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Abstract

This thesis concerns two aspects of microorganism behaviour. Firstly, the phenomenon

of bioconvection is explored, where suspensions of motile microorganisms that are denser

than the fluid in which they swim spontaneously form concentrated aggregations of cells

that drive fluid motion, forming intricate patterns. The cells considered herein orientate by

gyrotaxis, a balance between a gravitational torque due to uneven starch deposits causing

cells to be bottom heavy and a viscous torque due to fluid flow gradients, and phototaxis,

biased movement towards or away from a light source. In Chapters 2 and 3, a stochastic

continuum model for gyrotaxis is extended to include phototaxis using three physically

diverse and novel methods. A linear stability analysis is performed for each model and the

most unstable wavenumber for a range of parameter values is predicted. For two of the

models, sufficiently strong illumination is found to stabilize all wavenumbers compared to

the gyrotaxis only case. Phototaxis is also found to yield non-zero critical wavenumbers

under such strong illumination. Two mechanisms that lead to oscillatory solutions are

presented. Dramatically different results are found for the third model, where instabilities

arise even in the absence of fluid flow. In Chapter 4, an experimental study of pattern

formation by the photo-gyrotactic unicellular green alga species Chlamydomonas nivalis

is presented. Fourier analysis is used to extract the wavelength of the initial dominant

mode. Variations in red light illumination are found to have no significant effect on the

initial pattern wavelength. However, fascinating trends for the effects of cell concentration

and white light intensity on cells illuminated either from above or below are described.

This work concludes with comparisons between theoretical predictions and experimental

results, between which good agreement is found.

Secondly, we investigate the intracellular pathways and processes that lead to hydrogen

production upon implementation of a two-stage sulphur deprivation method in the green

alga C. reinhardtii. In Chapter 5, a novel model of this system is constructed from a
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consideration of the main cellular processes. Model results for a range of initial conditions

are found to be consistent with published experimental results. In Chapter 6, a parameter

sensitivity of the model is performed and a study in which different sulphur input functions

are used to optimize the yield of hydrogen gas over a set time is presented, with the aim of

improving the commercial and economic viability of algal hydrogen production. One such

continuous sulphur input function is found to significantly increase the yield of hydrogen

gas compared to using the discontinuous two-stage cycling of Ghirardi et al. 2000 [41].
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a Cell length

b Cell breadth

B Gyrotactic orientation parameter in Pedley and Kessler [129]

c Cell concentration in Childless et al. [22]

C Position at which I = Ic in Vincent and Hill 1996 [172]

D Cell diffusion tensor

Dh Horizontal component of orthotropic cell diffusion

Dr Rotational diffusivity

Dv Vertical component of orthotropic cell diffusion

E Dimensional rate-of-strain tensor

f(p) Cell swimming direction probability density function

g Acceleration due to gravity

h Distance between the centre of mass and the geometric center of a cell

along p

i,j,k Unit vector coordinate system

I Light intensity

Ic Critical light intensity

Is Light intensity at the source

J Flux of organisms through the fluid

Lg Gravitational torque acting on a cell

LT Total torque acting on a cell

Lv Viscous torque acting on a cell

m Mass of a cell

n Cell concentration
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p Pressure in Childless et al. [22]

pe Excess pressure above hydrostatic (at density ρ)

p Unit vector in direction of swimming cell

〈p〉 Mean cell swimming direction

P,R,Y Tensors depending on the surface geometry of the cell

q, r Unit vectors perpendicular to cell swimming direction

r Vector from the cell to the light source in Vincent and Hill [172]

r Radius of a cell modelled as sphere in the sedimentation velocity approx-

imation (equation 1.1)

S Surface of the unit sphere

t Time

T (I) Taxis function in Vincent and Hill [172]

u Fluid velocity

Us Sedimentation speed of a non-swimming cell

U(c, z) Function for cell swimming speed in Childless et al. [22]

v Mean volume of a cell

v Cell swimming velocity

Vr Velocity of a cell relative to its mean value

Vc Cell swimming velocity in Vincent and Hill [172]

Vs Average cell swimming speed

α Extinction coefficient

αe Extra density due to microorganisms relative to the fluid in Childless et

al. [22]

α‖ Dimensionless resistance coefficient for rotation about p

α⊥ Dimensionless resistance coefficient for rotation about an axis perpendic-

ular to p

α0 Cell eccentricity

δij Kronecker delta

ǫijl Levi-Civita tensor

µ Fluid viscosity

φ Cell orientation angle in the horizontal plane

ρ Fluid density

ρfluid Density of the fluid in equation 1.1

ρsphere Density of a cell in equation 1.1

∆ρ Extra density of cell relative to the fluid

Σ Stress tensor
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Σ(d) Batchelor stresses

Σ(p) Stresses associated with the effective particle rotation caused by rota-

tional diffusion

Σ(s) Stresslets associated with the swimming motions of individual cells

τ Direction correlation time

θ Cell orientation angle from the vertical

Ω Dimensional vorticity

ωc Angular velocity of a cell

Chapter 2

Notation as previously defined, plus the following amendments and additions.

ai, bi, Ai, Bi Constants from the asymptotic analysis

ai,j , bi,j Constants in linear expansion of the Fokker-Planck equation

ãi,j , b̃i,j Constants in linear expansion of the Fokker-Planck equation

āi,j , b̄i,j Constants in linear expansion of the Fokker-Planck equation

Ai Functions in linear analysis equations which are dependent on Ki, Ji and

α0

Bn Gyrotactic orientation parameter as in Pedley and Kessler [129] but based

on hn instead of h

C Position at which I = Ic for an individual cell

d Dimensionless layer depth parameter

D0 Diffusion scale

e Dimensionless rate-of-strain tensor

f0(θ, φ) No-flow component of cell swimming probability density function, f(θ, φ)

f1(θ, φ) First order perturbation to cell swimming probability density function,

f(θ, φ)

G1 Constant in the analytical equilibrium solution

h(I) Centre of mass offset that varies with light intensity

hn Centre of mass offset in the dark

H Suspension depth

Hi(α0, η) Functions of Ji, Ki, α0 and η involved in the linear stability analysis

k̃(I) Function dependent on light intensity that appears in the Fokker-Planck

equation in Model C
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k Dimensionless wavenumber

kc Dimensionless critical wavenumber

K Constant obtained from the transcendental equation for the analytical

equilibrium solution

Ki, Ji Functions of λ in the mean cell swimming direction and cell swimming

diffusion tensor

Lp New phototactic torque

m Integral of concentration, n

M(z) Amplitude of perturbation to integral of cell concentration

n̄ Mean cell concentration

N Scaling of cell concentration

PV , PH Functions in linear analysis equations which are dependent on Ki and λ

Pi(z) Functions in linear analysis equations that depend on z, Ki, Ji, Ai, κ, χ

and d

R Rayleigh number

Rc Critical Rayleigh number

Sc Schmidt number

Vn Average cell swimming speed (obtained from Hill and Häder [61] for

C. nivalis)

Vs(I) Mean cell swimming speed dependent on light intensity

U(z) Amplitude of perturbation to fluid velocity

α⋆ Cellular extinction coefficient

ǫ Perturbation parameter

η Dimensionless gyrotaxis number

κ Dimensionless measure of absorption

λ = (2BnDr)
−1

µλ Function of λ

ν Kinematic fluid viscosity

σ Linear growth rate

Φ(z) Amplitude of perturbation to cell concentration

χ Dimensionless phototaxis parameter

ω Dimensionless vorticity vector

•i Perturbation of order i

•−i Component of asymptotic solution

•I Denotes scaling z with d (or inner asymptotic solution)
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•ζ Denotes intermediate region in matched asymptotic solution

∂• ≡ ∂
∂• Abbreviation

∂i ≡ ∂
∂xi

Abbreviation

′ Differentiation with respect to the dependent variable

Chapter 3

Notation as previously defined, plus the following amendments and additions.

âi,j , b̂i,j Constants in linear expansion of the Fokker-Planck equation

AK , BK , Constants of integration in the asymptotic analysis for Model B

CK , NK

Ai(z) Functions of z in linear analysis equations which are dependent on

Ki(z), Ji(z) and α0

A(i,j) Terms of order j in the Taylor expansion of Ai for small d−1

C(z) Function of I(z), ζ and χ in the phototactic torque

f(I) Function of light intensity in the phototaxis torque

fm Maximum of the function f(I)

f1(⋆)(θ, φ) First order perturbation to cell swimming probability density function,

f(θ, φ) arising from the asymmetry of the cell or from phototaxis

F0 Constant in f(I)

Ĝ Unit vector in ∇I

gi(θ, φ),

hi(θ, φ)

Components of f1(θ, φ) and f1(⋆)(θ, φ)

g(I) Function multiplied by the combined gravitactic and phototactic torque

term

Gn(θ, φ) =
∑n

r=1 an,rP
1
r (θ, φ)

Hi(z, α0, η) Functions of Ji(z), Ki(z), α0 and η involved in the linear stability analysis

k̂(I) Unit vector dependent on light intensity in Model C

K̄i, J̄i Value of Ki(z) or Ji(z) when Λ = ΛC = ΛC2 = 2.2

Ki(z), Ji(z) Functions of z in the mean cell swimming direction and cell swimming

diffusion tensor

K(i,j), Terms of order j in the Taylor expansion of Ki or Ji for small d−1

J(i,j)
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PV (z), Functions in linear analysis equations which are dependent on Ki(z) and

PH(z) Λ(z)

P(i,j) Terms of order j in the Taylor expansion of Pi for small d−1

Pm
r (x) Associated Legendre polynomials

β1, β2 Constants in the phototaxis torque

ζ Dimensionless measure of the strength of the phototactic torque

θ̂ Unit vector in direction of varying θ

Λ Function of z in the linear expansion to the Fokker-Planck equation for

Model B

ΛC Function of z in the linear expansion to the Fokker-Planck equation for

Model C, Case I

ΛC2 Function of z in the linear expansion to the Fokker-Planck equation for

Model C, Case II

π Direction of illumination in Model C

φ̂ Unit vector in direction of varying φ

χc Value of χ above which purely non-hydrodynamic modes first exist

Chapter 4

Notation as previously defined, plus the following amendments and additions.

A Absorbance measured using the colourimeter

BBM Bold’s Basal Medium

c Constant in double logarithmic fit

C Concentration (in cells/cm3)

CA Experiment in which concentration is varied when the culture is illumi-

nated with white light from above

CB Experiment in which concentration is varied when the culture is illumi-

nated with white light from below

d(cm) Suspension depth

d Dimensionless measure of depth in Models A, B and C

E Ekman number

I(k) Fourier intensity in Czirók et al. [26]

I Light intensity

IR Red light intensity
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IW White light intensity

Iw Image width

k wavenumber

k0 Dimensional dominant initial wavenumber (or dominant wavenumber in

Czirók et al. [26])

k̃0 Dimensionless dominant initial wavenumber

l Path length of light through the substance when measuring absorbance

LA1,2,3 Experiments in which white light intensity is varied when the culture is

illuminated from above

LB1,2,3 Experiments in which white light intensity is varied when the culture is

illuminated from below

mi Mixing time

n Number of experimental runs

N Image size

p Significance value from T-test

P Percentage illumination

R Correlation coefficient

R2 Coefficient of determination

RA Experiment in which red light intensity is varied when the culture is

illuminated from above

S.D. Standard deviation calculated over n runs

t0 Time from the end of mixing to the start of pattern formation

ti Time between periods of mixing

WH(x, y) Two-dimensional Hahn windowing function

α Fitting parameter in the double logarithmic function

β Fitting parameter in the double logarithmic function

ǫKS Kolmorgorov-Smirnov statistic

ǫm Sum modulus error statistic

κ−1
1 Sublayer depth

λ Dimensional wavelength

λ0 Dimensional dominant initial wavelength

λ̃0 Dimensionless dominant initial wavelength

ρn Discrete Fourier spectrum at wavenumber n

φ(X = n) Fitting function distribution (either double logarithmic or double Gaus-

sian distribution)

Ω Angular velocity of Petri dish in solid body rotation
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Chapter 5

Notation is re-defined in Chapter 5 as follows.

a Maximum rate of uptake of external sulphur

A1 Dimensionless ratio of sulphur uptake rates

A2 Dimensionless ratio of sulphur uptake rates

ATP Adenosine triphosphate

bi Rate constants for sulphur uptake

B Dimensionless ratio of S uptake rates

c1 Gradient of the linear part of the growth function

ci Constants in simplified analytic solution

CL Measure of absorbance of the cells

d Width of the bio-reactor

di Constants in simplified analytical solution

DC DC = CLd, dimensionless absorption measure

e− Electron

EL Fraction of electrons from PSII-dependent path

g Constant in the tanh approximations for the Heaviside functions

G Rate constant for sulphur uptake

h Hydrogen gas

H+ Proton

H‘name’ Heaviside function to model process, ‘name’

I
(

S, h, dh
dt , t

)

Input of external sulphur function.

I0 Dimensionless light intensity at the source

Isat Dimensionless saturation level of light

I(z) Function for total light intensity

〈I〉d Function for total light intensity averaged over depth if the suspension is

instantaneously well mixed

k Constant used in Henry’s law, with units of L.atm/mol, to calculate ω2

k1 Rate constant for PSII repair

k2 Rate constant for protein breakdown

k3 Rate constant for protein production

k4 Rate constant for hydrogen production
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k5 Rate constant for oxygen consumption by respiration

k6 Rate constant for oxygen production from PSII

kchl Cellular extinction coefficient

kw Absorbance coefficient of the medium

K3 Dimensionless measure of rate of protein production

K2 Dimensionless protein breakdown rate

K5 Dimensionless respiration rate

K6 Dimensionless photosynthesis rate

KΛ Maximum packing capacity of spheres

l Constant in expression for useable light, L(Λ)

L(Λ) Function for useable light intensity

L1 Constant values of L(Λ) from Kosourov et al. [92] used to estimate k1

and k3

Le1 Value of the useable light function in Kosourov et al. [92]

n Cell concentration

n0 Uniform cell concentration throughout the layer

N Number of cells

NADP+ Nicotinamide adenine dinucleotide phosphate

NADPH Reduced form of NADP+

p Protein

p0 Protein level when growth is zero

p1 Protein below which maximum decay occurs

p2 Protein required for maximum growth

patm Partial pressure, measured in atm, used in Henry’s law to calculate ω2

ph Normalization of PSII-independent electron pathway

pr Basic protein needed for cell survival

PG Dimensionless protein gradient

PH Dimensionless reciprocal of ph

PR Dimensionless protein required for survival

PSI/PSII Photosystem I/II

rdecay Maximum rate for cell decay

rexp Maximum growth rate

R(s, s0) Ramp function

RD Dimensionless decay rate

RG Dimensionless growth rate
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s Internal sulphur

s0 Normal level of sulphur in a cell

s1 Sulphur level above which Calvin cycle is active

sg Gradient of Rubisco switch function

sh Normalization of PSII-dependent electron pathway

S External sulphur

S1 Ratio of sulphur required for Calvin cycle compared to normal sulphur

concentration

SH Dimensionless reciprocal of sh

t Time

t1/2 Half life of sulphur from Melis et al. [114]

ti Time at start of ith stage of analytic solution

T Time at which total hydrogen yield h is output

TH Start time of hydrogen production

vO2 Oxygen mass transfer coefficient

Vcell Volume of a single cell

Vcontainer Volume of the container

VL Dimensionless oxygen mass transfer

α(s) Function for the maximum uptake rate of external sulphur

β(s) Function for the substrate concentration when the sulphur uptake rate is

half of its maximum

β Average moles of sulphur in one mole of protein

γ0 Dimensionless protein switch p0

γ1 Dimensionless protein switch p1

γ2 Dimensionless protein switch p2

Λ Cell volume fraction

Λ1 Constant values of Λ from Kosourov et al. [92] used to estimate k1 and

k3

ΛTH
Cell volume fraction when hydrogen production begins

χ Oxygen saturation in water

ω Oxygen

ω1 Oxygen level required for full respiration

ω2 Oxygen level required to inhibit H2 production

ωp Oxygen level below which protein breakdown occurs
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Ω1 Dimensionless oxygen switch ω1

Ω2 Dimensionless oxygen switch ω2

•0 Initial condition at t0 = 0 (unless otherwise stated)

•initial Protein concentration or time at the start of a period of protein break-

down in Kosourov et al. [92]

•final Protein concentration or time at the end of a period of protein breakdown

in Kosourov et al. [92]

Chapter 6

Notation as defined in Chapter 5, plus the following amendments and additions.

ai Rates of sulphur addition in the gradient switch, linear switch, two-step

switch and feedback spike sulphur input functions

A Amplitude of sulphur addition in the sine wave and square wave sulphur

input functions

f
(

S, h, dh
dt , t

)

Sulphur input function used in optimization study

F Frequency of sulphur addition in the sine wave and square wave sulphur

input functions

hc, hc2 Critical hydrogen gradients in the gradient switch, linear switch, two-step

switch and feedback spike sulphur input functions

htol Small parameter in the feedback spike sulphur input function such that

if dh
dh(T + 1) < htol then sulphur is added

IC Initial conditions in the feedback spike sulphur input function

P Percentage of frequency for which sulphur is input in the square wave

sulphur input function

SD External sulphur concentration during the sulphur-deprived period in the

two-stage sulphur input function

SI External sulphur concentration added when hydrogen production stops

in the feedback spike sulphur input function

SR External sulphur concentration during the sulphur-replete period in the

two-stage sulphur input function

t1 Time in sulphur-deprived medium in the two-stage sulphur input function

t2 Time in sulphur-replete medium in the two-stage sulphur input function



Chapter 1

Introduction

1.1 General background

Microorganisms comprise a major proportion of the biomass on Earth, although the scale

of such creatures means they can not be seen by the naked eye (Madigan et al. 2003 [107]).

From the bacteria found in the stomachs of mammals, to the algae and plankton found in

rivers and oceans worldwide, an enormous and diverse range of microorganism species has

been evolving for many millions of years. Such microorganisms not only modulate their

own lifecycles and populations, but have a significant impact on phenomena on scales much

greater than that of an individual cell. Species of algae and plankton are at the bottom of

the food chain in aquatic ecosystems (Pomeroy 1974 [137]), and population variations can

affect fishing harvests, cause large-scale species extinctions, and can even contribute to

weather conditions and climate change (for example, Charlson et al. 1987 [20]). Research-

ing aspects of these fundamentally important organisms is crucial for building a thorough

understanding of the world in which we live. Microorganism swimming behaviour, which

can lead to local aggregations of high cell density, is no exception, especially since it

appears to be a vital part of the natural lifecycle of the cells, in terms of regulation of

nutrients, controlling light levels and reproduction. Additionally, aspects of the collective

motions caused by cell swimming may mirror large-scale phenomena, such as migration

and self-ordering of populations and, as such, techniques and information gained through

microorganism research may be useful when considering a wide range of other problems.

Some species of microorganisms also have exciting commercial and industrial applica-

tions. By-products produced during intracellular photosynthesis and respiration, such as

ethanol, are commercially valuable, and the high lipid content of species such as Botryococ-

1
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cus braunii indicate the potential of microorganisms in the lipid energy market (Metzger

and Largeau 2005 [118]). Various species of microorganism are able to produce hydrogen

gas and, hence, are a potential source of renewable energy. It has been known for decades

that the algal species Chlamydomonas reinhardtii has the ability to produce hydrogen gas

transiently (Gaffron and Rubin 1942 [37]). However, it was not until recent discoveries by

Melis and co-workers in 2000 [114], who found a novel method for increasing the yield of

gas, that the exciting prospect of substantial algal hydrogen production from this species

started to become a reality. Melis’s discovery was a hugely significant one, since hydrogen

production by microorganisms has the potential to produce renewable, green energy from

the Earth’s most plentiful resources: light and water. With modern advances in genetics,

thousands of genes which code for hydrogen-metabolizing proteins in microorganisms have

now been identified, promising exciting new sources of future energy.

This thesis is concerned with both pattern formation by motile, uni-cellular microor-

ganisms and the intracellular processes that lead to hydrogen production in green algae.

1.2 Morphology and swimming behaviour of motile microor-

ganisms

In this thesis, we are concerned only with swimming, uni-cellular microorganisms. The

taxonomy of such organisms has been the source of much debate for hundreds of years (for

example, Stewart et al. 1975 [160]). Microorganisms fit into two broad generalizations:

prokaryotic cells, which lack a cell nucleus, such as cyanobacteria, and eukaryotic cells,

which have a nucleus, such as green algae. Distinctions between eukaryotic microorgan-

isms are loosely based on the presence or absence of chloroplasts (phytoplankton versus

zooplankton, for example) and broadly reflect plant versus animal lineages, respectively.

However, recent genetic developments have lead to the construction of phylogenetic trees

based on molecular genetic evidence which reflect the evolutionary history of microor-

ganisms (Falkowski et al. 2004 [30]). Combined with morphological studies, this has

allowed the grouping of species into more accurate taxonomic divisions. Such studies have

shown that the chlorophytes (including green algae, which are the predominant focus of

this thesis) diverged from the embryophytes (land plants) over 1 billion years ago and

subsequent subphyla have been traced (Merchant et al. 2007 [117]). However, there is

substantial conservation of biochemical pathways and mechanical structures between the
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Figure 1.1: A simple schematic diagram of the structure of a typical Chlamydomonas

reinhardtii cell. The cell is approximately 10 µm long, with two flagella of approximately

the same length.

Chlorophytes and other microorganisms. For this reason, many of the descriptions below

are independent of the precise taxonomic classifications.

Different species of motile microorganisms display an astonishing variety of shapes,

structures and swimming apparatus. Regardless of the cell morphology and swimming

method, all microorganisms considered in this work swim at low Reynolds number due

to the relative size of the cell compared to the fluid [102, 103, 142]. This is very differ-

ent to conditions for humans swimming in water, and Childress 1981 [21] likened low

Reynolds swimming to swimming through a vat of warm pitch. In such cases, inertia

is extremely small, and the reversible fluid flow prevents sustained directional movement

if a time-symmetric, ‘reciprocal’ swimming stroke is used (in which a cell changes its

swimming apparatus into a certain shape and then changes back to the original shape

by going through exactly the same sequence in reverse; Purcell 1977 [142]). Thus motile

microorganisms have developed swimming strokes that are non-time-symmetric and allow

swimming in the desired direction of travel.

One of the most studied microorganisms is the uni-cellular green alga species Euglena

gracilis. Cells are elongated and measure between 50 and 80 µm in length. A single
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flagellum attached at the anterior of the cell is rotated in a screw-like manner by passing

a helical wave down its length [98], resulting in a swimming speed of around 50− 100 µm

per second (Ascoli et al. 1978 [4]). In contrast, the genus Chlamydomonas, including the

species C. nivalis and C. reinhardtii, possesses cell bodies which are typically spheroidal,

and approximately 10 µm in length. A schematic diagram of such a cell is shown in Figure

1.1, indicating that many chloroplasts and the pyrenoid, which stores starch, are located

towards the posterior of the cell. An eye-spot for light detection is located close to the

surface of the cell near the cell equator (the precise location is discussed further in Section

1.3). Two flagella are attached to the anterior of the cell body and are approximately 10

µm long. The cis-flagellum is located closer to the eye-spot than the trans flagellum. Cells

propel themselves through the fluid by beating the two flagella in a non-time-reversible (or

non-reciprocal) breaststroke-like motion, which may be modelled as a simple power and a

recovery stroke (Jones et al. 1994 [74]). During the power stroke, the cell starts with both

flagella pointing in the direction of cell swimming (vertically upwards in the geometry

presented in Figure 1.1). The cell then pushes the flagella down and back towards to the

cell body, hence gaining ground. During the recovery stoke ground is lost while a bend

travels from the base to the tip of each flagellum, causing both flagella to be pulled in

towards the cell and re-positioned at the original location to start the power stroke again.

This approximate breaststroke has been observed in many studies, such as Hyams and

Boris 1978 [69] and Brokaw et al. 1982 [14], although in reality the two phases of the beat

actually overlap with each other (Rüffer and Nultsch 1985 [149]). Since more ground is

gained during the power stroke than is lost during the recovery stoke, the net movement is

in the desired direction of travel, and an individual cell swims at 55−67 µm per second on

average (measured in a series of experiments by Hill and Häder 1997 [61]). The frequency

of the beat is approximately 45 Hz [149].

Rüffer and Nultsch found that for C. reinhardtii cells the flagella beat outside of the

flagella plane and cells employ a slightly unequal beating pattern between the cis- and

the trans-flagella [149, 150]. The cis-flagellum moves closer to the axis of the cell body

than the trans flagellum, and the bending during the recovery stroke happens earlier. The

trans flagellum beats with a greater distance from the cell body, and generates a stronger

rotational component about the cell swimming direction by beating further out of the

flagella plane, leading to a helical swimming path [149,150]. The cell utilizes this rotation

since it allows the cell to measure light intensity periodically over a full rotation and then
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control photo-orientation accordingly (Nultsch and Häder 1988 [124], Crenshaw 1993 [25]),

discussed further in Section 1.4. The frequency of rotation is approximately 1.4-2 Hz.

Although the flagellar beat pattern is not symmetric, it is predominantly synchronous,

because each flagellum usually beats with approximately the same frequency. However,

synchronous beating is sometimes interrupted by single transient asynchronous beating

between the flagella (Rüffer and Nultsch 1987 [149, 150]), and it was recently found that

cells can stochastically switch between synchronous and asynchronous beating (Polin et

al. 2009 [134]).

Other species of microorganism have significantly different morphology and swimming

behaviours. The genus Tetrahymena consists of ciliated microorganisms with elongated

cell bodies with diameters of approximately 35 µm. The entire surface of the cell is covered

with small cilia that are used to propel the cell with a swimming speed of around 500 µm

per second [131]. On a much smaller scale, the bacterium Bacillus subtilis are rod-like

shaped cells, only 2 − 4 µm in length (a clear image of such a cell is shown in [62]). Each

cell is peritrichously flagellated (with flagella uniformly distributed over the cell body).

These flagella come together to form a helical bundle that is used to propel the cell forward

at speeds of up to 10 body lengths per second [62].

The microorganisms discussed above are examples taken from a diverse range of cell

species. However, despite the differences in cell morphology and swimming mechanisms,

many of the physical behavioural aspects of these cells, such as their orientation towards

external stimuli, are similar. Thus using a generic body morphology for simplification

purposes seems appropriate. In this thesis, we analyse in detail a cell morphology type

based on the genus Chlamydomonas shown in Figure 1.1, where we assume that cells are

self-propelled spheroids. This is used in many studies of cell motility and pattern formation

(for example, Pedley and Kessler 1990 [130] and Bees and Hill 1998 [9]). From here on,

we only discuss Chlamydomonas cells in detail, except where explicitly stated otherwise.

1.3 What determines the direction in which Chlamydomonas

cells swim?

It has been known for many years that the direction in which green algae swim is not solely

random (for example, Wagner 1911 [174], Buder 1917 [15] and, more recently, Kessler and

co-workers [81, 82, 84, 85], to name but a few). Chlamydomonas cells respond to stim-
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uli using simple ‘rules’ that bias the swimming direction in order to guide cells towards

more favorable locations. These ‘rules’ are termed taxes, where a taxis is defined as an

innate behavioural response by a freely motile organism towards (positive) or away from

(negative) a directional stimulus or gradient of stimulus intensity (or, simply “an orien-

tation behaviour related to a directional stimulus” [68]). The term ‘taxis’ includes both

the measurement of the environment and the physical mechanism employed in response

to the stimulus. Cells that exhibit no taxes swim in a random manner, with no preferred

direction, so can not swim toward preferred areas (such as those high in nutrients or light).

This is not advantageous to the cell, thus cells have evolved to use a combination of random

movement and biased swimming directions in order to ensure they have the best chance

of reaching the optimal location. Examples of taxes are phototaxis, movement towards or

away from light, gravitaxis, a bias in direction due to gravity, and chemotaxis, observed

mainly in bacteria, which is a directional response to gradients in chemical concentrations

(for example, Berg 1983 [13]).

� � � � � � � � � � � � � 	� � � 
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Figure 1.2: A schematic diagram to show the forces acting on a Chlamydomonas cell. v is

the cell velocity and g is the force due to gravity. Viscous torques arise due to strain and

vorticity in the fluid. The gravitational torque is caused by the off centre mass distribution

arising from uneven starch deposits throughout the cell.

Negative gravitaxis has been observed many times in suspensions of Chlamydomonas
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[8, 61, 81, 82]. Chlamydomonas cells have an anisotropic mass distribution because the

pyrenoid, a store for dense starch produced in the chloroplast, is located towards the pos-

terior of the cell (Figure 1.1). Thus the centre of mass is offset from the geometric centre

of the cell (i.e. they are bottom heavy). Hence, Chlamydomonas cells are negatively grav-

itactic, so they swim upwards on average (in the absence of other orientation strategies).

Kessler defined the term ‘gyrotaxis’ to describe a balance between viscous and gravita-

tional torques that arises due to the cells’ geometry and centre of mass distribution [87]

(see Figure 1.2). In the absence of fluid flow, gyrotactic cells swim vertically upwards on

average due to gravitaxis. However, if there is a fluid flow with a horizontal component

of vorticity then the viscous torque that arises will cause cells to be tipped away from the

vertical. Thus the preferred swimming direction of gyrotactic cells is towards regions of lo-

cally downwelling fluid and away from locally upwelling fluid (discussed further in Section

1.5.1. Kessler demonstrated this by setting up a Poiseuille flow of C. nivalis cells through

a U-tube container [81, 82]. In the section of the pipe in which the fluid flowed upwards,

the cells swam towards the edge of the container and formed incoherent structures. In the

section of the pipe in which the fluid flowed downwards, cells swam towards the centre

of the fluid and formed a focused beam, or ‘plume’ (as shown in Figure 1.6). This is an

example of gyrotactic focussing.

Both the sedimentation velocity of non-swimming cells and the rotational torque due to

sedimentation need to be considered. The sedimentation velocity of a sphere in a viscous

fluid can be calculated using the expression for Stokes drag on a sphere,

6πµrUs =
4

3
πr3(ρsphere − ρfluid)g, (1.1)

where µ is fluid viscosity, r is the radius of the sphere, Us is the sedimentation speed,

ρsphere is the density of the sphere, ρfluid is the density of the fluid, and g is the acceleration

due to gravity. We assume that a Chlamydomonas cell is a sphere with radius r = 5.2

µm (estimating r for a cell with major axis length of a = 8 − 10 µM and minor axis of

b = 3−5 µM using the relation for an equivalent sphere of radius r, r3 = a×b2) and density

ρsphere = 1.05 gm cm−3 falling through a fluid with viscosity µ = 10−2 gm cm−1 s−1 and

density ρfluid = 1.0 gm cm−3. We calculate the sedimentation velocity of a non-swimming

cell as approximately Us = 3 µm s−1, using equation 1.1. This is much smaller than the cell

swimming velocity, by an order of magnitude, thus we neglect this aspect of sedimentation

(following many of the theoretical developments described in Pedley and Kessler 1992 [131]

and Hill and Pedley [62]). In a series of publications by Roberts [145–148], the idea that
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bottom heaviness alone is not responsible for negative gravitaxis is discussed. Roberts

proposes that asymmetry of cell body and flagella causes rotational orientation during

sedimentation, even when the cell has a uniform mass distribution, because the large cell

body sediments faster than the flagella (due to the viscous drag of the flagella on the cell),

causing the cell to point upwards. The relative magnitudes of the shape orientation and

bottom heavy mechanisms are unclear, but both mechanisms result in orientation to the

vertical described by the relation

dθ

dt
= β sin θ, (1.2)

where θ is the instantaneous angle of inclination of the cell axis to the upward vertical

at time t, and the constant β is the maximum orientation rate which occurs when the

long axis of the cell is horizontal (Roberts 2006 [147]). Thus the two mechanisms give

similar orientational terms and it is largely irrelevant which mechanism or combination of

mechanisms negative gravitaxis is attributed to. In this thesis, gravitaxis is modelled as

purely due to the asymmetric mass distribution that causes the cell to be bottom heavy, in

line with theoretical developments described in reviews by Pedley and Kessler 1992 [131]

and Hill and Pedley 2005 [62], and any rotational torque due to sedimentation is neglected.

Most species of green, motile microorganism have been found to respond to light

(Nultsch and Häder 1988 [124]), which is not surprising since these organisms require light

for energy production via photosynthesis. Genera such as Chlamydomonas and Euglena

swim towards weak light (termed positive phototaxis) and away from strong light (negative

phototaxis), so that there is some light intensity in between at which cells can obtain the

optimal light intensity [35, 52, 83]. This is termed the critical light intensity. Phototaxis

is different to gravitaxis and gyrotaxis because, rather than being a mechanical effect, it

involves complex detection and response processes (for a review of Chlamydomonas pho-

totaxis, see Witman 1993 [178]). How a cell photo-orients during phototaxis is described

in detail in Section 1.4. Apart from phototaxis, other photoresponses by microorganisms

include photokinesis, where the speed of movement depends on light intensity (Casey et al.

2003 [17]), and photophobic responses, where sudden increases or decreases in light inten-

sity cause transient motor responses that can also change the direction of travel (Nultsch

and Häder 1988 [124] and Pazour et al. 1995 [127]). For example, a sudden increase of

light causes Chlamydomonas cells to swim backwards transiently (Hegemann and Bruck

1989 [57]). This thesis is predominantly concerned with phototaxis, although in Chapter

2 a model in which phototaxis occurs in a photokinesis-like manner is considered.
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Of course, if a cell exhibits multiple orientation taxes then these taxes can act in

opposition to each other under certain conditions. For example, under strong illumination

from above C. nivalis cells are both negatively gravitactic, causing the cells to swim

upwards, and negatively phototactic, causing the cells to swim downwards to escape the

light. Interestingly, Häder 1987 [52] found that negative phototaxis is sufficient to overcome

negative gravitaxis under strong illumination from above, and the cells swim steadily

downwards under these conditions.

The orientation of swimming Chlamydomonas cells is intrinsically random. This was

demonstrated by Hill and Häder 1997 [61], who tracked C. nivalis cells and then plotted

their swimming trajectories. For trajectories in the vertical plane, it is clear that the

cells swim upwards on average, but that there is significant noise resulting in a spread

of trajectories. This ‘noise’ was also investigated by Vladimirov et al. 2004 [173] using

sophisticated laser velocimetry techniques to track hundreds of cells.

Although translational and rotational Brownian motion caused by collisions with water

molecules are insignificant for Chlamydomonas cells when compared to other orientation

influences, due to the relatively large cell size [35, 131], there are many other possible

explanations for randomness in swimming direction. Firstly, if growth is not synchronized

cells will be different ages and at different stages of their lifecycle, hence size, shape and

behaviour will be intrinsically different between individuals. These effects are shown by the

wide range of individual swimming speeds in the cell tracking experiments of Vladimirov et

al. 2004 [173]. Secondly, cells may interact hydrodynamically with the side of the container

and, in concentrated suspensions, with each other. In addition, cells exhibit rotational

variations due to slight random changes in flagella beating from one beat to the next [35],

which may be due to noise in biochemical reactions within the cell [172]. Fluctuations in

light, for example due to waves on the surface of the suspensions, light scattering caused

by any debris, or even scattering by the cells themselves, may transiently alter the light

intensity at a given location, which can also introduce noise. The combination of all

these factors introduces a stochastic element to the cell swimming direction. Correlated

and biased random walks have been successfully used to describe the trajectories of such

microorganisms (Lovely and Dahlquist 1975 [106] for E. coli and Hill and Häder [61] and

Vladimirov et al. [173] for C. nivalis).



Introduction 10

1.4 How do Chlamydomonas cells photo-orientate?

In order to perform phototaxis, Chlamydomonas cells must be able to respond directionally

to light. There are three basic stages to any such photo-response: detection of light, pro-

cessing of the stimulus via signal transduction pathways, and a mechanical re-orientation

response. These three steps are repeated over and over again so that the cell can move

towards a preferred location at which the light intensity in optimal (Foster and Smyth

1980 [35]).

In order to ‘decide’ which direction to move in, Chlamydomonas cells detect a signal

in illumination using an eye-spot and a photoreceptor. The precise location of the eye-

spot (and photoreceptor) is controversial, probably because it differs between species, as

discussed by Rüffer and Nultsch 1985 [149]. For C. reinhardtii the eye-spot is located near

the cell equator and is displaced out of the flagella plane by an angle of 45 ◦ (Gruber and

Rosario 1974 [51], Rüffer and Nultsch 1985 [149]). The eye-spot location may be different

in C. nivalis, as in Hill and Vincent 1993 [64] the eye-spot is modelled as located at 45 ◦

to the cell’s major axis (rather than 90 ◦). However, explicit experimental evidence of

this location is lacking. In both cases, the photoreceptor is located between the eye-spot

and the cell surface and directly detects the illumination [35,124]. The eye-spot organelle

consists of stacked layers of pigmented granules within the chloroplast (Foster and Smyth

1980 [35]) and, although the eye-spot does not directly detect the light, it is crucial in

phototactic orientation; cells without eye-spots are less able to photo-orientate, as shown

by Morel-Laurens and Feinleib 1983 [120]. The eye-spot may work as an interference

reflector (Foster and Smyth 1980 [35]). Since cells rotate as they swim, they receive a

different light signal depending on the angle, or stage, of rotation [35]. The light signal

is strongest when the eye-spot is normal to the light source and weakest when the light

strikes the cell from directly behind the eye-spot, since it is shaded by the cell body. Thus

rotation during swimming is exploited by the cell since it enables it to scan the environment

and obtain a periodic signal of light intensity over one rotation, which is then processed

within the cell and used for propulsion in the desired direction [25,124].

How do cells re-orient with respect to the light once the signal has been received? In a

series of papers, Rüffer and Nultsch explored aspects of flagella beating under illumination

in both free swimming cells and cells held on micropipettes to try and explain what

mechanisms a cell uses to photo-orientate [149–155]. They found that changes in flagella

beat frequencies during illumination can not be responsible for phototactic reorientation,
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as previously thought, because frequencies changed in both flagella concurrently (Rüffer

and Nultsch 1990 [151]). However, changes in beat pattern between the flagella were found

to coincide with cell steering either towards or away from the light (Rüffer and Nultsch

1991 [152]). Thus it was proposed that an asymmetric beat pattern during illumination,

in which inverse (or opposite) amplitude shifts occur between the cis- and trans-flagellum,

leads to cell reorientation and phototaxis. This is illustrated schematically in Figure 1.3.

Convincing support for this argument was found by studying a C. reinhardtii mutant that

does not exhibit phototaxis (Rüffer and Nultsch 1997 [154]). In this mutant, both flagella

always responded to light in the same way and no phototactic steering was found. More

complex examination of flagella behaviour have recently been performed, with aspects such

as the velocity of the response, helical swimming and the relative phase of the flagella all

thought to contribute in some as yet unclear way to phototaxis [76, 77].

� � � � �
Figure 1.3: A simple sketch to show how a cell may vary the flagella beat pattern during

positive phototaxis. The black region represents the eye-spot and photoreceptor. Solid

arrows indicate flagella beating, dotted arrows indicate light and dashed arrows show the

sequence of events. A signal of light intensity collected by the eye-spot is processed, which

causes the flagella beat pattern to change in a non-symmetric way for each flagellum. This

allows the cell body to rotate so that it is directed towards the light. The flagellar beat

patterns are then re-synchronized again and the cell swims towards the light.

The method by which the change in flagella beat pattern is implemented is still not

fully elucidated. Light striking the photoreceptor leads to signal transduction involving

transmembrane Ca2+ fluxes that cause temporary changes in the beating of the two flagella

(good reviews can be found in Sineshcekov 1991 [158] and Witman 1993 [178]). Kamiya

and Witman 1984 [78] were among the first to suggest that the cis- and trans-flagellum

are differently controlled by these calcium fluxes, leading to the asymmetric flagella beat
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responsible for phototactic turning. In this chiefly mathematical thesis, we are more

interested in behaviour resulting from changes in illumination, and not in the details of how

these changes occur through biological transduction and, as such, the simple mechanism

described in Rüffer and Nultsch 1991 [152] is sufficient to explain phototaxis on a basic

mechanical level.

1.5 Bioconvection: a brief summary of observations and

theory

Platt coined the term ‘bioconvection’ in 1961 to describe the phenomenon of pattern

formation in shallow suspensions of motile microorganisms that are denser than the fluid

in which they swim [132]. Patterns are formed by swimming cells with some orientational

bias and generally consist of quasi-regular square or hexagonal arrays of falling sheets of

cells, or semi-regular arrays of concentrated falling plumes that appear as dots when the

fluid surface is viewed from above. Figure 1.4 shows a typical bioconvection pattern in a

(a) (b)

Figure 1.4: Examples of collective motions caused by cell swimming in cultures of C.

nivalis. Panel (a) shows a sample bioconvection pattern in a Petri dish, taken from above.

The depth is approximately 3 mm and the concentration 4 × 106 cells/mL. Dark regions

indicate high cell concentration. Panel (b) shows many interesting vertical plumes formed

in a relatively dilute suspension in a conical flask, where blip instabilities are present and

plumes form both from the fluid surface and deep within the layer.
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Petri dish viewed from above, and a flask in which many plumes can be seen when viewed

from the side, both for the species C. nivalis.

Species found to exhibit bioconvection include E. gracilis and viridis [144,174], Tetrahy-

mena [22, 105, 132, 133], C. nivalis [8, 81, 84, 174], Heterosigma akashiwo [6], and various

species of bacteria [26, 70, 71, 86, 115, 116], to name but a few. For pattern formation by

green algae, the following common features are usually found. Firstly, the cells are a differ-

ent density to the fluid in which they swim. Secondly, cells need a mechanism to aggregate

somewhere within the suspension. Finally, the patterns die away if cell swimming stops.

The size and shape of the patterns formed in the dark by Chlamydomonas cells have been

found to principally depend on the cell concentration and the depth of the suspension

layer [8, 131].

Early studies of bioconvection were focused on observations of patterns formed by

various species of microorganisms in laboratory conditions and the effects on pattern

formation of illumination, depth and concentration, temperature and pH were explored

[22,105,144,174]. In a series of studies in the 1980s, Kessler explored aspects of gyrotactic

focussing and plume formation in C. nivalis, such as the U-tube experiment described in

Section 1.3 [81–84]. Blip instabilities were also investigated, where localized regions of high

concentration form on downwelling plumes, thus falling faster than the plumes themselves.

These can be seen on some of the plumes in Figure 1.4(b).

Self-shading, where cells close to the light source absorb and scatter light, so that those

further away from the light receive less light than those closer, creates a non-uniform distri-

bution of light intensity throughout a suspension layer. By only illuminating a suspension

of Chloromonas rosae from one side and not the other, Kessler showed that illumination

significantly affects pattern formation, since shading within the layer leads to interesting

patterns (which are very different at the side closest to the light compared to the far side)

as cells seek shelter behind each other [83]. Kessler [85] also suggested that illumination

through a layer of microorganisms could be modelled by the Beer-Lambert law, which

relates the absorption of light to the properties of the layer through which the light is

travelling (see Section 2.2.2).

Bees and Hill 1997 [8] performed one of the first quantitative studies of aspects of

bioconvective patterns in suspensions of C. nivalis. The wavelength of the initial pattern

to form before any non-linear affects arose and the long term wavelength, measured ap-

proximately 5 minutes after mixing, were extracted using computational image analysis
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techniques for a range of concentrations and depths. The initial pattern wavelength was

found to be predominantly determined by suspension depth and not by cell concentration.

Czirók et al. 2000 [26] performed a similar study, this time using the bacteria Bacilus

subtilis, and found the opposite results for the significance of depth and concentration.

The techniques presented in [8] and [26] are used to investigate initial pattern wavelength

as a function of concentration and light intensity in Chapter 4, and a detailed discussion of

these quantitative studies can be found in Section 4.1. Other quantitative studies include

Taylor et al [164], who derive novel statistical measures for the regularity of patterns and

use bioconvection as an example, and Yamamoto et al. 1992 [180], who find the critical

depth and concentration needed for pattern formation in suspensions of C. reinhardtii.

1.5.1 Instability mechanisms in suspensions of Chlamydomonas cells

Both gravitaxis and gyrotaxis can result in instabilities that lead to pattern formation

in a suspension of microorganisms that are denser than the fluid in which they swim. A

schematic description for a gravitactic instability is as follows (depicted in Figure 1.5).

Gravitaxis causes cells to swim upwards on average, so that in the presence of an upper

boundary cells will accumulate at the upper surface and form a sublayer that is denser

than the fluid below (C. nivalis cells are approximately 5% denser than the medium).

This creates a Rayleigh-Taylor overturning type of instability, where the cells start to drip

down due to the density difference, and the fluid around these cells pulls more cells into

the drip as it descends (Figure 1.5). These drip-like structures happen all along the fluid

sublayer, forming long vertical plumes as they descend (shown clearly in Figure 1.4(b)).

Viewed from above, the plumes form bioconvection patterns (shown in Figure 1.4(a)).

Gyrotaxis can cause an instability to occur even in the absence of a fluid boundary, as

depicted in Figure 1.6. Gyrotactic cells swim towards regions of locally downwelling fluid

Kessler [81] (created by small perturbations, or by the gravitactic instability in Figure

1.5). The added mass of these cells amplifies the downwelling and makes the fluid sink

faster, again creating plumes. This is an example of gyrotactic focusing.

Instabilities arising from gravitaxis and gyrotaxis can also occur when the suspension

is illuminated from above, in which case phototaxis has an effect on the form of the

instabilities leading to patterns formation [81, 83, 174]. If the light intensity at the source

is greater than the critical light intensity then cells near the source will swim downwards

and away from the light (negative phototaxis), while those further away are shaded by
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Figure 1.5: A schematic diagram of an overturning Rayleigh-Taylor instability. Upwardly

swimming cells that are denser than the fluid collect in a concentrated sublayer at the

boundary that has a mean density which is greater than that of the fluid below. This may

be unstable.
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Figure 1.6: A schematic diagram of a gyrotactic instability in the absence of an upper

boundary. Cells swim towards a region of downwelling fluid, the added mass amplifies the

downwelling and the fluid sinks faster, forming a plume of concentrated cells (shown by

the dark region in the centre of the diagram).
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cells above and so swim upwards (positive phototaxis). This results in a concentrated,

dense sublayer of cells located at some point within the fluid layer, not necessarily at the

upper boundary, and only the region below the sublayer is gravitationally unstable. A

Rayleigh-Taylor instability caused by the density difference between the cells and the fluid

can still occur here, but the size of the unstable region is reduced if the sublayer forms

below the upper boundary. This can result in penetrative bioconvection, where flows from

the unstable region penetrate into the stable region and result in motions that utilize

the whole fluid layer. This is similar to other types of penetrative convection problems,

such as the thermal convection problem described by Veronis in 1963 [170] for a layer of

water, the bottom of which is maintained at 0◦C and the top at a temperature greater

than 4◦C. Since water reaches it maximum density at 4◦C, a dense sublayer forms away

from the upper boundary, resulting in a gravitationally stable layer overlying an unstable

layer. A thorough review of mathematical aspects of penetrative convection can be found

in Straughan 1993 [161].

Why microorganisms have evolved to form these intricate patterns is still not clear.

Current theories include that of Tomson and Demets 1989 [166], who postulate that these

self-concentrating mechanisms help cells, which are present in very small cell volume frac-

tions in the wild, to meet and mate sexually. Also, the circulations caused by the instabil-

ities stir the medium, resulting in nutrient mixing, and cause variations in light intensity

(due to shading) for cells at different locations within the fluid. Kessler 1989 [85] postulates

that it could be that the effects of this stirring “improves the cells’ chances of survival”.

Of course, in reality many species, such as Chlamydomonas, are gravitactic, gyrotactic

and phototactic, and patterns are formed due to combinations of these different instability

mechanisms. It is this bioconvection by photo-gyrotactic cells that Chapters 2, 3 and 4 of

this thesis explore.

1.5.2 Early models of bioconvection

Microorganism bioconvection has many similarities with thermal convection (except that

in bioconvection energy is provided by the cells themselves) and, as such, many of the

techniques employed in thermal problems (such as those presented in Chandresekar 1961

[19]) can be employed.

Plesset and Winet 1974 [133] were among the first to suggest modelling bioconvection

as a Rayleigh-Taylor instability. They used a two-layer model of an unstable density dis-
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tribution in which a small, uniform dense layer overlies a deeper uniform layer of lower

density, assumed to be caused by cells swimming upwards. However, there was no diffusion

between the layers and cell swimming was only modelled implicitly, not explicitly. The

most unstable wavelength (the one that grows most rapidly from an equilibrium solution)

was computed as a function of depth and concentration. Some good agreement was found

between theoretical values and visually estimated dominant wavelengths from observa-

tions of pattern formation in finite depth suspensions of upwardly swimming Tetrahymena

pyriformis.

Moving on from phenomenological models, the first self-consistent hydrodynamic the-

ory for the onset of bioconvection, by Childress et al. 1975 [22] and Levandowsky et al.

1975 [99], incorporated purely upward swimming cells in a suspension layer between z = 0

and z = −H for both stress-free and rigid upper boundaries. They assumed that the

sides of the container are sufficiently far apart that the layer effectively has an infinite

width. They replaced the discrete microorganism distribution by a continuous density

distribution and modelled cells as denser than the fluid in which they swim. The fluid

was assumed to incompressible and the suspension was modelled as dilute, so cell to cell

interactions were neglected. The velocity of a cell relative to the media was assumed to

consist of both a random motion and a steady upward drift [99]. It was assumed that the

length scale of the bulk motions are large compared to typical cell spacing and cell size, so

that the effects of non-Newtonian stresses and flow around individual cells are negligible.

The Boussinesq approximation was used (as in Chandresekar 1961 [19]), so that the only

way in which the cells affect the fluid flow is through the density difference between the

cells and the fluid. Thus the Navier-Stokes equation with an incompressibility condition

is

ρ
Du

Dt
= −∇p − gρ(1 + αec)k + µ∇2u, (1.3)

and ∇ · u = 0, (1.4)

respectively, where u(x, t) is fluid velocity, p(x, t) is pressure, ρ is the density of the fluid,

µ is fluid viscosity, −gk is acceleration due to gravity and ραec is the extra density due

to microorganisms of concentration c(x, t) at a point. D/Dt is the convective derivative.

Since the total number of cells is conserved, they used a cell conservation equation of the

form

Dc

Dt
+ ∇ · J = 0, (1.5)
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to describe the evolution of cell concentration, c, where J is the flux of organisms through

the fluid and has two components: flux due to random motions (diffusion) and flux due

to negatively gravitactic drift. Hence,

J = cU(c, z)k − D · ∇c, (1.6)

where U(c, z) is a function for cell swimming speed and D is the orthotropic diffusion

tensor, given in Childress et al. [22] by

D = κ1(c, z)(ii + jj) + κ(c, z)kk, (1.7)

where κ1(c, z) and κ(c, z) are functions of c and z. For the majority of Childress et al. [22],

κ1(c, z) and κ(c, z) were taken as constant horizontal and vertical diffusivities Dh and Dv,

respectively. Note equations 1.3 and 1.6 are very similar to those of Chandresekar [19]

for the thermal convection problem. In Childress et al., an equilibrium solution for the

case of no flow was calculated, and linear analysis of this model predicted the critical

wavenumber (the smallest wavenumber on the neutral curve, on which the growth rate

is zero) was zero, corresponding to an infinite wavelength. Good agreement between

model predictions and experimental results using Tetrahymena cells for the critical depth

and concentration required for pattern formation were found in Childress et al. [22] and

Levandowsky et al. [99].

The next major development in bioconvection modelling was to include gyrotaxis in the

upswimming only models. Before this could be done, a rational way of modelling gyrotaxis

was required. The framework for this was presented by Pedley and Kessler 1987 [129], who

considered the orientation of spheroidal microorganisms in a flow field. Following their

analysis, the total torque, LT , is given by

LT = Lg + Lv, (1.8)

where Lv is the viscous torque and Lg is the gravitational torque due to bottom heaviness.

Using summation convention with repeated indices, the torques for negatively gravitactic

and gyrotactic bottom heavy Chlamydomonas cells are given by

Lgi = hmgǫijlpjkl, (1.9)

Lvi = −µv

[

Pij(vj − uj) + Yij

(

ωc
j −

1

2
Ωj

)

+ RijlEjl

]

, (1.10)

where h is the centre of mass offset between the cell’s centre of mass and its geometrical

centre along the swimming direction p, m is the mass of the cell, g is the magnitude of
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the acceleration due to gravity, k is the unit vector in the vertical direction and ǫijl is the

Levi-Civita tensor. The expression for Lv comes from Rallison 1978 [143] for the viscous

torque on a solitary body with zero Reynolds number, where v is the cell volume, µ is the

fluid viscosity, v is the cell velocity, ωc the angular velocity of the cell, Ω the vorticity

and E the rate-of-strain tensor. Tensors P, Y and R depend only on the orientation and

surface geometry of the cell. For a rigid prolate spheroid (Batchelor 1970 [5]),

Pij = 0, (1.11)

Yij = α‖pipj + α⊥ (qiqj + rirj) , (1.12)

Rijk = −α0Yil (rlpjqk − qlpkrj) , (1.13)

for the orthonormal right-handed set of coordinates p,q,r, where α‖ is the dimensionless

resistance coefficient for rotation about p , α⊥ is the dimensionless resistance coefficient

for rotation about an axis perpendicular to p, and the eccentricity for a cell with length a

and breadth b given by

α0 =
a2 − b2

a2 + b2
. (1.14)

Since the rate-of-strain tensor is symmetric, the viscous torque in equation 1.10 can be

written as

Lvi = −µv

[

Yij

(

ωc
j −

1

2
Ωj

)

− α0YilǫklmpmpjEjk

]

. (1.15)

Substituting equations 1.15 and 1.9 into equation 1.8 and setting LT = 0 gives

hmgǫijlpjkl − µv

[

(

α‖pipj + α⊥(qiqj + rirj)
)

(

ωc
j −

1

2
Ωj − α0ǫkjmpmplElk

)]

= 0.(1.16)

On multiplying the expression by ǫistps and using the identity ǫijkǫstk = δisδjt − δitδjs,

where δij is the Kronecker delta, equation 1.16 can be written as

ṗ =
1

2B
[k − (k · p)p] +

1

2
Ω ∧ p + α0[E · p − pp · E · p], (1.17)

since ṗ = ωc ∧ p, and

B =
µα⊥

2hρg
(1.18)

is the gyrotaxis number with units of seconds, as in Pedley and Kessler 1987 [129]. Equa-

tion 1.17 is essentially a combination of expressions from Leal and Hinch 1972 [96] and

Hinch and Leal 1972 [66].



Introduction 20

The first models for gyrotactic bioconvection were explored by Pedley et al. 1988 [128]

for an infinite suspension and by Hill et al. 1989 [63] for a suspension of finite depth.

Both models were based on the upswimming only models [22, 99], but the cell swimming

direction, p, was calculated as a function of vorticity and the rate-of-strain tensor using the

gyrotactic theory of Pedley and Kessler 1987 [129] (using similar analysis to that shown

above). Thus the Navier-Stokes equation with an incompressibility condition takes the

same form as in the upswimming model (equations 1.3 and 1.4), and the cell conservation

equation takes the form of equation 1.5, where the cell flux J is now defined as

J = nVsp − D · ∇n, (1.19)

where cell concentration is now written as n(x, t) and Vs is the constant swimming speed.

Random motions were modelled by cell diffusion with a constant isotropic tensor D, such

that D11 = D22 = D33 = Dh = Dv (denoted simply D in [63]) in equation 1.7.

Both Pedley et al. [128] and Hill et al. [63] found a finite, non-zero critical wavenumber

for gyrotactic cells, compared to a zero critical wavenumber for the upswimming only

models [22, 99]. Hill et al. [63] also found the existence of oscillatory modes of instability.

These were attributed to the interaction of gyrotaxis and shear at the rigid upper boundary

causing the cells’ horizontal components of velocity to be in the opposite direction to that

of the convective flow.

1.5.3 A new continuum model for stochastic gyrotactic bioconvection,

Pedley and Kessler 1990 [130]

In what is often referred to as a ‘new’ continuum model, Pedley and Kessler 1990 [130]

proposed that using a strongly random isotropic diffusion tensor that is independent of gy-

rotaxis is inconsistent with modelling swimming velocity as deterministic and not random.

In other words, if the swimming direction of the cells is deterministic then it is inconsis-

tent to assume that the direction of diffusion of the cells is stochastic and not affected by

swimming velocity. Thus Pedley and Kessler [130] modelled the cell swimming direction

in a probabilistic fashion, using techniques similar to those of colloidal particles subject

to Brownian motion (for example, Hinch and Leal 1972 [66, 96]). They considered a cell

swimming direction probability density function, f(p), defined on a unit sphere, where p
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is the cell swimming direction unit vector, given by

p =











sin θ cos φ

sin θ sinφ

cos θ











, (1.20)

and θ, φ are spherical polar angles. θ is the colatitude measured relative to k and φ is

the cell orientation angle in the horizontal plane. f(p(θ, φ)) satisfies the Fokker-Planck

equation

∂f

∂t
+ ∇ · (ṗf) = Dr∇2f, (1.21)

where Dr is rotational diffusivity, which models randomness in cell orientation due to the

intrinsically imperfect cell motion (see Section 1.3). The first term in equation 1.21 can

be disregarded if it is assumed that D−1
r is much less than the timescale for variation of

the flow. This is also used in Bees and Hill 1998 [9]. The rate of change of p, ṗ, calculated

from the torque balance equation in 1.17, can be substituted in to equation 1.21, which

can then be solved to calculate f(p). In Pedley and Kessler 1990 [130], the mean cell

swimming speed and diffusivity tensor are defined using

〈p〉 =

∫

S
pf(p)dS, (1.22)

D(t) =

∫ ∞

0
〈Vr(t)Vr(t − t′)〉dt′, (1.23)

where S is the surface of the unit sphere and Vr is the velocity of a cell relative to its mean

value. Equation 1.23 is difficult to calculate since it requires a knowledge of all previous

cell velocities. For simplicity, Pedley and Kessler [130] assumed the average cell swimming

speed, defined as Vs, to be constant, and removed the integral over time by assuming that

it takes a cell τ seconds to settled to a preferred direction. Thus equation 1.23 can be

evaluated to give

D ≈ V 2
s τ〈(p − 〈p〉) (p − 〈p〉)〉, (1.24)

where τ is termed the direction correlation time.

The main model equations for the stochastic gyrotaxis model proposed by Pedley and

Kessler [130] for an infinite layer are, again, based on the continuum upswimming model

of Childress et al. [22, 99]. The main modelling assumptions are the same in Pedley and

Kessler [130] as in Childress et al. [22], discussed in Section 1.5.2, except where explicitly
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stated otherwise. Thus the model consists of the Navier-Stokes equations with an extra

term due to the negative buoyancy of the cells. Hence,

∇ · u = 0, (1.25)

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇pe + nv∆ρg + ∇ · Σ, (1.26)

where u(x, t) is fluid velocity, Σ(x, t) the fluid stress tensor, pe(x, t) is the pressure excess

above hydrostatic (at density ρ), n(x, t) is local cell concentration, v is the volume of an

alga cell, ρ is the density of the fluid and ∆ρ the density difference between the cell and

the fluid. As in Childress et al. [22] and Pedley et al. [128], cell concentration is modelled

using a conservation equation of the form

∂n

∂t
= −∇ · [nu + nVs〈p〉 − D · ∇n]. (1.27)

The first term on the right hand side is due to advection of the cells by the fluid, the

second is due to the swimming of the cells, and 〈p(x, t)〉 the mean cell swimming direction

calculated from equation 1.22, and the third term is due to diffusion, where D(x, t) is the

cell swimming diffusion tensor calculated from equation 1.24.

Unlike Childress et al. 1975 [22] and Pedley et al. [128] 1988, who ignored all effects

that cells may have on the bulk fluid motion (apart from their negative buoyancy) by

assuming that Σ = 2µE, Pedley and Kessler [130] considered a variety of ways in which

the cells can affect the fluid. They wrote the fluid stress tensor as

Σ = 2µE + Σ(p) + Σ(d) + Σ(s), (1.28)

where Σ(p) are Batchelor stresses that arise because rigid cells do not allow the fluid to

deform in the same way as it would in the absence of cells [5], Σ(d) are stresses associated

with the effective particle rotation caused by rotational diffusion, and Σ(s) are stresslets

associated with the swimming motions of individual cells. Aside from the basic Newtonian

stress, they found that only Σ(s) makes a significant contribution to Σ, but even this

contribution is small compared to the Newtonian stress.

The expressions for 〈p〉 and D in equations 1.22 and 1.24, along with the expression

for fluid stress in equation 1.28, can then be substituted into equations 1.25, 1.26 and 1.27

to complete the continuum model of Pedley and Kessler 1990 [130].

Using this model to assess linear stability, Pedley and Kessler 1990 [130] found similar

results to Pedley et al. 1988 [128] for the old gyrotaxis continuum model analysed in an
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infinite layer. Bees and Hill 1998 [9] used the ‘new’ model of Pedley and Kessler [130]

to find an equilibrium solution and conduct a linear stability analysis for a layer of finite

depth with a rigid boundary. They found, as for the ‘old’ gyrotaxis models in Pedley

et al. 1988 [128] and Hill et al. 1989 [63], that the introduction of gyrotaxis creates a

non-zero critical wavenumber associated with a finite wavelength and, furthermore, found

that increasing gyrotaxis destabilizes the system for sufficiently large wavenumbers. They

predicted wavelengths ≈ 1 mm at the onset of bioconvection (compared to experimentally

measured estimates of 4-7 mm Bees and Hill 1997 [8]).

Bees et al. 1998 [11] obtained analytic solutions of the Fokker-Planck equation for

the orientation of dipolar particles in a steady, shear flow with a uniform external field

by expanding the Fokker-Planck in terms of spherical harmonics. Computer algebra was

used to solve a truncated set of equations. In Bees and Hill 1999 [10], a weakly non-

linear analysis of the model of Pedley and Kessler [130] was performed for a infinitely

deep layer, from which it was found that the bifurcation to the gyrotactic instability is

supercritical, unlike the gravitactic instability which is subcritical (Childress and Spiegel

1978 [23]). This gives some justification to using linear stability theory to predict initial

bioconvection pattern wavelengths in suspensions of gyrotactic cells.

1.5.4 Modelling phototactic bioconvection

The first model for phototactic bioconvection was presented by Vincent and Hill 1996 [172]

for a suspension of microorganisms in a shallow layer of infinite horizontal extent illumi-

nated from above. Both upswimming (negative gravitaxis) and gyrotaxis were neglected.

They followed the generic model of Childress et al. [22], using a Navier-Stokes equation and

a cell conservation equation. The model equations are essentially the same as equations

1.25, 1.26 and 1.27 for the Pedley and Kessler model [130], with the following exceptions.

Unlike previous models, Vincent and Hill [172] modelled cell swimming velocity, Vs〈p〉 in

equation 1.27, as dependent only on light reaching the photoreceptor, so that

Vs〈p〉 = VsT (I)k, (1.29)

where the taxis function T (I) depends on the light intensity I(x, t) and is written

T (I)







≥ 0 if I(x, t) ≤ Ic

< 0 if I(x, t) > Ic

, (1.30)
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where Ic is the critical, or optimal, light intensity, above which cells swim away from

the light. Diffusion was modelled as a constant orthotropic tensor as in equation 1.7,

where D11 = D22 = Dh and D33 = Dv, and the Fokker-Planck equation from Pedley and

Kessler [130] was not used in this case. They assumed that the only effect the cells have

on the suspension is due to their negative buoyancy, and other contributions to the bulk

stress are neglected, so that Σ = 2µE in equation 1.26 (as in Childress et al. 1975 [22]

and Pedley et al. [128] 1988).

Vincent and Hill [172] modelled light intensity using a self-shading model with light

from above. They used the Beer-Lambert law for weak scattering, as suggested by Kessler

[85], where light intensity at position x is given by

I(x) = Ise
−α

R
r

0 n(r′)dr′ , (1.31)

where Is is light intensity at the source, α is the cellular extinction coefficient and r is

the vector from the cell to the light source. Vincent and Hill [172] found that if I = Ic

at depth z = −C, say, then cells above z = −C swim down and cells below swim up, so

that the concentrated sublayer occurs somewhere within the fluid layer, creating a stable

region overlying an unstable region. Using a linear stability analysis, they found that this

leads to penetrative bioconvection, where fluid motions utilize the entire fluid layer. The

critical wavenumber was found to be non-zero in some regions of parameter space and

oscillatory modes of instability were also found.

Ghorai and Hill 2005 [46] used the phototaxis model proposed by Vincent and Hill [172]

in a two-dimensional layer confined between a rigid bottom and a stress-free top. They

numerically investigated convection cycles over a range of parameter values, having set the

Rayleigh number to be constant. Transitions from steady state to periodic oscillations, and

back, were found and the mechanism for oscillations was discussed. As yet, no consistent

model to combine phototaxis with gravitaxis and gyrotaxis has been published. (Vincent

1995 [171] presents a combined photo-gyrotactic model, but cell swimming direction is

modelled deterministically and the effects of phototaxis and gyrotaxis on cell orientation

are assumed additive. Also, errors in the work have subsequently been found.) This is

addressed in Chapters 2 and 3 of this thesis.
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1.5.5 Current challenges in bioconvection research

Many recent notable developments that could further improve the feasibility of bioconvec-

tion models have been made. Bees and Hill 2002 [60] calculated the first rational expression

for the diffusion coefficients of C. nivalis, by using generalized Taylor dispersion theory

and considering cells in a vertical shear flow. They found that as vorticity tends to in-

finity, the effective diffusivity in the shear plane tends to zero due to the rapid tumbling

of the cells, in contradiction to previous expressions for D in Bees et al. [11] and Pedley

and Kessler [130]. This rational theory could be used to model diffusion in bioconvection

problems. Manela and Frankel 2003 [108] extended aspects of this theory to axisymmetric

microorganisms (including local rate-of-strain as well as vorticity).

In a series of numerical papers, Ghorai and Hill study gyrotactic bioconvection using

a vorticity-streamfunction formulation of the basic model of Pedley et al. 1988 [128]

in 2D and 3D [42–45, 47]. In 2000, Ghorai and Hill [44] found the first computational

examples of the bottom-standing plumes that are often observed in bioconvection and

suggested that they are always transient, which may explain why analytic solutions for

such structures have not been found. Other current challenges in theoretical studies of

bioconvection include studying thermo-bioconvection and bioconvection in a porous media

[2,94,95], analyzing cell swimming near boundaries [168] and pattern formation in different

geometries [1, 123,163].

1.6 The use of microorganisms in the energy industry

It has been know for many decades that various species of microorganism have the ability

to produce hydrogen gas (for example, Gaffron 1942 [37]). Research in this area has

accelerated in recent years due to the possibility of using microorganisms to produce

hydrogen for the renewable energy industry. There are two main pathways to hydrogen

production in microorganisms: photobiological processes in the light and fermentative

processes in the dark.

Photobiological hydrogen production describes a wide range of biological processes

that all require three things: light as the energy source, a substrate to donate electrons

to the hydrogen production complex, and a catalyst to combine protons and electrons

to produce H2 [40]. In green algae and some cyanobacteria, light energy is used to split

water and release electrons and protons during oxygenic photosynthesis. This process
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is coupled via the photosynthetic chain to either a nitrogenase or hydrogenase enzyme

that can combine protons and electrons to produce hydrogen gas if specific conditions are

met (a thorough review of these processes can be found in Ghirardi et al. 2009 [40] and

Hallenbeck and Benemann 2002 [54]). A major difficulty with oxygenic photosynthetic

production of hydrogen gas is that all green algal nitrogenase and hydrogenase enzymes

need the photosynthetic chain in operation to pass electrons to the enzyme, but these

nitrogenase and hydrogenase enzymes are highly sensitive to oxygen co-produced from

the photosynthetic pathway and will only function under anaerobic conditions (Fay and

Cox 1967 [31] and Ghirardi et al. 1997 [39]). For many years, this dichotomy prevented

substantial hydrogen production via this method. Another process for photobiological

hydrogen generation is non-oxygenic photosynthesis coupled to nitrogenase-catalyzed H2

production, found in purple photosynthetic bacteria (for example, Lee et al. 2002 [97]).

In this case, photosynthesis uses organic acids instead of water as electron donors for

hydrogen production via the nitrogenase (shown by Hillmer and Gest 1977 [65] and Lee

2002 et al. [97]). This has the advantage that oxygen is not produced and so the sensitivity

of the nitrogenase to oxygen production is not an issue [40].

Many anaerobic microorganisms, such as the genus Bacillus, can produce hydrogen

through dark fermentation, where anaerobic bacteria grow on carbohydrate-rich substrates

and produce H2 and CO2 as fermentation end products (a good review can be found

in Hawkes et al. 2002 [56]). This process holds many advantages over photobiological

processes, as it requires a simple bio-reactor design for which illumination is not necessary,

the required microbes are readily available in sewage, soils and other waste products,

and the substrates required for fermentation can come from waste water (Ghirardi et al.

2009 [40]). Additionally, rates of hydrogen production have found to be higher than those

during photobiological production (Datar et al. 2007 [27]).

Despite many recent advancements in genetics and technology, neither photobiological

or fermentative processes alone are able to produce sufficiently high yields of hydrogen gas

from microorganisms for cost-effective industrial scale-up (Ghirardi et al 2009 [40], Prince

and Kheshgi 2005 [141]). This is due to a relatively low production rate of H2 compared to

the theoretical maximum [111], inefficient use of light energy [135], high cost of substrates

and bio-reactors [141], and the fact that issues such as the sensitivity of the hydrogenase

to oxygen have not been overcome [33]. Integrated systems, in which two or more of the

biological processes described above are used together in bio-reactors for H2 production,
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Figure 1.7: A simple experimental set-up to produce and collect hydrogen gas. A sulphur-

deprived culture of C. reinhardtii is incubated in a sealed container under illumination and

is placed on a mixing device. Hydrogen gas is collected using a non-permeable tube that

leaves the bio-reactor and enters a measuring cylinder filled with water. When hydrogen

is produced water is displaced from the cylinder and gas production is quantified.

are currently in the processes of development and testing (see Ghirardi et al. 2009 for a

review [40]).

In this thesis, we are concerned with photobiological hydrogen production from the

green algae species Chlamydomonas reinhardtii via the coupled oxygenic photosynthesis

and the oxygen-sensitive iron-hydrogenase pathway, first discovered by Gaffron and Rubin

1942 [37]. In 2000 Melis and co-workers [114] found that sulphur depriving a culture of

cells reversibly inactivates only the oxygen-producing component of the photosynthetic

chain (photosystem II), so that the remaining photosynthetic activity continues (for a full

description of the biochemical pathways and biological processes, see Section 5.1.1). This

bypasses the sensitivity of the hydrogenase to oxygen and temporally separates oxygen and

hydrogen production. Thus hydrogen can be produced and collected under sulphur depri-

vation in an illuminated and sealed container, depicted in Figure 1.7. However, substantial

endogenous substrate is catabolized during hydrogen production, and H2 production stops

when these substrates run out (Melis 2002 [111]). In this way the H2 production process

is not continuous due to the need to cycle cultures between anaerobic, sulphur-deprived

conditions to allow hydrogen production and aerobic, sulphur-replete conditions to al-

low cellular repair and growth. Under current cycling conditions, yields of H2 produced
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using this process are too low to be industrially successful [40, 111], allowing scope for

technological and theoretical optimization. We investigate these issues in Chapters 5 and

6.

1.7 Links between bioconvection and hydrogen production

Although not immediately obvious, there are two main ways in which hydrogen production

and bioconvection can interact in a suspension of cells. Firstly, starch (deposits of which

determine the centre of mass offset) is one of the endogenous substrates that is catabolized

during hydrogen production [139,156,182]. This causes the cells to change from ellipsoids

to small spheroids (Zhang et al. 2002 [182]) which, together with changes in mass distri-

bution as starch stores are mobilized, will clearly affect the centre of mass of the individual

cells. This in turns affects the gravitactic and gyrotactic swimming behaviour of the cells

and will have a profound effect on bioconvection and pattern formation. Secondly, plume

formation during bioconvection creates an uneven distribution of cells throughout the bio-

reactor, which creates a non-uniform distribution of light and could potentially improve

the yield of hydrogen gas. This has not yet been considered as a feature of photobiological

hydrogen production using motile cells. Thus the processes of bioconvection and hydrogen

production, the two main areas of research in this thesis, are inherently linked.

1.8 An overview of this thesis

In this thesis, experimental and theoretical aspects of bioconvection in suspensions of the

photo-gyrotactic microorganism Chlamydomonas nivalis are explored, and a novel model

is built from scratch and used to investigate hydrogen production via the sulphur-deprived

pathway found for Chlamydomonas reinhardtii by Melis et al. 2000 [114].

Chapter 2 describes three novel models that extend the continuum model of Pedley

and Kessler 1990 [130] for gyrotactic cells to include phototaxis. Light is modelled using

the Beer-Lambert law for weak scattering. The first of these models (Model A), in which

phototaxis is modelled photokinetically on top of gyrotaxis, is formulated and a linear

analysis is performed, both analytically and numerically, to assess stability in a container

of finite depth. Phototaxis is found to significantly affect both the equilibrium solution and

the critical wavenumber of the instability, and oscillatory solutions are found in certain

regions of parameter space.
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Chapter 3 details the two remaining photo-gyrotaxis models: in Model B the gyrotactic

centre-of-mass offset is modelled as function of light intensity, and Model C describes the

effects of including a new phototaxis torque dependent on gradients of light intensity in

the gyrotactic torque balance equation (equation 1.8). For both models the solution to

the Fokker-Planck is different to the gyrotaxis only case in Pedley and Kessler 1990 [130],

since new terms dependent on light are introduced. Similar techniques to those laid out

in Chapter 2 are used to analyse the models. Trends in stability as the phototaxis and

gyrotaxis parameters are varied in Model B are qualitatively similar to those for Model

A in the majority of cases. However, Model C produces drastically different stability

predictions; instabilities are found even in the absence of fluid flow due to horizontal

components of velocity arising from shading induced gradients of light intensity in the

phototaxis torque.

Chapter 4 is an experimental study of C. nivalis swimming behaviour. First, experi-

ments and techniques are described to capture images of bioconvection and to extract the

initial wavelength of patterns. Experiments were repeated, both for the same cells and

for different cells, allowing some simple statistical measures to be employed. Trends in

initial wavelength as a function of either concentration or light intensity are then investi-

gated. Results for variations in concentration of cells illuminated from above and below

are consistent with results presented in Bees and Hill 1997 [8]. Variations in red light in-

tensity, with a wavelength of 660 nm, are found to have no significant effect on the initial

pattern wavelength. This is because cells exhibit a considerably reduced response to light

intensity with wavelengths greater than 550 nm (Nultsch et al. 1971 [125]). However,

intriguing significant trends are found as the intensity of the white light increases. These

trends are qualitatively different when the suspension is illuminated from above compared

to from below. Experimental results are then compared with model predictions and good

agreement is found between the two methods.

Chapter 5 describes the biology and bio-chemistry involved in hydrogen production by

sulphur deprived C. reinhardtii cells in detail, and a new mechanistic model to describe

this system is constructed. Parameters are estimated and results for a non-dimensional

model are computed. Encouragingly, the model is found to be consistent with published

experimental results under a range of initial conditions. Hypotheses postulated by biolo-

gists in experimental studies are tested for consistency using the model.

Chapter 6 investigates ways to increase the yield of hydrogen gas using the hydrogen
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production model of Chapter 5, initially by conducting a parameter sensitivity analysis.

The yield of hydrogen gas produced after a specified time is optimized using a range of

functions to input external sulphur. One such novel sulphur-input function, where sulphur

is added at a low rate during hydrogen production and then in a one-off block addition to

facilitate repair, is found to significantly increase the yield compared to using the current

state-of-the-art, two-stage cycling of Ghirardi et al. 2000 [41].



Chapter 2

Modelling photo-gyrotactic

bioconvection in suspensions of

green algae - Part I

Summary

In this chapter, three models designed to incorporate phototaxis into the stochastic gyro-

taxis model of Pedley and Kessler 1990 [130] in a novel and rational manner are described.

Light is modelled using the Beer-Lambert law for light transmission through a self-shading

suspension. The simplest model, which incorporates phototaxis in a photokinesis manner,

is explored here. Analytical and numerical equilibrium solutions are presented and pertur-

bation theory is applied in order to perform a linear stability analysis. Stability is analysed

numerically and the code is verified using an asymptotic analysis in a deep layer for weak

illumination. Good agreement between these methods is found and interesting results are

presented for the development of instabilities as the key model parameters for phototaxis

and gyrotaxis are varied.

2.1 Introduction

In recent decades, many theoretical studies to describe bioconvective pattern formation in

suspensions of motile microorganisms have been presented. Previous rational theoretical

models have either been for cultures with no illumination, in which case the cells will only

be exhibiting negative gravitaxis and gyrotaxis, such as Hill et al. 1989 [63], Pedley and

31



Modelling photo-gyrotaxis I 32

Kessler 1990 [130] and later Bees and Hill 1998 [9], or for illuminated suspensions where

phototaxis is exhibited but the effects of gravitaxis and gyrotaxis are neglected, such as in

Vincent and Hill 1996 [172] and Ghorai and Hill 2005 [46]. No rational combined model for

all three taxes has yet been published due to the difficulty of incorporating this complex

balance of taxes, and a lack of information on precisely how these taxes interact under

different conditions (Vincent 1995 [171] presents a combined photo-gyrotactic model, but

errors have subsequently been found). If all three taxes were exhibited then we envisage

that in certain situations the taxes would compete. For example, under bright light illu-

mination from above, cells will swim downwards due to negative phototaxis but will also

be inclined to swim upwards due to negative gravitaxis. This balance between the three

taxes, along with the effects of self-shading within the suspension (where cells closer to

the light source absorb and scatter light so that those further away get less), will affect

the equilibrium solution and the stability of the system. Here, we formulate three rational

models for bioconvection in a suspension of phototactic, gyrotactic and gravitactic green

algae that is illuminated from above. The proposed models are applicable to many species

and demonstrate general principals of modelling photo-gyrotactic behaviour.

We base the three photo-gyrotactic models on the continuum model of Pedley and

Kessler 1990 [130], in which gravitaxis and gyrotaxis are modelled using a torque balance

equation and the cell swimming direction is modelled probabilistically using a Fokker-

Planck equation (detailed in Chapter 1). To model light we make use of the self-shading

model presented in Vincent and Hill [172], where cells nearer the light source absorb and

scatter the light.

We propose three different ways of incorporating phototaxis into the gyrotaxis model

of Pedley and Kessler 1990 [130]. The first is to model cell swimming speed as a function

of light intensity, so that cells regulate the amount of light they receive photo-kinetically.

The second is to model the centre of mass offset, which controls gyrotaxis, as a function of

light intensity, where we stipulate that the cells act as though their centre of mass offset

varies (although it may not physically change). The third is to include a new torque due

to phototaxis in the gyrotactic torque balance equation that is then used in the Fokker-

Planck equation. These three models for phototaxis are fundamentally different, and this

multi-model approach is used because we do not know precisely how the taxes interact,

especially when they are competing. In this study, we choose to investigate in detail

the green alga Chlamydomonas nivalis, which may exhibit aspects of all three models;
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in particular, cells may respond to light by varying their swimming speed in conjunction

with orientating via a phototactic torque. By exploring three somewhat phenomenological

models we are able to get an indication of how modelling the effects of illumination in

three significantly different ways effects the stability of the fluid layer. It also allows us to

investigate whether a different modelling approach introduces behaviour not seen before,

and to make some direct comparisons between modelling strategies.

The same methodology for all three models is followed, which is based on the analysis

of the Pedley and Kessler 1990 [130] model applied to a layer of finite depth by Bees

and Hill in 1998 [9]. The Fokker-Planck equation is solved and used to calculate the

mean cell swimming direction and an estimate for the cell swimming diffusion tensor

which are used in the cell conservation equation. Analytical and numerical equilibrium

solutions for the case of no fluid flow are then found and perturbed to linearize the model

equations and assess stability. The key non-dimensional parameters that are investigated

and which characterize the suspension are the layer depth, d, the gyrotaxis parameter, η,

the phototaxis parameter, χ = Is
Ic

, which is a ratio of the light intensity at the source to

the critical light intensity (the preferred light intensity for an individual cell), the strength

of the phototaxis torque, ζ (in Model C), a measure of the absorption of the cells, κ, and

the Rayleigh number, R. Neutral stability curves, on which the linear growth rate is zero,

are plotted, with the region in parameter space below the curve indicating stability and

above, instability.

Only Model A is explored in this chapter. We find that at equilibrium, increasing the

phototaxis parameter moves the concentrated sublayer down through the suspension to a

level at which there is a balance between phototaxis, gravitaxis, diffusion and cell shading.

For χ < 1, small wavenumbers are relatively destabilized and the critical wavenumber (the

minimum wavenumber on the neutral curve) becomes zero, but for χ > 1 all wavenum-

bers are relatively stabilized, and a non-zero critical wavenumber occurs for all η and κ,

if χ is sufficiently large. As the gravitationally unstable region shrinks with increasing χ,

penetrative convection occurs, where motions from the unstable region penetrate into the

stable region. Looping neutral curves, which change mode as they turn, and oscillatory

solutions are also found when η is sufficiently large. The chapter concludes with a discus-

sion of results, in which comparisons with previous work, especially Bees and Hill 1998 [9]

and Vincent and Hill 1996 [172], are made.
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2.2 Modelling photo-gyrotactic bioconvection.

All three combined photo-gyrotactic models are based on the model proposed by Pedley

and Kessler in 1990 [130] for gyrotactic and gravitactic cells (itself based on the gravitaxis

model of Childress et al. [22]). This model was discussed in Section 1.5.3, where the main

model equations are given in equations 1.17, 1.21, 1.25 1.26, 1.27, 1.22 and 1.24, along

with an expression for the fluid stress tensor, Σ. We use the same modelling assumptions

to construct the three photo-gyrotactic models, such as the suspension is dilute and in-

compressible, so cell to cell interactions are neglected, unless explicitly stated otherwise.

Here, we present the three modelling approaches and then give the general equations for

the new combined photo-gyrotaxis models to show how phototaxis is incorporated into

the Pedley and Kessler model in each case.

2.2.1 Three new photo-gyrotactic models

In Chapters 2 and 3, Ic denotes critical light intensity, which is the preferred light intensity

for an individual cell such that when I > Ic cells are negatively phototactic and when I < Ic

they are positively phototactic. The three model approaches to include phototaxis in the

stochastic gyrotaxis model of Pedley and Kessler 1990 [130], denoted Model A, B, and C,

are:

• Model A A photokinesis-like model in which cell swimming speed Vs varies as a

function of light intensity, I, so that cells swim faster when the light intensity is

less than the critical intensity, Ic, and slower when I > Ic. For simplicity we choose

Vs(I) = −ξ(I−Ic), where ξ is constant. This is a somewhat phenomenological way of

modelling, as Vs is generally not negative. The new, non-constant Vs is only included

in the cell swimming term in the cell conservation equation of Pedley and Kessler,

equation 1.27. The coefficient of the cell swimming diffusion tensor (equation 1.24)

is kept as a constant, the implications of which are explored in Section 2.3.2

• Model B A phenomenological model in which the cells act as though their cen-

tre of mass offset h (the distance between the cell’s geometric centre and centre of

mass) varies with light intensity. Here, h(I) is modelled as a linear function of I,

h(I) = −ξ (I − Ic). This non-constant h(I) will appear in the previously constant B

in the gravitational torque term in ṗ, shown in equations 1.17 and 1.18 of the Ped-

ley and Kessler model [130]. Thus the solution to the Fokker-Planck equation and,
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hence, 〈p〉 and D, will depend on light intensity. This will affect the deterministic-

stochastic balance of each cell such that when |h| is large the cell will swim more

deterministically upwards and when |h| is small the cell will swim more stochasti-

cally. When the cell is at the preferred light intensity, Ic, h = 0, and there will

be no gravitaxis or gyrotaxis, so the cell will move stochastically, with no preferred

direction.

• Model C In this model a new effective torque due to phototaxis, Lp, is included

in the torque-balance equation, changing the derivation of ṗ in Section 1.5.3 and,

hence, the solution to the Fokker-Planck equation, so that again 〈p〉 and D depend

on I. We denote this in the main model equations by using k̃(I) instead of k

in Equation 1.17, since there is a way to combine the gravitaxis and phototaxis

torque terms to give a unit vector dependent on light multiplied by a function to

describe the strength of the torque (shown in Chapter 3). If I = Ic in Model B there

is no gyrotaxis, but in this model the phototaxis torque disappears and gyrotaxis

remains, since separate phototaxis and gyrotaxis torques are modelled. This allows

the phototaxis and gyrotaxis torques to exist independently. Different forms for

the effective phototactic torque are investigated, depending on what assumptions we

make about the direction of the light and the response.

These three models operate at different levels in the system and are fundamentally

different. While Model A does not affect the solution to the Fokker-Planck equation from

Pedley and Kessler [130] and only affects the cell swimming velocity, Model B incorporates

phototaxis into the gravitactic torque. Model C, on the other hand, includes a separate

torque due to phototaxis in the torque balance equation and affects the derivation of ṗ and,

like Model B, the solution to the Fokker Planck equation. The most general form of the

main model equations in dimensional terms are shown in equations 2.1, 2.2, 2.3, 2.4 and

2.5, where all three ways of including phototaxis in the model of Pedley and Kessler [130] in

Section 1.5.3 are included. The Navier-Stokes equation with an incompressibility condition

is

∇ · u = 0, (2.1)

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇pe + nv∆ρg + ∇ · Σ, (2.2)
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where u(x, t) is the fluid velocity, Σ(x, t) the fluid stress tensor, pe(x, t) is the excess

pressure above hydrostatic (at density ρ), n(x, t) is local cell concentration, v is the volume

of a cell, ρ is the density of the fluid and ρ+∆ρ is the density of a cell. The second term on

the right-hand side of equation 2.2 is the Boussinesq approximation due to the difference in

density between the fluid and the cell, denoted ∆ρ, and g is the acceleration due to gravity.

These equations are the same as the Navier-Stokes equations in Pedley and Kessler, shown

in equations 1.25 and 1.26.

The cell conservation equation of Pedley and Kessler shown in equation 1.27 becomes

∂n

∂t
= −∇ · [nu + nVs(I)〈p(Ω,E, I)〉 − D(Ω,E, I) · ∇n], (2.3)

where t is time, x = (x, y, z) is the cartesian coordinate system where z points vertically

upwards, Ω(x, t) is the dimensional vorticity and E(x, t) the dimensional rate-of-strain

tensor, and I denotes light intensity. The first term on the right hand side of equation 2.3

is due to advection of the cells by the fluid. The second is due to cell swimming, where

Vs(I) is mean cell swimming speed dependent on light intensity, and 〈p(Ω,E, I)〉 is the

mean cell swimming direction. The third term is due to diffusion, where D(Ω,E, I) is the

cell swimming diffusion tensor.

The expression for ṗ, the rate of change of cell swimming direction p, and the Fokker-

Planck equation are given by

ṗ =
1

2B(h(I))
[k̃(I) − (k̃(I) · p)p] +

1

2
Ω ∧ p

+ α0[E · p − pp · E · p], (2.4)

∂f

∂t
+ ∇p · (ṗf) = Dr∇2

pf, (2.5)

where α0 is a measure of cell eccentricity. The subscript p in the Fokker-Planck equation

(equation 2.5) indicates that the derivatives are in orientation space, and f(p) is the cell

swimming direction probability density function defined on a unit sphere, where Dr is

rotational diffusivity. The function B(h(I)) is defined as

B(h(I)) =
µα⊥

2h(I)ρg
, where h(I) = −ξ (I − Ic) (2.6)

is the centre of mass offset which depends on light intensity, µ is the fluid viscosity, α⊥ is

the dimensionless resistance coefficient for rotation about an axis perpendicular to p and

ξ is a constant. B was previously a constant in the model of Pedley and Kessler [130],

shown in equation 1.18, but now depends on light intensity because the centre of mass

offset h now depends on I.
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In reality, the effect of the cells on the fluid motion does not come only from their

negative buoyancy. These other contributors are discussed fully in Pedley and Kessler 1990

[130], where the most significant was found to be the contribution to the bulk stress from

the swimming motion, although this had only marginal effects. We neglect all contributions

to the bulk stress except the negative buoyancy and assume Newtonian stress, so that

Σ = 2µE. (2.7)

The mean cell swimming direction, 〈p〉, and the cell swimming diffusion tensor, D, are

calculated from the solution to the Fokker-Planck using an expression similar to those in

Pedley and Kessler [130], where the expressions for diffusion in equation 1.23 is approxi-

mated as in equation 1.24 (described in Section 1.5.3), so that

〈p〉 =

∫

S
pf(p)dS, (2.8)

D ≈ D0〈(p − 〈p〉)(p − 〈p〉)〉, (2.9)

where S is a unit sphere and D0 is a diffusion scale that varies between models (D0 = V 2
s τ

in Pedley and Kessler [130], where Vs is defined as the average cell swimming speed and τ

the direction correlation time). The diffusion should really be calculated from a swimming

velocity autocorrelated function using generalized Taylor dispersion theory [60, 108] but

no general theory for all flows exists, so this expression is used for simplicity and to allow

feasible computations.

The new terms in equations 2.1 to 2.5 (compared to the gyrotaxis model of Pedley and

Kessler [130]) are Vs(I) and h(I), which were previously constants, and k̃(I), which was

previously the constant unit vector in the vertical direction, k. The models are formulated

so that if there is no light, I = 0, hence no phototaxis, then Vs(I) = Vs, h(I) = h and

k̃(I) = k, and the model equations are the same as in the Pedley and Kessler model [130]

for gyrotactic and gravitactic cells and as in Bees and Hill 1998 [9] for a suspension layer

of finite depth. Although all models are included in these general photo-gyrotactic model

equations, we study each model individually and do not use all of the new terms together.

We consider a layer of depth H cm. A rigid no-flow boundary condition is used at both

the upper and the lower boundaries, which seems reasonable as cells form an almost solid

boundary of mats of cells at the fluid surface fairly quickly. However, a mixed stress-free

and no-flow boundary condition at z = 0 may be a better approximation. We also specify
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zero flux perpendicular to the boundaries. Thus

u = 0 at z = 0,−H and (2.10)

k · (n(u + Vs(I)〈p〉) − D · ∇n) = 0 at z = 0,−H, (2.11)

as used by Bees and Hill 1998 [9].

2.2.2 Modelling light

To model the effects of light from above on bioconvection we include the effects of self-

shading, where cells close to the light source absorb and scatter light before it reaches

those cells further away. This shading model is based on that presented in Vincent and

Hill 1996 [172] and further explored by Ghorai and Hill 2005 [46]. We assume that light

scattering and absorbtion by the medium is weak and, hence, can be disregarded, which

seems reasonable as the medium is similar to water and the layer depth is relatively small.

We also assume that all cells are homogeneous and possess the same transmittance of

light in every direction, and disregard multiple scattering by stipulating that a cell only

receives light travelling to it in a straight line from the source. We assume that absorption

across the suspension does not affect the wavelength of the light. Finally, we assume that

the timescales for changes in light intensity as the cell rotates are longer than the time

required for the cell to detect those changes (i.e. the cell detects changes in I quickly).

We use the same expression for light intensity I for each model (as used in Vincent

and Hill [172]), derived from the Beer-Lambert law, that states that there is a logarithmic

relationship between light intensity I and the distance the light has travelled through the

suspension. This is commonly used to calculate absorption in suspensions. The expression

for the light intensity I at a depth z is

I(z) = Ise
[−α⋆

R 0
z n(z)dz] (2.12)

where α⋆ is the cellular extinction coefficient (a measure of light absorption per cell), n is

the concentration of cells and Is is the light intensity at the source (z = 0). The integral

of the concentration between 0 and z is a measure of how much a cell at position z is

shaded by the sum of all cells between it and the light source. Equation 2.12 can only be

used if the total volume of particles per unit volume multiplied by the light absorbed by a

single particle is small and, as in Vincent and Hill [172], we conclude that this is the case

in our system since the cell volume fraction and light absorption are both relatively small.
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One might question whether equation 2.12 would represent the actual intensity perceived

by an algal cell at z at a given time, as the transduction process is probably not totally

efficient and the partially shaded eyespot is likely to be at some non-zero angle to the light

source. However, over several rotations the mean intensity measured by the cell is likely

to be approximately I(z).

2.2.3 Non-dimensionalization of the general model

The non-dimensionalization for the general model in equations 2.1 to 2.5 is presented

here. We non-dimensionalize the cell conservation and Navier-Stokes equation as in Bees

and Hill 1998 [9], where length is scaled on H and, for now, diffusivity on D0, which is

defined separately in each model. Vs(I) is non-dimensionalized with the constant average

cell swimming speed, denoted Vn (obtained from Hill and Häder 1996 [61] for C. nivalis).

To allow direct comparisons between these results and those of Bees and Hill [9] we non-

dimensionalize n with N , where N = dn̄
1−e−d and d = K1HVn

K2D0
, which arises from the solution

to the equilibrium solution (see Section 2.3.1), where n̄ is the mean cell concentration and

K1 and K2 are constants from the Fokker-Planck equation in equations 2.38 and 2.40.

Although this is not an obvious choice it allows comparison with previous work. We non-

dimensionalize I using light intensity at the source, Is. This gives the following scalings:

x̃ =
x

H
, ñ =

n

N
, D̃ =

D

D0
, t̃ =

tD0

H2
, ũ =

uH

D0
,

Σ̃ =
ΣH2

D0µ
, p̃e =

peH
2

µD0
, Ĩ =

I

Is
, Ṽs =

Vs

Vn
. (2.13)

On dropping tildes, the non-dimensional incompressibility condition (2.1), the Navier-

Stokes equation (2.2) and the cell conservation equation (2.3) become

∇ · u = 0, (2.14)

S−1
c

Du

Dt
= −∇pe − γnk + ∇ · Σ, (2.15)

∂n

∂t
= −∇ ·

[

n

(

u +
VnH

D0
Vs(I)〈p〉

)

− D · ∇n

]

, (2.16)

where the Schmidt number Sc and γ are given by

Sc =
ν

D0
and γ =

Nvg∆ρH3

νρD0
, (2.17)

where ν is the kinematic viscosity. The non-dimensional stress tensor is

Σ = 2e, (2.18)
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and the non-dimensional function for light intensity is

I(z) = e[−κ
R 0

z n(z)dz], (2.19)

where κ = α⋆HN is a dimensionless measure of light absorption by the cells. As in Vincent

and Hill 1996 [172] and Ghorai and Hill 2005 [46] we remove the integral and thus increase

the order of the system by defining

m = −
∫ 0

z
n(z)dz so n(z) =

dm

dz
. (2.20)

The no-flow and no-flux boundary conditions are now

u = 0 at z = 0,−1 and (2.21)

k ·
(

nu +
VnH

D0
Vs(I)n〈p〉 − D · ∇n

)

= 0 at z = 0,−1. (2.22)

Increasing the order of the system means we need another boundary condition. This comes

from setting z = 0 in equation 2.20, so that

m = 0 at z = 0. (2.23)

The expression for ṗ and the Fokker-Planck equation are non-dimensionalized using

the same scalings as Pedley and Kessler [130] and Bees and Hill [9], so that

Ω =
D0

H2
ω and E =

D0

H2
e, (2.24)

where ω is the dimensionless vorticity and e the dimensionless rate-of-strain tensor. We

use the steady version of the Fokker-Planck equation, as in Pedley and Kessler [130] and

Bees and Hill [9], since we also assume that the timescale for unsteadiness in the flow is

large compared to D−1
r (discussed in Chapter 1). Substituting the scalings into equations

2.4 and 2.5 gives

D0

H2
ṗ =

1

2B(h(I))
[k̃(I) − (k̃(I) · p)p] +

1

2

D0

H2
ω ∧ p

+ α0
D0

H2
[e · p − pp · e · p], (2.25)

D0

H2
∇p · (ṗf) = Dr∇2

pf. (2.26)

Here, I in k̃(I) is non-dimensionalized and the constants in the definition for k̃(I) are

redefined so that k̃(I) is now dimensionless, which is discussed in full detail in Section 3.6.
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We also non-dimensionalize h(I) in equation 2.6 with the average centre of mass offset in

the dark, hn, so that h̃(I) = h
hn

. Thus we can re-write B(h(I)) in equation 2.6 as

B(h(I)) =
µα⊥

2hnh̃(I)ρg
=

µα⊥

2hnρg

1

h̃(I)
=

Bn

h̃(I)
, (2.27)

where

Bn =
µα⊥

2hnρg
and h̃(I) =

ξ

hn
(IsĨ − Ic), (2.28)

so that Bn is a constant and h̃(I) a function dependent on I. This can be substituted into

equations 2.25, and if we substitute the expression for ṗ into the Fokker-Planck equation

then, on dropping tildes, we have

h(I)∇p · [(k̃(I) − (k̃(I) · p)p)f ] + η∇p · [(ω ∧ p)f ]

+ 2α0η∇p · [(e · p − pp · e · p)f ] = λ−1∇2
pf, (2.29)

where

λ =
1

2DrBn
and η =

BnD0

H2
. (2.30)

η is the dimensionless gyrotaxis parameter. hn is the centre of mass offset in the dark,

or the normal centre of mass offset, and this is the same as h in Bees and Hill [9]. Thus

the parameter Bn and those parameters containing Bn can be directly compared with the

corresponding parameters in [9].

Equations 2.14, 2.15, 2.16, 2.19, 2.29, along with equations 2.8 for 〈p〉, 2.9 for D

and 2.18 for Σ, complete the most general non-dimensional form of the combined photo-

gyrotaxis model, with boundary conditions given in equations 2.21, 2.22 and 2.23.

2.2.4 Table of parameters

The model so far has been for any general swimming green algae species. Table 2.1 lists

standard parameter values that will be used in all three models for Chlamydomaons nivalis.

Other parameters are discussed in each model separately. Most of these values are the

same as in Bees and Hill 1998 [9], to allow comparisons between the models, and come

from [130], [73], [61] and [63]. Typically the cells have a cell diameter of 10 µm, with an

average distance between cells of 100 µm, while the length scale for pattern formation is

much larger, at around 0.1 − 0.5 cm (found experimentally in Chapter 4).
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Name Description Standard value Units

ρ Density of fluid 1.0 gm/cm3

ρ + ∆ρ Cell density 1.05 gm/cm3

v Cell volume 5 × 10−10 cm3

g Acceleration due to gravity 103 cm/s2

µ Viscosity 10−2 gm /cm s

Vn Average cell swimming speed 63 µm /s

D0 Diffusivity 5 × 10−5 − 5 × 10−4 cm2 /s

h Centre of mass offset 0 − 0.5 µm

B Gyrotaxis parameter 3.4 s

B Gyrotaxis parameter (with flag-

ella)

6.3 s

α0 Cell eccentricity 0.2 − 0.31 N/A

Dr Rotational diffusivity of cells 0.067 s−1

α⊥ Dimensionless resistance coefficient

for rotation about an axis perpen-

dicular to p

6.8 N/A

λ Deterministic-stochastic parameter 2.2 N/A

τ Direction correlation time 1.3 − 5 s

Sc Schmidt number 19 N/A

α⋆ Cellular extinction coefficient 3.67 × 10−7 − 6.74 × 10−7 cm2

Table 2.1: A table of the standard parameter estimates for the green algae species

Chlaydomonas nivalis.
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2.2.5 Solving the Fokker-Planck equation without the phototaxis terms

Pedley and Kessler 1990 [130] solved the non-dimensional Fokker-planck equation for the

gyrotaxis and gravitaxis only case (corrected in Bees and Hill 1998 [9]). The presence of

h(I) and k̃(I) in equation 2.29 creates extra terms in the solution to the Fokker-Planck for

Models B and C, and for this reason the Fokker-Planck equation in equation 2.29 with all

the terms is solved in full in Chapter 3. For Model A, h(I) = 1 and k̃(I) = k, and so we

can quote the solutions to the Fokker-Planck directly from Pedley and Kessler [130]. To

understand where these terms originate, here we indicate, in brief, the process for solving

equation 2.29 in the case of no phototaxis.

If h(I) = 1 and k̃(I) = k then equation 2.29 becomes

∇p · [(k − (k · p)p)f ] + η∇p · [(ω ∧ p)f ] (2.31)

+ 2α0η∇p · [(e · p − pp · e · p)f ] = λ−1∇2
pf. (2.32)

This is an equation in orientational space; so k, ω and e are constants and tr(e) ≡ ∇·u = 0.

p is the cell swimming direction and is the unit vector perpendicular to the unit sphere,

so that for any function g(p), ∇g is perpendicular to p, so (p · ∇)g = 0. We calculate

∇ · p = 2, ∇p = I − pp and (∇ ∧ p)i = ǫijkpj,k = 1
2ǫijk(pj,k + pk,j) = 0 as ∇p = (∇p)T .

Following the term by term analysis in Bees and Hill [9], the non-dimensional Fokker-Plank

equation simplifies to

(k · ∇pf − 2(k · p)f) + ηω · (p ∧∇pf) + 2ηα0[p · e·∇pf − 3p · e · pf ] = λ−1∇2
pf. (2.33)

Equation 2.33 is solved by first considering the equilibrium state of no-flow, denoted with

superscript 0, where u = ω = e = 0, f = f0 and m = m0, so that on writing p =

(sin θ cos φ, sin θ sinφ, cos θ) and k = (0, 0, 1),

λ
(

k · ∇pf
0 − 2(k · p)f0

)

= ∇2
pf

0, (2.34)

where θ is the colatitude measured relative to k and φ is the cell orientation angle in

the horizontal plane. This is solved to calculate f0, which is then used in equations 2.8

and 2.9 to calculate the equilibrium components of the mean cell swimming direction and

cell swimming diffusion tensor, denoted 〈p〉0 and D0, respectively. We then consider an

infinitesimal perturbation, denoted by superscript 1, where

u = ǫu1, ω = ǫω1, e = ǫe1, f = f0 + ǫf1 and m = m0 + ǫm1, (2.35)
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where 0 < ǫ ≪ 1. Equation 2.32 at order ǫ is

λ
[

k · ∇pf
1 − 2(k · p)f1

]

+ ηλω1 · (p ∧∇pf
0)

+2ηλα0[p · e1·∇pf
0 − 3p · e1 · pf0] = ∇2

pf
1, (2.36)

which is solved to calculate f1. This is then used to calculate the weak ambient flow com-

ponents of the mean cell swimming direction and cell swimming diffusion tensor, denoted

〈p〉1 and D1, respectively. The solutions take the form

〈p〉 = 〈p〉0 + ǫ〈p〉1 (2.37)

=











0

0

K1











+ ǫ











ηJ1











ω2

−ω1

0











− 2α0η











e13J4

e23J4

3
2e33K4





















+ O(ǫ2), (2.38)

and the dimensionless diffusion tensor is

D = D0 + ǫD1 (2.39)

=











K1
λ 0 0

0 K1
λ 0

0 0 K2











+ ǫ











η(J2 − J1K1)











0 0 ω2

0 0 −ω1

ω2 −ω1 0











− 2α0η (2.40)











−3
4e33K5 + 1

4(e11 − e22)J6
1
2e12J6 e13(J5 − K1J4)

1
2e12J6 −3

4e33K5 − 1
4(e11 − e22)J6 e23(J5 − K1J4)

e13(J5 − K1J4) e23(J5 − K1J4)
3
2e33(K5 − 2K1K4)





















+O(ǫ2).

A full explanation of these solutions can be found in Chapter 3. Definitions for the

constants Ki and Ji (which depend on λ) and values of these constants when λ = 2.2

(from the range computed by Pedley and Kessler [130] and used by Bees and Hill [9]) are

shown in Table 2.2. An error in the calculation of the values J4 and J5 was found when

computing the Fokker-Planck solution for Model B; the corrected values are J4 = −0.22

and J5 = −0.17. However, this only makes a quantitative difference to results and, since

Model A results had already been computed with the original Ji values, they were not

re-computed for this chapter (except when exploring bifurcations in Section 2.5.7); results

presented here use J4 and J5 values as in Table 2.2, allowing direct comparison with

Pedley and Kessler [130] and Bees and Hill [9]. However, the corrected Ji values are used

in Chapter 3, and ,when direct comparisons are made between models, Model A results
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Name Definition Value

µλ
λ

4π sinh λ 0.039

K1 cothλ − 1
λ 0.57

K2 1 − coth2 λ + 1
λ2 0.16

K4 K2 − K1
λ −0.10

K5 − 2
λ

[

1 + K2 − 4K1
λ

]

−0.11

J1
4
3πλµλ

∞
∑

l=0

λ2l+1a2l+1,1 0.45

J2
4
5πλµλ

∞
∑

l=1

λ2la2l,2 0.16

J4
4
3πλµλ

∞
∑

l=0

λ2l+1ã2l+1,1 −0.26∗

J5
4
5πλµλ

∞
∑

l=0

λ2lã2l,2 −0.13∗

J6
16
5 πλµλ

∞
∑

l=0

λ2lā2l,2 −0.20

Table 2.2: A table of values of Ki and Ji for use in Model A, where λ = 2.2 and α0 = 0.2.

The ai,j , ãi,j and āi,j values are defined in Chapter 3. The star indicates these values

were wrongly calculated in [130]; the correct values are J4 = −0.23 and J5 = −0.17. K4

shown here is the corrected form from Bees and Hill 1998 [9], since Pedley and Kessler

had incorrectly concluded K4 = 1 − coth2 λ − 2
K1

[130].
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are re-computed with the correct Ji values. The error in the critical Rayleigh number

when using the incorrect values is only approximately 5.7%.

2.3 Model A: modelling phototaxis in a photokinesis man-

ner

In Model A, we investigate modelling swimming speed as a function of light intensity,

Vs(I). We set h(I) = 1 and k̃(I) = k in equation 2.29, so that centre of mass offset it

modelled as a constant, hn, and there is no torque due to phototaxis. As stated in section

2.2, the analysis is simplified if we choose a non-dimensional Vs as a linear function of

I, so that Vs(I) = −ξ(IsI − Ic), where ξ is a constant. On setting the non-dimensional

cell swimming speed to be 1 when the light intensity is zero, we obtain ξ = 1
Ic

. The

assumption that Vs depends linearly on I is only really valid when the light intensity is

close to the critical light intensity, I ≈ Ic, but is used here for simplicity. On substituting

in the non-dimensional equation for light intensity 2.19 and re-arranging, this gives the

non-dimensional variable cell swimming speed as

Vs(I) = −
(

χe−κ
R 0

z n(z)dz − 1
)

. (2.41)

Here, χ = Is
Ic

is the ratio of the light intensity at the source to the critical light intensity

Ic and is referred to as the phototaxis parameter. When χ = 0 there is no light, Vs = 1

and the model is identical to that of Bees and Hill [9].

The effect of light only appears in the term for cell swimming in the cell conservation

equation. The Navier-Stokes equation, the torque balance and Fokker-Planck equations are

the same as in Pedley and Kessler [130]. For the majority of this chapter we define diffusion

using a constant average cell swimming speed Vn, and equation 2.9 gives D0 = V 2
n τ , where

τ is the direction correlation time (the time it takes a cell to re-orientate). However,

we investigate using a light dependent average swimming speed Vs(I) in the diffusion
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approximation in Section 2.3.2. This gives the non-dimensional equations for Model A as

∇ · u = 0, (2.42)

S−1
c

Du

Dt
= −∇pe − γnk + ∇ · Σ, (2.43)

∂n

∂t
= −∇ ·

[

nu +
dK2

K1

(

1 − χe−κ
R 0

z n(z)dz
)

n〈p〉 − D · ∇n

]

, (2.44)

n(z) =
dm

dz
, (2.45)

∇p · [(k − (k · p)p)f ] + η∇p · [(ω ∧ p)f ]

+ 2α0η∇p · [(e · p − pp · e · p)f ] = λ−1∇2
pf. (2.46)

Here, d is the ratio of layer depth H to sublayer depth
(

K1
K2Vnτ

)−1
, defined by

d =
K1H

K2Vnτ
, (2.47)

where K1 and K2 come from the solution to the Fokker-Planck and are defined in Table

2.2, and d can be thought of as a non-dimensional layer depth. When d ≪ 1 the layer is

‘shallow’ and when d ≫ 1 the layer is ‘deep’. This is the same expression for d as in [9].

Solutions to the Fokker-Planck equation used to calculate 〈p〉 and D do not differ from

those found by Pedley and Kessler [130], corrected in Bees and Hill [9], thus are given in

equations 2.38 and 2.40. The only difference is we define constant average cell swimming

speed as Vn (instead of Vs in [130] and [9]).

Boundary conditions 2.21, 2.22 and 2.23 become

u = 0 at z = 0,−1 (2.48)

k ·
(

nu +
dK2

K1

(

1 − χe−κ
R 0

z n(z)dz
)

n〈p〉 − D · ∇n

)

= 0 at z = 0,−1,(2.49)

and m = 0 at z = 0. (2.50)

Following the general analysis of Bees and Hill [9], we find an equilibrium solution

and then perturb about this solution. This gives two coupled linear equations which are

solved numerically and analytically in certain parameter ranges to assess the stability of

the system for different values of the main model parameters.

2.3.1 Equilibrium solution

We look for an equilibrium solution for the case of no fluid flow, u = 0, ω = 0, e = 0, where

n = n(z). The mean cell swimming direction and diffusion tensor become 〈p〉 = 〈p〉0 and

〈D〉 = 〈D〉0, where the superscript 0 indicates that we take only the part of the vector or
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tensor for zero flow. If we consider a steady solution that only depends on z then equation

2.44 becomes

0 = − d
dz ·

[

dK2
K1

n
(

1 − χe−κ
R 0

z n(z)dz
)

〈p〉0 − D0 · ∇n
]

, (2.51)

with non-dimensional boundary conditions

u = 0 on z = 0,−1 (2.52)

and

k ·
(

dK2

K1

(

1 − χe−κ
R 0

z n(z)dz
)

〈p〉0 − D0 · ∇n

)

= 0 at z = 0,−1. (2.53)

Integrating equation 2.51 with respect to the boundary conditions and substituting in the

solutions to the Fokker-Planck equation for zero flow from equations 2.38 and 2.40 gives

d2m(z)

dz2
− d

(

1 − χeκm(z)
) dm(z)

dz
= 0, (2.54)

where equation 2.20 is used to increase the order of the system. The boundary condition

for z = −1 comes from applying the non-dimensional normalization condition

∫ 0

−1
n(z)dz =

n̄

N
, (2.55)

(i.e.
∫ 0
−H n(z)dz = n̄H), which gives m = e−d−1

d at z = −1. We also have the boundary

condition that m = 0 at z = 0. Equation 2.54 is hard to solve analytically for all parameter

values and so is solved numerically in Section 2.3.4. Note that if χ = 0 then the solution is

an exponential distribution for n(z), as for the gyrotaxis only case presented in Bees and

Hill [9], and others [63]. (For comparison with the phototaxis only model of Ghorai and

Hill 2005 [46], here our VnH
D0

= dK2
K1

is the same as Vc = WcH
D in [46], where Wc is the average

cell swimming speed and D a constant diffusion coefficient, and the only difference in the

constant d is that we multiply by K1
K2

since we use the Fokker-Planck equation instead of

a constant isotropic diffusion tensor.) Whether either of these basic equilibrium states are

achieved in laboratory cultures is discussed in Chapter 4.

2.3.2 Exploring the effects of using a diffusion tensor dependent on light,

D(I)

In the main body of Model A we do not consider the diffusion tensor D as a function of

light. This is inconsistent in a way because swimming diffusion should be a function of
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swimming speed, and in Model A the average cell swimming speed, Vs(I), is dependent on

light. If we consider the diffusion tensor as a function of I, so that D(I) = V 2
s (I)D, where

Vs(I) and D are non-dimensional and are given in equations 2.41 and 2.40, respectively,

then the equilibrium profile is a solution of

(1 − χeκm)
dn

dz
− dn(z) = 0. (2.56)

When χ = 1 and m = 0 at z = 0 this equation is singular, and this problem will also arise

for other values of χ > 1 and m. Thus this does not seem like a realistic model as it is

not consistent for χ > 1. Furthermore, solutions for χ < 1 show that increasing χ from

zero causes the equilibrium solution to retain an almost exponential shape with increasing

maximum concentration at z = 0 as χ increases. This increasing maximum is the opposite

trend to that found from equation 2.54 for the equilibrium solution if diffusion is based on

a constant average cell swimming speed Vn (where the maximum decreases for small χ),

and is physically unrealistic. For these reasons we do not model the diffusion tensor as a

function of light intensity, and instead define diffusion using a constant average mean cell

swimming speed Vn, so that D0 = V 2
n τ in equation 2.9.

2.3.3 Analytical approximation to the equilibrium solution for weak ab-

sorption

As in Vincent and Hill [172] and Ghorai and Hill [46], if we assume the case of weak

absorption, so that 0 < κ ≪ 1 and I is close to Ic, then we can find an analytical

equilibrium solution. For small κ we re-write equation 2.54 as

dn

dz
+

d

Ic

(

Ise
[−κ

R 0
z n(z)dz] − Ic

)

n(z) = 0 (2.57)

and expand the exponential in equation 2.57 to give

Ise
[−κ

R 0
z n(z)dz] − Ic ≈ Is

[

1 − κ

∫ 0

z
n(z)dz

]

− Ic (2.58)

The critical intensity Ic occurs at position z = −C (0 ≤ C ≤ 1) for an individual cell for

the vertically uniform concentration profile n = 1. Thus at I = Ic,

Ic = Ise
−κ

R 0
−C 1dz ≈ Is(1 − κC), (2.59)

which can be used in equation 2.58 to give

Ise
[−κ

R 0
z n(z)dz] − Ic ≈ −Isκ

[∫ 0

z
n(z)dz − C

]

. (2.60)
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Since Ic = Is + O(κ), Ic ≈ Is, and we can replace Is with Ic. The equilibrium solution for

weak absorption in equation 2.57 becomes

dn

dz
− dκ

[∫ 0

z
n(z)dz − C

]

n(z) = 0. (2.61)

The unique solution of equation 2.61 is

n(z) =
K2

2G1
[(K2/G2

1) − C2]sech2(Kz/2)

[(K/G1) + C tanh(Kz/2)]2
(2.62)

where G1 = dκ is a new constant defined for convenience so that a general solution to

equation 2.61 can be computed in Appendix A (this is useful in Chapter 3 for Model

B, where the analytic equilibrium solution has the same form as equation 2.61 but with

different constants outside the bracket). Note that this definition does not affect the form

of the solution found in Appendix A and G1 = dκ can be substituted back into equation

2.62 to provide the full solution. K is a constant obtained from the transcendental equation

(

K2

G2
1

− C2 + d−1
(

1 − e−d
)

C

)

tanh

(

K

2

)

− d−1
(

1 − e−d
)

K

G1
= 0, (2.63)

on using the non-dimensional normalization condition

∫ 0

−1
n(z)dz = d−1(1 − e−d). (2.64)

Details of this solution can be found in Appendix A. This solution (with different constants)

was originally found by Kamke 1967 [79] and is similar to the solution presented in Ghorai

and Hill 2005 [46], which was the corrected version of that found in Vincent and Hill

1996 [172], except that we have a different value for the constant G1 and we use a non-

dimensionalization of n leading to a different boundary condition at m = −1.

To plot the analytical solutions we need to first calculate C and K. C is straightfor-

ward, since when I = Ic, Ic = Ise
−κC , hence C = − 1

κ ln
(

1
χ

)

. K is more complicated but

can be approximated using a numerical Newton-Raphson routine.

2.3.4 Numerical and analytical equilibrium profiles

For all equilibrium and linear stability results, the non-dimensional z coordinate is scaled

with non-dimensional layer depth d, so that zI = dz. This improves the numerics when d

is large and χ is small, since the top region of the layer is expanded, but most importantly

it allows us to directly compare results with Bees and Hill [9]. zI derivatives are denoted

as d
dzI

= DI throughout, and the layer depth is now 0 ≥ z ≥ −d.
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In Figure 2.1, d = 20, χ = 1.2 and numerical and analytical equilibrium solutions for

κ = 0.1, κ = 0.5 and κ = 0.75 are plotted. Although the analytical solution technically is

valid only for small κ, we see good agreement between numerical and analytical results up

to κ = 0.75 and indeed beyond. This comparison gives us confidence that the numerical

code works as expected.
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κ = 0.1 κ = 0.5

κ = 0.75

Figure 2.1: A comparison between numerical (solid lines) and analytical (dashed lines)

equilibrium solutions where d = 20, χ = 1.2 and κ varies. The non-dimensional coordinate

z is scaled with non-dimensional layer depth d. The agreement between methods is good,

even when κ is close to 1.

In Figure 2.2, κ = 1.2 and d = 20, and equilibrium solutions for different values of χ

are plotted. The case χ = 0 is equivalent to there being no light in the system, Is = 0,

and we have the gyrotaxis only case such that the equilibrium profile is an exponential

function with maximum at z = 0, as in Bees and Hill 1998 [9] and Hill et al. 1989 [63].

As χ is increased to χ = 0.75 the peak of the concentration profile is still at z = 0 but the

value of the maximum is smaller and there is a greater spread of cells throughout the top

region. When χ = 1, Ic = Is the maximum remains at the top of the fluid layer but the

distribution is less peaked, as shown in Figure 2.2(b). For χ > 1 the cells near the light

source have too much light and start to swim downwards, so the peak of the distribution

moves down the fluid layer and the distribution becomes wider. When the peak gets half

way down the layer the maximum value of n is at its smallest. When I and χ are large

most cells swim downwards and the distribution is almost exponential with maximum at
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z = −d, as shown in Figure 2.2(d).
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Figure 2.2: Concentration profiles for the equilibrium solution in Model A, where d = 20,

κ = 1.2 and χ varies.

Figure 2.3 shows that increasing layer depth d to d = 200 gives qualitatively the same

results as in Figure 2.2. Due to the depth of the layer we see (in Figure 2.3(a)) a very

sharp distribution with most cells at the very top for small χ. The solution becomes more

sensitive to χ, since a value of χ = 1.005 provides a solution with a maximum in the

bottom half of the layer in Figure 2.3(b).

Figure 2.4 shows that for χ = 1.02, increasing κ from κ = 1 causes the maximum of

the equilibrium profile to move upwards and become more peaked, which is the opposite

effect to increasing χ. Large κ also makes solutions less sensitive to changes in χ, so that

larger changes in χ are needed to move the peak of n(z).

2.3.5 Linear stability analysis

Consider a small perturbation from the equilibrium solution such that

u = ǫu1, 〈p〉 = 〈p〉0 + ǫ〈p〉1, n = n0 + ǫn1,

pe = p0
e + ǫp1

e, Σ = ǫΣ1, D = D0 + ǫD1,

m = m0 + ǫm1, (2.65)
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Figure 2.3: Concentration profiles for the equilibrium solution in Model A, where d = 200,

κ = 1.2 and χ varies. In the first plot the top curve is χ = 0 and the bottom χ = 0.75
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Figure 2.4: Concentration profiles for the equilibrium solution in Model A, where d = 20,

χ = 1.02 and κ = 0.5, 1.0 and 2.0
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where ǫ ≪ 1, and the superscript 0 indicates the zeroth order, no-flow equilibrium solution

and 1 indicates the first order perturbation. Looking first at the effect of the perturbation

on m, Vs(I) in equation 2.41 becomes

Vs(I) = 1 − χeκ(m0+ǫm1) = 1 − χeκm0
eǫκm1

+ O(ǫ2). (2.66)

Expanding the exponential in ǫ gives

Vs(I) = 1 − χeκm0 − ǫχκm1eκm0
+ O(ǫ2). (2.67)

On substituting the perturbations into the main model equations (equations 2.42, 2.43,

2.44, and 2.45), the governing equations to order ǫ become

∇ · u1 = 0, (2.68)

S−1
c

∂u1

∂t
= −∇p1

e − γn1k + ∇ · Σ1, (2.69)

∂n1

∂t
= −∇ ·

[

n0u1 +
dK2

K1

((

1 − χeκm0
)

n1〈p〉0 +
(

1 − χeκm0
)

n0〈p〉1

−χκm1eκm0
n0〈p〉0

)

− D0 · ∇n1 − D1 · ∇n0
]

, (2.70)

n1 =
dm1

dz
. (2.71)

We rewrite ∇ · Σ1 as ∇2u1 (since we consider only Newtonian stress and we use the

definition of Σ in equation 2.18). We then take the divergence of equation 2.69 and the

Laplacian of the third component. This gives

0 = −∇2p1
e − γ∂3n

1, (2.72)

S−1
c

∂

∂t
(∇2u1

3) = −∂3∇2p1
e + ∇2∇2u1

3 − γ∇2n1, (2.73)

and on putting the two together

S−1
c

∂

∂t
(∇2u1

3) = ∇4u1
3 − γ∇2n1 + γ∂3∂3n

1. (2.74)

Expanding the cell conservation equation (equation 2.70) gives

∂n1

∂t
= −∂3n

0u1
3 −

dK2

K1

[

∂i

((

1 − χeκm0
)

n1
)

〈p〉0i (2.75)

+∂3

((

1 − χeκm0
)

n0
)

〈p〉13 +
(

1 − χeκm0
)

n0∂i〈p〉1i

−∂i

(

χκm1eκm0
n0
)

〈p〉0
]

+ D0
ij∂i∂jn

1 + D1
33∂3∂3n

0 + ∂3n
0∂iD

1
i3.

To continue, we consider the terms ∂i〈p〉1i and ∂iD
1
i3. We know that

∂1ω2 = ∂3∂1u
1
1 − ∂1∂1u

1
3 and ∂2ω1 = ∂2∂2u

1
3 − ∂3∂2u

1
2. (2.76)
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Because ∂3(∂iu
1
i ) = 0, ∂1ω2 − ∂2ω1 = −∂i∂iu

1
3 and

∂1e13 + ∂2e23 =
1

2
(∂3∂1u

1
1 + ∂1∂1u

1
3 + ∂3∂2u

1
2 + ∂2∂2u

1
3)

=
1

2
(−∂3∂3u

1
3 + ∂1∂1u

1
3 + ∂2∂2u

1
3)

=
1

2
∇2u1

3 − ∂3∂3u
1
3. (2.77)

From the solution for the Fokker-Planck equation in equations 2.38 and 2.40 (with rear-

rangement) we have

∂i〈p〉1i = −η(J1 + α0J4)∇2u1
3 + ηα0(2J4 − 3K4)∂3∂3u

1
3, (2.78)

∂iD
1
i3 = −η(J2 − J1K1 + α0(J5 − K1J4))∇2u1

3 (2.79)

+ ηα0 (2(J5 − K1J4) − 3(K5 − 2K1K4)) ∂3∂3u
1
3. (2.80)

We define the functions Hi as

H1 = −η(J1 + α0J4), (2.81)

H2 = ηα0(2J4 − 3K4), (2.82)

H3 = −η(J2 − J1K1 + α0(J5 − K1J4)), (2.83)

H4 = ηα0(2(J5 − K1J4) − 3(K5 − 2K1K4)), (2.84)

which gives

∂i〈p〉1i = H1∇2u1
3 + H2∂3∂3u

1
3, (2.85)

∂iD
1
i3 = H3∇2u1

3 + H4∂3∂3u
1
3. (2.86)

Substituting equations 2.85 and 2.86 into equation 2.75 gives

∂n1

∂t
=

{

−∂3n
0 +

[

∂3n
0H3 −

dK2

K1

(

1 − χeκm0
)

n0H1

]

∇2 (2.87)

+

[

∂3n
0H4 −

dK2

K1

(

1 − χeκm0
)

n0H2

]

∂3∂3

+3α0η

[

∂3

(

dK2

K1

(

1 − χeκm0
)

n0

)

K4 − (K5 − 2K1K4)∂
2
3n0

]

∂3

}

u1
3

+

{

K1

λ
(∂1∂1 + ∂2∂2) + K2∂3∂3

dK2

K1
K1

[(

1 − χeκm0
)

∂3 + ∂3

(

1 − χeκm0
)]

}

n1

+dK2χκ∂3

(

m1eκm0
n0
)

.

Equations 2.74 and 2.87 are two equations in two unknowns, the independent variables u1
3

and n1. We introduce sinusoidal perturbations in x and y and an exponential component

in t by choosing the normal modes

u1
3 = U(z)ei(lx+my)+σt, n1 = Φ(z)ei(lx+my)+σt, m1 = M(z)ei(lx+my)+σt, (2.88)
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where σ is the growth rate of the perturbation and k =
√

l2 + m2 is the wavenumber. This

non-dimensional wavenumber is related to the non-dimensional wavelength via λ = 2π
k .

Substituting these modes into equation 2.74 gives

(

σ

Sc
+ k2 − d2

dz2

)(

k2 − d2

dz2

)

U = −Rd−1k2Φ, (2.89)

where the Rayleigh number R is defined by

R = γd =
Nvg∆ρH4K1

νρV 3
n τ2K2

(2.90)

and can be thought of as a ratio of the buoyancy forces that drive the instability to the

viscous forces that inhibit it. R is based on the depth of the full fluid layer as in Hill et

al. 1989 [63]. Since N is chosen to be the same as in Bees and Hill 1998 [9], R is also the

same as R in [9], except with average cell swimming speed defined as Vn instead of Vs.

Substituting the normal modes in equation 2.88 into the cell conservation equation 2.87

gives

(

PV
d2

dz2
− PHk2 − σ − dPV

[

(

1 − χeκm0
) d

dz
+

d

dz

(

1 − χeκm0
)

])

Φ (2.91)

+dPV
d

dz

(

χκeκm0
n0M(z)

)

=

{

d

dz
n0 − η

[

A1
d

dz
n0 +

dK2

K1
A2

(

1 − χeκm0
)

n0

]

d2

dz2

−η

[

dK2

K1
A3

d

dz

((

1 − χeκm0
)

n0
)

− A4
d2

dz2
n0

]

d

dz

+

[

A5
d

dz
n0 − dK2

K1
A6

(

1 − χeκm0
)

n0

]

ηk2

}

U(z),

where the definitions for the Hi from equations 2.81 - 2.84 are substituted back in and we

define new constants

PV = K2, (2.92)

PH =
K1

λ
, (2.93)

A1 = J1K1 − J2 + α0(−J5 + K1J4 + 2(J5 − K1J4) − 3(K5 − 2K1K4)), (2.94)

A2 = J1 − α0(J4 − 3K4), (2.95)

A3 = 3α0K4, (2.96)

A4 = 3α0(K5 − 2K1K4), (2.97)

A5 = −(J2 − J1K1 + α0(J5 − K1J4)), (2.98)

A6 = −J1 − α0J4. (2.99)
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To make comparisons between this expression and that of the gyrotaxis only case in

Bees and Hill [9] we write equation 2.91 as

(

PV
d2

dz2
− PHk2 − σ − PV dPQ(z)

d

dz
+ 2PV dχκPR(z)

)

Φ(z) + PV dχκPM (z)M(z)

=

(

dn0

dz
− ηP5(z; d)

d2

dz2
− ηP6(z; d)

d

dz
+ ηP7(z; d)k2

)

U(z), (2.100)

and we use the same labels, Pi, but now allow them to be functions of z, such that

PQ(z) =
(

1 − χeκm0
)

, (2.101)

PR(z) = eκm0
n0, (2.102)

PM (z) = eκm0

(

dn0

dz
+ κ(n0)2

)

, (2.103)

P5(z; d) = A1
dn0

dz
+

dK2

K1
A2

(

1 − χeκm0
)

n0, (2.104)

P6(z; d) =
dK2

K1
A3

d

dz

((

1 − χeκm0
)

n0
)

− A4
d2

dz2
n0 (2.105)

=
dK2

K1
A3

[

−χκeκm0
(n0)2 +

(

1 − χeκm0
) dn0

dz

]

− A4
d2n0

dz2
,

P7(z; d) = A5
dn0

dz
− dK2

K1
A6

(

1 − χeκm0
)

n0, (2.106)

where n0 = n0(z) and m0 = m0(z). At χ = 0 these equations are exactly the same as

the linear stability equations in [9] for the gyrotaxis only case, and can be used to verify

numerical results for this case by directly comparing neutral curves. The new terms on

the left hand side, compared to [9], are those involving PR(z) and PM (z). The no-flow

boundary condition u = 0 on z = 0,−1 becomes

U = 0,
dU

dz
= 0 on z = 0,−1. (2.107)

The no-flux boundary conditions 2.49 become

dΦ

dz
− d (1 − χ) Φ = 0 on z = 0 and (2.108)

dΦ

dz
− d

(

1 − χeκm0
)

Φ + dκχeκm0
n0M = 0 on z = −1. (2.109)

The boundary condition for M in equation 2.50 becomes

M = 0 at z = 0. (2.110)

The linear stability equations can be solved numerically or asymptotically in restricted

parameter ranges. Typical values of A1 to A6, PH and PV are shown in Table 2.3.
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Name Definition Value

A1 J1K1 − J2 + α0(−J5 + K1J4 + 2(J5 − K1J4) − 3(K5 − 2K1K4)) 0.0977

A2 J1 − α0(J4 − 3K4) 0.442

A3 3α0K4 −0.06

A4 3α0(K5 − 2K1K4) 0.0054

A5 −(J2 − J1K1 + α0(J5 − K1J4) 0.0929

A6 −J1 − α0J4 −0.398

PV K2 0.16

PH
K1
λ 0.26

Table 2.3: Values and definitions of constants Ai, PV and PH when λ = 2.2 and α0 = 0.2.

2.4 Asymptotic analysis in Model A for weak illumination

and large layer depth

In this section, we perform an asymptotic analysis for a deep layer, d−1 ≪ 1, and a small

value of χ, using similar techniques to Bees and Hill [9]. This allows us to learn more about

which terms dominate in the linear stability equations and can be used as a check for the

numerical code. What does large d mean physically? Using standard parameter values

from Table 2.1 we find d ≈ 435H (or d ≈ 113H for τ = 5). For an average experimental

depth of 4 mm, d = 174, which is sufficiently large to be used in the expansions for large d.

Shallow layers are not investigated, because although numerical solutions could be verified

in this way it is not a realistic parameter (d = 0.1 would give H = 2.3µm, which is much

smaller than any experimental depth). van Dyke 1964 [169] presents a full description of

the ideas involved in this analysis, where an outer solution far from the upper boundary

is matched to an inner solution.

We consider the case when σ = 0, k ∼ 1, d−1 ≪ 1 and χ ≪ 1, so that illumination is

weak. We write χ = χ−1d
−1, where χ−1 is order 1. Since χ is small this analysis is similar

to that of Bees and Hill [9] up to third order, so the gyrotaxis parameter is of the order

dn and PV , PH , P5, P6 and P7 are constants, not dependent on z, assumed to be order one

up to third order. This is valid as long as d is sufficiently large.

First, an asymptotic equilibrium solution for equation 2.54 must be found, after which

the asymptotic solutions for the linear stability equations 2.89 and 2.100 with boundary

conditions 2.107 to 2.110 are calculated for outer and inner solutions. These are then
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matched, and an expression for the Rayleigh number as a function of wavenumber R(k)

is found. Note that the asymptotic equilibrium solution calculated in Section 2.4.1 is not

the same as the analytic equilibrium solution calculated in Section 2.3.3, since the latter

was for the case of weak absorption, κ ≪ 1, and the solution required in this analysis is

for a deep layer with weak illumination, d ≫ 1 and χ ≪ 1.

2.4.1 Equilibrium solution

Multiplying the equilibrium equation 2.54 by d−1 and writing χ = χ−1d
−1 gives

d−1 d2m

dz2
+
(

d−1χ−1e
κm − 1

) dm

dz
= 0, (2.111)

with boundary conditions m = 0 at z = 0 and m = e−d−1
d at z = −1. χ does not

appear at leading order. For the outer solution, we expand m in powers of d−1, so that

m = m0 + d−1m−1 + d−2m−2 + O(d−3). At leading order

−m′
0 = 0, (2.112)

where prime denotes differentiation with respect to z. Solving gives m0 =constant. At the

next order

d2m0

dz2
+ χ−1e

κm0m′
0 − m′

−1 = 0, (2.113)

which gives m−1 =constant. Proceeding in this way we see that all the m−n will be

constants. We assume that d is sufficiently large that e−d is small and then, since m =

−d−1 at z = −1, we have that m−1 = −1 and m0 = m−2 = m−n = 0.

For the inner solution we scale zI = dz to magnify the top region of the fluid and

write the equilibrium equation as

m′′ +
(

d−1χ−1e
κm − 1

)

m′ = 0. (2.114)

We expand m in powers of d,

m =
∞
∑

n=0

d−nm−n, (2.115)

and, on expanding the exponential, we find the solution at leading order is

m0 = A0(e
zI − 1) (2.116)

and at the next order

m′′
−1 + χ−1e

κm0
m′

0 − m′
−1 = 0. (2.117)
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On matching the inner and outer solutions up to second order we consider the intermediate

region such that zζ ∼ 1 as d−1 → 0, where zζ = z
ζ(d−1)

and ζ(d−1) → 0 as d−1 → 0 and

satisfies 0 < d−1 ≪ ζ ≪ 1 ≪ d. Expanding the outer solution gives

m = −d−1 + O(d−1e−d), (2.118)

and expanding the inner solution using zζ = zI
d−1

ζ gives

m = A0(e
dζzζ − 1) + d−1m−1 + O(d−2) + ....O(d−1e−d) + .... (2.119)

This leads to A0 = 0 (since there is no O(1) part of the outer solution), so we solve

equation 2.117 to give m−1 = A1(e
zI − 1). The matching condition gives A1 = 1. At next

order

m′′
−2 − m′

−2 + χ−1e
κm0m′

−1 + χ−1e
κm0m′

0 = 0. (2.120)

Hence, we use the integrating factor e−zI to solve equation 2.120 for m−2 such that

m′
−2e

−zI = −χ−1zI + B2, hence (2.121)

m−2 = −χ−1(zI − 1)ezI + B2e
zI − A2. (2.122)

To find the constants we can apply the boundary condition that m = 0 at zI = 0, which

gives

χ−1 + B2 − A2 = 0. (2.123)

To find the other constant we can then match to the outer solution at third order, which

we know just gives m = 0, so

A2 = 0, (2.124)

hence B2 = −χ−1, and

m−2 = −χ−1zIe
zI . (2.125)

2.4.2 Linear Stability Analysis

As in linear stability analysis in Section 2.3.5, the equilibrium components from Section

2.4.1 are now denoted with a superscript 0. Writing equations 2.89 and 2.100 so that terms

can be expanded for large d and small κ, with σ = 0, gives

(D2 − k2)2U = −k2d−1RΦ, (2.126)
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and
(

PV D2 − PHk2 − PV d
(

1 − χeκm0
)

D + 2PV Gχκeκm0 dm0

dz

)

Φ (2.127)

+

(

PV dχκeκm0

(

dn0

dz
+ κn0 dm0

dz

))

M =

[

dn0

dz
− η

(

A1
dn0

dz

+
dK2

K1
A2

(

1 − χeκm0
)

n0

)

D2 − η

(

dK2

K1
A3

[

−χκeκm0 dm0

dz
n0

+
(

1 − χeκm0
) dn0

dz

]

− A4
d2n0

dz2

)

D

+η

(

A5
dn0

dz
− dK2

K1
A6

(

1 − χeκm0
)

n0

)

k2

]

U.

Outer solution

We use the equilibrium solution from the outer solution, which was simply m0 = −d−1

(since e−d will be exponentially small). Since dm0

dz = n0, n0 and any further derivatives

are zero. This simplifies the cell conservation equation so that we have

(

PV D2 − PHk2 − PV d
(

1 − d−1χ−1e
−κd−1

)

D
)

Φ = 0. (2.128)

Note that this has the same form as in Bees and Hill [9] where it is assumed that edz is

infinitesimally small. Expanding for d large gives
(

PV D2 − PHk2 − PV d

(

1 − d−1χ−1

(

1 − d−1κ +
d−2κ2

2
− ..

))

D

)

Φ = 0. (2.129)

If we expand Φ in powers of d−1 then at leading order

−PV DΦ0 = 0, hence Φ0 = constant. (2.130)

Using our boundary condition 2.109 on z = −1 we have that, since n0 = 0,

dΦ

dz
− d

(

1 − d−1χ−1e
−κ
)

Φ = 0. (2.131)

At leading order this gives Φ0 = 0. At the next order

PV D2Φ0 − PHk2Φ0 − PV DΦ−1 + PV χ−1DΦ0 = 0, (2.132)

so that Φ−1 = 0, using the boundary condition. At the next order

PV D2Φ−1 − PHk2Φ−1 − PV DΦ−2 − κχ−1PV DΦ0 + PV χ−1χ−1DΦ−1 = 0, (2.133)

which also gives Φ−2 = 0. In this way we can see that all the components of Φ are going

be zero, since the previous two components are zero, which will always lead to Φ−n = 0.

Using this in the Navier Stokes equation 2.126 gives

(

D2 − k2
)2

U = 0, (2.134)
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with U = DU = 0 on z = −1, which has solution

U = −kA(z + 1) cosh k(z + 1) + (A + B(z + 1)) sinh k(z + 1), (2.135)

where A and B are constants that can be expanded in terms of d−1. Note that this

outer solution is exactly the same as in Bees and Hill [9], which is as expected because in

both cases the concentration is very small, or zero, in the outer region due to an almost

exponential profile near the upper boundary.

Inner solution

For the inner solution we re-scale zI = dz to give the main model equations 2.126 and

2.127 as

(D2
I − d−2k2)2U = −k2d−5RΦ, (2.136)

and

(

PV D2
I − PV

(

1 − χeκm0
)

DI − PHk2d−2 + 2PV d−1χκeκm0
n0
)

Φ (2.137)

+

(

PV d−1χκeκm0

(

d
dn0

dzI
+ κ(n0)2

))

M

=

{

d−1 dn0

dzI
− dη

(

A1
dn0

dzI
+

K2

K1
A2

(

1 − χeκm0
)

n0

)

D2
I

−η

(

K2

K1
A3

[

−χκeκm0
(n0)2 + d

(

1 − χeκm0
) dn0

dzI

]

− dA4
d2n0

dz2
I

)

DI

+ηd−1

(

A5
dn0

dzI
− K2

K1
A6

(

1 − χeκm0
)

n0

)

k2

}

U.

For the inner equilibrium solution in the variable zI ,

m0 = d−1 (ezI − 1) − d−2χ−1zIe
zI + O(d−3). (2.138)

Thus

n0 = d
dm0

dzI
= ezI − d−1χ−1(zIe

zI + ezI ) + O(d−2), (2.139)

dn0

dzI
= ezI − d−1χ−1(zIe

zI + 2ezI ) + O(d−2), (2.140)

d2n0

dz2
I

= ezI − d−1χ−1(zIe
zI + 3ezI ) + O(d−2). (2.141)

We expand the exponential eκm0
,

eκm0
= eκd−1(ezI−1)−κd−2χ−1(zIezI ) = eκd−1(ezI−1)e−d−2χ−1κzIezI + h.o.t., (2.142)
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and expanding again in powers of d−1 gives

eκm0 ≈ 1 + d−1κ (ezI − 1) + d−2κ
(κ

2
(ezI − 1)2 − χ−1zIe

zI

)

(2.143)

+d−3

(

κ3 (ezI − 1)3

6
− κ2χ−1zIe

zI (ezI − 1)

)

+ O(d−3).

Substituting these expressions into equation 2.137 and re-writing by collecting terms of

each order in d together (separately on each side) gives

(

PV D2
I − PV DI

)

Φ + d−1 [PV χ−1DIΦ + PV χ−1κezI M ] (2.144)

+d−2
[

−PHk2Φ + PV χ−1κ(ezI − 1)DIΦ + 2PV χ−1κezI Φ

+PV κχ−1

(

κe2zI − χ−1(zIe
zI + 2ezI ) + κezI (ezI − 1)

)

M
]

+d−3
[

PV χ−1κ
(κ

2
(ezI − 1)2 − χ−1zIe

zI

)

DIΦ + 2PV χ−1κ(κezI (ezI − 1)

−χ−1(zIe
zI + ezI ))Φ + PV κχ−1

(

κezI

(κ

2
(ezI − 1)2 − χ−1zIe

zI

)

+κ(ezI − 1)(κe2zI − χ−1(zIe
zI + 2ezI )) − 2κχ−1e

zI (zIe
zI + ezI )

)

M
]

+ h.o.t

= −ηdezI
[

P5D
2
I + P6DI

]

U + ηχ−1

[

(zIe
zI + 2ezI )P5D

2
I + (zIe

zI + 3ezI ) P6DI

]

U

+d−1

[

ezI + ηχ−1
K2A2

K1
(κezI (ezI − 1) − χ−1(zIe

zI + ezI ))D2
I

+ηχ−1
K2A3

K1

(

κe2zI + κezI (ezI − 1) − χ−1(zIe
zI + 2ezI )

)

DI + ηk2ezI P7

]

U

+d−2

[

−χ−1(zIe
zI + 2ezI ) + ηχ−1

(

K2A2

K1

(

κ
(κ

2
(ezI − 1)2 − χ−1zIe

zI

)

ezI

−κχ−1(e
zI − 1)(zIe

zI + ezI )) D2
I

+
K2A3

K1

(

κ2e2zI (ezI − 1) − 2χ−1κezI (zIe
zI + ezI ) + κezI

(κ

2
(ezI − 1)2 − χ−1zIe

zI

)

−κχ−1(e
zI − 1)(zIe

zI + 2ezI )) DI − k2(zIe
zI + 2ezI )P7

)]

U.

The boundary conditions for the inner solution become

U = 0 and DIU = 0 on zI = 0, (2.145)

DIΦ −
(

1 − d−1χ−1

)

Φ = 0 on zI = 0. (2.146)

As in Bees and Hill [9] for the gyrotaxis only case, equation 2.136 implies that for a

non-trivial solution R ∼ d5U , and we examine the parameter space where the right hand

side of equation 2.144 does not appear at leading order. This requires U ≤ O(1) and

ηU ≤ O(d−2) to eliminate the first two terms on the right hand side and, since the rest

of the terms are at most order d−1, they will also not appear. Since we are looking for

solutions σ = 0, we expect there to be a self-consistent region where the model is valid. If
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we consider terms at third order then if none of the terms on the right hand side appear

we will obtain PHk2 = 0, which is not useful. If any terms appear before third order then

we will obtain R = 0 or η = 0, which is again unhelpful. Although these results are not

obvious at first glance they are quickly found by solving using the boundary conditions.

Thus we need terms at third order and not before and so we consider U ≈ d−n where

n = 1, 2, 3, .... and write

U =

∞
∑

m=n

U−md−m, Φ =

∞
∑

m=0

Φ−md−m, M =

∞
∑

m=0

M−md−m, (2.147)

and

R = d5−nR5−n + d5−n−1R5−n−1 + .... (2.148)

To first order equation 2.136 gives

D4
IU−n + R5−nk2Φ0 = 0 (2.149)

and equation 2.144 gives

PV DI(DI − 1)Φ0 = 0, (2.150)

with boundary condition on z = 0 at order one as

DIΦ0 − Φ0 = 0. (2.151)

Solving equation 2.150 with this boundary condition gives

Φ0 = ezI (2.152)

and substituting this into equation 2.149 gives

U−n = a−nz3
I + b−nz2

I + R5−nk2 (zI + 1 − ezI ) . (2.153)

Since ddM
dzI

= Φ then

dM0

dzI
=

ezI

d
, hence M0 = d−1(ezI − 1) (2.154)

and M0 will appear at a higher order then Φ0 as it is multiplied by d−1 from the scaling

for zI . At second order equations 2.136 and 2.144 become

D4U−n−1 + k2R5−nΦ−1 + k2R5−n−1Φ0 = 0 (2.155)
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and

PV DI(DI − 1)Φ−1 + PV χ−1DIΦ0 = 0, (2.156)

where the M0 term in equation 2.144 is omitted because it is a higher order than Φ0. This

has solutions

Φ−1 = −χ−1zIe
zI + BezI , and (2.157)

U−n−1 = a−n−1z
3
I + b−n−1z

2
I + k2R5−n−1 (zI + 1 − ezI ) (2.158)

+k2R5−n (χ−1 (zIe
zI − 4ezI ) − BezI + (3χ−1 + B)zI + 4χ−1 + B) .

where B is a constant of integration. As before, to match the inner and outer solutions up

to second order we consider the intermediate region such that zζ ∼ 1 as d−1 → 0, where

zζ = z
ζ(d−1)

and ζ(d−1) → 0 as d−1 → 0, and satisfies 0 < d−1 ≪ ζ ≪ 1 ≪ d. If we expand

the inner solution by writing zζ = zI
d−1

ζ , then writing the terms in order of size

U = d−n+2
[

ζ3da−nz3
ζ + ζ2b−nz2

ζ + ζ3a−n−1z
3
ζ + d−1zζζR5−nk2 + d−1ζ2b−n−1z

2
ζ

]

+O(d−n, ζ4d−n). (2.159)

For the outer solution we expand by writing z = ζzζ , so

U = d−ξ
[

−k cosh kA−ξ + sinh kA−ξ + sinh kB−ξ + (−k2 sinh kA−ξ

+ sinh kB−ξ + k cosh kB−ξ)ζzζ +

(

−k3 cosh k

2
A−ξ − k2 sinh k

2
A−ξ

+k2 sinh k

2
B−ξ + k cosh kB−ξ

)

ζ2z2
ζ

]

+ h.o.t. (2.160)

We proceed by matching terms in zζ . If we try and match any of the first three terms in

the inner solution then at least the first two terms of the outer solution will have to be zero,

which leads to the trivial solution. This leads us to conclude that a−n = a−n−1 = b−n = 0

and we match the fourth term in the inner solution, which implies ξ = n − 1 and

(A−n+1 + B−n+1) sinh k − kA−n+1 cosh k = 0, (2.161)

B−n+1 sinh k + B−n+1k cosh k − k2A−n+1 sinh k = k2R5−n, (2.162)

−k3 cosh k

2
A−n+1 − k2 sinh k

2
A−n+1 + k2 sinh k

2
B−n+1 (2.163)

+k cosh kB−n+1 = b−n−1.

We proceed by looking in the region of parameter space where η ∼ d−2 and n = 1, since

this is the most general region of parameter space, as shown by Bees and Hill [9]. The cell
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conservation equation at third order in equation 2.144 becomes

PV DI(DI − 1)Φ−2 + PV χ−1DIΦ−1 + PV χ−1κezI M0 − PHk2Φ0 + PV χ−1κ(ezI − 1)DIΦ0

+2PV χ−1κezI Φ0 = ezI U−1 − η−2e
zI (P5D

2
I + P6DI)U−1.

M is a higher order than Φ and so the M term in equation 2.144 for d−1 is used, and for

d−2 is omitted. To obtain the solvability condition we integrate from −∞ to 0 which gives

R4 =
2PH

(1 − η−2(P5 − P6))
, (2.164)

where

P5 = A1 +
K2A2

K1
and P6 =

K2A3

K1
− A4. (2.165)

The asymptotics break down for sufficiently large η−2(P5 − P6). This expression, at third

order, is the same as in the gyrotaxis case in Bees and Hill [9], since the effects of phototaxis

through the χ term have not yet appeared. Solving for the constants in equations 2.161,

2.162 and 2.163 gives

A0 =
R4k

2 sinh k

k2 − sinh2 k
, (2.166)

B0 =
k2R4(k cosh k − sinh k)

k2 − sinh2 k
, (2.167)

b−2 =
k3R4(k − cosh k sinh k)

k2 − sinh2 k
. (2.168)

At fourth order the cell conservation equation is

(PV D2
I − PV DI)Φ−3 + PV χ−1DIΦ−2 + PV χ−1κezI M−1 − PHk2Φ−1

+PV κχ−1(e
zI − 1)DIΦ−1 + 2PV χ−1κezI Φ−1 + PV χ−1κ(2κe2zI

−χ−1(zIe
zI + 2ezI ) − κezI )M0 + PV κχ−1

(κ

2
(e2zI − 2ezI + 1) − χ−1zIe

zI

)

DIΦ0

+2PV χ−1κ(κe2zI − κezI − χ−1(zIe
zI + ezI ))Φ0

= ezI U−2 − χ−1(zIe
zI + 2ezI )U−1 − η−2e

zI
[

P5D
2
I + P6DI

]

U−2

+ηχ−1

(

(zIe
zI + 2ezI )P5D

2
I + (zIe

zI + 3ezI )P6DI

)

U−1, (2.169)

where we recalculate M−1 from the new expression for Φ−1 as

M−1 = χ−1e
zI (1 − zI) + BezI − B − χ−1. (2.170)

To get the solvability condition we integrate from −∞ to 0 which gives

R3 =
4b−2

k2
− 2R4χ−1

(1 − η−2(P5 − P6))
. (2.171)
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Thus we obtain the expression for the Rayleigh number as a function of wavenumber for

a deep layer and weak illumination, by putting all the above information together, as

R =
2PHd4

(1 − η−2(P5 − P6))

[

1 + d−1

(

4k(k − cosh k sinh k)

k2 − sinh2 k
− 2χ−1

(1 − η−2(P5 − P6))

)

+ O(d−2)

]

.

This equation can be used directly to plot asymptotic solutions to the linear stability prob-

lem for comparison with numerical solutions when d is large and χ is small. This expression

is only valid for k ≤ O(1), and cannot predict the global most unstable wavenumber over

all k. For small χ this predicts the critical wave wavenumber (the smallest wavenumber

on the neutral curve) as zero, since the function is monotonically increasing in k.

As in Bees and Hill [9] we can also explore other areas of parameter space to build up

a full picture of all feasible space. For η ∼ d−1 with U ∼ d−1, the solvability conditions at

third order gives

R = − 2PH

(P5 − P6)η−1
, (2.172)

which gives a negative constant for R(k) and implies the asymptotics break down for small

k. If we use η ∼ d−3 and U ∼ d−1 the solvability conditions gives

R = 2PHd4

(

1 + d−1

(

η−3(P5 − P6) +
4k(k − sinh k cosh k)

k2 − sinh2 k
− χ−1

)

+O(d−2)
)

, (2.173)

which is monotonically increasing in k and has zero critical wavenumber for k ≤ O(1).

2.5 Numerical and asymptotical results for Model A

In this section we solve the linear stability equations valid for all parameter values nu-

merically using FORTRAN 77. We use a fourth order finite difference numerical scheme

called ‘NRK’, implemented by Cash and Moore 1980 [18], which iterates using a Newton-

Raphson-Kantorvich algorithm. The linear stability equations are seventh order and the

Rayleigh number R is the eigenvalue for the problem. We investigate at what values of R

and k the solution becomes unstable by plotting neutral curves, which are defined as the

locus of points where the real part of the growth rate is zero, Re(σ) = 0. If Re(σ) < 0

the perturbation dies away and the equilibrium solution is stable, but if Re(σ) > 0 the

perturbation grows and the system is unstable, so that the region under the neutral curve

is stable and above is unstable. If the imaginary part of σ is also zero then the principle of

exchange of stabilities is said to be valid (Chandrasekhar 1961 [19]) and the perturbation
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is stationary or non-oscillatory. However, if Im(σ) 6= 0 then overstable, or oscillatory, solu-

tions exist. Such solutions were found in this model. For each choice of the key parameters

there are an infinite number of branches of the neutral curve Rn(k), where n = 1, 2, 3....

We look for the branch on which R has its minimum at (kc, Rc), which describes the initial

disturbance before non-linear affects occur. If kc 6= 0, the critical wavenumber is also the

most unstable mode to grow from equilibrium (when R > Rc). However, if the critical

wavenumber is zero then kc is not the most unstable mode, since if the Rayleigh number

is increased above Rc the growth rate for kc = 0 is still zero, as the neutral curve in this

case includes the R axis, and this mode will never grow. Thus a different, non-zero mode

would have the maximum growth rate and would be the most unstable mode. Solutions

consist of stacked convection cells and are mode n if there are n convection cells (or if the

solution for U crosses the x-axis n − 1 times). The critical wavenumber was usually on

the R1(k) branch (mode one) in this model.

Short routines to find the neutral curves for a range of values of wavenumber k were

used. Initial guesses for the cell concentration Φ and the fluid velocity U , as well as an

initial guess for the Rayleigh number, were input into the program and these trial solutions

were modified until good convergence was achieved. The solution for the first wavenumber

k was then employed as the trial solution for the next step in k, so that as long as the steps

between wavenumbers were sufficiently small a smooth neutral curve could be traced out.

Providing a good guess for the Rayleigh number for the mode one solution was important,

and the asymptotics helped to provide a suitable range. Convergence was always found to

at least six significant figures. When the parameter d, the non-dimensional layer depth,

was large and χ small, the size of mesh was particularly important. For this reason, and

to allow comparisons with Bees and Hill 1998 [9], we scale the linear stability equations

2.89 and 2.100 using zI = dz (as was done for the equilibrium solution), so that the new

layer depth is −d ≤ zI ≤ 0, and we use a variety of grids to find smooth solutions. This

scaling improves the numerics when d is large and χ small. Changing the grid structure

or grid size beyond a certain level did not alter the form of converged solutions, helping to

verify the program. Up to 513 grid points were used to obtain convergence, although this

was not always necessary and the program often converged well with less. Convergence

was hard to obtain for more extreme parameter values, such as for large χ or η. In these

cases the parameter in question had to be increased by a small amount each time and the

solution for a particular k was saved and used as the initial guess for the increased value
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of the parameter in next run. In this way, solutions for the full range of interest of the

parameters were found.

The large number of parameters make it unfeasible to investigate the full parameter

space. The parameters from the Fokker-Planck equation, PV , PH , and A1 to A6 depend

on λ and α0, and were not varied in this study, since it is predominately the balance

between phototaxis and gyrotaxis we want to explore. We fix λ = 2.2, as in Bees and

Hill 1998 [9], which is within the range suggested by Pedley and Kessler 1990 [130]. We

also fix α0 = 0.2. We vary the non-dimensional layer depth, d, the wavenumber, k, the

gyrotaxis parameter, η, the phototaxis parameter, χ, and the measure of the strength

of absorption of the cells, κ, using specific values to illustrate the general behaviour of

the system. Where possible, parameters were chosen so that comparisons with Bees and

Hill 1998 [9] and Vincent and Hill 1996 [172] can made. However, direct comparisons

with [9] can only be made when χ = 0, and direct comparisons can not be made between

model results for χ compared to results using the phototaxis parameter C in [172]. This

is because the phototaxis parameter C, the position at which I = Ic, and χ cannot be

directly compared, since at C = 0 the cells collect at the upper boundary and are still

phototactic, so that shading occurs, whereas in this model χ = 0 is equivalent to the case

of no illumination, so there is only gyrotaxis and gravitaxis and no phototaxis. Note also

that results in [172] are only valid for the case of weak absorbtion, κ ≪ 1, and there are

errors that mean solutions are only correct when C is at the upper or lower boundary

or located at the mid-point of the layer. However, qualitative rather than quantitative

comparisons can still be made with both Vincent and Hill [172] and Bees and Hill [9].

2.5.1 Comparison of asymptotical and numerical results

Figures 2.5 and 2.6 show asymptotical and numerical neutral curves for a deep layer (d−1

small) where χ = d−1, κ = 1 and d = 40 (in Figure 2.5) or d = 200 (in Figure 2.6).

Good agreement is found between asymptotics and numerics when k ≤ O(1), with better

matchings found for smaller values of d2η and larger d, as expected (since the asymptotics

are valid as d → ∞). The numerics and asymptotics show the same trend as η is increased

from d2η = 0 in both cases, where the system is slightly stabilized for k ≤ O(1). The

numerical results for k > O(1) show that increasing η destabilizes the system, and a non-

zero critical wavenumber appears in all cases when η is sufficiently large. The asymptotics

cannot predict this as they are not valid for k > O(1).
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The asymptotics break down when d = 40 with d2η = 4, as R is negative for k = O(1).

When d = 200 a larger d2η is required for the order one term to become negative. For

d2η > 4 the Rayleigh number tends to infinity for small k, and the value of η for which

this first occurs can be found from equation 2.172 as

ηc = d−2

P5−P6
, (2.174)

since this is where the expression for R becomes singular. For λ = 2.2 and α = 0.2,

ηc = 4.2, so for η > 4.2 the asymptomatic break down for k ≤ O(1). This is consistent

with numerical results (shown in Figure 2.6, for example, where for small k, R tends to

infinity when d2η > 4).
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Figure 2.5: Asymptotic (dashed) and numerical (solid) curves of neutral stability for Model

A, where d = 40, κ = 1, and χ = d−1. The three curves are for d2η = 0, 2 and 3.

On setting d2η = 2 and varying dχ < 2 good agreement is found between asymptotic

and numerical results, with closer matches found for d = 200 compared to d = 40. Larger

values of χ destabilize the system. The χ term in the asymptotic expansion in equation

2.172 is negative and so, if χ is large, the Rayleigh number becomes negative and the

asymptotics are not valid for large χ−1.

The good agreement between asymptotic and numerical results, as shown in Table 2.4,
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Figure 2.6: Asymptotic (dashed) and numerical (solid) curves of neutral stability for

Model A, where d = 200, κ = 1 and χ = d−1. The five curves are d2η = 0, 2, 4, 8 and 16.

Numerical oscillatory solutions are shown by dot-dashed lines.

1e+09

1e+10

1e+11

100

R
-

R
ay

le
ig

h
n
u
m

b
er

k - wavenumber

d2η = 8

d2η = 16

Figure 2.7: Asymptotic (dashed) and numerical (solid) curves of neutral stability for Model

A, where d = 200, κ = 1 and χ = d−1 - a close up of the cases d2η = 8 and 16. Numerical

oscillatory solutions are shown by dot-dashed lines, and here the enlarged region shows

more clearly that there is one oscillatory branch for each value of d2η.
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d d2η dχ k Rc numerical Rc asymptotical

40 2 0 0.1 3.16 × 106 3.08 × 106

40 2 1 0.1 2.89 × 106 2.84 × 106

200 2 0 0.1 1.67 × 109 1.67 × 109

200 2 1 0.1 1.64 × 109 1.64 × 109

200 2 2 0.1 1.61 × 109 1.61 × 109

Table 2.4: Summary of asymptotic and numerical results for a deep layer with weak

illumination, where κ = 1 and standard parameters were used.

and the similar trends of behaviour for small χ and η when k ≤ O(1), help to verify the

numerical analysis.

2.5.2 Exploring changes in layer depth d

Asymptotic and numerical results are shown in Figures 2.5 and 2.6 for two different layer

depths, d = 40 and d = 200, and for small values of χ = d−1. Large values of d stabilizes

the suspension, as in Bees and Hill [9], so that for all values of χ increasing the layer depth

will increase Rc.

Flow and concentration profiles in Figures 2.8 and 2.9 show that for large layer depth

d (Figure 2.9) the perturbations for small χ are closer to the surface of the fluid layer than

for smaller d (Figures 2.8). Perturbations for large χ (χ = 1.03) move down the fluid layer

as d increases, so that large χ has a greater effect on the perturbation profile (compared

to the case χ = 0) when d is also large.

To study the effects of varying η and χ in the following sections we choose layer depth

as d = 20, since this seems a reasonable depth when considered dimensionally (H = 0.18cm

if τ = 5s, which is an approximate typical layer depth used experimentally) and gives good

convergence when solving using the numerical program.

2.5.3 Exploring the effects of the phototaxis parameter χ on the critical

wavenumber kc and Rayleigh number Rc

Figure 2.10 shows results for a range of χ values when d2η = 2, and Figure 2.11 for d2η = 4,

where the bold line is the neutral curve for χ = 0 and is the only curve that can be directly

compared with the results of Bees and Hill [9]. These values of η were chosen to see how

χ affects the neutral stability curve when the critical wavenumber is zero in the gyrotaxis
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Figure 2.8: Flow and concentration profiles for Model A, where d = 0.1, κ = 1.2, η = 0.1

and k = 10, with χ = 0.1 in Figures (a) and (b), and χ = 1.03 in Figure (c) and (d).

These solutions are mode one.
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Figure 2.9: Flow and concentration profiles for Model A, where d = 20, κ = 1.2, d2η = 4

and k = 10, with χ = 0.1 in Figures (a) and (b), and χ = 1.03 in Figures (c) and (d).

These solutions are mode one.
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only case χ = 0 (d2η = 2), compared to a case for which there is a non-zero wavenumber

when χ = 0 (d2η = 4).
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Figure 2.10: Curves of neutral stability for Model A, where d = 20, κ = 1.2, d2η = 2 and

χ varies. The bold line is the special case χ = 0 where there is no phototaxis.

For both values of η, as χ < 1 is increased from zero (and the equilibrium sublayer

is located at z = 0), the neutral curve is first destabilized for small wavenumbers and

stabilized for larger wavenumbers, leading to kc = 0. This destabilization of small k

indicates there is a region in parameter space where setting χ > 0 causes the critical

wavenumber to be zero when it was previously non-zero for gyrotaxis and gravitaxis only

(i.e. when χ = 0). This is demonstrated in Figure 2.12 for d2η = 4, where kc and Rc

are plotted against χ, and both decrease and then increase, and kc begins as non-zero

and becomes zero for some 0 < χ < 1. Vincent and Hill [172] also find that Rc initially

decreases as C increases, although in that case the position of the sublayer was not at

z = 0.

As χ increases further from χ = 1, the sublayer at equilibrium moves down from z = 0,

creating a stable region overlying an unstable region and the peak of the concentration

profile at equilibrium decreases for χ > 1, so that there is a greater spread of cells through-

out the layer at equilibrium. The appearance of the stable region and the greater spread
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Figure 2.11: Curves of neutral stability where d = 20, κ = 1.2, d2η = 4 and χ varies. The

bold line is the special case χ = 0 where there is no phototaxis.

of cells at equilibrium will naturally stabilize the system. When χ ≥ 1.02 for d2η = 2 and

χ ≥ 1.03 for d2η = 4 the Rayleigh number at every wavenumber is larger than for the

case χ = 0, so all wavenumbers are stabilized for χ sufficiently large. Small wavenumbers

are stabilized more than large wavenumbers, which results in a dip forming on the neutral

curve so that for every η the critical wavenumber, kc, becomes non-zero as χ is increased.

Growth rates and the neutral curve for various values of R when χ = 0.5 and d2η = 2 are

shown in Figure 2.13.

These results are qualitatively similar to the case for η = 0 (no gyrotaxis; results not

shown). Thus for every d and η, if χ is sufficiently large there exists a non-zero value

of the critical wavenumber kc. Similarly, in the phototaxis only model of Vincent and

Hill [172], critical wavenumbers such that kc > 0 were found as the position, z = −C, at

which I = Ic for an individual was varied (although direct comparisons cannot be made

and errors were found in that work). However, we do not find loop or oscillatory solutions

for any χ when η is small, unlike Vincent and Hill [172].

We also investigate the mode of the solutions, in terms of how many vertically stacked

convection cells there are, as χ is varied. We find that for both d2η = 2 and d2η = 4, as
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Figure 2.12: Plots of critical Rayleigh number (circles) and critical wavenumbers (crosses)

for Model A, where d = 20, κ = 1.2, d2η = 4 and χ varies.
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Figure 2.13: Figure (a) shows curves of neutral stability, where d = 20, d2η = 2, χ = 0.5

and Rc = 6.20 × 104 for Model A. Figure (b) shows the growth rate σ plotted against

wavenumber.
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Figure 2.14: Equilibrium solutions and streamlines for Model A, where d = 20, κ = 1.2,

d2η = 4 and χ = 1.03 and χ = 1.04. The wavenumber in each case is the critical

wavenumber kc.
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χ increases from χ = 1 the solutions change from mode one to mode two for small k and

the critical wavenumber kc switches to mode two for sufficiently large χ. For d2η = 4 and

χ = 1.03 the equilibrium in Figure 2.14(a) shows a region with stable cell density gradient

overlying an unstable region. The flow profiles in Figure 2.14(b) show the solution at kc

is mode one (and is also mode one for 0.1 < k < 10), with only one convection cell filling

the whole fluid layer. This is an example of penetrative convection that occurs in a wide

range of situations (Straughan 1993 [161]), where convection motions from the unstable

layer penetrate into the stable layer and drive fluid motions throughout the whole layer.

For χ = 1.04 a small convection cell appears at the top of the fluid layer for small k and

kc and the solution becomes mode two since full penetrative convection does not occur;

the path of least resistance is two separate convection cells. Vincent and Hill also found

mode two solutions, with the second convection cell forming at the bottom of the layer for

k < kc when C ≤ 0.5 and at the top for large C, with kc mode two. The parameters χ

used here and C in [172] are similar and, interestingly, we find that our results for large χ

follow similar trends to large C.

2.5.4 Exploring the effects of the gyrotaxis parameter η on the critical

wavenumber kc and Rayleigh number Rc

In this section, the effects of varying η for the case of weak illumination, where χ = 0.5 and

the peak of the equilibrium concentration is at the top of the layer, and strong illumination,

where χ = 1.03 and the peak of the equilibrium concentration profile is approximately half

way down the suspension, are shown in Figure 2.15 and Figure 2.16.

For χ = 0.5 in Figure 2.15 (and χ = d−1, where d = 40, in Figure 2.5) increasing

d2η from d2η = 0 stabilizes small wavenumbers and destabilizes large wavenumbers. The

results for χ = 1.03 and small η are somewhat different to those for weak illumination

(small χ). In Figure 2.16, the initial wavelength when d2η = 0 is non-zero, and little

difference is found between the neutral curves for d2η ≤ 32. This shows that for strong

illumination (large χ) large values of η are needed to have a substantial effect on the system.

For d2η = 32, small wavenumbers are slightly stabilized (k < 0.1), wavenumbers between

k = 0.1 and k = 2.9 are slightly destabilized and wavenumbers k > 2.9 are stabilized. For

d2η > 32, large wavenumbers are stabilized more than small wavenumbers, as is the case

when χ = 0.5. Thus for all χ there is a non-zero critical wavenumber kc for d2η sufficiently

large, or all d2η if χ is sufficiently large, and kc increases and Rc decreases as η increases
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Figure 2.15: Curves of neutral stability for Model A, where d = 20, κ = 1.2, χ = 0.5 and

η varies.
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(so that the system is destabilized). This is the same trend as in the gyrotaxis only case

in Bees and Hill [9].

For d2η ≥ 16 for χ = 0.5, and d2η ≥ 64 for χ = 1.03, the neutral curves break into

two sections, which turn back on themselves to form loops. The lower branches of these

loops have mode one solutions for all k, but this smoothly adjusts to a mode two as the

loops turn into the upper branch, with the second, smaller, convection cell at the top of

the layer for χ = 0.5 and the bottom of the layer for χ = 1.03. This is shown in the

flow profiles for χ = 1.03 in Figure 2.17. For both values of χ, the critical wavenumber

appeared on the bottom branch of the loop and was mode one. These looped solutions

were not found in Bees and Hill [9], although they do exist for the gyrotaxis only case.

Similar solutions were found in the phototaxis only model of Vincent and Hill [172], where

the second convection cell was found at the top of the suspension layer for large C and

the bottom for small C, which is the opposite to the trend in χ found here. Vincent and

Hill [172] also found loop solutions for small C, but here loop solutions are found only if

η is sufficiently large, regardless of χ. The mode one section of the neutral curve for small

k was found for d2η = 64 when χ = 1.03, but was only partially found for d2η ≥ 16 for

χ = 0.5 and so is not shown in Figure 2.15.

Oscillatory solutions were found for d2η ≥ 16 when χ = 0.5 and d2η ≥ 64 when χ =

1.03. Neutral curves that loop back on themselves were always found to have oscillatory

solutions (as in Vincent and Hill [172]) with a single oscillatory branch bifurcating from

the stationary branch at a point k0, and with k < k0 for all values of k on this oscillatory

branch. In all cases investigated the oscillatory branch did not have a smaller minimum

than the stationary branch. The oscillatory branch for χ = 1.03 and d2η = 64 bifurcated

from the stable solution at k0 = 2.25 and was found to be mode one at this point, changing

smoothly to mode two as k decreased. Hill et al. 1989 [63] found oscillatory solutions for

the gyrotaxis only case due to the interaction of gyrotaxis and fluid shear close to the rigid

upper boundary. Vincent and Hill [172] also found oscillatory solutions in the phototaxis

only model. In the model presented here, the mechanisms for overstability can not be

solely explained by either explanation, since overstability only occurs when gyrotaxis is

strong and can occur even when the peak of the equilibrium solution is not located at the

upper boundary. The two mechanisms for overstability are presented in section 2.6.
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Figure 2.17: Flow profiles for Model A, where d = 20, κ = 1.2, χ = 1.03, and d2η = 64,

with k = 2.5 in (a) and k = 5 in (b).

2.5.5 Exploring the effects of the absorption parameter κ on the critical

wavenumber kc and Rayleigh number Rc

Figure 2.18 shows neutral curves for different values of κ when d = 20, χ = 1.03 and

d2η = 2. κ and χ act in similar but opposite ways, where large κ destabilizes the system

compared to κ = 0.8, so that Rc and kc both decrease as a function of increasing κ. This

is what we would expect because κ and χ also have similar but opposite effects on the

equilibrium solutions.

2.5.6 Using a stress-free boundary condition for χ < 1

To further investigate the destabilization of the neutral curves for small χ, we compute

stability solutions for small χ with a stress-free boundary condition at the upper surface

given by

d2U

dz2
= 0 at z = 0. (2.175)

From results shown in Figure 2.19, it is clear that for χ < 1 using the stress-free boundary

condition the curves of neutral stability are not destabilized as much compared to the

same parameter values using the rigid, no-flow boundary condition. This implies that the

destabilization found for small χ is in part due to the no-flow boundary condition on the

upper surface.
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Figure 2.18: Curves of neutral stability for Model A, where d = 20, χ = 1.03, d2η = 2 and

κ = 0.8, 1.2 and 1.6.

2.5.7 Exploring the bifurcation from steady solutions with one branch

to oscillating solutions with two double loop branches

Using the values of J4 and J5 corrected from Bees and Hill [9] with χ = 0 (for the case of

no phototaxis), we find that as η varies there is a bifurcation between two neutral curves

of different modes, to two loops which are mixed mode. This is shown in Figure 2.20,

where for d2η = 7.5 there are two separate branches of the neutral curve, the top of which

is mode two and the lower mode one. For d2η = 8 these two branches are close together,

and as d2η is increased further the mode one and mode two neutral curves split and two

separate loops form. Both loops are mode one on the lower part and change smoothly

to mode two as they cycle to the upper section. The loop for large k has an oscillatory

solution, which is mode one where it meets the stationary curve, and as k decreases it

smoothly changes to mode two.
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d d2η χ κ kc Rc

200 0 1
d 1.0 0 8.58 ×108

200 16 1
d 1.0 257.71 3.09 ×109

40 0 1
d 1.0 0 1.56 ×106

40 2 1
d 1.0 0 2.88 ×106

20 2 0 1.2 2.44 2.38 ×105

20 2 0.5 1.2 1.16 6.19 ×104

20 2 1.0 1.2 0 1.27 ×105

20 2 1.02 1.2 0 3.25 ×105

20 2 1.04 1.2 4.40 1.19 ×107

20 4 0 1.2 7.66 4.56 ×105

20 4 0.5 1.2 1.91 7.07 ×104

20 4 1.0 1.2 0.0 1.12 ×105

20 4 1.02 1.2 0.29 3.22 ×105

20 4 1.04 1.2 4.75* 1.21×107

Table 2.5: Summary of the linear stability results for Model A, in terms of critical

wavenumber, kc, and Rayleigh number, Rc, for λ = 2.2 and α0 = 0.2. The star indi-

cates the solution at the critical wavenumber, kc, is mode two.

2.5.8 Table of Results

Sample results for Model A are summarized in Table 2.5. The critical wavenumber kc

and the corresponding critical Rayleigh number Rc are shown for a variety of parameter

values. The critical wavenumber was mode one unless indicated by a star, in which case

it was mode two. In all cases, even when oscillatory solutions were found, kc was on the

non-oscillatory section of the curve.

2.6 Discussion

In this chapter, three novel modelling approaches were presented in order to extend the

stochastic gyrotaxis model of Pedley and Kessler 1990 [130] to include phototaxis. Light

intensity was modelled using the Beer-Lambert law for a self-shading description of light

through a layer. In particular, a photo-kinesis like model was explored, where the cells

change their swimming speed with light intensity I (termed Model A). Equilibrium so-
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lutions were found and perturbed to conduct a linear stability analysis. The stability

equations were then solved numerically and asymptotically for a deep layer. Good agree-

ment was found between results using these methods and trends in neutral curves, and

flow and concentration perturbation profiles, were shown in section 2.5 for a range of pa-

rameter values. Here, we discuss the physical interpretation of these curves and compare

these results to other works, specifically the phototaxis only model of Vincent and Hill

1996 [172] and the gravitactic and gyrotactic model of Pedley and Kessler 1990 [130] that

was analysed in a layer of finite depth by Bees and Hill 1998 [9].

At equilibrium, when χ = 0, there is no light and the cells exhibit only gravitaxis, and

the equilibrium profile is an exponential function with maximum cell concentration at the

top of the layer, as in Bees and Hill [9]. For 0 < χ < 1, the maximum is still at z = 0

but the spread of cells throughout the top of the layer is greater than for χ = 0, because

there is some light to which the cells respond, so that the swimming speed is slightly

reduced. χ = 1 refers to the case where the light intensity at the surface is equal to the

critical light intensity (Is = Ic), so if there was just one cell in the layer then it could be

at any vertical position and still get the optimum light Ic. It is, therefore, the effect of

the cells creating their own gradient in light due to shading that determines the position

of maximum concentration.

For χ > 1, the cells near the top, close to the light source, have too much light and

swim backwards (Vs(I) < 0) whereas the cells below do not have enough light due to

shading and swim upwards. This results in the concentrated sublayer at equilibrium being

located below the upper boundary, not at z = 0, which creates a gravitationally stable layer

overlying an unstable layer (the location of which is dependent on χ). The concentration

profile has the highest spread and smallest maximum when the maximum concentration

is around z = −d
2 and the concentration profile is symmetric. This was also found by

Ghorai and Hill [46]. When χ is large the majority of cells swim downwards, resulting in

an almost exponential distribution with maximum at z = −d. d = 200 gives qualitatively

the same trend, with a more peaked distribution for χ = 0 and a higher sensitivity to

χ > 1. For the linear stability analysis, increasing d increases the critical Rayleigh number

Rc, as also observed in Bees and Hill [9] and Vincent and Hill [172].

Equilibrium profiles for the absorption coefficient, κ, exhibit opposite trends to those

found for χ. Large κ moves the concentrated sublayer upwards and makes it more peaked,

because increased absorption causes more shading of the cells lower down in the layer,
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which induces those cells to swim upwards. Thus the linear stability results for κ increasing

show similar but opposite trends to χ increasing, as shown in Figure 2.18. These trends

for χ are discussed below.

This model is designed so that when χ = 0, there is no light and we return to the

case of gravitaxis and gyrotaxis only in a finite layer, as in Bees and Hill [9]. As such,

we find exactly the same stability solutions as [9]. Vincent and Hill 1996 [172] find loop

solutions with mode two sections when the position of the sublayer, denoted C, is close to

the upper boundary. These solutions were not found here, but solutions are not expected

to be similar as their model does not include gravitaxis or gyrotaxis.

The interactions between phototaxis and gyrotaxis are the main focus of this work.

For weak light intensity (small χ) increasing η from zero slightly stabilizes small wavenum-

bers and destabilizes large wavenumbers. Small wavelength instabilities are destabilized

because the gravitactic instability is reinforced by the gyrotactic instability, in which cells

swim towards the downwelling regions and the added mass of these cells amplifies the

downwelling, so the plumes become denser and more focussed. As η increases a minimum

appears on the neutral curve and we find that for all layer depths d, if η is sufficiently

large the critical wavenumber kc is non-zero. This is consistent with results in Bees and

Hill [9] for the gravitactic and gyrotactic only model.

From the case χ = 0 we conclude that small wavenumber instabilities are caused by

overturning at the boundary and large wavenumber instabilities by gyrotaxis, since the

dip on the curve for large wavenumbers is formed when the gyrotaxis parameter η is

increased from zero, and the small wavenumber instability is relatively unaffected by η.

The upper no-slip boundary causes viscous damping and inhibits fluid motions, hence

helping to prevent unstable flows near the boundary. We hypothesize that the greater

spread of cells away from the boundary for χ < 1 at equilibrium permits greater fluid flow

associated with any emergent overturning instability. Thus even though the concentration

gradient is slightly reduced, the overturning instability is enhanced and the system is less

stable than if χ = 0. The gyrotactic instability for large wavenumbers is not dependent

on the boundary, and so large wavenumbers due to gyrotaxis are not destabilized as χ

increases and are, in fact, slightly stabilized. As χ increases further the spread of cells

at equilibrium also increases, and gradients drop sufficiently to stabilize the system. Less

destabilization occurs for the stress-free boundary at z = 0 for small χ compared to the

rigid boundary, backing the hypothesis that it is the greater spread of cells away from the
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upper boundary permitting greater fluid flow that destabilizes small wavenumbers when

χ is small. This initial decrease and subsequent increase in stability was also found in

Vincent and Hill [172] as C, the position of the sublayer, moved down the fluid layer. In

that case, the formation of a small stable region at the top of the layer relaxed the effect

of the boundary condition at z = 0 and stabilized the system. Although the trend in C

is similar to the trend found here for χ, the destabilization mechanism is not same, as the

destabilization occurs in this model when the peak of n is still at the top of the layer and

there is no stable region.

The appearance of the stable region overlying an unstable region at equilibrium for

χ > 1 naturally stabilizes the system for all wavelengths, so that Rc increases as χ increases,

and we find there is a direct relationship between the size of the unstable region and

the stability of the system. Similarly, in Vincent and Hill [172], Rc also increased as

the sublayer at equilibrium moved further down the fluid layer, because the effect of

destabilization away from the boundary was offset by the increasingly large stable region.

Similar effects were also described by Veronis [170] and discussed by Matthews 1988 [109]

and Whitehead and Chen 1970 [177] for thermal instability and convection of a thin fluid

layer bounded by a stable stratified region. The decrease in size of the unstable region

as χ increases means that it is harder for the convection cells to circulate due to the

proximity of the lower boundary. The small wavelength instabilities do not take up the

whole layer, so will not be as affected by the appearance of a stable region compared to

the large wavelengths, which would rather utilize more of the layer and, hence, are more

restricted. This leads to large wavelengths stabilizing more rapidly than small wavelengths

as χ increases, resulting in a non-zero critical wavenumber for sufficiently large χ. As χ

increases, the system tries to drive smaller and smaller wavelength instabilities in the

shrinking unstable region, so that the critical wavenumber increases from kc = 0 with

χ > 1 (see Figure 2.12, which summarizes these results). When the concentrated layer of

cells is at the bottom of the suspension, z = −d, we expect the system to be almost fully

stable, since there is no unstable density stratification within the layer. Neutral curves

become hard to trace for large χ, and for large values of R, and are likely mainly due to

gyrotaxis (which does not require a density gradient).

We hypothesize that there are at least two different destabilizing processes, one from

phototaxis combined with gravitaxis and one from gyrotaxis. These instabilities combine

to give a wider neutral curve than those found for the gravitactic and gyrotactic only cases
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in Bees and Hill [9], and the critical wavenumber kc increases as χ > 1 increases. In one

respect, gyrotaxis and phototaxis act in opposite ways in this model, since sufficiently large

gyrotaxis destabilizes the system compared to the case η = 0, but introducing phototaxis

for any η stabilizes the system compared to χ = 0 if χ is large enough.

For 1 < χ < 1.03 penetrative convection occurs at the critical wavelength, where

circulation in the unstable region penetrates into the stable region and the resulting fluid

motion uses the whole suspension depth. As the stable region increases in size with χ, the

energy required for the instabilities to penetrate into the stable region is more than the

energy required to cycle round in the unstable region, and the critical wavelength becomes

mode two when χ is sufficiently large. Penetrative convection and mode two solutions for

kc, when C is sufficiently large, were also found by Vincent and Hill [172].

We find that for all values of χ with large values of η the neutral curve splits in two and

the neutral curve loops back on itself for high wavenumbers. Such loops were found for

the phototaxis only case in Vincent and Hill [172] but not for the gravitaxis and gyrotaxis

only case with χ = 0 in Bees and Hill [9]. The upper branch changes smoothly from a

mode one to a mode two solution by the formation of a second convection cell at the top

for small χ and χ = 0, and at the bottom of the layer for large χ.

For large η, when the neutral curves were found to form loops, oscillatory solutions were

always found. However, the critical wavenumber kc was always found to be on the steady,

non-oscillatory branch. Oscillatory solutions occur when there is competition between

a stabilizing and a destabilizing process. Unlike Bees and Hill [9], we find oscillatory

solutions even when χ = 0 for the gravitactic and gyrotactic only case. Hill et al. [63] found

that overstability can occur in a suspension of purely gyrotactic algae using a deterministic

model, as long as the upper boundary of the layer is rigid. They showed that the interaction

of gyrotaxis and fluid shear close to the rigid surface can result in a net flux of cells away

from the concentrated downwelling regions. If the flux were big enough it would eventually

reverse the direction of the bioconvection cell and cause overstability. We hypothesize that

this is also the mechanism for overstability in Model A, using the Fokker-Planck equation

for orientation, when χ = 0.

Oscillating solutions were also found in Model A when η was large and χ 6= 0. We

expect that the oscillating solutions when 0 < χ ≤ 1 are also caused by the interaction

with the boundary, since the peak of the equilibrium concentration profile is at z = 0. For

η large and χ > 1, oscillating solutions can not be attributed to the effect of the boundary,
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since the sublayer forms at z 6= 0 due to the balance between diffusion, upswimming due

to gravitaxis and the flux due to phototaxis. Vincent and Hill [172] found oscillations in

their phototaxis only model and proposed a mechanism. However, this mechanism is not

apparent in our system.

Light

Figure 2.21: A schematic diagram to show how oscillations arise for photo-gyrotactic cells.

Black lines show the initial instabilities and light grey lines indicate instabilities at a later

time. Dashed lines are cell swimming, solid lines are fluid flow and dotted lines indicate

illumination. When an instability arises, cells deep in the fluid layer are shaded by those

above and swim upwards, towards downwelling fluid. Cells at the top of the plume receive

too much light and swim backwards, away from the plume. If sufficient movement away

from two adjacent plumes occurs a new plume forms in between them, shown in light grey.

This reverses the flow of the convection cell and causes oscillations, as the plumes shift

from side to side.

We hypothesize that the mechanisms for overstability caused by phototaxis in the

absence of a boundary is as follows. First, perturbation leads to an overturning Rayleigh

Taylor instability. Due to shading by cells within the fluid layer, cells further from the

light source do not have enough light and swim upwards on average. Gyrotaxis causes

these cells to swim towards any downwelling fluid, and the added mass amplifies the

downwelling, forming plumes. However, cells at the top of the resulting plumes are closer

to the light source and actually have too much light. Phototaxis causes these cells to swim

backwards in order to avoid the light, even though the cells are gyrotactically orientated

to point towards the plume, so that cells swim downwards and away from the concentrated
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downwelling fluid. This de-focuses the plume. If the light intensity is sufficiently bright

that enough cells swim away from the plume, and if this is happening concurrently in

adjacent plumes, the backwards swimming cells from each plume eventually create an

unstable plume between the original structures. The cells further down the layer then

swim towards this newly created region of downwelling fluid and the direction of the

convection cell has been reversed. This is shown schematically in Figure 2.21, where the

original instabilities are black and the later plumes caused by shading and phototaxis are

light grey. This cycle of shading and backwards swimming repeats until the plume is

again located in its original place. These oscillations are only found for large η because

strong gyrotaxis is needed for the horizontal components of velocity that are necessary to

draw cells both into and away from the descending plumes. Oscillations like this will not

necessarily be found experimentally because the timescale for overstability may be larger

than the timescale for the convective motions to become fully non-linear.

The validity of Model A needs to be questioned. The model is formulated so that

cells react to a bright light by swimming with a negative swimming speed −Vs(I). This

implies that the cells swim backwards to get away from bright light, an effect which is

not seen in laboratory cultures, although cells can swim backwards during a photophobic

response (Hegemann and Bruck 1989 [57]). By phenomenologically setting the variable

swimming speed dependent on I we obtain qualitative results that investigate the interac-

tions between gyrotaxis and phototaxis in self-propelled microorganisms. A more general

discussion of the key assumptions and modelling processes can be found in Chapter 3,

in which the remaining modelling approaches are explored using the same techniques as

in this chapter, and results are analysed and compared between the models. Model re-

sults are compared to experimental results in Chapter 4, where we consider whether the

equilibrium solutions would have time to form, and some of the issues involved in compar-

ing theoretical and experimental results are discussed in detail. Some agreement between

experimental and theoretical trends is found.



Chapter 3

Modelling photo-gyrotactic

bioconvection in suspensions of

green algae - Part II

Summary

In this chapter, the two remaining photo-gyrotaxis models, Models B and C, are formu-

lated, equilibrium solutions are found and a linear stability analysis performed using the

same techniques presented in Chapter 2. For Model B only, asymptotic solutions for a

large layer depth are compared to numerical solutions and good agreement is found. For

both models, numerical solutions are computed for a range of phototactic and gyrotactic

parameter values. Model B results are generally similar to those in Chapter 2, whereas

for Model C non-hydrodynamic modes of oscillation are found. This work concludes with

model comparisons between all three models, followed by a discussion of the modelling

techniques and results.

3.1 Model B, where the centre of mass offset h varies with

light intensity.

In Model B, each cell’s centre of mass offset varies with light intensity, h = h(I). We

set Vs(I) = 1 in equation 2.16 and k̃(I) = k in equation 2.29. h(I) is chosen as a linear

function of I, so that, in non-dimensional terms, h(I) = − ξ
hn

(IsI − Ic), where ξ is a

92
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constant (see Section 2.2.3 for details of the non-dimensionalization). We set h(I) = 1

at I = 0, where hn is the normal centre of mass offset in the dark used, so that ξ = hn
Ic

.

Substituting in the non-dimensional equation for light intensity I (equation 2.19) gives

non-dimensional h(I) as

h(I) =
(

1 − χe−κ
R 0

z n(z)dz
)

, (3.1)

where χ = Is
Ic

, as in Model A. As before, we remove integrals by increasing the order of

the system by writing

m(z) = −
∫ 0

z
n(z)dz. (3.2)

The effect of light only appears directly in the equation for ṗ (equation 2.4) that is

used in the Fokker-Planck equation. Thus the solution to the Fokker-Planck equation in

this model is not the same to the solution in Pedley and Kessler 1990 [130], and the mean

cell swimming direction and diffusion tensor now depend on light intensity. Diffusion is

calculated using equation 2.9, with constant average cell swimming speed, Vn, so that

D0 = V 2
n τ (as in Model A). The non-dimensional layer depth d is

d =
HK̄1

VnτK̄2
. (3.3)

K̄1 and K̄2 are the constant values of K1(Λ(z)) and K2(Λ(z)) when Λ(z) = λ = 2.2 as

used in Model A (so that K̄i here is the same as Ki in Model A), where Λ is defined in

equation 3.16 and K1(z) and K2(z) come from the solution the Fokker-Planck and are

defined in equations 3.84 and 3.85. This ensures that d is defined the same in every model,

which permits comparisons between models to be made. The non-dimensional equations

for Model B are thus

∇ · u = 0, (3.4)

S−1
c

Du

Dt
= −∇pe − γnk + ∇ · Σ, (3.5)

∂n

∂t
= −∇ ·

[

n

(

u +
dK̄2

K̄1
〈p〉
)

− D · ∇n

]

, (3.6)

n(z) =
dm

dz
, (3.7)

h(I)∇p · [(k − (k · p)p)f ] + η∇p · [(ω ∧ p)f ]

+ 2α0η∇p · [(e · p − pp · e · p)f ] = λ−1∇2
pf, (3.8)

where

γ =
Nvg∆ρH3

νρV 2
n τ

, λ =
1

2DrBn
and η =

BnD0

H2
, (3.9)
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as defined in equation 2.30 in Chapter 2, with D0 = V 2
n τ . The notation of the general

photo-gyrotaxis models in Chapter 2 is used here (defined in Section 2.2). Since Bn

contains constant hn (see equation 2.28), which takes the same value as h in Bees and

Hill [9], these parameters are identical to those in Bees and Hill [9]. The fluid stress

tensor, Σ, is defined in equation 2.18. The no-flow and no-flux boundary conditions,

together with the boundary condition for M , are defined in equations 2.21, 2.22 and 2.23

in Chapter 2, with Vs(I) = 1.

3.2 Solving the Fokker-Planck equation for Model B

In this section, the solution to the Fokker-Planck equation is found for Model B and used

to calculate the mean cell swimming direction 〈p〉 and diffusion tensor D. We use the

steady solution to the Fokker-Planck, as in Pedley and Kessler [130] and Bees and Hill [9],

since we assume that the timescale for unsteadiness in the flow is large compared to D−1
r .

This analysis was only sketched for Model A in Chapter 2, since the solution in that case

is the same as in Pedley and Kessler 1990 [130].

The steady, non-dimensional photo-gyrotactic Fokker-Planck equation is given in equa-

tion 3.8 (where we drop the subscript p) as

h(I)∇ · [(k − (k · p) · p)f ] + η∇ · [(ω ∧ p)f ]

+ 2α0η∇ · [(e · p − pp · e · p)f ] = λ−1∇2f. (3.10)

This is an equation in orientational space, where k, ω and e are constants and tr(e) ≡
∇ · u = 0. p is the cell swimming direction and is the unit vector perpendicular to the

unit sphere, so that for any function g(p), ∇g is perpendicular to p, so (p · ∇)g = 0.

We calculate ∇ · p = 2, ∇p = I − pp and (∇ ∧ p)i = ǫijkpj,k = 1
2eijk(pj,k + pk,j) = 0,

as ∇p = (∇p)T . Following the term by term analysis in Bees and Hill [9] gives the

non-dimensional Fokker Plank equation in equation 3.10 as

h(I) (k · ∇f − 2(k · p)f) + ηω · (p ∧∇f) (3.11)

+2ηα0[p · e·∇f − 3p · e · pf ] = λ−1∇2f.

Substituting in the non-dimensional expression for h(I) in equation 3.1 gives

λ (1 − χeκm) (k · ∇f − 2(k · p)f) + ηλω · (p ∧∇f) (3.12)

+2ηλα0[p · e·∇f − 3p · e · pf ] = ∇2f.
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3.2.1 Solution for zero flow

If we consider the equilibrium state of zero flow, where u = ω = e = 0, f = f0 and

m = m0, then on writing p = (sin θ cos φ, sin θ sinφ, cos θ), where θ is the colatitude

measured relative to k and φ is the cell orientation angle in the horizontal plane, and

k = (0, 0, 1),

λ
(

1 − χeκm0
)

(

k · ∇f0 − 2(k · p)f0
)

= ∇2f0, (3.13)

hence λ
(

1 − χeκm0
)

((

∂f0

∂θ
θ̂ +

∂f0

∂φ

1

sin θ
φ̂

)

· k − 2f0 cos θ

)

(3.14)

=
1

sin θ

∂

∂θ

(

sin θ
∂f0

∂θ

)

+
1

sin2 θ

∂2f0

∂φ2
.

Since θ̂ = (cos θ cos φ, cos θ sinφ,− sin θ)T ,

1

sin θ

∂

∂θ

(

sin θ
∂f0

∂θ

)

+
1

sin2 θ

∂2f0

∂φ2
= −Λ

(

sin θ
∂f0

∂θ
+ 2f0 cos θ

)

, (3.15)

where we define

Λ(z) = λ
(

1 − χeκm0(z)
)

, (3.16)

which can be treated as a constant for partial differential equations in orientation space.

For zero flow we assume axial symmetry, so f0 is independent of φ and f0 = f0(θ). If we

substitute x = cos θ into equation 3.15 then

(1 − x2)f0′′ − 2xf0′ − Λ
(

(1 − x2)f0′ − 2f0x
)

= 0. (3.17)

Integrating equation 3.17 gives

(1 − x2)
(

f0′ − Λf0
)

= A, (3.18)

where A is a constant, which is found to be zero since at x = 1, f0 and f0′ are both finite.

Integrating again gives the solution

f0 = µΛe(Λ cos θ). (3.19)

Applying the normalization condition, that the integral of f0 over the unit sphere is 1,

gives

µΛ

[

−Λ−1 exp (Λ cos θ)
]π

0
=

1

2π
, hence, µΛ =

Λ

4π sinh (Λ)
. (3.20)

The mean of p is given in equation 2.8 as

〈p〉 =

∫

S
pf(p)dp, (3.21)



Modelling photo-gyrotaxis II 96

so that the zero flow component, denoted 〈p〉0 is given by

〈p〉0 =

∫

S
pf0(p)dp (3.22)

=

∫ 2π

0

∫ π

0











sin θ cos φ

sin θ sinφ

cos θ











µΛeΛ cos θ sin θdθdφ.

Integrating with respect to φ gives components equal to zero in the i and the j directions.

Integrating by parts with respect to θ then gives

〈p〉0(z) =











0

0

K1(z)











(3.23)

where

K1(z) = coth (Λ(z)) − 1

Λ(z)
. (3.24)

To find the zero flow solution for D, denoted D0, we use the approximation in equation

2.9 in Chapter 2 and non-dimensionalize to give

D0 = [〈pp〉0 − 〈p〉0〈p〉0]. (3.25)

〈pp〉 is given by

〈pp〉 =

∫

S
ppf(p)dp. (3.26)

For the zero flow solution, 〈pp〉0, equation 3.26 gives

〈pp〉0 =

∫

S
ppf0(p)dp (3.27)

=

∫ 2π

0

∫ π

0











sin θ cos φ

sin θ sinφ

cos θ





















sin θ cos φ

sin θ sinφ

cos θ











µΛeΛ cos θ sin θdθdφ. (3.28)

When integrating the matrix 〈pp〉0 with respect to φ, only the diagonal terms remain as

their φ components are cos2 φ, sin2 φ and 1, respectively. All other terms give zero when

φ is integrated between 0 and 2π. This gives

〈pp〉0 = µΛπ

∫ π

0











sin2 θ 0 0

0 sin2 θ 0

0 0 2 cos2 θ











eΛ cos θ sin θdθ. (3.29)
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Integrating by parts twice gives

〈pp〉011(z) = 〈pp〉022(z) =
K1(z)

Λ(z)
(3.30)

and

〈pp〉033(z) = 1 − 2K1(z)

Λ(z)
. (3.31)

Substituting equations 3.23, 3.30 and 3.31 into equation 3.25 gives

D0
11(z) = D0

22(z) =
K1(z)

Λ(z)

and D0
33(z) =

(

1 − 2K1(z)

Λ(z)
− K2

1 (z)

)

= K2(z), (3.32)

where

K2(z) = 1 − coth2 (Λ(z)) +
1

Λ(z)2
. (3.33)

3.2.2 First order perturbation for spherical and aspherical cells

From the equilibrium state of no fluid flow we perturb using

u = ǫu1, ω = ǫω1, e = ǫe1, f = f0 + ǫf1 and m = m0 + ǫm1, (3.34)

where 0 < ǫ ≪ 1. Equation 3.12 at order ǫ is

Λ
[

k · ∇f1 − 2(k · p)f1
]

− λχκm1eκm0 [

k · ∇f0 − 2(k · p)f0
]

+ηλω1 · (p ∧∇f0) + 2ηλα0[p · e1·∇f0 − 3p · e1 · pf0] = ∇2f1, (3.35)

where Λ(z) is defined in equation 3.16. Expanding equation 3.35 gives

1

sin θ

∂

∂θ

(

sin θ
∂f1

∂θ

)

+
1

sin2 θ

∂2f1

∂φ2
− Λ

(

k · θ̂∂f1

∂θ
− 2 cos θf1

)

(3.36)

= ηλ

(

ω1 · p ∧ θ̂
∂f0

∂θ
+ 2α0p · e1 · θ̂∂f0

∂θ
− 6α0p · e1 · pf0

)

−λχκm1eκm0

(

k · θ̂∂f0

∂θ
− 2 cos θf0

)

,

where

∂f0

∂θ
= −µΛΛ sin θeΛcos θ, (3.37)

p ∧ θ̂ = (− sinφ, cos φ, 0)T , (3.38)

p · e1 · θ̂ = −3

4
e33 sin 2θ +

[

1

4
(e11 − e22) cos 2φ +

1

2
e12 sin 2φ

]

sin 2θ (3.39)

+[e13 cos φ + e23 sin 2φ] cos 2θ,

p · e1 · p =
1

2
e33(3 cos2 θ − 1) +

[

1

2
(e11 − e22) cos 2φ + e12 sin 2φ

]

sin2 θ (3.40)

+[e13 cos φ + e23 sin 2φ] sin 2θ.
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The last term in equation 3.36 is a new term due to phototaxis, not present in Bees and

Hill [9], and the last term on the first line of equation 3.36 is adjusted from the gyrotaxis

only case of [9], since here Λ is a function of z and in [9] Λ = λ constant, given in equation

3.9.

First order perturbation for spherical cells, α0 = 0

For spherical cells, where α0 = 0, equation 3.36 simplifies to

1

sin θ

∂

∂θ

(

sin θ
∂f1

∂θ

)

+
1

sin2 θ

∂2f1

∂φ2
− Λ

(

k · θ̂∂f1

∂θ
− 2 cos θf1

)

(3.41)

= −ηλΛµλ

(

ω1
2 cos φ − ω1

1 sinφ
)

sin θeΛcos θ

−λχκµλm1eκm0
eΛ cos θ

(

Λ sin2 θ − 2 cos θ
)

.

We solve this equation in two parts (one for each term on the right hand side). Consider

the first term on the right hand side of equation 3.41 (disregard the other term for now)

and write

f1 = λµλη
(

ω1
2 cos φ − ω1

1 sinφ
)

g(θ), (3.42)

for some function g(θ). On substituting x = cos θ and equation 3.42 into equation 3.41,

((1 − x2)g′)′ − g

(1 − x2)
− Λ((1 − x2)g)′ = −Λ(1 − x2)

1
2 eΛx. (3.43)

Since Λ can be treated as a constant in this coordinate system, this equation is the same

as the corresponding aspherical flow term in Pedley and Kessler [130], except we have

Λ(z) instead of constant λ. The equation can be solved in the same way, using Legendre

polynomials of order one. To summarize, we first expand the exponential on the right

hand side of equation 3.43 and write g(x) as a power series in Λ so that

ΛeΛx =
∞
∑

n=1

Λnxn−1

(n − 1)!
and g(x) =

∞
∑

n=1

ΛnGn(x), (3.44)

assuming convergence at this stage. Comparing the coefficients of Λn gives

((1 − x2)G′
n)′ − Gn

(1 − x2)
− ((1 − x2)Gn−1)

′ = −(1 − x2)
1
2 xn−1

(n − 1)!
. (3.45)

This has the form of an associated Legendre equation of order one, P 1
r (x), so we define

Gn(x) =

n
∑

r=1

an,rP
1
r (x), (3.46)
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where an,r = 0 for n < r or n, r < 1. Equation 3.45 is solved using the same techniques

as in Pedley and Kessler [130] and Bees and Hill [9], details of which can be found in

Appendix B. We find

an,m = − m + 2

(m + 1)(2m + 3)
an−1,m+1 +

m − 1

(2m − 1)m
an−1,m−1 +

bn,m

m(m + 1)
(3.47)

where

bn,m =
2m + 1

2(n − 1)!m(m + 1)

∫ 1

−1
(1 − x2)

1
2 xn−1P 1

m(x)dx. (3.48)

Quoting from Gradshteyn and Ryzhik [50],

bn+1,m =







0 ∀ n + m even
(2m+1)Γ(n+1

2 )Γ(n+2
2 )

4Γ(n+1)Γ(n−m+3
2 )Γ(n+m+4

2 )
∀ n + m odd

(3.49)

where n+1 ≥ m, which implies that for n+m even, an+1,m = 0. Γ represents the gamma

function. We can then calculate ai,j for i ≥ j ≥ 1 by substituting the values of bi,j into

the expression 3.47.

To calculate the contribution of this weak ambient flow to 〈p〉, we use equations 3.44

and 3.46 in equation 3.21, so that

〈p〉1 =

∫

S
pf1(p) (3.50)

= µΛλη

∫ 2π

0

∫ π

0
(ω2 cos φ − ω1 sinφ)











sin θ cos φ

sin θ sinφ

cos θ











×
[

∞
∑

n=1

Λn
n
∑

r=1

an,rP
1
r (cos θ)

]

sin θdθdφ,

where the superscript 1 denotes the weak ambient flow component of 〈p〉. Integrating with

respect to φ gives

〈p〉1(z) =











ω2

−ω1

0











ηJ1(z), (3.51)

where J1 is given by

J1(z) = µΛ(z)λπ

∫ π

0

∞
∑

n=1

Λn(z)
n
∑

r=1

an,rP
1
r (cos θ) sin2 θdθ. (3.52)
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If we assume the series to be uniformly convergent, which seems reasonable, then we can

integrate term by term and use equation B.3 (from Appendix B) with k = 1 to give

J1(z) =
4

3
πλµΛ(z)

∞
∑

l=0

Λ2l+1(z)a2l+1,1. (3.53)

To calculate the weak ambient flow contribution to the diffusion tensor, denoted D1,

we first use equation 3.26 to find 〈pp〉1, the diagonal terms of which are zero, which is

symmetric. Quoting from Pedley and Kessler [130], but with Λ(z) instead of λ, gives

〈pp〉113(z) = 〈pp〉131(z) = ω2ηJ2(z), (3.54)

〈pp〉123(z) = 〈pp〉132(z) = −ω1ηJ2(z), (3.55)

but here

J2(z) =
4

5
πλµΛ(z)

∞
∑

l=1

Λ2l(z)a2l,2, (3.56)

hence J2 is not a constant. For λ = 2.2, if 0 ≤ χ ≤ 1.5 with κ = 1.0 then, using the

boundary conditions on m, the range for Λ is

−1.1 ≤ Λ ≤ 2.2. (3.57)

In this range, the ai,j values decay quickly for increasing i, j, and the series converges

rapidly.

For the new term due to phototaxis on the right hand side of equation 3.41, we suppose

f1(2) = λχκµλm1eκm0
h(θ). (3.58)

On substituting x = cos θ and equation 3.58 into equation 3.41, we have

(

(1 − x2)h′
)′ − Λ

(

(1 − x2)h
)′

= −
[

eΛx(1 − x2)
]′

. (3.59)

Substituting h = H(x)eΛx into equation 3.59 and integrating once gives

(1 − x2)H ′(x)eΛx = −eΛx(1 − x2) + C (3.60)

We require C = 0 to avoid a singularity at x = 1. Hence, H ′(x) = −1 so that

h = (B − x)eΛx. (3.61)

B is determined from the normalization condition
∫ 1
−1 h(x)dx = 0, which gives

B(z) = cothΛ(z) − 1

Λ(z)
= K1(z), (3.62)
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which is constant in this orientation. Substituting B into equation 3.61 then gives

h(x, z) = eΛx (K1(z) − x) . (3.63)

To find the contributions to 〈p〉 for this new phototaxis term, we use equation 3.21, such

that

〈p〉1(2) = λχκµΛm1eκm0

∫ 2π

0

∫ π

0











sin θ cos φ

sin θ sinφ

cos θ











(K1(z) − cos θ) sin θeΛ cos θdθdφ. (3.64)

Integrating with respect to φ shows that all but the z component of equation 3.64 are zero,

and substituting x = cos θ provides

〈p〉1(2) = 2πλχκµΛm1eκm0
k

∫ 1

−1
(K1 − x)xeΛxdx. (3.65)

Integrating by parts and substituting for µΛ from equation 3.20 gives

〈p〉1(2) = λχκm1eκm0
k

(

K2
1 − 1 +

2K1

Λ

)

. (3.66)

We write this contribution to 〈p〉 as

〈p〉1(2)(z) = λχκm1(z)eκm0(z)











0

0

K6(z)











(3.67)

where

K6(z) = K2
1 (z) − 1 +

2K1(z)

Λ(z)
. (3.68)

Substituting equation 3.63 into the expression 3.26 for 〈pp〉 gives the contribution of the

new phototactic terms to 〈pp〉 as

〈pp〉1(2) =

∫ 2π

0

∫ π

0











sin θ cos φ

sin θ sin φ

cos θ





















sin θ cos φ

sin θ sinφ

cos θ











(3.69)

×λχκµΛm1eκm0
(K1 − cos θ)eΛ cos θ sin θdθdφ.

As before, when we integrate with respect to φ only the diagonal terms remain, so that

〈pp〉1(2) = π

∫ π

0











sin2 θ 0 0

0 sin2 θ 0

0 0 2 cos2 θ











(3.70)

×λχκµΛm1eκm0
(K1 − cos θ)eΛ cos θ sin θdθdφ.
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Integrating by parts twice gives

〈pp〉1(2)11 (z) = 〈pp〉1(2)22 (z) = λχκm1(z)eκm0(z)

(

K2
1 (z)

Λ(z)
+

3K1(z)

Λ2(z)
− 1

Λ(z)

)

(3.71)

= λχκm1(z)eκm0(z)K7(z)

and

〈pp〉1(2)33 (z) = λχκm1(z)eκm0(z)

(

2

Λ(z)
− 2K2

1 (z)

Λ
− 6K1(z)

Λ2(z)

)

(3.72)

= λχκm1(z)eκm0(z)K8(z),

where

K7(z) =
K2

1 (z)

Λ(z)
+

3K1(z)

Λ2(z)
− 1

Λ(z)
, (3.73)

and K8(z) =
2

Λ(z)
− 2K2

1 (z)

Λ(z)
− 6K1(z)

Λ2(z)
. (3.74)

First order perturbation for aspherical cells (α0 6= 0)

Next, we consider the terms in equation 3.36 that are present when α0 6= 0 and the cells

are aspherical. We write

f1(3) = −2α0λµΛη

(

3

4
e33g2(x) +

[

1

2
(e11 − e22) cos 2φ + e12 sin 2φ

]

g4(x) (3.75)

+[e13 cos φ + e23 sinφ]g3(x)) ,

for some functions g2(x), g3(x) and g4(x), and x = cos θ. As in Bees [7], we define the

operator L so that

L• =
∂

∂x

(

(1 − x2)
∂

∂x
•
)

− Λ
∂

∂x
((1 − x2)•). (3.76)

Hence, equation 3.75 can be split into three parts,

Lg2 = 2eΛx[−Λx(1 − x2) + 3x2 − 1], (3.77)

Lg3 −
g3

1 − x2
= eΛx(1 − x2)

1
2 [2x2Λ − Λ + 6x], (3.78)

Lg4 −
4g4

1 − x2
= eΛx(1 − x2)[Λx + 3]. (3.79)

Equation 3.77 is solved in the same way as the new term due to phototaxis in the previous

section. Equation 3.78 is treated in the same way as the flow term in equation 3.41 in

Section 3.2.2 but with a different right hand side. Equation 3.79 is solved in a similar

fashion to the first term on the right hand side of equation 3.41 (solved using equation
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3.43 in Section 3.2.2), but requires terms in P 2
r (x) instead of P 1

r (x). Equations 3.77 to

3.79 are the same as in Pedley and Kessler [130] except with Λ(z) instead of constant λ on

the right hand side (the z dependence does not affect the form of the solutions, however,

as z is constant in this orientation). In Section 3.2.3, we quote the solutions for these

equations from Bees and Hill [9] for the remaining components of 〈p〉 and D, changing λ

to Λ(z) where appropriate.

3.2.3 Summary

Summing the equilibrium and flow contributions (for spherical and aspherical cells), the

mean cell swimming direction 〈p〉 is given by

〈p〉 =











0

0

K1











+ ǫ











ηJ1











ω2

−ω1

0











− 2α0η











e13J4

e23J4

3
2e33K4











+ λχκm1eκm0











0

0

K6





















+ O(ǫ2), (3.80)

and 〈pp〉 is given by

〈pp〉 =











K1
Λ 0 0

0 K1
Λ 0

0 0 1 − 2K1
Λ











+ ǫ











ηJ2











0 0 ω2

0 0 −ω1

ω2 −ω1 0











(3.81)

−2α0η











−3
4e33K5 + 1

4(e11 − e22)J6
1
2e12J6 e13J5

1
2e12J6 −3

4e33K5 − 1
4(e11 − e22)J6 e23J5

e13J5 e23J5
3
2e33K5











+λχκm1eκm0











K7 0 0

0 K7 0

0 0 K8





















+ O(ǫ2).

Using the approximation for D in equation 2.9, dimensionless D up to order ǫ is

D = [〈pp〉0 − 〈p〉0〈p〉0] + ǫ[〈pp〉1 − (〈p〉0〈p〉1 + 〈p〉1〈p〉0)]. (3.82)
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Substituting in the appropriate components of equations 3.80 and 3.81, we find the non-

dimensional diffusion tensor as

D =











K1
Λ 0 0

0 K1
Λ 0

0 0 K2











+ ǫ











η(J2 − J1K1)











0 0 ω2

0 0 −ω1

ω2 −ω1 0











− 2α0η (3.83)











−3
4e33K5 + 1

4(e11 − e22)J6
1
2e12J6 e13(J5 − K1J4)

1
2e12J6 −3

4e33K5 − 1
4(e11 − e22)J6 e23(J5 − K1J4)

e13(J5 − K1J4) e23(J5 − K1J4)
3
2e33(K5 − 2K1K4)











+λχκm1eκm0











K7 0 0

0 K7 0

0 0 K8 − 2K1K6





















+ O(ǫ2).

We have thirteen functions dependent on Λ(z) = λ
(

1 − χeκm0(z)
)

:

K1(z) = coth Λ(z) − 1

Λ(z)
, (3.84)

K2(z) = 1 − coth2 Λ(z) +
1

Λ2(z)
, (3.85)

K4(z) = K2(z) − K1(z)

Λ(z)
, (3.86)

K5(z) = − 2

Λ(z)

[

1 + K2(z) − 4K1(z)

Λ(z)

]

, (3.87)

K6(z) = K2
1 (z) − 1 +

2K1(z)

Λ(z)
, (3.88)

K7(z) =
K2

1 (z)

Λ(z)
+

3K1(z)

Λ2(z)
− 1

Λ(z)
, (3.89)

K8(z) =
2

Λ(z)
− 2K2

1 (z)

Λ(z)
− 6K1(z)

Λ2(z)
, (3.90)
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and

µΛ(z) =
Λ(z)

4π sinh Λ(z)
, (3.91)

J1(z) =
4

3
πλµΛ(z)

∞
∑

l=0

Λ2l+1(z)a2l+1,1, (3.92)

J2(z) =
4

5
πλµΛ(z)

∞
∑

l=1

Λ2l(z)a2l,2, (3.93)

J4(z) =
4

3
πλµΛ(z)

∞
∑

l=0

Λ2l+1(z)ã2l+1,1, (3.94)

J5(z) =
4

5
πλµΛ(z)

∞
∑

l=0

Λ2l(z)ã2l,2, (3.95)

J6(z) =
16

5
πλµΛ(z)

∞
∑

l=0

Λ2l(z)ā2l,2. (3.96)

a, ã and ā are defined as

an,m = − m + 2

(m + 1)(2m + 3)
an−1,m+1 +

m − 1

(2m − 1)m
an−1,m−1 +

bn,m

m(m + 1)
,

where bn+1,m =







0, ∀ n + m even,

(2m+1)Γ n+1
2

Γn+2
2

4Γ(n+1)Γ n−m+3
2

Γn+m+4
2

, ∀ n + m odd,
(3.97)

ãn,m = − m + 2

(m + 1)(2m + 3)
ãn−1,m+1 +

m − 1

(2m − 1)m
ãn−1,m−1 +

b̃n,m

m(m + 1)
,

where b̃n+1,m =







0, ∀ n + m even,

− (2m+1)Γ n+1
2

Γn+2
2

(n2+5n+4+m+m2)

16Γ(n+1)Γ n−m+5
2

Γn+m+6
2

, ∀ n + m odd,
(3.98)

ān,m = − m + 3

(m + 1)(2m + 3)
ān−1,m+1 +

m − 2

(2m − 1)m
ān−1,m−1 +

b̄n,m

m(m + 1)
,

where b̄n+1,m =







0, ∀ n + m even,

− (2m+1)Γ n+2
2

Γn+3
2

(n+4)

8Γ(n+2)Γ n−m+5
2

Γn+m+6
2

, ∀ n + m odd.
(3.99)

If χ = 0, Λ(z) = λ, so that K6(z) = K8(z) = 0 and expressions 3.84 to 3.87 and 3.92 to

3.96 become exactly the same as for the gyrotaxis only case in Bees and Hill [9] and Pedley

and Kessler [130], shown in Table 2.2. If this is the case, the solution to the Fokker-Planck

equation is the same as that used in Model A in Chapter 2 and Bees and Hill [9], and

direct comparisons can be made when χ = 0.

3.3 Equilibrium solution and linear analysis for Model B

We find an equilibrium solution for the case of no fluid flow, u = 0, with n = n(z),

using the same method as in Section 2.3.1. Integrating the cell conservation equation 3.6
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with respect to z, applying the boundary conditions in equations 2.21, 2.22 and 2.23, and

substituting in the solutions to the Fokker-Planck from equations 3.80 and 3.83 gives

dn

dz
− dK̄2

K̄1

K1(z)

K2(z)
n(z) = 0, (3.100)

with K1(z) and K2(z) defined in equations 3.84 and 3.85. We use the change of variables

in equation 3.7 to remove the integral of n(z) in the expression for light intensity that is

present in K1(z) and K2(z), which increases the order of the system. Equation 3.100 then

becomes

d2m(z)

dz2
− dK̄2

K̄1

K1(z)

K2(z)

dm(z)

dz
= 0, (3.101)

with boundary conditions m = e−d−1
d at z = −1, and m = 0 at z = 0, as in Model A.

3.3.1 Analytical approximation to the equilibrium solution for weak ab-

sorption

As in Vincent and Hill 1996 [172], Ghorai and Hill 2005 [46] and Model A, if we assume

the case of weak absorbtion, so that 0 < κ ≪ 1 and I is close to Ic, then we can find an

analytic equilibrium solution. The critical light intensity Ic occurs at position z = −C

(0 ≤ C ≤ 1) for an individual cell for the vertically uniform concentration profile n = 1.

For small κ we can expand the exponential in the expression Λ(z) = λ
(

1 − χeκm0
)

such

that

Λ = − λ

Ic

(

Is − Isκ

∫ 0

z
n(z)dz − Ic

)

+ O(κ2). (3.102)

When I = Ic we have Ic = Ise
−κC which, expanding for small κ, gives Ic = Is − IsκC +

O(κ2). Equation 3.102 becomes

Λ =
λ

Ic
Isκ

(∫ 0

z
n(z)dz − C

)

+ O(κ2), (3.103)

and since Ic = Is + O(κ),

Λ = λκ

(∫ 0

z
n(z)dz − C

)

+ O(κ2). (3.104)

This shows that approximately Λ ∝ κ where κ ≪ 1 and, hence, Λ ≪ 1. To find an

asymptotic equilibrium solution we need to expand K1(Λ(z))
K2(Λ(z)) in equation 3.101 for small Λ.

Using Taylor expansions we find

K1(Λ)

K2(Λ)
=

coth(Λ) − 1
Λ

1 − coth2(Λ) + 1
Λ2

= Λ + O(Λ3). (3.105)
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The equilibrium in equation 3.100 to order κ thus becomes

dn

dz
− dK̄2

K̄1
λκ

[∫ 0

z
n(z)dz − C

]

n(z) = 0. (3.106)

This is the same as in Vincent and Hill [172], Ghorai and Hill [46] and equation 2.61 in

Chapter 2, except with different constants outside the bracket. We solve in the same way

to give

n(z) =
K2

2G1
[(K2/G2

1) − C2]sech2(Kz/2)

[(K/G1) + C tanh(Kz/2)]2
, (3.107)

where G1 = dK̄2

K̄1
λκ is the new constant and K is a constant obtained from the transcenden-

tal equation 2.63 in Chapter 2. Full details can be found in Appendix A. K is calculated

using a Newton-Raphson process.

3.3.2 Numerical and analytical equilibrium profiles

For use in the numerical programs for equilibrium solution and linear stability analysis,

z is scaled with sublayer depth d, so that zI = dz, as in Model A. This improves the

numerics when d is large and χ is small, since the top region of the layer is expanded,

but most importantly it allows us to directly compare results with Model A and Bees and

Hill [9]. The layer depth is now 0 ≥ z ≥ −d.

Figure 3.1 shows both analytical and numerical equilibrium solutions, where solutions

are a closer match for small κ, but still match reasonably well when κ = 1. Equilibrium

profiles are shown in Figure 3.2 for d = 20, κ = 1.2 and for various values of χ. These

solutions show the same qualitative trends as equilibrium solutions for Model A. For χ < 1,

the maximum concentration at equilibrium is at the upper boundary and the maximum

concentration decreases as χ increases. For increasing χ > 1 the maximum concentration

moves down the layer; the position decreases as χ increases. The smallest maximum occurs

at the midheight of the layer, with the amplitude of the maximum increasing again in the

bottom half of the layer.

3.3.3 Linear stability analysis

We consider a perturbation from the equilibrium solution such that

u = ǫu1, 〈p〉 = 〈p〉0 + ǫ〈p〉1, n = n0 + ǫn1, (3.108)

pe = p0
e + ǫp1

e, Σ = ǫΣ1, D = D0 + ǫD1,

m = m0 + ǫm1,
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Figure 3.1: A comparison between numerical (solid lines) and analytical (dashed lines)

equilibrium solutions for Model B, where d = 20, χ = 1.0 and κ varies. The agreement

between methods is good, even when κ is close to 1.
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Figure 3.2: Concentration profiles for the equilibrium solution in Model B, where d = 20,

κ = 1.2 and χ varies.
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where ǫ ≪ 1. In this section, superscript 0 denotes the equilibrium solution (from Section

3.3) and superscript 1 the perturbation. On substituting the perturbations into the main

model equations (equations 3.4, 3.5, 3.6 and 3.7), the governing equations to order ǫ

become

∇ · u1 = 0, (3.109)

S−1
c

∂u1

∂t
= −∇p1

e − γn1k + ∇ · Σ1, (3.110)

∂n1

∂t
= −∇ ·

[

n0u1 +
dK̄2

K̄1
n0〈p〉1 +

dK̄2

K̄1
n1〈p〉0 (3.111)

−D0 · ∇n1 − D1 · ∇n0
]

,

n1 =
dm1

dz
. (3.112)

The Navier-Stokes equation 3.110 is the same as the corresponding Navier-Stokes equation

2.69 in Model A, so is not discussed here. Thus Rayleigh number is also the same as in

Model A, defined in equation 2.90. Expanding equation 3.111, we find

∂n1

∂t
= −∂3n

0u1
3 −

dK̄2

K̄1
∂3n

0〈p〉13 −
dK̄2

K̄1
n0∂i〈p〉1i −

dK̄2

K̄1
∂in

1〈p〉0i (3.113)

−dK̄2

K̄1
n1∂i〈p〉0i + D0

ij∂i∂jn
1 + ∂iD

0
ij∂jn

1 + D33∂i∂jn
0 + ∂iD

1
i3∂3n

0.

From the solution for the Fokker-Planck equation in equation 3.80 and 3.83, using the

method in Chapter 2, we have

∂i〈p〉1i = H1∇2u1
3 + H2∂3∂3u

1
3 − 3α0η∂3u

1
3∂3K4 (3.114)

+λχκ∂3

(

m1eκm0
K6

)

,

∂iD
1
i3 = H3∇2u1

3 + H4∂3∂3u
1
3 − 3α0η∂3u

1
3∂3(K5 − 2K1K4) (3.115)

+λχκ∂3((K8 − 2K1K6)m
1eκm0

),

where Hi are defined in equations 2.81 to 2.84 in Chapter 2, and Λ, K1, K2, K4, K5,

K6, K7 and K8 are all functions of z, whereas K̄1 and K̄2 are constants. Substituting
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equations 3.114 and 3.115 in equation 3.113 gives

∂n1

∂t
=

{

−∂3n
0 +

[

∂3n
0H3 −

dK̄2

K̄1
n0H1

]

∇2 (3.116)

+

[

∂3n
0H4 −

dK̄2

K̄1
n0H2

]

∂3∂3 + 3α0η

[

dK̄2

K̄1
∂3n

0K4

−(K5 − 2K1K4)∂3∂3n
0 +

dK̄2

K̄1
n0∂3K4 − ∂3n

0∂3(K5 − 2K1K4)

]

∂3

}

u1
3

{

K1

Λ
(∂1∂1 + ∂2∂2) + K2∂3∂3 −

dK̄2

K̄1
K1∂3 −

dK̄2

K̄1
∂3K1 + ∂3K2∂3

}

n1

+λχκeκm0

{

−dK̄2

K̄1

[

∂3n
0K6 + n0

(

κ
dm0

dz
K6 + ∂3K6 + K6∂3

)]

+∂3∂3n
0(K8 − 2K1K6) +∂3n

0

[

κ
dm0

dz
(K8 − 2K1K6) + ∂3(K8 − 2K1K6)

+ (K8 − 2K1K6)∂3

]}

m1.

Consider normal modes, as in Chapter 2, so that

u1
3 = U(z)ei(lx+my)+σt, n1 = Φ(z)ei(lx+my)+σt, m1 = M(z)ei(lx+my)+σt, (3.117)

where σ is the growth rate of the perturbation and k =
√

l2 + m2 is the wavenumber, and

Φ(z) = dM
dz . Equation 3.116 becomes

{

PV (z)
d2

dz2
− dK̄2

K̄1
K1(z)

d

dz
− PH(z)k2 − σ − dK̄2

K̄1

dK1

dz
+

dPV (z)

dz

d

dz

+λχκeκm0
PR(z; d)

}

Φ + λχκeκm0
PM (z; d)M(z) (3.118)

=

{

dn0

dz
− ηP5(z; d)

d2

dz2
− ηP6(z; d)

d

dz
+ ηP7(z; d)k2

}

U(z),
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where

PV (z) = K2(z), PH(z) =
K1(z)

Λ(z)
, (3.119)

PR(z; d) = −dK̄2

K̄1
n0K6(z) +

dn0

dz
(K8(z) − 2K1(z)K6(z)), (3.120)

PM (z; d) = −dK̄2

K̄1

[

K6(z)
dn0

dz
+ n0

(

κ
dm0

dz
K6(z) +

dK6(z)

dz

)]

(3.121)

+
d2n0

dz2
(K8(z) − 2K1(z)K6(z))

+
dn0

dz

[

κ
dm0

dz
(K8(z) − 2K1(z)K6(z)) +

d(K8(z) − 2K1(z)K6(z))

dz

]

,

P5(z; d) =
dn0

dz
A1(z) +

dK̄2

K̄1
n0A2(z), (3.122)

P6(z; d) =
dK̄2

K̄1

dn0

dz
A3(z) − d2n0

dz2
A4(z) +

dK̄2

K̄1
n0 dK4(z)

dz
, (3.123)

−dn0

dz

d(K5(z) − 2K1(z)K4(z))

dz
,

P7(z; d) =
dn0

dz
A5(z) − dK̄2

K̄1
n0A6(z), (3.124)

where n0 = n0(z) and m0 = m0(z). Ai(z) are the same as in Section 2.3.5 for Model A in

Chapter 2, but are no longer constant and depend on z because they contain z-dependent

expressions for Ki(z) and Ji(z). Equation 3.118 has a very similar form to equation 2.100

in Model A. The right hand sides of both equations are the same, although the definitions

for P5(z; d), P6(z; d) and P7(z; d) are different. In this case, the non-constant Ki lead to

extra terms on the left hand side with derivatives of Ki(z). PM (z; d) and PR(z; d) are

also defined differently. In both models, setting χ = 0 gives the linear stability equation

from Bees and Hill [9] for the gyrotaxis only case. The Navier-Stokes equation is given

by equation 2.89 in Chapter 2. The boundary conditions are derived in the same way as

Chapter 2, so that the no-flow boundary conditions in equation 2.21 become

U = 0 on z = 0,−1, and
dU

dz
= 0 on z = 0,−1. (3.125)

By using these conditions, the no flux boundary conditions in equation 2.22 become

dK̄2

K̄1
K1Φ − K2

dΦ

dz
on z = 0, (3.126)

and

dK̄2

K̄1
K1Φ − K2

dΦ

dz
(3.127)

+ λχκeκm0

(

d
K̄2

K̄1
K6n

0 − dn0

dz
(K8 − 2K1K6)

)

M on z = −1.

(3.128)
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To complete the boundary conditions, we have the extra condition M = 0 at z = 0, from

equation 2.23 (this is necessary as we increased the order of the system).

3.3.4 Taylor Expansions of Ki and Ji

Some parameter values, such as I = Ic, lead to values of Λ close to zero. This may cause

problems when solving the model numerically, as many functions appear to involve division

by Λ. However, Taylor expanding each Ki and Ji, as shown in equation 3.129 to 3.136,

we find that every Ki and Ji is finite and converges as Λ tends to zero:

K1(Λ) =
1

3
Λ − 1

45
Λ3 + O(Λ5), (3.129)

K2(Λ) =
1

3
− 1

15
Λ2 + O(Λ4), (3.130)

K4(Λ) = − 2

45
Λ2 +

8

945
Λ4 + O(Λ6), (3.131)

K5(Λ) = − 2

45
Λ − 4

945
Λ3 + O(Λ5), (3.132)

K6(Λ) = −1

3
+

1

15
Λ2 − 2

189
Λ4 + O(Λ6), (3.133)

K7(Λ) =
2

45
Λ − 8

945
Λ3 + O(Λ5), (3.134)

K8(Λ) = − 4

45
Λ +

16

945
Λ3 + O(Λ5). (3.135)

For each Ji, the part we need to expand for small Λ is

Λ

sinh(Λ)
= 1 − 1

6
Λ2 +

7

360
Λ4 + O(Λ5). (3.136)

These expressions are used in the numerical program to eliminate any problems when Λ

is small.

3.4 Asymptotic analysis for a deep layer and weak illumi-

nation in Model B

In this section, we follow the asymptotic procedure for Model A in Chapter 2, and perform

a deep layer analysis where d ≫ 1 and χ small. We look for a solution when σ = 0, k ∼ 1,

d−1 ≪ 1 and χ = d−1χ−1.

3.4.1 Equilibrium solution

Multiplying the equilibrium solution in equation 3.101 by d−1 gives

d−1 d2m

dz2
− K̄2

K̄1

K1(Λ)

K2(Λ)

dm

dz
= 0, (3.137)
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with boundary conditions m = 0 at z = 0, and m = d−1(e−d − 1) at z = −1. We re-write

Λ(z) in equation 3.16 as

Λ = λ(1 − d−1χ−1e
κm) = λ0 + d−1eκmλ1, (3.138)

where λ0 = λ and λ1 = −λχ−1. Using this expression to expand K1 and K2 in equations

3.84 and 3.85, using Taylor expansions for small d−1, we have

K1 = K(1,0) + d−1eκmK(1,−1) + d−2e2κmK(1,−2), (3.139)

K2 = K(2,0) + d−1eκmK(2,−1) + d−2e2κmK(2,−2), (3.140)

where K(i,j) are constants not dependent on d, defined in Appendix C. If we expand K1
K2

for small d and define

K(1/2,0) =
K(1,0)

K(2,0)
, (3.141)

K(1/2,−1) =
1

K(2,0)

(

K(1,−1) −
K(1,0)K(2,−1)

K(2,0)

)

, (3.142)

K(1/2,−2) =
1

K(2,0)

(

K(1,−2) +
K(1,0)K(2,−2)

K(2,0)
(3.143)

+
K(2,−1)(K(1,0)K(2,−1) − K(1,−1)K(2,0))

K2
(2,0)

)

,

then we can write

K1(Λ)

K2(Λ)
≈ K(1/2,0) + d−1eκmK(1/2,−1) + d−2e2κmK(1/2,−2) + O(d−3). (3.144)

Expanding m in powers of d−1

m =
∞
∑

n=0

d−nm−n, (3.145)

then

eκm = eκm0

(

1 + d−1κm−1 + d−2κ

(

m−2 +
κm2

−1

2

)

+ O(d−3)

)

, (3.146)

as in equation 2.143 for Model A. Substituting equations 3.144 and 3.146 into equation

3.137 then gives

d−1 d2(m0d
−1m−1 + d−2m−2 + ...)

dz2
− K̄2

K̄1

[

K(1/2,0) + d−1eκm0K(1/2,−1) (3.147)

+d−2(e2κm0K(1/2,−2) + eκm0κm−1K(1/2,−1)) + O(d−3)
]

×d(m0 + d−1m−1 + d−2m−2 + ..)

dz
= 0.
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For the outer solution, we find m0 =constant. Every subsequent m−n will also be con-

stant. The boundary condition at z = −1 gives that m0 = m−2 = ...m−n = 0 and

m−1 = −1.

For the inner solution we scale zI = dz so that the equilibrium solution becomes

d2(m0 + d−1m−1 + d−2m−2 + ...)

dz2
I

− K̄2

K̄1

(

K(1/2,0) + d−1eκm0K(1/2,−1) (3.148)

+d−2(e2κm0K(1/2,−2) + eκm0κm−1K(1/2,−1)) + O(d−3)
)

d(m0 + d−1m−1 + d−2m−2 + ..)

dzI
= 0.

The solution at leading order is

m0 = A0(e
zI − 1). (3.149)

At next order we have

d2m−1

dzI
2

− dm−1

dzI
− K̄2

K̄1
K(1/2,−1)e

κm0
dm0

dzI
= 0. (3.150)

In order to match with the outer solution we require A0=0 (using the procedure described

in Section 2.4). Solving equation 3.150 then gives

m−1 = A1(e
zI − 1). (3.151)

The matching as zI tends to −∞ provides A1 = 1. Equation 3.148 at the next order can

be integrated with respect to zI to give

dm−2

dzI
− m−2 =

K̄2

K̄1
K(1/2,−1)m1 + A2. (3.152)

Substituting in m−1 and using the integrating factor e−zI gives

m−2 =
K̄2

K̄1
K(1/2,−1)(zIe

zI + 1) − A2 + B2e
zI . (3.153)

On applying the boundary condition at zI = 0 and using the matching, we find A2 =

K̄2

K̄1
K(1/2,−1) and B2 = 0. Thus,

m−2 =
K̄2

K̄1
K(1/2,−1)zIe

zI , (3.154)

and we have the necessary components of the equilibrium solution for use in the linear

stability analysis.
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3.4.2 Linear stability analysis

The asymptotic linear stability theory is performed on the Navier-Stokes equation,

(D2 − k2)2U = −k2d−1RΦ, (3.155)

and the cell conservation equation 3.118, with Pi(z) and Ki(z) defined in Section 3.3.3. As

in linear stability analysis in Section 3.3.3, the equilibrium components are now denoted

with a superscript 0. Since none of the Ki, Ji, Pi or Ai are constants, the asymptotic

analysis involves much expanding. We write each expansion in the same way, as in the

equilibrium solution. For example,

Ki = K(i,0) + d−1K(i,−1) + d−2(κm0
−1K(i,−1) + K(i,−2)) (3.156)

+d−3

(

K(i,−1)κ

(

m0
−2 +

κ(m0
−1)

2

2

)

+ K(i,−3) + 2κm−1K(i,−2)

)

,

and similarly for all Ji, Pi and Ai. Each component K(i,j) (and J(i,j), P(i,j) A(i,j)) can be

calculated directly using Taylor series to expand the expressions for Ki (and Ji, Pi and Ai)

for d ≪ 1, as for the equilibrium solution. Note that the leading order component of Ki

and Ji do not depend on χ and are constants that depend on λ, and have the same form

as Ki and Ji in Model A, defined in Table 2.2. For example, K(1,0) = K̄1. The definitions

of the relevant components for use in the asymptotic solution can be found in Appendix

C.

Outer Solution

For the outer solution we use the outer equilibrium solution, which gives m0 = −d−1 (since

we assume d is sufficiently large that e−d is exponentially small) and, hence, dm0

dz = n0 = 0.

This simplifies equation 3.118 to

{

K2(z)
d2

dz2
− dK̄2

K̄1
K1(z)

d

dz
− K1

Λ(z)
k2 − σ − dK̄2

K̄1

dK1

dz
+

dK2(z)

dz

d

dz

}

Φ = 0. (3.157)

If we expand Φ in orders of d−1 then at leading order Φ0=constant. The boundary con-

dition on z = −1 at leading order gives Φ0 = 0. At next order, Φ−1 = 0. This gives the

same solution to the Navier-Stokes equation 3.155 as in the previous model, so

U = −kA(z + 1) cosh k(z + 1) + (A + B(z + 1)) sinh k(z + 1), (3.158)

where A and B are constants that can be expanded in terms of d−1.
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Inner Solution

For the inner solution we re-scale equation 3.118 and the Navier-Stokes equation 2.89 using

zI = dz, so that

(D2
I − d−2k2)2U = −k2d−5RΦ, (3.159)

{

PV (zI)
d2

dz2
I

− K̄2

K̄1
K1(zI)

d

dzI
− d−2PH(zI)k

2 − d−2σ − K̄2

K̄1

dK1

dzI
+

dPV (zI)

dzI

d

dzI

+d−2λχ−1κeκm0
PR(zI)

}

Φ + d−1λχ−1κeκm0
PM (zI) =

{

d−1 dn0

dzI
(3.160)

−dηP5(zI)
d2

dz2
I

− dηP6(zI)
d

dzI
+ d−1ηP7(zI)k

2

}

U,

where

PR(zI) = −K̄2

K̄1
n0K6(zI) +

dn0

dzI
(K8(zI) − 2K1(zI)K6(zI)), (3.161)

PM (zI) = −K̄2

K̄1

[

K6(zI)
dn0

dzI
+ n0

(

κ
dm0

dzI
K6(zI) +

dK6(zI)

dzI

)]

+
d2n0

dz2
I

(K8(zI) − 2K1(zI)K6(zI)) (3.162)

+
dn0

dzI

[

κ
dm0

dzI
(K8(zI) − 2K1(zI)K6(zI)) +

d(K8(zI) − 2K1(zI)K6(zI))

dzI

]

,

P5(zI) =
dn0

dzI
A1(zI) +

K̄2

K̄1
n0A2(zI), (3.163)

P6(zI) =
K̄2

K̄1

dn0

dzI
A3(zI) −

d2n0

dz2
I

A4(zI) +
K̄2

K̄1
n0 dK4(zI)

dzI
(3.164)

−dn0

dzI

d(K5(zI) − 2K1(zI)K4(zI))

dzI
,

P7(zI) =
dn0

dzI
A5(zI) −

K̄2

K̄1
n0A6(zI), (3.165)

and n0 = n0(zI) and m0 = m0(zI). Since dm0

dz = n0, then from the analytic equilibrium

solution

d
dm0

dzI
= n0(zI) = ezI + d−1 K̄2

K̄1
K(1/2,−1)(zIe

zI + ezI ), (3.166)

dn0

dzI
= ezI + d−1 K̄2

K̄1
K(1/2,−1)(zIe

zI + 2ezI ), (3.167)

d2n0

dz2
I

= ezI + d−1 K̄2

K̄1
K(1/2,−1)(zIe

zI + 3ezI ), (3.168)

with boundary conditions

U = 0 and DIU = 0 on zI = 0, (3.169)

and K2(zI)DIΦ −
K(2,0)

K(1,0)
K1(zI)Φ = 0 on zI = 0. (3.170)
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The exponential terms on the right hand side of equation 3.160 complicate the expression

and so we consider the case in which they do not appear at first order (as in Model A in

Chapter 2 and in Bees and Hill [9]). This requires U ≤ O(1) and ηU ≤ O(d−2). For a

non-trivial solution we need R ∼ d5U and we follow the logic outlined in the asymptotic

analysis for Model A in Section 2.4, Chapter 2. If we consider

U =
∞
∑

m=n

U−md−m, Φ =
∞
∑

m=0

Φ−md−m, and M =
∞
∑

m=0

M−md−m, (3.171)

where n = 1, 2, 3, and

R = d5−nR5−n + d5−n−1R5−n−1 + ...., (3.172)

then at first order we have

DIU−n + R5−nk2Φ0 = 0 (3.173)

and K(2,0)DI(DI − 1)Φ0 = 0. (3.174)

Solving using the boundary conditions at order one gives

Φ0 = ezI , (3.175)

U−n = a−nz3
I + b−nz2

I + R5−nk2 (zI + 1 − ezI ) . (3.176)

At second order

D4U−n−1 + k2R5−nΦ−1 + k2R5−n−1Φ0 = 0 (3.177)

and

K(2,0)DI(DI − 1)Φ−1 + K(2,−1)D
2
IΦ0 −

K(2,0)

K(1,0)
K(1,−1)DIΦ0 = 0, (3.178)

with the no flux boundary condition at this order given by

K(2,0)DIΦ−1 − K(2,0)Φ−1 + K(2,−1)DIΦ0 −
K(2,0)

K(1,0)
K(1,−1)Φ0 = 0. (3.179)

Equation 3.178 can be written as

D2
IΦ−1 − DIΦ−1 = −AKezI , (3.180)

where

AK =
K(2,−1) −

K(2,0)

K(1,0)
K(1,−1)

K(2,0)
. (3.181)
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Integrating once gives

DIΦ−1 − Φ−1 = −AKezI + BK , (3.182)

and, using the boundary condition, BK = 0. Solving equation 3.182 gives

Φ−1 = −AKzIe
zI + CKezI , (3.183)

where CK is a constant. Solving equation 3.177 gives

U−n−1 = a−n−1z
3
I + b−n−1z

2
I + k2R5−n−1 (zI + 1 − ezI ) (3.184)

+k2R5−n (AK(zIe
zI − 4ezI ) − CKezI + (3AK + CK)zI + 4AK + CK) .

To match the solutions we follow the procedure in Chapter 2, where we consider the

intermediate region such that zζ ∼ 1 as d−1 → 0, where zζ = z
ζ(d−1)

and ζ(d−1) → 0 as

d−1 → 0 and 0 < d−1 ≪ ζ ≪ 1 ≪ d. Expanding the inner solution, by writing zζ = zI
d−1

ζ ,

we find that the terms due to phototaxis in Model B are small, and do not appear in the

matching up to order d−n+1. This means the matching is exactly the same as in Model A

and, hence, a−n = a−n−1 = b−n = 0 (detailed in Section 2.4.2). If we look in the region

of parameter space where η ∼ d−2 and n = 1, as for Model A, then A0, B0 and b−2 are

given by equations 2.161, 2.162 and 2.163 in Chapter 2. The cell conservation equation at

third order is

K(2,0)(D
2
I − DI)Φ−2 + K(2,−1)D

2
IΦ−1 + (κm0

−1K(2,−1) + K(2,−2))D
2
IΦ0

−
K(2,0)

K(1,0)

(

K(1,−1)DIΦ−1 + (κm0
−1K(1,−1) + K(1,−2))DIΦ0

)

+κ
dm0

−1

dzI
K(2,−1)DIΦ0 −

K(2,0)

K(1,0)
κ

dm0
−1

dzI
K(1,−1)DIΦ0 − PH,0k

2Φ0

+λ0χ−1κezI (Φ0 + M0)

(

−
K(2,0)K(6,0)

K(1,0)
+ (K(8,0) − 2K(1,0)K(6,0))

)

= ezI U−1 − η−2e
zI (P(5,0)D

2
I + P(6,0)DI)U−1, (3.185)

with boundary condition

K(2,0)(DI − 1)Φ−2 + K(2,−1)DIΦ−1 + (κm0
−1K(2,−1) + K(2,−2))DIΦ0 (3.186)

−
K(2,0)

K(1,0)

(

K(1,−1)Φ−1 + (κm0
−1K(1,−1) + K(1,−2))Φ0

)

= 0,

where m0 denotes the equilibrium solution components and upper case M denotes the

linear stability analysis components. Substituting in m0
−1 = (ezI −1) from the equilibrium
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solution and integrating equation 3.185 from −∞ to 0 gives

R4 =
2P(H,0)

(1 − η−2(P(5,0) − P(6,0)))
. (3.187)

Integrating the cell conservation equation between 0 and −∞ at fourth order gives

R3 = 4b−2 +
2(P(H,0)(AK + CK) + P(H,−1))

(1 − η−2(P(5,0) − P(6,0)))
(3.188)

+
2R4

(1 − η−2(P(5,0) − P(6,0)))

[

NK

4
− 5AK

4
− CK

2
+ η−2

{(

5AK

4
+

CK

2

)

×(P(5,0) − P(6,0)) +
3

4
A(1,0)NK +

1

2
A(1,−1) +

A(4,−1)

2
+

3NKA(4,0)

4
+

K(2,0)

K(1,0)

(

1

2
A(2,−1) +

NK

4
A(2,0) −

1

2
A(3,−1) −

NK

4
A(3,0)

)}]

,

where Nk =
K(2,0)

K(1,0)
K(1/2,−1) is a constant and the definitions of A(i,j), P(i,j) and all other

constants can be found in Appendix C. The k dependance is due to b−2(k), shown in

equation 2.163. The expression for the Raleigh number as a function of the wavenumber

k is

R(k) = d4

(

2P(H,0)

1 − η−2(P(5,0) − P(6,0))
+ d−1R3 + O(d−2)

)

, (3.189)

with R3 given in equation 3.188. Note that to third order this is the same as the expression

to third order for Model A and Bees and Hill [9], since P(H,0) = PH , P(5,0) = P5 and

P(6,0) = PH , where PH , P5 and P6 are defined in Chapter 2 as the same as in Bees and

Hill [9]. Again, the effects of phototaxis only come in at fourth order. A full study of

parameter space is possible here, as for Model A, but results would be similar and so are

not shown.

3.5 Numerical and asymptotical results for Model B

A numerical study of parameter space in conducted using the same numerical procedure as

described in Chapter 2, using a Newton-Raphson-Kantorovich algorithm in FORTRAN.

The main parameters of interest are those involved in phototaxis and gyrotaxis: χ, η and

κ. Again, z is scaled with d, so that zI = dz, and the layer depth is −d ≤ zI ≤ 0.

3.5.1 Comparison of asymptotical and numerical solutions

Figure 3.3 shows asymptotical and numerical neutral curves for d = 200. Good agreement

is found between the two methods, helping to verify the numerical code. For d2η = 8,
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another minimum appears on the neutral curve for small k, where the solution is mode

one at each minimum and changes to mode two on the connection between these minima.

This was not found for smaller values of d, such as d = 40. The second convection cell

appears at the top of the layer. For d2η = 16 the neutral curve splits in two and a loop

forms for large k, changing smoothly from mode one to mode two on the upper branch.

The loop solution for small k could not be easily resolved, although it does exist.
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Figure 3.3: Asymptotic and numerical curves of neutral stability for Model B, where

d = 200, κ = 1, χ = d−1 and d2η varies. Asymptotic solutions are dashed lines and

oscillatory solutions dotted-dashed lines.

This double minimum effect was not found in Model A, nor was it present for the

gyrotaxis only case, so must be related to the new method of modelling phototaxis. We

investigate further by setting d2η = 8 and varying χ for d = 200, as shown in Figure 3.4.

As χ increases from χ = 0 the minimum for large k is not significantly altered, but a

second minimum forms for small k. These minima move closer together as χ is increased

further, and both are destabilized. This eliminates the line connecting the two dips and,

as χ approaches one, the minimum for small k is destabilized more than the minimum

for large k. This flattens out the neutral curve. Hence, the critical wavenumber becomes

zero as χ approaches one. For χ > 1 all wavenumbers are stabilized compared to the case
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Figure 3.4: Curves of neutral stability for Model B, where d = 200, κ = 1.2, d2η = 8 and

χ varies.

χ = 1, with small k stabilized more than large k, and kc again becomes non-zero. Rc and

kc then both increase as a function of χ.

Results for d = 200, χ = 40d−1 and varying d2η are shown in Figure 3.5, where we find

that decreasing η from d2η = 8.5 stabilizes wavenumbers approximately k < 90. However,

small wavenumbers are destabilized more than larger k, so that the lower minimum begins

to flatten out and becomes smaller than the minimum for large k. Thus, kc shifts from

the large k curve to the small k curve just before both curves flatten out, and the critical

wavenumber becomes zero.

3.5.2 Exploring the effects of the phototaxis parameter χ on the critical

wavenumber kc and Rayleigh number Rc

For d2η = 2 and d2η = 4, with d = 20 and κ = 1.2, varying χ gives qualitatively similar

results to Model A, shown for d2η = 4 in Figure 3.6. Small wavenumbers are destabilized

and large wavenumbers stabilized for χ = 1 compared to χ = 0. This causes the critical

wavenumber to become zero, even if it was non-zero in the gyrotaxis only case (when

χ = 0). For χ ≥ 1.03, all wavenumbers are stabilized compared to when χ = 0, and the
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Figure 3.5: Curves of neutral stability for Model B, where d = 200, κ = 1.2, dχ = 40 and

d2η varies.

critical wavenumber becomes non-zero for sufficiently large χ. For large χ (χ > 1.03 for

d2η = 4), the mode associated with the critical wavenumber becomes mode two, with the

second convection cell forming at the top of the layer. This was also found in Chapter 2

for Model A. Different values of χ for d2η = 8 were also explored but no double minima

solutions were found.

3.5.3 Exploring the effects of the gyrotaxis parameter η on the critical

wavenumber kc and Rayleigh number Rc

For both χ = 0.5 and χ = 1.03, with d = 20 and κ = 1.2, the neutral curves are

qualitatively similar to those for Model A for all values of d2η, and the same trends

are found as described in Chapter 2. Figure 3.7 shows solutions for χ = 1.03, where

loop and oscillatory solutions exist for sufficiently large η, and the critical wavenumber is

always non-zero. In Model A, η was simply a constant measure of gyrotaxis, whereas here

gyrotaxis varies with light intensity, since h = h(I), so cells at different depths exhibit

different levels of gyrotaxis, and η in this model is a measure of the ‘normal gyrotaxis’

(the magnitude of gyrotaxis when the centre of mass offset is hn). We find that increasing
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Figure 3.6: Curves of neutral stability for Model B, where d = 20, κ = 1.2, d2η = 4 and χ

varies. The bold line is the special case χ = 0 where there is no phototaxis.

η in Model B has the same effect as increasing η in Model A (except where double loops

form on the neutral curve when d is large).

3.5.4 Table of Results

Sample results for Model B are summarized in Table 3.1. The critical wavenumber, kc,

and the corresponding critical Rayleigh number, Rc, are shown for a variety of parameter

values that illustrate the wider parameter space. The critical wavenumber kc is mode one

unless indicated by a star, in which case it is mode two. In all cases, even when oscillatory

solutions were found, kc was on the non-oscillatory section of the curve. We shall discuss

these results further in Section 3.11.

3.6 Model C, where a new torque due to phototaxis is in-

troduced

In Model C, we introduce a new torque due to phototaxis, Lp, in the gyrotactic torque

balance equation of Pedley and Kessler 1990 [130]. This is the only effect of phototaxis
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d d2η χ κ kc Rc

20 2 0 1.2 2.44 2.30 ×105

20 2 0.5 1.2 0.0 5.20 ×104

20 2 1.0 1.2 0.0 2.48 ×105

20 2 1.04 1.2 4.88* 2.83 ×107

20 4 0 1.2 7.56 4.27 ×105

20 4 1.0 1.2 0.00 2.47 ×105

20 4 1.04 1.2 5.36* 2.86 ×107

20 0 1.03 1.2 2.79 3.62 ×106

20 64 1.03 1.2 6.74 2.09 ×106

20 0 0.5 1.2 0.0 4.78 ×104

20 16 0.5 1.2 3.70 8.40 ×104

20 64 0.5 1.2 8.54 5.78 ×104

20 8 0.1 1.2 12.1 3.70 ×105

20 8 0.5 1.2 2.12 6.74 ×104

20 8 1.0 1.2 0.0 2.44 ×105

20 8 1.04 1.2 6.72* 2.78 ×107

Table 3.1: Summary of the linear stability results for Model B, in terms of critical

wavenumber, kc, and Rayleigh number, Rc, for λ = 2.2 and α0 = 0.2. The star indi-

cates the solution at the critical wavenumber, kc, is mode two.
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in this model, so that the governing equations are equations 2.14, 2.15, 2.16, 2.19, 2.20

and 2.29 in Chapter 2 with Vs(I) = 1 constant and h̃(I) = 1. Here, we find that k̃(I) in

equation 2.29 depends on the form of the phototaxis torque, Lp. The new torque balance

equation in equation 1.8 in Chapter 1 becomes

LT = Lg + Lv + Lp, (3.190)

where we propose a general dimensional phototactic torque of the form

Lp = f(I)p ∧ (β1π + β2∇I) , (3.191)

with constant β1 and β2, where f(I) is a function for the strength of the phototaxis

torque. Using this expression, we can investigate both the response of cells to light from

an arbitrary global direction, π, and also the possible effects of the cells reacting to local

gradients in light intensity, ∇I.

We choose the simple functional response f(I) = F0I(I − Ic), where F0 is a constant,

so that the phototaxis torque, Lp, is zero both when there is no light and when the cells

are at the critical light intensity, Ic. Thus the phototaxis torque is self-contained, so that
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phototaxis and gyrotaxis are modelled separately, and at Ic the cells are still gyrotactic

but the phototactic torque is turned off. F0 is chosen so that between I = 0 and I = Ic

the strength of the torque is positive, so that the cells are biased to swim towards the light

under low light conditions. The maximum torque is arbitrarily set to occur at Ic
2 , so that

F0 =
4fm

I2
c

, (3.192)

where fm is the maximum of the function f(I). The torque in dimensional units is

Lp = −4fm

I2
c

I(I − Ic)p ∧ (β1π + β2∇I) . (3.193)

Mean cell swimming direction is calculated using equation 2.8 , and we use the approx-

imation for diffusion given in equation 2.9, and denote the average cell swimming speed

as a constant, Vn, so that the diffusion scale is D0 = V 2
n τ .

We split the analysis into two sections in order to explore both the response of the cells

to light from an arbitrary direction and the effect of cells responding to local gradients in

light intensity, so (β1, β2) = (1, 0) and (β1, β2) =
(

0, H
Is

)

, respectively.

3.7 Model C, Case 1, where the torque due to phototaxis is

caused by illumination from above

Here we consider light from above, such that π = k, and we set β1 = 1 and β2 = 0.

In Model B, phototaxis was included in the gravitaxis torque term in equation 3.8 by

multiplying the original torque by the expression for centre of mass as a function of light

intensity, h(I) = (1 − χI). If we set f(I) = −χI and also set the direction of the light as

π = k then Model B and this case of Model C would result in the same model equations.

However, this is not the case for the form of f(I) shown in equation 3.193, or if light is

from any direction except the vertical.

Following the analysis of Pedley and Kessler 1987 [129], described in Chapter 1, we

obtain

ṗ =

(

1

2Bn
− 4fmI(I − Ic)

I2
c µα⊥v

)

[k − (k·p)p] +
1

2
Ω ∧ p (3.194)

+α0[E · p − pp · E · p],

from the torque balance equation, where Bn is defined in equation 2.28. We non-dimensionalize

I with Is and use the same non-dimensionalizations as in equation 2.24, Ω = V 2
n τ

H2 ω and
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E = V 2
n τ

H2 e. Substituting equation 3.194 into the Fokker-Plank equation and simplifying

the terms (described in Section 3.2) gives

(1 − χζeκm(χeκm − 1)) (k · ∇f − 2(k · p)f) + ηω · (p ∧∇f) (3.195)

+2ηα0[p · e·∇f − 3p · e · pf ] = λ−1∇2f,

where

λ =
1

2DrBn
, ζ =

4fm

hnmg
and η =

BnV 2
n τ

H2
. (3.196)

ζ is a new parameter only present in Model C and is a measure of the strength of the

torque due to phototaxis. The definition for χ = Is
Ic

is the same as in Models A and B,

as are the definitions for λ and η. Equation 3.195 replaces equation 2.29 in the general

model, where here k̃(I) = (1 − χζeκm(χeκm − 1))k.

3.7.1 Solving the Fokker-Planck equation

If we consider the equilibrium state of zero flow, u = ω = e = 0, f = f0 and m = m0,

then writing p = (sin θ cos φ, sin θ sinφ, cos θ) and k = (0, 0, 1), at equilibrium equation

3.195 becomes

λ
(

1 − ζχeκm0
(χeκm0 − 1)

)

(

k · ∇f0 − 2(k · p)f0
)

= ∇2f0. (3.197)

If we define

ΛC(z) = λ
(

1 − ζχeκm0(z)(χeκm0(z) − 1)
)

, (3.198)

then equation 3.197 has the same form as equation 3.13 for Model B, but with ΛC instead

of Λ, so the solution is f0 = µΛC
eΛC cos θ with µΛC

= ΛC
4π sinh ΛC

.

Considering the first order perturbation for spherical cells (α0 = 0), then equation

3.195 at O(ǫ) becomes

ΛC

(

k · ∇f1 − 2(k · p)f1
)

− ζχλeκm0
κm1

(

2χeκm0 − 1
)

(

k · ∇f0 − 2(k · p)f0
)

+ληω1 · (p ∧∇f0) = ∇2f1. (3.199)

On expanding, equation 3.199 becomes

1

sin θ

∂

∂θ

(

sin θ
∂f1

∂θ

)

+
1

sin2 θ

∂2f1

∂φ2
− ΛC

(

k · θ̂∂f1

∂θ
− 2 cos θf1

)

(3.200)

= −ηλΛCµλ

(

ω1
2 cos φ − ω1

1 sinφ
)

sin θeΛ cos θ

−λζχκµλm1eκm0
(

2χeκm0 − 1
)

eΛC cos θ
(

ΛC sin2 θ − 2 cos θ
)

.
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The solution to the flow term, the first line on the right hand side, is the same as in Model

B (but with ΛC instead of Λ), and so is merely quoted in expressions for 〈p〉 and D in

equations 3.204 and 3.205. For the second term on the right hand side, which is the new

term due to the phototactic torque, we solve by writing

f1 = λζχκµΛm1eκm0
(

2χeκm0 − 1
)

h(θ). (3.201)

Substituting into equation 3.200 and making the change of variable x = cos θ gives

(

(1 − x2)h′
)′ − ΛC

(

(1 − x2)h
)′

= −
[

ΛCeΛCx(1 − x2) − 2xeΛCx
]

. (3.202)

This has the same form as equation 3.59 in Model B, hence

h(x, z) = eΛCx(K1(z) − x). (3.203)

The contributions of this new term to 〈p〉 and D are found using the methods presented

for Model B. The form of solution is the same, but with ΛC instead of Λ and a different

multiplier outside the brackets. This can be seen in the expressions for 〈p〉 and D in

equations 3.204 and 3.205. The aspherical terms in this model are not altered by the new

phototaxis torque, thus are also quoted in equations 3.204 and 3.205, where Λ from Model

B is replaced by ΛC .

Summing all the components of 〈p〉 gives

〈p〉 =











0

0

K1











+ ǫ











ηJ1











ω2

−ω1

0











− 2α0η











e13J4

e23J4

3
2e33K4











(3.204)

+λζχκm1eκm0
(

2χeκm0 − 1
)











0

0

K6





















+ O(ǫ2).
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Similarly, we find the dimensionless diffusion tensor to be

D =











K1
ΛC

0 0

0 K1
ΛC

0

0 0 K2











+ ǫ











η(J2 − J1K1)











0 0 ω2

0 0 −ω1

ω2 −ω1 0











− 2α0η











−3
4e33K5 + 1

4(e11 − e22)J6
1
2e12J6 e13(J5 − K1J4)

1
2e12J6 −3

4e33K5 − 1
4(e11 − e22)J6 e23(J5 − K1J4)

e13(J5 − K1J4) e23(J5 − K1J4)
3
2e33(K5 − 2K1K4)











+λζχκm1eκm0
(

2χeκm0 − 1
)











K7 0 0

0 K7 0

0 0 K8 − 2K1K6





















+ O(ǫ2), (3.205)

where the Ki(z) and Ji(z) have the same form as equations 3.84 to 3.96, but now depend

on ΛC(z) instead of Λ(z). The last terms in equations 3.204 and 3.205 are the new terms

due to the phototactic torque.

3.7.2 Equilibrium solution and linear stability analysis

To find an equilibrium solution we look at the case of no fluid flow, u = 0 and n = n(z). On

integrating with respect to the boundary conditions in equations 2.21, 2.22 and 2.23 and

using the change of variable in equation 3.7, the cell conservation equation 2.16 becomes

d2m

dz2
− dK̄2

K̄1

K1(ΛC)

K2(ΛC)

dm

dz
= 0. (3.206)

d = K̄1H
K̄2Vnτ

, where K̄1 and K̄2 are values of K1 and K2 for constant ΛC = λ = 2.2. This

is the same definition as in Models A and B and Bees and Hill [9], and is used so that

results can be compared between models. The boundary conditions for m are the same

as for Models A and B. The equilibrium solution has the same form as equation 3.101 in

Model B, but K1 and K2 from the Fokker-Planck depend on ΛC(z) instead of Λ(z).

The linear stability analysis follows the same procedure detailed in Chapter 2 and

Section 3.3.3. The Navier-Stokes equation is not altered in this model, and so the version

for use in the numerical program is given by equation 2.89 in Chapter 2, and the Rayleigh

number is, again, defined in equation 2.90. If we perturb, using equations 3.108, and

expand the cell conservation equation to order ǫ we obtain equation 3.113 from the Model
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B analysis, but with different expression for ∂i〈p〉1i and ∂iD
1
i3, given for this case as

∂i〈p〉1i = H1∇2u1
3 + H2∂3∂3u

1
3 − 3α0η∂3u

1
3∂3K4 (3.207)

+λζχκ∂3

(

m1eκm0
(2χeκm0 − 1)K6

)

,

∂iD
1
i3 = H3∇2u1

3 + H4∂3∂3u
1
3 − 3α0η∂3u

1
3∂3(K5 − 2K1K4) (3.208)

+λζχκ∂3((K8 − 2K1K6)m
1eκm0

(2χeκm0 − 1)),

where the equilibrium components are now denoted with a superscript 0, and the per-

turbations with a superscript 1. We substitute these equations into equation 3.113 and

resolve into the normal modes as in equation 3.117, which gives

{

PV (z)
d2

dz2
− dK̄2

K̄1
K1(z)

d

dz
− PH(z)k2 − σ − dK̄2

K̄1

dK1

dz
+

dPV (z)

dz

d

dz

+λζχκeκm0
PR(z; d)

}

Φ + λζχκeκm0
PM (z; d)M(z) (3.209)

=

{

dn0

dz
− ηP5(z; d)

d2

dz2
− ηP6(z; d)

d

dz
+ ηP7(z; d)k2

}

U(z),

where

PR(z; d) = −dK̄2

K̄1
n0K6(z)(2χeκm0 − 1) +

dn0

dz
(K8(z) − 2K1(z)K6(z))(2χeκm0 − 1), (3.210)

PM (z; d) = −dK̄2

K̄1

[

K6(z)
dn0

dz
+ n0

(

κ
dm0

dz
K6(z)(4χeκm0 − 1) +

dK6(z)

dz
(2χeκm0 − 1)

)]

+
d2n0

dz2
(K8(z) − 2K1(z)K6(z)) +

dn0

dz

[

κ
dm0

dz
(K8(z) − 2K1(z)K6(z))(4χeκm0 − 1)

+
d(K8(z) − 2K1(z)K6(z))

dz
(2χeκm0 − 1)

]

, (3.211)

and n0 = n0(z) and m0 = m0(z), and PV (z), PH(z),P5(z; d), P6(z; d) and P7(z; d) are the

same as equations 3.119, 3.122, 3.123 and 3.124 in Model B. Equation 3.209 has the same

form as equation 3.118 for Model, B but PM (z; d) and PR(z; d) are different and Ki now

depend on ΛC(z) instead of Λ(z). The no-flow boundary conditions are the same as in the

previous models (shown in equations 3.125 for Model B). We also have M = 0 at z = 0,

and the no flux condition becomes

dK̄2

K̄1
K1Φ − K2

dΦ

dz
on z = 0, (3.212)

and
dK̄2

K̄1
K1Φ − K2

dΦ

dz

+λζκeκm0
(2χeκm0 − 1)

(

d
K̄2

K̄1
K6n

0 − dn0

dz
(K8 − 2K1K6)

)

M(z)

on z = −1.



Modelling photo-gyrotaxis II 131

3.8 Model C, Case II, where cells respond to gradients in

light intensity

We now consider the case where the new phototaxis torque in equation 3.193 models

cells responding to local gradients in light intensity. We set β1 = 0 and β2 = H
Is

, for

convenience (since this is the reciprocal of the non-dimensionalization of ∇I), in equation

3.193. The phototaxis torque is non-dimensionalized in the same way as in Section 3.7

and the expression in equation 3.192 is used for F0, so that

Lp = −4fmχI(χI − 1)p ∧ (∇I). (3.213)

Summing all torques LT and following the procedure in Pedley and Kessler [130] as in

Chapter 1, where Ω and E are non-dimensionalized using equation 2.24, gives

D0

H2
ṗ =

1

2Bn
(k − (k · p)p) − 4fm

µα⊥v
χI(χI − 1)(∇I − (∇I · p)p) (3.214)

+
1

2

D0

H2
ω ∧ p + α0

D0

H2
[e · p − pp · e · p].

Note the new terms in ∇I appearing in the second term on the right hand side. To combine

the gravitational and phototaxis torques in one term we write

Ĝ =
∇I

|∇I| , (3.215)

where Ĝ is a unit vector, and define ζ = 4fm

hnmg , as for Case I. Equation 3.214 thus yields

D0

H2
ṗ =

1

2Bn

[

(k − (k · p)p) − ζχI(χI − 1)|∇I|(Ĝ − (Ĝ · p)p)
]

(3.216)

+
1

2

D0

H2
ω ∧ p + α0

D0

H2
[e · p − pp · e · p].

If we define

C = ζχI(χI − 1)|∇I| (3.217)

then equation 3.216 becomes

D0

H2
ṗ =

1

2Bn
[k − CĜ − (k · p)p + C(Ĝ · p)p] (3.218)

+
1

2

D0

H2
ω ∧ p + α0

D0

H2
[e · p − pp · e · p].

We define a new dimensionless unit vector k̂(I) such that

k̂(I) =
k − CĜ

|k − CĜ|
, (3.219)
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then substituting equation 3.219 into equation 3.218 gives

D0

H2
ṗ =

|k − CĜ|
2Bn

(k̂ − (k̂ · p)p) (3.220)

+
1

2

D0

H2
ω ∧ p + α0

D0

H2
[e · p − pp · e · p].

In equation 3.219, if the denominator is zero then the numerator will also be zero, as

here k = CĜ, and at the singular point we define k̂ = 0. Physically, this means that if

k = CĜ then the phototactic torque term has cancelled out the gravitactic term and we

are left only with viscous torques in the torque balance equation. In any case, k̂ is always

multiplied by |k − CĜ|, as shown in equation 3.220, and so singularity is not an issue.

On substituting equation 3.220 into the non-dimensional, steady Fokker Plank equation

2.26, we have

∇ ·
[

|k − CĜ|(k̂ − (k̂ · p)p)f (3.221)

+η(ω ∧ p)f + 2ηα0[e · p − pp · e · p]f ] = λ−1∇2f,

where λ and η are given in equation 3.196. Following the procedure in Bees and Hill [9]

shown in Section 3.2, where ∇·k̂ = 0 since k̂(I) can be treated as a constant in orientational

space, equation 3.221 becomes

|k − CĜ|
(

k̂ · ∇f − 2(k̂ · p)f
)

+ ηω · (p ∧∇f) (3.222)

+2ηα0[p · e·∇f − 3p · e · pf ] = λ−1∇2f.

The completes the formulation for Model C Case II, with the governing equations as in

equations 2.14, 2.15, 2.16, 2.19, 2.20 in Chapter 2, with Vs(I) = 1 constant and h̃(I) = 1,

and equation 3.222 with k̂(I) given in equation 3.219. Ĝ(∇I) is given in equation 3.215

and C(I,∇I) is given in equation 3.217 to complete the model. For comparison to the

Fokker-Planck equation for the general model in Chapter 2, equation 2.29, we can write

k̃(I) = |k − CĜ|k̂(I).

3.8.1 Solving the Fokker Planck equation

To solve the Fokker-Planck equation for this case, we first separate out the zero flow and

perturbation components in equation 3.220, denoted by superscript 0 and superscript 1,

respectively, for the perturbations given in equation 3.108. We start by writing

k̂ = k̂0 + ǫk̂1. (3.223)
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We calculate k̂0 and k̂1 by writing C = C0 + ǫC1 and Ĝ = Ĝ0 + ǫĜ1, so that equation

3.223 becomes

k̂ =
k − CĜ

|k − CĜ|
=

k − C0Ĝ0 − ǫ
(

C0Ĝ1 + C1Ĝ0
)

+ O(ǫ2)

|k − C0Ĝ0 − ǫ
(

C0Ĝ1 + C1Ĝ0
)

+ O(ǫ2)|
. (3.224)

Since I = eκ(m0+ǫm1) = eκm0
+ ǫκm1eκm0

+ O(ǫ2), we use Taylor series to expand ∇I for

small ǫ, so that

∇I =











0

0

κdm0

dz eκm0











+ ǫκeκm0











dm1

dx

dm1

dy

dm1

dz + κm1 dm0

dz











+ O(ǫ2), (3.225)

and

|∇I| = κeκm0

(

(

dm0

dz

)2

+ 2ǫ
dm0

dz

(

dm1

dz
+ κm1 dm0

dz

)

+ O(ǫ2)

) 1
2

. (3.226)

Using the definition for Ĝ in equation 3.215 and again expanding using Taylor series for

small ǫ gives

Ĝ =
∇I

|∇I| =





















0

0

κdm0

dz eκm0











+ ǫκeκm0











dm1

dx

dm1

dy

dm1

dz + κm1 dm0

dz





















×







1

κeκm0 dm0

dz

− ǫ

dm0

dz

(

dm1

dz + κm1 dm0

dz

)

κeκm0
(

dm0

dz

)3






+ h.o.t.

= k − ǫ











(

dm1

dz + κm1 dm0

dz

)

k

dm0

dz

− 1
dm0

dz











dm1

dx

dm1

dy

dm1

dz + κm1 dm0

dz





















+ O(ǫ2). (3.227)

Hence,

Ĝ0 = k and Ĝ1 =
1

dm0

dz











dm1

dx

dm1

dy

0











. (3.228)

Expanding I in terms of ǫ in the definition of C = ζχI(χI − 1)|∇I|, and using equation

3.226, gives

C0 = ζχκe2κm0
(χeκm0 − 1)

dm0

dz
, (3.229)

and C1 = ζχκe2κm0

(

κn0
(

3χeκm0 − 2
)

m1 +
(

χeκm0 − 1
) dm1

dz

)

.
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To find k̂ we write

Ĝ1 =











Ĝ11

Ĝ12

0











, (3.230)

since Ĝ13 = 0, and substitute this equation into 3.224. Again, using Taylor series to

expand equation 3.224 for small ǫ gives

k̂ = k − ǫ

1 − C0











C0Ĝ11

C0Ĝ12

0











+ O(ǫ2). (3.231)

Equating this with equation 3.223 gives

k̂0 = k and k̂1 = − C0Ĝ1

1 − C0
. (3.232)

These can be used in the solution for the Fokker-Planck equation component wise, using

the definition for Ĝ11 and Ĝ22 to write

k̂11 =
−C0 dm1

dx

(1 − C0)dm0

dz

, k̂12 =
−C0 dm1

dy

(1 − C0)dm0

dz

and k̂13 = 0. (3.233)

The Taylor expansion of |k − CĜ| used to calculate k̂ in equation 3.231 is

|k − CĜ| = (1 − C0) − ǫC1 + O(ǫ2), (3.234)

which is used again to separate out the zero flow and the perturbation components of

|k − CĜ| in the first term on the left hand side of the Fokker-Planck equation 3.222.

Now all the expansions that are encountered when solving the Fokker-Planck have been

calculated, we can begin to solve equation 3.222. We first look for the solution for zero

flow, where u = ω = e = 0, f = f0 and m = m0. Using equations 3.223, 3.231 and 3.234,

equation 3.222 becomes

(1 − C0)
(

k · ∇f0 − 2(k · p)f0
)

= λ−1∇2f0. (3.235)

If we define

ΛC2(z) = λ(1 − C0(z)), (3.236)

where C0 is a function of z given in equation 3.229, and write p = (sin θ cos φ, sin θ sin φ, cos θ)

and k = (0, 0, 1), we have the same form as equation 3.13 for Model B (and Case I), with

ΛC2(z) instead of Λ(z). Hence,

f0 = µΛC2
eΛC2 cos θ, with µΛC2

=
ΛC2

4π sinh ΛC2
. (3.237)



Modelling photo-gyrotaxis II 135

The contributions to 〈p〉0 and D0 are of the same form as in Model B and Case I, but

with ΛC2(z) instead of Λ(z), shown in equations 3.259 and 3.260 (below).

If we now consider a perturbation from the equilibrium solution, as in equation 3.34,

and substitute in the components of |k − CĜ|, k̂ and C from equations 3.234, 3.231 and

3.229, respectively, the Fokker-Plank equation to order ǫ becomes

(1 − C0)(k0 · ∇f1 − 2k0 · pf1) + (1 − C0)(k̂1 · ∇f0 − 2k̂1 · pf0)

−C1(k0 · ∇f0 − 2k0 · pf0) + ηω1 · (p ∧∇f0)

+2ηα0[p · e1·∇f0 − 3p · e1 · pf0] = λ−1∇2f1. (3.238)

Since k̂0 = k, equation 3.238 becomes

1

sin θ

∂

∂θ

(

sin θ
∂f1

∂θ

)

+
1

sin2 θ

∂2f1

∂φ2
− ΛC2

(

k · θ̂∂f1

∂θ
− 2 cos θf1

)

= ηλ

(

ω1 · p ∧ θ̂
∂f0

∂θ
+ 2α0p · e1 · θ̂∂f0

∂θ
− 6α0p · e1 · pf0

)

(3.239)

−λC1

(

k · θ̂∂f0

∂θ
− 2 cos θf0

)

+ ΛC2

(

k̂1 · θ̂∂f0

∂θ
− 2k̂1 · pf0

)

.

This can be solved by considering each term on the right hand side separately, as in Model

B. For the first terms on the first line of the right hand side, solutions are similar to

the other models, but with ΛC2(z) instead of Λ(z) or ΛC(z), and can be directly quoted.

This leaves two new terms to solve for (the 5th term, which includes λC1, and the 6th

term, which includes by ΛC2, both on the second line of the right hand side). We re-write

equation 3.239, setting α0 = 0 and omitting the first three terms on the right hand side,

so that we include only the new terms due to phototaxis on that side, hence

1

sin θ

∂

∂θ

(

sin θ
∂f1

∂θ

)

+
1

sin2 θ

∂2f1

∂φ2
+ ΛC2

(

sin θ
∂f1

∂θ
+ 2 cos θf1

)

= λC1

(

sin θ
∂f0

∂θ
+ 2 cos θf0

)

(3.240)

+ΛC2

(

(k̂11 cos θ cos φ + k̂12 cos θ sinφ)
∂f0

∂θ

)

− 2ΛC2 sin θ
(

cos φk̂11 + sinφk̂12
)

f0,

and noting that k̂13 = 0. Consider a solution of the form

f1 = λC1µΛC2
h1(θ), (3.241)

for the first term on the right hand side of equation 3.240. On changing variables so that

x = cos θ, equation 3.240 becomes

(

(1 − x2)h′
1

)′ − ΛC2

(

(1 − x2)h1

)′
= −

[

eΛC2x(1 − x2)
]′

. (3.242)
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This is of the same form as equation 3.59 in Model B, hence

h1(x, z) = eΛC2x (K1(z) − x) . (3.243)

On using this to find the solution to the Fokker-Planck we have the new parts of the

solutions as

〈p〉1(1)(z) = λC1











0

0

K6(z)











, (3.244)

where K6(z) has the same form as K6(z) as in equation 3.68 in Model B, but is a function

of ΛC2(z) instead of Λ(z). Likewise, the components of D are the same as Model B but

with ΛC2 and λC1 as the multiplier, as shown in equation 3.260 (see below).

For the penultimate terms on the right hand side of equation 3.240, we try the solution

f1(2) = µΛC2
ΛC2(k̂

11 cos φ + k̂12 sinφ)h2(θ), (3.245)

so that

((1 − x2)h′
2)

′ − h2

(1 − x2)
− ΛC2((1 − x2)h2)

′ = −xΛC2(1 − x2)
1
2 eΛC2x. (3.246)

Equation 3.246 has the same form as equation 3.43 in Model B, but with an extra x

multiplied by the exponential on the right hand side, and with ΛC2 instead of Λ. We use

the same method of solving, by expanding

h2(x) =
∞
∑

n=1

Λn
C2Hn(x), and Hn(x) =

n+1
∑

r=1

ân,rP
1
r (x), (3.247)

where ân,r = 0 for n + 1 < r or n, r < 1. n + 1 is used in the sum above instead of n in

equation 3.46 in Model B, because an extra term in the expansion is required to account

for the x multiplier. Using similar analysis to that shown in Section 3.2.2, from Pedley

and Kessler [130], which was corrected in Bees and Hill [9] (detailed in Appendix B), we

obtain

ân,m = − m + 2

(m + 1)(2m + 3)
an−1,m+1 +

m − 1

(2m − 1)m
an−1,m−1 +

b̂n,m

m(m + 1)
, (3.248)

where

b̂n,m =
2m + 1

2(n − 1)!m(m + 1)

∫ 1

−1
(1 − x2)

1
2 xnP 1

m(x)dx. (3.249)
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This can be re-arranged to give

b̂n,m =
(2m + 1)n

2(n!)m(m + 1)

∫ 1

−1
(1 − x2)

1
2 xnP 1

m(x)dx = nbn+1,m, (3.250)

with bn+1,m defined in equation 3.97, and n + 2 ≥ m. Since bn+1,m = 0 if n + m is even,

ân,m = 0 for n + m even. We calculate the contribution to the cell swimming direction

〈p〉, using 2.8,

〈p〉1(2)(z) =











k̂11

k̂12

0











J7(z) (3.251)

where

J7(z) =
4

3
πΛC2(z)µΛC2

(z)
∞
∑

l=1

Λ2l
C2(z)â2l,1. (3.252)

We calculate the second moments using equation 3.26, where the diagonal terms are zero

and 〈pp〉 is symmetric. This gives

〈pp〉113(z) = 〈pp〉131(z) = k̂11J8(z) and 〈pp〉123(z) = 〈pp〉132(z) = k̂12J8(z), (3.253)

with

J8(z) =
4

5
πΛC2(z)µΛC2

(z)
∞
∑

l=0

Λ2l+1
C2 (z)â2l+1,2. (3.254)

The final term on the right hand side in equation 3.240 has the same φ dependance as

the previous term but with different multipliers, hence we try a solution

f1(3) = 2µΛC2

(

k̂11 cos φ + k̂12 sinφ
)

h3(θ), (3.255)

which gives

((1 − x2)h′
3)

′ − h3

(1 − x2)
− ΛC2((1 − x2)h3)

′ = −ΛC2(1 − x2)
1
2 eΛC2x. (3.256)

This is the same as equation 3.43, but with ΛC2(z) instead of Λ(z), and so we quote the

previous solution from Pedley and Kessler [130] and use it to find the contribution to the

mean cell swimming direction,

〈p〉1(3) = 2µΛC2

∫ 2π

0

∫ π

0
(k̂11 cos φ + k̂12 sinφ)











sin θ cos φ

sin θ sinφ

cos θ











×
[

∞
∑

n=1

Λn
C2

n
∑

r=1

an,rP
1
r (cos θ)

]

sin θdθdφ. (3.257)
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Evaluating in the same way as Section 3.2.2 gives

〈p〉1(3)(z) =
2J1(z)

λ











k̂11

k̂12

0











, (3.258)

with J1(z) defined in equation 3.92 for Model B, on changing Λ(z) for ΛC2(z). The

contributions to D are calculated in a similar fashion and are shown in equation 3.260

below.

Summing the components of the mean cell swimming direction gives

〈p〉 =











0

0

K1











+ ǫ











ηJ1











ω2

−ω1

0











− 2α0η











e13J4

e23J4

3
2e33K4











+

(

J7 +
2J1

λ

)











k̂11

k̂12

0











+λC1











0

0

K6





















+ O(ǫ2). (3.259)

Using the approximation of D up to order ǫ (equation 3.82) and summing the components

gives the dimensionless diffusion tensor as

D =











K1
ΛC2

0 0

0 K1
ΛC2

0

0 0 K2











+ ǫ











η(J2 − J1K1)











0 0 ω2

0 0 −ω1

ω2 −ω1 0











− 2α0η











−3
4e33K5 + 1

4(e11 − e22)J6
1
2e12J6 e13(J5 − K1J4)

1
2e12J6 −3

4e33K5 − 1
4(e11 − e22)J6 e23(J5 − K1J4)

e13(J5 − K1J4) e23(J5 − K1J4)
3
2e33(K5 − 2K1K4)











+λC1











K7 0 0

0 K7 0

0 0 K8 − 2K1K6











+

(

J8 +
2J2

λ
− K1

(

J7 +
2J1

λ

))











0 0 k̂11

0 0 k̂12

k̂11 k̂12 0





















+ O(ǫ2). (3.260)

The Ki(z) and Ji(z) are the same as equations 3.84 to 3.96 on changing Λ(z) to ΛC2(z),

where

ΛC2(z) = λ(1 − C0(z)), (3.261)
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and C0(z) is defined in equation 3.229.

3.8.2 Equilibrium solution and linear stability analysis

The equilibrium solution for zero flow u = 0 is computed from the cell conservation

equation, where applying the boundary conditions as in Models A an B and integrating

equation 3.6 gives

d2m

dz
− dK̄2

K̄1

K1(ΛC2)

K2(ΛC2)

dm

dz
= 0. (3.262)

The form the equilibrium solution is the same as in Model B and Case I of this model

(equations 3.101 and 3.206), the only difference is that now K1(z) and K2(z) depend on

ΛC2(z) instead of Λ(z) or ΛC(z). The boundary conditions for m are the same as those

in Models A and B.

The linear stability analysis follows the analysis for Model B and C but with different

solutions to the Fokker-Planck equation inserted where necessary. We consider a pertur-

bation from equilibrium, shown in equation 3.108, and denote equilibrium solutions from

equation 3.262 with superscript 0 and the perturbation components with superscript 1, as

before. The Navier Stokes equation is the same as for Models A and B, and is given in

equation 2.89, and the Rayleigh number is defined in equation 2.90. The perturbed cell

conservation equation at order ǫ becomes, on expanding,

∂n1

∂t
= −∂3n

0u1
3 −

dK̄2

K̄1
∂3n

0〈p〉13 −
dK̄2

K̄1
n0∂i〈p〉1i −

dK̄2

K̄1
∂in

1〈p〉0i (3.263)

−dK̄2

K̄1
n1∂i〈p〉0i + D0

ij∂i∂jn
1 + ∂iD

0
ij∂jn

1 + D1
33∂i∂jn

0 + ∂iD
1
i3∂3n

0.

Using the same techniques as in Section 3.3.3 to expand the first order terms from the

Fokker-Planck, we obtain

∂i〈p〉1i = H1∇2u1
3 + H2∂3∂3u

1
3 − 3α0η∂3u

1
3∂3K4 (3.264)

+∂3

(

λC1K6(Λ)
)

+

(

J7 +
2J1

λ

)

(

∂1(k̂
11) + ∂2(k̂

12)
)

,

∂iD
1
i3 = H3∇2u1

3 + H4∂3∂3u
1
3 − 3α0η∂3u

1
3∂3(K5 − 2K1K4) (3.265)

+∂3

(

λC1(K8 − 2K1K6)
)

+

(

J8 +
2J2

λ
− K1

(

J7 +
2J1

λ

))

(

∂1(k̂
11) + ∂2(k̂

12)
)

.

Substituting equations 3.264 and 3.265 in equation 3.263 and resolving into normal modes
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from equation 3.117 gives

{

K2
d2

dz2
− dK̄2

K̄1
K1

d

dz
− K1

ΛC2
k2 − σ − dK̄2

K̄1

dK1

dz
+

dK2

dz

d

dz

}

Φ(z) (3.266)

+k2

(

dn0

dz

(

J8 +
2J2

λ
− K1

(

J7 +
2J1

λ

))

− dK̄2

K̄1
n0

(

J7 +
2J1

λ

))

C0

(1 − C0)n0
M(z)

−dK̄2

K̄1
λ

(

dn0

dz
K6C

1 + n0

(

dK6

dz
C1 + K6

dC1

dz

))

+λ

(

d2n0

dz2
C1(K8 − 2K1K6) +

dn0

dz

(

(K8 − 2K1K6)
dC1

dz
+ C1 d(K8 − 2K1K6)

dz

))

=

{

dn0

dz
− η

(

dn0

dz
A1 +

dK̄2

K̄1
n0A2

)

d2

dz2
− η

(

dK̄2

K̄1

dn0

dz
A3 −

d2n0

dz2
A4

+
dK̄2

K̄1
n0 dK4

dz
− dn0

dz

d(K5 − 2K1K4)

dz

)

d

dz
+ η

(

dn0

dz
A5 −

dK̄2

K̄1
n0A6

)

k2

}

U(z),

where Ai(z) and Ki(z) are functions of ΛC2(z) and are defined in the same way as Models

A and B, but with ΛC2(z) instead of Λ(z) or ΛC(z). C0 and C1 are also functions of

z, defined in equation 3.229. On writing equation 3.266 so that comparisons with other

models can be made, we have

{

PV (z)
d2

dz2
− dK̄2

K̄1
K1(z)

d

dz
− PH(z)k2 − σ − dK̄2

K̄1

dK1

dz
+

dPV (z)

dz

d

dz

−PR(z; d) − PR2(z; d)
d

dz

}

Φ −
{

PM2(z; d) − k2PM1(z; d)
}

M(z)

=

{

dn0

dz
− ηP5(z; d)

d2

dz2
− ηP6(z; d)

d

dz
+ ηP7(z; d)k2

}

U(z), (3.267)

where
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PH(z) =
K1(z)

ΛC2(z)
, (3.268)

PR(z; d) = λζχκe2κm0
(χeκm0 − 1)

[

dK̄2

K̄1

(

dn0

dz
K6(z) + n0 dK6(z)

dz

)

(3.269)

−d2n0

dz2
(K8(z) − 2K1(z)K6(z)) − dn0

dz

d

dz
(K8(z) − 2K1(z)K6(z))

]

+2λζχκ2n0e2κm0
(

3χeκm0 − 2
)

(

dK̄2

K̄1
K6(z)n0 − dn0

dz
(K8(z) − 2K1(z)K6(z))

)

,

PR2(z; d) = λζχκe2κm0

(

dK̄2

K̄1
K6(z)n0 − dn0

dz
(K8(z) − 2K1(z)K6(z))

)

(χeκm0 − 1), (3.270)

PM1(z; d) =

[

dn0

dz

(

J8(z) +
2J2(z)

λ
− K1(z)

(

J7(z) +
2J1(z)

λ

))

(3.271)

−dK̄2

K̄1
n0

(

J7(z) +
2J1(z)

λ

)]

C0(z)

(1 − C0(z))n0
,

PM2(z; d) = λζχκe2κm0
κn0(3χeκm0 − 2)

[

dK̄2

K̄1

(

dn0

dz
K6(z) + n0 dK6

dz

)

(3.272)

−d2n0

dz2
(K8(z) − 2K1(z)K6(z)) − dn0

dz

d

dz
(K8(z) − 2K1(z)K6(z))

]

+λζχκe2κm0

(

κ
dn0

dz
(3χeκm0 − 2) + 3χκ2(n0)2eκm0

+ 2κ2(n0)2(3χeκm0 − 2)

)

×
(

dK̄2

K̄1
K6(z)n0 − dn0

dz
(K8(z) − 2K1(z)K6(z))

)

,

where n0 = n0(z) and m0 = m0(z). PV (z), P5(z; d), P6(z; d) and P7(z; d) have the same

form as equations 3.119, 3.122, 3.123 and 3.124 in Model B. Equation 3.267 has a similar

form to the linear stability equation for Model B (equation 3.118), where all terms on

the right hand side and the first six terms on the left hand side of equation 3.267 are the

same as those for Model B in equation 3.118, but are now dependent on ΛC2(z) instead of

Λ(z). PR(z; d) and PM2(z; d) now have a different form and the new version of the model

introduces another derivative of Φ multiplied by PR2(z; d). PM1(z; d) in equation 3.267

is a completely new term in this model and is multiplied by k2 due to derivatives in x

and y from the gradient of I appearing in k̂(I) at order ǫ. If χ = 0 then ΛC2 = λ, and

the linear stability equation is the same as that in Bees and Hill [9], again allowing some

direct numerical comparison.

The no-flow boundary conditions are given in equation 3.125. From equation 2.23 we
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have M = 0 at z = 0, and the no flux boundary conditions becomes

dK̄2

K̄1
K1Φ − K2

dΦ

dz
+ λζχκe2κm0

(χeκm0 − 1)
dM(z)

dz
(3.273)

×
(

d
K̄2

K̄1
K6n

0 − dn0

dz
(K8 − 2K1K6)

)

on z = 0,

and
dK̄2

K̄1
K1Φ − K2

dΦ

dz
+ λζχκe2κm0

[

κn0(3χeκm0 − 2)M(z) (3.274)

+(χeκm0 − 1)
dM(z)

dz

](

d
K̄2

K̄1
K6n

0 − dn0

dz
(K8 − 2K1K6)

)

on z = −1.

3.9 Numerical results for Model C

In this section, numerical results for Model C, Cases I and II are computed using the

same techniques as described in Chapter 2. A range of parameter values, that represent

the wider parameter space, are explored, but, to avoid repetition, only results that vary

significantly from previous models are shown. Again, the z is scaled with d, so that zI = dz,

and the layer depth is −d ≤ zI ≤ 0.

3.9.1 Model C, Case I

For Case I of Model C, we only consider illumination from above, so that π = k. If one

sets π = k then the model equations for Model C, Case I in this situation are very similar

to those for Model B. The difference is that the function of light intensity that is multiplied

by the gravitaxis torque term in the Fokker-Planck equation is different in equation 3.12

for Model B to that used in equation 3.195 for Model C. If we denote this function g(I)

in both cases, where g(I) = h(I) in Model B and g(I) is non-dimensional, then

g(I) = (1 − χI) (Model B), and g(I) = (1 − ζχI(χI − 1)) (Model C) . (3.275)

We expect these functions to affect the stability results of the models in qualitatively

similar ways. In this section, we compare numerical solutions for a fixed η when ζ and

χ are varied. ζ is a new parameter, not present in the previous models. To allow some

qualitative comparison between Models B and C, we fix ζ so that the functions g(I) in each

model have the same gradient at g(I) = 0 (Note that it is impossible to simultaneously

set the curves to cross the axis at the same point). g(I) = 0 in Model B when I = 1
χ with

gradient −χ. For Model C, g(I) = 0 at I = I0 when

1 = ζχI(χI − 1), so I0 =
1 +

(

1 + 4
ζ

)1/2

2χ
, (3.276)
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where we take the largest positive route. The gradient at this point is given by

dg(I)

dI
= ζχ(1 − 2χI0), (3.277)

so to make the gradients the same at g(I) = 0 we set

−χ = ζχ(1 − 2χI0), hence ζ = −2 ±√
5. (3.278)

Taking the positive square root to obtain a positive value of ζ gives ζ = 0.236.
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Figure 3.8: Concentration profiles for the equilibrium solution in Model C, Case I, where

d = 20, κ = 1.0 and χ varies with ζ = 0.236, so that the gradients of g(I) at g(I) = 0 are

the same as in Model B.

Figure 3.8 shows equilibrium solutions for d = 20 and κ = 1.0 for various values

of χ. The same trends as in Models A and B are seen, where increasing χ moves the

maximum of the equilibrium solution down, and the maximum is smallest when the peak

is at the midheight of the layer. The only notable difference here is that a higher value

of χ (not χ just greater than one) is needed to move the maximum of the equilibrium

solution away from z = 0. This is because the phototaxis torque strength, ζ, needs to be

large, in addition to Is > Ic, so that the light has sufficient effect on cell swimming that

cells swim away from the light. Figure 3.9 shows neutral curves corresponding to these

equilibrium solutions with d2η = 4 and ζ = 0.236. For small χ < 1, small wavenumbers

are rapidly stabilized, the critical wavenumber remains non-zero and initially increases.

This is the only qualitative difference between the model results, since small wavenumbers

are destabilized in Models A and B for χ < 1. As χ increases beyond χ = 0.5 here, we

find destabilization of small wavenumbers leads to a zero critical wavenumber, but as χ

is increased further (χ ≥ 2.5) all wavenumbers are stabilized, and kc becomes non-zero

again. The trend for χ > 0.5 is the same trend as found for χ > 0 in Models A and B,

but here higher values of χ (χ > 2.5, compared to χ > 1) are needed to for the stability
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Figure 3.9: Curves of neutral stability for Model C, Case I, where d = 20, κ = 1.0, d2η = 4

and χ varies. We choose ζ = 0.236, so that the gradient at g(I) = 0 is the same as in

Model B.
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of the system to increase, because both strong phototaxis and Is > Ic are required. No

oscillatory solution branches were found.
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Figure 3.10: Concentration profiles for the equilibrium solution in Model C, Case I, where

d = 20, κ = 1.0, ζ = 0.236 and χ = 0.5 (dashed) or χ = 0 (solid line). The z axis is

expanded so that only the range 0 ≤ z ≤ −2.0 is shown.

To further explore the intriguing stabilization of small wavenumbers for χ = 0.5 com-

pared to χ = 0, which is not found for Models A and B, the equilibrium solutions in the

top region of the suspension are expanded and shown in Figure 3.10. The solution for

χ = 0.5 has a higher maximum concentration at z = 0 compared to χ = 0 and further

down the layer the cells are slightly more spread out. This occurs because the function

g(I) in Model C increases and then decreases (whereas in Model B the function is mono-

tonically decreasing) as shown in Figure 3.11. The increase in g(I) for Model C means the

cells near z = 0 act more deterministically in this case compared to Model B, since this is

similar to increasing λ, so that gravitaxis increases and the concentration profile is more

peaked at z = 0. Figure 3.12 shows that using a stress-free boundary condition at z = 0

does not significantly stabilize the system for χ = 0.5, indicating that it is the effect of the

no-flow boundary that stabilizes the small wavenumbers for small χ in this case.

3.9.2 Model C, Case II

In this section, stability is explored when the two phototaxis parameters, ζ and χ, are

varied for d = 20, κ = 1.2 and d2η = 4. Equilibrium solutions for the case χ = 2,
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Figure 3.11: Curves for g(I) for Models B and C, where ζ = 0.236 is set so that the

gradients at g(I) = 0 are the same, and χ = 0.5. The dashed line shows g(I) = 1. For

g(I) in Model C, when I is around I = 1, g(I) > 1, while in Model B g(I) ≈ 0.5 at

around I = 1. The differences in the function g(I) between these models, where g(I) is

monotonically decreasing in Model B but has a maximum in Model C, leads to differences

in equilibrium and stability predictions.
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Figure 3.12: Curves of neutral stability for Model C, Case I, where d = 20, κ = 1.0 and

ζ = 0.236. χ = 0 is shown for both a no-flow and a stress-free condition (solid lines), and

χ = 0.5 with a no-flow or a stress-free condition (dashed lines ).
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Figure 3.13: Concentration profiles for the equilibrium solution for Model C, Case II,

where d = 20, κ = 1.2, χ = 2.0, d2η = 4 and ζ varies.

where Is > Ic, and for various ζ values are shown in Figure 3.13. As ζ increases from

ζ = 0 the maximum of the concentration profile moves down the fluid layer, as found in

previous models. The upper sections of the concentration profiles (above the peak of the

distributions) when ζ ≥ 2, however, are considerably flatter than those found for χ > 1 in

Models A and B, and there is no approximate symmetry in the concentration profile when

the maximum is midway down the suspension (which there was for Models A and B).

Additionally, the maximum concentration decreases rather than increases as ζ increases

when the location of the maximum is located below the mid-point of the domain. This

appears to lead to the concentration profiles tending to a uniform distribution for large ζ.

The reasons for this are described in Section 3.11. The numerical solutions were difficult

to resolve for ζ > 9.5 and, hence, are not shown.

Figure 3.14 shows the associated neutral curves as the phototaxis strength parameter

ζ is varied when χ = 2. As ζ increases from ζ = 0 to ζ = 4, the trend in the stability

curves is similar to that seen for increasing χ between 0 < χ < 1 in Models A and B, where

increasing ζ destabilizes the system and the critical wavenumber becomes zero, kc = 0.

Interestingly, this trend continues as ζ increases further, and for approximately ζ > 5

the Rayleigh number for small wavenumbers crosses the line R = 0. This is shown in Figure

3.15 for 4 ≤ ζ ≤ 8. This is a smooth transition, implying that under conditions of zero

flow, U = 0, a destabilizing mechanism still exists for all R ≥ 0. These non-hydrodynamic

modes arise because of sideways swimming due to the x and y components of the gradient

of I in the phototaxis torque, even when there is no fluid flow. The case R = 0 uncouples

the cell dynamics (in the cell conservation equation) from the Navier-Stokes equations.

This mechanism is discussed further in Section 3.11.

Figure 3.16 shows growth rate curves for the zero flow version of Case II, where we
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Figure 3.14: Curves of neutral stability for Model C, Case II, where d = 20, κ = 1.2,

χ = 2.0, d2η = 4 and ζ varies.
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Figure 3.15: Curves of neutral stability for Model C, Case II, where d = 20, κ = 1.2,

χ = 2.0, d2η = 4 and ζ varies. The curves are not plotted on a log-log scale, since the

neutral curves cross the line R = 0 for k ∼ O(1).
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Figure 3.16: Growth rate curves for Model C, Case II when there is no fluid flow, so that

U = R = 0, d = 20, κ = 1.2, χ = 2.0, d2η = 4, and ζ varies. As ζ increases beyond

ζ = 4.0, the growth rates becomes positive for some k, but when ζ = 9.75 the growth rates

are negative for all k again.
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set U = 0. The existence of an instability mechanism in the absence of fluid flow is

confirmed by the presence of positive growth rates, σ > 0, for small k when 5 < ζ < 9.25.

Interestingly, when ζ > 9.25 the growth rates becomes negative again, indicating that these

non-hydrodynamic modes only exist when 5 < ζ < 9.25 (approximately). If ζ is taken as

the eigenvalue instead of R, when U = 0, then a neutral curve for ζ versus wavenumber

k can be found, as shown in Figure 3.17. For each wavenumber k, when 1 < k < 6

(approximately), if 5 < ζ < 9.25, then the system becomes unstable to non-hydrodynamic

modes. For approximately k < 1 convergence of the numerical program became difficult

and the full neutral curve could not be found. For all parameters values investigated, no

oscillatory modes were found.
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Figure 3.17: Neutral stability curve of wavenumber versus the phototaxis parameter ζ,

where ζ is used as the eigenvalue for the case of zero flow, U = 0, in Model C, Case II,

where d = 20, κ = 1.2, χ = 2.0 and d2η = 4.

In Figure 3.14 hydrodynamic modes (with one convection cell) are also shown for

ζ ≥ 9. The suspension is stabilized as ζ increases from ζ = 9, and the non-zero critical

wavenumber kc increases with ζ. It is unclear where these neutral curves grow from,

since hydrodynamic curves for ζ < 9 are very difficult to trace numerically. We expect

that they grow from neutral curves that were mode two for smaller values of ζ. The
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trend in ζ > 9.0 is similar to that for increasing χ > 1 in Models A and B, in which

all wavenumbers are stabilized and kc increases with χ. However, for the case ζ = 9.0

unstable non-hydrodynamic modes also exist for R ≥ 0, and it is unclear whether the

hydrodynamic or the non-hydrodynamic modes will be the most unstable; which mode

one is likely to see will depend on which mode has the largest growth rate. In reality, it is

difficult to separate the effects of the non-hydrodynamic and hydrodynamic modes, since

for R > 0 the non-hydrodynamic modes will eventually also induce fluid flow within the

suspension. This could, in turn, lead to the formation of hydrodynamic modes. If ζ > 9

(approximately), Figure 3.16 shows that the non-hydrodynamic modes are stabilized for

all wavenumbers and, therefore, in these cases the hydrodynamic modes shown in Figure

3.14 are the most unstable modes of instability.
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Figure 3.18: Concentration profiles for the equilibrium solution for Model C, Case II,

where d = 20, κ = 1.2, χ = 0.5, d2η = 4 and ζ varies. In (b) the z-axis is scaled so that

only the range −4 ≤ z ≤ 0 is shown.

Figures 3.18 and 3.19 explore the effects of varying the phototaxis torque strength

when χ = 0.5, for which Is < Ic and none of the cells have enough light. For all values of

ζ, the peak of the equilibrium profile is at the top of the layer, z = 0. The maximum of the

peak increases with ζ due to increased swimming upwards, towards the light, when pho-

totaxis is strong. The neutral curves in Figure 3.19 show that this significantly stabilizes

wavenumbers k ≤ 60, and that both the critical wavenumber and the stability increase

with increasing ζ. For ζ > 2 solutions are difficult to trace numerically, due to the vast

majority of cells collecting in an ever smaller region close to z = 0 as ζ gets large.

Trends in equilibrium solutions as χ varies (for constant ζ) are qualitatively the same as

those shown for varying χ in Model C, Case I. The maximum concentration first increases

at z = 0, then decreases as the maximum moves down the fluid layer, and the maximum
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Figure 3.19: Curves of neutral stability for Model C, Case II, where d = 20, κ = 1.2,

χ = 0.5, d2η = 4, and ζ varies.

concentration is smallest when it occurs at the midheight of the suspension. Compared to

Model C, Case I and Models A and B, the top (or bottom, when the maximum is in the

lower half of the domain) of the concentration profiles for large χ are much flatter and the

shapes are similar to those for varying ζ in Figure 3.13. The smaller the value of ζ, the

higher the value of χ needed to move the maximum of the concentration profile down the

layer. Figure 3.20 shows curves of neutral stability when ζ = 0.1 and ζ = 4.0 as χ varies.

Increasing χ from χ = 0 first stabilizes and then destabilizes the system, as found for Case

I. Non-hydrodynamic modes were also found as χ increased from χ = 0. As ζ increases the

value of χ at which purely non-hydrodynamic modes first exist (denoted χc), with R = 0,

decreases (for ζ = 0.1, χc = 10, and for ζ = 4, χc = 2.0). For large χ, hydrodynamic

modes were found again, and curves of neutral stability followed the same trends as those

for large χ in Models A and B.
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Figure 3.20: Curves of neutral stability for Model C, Case II, where d = 20, κ = 1.2,

d2η = 4 and χ varies, with ζ = 0.1 in Figure (a) and ζ = 4.0 in Figure (b).

3.10 Model comparisons

In this section, equilibrium solutions and stability results for all models are compared.

Model A results were computed using the slightly incorrect values of J4 and J5 and so, in

order to make direct comparisons, results for Model A in this section have been recalculated

with corrected J4 and J5 values. For both cases of Model C there are two phototaxis

parameters, χ and ζ, whereas for Models A and B there is only χ. Direct comparisons

can not be made between Model C and Models A and B, since we have no good way of

estimating ζ, but qualitative trends are discussed.

The qualitative trends in equilibrium solutions as χ is varied are similar in Models A

and B, as shown in Figure 3.21. For Model C, Cases I and II a similar trend is observed

as χ is increased from 1 to χ > 1 for all ζ. However, if 0 < χ < 1 then the peak of the

equilibrium solution actually increases (compared to the maximum at χ = 0) rather than

decreases as χ increases, which is the opposite to what occurs in Models A and B. This

increase also occurs as ζ is increased when χ < 1. For Model C, Case II, increasing ζ

for χ > 1 decreases the maximum of the concentration profiles even when this maximum

is located in the bottom half of the fluid layer, so that for large ζ the concentration

distribution is almost uniform. This is not the case for increasing χ in Models A, B and

C, in which case the smallest maximum occurs at z = −d
2 . The equilibrium profiles for

Model C, shown in Figure 3.13, are much flatter above the maximum concentration than

those shown in Figure 3.21 for Models A an B.

For small χ < 1 results from Model A and B were qualitatively the same, and quanti-

tatively similar, with small wavenumbers destabilized. This is expected, as phototaxis is

weak and the equilibrium solutions are very similar. However, for both cases of Model C
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Figure 3.21: A comparison of equilibrium solutions for Model A (solid lines) and Model B

(dashed lines), where d = 20, κ = 1.2 and χ = 1.0, χ = 1.02 and χ = 1.04

when 0 < χ < 1 small wavenumbers are stabilized rather than destabilized compared to

χ = 0. The equilibrium solutions for these cases of Model C also show the opposite trend

to Model A and B, with the maximum concentration increasing rather than decreasing as

χ < 1 is increased from zero. It is this difference at equilibrium that causes the stabiliza-

tion effect due to increased (rather than decreased, in Models A and B) fluid damping at

the upper surface. This is shown for Model A and Model C, Case I in Figure 3.22.

Stability results for Models A and B for strong phototaxis, χ large, and strong gy-

rotaxis, η large, are qualitatively similar, although Model B is slightly more stable than

Model A. The only qualitative difference between these two models is the double minima

appearing for large d and χ < 1 in Model B, but not in Model A, shown in Figure 3.23.

Model C, Case I also follows the same trends as Models A and B as χ is increased beyond

χ = 1 for a set ζ, although a larger value of χ is needed to stabilize all wavenumbers. This

is because both χ > 1 and ζ sufficiently large are needed to make the light intensity and

phototaxis torque sufficiently strong enough for the cells to exhibit negative phototaxis.

Surprisingly, Case II of Model C, where the new phototaxis torque depends on the

gradient of light intensity, produces very different stability results to all the other models

when χ > 1. For a range of values ζ > 0 and χ > 1, and in the absence of any fluid flow,

non-hydrodynamic modes are found. The mechanism leading to non-hydrodynamic mode

in this model only is presented in Section 3.11. For sufficiently large χ or ζ, hydrodynamic
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modes can still be found, and these follow the same general trends as in the previous

models. If they occur concurrently with non-hydrodynamic modes, the mode with the

highest growth rate will be the most unstable, and once ζ or χ is very large the non-

hydrodynamic modes are stabilized and the hydrodynamic modes are, again, the most

unstable.

3.11 Discussion

In this chapter, Model B, in which the cell either responds to light by acting as though

the centre of mass offset varies, and Model C, in which a new torque due to phototaxis is

introduced in the torque balance equation, have been explored. Unlike in Model A, the

effects of phototaxis in these models are present in the expression for ṗ, which introduces

new terms dependent on light into the solution of the Fokker-Planck. For both models,

the Fokker-Planck equation was solved and the light dependent expressions for 〈p〉 and D

were calculated. Following the analysis detailed in Chapter 2, equilibrium solutions were

found and perturbed and a linear stability analysis was performed, separately for each

model. An analytical equilibrium solution and asymptotic linear analysis for a deep layer

were calculated for Model B only. Stability was then assessed numerically for each model.

Comparisons are made between models in Section 3.10. Here, any stability trends that

were not found in Chapter 2 are explained and model comparisons are further discussed.

For Model B, the trends in equilibrium solution and neutral stability curves as the

gyrotaxis parameter, η, and the phototaxis parameter, χ, vary are qualitatively very similar

to those found for Model A. As such, the explanations for the trends in critical Rayleigh

number and critical wavenumber as χ and η vary, and the explanation of the mechanisms

for the overstabilities, discussed in Chapter 2, hold here too. In Model A, cell swimming

speed Vs(I) is a function of light intensity, so that if χ is small, cells swim slower than if

χ = 0. In Model B, the centre of mass offset, h(I), varies with light intensity, so cells swim

less gyrotactically and more stochastically when χ is small compared to when χ = 0. Both

result in slightly reduced upwards swimming (negative gravitaxis) and similar equilibrium

and stability results for small χ. When I ≈ Ic, Vs ≈ 0 in Model A and h(I) ≈ 0 in

Model B, indicating that the cells swim mainly stochastically, with no preferred direction,

so 〈p〉 ≈ 0. Thus as I approaches Ic, Vs(I) and 〈p〉 approach zero in Models A and B,

respectively, and the cell swimming term in the cell conservation equation for both models
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also tends to zero. Therefore, Vs(I) and h(I) act in similar ways in Models A and B, and

it is not surprising that the models give similar results. The main difference between the

models equations for Models A and B is the formulation of the diffusion tensor, which is

dependent on light intensity in Model B and not in Model A.

The only qualitative difference between Model A and Model B is the emergence of a

second minimum appearing on the neutral curve for small wavenumbers when d is large

and χ small in Model B, shown in Figure 3.23. We hypothesize that this is due to the

separation of the instabilities caused by phototaxis and gyrotaxis, where the minimum

found at small wavenumbers is caused by phototaxis.

In Model C, a new torque due to phototaxis in included in the torque balance equation

and two different forms of the torque are explored. In Case I, we consider light from above,

where π = k, and gradients in light intensity are neglected (by setting β2 = 0 in equation

3.191). Thus the torque due to phototaxis is given by Lp = f(I)(p ∧ k), where f(I) is

a function that determines the strength of the torque. We could write f(I) = −χI, in

which case this version of Model C is the same as Model B, but instead the phototaxis

torque is chosen so that it can exist and be consistent even without gyrotaxis. Thus,

we define f(I) = −ζχ(χI − 1), which is zero both at I = 0 and I = Ic, so that in the

dark and at the desired light intensity, Ic, there is no phototaxis. In both models, the

gravitaxis and phototaxis torques are combined, and the function g(I) multiplies the new

gravi-phototaxis torque. We set ζ so that the gradients of the function g(I) = 1 − χI in

Model B and g(I) = 1− ζχ(χI − 1) at g(I) = 0 are the same for both models (ζ = 0.236).

In Model C (Case I), when 0 ≤ χ < 1 for ζ = 0.236, g(I) is greater than one for some

I, whereas in Model B, g(I) ≤ 1 for all I. This effectively means that the gravitaxis,

or upwards swimming, increases in Model C when 0 < χ ≤ 1 compared to χ = 0. This

causes the equilibrium solutions in this case to have a higher maximum at z = 0 for χ < 1

compared to χ = 0, which is the opposite to the trend for Models A and B. The increased

maximum concentration at the rigid upper boundary permits less fluid flow associated

with any emergent overturning instability (compared to cases where the cells are further

spread away from the boundary) and, hence, the system is stabilized when χ < 1. This

stabilization is the opposite to the destabilization for χ < 1 found in Models A and

B, where a greater spread of cells away from the boundary permitted greater fluid flow

associated with overturning, and is the only qualitative difference between those models

and Model C, Case I when π = k.
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If χ is increased above χ = 1.0, the maximum of the equilibrium profile decreases and

the system is initially destabilized as the greater spread of cells away from the boundary

permits greater fluid flow associated with overturning. This trend was found for increasing

χ from zero in Models A and B. In Model C, when the light is bright, large χ, and the torque

strong, large ζχ, cells near the light source receive too much light and swim downwards.

This results in stabilization of all wavenumbers when χ > 2.5. Small wavenumbers are

stabilized more than large wavenumbers, resulting in a non-zero critical wavenumber that

increases as a function of χ (as described in Section 2.6 for Model A, and also found for

Model B). For ζ = 0.236 in Model C, larger values of χ are required for this stabilization

compared to Models A and B because both a strong phototactic torque, ζχ large, and

bright light, χ > 1, are necessary to move the maximum of the equilibrium profile away

from the upper boundary. The effects of illumination in other orientations, such as from

the side, have not been considered, but could be investigated using a different form of π.

Interesting instabilities may arise as the cells try to swim towards or away from light at

various angles.

Model C, Case II, in which the torque due to phototaxis is dependent on the gradient

of light intensity, Lp = f(I)(p∧∇I), produces significantly different results to the previous

models. Although equilibrium solutions and associated neutral curves for small ζ or χ for

Case II are similar to those found for Case I, we find the surprising result that an instability

mechanism exists even in the absence of fluid flow for a range of relatively large values

χ and ζ. These non-hydrodynamic modes arise due to shading within the suspension

and the mechanism for the instability is as follows. After perturbation, cells in the less

concentrated regions receive too much light, due to decreased shading, and swim sideways

into the densely concentrated region to avoid the light. Thus the perturbation grows and

an instability arises. These modes are only possible because the x and y derivatives arising

from ∇I mean that cells can swim horizontally even when U = 0. These non-hydrodynamic

modes do not exist in Models A or B, and were not found in the gravitaxis, gyrotaxis or

phototaxis models of [5, 9, 22, 172]. In those models, when U = 0 cells are restricted

to swimming purely upwards or downwards, and there is no mechanism for horizontal

movement, hence no instabilities can form. The non-hydrodynamic modes may be less

stable than the hydrodynamic modes (although to evaluate which is the most unstable

mode under different conditions requires knowledge of the respective growth rates). Of

course, in reality any aggregations of a finite size such as these will initiate fluid motions,
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so that an instability may be initiated non-hydrodynamically but is likely to become a

hydrodynamic instability at a later time.

In Section 3.9.2, we found that non-hydrodynamic modes do not exist when ζ is very

large. To understand why this is, we examine the equilibrium solutions for large ζ. If ζ is

sufficiently large and χ > 1, cells far from z = 0 are shaded by cells above and a strong

phototaxis torque will enhance the gravitaxis torque and cause these cells to swim upwards

very strongly. On the other hand, the cells near z = 0 receive too much light and the

phototactic torque works in opposition to the gravitactic torque, since negative phototaxis

causes the cells swim downwards and gravitaxis causes the cells to swim upwards. These

competing torques cause cells for which I > Ic to swim less strongly in a preferred direction

than the upwardly swimming cells for which I < Ic. This leads to the highly asymmetric

concentration distributions that are relatively flat above the maximum of n(z) and sharp

below n(z) (seen for ζ = 6 in Figure 3.13). When the phototaxis torque is very strong

(ζ ≥ 9), the two opposing gravitactic and phototactic torques begin to cancel each other

out, so that the cells become ‘indecisive’ and do not swim in any particular direction.

Hence, the equilibrium concentration distribution becomes almost uniform for large ζ. In

this case, there is no significant unstable density gradient so any perturbation will have

very little effect and, in the absence of fluid flow, no instabilities form. Thus we conclude

that non-hydrodynamic modes do not exist for large ζ. Furthermore, this indicates that

gyrotaxis is the dominant mechanism responsible for the hydrodynamic modes found for

large ζ in Figure 3.14, since the gyrotactic instability for bottom heavy cells requires only

fluid shear and can occur even when there is not a significant density gradient.

One significant assumption of all three models is that all cells are effectively the same,

exhibiting the same swimming speed and critical light intensity Ic. Experimental evidence,

such as that by Hill and Häder 1996 [61] and Vladimirov et al. 2004 [173], shows that this

is not the case for a population of cells. A more realistic model may incorporate a range

of values for these key model parameters, as in Bees and Hill 1998 [9] for cell swimming

speed Vs. For a more accurate expression of the diffusion tensor D, the generalized Taylor

dispersion theory, as presented by Hill and Bees 2002 [60] for the gyrotaxis only case, could

be used. However, the Fokker-Planck equation and the general Taylor dispersion theory

give similar results for small flows [60].

Although the three modelling approaches have been presented here separately, it is

possible that a combination of these mechanisms is employed by C. nivalis for photo-
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taxis. The phototactic torque in Model C could potentially be determined mechanically

by a change in flagella beat pattern in response to illumination [152], although explicit

mechanisms for cell swimming and flagella beating are not considered in this work. We

have investigated what happens when each term in the new phototaxis torque in Model

C is used separately, but in reality a cell may orientate using both together. The models

are consistent with the observation of Häder [52] for Euglena gracilis cells, which is that

when light is sufficiently bright, negative phototaxis dominates negative gravitaxis, and

the cells swim downwards. In Chapter 4, consideration of the issues that arise when com-

paring experimental and theoretical data are discussed, such as whether the equilibrium

solution has time to form during experiments, and whether the effects of mixing have suf-

ficiently subsided. Theoretical results for all three phototaxis models are then compared

with experimental results for the green algae C. nivalis. Some reasonable agreement is

found between results as light is varied, indicating that the models presented here have

successfully captured some aspects of photo-gyrotactic pattern formation. It would also be

interesting to compare the results from these three models with any future experimental

studies of photo-gyrotactic bioconvection as and when they are published.



Chapter 4

An experimental study of the

effects of light and concentration

on pattern formation

Summary

In this chapter, a quantitative study of bioconvection patterns is presented. A full descrip-

tion of experimental procedures is followed by a discussion of the image analysis processes

used to extract data. A novel automated mixing regime was used to standardize the initial

distribution of cells at the start of every experiment. The effect of changes in concentra-

tion on the initial pattern wavelength λ0 was explored using a dilution experiment. To our

knowledge, this is the first study to quantitatively investigate changes in initial wavelength

of bioconvection pattern as a function of light intensity, in which the effects of red light

and white light from different orientations are explored. Repeatable trends were found as

light intensity varied and, using simple statistical tools, we have deduced whether these

trends are statistically significant. Possible explanations for the trends are presented in

the discussion and, encouragingly, we find similarities when comparing the experimental

results with theoretical predications in Chapter 2.

4.1 Introduction

The first observations of bioconvection patterns in suspensions of micro-organisms date

back to at least 1911, when Wagner [174] observed patterns using the green algae species

161
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Euglena viridis. Since then various studies in this area have been conducted, such as

Loeffer and Mefferd 1952 [105], and Childress et al. [22]. Various studies by Kessler in

the 1980s [81, 82, 84] explore the swimming of Chlamydomonas nivalis, with a particular

focus on the gyrotactic behaviour of these cells. Kessler also qualitatively explored the

effects of different light conditions on pattern formation in suspensions of marine green

algae Dunaliella tertiolecta cells [81] and in suspensions of Chloromonas rosae cells [83].

A significant advancement in this area was made by Bees and Hill 1997 [8], who present

the first controlled experiments to quantitatively catalogue aspects of bioconvective pattern

formation. After mixing the culture, bioconvection patterns were recorded every 10 seconds

and the final, long time pattern was also recorded (after around 5-10 minutes). Images

were analysed in IDL using Fast Fourier Transforms (FFT) to produce a distribution of

wavenumbers of different Fourier densities. A curve was fitted to the Fourier spectra and

used to extract the most dominant wavenumber. The initial (first instability to grow) and

final pattern wavelength were found as a function of cell concentration and depth and the

initial wavelength was compared to model predictions by Bees and Hill [9]. In 2000, Czirók

et al. [26] used these techniques to explore trends in initial wavelength as a function of

depth and concentration in the bacterium Bacillis subtilis, using a different fitting function

to the Fourier Spectra. These techniques were also used by Pons et al. 2002 [138], while

studying chemoconvection pattern formation in the Methylene-Blue-Glucose system.

The aim of this investigation is to experimentally analyse the effects of concentration

and light on the initial wavelength of the instability formed during pattern formation in a

repeatable and rational manner, using the image analysis techniques of Bees and Hill [8]

and Czirók et al. [26]. This is the first quantitative study on the effect of light on bio-

convection patterns. The initial instability that forms before any higher order, non-linear

affects occur is of particular interest as this is the only wavelength that can be compared

with those predicted by the linear analysis in Chapters 2 and 3. A novel, automated

method of mixing was designed in an attempt to decrease the effects of variable mixing

that can occur between experiments when performed by hand. This is the first study

of its kind to repeat experimental runs, using the same cells, in order to give statistical

measures of the standard deviation and standard error of the mean for cells under the

same experimental parameters. Crucially, this allowed us to assess whether changes in

average initial wavelength as the control parameters varied were statistically significant.

Additionally, each experiment was also repeated using different cells to assess whether the
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trend was repeatable. This study thus presents improved methods for the quantification

of aspects of bioconvection patterns. We then use these methods to investigate previously

unexplored changes in bioconvection patterns as light conditions and concentration are

varied.

In this chapter, we first give a detailed discussion of the materials and methods used in

the experiments. A brief description of the image analysis techniques employed to extract

the initial wavelength follows. Experimental results for the effects of varying concentration,

light intensity and the position of the light source (whether lit from above or below) for

white and red light are then presented, and simple statistical methods are used to analyse

these results. For each experiment, the results section concludes with a discussion of the

trends found, where hypotheses to explain the observed data are presented. Experimental

results are then compared with model predictions from the combined photo-gyrotactic

linear bioconvection models presented in Chapters 2 and 3. Estimates of the critical

light intensity, Ic, are calculated. The chapter concludes with a summary of results and a

general discussion of the work, in which the difficulties in comparing theoretical and model

predictions are laid out

4.2 Materials and Methods

4.2.1 Cell Culture

For all the experiments described the motile green alga species Chlamydomonas nivalis,

strain CCAP 11/51B (recently renamed Chlamydomonas augustae), supplied by Sciento,

Manchester was used. The algae were suspended in Bold’s Basal Medium (BBM) following

work by Bees and Hill [8]. Other media, such as TAP (Tri-acetate-phosphorus), could have

been used, but we choose BBM since it is easy to produce in the laboratory and provides the

necessary nutrients for cellular growth and motility. The cultures of alga cells were stored

in either 500 millilitre or 1 litre conical flasks, which were used because the long neck of

the flask is useful in concentrating the cells for experimental use. The cultures were sealed

with a cotton wool bung inserted in the neck of the flask, which was then covered in tin foil,

to avoid contamination while allowing gas exchange. Since these cells are photosynthetic

it was necessary to illuminate the cultures, which was done by lighting cultures from above

using three strip florescent lights with an intensity of 1900 lux measured just above the

flasks of culture. The cells have a 24 hour cycle in which they swim, grow and divide [166].
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To control the culture in order to capture the cells swimming at a reasonable time of day,

the lights were set on a timer of 16:8 hours on:off.

Each culture was sub-cultured every four weeks to ensure a young, motile and healthy

supply of cells. This was the optimal time to allow the cells to divide sufficiently to become

concentrated enough for sub-culture. During sub-culture flasks of media were made using

the BBM recipe and were then autoclaved at 1260C for twenty minutes. Once the new

media had cooled sufficiently, one flask of the existing culture was mixed with one flask of

the new media over a heat source using a sterile technique.

4.2.2 Concentrating cells

To observe well-defined bioconvection patterns it is desirable to have a sufficiently con-

centrated suspension of cells. Cultures aged between 2 and 4 weeks (since sub-culture)

were used for experimentation. Since C. nivalis are negatively gravitactic, and hence swim

upwards on average, they can concentrate at the top of a fluid layer using the following

procedure. To extract concentrated cells, the flask is filled to the brim with culture and

a lump of sterile absorbent cotton wool is inserted in the neck of the flask. The cells

swim upwards through the cotton wool and start to sink when they reach the top, but do

not sink back through the cotton wool. This creates a region of concentrated cells at the

top and, moreover, ensures that the collected cells are good swimmers. This system was

typically left for 2-3 days before cells were harvested to ensure a high cell concentration

for the experiments. The cells can dehydrate if left on the cotton wool for too long and so

concentrated cells older than a week were not used.

4.2.3 Transfer of culture

To record pattern formation, the concentrated cells were extracted from the culture bottles

using a pipette and placed in a round Petri dish of diameter 5.2cm. When using a new

Petri dish the initial reaction of the cells is to stick to the sides of the Petri dish, which

could be due to surfactant and chemicals used in the production of the dish. This would

compromise our experiments since we require a culture in which all cells are swimming.

To counter this problem we treated new dishes by first washing out the dish with distilled

water, then with some dilute culture, before filling with a concentrated culture and leaving

for around 24 hours. After this the dishes were washed out with distilled water and dilute

culture and were then ready for experimental use. These dishes could then be used again
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and again, so long as they were washed with distilled water and dried with lens wipes after

use. Before each experimental use the dish was again washed with dilute culture.

4.2.4 Measuring depth and concentration

A standard volume of culture (6.5 mL) was used in each experiment unless otherwise

stated. To find the depth of a set volume in a Petri dish we focused from the top of

the layer to the bottom of the layer (using a Cole Palmer optical microscope; focus dial

divided into 200 segments), keeping a record of how many focus segments were turned.

The microscope was calibrated by using the same method to calculate the width of a glass

slide, which was also measured using a micrometer. This gives a relation between dial

segments and millimeters. Since the volume of culture was also controlled, this gave a

relationship between volume and depth of suspension.

Concentration was measured using a colourimeter (WPA CO7500 colourimeter), which

is a device used for measuring the amount of light of a certain wavelength that can pass

through the sample compared to a reference state, termed absorbance A. In this case

we always use the reference as 2 mL of Bold’s Basal Medium, so that we measure the

absorbance of the cells and not the medium.

To convert the measure of absorption from the colourimeter into a concentration of cells

we use Beer’s Law, which states that there is a linear relationship between the absorbance

of a culture and the cell concentration. To find this linear relationship we calibrate the

colourimeter by comparing colourimeter values with cell concentrations measured using

a haemocytometer for the same suspension as the culture is diluted. Averaged results,

for 5 readings of the haemocytometer and the colourimeter, are plotted in Figure 4.1.

We found that for large cell concentrations the curve looked non-linear. This may be

because of increased light scattering for high concentrations. We can avoid the problem of

the non-linear relationship by discounting any measurements above 0.8, where the trend

starts to look non-linear, and ensuring that the measurements we take are always within

the accepted linear range of our colourimeter, if necessary by dilution. The calibration

curve is shown in Figure 4.1, with standard error of the mean for the colourimeter shown

as error bars. The standard error for the haemocytometer was small (not shown).

On fitting a linear curve to the data in Figure 4.1 we find the relationship between the

absorbance from the colourimeter A and the concentration (in cells per cm3 of suspension)
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Figure 4.1: Calibrating the absorbance measurement, A, from the colourimeter with cell

concentration, C, found using a haemocytometer to count cells.

obtained from the haemocytometer, denoted C, as

C = (3.187A − 0.2678) × 106. (4.1)

To take the colourimeter measurement we mixed the suspension thoroughly and ex-

tracted a 0.5ml sample. This was then diluted with 1.5 mL of Bold’s Basal Medium (or

diluted more, for higher concentrations), to give a reading that would be in the acceptable

linear range of the colourimeter. The sample was shaken well and the reading taken, en-

suring the beam was passed through the optically clear side of the cuvette. This process

was repeated 5 times and the averaged measure of absorbance was then converted to a

concentration of cells using equation 4.1. The concentration measurement had to be taken

after the experiment had finished and after the depth has already been measured since the

measurement requires culture to be removed from the suspension and not returned.

4.2.5 Culture mixing

For quantitative studies of bioconvection patterns, a uniform distribution of cells in the

Petri dish is required at the start of the experiment, so that any pattern that forms will

do so from a standardized initial condition. In practise this is difficult to achieve, since

residual motions from mixing the cells are generally still present when pattern formation
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begins. This can create regions of varying cell concentration or velocity gradients, which

will likely affect the wavenumber of the initial pattern, k0. These effects from mixing,

therefore, create problems when trying to study changes in wavenumber as we vary a

parameter, since if mixing is not performed consistently in each case then it is hard to

distinguish whether changes in wavenumber are due to changes in parameter values or to

different initial distributions.

In previous studies, such as Bees and Hill 1997 [8] and Czirók et al. 2000 [26], cultures

were mixed by hand and a set mixing routine was used every time. However, there is an

element of human error involved in this method, since it is practically difficult to mix in

exactly the same way in every case, causing a non-uniform distribution of cells that varies

between experiments. This is demonstrated in Bees and Hill [8] in Figure 8, where the

initial pattern wavenumber for the same cells under the same conditions varied due to

different initial conditions following mixing.

In this study we have designed and implemented an automated mixing device to stan-

dardize mixing between experimental runs. This can be seen in Figures 4.3 and 4.4 for light

from below and light from above, respectively. It consists of a Vortex mixer (Jencons PLS

VX100) plus a flat head attachment with the culture in the Petri dish positioned on a light

box (for light from below) or on a board (for light from above) on top of the mixer. The

vortex mixer works by running an electric motor, which causes the flat head attachment

to oscillate rapidly in a circular motion, creating a rotation in the culture that mixes the

cells. We found that an initial thorough mixing followed by a rest period and then another

brief mixing was the best way to create a mixed suspension in which the effects of mixing

had sufficiently died away before pattern formation had begun. The parameters for this

process were investigated to find the optimal mixing regime and are discussed in section

4.4.1. The time at which to begin image capture requires a balance between allowing long

enough so that residual fluid motions have died down and not allowing so long that the

first traces of pattern formation are missed. This is essential since during image analysis

image sets are cleaned by subtracting the first image off the remaining images. Details of

the location of the mixing device and it’s specific role in different situations are discussed

below.

This is the first automated and controlled mixing system, to our knowledge, that has

been used in bioconvection experiments. It ensures that even if fluid motions are still

present in the early stages of pattern formation they are at least consistent every time
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the experiment is run, allowing changes in the wavelength to be attributed to culture

parameters and not different initial conditions due to mixing in each case.

4.2.6 Calibration of the light source

The lighting for the experiment consisted of either a red or white uniform, diffuse LED

array (Advanced Illumination) controlled via a PC. Square lights were used where the in-

tensity of the lights on each edge of the square could be separately controlled by specifying

a percentage of the full capacity. Here, the light from each direction was always set to the

same percentage, giving uniform light over the surface. To convert these intensity mea-

surements into dimensional units (in lux, which is lumen per meter square) we measure

the light at each intensity setting at the surface of the light using a light meter, ensuring

that there is no contamination by restricting all other light sources in the room. This

calibration is shown in Figure 4.2.
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Figure 4.2: Light calibration curves for the red (crosses) and white (stars) light. The

relationship between light setting and light intensity I in lux is linear and curves have

been fitted to the data. The point (0, 0) is not included in the fit so that the mid-range

behaviour, at which the experiments are performed, is captured better.

The conversion is linear and so here we have fitted a line to each data set to give the
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conversion equations as

IR = 14.9P − 47.9 (4.2)

IW = 45.8P + 186.7 (4.3)

where P is the percentage light, IR and IW are the light intensities in units of lux for the

red and white light, respectively. The point (0, 0) is not included in the fit in order to

better capture the mid-range behaviour, which the region we are particularly interested

in. It is clear that for the two different lights the ranges of dimensional light intensities

are not the same. Light intensities are given from here on as those calculated from the

linear fit.

4.2.7 Image Capture

The formation of bioconvection patterns during the experiments was recorded using a

black and white digital camera (Camtek BW CCD camera) attached to a PC. The ex-

periment and the adjoining computer were located on different work benches to prevent

any vibrations from the computer having an effect on the pattern formation. An image

capture program, written in C++, was used in which the frequency of image capture and

the total number of images taken could be controlled. Image capture began at a speci-

fied time after mixing ended and images were taken every 2 seconds until the maximum

number of images, typically 30, was reached. The process of the mixing regime followed

by image capture is referred to as an experimental run. For each parameter value, such

as for every value of light intensity I, n experimental runs were performed with the same

cells, with approximately 30 seconds between each run unless otherwise stated.

4.2.8 Varying concentration in the suspension

Investigations into the effect of concentration on the initial pattern wavelength were per-

formed. In all cases depth was kept constant and a standard value of white light at 645

lux was used. Experiments were performed with both light from above and light from be-

low. We started the experiment with the maximum concentration, Cmax, and performed

n experimental runs. A controlled dilute was obtained by replacing 2 mL of culture in the

Petri dish with 2 mL of fresh Bold’s basal medium, at equilibrated temperature. This was

done without moving the Petri dish from its position on the light box, so that positioning

and mixing conditions were identical for each concentration. The culture was thoroughly



An experimental study of pattern formation 170

mixed and left on the light box to re-adjust for 10 minutes before the culture was mixed

and the experimental runs re-started. This procedure was repeated, with 2 mL replaced

every time, until pattern formation was significantly weaker and the experiment came to

an end. Typically 4 or 5 dilutions were required. For each concentration n = 8 experimen-

tal runs were performed and the complete dilution experiment repeated up to three times

in the same way, although the initial concentration in each complete experiment varied

due to availability of cells.

4.2.9 Controlling illumination

In this study, we investigate the effects of light when the culture is illuminated from either

above or below, which require different experimental set-ups. During all experiments all

other lights in the room were turned off and the brightness of the computer monitors

dimmed and directed away from the experiment. The lab has no windows so daylight had

no effect on the experiment.
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Figure 4.3: A schematic diagram of the experimental set-up for illuminating the culture

from below. The suspension, in small Petri dish, is enclosed in a large, lidded Petri dish

and attached to the light box. The light box is attached to the vortex mixer via a flat

plate attachment and images are recorded with the camera from above. The camera and

the light box are controlled via a PC.

Figure 4.3 shows the apparatus when investigating light from below. The dish of

culture is placed in a large Petri dish, for stability, and is fixed in place so that images

for each run are taken of the same region of the dish. A lid is put on the large Petri dish,

enclosing the cells and reducing contamination. This also limits evaporation. The large

dish is positioned in the centre of the light box (white or red) and fixed in place. The
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light box is in turn attached to the vortex mixer. A spirit level was used to check that

the culture was level to avoid any effects of varying depth across the dish. The camera,

mounted on a tripod, was positioned above the dish and the focus and aperture were

adjusted to give the full range of grey scales in the images. The camera was zoomed in

to minimize the effect of the edges of the dish on the image analysis. The camera level

was checked using a spirit level. During each experimental run, and between runs, the

system was sealed in this way and the only input was using the vortex mixer to mix the

suspension and setting the light intensity using the remote controls on the PC.

Figure 4.4 shows the set-up for illumination from above. This requires a significantly

different set-up to light from below, where the position of the light and the camera are

adjusted as described below. A wooden plank with a Petri dish-sized hole was employed.

The dish of cells was inserted directly into this hole and the light was strapped to the

plank above the dish to provide illumination from above. The plank was then attached

to the mixer, and counterweights were used to balance the plank and make the culture

level. This arrangement was necessary due to the space required to image the system from

below. To complete the apparatus, the camera was inverted and positioned below the

Petri dish.

4.2.10 Statistical Analysis

In order to analyse trends in pattern formation as light conditions and concentration

change, we perform some simple statistical tests on the data for the initial wavenumber of

the bioconvection pattern. Where appropriate a linear regression analysis was performed

(Sigma Plot 8.0) on all data points from each experimental run, not just the averaged

wavelength. Correlation coefficients were found and T-tests performed to analyse the

probability of incorrectly concluding the existence of an association between the dependent

and independent variables. Unpaired T-tests were also used, to see if differences in mean

wavelength for different parameters were significant.

4.3 Image Analysis

Each experimental image consists of 768 by 596 pixels. To extract the dominant wavelength

in each of the recorded images we follow the analysis of Bees and Hill [9] and Czirók et

al. [26]. We used the graphics package IDL (version 7.0) to perform the image analysis,
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Figure 4.4: A schematic diagram of the experimental set-up for illuminating the culture

from above. The suspension, in a small Petri dish, fits snugly into a hole cut in a wooden

board. The light is fastened to the board above the dish of cells and the board is balanced

on the flat plate attachment of the vortex mixer by using weights to match the light on

the other end. The camera is inverted and placed under the dish of cells, so that patterns

are recorded from below.

which involves extracting the dominant wavenumber using Fourier transforms. Initially

the images contain unwanted information, such as the walls of the dish (in some cases),

any imperfections on the surface or lid of the dish, effects of uneven light distribution

(although the light source was uniform, there may be effects from other light sources) and

the boundary of the image. Subtraction of the first image (taken once the effects of mixing

have died away) from every subsequent image eliminates the effects of the first three issues

here, and the effect of the boundary of the image can be dealt with by using a smoothing

windowing function, as discussed below. A central region sized 512 × 512 pixels was cut

from each image, to create square images for the Fourier transformation. Figure 4.5 (a)

shows an example of a bioconvection image for a culture lit from above with white light

and Figure 4.5 (b) shows the effect of subtracting the first image. Dark regions indicate

high cell concentration.

4.3.1 Fourier transformation

Following the procedure of Bees and Hill 1997 [8], we performed the Fast-Fourier Transform

(FFT) algorithm developed by Cooley and Tukey 1965 [24] on the cropped images. Details
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(a) (b)

Figure 4.5: A sample bioconvection image in Figure (a) where the culture is illuminated

from above with white light, and the same image again in Figure (b) where the first

image was subtracted, to reduce the effects of the background, and the image re-scaled.

Subtracting the background removes the uneven distribution of light and removes the

impurities from the original image, as shown. Dark regions indicate high cell concentration.

of the FFT algorithm can be found in Press et al. 1992 [140]. As in Bees and Hill [8],

we conclude that the resolution of the image is high enough to use this method, as we

have 512×512 pixels and a maximum of approximately 60 wavelengths per picture, giving

around 8 pixels per oscillation and, hence, satisfying the Nyquist condition of 2 pixels per

oscillation. We use a Hahn windowing function (as in [8] and [26]) to eliminate the effects

of the sharp edges of the image [140]. This function has a maximum at the centre of the

image and zero at the edges. It weights the information in the centre of the image so that

it is more important than information at the edge and enforces periodic smoothing at the

boundaries to create a smooth oscillating sequence of the image where the edges join in

a continuous fashion. It also removes oscillatory errors from the Fourier spectrum. This

windowing is done before the FFT and the Hahn window is given by

WH(x, y) =
1

4

(

1 − cos
2πx

N

)(

1 − cos
2πy

N

)

, (4.4)

where the image is of size N × N .

The Fast Fourier Transform (FFT) takes the real, two-dimensional image array and

returns a complex array of the same size. In Fourier space there are various data spread

around the origin and it is the distance of these data from the origin that indicate the

wavenumber (number of waves in 512 pixels). Furthermore, the position of the data
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indicates the direction of the wave, and phase information is also available. We use the

data to plot a bar chart for every image, and it is from this that the dominant wavenumber

is calculated

4.3.2 Dominant wavenumber extraction

Following the work of Bees and Hill [8], we want to extract the dominant (largest)

wavenumber from each image. Bees and Hill [8] fitted an unnormalized double Gaus-

sian distribution to the resulting bar chart from the Fourier spectra with the idea that

one Gaussian would fit the noise and the less unstable wavenumbers and another would

fit the dominant most unstable wavenumber. They used a least-squares algorithm to fit

the double Gaussian to the wavenumber data. Czirók et al., [26] on the other hand, found

the spectra had a pronounced tent shape when using a double logarithmic plot of I(k)

(Fourier intensity) versus k, which indicates power-law decay for both small and large

wavenumbers. This leads them to extract the dominant wavenumber using the fitting

function

ln[I(k)] = α| ln(k) − ln(k0)| − β ln(k) + c, (4.5)

where k0 is the dominant wavenumber (the peak of the fit), α and β are fitting parameters

that characterize different exponents for small and large wavenumbers and c is a constant.

They also note that this is equivalent to separating the logarithms and writing

I(k) ≈ k−α−β when k < k0 (4.6)

I(k) ≈ kα−β when k > k0. (4.7)

Since these functions both only provide approximate fits to the bar chart data, it was

necessary to compute some analysis of error in this fitting process. We want the fitted

curve to fit the general outline of the spectra, and not stipulate that the spectrum has

a specified shape. We follow the work of Bees 1996 [7] where two measures of error are

calculated, the sum modulus error (ǫm), normalized with respect to the area under the

graph, and the Kolmorgorov-Smirnov statistic (ǫKS), which describes variations in the

trends of cumulative data and measures the cumulative error rather than the total error



An experimental study of pattern formation 175

sum. These are defined as

ǫM =
1

∑N−1
n=0 ρn

N−1
∑

n=0

|ρn − φ(X = n)|, (4.8)

ǫKS =
1

∑N−1
n=0 ρn

max
n=0..N−1

n
∑

j=0

(ρn − φ(X = n)), (4.9)

where ρn is the Fourier spectrum at wavenumber n and φ(X = n) is the fitting function

distribution that we are using (either the double Gaussian or the double logarithmic).

Large ǫk indicates the data is not very smooth and large ǫKS indicates the general trend of

the fitting function φ is significantly different from the data. As in Bees [7], small values

of both statistics implies the curve fit was successful, while larger values of one statistic

indicates that the fit should be studied in more detail, and does not necessarily imply an

inappropriate curve fit. Then again, large values for both would imply an ineffectual curve

fit.

On exploring both methods, we decided to use the double logarithmic function shown

in equation 4.5 as in Czirók et al. [26], where the constants in equation 4.5 are fitted to the

wavenumber data using the least-squares algorithm. The double logarithmic function was

chosen over the double Gaussian since in most cases tried it gave a better fit to the data,

with smaller errors, and we found that the double Gaussian often did not converge on a fit.

For example, for some images in the experiment for red light the double Gaussian did not

converge and in general the ǫM was twice as large for the double Gaussian compared to the

logarithmic function, and ǫKS was slightly smaller for the logarithmic function compared

to the double Gaussian. An example of the double logarithm curve fitting is shown in

Figure 4.12 for a culture lit from above with a red light. Occasionally, when the double

logarithm function did not provide a close enough fit, we had to estimate the first most

unstable wavenumber by hand. This happened only in a very small number of cases, and

for the majority of images the double logarithmic curve seems a natural choice. Once the

dominant wavenumber k had been estimated it was converted to a wavelength λ using

k =
Iw

λ
, (4.10)

where Iw is image width in centimeters. Hence, λ has units of cm. We denote the initial

wavenumber and wavelength for the pattern formation as k0 and λ0, respectively. It can be

difficult to deduce which image contains the initial pattern wavelength because the noise

in each image increases with time as the difference between the frame and the background

image that was subtracted grows. This was especially true for some white light intensities,
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where it became difficult to decipher whether an increase was due to random noise or

pattern formation. A consistent approach was used in these cases. Firstly, a wavenumber

was only chosen as the initial wavenumber if the Fourier spectrum density was sufficiently

larger than the noise, to ensure that the rise was not purely noise. The second condition

was that the Fourier spectrum density at this wavenumber grew with time, which indicates

the start of pattern formation. Using these image analysis techniques with the curve

fitting therefore allows us to investigate changes in initial wavelength as a function of

concentration and light intensity for different light positioning and wavelengths.

The time from the end of mixing to the start of pattern formation, t0, was also ex-

plored. This was calculated for each data set by noting the frame number at which pattern

formation was deemed to begin and converting it to a time. Note that since images were

taken every 2 seconds, t0 was a multiple of two but the average t0 over n runs was not

necessarily.

4.4 Results and discussion

In this section, experimental results for the effect of concentration and light intensity on

the initial pattern wavelength of bioconvection are presented. Labels RA, CA, CB, LA1,2,3

and LB1,2,3, for the different experimental conditions are defined in Table 4.1. Tabulated

wavenumbers are normalized to be wavenumbers per dish, since different image widths

were used between experiments and this normalization allows wavenumbers to be directly

compared. The wavelength in each experiment was calculated by dividing the image width

for that experiment by the wavenumber from the Fourier analysis, as in Equation 4.10.

For each experiment, the section concludes with a brief discussion of the trends found and,

where possible, comparisons with other studies are made.

4.4.1 Exploring the effects of mixing on initial pattern formation

Since our mixing regime is somewhat novel in these types of bioconvection experiments,

we first investigate the effects of different mixing regimes on initial pattern formation. In

each case explored here, we use the lowest, least vigorous mixing setting (of 200 rpm),

since this is sufficient mixing for the culture and too vigorous a mixing can damage the

cells and cause the culture to spill.

An ideal mixing is one that produces thoroughly mixed suspensions in which swirling
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has subsided sufficiently before pattern formation begins. For light from below we try

initially mixing for some time m1, leaving the culture to settle for time t1 before mixing

again for time m2 and then waiting for a time t2 for swirling to sufficiently decrease before

image capture begins. The first mixing thoroughly mixes the culture while leaving for

time t1 allows the fluid motions to subside, and then re-mixing for a short time m2 is used

to mix the cells again, but only very briefly, so that the fluid motions die away quickly.

A little experimentation revealed that m1 = 2 seconds of mixing was adequate to

thoroughly mix the suspension whilst minimizing swirling motion, as shown in Figure 4.6.

To further optimize the mixing we experimented with different values of t1, t2 and m2.

Figure 4.6: Sample bioconvection images where the culture was mixed using m1 = 2,

t1 = 10 and t2 = m2 = 0.

A mixing was deemed acceptable if the pattern appeared to form uniformly and with

minimal effects of swirling, so that the pattern appeared after the effects of mixing had

subsided and did not follow streamlines. Due to the different geometry of the apparatus,

the mixing motion was different when mixed from above and below and when cells were

illuminated with a different light source, although mixing was also kept consistent during

each experiment. The chosen mixing parameters for each experiment are summarized in
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Table 4.1, where the mixing regime is given in seconds and pairs of mixing followed by

waiting are shown, i.e. (m1, t1), (m2, t2), where the last number in the sequence is always

how long after the final mixing the image capture begins.

Experiment Light type Light orientation (mi, ti) Pairs (seconds)

RA Red Above (4,10),(2,10)

CA White Above (5,2),(3,4),(2,10)*

CB White Below (2,10),(1,12)

LA1,2,3 White Above (5,2),(3,4),(2,12)

LB1,2,3 White Below (3,10),(1,12)

Table 4.1: A summary of the different mixing methods used in the experimental re-

sults. The last column is a sequence of seconds with order mixing, waiting and is either

(m1, t1), (m2, t2) or (m1, t1), (m2, t2), (m3, t3) in cases where more mixing was required. *

indicates that the final waiting time was altered when necessary due to pattern formation

starting earlier as parameters were varied.

We also found that on varying depth, mixing produced different circulations, which

varied the wavelength of the pattern. Therefore, changes in initial wavelength could not

be attributed to changes in depth alone. For deep layers, increased swirling caused pattern

formation to begin before the swirling has subsided, making it hard to obtain an initial

wavelength. Furthermore, if the depth was increased above 5 mm the culture spilt on

mixing and images were ruined due to culture appearing on the lid of the dish. For these

reasons an appropriate depth was chosen and changes in depth were not investigated. This

is clearly a limitation of this mixing method.

Although this novel mixing regime certainly gives consistency, in that we see the same

shape of pattern formation in each experimental run, for the same parameters, we still see

some after-effects of swirling when pattern formation begins, shown by the pattern not

appearing entirely uniform over the dish. Any shear created by the swirling will induce a

gyrotactic effect (discussed in Chapters 2 and 3), which could affect the patterns formed.

Additionally, the cells swim and focus into concentrated regions whilst the suspension is

being mixed and when the flow is in the process of decaying, and this can initiate pattern

formation. This is not desirable in these experiments, since if this is the case patterns

do not form from equilibrium but are due to concentration variations caused by fluid flow

during mixing. However the suspension is mixed there is likely to be at least some residual
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fluid motion, such as in Bees and Hill [8] where mixing by hand affects the geometry of

the first patterns formed and, hence, the initial wavelength. The current method has the

advantage that mixing is controllable and repeatable.

4.4.2 Exploring the effects of concentration on initial pattern wavelength

In this section, the effects of varying the concentration of algae for both light from above

and light from below are explored and results are summarized in Table 4.2. Figure 4.7

shows some samples of the evolution of bioconvection patterns when the cells are illumi-

nated from above at 645 lux for different concentrations. There is a clear difference in the

patterns formed: the higher concentration image has more waves per image compared to

the lower concentration image, hence the initial wavelength is smaller, and earlier pattern

onset is found for higher concentrations.

Experiment I (lux) C (cells / cm3) d (cm) k0 /dish λ0 S.D. n

CA 645 8.11 × 106 0.306 28.83 0.1988 0.0185 8

CA 645 5.28 × 106 0.306 23.00 0.2336 0.0209 8

CA 645 3.33 × 106 0.306 20.73 0.2596 0.0228 8

CA 645 1.97 × 106 0.306 16.03 0.2937 0.0255 8

CB 645 6.32 × 106 0.345 33.31 0.1594 0.0341 8

CB 645 3.68 × 106 0.345 28.24 0.1893 0.0344 8

CB 645 1.98 × 106 0.345 22.87 0.2226 0.0287 8

CB 645 0.893 × 106 0.345 22.68 0.2369 0.0181 8

Table 4.2: Summary of results for the initial pattern wavelength, where cell concentration

varies. White light from above was used in experiment CA and white light from below

in CB. I is light intensity, C concentration, d depth, k0 /dish the wavenumber of the

initial pattern normalized over the dish diameter, λ0 the initial wavelength, and S.D. the

standard deviation calculated over n runs.

For each concentration eight independent data sets were collected and analysed and

the wavelengths presented in Figures 4.8 and 4.9 are the mean wavelengths for each con-

centration over these 8 runs. The error bars indicate the standard error of the means. For

both light from above and below, Figures 4.8 and 4.9 show that increasing concentration

decreases the initial wavelength of the instability, although wavelengths between experi-

ments cannot be directly compared as different depths were used. For light from above the
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(a) C = 8.11× 106 cells / cm3

(b) C = 3.33× 106 cells / cm3

Figure 4.7: Sample images from Experiment CA, with white light illumination from above,

I = 645 lux, where d = 0.306 cm and Iw = 2.47 cm. Figure (a) shows a case where

concentration C = 8.11× 106 cells / cm3 and Figure (b) a case where C = 3.33× 106 cells

/ cm3. Images were captured every 2 seconds, starting 10 seconds after mixing ended.
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aspect ratio of wavelength to depth was approximately one for the lowest concentration.

In the absence of any other indication of trend, a linear regression analysis was performed

to fit a straight line to the data. The linear equations and associated correlation statistics

are given by

Experiment CA: λ0 = 0.316 − 1.48 × 10−8C, with R = −0.849 (R2 = 0.721), (4.11)

Experiment CB: λ0 = 0.246 − 1.39 × 10−8C, with R = −0.704 (R2 = 0.496), (4.12)

where C is concentration in cells per cm3, R is the correlation coefficient. (R2 is called the

coefficient of determination.) The linear fits are shown in Figures 4.8 and 4.9. The corre-

lations coefficients are both R > 0.7, but the coefficient of determination for Experiment

CB is less than 0.5, indicating that the data have a relatively large spread, and that only

approximately 50% of the variability of λ0 can be explained by the concentration. Using

analysis of variance and performing a T-test we found p < 0.0001 in both experiments.

This is highly significant and indicates that it is very unlikely that there is not a correlation

between the concentration and initial wavelength.

Unpaired T-tests between each consecutive concentration for both light from above and

from below were performed. For light from above all the p values are small, p < 0.05 and

give significant results, indicating that the two means compared are significantly different.

However, for light from below none of the p values are significant, although some are close,

indicating that we cannot conclude whether difference between the means are significant

or not. However, on performing the T-tests again on the smallest and second highest

concentration, and on the second smallest and the highest concentrations in Table 4.2,

we find p = 0.0038 and p = 0.0013, respectively. These p values are highly significant

and imply that difference in these means are unlikely to be caused by random effects.

Overall, we conclude that there is negative correlation between concentration and initial

pattern wavelength. The data suggest that the correlation is stronger when the culture is

illuminated with light from above compared to light from below.

Discussion

Negative correlation between concentration and initial wavelength was also found by Bees

and Hill 1997 [8], and on comparison we see wavelengths of a similar order, although

exact comparisons are difficult due to differences in concentrations and depths between

experiments. Czirók et al. 2000 [26] used a two-parameter linear regression on the data of
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Figure 4.8: Experiment CA: The effects of concentration on dominant initial pattern

wavelength for a culture illuminated from above with a white light, where I = 645 lux and

d = 0.306 cm.
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Figure 4.9: Experiment CB: The effects of concentration on dominant initial pattern

wavelength for a culture illuminated from below with a white light, where I = 645 lux and

d = 0.345 cm.
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Bees and Hill and found that the aspect ratio of depth to wavelength, the characteristic

scale of the convection cell, is approximately one as depth varies (although there is quite

a large variation). In the present study, we find that for low concentrations this ratio

is approximately one, but as concentration decreases the aspects ratio also decreases.

Differences may arise since Bees and Hill [8] illuminated with a red light as opposed to white

light. Additionally, different wavelengths may have been taken as the initial wavelength,

since we captured images every 2 seconds and Bees and Hill [8] every 10 seconds. Czirók et

al. [26] also found that increasing concentration decreases initial wavelength with cultures

of Bacillus subtilis. For algae, we hypothesize that the decrease in wavelength that we

observe for higher cell concentration occurs through increased gyrotaxis, as in Bees and

Hill [8] (since when there are more cells, gyrotactic focussing increases).

4.4.3 Does red light illumination affect the initial pattern wavelength?

Chlamydomonas nivalis cells only have been measured to react to light within a certain

range of wavelengths [35, 125]. Nultsch et al. [125] measured the action spectra for the

photo response of Chlamydomonas reinhardtii to light of different wavelengths and found

that above around 550 nm there was a considerably reduced response. These data were

reproduced and expanded by Foster and Smyth in 1980 [35]. The original Nultsch et al.

data is reproduced here in Figure 4.10. Since the wavelength of the red light used in our

experiments was 660 nm it is unlikely that the cells will exhibit a significant phototactic

response. To investigate, we lit the culture of cells from below with the red light and

investigated changes in initial wavelength of the resulting pattern as the intensity of the

red light increased from I = 101 lux. Results are shown in Table 4.3 and plotted in Figure

4.14, where each data point represents the mean of 8 independent measurements taken

using the same cells.

An example of the resulting patterns formed under red light with I = 101 lux is shown

in Figure 4.11, with the corresponding Fourier density against wavenumber plot in Figure

4.12. In this example we note that although the pattern does not appear everywhere in

the dish at the same time, due to swirling caused by mixing, the dominant wavenumber

can still be extracted, and the double log fit looks like a good fit to the Fourier spectrum

data. Figure 4.13 shows a contour plot of the Fourier spectra for the development of

all wavenumbers over time. The aspect ratio, of wavelength to suspension depth, was

approximately two-thirds for this concentration, for all light intensities.
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Figure 4.10: Action spectra for C. reinhardtii cells; the relationship between wavelength

of light, λ nm, and relative response. This figure is reproduced from data in Nultsch et

al. [125].

Figure 4.11: Sample images from Experiment RA, with red light illumination from above,

I = 101 lux, where C = 5.05 × 106 cells / cm3, d = 0.306 cm, and Iw = 2.33 cm. Images

were captured every 2 seconds, starting 10 seconds after mixing ended.
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Figure 4.12: A sample set of Fourier spectra from Experiment RA, with red light illumina-

tion from above, where I = 101 lux, C = 5.05× 106 cells / cm3 and d = 0.306 cm. Images

were captured every 2 seconds, starting 10 seconds after mixing ended. The horizontal

axis is wavenumber and the vertical axis is Fourier density, and the logarithmic function

in equation 4.5 is used as the fitting function.
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Figure 4.13: A sample contour plot from Experiment RA, with red light illumination from

above, where I = 101 lux, C = 5.05 × 106 cells / cm3 and d = 0.306 cm. Images were

captured every 2 seconds, starting 10 seconds after mixing ended. Time is measured from

the start of image recording, and is not the time since mixing.

Experiment I (lux) C (cells / cm3) d (cm) k0 / dish λ0 (cm) S.D. n

RA 101 5.05 × 106 0.306 26.26 0.1993 0.0176 8

RA 325 5.05 × 106 0.306 28.33 0.1857 0.0226 8

RA 548 5.05 × 106 0.306 27.31 0.1922 0.0208 8

RA 772 5.05 × 106 0.306 28.09 0.1866 0.0181 8

RA 995 5.05 × 106 0.306 27.61 0.1901 0.0208 8

RA 1220 5.05 × 106 0.306 28.70 0.1837 0.0235 8

RA 1440 5.05 × 106 0.306 27.32 0.1924 0.0226 8

Table 4.3: Summary of results for initial pattern wavelength when the suspension was

illuminated with a red light from above. I is light intensity, C concentration, d depth,

k0 /dish the wavenumber of the initial pattern normalized over the dish diameter, λ0 the

initial wavelength, and S.D. the standard deviation calculated over n runs.
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Figure 4.14: Experiment RA: The effect of red light from above on dominant initial pattern

wavelength, where d = 0.306 cm C = 5.05 × 106 cells / cm3. Each point represents the

average of eight runs of the experiment and the error bars are the standard error of the

mean.

In Figure 4.14 there is no clear trend in the wavelengths as the red light intensity

changes, and the data points look to fall either side of a constant value. We use a linear

regression and find a very small correlation coefficient of R = −0.0957 with a corresponding

R2 = 0.009162, implying that there is not significant correlation between the variables.

The equation for the fitted line is given by

λ0 = 0.193 − 4.33 × 10−6I, (4.13)

where I is light intensity. The probability that we are wrong in saying that the y-intercept

coefficient is not zero is very small, p < 0.0001, but the probability of being wrong in saying

that the gradient is not zero is high, p = 0.4828, indicating that there is not sufficient

evidence to suggest a non-zero gradient. In any case, the gradient found from the linear

regression is very small. We found no significance when comparing the mean wavelength

for different light intensities using sets of unpaired T-tests. From all of this information,

we conclude that we have found no trend for variations in wavelength of the initial pattern

with red light intensity, since the initial wavelength remained approximately the same as

the intensity of red light increased between 100 and 1440 lux. We have, therefore, shown

that, in terms of pattern formation at least, the cells do not exhibit a photo-response



An experimental study of pattern formation 188

Wavelength λ, nm

R
el

at
iv

e
em

is
si

on
in

te
n
si

ty
,
a.

u
.

350 400 450 500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

Figure 4.15: Spectrum of the white light box.

to light of wavelength 660 nm, a result which is consistent with observations in Nultsch

et al. [125], who find a very limited photo-response to light of wavelengths greater than

550 nm. The lack of response means that illumination by red light is equivalent to no

illumination, so that data for red light can be thought of as being the case I = 0 lux.

Discussion

The average wavelength over all intensities for the red light is λ0 = 0.19 cm, which is of the

same magnitude as similar experiments in Bees and Hill [8], although it appears to be a

little smaller (Bees and Hill reported a value of 0.331 cm for a suspension of concentration

C = 3.60 × 106 and depth d = 0.324 cm). The aspect ratio is approximately two-thirds,

and this ratio increases as concentration increases (as increasing concentration decreases

initial wavelength when depth is kept constant).

4.4.4 Exploring the effects of white light illumination from below on

initial pattern wavelength

The main objective of this study is to investigate the effects of white light from both above

and below on the system, and this is performed in this section. The spectrum for the white

light box is shown in Figure 4.15, from which is noted that the wavelengths of the light

are within the range of response of the cells shown in Figure 4.10.

Using the experimental set-up described in Section 4.2.9, we study the effects of illu-
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mination from below. Light intensity I was initially set at 645 lux (10 % of the maximum

light intensity) and was increased in increments of 15% of the maximum. For each light

intensity n repeats of the experiment were performed with the same cells and from this

data the mean wavelength and standard deviation for each light intensity were calculated.

n was the same throughout each experiment, but sometimes if images were not recorded

properly or there was a problem with one run then this was discounted and n reduced.

Results for the mean wavelength are shown for three independent experiments, with

different cells, in Figures 4.16, 4.17 and 4.18 with concentrations of C = 5.35 × 106,

C = 5.18× 106 and C = 9.46× 106, and n = 6, n = 8, and n = 8, respectively. We denote

these experiments Experiment LB1, Experiment LB2 and Experiment LB3 and results are

summarized in Table 4.4. Note that LB1 and LB2 have a similar concentration but LB3

has a higher concentration.
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Figure 4.16: Experiment LB1: The effect of white light illumination from below on domi-

nant initial pattern wavelength, where d = 0.306 cm and C = 5.35×106 cells / cm3. Each

point represents the average of 6 runs of the experiment, unless otherwise stated in Table

4.4, and the error bars are the standard error of the mean.

Figures 4.16, 4.17 and 4.18 show the same basic trend: a decrease in initial wavelength

as light intensity is increased to 2020 lux followed by an increase as light is increased to

2710 lux and then what appears to be a stabilization of wavelengths as light is increased

further, with wavelengths beyond 2710 lux looking approximately constant within the
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Experiment I (lux) C (cells / cm3) d (cm) k0 / dish λ0 (cm) S.D. n

LB1 645 5.35 × 106 0.306 31.70 0.1650 0.0139 6

LB1 1330 5.35 × 106 0.306 34.22 0.1525 0.0097 6

LB1 2020 5.35 × 106 0.306 37.79 0.1383 0.0106 6

LB1 2710 5.35 × 106 0.306 32.32 0.1618 0.0131 6

LB1 3390 5.35 × 106 0.306 32.67 0.1595 0.0084 6

LB1 4080 5.35 × 106 0.306 32.72 0.1592 0.0075 6

LB1 4770 5.35 × 106 0.306 32.86 0.1597 0.0173 6

LB2 645 5.18 × 106 0.306 27.26 0.1912 0.0095 8

LB2 1330 5.18 × 106 0.306 30.76 0.1707 0.0178 8

LB2 2020 5.18 × 106 0.306 34.49 0.1544 0.0254 8

LB2 2710 5.18 × 106 0.306 32.27 0.1641 0.0230 8

LB2 3390 5.18 × 106 0.306 32.42 0.1620 0.0170 5

LB2 4080 5.18 × 106 0.306 33.42 0.1582 0.0216 8

LB2 4770 5.18 × 106 0.306 33.37 0.1567 0.0124 8

LB3 645 9.46 × 106 0.306 30.81 0.1727 0.0288 8

LB3 1330 9.46 × 106 0.306 33.59 0.1558 0.0131 8

LB3 2020 9.46 × 106 0.306 40.85 0.1278 0.0168 6

LB3 2710 9.46 × 106 0.306 33.10 0.1582 0.0136 8

LB3 3390 9.46 × 106 0.306 32.83 0.1590 0.0098 8

LB3 4080 9.46 × 106 0.306 33.94 0.1557 0.0203 8

LB3 4770 9.46 × 106 0.306 32.80 0.1600 0.0159 8

Table 4.4: Summary of results for initial pattern wavelength when the suspension was

illuminated with a white light from below. I is light intensity, C concentration, d depth,

k0 /dish the wavenumber of the initial pattern normalized over the dish diameter, λ0 the

initial wavelength, and S.D. the standard deviation calculated over n runs.
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Figure 4.17: Experiment LB2: The effect of white light illumination from below on domi-

nant initial pattern wavelength, where d = 0.306 cm and C = 5.18×106 cells / cm3. Each

point represents the average of 8 runs of the experiment, unless otherwise stated in Table

4.4, and the error bars are the standard error of the mean.
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Figure 4.18: Experiment LB3: The effect of white light illumination from below on domi-

nant initial pattern wavelength, where d = 0.306 cm and C = 9.46×106 cells / cm3. Each

point represents the average of 8 runs of the experiment, unless otherwise stated in Table

4.4, and the error bars are the standard error of the mean.
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range of the error. If the data for red light in Section 4.4.3 for a similar concentration

were included as a data point at I = 0, since red light does not have an effect, it would

also fit with the trend of decreasing wavelength as I is increased to 2020 lux. Although

these experiments show the same trend, there is some variability in the quantitative values

of the mean wavelengths, which is to be expected due to the difficulty of repeating the

same experiment with different cells that may behave slightly differently due to the stage

of their life cycle or daily cycle that they are at. Figure 4.17 appears to have a broader

spread around the mean than Figure 4.16, as indicated by larger standard deviations.

The increase between I = 2020 lux and I = 2710 lux is also less pronounced than in the

other two experiments and the wavelengths are slightly larger. The higher concentration

experiment LB3 has a smaller minimum wavelength (at I = 2020), as expected since

increasing concentration decreases wavelength (see Experiment CA, Section 4.4.2).

Unlike the data for varying concentrations, these are clearly not linear trends and so

we must treat the data differently. The data shows a region where the trend looks linear,

followed by an increase and then a region that appears stable. Therefore, we perform a

linear regression separately on the first three points (for light intensities I = 645, I = 1330

and I = 2020 lux) and then on the following four points for each Figure (I = 2710,

I = 3390, I = 4080 and I = 4770 lux), denoting the first three data points LB1a, LB2a

and LB3a and the later 4 points LB1b, LB2b and LB3b. The linear fits and corresponding

R and R2 values are

Experiment LB1a: λ0 = 0.178 − 1.94 × 10−5I, with R = −0.720 (R2 = 0.518), (4.14)

Experiment LB2a: λ0 = 0.208 − 2.68 × 10−5I, with R = −0.650 (R2 = 0.422), (4.15)

Experiment LB3a: λ0 = 0.190 − 2.68 × 10−5I, with R = −0.613 (R2 = 0.376), (4.16)

where I is light intensity in lux. Experiment LB1a shows the strongest negative correlation,

while LB2a and LB3a show weaker correlations. The T-test for both coefficients in all

three experiments gave p < 0.002. In all cases the analysis of variance T-test gave a

significance level of p < 0.002 for the probability of being wrong in concluding that there

is an association between light intensity and initial wavelength. To test whether the

changes in the mean wavelength between the first and last data points in LB1a, LB2a and

LB3a are significant we perform an unpaired T-test on each data set. We found a high

significance level in each case, p < 0.05, indicating that is unlikely that these differences

are due to error or normal variation. We conclude that it is unlikely that the light data
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can not be used to predict the wavelength data, and we have found a significant negative

correlation between light and wavelength for I ≤ 2020.

The rise in λ0 between I = 2020 lux and I = 2710 lux was examined using T-tests

and this rise in wavelength was found to be statistical significant in experiments LB1 and

LB3, with p < 0.05, but was not significant in LB2.

For the second set of points the correlation coefficients are very low, especially for the

more concentrated cells in LB3b and, hence, there is no evidence of a correlation between

light intensity and wavelength for I > 2710. The equations of the linear fits are

Experiment LB1b: λ0 = 0.164 − 9.62 × 10−7I, with R = −0.066 (R2 = 0.0043), (4.17)

Experiment LB2b: λ0 = 0.174 − 3.74 × 10−6I, with R = −0.166 (R2 = 0.0274), (4.18)

Experiment LB3b: λ0 = 0.157 − 2.87 × 10−7I, with R = −0.015 (R2 = 0.0002).(4.19)

In all cases the probability of being wrong in concluding that the y-intercept is non-zero

is very small, p < 0.0001, but the probability in being wrong in concluding that there is

a relationship between the two variables (i.e. that the gradient of the line is non-zero) is

very high (p = 0.760 for LB1b, p = 0.391 for LB2b and P = 0.934 for LB3b). These high

values, along with the small R values, imply that these data sets are uncorrelated and

that there is not sufficient evidence to conclude that light intensity when I ≥ 2710 lux and

initial wavelength vary together in an associated way. This evidence strongly suggests the

wavelength remains approximately constant for large I, and so we average all data points

for I ≥ 2710 in LB1b and LB2b separately to obtain λWB1 = 0.1600 (SD = 0.0115) and

λWB2 = 0.1600 (SD = 0.0184). For LB3 the average is slightly smaller, as expected, at

λLB3b = 0.1582 (SD = 0.0147). The linear fits are shown in Figure 4.19.

This T-test analysis, together with the linear regression data, leads us to conclude that

for illumination from below there is a significant decrease in wavelength as light intensity

is increased from 645 lux to 2020 lux, which can be fitted with a linear curve, followed by a

significant increase as light is increased further to 2710 lux in 2 cases, and a non-significant

increase in the third. Increasing the light intensity beyond this does not give any significant

change in wavelength for I up to I = 4770 lux. The data for LB2 have a broader spread

around the mean. From this we can only conclude that the initial wavelength decreases,

stops decreasing and stays at approximately the same level thereon.
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Figure 4.19: The effect of illumination from below on dominant initial pattern wavelength,

where linear regression fits have been plotted for all experiments, separately for the first

three points and the last four points in each data set.
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Discussion

Since cells swim towards a weak light and away from a strong light, there is a preferred

light intensity, Ic, between these two behaviours. To explain the remarkable results for

illumination from below, we assume that qualitative changes in initial wavelength as the

light intensity varies are due to a change between all cells swimming towards the light

when I < Ic, and cells exhibiting different behaviours (upswimming or downswimming)

dependent on location when I > Ic. This qualitative change, where wavelength stops

decreasing and starts increases as I is increased, occurs in the range 2020 ≤ Ic ≤ 2710

lux. We hypothesize that for I ≤ 2020 lux most cells wish to swim towards the light,

thus downwards, to maximize light absorption. If this is the case, positive phototaxis will

support any gyrotactic instability that occurs within the fluid, since positive phototaxis

will increase cells tilting towards downwelling fluid (as cells will orientate towards the

light, which is below). As the light increases from I = 0 lux to I ≤ 2020 lux, the cells will

be able to detect the light source more strongly and the phototaxis torque will increase,

thus further supporting the gyrotactic instability and increasing gyrotactic focussing and

decreasing the wavelength of the initial pattern as I is increased to 2020 lux.

It is also of interest to note that increasing concentration (and, hence, decreasing the

light each cell obtains due to shading, see Section 4.4.2) and increasing the light from below

from I = 0 lux to I = 2020 lux initially follow the same trend, of decreasing wavelength.

One might expect the opposite trend, since one is akin to decreasing light and the other

is an increase in light. However, increased gyrotaxis as concentration increases is the

dominant effect in the concentration experiment, and increased gyrotaxis due to increased

phototaxis and cell tilting as light intensity increases is the dominant effect in the light

experiment. Thus the concentration and light from below experiments show similar trends,

both attributed to increased gyrotaxis, even though the light intensity throughout the layer

effectively decreases for high concentrations.

We hypothesize that the sudden increase in wavelength as light intensity increases from

2020 lux to 2710 lux is due to light intensity exceeding the critical intensity, I = 2710 > Ic,

so that the cells’ swimming behaviour now depends on location in the layer. Cells far from

the light source will still want to move downwards towards the light, as they are shaded

by cells below, but now cells lower down near the light source have too much light and

are inclined to swim upwards, away from the light. This negative phototaxis will decrease

gyrotactic focussing, resulting in an increase of the pattern wavelength.
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Increasing light intensity beyond a certain threshold (2710 lux) does not change λ0 sig-

nificantly. Presumably this is because the cells near the light source are fully upswimming,

so cells concentrate at the upper boundary and there will be an overturning, gravitactic

instability. Since cells require to swim upwards, away from the light, gyrotaxis is no longer

supported by phototaxis and the gravitactic instability will be dominant for all sufficiently

large light intensities.

4.4.5 Exploring the effects of white light illumination from above on

initial pattern wavelength

Results for changes in initial pattern wavelength when cultures were illuminated from

above are summarized in Table 4.5. Three independent experiments, LA1, LA2 and LA3,

were performed on different cells with similar concentrations, ranging from C = 4.68 ×
106 to C = 5.69 × 106 cells per cm3 and with d = 0.306cm. In each experiment eight

experimental runs were conducted for each light intensity, and λ0 is the mean initial

wavelength of those eight repeats, unless otherwise stated (less than eight were recorded in

some cases due to problems with the images or the experimental set-up). Figure 4.20 shows

an example of a sequence of bioconvection images in Experiment LA1 for two different

light intensities, where images are taken 2 seconds apart. It is clear that the images with

the higher light intensity have more waves per image and, hence, a smaller wavelength.

Fourier spectra for these two image sets are shown in Figures 4.21 and 4.22, where we note

that the double logarithmic is a good fit to the data, and time to pattern formation t0 is

longer for the higher light intensity I = 4770. Figure 4.23 shows a 3-dimensional plot for

the evolution of the Fourier spectrum density and dominant wavenumber over time when

I = 645 lux. This shows that patterns start to form around 10−20 seconds after recording

began, with the Fourier density increasing initially to a maximum and then subsequently

decreasing after around 30 seconds.

Figures 4.24, 4.25 and 4.26 show plots of each experiment (for different cells) separately,

where initial wavelength is plotted as a function of light intensity. All results show the same

basic trend: as light increases from 645 to 1330 lux the initial wavelength, λ0, increases and

as I is increased beyond I = 2020 lux the wavelength decreases. If the data for illumination

with red light for a similar concentration were included as I = 0 lux (since red light has

no phototactic effect), where λ0 = 0.19 cm, it would be smaller than the wavelengths for

645 ≤ I ≤ 1330, thus would be consistent with the trend of increasing λ0 as I is increased
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Experiment I (lux) C (cells / cm3) d (cm) k0 / dish λ0 (cm) S.D. n

LA1 645 5.05 × 106 0.306 22.27 0.2352 0.0215 8

LA1 1330 5.05 × 106 0.306 20.41 0.2555 0.0150 8

LA1 2020 5.05 × 106 0.306 22.86 0.2283 0.0142 8

LA1 2710 5.05 × 106 0.306 26.07 0.2012 0.0213 8

LA1 3390 5.05 × 106 0.306 27.68 0.1880 0.0063 8

LA1 4080 5.05 × 106 0.306 30.68 0.1704 0.0131 8

LA1 4770 5.05 × 106 0.306 32.80 0.1592 0.0108 8

LA2 645 4.86 × 106 0.306 24.61 0.2133 0.0214 8

LA2 1330 4.86 × 106 0.306 21.31 0.2456 0.0219 7

LA2 2020 4.86 × 106 0.306 21.70 0.2406 0.0160 7

LA2 2710 4.86 × 106 0.306 22.57 0.2330 0.0277 8

LA2 3390 4.86 × 106 0.306 24.19 0.2197 0.0361 8

LA2 4080 4.86 × 106 0.306 25.30 0.2100 0.0327 8

LA2 4770 4.86 × 106 0.306 27.32 0.1905 0.0067 8

LA3 645 5.69 × 106 0.306 24.42 0.2154 0.0251 8

LA3 1330 5.69 × 106 0.306 19.82 0.2654 0.0295 8

LA3 2020 5.69 × 106 0.306 20.02 0.2632 0.0324 6

LA3 2710 5.69 × 106 0.306 20.83 0.2510 0.0203 8

LA3 3390 5.69 × 106 0.306 21.98 0.2378 0.0192 7

LA3 4080 5.69 × 106 0.306 24.28 0.2132 0.0172 7

LA3 4770 5.69 × 106 0.306 26.28 0.2022 0.0332 8

Table 4.5: Summary of results for initial pattern wavelength when the suspension was

illuminated with a white light from above. I is light intensity, C concentration, d depth,

k0 /dish the wavenumber of the initial pattern normalized over the dish diameter, λ0 the

initial wavelength, and S.D. the standard deviation calculated over n runs.
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(a) I = 645 lux

(b) I = 4770 lux

Figure 4.20: Sample images from Experiment LA1, with white light illumination from

above, where C = 5.05 × 106 cells / cm3, d = 0.306 cm and Iw = 2.47 cm. Figure (a)

shows a case where I = 645 lux and Figure (b) a case where L = 4770 lux. Images were

captured every 2 seconds, starting 12 seconds after mixing ended.



An experimental study of pattern formation 199

Figure 4.21: A sample set of Fourier spectra from Experiment LA1, with white light

illumination from above, where I = 645 lux, C = 5.05 × 106 cells / cm3 and d = 0.306

cm. Images were captured every 2 seconds, starting 12 seconds after mixing ended. The

horizontal axis is wavenumber and the vertical axis is Fourier density, and the logarithmic

function in equation 4.5 is used as the fitting function.
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Figure 4.22: A sample set of Fourier spectra from Experiment LA1, with white light

illumination from above, where I = 4770 lux, C = 5.05 × 106 cells / cm3 and d = 0.306

cm. Images were captured every 2 seconds, starting 12 seconds after mixing ended. The

horizontal axis is wavenumber and the vertical axis is Fourier density, and the logarithmic

function in equation 4.5 is used as the fitting function.
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Figure 4.23: A sample 3D surface from Experiment LA1, with white light illumination

from above, where I = 645 lux, C = 5.05×106 cells / cm3 and d = 0.306 cm. Images were

captured every 2 seconds, starting 12 seconds after mixing ended. ‘Time’ is time since

recording started.

to I = 1330 lux. The initial increase in the wavelength is most pronounced in Experiment

LA3, with λ0 increasing from 0.215 to 0.265, whilst the subsequent decrease is clearer in

Experiment LA1 (decreasing from 0.255 to 0.159, compared to a drop of approximately

0.055 − 0.063 in the other two experiments). LA1 is the most extreme data set, with the

highest wavelength for I = 645 lux and the lowest for I = 4770 lux. The wavelengths

for I = 1330 lux and I = 2020 lux in experiments LA2 and LA3 and very similar to

each other, causing these curves to level off around the maximum, unlike LA1, where the

fall in wavelength is more rapid once I > 1330 lux. The aspect ratios of wavelength to

depth were between 0.5 and 1.0. Although all the data sets show the same basic trend,

the strength of this trend and the absolute values of λ0 vary between them. This is likely

to be due to the different concentrations and cell cultures used, since different cells are

unlikely to behave in exactly the same way.

We investigate the trends using similar techniques to the case for light from below.

Comparing the mean wavelengths for I = 675 and I = 1330 lux using an unpaired T-test

it was found that the increase in wavelength was significant, with p < 0.05, in every case.

We perform a linear regression analysis but exclude the first data point, since it does
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Figure 4.24: Experiment LA1: The effect of white light illumination from above on dom-

inant initial pattern wavelength, where d = 0.306 cm and C = 5.05 × 106 cells / cm3. A

linear regression fit is plotted for all points except the first, I = 645 lux.
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Figure 4.25: Experiment LA2: The effect of white light illumination from above on dom-

inant initial pattern wavelength, where d = 0.306 cm and C = 4.86 × 106 cells / cm3. A

linear regression fit is plotted for all points except the first, I = 645 lux.
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Figure 4.26: Experiment LA3: The effect of white light illumination from above on the

dominant initial pattern wavelength, where d = 0.306 cm and C = 5.69× 106 cells / cm3.

A linear regression fit is plotted for all points except the first, I = 645 lux.

not form part of the decreasing linear trend. This gives the equation of the line and the

correlation coefficient in each case as

Experiment LA1: λ0 = 0.285 − 2.78 × 10−5I, with R = −0.915 (R2 = 0.837), (4.20)

Experiment LA2: λ0 = 0.272 − 1.59 × 10−5I, with R = −0.604 (R2 = 0.351), (4.21)

Experiment LA3: λ0 = 0.299 − 1.97 × 10−5I, with R = −0.688 (R2 = 0.474). (4.22)

The correlation is high in LA1 and not as high in the other two experiments. The T-test

for each coefficient in the linear equation returned significance values of p < 0.0001 for

all values over all three experiments and, likewise, using the analysis of variance test we

find the probability of being wrong in concluding an association between the variables as

p < 0.0001. Using an unpaired T-test the difference in λ0 for I = 1330 and I = 4770

lux was found to be significant in all three experiments, with p ranging between 0.0001 <

p < 0.0013 and, hence, this decrease in initial wavenumber as I increases from 1330 lux

to 4770 lux appears to be a significant trend.

Therefore, we find that increasing light intensity from I = 645 lux to I = 1330 lux

repeatedly produces a significant increase in the initial wavelength of the resulting pattern

and increasing I further up to I = 4770 lux significantly decreases the initial wavelength,

and this decrease is approximately linear. The linear fits are plotted in Figures 4.24, 4.25
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and 4.26. The initial wavelengths were of the same order as for illumination from below

all light intensities

Discussion

We hypothesize that the increase in wavelength between I = 645 lux and I = 1330 lux can

be explained as follows. For these intensities, I < Ic, all the cells want to swim towards

the light and, hence, upswimming via phototaxis increases as the signal of light received

increases. This increased upswimming leads to a higher concentration of cells close to the

upper boundary for I = 1330 lux compared to I = 645 lux, forming a dense sublayer which

is unstable to smaller wavenumbers. Gyrotaxis is also decreased, as cells swim strongly

upwards, thus the large wavelengths become more unstable at I = 1330 lux compared to

I = 645 lux, and wavelength increases as I is increased from 645 to 1330 lux.

If I is increased from I = 1330 lux to I = 4770 lux the initial pattern wavelength

decreases as I increases. We assume that light intensities greater than 1330 lux are above

the critical light intensity, Ic. Thus, starting from a uniform distribution of cells, negative

phototaxis is sufficient to overcome negative gravitaxis, as found by Häder 1987 [52], and

the cells near the top swim downwards due to too much light, whilst those lower down

swim upwards due to shading, creating a concentrated sublayer somewhere within the

layer, which moves down as the light intensity increases. This creates a stable region

overlying an unstable region of fluid and, since the sublayer is denser than the fluid below,

an instability arises. We hypothesize that the initial most unstable wavelength decreases as

I increases from 1330 lux to 4770 lux for two reasons. Firstly, the inclination of cells near

the light source to swim downwards as light intensity increases supports gyrotaxis, since

downwelling is increased. This is similar to what happens when the culture is illuminated

from below with intensity I < Ic, in which case gyrotaxis is supported, causing the cells

to swim downwards. Secondly, as light intensity increases from 1330 lux to 4770 lux, the

unstable region below the sublayer decreases in size, and large wavelength instabilities that

use the whole fluid layer have a reduced space to circulate, thus are stabilized more than

small wavelength instabilities. This causes a smaller wavelength to be the most unstable

for higher light intensities compared to lower light intensities, so long as I > Ic. Note that

we assume a different value of the critical light intensity to the value of Ic for light from

below in Section 4.4.4. This is discussed further in Section 4.6.
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4.4.6 Exploring the start time of pattern formation, t0

It is also of interest to investigate the start time of pattern formation, t0, as light intensity

changes for white light. Additionally, we investigate if there is any difference in start

time between white light and red light. The start time of pattern formation is measured

from when mixing ends, and so the values presented here cannot be directly compared to

Figure 4.12, for example, where time indicates time after image capture began. For red

light we only investigate one light intensity, since we deduced there is no effect on initial

wavelength when red light intensity changes. We take the eight runs from Experiment

RA where I = 325 lux and find the average t0. For white light from above and below, we

chose two sample experiments, LA1 and LB1, and find t0 for every run. t0 is averaged for

each light intensity and results are summarized in Table 4.6 and plotted in Figure 4.27. It

should be noted that start time can only be a multiple of 2, since images were taken every

2 seconds, but the t0 values used are averaged over 8 runs of the experiment for each light

intensity.
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Figure 4.27: Plots of average initial start time t0 for (a) Experiment LB1 and (b) Ex-

periment LA1 for different light intensities, where the average start time for I = 325 lux

for the red light experiment RA is included as I = 0 lux, since red light has no effect on

photo-motility. In both cases, d = 0.306 cm, and for LA1 and LB1 images were captured

every 2 seconds, starting 12 seconds after mixing ended.

For Experiment LB1, the time to pattern formation at the lowest light intensity, I =

645 lux, was approximately 28.33 seconds. t0 then increased as I increases, reaching a

maximum of t0 = 36.33 seconds at I = 2710 lux. As I increase above I = 2710, the time

to pattern formation then stayed approximately the same, at around 35− 36 seconds. For

light from above, Experiment LA1 shows pattern formation was delayed as I was increased

from t0 = 25.75 seconds at I = 645 lux to 40.75 seconds at I = 3390 lux, but when I0
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Experiment C (cells / cm3) d (cm) I (lux) Mean t0 (s)

LB1 5.35 × 106 0.306 645 28.33

LB1 5.35 × 106 0.306 1330 31.67

LB1 5.35 × 106 0.306 2020 33.67

LB1 5.35 × 106 0.306 2710 36.33

LB1 5.35 × 106 0.306 3390 35.67

LB1 5.35 × 106 0.306 4080 35.33

LB1 5.35 × 106 0.306 4770 34.33

LA1 5.05 × 106 0.306 645 25.75

LA1 5.05 × 106 0.306 1330 33.25

LA1 5.05 × 106 0.306 2020 36

LA1 5.05 × 106 0.306 2710 39

LA1 5.05 × 106 0.306 3390 40.75

LA1 5.05 × 106 0.306 4080 37.25

LA1 5.05 × 106 0.306 4770 34.75

RA 5.05 × 106 0.306 325 21.25

Table 4.6: Summary of initial start time t0 for the Experiments LA1 and LB1 and for

a sample red light intensity I = 325 lux from Experimental RA. I is light intensity, C

concentration, d depth and t0 measures the total time from the end of mixing to the start

of pattern formation.
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is increased further to I = 4080 lux and 4770 lux, t0 decreased and pattern formation

happened a little earlier (t0 = 34.75 at I = 4770 lux).

When using red light, pattern formation occurred after approximately 21 seconds,

earlier than for any of the white light intensities for light from above or below. If red light

is treated as I = 0, since we found that cells do not respond to red light, then for both

light from below and from above including these data points as I = 0 supports the trends

in t0 for I < 2710 lux and I < 3390 lux, respectively. These data have been plotted in

Figure 4.27.

Discussion

In Section 4.4.4 it is hypothesized that as I increases above I = 2710 with illumination

from below, I > Ic and the overturning instability at the upper boundary is the dominant

instability mechanism. An overturning instability is likely to take longer to form than

a gyrotactic instability, which could explain why we see a later start time for pattern

formation for I > 2710 lux compared to smaller intensities, and why start time t0 remains

approximately constant for I > 2710 lux. However, it is hypothesized in Section 4.4.4

that as I is increased from 645 lux to 2020 lux gyrotaxis increases, in which case we would

actually expect to the time to pattern formation to decrease, not increase, at I = 2020

lux compared to I = 645 lux. It may be that the cells take longer to generate an unstable

density gradient under brighter light (as I increases) as they spend less time swimming

upwards compared to predominantly gravitactic cells, since for I < Ic in a suspension

illuminated from below cells will wish to swim downwards.

In Section 4.4.5 it was hypothesized that for I > 1330 lux with illumination from above

gyrotaxis increases, which would decrease time to pattern formation and could explain the

trend in start time for I > 3390 lux shown in Figure 4.27. However, the light intensity at

which t0 is maximal, I = 3390 lux, does not correlate with the light intensity at which the

wavelength is maximal, I = 1330 lux, and we would expect these values to be the same

if increasing gyrotaxis were the cause of decreased time to pattern formation. This may

be because under strong illumination from above, when I > Ic, it takes the cells longer to

achieve the equilibrium distribution due to conflicting orientation biases (gravitaxis causes

the cells to swim upwards and negative phototaxis causes the cells to swim downwards

when I > Ic), as for light from below when I < Ic.

There are many possible explanations for the trends in t0 for light from above and
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below. In addition to those discussed above, the cells may swim slower the longer they

are in the dish, so that a larger change in conditions is needed to compensate for the

slower cells in order to reduce or increase the average time to pattern formation. For

I close to Ic there is likely to be gravitaxis and gyrotaxis both causing the instability,

which for light from below may mean that t0 increases even when gyrotaxis increases

because overturning is still the dominant mechanism. For light from above, it may be that

t0 only starts decreasing when gyrotaxis has sufficiently increased to become the main

destabilizing mechanism.

The start time t0 was estimated manually, due to relatively few discrete images cap-

tured, and thus was only accurate within 2 seconds, but this aspect of pattern formation

deserves to be explored more fully using computational techniques with more regular image

capture.

4.5 Comparing experiment results with predictions from

the three photo-gyrotaxis models

Results for the combined photo-gyrotactic models in Chapters 2 and 3 explore the effects

of changing the phototaxis parameters χ and ζ for cultures of cells illuminated from above.

χ is the ratio of the light intensity at the source, Is, to the critical light intensity, Ic (above

which the cells swim up, and below which they swim down) and, hence, χ = Is
Ic

. χ = 0

can be thought of as the case of no light, Is = 0, and increasing χ is like increasing the

light intensity (or decreasing the critical light intensity of the cells). The neutral curves

for the model results in Chapters 2 and 3 provide an estimate for the critical Rayleigh

number Rc and corresponding critical wavenumber kc (the minimum wavenumber on the

neutral curve, at which the growth rate is zero). On the other hand, in the experimental

study the initial dominant wavenumber, k0, clearly has a non-zero growth rate and occurs

for a set Rayleigh number determined by the experimental concentration and layerdepth,

which is not the same as the critical Rayleigh number (since R > Rc needed for pattern

formation). Although this makes direct comparisons between theory and experimental

results difficult, the predicted critical wavenumber kc at R = Rc may be related to the

fastest growing observed wavenumber, k0, so that trends in k0 as I varies experimentally

and kc as χ is increased numerically can be compared for illumination from above.

There are some issues that need to be considered before making any comparisons.
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Most importantly, have the effects of mixing sufficiently diminished before pattern for-

mation begins? Furthermore, has the equilibrium distribution, as found in the models,

had sufficient time to form before the onset of pattern formation? To establish whether

mixing effects would have diminished we use a similar argument to Hill et al. 1989 [63]

and Bees and Hill 1997 [8] and assume that the Petri dish is in solid body rotation with

angular velocity Ω until the mixing stops and the container instantaneously comes to rest.

The time for spin down is of the order O
(

E−1/2|Ω|−1
)

, where E = ν
ΩH2 is the Ekman

number (ν is the viscosity and H the layer depth). The timescale for the decay of the

residual fluid motion is also O
(

E−1/2|Ω|−1
)

. If we convert the speed of the mixer from

units of r.p.m to units of angular velocity, s−1, then we have |Ω| = 20.94 s−1, and if we

assume we have a shallow layer with H = 0.306 cm and kinematic velocity ν = 10−2 cm2

s−1 then E = 5.1 × 10−3. This gives O
(

E−1/2|Ω|−1
)

= 0.69 seconds, hence the decay is

approximately 0.69 seconds, and since we waited 10-12 seconds before recording, and the

patterns started tens of seconds after that, we conclude that the flow was likely to have

diminished sufficiently before pattern formation began. As for the formation of the equi-

librium solution, if the average cell swimming speed is 63µms−1, as in Hill and Häder [61],

and the cells are swimming upwards an average of 56% of the time (calculated from Bees

et al. 1998 [11]), then if the layer is 3mm deep a cell swimming at full speed upwards

would take approximately 48 seconds to swim the whole depth, and an average cell, only

swimming up 56% of the time, would take approximately 85.7 seconds. This implies that

the cells may not have sufficient time to form the equilibrium distributions that were used

in the phototaxis models because pattern formation began before 48 seconds in all cases.

To compare experimental data and the theoretical predictions we convert all the pa-

rameters into the same non-dimensional form. To do this we use expressions from the

models in Chapters 2 and 3 for the scaled layer depth d, equation 2.47, and the Rayleigh

number, equation 2.90, both in Section 2.3, and N from Section 2.2.3.

d =
K1H

K2Vnτ
, (4.23)

R =
vg∇ρκ1H

4N

νρV 2
n τ

=
vg∇ρκ2

1

νρV 2
n τ

(

H5n̄

1 − e−κ1H

)

, since (4.24)

N =
κ1Hn̄

1 − e−κ1H
and (4.25)

κ1 =
K1

K2Vnτ
. (4.26)
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τ is the direction correlation time, Vn the swimming speed, H the depth of the layer, ρ

fluid density, ∇ρ the difference in density between the cell and fluid, v is the cell volume,

g acceleration due to gravity, ν the kinematic viscosity and n̄ the mean cell concentration.

N is the scaling for concentration, substituted into Equation 4.24. λ is a constant defined

in equation 2.30 in Chapter 2, and K1 and K2 are from the equilibrium, zero flow solution

to the Fokker-Planck equation when λ = 2.2 in every case (so that they are constant in

Models B and C, even when λ is not), and are defined in Table 2.2. This value of λ was

chosen to be the same as in Pedley and Kessler 1990 [130], and is calculated by Hill and

Häder 1996 [61]. We choose a value of τ = 5 seconds and choose the gyrotactic orientation

parameter, Bn (defined in equation 2.28), as Bn = 6.3 seconds, taken from Jones [73]. In

the models, the gyrotaxis parameter η has the expression

η =
BnV 2

n τκ2
1

d2
, (4.27)

from equation 2.30 in Section 2.2.3. Choosing parameters from Table 2.1 in Section 2.2,

we have η = 16d−2. For all the other parameters we use those stated in Table 2.1 in

Chapter 2. Using these conversions for the experimental data provides d and R, as shown

in Table 4.7. We also convert the dimensional wavelengths found in the experiments to

dimensionless wavelengths by scaling with depth H. Non-dimensional initial wavelength

is denoted λ̃0, and we calculate the non-dimensional initial wavenumber k̃0 using k̃0 = 2π
λ̃0

.

Figure 4.28 and Table 4.7 show the results of Experiment LA1, where the dimensional

wavelengths have been converted to non-dimensional wavelengths.

Theoretical predictions for critical wavenumber, kc, and Rayleigh number, Rc, are made

with parameter values d = 34.6 and η = 16d−2 using methods outlined in Section 2.3 and

used again in Chapter 3. κ is a measure of the absorbance and is given by κ = α⋆HN in

equation 2.19, Section 2.2.3, where α⋆ is the cellular extinction coefficient. To calculate

the cellular extinction coefficient we use the relationship A = α⋆Cl, where A is absorption

per suspension, C the concentration of the suspension and l the path length. This can be

calculated using the data for calibrating the colourimeter, where absorbance A is known

for various concentration and the width of the colourimeter cuvette is 1 cm, hence l = 1

cm. Thus, we find a range for α⋆ per cell as

3.67 × 10−7 cm2 ≤ α⋆ ≤ 6.74 × 10−7 cm2 (4.28)

Note that this is a different range to that used for C. reinhardtii in Chapter 5. Using

α⋆ = 3.67 × 10−7 cm2, since this is the mode of the range, and averaging the mean
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Experiment I (lux) λ0 (cm) λ̃0 k̃0 d R(×106)

LA1 645 0.2352 0.7687 8.23 34.6 2.18

LA1 1330 0.2555 0.8351 7.55 34.6 2.18

LA1 2020 0.2283 0.7460 8.45 34.6 2.18

LA1 2710 0.2012 0.6576 9.64 34.6 2.18

LA1 3390 0.1880 0.6144 10.24 34.6 2.18

LA1 4080 0.1704 0.5570 11.34 34.6 2.18

LA1 4779 0.1592 0.5159 12.23 34.6 2.18

RA Any (red) 0.190* 0.6209 10.12 34.6 2.18

Table 4.7: Results from experiment LA1 with white light from above and RA with red

light from above, where wavelength has been converted into non-dimensional wavenum-

bers in order to compare with theoretical results. In RA the star indicates that, since

no dependence on intensity was found with red light, the wavelength is the mean of all

measurements for all light intensities.

concentration over the three experiments with illumination from above to obtain N , gives

κ = 20.3. Examples of the model predictions for the critical wavenumber and Rayleigh

number are shown in Table 4.8.

Figure 4.29 shows plots of the critical wavenumber as χ varies for Models A and

B, where η = 16d−2 and κ = 20.3. Results for Model C, where a new torque due to

phototaxis was included in the torque balance, are more difficult to compare because this

model requires two phototaxis parameters, ζ and χ, and it is not obvious how these can

be determined. Two versions of Model C were explored in Chapter 3, and here we just

compare the more realistic Case II. For this model, we found the surprising result that

for a range of values of ζ and χ, non-hydrodynamic modes exist, which occur even in the

absence of fluid flow. In the experiments in this chapter, fluid flow was present and so

experimental results cannot be compared with theoretical results for Model C, and from

herein only comparisons with Models A and B are made. An experiment to investigate

whether these non-hydrodynamics modes exist could be conducted by suspending alga

cells in a soft agar gel, in which there would be limited fluid flow.

For d2η = 16 the critical wavenumber kc for no light in all of the Models (χ = 0)

is kc = 45.3, which is around a factor of 4 higher compared to the initial most unstable

mode k̃0 for red light data (equivalent to no light; k̃0 = 10.12; see Section 4.4.3). The
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Figure 4.28: Results from experiment LA1, where the dimensional wavelengths have been

non-dimensionalized, for comparison with the theoretical predictions, and converted to a

non-dimensional wavenumber, k̃0. Again, each point is the mean of 8 initial wavenumbers

from the experimental data (see Table 4.5 for more details).
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Figure 4.29: Critical wavenumber, kc, plotted against χ for Model A in Figure (a) and for

Model B in Figure (b), where κ = 20.3 and d = 34.6.
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Model d d2η χ κ kc Rc

A 34.6 16 0 20.3 45.3 2.77 ×106

A 34.6 16 0.6 20.3 12.5 1.32 ×106

A 34.6 16 1.0 20.3 5.57 4.02 ×105

A 34.6 16 1.2 20.3 5.57 2.71 ×105

A 34.6 16 1.4 20.3 18.1 1.09 ×107

A 34.6 16 1.45 20.3 37.1 3.63 ×107

A 34.6 16 1.5 20.3 62.0 9.16 ×107

B 34.6 16 0 20.3 45.3 2.77 ×106

B 34.6 16 0.1 20.3 32.4 2.64 ×106

B 34.6 16 0.2 20.3 5.04 1.83 ×106

B 34.6 16 0.6 20.3 5.04 7.17 ×105

B 34.6 16 1.0 20.3 4.45 3.17 ×105

B 34.6 16 1.2 20.3 4.21 2.36 ×105

B 34.6 16 1.4 20.3 14.1 1.16 ×107

B 34.6 16 1.45 20.3 30.9 3.95 ×107

B 34.6 16 1.5 20.3 51.8 1.01 ×108

Table 4.8: Theoretical predictions of critical wavenumber, kc, and critical Rayleigh num-

ber, Rc, for Models A and B.
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Figure 4.30: Curves of neutral stability for Model B, where d = 20, κ = 20.3, d2η = 16

and χ = 0.0, χ = 0.1 and χ = 0.2. The critical wavenumber kc moves from the minimum

at large k to the minimum for small k for χ = 0.2, causing a jump in kc in Figure 4.29.

corresponding critical Rayleigh number was found to be Rc = 2.77 × 106 for all of the

models, which is very close to the experimental value of R = 2.18× 106. If η is reduced to

d2η = 4 then kc = 13.22, which is approximately the same order as the red light data (data

not shown). For d2η = 16, Models A and B predict a decrease in kc with increasing χ from

χ = 0 followed by an increase for some value of χ > 1 (see Figure 4.29), a trend also seen

the experimental data for k̃0 as I increases (see Figure 4.28). Critical wavenumber appears

to remain almost constant once the minimum value of kc is reached, until χ > 1.25. For

Model B, a double minima appears on the neutral curve as χ is increased from χ = 0 to

χ = 0.1, shown in Figure 4.30. As χ increases from χ = 0.1 to χ = 0.2 the minimum for

smaller k is smaller than the minimum for larger k, so that the value of kc moves to the

smaller minima and there is a sudden decrease in kc in Figure 4.29 between χ = 0.1 and

χ = 0.2. This double minima was not found for Model A and explains the differences in

the rate of decrease of kc as χ increases for Model B in Figure 4.29. The minimum critical

wavenumber and minimum Rayleigh number are kc = 5.57 and Rc = 1.49 × 105 in Model

A, and kc = 4.21 and Rc = 2.20 × 105 in Model B. In the experimental data the average

minimum initial wavenumber, k̃0, was found to be between 7.33 < k̃0 < 7.88 for I = 1330

lux over the three experiments, which is, encouragingly, of the same order as the model

predictions.
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In Models A and B the critical wavenumber started to increase as χ increased above

χ = 1.25 for both models. The critical wavenumber at χ = 1.5 was kc = 62.0 in Model A

and kc = 51.8 in Model B, which are both greater than kc for the case of no light, χ = 0. For

comparison, the mean wavenumbers for I = 4770 lux in the experiments ranged between

9.72 < k̃0 < 12.23. The increase in k̃0 appears to be linear in the experiments but the

theory suggests a higher order polynomial or an exponential distribution for increases in kc

when χ is large. The critical Rayleigh number, Rc, also increased rapidly with increasing χ

in both models, reaching 9.16×107 at χ = 1.5 in Model A. For the values of χ used, we see a

larger range for kc values than was found experimentally for k̃0, where the theoretical range

for critical wavenumber was 0 < kc < 62.0 for 0 ≤ χ ≤ 1.5 over all models, compared to

an experimental range for dominant initial wavenumber of 7.33 < k̃0 < 12.23. For χ > 1.5

for both models, tracing neutral curves became very difficult.

We conclude that the general trend of an initially decreasing and then increasing critical

wavenumber, kc, or dominant initial wavenumber, k̃0, in the experiments, as the phototaxis

parameter, χ, or the light intensity, I, is increased from zero is found for both models A

and B and the experimental data. A more detailed discussion of the issues involved in

comparing theoretical and experimental results is presented in Section 4.7.

4.6 Predicting Ic from Experiments

The experimental trends for light from above and from below can be used to estimate the

critical light intensity, Ic. We assume that qualitative changes of pattern wavelength with

light intensity are due to the cells either all swimming towards the light, when I < Ic,

or some swimming towards and some away, when I > Ic. For light from below, results

in Section 4.4.4 indicate that this occurs when the wavelength reaches a minimum in the

range 2020 < I < 2710 lux, hence we estimate 2020 < Ic < 2710 lux. A more precise

estimate cannot be found because it is not clear what happens when I is between these two

intensities. For light from above, the qualitative behavioural change occurs approximately

when the wavelength reaches a maximum at I = 1330 lux. To calculate an estimate for

the critical light intensity Ic we fit a linear curve to the two data points I = 645 lux and

I = 1330 lux and separately for the remaining data points for experiments LA1, LA2

and LA3 in Section 4.4.5. We assume that the point at which these lines meet is the

critical light intensity, Ic, since this is the point at which we assume the cells near the light
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Experiment Curve fit for 645 ≤ I ≤ 1330 lux Curve fit for 2020 ≤ I ≤ 4770 Ic (lux)

LA1 3.0 × 10−5I + 0.22 −2.5 × 10−5I + 0.27 909

LA2 4.7 × 10−5I + 0.18 −1.8 × 10−5I + 0.28 1538

LA3 7.3 × 10−5I + 0.17 −2.3 × 10−5I + 0.31 1458

Table 4.9: Summary of curve fitting results when cells are illuminated with a white light

from above for the three experiments in Section 4.4.5. Separate curves were fit for the

data points I = 645 lux and I = 1330 lux and for the data points I ≥ 2020 lux. The point

at which the curves meet, for each experiment, is used as an estimate of Ic.

source change from swimming towards the light to swimming away from the light. This is

summarized in Table 4.9, and gives a value for the critical light intensity of Ic = 1302 lux,

averaged over the three light from above experiments.

The estimated critical light intensity for light from above is not within the range of

the estimated Ic for light from below. To understand why this is, we consider the location

of a cell’s light-detecting apparatus. Currently, information on the location of the eye-

spot which detects the signal of light intensity is controversial (discussed in Rüffer and

Nultsch 1985 [149]), probably because it varies between different species and strains of

Chlamydomonas. In the simple phototaxis response and orientation model of Hill and

Vincent [64], it is assumed that for C. nivalis the eye-spot is located at an angle of 45 ◦

to the major axes of the cell. Hill and Vincent use their simple orientation model with a

double beamed light source, where each light is at 45 ◦ on either side of the vertical, to

show that the mean signal of light the cell receives over one rotation is smaller when the

cell is swimming away from the light than if the cell were swimming towards the light with

the eye-spot more inclined towards the vertical. If we also assume the eye-spot is at 45 ◦ to

the major axis then if cells are upswimming on average, due to gravitaxis, then, using the

results of Hill and Vincent, less light is received by cells over one rotation if the suspension

is illuminated from below compared to being illuminated from above, due to shading of

the eye-spot by the cell body. Thus, a higher light intensity would be required to induce

negative phototaxis when illuminated from below compared to from above, and this could

explain why Ic is higher when the culture illuminated from below. However, if the eye-spot

is located approximately at the equator of the cell, as supported by experimental evidence

(Gruber and Rosario 1974 [51] Rüffer and Nultsch 1985 [149]), this theory does not hold.

In this case, we hypothesize that since the pyrenoid, in which dense starch is stored, and
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other organelles are located towards the rear of the cell, the eye-spot is also more shaded

when illuminated from below than from above, hence a higher critical light intensity is

needed to cause negative phototaxis and to change the trend in initial wavelength.

4.7 Conclusions

In this chapter, techniques have been employed and developed to quantitatively record

aspects of bioconvection patterns and to investigate initial wavelength as a function of

concentration and light intensity in two orientations (illumination from above and below).

To produce repeatable results using fully motile cells, a methodology for sub-culturing and

concentrating the cells was used and methods of measuring depth and concentration were

calibrated and implemented. The same depth, of approximately 0.306 cm, was used in

all experiments (except the concentration experiment with light from below, Experiment

CB). A novel, automated mixing method was used to control the initial concentration

distribution from which patterns form. Using the image capture and analysis methods

designed by Bees and Hill 1997 [8] and modified by Czirók et al. 2000 [26], a Fourier

analysis was performed on each image and a suitable curve fitted to the wavenumber

distribution in order to extract the most dominant wavenumber. The initial wavenumber

(the first instability to grow) before any non-linear fully developed pattern appeared was

of particular interest here, as these wavelengths can be compared to the trends found

from the photo-gyrotactic models (as shown in Section 4.5). Trends were found in initial

wavenumber as concentration or light intensity was varied. To our knowledge, this is the

first study that repeats each experiment, both with the same cells and with different cells,

allowing some simple statistical analysis of trends and significance of changes in average

wavelength for varying experimental parameters to be explored. Using experimental data,

an estimate for the light related parameter Ic was calculated, which curiously differed

between illumination from above and below.

We found that for a set light intensity when the culture was illuminated either from

above or below, the initial wavelength of the most dominant mode, λ0, decreased as con-

centration increased. This was also found by Bees and Hill [8], and we hypothesize that

it is due to increased gyrotaxis for higher concentrations. We also found that cultures

do not respond to changes in red light intensity, an observation which is consistent with

observations by Nultsch et al. 1971 [125]. To our knowledge, we found the first statis-
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tically significant trends for initial pattern wavelength as a function of light intensity for

cultures illuminated from either above or below. In the case of illumination from below,

the wavelength of the initial most unstable mode decreased as light intensity was increased

from I = 645 lux to I = 2020 lux, then increased as intensity increased from 2020 lux to

2710 lux, and for I ≥ 2710 lux the initial wavelength stayed approximately constant. For

light from above, initial wavelength increased between 645 lux and 1330 lux and decreased

as light intensity increased between 1330 lux and 4700 lux. These trends are explored in

Sections 4.4.4 and 4.4.5 and were found to be repeatable using different cell cultures.

In Section 4.5 experimental results for light from above were compared to theoretical

predictions from the photo-gyrotaxis models presented in Chapters 2 and 3. Since the

phototaxis parameter χ cannot be directly related to light intensity I, and experiments

use R > Rc, whereas numerics predict kc at Rc (discussed in Section 4.5), it is the general

trends as these parameters change that are of particular interest. Promising consistency

between theoretically predicted critical wavenumbers, kc, and experimentally observed

dominant initial wavenumbers, k̃0, was found. Theoretical and experimental techniques

both revealed the same basic trends, where kc and k̃0 decrease when I or χ is increased

from zero, and then increase when I > 1330 lux experimentally, or χ > 1.25 numerically.

The observed critical wavenumbers were within a multiple of 4 of the predicted initial

wavenumbers, with the critical Rayleigh number for I = 0 of the same order as the

experimental Rayleigh number. Although the models and the experiments both show an

increase in critical (or initial) wavenumber as light increases sufficiently, the models show

a much more rapid increase in kc when I > Ic, compared to the increase in k̃0. This could

be because in our model each cell has the same critical light intensity and so will act in

the same way once I > Ic, whereas if the critical light intensity varied between cells then

this change would be smoothed out somewhat.

Comparisons between theoretical and experiment results are difficult and there are

many limitations. On the experimental side, isolating the very first instability can be

difficult, and there is often more than one significant initial instability. Although we have

produced a consistent mixing methodology, there is still some vanishingly small effect

of the mixing that causes the initial distribution of cells to be non-uniform, and fluid

motions inevitably also remain and contribute to the onset of pattern formation. The

Rayleigh number used in experiments also has to be greater than Rc, meaning we are

comparing an initial dominant wavenumber k̃0 from experiments that is above the neutral
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curve to a theoretical critical wavenumber kc lying on the neutral curve. On the theoretical

side, the prediction of kc comes from finding an equilibrium distribution and perturbing,

but in section 4.5 we suggest that there would not be time for the formation of this

equilibrium state. The aim of the work was to investigate the effects of light using these

two independent methods, theory and experiment, without trying to match them together

using data fitting or parameter extrapolation, and to this end we are satisfied that the

main trends are consistent between methods.

Unlike previous studies, such as Bees and Hill [8] and Czirók et al. [26], the time

evolution of the patterns over a sufficiently long period was not investigated because the

long periods of time that would be needed to perform a large number of experimental runs

on each culture would be unfeasible, since cell swimming and pattern formation may be

affected by many hours of continuous experimentation. The effects of evaporation would

also need to be considered if experiments were conducted over long periods. It would be

interesting to investigate long term pattern formation for the photo-gyrotactic system in

the future. Refinement of the trends around what appear to be the critical values of I

should also be explored to try and provide a more accurate estimate of Ic for future use in

models and elsewhere. Techniques to analyse other aspects of the patterns formed under

different light intensities, such as their geometry, could also be developed to build up a

thorough understanding of the system and the mechanisms at play during photo-gyrotactic

bioconvection.



Chapter 5

Modelling hydrogen production in

suspensions of Chlamydomonas

reinhardtii.

Summary

In this chapter, a simple mechanistic model for the system of hydrogen production in

the green algae species Chlamydomonas reinhardtii is constructed. The biology and bio-

chemistry of the hydrogen producing system are discussed in detail and key modelling

assumptions and hypotheses are outlined. A description of the model is presented, in

which the model is built up component-wise, based on analysis of experimental evidence. A

description of parameter estimation for each model parameter then follows, and a suitable

non-dimensionalized is presented. Standard numerical model results are computed and

discussed. In Chapter 6, we investigate varying the parameter values. We then optimize

the total yield of hydrogen gas produced over a set time using different input functions of

external sulphur.

5.1 Introduction

In this study, we construct a mathematical model of sulphur-deprived hydrogen produc-

tion in Chlamydomonas reinhardtii. The focus of this work is to construct the model

mechanistically, using our knowledge of the biology and biochemistry behind the reactions

of the system, as oppose to indulging in fitting a model with many degrees of freedom

220
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to data. In this way, we aim to produce a simple model that reflects the main physical

mechanisms of the system, without including all details, with parameter values from in-

dependent experiments, where available. Although we aim for a simple model, it will be

sufficiently complex to ensure all the key mechanisms are included. Before constructing

the model, it is necessary to begin with a detailed discussion of the biological mechanisms

and interplays that are fundamental to hydrogen production.

In this work, the term ‘system’ is used to described a typical bio-reactor set-up, in which

a concentration of cells are suspended in 1 litre of medium within a sealed container. The

term ‘cell’ is used in descriptions of an individual organism.

5.1.1 Background

Although the ability of the unicellular microorganism Chlamydomonas reinhardtii to pro-

duce hydrogen gas has been known for over 60 years (Gaffron and Rubin, 1942 [37]) until

recently it remained largely a biological curiosity due to fact that the hydrogen produc-

ing iron-hydrogenase is highly sensitive to oxygen co-produced from the photosynthetic

pathway (Ghirardi et al. 1997 and 2000 [39, 41]). The growing need for an environmen-

tally friendly, renewable energy source has accelerated this area of research. Recently,

Melis et al. 2000 [114] discovered a new two stage process where partial deactivation of

oxygen evolving photosystem II (PSII) occurs in response to sulphur deprivation, hence

separating oxygen and hydrogen production in time. It is this system that is modelled

here, and to understand how it works we first consider the basic photosynthetic pathways

and reactions.

Under normal conditions, PSII uses light energy to split water into oxygen, protons

and electrons. The electrons are passed along the photosynthetic chain on the thylakoid

membrane, running through proton pumps that pump protons into the enclosed thylakoid

lumen, until they reach PSI where they are further energized by light and passed onto

a ferredoxin complex. These electrons are then used to reduce NADP+ to NADPH, an

electron carrier that is used to transport electrons to the Calvin cycle, which fixes carbon

dioxide. ATP is produced when the protons that have been pumped into the thylakoid

lumen run through ATP synthetase. ATP is an energy form vital for cell survival and is

also used in the Calvin cycle. The Calvin cycle, too, is essential for the survival of the

cell, because it makes carbon skeletons used for growth and repair of cellular material.

Protein is constructed via the Calvin cycle by combining these carbon skeletons with
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internal sulphur. A detailed description of these process can be found in (Madigan et al.

2003 [107]). A very simple schematic diagram showing the main cellular process is shown

in Figure 5.1.
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Figure 5.1: A schematic diagram showing the basic internal structure of a C. reinhardtii

cell. For the labels, roman font indicates membranes (thylakoid, and those that enclose

the chloroplast and mitochondrion) and italic font indicates interiors, such as the stroma

and the cytoplasm. Dashed arrows indicated electron flow. The photosynthetic chain

is located across the thylakoid membrane, enclosing the thylakoid lumen. Photosystem

II (PSII) uses light energy to split water into protons, oxygen gas and electrons, that

are passed along the photosynthetic chain. Concurrently, protons are pumped into the

chloroplast lumen as the energized electrons run through proton pumps. These protons

are then released through an ATP synthetase, generating usable energy in the form of ATP.

Reductant NADPH is generated in a light-dependant step at PSI and is used in carbon

fixation during the Calvin cycle. In aerobic respiration, glucose made via the Calvin

cycle is oxidized to produce carbon dioxide and water and ATP is produced. Anaerobic

respiration can occur to supplement aerobic respiration if necessary. This occurs through

the break down of glucose without oxygen (glycolysis) in the cytoplasm of the cell. The

hydrogenase is inactive under normal conditions.

During the water splitting process the reaction-centre D1 proteins in Photosystem II

are damaged and need to be replaced (Mattoo et al. 1987 [110]). Sulphur is an essential
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component of the D1 proteins, so in the absence of sulphur, D1 protein biosynthesis is

impeded and the PSII repair cycle is blocked (Wykoff et al. 1998 [179]). Thus, the

quantity of oxygen produced from PSII under these conditions is dramatically reduced,

although production continues at a low level (Melis et al. 2000 [114]). Aerobic respiration

and the activity of PSI, which is required for ATP generation and to energize electrons to

pass to the appropriate electron sink (the Calvin cycle via NADPH, or the hydrogenase),

are not directly affected by sulphur deprivation [16, 28, 114, 183]. After approximately 24

hours, the rate of oxygen produced from photosynthesis is less than the rate of oxygen used

in respiration [41, 92, 114, 182]. In a sealed container, the cells then use up any remaining

dissolved oxygen in the medium, and the ratio of respiration to photosynthesis is sufficient

to ensure that the culture becomes anaerobic [41,92,114,182]. The oxygen sensitive iron-

hydrogenase enzyme on the thylakoid membrane is then expressed, and hydrogen gas is

produced for approximately 100 hours in the light [90, 92, 114, 182, 183]. If sulphur is re-

added to the culture when hydrogen production ends the cells can repair and return to

normal; additional cycles of oxygen production under sulphur sufficiency and hydrogen

production under sulphur-deprivation can then occur after a suitable recuperation time

for cells (Ghirardi et al. 2000 [41]).

Recent research by various groups demonstrates that anaerobiosis alone is not sufficient

for the cells to produce hydrogen gas: the Calvin cycle also has to be inactivated [156,

176,182]. Under sulphur deprivation the protein Rubisco, which is a necessary enzyme in

carbon fixation via the Calvin cycle and contains sulphur [107], is broken down and not

synthesized; 60 hours after sulphur deprivation began Rubisco could not be detected in

the suspension (White and Melis 2006 [176] and Zhang et al. 2002 [182]). Both White

and Melis [176] and Zhang et al. [182] suggest that sulphur deprivation causes Rubisco

breakdown, which disables the ability of the cells to use the Calvin cycle (via NADPH) as

the electron sink for reductant (electrons) generated on the thylakoid membrane during

photosynthesis. Thus an alternative electron sink must be used, as discussed below.

Under sulphur-deprived conditions (compare Figures 5.2 and 5.3) the cell is not able

to make sufficient energy in the form of ATP using oxidative photosynthesis, due to a

decline in PSII activity. Furthermore, the lack of oxygen produced by PSII in a sealed

system causes a reduction in the rate of oxygenic respiration, hence less energy in the

form of ATP can be produced than under normal conditions. When the cells become

anaerobic they start a fermentative mechanism, where internal reserves of endogenous
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substrate, such as starch and protein, are broken down to allow production of ATP and

energy in the form of NADH (Happe et al. 2002 [55]). This is a less preferable process than

oxygenic respiration and normal photosynthesis because energy production is less efficient,

by an order of magnitude, and significant quantities of harmful reducing equivalents from

fermentation may be produced [80, 107]. The catabolism of endogenous substrate during

fermentation also causes the cells to change shape and shrink during hydrogen production

(Zhang et al. 2002 [182]). Thus there is a metabolic switch between an aerobic state

with photosynthetic growth and an anaerobic state characterized by fermentation, H2

production and culture shrinkage (Hemschemeier et al. 2008 [58]).

The electrons acquired during fermentation enter the electron-transport chain by do-

nation between PSII and PSI at the plastoquione pool [38, 48, 162], and continue on the

electron transport chain to PSI. These free electrons are harmful to the cells, since they

can cause oxidative damaged and, hence, need to be removed. During dark fermentation

ethanol acts as an electron sink for the reducing equivalents produced, but ethanol is

harmful to the cell (Kennedy et al. 1992 [80]). In the light, under sulphur deprivation,

the partially active respiratory chain does not suffice as an electron sink, and neither does

the Calvin cycle. To prevent the production of these harmful end products, the iron-

Hydrogenase acts as the major electron sink, by re-oxidizing potentially harmful electrons

produced from both the PSII-dependent (via water splitting) and the PSII-independent

(reducing agents from fermentation) pathways, which are transferred to the hydrogenase

via the light dependant PSI pathway (Happe et al. 2002 [55], Fouchard et al. 2005 [36]

Melis et al. 2002 [114]). Thus the hydrogenase produces H2 gas in the light, which can

leave the cell. In this way, hydrogen production saves the life of the cell, but does so at

a cost because it uses protons from the thylakoid lumen to combine with electrons, de-

creasing the proton gradient across the thylakoid membrane required for ATP production

(Happe et al. 2002 [55]).

In addition to this linear electron flow, cells can perform cyclic photophosphorylation,

where electrons reach PSI and are cycled back to the plastoquinone pool to run through

the electron transport chain again to order to increase ATP production. Whether this

happens significantly during hydrogen production is still under debate [90,93,114]. Kruse

et al. [93] find that inhibiting cyclic electron transport increases electron supply to the

iron hydrogenase, since cyclic photophosphorylation competes with the hydrogenase for

electrons, but we found no other quantitative data on how this affects hydrogen production.
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Figure 5.2: Normal conditions. Electron flow (dashed arrows) from PSII to PSI causes

protons to be pumped into the thylakoid lumen for use in ATP synthetase. Sufficient

sulphur levels allow maximal PSII repair and activity and oxygen produced from water

splitting inhibits (thick black line) the activity of the iron-hydrogenase. Electrons are used

to generate NADPH, which is used in the Calvin cycle for carbon fixation, and carbon

skeletons can be combined with sulphur to produce protein. Light grey arrows and text

indicate an inactive pathway or process.
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Figure 5.3: Sulphur deprivation. PSII activity decreases due to a lack of available

internal sulphur. Protein is broken down, giving minimal quantities of sulphur, which

are used in the repair of PSII, and electrons, which are donated to the photosynthetic

pathway at the plastoquinone pool between PSII and PSI [38,48,162]. Due to low Calvin

cycle activity, caused by Rubisco depletion, electrons are passed to the iron-hydrogenase

under anaerobic conditions and hydrogen gas is evolved. Again, light grey arrows and text

indicate an inactive pathway or process.
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For this reason, we do not consider cyclic electron transport in this work.

What substrate, or combination of substrates, is catabolized during anaerobic fermen-

tation is still under discussion. In Melis et al. [114] protein was thought to be the main,

and maybe the only, provider of electrons, but later work showed the importance of starch

in hydrogen production [139,156,182]. In fact, protein breakdown is two-fold: in addition

to releasing electrons, protein also breaks down to release small amounts of bioorganic

sulphur, which are used to repair PSII and allow the photosynthetic chain to run, albeit

at a low level (Melis et al. 2000 [114]). This is essential for the cell, since it needs to

keep photosynthesis active for ATP production, and it has been found that if PSII is not

running at all, even a donation of electrons at the level of the plastoquinone pool can-

not provide enough energy for the survival of the cell (Zhang et al. 2002 [182]). Starch

production increases 8 − 10 fold in the initial stages of hydrogen production (Posewitz et

al. 2004 [139]) and is subsequently used as a substrate for respiration (Fouchard et al.

2005 [36]). Many studies, such as Zhang et al. 2002 [182], show that both protein and

starch are catabolized during H2 production, but which is the main source of electrons,

and what effect this catabolism has on other cellular activities, is still under investigation.

It is well documented that hydrogen production stops after around 120− 140 hours of

sulphur deprivation [90, 92, 114, 182, 183]. It is believed that hydrogen production ceases

because the endogenous substrate available to the cell for catabolism is depleted; the

cells have effectively used up as much of their internal reserves as possible (discussed in

Melis [111]).

This relatively simple description seems appropriate to capture the main behaviour

of the system. However, it should be noted that the dynamics are likely to be more

complex. Much work is in progress to try to unravel these complex metabolic pathways

[36,59,139,156].

5.1.2 Challenges to commercial hydrogen production

Although the work of Melis and co-workers demonstrates dramatic improvements in hy-

drogen yield (previously hydrogen gas was only produced for a few seconds, Gaffron and

Rubin [37]), the process still has problems that prevent commercial exploitation of green

algae for hydrogen production. The total yield of gas per volume of cells is too low for

commercial production, and is much lower than that which the photosynthetic oxygen

generating capacity of the cell suggests (Melis 2002 [111]). The cells are very inefficient,
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wasting up to 80% of the sunlight that they absorb, meaning they are not utilizing the

resources available (Polle et al. 2002 [135]). In addition, there is a large downtime associ-

ated with the process due to sulphur-cycling between anaerobic sulphur-deprived hydrogen

production and aerobic, sulphur-replete recovery periods (Ghirardi et al. 2000 [41]). This

two stage hydrogen producing system is currently too expensive, in terms of both cost and

land area (Melis 2002 [111], Melis 2007 [112])

Attempts to solve these problems using genetic engineering are currently underway. C.

reinhardtii cells use chlorophyll antenna complexes to harvest light and transfer the light

energy to the reactor centre of the chlorophyll for use in photosynthesis [107]. These an-

tennae are large and absorb more light than can be used by the cell (Melis et al. 1998 [113],

Polle et al. 2002 [135]). Thus, in a suspension of cells illuminated from above, the cells

close to the surface absorb and waste a large proportion of the light (up to 95 %; Polle et al.

2003 [136]), while strongly attenuating the light received by cells deeper down and further

from the light source [113, 121, 122]. This reduces photon use efficiencies and photosyn-

thetic productivity, hence hydrogen production. Many studies have shown that truncating

the chlorophyll antenna size (using mutants such as tla1 isolated by Polle et al. [136]) cre-

ates a more even spread of light through a suspension layer, thus reducing the wastage of

light (in terms of photons) and increasing the photosynthetic activity [12, 113, 135, 135].

Polle et al. [135] and Melis [111] suggests that this truncated antenna and increased pho-

tosynthetic activity efficiency could increase hydrogen production per volume of culture,

since hydrogen production depends both on light and photosynthetically derived electrons.

As yet, no work has demonstrated a positive impact of reduced chlorophyll antenna size

on hydrogen production. Flynn et al. [33] are selecting mutants and engineering alga cells

with a higher oxygen tolerance, in which case cells would be able to produce hydrogen

gas perhaps even under aerobic conditions. Variations of the culture parameters are also

being investigated to try and improve yield [88,90–92,167,182]. Kosourov et al. 2002 [92]

and Zhang et al. 2002 [182] investigate the effects of additions of minimal external sulphur

concentrations to the media at t = 0 on hydrogen yields and start time. Kosourov et

al. 2005 [89] investigate the effects of re-addition of external sulphates during hydrogen

production. Kim et al. 2006 [88] and Hahn et al. 2004 [53] explore the effects of changing

light intensity and Kosourov et al. 2003 [91] study the effects of pH on hydrogen produc-

tion. Hydrogen production under different growth conditions are compared by Kosourov

et al. [90].
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5.1.3 Previous modelling methodologies

Various models of hydrogen production from green algae have been proposed. Jo et al.

2006 [72] published a statistical study in which Response Surface Methodology (RSM)

(where a sequence of designed experiments is used to obtain an optimal response) was

used to evaluate the relationship between a set of controllable experimental factors and

observed responses. A second-order model was fitted to experimental data using a least-

squares technique and a polynomial expression for specific growth rate as a function of

ammonium, phosphate and sulfate and for hydrogen production rate as a function of

ammonium, phosphate and pH were found. These functions were then optimized over

parameter space and contour plots were used to show the optimal parameter values for

maximal growth and hydrogen production. The maximum rate of hydrogen production

was 1.22 times higher than Melis et al. [114] but 0.95 times lower than Kosourov et al. [92].

Jorquera et al. 2008 [75] constructed a mathematical model consisting of 17 differential

equations with 34 rate constants and 77 kinetic orders to describe a metabolic map of the

hydrogen production process, which included aspects such as photosynthetic components,

fermentation processes and mitochondrial reactions. Due to difficulties in parameter es-

timation, order estimates were used. A sensitivity analysis of the overall response of

the system to variations in parameters was conducted to analyse which parameters could

increase hydrogen production, with the aim of identifying possible targets for protein en-

gineering. In investigating parameter sensitivity, good qualitative agreement was found

between the model and experimental results on pH [91] and sulphate re-addition [89], but

not with results for hydrogenase expression in [91].

Park and Moon 2007 [126] constructed a discrete model of aspects of the photosynthetic

processes involved in hydrogen production, which had multi-states dependent on discrete

events such as sulphur deprivation. These discrete states have a similar effect to the switch

functions used to describe qualitative changes of behaviour in the new model described in

Section 5.2. Park and Moon’s model consisted of 11 differential equations and numerical

techniques were used for parameter estimation from experimental data and to find the

optimal light intensity for hydrogen production (found as 238 µE m−2s−1) [126].

5.1.4 Modelling methodology in this study

For the model for hydrogen production presented in this work, the system is simplified

further (compared to previous models mentioned in Section 5.1.3), and we construct the
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first mechanistic model of its kind from a careful consideration of the essential mechanisms

for the whole system (methodology outline is discussed at the start of Section 5.1). The

model needs to include sufficient detail to capture the main behavioural traits of the

system. In particular, we need to model external sulphur transport into the cell [181] and

the use and release of sulphur within the cell, along with the catabolism and synthesis

of endogenous substrate [92]. Oxygen is modelled due to the sensitivity of the hydrogen

producing iron-hydrogenase [39, 41], and culture growth and shrinkage are also shown to

be significant during hydrogen production [182]. Finally, hydrogen gas produced clearly

also needs to be modelled. Therefore, our model has six variables; using any less revealed

inconsistencies between the model and experimental data. This mechanistic approach

leads to fewer variables and fewer parameters than in Jo et al. [72], Jorquera et al. [75]

and Park and Moon [126]. As in those models, parameter estimation and determining

functional forms for this novel model are a considerable challenge. The objective here is to

produce a model that exhibits the same qualitative trends in behaviour as the biological

system and not try to refine parameter values to obtain quantitative agreement.

By constructing a mathematical model for hydrogen production, in tandem with ex-

perimental studies, we hope to be able to capture the main mechanistic features of the

system and then use the model to make clear predictions that will help bio-fuel scien-

tists and engineers to enhance yield and efficiency of the algal cultures. This work may

help guide experimental studies and optimize experimentation time by giving focus to the

experiments. Comparisons between model predictions and experimental results should

be made. Agreement may lead to strategies for improving the viability of algal hydro-

gen production for commercialization. Disagreement will necessitate model refinements.

The process of model construction also means we gain a thorough understanding of the

interactions and behaviour of the system we are modelling.

5.1.5 Hypotheses

We aim to use the novel mechanistic model to test hypotheses suggested in the experimen-

tal work to see if the explanations given for the experimental data are fully self-consistent

and sufficient to explain the trends in behaviour under different culture conditions. The

hypotheses are as follows:

• Hypothesis 1: Increases in initial rates of H2 production per mole of chlorophyll

for values of initial external sulphur at t = 0 (denoted S0) up to S0 = 25 µM, when
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compared to S0 = 0 µM, are due to higher levels of residual PSII activity passing

more electrons to the iron hydrogenase for hydrogen production (Kosourov et al.

2002 [92]).

• Hypothesis 2: Decreases in initial specific rates of hydrogen production per mole

of chlorophyll for initial external sulphur concentrations for S0 = 25 µM and above

in [92] and S0 = 50 µM and above in [182] are due to increased light limitation caused

by increased cell volume fraction (Kosourov et al. 2002 [92], Zhang et al. 2000 [182]).

• Hypothesis 3: When initial sulphur concentration is S0 = 50 µM the yield of hy-

drogen gas increases overall but the rate of hydrogen production per cell decreases

due to light limitation, implying that increased hydrogen yield for S0 = 50 µM is

due to there being more cells to produce the hydrogen (Zhang et al. 2000 [182]).

• Hypothesis 4: There is a mid-range of light intensities (60−200 µ E m−2 s−1) which

cause an earlier onset of hydrogen production (compared to the case 60 µ E m−2 s−1)

due to faster sulfate consumption (caused by increased photo-damage), resulting in

a prolonged period of hydrogen production. Increased chlorophyll concentration for

light intensities close to 200 µ E m−2 s−1 means that more electrons are released

and this, together with the prolonged period of production, creates higher yields of

hydrogen gas as light is increased from 60 to 200 µ E m−2 s−1 (Kim et al. 2006 [88]).

• Hypothesis 5: Above a critical light intensity, between 200−300 µ E m−2 s−1, the

rate of PSII photo-damage is increased yet further and chlorophyll decomposition

happens rapidly. This now decreases the overall yield of hydrogen gas, so that total

hydrogen yield over a set time period saturates as light increases beyond the critical

light intensity. Thus the critical light intensity is optimal for hydrogen production

over a set period. (Kim et al. 2006 [88]).

These hypotheses will be discussed in Section 5.6 and Chapter 6 as and when these issues

arise in the model results.
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In this study, we first discuss the modelling assumptions before building up the model

component-wise. We then present a discussion of parameter measurement and estimation.

The model is solved numerically and model results are compared to published experi-

mental studies. In Chapter 6, parameter sensitivity is investigated, and the results of

this are used to make some predictions for improving yields of hydrogen gas. Finally,

we test novel strategies for controlled sulphur titration, with the aim of improving yield,

continuity and ease of application of the cycling of cultures between the sulphur-replete,

photosynthetic aerobic phase and the sulphur-deprived, hydrogen producing, fermentative

anaerobic phase. We conclude, in Section 6.3, with a discussion of the work and ideas for

further study.

5.2 Model construction

Since this work focuses on building a simple rational model for a very complex system,

there are naturally aspects that will not be included. We aim not to model the complete

system but to produce a rational model for the main mechanistic features.

The model consists of a set of differential equations to explore what recent research

suggests are the core-components of the H2 producing system. Here the model is con-

structed component-wise to provide a clear statement of our assumptions. We model the

metabolites sulphur, s, protein, p, and oxygen, ω, as concentrations in units of micro-

molar, µM, and model hydrogen gas in units of millimeter of gas produced per litre of

culture. Cell division and size are modelled together as cell volume fraction, denoted Λ.

This avoids explicitly modelling the effects of sulphur-deprivation on cell division, as well

as changes in individual cell shape and size. To construct the model we consider the total

amounts of these substrates per volume of culture, so we use sΛ, pΛ and so on.

Figure 5.4 shows a simple schematic diagram of how the system has been modelled.

Solid arrows represent a transfer of mass and dashed arrows show an effect on the receiving

variable (for example, we say that oxygen has an effect on hydrogen production, but not

that oxygen becomes hydrogen).

5.2.1 Main modelling assumptions

To begin, we assume that we have an asynchronous cell population, where the cells used

in the bio-reactor are first grown under continuous illumination and, hence, are a variety
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Figure 5.4: A simple schematic diagram of the variables in the novel mechanistic model,

showing the interactions between them. The box indicates the system, consisting of a

suspension of cells in a sealed container. Oxygen diffuses out of the cell and is either

lost from the suspension under super-saturation, or used up in respiration (not shown).

Hydrogen gas bubbles off and leaves the cell and is collected in a measuring device. Sulphur

is used to make PSII which is damaged during oxygen release, hence sulphur is lost from

the model when used in PSII repair. Protein is produced from carbon skeletons produced

via the Calvin cycle, which in turn requires the light-dependent activity of PSII to provide

NADPH and ATP. PSI is intrinsic to the system and is not modelled explicitly, so is not

included in this diagram.
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of randomly selected sizes and shapes at time t = 0. This is so that comparisons can be

made with experimental data in [92, 114, 182], and seems reasonable since we model total

cell volume fraction instead of individual cells. For simplicity, we model the bio-reactor as

a cubical container, filled with 1 L of culture. For comparison with the bio-reactor used

by Kosourov et al. [92], we use two-sided illumination from the side at a light intensity

of 300 µE m−2 s−1. Although the shape of our bio-reactor is not identical to that used

in Kosourov et al. [92], this is a first step in making a rational, realistic model. Initially,

we assume that the culture is instantaneously and completely mixed, so that each cell

receives the average light as though it samples over all space at each time, t. This is used

for simplicity in the light function. In the basic model, we do not consider the effects of

cell swimming, a non-uniform distribution of cells, or flow occurring in the bio-reactor.

We also assume that the bio-reactor has been purged of oxygen before the start of the

experiment. This simplifies the initial condition of oxygen, which would otherwise be

difficult to quantify.

We assume that protons are not limited outside of the thylakoid lumen, since protons

are present in water (at pH 7.0, water contains 10−7M protons, and at equilibrium H2O

⇋ H++OH−). The suspension is sealed from the start and there is no external source of

oxygen. This is essential for hydrogen production due to the sensitivity of the hydrogenase

to oxygen. Additionally, we stipulate that oxygen can leave the suspension when super-

saturation occurs and this gas is collected and so cannot re-enter the suspension at a later

time. The cell membrane is thin, hence we assume the timescale for oxygen diffusion

into and out of the cells is small, allowing us to model internal and external oxygen

concentrations as the same and not distinguish between the two. This is different to the

way we model sulphur, as external and internal sulphur separately (S and s, respectively),

because sulphur is present in large, charged molecules (sulphates) that are actively, rather

than passively, transported into the cell via an energy dependant process (Yildiz et al.

1994 [181]). Spatial compartmentalization within the cell is not considered.

A key assumption in this model is that the only endogenous substrate catabolized to

donate electrons to the hydrogen pathway is protein, and starch is not modelled explicitly.

We assume that the cells have sufficient starch to maintain anaerobiosis under sulphur

deprivation (through the oxygen scavenging by aerobic respiration, which uses starch in

the form of glucose). Although this is a simplification of the system, it is used to de-couple

the activity of photosynthesis from the carbon cycle, glucose pathways and fermentative
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respiration as far as possible. Including these pathways would make the model consid-

erably more complex and would not enhance the understanding of the main mechanisms

sufficiently to warrant inclusion. The assumption seems reasonable, since there is evidence

of sufficient protein breakdown to provide the source of reductant for the hydrogenase

pathways (Melis et al. 2000 [114]). It is also protein, not starch, that provides small

amounts of sulphur to keep PSII running at a low level. A discussion of the possible ef-

fects of including starch is presented in Chapter 6. Protein is modelled as total protein

in the cell due to insufficient data on concentrations of specific proteins. Internal sulphur

is modelled as free sulphur within the cell that is readily available for use. Finally, we

assume that, except for sulphur, the culture has all the nutrients it needs to grow, divide

and produce hydrogen gas.

Additional modelling assumptions are discussed in the following sections as and when

required.

5.2.2 Internal concentrations

We start by considering the internal concentrations of protein and sulphur within the cell.

For both these concentrations we expect to have depletion and production. The term for

internal sulphur is

d(sΛ)

dt
= uptake(S, s,Λ) − repair(s,Λ, L(Λ)) + β × protein breakdown(p, ω, Λ)(5.1)

− β × protein production(s,Λ, L(Λ)),

where s is internal sulphur, S is external sulphur and p is protein, all measured in micro-

molar, µM. Λ cell volume fraction, in non-dimensional units, and L(Λ) is a yet-to-be

specified light function which is dependent on cell volume fraction (see Section 5.2.6).

Explaining this expression term by term, an obvious gain of internal sulphur comes

from sulphur taken into the cell from the medium in an active energy dependent process.

Yildez et al. [181] find that the rate of uptake of sulphur by the cell, in the form of

sulphates, depends on the amount of sulphate available and the total internal sulphur

in the cell; uptake rate varied for cells that were starved of sulphur prior to incubation

compared with normal, non-starved cells. We have

uptake(S, s,Λ) = Λ
α(s)S

β(s) + S
, (5.2)

where α(s) and β(s) are functions for the maximum uptake rate and the value of the

substrate concentration when the rate is half of its maximum, respectively. The form of
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equation 5.2 is chosen because the data in Yildez et al. [181] clearly suggest that for a set

value of internal sulphur, where α and β are constant, the uptake function has Michaelis-

Menten form: uptake is almost constant when S is large, and acts like 1
β when S is small.

To account for the changes in the maximum uptake rate and corresponding substrate

concentration as internal sulphur varies, which was found by [181], α are β are modelled

as functions of internal s.

If we make the assumption that in the Yildez et al. [181] data the starved cells have an

internal sulphur concentration of s = 0 and the non-starved cells have the normal amount

of internal sulphur, defined as s0, then on the basis of the existing data the following

function forms fit the data in [181] well:

α(s) = a exp

(

−Gs

s0

)

, (5.3)

β(s) = b1 + b2

(

s

s0

)

. (5.4)

In the expression for α(s), equation 5.3, a is the maximum uptake rate of external sulphur.

Yildiz et al. [181] show that this maximum rate is 206 fmol s−1 per 105 cells, and this is

obtained when the cells have been starved of sulphur, so s = 0. We take this as the

value for a, on converting the units to µM per hour (per cell volume fraction), hence

a = 14, 800 µM h−1. The maximum rate of uptake of external sulphur for non-starved

cells is α = 20.8 fmol s−1 per 105 cells in Yildez et al [181]. If we assume that internal

sulphur s has not changed from s0 at this point then s = s0, so α(s0) = 20.8 fmol s−1 per

105 and, using this with the calculated value of a, equation 5.3 gives

α(s0) = 20.8 fmol s−1 per 105 cells = a exp (−G) , hence G = ln(9.90) = 2.29. (5.5)

When s = s0 for non-starved cells in Yildiz et al. [181], the substrate concentration at

which the uptake rate is half of the maximum, defined here as the function β(s), was 16.7

µM, so that β(s = s0) = 16.7 µM. For the starved cell, where we assume that they have

no internal sulphur, s = s0 = 0, this value of substrate was β(s = 0) = 2.2 µM. Fitting

the linear curve for substrate concentration against internal sulphur, β(s) in equation 5.4,

to these two data points for s = 0, β = 2.2 µM and s = s0, β = 16.7 µM gives b1 = 2.2

µM and b2 = 14.5.

Thus the uptake function in equation 5.1 is

uptake(S, s,Λ) = aΛ
exp

(

−Gs
s0

)

S

b1 + b2
s0

s + S
. (5.6)
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Cell volume fraction Λ is included in equation 5.6 because more cells will take up more

sulphur.

Sulphur is used in the repair of photosystem II, with PSII activity depending ‘strictly on

sulphur availability’ (Zhang et al. 2002 [182]), thus we account for this repair as a loss term

in the equation for internal sulphur (the second term on the right hand side in equation

5.1). We assume that damage to PSII is proportional to light intensity (since rate of PSII

activity is proportional to light intensity), so the demand for sulphur for use in repair is

also linearly dependent on light. The rate of repair of PSII must also be proportional

to the amount of sulphur available. We use a Heaviside function to denote that above

a critical level of sulphur (in normal, sulphur-replete conditions), the repair occurs at a

constant rate, k1s0. We chose the critical level to be the normal sulphur concentration of

a cell, s0. A ramp function can be defined as R(s, s0) = sH(s0 − s) + s0H(s − s0), where

H denotes a Heaviside function, and is illustrated in Figure 5.5. Since equation 5.1 is for

total sulphur for all cells in the suspension, we multiply by Λ (as more cells require more

sulphur for repair). Hence,

repair(s,Λ, L(Λ)) = −k1Λ(sHPSII(s0 − s) + s0HPSII(s − s0))L(Λ), (5.7)

where k1 is the rate constant for this process. H‘name’ is used to describe a Heaviside

function that models any arbitrary process, ‘name’, which is ‘PSII’ in this case.
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Figure 5.5: An example of a ramp function R(s, s0) = sH1(s0 − s) + s0H(s − s0), where

s0 = 1.0, used to model the rate of sulphur used to repair PSII in equation 5.7.
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There is significant interaction between protein and sulphur within the cell. Proteins

consist of chains of amino acid sequences, two of which (cysteine and methionine) each

contain one mole of sulphur per mole of amino acid. Protein acts as a store of sulphur

molecules, so that when sulphur is plentiful some is stored in protein. In sulphur-deprived

or anoxic conditions protein can be broken down to release sulphur. We need two terms

in the sulphur equation to describe this: a loss term for the process of sulphur storage in

protein and a gain term for sulphur released by the catabolism of protein during anaerobic

fermentation. These complete equation 5.1, where β indicates that one mole of protein

contains β moles of sulphur. This breakdown and production of protein also provides two

terms in the protein equation, so that

d(pΛ)

dt
= −protein breakdown(p, ω, Λ) + protein production(s,Λ, L(Λ)). (5.8)
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Figure 5.6: A simple schematic diagram to show the cyclic relationship between protein

and sulphur. Protein is produced at a rate k3 and broken down at a rate k2 (omitting the

conversion factor β). Note that sulphur is not directly made into protein - it combines

with carbon skeletons made from the Calvin cycle via NADPH, which is produced from

light dependent photosynthesis.

We assume that protein breakdown depends on both how much protein is available and

on oxygen concentration, because protein breakdown (via fermentation) is an emergency

survival response to adverse, anaerobic conditions (Happe et al. 2002 [55]). Here, we model

this using a switch function such that protein breakdown only occurs when oxygen is below

the critical level ωp. We also stipulate that there is a base level of protein, denoted pr,

necessary for the survival of the cell, and that the base level concentration cannot be broken
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down (shown experimentally in Kosourov et al. 2002 [92], where hydrogen production stops

whilst some cellular protein is still present). To model this we use (p−pr) in all the protein

breakdown terms to imply that when p = pr no more protein is available for breakdown.

If p = pr in equation 5.12 then the only term that could potentially lead to p < pr is the

term due to changes in protein concentration as the cell volume fraction varies (the term

for protein production is always positive). However, since pr is less than the amount of

protein below which the cell volume fraction shrinks at a constant rate (pr < p1; Table

5.1), then when p = pr, −dΛ
dt > 0 and there are no sink terms in equation 5.12. Thus

protein is bounded below by pr and p ≥ pr always. For simplicity, we propose the linear

relationship

protein breakdown(p, ω, Λ) = k2(p − pr)ΛHFerment(ωp − ω), (5.9)

where k2 is the rate constant for protein breakdown.

For the protein production term, we assume a linear dependence on the amount of

sulphur available for the cell to convert into protein, relative to the normal amount of

sulphur in the cell, s0: protein is made at a rate k3s
s0

. Protein production is dependent on

carbon skeletons produced from the Calvin cycle. The Calvin cycle, in turn, needs NADPH

in order to run, and NADPH is created from the light-dependent electron transfer that

occurs during photosynthesis. For this reason, we also stipulate the protein production is

light-dependent and we assume that the effect of light on this chain of events is linear.

The electrons running through the photosystems are potentially harmful to the cells

and so must employed [107]. Under normal conditions, electrons are donated to NADPH

which is used in the Calvin cycle. However, under sulphur deprivation, Rubisco, which is a

crucial enzyme necessary for the Calvin cycle to run, is broken down, and the Calvin cycle

can no longer act as an electron sink (White and Melis 2006 [176]). Hence, under sulphur

deprivation, the hydrogenase, in anaerobic conditions, or ethanol production otherwise,

will remove the electrons (Happe et al. 2002 [55]). We assume that the cell can only use

one of these pathways at a time, as shown in Figure 5.7. In reality, the cell may use a

combination if conditions allow (i.e. anaerobic and Rubisco replete). This assumption is

realized by using a switch function HCalvin(s−s1) to stipulate that protein is only produced

when electrons are donated to NADPH and the Calvin cycle is on (as protein needs carbon

skeletons produced by the Calvin cycle), i.e. when the other two electron sinks are off.

The switch seems a reasonable way of closing the system and allows us to compute a

simple model without including details of the Calvin cycle, which would further complicate
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the system. This switch depends on sulphur, since a lack of sulphur causes Rubisco to

breakdown and not be synthesized, hence deactivating the Calvin cycle [176, 182]. We

stipulate that the Calvin cycle is active when internal sulphur concentration is greater

then a critical level s1, s > s1. We assume that sufficient Rubisco breakdown to stop the

Calvin cycle happens within the timescale for sulphur changing from the normal amount

of sulphur in the cell, s0, to the critical switch level, s1. Hence,

protein production(s,Λ, L(Λ)) =
k3sΛ

s0
HCalvin(s − s1)L(Λ). (5.10)
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Figure 5.7: A simple schematic diagram of the transport of electron flow from photosystem

I, via electrons donated from PSII and from protein breakdown, to the final location.

Where the electrons end up is decided by the oxygen and sulphur switches, as shown.

Separating the differentials on the left hand sides of equations 5.1 and 5.8 and sub-

stituting in equations 5.6, 5.7, 5.9 and 5.10 gives the rate of change of internal sulphur

concentration,

ds

dt
= a

exp
(

−Gs
s0

)

S

b1 + b2
s0

s + S
− k1(sHPSII(s0 − s) + s0HPSII(s − s0))L(Λ) (5.11)

+βk2(p − pr)HFerment(ωp − ω) − βk3

s0
sHCalvin(s − s1)L(Λ) − s

Λ

dΛ

dt
,

and the equation for internal protein concentration as

dp

dt
= −k2(p − pr)HFerment(ωp − ω) +

k3

s0
sHCalvin(s − s1)L(Λ) − p

Λ

dΛ

dt
. (5.12)

The last terms in equation 5.11 and equation 5.12 are the terms for cell growth and division.
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5.2.3 External sulphur concentration

The equation for the rate of change of external sulphur will consist of two terms: the

sulphur uptake by the cells from equation 5.6 and some arbitrary input of external sulphur

as a function of time, INPUT
(

S, h, dh
dt , t

)

= I
(

S, h, dh
dt , t

)

. Hence,

d(S(1 − Λ))

dt
= −uptake(S, s,Λ) + I

(

S, h,
dh

dt
, t

)

. (5.13)

We use S(1−Λ) because we consider sulphur in the solution, not in the cells. Expanding

and rearranging gives

dS

dt
= − 1

1 − Λ
uptake(S, s,Λ) +

S

1 − Λ

dΛ

dt
+

I
(

S, h, dh
dt , t

)

1 − Λ
. (5.14)

The uptake function is given in equation 5.6 and, hence,

dS

dt
= − aΛ

1 − Λ

exp
(

−Gs
s0

)

S

b1 + b2
s0

s + S
+

S

1 − Λ

dΛ

dt
+

I
(

S, h, dh
dt , t

)

1 − Λ
, (5.15)

where the input function, I
(

S, h, dh
dt , t

)

, will be specified in Chapter 6.

5.2.4 Oxygen concentration

One of the key aspects of this model is that we treat internal and external oxygen con-

centrations as the same, denoted ω, as discussed in Section 5.2.1. During normal cellular

photosynthesis PSII produces oxygen, some of which is consumed by respiration in the

mitochondrion. Therefore, a simple equation for the change in oxygen concentration is

dω

dt
= photosynthesis(s,Λ, L(Λ)) − respiration(ω, Λ) − loss(ω) (5.16)

The loss term will be explained below. Oxygen is produced by photosystem II during

photosynthesis, where water is split to produce protons, electrons and oxygen, so that

2H2O + light energy → 4e + 4H+ + O2. (5.17)

As previously discussed, under sulphur limited conditions this water splitting reaction

slows down due to a lack of sulphur for the protein biosynthesis needed to repair the PSII

complex. Therefore, we model oxygen produced from photosynthesis as dependent on how

much sulphur is available for repair, and we use a simple linear function form for this.

This has the same form as the repair of PSII function in equation 5.7, since they model

different aspects of the same process (sulphur used in repair compared to oxygen produced
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from that repair), so we also use a heaviside function to denote that under sulphur-replete

conditions, above a critical level of sulphur, s0, oxygen is produced from PSII at a constant

rate k6. When s < s0, oxygen is produced at a rate proportional to the amount of sulphur

in the cell relative to the normal amount, s
s0

. Clearly, photosynthesis also depends on

light, hence

photosynthesis(s,Λ, L(Λ)) = k6Λ

(

s

s0
HPSII(s0 − s) + HPSII(s − s0)

)

L(Λ).(5.18)

The term is multiplied by Λ since the amount of oxygen produced scales with the quantity

of cells

Respiration remains relatively unaffected by sulphur deprivation, at least for early

times (the rate of oxygen use does not decrease significantly in the first 70 hours, Melis

et al. [114]). We assume that respiration is not affected by sulphur deprivation and its

activity depends only on how much oxygen is available for use. As previously discussed in

Section 5.2.1, in doing this we are assuming that respiration always has sufficient glucose

and carbon dioxide to scavenge any remaining oxygen. We use the same form of the

equation as in photosynthesis, so that under normal oxygen conditions, ω > ω1, oxygenic

respiration is constant, and for ω below ω1 respiration levels decrease. Hence,

respiration(ω) = k5[ωHResp(ω1 − ω) + ω1HResp(ω − ω1)]Λ. (5.19)

The H2 producing system must be sealed to prevent atmospheric O2 entering, which

would stop the hydrogenase functioning. However, O2 gas can leave the system via the

pipe that collects the H2 gas, so that when the culture has become saturated with oxygen,

oxygen will be forced to leave. Thus we also need a loss term to ensure a realistic saturation

behaviour in the oxygen balance equation. We use a term that dictates that above the

saturation value of oxygen in water, χ, oxygen will leave at a rate vO2 , and we cap the

term using a switch function so that oxygen cannot re-enter the system. Hence,

loss(ω) = vO2(ω − χ)HLoss(ω − χ). (5.20)

Thus, the full expression for the oxygen balance reads:

dω

dt
= k6Λ

(

s

s0
HPSII(s0 − s) + HPSII(s − s0)

)

L(Λ) (5.21)

− k5Λ[ωHResp(ω1 − ω) + ω1HResp(ω − ω1)] − vO2(ω − χ)HLoss(ω − χ).
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5.2.5 Growth and decay of cell volume fraction

Under normal, sulphur-replete conditions a culture of cells will grow and divide in the

light. It has also been found that in the aerobic stage of sulphur deprivation, before

hydrogen is produced, some cellular growth and division occurs (Kosourov et al. 2002 [92]

and Melis et al. 2000 [114]. Zhang et al. [183]) show that under sulphur deprivation cell

division is limited but cellular growth occurs, causing the cells to change from ellipsoidal

to large spheres in the aerobic phase. They also show that during hydrogen production the

cells shrink and become smaller spheres, caused by the substantial catabolism of internal

substrates. Clearly these changes in cell number and cell volume should be included in

a rational model of hydrogen production. We do not model cell division and cell growth

explicitly. Rather, we model cell volume fraction defined by

Λ =
NVcell

Vcontainer
, (5.22)

where N is the number of cells, Vcell is the volume of one cell and Vcontainer is the volume

of the container.

Growth occurs when carbon skeletons produced by the Calvin cycle are used in con-

structing proteins, glucose and cellular material. Protein production also requires sulphur.

We work with the hypothesis that carbon skeletons produced by the Calvin cycle, through

NADPH production by photosynthesis, combine with available sulphur to make cellular

proteins that are used for cell growth and division [107]. Hence, we model growth as de-

pendant on protein concentration. Since protein production is a function of light intensity

in equation 5.10, and since growth is a function of protein in equation 5.24, then growth

depends indirectly on light intensity. There is also a dependance on Λ, since growth and

division depend on the current cell volume fraction:

dΛ

dt
= growth and decay(p, Λ). (5.23)

At this stage there are many different functional forms we could chose to represent the

growth and decay function. We could use a combination of heaviside functions, or construct

a smooth version of this function. For simplicity and consistency with the other functions

in the model, we construct a piecewise linear function out of Heaviside functions, such

that

growth and decay(p, Λ) = Λ [rexpHG2(p − p2) + HG2(p2 − p)HG1(p − p1) (5.24)

×c1(p − p0) − rdecayHG1(p1 − p)] .
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In equation 5.24, rexp is the maximum growth rate, rdecay is the maximum decay rate, p2

the protein concentration required for constant growth, p1 the protein concentration below

which the cells shrink at a constant rate, p0 is the protein concentration when growth rate

is zero and c1 is the gradient of the linear part of the function. If we calculate c1 we can

write equation 5.24 as

Growth and decay(p, Λ) = Λ [rexpHG2(p − p2) (5.25)

+
rexp(p − p0)

(p2 − p0)
HG2(p2 − p)HG1(p − p1) − rdecayHG1(p1 − p)

]

.

We choose this function so that growth/decay rate are constant above/below critical levels

of protein and there is some linear transition between these two states, as data in Kosourov

et al. 2002 [92] suggest (see Figure 5.8). This significantly differs from the usual models
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Figure 5.8: The function for growth dependent on protein, shown with the standard

parameter values in Table 5.1

of algae or bacteria growth, where a logarithmic growth phase is followed by a stationary

phase, since we want to include the effects of culture shrinkage as well as growth.

A smooth version of equation 5.25 could be

growth and decay(p, Λ) =
rexp(p

n − pn
0 )

pn
h + pn

. (5.26)

This function form was tried and we found that it does not make a considerable difference

to the model, hence we use the piecewise approach for consistency with other modelling

aspects.
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We could limit cell growth here by not allowing the cell volume fraction to rise above

the maximum packing capacity of spheres, KΛ, using

(

1 − Λ

KΛ

)

, (5.27)

but since we do not expect the cell volume fraction to even be close to KΛ we do not

include this limiting factor in the model.

5.2.6 The effects of culture density on light availability

Due to cell growth and cell division the optical density of the culture will change during

hydrogen production, which will have an impact on the photosynthetic chain. Since we

include cell growth and division in the model, we also need to include the effect that this

growth has on the available light.

Light intensity is modelled on the basis of the Beer-Lambert law as in Duysens 1956

[29]. This is the same relationship that we use in the phototaxis modelling in Chapters 2

and 3, based on work by Vincent and Hill [172]. The assumptions in Section 2.2.2 are used,

where we assume that all cells are homogenous and transmit light equally in all directions,

and we neglect the effects of multiple scattering. This is a self-shading model, where cells

close to the light source absorb light before it reaches those further away. We consider

illumination from the side at x = 0, so that light only varies in the x direction between

x = 0 and x = d, where d is the width of the bio-reactor. Light intensity, I, is given by

I(x) = I0 exp−
R 0

x [kw+kchln(x)]dx, (5.28)

where I0 is the light intensity at the source, kw is the absorbance of the medium and kchl is

the absorbance of the cells (the cellular extinction coefficient). If we make the simplifying

assumption that n(x) = n0, so the concentration is uniform through the layer, and define

C̃L = kw
n0

+ kchl, then

I(x) = I0 expC̃Ln0x . (5.29)

If we further assume that the culture is instantaneously well mixed then averaging over

the width is the same as averaging over time. Here we are assuming that the culture is

well mixed in such a way that the timescale for a cell to sample the illumination over all

space in the bio-reactor is small compared to the timescale for hydrogen production (tens

of seconds compared to over 100 hours). Thus we approximate that each cell at every time
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receives the average light it would receive if it surveyed all space instantaneously, so

〈I〉t = 〈I〉d =
1

d

∫ 0

−d
I0 expC̃Ln0x dx. (5.30)

Note that if we were considering a non-mixed solution, so that the cells form an exponential

distribution or plumes, as in static cultures, then this assumption would not hold and

hydrogen yield would be affected. Looking at the relative magnitudes of kw and kchln0,

we note that kw ≪ kchln0, so we can approximate C̃L ≈ kchl.

To convert n0 into cell volume fraction we divide C̃L by the volume of a single cell,

since

Λ = n0Vcell, (5.31)

and write

CL =
C̃L

Vcell
=

kchl

Vcell
. (5.32)

So far we have specified that as cell volume fraction decreases, the amount of light,

hence the functioning of the light dependent processes, increases, so that as Λ tends to zero

the light on average each cell receives and uses tends to I0. However, it is well documented

that as light is greatly increased the photosynthetic reaction rate saturates; if the cells are

given more light beyond the light saturation point, Isat, they do not increase their rate of

photosynthetic activity (Leverenzet al. 1990 [100]). In this case, light is not the limiting

factor in the photosynthetic reaction rates. We include this at the level of the integral in

equation 5.30 by imposing a cut off function for the total light when I > Isat. Hence, the

useable light, L(Λ), is defined from equation 5.30, substituting in equation 5.32, as

L(Λ) =
1

d

∫ 0

−d

[

I0 expxCLΛ H
(

Isat − I0 expxCLΛ
)

+ IsatH
(

I0 expzCLΛ −Isat

)]

dx. (5.33)

Using Heaviside functions to define the limits of the integrals, equation 5.33 becomes

L(Λ) =

(

I0

CLdΛ
[exp(−CLlΛ) − exp(−CLdΛ)] +

Isatl

d

)

H(d − l) (5.34)

+IsatH(l − d),

where

l =
1

CLΛ
ln

(

Isat

I0

)

. (5.35)

We normalize equation 5.34 using the value of this function calculated for the experimental

case in Kosourov et al. [92] from which the light-dependent parameters were obtained. This
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is because this value of the light function is intrinsically included in the light dependent

parameters, and we want a measure of the light as the cell volume fraction changes relative

to the light intensity at which those parameters were measured. Thus we set L = 1 for

the ‘standard’ experimental case, so L is normalized and non-dimensional when included

in the model terms. We denote the value of the light function in the experimental case

in [92] as Le1, where Le1 = 6.05 µmol m−2 s −1, and write non-dimensional L̃(Λ) (where

L̃(Λ) = L(Λ)
Le1

), on dropping tildes, as

L(Λ) =

(

I0
CLdΛ [exp(−CLlΛ) − exp(−CLdΛ)] + Isatl

d

)

Le1
H(d − l) (5.36)

+
Isat

Le1
H(l − d).

Furthermore, we define non-dimensional parameters

Ĩsat =
Isat

Le1
, Ĩ0 =

I0

Le1
and DC = CLd, (5.37)

and re-write equation 5.36, on dropping the tildes and substituting in the non-dimensional

expression for l, as

L(Λ) =





I0

DCΛ

[

exp

(

−Ln

(

Isat

I0

))

− exp(−DCΛ)

]

+
IsatLn

(

Isat
I0

)

DCΛ



 (5.38)

×H

(

1 − 1

DCΛ
Ln

(

Isat

I0

))

+ IsatH

(

1

DCΛ
Ln

(

Isat

I0

)

− 1

)

.

Figure 5.9 shows this function for different values of I0.

This function is a factor in all the terms related to photosynthesis: namely, the use

of sulphur to repair PSII, oxygen produced from PSII, and hydrogen production. It is

also a factor in protein production because although protein production, and the Calvin

cycle that creates the carbon skeletons, can happen in the dark, the Calvin cycle can

only produce carbon skeletons if NADPH is available, which is produced from the light

reactions of photosynthesis [107]. Since light is included in protein production, we do not

explicitly include light in the growth term (because growth is dependent on protein, which

is in turn dependent on light).

5.2.7 Hydrogen production

So far, hydrogen has not appeared in the model. This is because it has had no feedback

into the other model equations and is modelled as a product, or an output, of the system.
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Figure 5.9: The normalized light function L(Λ), where Isat = 150 and I0 = 49.6 (dotted),

I0 = 99.2 (solid) and I0 = 148.8 (dashed lines).

The general form of the equation for hydrogen production is

dh

dt
= Λ × O2 sensitivity(ω) × [PSII-dependent(s)+PSII-independent(p)] (5.39)

× Light(Λ) × Calvin cycle activity(s),

where cell volume fraction Λ is multiplied by all terms as we require the total rate of hy-

drogen production from all the cells in the bio-reactor. k4 is the rate constant of hydrogen

production, which has units of mL h−1.

The sensitivity of the hydrogen producing iron-hydrogenase to oxygen is well docu-

mented [92, 111, 114]. We model this using a simple switch function indicating that when

oxygen is above a critical level, ω2, no hydrogen can be produced, hence

O2 sensitivity(ω) = HSensitivity(ω2 − ω). (5.40)

The quantity of hydrogen gas produced also depends on the availability of electrons

passed to iron hydrogenase [36, 55]. Thus we model H2 production as dependent on the

sum of electrons coming from internal protein catabolism (the PSII-independent pathway)

and electrons coming from the residual level of the PSII water splitting activity (the PSII-

dependent pathway), as shown in equation 5.39. In modelling these separate electron

donations using addition, we assume that they happen independently. We do not include
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the effects of cyclic phosphorylation, in which electrons are cycled around the electron

transport chain instead of being passed to the hydrogenase.

Kosourov et al. [92] hypothesize that hydrogen production stops at around 100 hours

because the cells have catabolized as much of its internal substrate as possible. If no

substrate is available for catabolism, there will be no electrons from the PSII-independent

pathway. Thus we define the PSII-independent term as dependent on protein and write

PSII-independent(p) = (1 − EL)
(p − pr)

ph
, (5.41)

where pr is the base level of protein for cellular survival, below which hydrogen production

is not possible. EL is the fraction of electrons that come from the PSII-dependent pathway

when initial external sulphur is zero. PSII activity is modelled as linear in sulphur in the

oxygen equation, equation 5.21, and so the same form is used for PSII-dependent term,

hence

PSII-dependent(s) = EL
s

sh
, (5.42)

The specifications of the heaviside functions for rate of PSII activity, i.e. that PSII works

at a constant rate when s ≥ s0, are not necessary because the Calvin switch indicates

that hydrogen production only occurs when s < s0 anyway. The constants ph in equation

5.41 and sh in equation 5.42 are the levels of protein and sulphur during the initial stages

of residual PSII activity and hydrogen production (in Kosourov et al. [92]), and are used

to normalize these expressions so that they measure electron donation during hydrogen

production relative to electron donation in initial stage of hydrogen production when there

is no external sulphur. These normalizations are necessary as they ensure that these terms

are dimensionless, since all units are contained in the rate constant k4 in equation 5.44.

The final considerations in the hydrogen term are, firstly, that hydrogen production

depends on available light, since the light-dependent PSI complex passes electrons to the

iron hydrogenase. Thus we multiply the entire hydrogen term in equation 5.39 by the

function for light, L(Λ), as defined in equation 5.57. Secondly, we include the Calvin cycle

switch function HCalvin(s) to stipulate that hydrogen production can only occur when the

preferred electron sink, the Calvin cycle, is not operating and protein is not produced.

The flow of electrons to the various electron sinks is shown in Figure 5.7. Hence,

Calvin cycle activity(s) = HCalvin(s1 − s). (5.43)

This is the same (but opposite s and s1 dependencies) switch function, HCalvin, used

in the term for protein production in equation 5.10, since we are modelling that either
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protein, ethanol or hydrogen is produced from the electron pathway through PSI, and a

full description of the modelling processes for this switch can be found in Section 5.2.2.

Using this switch neatly closes the system from further modelling, and the full hydrogen

equation thus stipulates that anaerobiosis alone is not sufficient for hydrogen production;

the Calvin cycle also needs to be inactivated. This also eliminates the possibility of a

sealed, densely concentrated container of cells producing hydrogen due to increased cell

volume fraction leading to anaerobiosis through light limitation (in agreement with Zhang

et al. [182]).

Thus the full hydrogen equation is

dh

dt
= k4ΛHSensitivity(ω2 − ω)

(

EL
s

sh
+ (1 − EL)

(p − pr)

ph

)

L(Λ)HCalvin(s1 − s). (5.44)

5.2.8 The standard model, SM

Putting together all the model equations yields the standard model. The word form of the

model equations is

d(S(1 − Λ))

dt
= −uptake(S, s,Λ) + I

(

S, h,
dh

dt
, t

)

(5.45)

d(sΛ)

dt
= uptake(S, s,Λ) − repair(s,Λ, L(Λ)) + protein breakdown(p, ω, Λ)

− protein production(s,Λ, L(Λ)) (5.46)

d(pΛ)

dt
= −protein breakdown(p, ω, Λ) + protein production(s,Λ, L(Λ)) (5.47)

dω

dt
= photosynthesis(s,Λ, L(Λ)) − respiration(ω, Λ) − loss(ω) (5.48)

dΛ

dt
= growth and decay(p, Λ) (5.49)

dh

dt
= Λ × O2 sensitivity(ω) × [PSII-dependent(s)+PSII-independent(p)]

× light(Λ) × Calvin cycle activity(s) (5.50)
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The full version of the model is

EXTERNAL SULPHUR

dS

dt
= − aΛ

1 − Λ

exp
(

−Gs
s0

)

S

b1 + b2
s0

s + S
+

S

1 − Λ

dΛ

dt
+

I
(

S, h, dh
dt , t

)

1 − Λ
, (5.51)

INERNAL SULPHUR

ds

dt
= a

exp
(

−Gs
s0

)

S

b1 + b2
s0

s + S
− k1(sHPSII(s0 − s) + s0HPSII(s − s0))L(Λ) (5.52)

+βk2(p − pr)HFerment(ωp − ω) − βk3

s0
sHCalvin (s − s1)L(Λ) − s

Λ

dΛ

dt
,

PROTEIN

dp

dt
= −k2(p − pr)HFerment(ωp − ω) +

k3

s0
sHCalvin (s − s1)L(Λ) − p

Λ

dΛ

dt
, (5.53)

OXYGEN

dω

dt
= Λ

[

k6

(

s

s0
HPSII(s0 − s) + HPSII(s − s0)

)

L(Λ) (5.54)

−k5(ωHResp(ω1 − ω) + ω1HResp(ω − ω1))] − vO2(ω − χ)HLoss(ω − χ),

CELL VOLUME FRACTION

dΛ

dt
= Λ

[

rexpHG2(p − p2) +
rexp(p − p0)

(p2 − p0)
HG2(p2 − p)HG1(p − p1) (5.55)

−rdecayHG1(p1 − p)] ,

HYDROGEN

dh

dt
= k4ΛHSensitivity(ω2 − ω)

(

EL
s

sh
+ (1 − EL)

(p − pr)

ph

)

(5.56)

× L(Λ)HCalvin(s1 − s),

where L(Λ) is the normalized light function

L(Λ) =





I0

DCΛ

[

exp

(

−Ln

(

Isat

I0

))

− exp(−DCΛ)

]

+
IsatLn

(

Isat
I0

)

DCΛ



 (5.57)

×H

(

1 − 1

DCΛ
Ln

(

Isat

I0

))

+ IsatH

(

1

DCΛ
Ln

(

Isat

I0

)

− 1

)

.

5.3 Parameter Estimation

Since this is the first mechanistic model of this kind for the hydrogen producing algal

system, specifying parameters for use in the model has been a difficult task, especially due

to the difficulty in physically measuring some of these values. Although we have tried to

find appropriate values from independent data resources this has not always been possible,

in which case we have estimated a range of parameters from minimal fitting procedures.
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There are 32 parameters in total and in this section we describe how the values or ranges

are obtained for all parameters that have not already been discussed. Parameters taken

directly from publications, which only require unit conversions to be in correct form, are

shown directly in Table 5.1.

5.3.1 The critical values s0, s1, ω1, ω2, ωp and pr

The normal level of free sulphur in the cell, s0, was difficult to quantify. Using data for

total sulphur content of wild type cells from Hiriart 2006 [67], we calculate a value of

internal sulphur as approximately 100, 000 µM. However, this value is clearly too large

since we expect that much of the sulphur in the cell is not free and is contained in other

complexes that can not be used. Considerations of the data for sulphur transport across

the cell wall (Yildez et al. [181]) and behaviour of the system for values of external sulphur

of 100 µM (Zhang et al. [182] and Kosourov et al. [92]) suggests s0 is an order of magnitude

lower. For these reasons we typically set s0 = 15, 000 µM, although we also vary this value

between 103 and 105 µM.

Parameter s1 quantifies the switch between the Calvin cycle being used as the electron

sink, when Rubisco is sufficient, to the hydrogen or ethanol electron sinks being used

instead. An upper bound for s1 is the normal level of sulphur in a cell, s0. A lower bound

could be the level of internal sulphur at which hydrogen production begins, since at that

point sufficient Rubisco must have broken down. When hydrogen production begins the

level of oxygen production from PSII has approximately decreased by a factor of 5 (Zhang

et al. 2002 [182]). Since we model oxygen production from PSII as linearly dependent on

sulphur, we estimate that internal sulphur has also fallen by a factor of 5 at this point,

hence

s0

5
≤ s1 ≤ s0. (5.58)

We set the standard value of s1 as s1 = s0
2 , because Rubisco and sulphur levels both rapidly

reduce by a factor of two before hydrogen production begins, after which anaerobiosis is

the necessary condition for hydrogen production to begin. We choose a slightly smoother

switch for this function so that around the switch value, s1, hydrogen production and the

Calvin cycle can both be used as an electron switch. The gradient of the switch is denoted

sg.

For ω1, the level of oxygen required for full aerobic respiration, a value of ω1 = 1.18
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µM was obtained from Forti and Caldiroli 2005 [34]. ω2, the sensitivity of the iron hydro-

genase to oxygen, was extrapolated from data in Flynn et al. 2002 [33]; when oxygen is

below 2% (partial pressure of 0.02 atm), hydrogen production began. To convert this into

concentration of oxygen we use Henry’s Law,

patm = kω2, (5.59)

where patm is partial pressure measured in atm, and k is a constant measured in L.atm/mol.

Using k = 769.2 L. atm/mol from Sander and Lin 2002 [104] gives

ω2 = 2.60 × 10−5 M = 26 µM. (5.60)

ωp is the oxygen level when protein breakdown begins. We set this to be the same as

the oxygen level when hydrogen production starts, so that ωp = ω2, since there is evidence

that hydrogen production and endogenous substrate catabolism are coordinated [111].

pr, the base level of protein needed for survival of a cell, is calculated using data from

Kosourov et al. [92]. We take pr as the value of protein at which hydrogen production

stops for the case S = 0.0µM, converting into units of µM, and also convert from per mL

of culture to per cell using chlorophyll data. This gives pr = 206.0 µM.

The growth function for Λ also requires switch values but, for convenience, these are

discussed in the growth parameters section (Section 5.3.4).

5.3.2 Parameters in the sulphur equations

Parameters in the uptake function, equation 5.6, are discussed in Section 5.2.2.

k2 is the rate constant for the breakdown of protein to release sulphur under stressed

conditions. Due to a lack of other available data, we use protein data from Figure 5 of

Kosourov et al. [92], re-produced here in Figure 5.10, which shows that substantial net

protein breakdown occurs between 40 and 66 hours and again between 100 and 120 hours.

We assume an exponential decay of total protein during breakdown and further assume

that when protein breaks down there is no protein production. Using the exponential

decay assumption we write

pfinal = pinitial exp(−k2(tfinal − tinitial)) (5.61)

where pinitial/final and tinitial/final are the protein and time at the start/end of each break-

down period, respectively. Substituting values for the first protein breakdown period,
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40 ≤ t ≤ 66, from Kosourov et al. [92] into equation 5.61 gives k2 = 0.0267 h−1, and from

the second protein breakdown period we calculate k2 = 0.0973 h−1. Thus, we assume that

the rate of protein breakdown is in the inclusive range between these values,

0.0267 h−1 ≤ k2 ≤ 0.0973 h−1. (5.62)

Sulphur deprivation, h

P
ro

te
in

,
µ
g

/
m

l

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

Figure 5.10: Reproduced protein data for S0 = 0 µM from Figure 5 for unsynchronized

cells in Kosourov et al. [92].

Parameters k3 and k1 are linked and so k3 is explained first and then used to calculate

k1. The presence of the light term in the protein and sulphur terms complicates the

estimation so we calculate upper and lower bounds for k1 and k3 by assuming L(Λ) = L1

is constant (hence Λ a is constant, Λ1). We then use the maximum and minimum values

of L1 and Λ to calculate the ranges of k1 and k3.

k3 is the rate constant for protein produced from sulphur. In the early stages of

hydrogen production we assume no protein breakdown or hydrogen production. Hence,

equation 5.12 simplifies to

d(pΛ)

dt
=

k3

s0
sΛ1L1. (5.63)

If we set the half life of sulphur to be t1/2 then at t = t1/2 equation 5.63 becomes
(

d(pΛ)
dt

Λ1L1

)

(t=t1/2)

=
k3

2
. (5.64)
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We set the half life of sulphur t1/2 to be the half life of the oxygen production in Melis

et al. [114], since we model both oxygen produced and internal sulphur used in repairing

PSII linearly. Again, we use data from Figure 5b in Kosourov et al. [92] for S = 0 µM to

obtain d(pΛ)
dt and the value of Λ1L1 at t = 0 and t = t1/2, to give an approximate range for

k3 as

51.7 µM h−1 ≤ k3 ≤ 61.1 µM h−1. (5.65)

We use the same method to find k1, again assuming no external sulphur and no protein

breakdown in the initial stages of sulphur deprivation, and assuming that L(Λ) = L1 =

constant. If s < s0 then the equation for internal sulphur, equation 5.11, becomes

d(sΛ1)

dt
= −

(

k1 +
k3β

s0

)

sΛ1L1. (5.66)

Solving equation 5.66 and evaluating for s = s0
2 at t = t1/2 gives

k1 =
−
(

1
t1/2

ln
(

1
2

)

+ k3β
s0

)

L1
. (5.67)

Using a constant value of L(Λ) is somewhat of an approximation, because cell volume

fraction and, hence, light intensity, do change between t = 0 and t = t1/2. The presence

of the 1
Λ in the light function would make equation 5.66 unsolvable if light were not set as

a constant; this simple method provides an order estimate for k1. At t = 0, we calculate

light as L1 = 1 from Kosourov et al. [92], and at t = t1/2 we use the cell volume fraction

at t = t1/2 from Kosourov et al. [92] to calculate L1 = 0.846. Using the maximum and

minimum values of L1 and k3 as previously calculated, along with standard values for s0

and β, we calculate a range for k1 as

0.0376 h−1 ≤ k1 ≤ 0.0451 h−1. (5.68)

The final parameter in this section is β, which is the number of moles of sulphur present

in one mole of protein. An upper bound for the value of β is found by calculating the

number of sulphur-containing amino acids in an average protein chain, since these amino

acids each contain one sulphur mole. Abundant Rubisco proteins are used to obtain an

order estimate and a weighted average is calculated from large Rubisco subunit data in

Thompson et al. 1995 [165] and small subunit data in Goldschmidt-Clermont and Rahire

1986 [49] (there is not a one-to-one ratio of these proteins). We find β is bounded above

by 15. However, the value generally used is of an order of magnitude lower than this,

since not all the sulphur will be freely available and some will likely be bound up in other

compounds.
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5.3.3 Parameters in the oxygen and hydrogen equations

k6 is the rate constant in the equation for oxygen production from photosynthesis. It is the

normal rate of photosynthesis (when s > s0). We find this value from Kosourov et al. [92]

(in units of µmoles O2 (mg Chl)−1 h−1) by assuming that a normal rate of photosynthesis

occurs at the start of the sulphur deprivation. The chlorophyll concentration at t = 0

was approximately 10 µg/mL, thus we can calculate the rate of photosynthesis per litre of

suspension (of concentration 4.5× 106 cells per mL) as 2800 µM h−1. This value contains

intrinsic information about cell number and size, but since we model these aspects as non-

constant, we need to divide this value by the initial cell volume fraction at Λ(t = 0). For

a concentration of 4.5 × 106, from [92], cell volume fraction Λ(t = 0) = 0.00225. Hence,

k6 = 1, 240, 000 µM h−1. (5.69)

The constant rate of respiration in equation 5.19 occurs when ω > ω1, and is given by

k5ω1, shown in Section 5.2.4. k5ω1 is also found from Kosourov et al. [92], using the same

conversion method as for k6, hence

k5ω1 = 311, 111µM h−1 ⇒ k5 = 264, 000.0h−1. (5.70)

The saturation value of oxygen, denoted χ, we find from Weiss 1970 [175] to be 253.0µM

at 22 ◦C and atmospheric pressure of 710 atmospheric pressure (measured in millimeters

of mercury). A range for χ can be calculated using other temperature and atmospheric

pressures from the tables based on calculations of Weiss 1970 in [101].

v02 is the oxygen mass transfer coefficient and gives an indication of how quickly excess

oxygen (that is, oxygen above the saturation value) can leave the culture by bubbling off.

This parameter has been difficult to estimate due to the complexity of bubble formation in

suspensions and the need to calculate it specifically for the container involved. To obtain

an order estimate, we use a value for the oxygen mass transfer coefficient of the surface

layer of waste water as ds/ls = 0.13 × 10−3cm s−1 (Molder et al. 2005 [119]). For our 1L

cubical container

vO2 = 0.13 × 10−3 × 3600 cm h−1 × 100 cm2

1000 cm3
per side = 0.0468 h−1 per side. (5.71)

k4 is the rate constant for the production of hydrogen gas measured in mL per hour.

Due to a lack of available data we estimate this from initial rates of hydrogen production

Table II in Kosourov et al. [92] for unsynchronized cultures. Although not ideal, it still
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allows us to compare our hydrogen yield for long times and for different amounts of external

sulphur with experimental data. We take the specific initial rate of hydrogen production

in µ moles · mg Chl−1· h−1 and multiply by the amount of chlorophyll in one litre of

culture to obtain the rate of H2 produced per litre of culture. This gives

5.74 µmoles · mg Chl−1 · h−1 = 57.4 µmoles · L−1 · h−1. (5.72)

We convert the units of hydrogen to mL−1, using 33 µmoles H2 = 1 mL (from [92]). Since

we model cell volume fraction explicitly in equation 5.44, we divide by the cell volume at

the start of hydrogen production, which is Λ = 0.00293 in [92]. We must also divide by

the value of the light function L(Λ) at Λ = 0.00293, because k4 is multiplied by L(Λ) in

equation 5.44. (Note: this is not necessary for the other light dependent parameters, as

in those cases L(Λ) = 1 at the value of Λ at which those parameters are measured). This

gives

k4 = 773 mL h−1. (5.73)

sh and ph are the normalizations of the PSII-dependent and PSII-independent electron

pathways, respectively. They are used in equations 5.41 and 5.42 to normalize the hydrogen

equation so that at the start of hydrogen production, TH , dh
dt = k4 in equation 5.44. Thus

sh and ph are chosen as the concentrations of sulphur and protein at the start time of

hydrogen production in Kosourov et al. [92]. This gives ph = 1260 µM. At TH , PSII

activity is approximately one-sixth of normal PSII activity [92], so we assume that sulphur

has decreased by the same factor, as PSII is linearly dependent on internal sulphur. Hence,

sh =
s0

6
. (5.74)

EL is the fraction of electrons coming from the PSII-dependent pathway. We set

EL = 0.75, using the suggestion that 70 − 80% of electrons come from PSII-dependent

and the remaining 20 − 30% come from the PSII-independent pathway in Fouchard et al.

2005 [36].

5.3.4 Parameters in the cell volume fraction equation

The maximum growth rate for C. reinhardtii in TAP media was found as rexp = 0.0373

h−1 in Jo et al. 2006 [72]) and rexp = 0.074 h−1 in Fischer et al. 2006 [32]), indicating

that the cultures grow between 3.73 and 7.4 % per hour, giving a range

0.0373 h−1 ≤ rexp ≤ 0.074 h−1. (5.75)
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We can also calculate a growth rate from Kosourov et. al [92] using chlorophyll data

over the first 20 hours (since it is stated the cell volume fractions acts in the same way

as chlorophyll concentration) for various concentrations of external sulphur and find the

maximum growth rate of the culture as rexp = 0.064 h−1. Encouragingly, this growth rates

is within the range in equation 5.75, and we use rexp = 0.064 h−1 from Kosourov et al. [92]

as the standard value, for consistency with calculations of other parameters.

In the absence of any other data, we compute the maximum decay rate parameter

rdecay from the chlorophyll data of unsynchronized cells when S = 50 µM in Kosourov et

al. [92](since this concentration of external sulphur results in the highest rate of shrinking).

The shrinkage in chlorophyll concentration occurs over 120 hours, so to find the rate per

hour we use

(1 − rdecay)
120 =

Final Chl

Initial Chl
, (5.76)

which, on substituting in values from [92], gives

rdecay = 0.0053 h−1. (5.77)

p0, the protein concentration when the growth rate is zero, is also calculated from

Kosourov et al. [92], and is set to be the protein concentration at which the chlorophyll

content changes from increasing to decreasing, as zero growth rate must occur in the period

in which the culture changes between growth and decay.

To fix a value for p2, the protein level needed for constant growth, we assume that

before the start of the sulphur deprivation there is an optimal concentration of protein

that each cell maintains; additional protein produced from sulphur is used for growth.

Thus we take the value of protein at t = t0 in Figure 5 of Kosourov et al. [92] as the level

of protein required for steady growth, hence p2 = 1570 µM (on converting units).

p1 is the protein concentration below which decay occurs at a constant rate, rdecay. At

this point the linear part of the growth and decay function in equation 5.25 (the second

term) will meet the straight line −rdecay, shown in Figure 5.8. Thus, setting p = p1 and

equating the linear component in equation 5.25 with −rdecay gives

rexp(p1 − p0)

(p2 − p0)
= −rdecay, (5.78)

and substituting in values for rdecay, rexp, p0 and p2 gives

p1 = −rdecay

rexp
(p2 − p0) + p0 = 1350 µM. (5.79)



Modelling hydrogen production 259

Note that the parameters rdecay, p0, p1 and p2 are all are calculated from Kosourov et

al. [92]. This is not ideal, since we also wish to compare model results to this data, but is

necessary to give order estimates in the absence of other data.

5.3.5 Parameters in the light function

If we assume we have a litre of culture in a cube then the width of the container is

d = 10 cm. To find the cellular extinction coefficient, kchl, we take an average of the

mass extinction coefficients of C. reinhardtii under different wavenumbers presented in

Berberoglu et al. 2008 [12], converting to units of m2 kg−1. Converting from dry cell

weight in kg m−3 to cells m−3, using
1kg
m3 = 7.60 × 1012 cells

m3 , from [12], gives the cellular

extinction coefficient as

kchl = 1.315 × 10−6 cm2, hence CL =
kchl

Vcell
= 2630 cm−1. (5.80)

Leverenz et al. 1990 [100] show light saturation curves for C. reinhardtii, plotting light

intensity against oxygen production rate. Significantly, this experiment was conducted

with a relatively dilute concentration of cells in a thin layer, thus there are no effects of

shading in the culture. This allows us to use the curve to estimate the light saturation

point for the cells, Isat, directly. The control curve shows an initial clear linear increase in

oxygen production rate as light intensity increases, followed by a stationary phase when

light intensity is high. To find Isat we fit a piecewise linear curve to the data in [100],

extrapolating forwards from the linear phase and backwards from the stationary phase.

The light intensity at which the linear phase meets the stationary phase is the saturation

of light intensity point, and is found as Isat = 150 µmol m−2s−1. Using the scalings for

Isat in equation 5.37 gives non-dimensional Ĩsat = 24.8, where herein we drop the tilde.

We use 600 µmol m−2s −1 as a standard dimensional value of I0 for comparison with

Kosourov et al. [92], which comes from two light sources, one at each side, of I0 = 300 µmol

m−2s −1. Doubling light intensity is the same as including a light source at either side

when the cells are uniformly distributed and well mixed (as described in Section 5.2.1).

The standard, non-dimensional value is I0 = 99.2.

5.3.6 Standard parameter values

Parameters are summarized in Table 5.1, where a brief description of what each parameter

measures, the standard value, unit, range and reference from which the parameter was
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found or extrapolated from are tabulated.

Notation Parameter Standard

Value

Unit Range Reference

s0 Normal level of sulphur in a cell 15,000* µM 103 − 105 [67]

s1 Sulphur level above which Calvin

cycle is active

7500* µM 3000 − 15, 000* [182]

ω1 Oxygen required for full respira-

tion

1.18 µM 0.75 − 2.0 [34]

ω2 Oxygen required to stop H2 pro-

duction

26.0 µM 13 − 39* [33]

ωp Oxygen level below which protein

breakdown occurs

26.0 µM 13 − 39* [33]

χ Oxygen saturation in water 253.0 µM 200 − 300 [101,175]

k1 Rate constant for PSII repair 0.041* h−1 0.0376 − 0.0451* [92,114]

k2 Rate constant for protein break-

down

0.08* h−1 0.0267 − 0.0973* [92]

k3 Rate constant for protein produc-

tion

56.4* µM h−1 51.7 − 61.1* [92,114]

k4 Rate constant for hydrogen pro-

duction

773.0 mL h−1 595.0 − 1068.0 [92]

k5 Rate constant for oxygen con-

sumption by respiration

264000.0 h−1 247,000-

281,000*

[92]

k6 Rate constant for oxygen produc-

tion from PSII

1240000.0 h−1 1,000,000-

1,480,000*

[92]

vO2 Oxygen mass transfer coefficient 0.374 N/A 0.03 − 0.5 [119]

a Rate constant for S uptake over

normal cell volume

14,800 µM h−1 12, 500 − 17, 100 [181]

G Rate constant for sulphur uptake 2.29 µM−1 1.77 − 2.99 [181]

b1 Rate constant for sulphur uptake 2.2 µM 1.3 − 3.1 [181]

b2 Rate constant for sulphur uptake 14.5 N/A 14.5 − 19.8 [181]

β Average moles of sulphur in one

mole of protein

0.5* N/A 0.1 − 15.0 [49,165]

rexp Maximum growth rate 0.064 h−1 0.037 − 0.064 [32,72,92]

rdecay Maximum rate for cell decay 0.0053 h−1 0.001 − 0.01* [92]

Continued over page
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Notation Parameter Standard

Value

Unit Range Reference

p0 Protein level when growth is zero 1370.0 µM 1240 − 1770 [92]

p1 Protein below which maximum

decay occurs

1350.0 µM 1180 − 1690 [92]

p2 Protein required for maximum

growth

1570.0 µM 1480 − 1650 [92]

pr Basic protein needed for cell sur-

vival

206.0 µM 100 − 300* [92]

d Width of the bio-reactor 10.0 cm 1 − 100 N/A

CL Measure of absorbance of the cells 2630.0 cm−1 2000 − 6000* [12]

Isat Non-dimensional saturation level

of light

24.8 N/A 20 − 30.0 [100]

I0 Non-dimensional light intensity

at the source

99.2 N/A 0.0 − 200.0 [92]

sh Normalization of PSII-dependent

electron pathway

2,500 µM 1,250-3,750* [92]

ph Normalization of PSII-

independent electron pathway

1260 µM 1000 - 1400* [92]

EL Fraction of electrons from PSII-

dependent path

0.75 N/A 0.7 − 0.8 [36]

sg Gradient of Rubisco switch func-

tion

25.0* N/A 1 − 100* N/A

Table 5.1: Table of standard model parameters. Estimates parameters, such as those

calculated using the model, are marked with a star. The range of values is calculated either

using error bars given in the original data, using different values from data to estimate

the range or by simply estimating. This has been necessary in some of the more difficult

to estimate (or measure) parameters, and is also denoted with a star. The reference refers

either to the publication in which the parameter can be found, or the publication from

which the value was derived from.
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5.4 Non-dimensionalization of the standard model

First we non-dimensionalize the standard model shown in equations 5.51 to 5.56. We chose

the scalings

t̃ = k1t, S̃ =
S

b2
, s̃ =

s

s0
, p̃ =

k2p

k3
, ω̃ =

ω

χ
, h̃ =

k1h

k4
. (5.81)

Λ and L(Λ) are already dimensionless. The scaling for time is chosen so that one non-

dimensional time unit corresponds to approximately one day, so t̃ = 1 approximates

to t = 24.4 hours and, for convenience, we scale with k1 (instead of choosing a non-

dimensionalization so that exactly 24 hours is one non-dimensional time unit). The sul-

phur scaling of s0 is chosen so that s = 1 initially (under normal sulphur conditions) and

parameters relating to the normal level of sulphur in the cell range from 0 to 1. External

sulphur and protein scalings are used for convenience in the respective equations and oxy-

gen is scaled with the super-saturation value. The hydrogen scaling removes the rate k4

from the non-dimensional form of the model and scales with the new time scale k1.

By substituting in the scalings in equation 5.81, and dropping tildes, the non-dimensional

version of the standard model is:

dS

dt
=

−A1Λ

1 − Λ

Se−Gs

1 + B(s + S)
+

S

1 − Λ

dΛ

dt
+

I
(

S, h, dh
dt , t

)

1 − Λ
, (5.82)

ds

dt
=

A2Se−Gs

1 + B(s + S)
− (sHPSII(1 − s) + HPSII(s − 1))L(Λ) (5.83)

+ K3 ((p − PR)HFerment(Ω2 − ω) − sL(Λ)HCalvin(s − S1)) −
s

Λ

dΛ

dt
,

dp

dt
= K2 (sL(Λ)HCalvin(s − S1) − (p − PR)HFerment(Ω2 − ω)) − p

Λ

dΛ

dt
, (5.84)

dω

dt
= Λ[K6 (sHPSII(1 − s) + HPSII(s − 1))L(Λ) (5.85)

− K5(ωHResp(Ω1 − ω) + Ω1HResp(ω − Ω1))] − VL(ω − 1)HLoss(ω − 1),

dΛ

dt
= Λ (RGHG2(p − γ2) + RGPG(p − γ0)HG2(γ2 − p)HG1(p − γ1) (5.86)

−RDHG1(γ1 − p)) ,

dh

dt
= ΛHSensivity(Ω2 − ω)HCalvin(S1 − s) [ELSHsL(Λ) (5.87)

+(1 − EL)PH(p − PR)] L(Λ),
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Heaviside function Value of g used

HPSII 1000

HFerment 10

HCalvin 25

HResp 200

HLoss 200

HSensitivity 1000

HG1 1500

HG2 1500

Hlight 1000

Table 5.2: The values of the gradients, g, used in each tanh function. Here, Hlight is the

Heaviside function used in the expression for light intensity in equation 5.57.

where I
(

S, h, dh
dt , t

)

is the non-dimensional input function and

A1 =
a

k1b1
, B =

b2

b1
, A2 =

ab2

k1b1s0
, K3 =

βk3

k1s0
, K2 =

k2

k1
, (5.88)

K6 =
k6

k1χ
, K5 =

k5

k1
, VL =

v02

k1
, Ω1 =

ω1

χ
, Ω2 =

ω2

χ
,

DC = dCL, PR =
k2pr

k3
, PG =

k3

(p2 − p0)k2
, γ0 =

k2p0

k3
,

γ1 =
k2p1

k3
, γ2 =

k2p2

k3
, RG =

rexp

k1
, RD =

rdecay

k1
,

S1 =
s1

s0
, SH =

s0

sh
, PH =

k3

k2ph
.

To improve the convergence of the numerical program, we use tanh function approxi-

mations for the sharp Heaviside functions. For example, we use

HSensitivity(Ω2 − ω) = 0.5[1.0 + tanh(g × (Ω2 − ω))], (5.89)

The value g that multiplies the argument of the tanh function determines the steepness

of the function (how close to a Heaviside it is). To avoid creating more parameters, we

set g in every case to be sufficiently large so that the switches are always steep. To fix a

value of g for each Heaviside function, g was increased until increasing g any further did

not significantly affect the model results. The values of g used in the numerical solutions

are shown in Table 5.2.

Table 5.3 shows standard values for the non-dimensional parameters, where the ranges

are calculated using the range (either calculated or otherwise) of the dimensional param-
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eters in Table 5.1.

5.4.1 Initial conditions

The initial condition for each variables at time t0 is denoted using a subscript 0. We set

s0 = 1, the normal level of sulphur in a cell, p0 = 2.227, the level of protein at the start of

the experiment in Kosourov et al. [92], and we vary external sulphur S0. Since we assume

that the culture has been purged of oxygen at the start of the experiment, as discussed

in Section 5.2.1, ω0 = 0. We also set h0 = 0 at t = 0. For comparison with Kosourov et

al. [92] we set the initial cell volume fraction as Λ0 = 0.00225. In this chapter, we set the

input of external sulphur function, I
(

S, h, dh
dt , t

)

= 0 in equation 5.82; non-zero forms of

this are investigated in Chapter 6.

5.5 Numerical model results for the standard parameter val-

ues

In this section, we solve the model and present results for the set of standard parameter

values in Table 5.3. Due to the complexity of the system it is not easy to solve analytically.

We take a numerical approach and solve in Matlab. Here follows a brief description of

the numerical scheme, followed by a numerical check in which numerical solutions are

compared to analytical solutions for a much reduced system at early times.

5.5.1 Numerical Method

To solve numerically, an in-built numerical solver in Matlab was used. Initially, a fourth

order Runge-Kutta method was tried (ode45), but rapid variations in the solution due to

the switch functions cause the system to be stiff and, hence, mean that this scheme is slow

to run as very small time steps are required. For the results presented in this section, a

scheme called ode15s was used. ode15s employs a modified backward Euler (BE) method

for a step from (yn, tn) to (yn+1, tn+1), where the standard BE is of the form

yn+1 = yn + (∆t)f(tn+1, yn+1), (5.90)

where ∆t is a small time-step. This is an implicit scheme and, although it requires solving

a set of non-linear equations at every time step, it is much more numerically stable than

an explicit method. The truncation error when using the backward Euler (BE) method to
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Dimensionless

parameter

Definition Description Standard Value Range

S1
s1
s0

Ratio of s required for Calvin

cycle to normal s

0.5 0.2 − 1.0

Ω1
ω1
χ Scaled oxygen switch ω1 0.0047 0.0025 − 0.01

Ω2
ω2
χ Scaled oxygen switch ω2 0.103 0.0433 − 0.195

PR
k3

k2pc
Scaled protein required for

survival pr

0.292 0.0437 − 0.565

K2
k2
k1

Scaled protein breakdown

rate

1.95 0.592 − 2.59

K3
βk3

k1s0
Scaled measure of rate of p

production

0.0459 0.0057 − 25.4

K5
k5
k1

Scaled respiration rate 6.44 × 106 5.48 × 106 − 7.47 × 106

K6
k6
k1χ Scaled photosynthesis rate 1.2 × 105 7.39 × 104 − 1.97 × 105

VL
v02
k1

Scaled oxygen mass transfer 9.12 0.665 − 13.3

A1
a

k1b1
Scaled ratio of uptake rates 1.64 × 105 8.94 × 104 − 3.5 × 105

B b2
b1

Ratio of S uptake rates 6.59 3.39 − 14.2

A2
ab2

k1b1s0
Scaled ratio of sulphur up-

take rates

159.0 9.39 − 6480

RG
rexp

k1
Scaled growth rate 1.56 0.82 − 2.39

RD
rdecay

k1
Scaled decay rate 0.129 0.0221 − 0.266

PG
k3

k2(p2−p0) Scaled protein gradient 3.52 0.699 − 5.9

γ0
k2p0

k3
Scaled protein switch p0 1.94 0.542 − 2.58

γ1
k2p1

k3
Scaled protein switch p1 1.91 0.516 − 3.18

γ2
k2p2

k3
Scaled protein switch p2 2.23 0.647 − 3.11

DC dCL Scaled measure of absorption 26300 2 × 103 − 6 × 105

Isat
Isat
Le1

Normalized light saturation 24.8 20 − 30.0

I0
I0

Le1
Normalized light intensity at

source

99.2 0.0 − 200.0

SH
s0
sh

Non-dimensional reciprocal

of sh

6.0 4.0 − 12.0

PH
k3

k2ph
Non-dimensional reciprocal

of ph

0.560 0.380 − 2.29

EL EL Fraction of electrons from

PSII-dependent path

0.75 0.7 − 0.8

Table 5.3: Table of all non-dimensional parameter values. Parameters that were already

non-dimensionalized are included here for completeness. A short description of each pa-

rameter is included, and the ranges are calculated from the ranges of the dimensional

parameters.
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order k may be approximated to leading order as

1

k + 1
∇k+1yn+1.

In order to increase numerical stability, the traditional BE approach in equation 5.90 is

modified in ode15s to include a term of the form κ(yn+1 − y
(0)
n+1), where κ is a scalar

parameter and y
(0)
n+1 is the initial guess [157]. The resulting equations are called the

Numerical Differentiation Formulas (NDFs). The extra term included in equation 5.90

can be written as (yn+1 − y
(0)
n+1) = ∇k+1yn+1, which is approximately the leading order

term in the truncation error of 5.90. This should improve the numerical stability and

reduce the error (more details can be found in [157]). The implicit scheme for solving the

equation for yn+1 at every time step uses a simple Newton iteration. We specify an initial

time-step of 0.001, after which the solver specifies the remaining time steps. We set the

relative and absolute error tolerances to 10−8 and solve over an interval t = 0 to tend.

Solutions are then plotted for each variable separately.

5.5.2 A numerical check

We solve a simplified version of the standard model in equations 5.82 to 5.87 in order

to compare analytical and numerical solutions at early times, which can help verify the

numerical code. We consider the case of no growth,
(

dΛ
dt = 0

)

, no additional external

sulphur, S0 = S = 0, and we remove the loss term in the oxygen equation. We also neglect

the effects of light. This gives the simplified model as

dS

dt
= 0, (5.91)

ds

dt
= −(sHPSII(1 − s) + H)PSII(s − 1)) (5.92)

+ K3((p − PR)HFerment(Ω2 − ω) − sHCalvin(s − S1),

dp

dt
= K2(sHCalvin(s − S1) − (p − PR)HFerment(Ω2 − ω)), (5.93)

dω

dt
= Λ[K6 (sHPSII(1 − s) + HPSII(s − 1)) (5.94)

− K5(ωHResp(Ω1 − ω) + Ω1HResp(ω − Ω1))],

dΛ

dt
= 0, (5.95)

dh

dt
= ΛHSensivity(Ω2 − ω)HCalvin(S1 − s) [ELSHsL(Λ) (5.96)

+(1 − EL)PH(p − PR)] .
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To solve analytically, solutions can be built up piecewise. We consider what happens

in the system initially, starting with the initial conditions S0 = 0, s0 = 1, p0 = 2.227,

ω0 = 0, h0 = 0 and Λ0 = 0.00225. In the first regime, at very early times, since ω = 0 at

t = 0, HResp is on, oxygen increases rapidly and is governed by the simple equation

dω

dt
= Λ0 [K6 − K5ω] , (5.97)

until ω > Ω1 (which happens very fast as Ω1 is small), after which HResp switches off and

oxygen is used in respiration at a constant rate. After this, in the second regime, oxygen is

produced at a constant rate, K5Ω1. We find that, as there is no external sulphur, internal

sulphur decreases. Thus the HPSII(1 − s) switches are on and the HPSII(s − 1) switches

are off. In this regime, internal sulphur will be sufficiently high for the Calvin cycle to

operate, since s > S1, so HCalvin(S1 − s) ≈ 0 and protein, not hydrogen, is produced.

Thus dh
dt = 0. This reduces the system at early times to

dS

dt
= 0,

ds

dt
= −s − K3s,

dp

dt
= K2s,

dω

dt
= Λ[K6s − K5Ω1],

dΛ

dt
= 0,

dh

dt
= 0.(5.98)

Solving gives

S = 0, s = exp[−(K3 + 1)t], p = −K2 exp[−(K3 + 1)t]

(1 + K3)
+ c2, (5.99)

ω = − Λ0K6

1 + K3
exp[−(1 + K3)t] − K5Ω1Λ0t + c3, h = 0, Λ = Λ0,

where c2 = p0 + K2
1+K3

and c3 = Ω1 + Λ0K6
1+K3

are constants of integration calculated from the

initial conditions.

For the third regime, we consider what happens when s < S1. In this case, internal

sulphur has decreased so the Calvin switch term will be HCalvin(S1 − s) ≈ 1 and protein

production will stop. The reduced model at the time the third regime begins, t3 = 0.663,

for which s < S1, then becomes

dS

dt
= 0,

ds

dt
= −s,

dp

dt
= 0,

dω

dt
= Λ[K6s − K5Ω1],

dΛ

dt
= 0,

dh

dt
= 0. (5.100)

which can be solved to give

S = 0, s = d1 exp[−t], p = d2, (5.101)

ω = −d1Λ0K6 exp[−t] − K5Λ0t + d3, h = 0, Λ = Λ0,

where d1, d2 and d3 are constants of integration that can be calculated using the values

s, p and ω at time t3 = 0.663. We plot these three analytical solution regimes with the
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numerical solution for the simplified system in equations 5.91 to 5.96 for t < 4 in Figure

5.11, and find good agreement between the analytical solution and the numerics until

approximately t = 3.5− 4. After this, more terms would be required in equations 5.100 to

proceed further analytically. From here on, the model solutions are computed numerically.
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Figure 5.11: Numerical (solid lines) and analytical (dashed lines) solutions for a simplified

version of the model. Good agreement is found between numerical and analytical solutions

for early times, t < 4.

5.5.3 The sulphur-deprived case

Figure 5.12 shows the results for the standard model under sulphur deprivation, where

the external sulphur concentration at the start of the experiment is S0 = 0 µM . This

corresponds to a typical experimental case where cells are grown in a sulphur-replete

media, washed in a solution buffer and transferred to a sulphur-free media at time t = 0.

The time range is 0 ≤ t ≤ 10 in non-dimensional units, which corresponds to an end time

of approximately 10 days (244 hours).

To explain these results chronologically, first observe that initial internal sulphur starts

to decrease since it is used in protein production and PSII repair, and S = 0, so no sulphur
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Figure 5.12: Results for the model with standard parameter values under sulphur depri-

vation, with initial condition S0 = 0.
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can be taken up from the media. Oxygen levels initially increase due to a higher rate of

oxygen produced by photosynthesis than oxygen used in respiration. During this period

the cell volume fraction increases, but when s < S1, where S1 = 0.5, growth slows down,

as sufficient protein is not produced via the Calvin cycle. As s decreases further the

photosynthesis rate falls below the respiration rate and the cells start using up all free

oxygen in the system. A period of anaerobiosis (where the rate of oxygen produced from

photosynthesis is less than or the same as the rate of oxygen used in respiration, and

the oxygen in the media has also been used) begins after approximately 1 day (t = 1).

As oxygen levels decrease below Ω2, fermentative protein breakdown begins, because low

levels of photosynthetic activity mean the cells can no longer fulfil the energy production

requirements. Small amounts of sulphur are released from this breakdown within the

cells, so the internal sulphur curve continues to fall, but less rapidly than when ω > Ω2.

Hydrogen production begins after one day, as the system is now sufficiently low on oxygen,

ω < Ω2, and the Calvin cycle is not available to act as an electron sink, s < S1.

During the hydrogen production phase protein and cell volume fraction decrease due

to catabolism of endogenous substrate. Note that p reaches PR, the base level of protein

needed for cell survival, between 2 and 4 days. However, protein breakdown continues

to supply electrons and sulphur to the photosynthetic pathway because the shrinking cell

volume fraction causes oscillations in p around PR (as Λ decreases, p increases transiently,

so p > PR). Thus more protein becomes available for breakdown as the cells shrink, so that

the total protein in the system, pΛ, decreases in this period (not shown), and electrons for

the hydrogenase are still released from protein even when p is close to PR.

Initial hydrogen production rate is rapid, but the rate of production decreases with

time due to reduction of cell volume fraction, decrease of sulphur (needed for repair of

the PSII-dependent pathway to provide electrons to the hydrogenase), and decreasing

endogenous substrate (protein) to supply the electrons. After around 6 days the cells runs

out of internal sulphur, PSII activity stops and only minimal amounts of hydrogen are

now produced from the few electrons released from the PSII-independent pathway as cells

shrink. Between 6 and 8 days after sulphur deprivation began, hydrogen production stops

and the cells continue to shrink and will eventually die. The final yield of gas after ten

days is 106 mL H2/L culture.

For direct comparison with Kosourov et al. 2002 [92] we obtain results for the standard

model with S0 = 0 and an end time of t = 5.74 (140 hours). At this time there is still some
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hydrogen production, although very little (only another 3 mL is made) and the yield is

103 mL H2/L culture. Kosourov et al. [92] suggests production has stopped at 140 hours,

with a yield of 71.7 mL H2/L culture. Data for S0 = 0 µM re-produced from Kosourov et

al. [92] is shown in Figure 5.14.

Since the culture may not have been purged of oxygen at the start of the experiment,

we investigate the effects of using the initial condition ω0 6= 0 instead of ω0 = 0. Using

values of ω0 up to 100, which corresponds to 25, 300 µM in dimensional units (which is,

anyway, much beyond the saturation of oxygen in water χ), does not have significant effect

on the model results. The maximum change in hydrogen yield at t = 10 only varied by

0.01%.

5.5.4 The sulphur-replete case

Figure 5.13 shows the model results for a sulphur-replete, sealed system. Although this is

not the situation we shall generally consider, we present the results for the normal situation

to check that the model functions as expected when sulphur-replete.

In Figure 5.13, external sulphur concentration decreases as sulphates are transported

into the cell and a corresponding increase in internal sulphur is also found. Protein initially

varies little and settles to an almost constant level and oxygen is produced. Under these

‘normal’ conditions, which are good for growth, there is a rapid increase in cell volume

fraction in the first two days, with a doubling time of 21 hours, compared to an experiment

range of 9.4−18.6 hours calculated from data in Fischer et al. 2006 [32] and Jo et al. 2006

[72]. After two days, light limitation, caused by increased shading as cell volume fraction

increases, decreases oxygen production from PSII, causing the system to become anaerobic.

To create sufficient energy for cell survival under anaerobiosis, fermentation begins, during

which protein is broken down. Unlike the sulphur-deprived system, hydrogen production

is not observed as sulphur levels are high and the Calvin cycle acts as the electron sink.

Fermentation causes a decrease in protein and thus cell volume fraction, and as cell volume

fraction decreases the effects of light limitation decrease, so that each cell receives more

light as Λ decreases. Since the system is sulphur-replete, the rate of oxygen production

increases and the system becomes aerobic when Λ has sufficiently decreased. This in

turn creates a subsequent period of cellular growth and protein production, which occurs

until increasing light limitation as Λ increases causes a subsequent period of anaerobiosis.

Hence, under sulphur-replete, sealed conditions, oscillations in s, p, ω and Λ are found,
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Figure 5.13: Results for the model with standard parameter values under sulphur-replete

conditions, with initial condition S0 = 100 in non-dimensional units.
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with no hydrogen produced. The period of these oscillation is approximately 66 hours.

5.5.5 Varying the initial concentration of external sulphur, S0

Kosourov et al. 2002 [92] and Zhang et al. 2002 [182] find that re-suspending the cells in

media with minimal concentrations of external sulphur increases the yield of hydrogen gas

compared to cells re-suspended in fully sulphur-deprived media. Data re-produced from

Kosourov et al. [92] for initial conditions of external sulphur of S0 = 0 µM, S0 = 25 µM

and S0 = 50 µM are shown in Figure 5.14.
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Figure 5.14: Data reproduced from Figure 6b in Kosourov et al. 2002 [92] for hydrogen

production per 1.2 L of unsynchronized culture against time, where the cultures were

deprived of sulphur at t = 0, and data points every 20 hours were manually measured

from smooth curves in [92]. Solid lines with crosses are S0 = 0 µM, dashed lines with

circles are S0 = 25 µM, and dotted lines with stars indicate S0 = 50 µM.

To investigate, we present model results where the initial external sulphur concentra-

tion S0 is varied, shown in Figure 5.15. The results for S0 slightly greater than zero are

similar to those for S0 = 0, but as S0 increases further internal sulphur and protein begin

to decrease later. These slower decays allow the cell volume fraction to increase for longer,

compared to the case S0 = 0, leading to higher culture density when S0 > 0. More oxygen

is produced due to both higher sulphur levels available for PSII repair and a higher cell

volume fraction. This, combined with a later decay in p and s, leads to a later onset

of anaerobiosis and hydrogen production and a slightly later end time of production for
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S0 > 0. For larger values of S0, such as S0 = 3.45 (50 µM in dimensional units), yields of

hydrogen gas are significantly larger after ten days: h = 237 mL H2/L culture for S0 = 3.45

compared to h = 106 mL H2/L culture for S0 = 0. Initial rates of hydrogen production per

culture appear to have increased, but whether this is due to higher hydrogen production

per cell, or simply due to more cells, is discussed in Section 5.5.6.
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Figure 5.15: Results for the model with standard parameter values, with initial conditions

of external sulphur of S0 = 0 (solid lines), S0 = 1.725 (dotted lines) and S0 = 3.45 (dashed

lines). These correspond to 0 µM, 25 µM, and 50 µM, respectively.

Again, to compare with Kosourov et al. 2002 [92] for unsynchronized cells we obtain

results for t = 5.74: for S0 = 1.725 (25 µM), h = 168 mL H2/L culture, and for S0 = 3.45

(50 µM), h = 213 mL H2/L culture, compared to h = 127 mL H2/L culture for 25 µM,

and h = 159 mL H2/L culture for 50 µM in [92]. Both this model and [92] indicate that

increasing S0 increases yield, although the simulation results are 58% and 101% higher,

for 25 µM and 50 µM compared to S0 = 0 µM, respectively. For S0 = 1.725, hydrogen

production starts after t = 36.4 hours, compared to t = 43 − 47 hours in Kosourov et

al. [92], and for S0 = 3.45 start time is t = 45.2 hours compared to 43 − 49 hours. Again,
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the trend is the same (increasing S0 delays onset of hydrogen production), and overall

agreement is promising. The data also match trends seen in Zhang et al. 2002 [182]. The

end times for hydrogen production in the simulations are also in the same range as in [92].

Figure 5.16 shows results from the standard model for just the hydrogen yield and cell

volume fraction for a range of different values for initial external sulphur. Increasing S0

from zero to S0 = 6.9 delays the start time of hydrogen production and increases yield

at time t = 10 but, as S0 is increased further, yields decrease until S0 is so high that

hydrogen is not produced in this time frame (as the start time also increases with S0).

Increase in yield for small S0 can in part be attributed to the culture attaining higher cell

volume fractions under these conditions, and will be discussed further in Section 5.5.6.
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Figure 5.16: Hydrogen and cell volume fraction curves for the model with standard pa-

rameter values and with initial conditions S0 = 0 (solid lines), 3.45 (dashed lines), 6.9

(dot-dashed lines), 13.8 (dotted lines), and 20.7 (thick dashed lines).

In Figure 5.17 we plot curves for total hydrogen yield at time t = T as initial external

sulphur S0 is varied for a range of values of T . For T = 5.74, increasing S0 from zero first

increases yield significantly but then decreases yield when S0 is large. If S0 is too large no

hydrogen is produced. The maximum of this curve corresponds to 214 mL H2/L culture at

S0 = 3.7 (i.e. 53.65 µM). For T = 10 a higher yield of hydrogen is obtained and the curve

is seen to level off for intermediate values of S0. This ridge may be a balance between a

later start time and a higher cell volume fraction as S0 increases from zero. The optimal

S0 is now S0 = 6.19 (i.e. 89.8 µM) with h = 246 mL H2/L culture.

For T = 15, we obtain a wider range of S0 for which hydrogen is produced, as expected.

However, we do not obtain significantly more hydrogen than for T = 10 (only a 3.46%

increase). Interestingly, undulations can be observed on the curve (see simulation in Figure
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Figure 5.17: Hydrogen yield at time t = T as a function of initial condition S0 where

T = 5.74 (solid line), T = 10 (dotted line) and T = 15 (dashed line).

5.17).

Figure 5.18 plots model results for values of S0 around one of these undulating regions.

Increasing S0 from S0 = 15.2 increases the internal sulphur concentration but, for the

values of S0 plotted, the onset time to anaerobiosis is approximately the same (see Figure

5.18). For the smaller value of S0 = 15.2, protein increases slower than for the larger values

and s falls below S1 at an earlier stage. Hence, the Calvin cycle switches off sooner and less

growth occurs for S0 = 15.2 compared to S0 = 18.5 and S0 = 22, leading to a later start

time, TH , for S0 = 18.5 and S0 = 22.0, as the cells grow instead of producing hydrogen for

a longer period. Surprisingly, however, the overall yield is higher for S0 = 18.5, despite the

later start time, due to increased cell volume fraction. Further increasing S0 to S0 = 22.0

increases cell volume fraction further but results in a lower yield at time T = 15, because

the increase in TH reduces the time between TH ≤ t ≤ T in which hydrogen can be

produced. Thus the undulations in the curve are caused by the balances between later

start time TH potentially decreasing yield and higher cell volume fraction increasing yield

as S0 is increased, and occur only after subsequent periods of anaerobiosis, when differences

in the switch functions around S1 as S0 varies affect growth.

Results are shown in Figure 5.19 for the effect of initial external sulphur concentration

S0 on start time for hydrogen production, TH . To plot this we record the first time that hy-

drogen levels are greater than a tolerance value (since ω0 = 0 and H2 is initially produced
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Figure 5.18: Results for the model with standard parameter values where T = 15, with

initial conditions of S0=15.2 (solid line), S0 = 18.5 (dotted) and S0 = 22.0 (dashed).

These results illustrate the behaviour of the model for values of S0 around the undulating

regions on the curve for hydrogen yield as a function of S0 in Figure 5.17.
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transiently before respiration rapidly consumes all the oxygen produced by photosynthe-

sis). We set the tolerance to be tol= 10−5. The curve increases on average, showing that

increasing the initial amount of external sulphur delays the onset of hydrogen production.

The change in gradient of the curve around S0 = 5 is due to TH changing from being

critically dependant on oxygen (since for small S0, s < S1 before ω < Ω2), to being mainly

dependent on sulphur (since the cell becomes anaerobic and there is a delay before s < S1

and the Calvin cycle stops).

We also observe small kinks on the curve. These are due to the behaviour of the

system around s = S1. For sufficiently large S0, around s = S1, sulphur increases and

there will be a period where s > S1 and aerobiosis occurs again, allowing a small amount

of growth which, in turn, decreases s more rapidly than for smaller S0 when there is no

growth. This results is a smaller value of TH compared to that for slightly smaller values

of S0. However, if S0 is increased further, sulphur increases more and the period of aerobic

growth is elongated, so that the system takes longer to get to s < S1 and the onset of H2

production is delayed, thus TH increases. This decrease and subsequent increase in TH as

S0 is increased and s ≈ S1 is a transient effect when the system moves from anaerobic to

subsequent aerobic periods, and produces the small kinks on the curve in Figure 5.19.
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Figure 5.19: Initial amount of external sulphur, S0, plotted against the start time of

hydrogen production, TH .
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5.5.6 Comparing initial rates of hydrogen production as S0 varies

To understand the trends in yield as S0 is increased from zero, we investigate the initial

rates of hydrogen production as S0 is varied. We plot rates of hydrogen production in the

first 14.6 hours (0.6 non-dimensional time units) as a function of S0. For simplicity, we

define hydrogen production rate as

H2 rate =
h(TH+0.6)

0.6(Λ(TH+0.6) + ΛTH)/2
, (5.102)

where we average Λ over the initial hydrogen production period to get hydrogen rate per

unit of cell volume fraction per non-dimensional time unit. This is plotted in Figure 5.20

and is comparable to data in Kosourov et al. [92], who measured the hydrogen production

rate per mole of chlorophyll in the initial 10 − 15 hours of production.
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Figure 5.20: Initial rates of hydrogen production (in the first 14.6 hours) plotted against

the initial amount of external sulphur.

Figure 5.20 shows there is a very slight increase in the initial rate of hydrogen produc-

tion as S0 is increased from zero up to approximately S0 = 1.5, and thereafter the curve

decreases and reaches very low levels at S0 = 6. The sharp decrease around S0 = 4.8

is caused by hydrogen production changing from being predominantly oxygen dependent

to predominantly sulphur dependent (since for higher S0, ω < Ω2 before s < S1, so that

hydrogen production is initially slow as the Calvin cycle is the main electron sink).

These results show that there is an optimal initial value for external S0 for improving

the rate of hydrogen produced per cell (0 < S0 < 2), which is different to the optimal for
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improving yield at time T (S0 = 6.19 for T = 10). Thus methods of optimization of the

hydrogen production system depend on what is required: more hydrogen per cell or more

hydrogen produced over a fixed period.

5.5.7 Varying the initial cell volume fraction, Λ0

Here, we explore what affect changing the initial cell volume fraction has on the final yield

of hydrogen produced. We find that for S0 = 0 and S0 = 3.45 the time to anaerobiosis

decreases with increasing Λ0 but the time to hydrogen production stays the approximately

the same. This is because a greater cell volume fraction means any oxygen produced up

quicker in respiration, but internal sulphur is used slower due to increased light limitation

slowing down PSII activity and repair. The delay between anaerobiosis onset and hydrogen

production starting was seen in Kosourov et al. [92], and here is due to the time it takes for

s to reach S1, since the Calvin cycle will still be operating when anaerobiosis begins. We

see higher yields for Λ0 = 0.0045 and Λ0 = 0.00225 compared to Λ0 = 0.00125 under these

conditions (see Figure 5.21), and we find that the hydrogen start time initially decreases

and then increases as Λ0 is increased from 0.00125. For S0 = 0 we see a yield of h = 247

mL H2/L culture for Λ0 = 0.0045 compared to 106 mL H2/L culture when Λ0 = 0.0025,

but for S0 = 3.45 there is less of an increase for Λ0 = 0.0045: h = 249 mL H2/L culture

for Λ0 = 0.0045 compared to 237 mL H2/L culture for Λ0 = 0.0025, shown in Figure 5.21.

This yield does not increase significantly if Λ0 is increased beyond Λ0 = 0.0045, since

there is a significant delay in the start of hydrogen production after anaerobiosis is reached

(as light limitation for high cell volume fraction decreases the rate of sulphur used in

repairing PSII, so that the Calvin cycle is still in operation when ω < Ω2).

5.6 Discussion

In this chapter, a simple mechanistic model to describe hydrogen production in green

algae has been constructed. By modelling in a mechanistic way we have significantly

simplified this incredibly complicated system to just six variables (compared to Jorquera

et al. [75] with 17): internal and external sulphur, s and S, respectively, protein, p, oxygen,

ω, cell volume fraction, Λ and hydrogen gas, h. Key assumptions have been made that

are necessary for the modelling process and the impact of these will be further explored

in Chapter 6. Parameter values have been found from independent experimental data,
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Figure 5.21: Results for the model with standard parameter values, with initial condition

S0 = 3.45 and Λ0 = 0.00225 (solid lines), Λ0 = 0.0045 (dotted lines) and Λ0 = 0.001125

(dashed lines).
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where possible, or else we have estimated a range of values. The model was then non-

dimensionalized using suitable scalings. A numerical scheme in Matlab was used to solve

the model and this was verified by comparison with a closed form analytical solution for a

much reduced system. Results for the standard values of the parameters and with a range

of initial conditions were computed in Section 5.5.

The experimental studies of Kosourov at al. 2002 [92], Zhang at al. 2002 [182] and

Melis et al. 2000 [114] guided the construction of the model in Section 5.2. Encouragingly,

good agreement was obtained between these experimental results and model simulations

for the case of sulphur deprivation, S = 0 µM. The model predicts a start time for hydrogen

production, TH , of approximately TH = 24 hours compared to TH = 27 hours in Zhang

et al. [182] and TH = 40 hours in Kosourov et al. [92]. In simulation results, hydrogen

production begins almost as soon as the system became anaerobic when S = 0 µM, which

is consistent with observations by Zhang et al. [182], but Kosourov et al. [92] found a slight

delay between onset of anaerobiosis and hydrogen production. The predicted hydrogen

yield from the model is in the same range as Kosourov et al. [92] (106 mL H2/L culture

after 140 hours, compared to an average of 71.7 mL H2/L culture in [92]), and we also

find that hydrogen production stops in approximately the same time range. Model results

can not be directly compared to other experimental papers, as different experimental

conditions were used. Hydrogen production also followed the same trends as experiments,

with an initially high rate which gradually levels off. Endogenous substrate, modelled as

protein in this model, is catabolized during anaerobic hydrogen production. This releases

both electrons for the hydrogenase pathway via donation at PSI and minimal quantities

of internal sulphur, which are used to repair PSII, which then also passes electrons to

PSI. Thus hydrogen production depends on electrons passed to PSI by both of these

protein-dependent mechanisms (shown by PSII-dependent and PSII-independent terms in

equation 5.44), and the model shows that as protein available for electron donation and

PSII repair decreases, the hydrogen production rate also decreases and eventually stops.

This explantation is consistent with results provided by Kosourov et al. [92].

Under sulphur-replete conditions, the model results show that no hydrogen is produced

even when the system becomes anaerobic due to light limitation caused by a high cell

volume fraction. This is consistent with the observation in Zhang et al. [182], where

a concentrated culture in a sealed container became anaerobic as cell volume fraction

increased, but only inactive hydrogenase was found: no hydrogen was produced.
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The model predicts that as the initial concentration of external sulphur, S0, increases

from zero the hydrogen yield after a set period at first increases: for S0 = 25 µM and

S0 = 50 µM the model predicted final yields of hydrogen of 177.4 mL H2/L culture and

h = 213 mL H2/L culture, respectively. For the same initial concentrations of sulphur,

Kosourov et al. [92] measure average yields of 127 mL H2/L culture and 159 mL H2/L

culture. For higher values of S0 we also find a later onset time of hydrogen production,

TH , and, as S0 gets very large, a decrease in yield over a set time, T , as the time in

which hydrogen can be produced, TH < t < T , is much reduced. These trends in yield

as S0 increases from zero are consistent with trends demonstrated in experimental papers

[92, 182]. The delay between onset and anaerobiosis and hydrogen production predicted

for S > 0 µM are due to slower sulphur decay causing an extended period of Calvin cycle

activity, so that the hydrogenase was not the preferred electron sink in the initial period

of anaerobiosis.

We find that as S0 is increased from zero, the initial rate of hydrogen production

remains approximately constant for 0 µM ≤ S0 ≤ 43.5 µM and decreases thereafter. The

simulations are consistent with observations from Zhang et al. [182] and the rationale

in Hypothesis 3, that increasing S0 from zero increases hydrogen yield, but does not

significantly increase initial rate per cell and, hence, increased yields for intermediate

S0 > 0 µM are ultimately due to larger cell volume fraction. This is supported by the fact

the hydrogen yield (at a set time, T = 10) increases as the cell volume fractions increases

in both the simulations and Zhang et al. [182] (and in Kosourov et al. [92] when S0 ≥ 25

µM) even when the initial rate of production decreases. However, Kosourov et al. [92]

found an increase in rate of initial hydrogen production as S0 increased from zero to 25 µM,

and hypothesize that the increase in rates for 0 < S0 ≤ 25 are due to increased residual

levels of PSII due to higher internal sulphur (Hypothesis 1 in Section 5.1.5). This increase

in rates was not found in our simulations, thus our model simulations are consistent with

Hypothesis 3 and inconsistent with Hypothesis 1.

In the simulations, increasing S0 beyond S0 = 43.5 µM decreases the initial rate of

hydrogen production, so that at approximately S0 = 87 µM the rate is only 1.95% of the

rate at S0 = 0 µM. This is due to increased light limitation caused by higher cell volume

fraction, which is itself caused by higher internal sulphur concentration, for S0 > 43.5

µM compared to for S0 < 43.5 µM. This is consistent with the trends found by Kosourov

et al. [92] and Zhang et al. [182] for large S0. Thus the simulations are consistent with
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Hypothesis 2: the initial rate of hydrogen production decreases for S0 > 43.5 µM compared

to S0 < 43.5 µM due to increased light limitation caused by large cell volume fraction.

Increasing the cell volume fraction from zero initially decreases the time to hydrogen

production and then increases it when Λ is large. Kosourov et al. [92] also see an earlier

onset with increasing Λ0, but they did not see a later onset as Λ0 gets very large. However,

it is possible that this trend could be seen experimentally if very large Λ0 were used. The

results for varying cell volume fraction in Section 5.5.7, where large Λ0 can increase the

yield of hydrogen gas dependent on S0, suggest that an optimal yield of hydrogen could

be obtained by optimizing the initial cell volume fraction of the culture Λ0 in tandem with

optimizing S0.

In Chapter 6, a parameter sensitivity analysis is performed for a range of parameter

values. The model is then used to innovate new ways of optimizing the total yield of

hydrogen gas produced from sulphur-deprived green C. reinhardtii cells over a set pe-

riod. Further consideration of the modelling assumptions and the viability of the novel

mechanistic model are discussed at the conclusion of this work, in Section 6.3.



Chapter 6

Investigating parameter sensitivity

and optimizing hydrogen yield for

the mechanistic hydrogen model

Summary

In this chapter, a parameter sensitivity analysis for the hydrogen production model pre-

sented in Chapter 5 is performed. This is used to suggest parameters that could be used

to increase yields of hydrogen gas. Novel strategies for re-addition of external sulphur

are then innovated, tested and compared in order to find the strategy and corresponding

parameter values that gives the highest yield of hydrogen gas over a set period.

6.1 Parameter sensitivity

In this section, we test the sensitivity of the model to the parameters using the standard

initial conditions, with initial sulphur S0 = 3.45, which corresponds to approximately 50

µM. We set S0 to be non-zero so that changing parameters associated with sulphur uptake

have an effect on the system. We investigate varying all the parameters within the ranges

given in Table 5.3 and plot results to t = 10 with standard values for the other parameters.

6.1.1 Parameters in the sulphur uptake equation

Scaled parameters for sulphur uptake, A1 and B, appear in the external sulphur function in

equation 5.83 and A2 is equivalent, and dependent on, A1 in the internal sulphur equation.

285
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We find that varying B within its range has little effect on the model results. Decreasing

A1 causes the rate of sulphur uptake to decrease, so the cells take longer to use up all

available sulphur. This appears to be an advantage to the cells because they keep their

internal sulphur levels higher for longer, since external sulphur is slowly taken in and

does not run out as quickly, allowing more protein production and more cell growth and

division. This causes anaerobiosis and hydrogen production to begin slightly later, but due

to higher cell volume fractions the overall yields of H2 production are higher. This shows

that limiting the amount of sulphur the cells can take in can give higher yields of H2 gas,

but this needs to be balanced with later onset of hydrogen production, and although yields

are not much higher here, correct manipulation of this variable may produce significantly

higher yields. Increasing A1 has the opposite effect, with lower yields of hydrogen gas

produced even though onset of production is earlier.
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Figure 6.1: Model results when the sulphur uptake parameter A1 is increased (dashed

lines) and decreased (dotted lines) by a factor of 2, compared to model results for the

standard parameter values (solid lines).



Methods for optimizing hydrogen yields 287

6.1.2 Parameters in substrate equations for sulphur and protein

K3 is a non-dimensionalized, scaled version of the protein production rate k3 and it mul-

tiplies the terms relating to protein breakdown and protein production in the sulphur

equation. Varying K3 in the lower range of the parameter has little effect on the system,

but setting K3 = 25.4, at the upper end of the range, causes sulphur and protein levels to

stay at almost constant levels, and hydrogen is not produced in the time range 0 ≤ t ≤ 10

because the system does not become anaerobic. PR is the non-dimensional protein level

required for cell survival. Varying this within the range given in Table 5.3 also has little

significant effect on the system. However, we expect that increasing PR to a high value

would have a profound effect on the system, since it could lead to a situation where cell

volume fraction shrinkage does not occur as the cell needs to maintain a high level of

protein for survival. This situation would be unrealistic.

K2 is the ratio of protein breakdown (to release sulphur) to sulphur used to repair

PSII. It multiplies the protein breakdown and production terms in the protein equation,

as K3 does in the sulphur equation. Increasing K2 implies greater protein production

leading to sustained higher levels of protein and more rapid culture growth compared to

the standard case (see Figure 6.2). This leads to earlier onset of both anaerobioses and

hydrogen production. An increase also results in earlier protein breakdown and earlier cell

shrinkage, which creates slightly higher internal sulphur concentration and we see a slight

increase in yield and a more rapid decrease in p. Decreasing K2 from the standard value

causes lower cell growth and a later onset of hydrogen production and we see a smaller

yield. These results suggest that yield could be slightly improved by increasing protein

production in the early stages and protein breakdown in the latter stages. However, how

much this could improve the yield is unclear since we only see a small increase in yield,

and rapid protein breakdown will lead to hydrogen production stopping earlier. Also,

this term would really need to be varied in parallel with K3, since if protein breakdown

increases sulphur released from protein breakdown in the sulphur equation should also

increase, although we do find that varying K2 and K3 together produces similar results to

varying K3 alone (results not shown).

6.1.3 Parameters relating to oxygen and hydrogen production

K6 and K5Ω1 are the non-dimensionalized parameters for normal rate of photosynthesis

and respiration, respectively. Increasing K6 from the standard value implies a higher rate
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Figure 6.2: Model results when K2 is increased (dashed lines) and decreased (dotted lines)

by a factor of 2, compared to model results for the standard parameter values (solid lines).
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of photosynthesis leading to more oxygen produced. Hence, anaerobiosis is reached later

and hydrogen production is delayed. The cell volume also increases for a longer period

during sulphur deprivation but, since more sulphur is used up in oxygenic PSII repair and

it takes longer to reach anaerobiosis, there is less sulphur available initially by the time

hydrogen production begins, and hydrogen production stops at approximately the same

time as for the standard value of K6. This, combined with a later start time and increased

light limitation due to larger cell volume fraction, reduces the yield of hydrogen as K6

in increased, and is shown in Figure 6.3. If K6 is decreased within the specified range in

Table 5.3, less oxygen is produced from PSII and anaerobiosis occurs sooner, but hydrogen

production begins later than in the standard case as internal sulphur is used up slower,

so that there is a delay after anaerobiosis is reached until s < S1. This means the cell

volume fraction is smaller when H2 production begins and this, combined with a reduction

in available protein and sulphur for PSII, means there is a smaller yield of hydrogen gas.

Varying K5 naturally has the opposite effect; increasing from the standard value means

more respiration and anaerobioses is reached quicker and decreasing gives a lower rate

of respiration so hydrogen production starts later. Varying Ω1, the non-dimensionalized

oxygen level required for full respiration, follows the same trends as altering K5 since the

rate constant for respiration is K5Ω1. Figure 6.3 shows results for varying K6.

Setting VL, the scaled oxygen loss due to super saturation, to the top of the range in

Table 5.3 has very little effect on the system, where less of a build up of oxygen occurs,

but this quantitative difference in oxygen concentration does not significantly affect the

time for anaerobiosis. Decreasing VL within the range, however, causes a large build up

of oxygen and delays the onset of hydrogen production, leading to a decreased yield of

hydrogen gas.

Moving on to the hydrogen equation, the simulation results were found to be insensitive

to Ω2, the scaled switch value, and PH , a normalized parameter for rate of hydrogen

production from the PSII-independent pathway. Varying SH , the residual level of PSII

activity in the culture, had a more significant effect. Increasing SH from the standard

value led to more hydrogen production (and a decrease, less) due to a higher residual

level of PSII activity providing more electrons to the hydrogenase pathway. However, in

reality SH can not be varied independently of the parameter K6 for oxygen production

from PSII, since an increase in electron production from PSII would also cause an increase

in oxygen and the system may not remain anaerobic. It does, however, suggest that if one
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Figure 6.3: Model results when K6 is increased (dashed lines) and decreased (dotted lines)

by a factor of 2, compared to model results for the standard parameter values (solid lines).



Methods for optimizing hydrogen yields 291

can increase the residual PSII activity and keep the system anaerobic then yields may be

improved, as Kosourov et al. [92] suggest. Increasing EL, which increases the number of

electrons coming from this pathway, has the same effect as increasing SH , since they are

multiplied together in the model equation (equation 5.87). Interestingly, increasing EL not

only increases electrons coming to PSII but also decreases electrons coming from protein

breakdown (since we use 1 − EL in the PSII-independent term), implying that PSII is a

more efficient pathway for electron donation to the iron-hydrogenase.

The final parameter to consider here is S1, the sulphur level below which Rubisco has

sufficiently decayed and hydrogen production replaces the Calvin cycle as the electron sink

under anaerobiosis. Results for varying S1 by a factor of 2 are shown in Figure 6.4.
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Figure 6.4: Model results when S1 is increased (dashed lines) and decreased (dotted lines)

by a factor of 2, compared to model results for the standard parameter values (solid lines).

These results show that if S1 increases from S1 = 0.5 then, even though the system

could theoretically produce hydrogen gas when there is more sulphur around, we see a later

onset of hydrogen production. In this case, growth is severely limited, since protein can

not be produced when S < S1. This means we have an aerobic period of damage to the cell

during which neither the Calvin cycle nor the hydrogen pathway can act as the electron
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sink. Limited growth causes internal sulphur to by used up slower in repairing PSII than

in the standard case and the onset of anaerobiosis and, hence, hydrogen production, is

delayed. The delay in anaerobiosis in turn delays fermentative protein breakdown, which

delays in the release of sulphur from this process and by the time hydrogen production

begins, internal sulphur levels are actually lower than in the standard case. This, combined

with the decreased cell volume fraction and later onset of H2 production, results in reduced

yields.

Decreasing S1 from S1 = 0.5 does not affect the s, ω or Λ curves, as shown in Figure

6.4, but does cause a later onset of hydrogen gas production, as once anaerobiosis begins

the system also requires sulphur levels to drop below S1 so that the Calvin cycle is deac-

tivated. This causes a smaller yield of hydrogen gas as production only starts once the

cell volume fraction has been shrinking for some time and significant protein and sulphur

degradation have occurred, so protein levels for electron donation to the hydrogenase dur-

ing H2 production are lower. This is similar to results seen in Kosourov et al. [92], where

there is a delay period between anaerobiosis and hydrogen production, and suggests that

we could replicate those results by decreasing S1 to approximately S1 = 0.25 − 0.4.

6.1.4 Parameters in the growth equation

The scaled growth rate, RG, does not have a significant effect when varied within the

appropriate range, and nor did varying PG, the gradient of the growth rate curve plotted

in Figure 5.24. Varying RD, the scaled rate of shrinkage of the cells under hydrogen

producing conditions, showed that an increase causes more rapid culture decay, hence

slightly lower yields of hydrogen gas. A decrease caused a slower decay, hence slightly

more hydrogen was produced. However, these differences in yield were relatively small

and this parameter did not have a very profound effect on the system when altered within

the range in Table 5.3.

On increasing γ2, the protein required for full exponential growth of the culture, we

see no significant changes in the standard model. Decreasing γ2 causes an increase in

growth and earlier onset of hydrogen production coupled with earlier protein breakdown.

This leads to an increase in hydrogen yield in the t = 10 time frame, suggesting that if

the cells were able to produce optimal growth with less available protein one would see a

higher yield. However, this situation is unlikely to arise due to protein being necessary for

cellular growth. One way to increase growth is to increase the dimensional parameter k3,
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the rate of protein production. Doing this allowed more culture growth and a considerably

increased yield of hydrogen gas. It is feasible that such genetic modification of protein

production could increase yields.

Like for many pairs of parameters, varying γ1, the protein level below which the culture

shrinks at a constant rate, and γ0, protein levels when growth rate is zero, have similar but

opposite effects. Increasing γ1 within the range in Table 5.3 produces results qualitatively

like decreasing γ0, since increasing the level at which cells shrink at the maximum rate is

similar to decreasing the level at which growth stops. Increasing γ1, hence decreasing γ0,

within the designated range has very little effect on the system. However, decreasing γ1 by

a factor of two, which is within the range in Table 5.3, causes s, ω, p, h and Λ to alternate

between increasing and decreasing periods. Culture shrinkage begins at the same time as

γ1 is decreased, but since the protein level required for maximum shrinkage rate is lower,

the cells continue to shrink at a faster rate than for higher values of γ1, and cell volume

fraction decreases rapidly. This causes protein concentration to rapidly increase, which, in

turn, stops shrinkage and results in a periods of culture growth. This causes oscillations

where periods of anaerobiosis alternate with aerobic periods and the yield of hydrogen gas

is significantly reduced. These trends were not seen in any of the experimental papers,

implying that this would be an unrealistic value of this parameters to use and, hence, these

results are not shown.

6.1.5 Investigation into the light parameters I0, Isat and DC.

Varying Isat, the saturation value of light, and I0, the light intensity at the source, give

qualitatively similar results since both control how much light can be used in the light-

dependent reactions. Results for varying I0 are shown in Figure 6.5.

Decreasing I0 from the standard value causes the cells to photosynthesize and, hence,

grow at a lower rate (although the cell volume fractions are very similar in both cases,

probably because the length of time the culture grows for is similar). Thus internal sulphur

is used up in repair slightly lower and there is a delay in the hydrogen production start

time, even though the time to anaerobiosis is similar. The hydrogen yield for smaller I0

is lower than the standard case because of this later start time causing protein and cell

volume fraction at the onset of production to be lower than in the standard case, and there

is a reduced activity of the photosynthetic chain passing electrons to the hydrogenase due

to a lack of light. This is as expected and is shown in Figure 6.5.
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Figure 6.5: Model results when I0 is increased (dashed lines) and decreased (dotted lines)

by a factor of 2, compared to model results for the standard parameter values (solid lines)
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Increasing I0 from the standard value means the cells can photosynthesize and, hence,

grow more rapidly, and we see a slight increase in cell volume fraction. This increased

photosynthesis means the cells use up their reserves of internal sulphur to repair PSII

at a higher rate, so that sulphur decreases quicker, but increased oxygen produced from

PSII combined with this rapid sulphur decrease means the system becomes anaerobic

at approximately the same time as the standard case. Hydrogen production begins at

approximately the same time and we see a slight increase in initial rate. However, hydrogen

is not produced for as long because increased PSII activity when more light is available uses

more internal sulphur to repair PSII and, hence, s declines faster when the light intensity is

greater than the standard value. Thus electrons coming from PSII for hydrogen production

run out quicker than in the standard case. This increased rate of sulphur used PSII repair

is due to increased photo-damage under strong illumination. Overall, these conditions

surprisingly lead to a slightly reduced yield when compared to the standard model case

due to rapid photo-damage of PSII, even though the cell volume fraction and available

light have increased.

The standard value of I0 that we use is at the large end of the realistic range and,

therefore, we have found that increasing light intensity from zero significantly increases

hydrogen yield at time t = 10 only up to a point. Beyond a critical level, we obtain a

decrease in hydrogen yield over a set period. We also find that greater light intensities

give earlier start times for hydrogen production. Comparison with experimental studies,

such as that presented by Kim et al. [88], reveals the same trends, which are discussed in

Section 6.3.

Melis [111] and Polle et al. [135] suggest that truncating the chlorophyll antenna size

can improve the yield of hydrogen gas since cells closer to the light will not absorb, and

waste, so much of the available light, with the implication that cells further away from the

light will get more light on average. The appropriate parameter is the measure of light

absorbance by the cells, which is modelled by DC . In an opposite fashion to I0, decreasing

DC provides more light on average and a greater initial rate of hydrogen production.

However, for large I0 and small DC , a slight decreases in yield is obtained due to increased

photodamage (this is the same effect as increasing I0). This appears to contradict the

predictions of Melis [111] and Polle et. al [135], but if we employ a smaller value of I0,

such as I0 = 300 µmol m−2s −1, then we find that decreasing DC does indeed increases

yield, and increasing DC decreases yield, as shown in Figure 6.6. This is discussed further
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in Section 6.3.
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Figure 6.6: Model results when DC is decreased (dotted lines) and increased (dashed lines)

by a factor of 2 for I0 = 300 µmol m−2s −1, compared to model results for the standard

parameter values (solid lines)

6.1.6 Brief conclusions from parameter sensitivity analysis

In this section, we have found that the model is insensitive to several parameters. Here,

we outline only the parameters that may improve the yield of hydrogen, with the hope

that experimentalists and engineers will investigate methods to improve these aspects of

the cells. Only non-dimensional parameters that have realistic biological interpretations

and can be altered independently of other parameters are considered here. They are as

follows:

• SH , EL. Increasing the electrons coming from the residual level of PSII activity in-

creases the yield of hydrogen gas in the model, as suggested in Hypothesis 1 from

Kosourov et al. [92]. In reality, yield can only can be increased in this way if the

increase in PSII activity does not cause the system to become aerobic.
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• γ2 (switch value for maximal growth). If the cells could be modified so that initiation

of growth requires less protein then total yield might be increased. However, this

is unrealistic since proteins are required for cellular growth. Further investigation

into starch and other requirements for growth should be made. We also found that

increasing the dimensional parameter k3, the rate constant for protein production

from carbon skeletons and sulphur, increased growth and, hence, increased yield.

Therefore, hydrogen yield could be improved by increasing protein production rate

in early stages of sulphur deprivation.

• I0, Isat, DC . Increasing the light parameters I0 and Isat, or decreasing DC , can

increase yields up to a optimal value, but if they are increased any further high levels

of photo-damage occur and the system uses up internal sulphur quickly, causing the

yield to decrease. Thus, there is an optimal light intensity to maximize hydrogen

yield at a given time.

6.2 Optimizing the yield of hydrogen gas

Since we find good agreement between the model and experimental results we now aim to

use the model to innovate novel strategies for improving the yield of hydrogen and to make

comparisons between them. It is hoped that these strategies will be tested, which will help

to either support of refute the model, and that they will give focus to experimental studies

on improving yield in algal cultures.

The idea of ‘optimizing’ hydrogen production has been discussed recently in the lit-

erature [72, 75, 126]. Current ideas to improve the viability and efficiency of hydrogen

production are discussed in the introduction. They centre around varying light [88], ex-

ternal sulphur concentrations [92, 182], and growth conditions [90], as well as genetically

modifying the cells so they are either more tolerant to oxygen or have smaller chlorophyll

antennas [93,111,135]. Ghirardi et al. [41] show that cycling between sulphur-replete and

sulphur-deprived conditions causes the cells to make hydrogen production under nutrient

stress and then repair and rebuild during sulphur sufficiency. Cycles of anaerobic hydro-

gen production and cellular breakdown followed by aerobic respiration and cell growth are

observed, but efficiency of this process is low due to the large down time associated with
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the re-building, aerobic phase, and the fact that the yield decreases in subsequent cycles

of hydrogen production.

A key point to discuss is what does one really mean by ‘optimization’? The optimal

strategy will depend on what is required from the system, whether this be a higher rate

of H2 production per cell, or an earlier start time of H2 production, or simply the largest

volume of H2 gas collected over a set time period. Strategies will not necessarily be the

same when optimizing in these different ways, as shown in Section 5.5, where optimal S0

varies depending on whether the highest initial rate per cell or the highest yield of gas is

required. For commercialization purposes, continuity and ease of implementation should

also be addressed.

In this work, we aim to optimize hydrogen production by controlling the sulphur-

cycling regime to minimize downtime and produce the maximum volume of hydrogen gas

over a set time. We want to show that hydrogen production can happen more effec-

tively and efficiently by controlling the addition of external sulphur to the media. This

is just one aspect of the process available for optimization, but we can show that inter-

esting and useful results can be obtained by studying this sulphur dependance in iso-

lation. We try various functional forms for re-addition of sulphur into the media and

compare yields and sustainability between them. The dimensionless sulphur input func-

tion, INPUT(S, h, dh
dt , t) = f

(

S, h, dh
dt , t

)

, enters the model in the differential equation for

external sulphur as I
(

S, h, dh
dt , t

)

in equation 5.82, and, in general, will depend on a com-

bination of S, h, dh
dt and t. Hence,

d(S(1 − Λ))

dt
= −uptake(S, s,Λ) + f

(

S, h,
dh

dt
, t

)

. (6.1)

A summary of the different functional forms of the optimization function f
(

S, h, dh
dt , t

)

can

be found in Table 6.1, and each of these functions is explored in the following sections.

In choosing functional forms for f(S, h, dh
dt , t) we want sulphur addition to allow periods

of anaerobic hydrogen production cycling with aerobic growth, since continuous hydrogen

production is non-sustainable (see Sections 5.1 and 5.5). We also want the sulphur addition

strategies to be easily implementable in industry. This means strategies can only depend

on variables that could be measured without disrupting the system, which is why we have

chosen h and dh
dt . Furthermore, we want the strategies to be run continuously without

having to remove sulphur or any other products (excluding hydrogen) from the system.

The current state-of-the-art cycling method developed by Ghirardi and coworkers [41]

necessitates changing the medium of the cells to remove excess sulphur and requires that
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Function name Definition Section

Two-stage Cycles of







S = 0.0 µM for t1 hours, followed by

S = 900 µM for t2 hours
6.2.2

Sine wave A
(

1 + sin
[

2πFt − π
2

])

6.2.3

Square wave A × Sq(t, F, P ) 6.2.4

Gradient switch a1 × H
(

hc − dh
dt

)

(h > 0) 6.2.5

Linear switch
(

dh
dt

(a1−a2)
hc

+ a2

)

(

dh
dt < hc

)

(h > 0) 6.2.6

Two-step switch
[

a1H
(

hc − dh
dt

)

H
(

dh
dt − hc2

)

+ a2H
(

hc2 − dh
dt

)]

(h > 0) 6.2.6

Two-stage

feedback spike











































f
(

S, h, dh
dt , t

)

= a1

(

dh
dt < hc

)

(h > 0)

if dh
dt (T ) > htol and dh

dt (T + 1) > htol,

or Re-start model at T + 1 with

IC = [SI s(T + 1) p(T + 1) ω(T + 1) h(T + 1) Λ(T + 1)]

if dh
dt (T ) > htol and dh

dt (T + 1) < htol.

6.2.7

Table 6.1: Summary of functional forms used as input functions in equation 6.1 in an

attempt to optimize hydrogen yield. Sq(t) is the square wave function and H a Heaviside.

Parameters are defined in the relevant section.

the cells are washed before re-suspension. Such a strategy is time consuming and means

the system can not be left to run continuously. A simpler, less disruptive system, where

sulphur is only ever added, would make industrial scale hydrogen production from alga

cells more feasible.

We need to choose a suitable long time for the optimization to run so that a few

oscillations in sulphur input can occur and to ensure that we are not just seeing effects of

an early, unsustainable production. For this reason, and to compare with the results in

Ghirardi et al. [41] (which runs to t = 14.7, 360 hours) we optimize the hydrogen yield at

t = 15, which corresponds to approximately 15 days. We also discuss the sustainability of

the optimal solution as it is usually clear in 15 days whether the production will continue

on not.

To minimize computer processing time and for clarity, we optimize with as few op-

timization parameters in the function f(S, h, dh
dt , t) as possible. We set S0 = 0 for all

different optimization functions and then for the function that, on optimizing, gives the

highest yield of hydrogen, the yield is optimized again with varying S0. Other variations

in initial conditions are not investigated.

Below we describe the optimization process, after which each optimization is discussed
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individually and analyzed.

6.2.1 Numerical optimization

The optimization process was implemented numerically in Matlab with the aim of finding

the value of the optimization parameters that give the highest yield of hydrogen, h, at

t = 15. We use the Simplex method (Matlab procedure ‘fminsearch’), where the simplex

consists of n + 1 vectors that form its vertices, where n is the number of optimization

parameters. For example, for a two parameter optimization the simplex is a triangle. (The

above procedure regime actually minimizes a function, and so to maximize the hydrogen

yield we minimize −h.) At each step in the algorithm a new point on or near the simplex is

generated and the value of this new point is compared to the function values at the vertices.

If this value is smaller than any of those on the simplex one of the vertices is replaced by

the new point. This is done iteratively until the diameter of the simplex is less than the

tolerance that has been set. For these results we use a tolerance of 10−4 and specify that

no more than 200 iterations should be performed. Since this procedure does not find the

global minimum, it is necessary to find a suitable start guess for the optimization. This

was achieved by selecting a sufficiently fine grid and calculating an array of the hydrogen

yield as the parameters are independently varied. The global minimum in this array was

then found using Matlab, and this was used as the initial guess. For the two parameter

case, surfaces or contour maps can be plotted to reveal the approximate location of the

global minimum. For three or more parameters this was not possible and one variable was

fixed in surface and contour plots.

6.2.2 Two-stage sulphur cycling (as in Ghirardi et al. [41])

One very simple way to cycle sulphur is used in Ghirardi 2000 et al. [41] where a two

stage sulphur cycling method is implemented. The cells are incubated in a sulphur free

medium for 100 hours and then transferred to a sulphur rich medium (approximately 0.9

mM) for a period of 30 hours. At the end of this period the cells are then washed and

re-suspended again in the sulphur-deprived medium for 100 hours, after which the cycle is

repeated. Data from Ghirardi et al. [41] for the two-stage cycling is reproduced in Figure

6.7. This is an extreme cycling, where the cells are completely sulphur-deprived for a set

time, t1, incubated in sulphur-replete conditions for a time t2 and then removed, washed

and put back into S = 0 conditions for another period of t1 and so on. We simulate
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these conditions using the model with standard parameter values. Results are shown in

Figure 6.8 using the external sulphur concentration in sulphur-replete conditions, SR, as

SR = 62.1, which is equivalent to 0.9 mM.
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Figure 6.7: Data reproduced from Ghirardi et al. [41] for hydrogen production using the

two-stage sulphur cycling method, where cells are deprived of sulphur at t = 0 and re-

suspended in a sulphur-replete medium for 30 hours at t = 100 and t = 220 hours, before

being deprived of sulphur once more.

On comparing the hydrogen data with those of Ghirardi et al. [41] we find that the

trends in hydrogen production are similar. Both studies see phases of anaerobic hydrogen

production followed by aerobic phases during sulphur-replete conditions. During sulphur-

deprivation there is a short time in which the cultures become anaerobic, after which

hydrogen is produced. The only difference between the simulations and results in [41] is

that in the model in each of the first three cycles of sulphur deprivation slightly more

hydrogen produced than in the previous cycle, whereas in Ghirardi et al. [41] hydrogen

production either stays the same as the previous stage (as in the second run) or decreases

(as in the final run). This discrepancy suggests that cellular repair in the model happens

quicker than in reality. The ‘repair’ parameter in the model is k3, the rate of protein

production, since protein production re-builds cellular material. Since estimation of k3

was difficult and we had no concrete value to base this on, from literature, we can explore

the effects of decreasing k3 to slow down cellular repair. Results of this are shown in Section

6.2.9 and are compared to results for the new cycling methods discussed in Section 6.2.7.
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Figure 6.8: Results for the model with standard parameters using the two-stage cycling

regime from Ghirardi et al. [41] until t = 14.7. Here, SR = 62.1 (SR = 0.9 mM) in

sulphur-replete conditions, and t1 = 4.1, t2 = 1.23
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For now, we vary the parameters t1 and t2, the time in sulphur-deprivation and time

in sulphur-replete condition, respectively, to optimize hydrogen yield at t = 15. We find

that the maximum hydrogen produced at t = 15 is h = 0.0248, which is h = 468 mL H2/L

culture, compared to 455 mL H2/L culture in Ghirardi et al. [41], and requires t1 = 3.04

and t2 = 0.941. The cycling these parameters produce is shown in Figure 6.9 for long time

t = 40. This provides a slight improvement on the yield using the parameter values in

Ghirardi et al. [41] since these values cause more cycles to occur in the time frame because

the periods of sulphur-replete and sulphur-deprived incubation are shorter. Notably, it

is clear that the optimal strategy has both t1 > 0 and t2 > 0, indicating that cycling is

necessary for maximal hydrogen production.
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Figure 6.9: Model results to t = 40 using optimal parameters t1 = 3.04, t2 = 0.941 with

SR = 62.1 for the two-stage cycling from Ghirardi et al. [41].

Although this is the optimal strategy for hydrogen yield at approximately 15 days, if

we run the model with optimal t1 and t2 until 40 days we see that the yield actually starts

to decrease in each cycle, as shown in Figure 6.9 and found by Ghirardi et al. [41]. This is

because the periods of hydrogen production are actually relatively short, and the aerobic

periods, in which cell volume fraction and internal sulphur increase, are long. Internal
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sulphur builds during the sulphur-replete conditions faster than it can used under sulphur

deprivation, so that sulphur increases on average and eventually s > S1, and the Calvin

cycle is always active and used as an electron sink instead of the iron-hydrogenase, and

hydrogen production grinds to a halt.

6.2.3 Sulphur cycling using a sine wave

Now the two-stage cycling method has been explored, we begin to formulate new methods

to cycle sulphur. We try a simple method where the rate of sulphur addition to the media

follows a sine wave and is not dependant on the activity of the system. We propose the

optimization function

f(t) = A
(

1 + sin
[

2πFt − π

2

])

, (6.2)

where A is amplitude and F is frequency. Clearly, f(0) = 0 and f(s) ≥ 0 ∀t, so that

sulphur is only ever added, not removed as in the two-stage method.

Figure 6.10 shows a contour plot for A, F and hydrogen yield at time unit t = 15.

The contour is fairly complicated and appears to have two main regions: an oscillating

region that on average steadily increases as F decreases for a constant A and then reaches

a maximum, and a relatively high ridge for small A and all values of F . The narrow

ridge is actually a region of parameter space where the yield of hydrogen produced is quite

high but is non-sustainable, since if we optimize for longer this region does not increase in

height, as shown in Figure 6.12 for t = 40, and is barely visible. This shows that adding

a minimal quantity of external S increases the yield but does not produce cycles, which is

akin to varying S0, and is not what we were looking for.

Using an array for A, F and hydrogen yield to calculate an initial guess, we find the

optimal strategy for the sine wave (taking hydrogen yield at t = 15) to be F = 0.154 and

A = 1.088 with a yield of h = 0.0227, which is 428 mL H2/L culture. Model results using

the optimal strategy parameters A and F are shown in Figure 6.11. The highest yield is

not achieved by simply adding more and more S, hence increasing A, because that would

lead to a normal, sulphur-replete system.

The cycling shown in Figure 6.11 looks similar to two-stage cycling, with periods

of aerobiosis allowing cellular repair and culture growth, causing a downtime in hydro-

gen production, oscillating with anaerobic fermentation, hydrogen production and culture

shrinkage. The main difference between methods is that this production is continuous and
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Figure 6.10: Contour plot of optimal hydrogen yield at t = 15 using the sine wave sulphur

input, with S0 = 0, varying amplitude and frequency. The maximum yield is h = 0.0227.
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Figure 6.11: Model results to t = 15 using optimal parameters F = 1.09 and A = 0.154

for the sine wave sulphur input.
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does not involving removing sulphur from the medium and washing the cells. Although

the yield of hydrogen is slightly less than when using the two-stage method, it confers an

advantage because it would be easier to run using an automated system, without the need

for human interference.

We expect that as we increase the time at which we measure hydrogen yield, the

surfaces or contour plots will become smoother because differences in the stage of the

cycling at which the yield is recorded are less significant compared to the size of the

yields. This is certainly true when t = 40, shown in Figure 6.12. The model solutions for

this longer time also look very similar, with optimal parameter values of F = 0.157 and

A = 1.167 and a maximum h = 0.0644 (1214 mL H2/L culture). The slightly different

values for F and A is due to the point in the cycle at which the hydrogen yield is taken.
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Figure 6.12: Contour plot of optimal hydrogen yield at t = 40 using the sine wave sulphur

input, with S0 = 0, varying amplitude and frequency. The maximum yield is h = 0.064.

In conclusion, the sine wave sulphur input gives an optimal cycling behaviour with

yields that are just shy of the optimized yield using the two-stage cycling method in

Section 6.2.2. The cycling here has the advantage of being continuously applied since no

sulphur has to be removed from the bio-reactor.

6.2.4 Sulphur cycling using a square wave

A square wave function can also be used to optimize hydrogen production. The advantage

of using the square wave function is that we can enforce periods where no sulphur is added
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and periods where it is added at a constant rate. The square wave, however, gives us an

additional parameter; we now have amplitude A, frequency F and a parameter P which

determines what percentage of time the function is non-zero. P has the range 0 ≤ P ≤ 100.

An example of a square wave is shown in Figure 6.13 where in this case A = 2, F = 2 and

P = 25.

Time t
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Figure 6.13: An example of a square wave function used in the optimization where A = 2,

F = 2 and P = 25.

To make an initial estimate to start the optimization process we calculate an array of

yields dependent on A, F and P and select the maximum of this discrete set. Optimizing

then gives us a maximum yield of 0.0265 (approximately 500 mL H2/L culture), when

A = 35.2, F = 5.11 and P = 3.44.

If we set F = 5.11 and plot A and P parameter space then Figure 6.15 shows that

instead of there being one optimal strategy there are actually many that give the maximal

yield to three significant figures, shown by the curving region at which h is maximal. Here,

if P , the percentage of the square wave that sulphur is added for, is decreased then the

rate of sulphur addition, A, must be increased to keep the yield approximately the same.

Thus decreasing P with increasing A gives a curved region in parameter space where the

optimal yield of 500 mL H2/L culture (to three significant figures) can be achieved. The

optimal strategy shown in Figure 6.14 is just one example of an optimal strategy which

attains the maximum yield. The downtime for cellular repair has been decreased by adding
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Figure 6.14: Model results to t = 15 using optimal parameters F = 5.11, A = 35.2 and

P = 3.44 for the square wave sulphur input.
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S quickly for a short period but the rate of hydrogen production in the anaerobic phase

is still relatively low compared to results for varying S0 in Section 5.5.5 (see Figure 5.16).

We also note that in Figure 6.14 Λ is slightly decreasing on average and so this system is

not sustainable long term.
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Figure 6.15: Contour plot of optimal hydrogen yield at t = 15 using the square wave

sulphur input, with S0 = 0, varying A and P and setting F = 5.11. The maximum yield

is h = 0.0265.

Using this square wave optimization function we have thus improved the amount of

hydrogen gas produced in 15 days (from 468 mL H2/L culture in the two-stage cycling

to 500 mL H2/L culture here) but not by a significant amount. Ideally we would like to

be able to improve this yield further. However, sulphur is only added and not removed,

which is an improvement on the method of Ghirardi et al. [41].

6.2.5 Controlling sulphur addition using the gradient of H2 production:

a gradient switch function

The two functions used to optimize hydrogen yield so far have no feedbacks relating sulphur

addition to the hydrogen production. We expect that the best way to optimize hydrogen

production will be to have some kind of feedback mechanism where external sulphur is

added dependant on the system state. Since we want this strategy to ultimately be tested

and used in bio-reactor conditions, it is important to choose a method that can be easily

implemented, so our function depends only on model variables that can be measured easily:
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hydrogen and gradients of hydrogen production (which will be measured anyway during

production).

As a first attempt, we choose a functional form that stipulates that sulphur is added to

the culture when the gradient of hydrogen production gets below a certain level, hc. The

idea is that sulphur will be added at a time when hydrogen production is just starting to

decrease, so that the cells are kept in the phase of most rapid H2 production. We hope that

regime could be tested in an experimental bio-reactor where H2 measurements are taken

and gradients calculated over time, and when the rate of H2 production starts decreasing

external sulphur can be re-added at a constant rate, a1. The functional form we use is

f

(

h,
dh

dt

)

= a1H

(

hc −
dh

dt

)

(h > 0), (6.3)

where h > 0 is used to specify no sulphur is added before hydrogen production begins and

H indicates a Heaviside function.

The model results at t = 15 for the optimal parameter values are shown in Figure

6.16, and the surface plot for hydrogen yield is shown in Figure 6.17. A region where a

few steep peaks are present is clearly seen in Figure 6.17, and we find that if hc is small

hydrogen production is low, and if a1 is large the culture becomes aerobic and yields are

small. On optimizing, we find a maximum of h = 0.0221 at hc = 0.0031 and a1 = 1.412.

This corresponds to approximately 417mL H2/L culture.

This method actually gives a slightly smaller yield of hydrogen than the sine wave

and square wave oscillations, as well as the two-stage method of Ghirardi et al. [41]. To

understand why, we analyze Figures 6.16 and 6.17 in more detail:

1. Initially no sulphur is added and we see normal sulphur-deprived behaviour leading

to hydrogen production. When dh
dt < hc, at approximately t = 1.4, sulphur is added

at a rate a1 until the gradient increases above hc, and sulphur is added in small

amounts to maintain the hydrogen gradient.

2. During hydrogen production, increased light availability, as the culture shrinks, cou-

pled with a non-decreasing internal sulphur curve, cause the rate of photosynthesis to

increase. Thus the culture becomes aerobic, and hydrogen production stops abruptly

at time t = 3.33.



Methods for optimizing hydrogen yields 311

t

S

t
s

t

p

t

ω

t

h

t

Λ

0 5 10 150 5 10 15

0 5 10 150 5 10 15

0 5 10 150 5 10 15

0

2

4

6 ×10−3

0

0.01

0.02

0.03

0

10

20

0

1

2

3

0

0.5

1

0

0.05

0.1

Figure 6.16: Model results to t = 15 using optimal parameter values hc = 0.0031 and

a1 = 1.4117 for the hydrogen gradient switch sulphur input.
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Figure 6.17: Surface plot of optimal hydrogen yield at t = 15 using the hydrogen gradient

switch sulphur input, with S0 = 0, varying a1 and hc. The maximum yield is h = 0.0221.

3. During this second aerobic phase, oxygen levels rise and sulphur is added continu-

ously at the rate a1 (since dh
dt = 0 < hc). This leads to an initially sharp build up of

external sulphur followed by a steady increase in S once the external sulphur starts

to be taken into the cell. Thus internal sulphur concentration also increases and the

cells re-build, so that p and Λ increase.

4. External sulphur concentration continues to increase while the cell volume fraction is

relatively small, but demand for external S increases as Λ increases and so, although

sulphur continues to be added at a constant rate, the concentration S will start to

decrease (at t =5.41) as Λ increases.

5. Internal sulphur decreases due to increasing Λ, and s levels off close to s = S1 = 0.5,

due to a balance in sulphur added and sulphur used, causing growth rate to decrease

as the system is close to the minimum sulphur required for growth, S1. Slower

growth causes the oxygen curve to start decreasing less rapidly at approximately
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t = 6.3 (see Figure 6.16), as the constant level of internal sulphur in this period

supports a steady rate of oxygen production from PSII. This steady rate of oxy-

gen production means the cells take longer to reach anaerobiosis than for the first

sulphur-deprivation cycle, in which oxygen production rate decreased as s decreased

rapidly. Protein levels stay approximately constant in this period as no fermentation

occurs under aerobic conditions, and there is enough light and sulphur available for

minimal protein production to facilitate growth.

6. The cells become anaerobic again at t = 10.55 in Figure 6.16 because lower than nor-

mal sulphur levels, s < S0, combined with increasingly low light levels as Λ increases,

decreases oxygen production from PSII. Hydrogen production restarts around this

time (t = 10.55) and since dh
dt > hc no external sulphur is added, any remaining ex-

ternal sulphur is used up quickly and S = 0 at t = 10.61. As before, s decreases until

s settles at a constant level and anaerobic fermentation causes p and Λ to decrease.

7. When dh
dt < hc again, steps 1-6 repeat and we see cycles of sulphur addition for hy-

drogen gradient maintenance followed by periods of repair that last until the system

becomes anaerobic again.

The level at which s stabilizes in the constant periods (described in step 5 above)

is determined by the parameter S1 in the Calvin switch HCalvin(s; S1) which determines

whether protein production or hydrogen production is used as the main electron sink.

The gradient sg of this smoothed switch function HCalvin is crucial, because for protein

to increase and for cellular growth we require s > S1, but for H2 production we require

s < S1. Slackness in the switch is necessary so that at the onset of anaerobiosis, when s

is close to but slightly greater than S1, the switch allows a sufficient amount of hydrogen

to be made to stop the addition of sulphur and allow dh
dt to increase. Cycling can not be

achieved if sg is too large (in which case hydrogen is only made in minimal quantities if s

is slightly larger than S1) as in this case at the onset of anaerobiosis s is close to S1 and

such a small amount of hydrogen is produced that dh
dt remains less than hc, and sulphur

is added again very soon after hydrogen production begins. If this is the case, re-addition

of sulphur causes the system to become aerobic again almost immediately, and hydrogen

is only produced transiently after the initial period of production. This is a limitation of



Methods for optimizing hydrogen yields 314

using this functional form.

In this novel process, sulphur is added first to maintain the gradient of hydrogen pro-

duction and then added during a period of cellular repair where no hydrogen is produced.

By stipulating that sulphur is added at the rate a1 when dh
dt = 0 we are saying something

quite different to the two-stage cycling, where external sulphur was removed and there

followed a period where internal sulphur was used up and the culture became anaero-

bic. With the new optimization function, the addition of sulphur for repair does not stop

until hydrogen production resumes, which can only happen if the culture becomes anaer-

obic. The culture can only become anaerobic by keeping a relatively low internal sulphur

concentration and decreasing light available due to increased cell volume fraction (which

decreases oxygenic photosynthesis). Thus there is a delicate balance between giving the

cells enough external sulphur to repair and not giving them too much so that anaerobiosis

and hydrogen production are not restarted. This causes a relatively long down time com-

pared to the two-stage cycling and causes the overall hydrogen yield to be lower at t = 15,

even though hydrogen is produced at a higher rate during periods of production.

6.2.6 Controlling sulphur input using the gradient of H2 production: a

linear and a two-step switch function

The previous optimization function only allowed hydrogen to be added at one rate, so

the same rate was used to maintain the hydrogen gradient during hydrogen production

and for the repair of the cells during the aerobic phase. In the hope of decreasing the

downtime between periods of hydrogen production, we consider separating these two rates;

we optimize for a different rate when dh
dt is small compared to when it is close to hc. There

are many forms that this function could take and we begin by considering a linear term

where the rate of sulphur addition varies according to how far away dh
dt is from the critical

gradient. This optimization function has the form

f

(

h,
dh

dt

)

=

(

dh

dt

(a1 − a2)

hc
+ a2

)(

dh

dt
< hc

)

(h > 0), (6.4)

where a1, a2 and hc are parameters used to optimize the yield. An example of this function

is shown in Figure 6.18. A surface plot of hc against a2 for the optimal value of a1 = 0.0002

is very similar the surface in Figure 6.17 for the gradient switch in Section 6.2.5. This is

because a2 is small and the culture actually jumps from making hydrogen at a rate around

hc to stopping production due to the onset of aerobiosis, and the solution never properly
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Figure 6.18: An example of the linear switch sulphur input dependant on dh
dt , where

hc = 0.005, a1 = 0.5 and a2 = 2.

experiences the linear regime.

Finding an initial guess for the optimization using the method described in Section

6.2.4, we find the optimal parameter values to be a1 = 0.936, a2 = 0.0661 and hc = 0.006

with a yield of h = 0.0249 (470 mL H2/L culture) at t = 15. However, we found that this

is a regime that stops producing hydrogen gas at around 14 days i.e. there is no cycling.

This is clear if we look at the long term behaviour in Figure 6.19. The optimal solution

that continues for long times was found to be a1 = 0.0002, a2 = 1.44 and hc = 0.0051

with a maximum of h = 0.0234 (441 mL H2/L culture). This solution is also shown in

Figure 6.19, where curves look very similar to those in Section 6.2.5 for the gradient switch

function, except for the small bump that appears on the S curve around t = 10. This is

due to a variable rate of S addition as the gradient of h changes in the initial stages of

hydrogen production. In addition, external sulphur is always added so is never zero, as for

the gradient switch function, because S is added at a low rate even when dh
dt is close to hc

This variable rate function has only increased hydrogen yield at t = 15 by a very small

amount (441 mL H2/L culture compared to 417 mL H2/L culture for the gradient switch in

Section 6.2.5) and there is still a long downtime between periods of hydrogen production.

One may imagine that to decrease the downtime using this linear switch function, the

rate of S addition, a2, could be increased to facilitate faster growth during the aerobic

period, since this would lead to earlier onset of anaerobiosis. Increasing a2 for the linear
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Figure 6.19: A comparison of optimization strategies for the linear switch sulphur input,

with optimal parameters a1 = 0.0002, a2 = 1.44 and hc = 0.0051 (solid lines), and

a1 = 0.936, a2 = 0.0661 and hc = 0.006 (dashed lines). The dashed line optimization is

not continuous and for long times it is no longer optimal and hydrogen production stops

around t = 14

.
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switch function causes earlier onset of aerobic conditions, because s is kept slightly higher

due to the increase in gradient of f
(

h, dh
dt

)

. Sulphur is then added at a rate a2 until

hydrogen production recommences, and the cells reach anaerobiosis quicker, thus downtime

is decreased. Hydrogen production is initially at a low rate s ≈ S1, so some electrons are

used in the operational Calvin cycle. In this case, the linear input function specifies that

sulphur will be added at a rate close to the large a2 value, and internal sulphur increases.

This causes the culture to quickly become aerobic again, stopping hydrogen production

soon after it begins. Therefore, we can not use this function to decrease the downtime

between cycles because attempting to do this by increasing a2, which decreases downtime,

leads only to transient oscillations in hydrogen production. The yield is still lower than

in the two-stage cycling case, so further improvements to the optimization function are

required.

To overcome the problem of high sulphur addition in the early stages of hydrogen

production we try a two-step function, where sulphur is added at one rate when dh
dt is

large and another when dh
dt is small. Thus as soon as hydrogen production resumes after

the second aerobic period the high rate of sulphur addition, a2, switches to a low rate,

a1, eliminating the problem of the system becoming aerobic again very quickly. The new

two-step rate function has the form

f

(

h,
dh

dt

)

=

[

a1H

(

hc −
dh

dt

)

H

(

dh

dt
− hc2

)

+ a2H

(

hc2 −
dh

dt

)]

(h > 0) (6.5)

with optimization parameters rates a1 and a2 and critical gradients hc and hc2. This gives

four optimization parameters. However, we find that the optimization process is relatively

insensitive to hc2, so long as it is sufficiently small so as not to add sulphur at a high rate

during initial hydrogen production. This is shown in Figure 6.20, where large hc2 = 0.001

stops further cycles of hydrogen production. For this reason we set hc2 = 0.0001 and find

the optimal values of a1, a2 and hc.

We find that a1 = 0.522, a2 = 1.868 and hc = 0.0051 give the maximum yield of

hydrogen gas at t = 15, where h = 0.0304 (573 mL H2/L culture). This is a significant

improvement on the yield using the two-stage sulphur input of Ghirardi et al. [41] in

Section 6.2.2, and the other methods tried so far. Figure 6.20 (solid lines) shows very

similar cycling behaviour to the linear switch function in Figure 6.19, but here increasing

the rate of sulphur added during the repair period, but not during the hydrogen production,

allows the cells to repair and grow quicker and, hence, decreases the downtime between

hydrogen production cycles. Optimizing a1 for gradient maintenance also allows for a high



Methods for optimizing hydrogen yields 318

gradient of production without too much additional sulphur, so that the system remains

aerobic.
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Figure 6.20: Model results to t = 15 using optimal parameters a1 = 0.522, a2 = 1.868,

hc = 0.0051 and hc2 = 0.0001 (solid lines) with hc2 = 0.001 (dashed lines) for the two-step

sulphur input. For the larger value of hc2 we see oscillations in S, s, p, ω and Λ, but no

further hydrogen production after the initial period.

We can investigate this new function further by plotting three surfaces with one pa-

rameter set to the optimal value on each. If we set hc = 0.0051 and plot the surface for a1

versus a2 (Figure 6.21) then we see a fairly smooth surface with a well defined maximum.

Figure 6.22 shows two contour plots where either a1 or a2 is set to the optimal value,

and hc and the remaining parameter are varied. While in both cases there are clear values

of a1 and a2 that give a maximal h to three significant figures, a range of values of hc,

hc ≥ 0.0051 were found for this maximum. Physically, this implies that the optimal

yield of hydrogen gas is obtained when sulphur is added at a rate a1 as soon as hydrogen

production begins. This is shown in Figure 6.20 where the external sulphur curve shows

that after the repair cycle, S does not drop to zero but instead stays at a low level. The
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Figure 6.21: Surface plot of optimal hydrogen yield at t = 15 using the two-step sulphur

input, with S0 = 0 and hc = 0.0051, varying a1 and a2. The maximum yield is h = 0.0304.

optimal solution is, therefore, a1 = 0.0552, a2 = 0.187 and hc ≥ 0.0051.

This two-step switch helps to maximize the yield of hydrogen gas by decreasing the

downtime due to a faster repair of cells in the aerobic phase. However, the strategy is not

ideal since sulphur is added a rate a2 until increased cell volume fraction and decreased

photosynthesis lead to anaerobiosis and hydrogen production again,
(

dh
dt > 0

)

, which may

cause an unnecessary delay.

6.2.7 A novel two-stage feedback spike sulphur input function

Although the previously discussed optimizations can be used to increase the amount of

hydrogen gas produced in 15 days when compared to the two-stage method of Ghirardi

et al. [41], we aim to improve the yield further by reducing the downtime associated with

the cycling.

A more efficient method may be a two-stage process where sulphur is added at a rate a1

to maintain a gradient hc and, when the culture eventually becomes aerobic and hydrogen

production stops, a set amount SI of sulphur is added to the bio-reactor in one go (in a

‘spike’). The cells then use up the sulphur SI for repair and there is a phase where no
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Figure 6.22: Contour plot of optimal hydrogen yield at t = 15 using the two-step sulphur

input, with S0 = 0. In Figure (a) a1 = 0.552, and a2 and hc are varied, and in Figure (b)

a2 = 1.87, and a1 and hc are varied. The maximum yield is h = 0.0304.

sulphur is added, the cells are starved of external sulphur and eventually anaerobiosis and

hydrogen production resume. This function should decrease the downtime as sulphur is

not added right up until hydrogen production begins. It should also facilitate rapid repair.

This new function has three optimization parameters: the critical gradient, hc, the

rate of addition to maintain the gradient, a1, and the amount of sulphur to be added

when the system becomes aerobic and stops producing hydrogen, SI . Since it would be

difficult and probably expensive to measure oxygen continuously in bio-reactor conditions,

we stipulate that if the gradient of hydrogen production is decreasing then SI of sulphur

is added. Thus if dh
dt (T ) > htol and dh

dt (T + 1) < htol, then SI of sulphur is added to the

system at time step T + 1, where htol is a small parameter.

The algorithm for this optimization differs from the others because we wish to vary

the initial conditions at t = 0 or timestep T +1 depending on the behaviour of the system.

We perform simulations for the chosen parameters from t = 0 to t = 15, and dh
dt (T ) and

dh
dt (T + 1) are calculated at every time step T . If the conditions for adding SI of sulphur

are met at T + 1 then the program is re-started from the time corresponding to the T + 1

timestep with the new initial conditions S0 = SI and the other variables taking the values

they had at T + 1, and the program is run until t = 15. The loop is repeated until the

conditions for sulphur re-addition are not satisfied at any time step and the complete

solution to t = 15 has been found. The hydrogen yield at t = 15 is then output.
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We can write this function as

f

(

S, h,
dh

dt
, t

)

:


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



f
(

S, h, dh
dt , t

)

= a1

(

dh
dt < hc

)

(h > 0)

if dh
dt (T ) > htol and dh

dt (T + 1) > htol,

or Re-start model at T + 1 with

IC = [SI s(T + 1) p(T + 1) ω(T + 1) h(T + 1) Λ(T + 1)]

if dh
dt (T ) > htol and dh

dt (T + 1) < htol.

(6.6)

Here, IC are the initial conditions and the model is restarted from T + 1 when the initial

conditions are reset. The value of htol is set to ensure that no sulphur is added before any

hydrogen has been produced in the initial stages and that sulphur is only added when the

culture changes from anaerobic
(

dh
dt > 0

)

to aerobic
(

dh
dt = 0

)

conditions.
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Figure 6.23: Contour plot of optimal hydrogen yield at t = 15 using the feedback spike

optimization function, with S0 = 0 and hc = 0.0051, varying SI and a1. The maximum

yield is h = 0.0386.

Using a sensible initial guess, we find optimal parameter values of hc = 0.0051, SI =

5.75 and a1 = 0.614, with h = 0.0386 (728 mL H2/L culture) at t = 15. This value of

h is a significant improvement on the optimal value obtained using the two-stage cycling

from [41] (468 mL H2/L culture). Figure 6.23 shows the surface for varying SI and a1

when hc = 0.0051. The key in this optimization is to add sulphur at a high enough rate

to keep the hydrogen gradient large, but not at such a high rate that the system becomes

aerobic. Likewise, for SI the key is to add enough sulphur to allow the culture to repair

and regrow sufficiently so that substantial hydrogen production can occur, but to not add
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too much sulphur, otherwise the system will stay aerobic for too long and the hydrogen

production phase will be delayed.

As for the two-step sulphur input in Section 6.2.6, on plotting surfaces for varying

hc with either parameter we find that the maximum h to three significant figures can be

found for a range of values of hc (it is not unique). The optimal hydrogen yield at t = 15

is obtained for hc ≥ 0.0051. Since the hydrogen gradient never gets as high as 0.0051, this

means that sulphur is added at a constant rate a1 during hydrogen production (so that

addition of s begins as soon as hydrogen production starts) and SI of sulphur is added

when the gradient of hydrogen production decreases.
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Figure 6.24: Model results to t = 15 using optimal parameters SI = 5.75, hc = 0.0051 and

a1 = 0.614 for the feedback spike cycling method. A significant increase in yield at t = 15

is seen compared to the previous optimization functions.

Figure 6.24 shows the model run with this new sulphur addition regime using the

optimal parameters. Initially, we see the same behaviour as the sulphur deprivation system

in Figure 5.12 but we also see a larger gradient in hydrogen production due to the re-

addition of sulphur at the constant rate a1. Figure 6.25 shows a close up of external

sulphur levels, where one can see that sulphur is added to produce an almost constant,
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very low level of S during periods of hydrogen production. Again, the quasi-constant level

of sulphur in the cell, combined with the increased photosynthesis due to an increase in

available light as the cell volume fraction decreases, leads to a period of aerobiosis, which

immediately stops H2 production. At time step T + 1, SI of external sulphur is added

and in this aerobic, downtime period the cells use that sulphur to repair and grow. Once

all the sulphur is used the system becomes anaerobic, as before, and hydrogen production

starts again at a high rate (approximately 3.63 mL H2 (L culture)−1 h−1).

The initial period of hydrogen production is shorter than the subsequent periods due

to a smaller cell volume fraction. This decreases the overall yield at t = 15 significantly.

A strategy for improving this aspect is discussed in Section 6.2.8.

It is clear from the graphs in Figure 6.24 for s, p and Λ that this process is sustainable

and could run like this for many more days. Using the values of a1, hc and SI that gave

the maximal hydrogen yield at t = 15 to simulate behaviour until t = 40 we find that

this is indeed the case, with steady oscillations of period 152 hours (not counting the first,

shorter period of hydrogen production) continuing until t = 40, at which time the yield

is 1978 mL H2/L culture. This suggests that optimizing with this sulphur input function

until t = 40 would give very similar optimal parameter values as those found for t = 15.

This new method also allows the bio-reactor to be run continuously without the need to

re-suspend the cells and change the media from sulphur-replete to sulphur-deprived (as

in the current two-stage method of Ghirardi et al. [41]). This makes the system easy to

implement, more efficient and less time consuming.

6.2.8 Optimizing the initial sulphur concentration, S0

Results from the feedback spike cycling method in Section 6.2.7 show that the first period

of hydrogen production is shorter than the subsequent periods due to a smaller cell volume

fraction. Here, we try to improve the overall yield of hydrogen in 15 days by increasing

the initial amount of sulphur from S0 = 0. We optimize hydrogen yield using the feedback

spike function with three parameters by setting hc = 0.0051 and varying S0, a1 and SI . We

also optimize hydrogen yield using two-stage Ghirardi cycling by varying the amount of

sulphur the cells get in the sulphur-deprived period (which was previously zero), denoted

SD. Optimizing S0 and SD in each case is slightly different: for the two-stage case we

stipulate that the cells are given SD of sulphur every time they are re-incubated in the

sulphur-‘deprived’ conditions, and for the feedback spike method we vary the one-off initial
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Figure 6.25: Model results to t = 15 using optimal parameters SI = 5.751, hc = 0.0051

and a1 = 0.614 for the feedback spike cycling method: a close up of the external sulphur

(S) behaviour. The dashed line indicated periods in which hydrogen gas is produced.

amount of sulphur given to the system before hydrogen production begins.

We find the optimal parameters for the two-stage method at t = 15 as t1 = 4.88,

t2 = 0.172 and SD = 3.521, with h = 0.0293 (554 mL H2/L culture). For these parameters,

we find an improvement in yield and a shorter period in sulphur-replete conditions, since

cells are given sulphur during the ‘deprived’ conditions as well, combined with a longer

period in sulphur depleted conditions, since it takes the cells longer to commence hydrogen

production.

The optimal parameters for the feedback spike cycling with hc = 0.0051 are a1 = 0.557,

SI = 6.54 and S0 = 2.81, giving the highest yield of hydrogen at t = 15 found so far:

h = 0.0423 (798 mL H2/L culture), shown in Figure 6.26. We see that the first short cycle

has been replaced by a longer period of hydrogen production due to S0 6= 0 providing

conditions for increased growth in the initial aerobic phase. Thus the cell volume fraction

is larger than when S0 = 0, and it takes longer for decreasing Λ to increase the light each

cell receives sufficiently to cause the system to become aerobic and for H2 production to

stop H2. Only two cycles of hydrogen production are seen in 15 days, significantly reducing

the downtime of the system and ensuring hydrogen is produced at a maximal rate for as

long as possible. Variations in s, p and Λ indicate that this oscillation works continuously,

as enough repair and regrowth occurs even though the downtime for the system is reduced.
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Figure 6.26: Model results to t = 15 using optimal parameters S0 = 2.81, hc = 0.0051,

SI = 6.54 and a1 = 0.557 for the feedback spike cycling method, where the initial condition

for external sulphur was also varied.
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Again, this strategy produces more hydrogen gas than all the strategies tried so far; the

yield is significantly higher than that found from the two-stage method of Ghirardi et

al. [41].

6.2.9 Investigating k3, the dimensional rate constant for protein produc-

tion.

As discussed in Section 6.1.4, we expect that if we reduce k3, the rate of protein production,

the two-stage sulphur cycling, with t1 and t2 as used by Ghirardi et al. [41], will produce

results that are more similar to those in [41], with H2 yield decreasing in the third cycle of

hydrogen production. Indeed, we find that decreasing k3 leads to a decrease in hydrogen

yield per cycle with time, because the cells do not increase protein levels enough to grow

in the sulphur-replete periods. Investigating this further, we plot a curve in Figure 6.27

to show the how the difference in hydrogen yield per cycle between the second and third

cycles of hydrogen production, h23, changes as k3 is varied when t1 = 4.1 and t2 = 1.23,

as in Ghirardi et al. [41]. Negative regions on the curve indicate hydrogen yield per cycle

decreases. For small values of k3, the yield decreases in each cycle due to the cells not

having enough time to repair, as repair is slower. As k3 is increased so also does h23

as sufficient repair occurs during the aerobic phase and cell volume fraction increases on

average, which increases yields. Finally, when repair rate k3 is large we see another region

where h23 decreases. This is due to fast repair facilitating a high cell volume fraction,

so that more sulphur is taken in to the cells and increasing internal sulphur causes the

culture to take longer to reach anaerobiosis and, hence, produce a lower yield in the allowed

time frame. The curve suggests that there is an optimal value of k3 to increase yields in

subsequent cycles. However, issues of sustainability need to be addressed.

Here, we consider decreasing k3 to slow down repair, possibly to provide better agree-

ment with results in Ghirardi et al. [41]. We also investigate the feedback spike cycling

with a reduced k3 to see if the method still produces more hydrogen gas than the two-stage

method.

In the original system k3 was used to estimate the parameter k1. Previously we em-

ployed a value of k1 approximately mid way in the range of k1 values. If we halve k3 the

range of values for k1 becomes

0.0386 < k1 < 0.0458. (6.7)
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Figure 6.27: The difference in yield per cycle between the second and third cycles of

hydrogen production, h23, as a function of the rate of protein production, k3. Negative

regions indicate a decrease in yield per cycle. Here, t1 = 4.1 and t2 = 1.23 as in Ghirardi

et al. [41].

This range is not significantly different from the previous range for k1 in Table 5.3, so we

conclude that it is reasonable to alter k3 without varying k1.

Proceeding with the optimization, using half the standard value of k3 we find the

optimal two-stage cycling to be t1 = 3.51 and t2 = 2.22, with a maximum h = 0.0189

(356 mL H2/L culture). Decreasing k3 means the cells make protein and, hence, repair at

a slower rate, so the period of repair and growth, t2, is longer. Thus the overall yield is

lower due to increased downtime for culture repair.

If we use half the value of k3 and optimize the feedback method we find optimal

parameters hc = 0.0051, a1 = 0.497 and SI = 10.75, with a hydrogen yield at t = 15 of h =

0.0317 (598 mL H2/L culture). This yield is significantly higher than that obtained from

the two-stage case because during period of hydrogen production the rate of production

is higher due to the addition of sulphur at a rate a1. This additional of sulphur means

protein concentration and residual PSII activity are relatively high compared to in the

two-stage case, thus contributing more electrons to the hydrogenase. The cells need more

external sulphur, SI , than for the standard value of k3, since the cellular repair is slower

and less efficient (protein produced per mole of sulphur has reduced). This results in only
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two cycles instead of three. We conclude that the novel strategy produces more hydrogen

even if k3 is reduced, with the ratio of yield from the feedback spike method to yield from

the two-stage method approximately the same.

6.2.10 Summary of Optimization Results

A comparison of the different optimization functions with hydrogen yield optimized at 15

days is shown in Figure 6.28, where hydrogen yield was also optimized using non-zero S0

for the two-stage feedback spike function, denoted ‘Feedback spike S0’. The results have

been put in order, largest to smallest. It is clear that the optimization function that gives

the highest yield of hydrogen at t = 15 is the new two-stage feedback spike function, with

S0 6= 0. Results are summarized in Table 6.2.
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Figure 6.28: A bar chart to show the values of hydrogen in mL H2/L culture at approxi-

mately 15 days for the different optimization strategies tested. Standard parameter values

from Table 5.3 were used.

6.3 Discussion

In this chapter, a parameter sensitivity analysis for the mechanistic hydrogen model con-

structed in Chapter 5 was performed and conclusions on which parameters could be used
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Function t1 t2 SD k3 Total yield (mL H2/L culture)

Two-stage 3.04 0.941 0 56.4 468

Two-stage 4.88 0.172 3.52 56.4 554

Two-stage 3.51 2.22 0 28.2 356

Function A F P k3 Total Yield (mL H2/L culture)

Sine Wave 0.154 1.09 N/A 56.4 428

Square Wave 35.2 5.11 3.44 56.4 500

Function a1 hc a2 k3 Total Yield (mL H2/L culture)

Gradient switch 1.41 0.0031 N/A 56.4 417

Linear switch 0.0002 0.0051 1.44 56.4 441

Linear switch* 0.936 0.006 0.0660 56.4 470

Two-step switch 0.522 0.00532 1.87 56.4 573

Function a1 hc SI k3 Total Yield (mL H2/L culture)

Feedback spike 0.614 0.0051 5.75 56.4 728

Feedback spike 0.497 0.0051 10.7 28.2 598

Feedback spike (S0 = 2.81) 0.557 0.0051 6.54 56.4 798

Table 6.2: The yield of hydrogen gas at t = 15. The ∗ indicates that this optimal strategy

is non-sustainable, as discussed in the relevant section.
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to increase hydrogen yield were drawn from this analysis. The two-stage sulphur cycling

regime used by Ghirardi et al. 2000 [41] was then implemented on the model and com-

parisons with experimental data were explored. In Section 6.2 the total yield of hydrogen

produced after approximately 15 days was optimized using a range of different strategies

to input external sulphur into the system. These strategies were compared, and the yield

of hydrogen gas was found to be much higher when using a novel strategy compared to

using the two-stage cycling of Ghirardi et al. [41].

On conducting a parameter sensitivity analysis, we found that doubling the electrons

coming to the hydrogenase from the residual photosystem II activity could be used to

increase yield, compared to using the standard value in Table 5.3, by 97.5% after 244

hours when S0 = 50 µM. Whether it is possible to increase the electrons coming to

the hydrogenase without the increase in PSII activity causing the cell to become aerobic

again is not clear. However, the model suggests that providing more electrons to the

photosynthetic chain could increase yield, which is consistent with the notion in Kosourov

et al., that increasing residual PSII activity could increase hydrogen yield. Doubling the

dimensional rate of protein production allowed more growth and, hence, also increased

hydrogen yield (compared to the standard value) by 37.22% after 244 hours when S0 = 50

µM.

Simulation results show that increasing light intensity from I0 = 49.6 to I0 = 99.2

causes an earlier onset of hydrogen production and higher yields of hydrogen, due to

longer production time combined with a higher cell volume fraction and electron release,

even though sulphur decays quicker than for lower light. Although the effects of light on

PSII and PSI were modelled, the subsequent effect on start time of H2 production and

overall H2 yield as a function of light were not obvious, as these are due to a combination

of factors, and so comparisons can be made with hypotheses in Chapter 5. Kim et al.

2006 [88] find similar trends in hydrogen yield and start time as the light intensity varies.

They attribute earlier start time for high light intensities (60 − 200 µ E m−2 s−1) to a

faster use of sulphur, and they attribute increasing yield with increasing light intensity to

an earlier start time combined with a higher chlorophyll content, which increases electron

release during photosynthesis (Hypothesis 5 in Chapter 5). The first part of Hypothesis

5 clearly holds in our model; an earlier start time when light intensity increases is due

to faster internal sulphur decrease (modelled by sulphur use to repair PSII), causing the

hydrogenase to be active at earlier times, which in turn allows the cells to make hydrogen
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for a longer period. The second part is more difficult to entangle. Whereas the hypothesis

states that more chlorophyll itself is made as light increases to release electrons, the model

shows that cell volume fraction as a whole increases and that, independently, the residual

level of PSII and PSI activity are able to increase due to increased light energy, both of

which cause more electrons to be released for use by the hydrogenase. These are very

similar processes and both result in increased hydrogen yield due to increased electron

release as more light becomes available, thus we conclude that the model is consistent

with Hypothesis 5.

Although increasing light to I0 = 99.2 increases yield, we find the unexpected result

that high light intensities, such as I0 = 198.4, decrease the yield of hydrogen gas. Kim

et al. 2006 [88] hypothesize that increasing light intensity beyond 200 µEm−2s−1 reduces

yields of hydrogen gas because the rate of PSII damage increases in conditions of bright

light. Similar results are found in other papers, with hydrogen yield initially increasing

with I0 and then decreasing when I0 is large (e.g. Hahn et al. 2004 [53]). We model

that increased light causes sulphur to be used in the repair of PSII more rapidly, since

PSII gets damaged more as light increases. These high levels of photo-damage to PSII

cause internal sulphur to run out quickly and this, in turn, leads to lower yield than for

lower light intensities, even though PSII activity is increased and cell volume fraction

is larger (both of which actually increased the yield of H2 for I = 99.2 compared to

I = 49.6). Although we did not expect to find a decrease in yield for high light intensity,

the model results are consistent with Hypothesis 6 by Kim et al. [88] and we are satisfied

that our modelling of light produces similar trends to those exhibited experimentally.

The simulation results suggest that hydrogen production saturates as light intensity is

increased and, hence, that there is an optimal light intensity (e.g. approximately I0 = 300

µmol m−2s −1 for S0 = 50 µM with illumination from both sides) that can be employed

for maximal hydrogen production. This is the same order as the optimal light intensity

predicted by Park and Moon 2006 [126] (238 µE m−2 s−1).

Melis [111] and Polle et. al [135] suggest that decreasing the absorbance of each cell,

DC , allows each cell to receive more light on average, increasing photosynthetic activity

which may also increase the yield of hydrogen. This may be realized by genetically modi-

fying the size of the light collecting antennae complexes within the chloroplasts of the cell.

Such a conclusion is consistent with our model results as long as the light intensity at the

source, I0, is not too high, or DC not too small; the model results provide increases in
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yield as DC is decreased, but if DC is too small hydrogen yield decreases due to increased

photo-damage. This photo-damage is the same effect as found for high light intensities

in Kim et al. 2006 [88] and Hahn et al. 2004 [53], and in this model and the model of

Park and Moon [126], but is not predicted as an effect of decreased absorbance by Melis

et al. 1998 [113] or Polle et al. 2002 [135]. The discrepancy between the model results

and the predictions could be due to the over simplified instantaneous mixing assumption,

quantitative differences in parameter values, or it could be that photo-damage at very low

absorbance had not been considered in the context of decreasing absorbance.

The main aim of this work was to innovate new methods for providing external sul-

phur to increase hydrogen yields. In particular, we have aimed to improve the viability

of the system by designing continuous input methods that do not necessitate changes

of media or disruption to the bio-reactor. We employed an optimization procedure that

maximized hydrogen yields after approximately 15 days by varying the optimization pa-

rameters, achieved numerically using a simplex method implemented Matlab. In total we

tested seven methods and found the maximum yield was obtained using the new two-stage

feedback spike method, where cells are given sulphur at a rate a1 to maintain a gradient of

hydrogen hc and, once hydrogen production halts, SI of external sulphur is added to the

media in one go. This allows periods of rapid hydrogen production coupled with a short

downtime for the repair and rebuilding of the cells. Optimizing this method with initial

sulphur, S0, we found the maximum yield to be 798 mL H2/L culture, compared to 468 mL

H2/L culture for the standard two-stage method of Ghirardi et al. [41]. The novel method

appears robust, as it is a feedback mechanism that responds to the current state of the

system at any time, and long time simulations show that cycles of hydrogen production

and repair can continue indefinitely without the need to change the optimal parameters.

We envisage that the sulphur addition could be automated using computer software to

measure dh
dt and control the addition of S. This would improve the cost and efficiency of

the system. As previously discussed, optimization depends on what is required from the

system. To extend this work, the hydrogen production start time or yield of gas per cell

could also be optimized.

To our knowledge, this is the first simple mechanistic model of this system, and al-

though we do not model the complex photosynthetic pathway in detail, we find good

reasonable agreement between the model predictions and the experimental results, despite

avoiding ‘fitting’ the model directly to the data. One aspect that we have not modelled
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is the role of starch in this process, mainly because it is not yet fully understood and

would add further complications to the system. Instead, we model endogenous substrate

as protein only, since this acts in a similar way to starch in donating electrons to the

hydrogenase and, additionally, when protein is broken down it releases small amounts of

sulphur that are used to repair PSII. This makes the modelling processes considerably

simpler than if starch were included. If starch were modelled, hydrogen production would

depend on electrons from starch degradation as well as protein breakdown. We would

not assume that the cell has sufficient glucose (stored as starch) to maintain anaerobiosis

for hydrogen production, and aerobic respiration would have an explicit dependency on

starch. In addition, we would need to model how starch builds up under sulphur depri-

vation compared to normal growth conditions (see Posewitz et al. 2004 [139]), and would

model the Calvin-cycle explicitly in terms of carbon skeletons stored as starch, used in

protein biosynthesis and broken down into glucose and used in respiration. It is possible

that including starch could affect the time at which hydrogen is first produced and the

frequency of the optimal oscillations to a small degree. Including starch was not within

the scope of this work but it would be interesting to build into the model at a later stage.

The switch HCalvin(s; S1), present in the model terms for protein and hydrogen pro-

duction, was used to close the system to avoid explicitly modelling features of the Calvin

cycle. The switch was also necessary to avoid hydrogen production in a sealed system with

a high concentration of cells that turns anaerobic due to low light, since experimentally

hydrogen production does not occur here (Zhang et al. 2002 [182]). We justified use of the

switch by explaining how Rubisco breaks down under sulphur deprivation, which disables

the Calvin cycle and causes the iron-hydrogenase to be the main electron sink [55,58,176].

Thus hydrogen production requires both anaerobiosis and the Calvin cycle to be inactive

and protein production requires the Calvin cycle to be active. Using this switch in the

model when initial external sulphur was set to minimal values did not have a large quali-

tative affect on the system compared to model results computed without the switch: using

the switch, hydrogen production was delayed and initial rates of hydrogen production de-

creased for S0 ≥ 25 µM. This switch also creates the situation whereby when oxygen is

low and the cell is essentially anaerobic but sulphur is high (such as in a light limited but

not sulphur-deprived system, where ω < ω2 and s > S1) protein is broken down during

fermentation but still produced at very low levels in the Calvin cycle. Whether it is feasi-

ble to have protein production and protein breakdown occurring concurrently, it does not
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significantly affect the system because when the system is anaerobic and sulphur-replete

net protein is decreasing, as more protein is used than is produced. We expect that the

novel sulphur input processes described in Section 6.2 would still be a viable method for

increasing the yield of hydrogen gas, even if the Calvin cycle was modelled in a different

way. Further investigation of the viability of this switch and other methods to model this

concept should be investigated in conjunction with the starch aspects discussed above.

The term for sulphur used to repair PSII in equation 5.7 does not appear elsewhere

in the model, implying that this sulphur is lost from the system once it has been used

to rebuild PSII and is not released when PSII is damaged. This seems a reasonable

assumption since sulphur will be contained in proteins that might not be able to release the

sulphur as they become damaged, and if sulphur were re-released during PSII damage then

sulphur deprivation would not lead to hydrogen production, which would be inconsistent

with experimental results.

The assumption of thorough and instantaneous mixing, so that the cells receive an

average light as if they have sampled all space, should also be explored, since experimental

mixing is not likely to be this thorough. If the cells are not thoroughly mixed then the

cells further from the light source will receive very little light, the hydrogen yield may be

lower and the effects of decreasing absorption of the cells (as suggested by Melis [111]) may

be more pronounced. However, if the culture were not mixed then swimming behaviour

of the cells would cause them to not be uniformly distributed throughout the culture.

This would have an effect on the spatial distribution of light intensities. The model could

be expanded by considerations of flow within the bio-reactor due to non-uniform cell

concentration caused by cell swimming.

Future directions of this work will be of model development and experimentation.

The predictions of novel optimal hydrogen production processes presented herein should

be tested experimentally. The results would either support the model or suggest model

improvements. New experimental methodologies and techniques should also be used to

obtain more accurate parameter estimates. Various other aspects of hydrogen production

could be optimized, such as bio-reactor shape, culture mixing, light conditions and initial

cell volume fraction. We envisage a new two-stage hydrogen production process with real

time computational adjustments to obtain optimal sulphur cycling conditions for maximum

hydrogen yield. This system should be readily adaptable to other strains of algae with

increased hydrogen production potential.



Chapter 7

Concluding remarks

Microorganism species display a large and diverse range of behavioural traits and bio-

chemical processes that operate over many different length and time scales. In this thesis,

we have used various modelling techniques in tandem with experimental studies, where

possible, to separately explore two phenomena: bioconvection, in which the orientation

mechanisms of individual cells cause collective motions involving many millions of cells,

and the internal cellular processes leading to hydrogen production by sulphur-deprived

Chlamydomonas reinhardtii. We have shown that modelling these systems by consider-

ing the main mechanistic interactions, and subsequently obtaining parameter estimates

from independent data, is a valuable tool for exploration of such problems and for making

predictions of organism behaviour under different conditions.

In Chapters 2 and 3 we presented three different novel modelling approaches to in-

troduce phototaxis into the stochastic, gyrotactic model of Pedley and Kessler 1990 [130]

for a suspension layer of finite depth. Model A was a photokinesis-like model, in which

cell swimming speed varied as a function of light intensity, Vs(I). In Model B the centre

of mass offset of each cell varied as a function of light intensity, h(I). A new phototaxis

torque, Lp(I), was introduced to the gyrotactic torque balance equation in Model C, and

two forms of this new torque were explored in Case I and Case II. In this study, C. nivalis

cells were investigated in detail, although these models are applicable to a wide range

of microorganism species. For all models, a linear stability analysis was completed and

solutions were found numerically (and asymptotically for Models A and B). The param-

eters controlling phototaxis, χ and ζ (in Model C), and gyrotaxis, η, were of significant

interest in this study. In all three models, for sufficiently large values of the phototaxis

parameter, χ (or ζ in Model C), the maximum of the concentration profile at equilibrium

335
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was located below z = 0, creating a gravitationally stable region overlying an unstable

region that increased in size as χ or ζ increased. For Models A, B, and C (Case I), similar

stability results were found for most parameter values: for all values of η, sufficiently large

χ stabilized all wavenumbers and resulted in a non-zero critical wavenumber. In these

cases, penetrative bioconvection, where fluid motions from the unstable region penetrated

into the stable region causing the whole fluid layer to become unstable, occurred unless

the stable layer was so large that a mode two solution was preferred. Two different insta-

bility mechanisms (one for small χ and one for large χ) when gyrotaxis was sufficiently

strong (large η) were found and discussed. The overstability for small χ arose due to

gyrotactic cells in the shear flow at the rigid upper boundary re-orientating to swim away

from the downwelling fluid (as found by Hill et al. 1989 [63] for gyrotactic cells). The

overstability for large χ was due to a combination of self-shading and gyrotaxis within the

suspension, which caused the cells near the light source to swim backwards, away from the

downwelling fluid. Interestingly, Model C (Case II), in which cells react to local gradients

in light intensity, produced radically different stability results: non-hydrodynamic modes,

which exist even in the absence of any fluid flow, arose due to self-shading of cells within

the suspension. Such modes have not been found previously for phototactic, gravitactic

or gyrotactic bioconvection problems.

The three combined photo-gyrotactic models represent a significant advancement in

moving towards a realistic and rational model of bioconvection under illumination. It is

possible that gyrotactic microorganisms use a combination of the three modelled mech-

anisms to photo-orientate, and so models which incorporate two or more of the photo-

gyrotactic modelling approaches should be investigated. It is hoped that these models can

be used as a framework for studies of pattern formation under various conditions for a

diverse range of microorganism species.

In Chapter 4, a robust experimental framework was described and used to conduct

controlled, repeatable experiments to investigate the effects of concentration and light in-

tensity on wavelengths of pattern formation. The proposed framework could be used for

a variety of experimental investigations of bioconvection with different species, and in this

study we explored the initial, dominant pattern to form from a well mixed distribution

of C. nivalis. Experiments were repeated both with the same cells and with different

cells, allowing simple statistical measures to be calculated, and a novel automated mix-

ing was designed and implemented to minimize differences in initial conditions between
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experiments. The dominant wavelength was extracted using Fourier analysis. Trends in

initial wavelength as concentration varied were consistent with those found by Bees and

Hill 1997 [8]. Variations in red light illumination intensity were found to have no signifi-

cant effect on the resulting pattern wavelength, which is consistent with measurements in

Nultsch et al. 1971 [125]; cells do not respond phototactically to red light (wavelengths

of approximately 660 nm). However, initial pattern wavelength was found to vary as a

function of white light intensity, and the resulting trends were dependent on the direction

of illumination. The dependance on light intensity of the most unstable wavelength of the

well developed pattern has yet to be investigated, and it would certainly be interesting to

explore aspects of pattern shape and formation as non-linear effects come into play. Com-

parisons between experimental results and model predictions for Models A and B were

made and, encouragingly, some good agreement was found. Further experimental work is

required in order to assess whether the non-hydrodynamic modes predicted by Model C

(Case II) actually occur. This could be achieved by exploring pattern formation in soft

agar gels, in which there would be limited fluid flow.

In Chapter 5, a novel model to describe hydrogen production in suspensions of sulphur-

deprived C. reinhardtii was built from a careful consideration of the relevant intracellu-

lar mechanisms. Parameters were found from independent data sources, where possible,

and good agreement was found between model results and experimental data of previous

studies [92,114,182]. In Chapter 6, a full parameter sensitivity analysis highlighted those

parameters that could potentially increase the yield of hydrogen. The work concluded with

an optimization study in which various sulphur input functions were used in an attempt to

maximize the total hydrogen yield after approximately 15 days. One such function, which

adds sulphur to the bio-reactor at a constant rate during hydrogen production and then

in a block addition once hydrogen production stops, was found to significantly increase

the yield of hydrogen gas compared to the maximum obtained using the current state-of-

the-art two-stage cycling of Ghirardi et al. 2000 [41]. In addition, this proposed sulphur

input regime can be run continuously without the need for periodic medium changes, as

was required in the discontinuous two-stage method [41]. It is hoped that the increased

yield and the easy implementation of the feedback mechanism for the addition of sulphur,

which could be controlled via an automated system, will improve the commercial viability

of hydrogen production and could be used for a variety of microorganism species. Model

extensions and the need to test optimization predictions experimentally were discussed in
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Chapter 6.

In this thesis, the phenomena of bioconvection and hydrogen production have been

considered separately. However, there are at least two ways in which bioconvection and

hydrogen production may interact. Firstly, the deposition and consumption of internal

reserves of starch by hydrogen-producing cells changes both the cellular morphology and

the individual cell’s centre of mass offset, thus varying the gyrotactic and gravitactic be-

haviour. The intriguing effects of hydrogen production on bioconvective pattern formation

have not yet been investigated. Including the effects of hydrogen production in a model

for photo-gyrotactic bioconvection (possibly through the parameters for cell eccentricity,

α0, and centre of mass offset, h) would not be straightforward, not least because of the

large range of length and time scales involved. Bioconvection patterns with the scale of

centimeters form within tens of seconds due to the behaviour of individual cells with scales

of micrometers, whereas hydrogen production occurs as a result of microscopic intracellu-

lar processes, and changes in shape and mass distribution occur over many tens of hours.

Additionally, linear analysis of the current photo-gyrotactic models predicts only the first

most unstable mode to grow from equilibrium (usually within 30 seconds); aspects of long

term fully non-linear plume and pattern formation have not been explored and, hence,

slow changes in model parameters due to hydrogen production would not be captured.

The centre of mass offset varied between individuals, h(I), in Model B, but the time scale

for changes in h due to light were much smaller than the time scale for changes in h due

to hydrogen production. A first step towards including the effects of hydrogen production

on bioconvection could be to use a photo-gyrotactic model to investigate stability for a

range of realistic values of α0 and h that occur during sulphur-deprivation. Predicted

stability trends could be compared to experimental results by performing bioconvection

experiments (as described in Chapter 4) and measuring cell eccentricity and centre of mass

offset at various intervals during hydrogen production. However, this may be complicated

by the fact that hydrogen producing cells need to be kept in a sealed container, and a

suitable motile species that can produce both hydrogen gas and patterns would need to

be found.

Secondly, bioconvection can affect hydrogen production, since in an unmixed suspen-

sion of motile hydrogen-producing cells, plume formation would lead to an uneven distri-

bution of light throughout the bio-reactor. The population would be unsynchronized and

the rate of hydrogen production for each cell would depend on the cell’s location. Uneven
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light distribution caused by plume formation could possibly be included in the term for

light intensity, L(Λ), in the hydrogen production model in Chapter 5 by changing the as-

sumption that the suspension is well mixed. However, this would not be straightforward,

since it would require designing a model for long term plume formation (over many hours)

within a bio-reactor. Experimental investigation would be more straightforward: the yield

of hydrogen produced by a suitable motile algal species could be measured in two identical

bio-reactor set-ups, where the suspension is mixed in one and not in the other. What effect

cell swimming and plume formation has on the overall yield of hydrogen gas remains to be

seen and could provide an interesting and potentially valuable avenue of future research.



Appendix A

Analytic equilibrium solution for

the case of weak absorption in

Models A and B

In Section 2.3.3 for Model A and Section 3.3.1 for Model B an analytic equilibrium solution

is found for the case of weak absorbtion, κ ≪ 1. On expanding for small κ the form of the

equilibrium solution to be solved in equations 2.61 and 3.106 is

dn

dz
− G1

[∫ 0

z
n(z)dz − C

]

n(z) = 0, (A.1)

where the constant G1 is defined by

G1 = dκ in Model A, and G1 =
dK̄2

K̄1
λκ in Model B. (A.2)

To solve, we first divide equation A.1 by n(z), so that

1

n(z)

dn(z)

dz
= G1

∫ 0

z
n(z)dz − G1C. (A.3)

Differentiating with respect to z gives

n′′n − (n′)2

n2
= −G1n, (A.4)

where the dash denotes differentiation with respect to z. We set

p(n) =
dn

dz
, so that (A.5)

d2n

dz2
=

dp

dz
=

dp

dn

dn

dz
= p′p, (A.6)
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where p′ indicates p differentiated with respect to n. Substituting equations A.5 and A.6

into equation A.4 gives

p′pn − p2 = −G1n
3. (A.7)

We define r(n) so that

r(n) = p2, hence
dr

dn
=

d(p2)

dp

dp

dn
= 2pp′. (A.8)

Substituting equation A.8 into A.7 gives

r′ − 2r

n
= −2G1n

2, hence
( r

n2

)′
= −2G1. (A.9)

Integrating this expression gives

( r

n2

)

= −2G1n + K2, (A.10)

where K2 is a constant of integration. Converting equation A.10 back to being in terms

of n using equations A.5 and A.8 gives

(

n′
)2

= p2 = r = −2G1n
3 + K2n2, (A.11)

hence

dn

dz
= (−2G1n

3 + K2n2)1/2. (A.12)

On integrating with respect to z we can write equation A.12 as

∫

dn

(−2G1n3 + K2n2)1/2
= z + A, (A.13)

where A is a constant of integration. We make the substitution m2 = K2 − 2G1n, so that

n =
K2 − m2

2G1
and dm = −G1(K

2 − 2G1n)−1/2dn. (A.14)

Substituting equation A.14 into equation A.13 gives

−2

∫

dm

K2 − m2
= z + A. (A.15)

Integrating equation A.15 gives

− 1

K
Ln

∣

∣

∣

∣

K + m

K − m

∣

∣

∣

∣

= z + A. (A.16)

On re-arranging, equation A.16 becomes

m =
−K(1 − e−K(z+A))

1 + e−K(z+A)
. (A.17)
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Multiplying top and bottom by e
K(z+A)

2 gives

m = −K tanh

(

K

2
(z + A)

)

. (A.18)

Using the relation of m to n in equation A.14 we can write n as

n =
K2

2G1

(

1 − tanh2

(

K

2
(z + A)

))

, hence n =
K2

2G1
sech2

(

K

2
(z + A)

)

. (A.19)

To obtain the solution in the same form as in Ghorai and Hill 2005 [46], we first

differentiate equation A.19 with respect to z

n′ = − K3

2G1

sinh
(

K
2 (z + A)

)

cosh3
(

K
2 (z + A)

) . (A.20)

Substituting equation A.20 into equation A.3 and re-arranging gives

−K tanh

(

K

2
(z + A)

)

= G1

∫ 0

z

K2

2G1
sech2

(

K

2
(z + A)

)

dz − G1C. (A.21)

Solving the integration yields the relationship

tanh

(

KA

2

)

=
G1C

K
. (A.22)

On expanding equation A.19 using trigonometric identities we have

n(z) =
K2

2G1

[

1

cosh
(

Kz
2

)

cosh
(

KA
2

)

+ sinh
(

Kz
2

)

sinh
(

KA
2

)

]2

, hence (A.23)

n(z) =
K2

2G1

sech2
(

Kz
2

)

sech2
(

KA
2

)

(

1 + tanh
(

Kz
2

)

tanh
(

KA
2

))2 . (A.24)

Expanding sech in terms of tanh and using equation A.22 gives

sech2 KA

2
= 1 − tanh2 KA

2
= 1 − G2

1C
2

K2
. (A.25)

Substituting equation A.25 into equation A.24 and re-arranging, we have

n(z) =
K2

2G1
[(K2/G2

1) − C2]sech2(Kz/2)

[(K/G1) + C tanh(Kz/2)]2
. (A.26)

This is the analytic solution for Models A and B given in equations 2.62 and 3.107, respec-

tively, where the constant G1 for each model is shown in equation A.2. Also note equation

A.26 is the same as in Ghorai and Hill 2005 [46], except for a different constant G1.

All that remains is to find the transcendental equation from which the constant K can

be calculated. To calculate K we substitute the expression for n(z) in equation A.19 into

the normalization condition in equation 2.64, given by

∫ 0

−1
n(z)dz = d−1

(

1 − e−d
)

. (A.27)



Appendix A 343

This gives

K2

2G1

∫ 0

−1
sech2

(

K

2
(z + A)

)

dz = d−1
(

1 − e−d
)

, (A.28)

which can be evaluated to give

K

G1

[

tanh
KA

2
− tanh

K(A − 1)

2

]

= d−1
(

1 − e−d
)

. (A.29)

Using equation A.22 and the half angle identity for tanh in equation A.29 yields

K

G1

[

G1C

K
−

G1C
K − tanh K

2

1 − G1C
K tanh K

2

]

= d−1
(

1 − e−d
)

. (A.30)

Re-arrangement and simplification of equation A.30 leads to

tanh
K

2

[

−G1C
2

K
+

K

G1
+ d−1

(

1 − e−d
) G1C

K

]

= d−1
(

1 − e−d
)

. (A.31)

Hence the transcendental equation from which K can be calculated is

(

K2

G2
1

− C2 + d−1
(

1 − e−d
)

C

)

tanh

(

K

2

)

− d−1
(

1 − e−d
)

K

G1
= 0. (A.32)
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Solving terms in the

Fokker-Planck equation using

associated Legendre polynomials

In Section 3.2 solutions to the Fokker-Planck equation for the case of no-flow and for a first

order perturbation are found by considering each term separately, as in Pedley and Kessler

1990 [130] and Bees and Hill 1998 [9]. Many of the resulting equations can be solved using

Legendre polynomials, and so here the relevant aspects of Legendre’s associated equation

are introduced and then used to solve one of the terms of the Fokker-Planck equation as

an example.

B.1 Definitions and identities for associated Legendre poly-

nomials

Legendre’s associated equation is defined as

((1 − x2)y′)′ +

[

r(r + 1) − µ2

(1 − x2)

]

y = 0, (B.1)

where x ∈ [−1, 1], y(x) in finite at the end points, 0 ≤ r and µ ∈ Z. If we substitute y(x) =

(1 − x2)
µ
2 u(x) and then divide by (1 − x2)

µ
2 we have Legendre’s equation differentiated µ

times, and we can write

y(x) = Pµ
r (x) = (1 − x2)

µ
2

dµ

dxµ
Pr(x), (B.2)
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where Pr(x) are Legendre polynomials and Pµ
r are associated Legendre polynomials. The

latter are orthogonal in the lower index, so that

∫ 1

−1
P k

r P k
mdx = δm

r

2

2r + 1

(r + k)!

(r − k)!
, (B.3)

where 0 ≤ k ≤ r, m, and are also orthogonal in the upper index, so that

∫ 1

−1

P r
k Pm

k

1 − x2
dx = δm

r

1

m

(k + m)!

(k − m)!
, (B.4)

where 1 ≤ r ≤ m ≤ k. Recurrence relations for these associated Legendre polynomials are

given in Arfken 1985 [3]:

Pm+1
r − 2mx

(1 − x2)
1
2

Pm
r + [r(r + 1) − m(m − 1)]Pm−1

r = 0, (B.5)

(2r + 1)xPm
r = (r + m)Pm

r−1 + (r − m + 1)Pm
r+1, (B.6)

(2r + 1)(1 − x2)
1
2 Pm

r = Pm+1
r+1 − Pm+1

r−1 , (B.7)

(2r + 1)(1 − x2)
1
2 Pm

r = (r + m)(r + m − 1)Pm−1
r−1

−(r − m + 1)(r − m + 2)Pm−1
r+1 , and (B.8)

(1 − x2)
1
2 Pm′

r =
1

2
Pm+1

r − 1

2
(r + m)(r − m + 1)Pm−1

r . (B.9)

B.2 An example of using associated Legendre polynomials

to solve a term in the Fokker-Planck equation

For the first order perturbation for spherical cells the flow term, the first on the right hand

side of equation 3.41, can be written as

((1 − x2)G′
n)′ − Gn

(1 − x2)
− ((1 − x2)Gn−1)

′ = −(1 − x2)
1
2 xn−1

(n − 1)!
, (B.10)

as shown in Section 3.2.2. Equation B.10 has the form of an associated Legendre polyno-

mial of order one, in which case µ = 1 in equation B.1, and so we define

Gn(x) =

n
∑

r=1

an,rP
1
r (x), (B.11)

where an,r = 0 for n < r or n, r < 1. Substituting B.11 into equation B.10 and using the

definition of Legendre’s associated equation in equation B.1 gives

−
n
∑

r=1

an,rr(r + 1)P 1
r −

n−1
∑

r=1

an−1,r
d

dx
((1 − x2)P 1

r ) = −(1 − x2)
1
2

xn−1

(n − 1)!
. (B.12)
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To proceed, we substitute the recurrence relations in equation B.5 and B.8 into equation

B.9, on setting m = 1, which gives

(1 − x2)P 1′

r = xP 1
r − r(r + 1)

(2r + 1)
(P 1

r+1 − P 1
r−1). (B.13)

Using this expression in equation B.12 gives

n
∑

r=1

an,rr(r + 1)P 1
r +

n−1
∑

r=1

an−1,r

[

−xP 1
r − r(r + 1)

2r + 1

(

P 1
r+1 − P 1

r−1

)

]

= (1 − x2)
1
2

xn−1

(n − 1)!
. (B.14)

If m = 1 then equation B.6 can be written

xP 1
r =

(r + 1)P 1
r−1 + rP 1

r+1

2r + 1
, (B.15)

which can be applied to equation B.14 to give

n
∑

r=1

an,rr(r + 1)P 1
r −

n−1
∑

r=1

an−1,r

[

r + 1

2r + 1
P 1

r−1 +
r

2r + 1
P 1

r+1 +
r(r + 1)

2r + 1

(

P 1
r+1 − P 1

r−1

)

]

= (1 − x2)
1
2

xn−1

(n − 1)!
. (B.16)

If we then multiply by P 1
m we can integrate from x = −1 to x = 1 using equation B.3 to

give

an,m = − m + 2

(m + 1)(2m + 3)
an−1,m+1 +

m − 1

(2m − 1)m
an−1,m−1 +

bn,m

m(m + 1)
(B.17)

where

bn,m =
2m + 1

2(n − 1)!m(m + 1)

∫ 1

−1
(1 − x2)

1
2 xn−1P 1

m(x)dx, (B.18)

as shown in equations 3.47 and 3.48. The solution to equation B.10 can now be calculated

using the values of an,r (calculated from equation B.17, with bn,m given in equation 3.49)

together with the known expressions for P 1
r (x) in the expression for Gn(x) in equation

B.11.
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Definitions of constants used in

the asymptotic analysis for a deep

layer and weak illumination for

Model B

Table C.1 summarizes the definitions of parameters that are needed in equation 3.188

for the asymptotic analysis of Model B. Values are calculated using the standard values

λ = 2.2 and α0 = 0.2, which are used throughout Chapters 2 and 3.

Parameter Definition Typical value

K(1,0) coth λ0 − 1
λ0

0.570

K(1,−1)
λ1(cosh2 λ0−1−λ2

0)
λ2
0 sinh2 λ0

-0.344

K(2,0) 1 − coth2 λ0 + 1
λ2
0

0.156

K(2,−1)
−2λ1(sinh λ0 cosh2 λ0−sinh λ0−λ3

0 cosh λ0)
λ3
0 sinh3 λ0

0.186

K(4,0) K(2,0) −
K(1,0)

λ0
−0.103

K(4,−1) K(2,−1) −
K(1,−1)

λ0
+

K(1,0)λ1

λ2
0

0.0833

K(5,0) − 2
λ0

[

1 + K(2,0) −
4K(1,0)

λ0

]

−0.108

K(5,−1) − 2
λ0

(

K(2,−1) − 4
λ0

(

K(1,−1) −
K(1,0)λ1

λ0

))

0.0966

+2λ1

λ2
0

(

1 + K(2,0) −
4K(1,0)

λ0

)

J(1,0)
λ2
0

3 sinh(λ0)

∞
∑

l=0

λ2l+1
0 (z)a2l+1,1 0.452

Continued over page

347



Appendix C 348

Parameter Definition Typical value

J(1,−1)
λ0
3

(

λ0cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) -0.0225

×
∞
∑

l=0

λ2l+1
0 (z)a2l+1,1+

λ0

sinh(λ0)

∞
∑

l=0

λ2l+1
1 (z)a2l+1,1

)

J(2,0)
λ2
0

5 sinh(λ0)

∞
∑

l=1

λ2l
0 (z)a2l,2 0.159

J(2,−1)
λ0
5

(

(λ0cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) -0.163

×
∞
∑

l=1

λ2l
0 (z)a2l,2 +

λ0

sinh(λ0)

∞
∑

l=1

λ2l
1 (z)a2l,2

)

J(4,0)
λ2
0

3 sinh(λ0)

∞
∑

l=0

λ2l+1
0 (z)ã2l+1,1 -0.227

J(4,−1)
λ0
3

(

λ0cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) 0.114

×
∞
∑

l=0

λ2l+1
0 (z)ã2l+1,1+

λ0

sinh(λ0)

∞
∑

l=0

λ2l+1
1 (z)ã2l+1,1

)

J(5,0)
λ2
0

5 sinh(λ0)

∞
∑

l=0

λ2l
0 (z)ã2l,2 -0.166

J(5,−1)
λ0
5

(

λ0cosech(λ0) − λ0λ1 coth(λ0)cosech(λ0)) 0.0195

×
∞
∑

l=0

λ2l
0 (z)ã2l,2 +

λ0

sinh(λ0)

∞
∑

l=0

λ2l
1 (z)ã2l,2

)

A(1,0) J(1,0)K(1,0) − J(2,0) + α0(J(5,0) − K(1,0)J(4,0) −
3(K(5,0) − 2K(1,0)K(4,0)))

0.0862

A(1,−1) J(1,0)K(1,−1) + J(1,−1)K(1,0) − J(2,−1) + α0(J(5,−1) −
K(1,0)J(4,−1) − K(1,−1)J(4,0) − 3(K(5,−1) −
2K(1,0)K(4,−1) − 2K(1,−1)K(4,0)))

0.0114

A(2,0) J(1,0) − α0(J(4,0) − 3K(4,0)) 0.436

A(2,−1) J(1,−1) − α0(J(4,−1) − 3K(4,−1)) 0.00453

A(3,0) 3α0K(4,0) -0.0618

A(3,−1) 3α0K(4,−1) 0.0500

A(4,0) 3α0(K(5,0) − 2K(1,0)K(4,0)) 0.00537

A(4,−1) 3α0(K(5,−1) − 2K(1,0)K(4,−1) − 2K(1,−1)K(4,0)) -0.0415

P(H,0)
K(1,0)

λ0
0.259

P(H,−1)
K(1,−1)

λ0
− K(1,0)λ1

λ2
0

0.103

P(5,0) A(1,0) +
K(2,0)A(2,0)

K(1,0)
0.205

P(6,0)
K(2,0)A(3,0)

K(1,0)
− A(4,0) -0.0223

Continued over page
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Parameter Definition Typical value

AK
1

K(2,0)

(

K(2,−1) −
K(2,0)K(1,−1)

K(1,0)

)

1.79

CK 1.0 1.0

NK
1

K(1,0)

(

K(1,−1) −
K(1,0)K(2,−1)

K(2,0)

)

-1.79

Table C.1: Summary of constants needed to compute the asymptotic solution for Model B

in equation 3.188, where α0 = 0.2. From equation 3.138, λ0 = λ and λ1 = −χ−1λ, where

we use λ = 2.2 and χ−1 = 1. ai,j and ãi,j are defined in equations 3.97 and 3.98. K(i,0)

and J(i,0) are equivalent to the values of Ki and Ji when Λ(z) = λ, i.e. the values of Ki

and Ji when χ = 0. These are the (corrected) values of Ki and Ji used in Bees and Hill

1998 [9], shown in Table 2.2 in Chapter 2.
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