects of maintenance that happen to touch, sometimes only very

briefly on issues pertaining to software immigrants.

Title Author Year Reference
Help, I have to Maintain an Undocu-
mented Program

Sandra Fay, Denise
Holmes

1985 [23]

Applying Instructional Systems De-

velopment To Software Maintenance

Education

Ronald Backus 1988 [4]

An Investigation into Software Mainte-
nance – Perception and Practices

Paul Layzell, Linda
Macaulay

1990 [41]

Delphi Study of software Maintenance
Problems

Sasa Dekleva 1992 [18]

Software Maintenance Training:

Transition Experiences

Thomas Pigoski,
Steve Looney

1993 [54]

Beyond Program Understanding: A

Look At Programming Expertise in

Industry

Lucy Berlin 1993 [6]

A Change Analysis Process to Character-
ize Software Maintenance Projects

Lionel Briand, Victor
Basili, Yong-Mi Kim,
Donald Squier

1994 [9]

An Examination of Software Maintenance
Practices in a US Government Organiza-
tion

Alan Brown, Alan
Christie, Susan Dart

1995 [10]

A Documentation Suite for Mainte-

nance Programmers

Frank Cioch, Michael
Palazzolo

1996 [15]

The Ramp-Up Problem in Software

Projects: A Case Study of How Soft-

ware Immigrants Naturalize

Susan Sim, Richard
Holt

1998 [63]

Training for Software Maintenance Mark Taylor, Eddie
Moynihan, Andy
Laws

1998 [74]

Evaluating the Predelivery Phase of
ISO/IEC FDIS 14764 in the Swedish Con-
text

Mira Kajko-
Mattsson, Anna
Glassbrook, Maria
Nordin

2001 [35]

Extreme Maintenance Charles Poole, Tim
Murphy, Jan Huis-
man, Allen Higins

2001 [55]

Table 4.1: Software Immigrant Papers

4.4 Defining the Software Immigrant

Sim and Holt [63] are the ones that coin the term software immigrant. Their rationale is

that:

Joining a software development team is like moving to a new country to start
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employment: the immigrant has a lot to learn about the job, the local customs,

and sometimes a new language

They performed an exploratory case study that examined four software immigrants as

they started work on a new system. The phrase software immigrant is used not just

because of the connections between starting a new job and emigrating but also to avoid

the use of the word ‘novice’. Novice is a very loaded word, and in software engineering

literature is most commonly used to refer to people who are learning to program. Berlin

[6] uses the term ‘apprentices’ to label those who Sim and Holt termed software immi-

grants. Berlin, however, was specifically looking at programmers who were also learning

a new language as well as the other identified aspects of being a software immigrant. The

software immigrants studied by Sim and Holt had up to three full years of full-time pro-

gramming experience. The apprentices studied by Berlin each had four years experience

of application development in other languages. As a result the traditional use of ‘novice’

is ill-suited to describing the types of problems that software immigrants encounter. I

have settled on using the term ‘software immigrant’ as I feel it clearly distinguishes itself

from ‘novice’, whereas ‘apprentice’ still has some of the connotations that I am trying to

avoid.

4.5 Training

An unwritten assumption in software engineering is that mentoring, where a senior pro-

grammer acts as a software immigrant’s first port of call for help, advice and possibly even

task assignment is, if not the best way, then at least the most accepted way of teaching

software immigrants about a system. A key feature identified by both the Berlin and

the Sim and Holt studies is that mentoring is an effective way of passing on information

for the software immigrant, but is also time inefficient for the mentor due to the amount

of work time the mentor is giving up while talking to the software immigrant. Mentors

are providers of design rationale that is otherwise missing due to the lack of accurate

documentation, but often the mentor works from the bottom up, reconstructing the ra-

tionale from the available code rather than simply remembering what it was. In the Sim

and Holt study, software immigrants were given low priority maintenance tasks to help

them develop a level-of-understanding about the system. Dekleva [18] performed a Delphi

study with people involved in software maintenance, primarily maintenance managers. A

Delphi study consists of first getting the group to identify issues of concern and then

over a series of iterations rate those areas on a scale (in this case, 1 to 10). An iteration

consists of mailing out a questionnaire asking respondents to rate each problem area as

well as identifying further problem area. They also get to see the groups’ mean for each

problem area and are also asked to provide justification for deviating from the mean by

three or more points. The purpose of the study was to try and reach a consensus between

the participants as to ranking the lists of problems. The participants in this study specif-

ically identified lack of programmer training as a problem, although it was ranked only

13th out of a list of 19 problem areas. This was the only specifically software immigrant

related problem although documentation quality also featured as the 4th biggest problem.
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The literature suggests that that there is a lack of implemented formal training for soft-

ware immigrants. Taylor et al. [74] surveyed 31 British companies with the intention of

examining and documenting their training methodologies. However, they found an almost

total absence of formal training approaches: one company sent programmers on a training

course that involved regression testing which was the only mention of maintenance activ-

ity; three companies (all financial service companies) encouraged the gaining of business

qualifications, presumably to help them gain domain knowledge; while two companies

seconded maintenance programmers to user departments to give the programmers a more

well rounded view of how the software Products were being used. Only 12 of the 31 had

specific maintenance-related technical standards in place, and even these standards were

fairly minimal. An example given was that the maintenance standards:

“consisted purely of a maintenance request specification, a test plan and test

case procedure, and an authorization to go live procedure.”

Layzell and Macaulay [41] performed a general maintenance survey of five major U.K.

based companies. Their section on training highlights the lack of formal approaches to

training and they discuss the theoretical, that there should be a systems encyclopae-

dia, maintenance personnel should have marketing skills, without identifying any of their

companies that are actually doing that. There’s no comparison or evaluation of these sug-

gested techniques being implemented in practice. Kajko-Mattsson et al. [35] examined

pre-delivery actions that impact on maintenance at eight different Scandinavian compa-

nies. Two of the specific issues they examined were the existence of maintenance plans

and formal maintainer training. The maintenance plans that existed were at varying lev-

els of formality and only maintenance plans for corrective maintenance were guaranteed

to exist. Less than half of the organisations provided formal training plans for the main-

tainers, whilst the other companies have informal succession management style practices.

Briand et al. [9] present a paper about characterising the software maintenance process,

in which they provide a case study focused on a particular software system. In this study

they note that software immigrants are given basic maintenance tasks as a way of learning

about the system, as no system documentation exists. There is a single head of main-

tenance who has been working on the system for a long time and who embodies all the

system knowledge. With the loss of the head of maintenance all knowledge of the overall

structure and design rationale of the system would be lost. He acts as a group mentor

figure, to whom system questions are addressed. Poole et al. [55] presents a lessons

learnt paper on the successful introduction of Extreme Programming principles to the

maintenance of a company’s core Product. In the main, the paper discusses the benefits

of introducing a defined process as opposed the the entirely ad-hoc approach they were

formerly using. However, of interest to the analysis of software immigrants is that the

concept of pair programming is intrinsic to XP practices. They mention that one of the

benefits of pair programming is that it makes more explicit the bond between mentor

and software immigrant, although that is not the primary reason for pair programming.

Beyond this semi-formalisation of the mentor–immigrant relationship they mention no

other formal or informal learning or teaching practices.
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There are only two common features identified from the literature. Firstly, mentoring is an

unofficial industry standard for teaching software immigrants. Knowledge is passed on by

face-to-face communication, with a collaborative question-and-answer style approach. The

second is that software immigrants are given low-priority maintenance tasks to perform

as a form of learning. On the basis of this evidence, it seems that there is little in the way

of formal training for software immigrants. The following section discusses those papers

that describe detailed, formal, teaching methodologies

4.6 Formal Approaches to Training

Backus [4] presents a very formal method of training constructed using the Instructional

Systems Development (ISD) approach. This model involves the programmers sitting ex-

ams about the system they have to maintain. It is a holistic style of teaching and covers

not just the Product to be maintained, but Processes that should be followed to maintain

the Product. There is a mix of classroom and hands-on experience with the Product code.

Compared to basic mentoring, in which the mentor’s knowledge is assumed to be current,

this methodology requires maintenance in order to remain relevant to evolving system

functionality. In a mentoring environment the mentor’s knowledge would assumed to be

current, given that they are working with the current system. This methodology is quite

rigid, making it easy to teach, but reducing the scope for the typical mentor-immigrant

exchanges and the customisation of information to the specific need that mentors can

give. Given the lack of references to the paper, and the general lack of structured teach-

ing of maintenance discovered by Taylor et al. or Layzell and Macauly, this suggests that

this formal approach has not found much favour with companies in the subsequent years.

In many regards it is similar to having up-to-date documentation: it is something that

people want to have, but without strong management will it will quickly fall by the way

side. Indeed, Singer et al. [64] observed that while management would like up-to-date

documentation, they do not think it is a worthwhile investment of time for expert pro-

grammers. Another negative aspect is that ISD is geared, with its upfront construction

costs, to giving a view of the whole system. Given maintenance programmers’ tendency to

specialise on sub-systems the ISD based approach may well spend time teaching subjects

information they will not use in their day-to-day activities.

Cioch et al. [15] also present a formal method of helping software immigrants gain a

sufficient level-of-understanding to successfully maintain Products. Its major focus is on

the idea that that as immigrants gain a greater level-of-understanding about a Product,

they will require different information to more effectively learn about the Product. Whilst

the system expert can pull out the requirements or design specification to find out what

they want, such documents will contain too much information, presented in an ineffective

format for the system novice. Their solution was a documentation site formulated at four

different levels: newcomers; students; interns; and experts. The first two levels, newcom-

ers and students, are considered non-productive stages, in that the immigrants would not

be producing actual changes to the system. Newcomers is an initial orientation phase

lasting only a few days at most. It mainly consists of giving software immigrants the cor-
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rect context so that they can correctly align and associate information about the system

they are working on. The three issues that should be covered are: “How you fit into the

organisation”; “What is the purpose of the sub-system you are working on”; “Why the

sub-system was designed this way”. This information is to be presented in short, market-

ing overview type presentations. The student level starts covering “How the sub-system

operates”. This is done using the story telling approach [12] where students are walked

through what the sub-system does when a specific, but common, action is performed in

the system. This documentation does not exist fully formed. Students are instructed to

construct their own story walk-throughs, in a similar manner as to how the programmers

from chapter 3 stated how they learnt in a mentorless environment. This is to get the

students to learn about the system in an active, rather than passive way. Intern level im-

migrants are shown “Organising and running to-be-released code” and “Process details”.

Process details covers company wide policies and standards along with the details of how

their specific groups operates. Organising and running code covers testing methodologies,

compilation, build workflows: effectively anything that is involved in working with the

code that is not the actual code itself.

There are some unanswered questions about this approach. The paper talks in terms

of a documentation suite, but constantly refers to the software immigrants as the ones

producing the documentation. It is unclear how much of this is to be prepared by sys-

tem experts and how much is self generated. The diagrams produced for students, which

were hand crafted by system experts, are comparable in information presented to various

UML diagrams. Given the availability of UML generators, experts would no longer have

to spend time producing the diagrams, as they simply have to select from a plethora

of automatically generated diagrams. The paper is also unclear on how long a software

immigrant will be a student before moving onto the intern level. No means of measuring

the suitability of changing the immigrant’s status is stated apart from determination by a

supervisor. Finally, frequent mention is made of supervision without stating how close it

should be or how much time it should take up. So, despite initially appearing to present

a highly formal approach like the Backus paper, this method relies on many subjective

judgement calls by mentor like figures. This is not a criticism of the approach but it

shows how hard it is to provide a flexible yet formal method of teaching, and shows the

high value of system experts, mentors, in the learning process. They point out that there

is a high upfront cost with producing the materials but do not discuss the problems of

maintaining the materials to keep them current.

Brown et al. [10] examined the operations of a large US government organisation that

developed and maintained multiple software systems. Systems were produced in an envi-

ronment where one team created the system, while another, separate team maintained the

system. The standard dysfunctions were found (poor communication, schedule pressures,

systems not designed for maintenance, etc.). Of note for the study of software immigrants

was that the organisation made heavy use of short term contractors to do work who had

to be taught about the system. There was no unified or structured thought given to how

to teach the contractors, and even a line of thought which pushed against giving them a

wider contextual view (taking the opposite approach to the work of Cioch et al. which
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started with giving the wide system overview) that hoped to obtain higher productivity

by focusing the contractors on their small portion of the system without them getting

distracted by the big picture. Given the whole ethos of poor management that the organ-

isation had, this does not seem to be a fruitful approach. The government organisation,

with its policy of high turnover, is an example of a organisation that would benefit from

more formal training methods, but the tight schedules that it runs under precludes the

creation of the necessary materials without a strong managerial will to change.

Pigoski and Looney [54] present an account of setting up a maintenance group from

scratch. This is a group consisting solely of programmers who had not worked on the

given system before, and in most cases had not heard of it up until the point where they

received the code. Their techniques are based on the general advice of Fay and Holmes

and can be summarised as:

1. Understand the Domain

2. Learn how the system is organised

3. Determine what it does

4. Practice by fixing low priority maintenance requests

As can be seen, the use of low-priority maintenance tasks is once again a feature of

the learning process. Of particular interest, that is, going against common belief, is that

Pigoski and Looney state that reading out of date documentation is useful, as even though

it does not describe what the system is currently doing it can provide valuable background

information. One possible reason for this might well be that they were building a depart-

ment which would be given the responsibility of maintaining the software, as a result

the Product was ‘young’ and the drift from what the documentation said and what the

code did could well be smaller than for a system that has been maintained for five years.

Another possibility is that their maintainers could very well have found the more abstract

high level documentation useful, information that programmers trust more in documenta-

tion [64] than documentation that provides detailed descriptions of the code. To perform

step 3, programmers were asked to read the code and then give oral presentations to their

sub-groups as to what the code did. This technique reportedly had its own learning curve:

talking about code is tricky, but proved to be invaluable in the long run. Finally there

was learning by performing fixes. These fixes were performed before the code was offi-

cially their responsibility, so they were getting a headstart on the work. The Pigoski and

Looney situation is slightly abnormal in that they had assembled an entire department

who had fundamentally no knowledge of what they were about to maintain. There were

no mentors to consult. This could well be another reason why the documentation was

found to be valuable, as apart from the code it was the only store of knowledge about the

system that existed, no matter how inaccurate it was.

Pigoski and Looney references the Dekleva study but draws from it a skewed conclusion.

They state that the Delphi study identified high turnover as one of the principle problems

of maintenance. While high turnover was identified as a problem area it was ranked last,
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with a mean score of 3.9 and a standard deviation of 2.6 on a 10 point scale. This suggests

that turnover is not a significant problem for the majority of respondents, but the high

standard deviation suggests that for those respondents who did find it a problem, it was

one of their most significant problems. The low rating is backed up by the Singer et al.

study that showed maintenance personnel in their studied companies had a low turnover

rate with high average system experience. The bimodal nature of staff turnover is also

highlighted by the Leintz, Swanson, Tompkins derived studies. In a similar manner to the

Dekleva study, although Turnover is identified as one of the top 10 problems by the LST

study (ranked 9th) it has the highest standard deviation of all the responses. In the break-

down of answers Turnover has the third largest number of “Not a problem” responses (the

lowest possible categorisation) with only the problems ranked 23rd and 24th (out of 24

problem areas) having a larger response in that category. The reason Pigoski and Looney

highlight the problems of high turnover is due to the identified abnormality of their sit-

uation: effectively 100% of the staff working on the system turned-over simultaneously

as the system moved from the development to the maintenance group. The government

organisation studied by Brown et al. is an example of a maintenance group that is badly

affected by high turnover, and shows how debilitating the lack of appropriate teaching

mechanisms can be.

There are two inter-related reasons for a lack of implementation of formal training method-

ologies. The first is the large up-front cost in producing the formal materials that will

not be cost effective in a traditional low turnover environment. Simultaneously, materials

produced for formal teaching methods will have to be kept up to date with the system,

and, given the traditional poor quality of systems documentation, this represents a sig-

nificant ongoing investment by the company. That said, formal teaching methods are not

a dead end by any means. It seems that companies with a high turnover should benefit

from adopting more formal methodologies. Out-sourced maintenance departments, who

focus solely on maintaining other people’s systems, would certainly benefit from formal

methodologies, especially as the informal approach of day-to-day, face-to-face discussion

between software immigrants and mentor is often not available at all. The Pigoski and

Looney methodology sits somewhere between formal and informal. The actual activities

it sets out are of a fairly informal nature, they mostly consist of working with the code

which is an informal learning activity. However, they are organised in a formal process

with progressive steps to be followed. Therefore it is a formal process where each step

consists of an informal practice. Also of note is the length of time spanned by the liter-

ature. There is a gap of 10 years between the Backus paper, detailing a potential formal

training methodology, and the Taylor et al. study which highlighted the lack of formal

training methodologies in practice. While there is an identified lag in adoption of research

in Software Engineering, after 20 years it would be expected that at least a measurable

percentage of firms would be adopting formal training methodologies if they were consid-

ered useful.
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4.7 Comparisons with Interviews

These findings about software immigrants mesh well with the results of the interviews

of chapter 3. The software immigrants literature suggests that software maintainers spe-

cialise in particular sub-systems to the detriment of the knowledge of the rest of the

system. This is consistent with the results the interviews found. The literature discovers

minimal, if any, adoption of formal teaching methodologies; from the interviews only one

company out of seven had a formal methodology. The literature, contrary to common

knowledge, suggests that for the majority of companies high turnover of maintenance staff

is not a problem; none of the interviews put forward the information that there was a

problem with turnover of staff. However, the literature does promulgate the belief that a

mentor will always be available, something which the interviews showed is not always the

case.

4.8 Conclusion

The existing literature on software immigrants consists of two types: one examines or men-

tions informal training methodologies; the other provides descriptions of formal training

methodologies. While informative, these papers do not present any comparison or eval-

uation of these methodologies. While mentoring is consistently identified, there is no

comparison between it and other approaches. In short there is no examination of the

empirical difference in using different methodologies to help software immigrants gain a

level-of-understanding about a system. Furthermore, with the exception of Pigoski and

Looney there is a universal assumption of the existence of a mentor for software immi-

grants to consult, but, as my interviews discovered, mentors do not always exist, either

due to company culture or unexpected events.

Given the lack of comparisons and the incorrect assumption about the existence of men-

tors it seems worthwhile to preform some sort of comparison between non mentor based

approaches to building a level-of-understanding about an unfamiliar system. Due to the

difficulty of performing a longitudinal, interventionist study in industry it was thought

most appropriate to perform a controlled laboratory experiment. Specifically looking at

work based approaches to software immigrants developing a level-of-understanding about

a system. The following two chapters describe the experimental methods necessary for

performing such an experiment as well as the design, implementation and results of the

experiment.
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Chapter 5

Experimental Methods

5.1 Introduction

This chapter is a guide to the construction and running of controlled software engineer-

ing experiments. Much of the advice is generally applicable to software engineering ex-

periments as a whole, based on my experience and studying relevant literature, but is

specifically focused on experiments dealing with level-of-understanding experiments. The

chapter starts by describing the general problems of typical software engineering experi-

ments, showing why they are more difficult than standard experiments. It goes through

the elements required to construct, run and correctly analyse the data gained from a

controlled laboratory experiment.

5.2 Nature of Level-Of-Understanding Based Software

Engineering Experiments

As Software Engineering is the study of People applying Processes to Products so too

are experiments in Software Engineering. This adds extra problems over experimentation

in other fields. As recounted by Carver et al. [14], general experiments in the social

sciences look at People and Processes. In the field of material sciences researchers exam-

ine Processes applied to Products. In general, Software Engineering blends these three

components together to form a more challenging experimentation environment.

There are three general, basic designs of Software Engineering experiments, summarised

in figure 5.1, which are based around the variation of each of the three elements of software

engineering: People, Processes and Products. Type One experiments are where subjects

in different groups use a different Process to try and gain a level-of-understanding about

the same Product, an example of which is my own experiment from chapter 6. In Type

Two experiments, all subjects are trying to perform the same task on different Products,

the Products being created to match the same specification but constructed in different

ways due to the Processes applied to them. This applies to experiments like Oman and

Cook [52] where the same code was formatted in two different ways. This a particularly

complicated combination as the Subject’s performance on the task is being measured, but
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it is quality of the Process used to create the code that is being determined by the experi-

ment. Type Three experiments are when the People change but the Process and Product

remain the same. This is the experiment design behind all novice/expert comparisons.

Subject A

Subject B

Process Product

Subject

Process B

Product

Process A

TYPE 1

TYPE 2

TYPE 3

TaskSubject

Process A

Pre−ExperimentExperiment

Specification

Process B

Product A

Product B

Figure 5.1: The Three Experiment Types

These designs are based around the idea of controlling the experimental environment. The

People, Processes and Products are all termed as independent variables. That is, each

of these things (variables) can be altered without effecting the values of the of the other

variables. For example switching the People from novices to experts does not necessitate

changing what Product they are working on. One aspect of experimental design that

these diagrams do not cover is the measurement of the results of the experiment, i.e.

what is known as the dependent variables. The appropriate selection and measurement of

dependent variables is discussed in section 5.5. A given set of values for an experiment’s

independent variables is termed a treatment, factor or condition.

5.2.1 Hypothesis Construction

Empirical laboratory experiments are normally based around disproving what is known as

the null hypothesis [85]. The null hypothesis is a statement of what is expected to happen

when there is no measurable effect from altering the values of the independent variables.

An alternate hypothesis should be given which describe the expected outcome of the

experiment. Stating these hypotheses before the experiment is critical to the integrity

of the experiment, as they affect how the statistical analysis of the experiment can be
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performed. Producing hypotheses after the experiment is performed could easily allow

fallacious conclusions to be drawn. Another important consideration when constructing

hypotheses is the direction of the hypotheses. A hypothesis can be either uni-directional

or bi-directional. That is, for an experiment featuring two treatments, the experimenter

can test for only one treatment being superior to another (uni-directional) or for either

treatment being superior to the other (bi-directional). For example if the null hypothesis

for an experiment is that subjects performing treatment A will have no difference in their

level-of-understanding from subjects performing treatment B and the alternate hypothesis

is that subjects performing treatment A will have a higher level-of-understanding than

subjects performing treatment B then this would be a uni-directional hypothesis and when

performing statistical analysis the experimenter can only test to see if treatment A is

better than treatment B. If the experiment shows that treatment B is better, then that

is not a significant result. The reason an experimenter would choose to construct an uni-

directional hypothesis is that it allows the measured difference between the two groups to

be smaller when testing for significance as the experimenter is only looking for a difference

in one direction.

5.3 People

This section examines the two most important issues in selecting subjects: subjects’ ability

levels and ethical considerations for selection.

5.3.1 Ability Levels and Professionalism

A frequent criticism, considered in depth by Curtis [16], of software engineering experi-

ments is the constant use of undergraduate students rather than industry practitioners.

The reasons for both the criticism and why student programmers are still used is fairly ob-

vious. Critics do not feel that undergraduates accurately represent general programmers

and thus affect the generalisability of the results of an experiment. However, researchers

have far easier access to undergraduates than industry practitioners, which results in con-

trolled laboratory experiments frequently using undergraduate subjects.

The principal advantage of using student programmers in experiments involving program-

ming is that the students will have undergone long term assessment of their programming

ability. As programming ability is highly variable amongst practitioners and variation in

programming ability is the single largest confounding factor in any experiment involving

programming, there needs to be some accurate way of stratifying or blocking the sub-

jects based on programming ability. As stated, students will have had numerous tests of

their programming ability over their time at university. Using the assumption that these

assessments are reasonably accurate, this allows the experiment to confidently balance

groups.

Even with the greater level of homogeneity that using continually assessed undergraduates

brings, there are still problems. In a rather unscientific study, Spolsky [69] analysed the

work of Yale students and found that the best students in the class were around five to ten
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times better than their peers. In industry this variation becomes even more pronounced,

with Boehm [7] recognising the best programmers as five times better while Sackman [59]

records the best programmer being up to 28 times better. There is no reliable way of

judging programming ability in a short amount of time, making it very hard to guarantee

the homogeneity of the subjects when using industry practitioners.

For industry practitioners, experience alone is not a good judge of ability, as recognised

by Vokac et al. [79] and Jørgensen and Sjøberg [34]. Pre-testing is also not a completely

adequate approach. Vokac et al. found no correlation between performance on the exper-

iment pre-test and performance in the experiment itself. This demonstrates that there

is no good, quick way to test for programming ability, even when the facet of ability is

quite specific (as in the Vokac et al. case). Vokac et al. suggest using longer calibration

tests but do not offer an opinion on how long they should be. A year long course (in the

case of students) gives an accurate indication of ability, but how long professionals should

be given is an open matter. Furthermore, the longer the calibration test the longer the

experiment takes to perform and thus the harder it is to run the experiment at all. One

approach that does seem to effectively balance groups is manager review [3]. By asking

managers to rate their programmers on a three interval scale (Good, Average and Poor),

the groups were sufficiently ability balanced. Further studies would have to be performed

to make sure that this method of categorisation is sound and not just down to particu-

larly good managers. Perhaps combining manger review with peer review, where subjects

rate themselves and other subjects, would help in producing an overall ranking. Thus,

by using multiple imprecise sources of information, the experimenter can try to find the

Venn-like overlap in the information, or produce an average score that best categorises

each subject’s ability.

5.3.2 Ethics of Inducement

There are a number of methods of obtaining subjects for experiments. The most common

for student subjects are: asking for unpaid volunteers; paying or remunerating volunteers;

awarding course credit for experiment participation; or making experiment participation

a compulsory part of the course. Each has its own set of issues, but the one that I have

most concerns about is making experiment participation a compulsory part of the course.

There are reasons for adopting this approach, the primary one being that the experi-

menter can guarantee themselves a large pool of subjects – often a great impediment to

running experiments – and there are also benefits when it comes to training the subjects

which I will discuss in section 5.4.3. However, I have serious ethical, and methodological,

concerns about compulsory participation. I do not think it is morally justifiable to force

students to take part in an experiment, especially if their performance in the experiment

translates directly into coursework marks. This is particularly true of between-groups

experiments – which, as I will explain in section 5.4.1, are essential for many software

engineering experiments – as some students would have to do different work to others,

and as such may be achieving lower marks. Trying to solve this problem by making the

experiment worth nothing to the overall course grade, such as in Thelin [75], introduces

a large motivational issue. Students are now told that they must produce a piece of work
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but that the quality of work is completely unimportant. Although I have no experimental

data to back this up, I would imagine that the work produced by any such subjects would

be of a lower quality than that of either subjects for whom the quality did relate to their

course grade or volunteer subjects.

In the case of professional programmers, there is much less literature on how to induce

them to perform laboratory experiments. The Simula lab [67] pay companies to supply

developers for some of their experiments, often they hire consultants, so that for the sub-

jects it is like any other paid day’s work. As they are not doing their day-to-day work, it

might be seen as similar to a paid holiday, and so a question remains as to whether the

subjects will treat the experimental work as seriously as, or more seriously than, their

normal work. However, there is no evidence to suggest that either would be the case.

5.4 Mechanical Construction

5.4.1 Between and Within-Group Experiments

In standard experimental design, within-groups experiments are superior to between-

groups experiments [58]. In an ideal within-groups experiment, the subjects perform all

the conditions of the experiment, for example they perform Condition A, which is to de-

bug a program with a tool, and then Condition B, which is to debug the program without

a tool. Half the subjects would do Condition A then Condition B while the other half

will do B then A, in order to reduce the effect that the ordering of the tasks has on the

results. In a between-groups experiment, subjects do only one of the conditions and the

relative performance of the groups is analysed. Within-groups experiments are generally

considered superior because it eliminates subject ability variability from the experiment

results, as it guarantees both conditions have equally able participants since they contain

all participants.

However, with many types of software engineering experiments, and with all experiments

that involve understanding code, the ideal within-groups design described above is impos-

sible to perform. You cannot get a subject to learn about a system one way then learn

about the same system in another way whilst not benefiting from performing the first

condition. They have learnt about the system the first time, and they cannot “unlearn”

that knowledge. As a result, in level-of-understanding experiments, only between-groups

experiments can be performed and the treatments groups must be carefully balanced for

ability.

There are a number of experiments (for example the repeated software inheritance exper-

iments [17, 13]) which follow a pseudo-within-groups design for types 1 & 2 experiments

(see figure 5.1). There are two subject groups that perform two conditions each in a stan-

dard fashion. However, due to the problem of the learning effect identified above, rather

than simply changing the Process the subjects perform, the experiment also changes the

Product the subjects use as well (see table 5.2). This eliminates the learning effect issue,

as two different Products are being used, but immediately renders it very difficult to draw
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conclusions as if the experiment was a true within-groups experiment. When two factors

have been changed simultaneously (both the Process and the Product), you cannot com-

pare a subject’s time on the first treatment with their time on the second treatment, as

the Product (which is a critical part of Software Engineering) has changed, unless you

can show that the two Products are identical. However, if the Products are identical then

there would be some form of learning effect in operation. So you can compare results

horizontally across the table (comparing Process A to Process B when applied to Product

X) but you cannot compare vertically (comparing Process A applied to Product X to

Process B applied to Product Y) and ascribe all of the reason for any difference to the

change in Process.

Process A & B −− Product X & Y

Group 2Group 1

Product X
Process A

Product Y
Process B

Product X
Process B

Product Y
Process A

Figure 5.2: Pseudo Within-Group Experiment

5.4.2 Comparing Like with Like

In a related topic, it is important for experimenters to carefully consider what is being

changed in different treatments. By this, I mean that the experiments must conform to

the patterns in figure 5.1 without adding any additional, unaccounted for, factors. For

example, in the Rigi/Shrimp experiment [71], the authors claim that they are comparing

the use of Rigi/Shrimp versus using Sniff++ to understand code. That is, they are

conforming to experiment Type 1, with specific structure as shown in figure 5.3. In actual

fact they had made a slight change as summarised in figure 5.4. The experimenters had

modularised the code into logically connected chunks and given them useful names: a

form of packaging. This was not done automatically by the tool, but by someone who

was familiar with Rigi, Shrimp and the program used in the experiment. As a result, the

experiment was now a comparison between using Sniff++ to examine a program versus

using a tool to examine a program that had been modularised and restructured. This is

not comparing like with like. This does not invalidate the experiment, but the hypothesis

must be restated to include the modularisation of the code, as at the moment beneficial

effects of the modularisation are being ascribed entirely to the tool. If they did not wish

to change their hypothesis then additional information could be provided to the Sniff++

group, for instance by providing a textual representation of the modularisation made for

Rigi and Shrimp. They make the same type of modification in another similar experiment

[70], attributing external factors to the tool’s benefit.
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Monopoly
Program

Subject

(Process) (Product)

Sniff++

Shrimp

Rigi

Figure 5.3: Stated Experiment Design

Monopoly
Program

Subject

(Process) (Product)

Shrimp

Rigi
Annotated
Monopoly
Program

Sniff++

Figure 5.4: Actual Experiment Design

5.4.3 Training the Subjects

Possibly the most vexing question facing experimenters is how to give appropriate levels

of training to subjects. Even when using professionals there is no guarantee that they

will be experienced with the specific area of Software Engineering that the experiment is

covering [67]. Often subjects are often being asked to perform a technique they are not

familiar with, or use a tool that has been recently developed. This is a vitally important

issue and it is one where student subjects have a significant advantage. By using course

time to teach subjects how to perform a particular technique (say a code inspection tech-

nique), the experimenters can make a better attempt both at guaranteeing a consistent

level of teaching and balancing the groups for different ability levels. It is well known

for tool use that in the initial usage period, programmers adopting a tool become less

productive as they learn the intricacies of the tool [27]. In a typical controlled experiment

the experimenter has exactly this problem, as they may have only an hour at most to

train the subjects on the use of the tool before performing the experiment.

Training time is not the only teaching related problem: another is accidentally train-

ing the subjects to use implicit problem solving techniques. If the experimenter wishes

to ascertain how useful Tool X is at diagnosing a type of bug (say a memory leak), the

simple experiment would have half of the subjects trained up to use the tool, and the

other half would use no additional tools as a control group. However, in training to use

the tool there is also implicit training to solve the problem the tool is addressing. Because

a within-groups approach is not possible in this situation (section 5.4.1), if both groups
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were to be trained in the use of the tool, then one group necessarily will have been given

information that goes unused and expectations that go unfulfilled. This problem can be

solved by organising an experiment as shown in figure 5.2 but it must be accepted that

this is effectively two between-groups experiments and not a within-groups experiment,

as subjects’ performance on one program cannot be compared to their performance on

another program. Furthermore, this increases the time for the experiment.

5.4.4 Fatigue Effects

Long experiments risk issues of subject fatigue, especially if the tasks required are men-

tally or physically strenuous. Fatigue refers to the deterioration of a subject’s performance

at stages in the experiment due to increased tiredness or boredom. This is of critical im-

portance in within-group experimental designs as a subject’s performance in later tasks

is directly compared to their performance in earlier tasks. With between-group experi-

mental design, fatigue effects are much less important to consider, as these subjects are

not compared against themselves but against other subjects who would be suffering the

same risk of fatigue. In within-group experiments some effort has to be taken to try and

identify if subjects are suffering from fatigue effects. For between-groups experiments,

unless there is special reason to believe that subjects will have endurance levels of such

differing degrees that it will affect their experimental performance, in which case it would

be an independent variable that must be controlled for, it can be assumed that any fatigue

effects will be balanced across the groups by random allocation.

5.5 Measurement

There are several ways of measuring a programmer’s level-of-understanding of a piece of

code. Dunsmore et al. [21] examine many approaches which they then classify into four

groups: maintenance, dynamic, static and subjective. To help compare the methods, it

can be useful to think of them on an axis classifying the measurement from being direct

to indirect as seen in figure 5.5. The subjective method, which consists on getting the

subjects to rate their own level-of-understanding, is a purely direct approach to measuring

a subject’s level-of-understanding of a program: there is no process to interrupt or manip-

ulate a subject’s self-rating of their level-of-understanding. Another highly direct method,

that Dunsmore et al. did not consider, would be for the experimenter to ask the subject

to explain to them what specific parts of the code do. The experimenter, who would have

a complete understanding of the code, can then rate their knowledge to produce an overall

level-of-understanding score. Indirect methods cover getting the subjects to perform tasks

that would be helped by a high level-of-understanding of the code. Swift completion of

the task reflects a high level-of-understanding of the code, assuming you can balance for

the ability to perform the task. Performing a maintenance task is an example of a purely

indirect method, nothing about it relates directly to levels-of-understanding but given

that to perform maintenance a certain knowledge of the code is required it follows that

a high level-of-understanding of the code would allow a subject to complete the mainte-

nance task ‘better’ than a subject with a low level-of-understanding. Static and dynamic

represent answering written questions about the code. Static questions deal with program
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structure, for example, what module a method is located in, or what functions a method

calls, while dynamic covers questions about data flow and run-time characteristics of the

code. On the sliding scale I classify these techniques as sitting at about the halfway point

between purely direct and indirect techniques.

DIRECT

Static
Dynamic

INDIRECT

ExplanationSubjective Maintenance

Figure 5.5: Axis of Methodology for Measuring Level-Of-Understanding

Using indirect measurements seems at first like an unnecessary confounding factor, but

the more direct measures have problems as well. The ability to explain code to another

person, while potentially highly desirable, is not a “required” skill of programmers, and

is one that is difficult to quantify and thus control for. As Pigoski and Looney [54] re-

ported, they had problems in getting experienced programmers to explain code to other

people, many of them finding it unnatural and difficult. The manner in which information

is solicited from the subject is also problematic, as poorly worded questions could well

affect the types of answers given. Purely subjective ratings from the subjects are clearly

problematic. Despite the statement in Dunsmore et al. that there was a reasonable cor-

respondence between subjects’ self-rating and their test scores, there is still considerable

overlap between various self-rating groups. Furthermore, subjects were being asked to

rate their level-of-understanding on a small program, but it may well be that subjects are

less competent at rating themselves when faced with comprehending a large program.

Test questions are difficult to create and must be tightly coupled to the subjects’ ability.

Dunsmore et al. noted that when they used the same set of questions with more experi-

enced programmers they encountered a ceiling effect1, as these subjects were not troubled

by issues that tripped up the less experienced programmers. Problems of repeatability are

raised due to the need to tightly couple questions to ability level, as the same questions

cannot be used between subjects of different ability levels.

The format of the test is also important. Multiple choice tests have numerous issues

relating to the composition and ordering of incorrect answers [5] as well as the appropri-

ateness of marking schemes that do not use negative marking. If free response questions

are used then the type of expected answer must be defined, to avoid the possibility of

subjects wasting all their time providing detailed answers to simple, low scoring questions.

Obviously, if the tests have to be taken from memory then they become more a test of a

subject’s short and medium term memory rather than their level-of-understanding of the

code. If tests are used then they should be performed open book, that is, with access to

the code that the subjects are being quizzed about.

1That the more experienced programmers were giving almost all correct answers, thus making it more
difficult to distinguish between them. There was a not a spread of results, instead a cluster of high values.
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Finally, if both quality of answer and time to answer are used to measure the subjects’

level-of-understanding then the results then become ratios which are particularly hard

to statistically examine as they do not have a well defined mean, variance or standard

deviation.

The ability of a subject to perform the task being measured is a confounding factor in

experimental design. Ideally experimenters should be able to select a task does not rely on

any great skill or relies on a skill that the experimenter can easily control. In this regard,

maintenance tasks have a clear advantage, as the ability to develop, debug and enhance

programs are the core skills of a programmer. As seen in section 5.3.1 it is possible to

categorise subjects by programming ability and thus reduce the chance that ability levels

affect the results of the experiment. Although Dunsmore et al. suggest that maintenance

tasks are no better at measuring level-of-understanding than the other methods, their

analysis of the experiment has two flaws which affect its generalisability. Firstly it was

performed off-line, that is, subjects made changes to the code by making annotations on

a print out rather than interactively at the computer. This could have adversely affected

their evaluation of maintenance tasks as a measure of level-of-understanding as it is not

reflective of real-world practice. Secondly, they used an incorrect statistical test for assess-

ing the subject’s performance (see section 5.8.3). As a result of the ability to closely and

accurately control for subject ability, I believe that the most effective way of measuring

a subject’s level-of-understanding of a program is through making the subject perform a

single maintenance task on the code.

There are multiple methods of determining the quality of the completed maintenance

task, for instance neatness of code, correctness of code or efficiency of code. Neatness and

efficiency measures both introduce subjectiveness to the results. Given that coding is an

area in which the placement of the curly brace can inflame passions amongst otherwise

rational people, it seems that introducing these subjective measures is a potential powder

keg of uncertainty when it comes to attempting to externally replicate the experiments,

as one person’s neat code is a disgusting kludge to another. Correctness of code provides

a clear unambiguous result: either the change works as specified or it does not. This

measure also comes with an easy to analyse value: the time it takes to complete the

task. It does not produce any difficult to analyse ratios nor does it rely on a subjective

interpretation of results: there is no half-working for quantitative evaluation.

5.6 Materials

5.6.1 Code

In this section I discuss the issues surrounding the construction and use of computer

programs and code fragments in experiment design. Much of what I write is applicable

to all Products used in level-of-understanding experiments and so could equally well be

applied to UML diagrams or code specifications, for instance.
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Bespoke or Pre-Existing

There is an unwritten assumption that using existing, real world, code is better than

constructing code from scratch for the experiment. There are numerous good reasons

for using pre-existing code that can be resolved back into the issue of generalisability.

Performing an experiment on pre-existing code makes the results of the experiment more

generalisable and thus the results more relevant to researchers and practitioners. However,

real world code is designed and written to solve a specific domain problem. As a result,

issues of size, domain and complexity of the code necessary to perform the experiment

can severely limit the choice of pre-existing code available. If a pre-existing piece of code

is selected that has problems in domain, size or complexity then that risks jeopardising

the results of the experiment by allowing these confounding factors to bias the results of

the experiment. As a result, it may well be necessary for the experimenter to produce the

code themselves, adhering to guidelines presented below.

Product Size

To allow the results of an experiment to be generalisable, experiments have to be per-

formed on reasonable sized Products, be they computer programs, formal specifications

or documentation. An experiment measuring some general quality is far more valid when

performed on a program of 150,000 line rather than 15 line program. As von Mayrhauser

and Vans summarise [80], many experiments work with programs of less than fifty lines

of code. This is not to say that experimental results from experiment on “small” pieces

of code are not valuable, but that they are less generalisable than experimental results

produced from work on larger pieces of code. This is particularly the case in maintenance

where large pieces of code are the norm where a conservative estimate would suggest a

software maintainer is responsible for round 40,000 lines of code per system [44].

Despite the desire to perform experiments on large, and thus more realistic, pieces of

code there is a competing demand of time. Experiments in software engineering will often

have a time limit measured in a number of hours or even minutes rather than the weeks,

months or years of other disciplines. The shorter the length of the experiment, the smaller

the given Product has to be. There are no guidelines on how large any given Product

should be for the length of time of an experiment. Intuitively, it will vary from experiment

to experiment depending on what is being measured. Robinson [58] sees this as the type of

issue that can only be resolved by piloting the experiment design with sample materials,

measuring the result and refining the materials. From my own practical experience, final

year university subjects can gain a level-of-understanding of a piece of code of approxi-

mately 1500 lines in length after performing general programming tasks on it for one hour

to accurately answer questions upon it and/or successfully perform further task(s) upon

it. The issue of code size should not be considered in isolation, as it is inextricably linked

to that of code complexity.

Product Complexity

Programs acted upon by the subjects in an experiment should neither be unnecessarily

complex, nor overly simple: they must sit at the awkward saddle point of being “rea-
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sonably” realistic. Unless the experiment is measuring, for instance, how formatting can

hide bugs or confuse programmers, then anything particularly clever or devious that goes

into the construction of the code acts as a confounding factor. This, once more, is a

common-sense part of Product construction: unless you are measuring a Product con-

structed due to an unusual Process the Product should not be unusual. Preferably there

should be some way of measuring program complexity against an average subject’s ability

level. However, there is controversy over the general utility of program complexity metrics

[38, 84]. Furthermore, there are no metrics that measure the effects of program formatting

or identifier naming. As a result there are no metrics that can accurately measure the

overall complexity of a given piece of code in a way that would quantitatively aid the

construction of a piece of code for an experiment. As with program size this is once again

an issue that can only be resolved by subjective judgement and careful piloting of the

materials.

Domain

The domain in which the experiment is performed is a confounding factor. Referring to

figure1.1, it can be seen that the basic knowledge layers are Technical, Domain, and Sys-

tem. A typical level-of-understanding experiment assumes that participants have a certain

basic level of Technical knowledge and, hopefully, no knowledge of the System. Often the

experimenter will know very little about any subject’s knowledge of the domain used in

the experiment. The selection of a domain where subjects could have wildly different lev-

els of knowledge without then trying to level the knowledge can have a marked effect on

ability of the experimenter to analyse the results of the experiment. Even worse than the

split between no domain knowledge and full domain knowledge is misunderstood domain

knowledge. Storey et al.’s [71] experiment used a program that aided play of the game

Monopoly, but as there are many different commonly played house rules to Monopoly, two

people who claim to understand the rules of the game might well be playing two different

versions of it. Although the subjects were given some time to look over the rules, they

did not have to prove any level of domain knowledge before beginning the experiment, so

misconceptions could be carried into the main part of the experiment.

The ideal program domain has two qualities. The first is that it is a simple domain, which

can be easily taught and understood in a short amount of time. Francel and Rugaber

[25] got the domain selection exactly right when it came to simplicity. The concept of

counting up the number of words on a line is an atomic concept and as such it is an easily

communicable idea. There are some fine details to work out, such as if words are split

between lines, but the entire domain can be taught in minutes if necessary. The second

desirable quality is that of real-world relevance. The domain should preferably relate to

a real-world concept that you would expect to have a computer based solution for. Once

again, a word count program is entirely plausible as a real-world application, in that such

functionality appears in almost every text editor ever written. Furthermore, a subject’s

knowledge of the domain should be tested to make sure they do not have a significant

gap in their knowledge that would impair their ability to perform the experiment. In

this regard, a possible improvement to my experiment detailed in chapter 6 would be
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to give the subjects a test on the domain to make sure they all had a similar level of

understanding of the domain, although like many improvements this does increase the

amount of time needed for the experiment.

5.6.2 Comparability of Materials

Many software engineering experiments examine the differences between pieces of code

that have been constructed in different manners: that is, they conform to the Type 2

experiment design. For example, one program might be constructed with multiple inher-

itance, while another program is constructed with no inheritance, and the experiment is

designed to measure which program is easier to understand. It is important to determine

if this is a legitimate comparison. It is my contention that the comprehensibility of a given

program may well be related to a combination of the domain the program is modelling

and the techniques used to construct it, with different problem domains more optimally

fitting different program construction techniques. Furthermore, if the multiple different

programs do not match the same specification then there is no evidence that they can be

considered comparable at all. This is precisely the reason I decided not to use a corrective

maintenance task for my experiment in chapter 6. Indeed, the repeated failed attempts

at replicating program inheritance experiments [17, 13, 30] seems to suggest that differ-

ent, but similar, programs are not strictly comparable. In the inheritance experiments,

the basic format would see subjects try to understand one of three different programs.

Program A would be flat with no inheritance, program B would have a “medium” level of

inheritance, usually three levels, and program C would have “deep” inheritance, usually

five levels. These three programs are created by writing one of the three programs first,

say program B, then programs A and C are created by modifying B to get the desired

levels of inheritance. I share the opinion of Deligiannis et al. [20] that this is not a good

way of producing the programs. They may match the specification, but they have not

been created in the best way for the inheritance levels used. By not being produced in the

best way, programs A and C are going to be intrinsically harder to understand, as they

are underpinned by bad design decisions. Despite the failures in replicating the results

of previous experiments, none of the experimenters have indicated that the way in which

the programs were constructed could be an issue.

However, experimenters still wish to perform controlled experiments to determine if pro-

gram construction techniques have an effect on programmers’ level-of-understanding of

the code. I feel that if different construction techniques are used they should be embraced

to their fullest rather than trying to force program to be “the same but different”. By

trying to force what should be widely different programs to be as similar as possible,

experimenters are undermining their attempts to determine if different program construc-

tion techniques have an effect, as they are sabotaging the experiment code. Although

the alternative is to have programs that are significantly different in nature, it has to be

accepted that programs built using different methodologies should be significantly differ-

ent. This is an approach used by Razali et al. [57], whose experiment to determine the

level-of-understanding differences between B and UML-B specifications was founded on

the creation of the materials from scratch rather than generating one set of materials from
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the other.

5.6.3 Materials Conclusion

The materials used in an experiment have a number of competing demands that govern

their construction. The first is that the Product should be appropriately sized for the

length of the experiment, and only piloting of the experiment design can truly reveal if

it is of an appropriate size. If a Product is too small, the results will lose generalisability,

yet if it is too large for the time, the size becomes a confounding factor. Unless specif-

ically examining issues of Product complexity, the materials should not be intricately

constructed; they should be straight forward, otherwise they introduce a confounding

variable. Likewise the domain the materials are in should either be very well known to

the the subjects or be trivially easy to teach, otherwise varying levels of domain knowledge

become a confounding factor. Finally, if separate treatments of the experiment require

different or altered materials then this must be identified in the experimental design lest

the effect that these different materials have be overlooked in the analysis of the results.

5.7 Subjects’ Actions

5.7.1 Editing Code

If subjects have to edit the code as part of the experiment, for instance if the experimenter

has decided that a maintenance task is the best way of measuring understanding, then the

way code is edited becomes a confounding factor. A common approach is to have subjects

annotate a paper listing of the code, which is unrealistic, to say the least. Programmers

have multiple sources of feedback when editing code using a computer, all of which are

removed when they have to unnaturally edit code on paper.

5.7.2 Lab Environment

The laboratory environment is a confounding factor. In general, programmers work in

teams in communal areas. They are interrupted by a large array of external events, can

take a coffee break if they choose, or consult other programmers if they are having a

particular problem. A lab environment removes all of these factors. While this reduces

the “real worldness” of the environment it also allows the experimenter to be more certain

that any effects seen are due to changes in the independent variables.

5.7.3 Think-Alouds

A common approach in program understanding experiments is that of the think-aloud.

Getting subjects to say what they are doing as they are doing it. Unfortunately, think-

alouds also have an affect on how subjects perform their work as demonstrated by Hughes

and Parkes[32]. Their experiment showed there was a significant difference in the work

produced by subjects who worked normally and those who thought-aloud or who ver-

balised mental planning. Whilst think-alouds are a valuable way of gaining information

for a certain aim (for example validating a mental model of program comprehension), it
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would be an unnecessary confounding factor when applied to another experiment as a

secondary goal.

5.8 Statistical Tests

There are a wide variety of statistical tests for measuring results from experimental de-

sign [85, 58]. While, in detail, they have a widely different approaches, in general they

tackle the analysis of the data in broadly the same manner. The fundamental principle

is that if there is no difference between the treatments in an experiment – that is, the

null hypothesis is true – then there should be no difference in the results of the subjects.

The wider the divergence of the results of two groups, the more chance there is that the

treatments have caused this effect. The larger the volume of subjects in each treatment,

the smaller the difference between two treatments has to be for there to be what is con-

sidered a significant difference. The test discussed below ultimately produce a p-value. To

determine if a statistically significant difference has occurred, experimenters choose what

is known as a significance level. If the obtained p-value is below the selected significance

level the null hypothesis is rejected and the result is said to be significant at the selected

level. The smaller the selected significance level the stronger the result.

The following sections discuss some standard statistical tests (t-test, ANOVA & Chi-

Square) commonly used in software engineering experiments, as well as briefly discussing

the two types of statistical errors that can be made. It also describes another common

statistical method, Survival Analysis, that has seen practically no use in the software

engineering literature but is of particular relevance when using only a single task as a

measure – as I have done in my experiment detailed in chapter 6.

5.8.1 Statistical Errors

There are two types of errors that can occur when using statistical tests (apart from

making mistakes during the calculation). They are called Type-I and Type-II errors

[50]. A Type-I error is when the experimenter rejects the null hypothesis in favour of

an alternative hypothesis despite the null-hypothesis being true. This occurs when the

p-value from a statistical test is below a chosen significance level despite the different

treatments having no effect – i.e. the result happened by chance. A Type-II error happens

when the null hypothesis is not rejected despite it being false. This would happen when

the results from a statistical test are above the chosen significance level despite there

being an effect caused by the treatments, again happening by chance. It can be seen that

raising the significance level reduces the chance of a Type-II error occurring but increases

the chance of a Type-I error occurring.

5.8.2 Standard Tests, both Parametric and Non-Parametric

t-test

The t-test is an exceedingly common and fairly robust statistical test for measuring the

statistically significant difference between two means. The standard parametric t-test
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assumes that the two treatment groups are reasonably normally distributed. There are

a variety of non-parametric variations on the t-test that allow it to be used with non-

parametric data. In the standard parametric test used for a between-groups experiment

there are three assumptions made.

1. The the samples are normally distributed

2. The samples are of equal variance

3. The measures are independent

The result from the t-test is the eponymous t value. The t value is the difference in the

means of two groups divided by the estimated standard error of the difference between

the two means. Potential t-values form a curve that is very similar in shape to the normal

distribution. The greater the value of the t the greater the chance that the two sample

groups are not drawn from the same population and thus the greater the possibility of

being able to correctly reject the null hypothesis.

There are a number of limitations to the standard t-test. If there are more than two

treatments then multiple t-tests would have to performed. Each t-test performed in-

creases the chance of a Type-I error occurring. Bearing in mind that each additional

treatment means an quadratic increase in the number of tests that would have to be

performed, that would mean that with only five factors, with each test performed at the

p = 0.05 level then there is in fact a 40% chance of finding at least one p-value of less than

0.05 by pure chance. The way round this is the use of the ANOVA test which combines all

the treatments together in a single test. If the ANOVA test reveals a significant difference

then judicious selection of treatments can be applied to find which precise treatments are

causing the difference.

ANOVA

The ANOVA (ANalysis Of VAriance) test is used to discover what is known as the F

ratio. The F ratio is the observed variation of the group means divided by the expected

variation of the group means. If the null hypothesis is true then F would be 1, that

is, the observed variation equals the expected variation. When this is not the case the

larger the divergence between them, the greater the value of F. A large F value allows

the experimenter to reject the null-hypothesis (of all means being the same). However, it

does not allow the experimenter to say which mean or means are different, nor by how

much. As stated above, the simplest way would be to select likely looking treatments and

perform the t-test upon them, but one still cannot simply perform a t-test on all the pairs

of treatment groups as that still risks making a Type-I error. Another approach is to

calculate confidence intervals for the multiple treatments and try to find which means fall

outside the interval groups. The best approach is to state the expected differences in the

alternate hypotheses, which allows the experimenter to check for the expected difference.

If an unexpected difference occurs then the null hypothesis cannot be rejected and new

options must be considered.
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Chi-square

The chi-square is a multiple purpose statistical test for examining categorical frequency

data. It is mostly used for either comparing actual frequency distributions of a single

treatment with theoretical distributions or comparing the proportional distributions of

two or more treatments. In the first case, each measure has its difference to the theo-

retical value measured. When measuring the proportional distribution between two or

more treatments, the observed values are first placed in what is known as a contingency

table. A contingency table is a n-by-m grid where n is the number of treatments and

m is the categorical results. Each cell of the table holds the frequency for one outcome

of a single condition. A theoretical even distribution for each combination of variables

is calculated, one that would be correct if the null hypothesis were true. The difference

from this theoretical distribution is then calculated. The larger the difference the more

likely the result is statistically significant.

A common use of the chi-square statistics is testing goodness of fit for numerical distri-

butions. Goodness-of-fit is a term that covers all methods of checking if observed data

matches a theoretical or expected distribution. This is commonly used for testing whether

a distribution is normal enough to apply a t-test to. In this case, the data would be quan-

tised into a number of bands (say 1-3, 4-6, 7-9, 10-12 and 13-15 for a 15 point scale) and

compared against the theoretical frequency for a “perfect” normal distribution for the

number of observations. The chi-square test will show if the observed data comes from

a non-normal distribution. However, like all approaches that rely on quantising data,

this approach is sensitive to how the data is grouped and is also subject to the general

problems of the chi-square test detailed below.

The chi-Square test gives less reliable results as the expected values for each cell fall. It

is generally agreed that if any expected value in a 2-by-2 contingency table is less than 5,

the chi-square test can not be reliably used. In larger tables, it is considered that if more

than 20% of the cells of the contingency table have an expected value of less than 5, the

chi-square test should not be used.

5.8.3 Survival Analysis

Many experiments are performed under a time limit, that is, subjects are given a max-

imum amount of time to complete a given task or tasks and if they have not finished

them in that time then they must stop. This introduces a cut-off point which affects

the statistical tests that can be used to analyse the completion times. If subjects have

been completing a scored test then they have a result (no matter how low) that can form

part of a distribution (be it normal or non-normal). However, if they are performing a

single task (for instance if the experiment design is using completion of a programming

task to measure level-of-understanding as described in section 5.5) then there are subjects

for which there is potentially no result as they do not finish within the given time. As

they have no completion time they cannot be used in calculations of the groups’ means or

standard deviations, which is a critical step in the ANOVA and t-test, nor do they simply

fit into a category for performing chi-square analysis. However, they cannot simply be
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excluded as this introduces an obvious selectional bias to the experiment. Examples of

this selectional bias can be seen in Dunsmore et al. [21], in which subjects are timed

completing a maintenance task. Some subjects do not finish in time and they are dis-

carded from the statistical analysis. In the paper, they comment on the fact that they

have this right-censored data, although they do not use the term ‘right-censored’. They

use standard t-tests, but consider the possibility that their removal of the censored stu-

dents will have affected the results, and they specifically state they do not know what the

appropriate statistics to use in this case are. The correct branch of statistics to use would

be survival analysis.

The general survival analysis technique I am examining is the use of Kaplan-Meier survival

curves, using the log-rank test to examine the results [36]. The main fields of research

in which survival analysis comes from are medicine and mechanical engineering, where

they are used to measure time-to-event data, where the event might be, for example,

patient death or component failure. The concept is generic and can be directly applied

to any experiment that is measuring time-to-completion of a task. The key feature of

survival analysis is that it allows computations on what is termed right-censored data:

these are subjects who have stopped doing the experiment before the measured event has

happened to them. This can be either due to the experimenters no longer following the

subject (as in the case of the subject exceeding a time limit), the subject withdrawing

from the experiment, or for outside effects affecting the subject (for example a subject

dying in a bus crash would have to be censored from a study of leukaemia mortality rates).

The Kaplan-Meier method is a way of calculating what is known as the survival function.

The survival function reports the probability that for a single subject at a given time the

measured event has not yet happened to them. In this regard the Kaplan-Meier method

is an extension of life table methods. A life table is one in which subjects are grouped

together (classically by age) and each group is given a probability of the measured event

happening before the subject advances to the next band. Like the chi-square approach,

life tables are sensitive to how the subjects are grouped. The Kaplan-Meier is superior

as it does not rely on how the data is quantised. The data is plotted in what is called a

Kaplan-Meier survival curve. The curve is a step graph that shows what percentage of

the (measurable) population is still surviving at a given point in time. Plotting curves

for two (or more) groups gives the experimenter a visual representation of the differences

in the survival function for two groups. Normally, as a study progresses and and subjects

drop out from the population (are censored), this reduces the total number of subjects

and so each event then recorded represent a bigger percentage of the population. This

means the graphs have to be read with some care and with reference to the statistical

tests that are based on them.

The most commonly used method to then test whether there is a significant difference

between two Kaplan-Meier survival curves is the log-rank test. Fundamentally, the log-

rank test determines how many events should happen in any given period of time for each

group if the null hypothesis is true (that is, there is no significant difference between the

groups). Then, the theoretical and actual numbers are compared against each other using
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the chi-square test. This test is applied at every observed event time so it does not just

test the whole of the population in one calculation. The end result is a standard p-value

which is compared against a pre-selected significance level.

Another analysis method for survival curves is called the Cox Proportional Hazard Model

[39]. This is a regression model [77] for survival curves. It can deal with both ordered and

unordered categorical data as well as continuous and ordinal values. As with all regression

models, its purpose is to determine which variables have a significant effect on the time-to-

event data and what the relevant importance of those variables are. The Cox Proportional

Hazard Model is considered [39] to be a safe choice as, being a non-parametric model,

it is very robust and able to cope with data with a variety of theoretical distributions.

It is standard to use the Cox Proportional Hazard Model in both uni-variate and multi-

variate forms. In the uni-variate approach, a single independent variable at a time is

used to see if there is any correlation between it and the dependent variable, providing a

standard p-value for determining if the independent variable is a significant contributor

to the dependent variable. In this way, those variables that seem to be having an effect

on the dependent variable can be identified and examined. The multi-variate approach

analysis the effects of all the independent variables simultaneously. The multi-variate

approach will end up producing different p-values for each independent variable. This is

because in the multi-variate model the interaction of the various independent variables

results in different levels of correlation with the dependent variable. Using this approach,

relationships between the independent variables can be identified.

An Example

This section consists of an example to show how the correct use of survival analysis af-

fects p-values when applied to experiment data with right-censored data. Table 5.1 shows

the results of an experiment to measure how quickly subjects were able to complete a

programming task. Half had been working on a object-oriented program and the other

half on a procedurally constructed program. They were given 60 minutes to complete the

task. Several of the subjects were unable to complete the task in time and as a result

were censored from the results at the 60 minute mark.

If the results from these subjects are ignored and the remaining results are used in a t-test

(the remaining figures being normally distributed, equally variable and independent) the

results give t = 2.48 which results in p = 0.022. This is beneath the standard p = 0.05

level and would be considered a significant result. However, there is no reason to exclude

the subjects who did not finish. When a p-value is computed using survival analysis, which

uses all the results, the final result is p = 0.632. This is a large change in the p value, from

being a significant result to being a reasonably non significant result. By examining the

survival curves in figure 5.6, it can be seen that although the object-oriented group has

an initial advantage once the majority of students have finished there is no real difference

between them. This example clearly shows the importance of using the correct statistical

tests for performing analysis of quantitative experiment results. The full stats can be

found in appendix B.
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Subject # Object-Oriented Subject # Procedural
1 11 16 23
2 15 17 27
3 12 18 40
4 37 19 33
5 43 20 52
6 12 21 39
7 39 22 45
8 31 23 34
9 35 24 35
10 22 25 31
11 (60)DNF 26 36
12 (60)DNF 27 (60)DNF
13 (60)DNF 28 56
14 (60)DNF 29 31
15 (60)DNF 30 (60)DNF

Table 5.1: Task Completion

Figure 5.6: Survival Curves by Group

78



5.9 Conclusion

The various aspects of what needs to be considered when constructing a controlled lab-

oratory experiment have been discussed and considered with particular attention being

paid to the appropriateness of the statistical tests being used to analyse the results. While

the various components of the experiment have been identified in general, this does not

eliminate the need for careful piloting of potential experiment designs. Only by piloting

an experiment can specific issues relevant only to a particular design come to light.

However, with the solid foundation this chapter provides I can be confident that the deci-

sions I have made are consistent with established experimental literature in the Software

Engineering field.

79



Chapter 6

Experiment

6.1 Introduction

This chapter describes the design, implementation and execution of an experiment in-

tended to measure the effects on the level-of-understanding of programmers undertaking

different maintenance tasks. The design considerations of the experiment are presented

with reference to both the fundamentals of experiment design presented in chapter 5

and the unique problems that this experiment presented. The results of the experiment

are analysed both quantitatively, with the appropriate statistics, and qualitatively, with

reference to the final programs the subjects produced.

6.2 Motivation

Large software systems are usually maintained by teams of maintenance programmers.

These teams change over time with members leaving (due to a new job, promotion, re-

assignment or retirement) and software immigrants joining either as direct replacements

for departed members or because the workload of a group has increased. Before soft-

ware immigrants can become fully productive team members, they have to learn about

the software system they will have to maintain. Despite being part of a team, software

maintainers tend to specialise on specific sub-systems (see section 3.4.4), so when the

immigrant is being brought in to replace a departed team member, they are required to

also replace that member’s specific knowledge.

Companies often give insufficient thought to succession management [74, 54] and if the

outgoing team member is not available, the software immigrant is on their own in terms

of learning about the specifics of the sub-system that they are responsible for. Reading

system documentation is problematic as documentation is unreliable [64] and it may well

be that no-one else within the team has touched the code in months, possibly years. In

this situation the only source of information on how the code currently operates is the

code itself, and the only way to develop a level-of-understanding about the code is to work

with it.
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In this context, the experiment was designed to examine how performing different tasks

on an unfamiliar piece of code affects subjects’ level-of-understanding of that code.

6.3 Similar Experiments

There are a large number of related experiments measuring level-of-understanding effects.

They can be broken down into the following categories:

1. Those that examine how the structure of a program affects the ability of subjects

to build a level-of-understanding of it [17, 52].

2. Those that examine how varying types of program documentation affects the sub-

jects’ level-of-understanding of the program [56, 62, 1].

3. Those that examine how using a particular tool, technique or process aids building

a level-of-understanding of the program [75, 71].

While the extensive experimental works of von Mayrhauser and Vans [81, 83, 82] are

superficially structured similarly to the experiment design laid out in this chapter, they

are interested in program understanding issues rather than level-of-understanding issues,

to which they give only the most cursory and non-statistical examination. That is, their

experiments are focused around analysing what the programmer does and thinks while

performing the work whereas my own experiment is focused around working out how

much the programmer knows after they have done the task.

6.4 Experimental Construction

6.4.1 Purpose of the Experiment

To measure the difference in level-of-understanding between programmers who have per-

formed either passive or active tasks on an unfamiliar piece of code.

Null Hypothesis 0 – There is no difference in the level-of-understanding of subjects

performing either active or passive tasks.

6.4.2 Glossary

Initial task — Any of the separate activities a subject might perform in the first half of

the experiment. Each treatment will consist of a different Initial task

Measured task — The activity chosen to be used as the metric of a subject’s level-of-

understanding.

6.4.3 Constraints

Subjects

The greatest supply of potential subjects was undergraduate computing science students

at the University of Glasgow. As this is an experiment looking to examine programming
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in general, as high a level of programming experience as possible was desired. This meant

that final year undergraduates were selected. They will have had three years of education,

and probably some work experience. However, as section 5.3.1 states, there are a number

of restrictions they impose which are considered below. Postgraduate students were also

available as potential subjects. However, piloting of the experiment showed that they had

a highly variable level of ability with insufficient indicators to allow the level of ability to

be controlled to avoid biasing the groups.

Time

Given that student subjects are being used, this also constrains the method of inducement

(see section 5.3.2). Due to practical financial constraints, a maximum of £20 was available

per subject. With normal experimental payments in the university being around £5-£10

an hour this placed an absolute maximum time of four hours for the experiment. Another

consideration when using student subjects was the fact that they would have to be taking

time out from their studies, and as the identified group was final year undergraduates

these would be studies directly impacting on their final degree grades. As a result, the

experiment length would need to be minimised in order to make the experiment palatable

for the target subject group.

Consultation with a psychologist suggested an upper limit of two and a half hours for the

experiment, the principal reason being that he found it difficult to attract undergraduate

subjects for experiments that were longer than that. This places a limit of one hour on

any potential Initial or Measured tasks, with half an hour for other activity. This time

restriction not only affects the nature of the possible tasks, but also the size of the code

used in the experiment. As stated in section 5.6, a one hour task length would limit the

code used to around 1500 lines.

6.4.4 Basic Initial Task Requirements

Unlike the Measured task, the Initial tasks do not need to provide any form of quantitative

results. This is beneficial to the overall design, as it allows the freedom to set tasks that

would prove difficult, if not impossible, to measure objectively.

Furthermore, it should take longer than the hour to perform because during the experi-

ment the subjects should be performing the task for the full hour. The experiment is not

measuring the effects of completing, it is measuring the effect of performing the activities

the task requires. As ever though, the task should be of a low domain complexity. This

results in a task that will require a large amount of not hugely challenging work.

The Initial tasks should cover the the major parts of the system. If a task explicitly doesn’t

cover a major component, or more pertinently a component that is necessary to complete

the Measured task, then subjects who perform that Initial task are at a disadvantage.
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6.4.5 Passive Task

In the context of this experiment, a passive task is one where the subject does not alter or

change the code in any way. The passive task represents a view that software immigrants

should take a step back from the code and try to learn about it without plunging in

and potentially doing more harm than good, both to the code and to their own level-of-

understanding of the code.

Reading

The most passive of tasks involving the code would be simply reading it. A possible Initial

task would therefore be for the subjects to read the code for one hour before undertaking

the Measured task. As the subjects were final year undergraduates, I was unsure as to

how well they would be able to self direct themselves for a full hour. There could be

a chance that the subjects would grow bored, which would be a confounding factor in

analysing the experiment. As the purpose of this group was to have subjects who did not

alter the code, an alternative task was selected that fulfilled the goal.

Documenting

Documenting code is a task which involves reading the code without altering or changing

the code. In the context of possible actions software immigrants might undertake when

taking over code, it is a realistic task given the Pigoski and Looney [54] experience, where

they made their maintenance programmers document the code to learn about it. Asking

subjects to undertake documentation gives them a level of guidance that does not exist

when simply asking them to read the code. It gives them a series of short term goals

to work towards, which reduces the possibility of growing distracted or bored due to the

open ended nature of just reading.

Resolution

Due to the above considerations, it was felt that asking the subjects to Document the

code was an appropriate passive task.

6.4.6 Active Task

In the context of this experiment an active task is one that involves the subjects altering

and executing the code. It represents the view that the best way to learn to swim is by

getting wet and that more is learnt by doing. Given that the purpose of the experiment is

to determine which tasks software immigrants should perform when joining a maintenance

team, it follows that the active task should be a maintenance activity.

Various options were considered for the active task. At the basic level there were four

types of tasks possible for the subjects to perform: corrective, perfective, adaptive and

preventative. The following sections describe the issues surrounding implementing one of

these types of tasks as an Initial task.
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Adaptive

Adaptive maintenance covers changes to the environment the software operates in. If

these changes are due to hardware or operating system changes, the knowledge required

to effect those changes will in large part revolve around knowledge of the hardware and

operating systems change itself, rather than knowledge of the program. This is an example

where varying amounts of domain knowledge would have a large impact on performance.

Given that low domain complexity and the reduction of the importance of domain knowl-

edge are key elements to general level-of-understanding experiments, it seems unwise to

use such a task.

Other types of adaptive work, mandatory changes to input or output formats, with the

attendant changes to processing, results in work that is not greatly different from a typ-

ical perfective task. Although the way two tasks were generated, and the priority with

which they must be completed could be completely different from the point-of-view of the

managers, from the subject’s point of view there would be no difference between such an

adaptive task and a related perfective task.

Corrective

The use of corrective maintenance (debugging) as a potential Initial task creates two ma-

jor problems.

The first is to do with the properties of the bugs. The bugs have to be non-trivial so

that they cannot be instantly found, however they cannot be so serious as to cause the

program to fail instantly. As the program has to be relatively small (1500 lines), this is

a difficult sweet spot to hit. Another issue is that if these bugs are introduced after the

program is created then they are artificial bugs, and there is no evidence to show that

artificial bugs match the characteristics of genuine mistakes by programmers.

The second problem comes down to the issue of comparability of materials (see section

5.6.2). There are two options for creating the program to include a debugging task. Either

a single program with errors is created which is given to all groups, or two versions of

the code are produced, one with errors and one without errors. If a single program is

produced, then the expected behaviour of subjects not in the debugging group must be

considered. Given that they have a specification of how the program should operate, if

they spot the anomalous behaviour, or work it out from first principles from the code,

they may act differently to how they otherwise would. They may consider that their

knowledge of the code is wrong, and make false assumptions based on that. They may

“work through” the incorrect behaviour trying to discover what is happening, thus per-

forming similar (although not identical) steps to the subjects in the Debug group. This

would blur what effects could be ascribed to being in the Debug group.

If the alternative approach is taken, and multiple versions of the program are constructed

the experiment is then, as described in section 5.4.2, no longer comparing the differences

between the two treatments that are varying by Process, but also the change in Product as
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well. Although it could be argued that the change is minimal in comparison to the changes

to programs in the Inheritance hierarchy studies or the Rigi/SHriMP experiments, the

arguments for comparability would still have to be made and justified.

Finally, even if multiple versions of the code are successfully argued as being comparable

enough to use, then it raises difficulties for the Measured task. Two options would have

to be considered. The subjects could work on the different versions of the code depending

on what Initial task they performed, with the Measured task being formulated so it was

not affected by the bugs in the code, which would complicate the creation of the Measured

task. Alternatively, the Debuggers would have to be given the fully working version of

the code for the Measured task. This would place the Debuggers at a disadvantage, as

they had built up a level-of-understanding about a different program, no matter how

comparable it was.

Perfective

Perfective maintenance covers the addition of new functionality to a system. It is probably

the single most common programming activity undertaken during maintenance. It is

relatively easy to control the size of a perfective task. By adding or removing requirements

the task can be made as large as necessary so that it takes longer than an hour to complete

without overburdening it with complex domain issues. Similarly, it is easy, when compared

to adaptive, perfective and corrective tasks, to make sure the perfective task touches on

all the major components making up the program. All of these features combine together

to make a perfective task a very desirable activity to use as the active Initial task.

Preventative

Preventative maintenance, covering as it does updating system documentation and re-

coding for computational efficiency, seems a poor choice as an active task. Both of these

imply a fair working knowledge of the system, which subjects who are fresh to the sys-

tem will not have. Updating system documentation is partially covered by the passive

task that has been selected. Unless the preventative maintenance requires a significant

redesign, the type of work that it involves is principally algorithmic change. That is,

the type of knowledge gained is about small localised sections of the code, rather than

knowledge about the system as a whole. While it would be expected that a subject would

have to develop some level-of-understanding of the overall system, it was considered that

compared to perfective maintenance subjects could “short-circuit” a lot of “necessary”

knowledge in order to complete preventative maintenance tasks.

Resolution

The difficulties of using corrective and preventative maintenance tasks were considered

to great to use them as an Initial task. Furthermore, there is no discernible difference

between an adaptive maintenance task that is appropriate to use as an Initial task and

a perfective maintenance task. As a result it decided that a perfective maintenance task

was the best choice as the active task for the experiment.
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6.4.7 Measuring Level-Of-Understanding

As stated in section 5.5, there are multiple ways of measuring a subject’s level-of-understa-

nding. Using a subjective rating or asking the subjects to explain parts of the system were

rejected due to the difficulty of producing quantitative results from them. Despite having

identified a number of drawbacks with test taking the use of a test was considered in more

detail. Whilst the preferred option, as stated in section 5.5, is the use of a maintenance

task, it was felt that some attempt should be made to examine other approaches in

reference to this experiment. Despite having potential drawbacks, a set of questions was

piloted. As well as having the expected problems already identified in section 5.5, it was

also found to be difficult to construct non-trivial questions for the program given the

size of code. Due to these extra considerations, it was decided that only the results of

performing a maintenance task was to be used as the measure of the subjects’ level-of-

understanding. As half of the subjects will be performing a maintenance task as the Initial

task, this introduces special considerations. Fundamentally, the Measured task cannot be

too similar to the Initial maintenance task. If it is, then the subjects performing the

Initial maintenance task are receiving training in succeeding at the Measured task.

Desirable Properties of the Measured Task

The most desirable property of the Measured task is that a subject with a high level-of-

understanding of the experiment code would be able to complete the Measured task as fast

as they can write code. As is consistent with the conclusions of section 5.6, this means that

the Measured task should be of a low domain complexity and that the implementation of

the task should require no complex programming. If the domain of the task is complex

then the subject may be confounded by a lack of knowledge of the domain, despite having a

high level-of-understanding of the code. If the coding required is complex then the subject

might be confounded despite knowing, in theory, what it is that must be done. Counter

balancing this is the problem of ceiling effects, as the task cannot be something so trivial

that a subject with comparatively low level-of-understanding can complete the task as

fast as a subject who has developed a high level-of-understanding. At the other extreme,

although there will always be subjects who will not be able to complete the Measured task,

it is imperative that the number of failures is kept to a minimum. If too many subjects fail

to complete, it will be difficult for the statistical tests to produce reliable results. These

competing demands for the qualities of the Measured task mean that piloting is the only

worthwhile approach to determining if a developed task is appropriate for the experiment.

The same considerations that guided the selection of the Initial maintenance task still

hold with selecting the Measured task. As a result, once again a Perfective task was

selected. Producing documentation, being a form of Preventative maintenance, was given

consideration, but ultimately it is another way of explaining how the system operates,

which has already been rejected as being too subjective.

Perfective maintenance can be roughly split into two different types: work that adds

additional functionality to the system (additive), and work that changes how a currently

implemented feature operates (changeative). To help avoid the possibility of the Initial
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task explicitly training for the Measured task, it would be preferable that the two tasks

be of different types. It is probably inadvisable to make the changeative task the Initial

task, as subjects would be working on a fresh copy of the program for the Measured task.

This would mean that those subjects who had made changes to the code would have been

building a level-of-understanding about the modified program rather than the fresh one

used for the Measured task. If the Measured task made use of any of the sections that

were heavily changed, the subjects may well get confused as they conflate their changes

with the initial system state. Having the chageative task as the Measured task eliminates

this possibility so is obviously preferable.

Quantitative and Qualitative Measures

While chapter 5 emphasises quantitative methods and measures that produce quantitative

results that does not mean that qualitative results are simply ignored: they form a valuable

component of analysing the results. However, every effort has been made to remove

subjective judgement from the data used in the quantitative analysis. The Initial tasks

chosen will each result in materials being produced. These materials can be examined to

look for commonalities and differences as well as being judged for subjective quality. This

information can be used to qualify the quantitative results.

6.5 Experiment Instantiation

This section describes an experiment that fulfills the goal of section 6.4.1 while taking in

the considerations of sections 6.4.3-6.4.7.

6.5.1 Basic Overview

Subjects were split into two groups. Both groups undertook an Initial task for one hour.

The first group Enhanced the code while the other group Documented the code. Then,

the subjects were timed while adding a new feature to the code, and their time taken to

complete this Measured task was used to determine their level-of-understanding of the

code.

6.5.2 Hypothesis

Null Hypothesis 1: There is no difference in the level-of-understanding of the Enhancement

and Document groups.

Hypothesis 1: There is a significant difference in the level-of-understanding between the

Document and Enhancement groups.

6.5.3 Subjects

Subjects were 4th year Computing Science students at the University of Glasgow. This

meant that each subject had three years’ programming education with at least one year

of programming experience in Java and a grade in a Java based programming module.

Subjects were offered £20 to participate in the experiment.
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6.5.4 Procedure and Measures

The subjects were split into two groups using stratified random sampling, using their

programming grade and a subjective self-rating as a Java programmer on a scale of 1 to

10. Their grade was the major component used to stratify them, with the self-rating used

to split up subjects with the same grade. The two groups were labelled Enhance and

Document. The subjects were given a demonstration of the system that they were to be

performing their tasks upon. They were then given as much time as necessary to read

over a written specification of the system and to ask any questions they had. Subjects

were then given one hour to perform the relevant Initial task (either Enhancement or Doc-

umentation) on the system. The subjects were then given a ten minute break in which

snacks and drinks were given to them, and they were engaged in discussion about topics

other than the experiment. Then, working from a fresh version of the system, subjects in

both groups undertook the same second (Measured) task which was an enhancement task.

The subjects were given at most one hour to finish the second task, and the length of time

taken to successfully complete it was used as the metric of their level-of-understanding of

the code. Subjects were then debriefed and asked about their general understanding of

the system and approach to tackling the task.

Subjects worked within the standard Linux environment using their preferred text editor

and any command line tools they felt were appropriate, but without using IDEs. Subjects

were allowed to access the Java SDK web pages but no other websites were allowed to be

accessed.

6.5.5 Materials

A single Java program, details of which are provided below, was used as the experiment

code. A written specification of the system was provided along with a basic class diagram

of the code. An example piece of documentation was provided to show the Document

group what level of detail was desired. A specification of an enhancement task for the

Initial Enhancement group and an enhancement specification to act as the Measured task

were also provided. Finally, a written description of the three tasks was also required. A

blank sheet of paper was provided for note taking. All experiment materials are shown

in appendix C.

6.6 Experiment Details

Despite being based on the solid grounding of reading of established experimental litera-

ture, every experiment has its own unique set of problems caused by the exact combination

of tasks, structure and intent of the experiment. This section examines the issues involved

in constructing and running the final experiment design. These issues were identified by a

combination of the results of piloting various forms of the experiment design, and insight

into the unique issues that this level-of-understanding experiment has. Many of the issues

were raised by the piloting of an experiment design described in appendix D. The Initial

and Measured tasks are discussed, explaining why they were selected and alternate tasks

88



rejected. The nature of the experiment code is described to justify its creation and aid

discussion of the qualitative results in section 6.8.4.

6.6.1 Design Fundamentals

The experiment involves two treatments, one Documenting the code, the other Enhancing

the code. This fulfills the need for groups to perform passive and active tasks. The groups’

level-of-understanding is measured through performing a second enhancement task on the

code. This is a Type one experiment as described in section 5.2, as the change in task is

a change in Process whilst the People and Product remain the same in each treatment.

As it is a between-groups design, attention must be paid to balancing groups for exter-

nal factors that can affect performance in the experiment. It was considered that the

only measurable factor that would have an effect was general programming ability. Given

that the purpose of the assessment of the Java programming course was to determine the

subject’s ability as a programmer, it was felt that the use of their grade was a justified

mechanism to stratify the subject population before assigning them to groups.

Fatigue

Subjects were given a ten minute break in the middle of the experiment. This was to try

and minimise any fatigue effects (see section 5.4.4) that might occur due to the relative

long length of the experiment, even though fatigue effects are less relevant to between-

groups experiments. Another reason was to avoid the possibility of subjects needing a

bathroom break during the experiment tasks, which would have to result in the subject’s

time being a censored measurement at the time they took the break.

6.6.2 Constructed Program

Real vs Constructed Program

As stated in section 5.6 it is preferable to use a real-world program rather than creating

a program specifically for the experiment to avoid problems of potential bias. The pilot

was run using a real-world piece of code. While it was of the desired size for the experi-

ment, approximately 1500 lines of code, it had two properties that caused it to fail by the

guidelines set out in section 5.6.

The major problem was that it used the Swing programming library. This made a rea-

sonable knowledge of the basic functions of the library a prerequisite to performing the

experiment. While the potential subjects, 4th year Glasgow University computing science

undergraduates, were guaranteed to have taken at least one course that covered using the

library, it was discovered that many did not like using the library and as a result were

put off by having to work with Swing even though they had the level of knowledge required.

The second problem was that the program had quite a high level of domain knowledge

attached to it. The program was a zoomable graph display with a pair of inbuilt clustering
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algorithms. This meant that there was a large number of mathematical formulae in the

code, which, while not overly complex, would have given the subjects with a good grasp

of trigonometry a definite advantage over mathematically weaker subjects.

Experiment Code

Due to the problems of finding a a piece of code that could fulfil the requirements for the

experiment, it was decided that a piece of code would be constructed specifically for it.

While constructing code specifically for an experiment can raise issues of the construction

biasing the result, this experiment is exploratory rather than trying to validate a specific

Process and as a result, this greatly diminishes the possibility of deliberate bias. The full

specification and listing of the code is given in appendix C.9 but an overview is given here

to aid discussion of the results.

The program was a simple command-line interface with commands which would create

and manipulate sports ranking systems. There are two domains involved: the command-

line shell and the nature of the sports ranking systems. The subjects, being computing

science students with at least one year’s experience using Linux, would be familiar with

command line paradigms. Similarly, the fundamentals of the sport ranking systems are

very simple, with no great depth to understanding how they work. Furthermore, an exten-

sive description of all three ranking systems was given prior to the subjects undertaking

the tasks. As such, there are no problems of domain complexity confounding the results

of the experiment.

The program itself consists of two main sections: the code for the command line interface

(the parsing, command generation and command objects) and the ranking system imple-

mentations, of which there were three, all presented to the rest of the system through

an interface. The addition of a new command to the system (which both the the Initial

Enhancement task and Measured task require) requires knowledge of both of these parts

of the system.

The operation of the system follows this format: an input line is passed into the currently

loaded command factory (the appropriate command factory is instantiated depending on

which of the three different ranking systems is loaded). The factory checks to see if it

recognises the first token of the line as a command, if not it passes it up the inheritance

hierarchy until one of the super-classes does. Once the command is recognised a command

object is instantiated and the arguments for the command (if any) are passed in along

with a reference to the object representing the currently loaded ranking system. The

command then calls the necessary code in the ranking system to perform its function and

then formats and passes back the output of the command to the command line interface

which then displays it.

The constructed program fulfilled the requirements laid out in section 5.6. It is of an

appropriate size, approximately 1500 lines, to be used in an experiment involving two

one-hour tasks. It has a known, and low, domain complexity. Finally, the code had low
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implementation complexity with a degree of modularity thus avoiding confusing the sub-

jects with obtuse programming tricks.

The program was written in Java because that is what the subjects had been most recently

taught and had extensively used over the previous year. It was therefore chosen due to

expediency, rather than because it was thought to have any special properties that were

beneficial to the experiment. Conversely, the use of Java was not thought to have any

negative properties that would adversely affect the experiment.

6.6.3 Initial Enhancement Task

This task requires the addition of a single level undo facility to the system. As this involves

adding a command to the system, it requires the subjects to know how Command objects

are generated in the system as well as requiring a reasonably high level-of-understanding

of the internals on the three ranking systems, and knowing how the ranking systems’ inter-

nal data structures work. Whilst there is only one way of generating a correct Command

object, there are multiple ways in which the undo functionality can be implemented, with

varying levels of sophistication.

The key proposition is that the undo command is a relatively challenging task, consid-

ering the ability level of the subjects, so would be unlikely to be completed in the hour.

Furthermore it covers the key parts of the system: command generation, execution and

interaction with the ranking systems. In that way it meets the required properties of

section 6.4.6

6.6.4 Documentation and Subjective Value

Due to the code being in Java, the Documentation the subjects were asked to produce

was JavaDoc. This style of documentation was chosen as it is a style the subjects are

familiar with, and it does not require the creation of extra files, thus making the gathering

and analysis of the documentation easier. Requiring the subjects to produce other forms

of documentation was considered but rejected: subjects were provided with a basic class

diagram so there was no scope for asking them to produce such a document. The subjects

already had a specification of the code so there was no need for them to reverse engineer.

This left adding comments to the code in the form of JavaDoc as the only small scale

approach to documenting the program in a structured way.

In the pilot of the alternative design, subjects produced program documentation much

as they do in the final design. However, this documentation was awarded a score and

this score was used as a measure of the subjects’ level-of-understanding. As described

in section 6.4.7, the use of subjective measures for quantitative results has been avoided

in the final experiment design. This was partly informed by the difficulty in confidently

rating the quality of subjects’ documentation in the pilot experiment. Furthermore, pro-

ducing good code-level comments is not a skill which is practised or examined by the

University of Glasgow’s Computing Science undergraduate course. As a result, even if

the documentation was able to be accurately judged, using the documentation produced
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as an indicator of a subject’s level-of-understanding would still be a confounding factor in

the experiment design given that it is impossible to balance the subjects for their ability

to produce documentation. As a result, the final experiment design was influenced by

the desire to avoid the need to perform quantitative analysis of the subjects’ documen-

tation for the purposes of performing the statistical tests. This aim was achieved, and

while the documentation the subjects produced was read and analysed it was purely for

a qualitative view.

6.6.5 Measured Task

Problems in Creation of Task

The final experiment design was piloted with three subjects. None of them could complete

the Measured task (described in appendix C.7). Not only that, but in their debriefing

they stated that they had no idea how to go about undertaking the Measured task. This

was potentially extremely damaging because if these subjects were representative of other

potential subjects, then no subjects would be able to finish the Measured task and the

experiment would collapse, as there would be nothing to measure.

There were four possibilities as to why the subjects were unable to finish the Measured

task: the subjects could not gain a great enough level-of-understanding about the system

to complete the task; the task was too programmatically complex to implement in the

available time; the task was too domain complex for the subjects to understand; or the

subjects were not good enough programmers overall. In questioning the pilot subjects, it

was determined that the task was too domain complex : the subjects were able to explain

what the various parts of the system did in a cohesive manner but they did not grasp

what was totally required of them for the Measured task.

Two options were considered for correcting this problem: additional explanation of the

Measured task or a new Measured task that had lower domain complexity. There were

time constraints to consider, in that the subjects were only available for two weeks before

their course-work started to mount up and they became unavailable to do the experi-

ment. It was felt on balance that the current Measured task was going to be too domain

complex even after providing additional explanation and that the risk could not be taken

as even more time would be lost if the extra explanation failed. As a result, it was felt

that producing a new Measured task was the safest approach to take. The Measured

task designed (adding the functionality to query the existence of a specific player name in

the currently loaded ranking system, described in appendix C.5)had a considerably lower

domain complexity but was still spread across the whole system, thus requiring a wide

range of knowledge about the system to complete. The Initial Enhancement task was also

slightly modified to reduce the similarity between it and the Measured task. This new

task does have a greater similarity in characteristics to the Initial task than is desirable;

they are both additive Enhancement tasks which require adding a new command to the

system. Attempts were made to create a new chageative task, however, the two chageative

tasks produced (described in appendix C.8) were considered to be too trivial and too lo-

calised, thus risking the introduction of a ceiling effect. As practising Enhancement is not
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practising any specific skill other than programming, which is something the subjects are

supposed to be able to do, it was felt that the additive Enhancement task was not going

to bias the results of the experiment.

Completion of Task

The subjects were given a written specification of the Measured task which contained

a description of what was required for the tasks to be considered successful. A series

of test commands were constructed to determine if the Measured task was completed

successfully. This tested the successful running of the new command on the three different

ranking systems as well as the error handling capabilities of the code. The tests were

made available to the subjects so that they could measure their own progress while they

attempted the Measured task.

Using a Test

The use of some form of test was considered. Whilst the difficulties of using them as the

sole measure of a subject’s level-of-understanding was all ready recognised in section 5.5

and section 6.4.7, it was thought that a test could be administered in addition to the use

of a maintenance task as the primary measure of the level-of-understanding to act as a

verification measure.

The use of a test in such a role was included the the pilot of the alternative design. This re-

vealed that in practice the answering of the questions raised an interesting point about the

accuracy of the answers. One subject answered the questions in far more detail than was

necessary to score full marks by the given marking scheme. This meant that he answered

a smaller number of questions than other subjects despite the fact that, as was clear from

from debriefing and the detailed answers, he had a greater level-of-understanding about

the code than all the other subjects who took part in the pilot. An example of the type of

depth he went into is in his response to the question “What is the minimum time the zoom

animation can take to run?”. There was a constant timing variable of 700 milliseconds,

which most subjects found and reported. However, this subject instrumented the code

and collected runtime data for both zoom-in and zoom-out operations and gave average

and lowest-measured timings for both.

A second issue for the test relates to where a test or tests should be inserted in the final

experiment design. If it is placed before the Measured task then the experiment no longer

measures the difference between Enhancing and Documenting but between Enhancing &

test taking and Documenting & test taking, as discovering answers to the test questions is

a form of learning and thus would affect a subject’s level-of-understanding. If the tests are

taken after the Measured task has been performed then the issue of a subject’s total time

with the program becomes problematic. A subject who completes the Measured task in

ten minutes would be judged to have a greater level-of-understanding than a subject who

finished in 50 minutes. However, they will only have had 70 minutes of time in total with

the code while the other subject will have had 110 minutes. Whilst the results of the test
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may be very interesting, it makes the test results much more problematic as a measure of

a subject’s overall level-of-understanding which is the core purpose of the experimental

design.

Due to these issues it was decided that there would be no test of any form in the final

experiment design as the complications and difficulties it presented, along with the increase

in experiment length it entailed, were considered too great when compared against the

minimal benefits.

6.6.6 No Integrated Development Environments

There were two reasons that the subjects were restricted to using text editors rather than

an Integrated Development Environment (IDE). The first is the additional utility that the

IDE can offer: a proficient user of an IDE would have a large, but unquantifiable advan-

tage over a subject not using an IDE. While an experiment measuring how IDEs affect a

subject’s level-of-understanding of a system would be interesting and useful, that is not

the purpose of this experiment. The second reason is setup time: many IDEs require setup

time for importing new code, and although this does not take long in relation to a normal

project’s lifecycle, even ten minutes’ setup time would be a significant amount of time

not spent on the experiment. Whilst this restriction on IDE usage marginally reduces the

realism of the experiment, the increased homogeneity of the subjects was judged more

important.

The subjects were, however, allowed to use any of the standard Unix command line

tools that they felt were appropriate. It could be argued that these tools would have the

same effects as the the features in an IDE. It was felt that it was appropriate to let the

subjects use these tools as they are an integral part of developing software in the Unix

environment, and that to deny them access to grep and the like would be to limit their

productiveness too much. Furthermore, the subjects all have a similar level of Linux

experience. In the end, I discovered from debriefing the subjects after the end of the

experiment that no command line tools other than grep had been used. Furthermore,

even grep was only used to a minimal extent and by only a few of the subjects.

6.6.7 Provision of Class Diagram

A basic class diagram was provided to the subjects, which showed only class inheritance

hierarchies and interface implementation. It was thought that it would be a significant

time investment for the subjects to produce such a diagram for themselves and a basic class

diagram is almost a prerequisite of learning about an OO system. Given the prevalence of

tools that can automatically recover a system’s class diagram, to varying levels of detail,

it was thought that it was only reasonable to provide subjects with a basic class diagram.

6.7 Running the Experiment

The experiment was run on three separate occasions, Autumn 2003 (cohort 1), Autumn

2004 (cohort 2) and Autumn 2006 (cohort 3). The experiment was run in Autumn as it
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was considered the best time to be able to attract potential subjects. Running at any

other time of year would have clashed with practical assignments, holidays or exams. This

was shown by the attempt to get participants for the alternative design pilot, which was

run at spring time and received a very low response rate from undergraduate students.

The experiment was run on all days of the working week. It was run at the end of the

academic day, 4:30pm, to avoid clashing with subjects’ lectures, and also to minimise any

potential fatigue effects. To speed up the overall running of the experiment subjects were

run through in small groups: up to four people performed the experiment simultaneously,

although there were also executions with only a single subject. Subjects were forbidden

to communicate with each other during the experiment, except during the ten minutes

break where conversation was kept off the system they had been working on.

6.8 Results

6.8.1 Reasons for Repeating the Experiment

As stated the experiment was run three times, in three different years. The reason for this

was that the first time the experiment was run there was no significant result for the main

hypothesis. However, as can be seen from tables 6.1 & 6.2, only six of the ten Enhancers

from the first run of the experiment (cohort) finished the Measured task (and all in 30

minutes or less) while nine out of ten of the Documenters completed the task. This sug-

gested a certain bi-modality in the Enhancers: that if they were good enough, Enhancing

was the best way to learn. On the other hand the more high level view that Documenters

took, while not imparting as much information to the subjects, gave them enough of a

overview to allow them to find the information they needed to complete the Measured task.

As the number of participants (20) was somewhat low to produce reliable results, the

decision was made to run the experiment again with a further 18 subjects (2 Enhancers

pulled out at the last minute). As can be seen from table 6.3, the 2nd cohort Enhancers

seem to be of a different character to the 1st cohort Enhancers, with much higher mean and

median times to completion. However, the survival analysis shows no significant difference.

Furthermore, there seemed to be no change in the Documenter groups. The manner in

which the experiment was run was reviewed to try and identify any factors that may have

sped up or slowed down the two Enhancement groups. No variation was found in how the

experiment was run, so external factors were also examined. An examination was made

of the way that the programming courses had been taught as they might have changed

between the years. A more detailed examination of the subjects’ academic results was also

undertaken in case the grades where masking high/low variations in the quality of the As

and Bs. Once again, no differences of any note were found: the programming courses were

run using the same material by the same lecturers as they had been the previous year,

and the more detailed grade analysis gave no further insight. As a result, the experiment

was run a third time to try and find if there was a trend toward bi-modality of results

in the Enhancers. On this occasion only 15 subjects could be attracted to perform the

experiment, and due to the desire to primarily examine differences in the Enhancement

group, it was run this time with ten Enhancers and five Documenters.
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Cohort Sub Num Initial Task Time Grade Rating
1 5 Enhance 12 A 8
1 6 Enhance 24 C 5
1 11 Enhance Non–Comp B 5
1 12 Enhance Non–Comp C 6
1 13 Enhance 19 A 9
1 16 Enhance 24 B 7
1 18 Enhance Non–Comp A 9
1 19 Enhance 9 A 7
1 21 Enhance 30 B 6
1 23 Enhance Non–Comp None 8
2 29 Enhance Non–Comp C 7
2 30 Enhance 24 A 7
2 36 Enhance 39 A 6
2 38 Enhance 21 B 8
2 39 Enhance Non–Comp C 4
2 41 Enhance 59 C 7
2 42 Enhance 19 A 7
2 44 Enhance 51 A 6
3 52 Enhance 39 B 7
3 55 Enhance 28 A 7
3 56 Enhance 26 A 6
3 58 Enhance 30 C 7
3 59 Enhance 23 A 5
3 60 Enhance 10 A 7
3 62 Enhance Non–Comp C 6
3 64 Enhance 52 B 7
3 65 Enhance 41 A 6
3 66 Enhance 16 A 7

Table 6.1: Enhancers’ Details

Cohort Initial Task Initial Task Time Grade Rating
1 4 Document 31 C 6
1 7 Document 52 A 6
1 9 Document 16 A 8
1 10 Document 58 B 7
1 14 Document 34 A 7
1 15 Document Non–Comp C 7
1 17 Document 27 A 8
1 20 Document 47 B 7
1 22 Document 36 B 6
1 24 Document 29 A 9
2 28 Document 25 A 8
2 31 Document Non–Comp C 2
2 32 Document 33 A 7
2 33 Document Non–Comp B 5
2 35 Document 17 A 5
2 37 Document 19 A 8
2 40 Document 56 B 6
2 43 Document 17 A 7
2 45 Document 43 A 7
2 46 Document 34 A 7
3 51 Document 60 C 7
3 53 Document Non–Comp A 6
3 54 Document 52 E 4
3 61 Document 43 B 7
3 63 Document Non–Comp A 6

Table 6.2: Documenters’ Details

Group Mean Time To Completion Median Time To Completion
1st Cohort Enhance 23.8 24
2nd Cohort Enhance 41.4 39
3rd Cohort Enhance 31.7 28
1st Cohort Document 38.8 34
2nd Cohort Document 35.6 33
3rd Cohort Document 55.0 60

Table 6.3: Mean and Median Time to Completion
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6.8.2 Hypothesis 1 Result

In comparing the Enhancers with the Documenters using survival analysis the result is

p = 0.717 as seen in table 6.4. This leaves no significant difference between the En-

hancers and Documenters and as such Null Hypothesis 1 cannot be rejected. This means

that there is no statistically significant difference in the level-of-understanding gained by

subjects who performed Enhancing over subjects who performed Documenting. By the

design hypothesis, Hypothesis 0, this means that there is no significant difference between

subjects undertaking an active task and subjects undertaking a passive task. The survival

curve can be seen in figure 6.1. As can be seen, although in the early period it looks as

if the Enhancers will be the faster group after 30 minutes the completion events start

to spread out. On the other hand the Documenter completion times seem to be slightly

more consistent although starting later than the earliest Enhancers. Overall, despite rea-

sonably different median times for the Enhance and Document groups the curves are not

that different, as revealed by the statistics1.

Variable Chi Square DF p-value
Initial Task 0.131778 1 0.717

Cohort 0.008772 2 0.996
Grade 10.0706 2 0.015

Self–Rating 5.65624 1 0.017

Table 6.4: Log–Rank Tests

Figure 6.1: Survival Curves by Initial Task

1Full statistical working for these and all other statistical test in this chapter can be found in appendix
A
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6.8.3 Balance

As stated in section 6.6.1, this experiment uses a between-groups design and as such the

balance of the groups is important for determining if the results of the experiment are

reliable. If one group has a greater proportion of better programmers it would probably

be no surprise if that group was faster. At the same time, it would be interesting to note

if programming ability, as measured by the subjects’ module mark was a good judge of

ability. These two ideas can be stated in the form of a hypothesis:

Null-Hypothesis 2: There is no significant difference in the completion times

of subjects with different programming grades.

Hypothesis 2: Subjects with better grades will have faster finishing times than

subjects with lower grades.

A second assumption is that the subjects can accurately self-assess their programming

ability. Once again this can be stated in the form of a hypothesis:

Null-Hypothesis 3: There is no significant difference in the completion times

of subjects with differing self-ratings.

Hypothesis 3: Subjects who have rated themselves with a higher self-rating

will have faster completion times than subjects with lower self-ratings.

These two hypothesis were tested using survival analysis. As with main hypothesis, with

no compelling reason not to, significance was tested for at the p = 0.05 level.

Kaplan-Meier survival curves were computed for the subjects’ programming grade, shown

in figure 6.3, and analysed with the log-rank test, giving a final result of p = 0.015 which

is a significant result, allowing the null-hypothesis to be rejected. To analyse the subjects’

self-rating using Kaplan-Meier survival curves they were split them into two groups, ‘6

and below’ and ‘7 and above’ seen in figure 6.4. This gave a result 0f p = 0.017, once

again a significant result, although this hides some strange fluctuations, for instance the

subjects who rated themselves an 8 are better than those who rated themselves 6, but not

those who rated themselves 5. This does raise some doubt as to the ability of subjects

to rate themselves. As a result self-rating was also used as the independent variable in a

uni-variate Cox Proportional Hazard Model to determine if it was a significant indicator

of the completion time. The resultant p-value was p = 0.021 which is a significant result.

However, as is standard, all independent variables (cohort, group, grade and self-rating)

were analysed in a multi-variate Cox Proportional Hazard Model, which produced the

result that only grade was a significant indicator of completion time, with self-rating hav-

ing a result of p = 0.158. This suggests that while self-rating was a moderately accurate

way of predicting completion times for all subjects it is also strongly correlated with the

subjects’ grades and that grade is a far more accurate indicator of completion time than

self-rating. Thus, once the completion times are balanced and blocked by grade the self-

rating is not a particularly useful indicator of ability of subjects within each grade band.

As a subject’s grade (and to a lesser extent self-rating) is a statistically significant indica-

tor of ability, it is important to show that the two groups were balanced for ability. Tables

6.5 & 6.6 show the distributions of subjects for each grade and self-rating between the
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groups with the theoretical perfect number of subjects per group. As can be seen each

distribution is within a single subject. This means that the groups were as well balanced

as possible and that they were not biased by ability.

Differences between cohorts was also tested for, but absolutely no significant difference

(p=0.996) was detected as is clear from figure 6.2. This strongly suggests that there was

no material difference in the subjects between the years the experiment was performed

in.

Figure 6.2: Survival Curves by Cohort

Grade Actual Enhancers Theoretical Enhancers Actual Documenters Theoretical Documenters
A 15 15.3 14 13.6
B 6 6.3 6 5.66

<= C 7 6.3 5 5.66

Table 6.5: Number of Subjects by Grade

Self–Rating Actual Enhancers Theoretical Enhancers Actual Documenters Theoretical Documenters
9 2 1.5 1 1.4
8 3 3.7 4 3.3
7 12 11.6 10 10.3
6 7 6.8 6 6.1
5 3 2.6 2 2.3
4 1 1 1 0.9
2 0 0.5 1 0.5

Table 6.6: Number of Subjects by Self–Rating
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Figure 6.3: Survival Curves by Programming Grade

Figure 6.4: Survival Curves by Self-Rating
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4 7 9 10 14 15 17 20 22 24
AddPlayerCommand.java × × × ×

AlreadyStarted.java × × × × ×

BasicCommandFactory.java × × × × × × × × ×

BasicListCommandFactory.java × × × × × × × × ×

BasicResult.java × × × × × × ×

Command.java × × × × × × × × ×

CommandFactory.java × × × × × × ×

CreateCommand.java × × × ×

ErrorCommand.java × × × × × × ×

HelpCommand.java × × × × × × ×

HistoryCommand.java × × × × × × ×

IncorrectArguments.java × × × × ×

LadderSystem.java × × × × × × × × × ×

LeagueSystem.java × × × × × × × × × ×

ListCommand.java × × × × × × ×

LoadCommand.java × × × × × × × ×

NameAlreadyExists.java × × × × ×

NameDoesntExist.java × × × ×

PointsShell.java × × × × × × × × ×

QuitCommand.java × × × × × × ×

RankingSystemI.java × × × × × × × × × ×

RankingSystemLoader.java × × × × × ×

ResultCommand.java × × × × × × ×

ResultI.java × × × × ×

SameNameException.java × × × ×

SaveCommand.java ×

Shell.java × × × × × × × × ×

SystemAlreadyExistsException.java ×

UnknownCommand.java × × × × ×

Table 6.7: First Cohort – Comments Added To Files
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28 31 32 33 35 37 40 43 45 46
AddPlayerCommand.java × × × × × ×

AlreadyStarted.java × × ×

BasicCommandFactory.java × × × × × × ×

BasicListCommandFactory.java × × × × × × ×

BasicResult.java × × × × × × ×

Command.java × × × × × × × ×

CommandFactory.java × × × × × × ×

CreateCommand.java × × × × × × ×

ErrorCommand.java × × × × ×

HelpCommand.java × × × × × ×

HistoryCommand.java × × × × × ×

IncorrectArguments.java ×

IsInCommand.java ×

LadderSystem.java × × × × × × × ×

LeagueSystem.java × × × × × ×

ListCommand.java × × × × × × ×

LoadCommand.java × × × × × × ×

NameAlreadyExists.java × ×

NameDoesntExist.java × × ×

PointsShell.java × × × × ×

QuitCommand.java × × × × × ×

RankingSystemI.java × × × × × × × ×

RankingSystemLoader.java × ×

ResultCommand.java × × × ×

ResultI.java × × × ×

SameNameException.java × ×

SaveCommand.java ×

Shell.java × × × × × × × ×

UnknownCommand.java × ×

Table 6.8: Second Cohort – Comments Added To Files
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51 61 63 67
AddPlayerCommand.java × × ×

AlreadyStarted.java × × ×

BasicCommandFactory.java × × × ×

BasicListCommandFactory.java × × × ×

BasicResult.java × × ×

Command.java × ×

CommandFactory.java × × × ×

CreateCommand.java × × ×

ErrorCommand.java × × ×

HelpCommand.java × × × ×

HistoryCommand.java × × × ×

IncorrectArguments.java × × ×

IsInCommand.java
LadderSystem.java × × × ×

LeagueSystem.java × × × ×

ListCommand.java × ×

LoadCommand.java × × ×

NameAlreadyExists.java × ×

NameDoesntExist.java × × ×

PointsShell.java × × × ×

QuitCommand.java × × ×

RankingSystemI.java × × × ×

RankingSystemLoader.java × × ×

ResultCommand.java × ×

ResultI.java × × ×

SameNameException.java × ×

SaveCommand.java ×

Shell.java × × × ×

UnknownCommand.java × × ×

Table 6.9: Third Cohort – Comments Added To Files
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6.8.4 Qualitative Discussion

Results of Initial Tasks

As expected, none of the Enhancers finished the Initial task in time. There was a very

wide distribution of work attempted, ranging from not altering a single file to being a few

bug fixes away from completion. Unlike for the Measured task, the subjects who made a

significant effort all adopted different approaches. There is a fairly weak link between the

amount of work done in the Initial Enhancement task and the subjects’ performance in

the Measured task: generally the more they had done the better they did, although one

of the fastest times was produced by a subject who had barely touched the code in the

Initial task.

For the Document task there was once only a weak link between the number and qual-

ity of the comments in relation to how well they performed on the Measured task. The

comments produced were of highly variable quality, with some subjects producing a large

quantity of very poor quality documentation. For example, subject 17, although not com-

menting on all the key classes, produced vastly superior documentation to subjects 4 and

7. There were eight classes were defined as being ‘key’ to the operation of the system: as

can be seen from tables 6.7, 6.8 and 6.9 the majority of the Documenters commented these

classes. Four of the five documenters who failed to complete the Measured task either

did not comment the majority of the key classes or produced very poor quality documen-

tation of the classes. Subject 35, who completed the Measured task in 17 minutes, the

second fastest Documenter time, embodied the difficulty of trying to perform quantita-

tive analysis on documentation. They commented only nine classes in total, only four of

which were of the identified “key” classes. However, the comments they did provide were

of the highest quality and the most informative of any of the comments. If some form

of quantitative marking scheme was used then they would have obtained the maximum

possible score for the comment but they would have had a small number of points overall

as they would have missed out the large scoring key classes.

Interestingly three subjects documented a class called SaveCommand.java, and they gave

a full and complete description of its purpose. However, SaveCommand.java was a piece

of legacy code from a previous version of the program. Nowhere in the program was

an instance of SaveCommand ever instantiated. Two of the subjects were the 1st and

4th fastest Documenters in the Measured task, whilst the 3rd had a average time for a

Documenter.

The variation in documentation quality and quantity is a practical illustration of the

difficulty of using a quantitative approach to attempt measure success at documenting.

While it would be possible to create a rubric to mark the documentation, the variation in

scores and disconnect between those scores and performance at other tasks would make

such marks a very poor quantitative measure of a subject’s level-of-understanding. As can

be seen from figure 6.5 there is no correlation between the raw number of classes a subject

commented and their completion time of the Measured task (the blue marks represent

censored results). When the number of classes documented is used in a uni-variate Cox
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Proportional Hazard model the result is p = 0.916 which confirms the idea that there is

no connection between completion times and number of classes documented. It is only

when adding the quality of the comments does any (weak) form of correlation become

apparent, but that then becomes highly subjective.

Figure 6.5: Completion Times vs Classes Documented

Completion and Failure

There are a number of non-statistical yet interesting features of the work the the subjects

produced. There were 12 subjects who failed to complete the Measured task in the given

hour: two of these could be described as being close to finishing, one being down to the

stage of fixing typos in his code, while the other had successfully got the new command

working for two of the three ranking systems, so clearly had a firm grasp of how the system

as a whole worked. However, from examining the code and debriefing the other ten it

became clear that those subjects had a critical failure in their level-of-understanding of

the code. The amount of code that was wrong or needed to be changed to get a working

program would be fairly minimal if only they had a clear level-of-understanding of how

the code worked. Amongst the subjects that succeeded there was a generally consistent

manner in which the subjects successfully performed the Measured task. The steps were

not necessarily taken in the following order but they consisted of:

1. Locate the correct command generation class and add code by copy and pasting

similar code with minor modification

2. Copy and paste an existing single argument command class into a new file, then

modify to call correct method in ranking system interface
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3. Locate private methods already in ranking systems that perform the work of the

Measured task and add a method to the ranking system interface and wrapper code

to the ranking systems so that it is accessible by the new command.

Those twn subjects who totally failed to complete in time could be split into two cate-

gories: did not understand (and thus could not implement) how a command was generated

and called the ranking system; or tried to incorrectly use the built in Java API collections

methods to fulfil part 3 rather than using the already existing method. Subjects who

failed for the first reason basically tried to do work in the wrong place, placing code that

should have been in the ranking systems in the command object or code that should have

been in the command object in the command factories and so on. Subjects who failed due

to the second reason seemed to get tunnel vision focus on using the Java API and they

could not step back and see why it did not work. The subjects who failed to understand

how a command was generated could be said to have a very low level-of-understanding

of the system: it was not a simple piece of knowledge they were missing but a major

chunk of how the system operated. Those who were focused on the Java API issue had a

better level-of-understanding and it could be said that they were caught on a technicality,

as they understood the bulk of the system. The majority of subjects failed due to not

understanding how the command objects acted as communicators between the rankings

systems and the command line interface. Both the Enhancement and Document subjects

failed in this way with no discernible differences in the incorrect code they produced.

One interesting facet is that a number of subjects located the private methods in the

ranking systems (step 3) but did not use them. Some thought that the use of the private

methods was somehow inappropriate while others were of the view that as they did not

write them they could not be completely sure about how they worked. The majority of

these people attempted to write their own version of it, with some of them simply copying

and pasting the private methods to make new public versions of them. Unexpectedly,

the times of subjects who copy pasted the find method or created their own were not

noticeably different from the other subjects, although none of them were in the top 20%

of completion times. These subjects were were evenly distributed between the Enhancers

and the Documenters.

One interesting case was that of subject 62, who was one of the subjects who were close

to finishing. He was able to successfully implement the ISIN command for the League

System and Ladder System, but was unable to do so for the Points System. Examining his

code revealed that he did not understand how the internals of the Points Ranking system

worked, so in an attempt to get the ISIN command to work he took code from the Ladder

System (the simplest of the three systems) related to storing names and grafted it onto

the Points Ranking system and then tried to use that code to fulfil the ISIN command.

Technically it could have worked, but was a vastly complicated and error prone approach

to attempt.

Comparing the results of subjects 65 and 66 shows what a difference a level-of-understanding

makes. The programmers were comparable, both having an A-grade, and rating them-
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selves as a 6 and 7 out of 10 respectively for Java programming ability. From the code

produced for the Initial task, it is clear that subject 65 did not fully understand how the

CommandFactory inheritance hierarchy worked, while subject 66 was well on the way

to completing the UNDO task. This gap in subject 65’s level-of-understanding meant

that he took 41 minutes to complete the Measured task, while subject 66 took only 16

minutes. However, the code the pair of programmers produced was almost identical, with

only trivial differences in identifier names and formatting, both of them having under-

taken the same approach to solving the problem once they had obtained the necessary

level-of-understanding.

The overall picture drawn from examining the artefacts of the subjects’ work is that there

were no discernible differences in the work of the subjects based on the Initial task. In

many regards this is a surprising result: mental models, such as von Mayrhauser’s state

that the subjects would have performed different mental actions whilst performing the

program understanding necessary for the Initial tasks. However, these differences did not

manifest themselves in the Measured task, either in the qualitative examination of the

work they produced nor the quantitative examination of the distribution of completion

times.

Nature of Subjects

Over the years in which the experiment was run a shift in the subjects’ use of the comput-

ing environment was noticed. Although the subjects all still had at least one year of Linux

experience, Linux itself has changed and this seems to have had an effect on the subjects.

The first cohort were almost all Emacs users who used the command line to perform all

their actions. The third cohort were much more GUI inclined: they navigated the file

system using a file browser rather than the command line and used more GUI friendly

text editors. Despite these observed differences the analysis of differences by cohort in

section 6.8.3 showed absolutely no significant difference in the completion times nor were

there any differences in the type of work produced by the subjects.

6.9 Threats to Validity

6.9.1 Two Enhancements

The greatest threat to validity in the experiment relates to the two Enhancement tasks. If

they are too similar then the Enhancement group is being trained to succeed in the Mea-

sured task, which distorts its ability to be used as a metric of the level-of-understanding

gained. Ideally, the Enhancement tasks should be of different ‘types’: changeative and

additive. The two tasks used are both additive in nature. However, as practising Enhance-

ment is not practising any specific skill other than programming, which is something the

subjects are supposed to be able to do, it was not felt that the two Enhancement tasks

would significantly bias the results.
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6.9.2 Bug

There was a missing feature in the experiment code. Some subjects noticed and indicated

the fact that the code to move people in one of the ranking systems in the case of a draw

result was missing. Upon its initial discovery, which was after about half the 1st cohort

of subjects had done the experiment, it was decided that no action would be taken to

remedy it. The code was neither fixed nor was special attention drawn to the bug during

the description of the system. The bug was not in an area of code that directly affected

the ability of the subjects to complete either the Initial or Measured Enhancement task.

Furthermore, as no Documenters got to the level of documenting the method the bug

was in, it does not appear that any subject or group of subjects was disadvantaged by

the bug. For the further replications of the experiment it was decided not to fix the bug.

The justification is that the materials should be totally unaltered to avoid introducing an

extra (however small) threat to validity into the experiment.

6.10 Unanswered Questions

The experimental design does not consider what should happen if a subject completes

the Initial Enhancement task in less than the given hour. With the materials used this

is certainly possible, as demonstrated by a strong post-graduate programmer who was

able to complete both the Initial and Measured tasks in under an hour. This is especially

pertinent when considering replicating this experiment with industry professionals who

can have a wide range of abilities [49, 59].

There are three potential solutions to this problem. The first would be to reformulate the

Initial Enhancement task to make it more difficult, thus reducing the chance of anyone

being able to finish the task in one hour. The second would be to have a series of En-

hancement tasks that can only be performed sequentially, thus providing the best subjects

with a stream of Enhancement work. The third and final solution would be to consider

it a non-problem and let the subjects read the code for the remaining time. All three

approaches have their own benefits and drawbacks drawbacks.

The first option risks confounding the experiment by introducing artificial levels of com-

plexity to the Initial task. Any given task can only get so complex before it stops being a

reasonable facsimile of a Perfective maintenance task and starts becoming an esoteric re-

quest that requires a detailed level-of-understanding about specific pieces of code to even

be understood. As stated in section 5.6 unless specifically testing issues of complexity all

materials should be as straight forward as possible. Furthermore, there is no guarantee

no matter how difficult the task is that a particularly strong programmer cannot finish

it in time unless the task is made unfeasibly large, in which case that would once again

introduce the potential to confuse the subjects. The second approach has problems with

presenting the work. In the current experimental design, the subjects are given time

to read the problem specification and ask questions about it, to avoid confusion. If the

complete suite of problems is introduced before the Initial task starts then an amount

of time is spent discussing tasks that the majority of subjects will not undertake. The
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third approach creates confusion as to what the difference between the two Initial tasks

is. While reading of the code must take place to perform the Initial Enhancement task

it is always reading for a specific purpose, gaining the information necessary to complete

the Enhancement task. Letting the active subjects simply read the code in an undirected

manner would introduce to the active task many, many elements of the passive task. This

would make it nearly impossible to ascribe any benefits or drawbacks for the active to the

fact that they did Enhancement, it could be the case that the undirected reading of the

code is what gave them their level-of-understanding. The profound effect this would have

on trying to interpret the results of the experiment means that this third option is not a

realistic candidate for solving the original problem.

Fundamentally, this is a problem related to having to fit the Initial task into one hour. In

a larger experiment, with more time for the Initial task it would be perfectly reasonable

to have a number of Enhancement tasks to perform as the amount of time spent reading

about the tasks would be small relative to the total amount of time to perform the

tasks. This would be an acceptable approach to ensuring the Enhancement subjects were

supplied with enough work to last them the full length of the time available for the Initial

task.

6.11 Conclusion

This chapter has described, with reference to established literature identified in chapter

5, the design and implementation of a robust experiment created to look at one factor of

level-of-understanding issues. The trade-offs and potential confounding factors were iden-

tified, described and justified. The result is a design which has strong internal validity.

Ways of increasing the external validity are discussed in the following chapter.

The context of the experiment was examining what work a software immigrant should

perform when introduced to an environment without mentors. The results did not reveal

any discernible difference in the level-of-understanding of subjects performing the active

and passive tasks. Furthermore, there was no discernible difference in the quality or

approach to the Measured task depending on Initial task, as subjects from both groups

made similar bad choices or questionable design decisions. This strongly suggests that

software immigrants should start performing active tasks upon joining a maintenance

team as they gain just as much of a level-of-understanding as programmers who spend

time performing passive work, yet they are producing work of immediate benefit to the

system.

109



Chapter 7

Further Work

7.1 Introduction

There are three main pieces of work in this thesis: the structured literature review, the

interviews with maintenance programmers and the experiment. Both the interviews and

experiment have the scope for expansion as well as prompting thoughts on alternative

avenues for research. This chapter presents thoughts about what work should follow this

thesis.

7.2 Interviews

7.2.1 Further Interviews

The replication of previous empirical work is a vital source of information. As Software

Engineering is an empirically based field, it is one where changes in the attributes of its

practitioners necessitate changes in the focus of research. As a result, regular longitudinal

based studies of the elements of Software Maintenance, as advocated by Lientz and Swan-

son and practiced by Lehman, are required. Of even more interest than identifying those

elements that are changing is the thought that the population is not changing. In a field

which has undergone large changes in the Products (with the rise of Relational Databases,

Object Oriented Programming and now Web Services) and Processes (with iterative and

now agile development methodologies) a lack of change in the People and the problems

they perceive is a more interesting result than finding out that they have changed. If

a lack of change is repeatedly discovered then this suggests that the fruits of Software

Maintenance research is either not reaching practitioners or is not being considered useful

by them.

Further Question

An important further interview question which can be used to validate the other answers

given is: “How is your success as a maintenance programmer measured?”. This is an

important question as the maintainers’ external measure of success must surely influence

how they undertake the job. If the principal measure of success is the number of change
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requests fulfilled, in an environment where Preventative maintenance does not get the

luxury of an official change request document, then this would be expected to affect

how much Preventative maintenance the maintainer performs. This is an expectation

that should be measured, as if the measure of success does alter the type of work the

maintainers undertake, then research that looks at how altering the measure alters the

work could well reveal ways of improving the efficiency of groups performing maintenance.

7.2.2 Alternate Survey Methods

Due to solely relying on the answers the interviewees provided, the interviews suffer from a

lack of objectivity. The only sure way of producing objective data is through some form of

observational, ethnographic study, although they, as previously identified, have their own

issues. While setting up ethnographic studies is difficult, due to the inconvenience to the

companies and programmers involved as well as the long time scales and arduous nature

of quantitatively analysing the produced data, Singer et al. [65] show that there are also

strong benefits. An ethnographic study allows researchers to compare what programmers

say they do with what they actually do, and allow researchers to make stronger claims

about qualitative results.

7.2.3 New Research Directions

Three aspects of the interviews suggest other possible research directions that can be

undertaken. The first, relating to the use of program logs, would be complementary

to the work presented in the rest of the thesis. The others, involving the difficulty of

correctly assigning work to maintenance programmers and the assessment of maintenance

‘signatures’ would be different fields of research.

Programming Logs

There is scope for investigating important parts of a maintainer’s work that were raised by

the interviews. In the same way as Taylor et al. [74] looked at maintenance training, other

individual aspects of the maintenance process could be considered in greater detail. For

example, the greatest point of commonality that was identified between programmers was

the use of program logs to aid debugging and understanding of the program. By developing

a greater knowledge of exactly what type of information maintenance programmers looked

for, strategies could be developed to help them look for that relevant information. The

use of logs as a teaching tool could also be examined, as interviewees indicated that they

would use them to teach, showing software immigrants the connection between normal

behaviour and log output. These and other details of the maintenance process could be

very valuable in the compilation of a new maintainer’s manual. One possible ultimate

aim of this research could be the development of some form of expert system which

would help diagnose the possible cause of bugs without recourse to an expert maintenance

programmer.
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Classification of Maintenance Signatures

There is a strong suggestion, both from my interviews and the literature, that various

artefacts of a company’s maintenance process are heavily dependent on the type of Prod-

uct being maintained and the structure of the team maintaining it. For instance, it

is noticeable that those programmers who maintained programs internal to the company

performed fewer bug fixes and more perfective maintenance than programmers who main-

tained highly configurable Products or Products that were sold or used by external con-

sumers. As a result, general maintenance advice, based on the average figures produced

from general surveys, will be of variable levels of utility to companies and programmers

depending on how closely their Product and teams match the “average”. Indeed the “av-

erage” might well be a completely misleading idea to which no actual maintenance group

conforms. For example, the LS survey had standard deviations of around 22 points on a

100 point scale for some answers, which is a very large level of variability. As a result,

it may well be worthwhile to try to discover factors in organisational issues, program

design and domain areas that affect the maintenance ‘signature’ of systems: the pattern

of work performed on a system. With more formal classifications, it may be possible to

determine positive and negative aspects of their composition that allow a more accurate

comparison between different companies’ systems. So, for example, one group may be

maintaining a Small, High Configurability, Young, Object Oriented, Internally Deployed

system whilst another another has a Very Large, Linear, Old, Procedural, Commercially

Deployed system. The differences in the attributes of the maintenance of the two systems

(such as the proportion of Adaptive, Corrective, Perfective, Preventative maintenance)

could potentially be predicted based on the differing properties of the systems.

Work Assignment

One of the major points identified from the interviews is that: “To a varying degree, the

accurate assignment of responsibility for a bug fix or feature upgrade is a problem”. Any

alternate process could only be properly tested by performing change to a company’s

maintenance process. On identifying a company that does not have a formal bug as-

signment process, and whose programmers identify this as a problem, the following steps

could be taken:

• Observe the bug fixing efficiency of the team, taking into account bug types, team

size and overt process issues.

• Design and implement a more formal bug assignment process that meshes with their

current maintenance process.

• After the new assignment process has been used for a long enough period, once

again measure the team’s bug fixing efficiency.

Obviously, persuading even one team within a company to change its process is a difficult

task, as there could well be several managerial staff who would be accountable if the

experiment failed, but who would not be rewarded if it succeeded. However, as a software

engineering researcher I cannot be satisfied with hypothesis alone, and only through the

practical application of ideas can I find out if mooted improvements are of any use.
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7.3 Experiment

7.3.1 External Replication

It is important that the experiment and results are replicated by an external research

group. As Carver et al. [14] state, there are many implicit assumptions that go into

experiment design that are revealed when other groups, with their own assumptions, try

and replicate an experiment. As such, any external replication may reveal some aspect of

my own execution of the experiment that may have inhibited or boosted either of the two

treatment groups. Successful replication of the experiment, with the same results, would

greatly increase the internal validity of the experiment.

7.3.2 Attempt to Replicate Results With Different Materials

The exact composition of the materials of the experiment are a confounding factor. It

could be that the precise Initial or Measured task, or indeed the program itself, affected

the results in some way, either inhibiting or boosting one or other of the groups. To

improve the generalisability of the results, the experiment should be repeated with alter-

nate materials. The single most important change would be to make the Measured task

changeative in nature to help reduce the possibility that the similarity of Enhancement

tasks gives benefit to the Enhancement group.

7.3.3 Attempt to Replicate Results With Different Types of Sub-

jects

Another method to increase the generalisability of the experiment would be the use of

experienced industry practitioners as subjects rather than undergraduates. There is the

possibility that industry practitioners give different results than students. That the pro-

fessionals’ greater innate levels of programming ability would result in the the different

tasks affecting the subjects in different ways and producing statistically different comple-

tion times for the Measured task. If this were the case then it would be interesting to ex-

amine the tasks from a program understanding perspective to try an analyse the different

cognitive actions they make the subjects perform. Furthermore, if the use of professional

programmers results in the Documenting task being faster than the Enhancement task

then this would revise the recommendation drawn from the experiment.

The increased ability level of industry practitioners would necessitate a change in the

materials. As section 6.10 highlighted, the completion of both the Enhancement tasks

is well within the capabilities of a strong programmer. To use industry practitioners

would mean having to increase the size, and possibly difficulty, of the code and tasks,

although without significantly increasing the domain complexity of either. The choice of

domain would also be of greater importance, as more experienced programmers would be

likely to have more in-depth knowledge of various domains. Selecting a domain that, say,

half of the subjects were intimately familiar with would, of course, risk confounding the

experiment. However, given that an experiment using professionals would be longer, due

to the fact that they would have to be paid at least a day’s wage, there would be more
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time for the teaching of the chosen experiment domain to try to eliminate any differences

that may exist.

7.3.4 Mentoring and the Base Assumptions

The experiment was constructed to answer the question of what software immigrants

should do when faced with a situation without mentors, the base assumption being that

mentoring is the best available method outside of unimplemented formal training method-

ologies for gaining a level-of-understanding about a system. This experiment design can

be simply adapted to examine whether mentoring is a better approach. Instead of En-

hancing or Documenting the code as the Initial task, the subjects could be Mentored

instead. Mentoring, as a concept, covers a large number of different approaches. At one

extreme mentoring covers programmers who reside as oracle type figures, taking no action

until asked by the software immigrants, at which point they will dispense advice. At the

other extreme there are mentors who fully guide the software immigrants, taking them

on a guided tour of the system, pointing out the interesting places as they go, and being

the main driving force behind what happens during the mentoring. There is also a wide

spectrum inbetween. Any experiment involving mentoring would have to carefully define

the mentors role to allow any form of replication.

7.3.5 Other Task Types

In effect, the experiment design acts as a framework for examining level-of-understanding

issues. The Initial tasks can be anything that the experimenter wants, so the subjects

could be using two different tools to perform the same enhancement, different code inspec-

tion techniques, or refactoring approaches: the list is practically limitless. By consistently

using this framework with the same code and Measured task, a researcher’s knowledge

of comparative level-of-understanding issues could be reliably built up over a period of

years. This is another benefit of the experiment being of a between-groups nature: each

additional Initial task that is added only increases the number of treatment groups by one.

In a within or pseudo-within groups design, every additional Initial task would require the

creation of multiple treatment groups to compare the relative effects of it against other

approaches.

Furthermore, replicating this experiment with professional programmers and the larger

time scale that would imply, may make it feasible to use the other maintenance types

(Adaptive, Corrective, Preventative) as an Initial task. Part of the reason of rejecting

some of the tasks for the implemented experiment was due to the limited amount of time

the subjects would have to work with the code. In a lengthier experiment it would become

more practical to introduce these alternate task types.

7.4 Further Analysis of Software Immigrants Work

From the interviews and the analysis of the literature on software immigrants, it seems

that software immigrants undertake a variety of different approaches to building a level-

of-understanding about a sub-system. The results from the experiment suggest that, in an
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environment that lacks external sources of information, software immigrants should start

working with the code as soon as possible. The limited results from Singer et al. sug-

gest that it takes some time before software immigrants start working with the code and

making changes, so more investigation is needed as to exactly what activities software im-

migrants undertake and how they affect the software immigrants’ level-of-understanding.

Particular attention should be paid to the effects that the different maintenance tasks

have on a software immigrant’s level-of-understanding. Only one of the four types of

maintenance (Adaptive, Corrective, Perfective and Preventative) was examined by the

experiment. It might be that once some knowledge of the system has been built up, dif-

ferent tasks have different effects on further gains of level-of-understanding. As a result,

it is important to look at all the activities the software immigrants perform while trying

to gain a level-of-understanding about the sub-system.

The goal of the research would possibly be to suggest ways for software immigrants

to self-organise the maintenance work they have to perform to maximise the level-of-

understanding gains about a sub-system. The reason the research would be examining

ways of self-organising the work would be that, if it was organised by another programmer

or manager, then that would suggest that such an organiser is available and they would

therefore fulfil the mentoring role. This is not to suggest that there is no benefit in a

mentor organising the work of software immigrants; infact, part of the results of Berlin [6]

were that the mentors beneficially controlled the early work of the software immigrants

in the company. However, given the assumption that no mentor is available it would not

be relevant whether or not their organisation of a software immigrant’s workload would

be beneficial.

It may well be that the recommendations as to how software immigrants should organise

their work load would be generic in nature, applicable to software immigrants across a

variety of companies and software Product types. This would be a useful light-weight

approach to aiding software immigrants. Light-weight approaches, ones that do not rely

on the production of many materials that need to be kept current with the system, are

particularly useful, as research shows low-turnover environments with few software immi-

grants are the norm. This means that heavy-weight solutions do not get implemented,

as they require too much time investment when software immigrants are not a frequent

occurrence. A light-weight, generic approach could be taught in undergraduate software

engineering courses or could be introduced into companies’ basic introductory courses.
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Chapter 8

Conclusion

8.1 Summary of Work

The thesis is founded on a systematic review of the literature. General reading had

suggested that there was a lack of both empirical papers and specifically papers about

People in Software Maintenance. To investigate this possibility a structured, research

trends based, review of the literature was performed. This involved reading, to varying

degrees of detail, 871 papers from three publications and classifying them into four cat-

egories. This review revealed a similar level of empirical work in Software Maintenance

as there is in Software Engineering as a whole. As the volume of empirical papers in

Software Engineering had been deemed insufficient, this meant that empirical work in

Software Maintenance is also insufficient. The survey also revealed that the proportion

of papers dealing with People in Software Maintenance was far below the expected level.

This was determined to be a gap in the research in the field.

This naturally lead to performing work to try and fill this gap in the research. Of the

available options, interviews were considered the most appropriate manner in which to

gather information. As a result a set of interview questions were formulated and main-

tenance programmers from multiple companies were questioned. The interview questions

and their style were based on two papers by Singer (et al.). Although the interviews were

based on two pieces of previous work they are not simply a replication of that work. The

Singer et al. study focused on very specific needs, examining the work practices of a single

set of programmers in a single team within a single company. The Singer study was a

much more broad based view, covering basic impressions at a number of companies. My

own study was at a level of detail sitting somewhere between the two: whilst it had a

broad (yet shallow) base like the Singer study, it provided opportunities to go into great

detail on topics related to information gathering strategies. Basing the questions on the

two previous surveys did allow some form of valuable replication and essential comparison

of results. By partly replicating previous work in the field and discovering, in the areas

replicated, broadly similar qualitative and quantitative results, a firm basis for future

work was established. This similarity of results in the replicated work provides support

for suggesting the generalisability of the non-replicated work.
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The interviews, and the Singer study, suggested that there was a problem for software

immigrants in maintenance. A lack of sources of information about the code and no in-

stitutional policies towards teaching the immigrants would result in a very challenging

environment. To ascertain whether this was the case, a further literature review was

undertaken, this time focusing on papers that examined issues relevant to software immi-

grants.

There were two major results from this literature review. The first result was that prob-

lems of staff turnover were considerably less common than “common knowledge” about

software maintenance suggests. Examining group studies of different software mainte-

nance groups showed that very few of them rated turnover as a significant problem. Con-

versely, studies of individual companies suffering high turnover, which rate high turnover

as a problem, show that when it is an issue it is a major issue, possibly even the over-

riding problem that the maintenance team suffers from. As the majority of companies are

low-turnover environments, this feeds into poor documentation. As maintainers specialise

in specific sub-systems, any documentation they produce is primarily read by no-one other

than themselves until a software immigrant has to take responsibility for that part of the

system. The programmers see no need to document their knowledge in this manner and

this results in poor documentation.

The second result was concordant with the results of my interviews: very few compa-

nies have training methodologies in place to aid software immigrants develop a level-of-

understanding about the system they are working on. What informal training does take

place relies almost exclusively on the existence of sub-system experts, mentors, to be used

as an information source. However, as my interviews had shown, such mentors are not

always available: a result which would firmly strand software immigrants on their own

when it comes to developing a level-of-understanding about their area of responsibility.

Given the expense of developing formal training methodologies, and the low level of use

they would receive due to the general low level of turnover that most maintenance teams

have, it was thought worthwhile to examine alternate, mentor-free, methods for software

immigrants to gain a level-of-understanding about a system. The decision was made to

examine work based approaches to developing a level-of-understanding about a system.

The method of analysis used was a controlled laboratory experiment. This method was

chosen to provide quantitative data for the thesis, to sit along side the qualitative work

of the interviews. The two work approaches considered were documenting and enhancing

a program. Alternative tasks were considered and rejected for reasons of both practical-

ity and belief that they would not sufficiently exercise a subject’s level-of-understanding

about the code. From the wide variety of approaches available to measure the subjects’

level-of-understanding about the code, an indirect method, using time to completion of

a programming task was chosen. Other approaches were rejected, as, while they were a

more direct means of measuring a subject’s level-of-understanding, they either introduced

subjective analysis, which the experiment design had otherwise strived to avoid so that it

could retain its purely quantitative nature, or they introduced large confounding factors

that could not be controlled.
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To produce reliable results the experiment was run on three separate occasions to get a

total of 53 subjects. Survival Analysis, a robust statistical technique that has seen little

use in Software Engineering literature, was used to analyse the results. Somewhat surpris-

ingly, there was found to be no significant statistical difference between the two treatment

groups. This meant that there was no additional benefit to undertaking the passive rather

than active task. Further qualitative analysis, based on interviews with the subjects and

an analysis of the work they produced for both the Initial and Measured task, also showed

no noticeable difference in the approaches used on the manner of failure observed. Given

this result, it means that in the hostile environment that software immigrants often find

themselves they may as well start fulfilling maintenance requests as soon as possible as

they gain no additional benefit from taking a more hands off high level view. This view

also holds true from the company’s perspective: in a hostile environment it is better for

the company to get the software immigrants to start work as soon as possible.

Finally, I have identified how the major components of the work can be improved and ex-

tended. The interviews can be increased in volume and combined with other investigative

techniques to cross check the validity of their data. The experiment can be altered in the

size and complexity of the materials involved, and could also use professional programmers

as the subjects to increase the generalisability of the results.

8.2 Measures of Success

The four measures of success were defined in the introduction are as follows:

• Present evidence on the current state of mainstream software maintenance research

in relation to empirical research to show a gap in the literature

• Perform empirical work to help close the gap

• Identify unresearched problems of software immigrants

• Compare and contrast different approaches for software immigrants to develop a

level-of-understanding about a system

Chapter 2 presented the results of a systematic review of mainstream software mainte-

nance research. Mainstream research was defined as the premier journal and conference

in the field plus a slightly smaller regional conference. Similar surveys had been done in

the fields of Computing Science and Software Engineering, both of which concluded that

there was insufficient empirical work in the field. The results of my survey were broadly

in line with these previous surveys. Furthermore, given the basic taxonomy of Software

Maintenance into People, Processes and Products, the survey showed that only 8% of

papers contained notable work on People in Software Maintenance. This was considered

far below what should be expected.

In order to help to close this gap, a series of interviews with maintenance programmers

was undertaken, presented in chapter 3. This work, being both empirical in nature and
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dealing with People in Software Maintenance, neatly addressed the gap in research iden-

tified. The interviews consisted of two primary components: the first tried to get a

generalised overview of how maintenance is performed trying to identify good and bad

features of maintenance as it happens, while the second, more in-depth section examined

how maintainers gathered and used information to perform maintenance. A large amount

of interesting data was uncovered but the overriding impression gained was of a lack of

institutionalised training for software immigrants as well as a lack of any sources of infor-

mation about the system being maintained except for the system itself. This presented

a very challenging environment for software immigrants and an avenue for further, more

detailed research.

Finding the topic of software immigrants the most potentially fruitful line of enquiry, I un-

dertook further research to try and determine the characteristics and problems of software

immigrants. A further literature review was performed which complemented the findings

of the interviews, presenting a picture of the typical company as one that does not have

any defined training process for aiding software immigrants gain a level-of-understanding

about the system they have to maintain. The literature also does not suggest anything in

the way of validated solutions to this problem. An assumption of the existence of mentors

was discovered but the interviews demonstrated that mentors were not always available.

There were suggestions for formal training methodologies, however even these implicitly

involved the use of mentors whilst at the same time requiring a large time investment

in the production of materials. The Pigoski and Looney [54] approach (in an environ-

ment without mentor but with some reasonable quality documentation) used standard

maintenance tasks as one of the principal ways of driving maintainers to increase their

level-of-understanding. However no comparison of the utility of the tasks was presented.

As the material on software immigrants was lacking, a comparative analysis was required

to measure the effect that different tasks have on a subject’s level-of-understanding. To

meet this goal an experiment was carefully designed, utilising the experimental literature

and piloting of potential designs, tasks and ideas. The experiment was run three times

to gain a sufficient number of subjects for robust statistical analysis. The experiment

examined two work based, non-mentor, approaches to gaining a level-of-understanding

about a piece of code. One task involved actively working with the code whilst the other

involved the subject being passively hands-off. The final results showed no difference

in the subject’s level-of-understanding by undertaking active or passive tasks. Further

qualitative analysis also showed no noticeable difference between the two groups. Given

that there is no benefit to the passive work, then in the challenging environment previously

identified, without mentor or external sources of information, this experiment suggests

that software immigrants should be placed straight to work upon joining a team, as they

gain no benefit from not going straight to work.
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8.3 Answering the Thesis Statement

The state-of-practice can be a hostile place for the software immigrant performing main-

tenance. By means of an extensive literature review and empirical study of maintainers

I have demonstrated that the environment is often one without trustworthy documenta-

tion or experienced sub-system experts to consult. By means of a controlled laboratory

experiment I have shown that in such an environment the software immigrant gains no

benefit from taking a passive approach to the code and as such should start working with

the code, fulfilling maintenance requests, as soon as possible.

The specific hypothesis tested to determine if there was any difference for software immi-

grants between undertaking passive and active tasks with the code is as follows:

Null Hypothesis 1: There is no difference in the level-of-understanding of the Enhance-

ment and Document groups.

Testing for differences between the two groups gave a result of p = 0.717 which means there

is no statistically significant difference between the groups. As Enhancement represented

an active task and Documenting represented a passive task there is no significant difference

between and active and passive approach to working with a system.
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Appendix A

Experimental Statistics

A.1 Kaplan-Meier Survival Curves

A.1.1 By Group

Variable: Time

Group = D

Censoring Information Count

Uncensored value 20

Right censored value 5

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

41.16 3.20772 34.8730 47.4470

Median = 43

IQR = 29 Q1 = 29 Q3 = 58

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

16 25 1 0.96 0.0391918 0.883185 1.00000
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17 24 2 0.88 0.0649923 0.752617 1.00000

19 22 1 0.84 0.0733212 0.696293 0.98371

25 21 1 0.80 0.0800000 0.643203 0.95680

27 20 1 0.76 0.0854166 0.592586 0.92741

29 19 1 0.72 0.0897998 0.543996 0.89600

31 18 1 0.68 0.0932952 0.497145 0.86286

33 17 1 0.64 0.0960000 0.451843 0.82816

34 16 2 0.56 0.0992774 0.365420 0.75458

36 14 1 0.52 0.0999200 0.324160 0.71584

43 13 2 0.44 0.0992774 0.245420 0.63458

47 11 1 0.40 0.0979796 0.207964 0.59204

52 10 2 0.32 0.0932952 0.137145 0.50286

56 8 1 0.28 0.0897998 0.103996 0.45600

58 7 1 0.24 0.0854166 0.072586 0.40741

60 6 1 0.20 0.0800000 0.043203 0.35680

Distribution Analysis: Time by Group

Variable: Time

Group = E

Censoring Information Count

Uncensored value 21

Right censored value 7

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

36.2857 3.48781 29.4497 43.1217

Median = 30

IQR = 38 Q1 = 21 Q3 = 59

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI
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Time at Risk Failed Probability Error Lower Upper

9 28 1 0.964286 0.0350707 0.895548 1.00000

10 27 1 0.928571 0.0486704 0.833179 1.00000

12 26 1 0.892857 0.0584512 0.778295 1.00000

16 25 1 0.857143 0.0661300 0.727530 0.98676

19 24 2 0.785714 0.0775443 0.633730 0.93770

21 22 1 0.750000 0.0818317 0.589613 0.91039

23 21 1 0.714286 0.0853735 0.546957 0.88161

24 20 3 0.607143 0.0922962 0.426246 0.78804

26 17 1 0.571429 0.0935220 0.388129 0.75473

28 16 1 0.535714 0.0942498 0.350988 0.72044

30 15 2 0.464286 0.0942498 0.279560 0.64901

39 13 2 0.392857 0.0922962 0.211960 0.57375

41 11 1 0.357143 0.0905522 0.179664 0.53462

51 10 1 0.321429 0.0882594 0.148443 0.49441

52 9 1 0.285714 0.0853735 0.118385 0.45304

59 8 1 0.250000 0.0818317 0.089613 0.41039

Distribution Analysis: Time by Group

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 0.131778 1 0.717

Wilcoxon 0.930625 1 0.335

A.1.2 By Grade

Variable: Time

Grade = a

Censoring Information Count

Uncensored value 25

Right censored value 4

Censoring value: Censor = 1

Nonparametric Estimates
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Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

31.1379 3.00403 25.2501 37.0257

Median = 27

IQR = 22 Q1 = 19 Q3 = 41

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

9 29 1 0.965517 0.0338830 0.899108 1.00000

10 28 1 0.931034 0.0470544 0.838810 1.00000

12 27 1 0.896552 0.0565523 0.785711 1.00000

16 26 2 0.827586 0.0701445 0.690106 0.96507

17 24 2 0.758621 0.0794627 0.602877 0.91436

19 22 3 0.655172 0.0882632 0.482180 0.82817

23 19 1 0.620690 0.0901022 0.444093 0.79729

24 18 1 0.586207 0.0914572 0.406954 0.76546

25 17 1 0.551724 0.0923495 0.370722 0.73273

26 16 1 0.517241 0.0927925 0.335372 0.69911

27 15 1 0.482759 0.0927925 0.300889 0.66463

28 14 1 0.448276 0.0923495 0.267274 0.62928

29 13 1 0.413793 0.0914572 0.234540 0.59305

33 12 1 0.379310 0.0901022 0.202713 0.55591

34 11 2 0.310345 0.0859091 0.141966 0.47872

39 9 1 0.275862 0.0829961 0.113193 0.43853

41 8 1 0.241379 0.0794627 0.085635 0.39712

43 7 1 0.206897 0.0752216 0.059465 0.35433

51 6 1 0.172414 0.0701445 0.034933 0.30989

52 5 1 0.137931 0.0640329 0.012429 0.26343

Distribution Analysis: Time by Grade

Variable: Time

Grade = b

Censoring Information Count

Uncensored value 10
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Right censored value 2

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

43.8333 4.04285 35.9095 51.7572

Median = 43

IQR = 26 Q1 = 30 Q3 = 56

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

21 12 1 0.916667 0.079786 0.760290 1.00000

24 11 1 0.833333 0.107583 0.622475 1.00000

30 10 1 0.750000 0.125000 0.505005 0.99500

36 9 1 0.666667 0.136083 0.399949 0.93338

39 8 1 0.583333 0.142319 0.304394 0.86227

43 7 1 0.500000 0.144338 0.217104 0.78290

47 6 1 0.416667 0.142319 0.137727 0.69561

52 5 1 0.333333 0.136083 0.066616 0.60005

56 4 1 0.250000 0.125000 0.005005 0.49500

58 3 1 0.166667 0.107583 0.000000 0.37753

Distribution Analysis: Time by Grade

Variable: Time

Grade = c

Censoring Information Count

Uncensored value 5

Right censored value 6

Censoring value: Censor = 1
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Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

51.2727 4.76751 41.9286 60.6169

Median = *

IQR = * Q1 = 31 Q3 = *

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

24 11 1 0.909091 0.086678 0.739204 1.00000

30 10 1 0.818182 0.116291 0.590255 1.00000

31 9 1 0.727273 0.134282 0.464086 0.99046

59 8 1 0.636364 0.145041 0.352089 0.92064

60 7 1 0.545455 0.150131 0.251202 0.83971

Distribution Analysis: Time by Grade

Variable: Time

Grade = e

Censoring Information Count

Uncensored value 1

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

95.0% Normal

Standard CI

Mean(MTTF) Error Lower Upper

52 * * *
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Median = 52

IQR = 0 Q1 = 52 Q3 = 52

Kaplan-Meier Estimates

95.0% Normal

Number Number Survival Standard CI

Time at Risk Failed Probability Error Lower Upper

52 1 1 0 0 0 0

Distribution Analysis: Time by Grade

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 10.4584 3 0.015

Wilcoxon 12.4451 3 0.006

A.1.3 By Cohort

Variable: Time

Year = 1

Censoring Information Count

Uncensored value 15

Right censored value 5

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

37.4 4.05916 29.4442 45.3558
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Median = 31

IQR = 34 Q1 = 24 Q3 = 58

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

9 20 1 0.95 0.048734 0.854483 1.00000

12 19 1 0.90 0.067082 0.768522 1.00000

16 18 1 0.85 0.079844 0.693509 1.00000

19 17 1 0.80 0.089443 0.624695 0.97530

24 16 2 0.70 0.102470 0.499163 0.90084

27 14 1 0.65 0.106654 0.440963 0.85904

29 13 1 0.60 0.109545 0.385297 0.81470

30 12 1 0.55 0.111243 0.331968 0.76803

31 11 1 0.50 0.111803 0.280869 0.71913

34 10 1 0.45 0.111243 0.231968 0.66803

36 9 1 0.40 0.109545 0.185297 0.61470

47 8 1 0.35 0.106654 0.140963 0.55904

52 7 1 0.30 0.102470 0.099163 0.50084

58 6 1 0.25 0.096825 0.060227 0.43977

Distribution Analysis: Time by Year

Variable: Time

Year = 2

Censoring Information Count

Uncensored value 14

Right censored value 4

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

38.7222 4.14104 30.6059 46.8385
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Median = 34

IQR = 38 Q1 = 21 Q3 = 59

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

17 18 2 0.888889 0.074074 0.743706 1.00000

19 16 2 0.777778 0.097991 0.585719 0.96984

21 14 1 0.722222 0.105572 0.515305 0.92914

24 13 1 0.666667 0.111111 0.448893 0.88444

25 12 1 0.611111 0.114904 0.385903 0.83632

33 11 1 0.555556 0.117121 0.326002 0.78511

34 10 1 0.500000 0.117851 0.269016 0.73098

39 9 1 0.444444 0.117121 0.214891 0.67400

43 8 1 0.388889 0.114904 0.163680 0.61410

51 7 1 0.333333 0.111111 0.115560 0.55111

56 6 1 0.277778 0.105572 0.070861 0.48469

59 5 1 0.222222 0.097991 0.030164 0.41428

Distribution Analysis: Time by Year

Variable: Time

Year = 3

Censoring Information Count

Uncensored value 12

Right censored value 3

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

40 4.46074 31.2571 48.7429

Median = 41
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IQR = 34 Q1 = 26 Q3 = 60

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

10 15 1 0.933333 0.064406 0.807100 1.00000

16 14 1 0.866667 0.087771 0.694639 1.00000

23 13 1 0.800000 0.103280 0.597576 1.00000

26 12 1 0.733333 0.114180 0.509545 0.95712

28 11 1 0.666667 0.121716 0.428107 0.90523

30 10 1 0.600000 0.126491 0.352082 0.84792

39 9 1 0.533333 0.128812 0.280866 0.78580

41 8 1 0.466667 0.128812 0.214199 0.71913

43 7 1 0.400000 0.126491 0.152082 0.64792

52 6 2 0.266667 0.114180 0.042878 0.49046

60 4 1 0.200000 0.103280 0.000000 0.40242

Distribution Analysis: Time by Year

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 0.008772 2 0.996

Wilcoxon 0.117772 2 0.943

A.1.4 By Self-Rating

Variable: Time

Self-Rating <= 6

Censoring Information Count

Uncensored value 13

Right censored value 8

Censoring value: Censor = 1

Nonparametric Estimates
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Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

44.0952 3.06726 38.0835 50.1070

Median = 52

IQR = * Q1 = 31 Q3 = *

Kaplan-Meier Estimates

Number

at Number Survival Standard 95.0% Normal CI

Time Risk Failed Probability Error Lower Upper

17 21 1 0.952381 0.046471 0.861299 1.00000

23 20 1 0.904762 0.064056 0.779214 1.00000

24 19 1 0.857143 0.076360 0.707479 1.00000

26 18 1 0.809524 0.085689 0.641576 0.97747

30 17 1 0.761905 0.092943 0.579740 0.94407

31 16 1 0.714286 0.098581 0.521071 0.90750

36 15 1 0.666667 0.102869 0.465047 0.86829

39 14 1 0.619048 0.105971 0.411348 0.82675

41 13 1 0.571429 0.107990 0.359772 0.78308

51 12 1 0.523810 0.108985 0.310203 0.73742

52 11 2 0.428571 0.107990 0.216915 0.64023

56 9 1 0.380952 0.105971 0.173253 0.58865

Distribution Analysis: Time by Self-Rating

Variable: Time

Self-Rating >= 7

Censoring Information Count

Uncensored value 28

Right censored value 4

Censoring value: Censor = 1

Nonparametric Estimates
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Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

33.9688 3.04159 28.0073 39.9302

Median = 29

IQR = 28 Q1 = 19 Q3 = 47

Kaplan-Meier Estimates

Number

at Number Survival Standard 95.0% Normal CI

Time Risk Failed Probability Error Lower Upper

9 32 1 0.96875 0.0307578 0.908466 1.00000

10 31 1 0.93750 0.0427908 0.853632 1.00000

12 30 1 0.90625 0.0515270 0.805259 1.00000

16 29 2 0.84375 0.0641862 0.717947 0.96955

17 27 1 0.81250 0.0689981 0.677266 0.94773

19 26 3 0.71875 0.0794804 0.562971 0.87453

21 23 1 0.68750 0.0819382 0.526904 0.84810

24 22 2 0.62500 0.0855816 0.457263 0.79274

25 20 1 0.59375 0.0868207 0.423584 0.76392

27 19 1 0.56250 0.0876951 0.390621 0.73438

28 18 1 0.53125 0.0882155 0.358351 0.70415

29 17 1 0.50000 0.0883883 0.326762 0.67324

30 16 1 0.46875 0.0882155 0.295851 0.64165

33 15 1 0.43750 0.0876951 0.265621 0.60938

34 14 2 0.37500 0.0855816 0.207263 0.54274

39 12 1 0.34375 0.0839617 0.179188 0.50831

43 11 2 0.28125 0.0794804 0.125471 0.43703

47 9 1 0.25000 0.0765466 0.099972 0.40003

52 8 1 0.21875 0.0730792 0.075517 0.36198

58 7 1 0.18750 0.0689981 0.052266 0.32273

59 6 1 0.15625 0.0641862 0.030447 0.28205

60 5 1 0.12500 0.0584634 0.010414 0.23959

Distribution Analysis: Time by Self-Rating

Comparison of Survival Curves
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Test Statistics

Method Chi-Square DF P-Value

Log-Rank 5.65624 1 0.017

Wilcoxon 6.01127 1 0.014

A.2 Cox Proportional Hazard Model

A.2.1 Uni-Variate Self-Rating

Variables in the Equation

B SE Wald df Sig. Exp(B)

Step 1 SelfRating .300 .130 5.325 1 .021 1.349

A.2.2 Multi-Variate

Variables in the Equation

B SE Wald df Sig. Exp(B)

Step 1 Grade 9.102 3 .028

Grade(1) .613 1.025 .358 1 .550 1.846

Grade(2) .065 1.051 .004 1 .951 1.067

Variables not in the Equation(a)

Score df Sig.

Step 1 SelfRating 1.996 1 .158

Cohort .164 2 .921

Cohort(1) .037 1 .847

Cohort(2) .163 1 .686

Group .538 1 .463

A.3 Number of Classes Commented

Score df Sig.

Classes Documetned .011 1 .916
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Appendix B

Demonstration Example

B.1 Survival Analysis

Variable: Time

Group = Procedural

Censoring Information Count

Uncensored value 13

Right censored value 2

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

40.1431 3.07425 34.1176 46.1685

Median = 36.3461

IQR = 20.4016 Q1 = 31.1636 Q3 = 51.5652

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

23.0000 15 1 0.933333 0.064406 0.807100 1.00000

27.2854 14 1 0.866667 0.087771 0.694639 1.00000

30.6243 13 1 0.800000 0.103280 0.597576 1.00000

31.1636 12 1 0.733333 0.114180 0.509545 0.95712

32.5210 11 1 0.666667 0.121716 0.428107 0.90523
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34.2221 10 1 0.600000 0.126491 0.352082 0.84792

34.5714 9 1 0.533333 0.128812 0.280866 0.78580

36.3461 8 1 0.466667 0.128812 0.214199 0.71913

39.0325 7 1 0.400000 0.126491 0.152082 0.64792

40.3510 6 1 0.333333 0.121716 0.094774 0.57189

45.2102 5 1 0.266667 0.114180 0.042878 0.49046

51.5652 4 1 0.200000 0.103280 0.000000 0.40242

56.2528 3 1 0.133333 0.087771 0.000000 0.30536

Distribution Analysis: NTime by NGroup

Variable: Time

Group = ObjectOriented

Censoring Information Count

Uncensored value 10

Right censored value 5

Censoring value: Censor = 1

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

37.1333 5.11890 27.1005 47.1662

Median = 37

IQR = * Q1 = 15 Q3 = *

Kaplan-Meier Estimates

Number Number Survival Standard 95.0% Normal CI

Time at Risk Failed Probability Error Lower Upper

11 15 1 0.933333 0.064406 0.807100 1.00000

12 14 2 0.800000 0.103280 0.597576 1.00000

15 12 1 0.733333 0.114180 0.509545 0.95712

22 11 1 0.666667 0.121716 0.428107 0.90523

31 10 1 0.600000 0.126491 0.352082 0.84792

35 9 1 0.533333 0.128812 0.280866 0.78580

37 8 1 0.466667 0.128812 0.214199 0.71913

39 7 1 0.400000 0.126491 0.152082 0.64792

43 6 1 0.333333 0.121716 0.094774 0.57189
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Distribution Analysis: NTime by NGroup

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 0.229974 1 0.632

Wilcoxon 0.073414 1 0.786

B.2 t-test

Two-sample T for Time

Group N Mean StDev SE Mean

OO 13 37.09 9.42 2.6

Proc 10 25.7 12.6 4.0

Difference = mu (D) - mu (E)

Estimate for difference: 11.39

95% CI for difference: (1.84, 20.94)

T-Test of difference = 0 (vs not =): T-Value = 2.48 P-Value = 0.022 DF = 21

Both use Pooled StDev = 10.9169
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Appendix C

Materials for An Experiment

Measuring the Effects of

Activity on the Ability to

Perform Maintenance

C.1 Introduction

This appendix contains all the materials used in the experiment described in chapter 6.

I include the written specification of the system, the Enhancement and Documentation

Initial tasks and the final Measured task. The original, rejected, Measured task and the

alternate Measured tasks considered are also included at the end of this appendix.

C.2 Specification

C.2.1 Overview

The software is a command line interface to three different types of ranking systems. The

three ranking systems are a ladder system, a league table and a points ranking system. The

three systems are explained in more detail in the relevant sections C.2.4,C.2.5 and C.2.6.

The command line parser is fairly primitive, commands are single keywords, which are

case insensitive, followed by a fixed number of arguments depending on command, which

are case sensitive. A list of valid commands and a further description of the operation of

the command line is provided in section C.2.2. The ranking systems can be loaded from

file and are automatically saved after every command that may modify them.

C.2.2 The Command Line Interface

As described the command line interface is primitive however it does have one interesting

feature. Commands that are not appropriate for the current context (trying to LIST a

ranking system when none is loaded) are not recognised. Any changes you make to the
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software should keep this behaviour intact. Also whenever any commands that successfully

modify the rankings within a system (i.e, ADD and RESULT) are executed, the ranking

system is saved automatically.

Command List

Following are all the potential valid commands, when a command has arguments they are

presented as <arg1><arg2>etc. There are never any optional arguments. If too many

or too few arguments are provided then an appropriate error message will be displayed.

• QUIT - Exits the system.

• LOAD <fileName>- Load the given file, if it doesn’t exist an error message will

display, if the file doesn’t contain a valid ranking system an error message will

display.

• CREATE <fileName><rankingType>- Create a new empty ranking system which

will have the given file name when saved. If this file currently exists it will be

overwritten when the ranking system is saved. If rankingType isn’t recognised

an error message will be displayed. The three valid ranking systems names are

LadderSystem, LeagueSystem, PointsSystem.

• HELP - List all the commands that are valid in this context

• ADD <name>- Add a new player with name to the ranking system, if the name

already exists then an error message is displayed, if the League ranking system has

started (see C.2.5) then an error message is displayed.

• LIST - Display the players in the ranking system ordered best-to-worst – top-to-

bottom.

• [ League System Loaded] RESULT <player1><player2><player1score><player2score>-

Add in a result. If either player1 or player2 are not in the ranking system an error

message is displayed. If either of the scores given is not a integer then an error

message is displayed.

• [Ladder/Points System Loaded] RESULT <player1><player2><winner>- Add in

a result that effects the ranking system - If either player1 or player2 are not in the

ranking system then an error message is displayed. Winner is either the number of

the winner (1 or 2) or 0 if the result is a tie. If winner is not 0, 1 or 2 an error

message is displayed.

• [LeagueSystem Only] HISTORY <player1><player2>- Displays all the results of

all games between player1 and player2, the order of player1 and player2 doesn’t

matter.

C.2.3 Error During Saving

The program recovers from all errors (that is displays and appropriate error message then

continues) apart from one. If there is an error during the saving of a ranking system to
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a file (which happens after every ADD and RESULT command) the prgroam displays an

error message and quits.

C.2.4 Ladder System

A simple ranking system. When a player is added they are put in at the bottom of the

ranking system. If players Al and Bob play against each other then one of three things

can happen. If Al is below Bob and Al wins then he takes Bob’s place and Bob moves

down one place. If Al is above Bob and Al wins then nothing happens. If Al is above Bob

and they draw then Bob is moved to the place immediately below Al.

File Format

LadderSystem

Al

Bob

Colin

The first line identifies the type of ranking system. The following lines are the players

involved in the ladder with the person in first place being listed first.

C.2.5 League System

This is a implementation of a standard football style league system. Players are entered

into the league with no points, as expected. Once the first result is added then no new

players can be added to the league. Players get 3 points for a win, 1 point for a draw and

no points for a loss. Players can only play each other a certain number of times (default 2,

currently there is no way of changing that default). If a user tries to enter a extra result

then an error message is displayed.

File Format

LeagueSystem

3

Al

Colin

Bob

2

Al Bob 4 1

Bob Colin 2 5

Al Colin 1 4

The first line identifies the type of ranking system. The first integer shows how many

players are in the league. The players are then listed in no particular order. The next

number is the maximum number of game that two players can play between each other.

The remaining lines list all the games played between the players in the same format as

results are enter on the CLI.
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C.2.6 Points System

This ranking system is similar to the FIDE Chess ranking system. Each player added

to this system is given 1000.0 points. If Al beats Bob then Bob gets a number of points

deducted from their total and they are given to Al. The amount of points deducted/gained

is based on the difference in scores between the two players. If Al and Bob have the same

ranking and Al wins then he takes 50 points from Bob, if Bob had 200 points more than

Al and Al won then Al would take 60 points off Bob. If Bob had 200 points less than

Al and Al won then Al would take 40 points off Bob. In the event of a draw then the

player with the smaller number of points is considered the winner, however they only get

half as many points. When the two players have the same points total and it’s a draw

then there is no change to the points totals. The maximum points difference considered

is 1000.0, so if Al had 3000.0 points and Bob had 500.0 points and Bob won the system

would consider that a difference of 1000.0 points. Thus the maximum points available to

win/lose is 100.0 points. If a player would lose enough points to give them a negative

total the points deducted is changed to the amount that would reduce them to 0 points.

Comments

The Points system was written by someone who didn’t understand how the program was

structured, as a result we had to write a wrapper for it. On the positive side the class

(PointsRatings) is partially commented.

File Format

PointsSystem

Al 1050.0

Bob 1000.0

Colin 950.0

The first line identifies the type of ranking system. The following lines are the players

(and their scores) involved in the points system in numerically decreasing order.

C.2.7 Operation

Startup

Compile the code with javac *.java. Run the code with java Shell.

To run the code against the test suite use java Shell hide <testSuite >output. The

correct output for the test suite is in the file testOutput.

Example Ranking System

Three Example ranking systems are provided in the files, squash, tennis and chess

which correlate with LadderSystem, LeagueSystem and PointsSystem. To get a fresh

version of them run the cleanRankings.sh script.
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Code Location

The code can be found at http://www.dcs.gla.ac.uk/~huttona/cleanCode.zip

C.3 Initial Task - Enhancement

We would like you to add a single level UNDO feature to the system. Users should be able

to take back the last RESULT command that was entered into the currently loaded ranking

system. If the command executes successfully the message Result Removed should be

displayed. If the user tries to UNDO multiple times in a row or tries to UNDO when no

results have been added since a ranking system has been loaded the error Nothing to

UNDO should be displayed. The UNDO command should be available whenever a ranking

system is loaded. The response from the HELP command needs to be altered so that the

line UNDO - Takes back the last result entered into the system is added.

C.3.1 Example

>Load ladder

File Loaded

>list

1) Alistair

2) John

3) Bob

4) Fred

>result Bob John 1

Result Added

>list

1) Alistair

2) Bob

3) John

4) Fred

>UNDO

Result Removed

>list

1) Alistair

2) John

3) Bob

4) Fred

>UNDO

Nothing to UNDO

C.3.2 Example Input and Output

The file undoInput contains a list of commands that checks to make sure the UNDO com-

mand is working. The file undoOutput is what should be produced by running undoInput.
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C.4 Initial Task - Documentation

The majority of the program was written by a programmer who has now left. Unfortu-

nately he failed to document the code at all. We need to make changes to the system

however we are unwilling to do so without good documentation. As a result we would like

you to add java doc commments to all the classes that make up the program. We would

like you to produce a comment describing the purpose of each class first before moving on

and providing comments for individual methods. For the class comments we would like

you to to comment the classes you feel are most important first. Similarily for methods,

start with what you think are the most important methods.

C.4.1 Example Comments

We would like you to produce cooments with a similar level of descriptiveness as the

following.

/**

* This class represents a particle of an arbitary size

* in 2D space

*/

public class Particle

{

....

/**

* Determines if this particle will collide with another

* during a given amount of time and if it does at what time

* the collision will take place if the two particles keep

* moving in a straight line. Resolves to Millisecond accuracy

*

* @see #collideTimeNano

*

* @param toTest The other particle which we are testing for collision

* @param time The length of time (in milliseconds) that will be checked over

*

* @return The time in millis of the collision otherwise -1 if they will not

* collide over the given time period. This time is number of millis from now

*/

public long collideTimeMillis(Particle toTest, long time)

....

}

C.5 Final Measured Task

Currently the ranking systems offer three basic operations:
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1. The ability to add a new player to the ranking system.

2. The ability to add aresult between two players in the rankign system.

3. The ability to get a listing of the players in the ranking system.

These are accessed using the commands ADD, RESULT and LIST respectively. We wish to

add a fourth capability: The ability to determine if a player is already in the ranking

system. We want this ability because individual ranking system have the the potential

to become very large and as a result it would become hard to manually find if a player

is in the ranking system. This new ability should be made accessible using the command

ISIN. The specification for the command is:

ISIN <name>- Where name is the player’s name that we wish to look-up in the cur-

rently loaded ranking system. If the name is in the ranking system the output of the

command should be Yes. If the name is not in the ranking system the output of the com-

mand should be No. If no name is given or extra arguments are given then the standard

error responses should be used.

This task can be split into two sub-tasks:

1. Alter the ranking systems so that they support the new ability.

2. Create the ISIN command and integrate it with the rest of the program.

We would like you to record the time that you finish each task. The input file testSuite

can be used to test the correctness of your additions, the correct output is held in the file

testOutput.

C.6 Example

>load squash

File loaded

>list

1) Al

2) Bob

3) Colin

4) Donald

5) Edward

>isin Al

Yes

>isin Dond

No

>isin

Too feww arguments

>isin Al Donald

Too many arguments
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C.7 Original Measured Task

We wish for the program to be changed so that it records a master rankings sytem.

For this we assumme that all player names are unique (ie. that the Al reffered to in

LadderSystem held in file squash is the same Al reffered to in the PointsSystem held in

file chess. Overall ranking of players ability at playing games while individual ranking

system relflect their ability at one particular activity. Every result and player that is

added to a ranking system should also be added to this master ranking system. A new

command (MLIST) is to be added that allows the Master ranking system to be listed. The

Master ranking system is never itself LOADed up by the user, the results and players should

be automatically added to the Master ranking system when they are succesfully added

to the currently loaded ranking system. The Master ranking system is a PointsSystem

PointsSystem stored in a file called master.

C.7.1 Sub-Tasks

This task is split into the following four sub-tasks:

1. Add code for master ranking system and implement MLIST so that the Master rank-

ing system can be viewed.

2. Add the feature that when a player is added to the currently loaded ranking system

they are added to the Master ranking system.

3. Add the feature that when a result is entered into the currently loaded ranking

system is is added to the Master ranking system.

4. Add the MLIST command to the help system so that it appears when the HELP

command is invoked.

Task 1 must be attempted first, when it is finished you may attempt tasks 2 and 3 in

either order. Only once those are complete should you do the trivial task of adding MILST

to the help system. Please record the times when you finish each of the sub-tasks. Further

details on the subtasks are listed below.

MLIST

To allow the list to be viewed a new command should be added: MLIST. MLIST takes

no arguments and all it does is list the master system like LIST displays the currently

loaded system. MLIST is always available, that is it is available at the same level as LOAD,

CREATE, QUIT and HELP.

Adding a Player

Whenever a player is succesfully added to the currently loaded system they should be

added to the Master ranking system. If thier name already exists in the Master ranking

system then suppress any error message produced by it ranking system.
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Adding a Result

Whenever a result is succesfully added to the currently loaded system then the result

should also be added to the Master ranking system.

Saving

Whenever a result or player is added to the Master ranking system then the Master

ranking system should be saved just like a standard ranking system.

Loading

If the the user tries to load the master list then let them, this is just a prototoype so you

don’t have to worry about this case.

CREATE-ing a File Called Master

As with loading above do not consider the case when the users enter Create master

<RankingSystem>.

Help

The response from the HELP command needs to be altered to reflect the new MLIST

command. The help line should read MLIST - Lists the Master Ranking System and

should appear on the line before the CREATE command.

C.7.2 Example Input and Output

A file called sampleInput containing a series of commands to test this new feature is pro-

vided. The output that the program should produce is shown in the file expectedOutput.

There are also 4 files task1, task2, task3, task4 which correlate with the 4 subtasks

which test each feature individually. The correct output for these files is held in the files

out1, out2, out3, out4. Remember to run cleanRankings.sh before running the pro-

gram with the sample input.
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C.7.3 Example of New System

>MLIST

Al 1050.0

Bob 1000.0

Colin 950.0

>Create sample LeagueSystem

Ranking System Created

>ADD Donald

Added: Donald

>LIST

Player Played Won Drawn Lost Points

Donald 0 0 0 0 0

>MLIST

Al 1050.0

Bob 1000.0

Donald 1000.0

Colin 950.0

>Create another LadderSystem

Ranking System Created

>ADD Al

Added: Al

>ADD Donald

Added: Donald

>List

1) Al

2) Donald

>MList

Al 1050.0

Bob 1000.0

Donald 1000.0

Colin 950.0

>Result Donald Al

Result Added

>List

1) Donald

2) Al

>MLIST

Donald 1052.5

Bob 1000.0

Al 997.5

Colin 950.0
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C.8 Alternate Measured Tasks

C.8.1 DIFF

We would like a new feature added to the three ranking systems. This feature will take

two players that are in the rankings system and return the points (or place for the Ladder

system) difference between the two players, the points/place difference returned is always

positive. This new feature is to be accessible from the command line by using the com-

mand DIFF. The format of the DIFF command is as follows:

DIFF <player1><player2> where player1 and player2 are two players in the cur-

rently loaded system. If player1 or player2 do not exist in the system then the appropriate

error message should be displayed. Otherwise the message There is a differnece of

<num>between <player1>and <player2> where num is the difference between the

two players.

The DIFF command should be available only when a ranking system is loaded. Its help text

should be DIFF - Display the points/place difference between two players.

C.8.2 Case Sensitivity

Currently in the program commands are case insesitive but players’ names are case sen-

sitive. We would like the program altered so that for the purpose of entering results and

using the HISTORY command players names are treated case insesitavely. Players’ names

will be stoed as there are given by the ADD command however their case will be ignored

when using other commands. For example if the command ADD Donald was executed

the name would appear as Donald when the ranking system was listed but the command

RESULT DoNaLd Al 1 would execute succesfully. A side effect of this change would mean

that you couldn’t ADD DONALD to a system that already contained Donald.
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C.9 Code

This section contains all the code necessary for performing the experiment.

1 public class AddPlayerCommand extends Command

2 {

3

4 String name;

5

6 public AddPlayerCommand()

7 {

8 super();

9 }

10

11 public AddPlayerCommand(String name, RankingSystemI rs)

12 {

13 super(rs);

14 this.name = name;

15 }

16

17 public String[] execute()

18 {

19 String[] output = new String[1];

20 try

21 {

22 rs.addPlayer(name);

23 output[0] = "Added: " + name;

24 RankingSystemLoader.saveFile(rs);

25 }

26 catch (NameAlreadyExists e)

27 {

28 output[0] = name + " already exists in ranking system";

29 }

30 return output;

31 }

32

33 }

1 public class AlreadyStarted extends Exception

2 {

3

4 public AlreadyStarted()

5 {

6 super();

7 }

8

9 public AlreadyStarted(String s)

10 {

11 super(s);

12 }

13

14 }

1 import java.util.StringTokenizer;

2

3 public class BasicCommandFactory extends CommandFactory

4 {

5

6 public BasicCommandFactory(RankingSystemI rs,Shell sh)

7 {
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8 super(rs,sh);

9 }

10

11 public Command generateCommand(String command, String args,

12 CommandFactory topLevel) throws

13 UnknownCommand,

14 IncorrectArguments,

15 NameDoesntExist

16 {

17 StringTokenizer st = new StringTokenizer (args);

18 if (command.equals("QUIT"))

19 {

20 if (st.hasMoreTokens()) return new ErrorCommand (new

21 IncorrectArguments(IncorrectArguments.TOOMANY));

22 return new QuitCommand();

23 }

24 else if (command.equals("HELP"))

25 {

26 if (st.hasMoreTokens()) return new ErrorCommand (new

27 IncorrectArguments(IncorrectArguments.TOOMANY));

28 return new HelpCommand(topLevel);

29 }

30 else if (command.equals("LOAD"))

31 {

32 if (!st.hasMoreTokens()) return new ErrorCommand (new

33 IncorrectArguments(IncorrectArguments.TOOFEW));

34 String arg = st.nextToken();

35 if (st.hasMoreTokens()) return new ErrorCommand (new

36 IncorrectArguments(IncorrectArguments.TOOMANY));

37 return new LoadCommand(rs,arg,this);

38

39 }

40 else if (command.equals("CREATE"))

41 {

42 if (!st.hasMoreTokens()) return new ErrorCommand (new

43 IncorrectArguments(IncorrectArguments.TOOFEW));

44 String name = st.nextToken();

45 if (!st.hasMoreTokens()) return new ErrorCommand (new

46 IncorrectArguments(IncorrectArguments.TOOFEW));

47 String type = st.nextToken();

48 if (st.hasMoreTokens()) return new ErrorCommand (new

49 IncorrectArguments(IncorrectArguments.TOOMANY));

50 return new CreateCommand(rs, sh ,name,type);

51 }

52 else

53 {

54 return super.generateCommand(command,args,topLevel);

55 }

56

57 }

58

59 public String[] commandList(String[] otherCommands)

60 {

61 int length = otherCommands.length + 4;

62 String[] coms = new String[length];

63 coms[0] = "QUIT - Exits the Shell Program";

64 coms[1] = "HELP - Lists all available Commands";

65 coms[2] = "LOAD - Loads up the named ranking file";

66 coms[3] = "CREATE - Create a new empty ranking system";

67 System.arraycopy(otherCommands,0,coms,4,length-4);

68
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69 return super.commandList(coms);

70 }

71 }

1 import java.util.StringTokenizer;

2

3 public class BasicListCommandFactory extends BasicCommandFactory

4 {

5 public BasicListCommandFactory(RankingSystemI rs, Shell sh)

6 {

7 super(rs,sh);

8 }

9

10 public Command generateCommand(String command, String args,

11 CommandFactory topLevel) throws

12 UnknownCommand,

13 IncorrectArguments,

14 NumberFormatException,

15 NameDoesntExist

16 {

17 StringTokenizer st = new StringTokenizer(args);

18 if (command.equals("LIST"))

19 {

20 if (st.hasMoreTokens()) return new ErrorCommand (new

21 IncorrectArguments(IncorrectArguments.TOOMANY));

22 return new ListCommand(rs);

23 }

24 else if (command.equals("ADD"))

25 {

26 String name;

27 if (!st.hasMoreTokens()) return new ErrorCommand (new

28 IncorrectArguments(IncorrectArguments.TOOFEW));

29 else name = st.nextToken();

30 if (st.hasMoreTokens()) return new ErrorCommand (new

31 IncorrectArguments(IncorrectArguments.TOOMANY));

32

33 return new AddPlayerCommand(name,rs);

34 }

35 else if (command.equals("RESULT"))

36 {

37 String p1;

38 String p2;

39 int result;

40

41 if (st.hasMoreTokens())

42 {

43 p1 = st.nextToken();

44 }

45 else

46 {

47 return new ErrorCommand (new

48 IncorrectArguments(IncorrectArguments.TOOFEW));

49 }

50

51 if (st.hasMoreTokens())

52 {

53 p2 = st.nextToken();

54 }

55 else

56 {

57 return new ErrorCommand (new
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58 IncorrectArguments(IncorrectArguments.TOOFEW));

59 }

60

61 if (st.hasMoreTokens())

62 {

63 String res = st.nextToken();

64 try

65 {

66 result = Integer.parseInt(res);

67 if (result != 0 && result != 1 && result != 2) return

68 new ErrorCommand(new

69 IncorrectArguments(result + " should be a 0, 1 or 2"));

70 }

71 catch (NumberFormatException nfe)

72 {

73 return new ErrorCommand(new

74 IncorrectArguments(res + " should be a number"));

75 }

76 }

77 else

78 {

79 return new ErrorCommand (new

80 IncorrectArguments(IncorrectArguments.TOOFEW));

81 }

82 if (st.hasMoreTokens()) return new ErrorCommand (new

83 IncorrectArguments(IncorrectArguments.TOOMANY));

84 try

85 {

86 return new ResultCommand(p1, p2, result, rs);

87 }

88 catch (SameNameException e)

89 {

90 return new ErrorCommand(e);

91 }

92 }

93 else

94 {

95 return super.generateCommand(command,args,topLevel);

96 }

97 }

98

99 public String[] commandList(String[] otherCommands)

100 {

101 int length = otherCommands.length + 3;

102 String[] coms = new String[length];

103 coms[0] = "RESULT - Add a result into the system";

104 coms[1] = "ADD - Add an additional player to the ranking system";

105 coms[2] = "LIST - Display the public listing of the ranking system";

106 System.arraycopy(otherCommands,0,coms,3,length-3);

107

108 return super.commandList(coms);

109 }

110 }

1 public class BasicResult implements ResultI

2 {

3

4 public static int P1BEATP2 = 1;

5 public static int P2BEATP1 = 2;

6 public static int DRAW = 0;

7
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8 public String player1;

9 public String player2;

10 public int result;

11

12 BasicResult()

13 {

14 }

15

16 BasicResult(String player1, String player2, int result)

17 {

18 this.player1 = player1;

19 this.player2 = player2;

20 this.result = result;

21 }

22 }

1 public abstract class CommandFactory

2 {

3 protected RankingSystemI rs;

4 protected Shell sh;

5

6 public CommandFactory(RankingSystemI rs, Shell sh)

7 {

8 this.rs = rs;

9 this.sh = sh;

10 }

11

12 public Command generateCommand(String command, String args,

13 CommandFactory topLevel) throws

14 UnknownCommand,

15 IncorrectArguments,

16 NameDoesntExist

17 {

18 return new ErrorCommand(new UnknownCommand(command));

19 }

20

21 public String[] commandList(String[] otherCommands)

22 {

23 return otherCommands;

24 }

25 }

1 public abstract class Command

2 {

3 RankingSystemI rs;

4

5 Command()

6 {

7 this.rs = null;

8 }

9

10 Command(RankingSystemI rs)

11 {

12 this.rs = rs;

13 }

14

15 public abstract String[] execute();

16 }
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1 public class CreateCommand extends Command

2 {

3 String fileName;

4 String rsType;

5 Shell sh;

6

7 public CreateCommand(RankingSystemI rs, Shell sh, String fileName,

8 String rsType)

9 {

10 super(rs);

11 this.fileName = fileName;

12 this.rsType = rsType;

13 this.sh = sh;

14 }

15

16 public String[] execute()

17 {

18 String[] output = {"Ranking System Created"};

19 RankingSystemLoader.newFile(fileName);

20 if (rsType.equals("LadderSystem"))

21 {

22 new LadderSystem(sh);

23 }

24 else if (rsType.equals("LeagueSystem"))

25 {

26 new LeagueSystem(sh);

27 }

28 else if (rsType.equals("PointsSystem"))

29 {

30 new PointsShell(sh);

31 }

32 else

33 {

34 output[0] = "Unrecognised Ranking System";

35 }

36

37 return output;

38 }

39 }

1 public class ErrorCommand extends Command

2 {

3 Exception e;

4

5 public ErrorCommand(Exception e)

6 {

7 this.e = e;

8 }

9

10 public String[] execute()

11 {

12 String[] output = new String[1];

13 output[0] = e.toString();

14 return output;

15 }

16 }

1 public class HelpCommand extends Command

2 {
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3

4 CommandFactory cf;

5

6 public HelpCommand()

7 {

8 super();

9 }

10

11 public HelpCommand(CommandFactory cf)

12 {

13 this.cf = cf;

14 }

15

16 public String[] execute()

17 {

18 String[] commands = {};

19 return cf.commandList(commands);

20 }

21

22 }

1 import java.util.LinkedList;

2 import java.util.ListIterator;

3

4 public class HistoryCommand extends Command

5 {

6

7 String player1;

8 String player2;

9

10 public HistoryCommand(String player1, String player2, RankingSystemI rs)

11 {

12 super(rs);

13 this.player1 = player1;

14 this.player2 = player2;

15 }

16

17 public String[] execute()

18 {

19 String[] output = null;

20 LinkedList llout = new LinkedList();

21 LinkedList results = ((LeagueSystem) rs).results;

22 ListIterator li = results.listIterator();

23 while(li.hasNext())

24 {

25 LeagueSystem.LeagueResult lr = (LeagueSystem.LeagueResult) li.next();

26 if ((lr.player1.equals(player1) || lr.player1.equals(player2)) &&

27 (lr.player2.equals(player1) || lr.player2.equals(player2)))

28 {

29 llout.add(lr.toString());

30 }

31 }

32

33 output = new String[llout.size()];

34 for(int i = 0; i < output.length; i ++)

35 {

36 output[i] = (String) llout.get(i);

37 }

38 return output;

39 }

40
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41 }

1 public class IncorrectArguments extends Exception

2 {

3 public static String TOOMANY = "Too many arguments";

4 public static String TOOFEW = "Too feww arguments";

5 String s;

6

7 public IncorrectArguments(String s)

8 {

9 this.s = s;

10 }

11

12 public String toString()

13 {

14 return s;

15 }

16 }

1 import java.io.FileWriter;

2 import java.io.IOException;

3 import java.util.ArrayList;

4 import java.util.LinkedList;

5 import java.util.ListIterator;

6

7 public class LadderSystem implements RankingSystemI

8 {

9

10 public class LadderCommands extends BasicListCommandFactory

11 {

12 public LadderCommands(RankingSystemI rs,Shell sh)

13 {

14 super(rs,sh);

15 }

16 }

17

18 public class LadderPerson

19 {

20 String name;

21 LadderPerson(String name)

22 {

23 this.name = name;

24 }

25

26 public String toString()

27 {

28 return name;

29 }

30 }

31

32 protected ArrayList players = new ArrayList();

33

34 public LadderSystem(Shell sh)

35 {

36 sh.switchCommandSource(new LadderCommands(this,sh));

37 }

38

39 public LadderSystem(Shell sh, LinkedList ll)

40 {

41 ListIterator li = ll.listIterator();
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42 while (li.hasNext())

43 {

44 players.add(new LadderPerson((String)li.next()));;

45 }

46

47 sh.switchCommandSource(new LadderCommands(this,sh));

48 }

49

50 public void addPlayer(String name) throws NameAlreadyExists

51 {

52 int index = find(name);

53 if (index == -1)

54 players.add(new LadderPerson(name));

55 else

56 throw new NameAlreadyExists(name);

57 }

58

59 public void addResult(ResultI result) throws NameDoesntExist,

60 IncorrectArguments

61 {

62 BasicResult r = (BasicResult) result;

63

64 int p1 = find(r.player1);

65 int p2 = find(r.player2);

66

67 if (p1 == -1) throw new NameDoesntExist(r.player1);

68 if (p2 == -1) throw new NameDoesntExist(r.player2);

69 if (!(r.result == BasicResult.P1BEATP2 |

70 r.result == BasicResult.P2BEATP1 |

71 r.result == BasicResult.DRAW ))

72 throw new IncorrectArguments(r.result +

73 " is an unrecognised result code");

74

75 if (r.result == BasicResult.P1BEATP2 && p1 > p2)

76 {

77 adjust(p2,p1);

78 }

79 else if (r.result == BasicResult.P2BEATP1 && p2 > p1)

80 {

81 adjust(p1,p2);

82 }

83 }

84

85 private void adjust(int down, int up)

86 {

87 Object k;

88 k = players.get(down);

89 players.set(down,players.get(up));

90 players.remove(up);

91 players.add(down+1,k);

92 }

93

94 private int find(String name)

95 {

96 int player = -1;

97 for (int i = 0; i < players.size(); i ++)

98 {

99 if (name.equals(((LadderPerson)players.get(i)).name))

100 {

101 player = i;

102 break;
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103 }

104 }

105 return player;

106 }

107

108 public String[] publicListing()

109 {

110 String[] output = new String[players.size()];

111 ListIterator li = players.listIterator();

112 int counter = 0;

113 while(li.hasNext())

114 {

115 output[counter] = (counter + 1) + ")\t" +

116 ((LadderPerson)li.next()).toString();

117 counter ++;

118 }

119

120 return output;

121 }

122

123 public void save(FileWriter writer) throws IOException

124 {

125 writer.write("LadderSystem\n");

126 for (int i = 0; i < players.size(); i ++)

127 {

128 writer.write(((LadderPerson)players.get(i)).name + "\n");

129 }

130 }

131

132

133

134

135 }

1 import java.io.FileWriter;

2 import java.io.IOException;

3 import java.util.LinkedList;

4 import java.util.ListIterator;

5 import java.util.NoSuchElementException;

6 import java.util.StringTokenizer;

7

8 public class LeagueSystem implements RankingSystemI

9 {

10

11 public class LeagueAddPlayerCommand extends AddPlayerCommand

12 {

13 public LeagueAddPlayerCommand(String name, RankingSystemI rs)

14 {

15 super(name,rs);

16 }

17

18 public String[] execute()

19 {

20 String[] output = new String[1];

21 if (((LeagueSystem)rs).hasStarted()) output[0] =

22 "League has started new players cannot be added";

23 else output = super.execute();

24

25 return output;

26 }

27 }
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28 public class LeagueCommandFactory extends BasicListCommandFactory

29 {

30 public LeagueCommandFactory(RankingSystemI rs, Shell sh)

31 {

32 super(rs, sh);

33 }

34

35 public String[] commandList(String[] otherCommands)

36 {

37 int length = otherCommands.length + 1;

38 String[] coms = new String[length];

39 coms[0] = "HISTORY - Shows the results between two players";

40 System.arraycopy(otherCommands,0,coms,1,length-1);

41

42 return super.commandList(coms);

43 }

44

45 public Command generateCommand(String command, String args,

46 CommandFactory topLevel) throws

47 UnknownCommand,

48 IncorrectArguments,

49 NameDoesntExist

50 {

51 StringTokenizer st = new StringTokenizer(args);

52 if (command.equals("RESULT"))

53 {

54 int p1Score = 0, p2Score = 0;

55 String score = null;

56 try

57 {

58 String player1 = st.nextToken();

59 String player2 = st.nextToken();

60 score = st.nextToken();

61 p1Score = Integer.parseInt(score);

62 score = st.nextToken();

63 p2Score = Integer.parseInt(score);

64 if (st.hasMoreTokens()) return new ErrorCommand (new

65 IncorrectArguments(IncorrectArguments.TOOMANY));

66 return new LeagueResultCommand(player1,player2,p1Score,

67 p2Score,rs);

68 }

69 catch (SameNameException e)

70 {

71 return new ErrorCommand(e);

72 }

73 catch (NoSuchElementException e)

74 {

75 return new ErrorCommand (new

76 IncorrectArguments(IncorrectArguments.TOOFEW));

77 }

78 catch (NumberFormatException e)

79 {

80 return new ErrorCommand(new

81 IncorrectArguments(score + " should be a number"));

82 }

83 }

84 else if (command.equals("ADD"))

85 {

86 String name;

87 if (!st.hasMoreTokens()) return new ErrorCommand (new

88 IncorrectArguments(IncorrectArguments.TOOFEW));
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89 else name = st.nextToken();

90 if (st.hasMoreTokens()) return new ErrorCommand (new

91 IncorrectArguments(IncorrectArguments.TOOMANY));

92

93 return new LeagueAddPlayerCommand(name,rs);

94 }

95 else if (command.equals("HISTORY"))

96 {

97 try

98 {

99 String player1 = st.nextToken();

100 String player2 = st.nextToken();

101

102 if (((LeagueSystem)rs).find(player1) == -1)

103 {

104 return new ErrorCommand(new NameDoesntExist(player1));

105 }

106 if (((LeagueSystem)rs).find(player2) == -1)

107 {

108 return new ErrorCommand(new NameDoesntExist(player2));

109 }

110 return new HistoryCommand(player1,player2,rs);

111 }

112 catch (NoSuchElementException e)

113 {

114 return new ErrorCommand(new

115 IncorrectArguments(IncorrectArguments.TOOFEW));

116 }

117 }

118 else

119 {

120 return super.generateCommand(command,args,topLevel);

121 }

122 }

123 }

124

125 class LeaguePerson

126 {

127 int drawn = 0;

128 int lost = 0;

129 String name;

130 int points = 0;

131 LinkedList results = new LinkedList();

132 int won = 0;

133

134 LeaguePerson (String name)

135 {

136 this.name = name;

137 }

138

139 public String toString()

140 {

141 String firstSpace = "\t";

142 if (name.length() < 8) firstSpace = "\t\t";

143

144 return name + firstSpace + (won+lost+drawn)+ "\t"+won+ "\t"+ drawn+

145 "\t" + lost + "\t"+points;

146 }

147 }

148

149 public class LeagueResult extends BasicResult
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150 {

151 int p1Score;

152 int p2Score;

153

154 public LeagueResult(String storedForm)

155 {

156 StringTokenizer st = new StringTokenizer(storedForm);

157 player1 = st.nextToken();

158 player2 = st.nextToken();

159 p1Score = Integer.parseInt(st.nextToken());

160 p2Score = Integer.parseInt(st.nextToken());

161 if (p1Score > p2Score) result = BasicResult.P1BEATP2;

162 else if (p1Score < p2Score) result = BasicResult.P2BEATP1;

163 else result = BasicResult.DRAW;

164 }

165

166 public LeagueResult(String player1, String player2, int p1Score,

167 int p2Score)

168 {

169 super(player1,player2,99);

170 this.p1Score = p1Score;

171 this.p2Score = p2Score;

172 if (p1Score > p2Score) result = BasicResult.P1BEATP2;

173 else if (p1Score < p2Score) result = BasicResult.P2BEATP1;

174 else result = BasicResult.DRAW;

175 }

176

177 public String toString()

178 {

179 return player1 + " " + player2 + " " + p1Score + " " + p2Score;

180 }

181 }

182

183 public class LeagueResultCommand extends ResultCommand

184 {

185 public LeagueResultCommand(String p1,

186 String p2,

187 int p1Score,

188 int p2Score,

189 RankingSystemI rs) throws SameNameException

190 {

191 if (p1.equals(p2)) throw new SameNameException();

192 this.r = new LeagueResult(p1,p2,p1Score,p2Score);

193 this.rs = rs;

194 }

195

196 public String[] execute()

197 {

198 String[] history;

199 String[] output = new String[1];

200 HistoryCommand hc = new HistoryCommand(((LeagueResult)r).player1,

201 ((LeagueResult)r).player2,rs);

202 history = hc.execute();

203 if (history.length == numGames) output[0] =

204 "Players have already faced each other maximum number of times";

205 else output = super.execute();

206 return output;

207 }

208 }

209

210 private static int DRAW = 1;
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211 private static int LOSE = 0;

212 private static int WIN = 3;

213

214 protected int numGames = 2;

215

216 protected LinkedList players = new LinkedList();

217 protected LinkedList results = new LinkedList();

218 protected boolean started = false;

219

220 public LeagueSystem(Shell sh)

221 {

222 super();

223 sh.switchCommandSource(new LeagueCommandFactory(this,sh));

224 }

225

226 public LeagueSystem(Shell sh, LinkedList ll)

227 {

228 ListIterator li = ll.listIterator();

229 int teams = Integer.parseInt((String)li.next());

230 for(int i = 0 ; i < teams; i ++)

231 {

232 players.add(new LeaguePerson((String)li.next()));;

233 }

234

235 numGames = Integer.parseInt((String)li.next());

236

237 while(li.hasNext())

238 {

239 String line = (String) li.next();

240 try {

241 addResult(new LeagueResult(line));

242 } catch (Exception e) {}

243 }

244

245 sh.switchCommandSource(new LeagueCommandFactory(this,sh));

246 }

247

248 public void addPlayer(String name) throws NameAlreadyExists

249 {

250 if (find(name) != -1) throw new NameAlreadyExists(name);

251 players.add(new LeaguePerson(name));

252 }

253

254 public void addResult(ResultI r) throws NameDoesntExist

255 {

256 LeagueResult result = (LeagueResult) r;

257 int p1 = find(result.player1);

258 int p2 = find(result.player2);

259 if (p1 == -1) throw new NameDoesntExist(result.player1);

260 if (p2 == -1) throw new NameDoesntExist(result.player2);

261 started = true;

262 results.add(result);

263

264 LeaguePerson pl1 = (LeaguePerson)players.get(p1);

265 LeaguePerson pl2 = (LeaguePerson)players.get(p2);

266

267 if (result.result == BasicResult.P1BEATP2)

268 {

269 pl1.points += WIN;

270 pl1.won += 1;

271 pl2.points += LOSE;
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272 pl2.lost += 1;

273 }

274 else if (result.result == BasicResult.P2BEATP1)

275 {

276 pl1.points += LOSE;

277 pl1.lost += 1;

278 pl2.points += WIN;

279 pl2.won += 1;

280 }

281 else

282 {

283 pl1.points += DRAW;

284 pl1.drawn += 1;

285 pl2.points += DRAW;

286 pl2.drawn += 1;

287 }

288 }

289

290 private int find(String name)

291 {

292 int player = -1;

293 for (int i = 0; i < players.size(); i ++)

294 {

295 if (name.equals(((LeaguePerson)players.get(i)).name))

296 {

297 player = i;

298 break;

299 }

300 }

301 return player;

302 }

303

304 public boolean hasStarted()

305 {

306 return started;

307 }

308

309 public String[] publicListing()

310 {

311 LeaguePerson[] people = new LeaguePerson[players.size()];

312 for(int i = 0; i < players.size(); i ++)

313 {

314 people[i] = (LeaguePerson) players.get(i);

315 }

316

317 for(int i = 0; i < players.size()-1; i ++)

318 {

319 for(int j = i+1; j < players.size(); j ++)

320 {

321 if (people[i].points < people[j].points)

322 {

323 LeaguePerson temp = people[i];

324 people[i] = people[j];

325 people[j] = temp;

326 }

327 }

328 }

329

330 String[] output = new String[people.length+1];

331 output[0] = "Player\t\tPlayed\tWon\tDrawn\tLost\tPoints";

332 for(int i = 0; i < people.length; i ++)
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333 {

334 output[i+1] = people[i].toString();

335 }

336 return output;

337 }

338

339 public void save(FileWriter writer) throws IOException

340 {

341 writer.write("LeagueSystem\n");

342 writer.write(players.size()+"\n");

343

344 ListIterator li = players.listIterator();

345 while(li.hasNext())

346 {

347 LeaguePerson lp = (LeaguePerson) li.next();

348 writer.write(lp.name+"\n");

349 }

350 writer.write(""+numGames+"\n");

351 li = results.listIterator();

352 while(li.hasNext())

353 {

354 LeagueResult lr = (LeagueResult) li.next();

355 writer.write(lr.toString() + "\n");

356 }

357 }

358

359 }

1 public class ListCommand extends Command

2 {

3 public ListCommand()

4 {

5 super();

6 }

7

8 public ListCommand(RankingSystemI rs)

9 {

10 super(rs);

11 }

12

13 public String[] execute()

14 {

15 return rs.publicListing();

16 }

17

18 }

1 import java.io.FileNotFoundException;

2 import java.io.IOException;

3 import java.util.LinkedList;

4

5 public class LoadCommand extends Command

6 {

7

8 String fileName;

9 CommandFactory cf;

10

11 public LoadCommand()

12 {

13 super();
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14 }

15

16 public LoadCommand(RankingSystemI rs, String fileName, CommandFactory cf)

17 {

18 super(rs);

19 this.fileName = fileName;

20 this.cf = cf;

21 }

22

23 private RankingSystemI decideSystem(String type, LinkedList input)

24 {

25 if (type.equals("LadderSystem"))

26 {

27 return new LadderSystem(cf.sh,input);

28 }

29 else if (type.equals("LeagueSystem"))

30 {

31 return new LeagueSystem(cf.sh,input);

32 }

33 else if (type.equals("PointsSystem"))

34 {

35 return new PointsShell(cf.sh,input);

36 }

37 else

38 {

39 return null;

40 }

41 }

42

43 public String[] execute()

44 {

45 String[] output = {"File Loaded"};

46 try

47 {

48 Object[] o = RankingSystemLoader.loadFile(fileName);

49

50 LinkedList fileInput = (LinkedList)o[1];

51 String type = (String)o[0];

52

53 RankingSystemI newRankingSystem = decideSystem(type,fileInput);

54 if (newRankingSystem == null)

55 {

56 output[0] = "Ranking System Not Recognised";

57 return output;

58 }

59 }

60 catch (FileNotFoundException e)

61 {

62 output[0] = "File does not exist";

63 }

64 catch (IOException e)

65 {

66 output[0] = "Problem loading file";

67 }

68

69 return output;

70 }

71

72 }
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1 public class NameAlreadyExists extends Exception

2 {

3 String name;

4

5 NameAlreadyExists(String name)

6 {

7 this.name = name;

8 }

9

10 public String toString()

11 {

12 String str = "The name: " + name + " alreasy exists in this ranking file";

13 return str;

14 }

15 }

1 public class NameDoesntExist extends Exception

2 {

3 private String name;

4

5 public NameDoesntExist(String name)

6 {

7 this.name = name;

8 }

9

10 public String toString()

11 {

12 return "The name "+name+" does not exist";

13 }

14 }

1 import java.util.Collections;

2 import java.util.Vector;

3

4 public class PointsRatings

5 {

6

7 public class Person implements Comparable

8 {

9 public double points;

10 public String name;

11 Person(String n, double p)

12 {

13 name = n;

14 points = p;

15 }

16

17 public int compareTo(Object o)

18 {

19 if (((Person)o).points < this.points)

20 {

21 return -1;

22 }

23 else if (((Person)o).points > this.points)

24 {

25 return 1;

26 }

27 else

28 {
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29 return 0;

30 }

31 }

32 }

33

34 Vector v = new Vector();

35

36 public PointsRatings()

37 {

38 }

39

40 /**

41 * Add a new person into the ratings with the given name and starting points,

42 * if ther is already a person with that name then an error

43 * code is returned otherwise 1 is returned

44 *

45 * @param name The naem of the new person

46 * @param points How many points they should start with

47 * @return int The error code for duplicate name is -1;

48 */

49 public int newPerson(String name, double points)

50 {

51 if (getPerson(name) != null) return -1;

52 v.add(new Person(name,points));

53 return 1;

54 }

55

56

57 /**

58 * Lookup the name given in the ratings, if the name

59 * matches a Person in the ratings then return that

60 * person otherwise return null

61 *

62 * @param name The name to check

63 * @return Person Is null if the name is not in the ratings

64 */

65 public Person getPerson(String name)

66 {

67 for (int i =0; i < v.size(); i ++)

68 {

69 if (((Person)v.get(i)).name.equals(name))

70 {

71 return (Person)v.get(i);

72 }

73 }

74

75 return null;

76 }

77

78 /**

79 * Return the person at position i in the ratings

80 *

81 * @param i The Person to return

82 * @return Person

83 */

84 public Person getPerson(int i)

85 {

86 return (Person)v.get(i);

87 }

88

89 /**
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90 * Change the players scores the the appropriate amount.

91 * Max points diff consdiered is 1000 points. PLayers

92 * lose/gain 100 to 0 points. In the event of a draw

93 * the player with the least number of points is considered

94 * the winner but they get half the points they would have.

95 *

96 * @param winner The player who won

97 * @param loser The player who lost

98 * @param draw Wether the game was a draw

99 */

100 public void calculateScore(Person winner, Person loser, boolean draw)

101 {

102 if (draw && winner.points > loser.points)

103 {

104 Person temp = winner;

105 winner = loser;

106 loser = temp;

107 }

108 else if (draw && winner.points == loser.points)

109 {

110 return;

111 }

112 double diff = loser.points - winner.points;

113 diff += 1000;

114 if (diff < 0) diff = 0;

115 if (diff > 2000) diff = 2000;

116 double max = 100;

117

118 double score = max *(diff/2000);

119 if (draw) score /= 2;

120 if (loser.points - score < 0) score = loser.points;

121 winner.points += score;

122 loser.points -= score;

123 }

124

125 /**

126 * Add in a result to this Rating.

127 *

128 * @param a A valid Person in the Rating

129 * @param b A valid Person in the Rating

130 * @param result Should 1 if a is the winner, -1 if b is

131 * the winner and anything else if it’s a draw.

132 */

133 public void result(Person a,Person b, int result)

134 {

135 if (result == 1)

136 {

137 calculateScore(a,b,false);

138 }

139 else if (result == -1)

140 {

141 calculateScore(b,a,false);

142 }

143 else

144 {

145 calculateScore(a,b,true);

146 }

147 }

148

149 /**

150 *
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151 *

152 * @see java.lang.Object#toString()

153 */

154 public String toString()

155 {

156 Collections.sort(v);

157 String str = "";

158 for (int i = 0; i < v.size(); i ++)

159 {

160 str += getPerson(i).name + " " + getPerson(i).points+"\n";

161 }

162 return str;

163 }

164

165 /**

166 * Test Harness

167 * @param args

168 */

169 public static void main(String[] args)

170 {

171 PointsRatings pr = new PointsRatings();

172 pr.newPerson("A",1000.0);

173 pr.newPerson("B",1000.0);

174

175 pr.result(pr.getPerson("A"),pr.getPerson("B"),1);

176 System.out.println(pr);

177 pr.newPerson("C",1000.0);

178 System.out.println(pr);

179 }

180 }

1 import java.io.FileWriter;

2 import java.io.IOException;

3 import java.util.LinkedList;

4 import java.util.ListIterator;

5

6 public class PointsShell implements RankingSystemI

7 {

8 PointsRatings pr;

9 Shell sh;

10

11 public class PointsCommandFactory extends BasicListCommandFactory

12 {

13 public PointsCommandFactory(RankingSystemI rs, Shell sh)

14 {

15 super(rs,sh);

16 }

17 }

18

19 public PointsShell(Shell sh, LinkedList ll)

20 {

21 this.sh = sh;

22 pr = new PointsRatings();

23

24 ListIterator li = ll.listIterator();

25 while (li.hasNext())

26 {

27 String line = (String)li.next();

28 String name = line.substring(0,line.indexOf(" "));

29 double points = Double.parseDouble(

30 line.substring(line.indexOf(" ")+1));
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31 pr.newPerson(name,points);

32 }

33 sh.switchCommandSource(new PointsCommandFactory(this,sh)) ;

34 }

35

36 public PointsShell(Shell sh)

37 {

38 this.sh = sh;

39 pr = new PointsRatings();

40 sh.switchCommandSource(new PointsCommandFactory(this,sh));

41 }

42

43 public void addPlayer(String name) throws NameAlreadyExists

44 {

45 PointsRatings.Person person = pr.getPerson(name);

46 if (person != null) throw new NameAlreadyExists(name);

47 else pr.newPerson(name,1000.0);

48 }

49

50 public void addResult(ResultI r) throws NameDoesntExist, IncorrectArguments

51 {

52 BasicResult br = (BasicResult) r;

53

54 PointsRatings.Person p1 = pr.getPerson(br.player1);

55 PointsRatings.Person p2 = pr.getPerson(br.player2);

56 if (p1 == null) throw new NameDoesntExist(br.player1);

57 if (p2 == null) throw new NameDoesntExist(br.player2);

58

59 if (br.result == 1)

60 {

61 pr.result(p1,p2,1);

62 }

63 else if (br.result == 2)

64 {

65 pr.result(p1,p2,-1);

66 }

67 else

68 {

69 pr.result(p1,p2,0);

70 }

71 }

72

73 public String[] publicListing()

74 {

75 String[] str = new String[1];

76 str[0] = pr.toString();

77 return str;

78 }

79

80 public void save(FileWriter writer) throws IOException

81 {

82 writer.write("PointsSystem\n");

83 writer.write(pr.toString());

84 writer.flush();

85 }

86

87 }

1 public class QuitCommand extends Command

2 {

3 public QuitCommand()
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4 {

5 super();

6 }

7

8 public String[] execute()

9 {

10 System.exit(0);

11 return null;

12 }

13 }

1 import java.io.FileWriter;

2 import java.io.IOException;

3

4 public interface RankingSystemI

5 {

6 public static int ASCENDING = 0;

7 public static int DESCENDING = 1;

8

9 public void addPlayer(String name) throws NameAlreadyExists;

10

11 public void addResult(ResultI r) throws NameDoesntExist, IncorrectArguments;

12

13

14 public String[] publicListing();

15

16 public void save(FileWriter writer) throws IOException;

17 }

1 import java.io.File;

2 import java.io.FileReader;

3 import java.io.FileWriter;

4 import java.io.IOException;

5 import java.io.LineNumberReader;

6 import java.util.LinkedList;

7

8 public abstract class RankingSystemLoader

9 {

10

11 static File rankings;

12 static File oldFile;

13

14 public RankingSystemLoader()

15 {

16 rankings = null;

17 oldFile = null;

18 }

19

20 public static Object[] loadFile(String fileName) throws IOException

21 {

22 oldFile = rankings;

23

24 Object[] o = new Object[2];

25 try

26 {

27 rankings = new File(fileName);

28

29 LineNumberReader in = new LineNumberReader(new FileReader(rankings));

30 String type = in.readLine();

31 LinkedList ll = new LinkedList();
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32 String input = in.readLine();

33 while (input != null)

34 {

35 ll.add(input);

36 input = in.readLine();

37 }

38

39 o[0] = type;

40 o[1] = ll;

41 }

42 catch (IOException e)

43 {

44 rankings = oldFile;

45 throw e;

46 }

47 return o;

48 }

49

50 public static void newFile(String fileName)

51 {

52 rankings = new File(fileName);

53 }

54

55 public static void saveFile(RankingSystemI rsi)

56 {

57 try

58 {

59 FileWriter out = new FileWriter(rankings);

60 rsi.save(out);

61 out.close();

62 }

63 catch (Exception e)

64 {

65 System.err.println("Critical Error saving file");

66 System.exit(-2);

67 }

68 }

69 }

1 public class ResultCommand extends Command

2 {

3 ResultI r;

4 RankingSystemI rs;

5

6 public ResultCommand()

7 {

8 }

9

10 public ResultCommand(String p1, String p2, int result, RankingSystemI rs)

11 throws SameNameException

12 {

13 if (p1.equals(p2)) throw new SameNameException();

14 this.r = new BasicResult(p1,p2,result);

15 this.rs = rs;

16 }

17

18 public String[] execute()

19 {

20 String str[] = {"Result Added"};

21 try

22 {
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23 rs.addResult(r);

24 RankingSystemLoader.saveFile(rs);

25 }

26 catch (NameDoesntExist e)

27 {

28 str[0] = e.toString();

29 }

30 catch (IncorrectArguments e)

31 {

32 str[0] = e.toString();

33 }

34

35 return str;

36 }

37 }

1 public interface ResultI

2 {

3

4 }

1 public class SameNameException extends Exception

2 {

3 public String toString()

4 {

5 return "Players cannot play themselves";

6 }

7 }

1 public class SaveCommand extends Command

2 {

3 public SaveCommand()

4 {

5 super();

6 }

7

8 public SaveCommand(RankingSystemI rs)

9 {

10 super(rs);

11 }

12

13 public String[] execute()

14 {

15 String[] output = {"File Saved"};

16 try

17 {

18 RankingSystemLoader.saveFile(rs);

19 return output;

20 }

21 catch (Exception e)

22 {

23 output[0] = "File not Saved";

24 return output;

25 }

26 }

27 }

1 import java.io.BufferedReader;

2 import java.io.BufferedWriter;
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3 import java.io.IOException;

4 import java.io.InputStreamReader;

5 import java.io.OutputStreamWriter;

6

7 public class Shell

8 {

9 protected BufferedReader input;

10 protected BufferedWriter output;

11 protected String prompt = ">";

12 protected CommandFactory cf = new BasicCommandFactory(null,this);

13

14 public Shell(boolean suppress)

15 {

16 output = new BufferedWriter(new OutputStreamWriter(System.out));

17 input = new BufferedReader(new InputStreamReader(System.in));

18 if (suppress)

19 {

20 prompt = "";

21 }

22 }

23

24 public void switchCommandSource(CommandFactory cf)

25 {

26 this.cf = cf;

27 }

28

29 public void operate() throws IOException

30 {

31 output.write(prompt);

32 output.flush();

33 String commandLine = input.readLine();

34 int space = commandLine.indexOf(" ");

35 String com;

36 String args = "";

37 if (space == -1)

38 {

39 com = commandLine;

40 }

41 else

42 {

43 com = commandLine.substring(0,space);

44 args = commandLine.substring(space+1);

45 }

46 com = com.toUpperCase();

47 try

48 {

49 Command c = cf.generateCommand(com,args,cf);

50 String[] out = c.execute();

51 for (int i = 0; i < out.length; i ++)

52 {

53 output.write(out[i] + "\n");

54 }

55 output.flush();

56 }

57 catch (Exception e)

58 {

59 output.write("Unexpected Exception");

60 e.printStackTrace();

61 output.flush();

62 }

63
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64 }

65

66 public static void main(String[] args) throws Exception

67 {

68 boolean suppress = false;

69 if (args.length > 0)

70 {

71 suppress = true;

72 }

73 Shell s = new Shell(suppress);

74 while (true)

75 {

76 s.operate();

77 }

78 }

79 }

1 public class SystemAlreadyExistsException extends Exception

2 {

3 String name;

4 public SystemAlreadyExistsException(String name)

5 {

6 this.name = name;

7 }

8

9 public String toString()

10 {

11 return "Filename " + name + " is already being used";

12 }

13 }

1 public class UnknownCommand extends Exception

2 {

3 protected String command;

4

5 public UnknownCommand(String command)

6 {

7 this.command = command;

8 }

9

10 public String toString()

11 {

12 String str = "";

13 str += "The Command: " + command+ " is not recognised";

14 return str;

15 }

16 }
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Appendix D

Alternative Experiment Design

This appendix describes an alternative experiment design that was considered in place of

the experiment described in chapter 6. This experiment was piloted with 7 subjects and

invaluable insight was gained into the issues surrounding experimental design in relation

to the goals stated in section 6.4.1.

D.1 Design

There are two basic task types: Enhancing (Enh) and Documenting (Doc) the code.

Subjects will be asked to perform either the same type of task twice, or one and then

the other. This gives 4 basic groups, Enh—Doc, Doc—Enh, Enh—Enh and Doc—

Doc. Due to some subjects being asked to repeat the same type of task there must

be two sets of Enhancement tasks and two different parts of the code to document. As

a result, the code will be split into two sections, A & B, and when asked to perform

the Document task the subjects will be told to document either section A or B. The

Enhancement tasks will labelled C & D. This results in there being a total of 12 dif-

ferent groups: Doc(A)—Doc(B), Doc(B)—Doc(A), Enh(C)—Enh(D), Enh(D)—Enh(C),

Doc(A)—Enh(C), Doc(A)—Enh(D), Doc(B)—Enh(C), Doc(B)—Enh(D), Enh(C)—Doc(A),

Enh(C)—Doc(B), Enh(D)—Doc(A) and Enh(D)—Doc(B). Subjects will be assigned to

these groups by stratified random sampling. The different possible ‘paths’ the subjects

can take through the experiment are shown in figure D.1.

Test(E)

Test(F)

Test(E)

Test(F)

Doc(A) Doc(A) Doc(A)Doc(B) Doc(B) Doc(B)

Doc(A) Doc(B)

Test(E)

Test(F)

Test(E)

Test(F)

Enh(D)Enh(C) Enh(C) Enh(D) Enh(D)

Enh(C) Enh(D)

Enh(C)

Figure D.1: The Twelve Different Experiment Groups
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D.2 Measure of Level-of-Understanding

There are two measures of level-of-understanding. Firstly, there are the tests. The sub-

jects’ accuracy and time spent answering the questions will be used as a measure of level-

of-understanding. The other measure is the performance of the second task as linked to

the first task undertaken by a subject. The first task undertaken is a ‘calibration’ task,

and obviously no measurement of level-of-understanding can be taken from how a subject

performs in the task by itself. The key measurement is taken by finding how much better

their work on the second task is as compared to others who performed the same second

task. In this way it should be able to be determined if performing Documenting or En-

hancing has an effect on the subjects’ ability to perform the next task. There is also a

‘check-sum’ within the experiment, in that by comparing the quality of work the subjects

produce with their test scores, this should be able to ascertain how accurate the tests are

as a measure of subjects’ level-of-understanding about the program.

To measure the quality of documentation, each comment will be rated in two areas:

description of the function’s purpose and the description of its arguments, with fractional

marks being available for partial descriptions. Each part will have a difficulty rating of 1

to 3. The marks received for the descriptions will be multiplied by the difficulty for a score.

Adding up the scores will give a documentation rating for the subject. A similar system

will be used for Enhancement. Each Enhancement task will be given a difficulty rating

of 1 to 3. For each task they complete the subject is given a score calculated by taking

the difficulty of the task and dividing it by the time they took. Partially completed tasks

will be given partial marks. Marks will be deducted if the enhancement breaks current

functionality.

D.3 Conclusion

This experiment design is large and unwieldly, requiring a very large number of subjects

to be able to gather accurate results, furthermore those results are based on subjective

evaluation of the subjects’ work. However, of great value was the pilot that was run, the

insights of which, including material construction, subject selection and task selection,

informed the final experiment design reported in chapter 6.
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Appendix E

Interview Questions

Maintenance Programmer Questions

Section A Questionnaire

I) Programmer Background

Name?[I]

Age? [I]

18–25 26–35 36–45 45–55 55+

Gender? [I]

Male Female

Job Title? [I]

How long have you spent professionally programming? [I]

<1 year 13 years 38 years 8+ years

Which languages are you proficient in? [I]

Java C C++ Cobol SQL VB Perl C#

Others:

How many other systems/projects have you worked on? [I]

None 1 2–3 3–5 5–8 8+

How long have you spent maintaining this system? [I]

<1 year 1–3 years 3–8 years 8+ years
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Did you also help develop the system? [I]

Yes No

II) System Background

How old is the software system that you work on? [I]

<1 year 1–3 years 3–8 years 8–15 years 15+

III) How are they assigned work?

Is there a particular part of the system that you consider yourself an expert on? [I]

Yes No

IV) Tools

What tools do you currently use in maintaining the system? [I]

Section B – Interview Questions

I) Programmer Background

Look over what they’ve written in the questionnaire to make sure they are happy with

it. [I]

II) System Background

Source languages used in system? [I]

State of documentation? [D]

How many programmers maintain the system? [I]

What is the structure of the team maintaining the system? [D]

What is your position in the team? [I]

Could you draw a sketch of the system you work on? [D]

III) How are they assigned work?

Can you briefly explain the lifecycle of a maintenance request? [D]

What are the typical type of errors that you are asked to fix when performing

maintenance? [I]

What is the time frame for you fulfilling a maintenance request? What is the shortest,

longest and average time for performing maintenance? [D]
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Do you only perform maintenance on that area of the system that you consider yourself

expert in? [I] (Only asked if they consider themselves an expert in part of the system –

obviously)

What happens when a critical flaw is found in the system? [D]

Is the lifecycle you described earlier always stuck too or is it shortcircuited to speed up

fixes to the system? [D]

IV) What information do they use?

Apart from the source code what information do you use when maintaining the system

(e.g. documentation, other people, you team, change logs, code traces etc). [D]

What do you need to know about the other systems that interact with the one you

maintain? [D]

Do you have a personal (Database) of information about the system? [I]

What notes do you keep about the system? [D]

Are there project guru’s that you can consult? [I] If so what kind of questions do you

ask them? [D]

V) How do they get the information?

How do you go about finding out information you say you use in the previous section?

Do you have to schedule meetings, are their certain tools you use etc? [Long D]

VI) How do they use the information?

How often are the answers to your problems simply ”in the code” as opposed to answers

worked out from other sources. [D]

When you read the source code while trying to carry out a maintenance request are

there always certain things you look for every time. Are there key areas of the code that

you can start from? [D]

VII) What info are they missing?

Brief discussion of tools they say they use from questionnaire. [D]

Do you use any self developed tools/scripts to help you maintain the system (what info

do they give you)? [I]

What is your biggest problem in maintaining the system? [D]

When maintaining the system what information do you constantly find you require? [D]

Is there any information you need that you don’t look up because it’s too time

consuming/difficult? [D]

What kind of tools/info do you find are missing when you maintain the system? [D]
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