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Summary 

 

Tolerance against self is a necessary feature of the immune system to prevent 

autoimmunity. Hence during B cell development, a number of central and peripheral 

developmental checkpoints ensure the deletion of self-reactive B cells and selection of 

tolerant B cells. For example, antigen-driven ligation of the B cell receptor (BCR) on 

immature B cells results, by default, in receptor editing, anergy and/or apoptosis, 

whereas it provides survival, proliferative and effector differentiation signals to mature 

B cells. Moreover, various factors can influence the functional outcome downstream of 

BCR ligation. Thus, T helper cell-derived signals, such as those following ligation of the 

CD40 receptor, can rescue pathogen-specific immature B cells from growth arrest and 

apoptosis, thereby providing a mechanism in which cells programmed to die because 

of their immature status can survive after receiving appropriate T cell help. On the other 

hand, mitogenic BCR-mediated signalling of mature B cells can be suppressed by co-

ligation of the inhibitory receptor FcγRIIb. This allows the maintenance of B cell 

homeostasis in the periphery, as cross-linking of the BCR and FcγRIIb by immune 

complexes enables the system to terminate ongoing immune responses following 

clearance of pathogens. The precise signalling mechanisms involved in dictating these 

differential functional outcomes remain to be elucidated but it is becoming increasingly 

clear that the developmental stage as well as the integration of various extracellular 

signals decide the cell’s fate. The core aim of this study has therefore been to 

characterise the signalling pathways coupling BCR ligation to survival, proliferation and 

apoptosis during development. In particular, it was planned to focus on the differential 

signalling mechanisms involved in the negative selection of immature B cells and 

FcγRIIb-mediated homeostatic regulation of mature B cells. 

Negative selection of self-reactive immature B cells constitutes a major 

mechanism of sustaining central tolerance. The WEHI-231 cell line provides a well-

established model system for dissecting the signalling mechanism underlying such 

clonal deletion of immature B cells as these cells, which have the phenotype of 

immature B cells, undergo growth arrest and apoptosis following stimulation of their 

BCR. Previously, this laboratory has identified ERK signalling as a key regulator of 

immature B cell fate. Thus, spontaneously proliferating WEHI-231 B cells exhibit a 

sustained yet cyclic pattern of ERK activation that is necessary for their survival and 

proliferation. By contrast, BCR-ligation induces a strong transient activation of ERK 

followed by sustained downregulation of the cyclic activation pattern observed in 

spontaneously proliferating cells. However, the pathways linking BCR ligation with 

suppression of ERK signalling and consequent growth arrest have not been delineated 

in full. For example, in B cells, the Ras/Raf-1/MEK cascade is considered to be a major 
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pathway regulating ERK activation and consistent with this, this laboratory has 

previously shown that overexpression of Ras can rescue WEHI-231 B cells from BCR-

mediated growth arrest. However, although MEK activation was found to be 

compromised under conditions of BCR-driven growth arrest, such BCR-signalling did 

not suppress Ras activation indicating that other pathways normally contributed to the 

MEK-dependent activation of ERK in spontaneously proliferating WEHI-231 cells.  

The data presented in this thesis now provide evidence for the existence of a 

second pathway controlling ERK activation in immature B cells, the Rap/B-Raf/MEK 

cascade, which has now been implicated in the maintenance of cycling ERK activation 

observed in spontaneously proliferating WEHI-231 B cells. BCR signalling was found to 

reduce the levels of active Rap, hence providing a mechanism for the BCR-mediated 

uncoupling of the Ras-independent, MEK-dependent ERK activation contributing to the 

cycling ERK signalling responsible for survival and proliferation of WEHI-231 cells. 

Consistent with the role of Rap in promoting such ERK signalling, additionally, it has 

now been demonstrated that levels of SPA-1, a negative regulator of Rap, increase 

upon BCR-stimulation indicating that this may be the mechanism by which the BCR 

signals to uncouple the Rap/B-Raf/MEK pathway.  

Although ERK had previously been identified as the major regulatory element 

governing survival and proliferation of immature B cells, the pathways linking ERK to 

the regulation of survival/apoptosis and cell cycle progression have been only poorly 

characterised. This study has now highlighted the connection between sustained ERK 

signalling and the stabilisation of c-Myc protein levels. For example, abrogation of ERK 

activity by BCR-ligation, or pharmacological inhibition, reduced c-Myc levels in a 

transcription-independent fashion indicating regulation at the post-translational level. 

This proposal was corroborated by analysis of the phosphorylation status of c-Myc that 

indicated that ERK signalling promoted the expression of stabilised forms (S62) of c-

Myc and reduced the expression of those (T58) targeting c-Myc for proteosomal 

degradation. The importance of such c-Myc stabilisation was illustrated by Laser 

Scanning Cytometric analysis that revealed that the increasing levels of c-Myc 

expressed by individual WEHI-231 B cells correlated with their cell cycle progression, 

presumably reflecting widely established findings that c-Myc promotes cell cycle 

progression by increasing the expression and activation of cyclin/Cdk complexes and 

reducing the levels of Cdk inhibitors such as p27. Consistent with this, negative 

signalling via the BCR, or suppression of ERK activation by pharmacological inhibition, 

also increased p27 levels and resulted in the reduction of the hyperphosphorylation of 

retinoblastoma (Rb) proteins required for transition through the G1-S-phase 

checkpoint. As Rb is a target of cyclin/Cdks, collectively these data further confirm the 
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links not only between BCR-signalling and c-Myc stability but also the differential cell 

fate decisions of apoptosis, survival and/or cell cycle progression.  

By contrast, in mature B cells, BCR-signalling is linked to survival and 

proliferation. However, to prevent autoimmunity resulting from an expanded pool of 

potentially weakly autoreactive B cells, such survival and proliferation of mature B cells 

needs to be homeostatically regulated. Hence, the immune system has evolved 

inhibitory signalling cascades such as that triggered by cognate immune-complexes co-

ligating the BCR and FcγRIIb to terminate ongoing antigen-driven responses. This 

study has emphasised the crucial role of caspase 8 in the apoptosis of mature B cells 

resulting from such co-ligation of the BCR and FcγRIIb and has indicated that such 

caspase 8 activation is likely to be downstream of Fas signalling. Consistent with this, 

blocking the Fas/FasL death receptor cascade was found to reduce the levels of 

apoptosis detected and B cells from MRL/MpJ-Faslpr mice, a strain harbouring a 

mutation causing the abrogation of Fas expression, exhibited defective apototic 

responses upon such BCR/FcγRIIb co-ligation. Thus, Fas/FasL death receptor 

signalling might be a major mechanism underpinning the FcγRIIb-mediated apoptosis 

pathway. 

Finally, to determine whether dysfunctional regulation of FcγRIIb-mediated 

signalling plays a role in human autoimmune conditions, B cells from patients with 

Rheumatoid arthritis and Systemic lupus erythematosus were examined. Overall, the 

homeostatic regulatory responses between B cells from healthy controls and RA and 

SLE patients were not found to be significantly different. However, the B cells derived 

from a small proportion of RA and SLE patients were found to exhibit defective 

FcγRIIb-mediated inhibitory responses. Moreover, significant differences were found in 

the ratio of FcγRIIb1/FcγRIIb2 expression between the cohorts of healthy controls and 

RA and SLE patients. The RA and SLE patients expressed relatively higher levels of 

the FcγRIIb2 isoform which promotes antigen-processing suggesting that these B cells 

may play some role in priming autoreactive responses in such individuals. Thus, as 

these inflammatory disorders constitute spectrum diseases, such defects in the 

regulation of B cell responses could be one of the contributing factors aggravating 

autoimmune disease development in some subgroups of patients. 
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1 Introduction 

  

1.1 The immune system 

 

The immune system is the body’s defence against infections caused by pathogens 

like bacteria, viruses and parasites. It consists of cells and molecules that ensure that the 

pathogen is removed from the body before it can cause too much damage. The first 

barriers a pathogen has to overcome to enter the host are of a physical nature. Thus, the 

skin and the mucosal surfaces can prevent the entry of the majority of pathogens and 

inactivate others by the production of antimicrobial substances. If a microbe passes these 

first barriers, then innate immunity provided by cells such as phagocytes (macrophages 

and granulocytes) and natural killer (NK) cells provides the first line of defense. The major 

mechanism for recognition of foreign antigens by these cells are PRRs (pattern recognition 

receptors) which bind PAMPs (pathogen associated molecular patterns) leading to the 

initiation of an innate immune response. The specificities of these innate immune system 

receptors are germ-line encoded meaning that their repertoire for pathogen recognition is 

limited and predetermined. PAMPs are structures shared by many classes of pathogens 

ensuring that the innate immune response recognises and combats a broad spectrum of 

pathogens in the first few days of infection whilst the adaptive immune system becomes 

activated. Moreover, innate cells, via their role in antigen presentation are crucial for 

priming of the specific adaptive response. 

The adaptive immune response is highly specific and extremely diverse and 

comprises two branches: humoral (B cells) and cellular (T cells) immunity. T cells are not 

able to recognise protein antigen in its native form. Their antigen recognition receptor, the 

TCR (T cell receptor) binds to peptides derived from antigen in the context of MHC (major 

histocompatibility complex) molecules expressed at the surface of cells. Depending on the 

class of MHC (I or II) the T cell is able to interact with, one can differentiate between 

cytotoxic T cells (CTLs) which recognise peptide presented in combination with MHC class 

I (present on all nucleated cells) and T helper cells (TH cells) which recognise peptide 

bound to MHC II (mainly expressed on antigen presenting cells; APCs). The major function 

of CTLs is the killing of infected or tumour cells whereas TH cells provide help to other cell 

classes in the form of either cytokines or engagement of surface costimulatory molecules. 

There is a third class of T cells, the so called T regulatory cells which play a homeostatic 
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role in keeping an ongoing immune response in check after the removal of the pathogen 

and by this way preventing a harmful overreaction of the immune system.  

The other arm of the adaptive immune response is humoral immunity which is 

dependent on B cells, the producers of antibodies. The Immunoglobulin (Ig) molecule is 

made up of four chains, two identical heavy (55-70kD) and light chains (~24kD) linked by 

disulphide bonds. Both heavy and light chains consist of Ig domains – two in each light 

chain and varying numbers, depending on the antibody subclass, on the heavy chain. The 

heavy and light chains both feature an amino terminal V (variable) region and a constant 

(C) region at the carboxy terminus of the protein. The amino acid sequence of the variable 

regions varies between molecules from different B cell clones thereby creating the 

specificity of antibodies as the opposing V regions of the heavy and light chains comprise 

the antigen binding site (Fig.1.1). The high number of antibodies with different V regions 

and hence different binding specificities is achieved by random genetic recombination of 

the genes encoding the variable regions of the heavy and light chain. Thus, the variable 

region of the heavy chain is generated by the recombination of DH segments to JH 

segments followed by the joining of the VH region to the pre-assembled DHJH segment 

(Fig.1.2). The mammalian genome encodes about 300 variable (VH) genes, 30 diversity 

(DH) genes and 6 joining (JH) genes allowing the potential creation of 50,000 different 

heavy chains via somatic recombination. To further increase diversity the enzyme TdT 

(terminal deoxynucleotide transferase) randomly adds nucleotides into the heavy chain 

genes without following a template. Similarly to the heavy chain, the light chain protein is 

also generated by somatic recombination but it is encoded by two genes, kappa and 

lambda, which further doubles the number of potential light chains, as both genes encode 

multiple V and J segments. In contrary to the heavy chain gene, the gene encoding the 

light chain lacks a D segment and is therefore created via a single recombination event. 

The V region furthermore contains three so called CDRs (complementarity-determining 

region). These regions are areas of high variability where most mutations occur during 

somatic hypermutation. They are located in the part of the V region which takes part in the 

antibody-antigen interaction and thus influences the binding capacity of the antibody 

(Fig.1.3).  

The B cell receptor (BCR) consists of an antigen-binding component – the 

membrane bound Ig molecule – and the signal-transducing units Igα and Igβ (CD79a and 

b, reviewed in [1]). In the majority of cases, binding of antigen to the BCR on a naïve 

mature B cell will lead to its activation when T cell help is provided. Ultimately the B cell 

will develop into an antibody-secreting cell producing large amounts of antibody specific 

for the antigen which activated the B cell in the first place. Every B cell clone produces an 
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antibody with a unique specificity that can carry out various functions depending on their 

isotype. There are five different antibody isotypes: IgA, IgD, IgE, IgG and IgM (Fig.1.1). 

Before their activation naïve mature B cells express IgM and IgD on their surface and upon 

activation some clones can secrete IgM. The IgD isotype has so far not been found in a 

secreted form and its major function therefore seems to be signal transduction. Secreted 

IgM can form a pentamer thereby increasing antigen binding-avidity and a major function 

of soluble IgM is the activation of the classical pathway of complement. The complement 

system comprises a family of proteins which can bind to antibody-coated pathogens, or 

directly to pathogens and initiate a cascade which ultimately leads to the creation of a 

pore-forming complex and hence the destruction of the pathogen. 

Upon receiving T cell help in the form of cytokines and CD40-ligation, B cells can 

undergo isotype-switching. This process leads to the expression of heavy chains other 

than the µ chain (IgM). The precise inflammatory environment and the specific types of 

cytokines generated dictate the isotype that the B cell produces subsequently. The 

infection with, for example, large parasites such as helminths, induces an inflammatory 

environment favourable to the production of IgE antibodies which then coat the parasite 

and drive the activation of granulocytes, a cell class which can release their cytotoxic 

granular contents, helping to combat pathogens that are too big to be engulfed by 

phagocytes. On the other hand, a bacterial or viral infection induces cytokines that drive B 

cells to switch to the expression of IgG isotypes. These antibodies can coat pathogens by 

binding to their specific antigen expressed on the microbe’s surface and thus carry out 

various functions such as the opsonisation of pathogens, thereby targeting them for 

enhanced recognition by phagocytes. Moreover, binding of IgG can cause neutralisation 

which inactivates the pathogen or its toxins and prevents their entry into host cells. Finally, 

IgA antibodies comprise a very specialised isoytpe. IgA dimers or trimers, joined via the so 

called J chain (joining chain) can be transported across the epithelial barrier into the 

mucosal surfaces of the gastro-intestinal and respiratory tract creating an additional barrier 

to pathogens entering through these surfaces. Through the production of different isotypes 

B cells can therefore adjust to various pathogens creating a specific inflammatory 

environment ensuring the production of antibody isotypes best suited to protect against the 

different types of pathogens. 

 

1.2 B cell development  

 

There are three major subsets of B cells – B-2 follicular B cells, marginal zone (MZ) 

B cells and B-1 B cells. The follicular B cell subset is the major B cell class involved in the 
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adaptive humoral immune response, whilst B-1 B cells and marginal zone B cells appear 

to function as more innate-like subsets of B cells. For example, B-1 B cells are the major 

producers of “natural antibodies”, a class of IgM antibodies which are polyreactive and 

function to provide a first line of defense against microbial infection [2]. These antibodies 

are able to bind to multiple different self and foreign antigens although usually with 

relatively low affinity. Natural antibodies are present in healthy individuals in the absence 

of antigenic stimulation and as they recognise conserved pathogen antigens such as 

phosphorylcholine or lipopolysaccharide (LPS), can hence contribute to the initial innate 

immune response [2]. Furthermore, B-1 B cells express a reduced number of BCR 

specificities, compared to B-2 follicular B cells [2] again consistent with their status of 

innate-like immune cells, similar to γδ T cells. B-1 B cells are mainly found in the peritoneal 

and pleural cavities but also in the spleen and the intestine and they make up about 5% of 

the general B cell population (reviewed in [3]). 

B-1 B cells are therefore a first line of defence which leads to the rapid production of 

antibodies especially against T-independent antigens like phosphorylcholine or LPS [2]. 

There are two subtypes of B-1 cells, B-1a and B-1b. Both cell types express low levels of 

CD11b, but only B-1a cells express CD5, a marker which was originally used to distinguish 

B-1 from B-2 B cells [2]. It has recently been shown that B-1a and B-1b B cells have 

distinct functions. Thus, B-1a B cells were found to provide protection from acute 

Streptococcus pneumoniae infection through the production of natural antibodies whereas 

B-1b cells contributed to the adaptive antibody response to this infection [4]. Moreover, B-

1b but not B-1a B cells were found to be crucial for the induction of long-lasting T-cell 

independent immunity to Borrelia hermsii due to the production of pathogen-specific IgM 

[5]. MZ B cells, similarly to B-1 B cells, are important in the rapid response against 

pathogens, particularly blood-borne bacteria. MZ B cells reside in the marginal zone of the 

spleen, locating them at the blood-lymphoid interface between white and red pulp. The 

blood circulating through the spleen slows down in this area allowing the efficient 

encounter of MZ B cells with their antigens. Similarly to B-1 B cells, MZ B cells rapidly 

develop into antibody-producing cells thereby providing protection from blood-borne 

pathogens during the time it takes for the adaptive immune response to become 

established [6]. The B cell subclass crucial for the humoral adaptive immune response are 

conventional, follicular B-2 B cells. Unlike B-1 and MZ B cells these cells undergo somatic 

hypermutation and isotype switching and therefore contribute to the production of high 

affinity antibodies.  

In mice, follicular B cells start their development in the bone marrow but also in the 

foetal liver before birth. Their progenitors are haematopoietic stem cells (HSC) which are 
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pluripotent and potentially able to develop into other immune cell lineages, like T cells, or 

myeloid lineage cells. The first step in their developmental process is the commitment of 

HSC to the lymphoid lineage as indicated by their expression of c-kit and the Interleukin-7 

(IL-7) receptor α-chain (CD127) [7]. At this stage, called common lymphoid progenitor 

(CLP), the progeny can give rise to B, T and NK cells. The major transcription factors 

determining whether pluripotent cells commit to the B cell lineage are the paired box 

transcription factors PAX-5/BSAP, E2A and EBF1 (reviewed in [8]). The first stage at 

which cells are recognised as committed B cells is called the pre-pro-B cell stage and this 

can be distinguished by the expression of the B220 isoform of CD45, the lack of CD19, low 

levels of CD24 and little or no immunoglobulin (Ig) rearrangement [9] (Fig.1.4). The 

regulation of this step of lineage commitment depends on expression of different 

transcription factors. For example, the lack of E2A [10] was shown to impair the 

development of B cells at the pro-B cell stage whilst EBF-deficient cells do not progress to 

the pre-B cell stage [11].  

Pro-B cells are the next stage in the development at which the cells upregulate CD19 

and express CD10 but not surface immunoglobulin. These cells also upregulate 

recombination-activating gene-1 (RAG-1) and RAG-2, enzymes that are necessary to 

generate double stranded DNA breaks during the heavy and light chain rearrangement 

process. If those molecules are missing no µ heavy chain can be produced and the cells 

do not undergo any further development [12]. The DNA-PK repair complex has also been 

shown to be needed for successful rearrangement as B cells from Scid/Scid (severe 

combined immunodeficiency) mice display a developmental block at the pro-B cell stage 

[13]. This is because the scid mutation affects the activity of the DNA-PK repair complex 

which is involved in the joining of the segments during V(D)J recombination [14]. 

Consistent with upregulation of RAG-1 and RAG-2, the early pro-B cell stage is identified 

by the initiation of heavy chain rearrangement starting with the joining of one DH and one 

JH gene. The transition to the late pro-B cell stage is marked by the joining of a VH 

segment to the pre-arranged DHJH complex (Fig.1.2). Pro-B cells are also the first 

developmental stage expressing Igα and Igβ (CD79a and CD79b). These signalling 

molecules are expressed in a complex with the chaperone molecule calnexin and were 

found to be crucial for further developmental progress, as mice lacking Igα and/or Igβ are 

arrested at the pro-B cell stage [15]. Presumably, Igα/Igβ are needed for the transduction 

of signals permitting the survival and development of pro-B cells into pre-B cells. 

Consistent with this, cross-linking of CD79b was shown to induce the phosphorylation of 

various signalling transducers such as Syk, Btk and Vav leading to the activation of ERK 

(extracellular signal-regulated kinase) [15,16]. Moreover, such CD79b-mediated signalling 
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allowed arrested pro-B cells to mature into pre-B cells further confirming the importance of 

Igβ [16]. Interestingly, heavy chain rearrangement did not depend on this Igα/Igβ-mediated 

signalling indicating that different pathways regulate V(D)J recombination and 

developmental progress [17]. The succesful expression and signalling of Igα/Igβ initiates 

the maturation to pre-B cell. At this stage the B cell expresses the rearranged µ heavy 

chain in combination with λ5 and VpreB (SLC, surrogate light chain) to yield the pre-BCR 

which associates with Igα and Igβ on the surface of the cell [18] (Fig.1.5). A functional pre-

BCR is necessary to permit the B cell to reach the next developmental stage. For example, 

it has been postulated that the association of the rearranged heavy chain with the invariant 

SLC allows signalling that ensures that only B cells expressing correctly folded heavy 

chains can develop further [19]. It is not clear what exact role the pre-BCR plays in the 

downregulation of RAG and TdT enzymes and progression to the next developmental 

stage, as pre-B cells from mice unable to express SLC were still capable of 

downregulating RAG and TdT [20]. Recently, it has been shown that the pre-BCR might 

also provide one of the earliest checkpoints in negative selection of autoreactive B cell 

clones. For example, autoreactive B cells from mice lacking expression of SLC were found 

to be able to escape negative selection leading to higher production of anti-nuclear DNA 

antibodies in these mice [21]. Thus, in the presence of SLC, pre-B cells expressing heavy 

chains likely to produce DNA-reactive antibodies undergo negative selection [21]. This 

process seems to be antigen-independent as pro-B cells expressing these specific heavy 

chains intracellularly were also depleted from the repertoire [21]. Besides taking part in 

positive and negative selection of pre-B cells, the successful expression of a functional 

heavy chain also leads to the block of rearrangement on the other heavy chain allele, a 

process called allelic exclusion [22,23]. If the rearrangement of both heavy chain alleles 

fails the cell undergoes programmed cell death by apoptosis. 

Following allelic exclusion, the expression of the functional pre-BCR also initiates 

light chain rearrangement. Thus, V to J recombination leads to the expression of functional 

κ or λ light chain which then associates with the µ heavy chain (Fig.1.4). Surface 

expression of functional µ heavy and light chain complexes (IgM) is a characteristic feature 

of immature B cells. From the immature B cell stage onwards, the clonal selection process 

is Ag-dependent. Thus, immature B cells binding with high affinity to self-antigen are 

subjected to a process called negative selection which leads to either receptor editing or 

apoptosis [24] depending on the localisation of the cells. Thus, autoreactive immature B 

cells in the bone marrow default to receptor editing whereas apoptosis and therefore 

deletion seems to be the default response for immature B cells in the periphery [25]. Upon 

binding to self-antigen, induction of receptor editing allows immature B cells to express the 
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RAG genes again and undergo further light chain recombination in this way producing a 

new light chain molecule which might change the specificity of the BCR, therefore allowing 

the cell to escape deletion or anergy [26]. The response of immature B cells with low 

affinity for self-antigens is less well characterised. For example, it has been shown that 

membrane-bound low-affinity auto-antigens are as effective at inducing negative selection 

as high-affinity antigens [27]. Soluble low-affinity self-antigens on the other hand were 

found to preferentially induce positive selection of B cells into the B-2 B cell pool [28]. 

Thus, depending on the nature and affinity/avidity of the self-antigen, B cells will undergo 

either positive or negative selection. 

Immature B cells that survive negative selection are released from the bone marrow 

into the circulation to migrate to the secondary lymphoid organs such as the spleen. These 

transitional-immature (T1) B cells are sensitive to BCR-induced apoptosis for a few days 

following their emigration from the bone marrow [29], a feature that ensures that self-

reactive B cells that do not encounter their specific antigen in the bone marrow are deleted 

in the periphery. The initiation of IgD expression on T1 B cells indicates their development 

into (T2) transitional B cells. Recently, the existence of another transitional B cell subset 

(T3) has been proposed. These cells can be identified as B220+AA4.1+CD23+sIgMlow 

thereby only differing from T2 cells in their lower expression of IgM [30]. It has therefore 

been hypothesised that these cells simply represent T2 cells on the brink of developing 

into mature B cells or alternatively, B cells targeted for deletion or anergy. In support of the 

latter, Merrell et al defined this T3 population as an antigen-induced unresponsive 

population in a transgenic BCR model and consistent with this, also found a high 

percentage of self-reactive cells to be present in the T3 population of non-transgenic mice 

[31]. 

The survival of T2 cells and mature B cells depends on multiple factors, the major 

being BCR and B cell activating factor (BAFF) signalling. Many molecules involved in BCR 

signalling, such as Syk, BLNK (B cell linker protein, also known as SLP-65), Btk and NF-

κB (Nuclear factor- κB) signalling have been found to be necessary for the survival of T2 

and mature peripheral B cells indicating that BCR signalling initiates signals needed for the 

developmental progression or survival of these cells [32]. In recent years, the importance 

of BAFF in the survival and development of B cells has become clear as loss of BAFF 

signalling was shown to lead to loss of mature and T2 B cells [33]. There appears to be 

crosstalk between BCR AND BAFF receptor signalling as BCR signalling was shown to 

upregulate BAFF receptor expression [34] and BCR and BAFF receptor signalling appears 

to be integrated at the level of NF-κB regulation. For example, BCR signalling provides 

optimal levels of p100 NF-κB which are then processed downstream of BAFF receptor 
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signalling stimulating survival [35]. Thus, transitional B cells which are not or only weakly 

self-reactive and able to induce BCR and BAFF receptor signalling progress to the next 

developmental stage, mature naïve B cells [36].  

Antigen ligation of the BCR on mature B cells leads to activation, proliferation and 

differentiation rather than cell cycle arrest or apoptosis as seen with immature cells. 

Nevertheless, antigen has to be recognised in the right environment as the full 

development into an activated effector B cell generally depends on the presence of TH 

cells, their cytokines or other activation signals like TLR (Toll-like receptor) ligands [37]. 

Indeed, a mature B cell has three main developmental possibilities after activation – 

becoming an antibody secreting plasma cell, a memory B cell or participating in the 

germinal centre (GC) reaction. In a T cell-dependent response, the initial antibody 

production is due to the rapid extrafollicular proliferative focus response [38]. The first step 

in this response is the acquisition of antigen by B cells in the blood or in lymph nodes while 

they are re-circulating [39]. B cells encountering antigen in the blood will migrate to the T 

cell zone of the spleen [39] where antigen-stimulated B cells will interact with primed T 

cells resulting in entry into the cell cycle as well as commitment to the plasma cell 

programme induced by the upregulation of B lymphocyte induced maturation protein-1 

(Blimp-1; reviewed in [40]). Moreover, such antigen-activated B cells form extrafollicular 

foci where they can further differentiate into, often short-lived, plasma cells and secret 

antibodies. Notably, during this type of response, B cells do not undergo somatic 

hypermutation [41]. 

Alternatively, B cells that do not develop into such plasma cells can enter primary 

follicles where they initiate the GC reaction and undergo somatic hypermutation with the 

help of follicular TH and dendritic cells [42]. The major objective of somatic hypermutation 

is the selection of B cells with higher affinity for their antigen. Why some B cells enter the 

plasma cell development pathway directly rather than take part in the GC reaction remains 

to be elucidated. However, a recent publication by Paus and colleagues [43] indicates that 

the affinity of the B cell determines whether it takes part in the GC reaction or not. For 

example, by testing various antigen concentrations and densities in a transgenic mouse 

model they found that high affinity clones are preferentially recruited into the extrafollicular 

reaction whilst intermediate and low affinity B cells are more likely to enter the GC reaction 

where they have the chance to increase their binding affinity, and hence, positive 

selection. 

The GC reaction starts around day 4-5 after antigen encounter: activated B cells first 

migrate into the dark zone of the germinal centre where they keep proliferating, lose 

surface Ig expression and start somatic hypermutation (centroblasts) (Fig.1.6). After 
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having mutated their Ig CDRs, the cells stop dividing (centrocytes) and express their new 

receptor. The migration between light and dark zone is regulated by a chemokine gradient 

and differential expression of chemokine receptors on centroblasts and centrocytes. For 

example, centroblasts express CXCR4 and follow the CXCL12 gradient towards the light 

zone, whereas centrocytes express CXCR5 which makes them responsive to CXCL13 

expressed in the dark zone thereby allowing shuttling of cells between the dark and light 

zone [44]. Only centrocytes with high affinity receptors are selected and allowed to survive. 

The major criteria influencing the decision between survival and death of B cells in the 

germinal centre include the affinity of the mutated BCR as well as costimulatory signals 

received. Thus, expression of CD40 has been shown to be crucial during GC reactions, as 

lack of this molecule or its ligand abrogates GC formation [45]. CD40 ligand (CD154) is 

expressed not only on activated T cells taking part in the GC reaction, but also by B cells 

themselves [46] with interaction of CD40 and its ligand resulting in survival and cell cycle 

progression of GC B cells [47]. As GC B cells are by default prone to apoptosis due to a 

changed balance of anti- and pro-apoptotic Bcl-2-family members and other regulators of 

apoptosis such as Fas and p53 [48,49], the lack of positive signals such as CD40 ligation 

will otherwise lead to cell death. Changes in transcription factor expression are also very 

important for determining B cell selection and plasma cell development. Indeed, Bcl-6 

expression has been found to be essential for the formation of germinal centres and GC B 

cells [50] due to its’ repression of Blimp-1, the major regulator of plasma cell induction. 

Cells positively selected during the GC reaction then either develop into plasma cells or 

memory cells. The mechanisms underlying the decision between these two options have 

not been fully elucidated yet, but there is evidence that expression of a high affinity BCR 

skews towards selection into the plasma cell pool [51], whereas memory B cell selection 

might be a more random process as indicated by the constant recruitment of B cells into 

the memory B cell pool during the GC reaction [52]. 

Development of plasma cells is highly regulated, especially at the transcriptional 

level. In order for B cells to develop into plasma cells, Pax5 needs to be downregulated 

[53] and Blimp-1 expression induced [54] leading to cell cycle arrest due to c-Myc 

downregulation [55] and induction of the immunoglobulin secretory programme [56]. Blimp-

1 itself can be upregulated by multiple signals including cytokines, such as IL-21 [57], and 

TLR ligation and more effectively if these signals are combined with BCR ligation [58]. 

Moreover, cells that have been selected into the plasma cell pool are then allowed to leave 

the GC reaction by way of Blimp-1 induced downregulation of CXCR5 expression [56] and 

upregulation of CXCR4 and CXCR3 resulting in the migration of these cells to the bone 

marrow or sites of inflammation [59]. Plasma cells migrating to the bone marrow can 
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become part of the long-lived (> 1 year) plasma cell compartment creating a source of 

long-lasting antibody production [60]. By contrast, the other fate of post-GC cells is to 

become memory cells which are important for the secondary response to repeated 

encounter with the same pathogen. These cells express high affinity antigen receptors and 

can rapidly develop into plasma cells ensuring a fast response if the same pathogen 

infects the organism again [61].  

Besides follicular B cells, B-1 cells and MZ B cells can also develop into antibody 

producing plasma cells upon antigen-stimulation, usually providing a quicker response 

than follicular B cells due to the lack of time-consuming selection and mutation processes 

seen in GC reactions [40]. The exact mechanisms leading to development of marginal 

zone and B-1 B cells are not fully elucidated yet, but there has recently been a plethora of 

studies using multiple systems to further dissect these developmental pathways. A major 

contribution to the field has come from Montecino-Rodriguez and co-workers who showed 

the existence of a B-1 B cell specific progenitor which can be found in foetal and adult 

bone marrow [62] (Fig.1.7). These cells are lineage (lin)-negative (negative for markers 

expressed on macrophages, granulocytes, natural killer cells and T cells, as well as IgM+ B 

cells) and further defined by the expression of CD19, AA4.1 and the lack or low levels of 

CD45R. Reconstitution experiments showed that they preferentially develop into B-1 B 

cells. This strengthens the hypothesis of two different lineages developing seperately into 

B-1 and B-2 B cells, a theory that has its origin in studies showing that foetal-derived 

progenitors preferably reconstitute the B-1 B cell compartment whereas adult bone marrow 

progenitors are more efficient at reconstitution of the B-2 B cell pool [63,64] which could be 

explained by the higher percentage of CD19+CD45R-/low B-1 B cell progenitors in the foetal 

compartment. Further confirmation of the above-mentioned studies has come from Tung et 

al [65] using CD138 and MHC II as additional markers to distinguish between the different 

developmental progenitors. Thus, according to their classification CD138−, CD138int, and 

CD138hi, respectively, CD138 provided a further marker to differentiate the progenitors for 

B-1a, B-1b, and B-2 cells. By contrast, follicular and MZ B cells are thought to derive from 

the same bone marrow derived precursor [66], diverging into two different populations after 

the T2 stage of development, thus splenocytes defined by B220+AA4.1lowCD21/35high 

CD23+ expression are thought to be MZ B cell precursors [67].  

An alternative hypothesis which was favoured before distinct B-1 B cell progenitors 

had been discovered, proposed one common progenitor for both B-1 and B-2 B cells and 

explained the development of separate lineages by differences in antigen-dependent BCR-

signalling. Thus, after encountering certain B-1 B cell-specific antigens, B-2 B cells were 

found to develop a B-1 B cell phenotype [68]. Due to the discovery of specific progenitors, 
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this hypothesis has now been questioned but the general idea that varying strength of 

BCR-antigen interaction influences the development of different B cell subsets still holds 

true suggesting that despite the existence of distinct lineage progenitors, there may be 

plasticity in development. For example, it has been shown that development of B-2 

follicular B cells, MZ or B-1 B cells can depend on the BCR-antigen binding specificity and 

affinity [69]. Thus, in general, in the preferred model, weak BCR-antigen interactions are 

thought to lead to MZ B cell development whereas intermediate and strong interactions 

would lead to follicular and B-1 B cell development, respectively (reviewed in [70]). 

Besides BCR-antigen affinity, BCR specificity seems to be important in the B cell selection 

process as shown by preferential selection of weakly autoreactive specificities into the B-1 

and MZ B cell pool [70]. 

 

1.3 B cell tolerance 

 

The development and maturation of lymphocytes is tightly regulated to ensure 

tolerance against self with B and T cells having to pass through a process called negative 

selection during their early development. In the case of B cells this happens in the bone 

marrow at the immature B cell stage as a high percentage, up to 75% [71], of early 

immature B cells express BCRs that are polyreactive or self-reactive with high affinity. 

Immature B cells and newly emigrated transitional B cells (see also section 1.2) therefore 

need to react to antigenic stimulation in a different way from mature B cells. Thus cross-

linking of the BCR on immature, but not mature, B cells leads to induction of either anergy 

or apoptosis. Anergy is a state of unresponsiveness in which B cells receiving constant 

signalling through the BCR lose the ability to be activated by antigenic stimulation. Some 

of the features defining anergic B cells include a reduced lifespan and an impaired ability 

to interact with T cells [72]. Anergy therefore silences potentially harmful autoreactive B 

cells preventing their activation. 

However, some self-reactive cells manage to evade negative selection in the bone 

marrow (central tolerance) which has made it necessary for the immune system to evolve 

further checkpoints in the periphery to deal with lower affinity autoreactive B cells (Fig.1.8). 

The mechanisms of peripheral tolerance include induction of anergy [72], downregulation 

of B cell responses by inhibitory receptors such as FcγRIIb [73] and exclusion of 

autoreactive clones from GC reactions [74]. Moreover, the dependence of the majority of B 

cells on a second (T cell-dependent) signal to get activated upon antigen encounter 

ensures that autoreactive B cells generally do not get activated in the periphery. Thus, if a 
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naïve mature B cell binds its antigen without further cognate T cell help (CD40 

engagement or cytokine help) it will be rendered unresponsive or undergo apoptosis. 

In people with autoimmune disease one or more of the tolerance checkpoints 

mentioned above may be disturbed. For example, it has been shown that exclusion of 

autoreactive clones from the GC reaction is faulty in Systemic lupus erythematosus (SLE) 

patients [75]. Furthermore, analysis of the self- and poly-reactive antibody repertoire in 

SLE and Rheumatoid arthritis (RA) patients indicated the disturbance of various 

checkpoints in peripheral B cell development, allowing a higher percentage of self-reactive 

clones to escape from selection compared to healthy controls [76]. The implications of 

defects in B cell selection in autoimmune disease will be further discussed in Chapter 4. 

 

1.4 Effector functions of B cells 

 

Recently, evidence has accumulated that B cells do not only act as antibody-

secreting cells. For example, they are effective secondary antigen presenting cells (APC) 

[77] due to their efficient antigen uptake following BCR internalisation. In addition, they can 

also act as effector B cells producing cytokines or indeed, as regulatory cells dampening 

ongoing immune responses. B effector cells were originally thought only to originate from 

follicular B cells rather than B-1 or MZ B cells [78] as the first reports indicating the 

importance of B cell-produced cytokines came from studies showing that development of 

follicles depends on lymphotoxin-α produced by B cells [79]. Similar to TH cells, effector B 

cells can be divided into two subsets, Be-1 and Be-2 B cells: thus, Be-1 cells are induced 

by TH1 cells resulting in IL-12 and IFNγ production by those B cells [80] whereas Be-2 B 

cells develop in a TH2 specific milieu further inducing IL-13 and IL-4 production [80,81]. 

Cytokines produced by these activated Be-1 and Be-2 cells can then in turn influence the 

immune response by further skewing TH cell differentiation towards expansion of TH1 or 

TH2 cells.  

The third functional subset of B effector cells are regulatory B cells (reviewed in [82]). 

Thus, B cells have been shown to be able to regulate auto-inflammatory diseases such as 

inflammatory bowel disease, EAE (Experimental autoimmune encephalomyelitis), and 

disease models of SLE and RA [82,83]. The regulatory function of these cells in the above-

mentioned studies appears to be IL-10 dependent, but further studies have shown that 

TFGβ-producing B cells might be able to carry out regulatory functions as well [84]. 

Regulatory B cells cannot be detected in normal healthy individuals as they are only 

induced upon inflammation and need an inflammatory environment for their development 

[82]. In addition to IL-10 production, such regulatory B cells might have other properties 
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such as the ability to downregulate ongoing T cell responses or recruit T regulatory cells 

via their Ag-presenting capacity. Moreover, antibodies produced by such B cells might help 

clear apoptotic bodies containing potentially dangerous auto-antigens or regulate dendritic 

cells through engagement of various Fc receptors such as the inhibitory receptor FcγRIIb 

[85]. The origin of regulatory B cells is still controversial as all three B cell subsets are 

capable of producing IL-10, with B-1 and MZ B cells being the major producers of this 

cytokine. This led to the hypothesis that most regulatory B cells originate from B-1 or MZ B 

cells and transfer studies have confirmed the existence of regulatory B cells in these 

subsets [86,87]. Furthermore, multiple studies have recently defined B regulatory cells 

which share features with MZ or MZ-precursor cells [86]. Nevertheless, there is evidence 

that B regulatory cells might also originate from B-2 follicular B cells, as indicated by their 

production of IgG and IgA by these cells rather than the B-1/MZ B cell-associated IgM [82].  

 

1.5 B cell signalling 

 

The Ig component of the BCR is not able to signal per se but rather signals through 

its’ accessory transducing molecules, Igα and Igβ. These proteins both contain ITAMs 

(immunoreceptor tyrosine-based activation motif) which confer their signalling ability [88]. 

ITAMs comprise an 15-20 amino acid long motif that is defined by two YxxL sequences 

flanking seven to twelve variable residues (YxxLx(7-12)YxxL). Upon receptor stimulation, 

members of the Src-family of non-receptor PTKs (protein tyrosine kinases) become 

activated enabling them to phosphorylate the tyrosines in the ITAMs [89]. Thus, PTKs like 

Lyn are normally associated with the BCR in an inactive form and unfold upon BCR 

stimulation to adopt their active conformation. Once activated they phosphorylate the ITAM 

[90] which enables it to bind SH2 (Src homology 2) domain-containing proteins like Lyn 

itself, Syk, Btk, PLCγ (Phospholipase Cγ), BLNK, Grb2 and Vav all of which play important 

roles in various downstream signalling cascades. Moreover, the number of docking sites 

for SH2 containing transducers is further increased by phosphorylation of adaptor proteins 

like BLNK by Syk.  

B cells can react in various ways to BCR ligation including proliferation, growth 

arrest, apoptosis and differentiation depending on their maturation status, costimulatory or 

regulatory signals, signal strength and duration. It is therefore no surprise that the signal 

cascades activated by BCR ligation are complex involving crosstalk between pathways 

and differential recruitment of component isoforms. Nevertheless, the three major 

pathways associated with BCR signalling in mature B cells are the PI3 kinase 
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(phosphoinositide-3-kinase), PLCγ and MAP (mitogen-activated protein) kinase pathways 

[91] (Fig.1.9). 

 

1.5.1 PI3 kinase pathway 

PI3 kinases catalyse the phosphorylation of the inositol lipids like PI, PI-(4)-P and PI-

(4,5)-P2 to produce PI-(3)-P, PI-(3,4)-P2 and PI-(3,4,5)-P3 (PIP3), respectively [92], 

molecules which are normally present in the cell at very low levels and are able to recruit 

SH2 and PH (pleckstrin homology) domain-containing proteins to the membrane where 

they can be activated. PLCγ, Btk, Vav, PDK1/2 (3′-phosphoinositide-dependent protein 

kinase) and Akt are a few such signalling proteins that can bind to PI-(3,4)-P2 and PI-

(3,4,5)-P3 via their SH2 or PH domains [93-96]. PI3 kinases can be divided into four 

subclasses: IA, IB, II and III [97]. Of those four, only class IA and IB enzymes were found 

to be able to produce PI-(3,4,5)-P3. Class IA PI3 kinases are made up of a catalytic 

(p110α, p110β or p110δ) and a regulatory subunit (p85α, p55α, p50α, p85β, p55γ) and the 

various isoforms of the regulatory and catalytic subunits can bind to each other 

interchangeably creating multiple different combinations. The binding to tyrosine-

phosphorylated motifs on receptors such as the BCR is mediated by two SH2 domains 

located in the regulatory subunit [98]. Some of the isoforms of the regulatory subunits 

contain further domains such as SH3 and breakpoint cluster region homology (BH) 

domains, the latter of which is responsible for the interaction of PI3 kinase with members 

of the Rac and Cdc42 subfamilies [97]. The second class of PI3 kinases able to produce 

PI-(3,4,5)-P3, IB, so far only consists of one family member PI3 Kγ, composed of the 

catalytic p110γ and the regulatory p101 subunits. PI3 Kγ appears to be mainly activated 

downstream of G-protein coupled receptors (GPRC) such as chemokine receptors [97]. 

Expression of the p110γ and p110δ subunits is mainly restricted to lymphocytes whereas 

the other class I subunits are ubiquitously expressed. The function of class II and III PI3 

kinases is not as well studied as the class I molecules, but it has been shown that they are 

involved in vesicular trafficking [97]. PI3 kinase inhibitors wortmannin and LY294004 have 

been useful tools in defining the role of PI3 kinase in specific cellular processes [97], 

however, these inhibitors are not isoform-specific and therefore other tools, such as using 

gene targeting in mice, have had to be used to dissect the importance of specific PI3 

kinase isoforms.  

For example, with respect to the regulatory subunits, deletion of p85β indicated a 

negative regulatory role for this isoform in T cell expansion, as p85β-/- cells showed 

increased levels of proliferation and were less susceptible to cell death due to CD3 and IL-

2 stimulation [99]. Furthermore, p85β appears to be involved in CD28 signalling in T cells 
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as shown by reduced c-Cbl and Cbl-b downregulation and defective T cell differentiation 

and induction of secondary immune responses in p85β-deficient mice [100]. By contrast, in 

insulin signalling depletion of p85α was found to increase PI3 kinase dependent responses 

[97]. Moreover, p85α was found to be involved in regulating separation of the cytosol 

during fibroblast cytokinesis by way of influencing Cdc42 and septin-2 activation and 

localisation, respectively [101]. Interestingly, this latter function of p85α seems to be 

independent of PI3 kinase activity further increasing the complexity of PI3 kinase signalling 

by showing that regulatory subunits can influence signalling in the absence of dimerisation 

with a catalytic subunit [101]. The above mentioned studies have to be interpreted 

carefully though, as the effects of p85 deletion are complicated by the role the p85 

subunits appear to play in the stabilisation of the p110 catalytic subunits [97]. 

Similarly, there are many studies analysing the effect of genetic deletion or mutation 

of the catalytic subunits. Thus, by introducing an inactivating mutation, the p110δ isoform 

has been shown to be involved in many different cellular processes. For example, p110δ 

was shown to be needed for TH1 and TH2 cell cytokine secretion [102], differentiation of 

TH1 and TH2 cells in vitro as well as clonal expansion and differentiation of T cells in vivo 

[103]. Furthermore, CD4+CD25+Foxp3+ Treg activity was found to be reduced due to lack 

of p110δ [104]. Another catalytic subunit, p110γ, also seems to play an important role in 

the regulation of T cell responses but in this case, p110γ-deficient CD4 and CD8 T cells 

displayed reduced ability to migrate to sites of inflammation in the periphery in vivo 

[105,106]. Moreover, during T cell development, deficiency of p110γ leads to a partial 

defect in pre-TCR-dependent differentiation inducing a change in the CD4/CD8 T cell ratio 

[107]. T cells are not the only subset of immune cells in which PI3 kinase signalling plays 

an important role. For example, the third catalytic subunit, p110β, seems to play a role in 

macrophage signalling. Indeed, deletion of p110β in RAW 264.7 cells increased LPS-

stimulated inducible nitric oxide (NO) synthase as well as IL-12 expression indicating its 

negative regulatory role in TLR-induced activation of these processes [108]. In addition, it 

was shown to be required for Fcγ receptor-mediated phagocytosis by primary 

macrophages [109]. Further studies in macrophages showed that p110β, contrary to what 

was thought to that point, can be coupled to GPCR (stromal cell-derived factor, 

sphingosine-1-phosphate and lysophosphatidic acid ligand/receptor interactions) as well 

as tyrosine kinase signalling. Hence, p110β might allow GPCR-linked PI3 kinase signalling 

in cell populations with little or no p110γ expression, the subunit normally activated by 

GPCR signalling [110]. 
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1.5.1.1 PI3 kinases & B cell responses 

A number of studies dissecting the role of specific subunits of the PI3 kinase family 

have underscored the importance of this signalling cascade in B cell responses. To 

analyse the effects of the lack of all three p85α isoforms (p85α, p55α and p50α) triple-

knockout mice deficient for all three isoforms of p85α were created. However, due to the 

premature death of these animals, chimeric RAG-2-deficient mice had to be created to 

study the full impact of deletion of all these regulatory subunits. The lack of all three 

p85α isoforms led to a reduction in peripheral mature B cells and serum antibody levels. 

Furthermore, the surviving B cells showed reduced responsiveness to BCR or CD40 

stimulation as well as modulated survival responses upon IL-4 treatment [111]. Similarly, 

mice deficient for p85α, but still expressing the short p85α isoforms p55α and p50α, were 

found to suffer from a severe reduction of transitional and mature follicular, MZ as well as 

CD5+ peritoneal B cells indicating that p85α is involved in the differentiation of all these 

subsets. Indeed, in p85α-deficient mice, B cell development was found to be arrested at 

the pro-B cell stage. Moreover, the proliferative and T-independent antibody production 

responses of the residual B cells were inhibited [112] suggesting that lack of p85α 

expression can not be compensated for by its shorter isoforms p55α and p50α.  

Consistent with these findings, the catalytic p110δ subunit seems to be especially 

important in B cell biology as p110δ-deficient animals were also found to display a 

reduction of follicular B cell numbers, due to a block in pro-B cell differentiation, as well as 

a lack of B-1 B cells. As with the regulatory mutants, the remainder of peripheral B cells in 

these p110δ deficient mice are characterised by reduced BCR-mediated Ca2+ signalling 

and proliferative capacity and in vivo the germinal centre reaction and responses to both 

T-dependent and T-independent antigens are severely compromised [113]. Moreover, 

expression of a dominant negative catalytically inactive form of p110δ leads to impaired B 

and T cell responses due to reduced antigen receptor signalling [114]. It was proposed 

that besides the primary effects of lack of p110δ on T cell signalling, such T cell responses 

might be downregulated due to a defect of B cell-mediated antigen presentation. Indeed, 

although B cells expressing the inactive form of p110δ were as effective at BCR-mediated 

antigen uptake as the wild-type (WT) cells, the mutant cells did show a marked defect in 

their ability to stimulate T cells. Thus, p110δ B cells presented lower levels of antigenic 

peptide-MHCII complexes on their surface leading to impaired F-actin polarisation at the T 

cell-interaction site and thereby hampering the effective interaction of B and T cells [115]. 

Further studies also showed that lack of p110δ diminishes chemotactic responses of B 

cells, particularly those to CXCL13, thereby reducing the migration to Peyer’s patches and 

splenic white pulp cords [116]. Altered migration of B cells could therefore also influence 
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immune responses by inhibiting correct homing of cells to inflammatory sites or sites of B 

and T cell interaction important for initiation of an effective response. 

 

1.5.1.2 PI3 kinases & B cell signalling 

BCR ligation rapidly triggers PI3 kinase activation [97]. Multiple studies have 

indicated that Syk is important in such BCR-mediated activation of PI3 kinase in that this 

tyrosine kinase phosphorylates CD19 and the adaptor protein B-cell PI3 kinase adaptor 

(BCAP) on tyrosine in the right context for PI3 kinase binding [98]. In addition, another 

Syk-dependent mechanism of PI3 kinase activation involves the phosphorylation of Cbl 

and the downstream recruitment and activation of PI3 kinase due to a Cbl-induced 

conformational change of the p85 subunit [117]. However, PI3 kinases IA and IB can also 

be activated by Ras, potentially via allosteric modulation or reorientation of the PI3 kinase 

[118] and another Syk-independent mechanism for the activation of PI3 kinase might 

involve Vav3-dependent activation of Rac1 which in turn increases the activity of PI3 

kinase [119].  

One of the major downstream effectors of PI3 kinase signalling in B cells is Btk 

which can be recruited to the plasma membrane via its’ PH domain by PI-(3,4,5)-P3 

produced by PI3 kinase (Fig.1.9). Activation of Btk is achieved by autophosphorylation of 

two regulatory tyrosines as well as phosphorylation by Lyn [120,121] and this is dependent 

on p110δ activity as p110δ-deficient B cells display reduced phosphorylation of Btk [122]. 

Recruitment of Btk is important for the induction of the PLCγ2 signalling pathway which in 

turn leads to production of Inositol-(1,4,5)-triphosphate (IP3) and diacylglycerol (DAG) and 

consequent Ca2+ and protein kinase C (PKC) signalling. PI-(3,4,5)-P3 produced by PI3 

kinase plays additional roles in the activation of PLCγ2 by mediating its translocation to the 

membrane and thereby into close proximity to Btk, as well as ehancing PLCγ2 activity in 

an SH2 domain-dependent fashion [123,124]. Consistent with these findings, p110δ-

deficient B cells displayed impaired IP3 production, emphasising the importance of PI3 

kinase in maximal PLCγ2 activation [122]. 

The other major downstream outcome of PI3 kinase signalling in B cells is activation 

of PKB (protein kinase B)/Akt which predominantly acts to promote cell survival. The initial 

step in this cascade is the recruitment of PDK1 to the membrane via its PH domain [95]. 

The exact mechanism for activation of PDK1 is not known, but autophosphorylation is the 

most likely event. PDK1 is needed for the phosphorylation of PKB/Akt on threonine 308 

[125]. However, phosphorylation at this single residue is not sufficient for full activation as 

further phosphorylation on serine 473 was shown to be crucial for optimal PKB/Akt activity. 

The enzyme carrying out this modification has not been identified yet, but there are some 
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candidates such as mTOR (mammalian target of rapamycin), ILK (integrin-linked kinase) 

or even PKB/Akt itself by autophosphorylation [126].  

Although fully activated PKB/Akt transduces several cellular responses, the major 

functional outcome is enhancement of survival. For example, PKB/Akt inhibits activation of 

the executioner apoptotic protease caspase 9 and regulates forkhead-related transcription 

factors [127]. These transcription factors are involved in the regulation of many genes 

associated with cell survival such that by regulating forkhead-related transcription factors, 

PKB/Akt is therefore able to suppress expression of Bim and Puma, two pro-apoptotic 

BH3-only proteins [126]. Moreover, PKB/Akt can phosphorylate the pro-apoptotic Bad at 

serine 136 initiating Bad’s association with 14-3-3 proteins and thereby its’ sequestration 

from the mitochondria and inactivation. Another pro-apoptotic Bcl-2-family member 

regulated by PKB/Akt is Bax which gets phosphorylated at an inhibitory site by PKB/Akt 

[128]. PKB/Akt does not only inhibit pro-apoptotic mechanisms as it also upregulates 

pathways inducing expression of survival factors such as the NF-κB pathway. For 

example, PKB/Akt activates IKKα, one of the kinases that phosphorylate IκB thereby 

leading to the targeting of IκB for degradation [129] and releasing the suppression of NF-

κB which in turn is then able to upregulate the expression of Bcl-xL, a pro-survival member 

of the Bcl-2-family. Moreover, recruitment of PKCζ to the plasma membrane via its PH 

domain is potentially another mechanism linking PI3 kinase, via creation of PH domain 

docking sites, to B cell survival via activation of NF-κB. Once recruited to the membrane 

PKCζ gets activated by Ras [130] allowing it to phosphorylate NF-κB thereby enhancing its 

transcriptional activity [131]. 

 

1.5.2 PLCγ pathway 

PLCγ is recruited to the BCR by phosphorylated BLNK bringing it into close proximity 

with Btk and Syk leading to its phosphorylation and activation and subsequent 

downstream signalling [132]. Translocation of PLCγ to the plasma membrane is also 

required to bring it into close proximity to its substrate PI-(4,5)-P2 which it converts to the 

important second messengers diacylglycerol (DAG) and Inositol-(1,4,5)-triphosphate (IP3). 

IP3 binds to IP3-receptors on the endoplasmic reticulum leading to release of intracellular 

calcium followed by entry of extracellular calcium [132] thereby activating calcium sensitive 

molecules such as calcineurin, protein kinase C isoforms (the conventional isoforms α, β, 

γ) as well as JNK (c-Jun NH2-terminal kinase) [133]. IP3 binding to its receptors on the 

endoplasmic reticulum can further affect the localisation of molecules like Bcl-2 [134] and 

the activation of enzymes like PLA2 [135], calpain [136] and protein kinase II. Likewise, 
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DAG is needed for the activation of all phorbol ester-sensitive isoforms of PKCs (α, β, γ, δ, 

ε, η, θ) [137] (Fig.1.9).  

Thus, the family of PKC enzymes represent the major downstream effectors 

activated by PLCγ signalling. PKCs have been shown to play diverse roles in B cells 

ranging from the induction of proliferation to initiation of apoptosis, depending on the 

specific isoform and the developmental stage of the B cell involved. As indicated above, 

PKCs are dividided into three subtypes – the classical PKCs (α, β1, β2, γ), the novel PKCs 

(δ, ε, η, θ) and the atypical PKCs (ξ, λ, τ). The classical PKCs depend on Ca2+ as well as 

DAG for their activation whereas novel PKCs are regulated by DAG and the atypical PKCs 

need neither Ca2+ nor DAG for their activation [137]. B cells express many of these PKC 

isoforms (α, β, δ, ε, η, ξ, λ) and all of these have been shown to be recruited and activated 

downstream of BCR-ligation [138]. Due to the availability of isoform-specific PKC-deficient 

animals the importance of the different isoforms has been addressed, but PKCβ and PKCδ 

are the best-studied PKC isoforms in B cells. Thus, analysis of PKCβ knock-out animals 

indicated that this isoform is important in B cell responses as such mice displayed reduced 

numbers of B cells in the periphery, a complete lack of B-1 B cells and reduced antibody 

responses [139]. The defect in PKCβ knock-out B cells has been identified as an inability 

to activate NF-κB signalling downstream of the BCR, consistent with findings that NF-κB is 

a crucial transcription factor involved in the activation of genes involved in survival and 

activation of B cells by e.g. increasing the expression of anti-apoptotic molecules like Bcl-

xL and Bcl-2 [131,140]. The reduction of NF-κB activation in PKCβ-deficient B cells is due 

to the requirement of PKCβ for the efficient recruitment of IKK to the plasma membrane. 

As mentioned before, IKKβ activation is needed for the phosphorylation-mediated 

degradation of IκB and consequential release of NF-κB. The exact mechanism of how 

PKCβ-mediated localisation of IKKβ to the plasma membrane initiates its phophorylation is 

not known yet, but recent findings have implicated BCL10, MALT1 and Carma1 in the 

connection of PKC and NF-κB signalling, making them interesting candidates [138]. Unlike 

PKCβ, the novel PKC isoform PKCδ does not appear to transduce activatory signals 

downstream of the BCR, but rather, it appears to be an important mediator of negative 

regulation of B cells, as indicated by hyper B cell expansion and progressive development 

of an autoimmune phenotype in PKCδ deficient mice [141]. This autoimmune phenotype 

seems to be caused by a severe impairment of peripheral tolerance in these mice [141]. 

Although, the functional effectors of PKCδ in B cell signalling responsible for this 

phenotype have not yet been elucidated, modulation of NF-κB does not appear to be 

involved. By contrast, it has been proposed that negative regulation of IL-6 by PKCδ-

mediated mechanisms may be responsible for this phenotype [138] as IL-6 is an important 
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B cell differentiation factor supporting the germinal center reaction and development of 

isotype-switched B cell clones [142]. Changes of IL-6 expression due to lack of inhibition 

by PKCδ could therefore induce de-regulated B cell differentiation and expansion. 

 

1.5.3 The MAP kinase (MAPK) pathway  

MAP kinase (mitogen activated protein kinase) is the generic term for a family of 

serine-threonine protein kinases which can be subdivided into three distinct groups. The 

ErkMAP kinases (extracellular signal-regulated kinase), the c-Jun N-terminal kinases 

(JNK) and the p38 MAP kinases all play roles in B cell signalling (reviewed in [143]). 

Generally, ERK MAPKs have been classified as being activated by growth factor 

stimulation, whereas JNK and p38 are considered to be responsive to stress stimuli such 

as osmotic shock and radiation as well as cytokines [144]. Nevertheless, all of the MAPKs 

get activated by phosphorylation of their tyrosine/threonine activation motif, which differs 

between the subfamilies. For example, ERK1/2 share a TEY motif in their activation loop 

whereas the JNK and p38 family of MAP kinases are activated upon phosphorylation of 

their TPY or TGY motif, respectively. This phosphorylation is carried out by specific 

tyrosine-threonine kinases called MAPKK (MAPK kinase) or MEK which themselves are 

activated by a family of serine-threonine kinases generically termed MAPKKK (MAPK 

kinase kinase) or MEKK. Upstream activation of GTPases (guanine triphosphatases) like 

Ras or Rap-1, which are able to activate MAPKKK, in this way initiates the appropriate 

MAPK pathways (Fig.1.10). Another family of GTPases involved in MAPK activation are 

the Rho-GTPases (e.g. Rac, RhoA, Cdc42). The guanine nucleotide exchange factor 

(GEF) for those GTPases is Vav which can be recruited to the BCR by BLNK [145]. Rac1 

and Cdc42 have been shown to be involved in MAPK activation, especially the JNK and 

p38 pathways [146] by activating MEKK-1, MEK4 and MEK7 [147]. Once activated, the 

three sub-classes of MAPKs can phosphorylate various different substrates including 

phospholipases, cytoskeletal proteins and transcription factors as well as the MK (MAPK 

activated protein kinases) family of proteins (formerly known as MAPKAP kinases) [143].  

 

1.5.3.1 The ERK1/ERK2 MAP kinase pathway 

ERK1/2 are ubiquitiously expressed at varying levels in different tissues and cells, 

with multiple stimuli activating the ERK1/2 cascade such as serum, growth factors, 

cytokines, stress as well as some ligands for G protein-coupled receptors (GPCRs) [144]. 

Initiation of signalling by these stimuli leads to activation of small GTP-binding proteins 

such as Ras or Rap followed by activation of ERK1/2-specific MAPKKK, such as various 

Raf isoforms, Mos, MEKK1-3 and Tpl-2 [148]. Thus, following BCR ligation, ERK can be 
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activated in a Ras and Raf-1-dependent manner. Firstly, the adaptor transducer, Shc is 

recruited to the phosphorylated ITAMs of Igα/Igβ where upon Syk-mediated 

phosphorylation, Shc is able to recruit Grb2-Sos complexes [149] (Fig.1.9). Sos is a GEF 

which catalyses the exchange of GDP for GTP on Ras leading to its activation. Similarly, 

BLNK is another adaptor protein that is able to recruit the Grb2-Sos complex therefore 

representing an additional pathway of Ras activation other than via Shc recruitment [150]. 

The next step in the signalling cascade is the derepression of Raf by activated Ras 

thereby inducing its kinase activity [151]. The targets of Raf, and other ERK1/2 specific-

MAPKKKs, are MEK1 and 2 [152,153], dual-specific threonine/tyrosine kinases, which are 

in turn activated by phosphorylation of two serine or threonine residues in their activation 

loop [148]. MEK1/2 then activates ERK1/2 by phosphorylation of the TEY motif thereby 

allowing ERK1/2 to phosphorylate and activate its relevant downstream targets which have 

been shown to include signal transducers such as protein kinases like RSK1-3 (90 kD 

ribosomal S6 kinase), MAPKAPkinase-2, or MAP kinase-interacting kinase (Mnk) 1/2, 

membrane or cytoplasmic proteins such as cytosolic phospholipase A2 (cPLA2), Ral-GDS 

(Ral-guanine nucleotide dissociation stimulator) or heat shock factor transcription factor 1 

(hsp1) as well as the transcription factors c-Jun, c-Fos, ATF-2 and Elk-1 (reviewed in 

[144]). A more in depth overview of the relevance of ERK MAP kinase signalling in B cells 

can be found in Chapter 3.  

 

1.5.3.2 The p38 MAP kinase pathway 

The p38 MAP kinase family consists of the four related proteins p38α, p38β, p38γ 

(formerly ERK6 or SAPK3) and p38δ (SAPK4). Like the other members of the MAPK 

family, p38 molecules are activated downstream of a kinase cascade consisting of several 

MAPKKKs such as MEKK1-4, MLK2/3 (mixed lineage kinase), DLK (dual leucine zipper-

bearing kinase), ASK1 (activator of S-phase kinase), Tpl2 and Tak1 (TGFβ-activated 

kinase 1), which in turn activate MAPKK such as MEK3 and 6, as well as MEK4. MEK3 

and 6 specifically activate p38 whereas MEK4 is able to phosphorylate and activate p38 

and JNK [154]. Some of the known targets of p38 are cPLA2, p53, the transcription factors 

ATF1, EF2A, Elk-1, NF-κB and Ets-1 as well as MKs such as MSK1/2 (mitogen- and 

stress-activated protein kinase), MNK1/2, and MK2/3 [143]. p38 plays a critical role in the 

regulation of immunity as exemplified by the fact that p38 is activated downstream of 

inflammatory mediators such as cytokines, chemokines or LPS [155]. Furthermore, it is 

involved in the regulation of T cell differentiation and apoptosis as well as many functional 

responses in macrophages and neutrophils such as respiratory burst and chemotaxis 

[155]. By contrast, in B cells p38 does not seem to play such an important role as the 
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major MAPK activated by BCR signalling appears to be ERK. Nevertheless, p38 is 

involved in signalling pathways initiated by the ligation of other important receptors on B 

cells such as CD40, IL-4 receptor or BAFF receptor. Thus, in the case of CD40 p38 

activation seems to be mediated downstream by NF-κB, whereas p38 signalling via the IL-

4 receptor is mediated by STAT6 (signal transducer and activator of transcription 6) [156]. 

IL-4 together with CD40 stimulates the proliferation of B cells and induces the expression 

of MHC II as well as class-switching to IgG1 and IgE [156]. Thus, p38 plays an important 

role in regulating in TH2-type humoral immune responses. 

 

1.5.3.3 The JNK MAP kinase pathway 

The JNK family of proteins consists of three isoforms – JNK1, JNK2 and JNK3 

however, due to alternative splicing mechanisms these three isoforms yield a total of 12 

different possible JNK proteins [157]. Similarly to the above-described pathways for ERK 

and p38 activation, JNK is also activated by consecutive phosphorylation of upstream 

MAPKKKs and MAPKKs. Some of the known MAPKKKs for JNK are MEKK1-4, MLK1-3, 

DLK, Tpl2, ASK and Tak which phosphorylate MEK4 and MEK7 [158]. The exact 

mechanisms activating the MAPKKKs are not fully elucidated yet, but adaptor proteins 

such as Crk or TRAFs (TNF-receptor associated factor), as well as small GTP-binding 

proteins like Rho appear to be involved [159]. One of the major substrates of JNK is the 

molecule that gave it its name, c-Jun which together with c-Fos forms the active 

transcription factor AP-1. JNK phosphorylates c-Jun thereby increasing its activity and 

possibly also its stability [160,161]. Further targets of JNK include the transcription factors 

ATF-2, Elk-1, p53 and NFAT4 and the anti-apoptotic molecule Bcl-xL [159]. The functional 

outcome of JNK activity varies depending on numerous factors such as cell type and 

activation of other signalling cascades. For example, JNK has been implicated in induction 

of apoptosis [162] as well as survival [163], depending on the cell type and context. 

Indeed, in the human B cell line B104 it was shown to be linked to apoptosis downstream 

of BCR ligation [164] whereas it was found to be activated downstream of positive 

signalling in naïve B cells [165]. Similarly, whilst JNK was found to be activated by 

apoptotic signalling via the BCR in the murine immature B cell line WEHI-231, JNK 

activation was more pronounced downstream of CD40-mediated rescue signal in such 

cells [166]. As the functional outcome of JNK activation in these experiments was not 

always analysed, these studies left unanswered questions about the function of JNK in B 

cells some of which have since been addressed by animal models using mice deficient for 

JNK or its upstream regulators. For example, studies using T cells from JNK-deficient mice 

indicated that this kinase is not necessary for effective IL-2 production or proliferation; on 
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the contrary, lack of JNK actually increased the levels of IL-2 and proliferation. JNK 

however was found to be necessary for the production of the TH1 effector cytokine IFNγ 

and JNK-deficiency consequently impaired the TH1 differentiation of T cells in vitro due to 

the lack of IFNγ-mediated suppression of TH2 differentiating cytokines [167]. By contrast, T 

cells lacking MEK4, the upstream activator of JNK, but potentially also that of p38, 

displayed impaired proliferation upon CD28 costimulation [168]. Moreover, MEK7-deficient 

T and B cells showed increased proliferation downstream of growth factor or antigen-

receptor stimulation [169]. These studies therefore emphasise the complexity of JNK 

signalling and its’ multiple roles in T and B cell signalling and demonstrate the need for 

further investigation to reconcile the contradictory results. 

 

1.5.4 Integration of signalling cascades 

The major signalling cascades utilised by B cells downstream of the BCR are not 

simply activated in a linear fashion but interact at many levels, regulating each other by 

cross-talk. Thus, activation of Ras downstream of the BCR can activate ERK [170] and PI3 

kinase signalling [171]. Interestingly, these two pathways seem to be further connected at 

several additional levels. For example, PI3 kinase can positively and negatively regulate 

the Ras/Raf cascade. Thus, PI3 kinase can potentially activate Raf through a p21-

activated kinase (PAK)-dependent mechanism thereby influencing ERK activation 

downstream of Raf [172] whilst on the other hand PI3 kinase can inhibit ERK signalling by 

inducing the phosphorylation of Raf in an Akt-dependent manner [173]. Moreover, PI3 

kinase itself can be negatively regulated by ERK-mediated phosphorylation of GAB1 [174], 

thereby potentially connecting these two pathways by a complex series of positive and 

negative feedback loops. In addition, PKCξ is recruited via its PH domain to the plasma 

membrane where it gets activated by Ras [130] and then phosphorylates NF-κB, thereby 

enhancing its transcriptional activity [131]. Further emphasising the link between PI3 

kinase and survival, PLCγ2 is another major signalling pathway downstream of BCR-

ligation and it is also connected to both the PI3 kinase and ERK cascades. Thus, it has 

been shown in various studies that full initiation of calcium signalling depends on PI3 

kinase activity [94]. As mentioned before, this partial dependency of PLCγ2 activation on 

PI3 kinase is due to the recruitment of Btk to the plasma membrane by PI-(3,4,5)-P3 via its 

PH domain [122]. The ERK cascade is also linked to PLCγ2 as evidenced by the finding 

that deletion of PLCγ2 downregulates ERK activation [175]. One potential point of signal 

integration between ERK and PLCγ2 could be the activation of PKCβ2 and PKCθ by 

PLCγ2-dependent mechanisms such as production of DAG and initiation of calcium 

signalling. This is because PKCβ2 and PKCθ have recently been implicated in 
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phosphorylation and activation of RasGRP3, a GEF for Ras. Furthermore, RasGRP3 itself 

can be activated by DAG-binding, challenging the typical linear model of PLCγ2 activation 

followed by production of DAG and activation of PKC and its downstream targets. 

Therefore, RasGRP3 activation, through downstream activation of Ras, potentially links 

DAG production, PKC activation and the ERK pathway [176].  

A major integrative junction of BCR signalling lies in the regulation of transcription 

factors as evidenced by reports that the three major signalling pathways activated by the 

BCR are all involved in the regulation of various transcription factors such as Elk-1, ATF, 

NF-κB, NFAT and AP-1. For example, NF-κB is an important transcription factor in B cells 

as it regulates survival and studies using various different knock-out mice for relevant 

signalling molecules such as the PI3 kinase subunit p85α, Btk, BLNK, PLCγ all showed 

impaired activation of NF-κB indicating that optimal activation of NF-κB requires both PI3 

kinase and PLCγ signalling [131,177]. Similarly, AP-1 is another important transcription 

factor which is regulated by more than one BCR-dependent signalling cascade. For 

example, AP-1 comprises a family of transcription factors consisting of dimers comprising 

various combinations of two subunits of the Jun, Fos and ATF family of proteins. 

Depending on the precise subunits, AP-1 dimers can induce various cellular responses 

such as proliferation or apoptosis. Thus, in B cells it was shown that both JNK and ERK 

are needed for AP-1 dependent transcription of miR-155, and its primary transcript, B-cell 

integration cluster (BIC) which is involved in B-cell maturation and antibody production in 

response to antigen [178,179]. Moreover, AP-1 dependent upregulation of the cyclin D 

levels necessary for survival and proliferation requires integrated signalling via several 

transcription factors in B cells. This is because c-Jun which regulates expression of cyclin 

D1, is itself regulated by stable Jun/Fos AP-1 dimers, which are promoted by the ability of 

ERK to induce Fos upregulation via activation of Elk-1 [178]. Elk-1 is a member of the Ets 

family of transcription factors which can be regulated by all three MAPK cascades as well 

as calcium signalling [180]. Thus, phosphorylation of Elk-1 by ERK, JNK or p38 leads to 

the activation of Elk-1 which in turn can regulate the expression of its target genes such as 

c-Fos [180] which is able to regulate c-Jun expression, emphasising the complexity and 

the multiple levels of signal integration downstream of the BCR. 

 

1.5.5 Co-receptors on B cells  

The BCR is not the only receptor regulating B cell activity. B cells express additional 

receptors such as CD19, CD40 and FcγRIIb which can positively or negatively influence 

the function and outcome of signalling by modulating signalling thresholds downstream of 

the BCR. 
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1.5.5.1 CD19 

CD19 is a transmembrane glycoprotein that is expressed by B cells from the early 

pre-B cell stage onwards until it is downregulated upon plasma cell differentiation 

[181,182]. During follicular B cell development, upregulation of CD19 can be detected at 

the mature B cell stage and B-1 B cells generally express higher levels of CD19 relative to 

follicular B cells [182]. Although CD19 levels seem to be developmentally regulated they 

do not however seem to be influenced by activation by stimuli such as LPS, anti-IgM or IL-

4 [181,183]. On the surface of B cells, CD19 can be found in a complex with CD21 and 

CD81 (Fig.1.11) and this complex is an important mediator of B cell activation, as CD19-

deficient B cells display reduced activation upon BCR ligation. This is because the 

CD19/CD21(CR2)/CD81 complex binds to soluble fragments of complement proteins such 

as C3b and C3d which bind to pathogen surfaces. Thus, B cells expressing BCR specific 

for antigens of such pathogens can be activated by the simultaneous binding of antigen to 

the BCR and engagement of the CD19 co-receptor complex through binding of C3 

fragments [184]. Thus, although development of B cells per se does not seem to be 

affected by lack of CD19, B cell proliferation, expansion and differentiation are severely 

compromised in CD19-deficient mice. Furthermore, the humoral response and germinal 

centre formation in CD19-deficient mice is reduced as well [182,185,186] due to the 

increased signalling threshold in the absence of CD19-signalling. Costimulation of B cells 

by BCR and CD19 due to the presence of complement-targeted pathogens therefore 

provides a mechanism for enhancing B cell responses.  

Signalling downstream of CD19 is initiated by Lyn-mediated phosphorylation of 

tyrosines in its’ cytoplamic tail which creates SH2 binding sites allowing the recruitment 

and activation of various signalling molecules [187] such as Lyn (and other 

phosphotyrosine kinases), the GEF protein Vav as well as the PI3 kinase regulatory 

subunit p85. CD19 activation thereby amplifies the signalling initiated by BCR by 

enhancing activation of PLCγ2 by PTKs [187], the PI3 kinase pathway by localising p85 to 

the membrane [188] and recruitment of Vav [189] to potentially activate MAPK pathways 

via Rac1 or Cdc42. Moreover, such Vav-dependent activation of Rho can also stimulate 

phosphatidylinositol-4-phosphate-5-kinase which produces PI-(4,5)-P2 thereby maintaining 

the levels of substrate required for prolonged PLCγ activation [89].  

 

1.5.5.2 CD40 

CD40 is a glycoprotein expressed not only by B cells but also by dendritic cells and 

monocytes as well as endothelial and epithelial cells [190]. Its ligand, CD154 (CD40L) is 
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mainly expressed on activated TH cells, but it is also found on a small population of CTL 

cells, γδ T cells as well as mast cells, basophils and eosinophils. Furthermore, CD40L 

expression can be induced in B cells, NK cells, macrophages and dendritic cells under 

certain conditions, for example on phorbol ester/ionomycin-stimulated human B cells [190]. 

The important role of CD40-CD40L interaction was originally perceived due to studies in 

humans showing that the immune deficiency X-linked hyper-IgM syndrome can be caused 

by mutations in the gene encoding CD40L. Patients suffering from X-linked hyper-IgM 

syndrome display elevated levels of IgM in their circulation accompanied by reduced 

expression of class-switched isotypes such as IgG [191]. Further confirmation came from 

animal models with induced mutations or deletions of the CD40 or CD40L gene, showing 

similar deficient immune responses as seen in humans [190]. These deficiencies reflect 

that CD40 plays a pivotal role in B cells by activating their proliferation, differentiation and 

antibody production as well as rescuing B cells from apoptosis. It is involved in induction of 

class-switching, selection and maturation of memory cells and can regulate the 

differentiation of plasma cells [190].  

CD40 is part of the TNF-receptor-family and signals through TRAFs. Several TRAFs 

(TRAF 1, 2, 3, 5 and 6) as well as JAK3 have been found to associate with CD40. 

Recruitment and activation of the different TRAF molecules initiates varying signalling 

outcomes such as activation of NF-κB, PI3 kinase, MAPKs and PLCγ2 [192] (Fig.1.12). 

Thus, TRAF2 is involved in activation of NF-κB [193], whereas TRAF6 links to ERK 

activation in both a Ras-dependent and -independent manner [194]. TRAF3, on the other 

hand, has been found to be important both for p38 and JNK activation downstream of 

CD40 in a human B cell line [195]. CD40 signalling is generally considered to be important 

for regulating survival and proliferation of B cells although it can transduce apoptotic 

signals in some human B cell lymphoma cell lines. Consistent with this, it induces the NF-

κB-dependent upregulation of anti-apoptotic Bcl-2 family members such as Bcl-xL and Bcl-

2, thereby inhibiting the induction of apoptosis and actively promoting cell cycle progress 

by reducing the levels of the Cdk inhibitor, p27. Moreover, the expression and activation of 

Cdk4 (cyclin-dependent kinase) and Cdk6 are upregulated by CD40 signalling allowing 

cells to escape growth arrest from G1 and drive entry into S phase. c-Myc, another NF-κB-

regulated protein, has also been shown to be upregulated upon CD40 ligation further 

supporting its role in promoting cell cycle progression [196]. Additionally, NF-κB-dependent 

upregulation of FLIP (FLICE-like inhibitory protein), an inhibitor of apoptosis, further 

strengthens the “survival” programme induced by CD40 [197]. 
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1.5.5.3 FcγRIIb 

FcγRIIb is a low affinity receptor for the Fc portion of IgG. Cross-linking the BCR and 

FcγRIIb inhibits BCR-mediated activation and proliferation of B cells by inhibiting BCR 

coupling to calcium mobilisation, Akt and MAPK activation [73]. This inhibitory mechanism, 

which reflects cognate immune complex-mediated co-ligation of the BCR and FcγRIIb, is 

widely believed to be important in the homeostatic regulation of B cell responses as it 

ensures that B cell responses are switched off as soon as enough antibodies to deal with 

the pathogen are circulating. That such FcγRIIb-mediated signalling is important in the 

downregulation of cognate antibody responses was finally proven with the analysis of 

FcγRIIb knockout mice which showed augmented antibody production in reaction to 

immunisation with immune complexes when compared to FcγRIIb-expressing mice [198]. 

FcγRIIb belongs to the family of Fcγ receptors which bind to the Fc portion of IgG. In 

the murine system there are four classes of Fcγ receptors: FcγRI, FcγRII, FcγRIII and 

FcγRIV. These different sub-classes of Fcγ differ in their binding affinities. For example, 

FcγRIV preferentially binds IgG2b whereas FcγRIIb has highest affinity for IgG1 [199]. 

FcγRI is a high affinity receptor whereas FcγRIIa and FcγRIIIa are of lower affinity and 

only able to bind IgG if it is present in immune complexes [199] (Table 1.1). FcγRIIb is 

widely expressed on cells such as macrophages, neutrophils and mast cells but it is the 

only Fcγ receptor expressed on murine B cells [199]. Recently, there have been studies 

postulating expression of FcγRIIa, an activating Fcγ receptor containing an ITAM, on the 

surface of peripheral human B cells and B leukemia cells [200,201]. However, as detection 

was carried out with antibodies against the extracellular domain, which is very similar in 

FcγRIIa and FcγRIIb, these proposed findings have still to be confirmed. 

Whilst most other Fcγ receptors stimulate activating signals, FcγRIIb is an inhibitory 

receptor, both in humans and in mice. FcγRIIb comprises a single chain glycoprotein that 

contains an immuno-receptor tyrosine based inhibition motif (ITIM) domain, defined by the 

consensus sequence I/V/L/SxYxxL/V, in its cytoplasmic tail. This ITIM was shown to be 

indispensable for the inhibitory function of FcγRIIb, which is dependent on the 

phosphorylation of the ITIM-tyrosine upon BCR/FcγRIIb co-ligation. Recently however, 

new evidence has suggested that there is a second docking motif which might be 

necessary for recruitment of the 5’ inositol phosphatase SHIP (SH2 domain containing 

inositol 5’ phosphatase), the key molecule required for FcγRIIb-mediated negative 

signalling. This motif is located in the C-terminal region of FcγRIIb and also needs to be 

tyrosine-phosphorylated to be activated. This motif does not directly bind SHIP, but 

recruits the adapter molecules Grb2 and Grap (Grb2-like accessory protein) which help 

stabilise the binding between SHIP and the ITIM [202]. Human B cells also express 
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FcγRIIb which like the mouse homologue, recruits SHIP upon tyrosine-phosphorylation of 

its ITIM. Moreover, and again similar to the mouse receptor, the C-terminal region is also 

needed to ensure optimal SHIP phosphorylation and activation although the phospho-

tyrosine-motif has not been detected in the human receptor [203].  

At the proximal signalling level the co-ligation of BCR and FcγRIIb induces Lyn to 

tyrosine-phosphorylate the ITIM in the cytoplasmic portion of FcγRIIb (Fig.1.13). The 

importance of Lyn in this process is supported by studies showing that knocking-out Lyn in 

mice increases BCR-mediated induction of MAPK cascades and proliferation [204]. The 

main signal transducer recruited to the phosphorylated ITIM is SHIP and, as stated above, 

this was found to be indispensable for negative regulation carried out by FcγRIIb [205]. 

SHIP signalling affects PI3 kinase, Ras-ERK MAP kinase and calcium-dependent 

signalling [206,207]. For example, the downregulation of PI3 kinase activated signalling 

cascades by SHIP is due to its ability to convert PI-(3,4,5)-P3 to PI-(3,4)-P2. This 

counteracts PI3 kinase which produces the PI-(3,4,5)-P3 required for many PH-domain 

mediated signals such as Akt [208]. Recent studies indicating that PI-(3,4)-P2 generation 

could also lead to Akt activation made it very unlikely, however, that SHIP was the only 

mechanism for Akt deactivation. Thus, the finding that PTEN is also activated by FcγRIIb 

and BCR co-ligation potentially provided an additional regulatory molecule to ensure that 

BCR signalling is effectively abrogated [209]. This is because PTEN, which is a 3’ inositol 

phosphatase, directly antagonises the effects of PI3 kinase by decreasing the levels of 

both PI-(3,4,5)-P3 and PI-(3,4)-P2 available for recruiting PH-domain containing signal 

transducers and therefore further reduces Akt activation. 

The influence FcγRIIb signalling has on the mobilisation of calcium within cells is 

less well understood. Inositol-(1,3,4,5)-tetraphosphate (IP4) is also a potential target for 

dephosphorylation by SHIP and IP4 is known to be an activator of membrane Ca2+ 

channels [210]. Reduction of the IP4 concentration may therefore disturb the calcium flux 

through these channels changing its distribution pattern in the cell [211]. Calcium is an 

important second messenger whose concentration determines the activation of molecules 

like calmodulin/calcineurin and consequently the transcription factor NFAT [212]. 

Alternatively, SHIP/PTEN mediated PI-(3,4,5)-P3 degradation not only prevents Akt from 

associating with the membrane but also Btk and PLCγ which are required for sustained 

coupling of the BCR to an increase in intracellular calcium levels. This might therefore 

present a second mechanism by which SHIP and/or PTEN suppress calcium mobilisation 

after BCR/FcγRIIb co-ligation. 

As illustrated above, the ERK MAP kinase pathway is a key proliferative signalling 

cascade initiated upon BCR activation. Upon BCR stimulation Shc and Grb2/Sos form a 
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complex, enabling Sos to exchange GDP for GTP on Ras, thereby activating it. Ras in 

consequence recruits Raf to the membrane resulting in its activation and leading to 

phosphorylation and activation of MEK1/2, the immediate upstream regulator of ERK1/2. 

SHIP directly competes for Shc binding, sequestering it from interacting with Sos/Grb2 and 

hence inhibiting the activation of Ras downstream signalling [213]. In addition, SHIP uses 

a second mechanism to decrease ERK MAPK signalling via the recruitment and activation 

of p62 Dok which interacts with RasGAP (Ras GTPase activating protein) to enhance the 

GTPase activity of Ras and render Ras inactive [214]. Additionally, BCR/FcγRIIb ligation 

recruits PAC-1 (phosphatase of activated cells-1), an ERK-specific dual specificity 

phosphatase, inducing dephosphorylation and thereby inactivation of previously activated 

ERK, thereby further reducing active ERK levels in the cell [209]. 

Interestingly, the induction of apoptosis upon FcγRIIb ligation in the absence of BCR 

involvement (non-cognate immune complexes) appears to induce signalling pathways 

independent of the ITIM sequence. Indeed, such apoptotic signals can be blocked by the 

recruitment of SHIP that normally occurs upon BCR/FcγRIIb colligation [215]. These ITIM-

independent signaling mechanisms have been partially elucidated and shown to be 

dependent on the depolarisation of the mitochondrial membrane with resultant release of 

cytochrome C and activation of caspases 3 and 9. Moreover, under these conditions, 

FcγRIIb needs to be tyrosine phosphorylated to recruit two c-Abl family kinases, c-Abl and 

Arg, to couple to this apoptotic pathway, in an as yet to be defined manner [216]. It is 

thought that this ITIM/SHIP-independent pathway induced by ligation of FcγRIIb by non-

cognate immune complexes, plays a role in the maintenance of peripheral tolerance. 

However, the in vivo relevance of this process, which is only seen in B cells, has yet to be 

elucidated. 

Thus, FcγRIIb is a negative regulator of B cell responses playing an important role in 

downregulating ongoing immune responses after the successful removal of the pathogen. 

Such downregulation of the immune response is necessary to maintain the balance 

between the beneficial and detrimental effects of the inflammatory process and maintain B 

cell homeostasis. 

 

 

 

1.6 The role of ubiquitination in cell signalling 

 

Ubiquitin is a small molecule of only 76 amino acids, which can be attached to 

proteins thereby influencing their stability, localisation and function. The best characterised 



 

 30 

function of posttranslational modification by ubiquitin is the targeting of proteins for 

degradation by the proteasome. In this way, ubiquitination plays a crucial role in the 

regulation of cell cycle progression, proliferation and signal transduction. Recently, 

however, it has become apparent that ubiquitination, dependent on the length of the 

ubiquitin chain and specific linkages between ubiquitin molecules, can influence cellular 

processes independently of proteasomal degradation.  

 

1.6.1 Linking ubiquitin to target proteins 

Linking ubiquitin to its target protein is a three-step process. The first step is the 

activation of a C-terminal glycine residue of ubiquitin. This step is carried out by an 

enzyme called E1 and uses up energy in the form of ATP. E1 then binds to activated 

ubiquitin via a thiolester linkage, releasing AMP in the process (Fig.1.14). Consequently, 

activated ubiquitin is transferred from E1 to an E2 ubiquitin-conjugating enzyme, the next 

enzyme in the cascade. This enzyme then forms a complex with an E3 ubiquitin ligase and 

the target protein whereby the activated ubiquitin gets transferred to an ε-amino group of a 

lysine of the substrate protein [217]. Depending on the E3 ligase, this last step either 

involves direct transfer of ubiquitin from E2 to the substrate, or transfer via E3 to the target 

protein [217]. The specificity of the ubiquitination system is conferred by E3 ligases, as 

these enzymes govern the recruitment of ubiquitin-loaded E2 enzymes to their specific 

target proteins [217].  

Both mono- and poly-ubiquitination exist and these distinct modifications most likely 

control differential functional outcomes. Furthermore, several residues in proteins can be 

tagged by mono-ubiquitination, a process termed multi-ubiquitination [218]. Generally, 

poly-ubiquitination, by linkage of multiple ubiquitins via their lysine 48 residues, targets 

proteins for degradation by the 26S proteasome complex [219] leading to the release of 

peptides and re-usable ubiquitin. Linkages of ubiquitin molecules to each other on 

residues other than lysine 48 have been classified as atypical and have been shown to 

have several different functional effects. Thus, poly-ubiqutiniation via lysine 63 has been 

implicated in the regulation of the NF-κB pathway as well as receptor endocytosis and 

DNA repair [220]. The differential outcomes of the various ubiquitin-modifications is most 

likely due to binding of proteins containing different forms of ubiquitin binding domains 

(UBDs) which are thought to be able to preferentially bind to specific forms of ubiquitin 

linkages. Although these poly-ubiquitin chains are all made up of the same subunit, 

ubiquitin, the linkage seems to influence the confirmation of the chain, explaining how 

UBDs can distinguish between lysine 48 and lysine 63 mediated linkage [220]. Likewise, 

recent studies suggest an important role for the other form of ubiquitination, mono-
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ubiquitination, in receptor endocytosis and histone modification [221]. Thus, Cbl has been 

shown to mono-ubiquitinate receptor tyrosine kinases targeting them to the lysosomal 

compartment and thereby regulating activation of signalling downstream of RTK 

dependent receptors [222]. Adding another layer of complexity to the ubiquitination system 

are DUBs (deubiquitinating enzymes) which can remove ubiquitin from proteins making 

ubiquitination a reversible process [223]. For example, in murine lymphocytes, cytokine 

stimulation leads to the upregulation of several DUBs indicating that these enzymes might 

play a role in the responses initiated by cytokine stimulation [224].  

 

1.6.2 E3 ligases and their role in the immune syste m 

There are many studies implicating various E3 ligases in signalling regulating the 

responses of immune cells such as T and B cells. Among the E3 ligases associated with 

the immune system, Itch and Cbl are probably the best studied. Initial interest in the E3 

ligase Itch arose after the finding that Itch-deficient mice develop a late onset type of 

autoimmune disease [225]. More detailed anlysis of these mice indicated a role of Itch in T 

cell biology as Itch-deficient T cells were found to be hyperresponsive concerning 

proliferation and IL-2 production upon engagement of CD3. It was then found that Itch 

ubiquitinates JunB and c-Jun leading to their degradation and hence lack of Itch leads to 

increased stability of these transcription factors, production of AP-1 and consequent 

production of IL-2 and T cell proliferation [226]. The physiological outcome of Itch 

deficiency in T cells is therefore a reduced sensitivity of Itch-/- TH2 cells to the induction of 

tolerance [227].  

The Cbl family of E3 ligases has been reported to play multiple roles in cellular 

signalling although some of these appear to depend on the adaptor protein function of Cbl 

and are independent of its’ E3 ubiquitin ligase activity. For example, a major ubiquitin-

dependent function of Cbl is the downregulation of RTKs downstream of several 

immunoregulatory receptors such as CSF-1, stem cell factor (kit) and macrophage-

stimulating protein (MSP) [228]. Similarly, Cbl can ubiquitinate non-receptor tyrosine 

kinases such as Syk, Fyn and Lyn and target them for degradation [228]. Consistent with 

this, mice lacking Cbl-b were shown to develop spontaneous autoimmune disease [229] 

and both T and B cells from these mice were found to be hyperresponsive to antigen-

receptor stimulation [229,230]. Moreover, such Clb-b deficient T cells displayed a reduced 

need for CD28 costimulation for the production of IL-2 indicating that Cbl-b plays a role in 

the negative regulation of CD28 signalling [230]. A similar role for Cbl in the regulation of 

human T cell activation has recently also been demonstrated as lower levels of c-Cbl were 

shown to correlate with increased CD3/CD28-dependent activation [231]. 
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Further important immunoregulatory signalling pathways which are regulated by 

ubiquitination-dependent processes are the Notch and NF-κB cascades. For example, 

Notch signalling is important in the development of T cells as well MZ B cell differentiation. 

Itch and c-Cbl are able to ubiquitinate Notch, which in case of c-Cbl leads to the lysosomal 

degradation of Notch resulting in the downregulation of Notch levels and hence signalling 

[232,233]. Likewise, ubiquitination plays multiple roles in the regulation of NF-κB signalling. 

The best known function of ubiquitination in the NF-κB pathway is probably the 

ubiquitination of IκB with a lysine 48 linked poly-ubiqutin chain which targets it for 

degradation via the proteasome. However, other forms of ubiquitination such as lysine 63-

linked chains also play important roles. Thus, both NEMO, the regulatory subunit of IKK, 

and its activating kinase Tak1 require poly-ubiquitination via lysine 63-linked ubiquitin for 

their activation [234]. Similarly, RIP (receptor-interacting protein), another component of 

NF-κB signalling downstream of TNFα, is modified by a lysine 63-linked ubiquitin chain, 

protecting it from degradation [235]. Moreover, some reports have investigated the role of 

ubiquitination in regulation of B cell signalling, including modification of important 

molecules such as Igβ and Syk [236,237]. The role of ubiquitination and specific E3 

ligases in B cell signalling is therefore addressed in more detail in Chapter 3.  

 

1.7 Regulation of the cell cycle 

 

The cell cycle constitutes a highly regulated sequence of events that orchestrates 

the processes underlying cell division. In order to divide, cells have to undergo a growth 

phase during which they increase their cytoplasmic volume followed by DNA duplication 

and mitosis. The cell cycle (Fig.1.15) is divided into four phases. After entering the cell 

cycle from the quiescent state (G0), cell growth takes place (G1 phase) before DNA 

replication (S phase) and another shorter growth phase (G2) after which the cells separate 

into two daughter cells (M phase), each inheriting a full set of chromosomes. To ensure 

that cells only proliferate in response to appropriate extrinsic and intrinsic signals, there 

are checkpoints at both the G1-S and G2-M boundaries. Overcoming these restriction 

points depends on the integrated signals the cells receive from their environment such as 

growth factor availability and cell culture density or alternatively, from signals created due 

to DNA damage. 

The different phases of the cell cycle and entry into them are primarily regulated by 

the action of cyclin-dependent kinases (Cdk). Cdks are proline-directed kinases which 

require binding to cyclins for full activation [238] and each phase of the cell cycle is 

governed by different Cdk/cyclin complexes. Thus, the first cyclins to be expressed after 
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growth factor stimulation are the D-type cyclins [239] which form complexes with Cdk4 or 

Cdk6. Due to the constitutive expression of Cdk4 and Cdk6, regulation of these complexes 

therefore depends on cyclin D availability which is regulated both at the transcriptional and 

protein level [240,241]. The major target of the cyclin D/Cdk4/6 complex is the 

phosphorylation of Rb (Retinoblastoma) family proteins including Rb, p107 and p130 [242] 

(Fig.1.15). This is because hypophosphorylated Rb proteins bind to the transcription factor 

E2F thereby blocking its transactivation ability [243], whilst Cdk/cyclin D-mediated 

phosphorylation of Rb proteins at serine 780 leads to the release of E2F and its 

consequent binding to the family of DP proteins [244], allowing these complexes to act as 

transcriptional activators of genes such as cyclin E necessary for G1-S phase transition 

(reviewed in [245]). Indeed, cyclin E is upregulated in mid to late G1 phase [246] and the 

resultant cyclin E/Cdk2 complexes are required for the further hyperphosphorylation of Rb 

at serines 807/811 [247] that is necessary for complete S phase entry and initiation of DNA 

replication [248]. Moreover, additional targets of phosphorylation by the cyclin E/Cdk2 

complex are the Cdk inhibitor (CKI) p27 and cyclin E itself, leading to their degradation, 

[249,250]. Cyclin A, an alternative partner for Cdk2, is then expressed at the G1/S 

boundary and is required for S phase transition  and control of DNA replication [251,252]. 

The last cyclin/Cdk complex that requires to be activated before cell cycle completion 

consists of cyclin B1 and Cdc2 (Cdk1). Although Cyclin B1 gets upregulated in late S and 

G2 phases, the complexes remain inactive due to inhibitory phosphorylation [253]. This 

phosphorylation is removed by the phosphatase Cdc25 to allow activation of cyclin 

B1/Cdc2 complexes and M phase entry [253]. Cyclin B1/Cdc2 activity is needed for entry 

into M phase due to its phosphorylation of targets such as lamins, nuclear proteins and 

microtubule proteins that are necessary for the reorganisation of the cellular architecture 

[254]. Thus, phosphorylation of key target proteins regulate events such as the 

establishment of the bipolar spindle, breakdown of the nuclear lamina as well as cell 

rounding, processes essential to mitosis [254]. An associated and important function of 

cyclin B1/Cdc2 is the regulation of DNA replication, transcription and translation during M 

phase by phosphorylation of proteins regulating termination of these processes [255]. The 

sequential activation of cyclin/Cdk complexes therefore ensures correct entry and 

progression through the cell cycle. It is therefore not surprising that multiple regulatory 

mechanisms cooperate in order to guarantee their appropriate cell cycle control. 

 

1.7.1 Regulation of cyclin/Cdk activity  

Cyclin/Cdk activity is further regulated by a complex network of posttranslational 

modifications of the Cdks. For example, phosphorylation of cyclin/Cdks by Cdk activating 
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kinase (CAK; reviewed in [256]), which itself is a cyclin/Cdk complex composed of cyclin H 

and Cdk7 [257] (Fig.1.16), changes the confirmation of Cdks thereby allowing their full 

activation. Such CAK-mediated phosphorylation can be removed by the dual specificity 

serine/tyrosine phosphatase KAP (CDK associated phosphatase) leading to the 

inactivation of cyclin/Cdk complexes [258]. Moreover, whilst phosphorylation of inhibitory 

sites on Cdk2 and Cdc2 by serine/threonine kinases Wee1 and Myt1 provide additional 

mechanisms to abrogate CDK activity [259,260], these inhibitory modifications can be 

counteracted by phosphatases of the Cdc25 family such as Cdc25B which 

dephosphorylates and therefore activates Cdc2 [261]. Interestingly, Cdc25 phosphatases 

are themselves targets for activation by Cyclin/Cdk complexes creating a positive 

feedback loop [262]. 

Temporally regulated expression and degradation of CKI represents an additional 

layer of regulation. At present, seven CKI have been described and these can be divided 

into two families: the Ink4 family (p15, p16, p18 and p19) and the Cip/Kip family (p21, p27 

and p57), reflecting their slightly different inhibitory mechanisms (Fig.1.16). Thus, whereas 

the Ink4 family proteins bind to Cdk4/6 to inhibit their binding to their cyclin partner, the 

Cip/Kip proteins have been shown to bind cyclin/Cdk complexes and directly inhibit their 

activity (reviewed in [263]). Like the cyclins and Cdks, CKI are regulated at the 

transcriptional, translational and posttranslational level, phosphorylation again being an 

important modification. For example, phosphorylation plays an important role in the 

inhibition of p27 which acts to regulate arrest of cells in G1. Thus, cyclin E/Cdk2 

complexes phosphorylate p27 at threonine 187 thereby targeting it for ubiquitination and 

degradation by the proteasome [264]. 

Indeed, phosphorylation of other proteins involved in cell cycle regulation, such as 

cyclin D1 and E2F, targets them for ubiquitination by specific E3 ligases and consequent 

proteasome-mediated degradation. Thus, both, p27 and E2F are ubiquitinated by the SCF 

(Skp2) E3 ligase complex [264,265] and consistent with this, one of the mechanisms 

utilised by the transcription factor, c-Myc to promote cell cycle progress is the upregulation 

of Cul1 expression. Cul1 is part of the SCF complex and an increase of Cul1 and thereby 

SCF complexes increases the ubiquitination and degradation of p27, revealing another 

level of cell cycle control mediated through activation of E3 ligases [266].  

 

1.7.2 c-Myc and its role in cell cycle regulation 

c-Myc is a transcription factor which plays multiple roles in various cellular processes 

such as proliferation, differentiation, growth and adhesion (reviewed in [267]) and its 

importance has been underlined by many studies implicating an oncogenic role for c-Myc 
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in human cancers [268]. Functional c-Myc forms heterodimers with its binding partner Max 

through a basic-region/helix-loop-helix/leucin-zipper (bHLHZip) binding domain [269]. This 

domain acts not only as a protein-protein interaction platform but also as the DNA binding 

site for its canonical CACGTG responsive element sequence [270]. Max was found to be 

required not only for c-Myc binding to this canonical DNA sequence but also for binding to 

other non-canonical binding sites to which the complex is recruited by other proteins [271]. 

After binding to DNA, c-Myc/Max complexes can act as transcriptional activators or 

repressors depending on the co-factors involved [272]. Indeed, it has been estimated that 

c-Myc might be involved in the regulation of up to 15% of the genes in the genome [273], 

although to date, only a small percentage of the potential targets of c-Myc-mediated 

transcriptional regulation have been investigated. Nevertheless, it has been shown that the 

potential of c-Myc to drive proliferation is partly due to its ability to activate the transcription 

of genes such as Cdk4 and cyclin D2 and to repress the expression of cell cycle inhibitors 

such as p15, p27 and p21 [274-278]. 

 

1.8 Apoptosis 

 

Cellular necrosis constitutes the accidental and passive death of cells resulting from 

environmental influences such as mechanical pressure, heat or toxins. By contrast, 

apoptosis is an actively induced and highly regulated mechanism of cell death that is a 

pivotal process in development as well as maintenance of cellular homeostasis in many 

organisms. Apoptosis is of special importance in the immune system as it regulates 

processes like negative and positive selection during lymphocyte development as well as 

removal of activated T and B cells at the end of an immune response. However, the 

majority of our understanding of this controlled cell death mechanism has come from 

studies using Caenorhabditis elegans, the organism in which the role of caspases 

(cysteine-aspartic acid proteases) was first discovered. Caspases are a family of cysteinyl 

aspartate proteases which are usually present in the cell in an inactive pro-caspase form. 

Cleavage of pro-caspases preferentially happens at the C-terminal end of a X-X-X-Asp 

motif leading to the activation of the caspase. Caspases themselves then cleave various 

substrates such as ICAD/DFF45, the inhibitor of caspase-actived DNAse (CAD), thereby 

activating this DNAse leading to fragmentation of genomic DNA, a hallmark of apoptosis 

[279,280]. Moreover, caspases cleave and thus inactivate PARP (poly(ADP-ribose) 

polymerase) and DNA-PK (DNA-dependent protein kinase), two molecules that usually act 

to maintain the integrity of genomic DNA. Caspases are also responsible for cleaving and 

activating pro-apoptotic Bcl-2 family members such as Bid thereby driving mitochondrial 
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disruption. Additionally, caspases contribute to the disassembly of the cytoskeleton by 

cleaving lamin, fodrin and gelsolin [280] with the overall outcome of caspase activation 

being the “orderly” disassembly of the cells. A major feature of the controlled break-down 

of cells is the creation of apoptotic bodies which are membrane bound cellular fragments 

that prevent plasma membrane breakdown and unwanted release of intracellular proteins. 

The apoptotic bodies are recognised and taken up by phagocytes such as macrophages 

or neutrophils without causing activation of these cells thereby averting unnecessary and 

potentially harmful inflammation [281]. 

Mammalian cells utilise two major apoptosis-inducing pathways: the extrinsic 

pathway through “death receptor” ligation or the intrinsic pathway functioning at the level of 

the mitochondria. 

 

1.8.1 The extrinsic apoptotic pathway 

The extrinsic pathway is initiated by ligation and signalling through so called “death 

receptors”. These include Fas (CD95) and its ligand FasL (CD178), the “death receptors” 

DR4 and 5 and their ligand TRAIL (TNF-related apoptosis inducing ligand) as well as the 

TNF-receptor and TNFα [279]. A feature that all of these death receptors share is the 

death domain (DD) [279] which recruits downstream effectors of the prototypic death 

receptor signalling pathways (Fig.1.17). For example, the initial event in Fas signalling is 

the binding of FasL to its receptor which induces the trimerisation of Fas molecules in the 

membrane. This in turn will lead to the recruitment of the DISC (death-inducing signalling 

complex), a multimeric complex consisting of Fas, the adaptor protein FADD (Fas-

associated death domain) as well as inactive pro-caspase 8 [282]. FADD is a common 

adaptor protein shared amongst all the death receptor pathways which interacts with Fas 

through its DD. The binding of FADD to Fas initiates a conformational change which 

exposes the death effector domain (DED) of FADD allowing it to recruit pro-caspase 8 

[282]. Following recruitment to the Fas receptor complex, pro-caspase 8 is activated by 

self-cleavage and in turn cleaves pro-caspases 3, 6 and 7. These effector caspases then 

execute the apoptosis process by cleaving their substrates including DNA repair enzymes, 

structural proteins as well as endonuclease inhibitors [279]. The other important substrate 

of caspase 8 is Bid, a pro-apoptotic member of the Bcl-2 family of proteins. Caspase 8 

cleaves Bid creating the truncated form which can then translocate to the mitochondria 

and induce the intrinsic pathway of apoptosis [282]. This cross-regulation of the extrinsic 

and intrinsic pathway seems to be crucial in hepatocytes, but is apparently less important 

in lymphocytes [282]. 
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The importance of apoptosis in the regulation of many pivotal processes such as cell 

homeostasis makes it necessary to tightly control its initiation. There are multiple levels of 

regulation in the “death receptor” signalling pathways including transcriptional regulation of 

Fas and FasL expression, expression of Fas isoforms lacking the transmembrane or DD 

domain and production of soluble FasL [279]. Another major regulatory mechanism is the 

expression of FLIP, an inhibitor of caspase 8 activation. FLIP displays a similar structure to 

caspase 8 and performs its inhibitory function by binding to the DISC complex thereby 

hampering its ability to recruit and activate caspase 8 [283]. 

It is known that B cells can express Fas on their surface and be killed by Fas-ligation 

induced apoptosis [284] but the physiological importance of Fas signalling in B cells 

depends on the maturation stage of the cells. Thus, whilst Fas does not seem to play a 

major role in developing B cells and negative selection of immature B cells [285], it is 

involved in the deletion of low affinity-BCR expressing B cells in the germinal centre 

reaction which have not successfully undergone affinity-maturation of their antigen 

receptors [286]. 

 

1.8.2 The intrinsic apoptotic pathway 

The key event in the intrinsic pathway is the disruption of the mitochondrial outer 

membrane potential culminating in the permeabilisation of the mitochondria and this is 

termed MOMP (mitochondrial outer membrane permeabilization). It can be induced by 

various different events, such as viral infection, DNA damage or removal of growth factors 

and activation of this intrinsic pathway appears to be mainly regulated by the Bcl-2 family 

of proteins. This family consists of pro- and anti-apoptotic members which have been 

classified according to the number and combination of Bcl-2 homology (BH) domains in 

their structure. For example, the anti-apoptotic family members Bcl-xL, Bcl-2, Bcl-w Mcl-1 

and A1 share up to 4 BH domains (BH1-4) whereas the pro-apoptotic molecules of the 

“Bax, Bak” or “multi-BH domain’’ family (Bax, Bak and Bok) contain 3 BH domains. The 

other pro-apoptotic family are the BH3-only proteins (Bid, Bad, Bik, Hrk, Bim, Noxa, Puma 

and Bmf) which, as their name implies, only contain the BH3 domain (reviewed in [285]). 

The two pro-apoptotic molecules Bax and Bak are the major transducers of MOMP 

(Fig.1.18); how exactly these two molecules induce MOMP is still not fully elucidated yet, 

but it is thought that they might cause the formation of pores in the mitochondrial 

membrane. Ultimately, the leakage through the mitochondrial membrane will lead to the 

release of molecules usually retained in the space between the inner and outer 

mitochondrial membrane [285], the most important of these mediators are cytochrome C 

and DIABLO (also called Smac). Thus, upon release into the cytosol, cytochrome C binds 



 

 38 

to APAF-1 (apoptotic peptidase activating factor 1) initiating formation of the apoptosome, 

a heptameric protein ring made up of cytochrome C and APAF-1 molecules, that activates 

pro-caspase 9 [287]. By contrast, the release of DIABLO constitutes an apoptosome-

independent pathway leading to apoptosis in that DIABLO sequesters caspase inhibitors 

such as X-linked inhibitor of apoptosis proteins (XIAP), a family of proteins that bind and 

inhibit caspases such as caspase 9 and 3. Thus, through binding of DIABLO, XIAP will 

release the caspase it was bound to allowing it to be activated [285].  

The precise events regulating activation of Bax and Bak are not fully known but there 

are currently two major models of the mechanisms involved (Fig.1.19). The first model 

suggests that Bax and Bak can directly interact with BH3-only proteins, which in turn 

activate Bax and Bak [288]. Alternatively, the second model argues that Bax and Bak are 

normally bound to anti-apoptotic Bcl-2 family members until induction of apoptosis and 

hence activation of BH3-only proteins leads to the displacement and activation of Bax and 

Bak [285]. What both models have in common is the need for the presence and activity of 

BH3-only proteins and this explains why the expression and activation of these proteins is 

highly regulated and only induced upon detection of apoptotic signals. For example, Noxa, 

Puma and Bim expression is upregulated downstream of DNA damage, growth factor 

deprivation and ER stress and the increase in expression of these molecules is achieved 

by the activation of transcription factors such as p53 or FOXO3A [289-293]. Post-

translational modifications, proteolysis or release from complexes provide other additional 

important regulatory mechanisms controlling the activity of Bcl-2 family members [285]. 

Moreover, for example, upregulation of Bcl-xL can protect WEHI-231 cells from BCR-

induced apoptosis [294] and so in the end, the overall balance between pro- and anti-

apoptotic signalling decides the fate of the cell. 

 

1.8.3 Caspase-independent execution of apoptosis 

Caspases and their role in the execution of apoptosis have long been the major 

focus, but in recent years it has become obvious that other proteases can play important 

roles in the final stages of apoptosis. The two classes discussed in this context are 

calpains and cathepsins. Calpains are calcium-dependent cysteine proteases that are 

active at neutral pH whereas cathepsins generally prefer an acidic environment, such as 

the lysosomes, for optimal function. However, upon activation of apoptotic signalling 

cathepsins have been found to be released into the cytosol. Thus, cathepsin D release into 

the cytosol precedes the oxidative stress-induced apoptosis of fibroblasts [295]. Moreover, 

another cathepsin isoform, cathepsin B was found to be released into the cytosol upon 

TNFα-mediated induction of apoptosis in hepatocytes [296]. Calpains and their precise 
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effector functions in apoptosis are still not well studied but some that are known include a 

role in cell fusion and motility by remodelling the cytoskeleton, degradation of cell cycle 

regulators, degradation of filamin, talin, and spectrin and modulation of signalling 

molecules such as PKC [297]. A role for calpains in apoptosis has been shown in many 

different cells and systems such as ionomycin-induced apoptosis of a human carcinoma 

cell line [298], dexamethasone-induced apoptosis in thymocytes [299], drug-induced death 

of HL-60 cells due to calpain-mediated cleavage of Bax [300] and radiation-induced 

apoptosis of the Burkitts' Lymphoma cell line BL30A [301]. Moreover, it seems that the 

calpain and caspase system are not necessarily exclusive to each other but rather seem to 

be cross-regulatory as shown by the inactivation of the calpain inhibitor calpastatin by 

caspases during Fas-induced apoptosis in Jurkat and U937 cells [302]. Calpain in turn is 

able to cleave pro-caspase 3 and 9 thereby activating them in a caspase-independent 

fashion [303]. 

Like calpains, cathepsins have been implicated in various systems of apoptosis in a 

range of cell types and in addition, cathepsin B has been shown to be able to induce 

chromatin condensation, a morphological feature of apoptosis in a cell-free system [304]. 

Thus, under conditions of TNFα-induced apoptosis of hepatocytes, cathepsin B was 

shown to be released from lysosomes in a caspase 8-dependent manner, resulting in 

cytochrome C release from mitochondria. Such cytochrome C release as well as caspase 

activation and resultant apoptosis were markedly reduced in cells from cathepsin B-

deficient mice [296]. Likewise, inhibition of cathepsin B has been reported to reduce p53-

induced apoptosis in myeloid leukemic cells [305] and it was similarly shown to be involved 

in the intrinsic apoptotic pathway induced by Bacillus Calmette-Guérin (attenuated Myco-

bacterium bovis) in cancer cell lines [306]. Moreover, studies in this laboratory have 

demonstrated the involvement of cathepsin B in BCR-induced apoptosis of WEHI-231 

cells, although in this system cathepsin B, rather than caspases, seems to be the main 

executioner-protease [307]. Besides cathepsin B, another isoform, cathepsin D, has also 

displayed the potential to cleave molecules important in the last stages of apoptosis. Thus, 

in neutrophils cathepsin D cleaves and thereby activates caspase 8 under inflammatory 

conditions and might therefore play an important role in neutrophil apoptosis and hence 

resolution of inflammation [308]. 

 

1.9 Aims and Objectives 

 

The core aim of this study was to characterise the differential signalling mechanisms 

underlying tolerance induction employed by B cells at distinct stages of development. In 
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particular, the primary objective was to investigate the signals that regulate commitment to, 

and rescue from, negative selection of immature B cells in the bone marrow (central 

tolerance). In addition, it was planned to compare these signals with those of a mechanism 

involved in peripheral tolerance: specifically, the homeostatic regulation of mature B cells 

provided by FcγRIIb-mediated negative feedback inhibition of B cell activation. Finally, it 

was proposed to investigate whether defects in the latter homeostatic mechanism of 

peripheral tolerance played a contributing role to the autoimmune responses of patients 

with autoimmune inflammatory diseases such as rheumatoid arthritis and systemic lupus 

erythematosus. 

 

1.10 Figures and Tables 
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Figure 1.1 Structural features of antibodies 

Antibodies consist of four chains, two heavy (55-70kD) and two light chains (~24kD) linked 

by disulphide bonds. Both heavy and light chains are composed of constant (C) and 

variable (V) regions which contain multiple immunoglobulin (Ig) domains. Antibodies can 

further be divided into their Fc and Fab regions. Antibody binding is conferred by the Fab 

region which contains the V regions of the heavy and light chains. These opposing regions 

create the antibody binding cleft, the site of antigen binding. The Fc portion binds to Fc-

receptors which initiate signalling leading to various responses such as activation, 

inhibition or degranulation of various immune cells, depending on the cell class, antibody 

isotype as well as Fc-receptor isoforms. 

There are five antibody isotypes: IgA, IgD, IgE, IgG and IgM. These isotypes differ 

concerning the number of Ig domains in their constant region as well as their ability to form 

multimeric structures. Each isotype has a defined set of functions increasing the versatility 

of B cell responses. 
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Figure 1.2 Somatic V(D)J recombination 

Somatic recombination of immunoglobulin heavy and light chains differs slightly. 

Recombination of the heavy chain is achieved by two separate recombination events 

joining firstly the D and the J segments followed by joining the V segment to the D-J 

segment. Due to the lack of D segments, light chain rearrangement is achieved by a single 

recombination event which joins a V segment with a J segment. 

Following somatic recombination the genes are transcribed and spliced to join up the parts 

encoding the variable region with the exons encoding the constant region. Finally, the RNA 

is translated into heavy or light chain proteins which are then assembled to yield functional 

antibodies. 
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Figure 1.3 Basic structure of the BCR 

The BCR consists of an antigen-binding component – the membrane bound Ig molecule – 

and the signal-transducing units Igα and Igβ. The Ig molecule is made up of two heavy and 

light chains which are composed of constant and variable regions, the latter containing the 

so-called CDRs (complementarity-determining regions). CDRs are areas of high variabilty 

where most mutations occur during somatic hypermutation. The Ig molecule itself is not 

able to signal and therefore needs Igα and Igβ. Those proteins both contain ITAMs 

(immunoreceptor tyrosine-based activation motif), which confer their signalling ability.  
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Figure 1.4 B-2 B cell development 

The development of B cells is characterised by changes in surface receptor expression 

and Ig gene rearrangement which allows the identification of different developmental 

stages. The first stage at which cells can be identified as being committmed to the B cell 

lineage is the pre-pro-B cells stage at which little or no immunoglobulin (Ig) rearrangement 

occurs. The transition from progenitor CLP (common lymphoid progenitor) to committed B 

cell is dependent on multiple transcription factors including Pax5, EBF and PU.1. 

Rearrangement of the heavy chain is first induced at the pre-pro B cell stage, but 

functional heavy chain is not expressed until the pre-B cells stage. Rearranged µ heavy 

chain is expressed on the surface in combination with λ5 and VpreB (surrogate light chain) 

to yield the pre-BCR. This receptor is associated with Igα and Igβ (CD79a/b) on the 

surface of the cell and signalling via the pre-BCR induces heavy chain allelic exclusion and 

initiates light chain rearrangement. Surface expression of functional µ heavy and light 

chain complexes (IgM) is a characteristic feature of the immature B cell stage. Up to this 

point, B cell development has been Ag-independent, however from the immature B cell 

stage onwards the clonal selection processes are Ag-dependent. Immature B cells which 

survive negative selection are released from the bone marrow into the circulation to 

migrate to the secondary lymphoid organs. The initiation of IgD expression on B cells 

indicates their development into transitional B cells which need BCR- and BAFF-

dependent signalling to progress to their next developmental stage, mature naïve B cells. 

A mature B cell then has two main developmental possibilities after activation – becoming 

an antibody secreting plasma cell or a memory B cell. 
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Figure 1.5 Structure of the pre-BCR and BCR 

At the pre-B cell stage rearranged µ heavy chain in combination with λ5 and VpreB 

(surrogate light chain) are expressed on the surface associated with Igα and Igβ compared 

to conventional light chains in the mature BCR. A functional pre-BCR is necessary to allow 

the B cells reach their next developmental stage. The association of the rearranged heavy 

chain with the surrogate light chain substitutes provides a mechanism to ensure that only 

B cells expressing a correctly folded heavy chain can develop any further.  
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Figure 1.6 The germinal centre reaction 

During a T cell-dependent response naïve mature B cells will migrate from the T cell rich 

areas of secondary lymphoid organs into the follicular mantle (1) where they start forming 

the dark zone of the germinal centre. They undergo rapid proliferation, downregulate 

surface Ig expression and undergo somatic hypermutation (2). After having mutated their 

Ig the cells stop dividing, express their new receptor and migrate into the light zone 

following a chemokine gradient (3). Follicular dendritic cells in the light zone retain antigen 

and present it to all the B cells, but only centrocytes with high affinity receptors are 

selected and allowed to survive whereas low affinity or self-reactive BCR-expressing cells 

undergo apoptosis. The positively selected centrocytes interact with TH cells thereby 

receiving CD40-mediated signals leading to isotype switching and development into either 

memory B cells or plasma cells (4).  
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Figure 1.7 B cell development 

B cells are divided into three subsets – follicular B cells, B-1 B cells and marginal zone 

(MZ) B cells. The development of these separate lineages has not been fully elucidated, 

but a general model has been proposed based on recent findings. Follicular B cells and 

MZ B cells, the so called B-2 B cells, both appear to originate from the same bone marrow 

precursor. The development of follicular and MZ B cells is thought to divide into the two 

subsets at the T2 transitional B cells stage. Follicular B cells will recirculate through lymph 

nodes and the spleen whereas MZ B cells are mainly sessile and stay in the marginal zone 

of the spleen. Separate B-1 B cell progenitors have recently been identified, placing this 

subset in its own developmental pathway diverging from B-2 B cells as early as the pro-B 

cell stage. 
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Figure 1.8 Tolerance checkpoints in B cell developm ent 

Activation of autoreactive B cells can play an important role in autoimmune diseases. In 

healthy humans these pathogenic cells are either absent or kept in an inactive state. 

Studies in humans and mice have found that self-reactive cells are depleted from the B 

cell pool at multiple points during the development. Thus, the percentage of autoreactive 

clones is reduced before cells enter the immature B cell stage and again after having left 

the bone marrow and hence before they develop into mature naïve cells. Not only are self-

reactive B cells depleted but they are also prevented from entering certain developmental 

stages. Self-reactive B cells have been found to be excluded from the IgM+ memory cell 

pool and the GC reaction. Moreover, these cells might not develop into plasma cells and 

even though autoreactive IgG+ memory B cells are present in healthy humans, they are 

prevented from producing pathogenic autoantibodies. 
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Figure 1.9 BCR ligation initiates three major signa lling cascades 

Upon BCR ligation, three major signalling pathways are initiated: the PI3 kinase, PLCγ and 

MAP kinase pathways. PI3 kinase catalyses the phosphorylation of inositol lipids like PI, 

PI-(4)-P and PI-(4,5)-P2 thereby producing PI-(3)-P, PI-(3,4)-P2 and PI-(3,4,5)-P3 (PIP3), 

molecules normally present in the cell at very low levels and whose concentration 

increases after PI3 kinase activation. PIP3 is able to recruit PH (pleckstrin homology) 

domain-containing proteins, such as PLCγ, Btk, Vav, PDK1/2 and Akt, to the membrane 

where they can be activated. PLCγ is recruited to the BCR-ITAMs, possibly by BLNK, to 

bring it into close proximity with Btk and Syk. This leads to PLCγ phosphorylation and 

activation and subsequent downstream signalling. PLCγ produces DAG and IP3, two 

important second messengers that activate protein kinase C (PKC) and increase 

intracellular calcium levels, respectively. The ERK MAP kinase signalling cascade 

becomes activated due to the recruitment of Sos (son of sevenless), a guanine nucleotide 

exchange factor which catalyses the exchange of GDP for GTP on Ras leading to its 

activation. The next step in this signalling cascade is the derepression of Raf by activated 

Ras thereby inducing its kinase activity. Raf is a MAPKK and therefore able to 

phosphorylate MEK1/2 which in turn activate ERK1/2.  
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Figure 1.10 The MAPK signalling cascade 

The MAP kinases (MAPK) are serine/threonine protein kinases which regulate multiple 

cellular responses including proliferation, apoptosis and differentiation. They can be 

separated into three groups: The extracellular signal-regulated kinases (ERK MAP kinase), 

the c-Jun N-terminal kinases (also known as stress activated protein kinases (JNK/SAPK) 

and the p38 MAP kinases. Activation of the MAP kinases is achieved by sequential 

activation of upstream kinases MAPKKK (MAPK kinase kinase) and MAPKK (MAPK 

kinase) ultimately leading to the phosphorylation of MAPKs on tyrosine and threonine 

residues located in a T-X-Y motif, the X being different in each MAPK group. Active 

MAPKs phosphorylate and thereby activate transcription factors such as Elk-1, c-Myc and 

c-Jun and numerous other cytoplasmic and nuclear substrates like cPLA2. Another 

important class of proteins regulated by MAPK-dependent phosphorylation are the MAPK-

activated protein kinases (MK) such as MAPKAPs and MNKs. 
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Figure 1.11 CD19 signalling 

CD19 is expressed at the surface of B cells as a receptor complex together with CD21 and 

CD81. Binding of ligand to the CD21/CD81/CD19 receptor complex will lead to 

phosphorylation of tyrosine residues in CD19 allowing it to recruit and activate PI3 kinase 

as well as Vav which in turn induce Akt and PLCγ2 signalling. Therefore, CD19 contributes 

to the activating signals and hence lowers the signalling threshold of the BCR. 

 

 

 



 

 52 

Figure 1.12 CD40 signalling in mature B cells 

Ligation of CD40 with CD154 initiates the recruitment of TRAFs to the cytoplasmic portion 

of the receptor. TRAFs 2, 3, 5 and 6 can then activate multiple signalling pathways 

including the PLCγ2, PI3 kinase and MAPK pathways. The overall outcome of all these 

signals is the inhibition of apoptosis through NF-κB-dependent upregulation of Bcl-xL and 

FLIP, and the initiation of cell cycle progression by downregulating levels of p27 and 

upregulating Cdk4/6.  
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Table 1.1 The family of Fc γ receptors 

Murine and human cells express a variety of different activatory and inhibitory Fc receptors 

for the IgG subclass of antibodies. There are some major differences between Fcγ 

receptors expressed in mice and humans such as the lack of FcγRIIA and C in mice and 

the expression of FcγRIV on murine but not human cells. The expression of Fcγ receptors 

in mice and humans can be found on many cell lineages such as macrophages, 

neutrophils, eosinophils, B cells and NK cells. 
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Figure 1.13 BCR-mediated sigalling is inhibited by co-ligation of Fc γRIIb 

FcγRIIb is the low affinity receptor for the Fc portion of IgG. Cross-linking of BCR and 

FcγRIIb inhibits BCR-mediated activation and proliferation of B cells. At the proximal 

signalling level, the co-ligation of BCR and FcγRIIb induces Lyn to tyrosine-phosphorylate 

the ITIM in the cytoplasmic portion of FcγRIIb. The main signal transducer recruited to the 

phosphorylated ITIM is SHIP. SHP-1 and -2 are also recruited by FcγRIIb but do not 

appear to be essential for negative signalling. By contrast, SHIP signalling appears to 

effect negative signalling by dephosphorylating PIP3 and consequently reducing 

recruitment of pro-survival and proliferation-promoting PH-domain containing proteins. 

Furthermore, FcγRIIb also recruits PTEN (inositol 3’ phosphatase) to further antagonise 

PI3 kinase signalling. The ERK MAPK cascade is also inhibited by FcγRIIb signalling due 

to the direct inhibition of Shc/Gbr2 interaction by SHIP as well as recruitment of p62 Dok 

which activates RasGAP thereby reducing Ras activation. Additionally, BCR/FcγRIIb 

ligation recruits PAC-1, an ERK-specific dual phosphatase, inducing dephosphorylation 

and thereby inactivation of ERK. FcγRIIb signalling has also been found to decrease 

calcium signalling, but the underlying signalling mechanisms are not yet fully elucidated. 
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Figure 1.14 Ubiquitination and proteasomal degradat ion 

Ubiquitination of target proteins consists of three major steps:  

1. The initial activation of ubiquitin is catalysed by E1 enzymes in a process that 

requires energy in the form of ATP. The activated ubiquitin molecule is then 

transferred onto the E1 enzyme itself via a thioester linkage. 

2. The ubiquitin is then transferred from E1 to the ubiquitin-conjugating enzyme E2 by 

trans-thio-esterification. 

3. The last step in the process involves the E3 enzyme which functions as the 

substrate recognition unit of the complex. The E3 ligase forms a complex with E2-

bound ubiquitin as well as the target protein allowing the transfer of ubiqutin to a 

lysine of the target protein. 

If no further modification occurs the protein is classified as mono-ubiquitinated. But 

following this initial step the ubiquitin can also be linked to further ubiquitins creating poly-

ubiquitination. The outcome of conventional polyubiqutination via lysine 48 is proteasome-

dependent degradation of the protein whereas other forms of poly-ubiquitination (such as 

via lysine 63) or multi-monoubiquitination can target substrates for endocytosis and 

lysosomal degradation as well as influencing their signalling properties by changing their 

transduction interaction partners. 
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Figure 1.15 The cell cycle 

The cell cycle consists of four major stages. Cells enter the cell cycle at the G1 phase and 

following growth and given the right signals, will enter S phase in which they will replicate 

their DNA, followed by another growth phase in the G2 phase. The last step is mitosis (M 

phase) and the division of the DNA and cellular contents between two daughter cells. The 

so called restriction point during arrest in G1 is mainly regulated by activation of cyclin/Cdk 

complexes which hyperphosphorylate the Retinoblastoma (Rb) proteins thereby releasing 

the transcription factor E2F. This will initiate transcription of genes necessary for entry and 

progress through S phase. Each stage of the cell cycle is highly regulated to stop 

damaged cells from entering the cell cycle and allowing the proper progression and 

completion of the previous stages before entry into the next one. One level of regulation is 

provided by the Ink and Cip/Kip cell cycle inhibitors which, by inhibiting cyclin/Cdk 

complexes, can stop progresssion of cells through the cell cycle at various stages. 
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Figure 1.16 Regulation of the cell cycle 

(A) The cell cycle is divided into four phases. After entering the cell cycle from the 

quiescent state (G0) the cells’ initial growth takes place during G1 phase. This is followed 

by DNA replication (S phase) and another shorter growth phase (G2) after which the cells 

separate into two daughter cells (M phase) with each inheriting a full set of chromosomes. 

Checkpoints at the G1-S boundary and G2-M boundary ensure that cells only progress 

through cell cycle and divide under appropriate conditions and in the absence of DNA 

damage. Such checkpoints involve regulation by Cdk/cyclin complexes. 

(B) Activation of Cdk/cyclin complexes is regulated at multiple levels. Phosphorylation by 

CAK activates Cdks whereas Wee1 and Myt phosphorylate inhibitory sites on Cdk2 and 

Cdc2. Phosphatases of the Cdc25 family counteract Wee and Myt1 by dephosphorylating 

the inhibitory residues. The Cdk inhibitors are divided into two classes: The Ink4 family of 

proteins inhibit the assembly of cyclin D and Cdk4/6, the Cip/Kip family inhibitors block the 

activity of pre-assembled cyclin/Cdk complexes. 
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Figure 1.17 Extrinsic pathway of apoptosis - Fas/Fa sL signalling 

Ligation of the Fas receptor by its ligand FasL induces the oligomerisation of Fas initiating 

the assembly of the DISC which consists of the Fas associated FADD proteins and 

consequently recruits pro-caspase 8. Interactions between Fas and FADD are via the 

proteins death domains (DD), whereas FADD recruits pro-caspase 8 using its death 

effector domain (DED). Following recruitment to this complex, pro-caspase 8 is then 

activated by autocleavage. FLIP is a specific inhibitor of DISC assembly due to its similar 

structure to pro-caspase 8, allowing it to compete for DED binding and thereby displacing 

pro-caspase 8. Active caspase 8 can activate effector caspases 3, 6 and 7 which in turn 

cleave multiple targets to induce the hallmark changes of apoptosis including chromatin 

condensation, nuclear shrinkage and cytoskeletal collapse. Caspase 8 also cleaves Bid to 

create active truncated Bid (tBid) which localises to the mitochondria thereby initiating the 

intrinsic mitochondrial apoptosis pathway.  
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Figure 1.18 Intrinsic/mitochondrial pathway of apop tosis 

Pro-apoptotic stimuli induce the activation of Bax and Bak and these two pro-apoptotic Bcl-

2 family members then lead to pore-formation at the mitochondria and initiation of 

mitochondrial outer membrane permeabilization (MOMP). Consequently, mitochondrial 

proteins, such as cytochrome C and DIABLO/Smac are released. In the cytoplasm 

cytochrome C can form complexes together with APAF-1. These oligomers, the so called 

apoptosome, activate pro-caspase 9 and subsequently effector caspases. One of the other 

molecules released from the mitochondria, DIABLO, carries out its pro-apoptotic function 

by blocking the binding of XIAP to caspases 3 and 9 thereby releasing them from inhibition 

and hence allowing them to cleave their substrates to induce disassembly of the major 

cellular structures required to induce apoptosis. 
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Figure 1.19 Models for the regulation of apoptosis by Bax-Bak Bcl-2 family proteins 

Currently, the precise mechanism of apoptosis transduced by the Bax-Bak Bcl-2 family 

members is not known but there are two major models to explain their role in the 

regulation of mitochondrial stability and apoptosis. Model 1 proposes that apoptotic stimuli 

will lead to the upregulation of BH3-only proteins which will then be able to directly activate 

Bax and Bak, resulting in the disruption of the mitochondrial membrane and consequent 

generation of the apoptosome. In this model, the upregulation of BH3-only proteins and 

direct activation of Bax and Bak would be able to overcome the positive effects of anti-

apoptotic Bcl-2 family members present in the cell. By contrast, Model 2 suggest that anti-

apoptotic Bcl-2 family members are bound to Bax and Bak in viable cells thereby stopping 

them from being activated and translocated to the mitochondria. In this case, apoptotic 

signalling BH3-only proteins are upregulated and can then compete for binding to anti-

apoptotic Bcl-2 proteins subsequently releasing Bax and Bak which can relocalise to the 

mitochondria and initiate the apoptotic process. 
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2 Materials and Methods 

 

2.1 Cell culture reagents, antibodies and inhibitor s 

 

All cell culture reagents were purchased from Invitrogen Life Technologies. All other 

reagents were obtained from Sigma-Aldrich unless otherwise stated. For a full list of 

antibodies used, refer to Table 2.1, but to target particular receptors on murine B cells, the 

following antibodies were used as follows. For functional studies, AffiniPure F(ab’)2 

fragments of goat anti-mouse IgM (H+L) antibodies (Jackson ImmunoResearch 

Laboratories) were used at 50 µg/ml to cross-link the BCR on mature B cells. By contrast, 

intact AffiniPure rabbit anti-mouse IgG+IgM (H+L) antibodies (Jackson ImmunoResearch 

Laboratories) were used at 75 µg/ml to cross-link the BCR and FcγRIIb on mature B cells. 

However, for Western Blotting studies, the BCR was ligated by a rat anti-mouse IgM (clone 

B7.6, made in house) mAb at 50 µg/ml, FcγRIIb was ligated by a rat anti-mouse FcγRIIb 

(clone 2.4G2, made in house) mAb at 50 µg/ml, and donkey anti-rat IgG (H+L) antibodies 

(Jackson ImmunoResearch Laboratories) at 75 µg/ml were used to cross-link the rat mAbs 

and hence the BCR and FcγRIIb. Blocking Fas/FasL interactions was achieved by adding 

5 or 10 µg/ml armenian hamster anti-FasL (anti-CD178) antibody (BioLegend) to the 

cultures with armenian hamster IgG used as an isotype-specific control antibody 

(BioLegend). The rat anti-mouse IgM (clone B7.6) antibody was also used to cross-link the 

BCR on WEHI-231 cells at concentrations between 0.0001 and 10 µg/ml. To antagonise 

the anti-IgM-mediated growth arrest signal in WEHI-231 cells, rat anti-mouse CD40 (clone 

FGK 45, made in house) mAb was used at 10 µg/ml. Unless otherwise specified, cell 

signalling inhibitors were used at the following concentrations. The MEK-specific inhibitor 

PD98059 (Calbiochem) and the PI3 kinase-specific inhibitor LY294002 (Calbiochem) were 

used at previously established optimal concentrations (10 µM and 1 µM, respectively) 

[309,310]. Likewise, the Caspase-8 Inhibitor II (Z-IETD-FMK) (Calbiochem) was used at 10 

µM whereas the proteasome inhibitor Z-Leu-Leu-Leu-al (MG132) (Sigma) was used at 0.5 

µM. 

 

2.2 Animals 

 

Mice on a BALB/c background, were used to isolate primary splenic B cells. These 

mice were maintained at the Central Research Facility (CRF), University of Glasgow. The 

mouse model of Systemic Lupus Erythematosus, MRL/MpJ-Faslpr, and its’ parental strain 
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MRL/MpJ, were kept at the Joint Research Facility (JRF), University of Glasgow and 

managed by Mairi McGrath, Dr. Angela Morton and myself. 

 

2.3 WEHI-231 immature B cell line 

 

The murine B cell lymphoma, WEHI-231 (obtained from ECACC) was cultured in 

RPMI-1640 medium supplemented with 5% foetal calf serum (FCS), 100 U/ml penicillin, 

100 µg/ml streptomycin, 50 µM β-mercaptoethanol and 2 mM L-glutamine at 37°C in a 5% 

(v/v) CO2 atmosphere at 95% humidity. WEHI-231.7 JM cells were transfected by 

electroporation with the pSFFV-Neo plasmid containing either the human bcl-xL gene 

(BclXL WEHI-231) or empty vector as control (Neo WEHI-231). Stable transfectants were 

selected for the acquisition of neomycin resistance by growth in the presence of the 

antibiotic G418 (500 µg/ml, Promega) and were a kind gift from Dr. C. B. Thompson 

(University of Pennsylvania). Stable transfectants were cultured in RPMI-1640 media 

supplemented with 5% FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, 50 µM β-

mercaptoethanol, 2 mM L-glutamine and 500 µg/ml G418 at 37°C in a 5% (v/v) CO2 

atmosphere at 95% humidity. 

 

2.4 B cell purification from mouse spleens 

 

Primary B cells were prepared from murine spleens using the anti-CD43-magnetic 

bead negative-selection method of Miltenyi Biotec. This method takes advantage of the 

fact that the CD43 antigen is expressed on nearly all leukocytes, except for immature and 

mature naive B cells. Negative selection of CD43-positive cells therefore removes all 

unwanted cells without manipulating the B cells themselves. To avoid non-specific 

labelling and increase survival of cells all procedures were carried out at 4°C. 

Briefly, spleens were removed and washed in RPMI-1640 media and then dissociated 

through nitex. The resultant single cell suspension was centrifuged (450 g, 10 min, 4 °C) 

and the pellet resuspended in 9 ml of red blood cell removal buffer (0.168 M NH4Cl, pH 

7.2). The suspension was incubated on ice for 7 min to permit red blood cell lysis and lipid 

precipitation. The supernatant was removed, carefully layered over 1 ml FCS in a fresh 

tube and centrifuged again (450 g, 10 min, 4 °C). The pellet was resuspended in 9 ml dead 

cell removal buffer (20 mM HEPES, DPBS (8 mM Na2HPO4, 1.5 mM KH2PO4, 140 mM 

NaCl, 0.3 mM KCl, 0.7 mM CaCl2, 0.5 mM MgCl2, pH 7) supplemented with 0.12 M sorbitol 

and 20 mM glucose and filtered through dead cell removal columns (absorbent cotton wool 



 

 63 

plugged, short-form, glass pasteur pipettes, wetted with 1 ml RPMI/5% FCS) into 1 ml 

FCS. The cells were centrifuged (450 g, 7 min, 4 °C) and resuspended in 50 ml ice-cold 

MACS buffer (phosphate buffered saline (PBS), 0.5% BSA, 2 mM EDTA) counted and 

pelleted again. The pellet was resuspended in ice-cold MACS buffer (2 x 108 cells/ml), 

incubated for 25 min at 4 ºC with anti-CD43 (Ly-48) beads (100 µl anti-CD43+ beads/ 2 x 

108 cells) and passed through a pre-separation filter. The cells were applied to a CS-type 

negative selection magnetic column (Miltenyi Biotec) in a strong magnetic field. Purified 

mature B cells (CD43-negative) were eluted from the column by washing with 50 ml ice-

cold MACS buffer. The cells were centrifuged, the pellet resuspended in RPMI-1640 

medium supplemented with 5% FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2 

mM L-glutamine. Live B cells were then counted by trypan blue exclusion. To assess the 

purity of the purified B cells a small aliquot of cells was stained for B220 (CD45R) as 

described in section 2.9.1 and expression of this surface marker analysed by FACS (FACS 

Calibur, BD). 

 

2.5 PBMC (peripheral blood mononuclear cells) purif ication and culture 

 

Human peripheral blood samples were collected at the Rheumatology Clinic 

(Glasgow Royal Infirmary) and informed consent was obtained from patients and healthy 

controls prior to research use. Venous blood (10-25 ml) was collected in heparinised tubes 

and either used straight away or stored at 4°C for a maximum of 12 h. PBMCs were 

isolated by Histopaque-1077 purification. In short, 9 ml blood diluted 1 in 2 with PBS was 

layered over 5 ml Histopaque in a 15 ml centrifuge tube. After 30 min centrifugation (430 g, 

21°C) the opaque layer containing the PBMCs was tra nsferred into a fresh tube and 

washed 3 times with PBS. PBMCs were cultured in RPMI-1640 media containing 5% FCS, 

100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine at 37°C in a 5% (v/v) CO 2 

atmosphere at 95% humidity. Cells were stimulated using the appropriate stimuli as 

indicated in the figure legends.  

 

2.6 Purification of human B cells from peripheral b lood 

 

Several purification procedures were established in an attempt to ensure the 

enrichment of B cells from human peripheral blood without their activation. After 

purification, human B cells were cultured in RPMI-1640 media containing 5% FCS, 100 

U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine at 37°C in a 5% (v/v) CO 2 
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atmosphere at 95% humidity. Cells were stimulated using the appropriate stimuli as 

indicated in the figure legends.  

 

2.6.1 Positive selection of CD19 + B cells using magnetic microbeads 

The PBMC-pellet was resuspended in 80 µl MACS buffer (PBS containing 0.5% 

FCS, 2 mM EDTA) per 107 cells and incubated with 20 µl anti-CD19 microbeads (Miltenyi 

Biotec) for 15 min at 4°C. The cells were washed on ce with 1-2 ml MACS buffer and the 

pellet was resuspended in 500 µl MACS buffer (up to 108 cells). The cell suspension was 

filtered through pre-separation filters (Miltenyi Biotec) and loaded on the equilibrated 

positive selection column (MS column) followed by three wash steps with 500 µl MACS 

buffer. The cells were eluted by removing the column from the magnet and flushing with 1 

ml MACS buffer. The purity (typically 85-95%) of the cells was assessed by staining with 

anti-CD20-PE antibody and FACS analysis (FACS Calibur, Becton Dickinson) (Fig 2.1). 

 

2.6.2 Purification of B cells by negative selection  using human B cell 

isolation kits 

PBMCs were resuspended in 40µl MACS buffer (PBS containing 0.5% FCS, 2 mM 

EDTA) and incubated with 10 µl biotin-antibody cocktail consisting of either anti-CD2, -

CD14, -CD16, -CD36, -CD43, and -CD235a antibodies (Human B cell Kit, Miltenyi Biotec) 

or anti-CD2, -CD14, -CD16, -CD27, -CD36, -CD43, and -CD235a antibodies (Naïve 

Human B cell Kit, Miltenyi Biotec) per 107 cells for 10 min at 4°C. After the addition of 30 µl 

MACS buffer and 20 µl anti-biotin microbeads per 107 cells the suspension was incubated 

for another 15 min at 4°C. The cells were then wash ed with 5-10 ml MACS buffer and the 

pellet was resuspended in 500 µl MACS buffer (up to 108 cells). The cell suspension was 

filtered through pre-separation filters (Miltenyi Biotec) and then loaded on an equilibrated 

LS-column and washed 3 times with 3 ml MACS buffer. The flow through was collected 

and the purity of the eluted cells was assessed by staining with anti-CD19-FITC and anti-

CD20-PE antibodies and FACS analysis (Fig. 2.2). Only about 18% of the PBMC 

population are CD19-FITC positive cells before the purification. Although this percentage 

increased during the purification process (31.8% human B cell isolation kit, 52.5% naïve 

human B cell isolation kit) (Fig. 2.2), a high percentage of other cell classes (T cells and 

monocytes), as shown by anti-CD3 and anti-CD14 staining, could still be detected after 

one round of such B cell enrichment (Fig. 2.3). 
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2.6.3 High speed FACS sorting of CD19 +, CD20+ B cells 

Peripheral blood was collected by venipuncture in tubes with 200 µl heparin and 

PBMC were prepared as described above. PBMC were then either single-stained with 

anti-CD20-PE, anti-CD19-FITC for positive selection protocols or a mixture of anti-CD3-

APC, anti-CD14-FITC and anti-CD56-PE for negative selection of T cells, monocytes and 

natural killer cells. The cells were stained in 100 µl FACS buffer (PBS containing 0.5% 

FCS, 2 mM EDTA) containing the antibodies (all at 1:50 dilution) for 15 min at room 

temperature. After two washes with 1 ml FACS buffer, the cells were subjected to FACS 

sorting using a FACSAria machine (BD). Positive selection of B cells proved superior in 

terms of purity of the B cells (~ 98.8% CD20-specific, ~99.3% CD19-specific) compared 

with that of populations obtained following negative selection of B cells (~87.8%) (Fig. 2.4). 

However, the B cells generated by all of the protocols showed low viability.  

 

2.7 Purification of antibodies from hybridoma cell lines 

 

Cells (B7.6 clone – rat IgG1; FGK45 clone – rat IgG2a, 2.4G2 clone – rat IgG2b) 

were cultured in RPMI-1640 medium supplemented with 10% FCS, 100 U/ml penicillin, 

100 µg/ml streptomycin, 2 mM L-glutamine and 50 µM β-mercaptoethanol. The antibody-

rich tissue culture supernatants were collected and the relevant Ab purified using protein 

G-sepharose columns filled with 1 ml protein G-sepharose beads (immunoglobulin 

capacity >20 mg/ml, Pierce) and washed with binding buffer (0.2 M NaH2PO4.2H2O, 0.2 M 

Na2HPO4.2H2O, pH 7.0). Tissue culture supernatant was loaded onto the column at 4oC 

and the column was washed with binding buffer to elute unbound protein. Immunoglobulin 

was then eluted in 0.5 ml fractions using elution buffer (0.1 M glycine, pH 2.7) into tubes 

containing 0.5 ml 1M Tris base-HCl (pH 8) to raise the pH to neutral levels. The protein 

concentration of each fraction was determined using spectrophotometry to measure the 

absorbance at 280 nm (an optical density of 1.4 was approximately equivalent to 1 mg/ml 

of protein). The protein-rich fractions were pooled and dialysed exhaustively in PBS at 

4°C. The resultant purified Abs were filter-sterili sed and stored at -20oC. 

 

2.8 Functional assays 

 

2.8.1 DNA synthesis assay 

To be able to divide, cells have to replicate their DNA. Thus, if cells are cultured in 

the presence of radio-labelled bases, such as thymidine, these are incorporated into their 

DNA with the levels of signal being proportional to the amount of DNA synthesised. The 
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most common label used to detect DNA synthesis is [3H]-labeled thymidine which can be 

detected by scintillation counting. Thus, for the measurement of DNA synthesis, cells (105 

cells/well human B cells, 5 x105 cells/well mature mouse B cells, 104 cells/well WEHI-231) 

were cultured in triplicate in round bottom microtitre plates in RPMI-1640  media 

supplemented with 2 mM L-glutamine , 1 mM sodium pyruvate, 1% nonessential amino 

acids, 50 µM β−mercaptoethanol, 100 U/ml penicillin, 100 µg/ml streptomycin, 5% FCS in 

the presence of the indicated stimuli at 37°C in a 5% (v/v) CO2 atmosphere at 95% 

humidity. [3H] thymidine (0.5 µCi/ well, Amersham) was added 4 (murine B cells) or 8 h 

(human B cells) before cell harvesting with an automated cell harvester (Perkin Elmer). 

Incorporated label was analyzed by liquid scintillation analysis (Microbeta Trilux, Perkin 

Elmer). Data are presented as cpm +/- SD. 

 

2.9 FACS analysis 

 

2.9.1 Staining for surface markers 

Aliquots of cells (105-106 per sample) in 5 ml polystyrene tubes (Falcon, BD) were 

washed with 200 µl cold FACS buffer at 450 g for 5 min at 4°C. Cells were re-suspended 

in 200 µl Fc receptor (FcR) blocking buffer (anti-CD16/32, clone 2.4G2, hybridoma 

supernatant, 10% mouse serum, 0.1% sodium azide) containing the appropriate 

fluorochrome-conjugated or biotinylated primary Abs for 15-30 min in the dark at room 

temperature. Anti-CD16/32 binds to FcγRII/III and the immunoglobulin in mouse serum 

binds to FcγRI, and so the FcR blocking buffer blocks non-specific binding of Ab to such 

FcR-bearing cells. Details of the Ab clones, their specificities and isotype controls used are 

provided in Table 2.1. Cells were then washed with 1 ml FACS buffer as before and, 

where appropriate, biotinylated Abs were detected following incubation with fluorochrome-

conjugated streptavidin (BD) for 15-30 min in the dark at room temperature. Finally, cells 

were washed again in FACS buffer re-suspended in 100-300 µl FACS buffer for analysis 

using a FACS Calibur (BD) and Flowjo software (version 8.8.6, TreeStar). Two or three-

colour analysis was performed on a minimum of 10,000 events. 

 

2.9.2 Cell cycle analysis by DNA content 

Propidium iodide (PI) is a fluorescent dye that is able to intercalate into DNA in a 

stochiometric fashion enabling determination of the DNA content of cells. Thus, following 

permeabilisation of human B cells with 70% ethanol for 15 min on ice, cells were 

centrifuged and the pellet resuspended in 100 µl PI stain solution (PBS containing 0.5% 
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FCS, 2 mM EDTA, 50 µg/ml PI, 50 µg/ml RNAse A) and incubated at 4°C for 30 min. 

FACS buffer (100 µl) was added and the cells filtered through nitex to remove clumps and 

analysed by FACS. However, due to strong autofluorescence after ethanol treatment, 

WEHI-231 cells and murine B cells were stained following a different protocol. Thus, these 

cells were harvested and washed twice in ice-cold FACS buffer before being resuspended 

in 200 µl PI stain (0.1% (w/v) sodium (tri) citrate, 0.1% (v/v) triton-X-100, 50 µg/ml PI, 50 

µg/ml RNase A) for 45 min on ice. After addition of a further 200 µl of FACS buffer, cells 

were passed through nitex and analysed for PI fluorescence by FACS (FACS Calibur, BD). 

Data were analysed by setting gates that identify the G0/G1 peak which represents 

2n DNA, the cells that are in G2/M phase containing 4n DNA (double the fluorescence 

intensity) and the S phase located between the G0/G1 and G2/M peaks. Cells containing 

sub-diploid DNA show lower fluorescence than the G0/G1 peak and represent the 

apoptotic fraction (Fig.2.5). 

 

2.9.3 DiOC6 staining of mitochondrial potential 

DiOC6 is a cationic lipophilic dye that is incorporated into the mitochondrial 

membrane in a manner that is directly proportional to the mitochondrial membrane 

potential (MMP). Cells were stained in a solution of 2.5 µM DiOC6 (Molecular Probes) in 

FACS buffer for 30 min at RT. Before analysis by FACS, the cells were washed twice with 

1 ml FACS buffer and passed through nitex to remove cell clumps. The profiles obtained 

were used to set gates to divide cells into those with high (healthy) or low (apoptotic) MMP 

(Fig. 2.6). 

 

2.9.4 CFSE staining of cell division 

CFSE is a cell-permeable dye that becomes trapped inside cells following labelling 

and consequent binding to intracellular proteins. During each cell division therefore, the 

amount of cellular dye is halved and this can be detected as a shift to lower fluorescence 

intensity by FACS analysis Thus, each 50%-reduction of the fluorescence signal 

represents one division (Fig. 2.7). Briefly, prior to this analysis, cells (105/sample) were 

resuspended in PBS containing 0.1% BSA and loaded with 2.5 µM CFSE for 10 min at 

37°C. The cells were then washed with 10 ml cold cu lture medium followed by a wash step 

with 10 ml warm medium followed by culture with the appropriate stimuli. The cells were 

analysed for CFSE-staining (intensity) by FACS analysis of cells in the FL-1 channel. The 

dilution of CFSE in the cells was then analysed using Flowjo software creating gates 

correlating with the number of cycles of proliferation (generations) the cells have 

undergone. As it has been found in this and other laboratories that murine B cells do not 
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generate discrete division peaks, the feasibility of the method was independently validated 

in this laboratory by Dr. Angela Morton utilising a T cell transfer model. Thus, in vivo 

antigen-stimulation of CFSE-labeled transferred T cells displayed CFSE dilution showing 

proliferation upon stimulation compared to unstimulated T cells (Fig. 2.7).  

 

2.9.5 FACS-based caspase activation assay 

This assay (BioVision) utilises a cell-permeable version of the pan-caspase inhibitor 

VAD-FMK conjugated to FITC which irreversibly binds to activated caspases and hence 

allows the detection of such activated caspase in cells. Briefly, cells were plated out (106 

cells/well) with the appropriate treatments and incubated for up to 24 h. Cells were then 

transferred into FACS tubes and incubated with 1 µl FITC-VAD-FMK at 37°C/5% CO2 for 

45 min. The cells were then washed twice with 300 µl wash buffer (supplied by 

manufacturer) and the pellet was resuspended in 200 µl FACS buffer. The labelled cells 

were analysed by FACS by measuring the fluorescence intensity in the FL-1 channel.  

 

2.10 Signalling assays 

 

2.10.1 LSC (Laser Scanning Cytometry) 

A key method for the in situ analysis of signalling pathways in immune cells has 

been established in this laboratory and involves Laser Scanning Cytometry (LSC) analysis 

of immunofluorescently-stained cytospins or tissue [311]. The use of LSC to analyse 

stained cells allows quantification and imaging of cell signalling molecules at the single cell 

level and within their physiological niche in tissue. Unlike FACS, which only allows 

detection of positive cells and their fluorescence intensity, the LSC also allows analysis of 

the subcellular localisation of the molecules. This can be very important especially for the 

analysis of signalling pathways as the localisation often determines the activity of a 

molecule.  

 

2.10.1.1 LSC data collection 

Detection of cytocentrifuged cells by LSC involves the use of analysis “contours” 

(Fig. 2.8A, figure reproduced with kind permission [312]). The primary contour, also called 

the threshold contour, is commonly set on cell nuclei which were stained with a dye that 

binds DNA, such as DAPI. To exclude detection of artefacts such as cell debris, the 

minimum detection area was set to 30 µm2, allowing nuclei of 30 µm2 or above to be 

scanned. In order to define the outer edge of the cell and hence allow the calculation of the 

total fluorescence within the cell, the integration contour was then set 10 pixels outside the 
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threshold contour (1 pixel equates to 0.5 µm). Furthermore, a peripheral contour was set 

between the threshold and integration contours enabling the detection of fluorescence 

emitted in the periphery of the cell (Fig. 2.8A). The background fluorescence outside the 

cells was measured by setting two background contours. This value was then 

automatically deducted from all measured fluorescence values.  

Before scanning each batch of slides the detector gain voltages (PMTs) were 

adjusted in order to optimise fluorescence excitation with the maximum value of 75 for the 

number of saturated pixels. Furthermore, appropriate data collection protocol (.PRO) and 

display (.DPR) files were set up for each experiment [311]. The next step was to set the 

threshold value to a value between 5500 and 7500 fluorescence units to ensure the 

optimal detection of the cells as setting the threshold too high might exclude cells with low 

or medium DAPI staining from the analysis. A very low threshold, on the other hand, can 

lead to the erroneous detection of multiple cells as a single event (Fig. 2.8B, figure 

reproduced with kind permission [312]). Finally, the slide area was then scanned and the 

data file saved for analysis. 

 

2.10.1.2 Cell cycle analysis by LSC 

It has been shown previously that LSC can be used for the efficient examination of 

the cell cycle status of individual cells [313-315] as it determines both the content and 

concentration of DNA at the same time. Therefore, by plotting Max Pixel (the most highly 

fluorescent pixel value in the cell) against Integral (sum of all fluorescence in the cell) 

values of the nuclear staining, such as DAPI, the different cell cycle stages can easily be 

identified (Fig. 2.9, figure adapted with kind permission from [312]). This is because DAPI 

Max Pixel values correlate with concentration of the cellular chromatin (condensation) 

whereas the DAPI Integral value correlates with the absolute levels of DNA content. For 

example, cells in S phase (green gate) can be identified by their increased DNA content. 

However, cells in the other mitotic stages (G2/M phase) which also contain high amounts 

of DNA can be differentiated due to the higher level of chromatin condensation (max pixel; 

yellow gate). By contrast, cells arrested at the G1/G0 stage (red gate) of the cell cycle 

contain half the amount of DNA (2n DNA) compared to cells in G2/M (4n DNA) and can 

therefore be identified by the lower DNA content, as detected by lower DAPI Integral 

values. Cells undergoing apoptosis (blue gate) contain subdiploid DNA content due to their 

fragmented DNA placing them below cells in G1/G0 on the scattergram. New daughter 

cells (purple gate) represent cells which have recently undergone mitosis and can be 

identified due to their small nuclei with still highly condensed DNA. Representative images 

of cells in each stage of the cell cycle were captured using the xy re-location feature of 
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LSC to confirm that the cells in the various cell cycle gates were morphologically 

consistent with their cell cycle stage as detected on the scattergram [312] (Fig. 2.9).  

 

2.10.1.3 Immunofluorescence staining 

Cytospins were generated by centrifuging cells (0.75 x 105) onto glass slides at 40 g 

for 4 min. The following staining protocol was carried out at room temperature with 

incubation being performed in a darkened, humidified chamber. Firstly, the cells were fixed 

with 4% formaldehyde in PBS for 15 min and washed with PBS for 5 min, followed by 

incubation with permeabilisation buffer (2% FCS, 2 mM EDTA pH 8.0, 0.1% w/v saponin in 

PBS) for 5 min. Blocking of non-specific binding was performed after three washes with 

PBS (10 s each) with blocking/antibody-dilution buffer (PBS containing 1% BSA, 0.1% w/v 

saponin) for 10-15 min. The cells were then incubated with primary antibody (appropriate 

dilutions listed in Table 2.1) or the equivalent dilution of an appropriate IgG 

isotype/irrelevant antibody control for 30 min. Cells were then washed and incubated for 

25 min with the appropriate HRP (horse radish peroxidase) - labeled anti-Ig antibody 

(diluted 1:100, Cell Signaling Technology, NEB) followed by another three washes with 

TNT buffer (100 mM Tris base, pH 7.5, 150 mM NaCl, 0.05% Tween-20) before Alexa 

Fluor® 488 tyramide (diluted 1:100, Invitrogen) was added for 10 min. After three washes 

with TNT buffer the cells were stained with 300 nM DAPI (in PBS, 0.1% saponin) for 4 min, 

washed with TNT buffer three times and left to air-dry for 5 min and covered with mounting 

medium (Vector). Pictures were acquired using a laser scanning microscope (Compucyte) 

and quantitatively analysed using Wincyte software version 3.6 (Compucyte). 

 

2.10.2 WideScreen TM EpiTag TM ERK pathway assay 

This assay allows simultaneous analysis of multiple signalling molecules and their 

phosphorylation status in a single sample. Briefly, the cells are lysed and the cellular 

proteins are extracted before digestion with proteases to create peptides. Antibodies 

specific for particular peptide epitopes are then used to detect molecules of interest. The 

principle of the assay is therefore the same as for other bead-array multiplex assays in that 

the different capture antibodies are bound on beads which emit fluorescence of distinct 

wavelengths and hence allow differentiation of beads coated with antibodies specific for 

the different target peptides. In addition, fluorescently labeled detection antibodies are 

used to label peptides bound to beads which are then analysed on a Bio-Plex (BioRad) 

machine. Thus, whilst the beads are recognised due to their specific emission, the 

intensity of bound detection antibody can also be measured to yield information on the 

amount of bound peptide relative to defined peptide standards and hence enabling the 
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absolute quantitation of protein in each sample. 

The EpiTagTM assay (Merck) was used to detect phosphorylated B-Raf (p-B-

RafS446) with ERK2 as the internal reference control protein. Phosphorylation at S446 

stops auto-inhibition of B-Raf enhancing its activity [316]. The protocol was carried out 

using reagents supplied by the manufacturer and according to their instructions. Briefly, 

0.5 x 107 cells/stimulation were cultured for the indicated time in the presence of 

appropriate stimuli. The cells were then washed twice with ice-cold PBS and lysed by the 

addition of 100 µl supplemented lysis reagent (lysis reagent, 1x phosphatase inhibitor 

cocktail, 0.5 U/µl benzonase nuclease) and incubation at room temperature for 5 mins with 

occasional vortexing. Subsequently, the samples were transferred to microcentrifuge tubes 

and incubated for an additional 20 min at 4°C. Foll owing this incubation, 5 µl of each 

sample were set aside to perform quantitation of the total protein amount by BCA protein 

assay (Pierce) and the remainder of the sample was stored at -70°C until further use. The 

concentration of the samples was then adjusted to 1 mg/ml and 100 µl aliquots were 

digested as follows. Firstly, the lysates were denatured by the addition of 2 mM of the 

reducing agent TCEP (Tris(2-carboxyethyl)phosphine) and incubation at 95°C for 5 min 

before centrifugation of the sample at 12,000 g for 10 min and transfer of the supernatants 

into fresh tubes. Following alkylation of the supernatant by the addition of 10 mM α-

Iodoacetamide (30 min at room temperature), proteins were digested with 5.7 mU 

Endopeptidase Lys-C at 37°C overnight. The samples were then adjusted to 400 µl by the 

addition of 287 µl Assay Diluent. The detection of p-B-Raf and ERK2-derived peptides was 

carried out by analysis on a Bio-Plex machine (BioRad) according to the manufacturer’s 

instructions. Briefly, dilutions of the provided standard solutions were prepared by 

consecutive 1 in 3 dilutions in titration buffer (25% lysis reagent, 75% assay diluent). The 

provided filter plate was pre-wetted with 100 µl assay diluent per well and the liquid 

aspirated with a vacuum manifold. The capture beads were vortexed and 50 µl pipetted in 

each well followed by the addition of either 50 µl of the standard dilutions or 50 µl of the 

samples which had been further diluted 1 in 4 in titration buffer before addition to the plate. 

After 2 h incubation on a platform shaker the beads were washed three times with wash 

buffer and 100 µl Biotin-coupled detection antibody was added. The plate was then 

incubated for a further hour at room temperature on a platform shaker followed by three 

washes with wash buffer and the addition of 100 µl of Streptavidin-PE solution. The plate 

was incubated for 30 min at room temperature after which time the beads were washed 

three times with wash buffer and resuspended in 120 µl Assay diluent. Finally, 100 events 

per sample were acquired on a Bio-Plex (BioRad) machine on low gain RP1-setting. 
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2.11 PCR 

 

2.11.1 mRNA isolation and reverse transcription 

Total mRNA was isolated from purified B cells or WEHI-231 cells using an RNeasy 

Mini Kit (Qiagen) following the manufacturer’s instructions and the mRNA was stored at -

20°C until further use. Optional DNAse I digestion was carried to digest possible genomic 

DNA impurities. To this end, DNAse I, amplification grade (Invitrogen), was used as per 

the manufacturer’s instructions. In short, the RNA sample was digested at room 

temperature with 1 unit DNAse I for 15 min and then the enzyme was inactivated by 

addition of 2.5 mM EDTA and incubation at 65°C for 10 min. Those pretreated samples 

were then used for reverse transcription with the Superscript II Reverse Transcriptase 

system (Invitrogen) to transcribe mRNA into cDNA following the manufacturer’s 

instructions. Briefly, between 500 ng and 5 µg of mRNA were incubated with Oligo(dT) 

primers (500 µg/ml) and dNTP mix (10 mM each) at 65°C for 5 min. After the addition of 

0.1 M DTT and 5 x First Strand buffer, the mixture was heated for 5 min at 42°C and 200 

Units of Superscript enzyme were added. The reaction was carried out at 42°C for 50 min 

followed by 15 min at 70°C to inactivate the enzyme . Alternatively, DNAse-digested RNA 

was transcribed into cDNA using the “High Capacity cDNA Reverse Transcription Kit” 

(Applied Biosystems) following the manufacturer’s instructions. Thus, between 500 ng and 

5 µg of mRNA were incubated with random primers, 4 mM dNTPs and 50 units 

MultiScribeTM Reverse Transcriptase for 10 min at 25°C followed by 120 min at 37°C and a 

final step at 85°C for 5 s. 

 

2.11.2 Real-time PCR by TaqMan®  

Primers and probes (Table 2.2) were designed using PrimerExpress software 

(Applied Biosystems) and purchased from VH Bio. In some cases pre-designed 

primers/probe supplied in the form of Endogenous Control Kits or Taqman® Gene 

Expression Assays (Applied Biosystems) were used. TaqMan® real-time PCR was 

performed using a 2 x mastermix (Eurogentec) which contains dNTPs/dUTPs, Hot Gold 

Star enzyme, MgCl2, UNG, stabilizers and the Rox passive reference. The probes 

contained a reporter dye (FAM) attached to the 5’ end and a quencher dye (TAMRA) 

attached to the 3’ end (Table 2.1). The PCR reactions were performed in the ABI-prism 

7700 Sequence Detector or the 7900HT Fast Real-Time PCR System (Applied 

Biosystems). The reactions were performed in 10 µl total volume containing the 1 x 

mastermix, 200 nM primers and 900 nM probes. Amplification was performed using the 
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following conditions: 2 min at 50°C, 10 min at 95°C , followed by a total of 45 two-

temperature cycles (15 s at 95°C and 1 min at 60°C) .  

 

2.12 Western Blotting, ”pull-down”-based assays and  subcellular fractionation 

 

2.12.1 Whole cell lysates 

Mature B cells or WEHI-231 cells (107 cells/stimulation) were stimulated as indicated. 

The cells were then washed in PBS and the reactions were terminated by the addition of 

100 µl of ice-cold modified RIPA lysis buffer (50 mM Tris buffer, pH 7.4 containing 150 mM 

sodium chloride, 2% (v/v) NP 40, 0.25% (w/v) sodium deoxycholate, 1 mM EGTA, 10 mM 

sodium orthovanadate, 0.5 mM phenylmethylsulfonylfluoride, 10 µg/ml chymostatin, 10 

µg/ml leupeptin, 10 µg/ml antipain, 10 µg/ml pepstatin A and 10 µg/ml aprotinin). After 

resuspending the pellet, the cells were solubilised for 30 min on ice before centrifugation of 

lysates at 16,000 g for 15 min. The resulting supernatants (whole cell lysate) were stored 

at -20oC before being used for Western Blot analysis. 

 

2.12.2 Nuclear extraction 

An Active Motif Nuclear Extract kit was used to produce nuclear and cytosolic 

fractions. The protocol was followed as per the manufacturer’s instructions (overview in 

Fig.2.10). Briefly, cells (107) were incubated with the appropriate stimuli at 37°C in a 5% 

(v/v) CO2 atmosphere at 95% humidity. Samples were washed with 5 ml of PBS containing 

phosphatase inhibitors to terminate any cellular reactions, and then centrifuged for 5 min 

at 400 g. The pellets were resuspended in 500 µl of hypotonic buffer by pipetting and then 

incubated on ice for 15 min. Following this, 25 µl of detergent (supplied with kit) was added 

and the samples were vortexed on the highest setting for 10 s. Samples were then 

centrifuged at 14,000 g for 30 s and the supernatant removed. This supernatant contains 

the cytosolic fraction and can be stored at -80 °C for further use. The pellet was then 

resuspended in 50 µl of complete lysis buffer (containing DTT and protease inhibitor 

cocktail) and vortexed for 10 s. The samples were then left on ice for 30 min and after a 

further vortexing centrifuged at 14,000 g for 10 min. The resultant supernatant contains the 

nuclear fraction and was stored at -80 °C. 

 

2.12.3 Mitochondrial fractionation 

An Active Motif Mitochondrial Fractionation kit was used to produce mitochondrial, 

nuclear and cytosolic fractions using a slightly modified version of the manufacturer’s 
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instructions as follows (overview in Fig.2.10). Briefly, cells (0.5-1 x 108) were incubated 

with the appropriate stimulations at 37°C in a 5% (v/v) CO2 atmosphere at 95% humidity. 

To terminate reactions, samples were washed with 2 ml of PBS and centrifuged for 5 min 

at 400 g. The pellets were resuspended in 1 ml of ice cold 1x cytosolic buffer by pipetting 

and then incubated on ice for 15 min. Following this, the cell suspension was transferred to 

a pre-chilled homogeniser and lysed by the application of 40 strokes. The samples were 

then centrifuged at 400 g for 20 min to sediment cell debris, the supernatant transferred 

into a fresh tube and centrifuged at 800 g for 10 min. The supernatant, containing the 

mitochondria, was again centrifuged (8000 g for 20 min) after which the supernatant was 

transferred into a fresh tube (cytosolic fraction) and the pellet washed in 100 µl cytosolic 

buffer (8000 g, 10 min). The pellet was resuspended in 100 µl complete mitochondria lysis 

buffer, incubated on ice for 15 min and vortexed for 10 s to produce a solubilised 

mitochondrial fraction. 

 

2.12.4 Subcellular fractionation 

To obtain cytoplasmic, membrane/organelle, nuclear and cytoskeletal fractions a 

Cellular Protein Fractionation kit (Perkin Elmer) was used. This kit utilises different 

detergents to extract proteins from various subcellular compartments due to their 

differential solubility. The experiments were carried out as per the manufacturer’s 

instructions except for slight changes of cell numbers and buffer volumes (overview in 

Fig.2.10). Briefly, cells (5 x 106) were incubated with appropriate stimulations at 37°C in a 

5% (v/v) CO2 atmosphere at 95% humidity. For some experiments, samples were counted 

again after harvesting and cell numbers were adjusted to match the sample with the lowest 

cell count. All buffers were supplemented with protease inhibitors immediately before use. 

Briefly, samples were washed with 2 ml of wash buffer twice (centrifuged at 400 g for 5-10 

min) and the resulting pellet was resuspended in 200 µl ice-cold cytoplasmic buffer. The 

samples were then incubated at 4°C for 10 min on an orbital rotator. The insoluble fraction 

was pelleted by centrifugation at 1000 g for 10 min (4°C) and the supernatant transferred 

to a fresh tube (cytoplasmic fraction). The pellet was resuspended in 200 µl chilled 

membrane/organelle buffer and the samples were incubated for further 30 min at 4°C on 

an orbital rotator. The insoluble fraction was again collected by centrifugation (6000 g, 

4°C) and the supernatant, representing the membrane/organelle-enriched fraction, was 

transferred to a fresh tube. To acquire the nuclear fraction, the insoluble material from the 

membrane/organelle enrichment was resuspended in 100 µl nuclear buffer followed by 

incubation at 4°C for 10 min on an orbital rotator. The cytoskeletal fraction was then 
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pelleted by centrifugation (6800 g, 10 min, 4°C) and the supernatant tranferred to a fresh 

tube (nuclear fraction). The cytoskeletal fraction was resuspended in 100 µl of cytoskeletal 

buffer.  

 

2.12.5 Rap-1 activity assay 

A Rap-1 activation kit (Upstate Biotechnology) was used to determine the activity of 

Rap-1 in WEHI-231 cell samples. Briefly, cells (1.25 x107) were harvested after stimulation 

and washed twice with cold TBS (50 mM Tris-HCl pH 7.4, 150 mM NaCl). Cells were 

incubated with 500 µl lysis buffer and the released DNA sheared by passing the lysate 

through a syringe needle. The lysate was cleared by centrifugation (5 min, 13,000 g) and 

50 µl Ral-GDS-RBD (Ras-binding domain of the Ral guanine nucleotide dissociation 

stimulator) agarose slurry added. After 45 min incubation at 4°C the beads were washed 

three times with 500 µl lysis buffer (30 s, 13,000 g). The agarose beads were then 

resuspended in 40 µl 2x reducing SDS-PAGE loading buffer (NuPAGE system, Invitrogen) 

and boiled for 5 min. Samples were analysed by SDS-PAGE gel electrophoresis followed 

by Western Blotting using anti-Rap-1 antibodies. 

 

2.13 SDS-PAGE gel electrophoresis 

 

The protein concentration of whole cell lysates or nuclear, cytoplasmic or 

mitochondrial fractions was assessed by either the BCA protein assay (Pierce) or the 

Bradford assay (BioRad). The BCA protein assay is more suited for whole cell lysates 

whereas the different detergents used for the cytoplasmic, nuclear and mitochondrial 

fractions made it necessary to use the Bradford assay. Equal protein amounts (whole cell 

lysates) or cell equivalents (using the Perkin Elmer Cellular Protein Fractionation kit) of 

samples were resolved using the XCell SureLock Mini-Cell kit with NuPAGE Novex high-

performance pre-cast Bis-Tris gels and NuPAGE buffers and reagents (all supplied by 

Invitrogen). The appropriate volume of 4 x NuPAGE LDS (Lithium Dodecyl Sulfate) sample 

buffer and 10 x NuPAGE reducing agent were added prior to heating samples to 70oC for 

10 min and samples were resolved using NuPAGE Bis-Tris gels (10%, 12% or 4-12%) with 

NuPAGE MOPS or MES running buffer (supplemented with NuPAGE antioxidant) at 200 V 

for 50 min following the manufacturers instructions. The gel was then transferred onto a 

nitrocellulose membrane (Amersham) using NuPAGE transfer buffer with 20% (v/v) 

methanol at 30 V for at least 1 h. 
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2.14 Western Blotting 

 

Following transfer, nitrocellulose membranes were washed once in TBS/Tween (0.5 

M NaCl and 20 mM Tris pH7.5 with 0.1% (v/v) Tween-20) and blocked for 1 h in 

TBS/Tween containing 5% non-fat milk protein. Membranes were then incubated with the 

appropriate primary detection antibody overnight at 4oC. All antibodies were diluted in 

TBS/Tween with 5% BSA. Following incubation with primary antibody, nitrocellulose 

membranes were washed (5 x 5 min) with TBS/Tween and incubated in the appropriate 

HRP-conjugated secondary antibody containing 5% non-fat milk protein for 1 h at room 

temperature. Nitrocellulose membranes were then washed (5 x 5 min) with TBS/Tween 

and protein bands were visualised using the ECL detection system. Nitrocellulose 

membranes were incubated in a mixture of equal volumes of ECL solution A (2.5 mM 

luminol, 0.4 mM p-coumaric acid and 100 mM Tris pH 8.5) and ECL solution B (0.002% 

hydrogen peroxide and 100 mM Tris pH8.5) for 1 min before exposing membranes to 

Kodak X-Ray film. Nitrocellulose membranes were sometimes stripped and re-probed with 

an alternative primary antibody. Membranes were stripped at room temperature for 1 h in 

stripping buffer (100 mM 2-mercaptoethanol, 2% SDS and 62.5 mM Tris pH 7). 

Nitrocellulose membranes were washed thoroughly in TBS/Tween and checked for 

residual signal before re-starting the Western Blotting protocol. 

 

2.15 Cloning of Rap-1A WT, Rap-1A G12V and Rap-1A S 17N into pcDNA3.1 (-) Zeo, 

pIRES2-AcGFP1 and pLVX-IRES-ZsGreen1 vectors 

 

2.15.1 Transformation of chemically competent bacte ria 

One Shot® TOP10 competent Escherichia coli (E. coli; Invitrogen) cells were transformed 

with appropriate plasmids (Table 2.3) as per the manufacturer’s instructions. Briefly, 0.1 - 

0.5 µg plasmid or 5 µl ligation-reaction were added to 50 µl One Shot® cells and mixed by 

gentle tapping. Subsequently, the reactions were incubated on ice for 30 min. Following 

this incubation, the cells were heat-shocked at 42°C for 30 s before being placed on ice. 

Following the addition of 250 µl pre-warmed SOC media (2% (w/v) tryptone, 20 mM 

MgSO4, 0.5% (w/v) yeast extract, 8.6 mM NaCl, 2.5 mM KCl, 20 mM glucose, Sigma), the 

vials were shaken at 3 g for 60 min at 37°C in an Innova 4400 incubator shak er (New 

Brunswick Scientific (UK) Ltd., St. Albans, Herts, UK). Each transformation was then 

spread on separate Luria broth (LB) agar plates containing 100 µg/ml ampicillin or 50 

µg/ml kanamycin which were incubated at 37°C overnig ht. 
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2.15.2 PCR amplification of Rap-1A WT, Rap-1A G12V and 

RapS17N 

In order to sub-clone Rap-1A WT, Rap-1A G12V and Rap-1A S17 into the pLVX-

IRES-ZsGreen1 vector, the cDNA had to be amplified by PCR to introduce convenient 

restriction sites (Eco RI/Xba I). The pcDNA3.1 constructs (Missouri S&T cDNA Resource 

Center) were used as template DNA for the following PCR reaction. In short, 50 ng of the 

vector were mixed with Taq DNA Polymerase buffer (Invitrogen), 0.5 µM of the forward 

primer pcDNA3.1-Rap FW and the reverse primer pcDNA3.1-Rap RV (for sequence 

details see Table 2.3B), 0.2 mM dNTP mix (New England Biolabs), 1.5 mM MgCl2 and 

1.25 units of Taq DNA Polymerase (Invitrogen) and the volume adjusted with sterile dH2O 

to 50 µl. Amplification was performed using the following conditions: 3 min at 95°C, 

followed by a total of 35 three-temperature cycles (30 s at 94°C, 30 s at 55°C and 1 min at 

72°C) and 10 min at 72°C. The PCR was then separate d on an agarose gel (1% (w/v) 

agarose in Tris-Acetate-EDTA (TAE) buffer with 667 ng/ml of the fluorescent DNA-

intercalating dye, ethidium bromide). Subsequently, the appropriate PCR fragments were 

cut out of the gel and DNA was purified according to the manufacturer’s instructions using 

a Gel Extraction Kit (Qiagen). 

 

2.15.3 Restriction digest 

The vectors (1 µg per reaction) or PCR-fragments (16.8 µl of the 50 µl PCR reaction) 

were digested by the addition of restriction enzyme buffer (Promega), 10 units of the 

appropriate restriction enzyme (see Table 2.3C), 0.2 µl BSA solution (Promega) and sterile 

dH2O to a total volume of 20 µl per reaction. The digest was carried out at 37°C for 1 h. 

Following this incubation, the digested DNA was separated on an agarose gel, as 

described above, and bands comprising either vector fragments or inserts were cut out 

and the DNA purified by gel extraction. 

 

2.15.4 Ligation reaction 

Appropriate vector fragments and inserts/PCR fragments (see Table 2.3C) were 

ligated in the following reaction: 5 µl digested vector and 12.6 µl digested insert/PCR 

fragment were mixed with T4 DNA ligase buffer (New England BioLabs), 160 units T4 

DNA ligase (New England BioLabs) and incubated for 1 h at room temperature. Aliquots (5 

µl) of this ligation reaction were then transformed into TOP10 E.coli as previously 

described and the bacteria were spread on LB agar plates containing 100 µg/ml ampicillin 

or 50 µg/ml kanamycin which were incubated at 37°C overnig ht. 
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2.15.5 Screening for positive clones 

To screen for bacteria expressing plasmids containing the desired inserts (Rap-1A 

WT, Rap-1A G12V and Rap-1A S17), single bacterial colonies were picked and used to 

inoculate 5 ml LB cultures containing 100 µg/ml ampicillin or 50 µg/ml kanamycin. The 

bacteria were allowed to grow over night at 37°C, s haking at 5 g. Following this incubation, 

the cells were centrifuged at 6000 g for 3 min and plasmid DNA was extracted using 

Plasmid Mini Kits (Qiagen). The plasmids were then digested with the appropriate 

restriction enzymes (see Table 2.3C), as described above. Finally, plasmids that 

harboured fragments of the desired size were chosen and the inserts sequenced 

(Geneservice). Plasmids with the correct sequence were then purified on a larger scale, as 

described below, and stored at -20°C until further use. 

 

2.15.6 Purification of plasmid DNA 

The plasmids were purified using HiSpeed Plasmid Midi Kits (Qiagen, Crawley, UK) 

as per the manufacturer’s instructions. Briefly, single bacterial colonies were picked and  

used to inoculate a starter culture of 5 ml LB broth containing 100 µg/ml ampicillin or 50 

µg/ml kanamycin. The cultures were incubated at 37°C  with vigorous shaking (5 g) for 6-8 

h before being diluted 1:500 in 100 ml LB broth containing ampicillin or kanamycin and 

cultured at 37°C with vigorous shaking for 16 h. Th e bacterial cells were then harvested by 

centrifugation at 6000 g at 4°C for 20 min and re-suspended in 6 ml buffer P1 (all buffers 

and components supplied with kit). To lyse the cultures, 6 ml of buffer P2 was added and 

the cultures were mixed gently and incubated at 37°C for 5 min followed by the addition of 

6 ml chilled P3 buffer. Next, the cultures were mixed and poured immediately into the 

barrels of QIAfilter cartridges and incubated at room temperature for 10 min. The plungers 

were then inserted into the QIAfilter cartridges and the cultures were filtered into HiSpeed 

tips (previously equilibrated with 4 ml buffer QBT) and the HiSpeed tips were washed with 

20 ml buffer QC before the relevant DNA was eluted with 5 ml buffer QF and collected in 

15 ml tubes. DNA was then precipitated by addition of 3.5 ml isopropanol and incubation at 

room temperature for 5 min. This mixture was then filtered through a QIAprecipitator 

before the DNA was washed with 2 ml 70% ethanol. The membrane was then dried by 

forcing air through the QIAprecipitator and the DNA was eluted with 0.5 ml sterile dH2O 

and collected into a 1.5 ml tube. To ensure a maximum yield the elution was repeated 

using the same filter and sample. Finally, the DNA concentration was determined by an 

Eppendorf BioPhotometer (Eppendorf). 
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2.16 Transfection of WEHI-231 cells 

 

The relevant vectors (10 µg; see table 2.3A and Fig. 2.11-12 for information on the 

vectors) were digested with 10 units of Pvu I (pcDNA3.1/pcDNA3.1 Zeo-based vectors) or 

Cla I (pIRES2-AcGFP1-based vectors) (New England Biolabs) for 2 h at 37°C to linearise 

them. The DNA was then purified using a PCR purification kit (Qiagen) following the 

manufacturer’s instructions and the linearised vector stored on ice until further use. For 

some experiments the vectors (5 µg) were used in a non-linearised form. 

WEHI-231 cells were split 24 h prior to transfection. Before transfection the cells 

(5x106) were washed once with electroporation media (RPMI-1640 containing 20% FCS) 

and resuspended at a concentration of 2x107 cells/ml. The linearised vector was cooled in 

a cuvette on ice for 5 min and then mixed with the cells followed by another incubation (10 

min) on ice. Following optimisation, electroporation was carried out at 1000 µFarads and 

140 V. After the cells had been left on ice for a further 10 min they were transferred into 

complete media (RPMI-1640, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin, 20% FCS, 1% non-essential amino acids, 1 mM sodium pyruvate) and 

incubated for 48 h at 37°C to recover.  

Alternatively, cells were transfected using the Nucleofector® Kit L (Amaxa). Briefly, 

cells (2x106) were washed once with complete media (RPMI-1640 , 2 mM L-glutamine , 

100 U/ml penicillin, 100 µg/ml streptomycin, 5% FCS, 1% non-essential amino acids, 1 

mM sodium pyruvate) and resuspended in 100 µl Nucleofector solution L. Following 

addition of 5 µg of the relevant vector, the cells were transferred into cuvettes (Amaxa) and 

electroporation was carried out using the advised pre-set programme (C-005) on the 

Nucleofector™ II (Amaxa). The cells were then transferred into complete media and 

incubated at 37°C for 48 h.  

Irrespective of the protocol used for transfection the cells were washed through FCS 

once after the recovery phase and resuspended in complete media supplemented with 

varying concentrations of G418 (Promega) or Zeocin (Invitrogen) to select for neomycin- or 

zeocin-resistant gene expression. 

 

2.17 Generation of lentiviral particles and transdu ction of HT-1080 cells 

 

Lentiviral-based transduction can be used to stably introduce DNA into the genome 

of various cell types [317]. To this end, a lentiviral expression vector containing the gene of 

interest is co-transfected with plasmids expressing the packaging components needed for 
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the assembly of the virus. The cells used for the production of virions are a 293T-based 

packaging cell line (Lenti-X 293 T cells, Clontech) which produces infectious virions after 

transfection with the above-mentioned vectors and releases them into the supernatant 

which can then be used to transduce the target cells. In this study, pLVX-IRES-ZsGreen1 

was chosen as the parental vector in which the gene of interest was inserted. This vector 

encodes the ZsGreen1 protein which, when excited by a 488 nm laser, fluoresces green 

and can be detected by FACS analysis (FL-1 channel). The gene of interest and the 

ZsGreen1 gene are connected by an IRES (internal ribosome entry site) sequence. Thus, 

both genes are transcribed as a single mRNA and then simply translated as separate 

proteins at the ribosome. ZsGreen1 therefore acts as a marker protein and expression of 

ZsGreen1 should directly correlate with the expression of the protein of interest. 

 

2.17.1 Production of lentiviral particles in Lenti- X 293 T cells 

Lenti-X 293 T cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 4 mM L-glutamine, 4.5 g/L glucose, 1 mM sodium pyruvate, 1.5 g/L sodium 

bicarbonate, and 10% FCS. One day before transfection, the cells were washed once in 

DMEM media containing 10% tetracycline-free FCS and 4 x 106 cells were plated out in a 

10 mm cell culture dish. The tetracycline-free FCS ensures the efficient production of 

virus-particles, as the packaging system utilises Tet-Off transactivation to drive high-level 

expression of the viral packaging proteins. Tetracycline present in the media would 

therefore reduce the expression of these proteins and potentially decrease viral titres. 

Transfection of Lenti-X 293 T cells was carried out 12-24 h after plating out the cells using 

the Lenti-X HT Packaging System (Clontech) and following the manufacturer’s 

instructions. Briefly, 15 µl of the Lenti-X HT packaging mix (contains the plasmids 

encoding proteins needed for packaging), 3 µg of the various pLVX-IRES-ZsGreen1-based 

vectors (for vector information see Table 2.3) and sterile water (to make up the total 

volume to 438 µl) were mixed with 62 µl Lentiphos 1 solution and then 500 µl Lentiphos 2 

solution was added drop-wise while vortexing. The solution was incubated at room 

temperature for 5 to 10 min to allow the formation of DNA precipitates. After this time the 

solution was added drop-wise to the Lenti-X 293 T cells which were then incubated at 

37°C/5% CO 2 for 8-16 h. Following the replacement of the media, cells were left for an 

additional 48 h. The virus-containing supernatant was then harvested, aliquoted and 

stored at -80°C until further use. 
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2.17.2 Transduction of HT-1080 cells with lentivira l particles 

HT-1080 cells are a cell line which is easily transduced by lentiviruses. It can 

therefore be used to test the transduction efficiency of lentiviral particles produced by the 

Lenti-X 293 T packaging cell line. HT-1080 cells were grown in DMEM containing 2 mM L-

glutamine, 4.5 g/L glucose, 1 mM sodium pyruvate, 1.5 g/L sodium bicarbonate, and 10% 

FCS. For transduction, HT-1080 cells (2 x 105 cells/well) were seeded into 6-well plates in 

2 ml complete media 12 - 24 h before transduction with the virus-containing supernatants. 

The cells were then transduced by incubating them with 600 µl supernatant for 12 h. After 

replacing the media the cells were incubated for an additional 48 h after which they were 

analysed by FACS to detect ZsGreen1 expression. 
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Suppliers addresses  

 

Abcam plc 

332 Cambridge Science Park  

Cambridge CB4 0FW 

 

Active Motif 

104 Avenue Franklin Roosevelt 

Box 25 

B-1330 Rixensart 

Belgium 

 

Alexis Biochemicals 

c/o AXXORA (UK) Ltd. 

P.O. Box 6757 Bingham 

Nottingham NG13 8LS 

 

Amaxa AG 

Nattermannallee 1 

50829 Cologne 

Germany 

 

Amersham/GE Healthcare UK Ltd  

Amersham Place 

Little Chalfont 

Buckinghamshire HP7 9NA 

 

Applied Biosystems 

Lingley House 

120 Birchwood Boulevard 

Warrington WA3 7QH 

 

 

 

 

 

BD Biosciences 

21 Between Towns Road 

Cowley 

Oxford OX4 3LY 

 

BioLegend distributed by 

Cambridge BioScience Ltd.  

24-25 Signet Court 

Newmarket Road 

Cambridge CB5 8LA 

Bio-Rad Laboratories Ltd. 

Bio-Rad House 

Maxted Road 

Hemel Hempstead 

Hertfordshire HP2 7DX 

 

 

BioVision distributed by 

Cambridge BioScience Ltd.  

24-25 Signet Court 

Newmarket Road 

Cambridge CB5 8LA 

 

Calbiochem 

c/o CN Biosciences 

Boulevard Industrial Park 

Padge Road 

Beeston 

Nottingham NG9 2JR 

 

 

 

 

 



 

 83 

 

Cell Signaling Technology 

New England Biolabs (UK) Ltd. 

73 Knowl Piece,Wilbury Way 

Hitchin 

Hertfordshire SG4 OTY 

 

 

Takara Bio Europe/Clontech  

2 Avenue du President Kennedy 

78100 Saint-Germain-en-Laye 

France 

 

CompuCyte Corporation 

385 University Avenue, 

Westwood 

MA 02090, USA 

 

ECACC 

Health Protection Agency Culture 

Collections  

Health Protection Agency 

Centre for Emergency Preparedness 

and ResponsePorton Down 

Salisbury 

SP4 0JG 

 

 

Eppendorf UK Limited  

Endurance House 

Chivers Way 

Histon 

Cambridge CB24 9ZR 

 

 

Eurogentec Ltd.  

Old Headmasters House 

Unit 1, Building 1 

Forest Business Centre 

Fawley Road, Fawley  

Southampton 

Hampshire SO45 1FJ 

 

Invitrogen Ltd 

Fountain Drive 

Inchinnan Business Park 

Paisley PA4 9RF 

 

Jackson Immunoresearch 

Laboratories 

c/o Stratech Scientific Ltd. 

Unit 7 Acorn Business Centre 

Oaks Drive, Newmarket 

Suffolk CB8 7SY 

 

Kodak Ltd 

Kodak House 

Station Road 

Hemel Hempstead 

Herfortshire HP1 1JU 

 

Merck Serono Ltd 

Bedfont Cross 

Stanwell Road 

Feltham 

Middlesex TW14 8NX 
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Miltenyi Biotec Ltd.  

Almac House 

Church Lane 

Bisley 

Surrey GU24 9DR 

 

Pierce/Perbio Science UK Ltd. 

Unit 9, Atley Way 

North Nelson Industrial Estate 

Cramlington 

Northumberland NE231WA 

 

PerkinElmer Life and Analytical 

Sciences  

Via Tiepolo, 24 

20052 Monza (Milano) 

Italy 

 

Promega UK Ltd  

Delta House 

Southampton Science Park 

Southampton 

Hampshire 

SO16 7NS 

 

 

 

 

 

 

 

QIAGEN Ltd. 

QIAGEN House 

Fleming Way 

West Sussex RH10 9NQ 

Santa Cruz Biotechnology Inc. 

c/o Insight Biotechnology Limited 

PO Box 520 

Wembley HA9 7YN 

 

Sigma-Aldrich Company Ltd 

Fancy Rd 

Poole 

Dorset BH12 4QH 

 

Vector Laboratories Ltd 

Accent Park 

Bakewell Road 

Orton Southgate 

Peterborough PE2 6XS 

 

VH Bio Ltd. 

Unit 11B Station Approach 

Team Valley Trading Estate 

Gateshead NE11 0ZF 

 

Upstate 

c/o Millipore Ltd. 

Units 3&5 The Courtyards 

Hatters Lane 

Watford WD18 8YH

2.18 Figures and Tables 
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Table 2.1 Antibodies  

(A) List of antibodies used for FACS based analysis 

(B) List of antibodies used for the stimulation of cells 

(C) List of antibodies used for Western Blotting 

(D) List of antibodies used for Immunofluorescent staining 

If applicable, optimised dilutions are listed. 
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Figure 2.1 Assessment of purity of CD19 + MACS-sorted cells 

To assess the purity of the enriched human B cell population, the cells were stained with 

anti-CD20-PE and analysed via FACS relative to an unstained sample. The percentage of 

CD20+ cells was assessed by gating on live cells judging by their FSC/SSC distribution (A) 

followed by setting a gate on the CD20-expressing cells in the FL-2 channel (B).  

 

 

 

 

 



 

 87 

Figure 2.2 Assessment of B cells purified by negati ve selection using commercial B 

cell isolation kits 

PBMCs (A) and cells purified by either the B cell isolation kit (B) or naïve B cell isolation kit 

(C) were stained for CD19 expression and analysed by FACS. The percentage of CD19-

positive cells was assessed by gating on live cells judging by their FSC/SSC distribution as 

described in figure 2.1 followed by setting a gate on the CD19-expressing cells as 

detected in channel FL-1 by anti-CD19-FITC antibodies and by using unstained cells as a 

negative control.  
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Figure 2.3 T cell and monocyte contamination after B cell enrichment 

B cells purified using the B cell isolation kit were stained for CD3 (A) or CD14 (B) 

expression and analysed by FACS. The percentage of CD3+ or CD14+ cells was assessed 

by gating on live cells judging by their FSC/SSC distribution as described in figure 2.1 

followed by setting a gate on the CD3-APC (FL-4 channel) or CD14-FITC (FL-1 channel) 

expressing cells using unstained cells as a negative control.  
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Figure 2.4 Purification of B cells by high speed FA CS sorting  

Cells from a healthy individual were collected and PBMCs were purified by density 

centrifugation. The cells were stained with either anti-CD20-PE or anti-CD19-FITC and 

selected for fluorescence-positive cells. To purify B cells by negative selection, PBMCs 

were stained with anti-CD3-APC, anti-CD14-FITC and anti-CD56-PE and the unstained 

cells were selected. The purity of the CD20- (A), CD19- (B) or negatively-selected cells (C) 

was assessed by staining for either CD20 or CD19 expression. Unstained cells were used 

to set the gates determining the percentage of CD20-PE positive cells detected in the FL-2 

channel in the CD19-sorted population or the CD19-FITC positive cells (FL-1 channel) in 

the CD20-sorted and negatively selected populations.  

 



 

 90 

Figure 2.5 FACS determination of cell cycle status by analysis of PI-stained cells 

WEHI-231 cells were stained with PI and analysed by FACS using histograms for the FL-3 

(A; linear ) and FL-2 (B; log) fluorescence to gate on apoptotic cells (subdiploid DNA 

content), cells in G0/G1 phase of the cell cycle (2n DNA), cells in G2/M phase (4n DNA) or 

cells in S phase (DNA content between 2n and 4n).  
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Figure 2.6 Analysis of mitochondrial membrane poten tial (MMP) using DiOC 6 

fluorescence 

WEHI-231 cells were stained with DiOC6 (2.5 µM) and analysed by FACS. Gates were set 

using FL-1 fluorescence histograms in order to identify populations of cells with high or low 

levels of DiOC6 fluorescence. Anti-IgM treated WEHI-231 (B) cells show an increase in the 

percentage of cells expressing lower DiOC6 fluorescence compared to untreated cells (A) 

indicating that these cells have dissipated their mitochondrial membrane potential which is 

an early sign of apoptosis.  
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Figure 2.7 Analysis of cellular proliferation using  the cell division stain, CFSE 

To assure the technical feasibility of CFSE dilution as a method for the detection of 

proliferation BALB/c recipients were immunised s.c. with OVA (100 µg) in 100 µl PBS/50% 

CFA 24 h after adoptive transfer of CFSE-labelled Ag-specific Tg TcR (KJ1.26+) T cells. 

On day 5 after immunisation, inguinal lymph nodes were harvested from unimmunised (A) 

and immunised (B) mice and the CFSE staining in Ag-specific CD4+ T cells was assessed 

by flow cytometry. Control mice (unimmunised) were injected s.c. with 100 µl PBS (Figure 

adapted with kind permission from [312]). 

Purified human B cells were stained with CFSE before culturing them with F(ab’)2 anti-

IgM/IgG for 48 h (D). A sample of the cells before culture (C) was used to set multiple 

gates using FlowJo software. The gates were set to each represent one round of division 

starting with gate 0 representing undivided cells. 
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Figure 2.8 The principle of LSC cell detection 

LSC analysis employs a series of contours (A) such as the threshold contour which is 

commonly set on nuclei. Furthermore, the integration and peripheral contours are used to 

define different parts of the cell. The integration contour is based on the size of the cell or 

detection of a cell surface marker, as it defines the outer edge of the cell. The inner 

peripheral contour is set one pixel out from the threshold contour and the outer peripheral 

contour is set one pixel in from the integration contour, allowing definition of the periphery 

of the cell. Detection of a cell is determined by the nuclear fluorescence it emits which has 

to be above a certain threshold set by the user (B). The correct setting of the threshold is 

important as a high threshold enables to detect individual cells, whereas a low threshold 

might lead to the detection of multiple cells as one event. Figure taken with kind 

permission from [312]. 
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Figure 2.9 Analysis of cell cycle progression by LS C 

Nuclei of cytocentrifuged cells were stained with DAPI and analysis carried out by LSC by 

plotting the Max Pixel value (depicting chromatin condensation) along the x-axis and the 

Integral value (representing DNA content) along the y-axis of the scattergram. The plotted 

cells were then gated according to their xy-position on the scattergram, which allows 

identifying cells in S phase (green gate) by their increased DNA content. Moreover, cells in 

the other mitotic stages (G2/M phase) which also contain high amounts of DNA can be 

differentiated due to a higher level of chromatin condensation (yellow gate). Cells arrested 

at the G1/G0 phase (red gate) of the cell cycle contain half the amount of DNA (2n DNA) 

compared to cells in G2/M (4n DNA) and can therefore be identified by the lower DNA 

content, as detected by lower DAPI Integral values. Cells undergoing apoptosis (blue gate) 

contain subdiploid DNA content due to their fragmented DNA placing them below cells in 

G1/G0 on the scattergram. Representative images of cells validating each stage of the cell 

cycle were captured using the slide xy-re-location feature of LSC and are shown here. 

Figure adapted from [312]. 
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Table 2.2 Primers and probes 

The table shows the sequences of the primers and probes used for quantitative RT-PCR 

or TaqMan® real-time PCR and the covalently attached dyes and quenchers. 
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Figure 2.10 Protocols used for cellular fractionati ons 

Three different commercially available kits were used to produce subcellular fractions. 

(A) Nuclear fractionation (nuclear/cytosolic fractions) using a kit from Active Motif. 

(B) Mitochondrial fractionation using a kit from Active Motif. 

(C) Cytoplasmic, membrane/organelle, nuclear and cytoskeletal fractions were 

obtained utilising a Cellular Protein Fractionation kit from Perkin Elmer. 
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Table 2.3 Table of vectors used for transfection of  WEHI-231 

(A) List of vectors used in this study for the transfection of WEHI-231 B cells 

(B) Primers used for the amplification of Rap-1 coding region from pcDNA3.1-based 

vectors 

(C) Parental plasmids and cloning sites/enzymes used for the cloning of the listed 

constructs 
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Figure 2.11 Vector map of pcDNA3.1 (+) and pcDNA3.1  (-) Zeocin 

(A) pcDNA3.1 (+) and (B) pcDNA3.1 (-) Zeocin both contain a human cytomegalovirus 

(CMV) promoter which permits high level expression of the gene of interest. They encode 

a multiple cloning sites (MCS) in forward or reverse orientation and pcDNA3.1 (+) harbours 

a neomycin resistance gene whereas pcDNA3.1 (-) Zeocin contains the gene encoding a 

zeocin resistance gene. These antibiotic resistance genes allow stable transfection of 

mammalian cells following selection by culturing with the antibiotics G418 or Zeocin, 

respectively. Expression of the resistance genes is controlled by the SV40 early promoter 

and the SV40 early polyadenylation signal. The presence of a pUC origin of replication 

allows replication and growth in E. coli and the ampicillin resistance gene enables 

selection of the plasmid in E. coli. Vector maps are courtesy of Invitrogen. 
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Figure 2.12 Vector map of pIRES2-AcGFP1 and pLVX-IR ES-ZsGreen1 

Both (A) pIRES2-AcGFP1 as well as (B) pLVX-IRES-ZsGreen1 contain a multiple cloning 

site (MCS) and an Internal Ribosomal Entry Site (IRES) of the encephalomyocarditis virus 

followed by green fluorescent protein (GFP) of Aequorea coerulescens or green 

fluorescent protein from Zoanthus sp (ZsGreen1), respectively. This allows the bicistronic 

expression of the gene of interest and the marker proteins GFP or ZsGreen1. High level 

expression of the gene of interest is ensured by the human cytomegalovirus (CMV) 

promoter. pIRES2-AcGFP1 harbours a neomycin resistance gene which allows stable 

transfection of mammalian cells following selection with the antibiotic G418. Expression of 

the resistance genes is controlled by the SV40 early promoter. pLVX-IRES-ZsGreen1 on 

the other hand does not encode a mammalian resistance gene. The presence of a pUC 

origin of replication in both vectors allows replication and growth in E. coli and the 

ampicillin or kanamycin resistance gene enables selection of the plasmid in E. coli. pLVX-

IRES-ZsGreen1 is a HIV-based vector which has been optimised for the production of 

lentiviral particles. Thus, it contains the woodchuck hepatitis virus posttranscriptional 

regulatory element (WPRE) which promotes RNA processing events and nuclear export of 

viral RNA. Furthermore, the Rev-response element (RRE) increases viral titres by 

enhancing the transport of unspliced RNA from the nucleus. Vector maps are courtesy of 

Clontech. 
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3 Signalling involved in negative selection of imma ture B cells 

 

3.1 Introduction 

 

The immune system generates an extremely diverse repertoire of antigen-

specific B cells. The drawback of this diversity is the potential to produce (cross)-

reactivities against host components. Thus, because of their potential to initiate 

immune responses against self-molecules, B cell development and maturation is tightly 

regulated to ensure tolerance against self. For example, B cells have to undergo 

negative selection during the immature B cell stage which ensures the deletion of the 

majority of autoreactive clones in the bone marrow. Thus, whereas ligation of the BCR 

on mature B cells initiates activatory signals, on immature B cells it leads to either 

receptor editing, anergy or deletion by apoptosis [36]. However, the differential 

signalling mechanisms employed by mature and immature B cells to effect the distinct 

functional outcomes have still not been fully elucidated. Indeed, the majority of signals 

utilised downstream of the BCR in mature and immature B cells appear to be very 

similar. For example, as with mature B cells, the BCR of immature B cells can couple to 

the ERK MAPK, PI3 kinase and PLCγ pathways. 

Nevertheless, it is possible that differences between BCR signalling in mature 

and immature B cells might reflect differential expression levels, kinetics or localisation 

of such signalling elements. Furthermore, there is increasing evidence that there are 

some major differences in the expression and/or nature of downstream mediators of 

the above mentioned pathways in mature and immature B cells. Thus, immature B cells 

express cPLA2, a phospholipase which is not expressed by mature B cells [318] and 

hence, the ligation of the BCR leads to the activation of cPLA2 and consequent 

induction of apoptosis in immature, but not mature, B cells. Similarly, another class of 

phospholipase, phospholipase D (PLD) is activated differentially in mature and 

immature B cells [319]. For example, in mature, but not immature, B cells BCR-ligation 

induces activation of a phosphatidyl-inositol specific PLD isoform which can create 

phosphatidic acid which is converted to DAG potentially feeding into the activation of 

PKC enzymes [319]. The lack of this activating PLD-dependent pathway in immature B 

cells might therefore contribute to their inability to proliferate upon BCR-ligation. 

Moreover, whilst the initiation of calcium mobilisation is not impaired in immature B 

cells, the hydrolysis of PIP2 by PLCγ is reduced [320] also resulting in lower production 

of DAG than the levels required for the stronger activation of PKCs observed in mature 

B cells. Consistent with this, differential BCR-dependent activation of PKCs is thought 

to provide another crucial difference as defective PKC activation has been implicated in 

driving BCR-induced apoptosis of immature B cells [321,322]. For example, it was 
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shown that enforced activation of PKCβ can inhibit BCR-induced apoptosis of 

transitional immature B cells and that blocking PKCβ activation in mature follicular B 

cells makes them more prone to die by apoptosis after BCR-ligation [322]. Consistent 

with this, the downstream effector of PKCβ involved in the survival of immature B cells 

is thought to be NF-κB. Indeed, PKCs can activate NF-κB which in turn increases the 

expression of survival factors such as c-Myc, Bcl-xL and Bcl-2 [131,323]. 

Moreover, c-Myc also plays an important role in the regulation of the cell cycle, 

specifically in the progression through G1 and into S phase. It is therefore not 

surprising that reduction of c-Myc was found to be linked to initiation of growth arrest 

and apoptosis in immature B cells or immature B cell lines such as the WEHI-231 

lymphoma [324]. Furthermore, constitutive expression of c-Myc in B cells expressing 

an autoreactive BCR led to an increase of autoreactive clones appearing in the 

periphery of a double transgenic mouse model system. These mice express a 

transgene encoding a BCR specific for hen-egg lysozyme (HEL) as well as another 

transgene resulting in the ubiquitous expression of HEL thereby turning HEL into a neo 

self-antigen. In the absence of c-Myc overexpression the peripheral B cells in these 

mice are anergic due to constant exposure to the neo self-antigen HEL [325]. The 

increase of HEL-specific and hence autoreactive clones seen in mice overexpressing 

c-Myc therefore argues for a role of c-Myc in the regulation of negative selection in 

immature B cells [326].  

Such differential BCR-signalling between mature and immature B cells might 

partly be due to a difference in the assembly of the initial BCR-related signalling 

complex. Indeed, in recent years many studies have revealed the importance of 

membrane organisation in signalling. These studies proposed that efficient assembly of 

signalling complexes at the membrane depends on so-called lipid rafts which are 

sterol- and sphingolipid-enriched domains. In mature B cells, BCR ligation leads to 

rapid localisation of the BCR into these lipid rafts and initiation of signalling [327]. 

Immature B cells however, were found to display a reduced ability to re-localise their 

BCR into lipid rafts upon antigenic stimulation [328] and this has been proposed to be 

due to lower levels of cholesterol in immature B cells [329]. Differential raft formation 

could therefore potentially influence the assembly of the signalling complex 

downstream of BCR-ligation thereby changing the signalling initiated at different stages 

of B cell development. 

In addition to these intrinsic signalling differences, the bone marrow environment 

has also been identified as having an influence on the fate decisions of immature B 

cells. For example, the bone marrow was found to contain Thy-1dull DX5pos cells which 

appear to be responsible for directing the response of autoreactive immature B cells 

towards receptor editing rather than apoptosis. Thus, lack of these cells increases the 
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number of immature B cells undergoing apoptosis in mixed bone marrow cultures 

compared to cultures containing this cell subset [330]. The lack of these cells in the 

periphery in vivo could therefore explain the preferential induction of receptor editing in 

the bone marrow compared to BCR-dependent induction of apoptosis, which is the 

predominant response of transitional immature cells in the periphery. 

 

3.1.1 ERK MAP kinase signalling regulates prolifera tion and 

apoptosis in B cells 

Activation of the ERK MAPK cascade is important in the regulation of mature B 

cell proliferation [331] and can be initiated by BCR-ligation and to a lesser extent by 

CD40 signalling [332]. However, activation of ERK has also been implicated in BCR-

induced apoptosis and growth arrest by studies showing that cross-linking the BCR on 

WEHI-231 cells causes rapid upregulation of ERK activation [333]. Subsequently, work 

from this laboratory showed that ERK can play a dual role in determining functional 

responses of the immature B cell line, WEHI-231, linking it to apoptosis as well as 

proliferation. Thus, sustained cyclic activation of ERK was found to be necessary to 

maintain the spontaneous proliferation of WEHI-231 cells. By contrast, cross-linking of 

the antigen receptors on such WEHI-231 B cells stimulated a strong transient ERK 

activation (< 4h) but abrogated the cyclic activation of ERK, resulting in growth arrest 

and apoptosis [307,310]. The link between this strong transient ERK activation and 

apoptosis was provided by cPLA2, a known substrate of ERK. Thus, upon BCR-ligation 

cPLA2 is upregulated and activated by ERK-mediated phosphorylation, followed by its 

translocation to the mitochondria where it catalyses the production of arachidonic acid 

causing the mitochondrial membrane potential to dissipate [307] (Fig.3.1). Such 

disruption of mitochondrial integrity leads to loss of cellular ATP and initiation of an 

intrinsic mitochondrial apoptosis pathway which was found to be caspase-independent. 

Instead, the main executioner protease seems to be cathepsin B which is activated 

downstream of BCR-ligation. In confirmation of a role for this protease in such BCR-

induced apoptosis, cell death could be prevented by the cathepsin B inhibitor EST 

[307].  

The positive role for sustained cycling ERK activation in the survival and 

proliferation of WEHI-231 cells has been confirmed with several pieces of evidence. 

For example, BCR-induced as well as pharmacological (olomoucine) - induced growth 

arrest correlates with abrogation of the cyclic ERK activation [310]. Moreover, even in 

the presence of apoptotic BCR-signalling, CD40-ligation, a known rescue signal from 

growth arrest and apoptosis, re-instates the sustained cyclic activation of ERK. More 

direct evidence for a role of such ERK activation in CD40-mediated rescue from growth 

arrest was obtained by using pharmacological inhibition of ERK with MEK-specific 
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inhibitors PD98059 or UO126. Thus, inhibition of cyclic ERK activation downstream of 

CD40 ligation abrogated the ability of such signalling to rescue cells from BCR-induced 

growth arrest [310]. Finally, inhibition of ERK activation in otherwise untreated WEHI-

231 cells reduced their spontaneous proliferation and increased levels of apoptosis 

indicating a role for ERK in the survival as well as the spontaneous proliferation of 

these cells [310].  

 

3.1.2 The role of CD40 signalling 

CD40 signalling plays a pivotal role in B cell biology regulating their proliferation, 

activation, survival and maturation-dependent effector functions such as class-

switching and development of plasma cells [190]. Moreover, it has been shown that 

CD40 can rescue immature B cells from BCR-induced apoptosis and prevent 

spontaneous death of mature B cells [334]. Ligation of CD40 appears to antagonise 

BCR-mediated apoptosis by initiating signals which stabilise the mitochondrial 

membrane thereby avoiding ATP depletion and apoptosis [307]. A key mechanism is 

the CD40-dependent upregulation of anti-apoptotic Bcl-2 family members such as Bcl-

xL, Bcl-2 or A1 [335-338]. Previous work in our laboratory underpins the important role 

of Bcl-xL in CD40-mediated rescue from apoptosis. For example, overexpression of 

Bcl-xL in WEHI-231 cells was sufficient to mimic CD40 signalling in protecting these 

cells from BCR-induced apoptosis by preventing the dissipation of the mitochondrial 

membrane potential and subsequently activation of the executioner protease cathepsin 

B [294]. This protection from apoptosis was achieved by two Bcl-xL-dependent 

mechanisms (Fig.3.1). Firstly, Bcl-xL, by locating to the mitochondria itself, stabilises 

the mitochondrial membrane and secondly, it inhibits the translocation of cPLA2 to the 

mitochondria. The finding that Bcl-xL overexpression also protected cells from 

apoptosis induced by treatment with exogenous arachidonic acid (AA) implies that Bcl-

xL can stabilise the mitochondria in BCR-dependent apoptosis, at least in part, by 

counteracting the effects of AA produced by cPLA2 [294].  

As mentioned above, CD40 not only prevents BCR-induced apoptosis but also 

rescues WEHI-231 cells treated with anti-IgM from growth arrest and restores their 

proliferation [310]. However, in this case, overexpression of Bcl-xL was not sufficient to 

mimic the effects of CD40-ligation. Indeed, BCR stimulation of Bcl-xL-expressing WEHI-

231 cells caused similar levels of growth arrest as seen in untransfected wild-type cells. 

These results, in conjunction with the need for (Bcl-xL-independent) restoration of cyclic 

ERK activation for CD40-dependent rescue from growth arrest, implicated the 

existence of at least two independent pathways mediating rescue from apoptosis and 

growth arrest. Thus, CD40-mediated upregulation of Bcl-xL is crucial in the prevention 

of apoptosis but does not affect growth arrest whereas the ERK-dependent pathway is 
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involved in rescue from BCR-dependent growth arrest but not apoptosis [294,310]. The 

exact mechanisms regulating CD40-dependent restoration of cyclic ERK have still to 

be delineated but preliminary data suggests that production of prostaglandins and 

leukotrienes is involved in proliferation of WEHI-231 cells. Thus, inhibitors of 

cycloxygenase 2 (Cox2) and lipoxygenase (Lox), the enzymes converting arachidonate 

to prostaglandins and leukotrienes, respectively, promote growth arrest. Interestingly, 

expression of PGE2, a product of Cox2 which can potentially have growth promoting 

effects [339], is reduced upon BCR signalling and restored by CD40-ligation in WEHI-

231 cells [294]. Additionally, pharmacological inhibition of Cox2 and Lox abrogated 

cyclic activation of ERK in CD40-stimulated WEHI-231 cells providing a more direct link 

between prostaglandin/leukotriene synthesis and CD40-mediated regulation of ERK 

levels [294]. Therefore, CD40-signalling might restore cyclic ERK activation and hence 

proliferation through a novel PGE2-dependent pathway.  

 

3.1.3 Regulation of ERK MAP kinase activation 

The ERK MAPK cascade can be regulated by several mechanisms. For example, 

negative feedback regulation can act at multiple levels with ERK phosphorylating and 

thereby inhibiting some of its own upstream regulators such as MEK1/2 [340] and Raf 

[341]. In addition, ERK activation of the downstream serine/threonine kinase RSK2 

leads to the phosphorylation of the Ras-GEF Sos, preventing it from interacting with 

Grb-2 and translocating to the plasma membrane, resulting in a consequent reduction 

of Ras activation [342]. Moreover, ERK can regulate some of its negative regulators, 

such as the dual-specificity phosphatase 1 (DUSP1, also known as MKP-1), a 

phosphatase which can dephosphorylate and hence inactivate ERK. Thus, ERK-

mediated phosphorylation of DUSP1 contributes to its stabilisation [343] thereby 

creating another negative feedback loop causing downregulation of ERK activation. All 

these mechanisms might therefore contribute to avoiding uncontrolled ERK MAPK 

responses.  

 

3.1.3.1 Scaffold proteins 

An additional level of regulation is provided by scaffold proteins which are able to 

bind two or more components of the same signalling cascade bringing them into close 

contact. Therefore, these scaffold proteins can act to control the substrate specificity of 

a pathway, target the signalling complex to various subcellular localisations or link the 

cascade to a specific upstream regulator [344]. The best studied scaffold protein for the 

ERK cascaded is kinase suppressor of Ras (KSR) [345] which can bind Raf, MEK and 

ERK [344]. Depending on the expression levels of KSR, binding to ERK has been 

shown to have different outcomes. Thus, at optimal levels, KSR increases activation of 
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ERK whereas an excess of KSR over its ligands inhibits ERK [346,347]. The 

importance of KSR in vivo was confirmed by a study using KSR1-deficient T cells 

which showed a defect in their activation [348]. Another ERK-specific scaffold protein is 

MEK partner-1 (MP-1), a positive regulator of ERK which enhances the B-Raf-

mediated phosphorylation of MEK1 [349].  

 

3.1.3.2 MAPK phosphatases 

A major mechanism of ERK inhibition is the direct dephosphorylation of the T-X-Y 

motif in the activation loop of the MAPKs. There are three types of phosphatases able 

to catalyse such dephosphorylation of MAPKs: tyrosine phosphatases, serine/threonine 

phosphatases and dual-specificity (threonine/tyrosine) phosphatases [350]. 

For example, upon activation by protein kinase A, the tyrosine protein phosphatase 

hematopoietic PTP (HePTP) can keep ERK1/2 in a dephosphorylated state causing 

reduced activity of ERK1/2 [351]. Indeed, HePTP has been shown to inhibit ERK1/2, as 

well as p38, following its activation downstream of the TCR [352]. Such 

dephosphorylation does not only influence ERK activity but also regulates its nuclear 

translocation. Hence, HePTP-dependent dephosphorylation of ERK2 inhibited its 

localisation to the nucleus in K562 myelogenous leukaemia cells [353]. Two other 

tyrosine phosphatases, PTP-SL and STEP were shown to have similar effects on 

ERK2 in Cos-7 and HEK-293 cells, inhibiting the activation and nuclear translocation of 

ERK2 by dephosphorylation [354]. 

Several serine/threonine protein phosphatases have been identified that regulate 

the activity of ERK, JNK and p38 by direct dephosphorylation or by targeting upstream 

activators of these MAPKs [355]. Protein phosphatase 2A (PP2A) is one such 

serine/threonine phosphatase involved in the regulation of the ERK pathway. It has 

been shown to influence ERK activation by interacting with its upstream modulators 

such as Shc, Raf-1 or MEK1/2. For example, PP2A can dephosphorylate and inhibit 

Raf-1 and MEK downstream of the PDGF receptor in NIH-3T3 cells leading to 

suppression of ERK [356]. Moreover, in vitro PP2A was shown to dephosphorylate not 

only MEK1/2 but also ERK1/2 itself [357] and in PC12 cells inactivation of the early 

transient ERK signal was achieved by PP2A-mediated dephosphorylation [358]. 

Overexpression of a dominant-negative form of PP2A in mouse brain caused an 

increase in MEK1/2 phosphorylation thereby providing an in vivo model confirming the 

activity of PP2A as an important regulator of the ERK MAPK cascade [358]. 

DUSP can dephosphorylate threonine and tyrosine residues and can therefore 

directly dephosphorylate the T-X-Y motif in MAPKs causing their inactivation [359]. 

Besides regulating the phosphorylation status of MAPK, some of these phosphatases 
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have also been implicated in determining the localisation of their targets, for example, 

MKP-3 was found to localise ERK1/2 in the cytoplasm [360].  

MKPs, which can be regulated at both the transcriptional as well as their enzyme 

activity level, play an important role in feedback-type regulation of MAPKs [361]. For 

example, induction of MKP-1 and -2 expression is enhanced by ERK-dependent 

mechanisms resulting in downregulation of ERK activity by dephosphorylation of the 

TEY activation motif [361]. Similarly, ERK-mediated phosphorylation and thereby 

stabilisation of MKP-1 can also lead to reduced ERK activation [343]. However, there 

are also reports supporting the existence of positive feedback loops due to increased 

ERK-dependent degradation of dual-specificity phosphatases [362]. Dual-specificity 

phosphatases can regulate all three families of MAPK: ERK, JNK and p38. Indeed, 

each phosphatase has a different set of substrates allowing the selective inhibition of a 

defined subset of MAPKs and therefore responses in the cells [352]. For example, 

PAC-1 is a selective phosphatase for ERK and p38 whereas MKP-1 can interact with 

all three MAPKs and MKP-2 preferentially dephosphorylates ERK and JNK [363,364]. 

PAC-1 is of particular interest, as it is regulated in immune cells upon activation. 

It was identified originally as a mitogen-inducible gene in human T cells [365] and was 

consequentially found to be highly upregulated in activated immune system cells such 

as B and T cells [366] implicating a role for PAC-1 in the regulation of immune cells 

[367]. Interestingly, the upregulation of PAC-1 expression in activated immune cells 

depends on ERK, further underpinning the important role of negative feedback 

mechanisms in the MAPK cascades [365,366]. For example, ERK, which is activated 

by TCR-ligation in Jurkat cells, in turn increases expression of PAC-1 thereby 

terminating ERK activation [368]. Interestingly, p53 was recently identified as another 

transcriptional regulator of PAC-1, inducing an increase in its expression which was 

found to be necessary for p53-mediated apoptosis, possibly by inhibiting ERK 

activation [369]. A study using PAC-1-deficient mice has shown that this phosphatase 

may also play a role in regulating auto-immune responses. Perhaps surprisingly, lack 

of PAC-1 reduced the inflammatory responses in an antibody-mediated model for 

arthritis. This study therefore highlighted the complexity of the MAPK signalling network 

as PAC-1 deficiency increased the activity of JNK but subsequently reduced activation 

of ERK implicating the existence of regulatory cross-talk between the three MAPK 

pathways [367]. Thus, PAC-1 could be one of the major regulators of MAPK activation 

in immune system cells. 

 

3.1.4 The role of ERK MAPK in cell cycle regulation  

As stimulation with mitogens, which cause cell cycle progression and 

subsequently proliferation, is often associated with ERK activation it is therefore not 
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surprising that ERK has been implicated in the regulation of cell cycle. The initial link 

between ERK activation and cell cycle progression came from studies showing the 

correlation between ERK1/2 activation and induction of DNA synthesis [370]. More 

directly, inhibition of ERK1 by overexpressing an inactive mutant or ERK1-antisense 

RNA in fibroblasts reduced ERK activation causing decreased proliferation [371]. 

Similarly, pharmacological inhibition of MEK1/2, the upstream activators of ERK1/2, 

can reduce proliferation in many cell types such as fibroblasts, smooth muscle cells, 

hepatocytes and immune system cells including T and B cells [372,373]. Indeed, it was 

subsequently shown that ERK1/2 was active in G1 and its activity needed to be 

sustained until late G1 phase to guarantee entry into S phase [374].  

At the molecular level activated ERK1/2 seems to have multiple functions 

impacting on the cell cycle including the control of transcription, translation and cell 

cycle regulators [372]. Thus, inhibition of ERK1/2 was found to reduce the 

phosphorylation of the translation initiation factor eIF4E which is a substrate of MNK1/2 

suggesting that their ERK1/2 dependent activation might be involved in the regulation 

of translation [375-377]. Additionally, ERK1/2 could potentially also influence translation 

through modifying the mTOR signalling pathway which regulates ribosome biogenesis 

and initiation of translation [378]. mTor is regulated by inhibition through the tuberous 

sclerosis complex 1 (TSC1)/TSC2 heterodimer. Two studies have recently reported the 

involvement of ERK1/2 in regulating mTOR, either directly or indirectly through 

activation of RSK1 to phosphorylate TSC2 and thus reducing the inhibitory activity of 

the complex [379,380]. 

As mentioned above, ERK1/2 plays a crucial role in the transition from G1 to S 

phase. One of the known mechanisms by which ERK1/2 regulates this transition is the 

induction of cyclin D1 expression [372]. The mechanisms of this ERK1/2 – cyclin D1 

signalling axis have not yet been fully delineated but it has been suggested to involve 

AP-1-dependent transcriptional upregulation of cyclin D1 [240,372]. Additionally, 

however, ERK has also been implicated in the regulation of the nuclear export of cyclin 

D1 mRNA to allow its translation at the ribosomes [381]. Finally, ERK1/2-mediated 

phosphorylation and stabilisation of c-Myc provides another link between cell survival 

and cell cycle progression and ERK1/2 activation.  

 

3.1.5 Regulation of c-Myc expression 

The importance of c-Myc in regulating processes such as proliferation and cell 

growth makes it necessary to tightly regulate its expression and activity. Thus, c-Myc is 

subject to regulation at the transcriptional, translational and post-translational level 

[382,383], the latter being the most extensively studied. For example, c-Myc protein 
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stability depends on its posttranslational modifications such as phosphorylation, 

ubiquitination and possibly acetylation (reviewed in [384]).  

The role of phosphorylation was the first to be detected and characterised and is 

still the focus of much attention. In particular, two of the N-terminal phosphorylation 

sites at threonine 58 and serine 62 have been analysed in detail as it has been found 

that they influence c-Myc protein stability and possibly trans-activation potential [384-

387] (Fig.3.2). For example, it has been shown by several groups that phosphorylation 

of T58 by glycogen synthase kinase 3 (GSK3) [388] renders c-Myc prone to 

ubiquitination by F-box protein Skp2 or Fbw7-containing SCF complex E3 ligases 

[389,390]. Whereas Fbw7-mediated ubiquitination of c-Myc is followed by its 

degradation by the proteasome, Skp2 signalling appears to play a more complex role in 

the regulation of c-Myc as it also influences its transactivation capacity. Indeed, Skp2 

has been found to co-localise with c-Myc at its target promoters and increases its 

transcriptional activation possibly by recruiting proteasome subunits which were 

recently found to play a role in RNA polymerase II transcription [389]. By contrast, 

phosphorylation of S62 increases c-Myc stability through as yet unknown mechanisms 

and little is known about the kinases which carry out the phosphorylation [384]. 

Nevertheless, the consensus sequence surrounding S62 makes it a likely target for 

modification by proline directed kinases such as ERK MAPK which has been shown to 

phosphorylate c-Myc at position S62 in vitro [386]. It is of interest that T58 

phosphorylation only occurs after prior phosphorylation at position S62 [386] further 

complicating the regulatory mechanisms underlying c-Myc stabilisation and 

degradation. The interaction of the c-Myc binding partner, Max with other bHLHZip – 

domain containing proteins such as Mad or Mnt provides another regulatory 

mechanism as these complexes act as transcriptional repressors being able to bind the 

same sequence as the c-Myc/Max complexes [391,392]. 

 

3.1.6 The small GTPase, Rap 

Rap (Ras proximity) belongs to the Ras superfamily of small GTPase proteins 

which includes five subgroups: the Ras, Rho, Rab, Arf and Ran families [393]. Rap 

belongs to the Ras-like small G proteins which include the three Ras family members 

H-Ras, Ki-Ras, N-Ras and the five members of the Rap family: Rap-1A, Rap-1B, Rap-

2A, Rap-2B, and Rap-2C [394]. The Rap-1 and Rap-2 isoforms are 60% identical and 

are mainly regulated by the same GEFs and RapGAPs but Rap-2 displays a lower 

sensitivity for RapGAPs allowing it to remain in an active state for longer. This has led 

to suggestions that Rap-1 and Rap-2, if activated in the same cell, might function as a 

molecular switch between fast (Rap-1) and slow (Rap-2) Rap activation/deactivation 

[395].  
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3.1.6.1 Regulation of Rap activity 

Activation of Rap is achieved by the exchange of GDP for GTP which is carried 

out by GEF proteins including C3G, Epac1, Epac2, RasGRP2, PDZ (PSD-95/Dgl/ZO-

1)-GEF1, PDZ-GEF2, CalDAG-GEF and PLCε (reviewed in [393]; Fig.3.3). Binding of 

GEF to Rap decreases its affinity for GDP and promotes its replacement by GTP, 

which is found in excess in the cell [394]. Binding of GTP induces a conformational 

change which exposes the effector binding loop allowing the recruitment of different 

Rap effectors. Different GEFs have been found to activate Rap downstream of a range 

of signals such as cytokines and chemokines, growth factors, cell adhesion molecules 

and antigen-receptors in B and T cells [396]. Moreover, activation of Rap can be 

achieved by different mechanisms depending on the expression of specific GEFs as 

well as the type of regulatory adaptor complex formed. For example, C3G (Crk SH3-

domain-binding guanine-nucleotide releasing factor, where SH3 stands for Src 

homology region 3 domain), which is an ubiquitously expressed GEF in many cell 

types, is activated downstream of RTK (Fig.3.3). Thus, binding of C3G to its adaptor 

Crk allows recruitment to the plasma membrane where RTKs facilitate phosphorylation 

and hence activation of C3G on tyrosine 504 [397]. The phosphotyrosine docking sites 

needed for the recruitment of Crk/C3G can be provided by phosphorylation of 

scaffolding proteins such as Cbl, Cas or Gab1 [398-400]. The importance of the 

adaptor proteins and the complexes they form with Rap-1 downstream of RTK-induced 

signalling is emphasised by the fact that inhibition of complex formation blocks the 

activation of Rap-1 [400].  

By contrast, CalDAG-GEF 1 is regulated by calcium binding whereas CalDAG-

GEF 3 needs to bind DAG for activation. These RapGEFs therefore likely connect the 

PLC pathway with Rap activation [401]. Moreover, a recent addition to the RapGEF 

family of proteins, the Epac proteins, depend on cyclic AMP (cAMP) for activation and 

have thus been implicated in the transduction of signals through GPCRs [402]. Thus, 

different stimuli induce activation of Rap by initiating varied signals such as elevation of 

cAMP, calcium or phosphotyrosine kinase activity, all of which can cause the activation 

of different types of GEFs (Fig.3.3). 

Inactivation of Rap is achieved by RapGAPs which enhance the intrinsic Rap 

GTPase activity leading to the hydrolysis of GTP to GDP and subsequent inactivation 

of Rap [403]. There are two major groups of RapGAPs: The RapGAP family (including 

RapGAP1 and 2) and the SPA-1 family of proteins (SPA-1, SPA-1-like (SPA-L) 1 (also 

called SPAR), SPA-L 2, and SPA-L 3) which all share the catalytic GAP-related domain 

(GRD) [396] (Fig.3.3). SPA-1 is the family member expressed most abundantly in 

lymphohematopoietic tissues whereas for example SPAR is more highly expressed in 
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epithelial tissues and brain [404,405]. RapGAPs do not need post-translational 

modifications such as phosphorylation to be activated as they are constitutively active 

and therefore expression levels appear to be the major determinant of their activity in 

the cell [396]. 

 

3.1.6.2 Functions of Rap 

Rap has been implicated in a range of cellular responses including regulation of 

integrin expression and signalling, T cell anergy and neuronal cell differentiation [396]. 

Interestingly, activation of Rap can have distinct cellular effects depending on the cell 

type and/or stimuli. For example, Rap-1 was initially discovered as a factor that could 

suppress the K-Ras-mediated transformed phenotype of fibroblasts [406] which led to 

the initial hypothesis that Rap-1 antagonises Ras mediated signals by binding to Raf-1 

and hence sequestering it away from Ras and consequently inhibiting Ras-mediated 

activation of ERK. Indeed, this seems to be the mechanism by which Rap-1 inhibits 

activation of ERK in in vitro anergised T cells. Thus, cross-linking of the TCR/CD3 

complex in the absence of CD28 costimulation increases the recruitment and activation 

of Rap-1 at the TCR signalling complex whereas costimulation via CD28 blocks such 

Rap-1 activation [407,408]. Consistent with this, it has been shown subsequently by in 

situ immunofluorescence staining that upregulation of Rap-1 and reduction of ERK 

activation is also a hallmark of in vivo anergised antigen-specific T cells [409] and that 

T cells with an anergic phenotype in vivo display Rap-1 activation [410]. These studies 

therefore confirm the relevance of Rap-1-dependent inhibition of ERK activation in the 

regulation of T cell dependent immune responses.  

By contrast, in neuronal cell lines, Rap-1 was found to activate the ERK pathway. 

It was shown that such activation of ERK was achieved in a B-Raf dependent manner 

[411]. Here Rap-1 binds and activates B-Raf, another Raf isoform known to effectively 

phosphorylate and thereby activate MEK1/2 and hence ERK1/2. Therefore, it is now 

thought that Rap-1 can either activate or inhibit the ERK cascade depending on cell 

type and expression of different Raf isoforms (Raf-1 or B-Raf). An interesting study by 

Dillon et al provides supporting evidence for this hypothesis in peripheral T cells which 

generally do not express B-Raf. In those cells Rap-1 functions as a negative regulator 

of ERK by binding Rap-1 and inhibiting Raf-1/Ras interactions. However, by creating 

mice expressing B-Raf in peripheral T cells, they showed that Rap-1 was then able to 

activate ERK in a B-Raf-dependent manner reducing the sensitivity of these cells 

towards induction of anergy [412].  

Rap-1 is also involved in the regulation of integrin-mediated adhesion of various 

immune system cells such as lymphocytes and macrophages [413,414] by affecting the 

activity and clustering of integrins [415]. Indeed, in T cells Rap-1 is needed for the 
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activation of LFA-1 and synapse formation with antigen-loaded APCs [416,417]. Rap-1 

utilises various effector proteins to achieve this regulation of integrins. For example, 

Rap-1 recruits RapL which in turn binds to the α-chain of the αLβ2 integrin, activating it 

and increasing its interaction with ICAM [415]. Alternatively, Rap-1-mediated 

recruitment of RacGEFs links Rap-1 to the control of cell spreading [415]. Thus, Rap-1 

is a versatile signalling molecule which can regulate diverse cellular processes such as 

proliferation, differentiation or cellular adhesion depending on the cell type and 

expression of Rap-1-specific upstream or downstream regulatory molecules (Fig.3.3). 

 

3.1.6.3 The role of Rap activation in B cells 

Rap-1 and Rap-2 have been shown to be activated downstream of the BCR in B 

cells [418,419] and previous studies have indicated that Rap-1 can potentially regulate 

multiple signalling pathways including the ERK, p38 [420,421] and PI3 kinase/Akt 

pathways [422]. Interestingly, it has been suggested that, for example in chicken DT40 

B cells, the B-Raf/Rap-dependent activation of ERK might be more important than the 

Raf-1/Ras cascade [170]. 

Rap-1A and Rap-1B deficient mice have been instrumental in further analysing 

the role of Rap in B cell development and activation. For example, Rap-1B was found 

to be the dominant form of Rap-1 in B cells [423] and Rap-1B-deficiency was shown to 

reduce the absolute number of pre-pro-B cells as well as immature B cells in the bone 

marrow. Similarly, in the periphery, numbers of MZ B cells were reduced as were 

mature follicular B cells in lymph nodes. Moreover, Rap-1B-deficient B cells were 

shown to display impaired adhesion and chemotaxis in vivo [424] as well as reduced 

SDF-1 (CXCL13)-induced migration and homing to lymph nodes [423]. These latter 

defects can be explained by the need for Rap for integrin activation and therefore 

adhesion. Indeed, Rap has not only been shown to be important for integrin activation 

but also for reorganisation of the actin cytoskeleton upon BCR and integrin-mediated 

stimulation [425]. Moreover, Rap is required for the BCR-ligation mediated formation of 

the immune-synapse as well as the F-actin-dependent extension of membrane 

processes upon BCR-ligation and cell spreading [426]. By contrast, proliferation of 

splenic B cells was not influenced by Rap-1B-deficiency thereby indicating that Rap-1B 

does not play a role in the expansion of mature B cells.  

Unlike Rap-1B, Rap-1A does not seem to be crucial for T or B cell development 

but, similarly to Rap-1B, plays a role in adhesion of various cell types such as 

macrophages and chemotaxis of T, B and myeloid cells [427]. Taken together these 

studies show that Rap-1A and Rap-1B functions are partly redundant but some effects 

appear to be specific for one isoform or the other. Indeed, mice conditionally 

expressing a dominant-negative Rap-1 mutant Rap-1A17, which is able to inhibit all the 
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Rap family proteins, displayed a significant reduction of pre-B cells, immature and 

mature B cells [428] causing a more severe phenotype in these mice compared to mice 

deficient for single isoforms and hence indicating that more than one Rap protein may 

be involved in the regulation of development. Interestingly, Rap signalling also seems 

to be involved in the selection of the BCR repertoire of B cells. Thus, Ishida and 

colleagues have reported an increase of anti-dsDNA antibody-producing B-1a B cells 

as well as the development of lupus-like nephritis in mice deficient for the Rap-1-GAP, 

SPA-1. It seems that developing B cells with higher active Rap levels display a change 

in their V(D)J recombination and thereby receptor repertoire [429]. Thus, upregulation 

of Rap activity due to the lack of inhibition by SPA-1 increases the number of 

autoreactive B cells developing in these mice indicating a role for SPA-1 in the 

maintenance of tolerance.  

 

3.1.7 The role of the Cbl family of E3 ubiquitin li gases in B cells 

Ubiquitination of proteins involved in signalling cascades can influence their 

activity, protein stability and localisation and thereby change the signalling outcome 

downstream of various receptors [430] (see section 1.6). The members of the Cbl 

family of E3 ubiquitin ligases have been implicated in regulation of immune responses 

by influencing T and B cell signalling [431]. In mammals there are three Cbl isoforms: 

c-Cbl, Cbl-b and Cbl-c, but only c-Cbl and Cbl-b are expressed in haematopoietic cells 

[228]. Cbl proteins contain a tyrosine kinase-binding (TKB) domain [432] as well as a 

Zinc-binding RING finger domain which confers the E3 ubiquitin ligase activity of Cbl 

[433]. The TKB allows Cbl to bind to phospho-tyrosine residues in multiple PTKs and 

other signalling proteins [228]. Cbl itself is also tyrosine-phosphorylated by PTKs 

associated with the TCR, EGFR, IL-7, IL-4 and IL-2 receptors and this phosphorylation 

influences its adaptor function and E3 ligase activity [228]. 

There are two major mechanisms by which Cbl regulates receptor signalling. 

Firstly, Cbl can ubiquitinate receptors themselves such as the EGFR leading to 

internalisation and degradation of the receptor [434,435]. Additionally, Cbl ubiquitinates 

downstream signalling mediators such as Syk, Fyn, Lck and Lyn [228]. Generally 

ubiquitination will target the proteins for proteasomal degradation as seen for c-Cbl-

mediated ubiquitination and degradation of Syk in B cells [236] (see Chapter 1, section 

1.6). But in some cases ubiquitin-modification changes the capacity of proteins to 

interact with their usual binding partners. Thus, Cbl-b-dependent ubiquitination of the 

PI3 kinase subunit p85 does not induce degradation but inhibits its recruitment to CD28 

or TCR [436,437]. Similarly, ubiquitination of CrkL, an adaptor protein involved in the 

recruitment of Rap, impairs the interaction with C3G [438]. Cbl therefore can potentially 

regulate various signalling pathways, some of which are known to be important in B 
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cells. Initial studies carried out in chicken B cells indeed showed that c-Cbl and Cbl-b 

regulate BCR signalling [439,440] and Cbl-b was found to downregulate Syk following 

BCR stimulation in a ubiquitination-dependent fashion [441]. A study by Kitaura et al 

has recently confirmed a role for c-Cbl and Cbl-b in the regulation of B cells in vivo. 

They used B cell-specific c-Cbl/Cbl-b-doubly-deficient mice to analyse the role of these 

proteins in B cell development and activation [442]. The c-Cbl/Cbl-b-deficient mice 

displayed major changes in B cell development leading to an increase of B cells in the 

periphery and reflecting an increase in T1, MZ as well as B-1 B cell numbers. 

Compared to wild-type littermates, the mice also expressed more IgM and detectable 

levels of anti-dsDNA and ANA antibodies and some animals developed SLE-like 

autoimmune disease [442]. This inability to regulate autoreactive B cells might be partly 

due to reduced ability of c-Cbl/Cbl-b-deficient B cells to be anergised resulting in 

increased levels of activated self-reactive B cells.  

Similarly, both Cbl isoforms were shown to also play an important role in the 

negative regulation of T cell activation. Thus, T cells from mice deficient for Cbl-b 

produced IL-2 and proliferated upon stimulation via CD3 without any need for CD28 

costimulation. Cbl-b was consequently found to be involved in the negative regulation 

of signalling through the TCR and CD28 by ensuring the need for CD28 costimulation 

to overcome a certain signalling threshold [230]. The decreased need for costimulation 

and subsequent hyperresponsiveness of these T cells made Cbl-b-deficient mice 

susceptible not only to the induction of autoimmune diseases such as experimental 

autoimmune encephalomyelitis [230] but also spontaneous autoimmune disease [229]. 

Mice deficient for both c-Cbl and Cbl-b in T cells also develop autoimmune disease due 

to hyperreactive T cells [443]. Thus, Cbl-mediated negative regulation of antigen-

receptor signalling seems to influence pivotal processes including positive selection of 

T cells in the thymus, activation threshold of peripheral T cells as well as B cell 

tolerance mediated by anergy [431]. 

 

3.2 Aims 

 

Negative selection of immature B cells expressing self-reactive specificities plays 

an important role in preventing the development of autoimmune diseases. It is 

therefore vital to characterise the signalling pathways that lead to the induction of 

growth arrest and apoptosis in immature B cells upon BCR stimulation. 

The WEHI-231 B cell lymphoma expresses high levels of IgM as well as no/low 

levels of IgD, FcγR, and MHC class II on their surface, a phenotype similar to immature 

B cells. This cell line has therefore been used extensively as a model system for BCR-

induced growth arrest and apoptosis of immature B cells [444,445]. Thus, cross-linking 
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of the BCR on WEHI-231 cells by treatment with anti-IgM antibodies leads to growth 

arrest in G1 phase of the cell cycle and apoptosis in a manner which models anergy 

and clonal deletion during negative selection of immature B cells in the bone marrow. 

Furthermore, and similarly to primary immature B cells, WEHI-231 cells can be rescued 

from growth arrest and apoptosis by TH cell-derived signals such as ligation of the 

CD40 receptor [334]. WEHI-231 cells therefore represent an exploitable in vitro model 

for the dissection of signalling pathways underlying BCR-mediated negative selection 

which can then be translated and validated in primary immature B cells. 

 

The specific aims and objectives of this investigation were: 

• to investigate the signalling mechanisms regulating ERK activation in 

immature B cells and how these are modulated during BCR-mediated 

growth arrest and apoptosis and rescue via CD40 signalling. In 

particular, it was planned to focus on the roles of B-Raf, Rap-1 and 

SPA-1 in ERK signalling and consequent immature B cell fate. 

• to characterise the downstream effectors of ERK, such as c-Myc, and to 

investigate their role in directing immature B cell fate. 

• to further explore the role of other signalling pathways and regulatory 

mechanisms such as ubiquitination in BCR-induced growth arrest and 

apoptosis of WEHI-231 cells. 
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3.3  Results 

 

3.3.1 Induction of growth arrest and apoptosis in W EHI-231 cells 

In order to assess the negative selection response to BCR stimulation, WEHI-231 

cells were stimulated with increasing concentrations of anti-mouse IgM antibody to 

mimic crosslinking of the BCR by high affinity/avidity antigen. Proliferation was 

assessed not only by determination of DNA synthesis using a [3H] thymidine 

incorporation assay but also by analysis of the percentage of cells in the different cell 

cycle stages following quantitation of DNA content by PI staining. Thus, dose response 

experiments were performed that showed that increasing concentrations of anti-IgM 

repressed proliferation (Fig.3.4A). This growth arrest could be reversed by 

simultaneous treatment of the cells with agonistic anti-CD40 antibody (Fig.3.4B) as 

indicated by the restoration of proliferation. 

Cell cycle analysis of living cells confirmed these results. Thus, treatment of 

WEHI-231 cells with anti-IgM for 48 or 72 hours dramatically decreased the percentage 

of cells in G2-M phase and S phase with a compensatory increase in the percentage of 

cells arrested in G1-G0 (Fig.3.5). However, analysis of all the cells in the culture 

revealed that G1-G0 arrest only partially accounted for the loss of proliferation as by 

48-72 h there was also a dramatic increase in the percentage of cells with subdiploid 

DNA content, a hallmark of apoptosis (Fig.3.6). 

Furthermore, it was shown that BCR-ligation led to the dissipation of the 

mitochondrial membrane potential (MMP), detected as a decrease of the percentage of 

cells with high DiOC6 fluorescence intensity (Fig.3.6E). DiOC6 is a dye that integrates 

into the mitochondrial membrane in a stoichiometric fashion correlating with the MMP. 

A decrease of the levels of DiOC6-staining therefore indicates the disintegration of the 

cells MMP, a hallmark of the intrinsic apoptosis pathway. Both BCR-mediated growth 

arrest and apoptosis, as well as dissipation of the MMP, could be counteracted by the 

simultaneous stimulation of the cells with anti-CD40 antibody (Fig.3.5 and 3.6). 

Collectively, therefore, these results showed that both growth arrest and 

apoptosis contributed to the decrease in proliferation of WEHI-231 cells following BCR 

ligation and that WEHI-231 immature cells provided an in vitro model not only for 

dissecting the BCR signals responsible for growth arrest and apoptosis during negative 

selection but also those directing rescue by CD40-mediated TH-derived signals.  

 

3.3.2 Regulation of ERK activation during BCR-media ted negative 

selection and rescue via CD40 

Previous research in this laboratory has shown that differential ERK signals 

determine distinct important cell fate decisions of the immature B cell line WEHI-231. 
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Thus, depending on the strength and duration of ERK activation, WEHI-231 immature 

B cells can either survive and proliferate or undergo growth arrest and apoptosis [310]. 

Thus, as shown previously, cyclic activation of ERK accompanies the robust 

spontaneous proliferation of cultured WEHI-231 cells for up to at least 32 hours 

(Fig.3.7A). By contrast, stimulation of the cells with anti-IgM induced the transient 

upregulation of ERK phosphorylation during the first 2-4 hours after stimulation 

followed by a sustained downregulation for at least 32 hours (Fig.3.7B). This reduction 

of ERK activation was mirrored by that of its putative downstream effector of survival 

and proliferation, c-Myc, as expression of this protein also displayed an initial increase 

in the early phase of BCR stimulation followed by strong downregulation during the rest 

of the analysed time course. By contrast, simultaneous stimulation of the BCR and 

CD40 restored both the levels of activated ERK and c-Myc expression (Fig.3.7D) and 

the cyclic activation pattern seen in untreated cells (Fig.3.7A and D). Consistent with its 

anti-apoptotic effects, ligation of CD40 in the absence of BCR stimulation did not 

induce the early activation of ERK as seen after BCR-ligation but did generally tend to 

enhance ERK phosphorylation and c-Myc levels throughout the time course (Fig.3.7C). 

To corroborate these data at the single cell level the activation of ERK, in terms 

of expression of dually-phosphorylated (T202/Y204) ERK, was imaged and quantitated 

by laser scanning cytometry. Image analysis showed that pERK showed a focused, 

punctate staining in the perinuclear region and, in agreement with the above Western 

Blot data and our previous studies [310], quantitative LSC analysis of the 

immunofluorescence staining of WEHI-231 cells treated with anti-IgM showed a 

reduction in the percentage of cells expressing pERK, as well as the level of pERK 

expressed in the cells at 48 h due to cross-linking of the BCR which was reversed upon 

CD40-mediated rescue from growth arrest (Fig.3.8). c-Myc expression detected by 

immunofluorescent staining was predominantly located, as expected, in the nucleus. 

Moreover, quantitative analysis by LSC showed that it was expressed in fewer cells 

and at a lower level after BCR-ligation, confirming the results demonstrated by Western 

Blotting (Fig.3.8). Moreover, mimicking TH-cell help by ligation of CD40 restored the 

expression of c-Myc even in the presence of BCR-ligation (Fig.3.8). 

 

3.3.3 Activation of ERK correlates with progression  through the 

cell cycle 

The cell cycle is controlled very tightly to ensure the timed entry and exit through 

cell cycle phases. Proteins regulating the cell cycle are therefore often expressed only 

during certain stages of the cell cycle and are downregulated once the next phase is 

entered. The correlation of protein expression and cell cycle stage can therefore 

indicate a positive or negative regulatory role of the analysed proteins. In order to 
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directly correlate protein expression levels with cell cycle stage, cells were 

cytocentrifuged and immunofluorescently stained and then analysed by LSC. The 

advantage of LSC analysis is that this method allows the direct correlation between cell 

cycle status and protein expression on a single cell basis. Firstly, to determine the 

different cell cycle phases in WEHI-231 cells, BCR- and/or CD40-stimulated cells were 

stained with DAPI to determine their DNA content and chromatin condensation 

(Fig.3.9). It was shown that such LSC-based analysis produced broadly similar results 

as FACS analysis of PI staining detecting an increase in cells arrested in G1 phase and 

a decrease of new daughter cells and cells in mitotic phases (G2/M and S phase) after 

treatment with anti-IgM at this time point (Fig.3.9C). 

Activation of ERK has been shown to be important for the proliferation and 

survival of B cells [310] and it is known to be a prerequisite for G1/S phase transition 

and hence cell cycle progression in other cell systems such as fibroblasts [446]. The 

LSC-based analysis of cell cycle status was therefore utilised to investigate the 

possible correlation between pERK (active ERK) and cell cycle progression. Indeed, in 

confirmation of previous results [310], higher levels of ERK activation were found in 

cells in G2/M or S phase whereas lower levels of pERK were associated with growth 

arrested or apoptotic cells (Fig.3.10). Moreover, the percentage of pERK expressing 

cells was generally higher in mitotic cells compared to growth arrested/apoptotic cells 

(Fig.3.10). Interestingly, new daughter cells which represent cells having recently 

undergone mitosis, express relatively low levels of pERK, most likely due to their 

quiescent state (Fig.3.10). Taken together these results further confirm the connection 

between proliferation and ERK activation directly linking high levels of ERK activation 

with mitosis. 

 

3.3.4 Rap/B-Raf signalling as a target of BCR-media ted negative 

selection? 

It has been shown by this laboratory that whilst BCR signalling leads to the 

suppression of sustained, cycling ERK activation, activation of Ras, one of the major  

upstream regulators of the ERK cascade, was essentially unaffected [373]. Thus, 

downregulation of Ras activity did not appear to be the mechanism underlying BCR-

mediated suppression of ERK activation. Interestingly, however, activation of MEK1, 

the ERK-specific MAPKK in BCR signalling, which is constitutively active in proliferating 

WEHI-231 cells, was found to display a cyclic pattern after BCR stimulation [447], 

suggesting that a Ras-independent pathway contributes to the full activation of the 

MEK/ERK cascade in spontaneously proliferating WEHI-231 immature B cells and that 

BCR-mediated downregulation of this pathway might be responsible for the 

suppression of ERK activity.  
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Since Rap-1 has also been reported to activate MEK via B-Raf [411], it was 

decided to investigate the potential of Rap-1/B-Raf signalling as targets in BCR-

induced growth arrest. Rap-1 is a small GTPase and therefore only active if bound to 

GTP [422] and thus, Western Blotting using an anti-Rap-1 antibody detects Rap 

expression independent of its activation status. Nevertheless, to assess if all the 

components of the Rap/B-Raf cascade are expressed in WEHI-231 cells and to further 

examine any stimulation-induced changes, Rap, B-Raf and Raf-1 levels were detected 

by Western Blotting. Rap-1, B-Raf and Raf-1 were found to be expressed in WEHI-231 

cells under all conditions tested and the levels of Rap-1 and Raf-1 did not appear to be 

substantially reduced by BCR-ligation or indeed correlate with the differential levels of 

pERK observed in control and BCR-stimulated WEHI-231 B cells (Fig.3.11A-D). 

Concerning Rap-1 expression, these results were further confirmed by LSC analysis of 

immunofluorescence staining of Rap-1 expression in individual cells showing no 

changes of the percentage or overall level of Rap-1 expression (Fig.3.11E). However, 

Raf-1 expression appeared to be upregulated by CD40 signalling, results perhaps 

consistent with the finding that ERK activation is generally found to be higher in these 

cells across the full time course. Rather unexpectedly, Rap-1 expression was found to 

be somewhat reduced in cells stimulated via the BCR and CD40 at later time points 

(Fig.3.11D). Most interestingly, however, was the finding that whilst B-Raf appeared to 

be highly expressed constitutively in control or CD40-stimulated WEHI-231 B cells, its 

expression appeared to be regulated in a cyclic manner in BCR-stimulated cells which 

was essentially reversed by CD40 signalling (Fig.3.11). 

Next, the relative activities of these ERK pathway regulators were assessed 

under the various cell fate conditions. Firstly, preliminary studies using the EpiTagTM 

assay which detects phosphorylated B-Raf were performed. B-Raf is constitutively 

phosphorylated on serine 446 [448] and this phosphorylation is an indication of 

activation as it stops auto-inhibition of B-Raf by decreasing the binding of the regulatory 

and catalytic domain of B-Raf. Thus, even though this position is phosphorylated in the 

basal state, activation of receptors can enhance the phosphorylation of B-Raf at serine 

446 to further increase the spontaneous activity of B-Raf [316]. Consistent with the 

proposal that BCR-signalling may abrogate Rap-1/B-Raf coupling to ERK, treatment 

with anti-IgM abrogates the expression of pB-Raf observed in control cells at 4 h. 

However, there were no significant differences at later time points indicating that this 

mechanism is likely to be insufficient to explain either the sustained cyclic levels of 

pERK in untreated WEHI-231 cells or the full BCR-mediated suppression of ERK and 

its’ rescue afforded by CD40 signalling (Fig.3.11F).  

To further analyse the impact of the different treatments on the potential 

activation of molecules involved in the Rap-1/ERK signalling cascade, levels of active 
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Rap-1 were determined. To this end a commercially available Rap-1 activity assay kit 

was used. The principle of this assay exploits the fact that GTP-Rap-1, but not GDP-

Rap-1, is able to bind the Ras-binding domain of the Ral guanine nucleotide 

dissociation stimulator (RalGDS-RBD) [449] and hence only the active Rap-1 can be 

purified by binding to RalGDS-RBD-conjugated agarose beads and analysed by 

subsequent Western Blotting using an anti-Rap-1 antibody. Using this approach, 

stimulation of WEHI-231 cells with anti-IgM antibody was shown to substantially reduce 

the levels of active Rap-1 over the period where ERK activity is suppressed whereas 

simultaneous treatment with anti-CD40 could partially reverse this effect (Fig.3.12A-D). 

These results were confirmed by LSC analysis of immunofluorescence staining using a 

recombinant Ral-GDS-RBD-GST construct to track activated Rap in individual cells 

(Fig.3.12E). Here BCR stimulation of WEHI-231 cells was found to decrease overall 

expression levels as well as the percentage of cells expressing active Rap at high 

levels 24 hours post-stimulation (Fig.3.12F/G). Similar to the data acquired by Western 

Blotting, CD40-costimulation partially rescued the cells from downregulation of active 

Rap, slightly increasing the percentage of cells containing high levels of active Rap 

(Fig.3.12F/G). Taken together these results indicate that BCR-signalling in WEHI-231 

cells decreases the levels of active Rap which could contribute to the observed 

reduced activation of MEK and hence ERK. CD40-ligation, which is known to re-

establish cyclic ERK activation and proliferation in BCR-stimulated cells, was found to 

partially reverse the decrease of active Rap. This could be one of the mechanisms 

CD40 utilises to prevent growth arrest. 

 

3.3.5 SPA-1 expression is regulated by BCR-mediated  signalling 

In order to shed some light on the possible mechanisms by which BCR-signalling 

could inactivate Rap-1, the role of the RapGAP, SPA-1, [405,450] was investigated. 

SPA-1 indeed appears to be upregulated both at the protein and at the transcriptional 

level in WEHI-231 cells after BCR stimulation (Fig.3.13A and D/E). Furthermore, anti-

CD40 induces a significant downregulation of SPA-1 mRNA and protein levels and 

reverses the effects of BCR-ligation reducing SPA-1 levels even below the levels 

observed in untreated cells, findings perhaps consistent with the rescued levels of ERK 

activation found in these cells (Fig.3.13A and D/E). As previously reported, SPA-1 was 

mainly found in the nucleus and cytoplasm [451]. Its cytoplasmic localisation allows 

SPA-1 to regulate the activity of Rap whereas nuclear SPA-1 might carry out different, 

so far ill-defined, functions (Fig.3.13B).  

Many of the negative regulators of the ERK MAPK cascade, such as MAPK 

phosphatases can be themselves regulated by feedback loops [452]. Therefore, in 

order to determine the effect of ERK activation on SPA-1 expression in spontaneously 
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proliferating WEH-231 B cells, these cells were treated with the pharmacological 

inhibitor of MEK, PD98059 (Fig.3.13C). Perhaps surprisingly, inhibition of sustained 

cycling ERK activation did not affect SPA-1 mRNA expression. Rather, inhibition of PI3 

kinase appeared to mimic the effects of BCR-ligation concerning SPA-1 mRNA 

expression, as treatment of cells with a specific PI3 kinase inhibitor (LY294002) 

increased SPA-1 RNA levels (Fig.3.13D-E). No further increase in SPA-1 mRNA levels 

could be detected following co-culture of the cells with the MEK and PI3 kinase 

inhibitors. 

Supporting evidence for a role for PI3 kinase in the regulation of SPA-1 

expression was provided by experiments utilising WEHI-231 cells stably expressing 

RasV12, RasV12S35 and RasV12C40 [453] which are constitutively active Ras 

mutants either activating both the PI3 kinase and ERK cascades (RasV12), or 

selectively the ERK (RasV12S35) or PI3 kinase (RasV12C40) cascade [171,454]. 

Although, as previously mentioned, it had been shown by this laboratory that 

activation of Ras was not substantially modulated by BCR-ligation, overexpression of 

constitutively active Ras mutants which prevented BCR-mediated downregulation of 

ERK signalling was able to rescue WEHI-231 cells from growth arrest at least in the 

first 24 hours following BCR stimulation [373] (Fig.3.14) and as such provide a useful 

tool for the dissection of the role of differential effects of Ras activation. 

Interestingly, although SPA-1 mRNA levels were essentially the same in empty 

vector control cells and all of the Ras-mutant cells at time zero, levels of SPA-1 mRNA 

were slightly lower in unstimulated cells transfected with either RasV12 or RasV12C40 

compared to empty vector- or RasV12S35-transfected cells after 24 hours in culture 

(Fig.3.14C). Similarly, the increase of SPA-1 mRNA observed upon BCR-ligation was 

found to be reduced in cells transfected with either RasV12 or RasV12C40 compared 

to empty vector- or RasV12S35-transfected cells (Fig.3.14C). These results suggested 

that Ras-dependent PI3 kinase but not Ras-mediated ERK activation is efficient at 

suppression of SPA-1 transcription and supported the previous findings using 

pharmacological inhibition which showed pronounced effects of PI3 kinase but not ERK 

inhibition on SPA-1 mRNA levels (Fig.3.13D/E). Interestingly, expression of these Ras 

constructs was not effective at suppressing growth arrest at later timepoints (48 hours) 

[447], further supporting the hypothesis that Ras-independent signalling is a target of 

BCR-mediated growth arrest, especially during the later stages of the response.  

Collectively, these results indicate that, in untreated and therefore proliferating 

WEHI-231 cells, PI3 kinase signalling suppresses the transcription of SPA-1 which 

could increase levels of active Rap and hence ERK. Consistent with this, BCR 

stimulation of immature B cells has been reported to reduce PI3 kinase signalling [455] 

and therefore, this could potentially lead to the loss of SPA-1 suppression and an 
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increase in SPA-1 levels. Thus, these elevated levels of SPA-1 might be partly 

responsible for the BCR-mediated downregulation of Rap and hence ERK. 

 

3.3.6 PAC-1 mRNA expression is regulated by BCR-med iated 

signalling 

PAC-1 is a DUSP which dephosphorylates ERK and thereby inactivates it 

[365,368]. It was previously shown to be upregulated at the protein level and recruited 

to ERK-containing complexes following BCR stimulation in WEHI-231 cells [310]. The 

mechanisms involved in such upregulation have not yet been defined and so the 

regulation of PAC-1 mRNA expression was therefore now examined in WEHI-231 cells. 

It was shown that anti-IgM stimulation appeared to increase the expression of PAC-1 

mRNA in a cyclical manner with an early peak within 2 h followed by a later peak 

between 8-24 h (Fig.3.15). Similarly to that observed for SPA-1 expression, an inverse 

PAC-1 expression pattern was found in cells treated with either anti-CD40 (or indeed 

anti-IgM in combination with anti-CD40) as PAC-1 expression was downregulated in 

those cells to levels below those detected in untreated cells (Fig.3.15). As mentioned 

before, negative and positive feedback loops often modulate DUSP-mediated 

regulation of MAPK pathways. It was therefore perhaps not surprising to find that 

inhibition of PI3 kinase or, to a lesser extent, ERK increased the expression of PAC-1 

at the mRNA level, to a similar extent as that observed following BCR-ligation 

(Fig.3.15). Interestingly, this enhancement was only apparent some 12-16 h after 

addition of inhibitors but functionally, this would mimic the period in which BCR 

signalling had also downregulated ERK activation. Whilst these data indicate that both 

ERK and PI3 kinase pathways can independently suppress the transcription of PAC-1, 

co-culture with both inhibitors appears to further enhance PAC-1 mRNA production 

suggesting that these may interact and perhaps even cross-regulate each other. 

To potentially corroborate these data, PAC-1 mRNA expression levels were also 

investigated in the WEHI-231 B cell lines expressing the mutant constructs of RasV12. 

Here, PAC-1 mRNA expression was found to be comparable in all 4 lines at time zero, 

but was found to be lower in cells expressing any of the active forms of Ras compared 

to empty vector cells after 24 h of culture (Fig.3.15C). Moreover, and supportive of the 

pharmacological inhibitor data, cells transfected with any of the three Ras mutants 

displayed reduced upregulation of PAC-1 due to BCR-ligation (Fig.3.15C) confirming 

that Ras-mediated activation of either of the ERK and PI3 kinase pathways reduces the 

expression of PAC-1 and thereby enhances ERK signalling. 
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3.3.7 Differential subcellular localisation of Rap- 1 and ERK  
It is becoming increasingly evident that the functional outcome of signalling 

pathways is not only dependent on the expression levels and activation status of the 

proteins but also on their subcellular localisation as this determines the upstream and 

downstream interaction partners. Thus, preliminary experiments were carried out to 

investigate whether Rap-1, pERK and ERK signals were differentially localised in 

spontaneously proliferating cells in comparison to those undergoing BCR-mediated 

negative selection and rescue via CD40. Thus, the expression of Rap-1, pERK and 

ERK was further analysed in cytoplasmic, membrane/organelle (including 

mitochondrial), nuclear and cytoskeletal fractions (Fig.3.16).  

At both timepoints analysed (1 and 24 hours) Rap-1 was most strongly expressed 

in the membrane/organelle fraction consistent with reports indicating it shuttles 

between the plasma membrane and endosomal membranes [456]. However, 

substantial amounts of Rap-1 could also be detected in the cytoplasmic and nuclear 

fraction both at the early and later timepoints. At the later timepoint (24 hours) Rap-1 

was also found in the mitochondrial fraction and BCR-ligation appeared to increase the 

translocation of Rap-1 to the mitochondria (Fig.3.16C) where it has been shown 

previously to be able to influence mitochondrial function [457]. Interestingly, whilst Rap-

1 expression in the membrane and cytoplasmic fractions appeared to be reduced in 

BCR-stimulated samples relative to those from spontaneously proliferating cells, it was 

found to be enhanced in the nuclear fractions under conditions of negative selection at 

1 h suggesting that such differential localisation of this signalling element may 

contribute to the functional outcome of BCR-ligation. Moreover, for all conditions 

tested, whilst relatively higher levels of Rap-1 were detected in the nucleus compared 

to the cytoplasm at 1 h, an inverse pattern of Rap-1 expression in these cellular 

compartments was observed at 24 h. Similarly, localisation to the cytoskeleton could 

only be detected at the 1 h timepoint (Fig.3.16). Sustained Rap-1 signalling at later 

timepoints might therefore be originating from different subcellular compartments 

compared to the early signal (1 hour). This could potentially change the signalling 

outcome as it has been described before that activation of downstream effectors of the 

Rap-1 cascade depends on its localisation [458,459].  

Activated ERK (pERK) was predominantly found in the cytoplasmic and nuclear 

fractions 1 hour after stimulation with low level expression of pERK1 but not pERK2 

detected in the membrane/organelle fraction (Fig.3.16). The enhanced ERK activation 

routinely observed in BCR-stimulated cells at this time point (Fig.3.7) was reflected in 

all fractions analysed indicating that this was a global effect and not restricted to a 

particular location and/or group of downstream substrates. The selective activation of 

ERK1 observed in the membrane fractions (and in all but the cytoskeletal fraction 
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derived from spontaneously proliferating cells) was intriguing as essentially equivalent 

levels of ERK1 and ERK2 were expressed in these fractions indicating localisation-

specific activation of this isoform (Fig.3.16). Moreover, given the relatively high 

expression of ERK1/2 protein in the cytoplasmic/cytoskeletal compared to the nuclear 

and membrane fractions, the ERK activation observed in the membrane and nuclear 

fractions under these conditions was particularly strong. The organelle/membrane 

fraction contains, amongst others, mitochondria and the expression of pERK in a 

purified mitochondrial fraction was therefore analysed. However, neither expression of 

ERK nor its activation was observed in this cellular compartment (Fig.3.16C). The 

membrane/organelle fraction further also contains endosomes. The importance of 

endocytosis as well as signalling from endosomes has been underlined by multiple 

studies [460,461]. For example, MEK partner-1 (MP-1) is a small scaffold protein which 

localises MEK/ERK to late endosomes where it binds to MEK1 and ERK1 thereby 

enhancing the activation of this pathway [349]. Interfering with the localisation of MP-1 

to endosomes reduced the sustained activation of the ERK cascade rather than early 

signalling which appeared to take place at the membrane [349,462]. Thus, signalling 

from this compartment might provide an amplification mechanism to maintain high 

levels of ERK activation. 

After 24 hours pERK was mostly found in the membrane/organelle and nuclear 

fractions whereas expression in the cytoplasm could not be detected anymore despite 

ERK protein still being strongly expressed in this fraction (Fig.3.16). Consistent with the 

whole cell lysate samples, pERK expression is highest in fractions from cells which had 

their BCR cross-linked in the presence of CD40 signalling but not in cells treated with 

anti-IgM only (Fig.3.16). Rather surprisingly, however, the high levels of ERK activation 

detected in whole cell lysates of spontaneously proliferating WEHI-231 cells were not 

found in any of the analysed subcellular fractions. It is possible that ERK activation in 

these cells, which is most likely initiated by growth factor signalling, takes place in a 

fraction of the cells which gets lost during the fractionation process. It would be of 

interest to identify the localisation of activated ERK in these spontaneously proliferating 

cells, as the reduced overall activation of ERK in BCR-stimulated cells could be due to 

the inability of ERK to localise to this, as yet not identified, cellular compartment. This 

might also reflect the other unexpected finding reputed above of the preferential 

activation of ERK1, rather than ERK2, in most compartments 1 hour after stimulation 

(Fig.3.16). This is in stark contrast to the favoured activation of ERK2 detected in whole 

cell lysates. Thus again, this discrepancy between the pattern found in whole cell 

lysates and the subcellular fractions might be due to the loss of a particular cellular 

compartment during the experimental procedure. These results are intriguing as ERK1 

and ERK2, although they are highly homologous and can compensate for each other 
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concerning many ERK-dependent responses [463], carry out some non-overlapping 

functions [464,465]. The differential levels of activation of these two isoforms as well as 

their varying localisation could therefore indicate that ERK1/2 direct different signalling 

outcomes during BCR-mediated growth arrest and apoptosis. 

Finally, detection of marker proteins such as VDAC-1 (marker protein for 

mitochondria – membrane/organelle fraction) and HDAC-1 (marker protein for nuclear 

fraction) was used to validate the subcellular fractionation. Thus, HDAC-1 although 

found to be weakly expressed in all fractions, was strongly enriched in the nuclear 

fraction, as expected (Fig.3.16). By contrast, VDAC-1 expression, a marker for 

mitochondria, was found to be enriched not only in the membrane/organelle fraction but 

also in the cytoskeletal fraction (Fig.3.16) possibly indicating carry over from the 

membrane/organelle fraction to the cytoskeletal fraction. Collectively, the data 

described in this section shows that subcellular fractionation and analysis by Western 

Blotting could provide a useful tool to identify interesting changes in the localisation of 

signal transducers under conditions of positive and negative signalling. However, a 

second method, such as immunofluorescent staining, should be used to confirm the 

biochemical data or clarify any inconsistencies. 

 

3.3.8 Overexpression of Rap-1 in WEHI-231 cells 

The data described above provides circumstantial evidence that Rap activity 

might contribute to ERK activation in spontaneously proliferating WEHI-231 cells. Thus, 

to directly address this, the effects of over-expressing different forms of HA-tagged 

Rap-1A (constitutively active/dominant negative forms) in WEHI-231 cells were 

assessed relative to empty vector controls.  

The BCR-mediated growth arrest response of cells transfected with Rap-1A WT 

did not differ greatly from the response seen in cells expressing either the constitutively 

active form (Rap-1A G12V) or the dominant negative form (Rap-1A S17N) of the 

protein or indeed the empty vector control at 48 h. The rescue from anti-IgM induced 

growth arrest by stimulation of the CD40 signalling cascade was not differentially 

influenced by expression of any of these mutant proteins, but rather all of them 

prevented the full CD40-mediated rescue observed in the cells expressing the empty 

vector (Fig.3.17A).  

WEHI-231 cells transfected with Bcl-xL (WEHI-231- Bcl-xL) are protected against 

BCR-induced apoptosis but not growth arrest [294]. These cells therefore provide a 

useful tool to study BCR-induced growth arrest independent of the apoptosis response, 

which is abrogated due to the overexpression of Bcl-xL. Transfection of WEHI-231-Bcl-

xL cells with the constructs encoding the above mentioned forms of Rap-1A could 

therefore give further insight into the mechanisms regulating growth arrest 
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independently from apoptosis. Therefore, WEHI-231-Bcl-xL cells were transfected with 

pcDNA3.1(-)Zeocin vectors encoding the previously described Rap-1A mutants. The 

pcDNA3.1(-)Zeocin vector encodes a resistance gene which allows the positive 

selection of successfully transfected cells in media containing the antibiotic Zeocin 

enabling selection of double-transfectants. Thus, after transfection with the above-

mentioned vectors and positive selection in Zeocin-containing media, the functional 

responses such as anti-IgM induced growth arrest, CD40-mediated rescue from growth 

arrest as well as induction of apoptosis were analysed in the transfected cells. The 

cells expressing the Rap-constructs underwent growth arrest to a very similar extent as 

these containing the empty vector at 24 hours (Fig.3.17B). Moreover, in these WEHI-

231 Bcl-xL cells CD40-mediated rescue from BCR-induced growth arrest was not 

influenced by expression of Rap-1A or any of the Rap-1A mutants at 24 hours 

(Fig.3.17B). Moreover, analysis of the cell cycle stage of the cell populations showed 

only minor differences. Due to the overexpression of Bcl-xL only a very small proportion 

of WEHI-231- Bcl-xL cells undergo BCR-mediated apoptosis (Fig.3.18). Nevertheless, 

more of the cells transfected with Rap-1A WT, Rap-1A G12V and in particular Rap-1A 

S17N appeared to initiate apoptosis upon BCR-ligation compared to the empty vector-

transfected control cells. However, none of the G0/G1 or mitotic responses observed in 

cells expressing the Rap constructs (Fig.3.18) indicated that Rap greatly influenced the 

responses of these cells to BCR stimulation.  

To investigate the possibility that despite the selection procedures, inefficient 

transfection or expression of the molecules was the reason for the observed lack of 

changes of the response of transfected cells, expression of the HA-tag in WEHI-231- 

Bcl-xL cells transfected with pcDNA3.1(-)Zeocin vectors, containing various forms of 

Rap, was assessed. Indeed, it was shown that even after selection in Zeocin containing 

media the expression of HA-tagged Rap-1A proteins could not be detected (Fig.3.19A). 

The positive signal detected in control fibroblast transfected with an HA-tagged PCKα 

construct further proved that the inability to detect the expression of HA-tagged 

proteins in the WEHI-231-Bcl-xL cells was not due to a lack of antibody-binding or any 

other experimental difficulties (Fig.3.19A). Additionally, transfected WEHI-231-Bcl-xL 

cells displayed the same levels of Rap-1 expression as empty control vector- or un-

transfected cells further confirming the lack of overexpression of the transfected 

proteins (Fig.3.19A). 

Due to these difficulties and to further assess the cause of the lack of expression 

it was decided to transfect WEHI-231 cells using pIRES2-AcGFP1-vectors encoding 

various forms of Rap-1A which should lead to the expression of the marker protein 

GFP upon successful transfection. Indeed, GFP-positive cells could be detected 24 h 

after transfection of WEHI-231 cells (Fig.3.19B). However, the efficiency of transfection 



 

 126 

was very low. Furthermore, stability of transfected clones was an issue, as GFP-

expression and hence expression of the genes of interest was found to be transient 

even in the presence of the selection antibiotic G418. Thus, expression of GFP 

declined rapidly and was lost by 11 days post-transfection (Fig.3.19B-C). To try and 

overcome the technical difficulties hindering stable transfection of WEHI-231 cells, 

various constructs, methods of transfection and selection conditions were tested 

(summarised in Fig.3.19C-ii/iii). However, stably transfected lines were not achieved 

under any of the tested conditions. 

In view of the experimental problems in creating stable Rap-1A-expressing lines 

using conventional transfection methods, another method for creating stable clones, 

lentiviral transduction, was tested. Production of infective lentiviral particles was shown 

to be effective, as virus generated from transfected HEK293 T cells was able to 

transduce HT-1080 cells leading to the production of the marker protein ZsGreen1 

which could be detected by FACS (Fig.3.20A). Furthermore, it was possible to detect 

high expression of the HA-tagged Rap-1A proteins in lysates of these transduced cells 

(Fig.3.20B). Lentiviral transfection therefore provides a promising method of choice for 

future experiments investigating Rap-1-dependent signals in WEHI-231 cells. 

 

3.3.9 The role of the ERK cascade in the regulation  of c-Myc 

c-Myc is an important transcription factor involved in cell cycle progression and 

thereby cell proliferation. It is known that BCR cross-linking on the WEHI-231 B cell line 

leads to a transient induction of c-Myc mRNA and protein levels followed by a 

sustained downregulation [466,467]. By contrast, CD40 ligation, which is known to 

rescue WEHI-231 cells from growth arrest and apoptosis, was found to stabilise c-Myc 

levels [468]. In agreement with such results stimulation of WEHI-231 cells with anti-IgM 

resulted in downregulation of c-Myc protein levels within 4 hours reducing them to 

below baseline levels for at least 32 hours (Fig.3.21). By contrast, and in keeping with 

its ability to promote cell survival, CD40-ligation on its own enhanced c-Myc and 

ameliorated the downregulation of c-Myc induced by such BCR stimulation (Fig.3.21). 

Moreover, in unstimulated cells, c-Myc expression displayed a cyclic pattern over time, 

similar to previously observed with phosphorylated ERK (Fig.3.7). c-Myc expression 

therefore seems to mirror the pattern observed for phosphorylation and hence 

activation of ERK in either unstimulated, BCR- or BCR/CD40-stimulated WEHI-231 

cells. Perhaps consistent with this, phosphorylation including that in response to ERK 

has been implicated as an important mechanism in the regulation of c-Myc protein 

levels. Thus, phosphorylation of the protein at residue serine 62 stabilises the protein, a 

mechanism that is probably used to promote c-Myc-driven progression through the cell 

cycle [469,470]. By contrast, phosphorylation of c-Myc on threonine 58 by GSK3 has 



 

 127 

been shown to lead to the protein phosphatase 2A (PP2A)-dependent 

dephosphorylation of serine 62 which destabilises the protein leading to its 

ubiquitination and degradation by the proteasome [469]. In confirmation with the 

putative role the phosphorylation of these specific residues plays in the stabilisation of 

c-Myc, the stabilised form, pc-MycS62, was found to be downregulated by BCR-

mediated inhibition of ERK (Fig.3.21). In order to furthermore address whether BCR-

mediated downregulation of c-Myc and pc-MycS62 reflected GSK3-mediated 

phosphorylation of T58 followed by ubiquitination and degradation, the expression of 

pc-MycT58 was also analysed (Fig.3.22). At first sight, the finding that expression of 

this phosphorylated form of c-Myc was abrogated within 4-8 h of BCR stimulation was 

rather surprising but given that protein expression of c-Myc was not detectable in these 

cells suggests that c-Myc had already been degraded by this point and any such peak 

of T58 phosphorylation targeting c-Myc for ubiquitination would have occurred between 

2-4 h. Consistent with this proposal, analysis of the profiles of pc-MycT58 expression in 

the spontaneously proliferating cells reveals that peaks of expression occurs prior to 

downregulation of c-Myc expression resulting in a cyclic pattern of c-Myc expression 

(Fig.3.22). These results were corroborated by analysis using an antibody that 

recognises c-Myc which is either dually-phosphorylated at Ser62 and Thr58 (pc-

MycT58/S62) or phosphorylated at Thr58 but not at Ser62 alone and is therefore only 

able to detect c-Myc targeted for ubiquitination by Fbw7 [471] (Fig.3.22). Similarly, this 

antibody also detected major peaks of phosphorylated c-Myc prior to the general 

downregulation of c-Myc levels (Fig.3.22).  

As it has been reported in other systems that ERK can regulate c-Myc stability by 

phosphorylating it at serine 62 [384,386], the potential role of ERK signalling in the 

regulation of c-Myc stability was assessed by treating spontaneously proliferating 

WEHI-231 cells with the MEK inhibitor, PD98059, which inhibits ERK activation and 

results in growth arrest and apoptosis of such cells [310,447]. Furthermore, LY294002, 

a specific PI3-Kinase inhibitor, was used in order to compare the effects of inhibiting 

this key regulator of c-Myc stability (by inhibition of GSK3 [388]) as it has previously 

been reported by the Harnett group and others that BCR-signalling suppresses PI3 

kinase activity in WEHI-231 cells [373,455]. These data showed that repeated addition 

of the MEK inhibitor led to inhibition of ERK activation throughout the time course with 

substantial downregulation, comparable or greater than that seen following BCR-

ligation observed at 2 h and from 8 h onwards (Fig.3.23). In general, inhibition of PI3 

kinase was not effective at inhibiting early ERK activation but in agreement with 

previous findings [373] it inhibited ERK activation at later time points (>20 h) and 

therefore this may reflect induction of growth arrest and therefore secondary 

inactivation of ERK through unknown mechanisms (Fig.3.23). Consistent with their 
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proposed roles in stabilising c-Myc expression both inhibitors were also shown to 

reduce c-Myc expression (Fig.3.23 and 3.24A-D) and similar to BCR-ligation also 

reduced levels of pc-MycT58/S62 consistently (Fig.3.25A-D).  

To determine if different stimulations not only changed the protein levels of c-Myc 

but also its subcellular localisation, nuclear and cytoplasmic fractions of WEHI-231 

cells were prepared and tested for c-Myc expression. BCR- or CD40-ligation or the 

combination of both did not appear to lead to translocation of c-Myc or pc-MycT58/S62 

into the cytoplasm as virtually no protein could be detected in the cytoplasm 4 hours 

after stimulation (Fig.3.24E and 3.25E). This indicates that c-Myc acts in the nucleus 

and that its activity is determined by its overall expression levels rather than 

translocation events. Corroboration of these Western Blot-based results was achieved 

by immunofluorescent staining which showed that both c-Myc and pc-MycS62 co-

localised with the DAPI-stained nuclei (Fig.3.24/25F-i). Moreover, by analysing c-Myc 

expression using LSC, it was found that not only did BCR stimulation reduce the 

percentage of cells expressing c-Myc but it also reduced the overall expression level of 

c-Myc in these cells (Fig.3.24F). Additionally and in confirmation of Western Blotting-

based assays, pharmacological inhibition of ERK and PI3 kinase also reduced the 

percentage of cells expressing c-Myc as well as their levels of c-Myc expression 

(Fig.3.24F). By contrast, CD40-mediated rescue from growth arrest was found to fully 

reverse the effects of BCR-ligation by enhancing the levels of c-Myc detected in cells 

and increasing the proportion of cells expressing c-Myc (Fig.3.24F). Similarly to the 

results described for c-Myc, the stabilised form of c-Myc, pc-MycS62, was found to be 

expressed by a smaller proportion of cells after BCR stimulation in comparison to 

untreated, proliferating WEHI-231 cells at 12 and 20 hours (Fig.3.25F). Moreover, the 

levels of pc-MycS62 expressed by such cells were found to be reduced upon induction 

of BCR-mediated growth arrest at the earlier timepoints. Although, at 32 hours the 

levels of pc-MycS62 in cells treated with anti-IgM were broadly equivalent to that of the 

control cultures (Fig.3.25F), this presumably reflects the cyclic nature of c-Myc 

expression in proliferating cells as indicated by the Western Blot analysis (Fig.3.7A). 

Pharmacological inhibition of ERK and PI3 kinase signalling was as effective at 

suppressing the expression of the stabilised form of c-Myc as BCR-ligation (Fig.3.25F), 

further confirming the important role of these cascades in stabilising c-Myc protein 

levels. Moreover, and in accordance with its ability to enhance the survival of WEHI-

231 cells, CD40-ligation markedly increased the levels of pc-MycS62 detected 

(Fig.3.25F), restoring the expression of stabilised c-Myc in BCR-stimulated cells to 

levels detected in untreated, proliferating WEHI-231 cells (Fig.3.25F). 

Due to its role in the regulation of proliferation and hence potential for oncogenic 

transformation of cells [472], c-Myc is highly regulated not just at the post-translational 



 

 129 

but also at the transcriptional level. Thus, to determine if the BCR-mediated decrease 

of c-Myc observed at the protein level was partly due to a downregulation at the 

transcriptional level, c-Myc mRNA expression was determined in spontaneously 

proliferating WEHI-231 cells or anti-IgM and/or anti-CD40 stimulated cells. c-Myc 

mRNA expression was indeed found to follow a cyclical pattern in spontaneously 

proliferating WEHI-231 B cells, similar to those observed with the protein levels of c-

Myc (Fig. 3.26A-i). Likewise, stimulation of BCR-signalling led to a transient increase of 

c-Myc expression peaking at around 2 hours after stimulation (Fig. 3.26A/B) followed 

by sustained downregulation of c-Myc mRNA levels over a period of 24 hours, which 

was reversed by activating the CD40 signalling cascade (Fig.3.26A/B). In contrast to 

their inhibitory effects on c-Myc protein expression (Fig.3.24), inhibitors of ERK and PI3 

kinase did not however downregulate c-Myc mRNA levels to the same extent as 

treatment with anti-IgM, indicating that both the ERK and PI3 kinase signalling 

cascades acted to mainly regulate c-Myc at the post-translational rather than on a 

transcriptional level (Fig.3.26A-B). In confirmation of these findings, mRNA levels of c-

Myc were also found not to be protected by the expression of the active Ras mutants 

(Fig.3.26C) which enhance the activation of the ERK and PI3 kinase signalling 

cascades. By contrast, overexpression of the active Ras mutants diminished the 

downregulation of c-Myc at the protein level after BCR-ligation (Fig.3.26D). These data 

therefore further support the idea that regulation of c-Myc downstream of ERK and PI3 

kinase cascades seems to be mainly due to regulation at the protein level. 

c-Myc is an important regulator of the cell cycle, as it controls the entry into S 

phase and consistent with this BCR-mediated growth arrest correlates with the 

reduction of c-Myc levels in WEHI-231 cells. Therefore, to prove the direct correlation 

between c-Myc levels and cell cycle status of cells, it was decided to utilise LSC 

analysis to gate on cells with different c-Myc or pc-MycS62 expression levels and 

determine their distribution in terms of cell cycle stage (Fig.3.27A). Thus, it was found 

that cells with very low c-Myc or pc-MycS62 expression levels were mostly apoptotic 

cells and cells arrested in G1 phase, whereas the cells with higher levels of c-Myc and 

c-Myc pSer62 expression were generally found to be in the mitotic G2/M phase of the 

cell cycle (Fig.3.27B/C). Although c-Myc expression is mainly needed to overcome the 

restriction point during G1 growth arrest, the finding that few cells in G0/G1 expressed 

c-Myc probably reflects that these are cells arrested in G0/G1 rather than transiting 

through the cell cycle. The relatively low levels of c-Myc/ pc-MycS62 detected in cells in 

the S phase (Fig.3.27B/C) on the other hand are not surprising as it has been shown 

before that progression through S phase is not hampered by the lack of c-Myc and that 

the need for elevated c-Myc expression is not as stringent during S phase [473,474]. 

Expression of c-Myc/c-Myc pSer62 was also found to be relatively low in freshly divided 
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new daughter cells (Fig.3.27B/C) which most likely reflects their resting state, as they 

have to induce growth prior to re-entering the cell cycle at the G1 phase.  

As shown above, inhibition of the ERK and PI3 kinase cascades reduces the 

activation of ERK as well as the overall expression of c-Myc (Fig.3.23). In confirmation 

of previous results [310,373], such pharmacological inhibition of ERK or PI3 kinase 

gradually induced growth arrest of WEHI-231 cells between 12 and 32 hours after the 

addition of the inhibitors (Fig.3.28). Thus, both inhibitors increased the percentage of 

cells arrested in G0/G1 and diminished the proportion of cells in the mitotic phases of 

cell cycle (G2-M and S phase) in a similar manner to that following of BCR-ligation 

(Fig.3.28A). A more detailed analysis revealed that such effects on cell cycle 

progression directly correlated with the levels of c-Myc as well as its stabilised form c-

Myc-pSer62. Thus, the higher the expression of c-Myc or pc-MycS62 in these 

populations of cells, the fewer cells were found in G0/G1 growth arrest (Fig.3.28B). 

Collectively, these data suggest that the direct correlation between growth arrest 

induced by the inhibition of ERK and PI3 kinase activation and reduced c-Myc 

expression indicates that BCR-mediated reduction of ERK and PI3 kinase signalling 

might contribute to growth arrest by abrogating c-Myc levels by interfering with c-Myc 

stabilisation. 

 

3.3.10 The role of CTCF in BCR-induced growth arres t 

The data presented so far suggests that BCR-mediated modulation of the ERK 

and PI3 kinase cascades regulates c-Myc levels mostly through post-translational 

modifications rather than transcriptional regulation. However, BCR-ligation was also 

found to inhibit c-Myc transcription and this is also likely to have contributed to the 

reduced protein expression observed. It was therefore decided to examine CTCF, a 

transcription factor that is known to repress transcription of the c-Myc gene [475] and 

has previously been shown to be upregulated after stimulating WEHI-231 cells with 

anti-IgM [476]. Consistent with this, CTCF overexpression has been shown to lead to 

the downregulation of c-Myc and upregulation of p19, p21, p27 and p53 and thereby to 

the induction of growth arrest [476]. 

Interestingly, given the previously demonstrated expression patterns of pERK 

and c-Myc (Fig.3.7), CTCF expression also appears to be regulated in a cyclical 

manner at both the mRNA and protein level in spontaneously proliferating cells 

(Fig.3.29). Moreover, expression at the protein level is enhanced throughout the time 

course following BCR-ligation and reduced by signalling via CD40 (Fig.3.29). Whilst the 

effects of BCR signalling were not replicated at the transcriptional level suggesting a 

role for stabilisation of CTCF protein expression, CD40 signalling did tend to suppress 

CTCF mRNA production. (Fig.3.29). Thus, increased expression of CTCF upon BCR-
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ligation might contribute to the transcriptional repression of c-Myc. Like many other 

transcription factors, the activity of CTCF can be influenced by post-translational 

modifications such as phosphorylation. In the case of CTCF, phosphorylation at certain 

serines in its C-terminus attenuate its suppressive capacity [477]. It therefore remains 

to be determined if, rather than changing the overall level of CTCF, BCR-signalling 

might change CTCF activity more dramatically by changing its phosphorylation status.  

 

3.3.11 BCR stimulation regulates expression and act ivation 

of key regulators of cell cycle control 

Cell cycle progression of WEHI-231 cells has been reported to depend on the 

downregulation of inhibitors like p27 or p19 [335,476]. p27 especially seems to be 

crucial in the regulation of G1 growth arrest due to its ability to inhibit cyclin D/Cdk4/6 

complexes as well as cyclin E/Cdk2 complexes thus hampering the entry into S phase 

[478]. Consistent with this, c-Myc induces the upregulation of an SCF-E3 ligase 

complex which ubiquitinates p27 thereby targeting it for degradation [479] and relieving 

such suppression of cyclin/Cdk activity. Moreover, c-Myc increases the expression of 

cyclins and hence further enhances the activity of cyclin/Cdk complexes [480]. Thus, 

BCR-mediated reduction of c-Myc levels could suppress cyclin/Cdk-mediated 

phosphorylation of Rb proteins and release of E2F which is necessary for S phase 

entry. 

In confirmation of previous reports [481], p27 protein expression was shown to be 

increased within 16 h of BCR-ligation, and due to pharmacological inhibition of ERK as 

well as PI3 kinase pathways (Fig.3.30) correlating with the initiation of growth arrest 

induced by these stimuli/inhibitors. In confirmation of its pro-survival function, CD40-

signalling reduced the expression of p27 and rescue from growth arrest achieved by 

CD40 costimulation correspondingly reduced the levels of p27 (Fig.3.30). Moreover, 

similarly to the pattern observed for pERK and c-Myc expression, p27 also seems to be 

expressed in a cyclical manner in spontaneously proliferating WEHI-231 cells. These 

data therefore indicate that in WEHI-231 cells p27 represents an important switch 

between proliferation and cell cycle arrest. BCR-mediated reduction of levels of 

activated ERK might be linked to increased p27 expression through multiple 

mechanisms. Thus, ERK has been shown to directly phosphorylate p27, targeting it for 

ubiquitination and degradation [482]. Additionally, c-Myc dependent regulation of p27 

levels might be another mechanism linking activation of ERK and cell cycle 

progression. It is therefore proposed that BCR-mediated signalling increases the levels 

of p27 thereby reducing activation of cyclin/Cdk complexes. This will decrease the 

phosphorylation of Rb and hence ultimately lead to growth arrest. 
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p53 is another important cell cycle regulator which stops cells from dividing if 

there is for example, any damage to their DNA. The main mechanisms by which p53 

achieves cell cycle arrest is the upregulation of p21, a cell cycle inhibitor which 

suppresses the activation of Cdk1 and Cdk2 [483]. Moreover, p53 plays an important 

role in regulation of apoptosis and was found to induce apoptosis by upregulating pro-

apoptotic proteins such as Puma, Noxa and Bax, as well as directly interacting with 

Bcl-2 family members at the mitochondria [484-486]. Preliminary data by this group 

indicated that p53 might play a role in FcγRIIb-mediated apoptosis and or growth arrest 

in mature B cells [309]. Thus, p53 might also potentially regulate growth 

arrest/apoptosis at other B cell developmental stages, such as immature B cells. 

Therefore, the regulation of p53 downstream of BCR-signalling in the immature B cell 

line WEHI-231 was analysed. Due to its important role in the cell cycle it is highly 

regulated, especially at the protein level. Indeed, detection of protein levels of p53 

showed an increase of the levels upon BCR-ligation at 24 hours and even more 

pronounced at 48 hours after stimulation (Fig.3.31A). This increase of p53 protein was 

counteracted by the simultaneous stimulation of CD40-signalling (Fig.3.31A). However, 

there were no significant changes at the mRNA level indicating that p53 expression 

under these conditions is mainly regulated at the protein level (Fig.3.31B).  

Rb proteins and their binding partners, the E2F proteins, represent the principal 

regulatory element controlling entry into S phase [487]. Hyperphosphorylation of Rb 

disrupts the binding of Rb to E2F leading to the release of this transcription factor 

enabling it to trans-activate transcription of genes needed for cells to overcome the G1-

restriction point [487] (see section 1.7). Phosphorylation of Rb proteins is a gradual 

process and phosphorylation at multiple positions is necessary to fully abrogate Rb 

binding to E2F. Cyclin D/Cdk4/6 complexes phosphorylate Rb at serine 780 during the 

earlier stages of G1 followed by phosphorylation of serines 807/811 by cyclin E/Cdk2 

complexes [247,488]. Thus, the presence of hyperphosphorylated Rb proteins 

indicates the progression of a cell through G1/S transition. The ERK MAPK pathway 

appears to be involved at multiple stages in the control of Rb phosphorylation as ERK 

signalling can directly, as well as indirectly through its regulation of c-Myc, increase the 

expression of cyclin D and reduce levels of the cell cycle inhibitor p27 [482,489,490]. 

Activation of the ERK cascade can therefore enhance the activity of cyclin/Cdk 

complexes leading to the hyperphosphorylation of Rb proteins.  

Thus, as predicted, phosphorylation of Rb on the serine residues 780 and 

807/811 was found to be substantially reduced following BCR stimulation or 

pharmacological inhibition of the ERK and PI3-Kinase pathways (Fig.3.30). The 

expression of the other molecules involved in the proliferation and survival of WEHI-

231 cells, such as pERK, c-Myc and p27, has been shown to be cyclical over time. 
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Thus, unsurprisingly, the expression of phosphorylated Rb followed a similar pattern 

indicating a connection between the mechanisms regulating pERK, c-Myc, p27 and Rb 

(Fig.3.30 and 3.32/33). CD40-mediated rescue from growth arrest not only restored the 

levels of phosphorylated Rb but it also enhanced it at the later timepoints (12 hours 

onwards), an effect also seen in cells solely stimulated through CD40 (Fig.3.30 and 

3.32/33). However, at first sight, LSC analysis of pRbS780 expression only partially 

corroborated the Western Blotting data. Thus, although levels of pRbS780 were found 

to be increased due to CD40 signalling, the decrease of phosphorylated Rb upon BCR 

stimulation could not be detected by immunofluorescent staining as the percentage of 

pRbS780 expressing cells, as well as the expression intensity were found to be above 

the levels found in untreated, proliferating WEHI-231 cells (Fig.3.32E). However, this 

discrepancy may simply reflect the fact that Western Blotting for phosphorylated Rb 

allows analysis of not only the strength of the signal, but also of the relative distribution 

of the different pRb forms. Thus, phosphorylated Rb appears as multiple bands of 

increasing size reflecting the sequential hyperphosphorylation of Rb and it is mainly 

these higher molecular weight bands which are downregulated upon BCR-ligation 

(Fig.3.32A/B) and which may not be detected by LSC analysis which does not involve 

protein denaturation and cannot detect changes of protein size due to phosphorylation 

rather than overall expression differences. This problem however was not encountered 

concerning detection of pRb S807/811 as the BCR-mediated downregulation observed 

by Western Blotting analysis was also confirmed by LSC analysis of 

immunofluorescent staining (Fig.3.33E).Thus, a lower percentage of cells stimulated 

through the BCR expressed hyperphosphorylated RbS807/811 and the cells which 

expressed it did so at a reduced level (Fig.3.33Ei/ii). Moreover, in agreement with the 

results shown by Western Blotting, CD40 signalling not only efficiently increased the 

percentage of pRbS807/811-expressing cells as well as the level of expression but also 

prevented the BCR-mediated downregulation of pRbS807/811 (Fig.3.33Ei/ii). 

As mentioned previously, phosphorylation of Rb plays a crucial role during G1/S 

transition, whereas hypophosphorylation will ultimately lead to growth arrest during G1. 

Thus, to confirm the direct correlation between cell cycle progress and phosphorylation 

of Rb proteins, cells stained for pRbS780 and pRbS807/811 were analysed concerning 

their cell cycle status. As expected, higher expression levels of pRbS780 as well as 

pRbS807/811 correlated with cells being located in the mitotic phases of the cell cycle 

(Fig.3.32/33F), whereas a higher percentage of cells expressing lower levels of 

hyperphosphorylated Rb were arrested in the G0/G1 phase of the cell cycle or 

undergoing apoptosis as detected by supdiploid DNA content (Fig.3.32/33F).  
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3.3.12 Ubiqitination and proteasomal degradation 

Ubiquitination plays an important role in regulating many cellular processes 

including the cell cycle. Thus, phosphorylation of cell cycle regulators such as p27 and 

c-Myc at specific regulatory sites targets these proteins for ubiquitination followed by 

degradation [250,387]. Consistent with this, BCR-mediated growth arrest correlates 

with the downregulation of c-Myc as well as stabilisation and reduced degradation of 

p27 (Fig.3.28 and 3.30). Changes in the ubiquitination status of these crucial molecules 

could therefore reflect commitment to growth arrest and apoptosis of WEHI-231 cells. 

Indeed, preliminary data suggests that ubiquitination and expression of certain E3 

ubiquitin ligases might play a role in directing both BCR-driven negative selection and 

CD40-mediated rescue. Firstly, when the global ubiquitination pattern of whole cell 

lysates of WEHI-231 cells treated with anti-IgM and/or anti-CD40 was examined, it was 

found that the pattern observed in anti-IgM treated cells differed markedly from cells 

stimulated with CD40 or untreated cells (Fig.3.34) as stimulation through the BCR 

strongly increased the total amount of ubiquitinated proteins (Fig.3.34B).  

To further study whether these differential profiles are due to BCR-signalling 

pathways utilising ubiquitination to target key signalling elements for proteasomal 

degradation, the effect of a cell-permeable reversible proteasome inhibitor, MG132, 

was tested in WEHI-231 cells. Inhibition of the proteasome was found to induce growth 

arrest and apoptosis independent of any further stimulation, underlining the importance 

of proteasomal degradation in housekeeping functions needed for survival (Fig.3.34E-

F). These non-specific effects of MG132 were found to strongly affect cells from around 

8-12 hours after addition of the inhibitor and hence restricted the scope and timescale 

of analysis during these experiments. Thus, it was decided to mainly analyse 

timepoints before 20 hours or “trap” substrates of varying kinetics by restricting addition 

of MG132 to 1 hour before the cells were harvested.  

Blocking proteasomal degradation by inhibiting the proteasome should lead to an 

accumulation of ubiquitinated proteins. Thus, as expected, treatment of the cells with 

an optimised dose of MG132 increased the level of ubiquitinated proteins as detected 

by Western Blotting (Fig.3.35). This analysis further showed that, at least in the first 12 

h of culture, inhibition of the proteasome converted the profile seen in untreated cells to 

a phenotype more similar to that observed in cells stimulated via the BCR (Fig.3.35). 

These results perhaps suggest that in spontaneously proliferating cells there is a 

dynamic process of ubiquitination and degradation of negative regulatory elements that 

perhaps allows expression and activation of the cyclical signals promoting survival and 

proliferation. Moreover, the finding that many of the same bands appear to be 

ubiquitinated in control and BCR-treated cells, but to a lesser degree (Fig.3.35), may 

suggest that an additional level of regulation may be afforded by a dynamic balance of 
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E3 ligase-mediated ubiquitin-based targeting of positive signalling elements 

counteracted by de-ubiquitination. Thus, in the case of BCR-mediated negative 

selection, it is possible that this balance is skewed in favour of the ubiquitination 

system and downregulation of de-ubiquitination enzymes (DUBs).  

Thus to assess the impact of the E3 ligase/DUB balance on negative selection of 

B cells, the effect of proteasome inhibition on p27 and c-Myc expression levels was 

examined. These elements were selected as BCR-mediated modulation of their protein 

stabilisation has been implicated by this study as a regulatory mechanism and both 

molecules have previously been shown to be regulated by ubiquitin-mediated 

degradation through the proteasome [250,387]. As indicated previously (Fig.3.7), whilst 

c-Myc expression exhibits a cyclical profile in spontaneously proliferating cells, its’ 

expression is upregulated in the first 4 h following stimulation via the BCR before being 

profoundly downregulated, findings consistent with commitment of these cells to BCR-

mediated growth arrest and apoptosis. Expression of c-Myc was found to be enhanced 

following proteasome inhibition in not only the negatively-selected but particularly the 

spontaneously proliferating WEHI-231 B cells, at least in the first 4 h following addition 

of MG132 (Fig.3.35). Moreover, inhibition of the proteasome partially inhibited the 

BCR-mediated downregulation of c-Myc levels even after 8 hours (Fig.3.35A). These 

results therefore suggested that the regulation of c-Myc protein stability under these 

conditions and at these early timepoints was achieved by the ubiquitin-proteasomal 

targeting mechanism through phosphorylation of threonine 58, as reported in other 

systems [387]. Accordingly, phosphorylation of c-Myc on threonine 58 was found to be 

strongly upregulated 2 hours after BCR-ligation (Fig.3.22B). Collectively, these results 

therefore indicate that a BCR-mediated increase of phosphorylation of this inhibitory 

position triggers ubiquitination and hence targeting of c-Myc to the proteasome 

followed by its degradation.  

The cell cycle inhibitor p27 controls the stability of cyclin/Cdk complexes through 

directly binding these proteins [263]. Mitotic stimulation of cells induces signalling 

cascades which lead to the phosphorylation of p27 on threonine 187 by cyclin/Cdk 

kinases [250,491]. This facilitates the recognition and binding of p27 by the SCF E3-

ubiquitin ligase complex thereby initiating the ubiquitination of p27 and finally 

degradation by the proteasome [479]. Apart from the earliest time point, inhibition of 

proteasomal degradation with MG132 only marginally increased p27 levels detected in 

spontaneously proliferating WEHI-231 cells (Fig.3.35). Moreover, inhibition of 

degradation had no major effects on the already enhanced levels of p27 in BCR-

stimulated cells (Fig.3.35). Taken together these results indicate that decreased 

proteasomal degradation is not a major mechanism controlling the BCR-mediated 

increase of p27. Moreover, the suppression of p27 levels needed to allow WEHI-231 
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cells to spontaneously proliferate does not seem to reflect an increase of proteasomal 

degradation of p27. The increase of p27 levels observed after BCR-ligation is therefore 

more likely due to upregulation of p27 transcription, a mechanism which has been 

previously reported to play a major role in the induction of BCR-mediated growth arrest 

of WEHI-231 cells [481]. 

To further investigate the proposal that c-Myc is regulated by modification 

through ubiquitination, a specific ubiquitin-pull-down matrix was used. This method 

allows the extraction of ubiquitinated proteins which can then be analysed further by, 

for example, Western Blotting. Thus, c-Myc was found to be present in the fraction of 

ubiquitinated proteins (Fig.3.36A). At first sight it appeared that BCR-ligation did not 

increase the amount of ubiquitinated c-Myc, rather it seemed to reduce the levels of c-

Myc. However, due to the late timepoint (24 hours) chosen for this analysis, this 

change seems to be due to the lower overall levels of c-Myc rather than ubiquitination-

dependent changes of c-Myc levels, which appear to take place soon after BCR-

ligation (2-8 hours) (Fig.3.35).  

Ubiquitination seems to be involved in the regulation of many of the major 

signalling proteins regulating growth and survival of WEHI-231 cells. Therefore, it was 

decided to examine the effect of proteasomal inhibition on the dynamic regulation of 

ERK activation, one of the major pathways controlling the fate of WEHI-231 cells. 

Interestingly, ubiquitination and hence degradation of proteins seems not to be a major 

mechanism involved in the BCR-mediated reduction of ERK activation as MG132 did 

not substantially enhance or inhibit either the transient upregulation or subsequent 

downregulation of pERK (Fig.3.36B). Unexpectedly, the heightened activation of ERK 

usually observed at the later timepoints (8 hours) after costimulation of the BCR and 

CD40 was hampered by the inhibition of proteasomal degradation (Fig.3.36B-ii). Thus, 

these results might argue for the sustained presence of a negative regulator of the ERK 

cascade which under normal circumstances is targeted for degradation by the 

proteasome through CD40-mediated signalling thereby lifting the suppression and 

enhancing ERK signalling. Blocking proteasomal degradation could therefore hinder 

the degradation of this unknown negative regulator and stabilise it leading to the 

observed reduction of ERK activation.  

Having established a connection between ubiquitination/proteasomal degradation 

and regulation of signalling pathways involved in BCR-mediated growth arrest, it was 

decided to analyse the expression of some E3 ubiquitin ligases previously implicated in 

the regulation of B cell responses (reviewed in [492]). Thus, preliminary experiments 

were carried out to examine the expression of Cbl-b, c-Cbl, Itch and Grail, all of which 

have been identified as negative regulators of B and/or T cell signalling [492]. 

Interestingly, it was observed that Cbl-b, an E3 ubiquitin ligase implicated in the 
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regulation of B cell and T cell signalling, was itself highly regulated by proteasome-

dependent degradation as shown by an increase in Cbl-b levels in MG132-treated 

samples compared to untreated cells (Fig.3.37A). Moreover, analysis of expression of 

Cbl-b at the protein and mRNA levels indicated that Cbl-b was upregulated upon BCR-

ligation at both the protein and mRNA levels whereas co-ligation of CD40 protected the 

cells from Cbl-b upregulation (Fig.3.37B/C). As previously mentioned, Cbl-b can 

influence BCR-signalling through different mechanisms. Hence, a BCR-mediated 

increase of Cbl-b could decrease Syk levels following its ubiquitination by Cbl-b [441]. 

Furthermore, Cbl-b could interfere with Rap-1 signalling as it has been shown to 

ubiquitinate adaptor proteins involved in recruiting Rap-1 [438]. The overall outcome of 

this BCR-mediated increase of Cbl-b levels could therefore potentially contribute to 

negative signalling induced by BCR-ligation. 

These promising findings led us to analyse the expression of further E3 ubiquitin 

ligases implicated in regulation of immune cell signalling such as c-Cbl, Itch and Grail. 

Due to difficulties in qRT-PCR primer/probe design, mRNA expression data could only 

be acquired for c-Cbl but not for Itch or Grail. c-Cbl mRNA levels, similar to Cbl-b, were 

upregulated from 8 hours onwards after BCR-ligation (Fig.3.38A). This upregulation 

could again be prevented by simultaneous CD40 signalling. These changes in mRNA 

expression, however, did not fully translate into changes at the protein level although c-

Cbl was most highly expressed in anti-IgM treated cells and this was suppressed by 

CD40-mediated signalling (Fig.3.38B). Similarly, analysis of the expression of Itch and 

Grail appeared to show degradation following co-ligation of the BCR and CD40 

(Fig.3.38B). Indeed, Grail was found to be present in different forms (possible 

degradation products) and stimulation with anti-CD40 antibodies led to an increase in 

the smaller sized fragments detected (Fig.3.38B). It has been shown in T cells that 

degradation of Grail allows increased T cell proliferation and diminishes the induction of 

anergy. Thus, an increase of the levels of these E3 ligases due to upregulation or 

inhibition of their degradation could contribute to negative signalling mediated by the 

BCR in WEHI-231 cells. 
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3.4 Discussion 

 

The adaptive immune system has evolved to allow recognition of and protection 

against an essentially infinite variety of pathogens. However, this generation of 

diversity in terms of the numbers of different antigen receptors also permits the creation 

of self-reactive specificities, necessitating the development of selection processes 

deleting self-reactive cells from the repertoire. In the case of B cells, this has led to the 

evolution of a number of checkpoints throughout development at which autoreactive 

cells are blocked from further progression and activation. Negative selection of self-

reactive immature B cells in the bone marrow represents one of the major checkpoints 

and provides a mechanism of central tolerance. At this stage, strong BCR-mediated 

signals induce either receptor editing, anergy or apoptosis to drive clonal tolerance. 

Defects disturbing this checkpoint have been shown to increase the proportion of self-

reactive B cells in the periphery, hence potentially increasing the risk of activating these 

cells and inducing autoimmune inflammation. Therefore, identifying the signals 

underlying negative selection might provide interesting information to counter the 

development of autoimmune disease by targeting the regulation of this mechanism. For 

example, in this chapter signals regulating the ERK MAPK cascade have been 

examined allowing further insight into the pathways utilised to induce BCR-mediated 

negative selection of immature B cells and hence potentially identify novel therapeutic 

targets. 

 

3.4.1 Rap and the RapGAP SPA-1 are regulated by BCR -mediated 

signals 

This laboratory has previously shown that sustained cyclic activation of ERK is 

necessary for proliferation of WEHI-231 cells (Fig.3.7) and BCR-mediated abrogation 

of this ERK signal induces growth arrest and apoptosis [310]. However, the signals 

linking ERK activation to cell survival and cell cycle progression were not fully 

elucidated in this model. Nevertheless, some of the pathways involved in the regulation 

of such ERK activation have been partly identified. These data indicated that 

downregulation of Ras activity due to BCR-ligation is not the only mechanism leading 

to reduced ERK activation. Thus, for example, whilst the Ras/Raf-1 pathway has been 

shown to couple to ERK activation in B cells, preliminary data showed that similar 

levels of Ras activation occurred in untreated and anti-IgM treated cells [373]. Perhaps 

consistent with this, other studies indicated that overexpression of Ras protected cells 

from growth arrest for up to 24 hours. After this time though, constitutively active Ras 

was not sufficient any more to prevent growth arrest and apoptosis [447]. Therefore, 
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other molecules which could potentially activate ERK downstream of the BCR were 

examined to identify their involvement in the induction of growth arrest.  

Ras is the prototypical G protein activating the MEK/ERK signalling cascade, but 

it is not the only small GTPase involved in ERK signalling in B cells. Although initially 

identified as a potential activator of ERK in neuronal cells another GTPase, Rap, has 

been proposed to regulate ERK activation via a B-Raf-dependent pathway in B cells 

[411,493]. Thus, in chicken DT40 B cells B-Raf is the main MAPKKK regulating ERK 

phosphorylation and activation downstream of the BCR, indicating a role for Rap-

dependent activation of ERK in mature B cells [170]. Here, Rap was also found to be 

regulated by BCR-ligation (Fig.3.12), in that BCR stimulation reduced the levels of 

activated Rap below the levels detected in untreated and hence proliferating WEHI-231 

cells and such suppression of Rap activity correlates with the BCR-mediated reduction 

in cyclic ERK signalling. Interestingly, simultaneous engagement of CD40 reversed the 

negative effects of BCR-ligation partly restoring levels of active Rap (Fig.3.12). It has 

been reported that Ras and Rap-1 mediate transient and sustained activation of ERK, 

respectively. Thus, interfering with Rap-1 activation in PC12 cells causes the loss of 

sustained ERK activation usually seen upon stimulation with nerve growth factor. 

Blocking Ras activation on the other hand only affected the transient early activation of 

ERK [493]. Furthermore, computational simulations and experimental validations have 

further strengthened this model of a biphasic ERK activation dependent on the two 

different GTPases Ras and Rap [494]. It can be inferred that a similar system might be 

deployed to regulate ERK activation in WEHI-231 cells. Hence, the sustained ERK 

activation observed in spontaneously proliferating WEHI-231 cells would depend on 

Rap-1 rather than Ras activity. 

The upstream regulators responsible for the activation of Rap in WEHI-231 cells 

have not been examined yet, but in order to identify the pathways involved it would be 

interesting to analyse the levels of Rap-specific GEFs such as C3G and the effects of 

BCR-ligation on their expression. For example, signalling through the BCR could 

potentially recruit proteins to interfere with the complexes formed by Rap, its GEFs and 

adaptor proteins such as CrkL, Cbl and Grb2. Indeed, this complex is a good candidate 

for recruitment and activation of Rap in B cells as it has been shown that these 

molecules interact upon BCR-mediated activation of Rap in mature B cells [495,496]. 

Interestingly, it has been shown in this chapter that BCR-ligation upregulates Cbl-

b (Fig.3.37) which has been implicated in the regulation of C3G, CrkL and Rap 

complex formation and hence Rap activation. For example, it has been shown in T 

cells that Cbl-b can ubiquitinate CrkL and influence its ability to interact with its binding 

partner C3G. Thus, Rap activation was found to be enhanced in Cbl-b deficient T cells 

[438]. The observed BCR-mediated upregulation of Cbl-b expression in WEHI-231 cells 
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could therefore potentially be linked to reduced Rap activation. However, the 

subcellular localisation of Cbl-b and hence co-localisation with Rap or C3G and CrkL 

has not been examined in this study and it remains to be confirmed whether Cbl-b has 

a similar function in WEHI-231 cells as in T cells.  

Rap activation is not only determined by interaction with GEFs but also by its 

negative regulators, RapGAPs. One of the best studied RapGAPs in lymphoid cells is 

SPA-1, making it a likely candidate for the regulation of Rap in the WEHI-231 system. 

Indeed, whilst SPA-1 was found to be upregulated at the mRNA and protein level by 

BCR-signalling, CD40-ligation actively suppressed expression of SPA-1 (Fig.3.13). 

Thus, negative signalling through the BCR upregulates signals leading to the 

inactivation of Rap such as SPA-1 and potentially, Cbl-b. Consistent with this, a crucial 

role for Rap signalling in the survival of immature B cells has recently been identified 

for the first time as an increased proportion of B cells from SPA-1-deficienct mice, 

which display high levels of Rap activation, showed signs of defects in receptor editing 

skewing their receptor repertoire towards auto-antigen-specificities ultimately leading to 

development of autoimmune disease in older SPA-1 deficient mice [429]. This study 

therefore emphasises the importance of regulated Rap/ERK signalling in immature B 

cells. 

The elements and signalling cascades regulating BCR-mediated transcription of 

SPA-1 have not been fully elucidated, but SPA-1 was originally identified as a gene 

upregulated in lymphocytes upon IL-2, ConA as well as antigen receptor stimulation 

[405]. Moreover, preliminary data in this chapter indicated that negative feedback loops 

are likely to play a role in the regulation of SPA-1 in immature B cells. For example, it 

has been shown that PI3 kinase activity is likely to be involved in the suppression of 

SPA-1 transcription as inhibition of PI3 kinase increased the levels of SPA-1 mRNA to 

a similar extent as BCR-ligation (Fig.3.13). Consistent with this, overexpression of Ras 

molecules constitutively activating the PI3 kinase cascade and/or the ERK cascade 

were found to generally downregulate SPA-1 levels (Fig.3.14). These data imply that 

PI3 kinase signalling, which can be detected in proliferating, activated cells, negatively 

regulates SPA-1 and hence increases Rap activation, which in turn can activate ERK to 

induce signalling that further strengthens the pro-survival programme.  

Another negative regulator of the ERK cascade, PAC-1, was also found to be 

transcriptionally regulated in a similar fashion to SPA-1. Thus, PAC-1 was found to be 

upregulated following inhibition of ERK and PI3 kinase signalling whilst overexpression 

of constitutively active Ras mutants acted to decrease the levels of PAC-1 

(Fig.3.14/15), the latter finding being consistent with the ERK cascade being implicated 

in the regulation of PAC-1 mRNA levels in T cells [366]. However, whilst activation of T 

cells was found to induce sustained transcription of PAC-1 in an ERK-dependent 
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fashion, BCR-signalling only transiently upregulated PAC-1 transcription. Thus, BCR 

stimulation increased PAC-1 expression at the very early timepoint (2 h) (Fig.3.15) and 

it can be envisaged that this reflected the strong but transient ERK signal triggered by 

the BCR at this time. However, at the later timepoints, it is not clear what signals are 

responsible for PAC-1 transcription required for BCR-mediated downregulation of the 

sustained cyclic ERK activation. By contrast, the sustained cyclic moderate ERK 

signalling presumably reflects cycles of PAC-1 upregulation and decay. 

In conclusion, positive signals such as PI3 kinase and ERK signalling appear to 

actively suppress the expression of negative regulators of the ERK cascade. On the 

other hand BCR-signalling acts to abrogate both these signalling cascades, releasing 

the transcriptional suppression of SPA-1 and PAC-1. These molecules therefore 

ensure the continuing inhibition of ERK signalling and in this way, the commitment of 

cells to growth arrest and apoptosis.  

 

3.4.2 Subcellular localisation of signalling molecu les 

The localisation of signal transducers inside the cell can be as important as their 

levels of expression or activation status, due to the different potential interaction 

partners present in the various subcellular compartments. Analysis of the levels of Rap-

1, activated ERK and SPA-1 showed that the cellular distribution of these signals 

indeed changes depending on the time points and stimuli analysed. For example, as 

expected, SPA-1 was mainly found in the nucleus and cytoplasm as previously 

observed [451]. Thus, cytoplasmic SPA-1 most likely regulates the activity of Rap 

whereas nuclear SPA-1 might carry out different, as yet unknown, functions. Relating 

to this, SPA-1 has recently been found in a complex with the chromatin binding protein 

Brd4 in the nucleus of HeLa cells [451]. Brd4 can influence assembly of transcription 

factor complexes and has been implicated in processes such as cell cycle control and 

DNA replication [497] suggesting that SPA-1, by binding Brd4 or potentially other 

nuclear proteins, could influence cellular processes independent of its RapGAP 

function.  

Rap itself can also be found in different subcellular compartments as evidenced 

by its’ presence in cytoplasmic, nuclear, membrane/organelle, cytoskeletal as well as 

mitochondrial fractions of WEHI-231 cells. However, Rap-1 levels and subcellular 

localisation were found to be similar in all the differently stimulated cell populations 

(Fig.3.16). Rather, the major change observed was in the localisation of Rap with time 

and hence cell fate status. Thus, independently of the various stimuli Rap expression 

was found to be diminished in the nuclear and cytoskeletal compartments following 

culture for 24 hours compared to the levels found at 1 hour. Rap isoforms have 

previously been found to localise to the ER [498], endosomes [499] and Golgi complex 
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[500] inducing different signalling outcomes depending on their localisation. For 

example, perinuclear activation of Rap by Epac does not result in the activation of the 

ERK cascade at this location as a result of C3G, as well as downstream components 

such as B-Raf, not being localised to this cellular compartment [458]. Interestingly, 

sustained Rap-1 and ERK activation in response to nerve growth factor stimulation has 

been observed at endosomes in PC12 cells rather than at the plasma membrane [459]. 

It is therefore possible that localisation of Rap to the endosomes could also reflect 

sustained Rap activation in the WEHI-231 system. Interestingly, given that Rap-1 was 

found in the mitochondrial fraction (Fig.3.16C), Rap-1 has also been found to localise 

to mitochondria in a renal tubular cell model of glucose induced apoptosis where it 

ameliorates mitochondrial dysfunction by interacting with Bcl-2 [457]. Whether Rap is 

activated at the mitochondria of WEHI-231 cells or interacts with Bcl-2 family members 

remains to be established. It should be borne in mind, moreover, that the general lack 

of change in Rap expression/subcellular localisation observed (Fig.3.16) might be due 

to the fact that detection of Rap-1 by Western Blotting does not differentiate between 

active and inactive Rap-1. Thus, immunofluorescent staining for Rap-1 activation in 

combination with subcellular marker proteins identifying organelles such as 

mitochondria, endosomes, plasma membrane or the nucleus would clarify if Rap-1 

activation in various subcellular compartments is modulated due to BCR-ligation.  

That it is likely that detection of active Rap would render different results from 

looking at Rap expression levels, is supported by the analysis of levels of activated 

ERK compared to those of ERK protein expression. Thus, although ERK expression as 

such does not change in the cytoplasmic or nuclear fraction, activation of ERK 

increases dramatically 1 hour after BCR-ligation (Fig.3.16). Even more striking is the 

altered distribution of activated ERK at the later timepoint as at 24 hours after BCR 

stimulation, hardly any activation can be detected in the cytoplasm whereas pERK is 

still present in the membrane/organelle and nuclear fractions (Fig.3.16). 

In its inactive state ERK has been shown to be mainly localised in the cytoplasm 

where it is retained by various regulatory molecules, the major being MEK. Upon 

phosphorylation and hence activation, ERK can translocate to the nucleus whereas 

MEK stays in the cytoplasm [501]. The importance of such nuclear expression of 

activated ERK has been underpinned by the finding that growth factor induced DNA 

replication, as well as cFos activation, is blocked by the forced retention of ERK in the 

cytoplasm [502]. Although nuclear localisation seems to be the major pathway 

deployed to regulate ERK-mediated transcription, other downstream signalling 

cascades can be activated in different compartments of the cell. For example, β-

arrestin was observed to associate with ERK retaining it in the cytoplasm and 

enhancing its activity. Thus, by preventing ERK from entering the nucleus [503], β-
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arrestin complexing could provide a mechanism to potentially increase ERK activity in 

the cytoplasmic compartment, directing and allowing the phosphorylation and activation 

of cytoplasmic substrates such as cPLA2 or MAPK-activated kinases. Indeed, this 

might be the case in the WEHI-231 cells as high levels of activated ERK were detected 

early on (1 h) in the cytoplasm of cells stimulated via the BCR (Fig.3.16), signalling 

which has previously been shown to be key to activating cPLA2 and inducing 

apoptosis. BCR-signalling subsequently switches off sustained, cyclic ERK activation 

after this transient increase whereas simultaneous ligation of CD40 restores activation 

of ERK. Interestingly, the pool of activated ERK in the nucleus was diminished in BCR-

stimulated cells after 24 hours of culture. Thus, whilst both negative (BCR) and positive 

(BCR and CD40) signalling can induce the strong upregulation of active ERK observed 

in the cytoplasm at early time points, only positive signalling allows the sustained 

nuclear activation of ERK which may act, at least in part, to overcome BCR-mediated 

negative signalling by inducing counteracting survival mechanisms partly dependent on 

the nuclear function of ERK. Moreover, although the strong cytoplasmic ERK activation 

appears to be prerequisite for activating the cPLA2 apoptotic pathway, CD40 signalling 

blocks activation of cPLA2 despite also inducing high ERK activation. 

 

3.4.3 ERK-dependent regulation of c-Myc levels 

ERK is known to regulate proliferation of various cell types by impacting on the 

regulation of the cell cycle. For example, cyclin D1 in a complex with its Cdk binding 

partner controls S phase entry and cyclin D1 upregulation is mediated by Fos-Jun 

transcription factors which in turn are activated by ERK [504]. Thus, increased levels of 

cyclin D1 therefore enhance the formation of active cyclin/Cdk complexes permitting 

the exit from G1 phase and hence cell cycle progression. Mitogenic signalling via the 

BCR in mature B cells induces cyclin D2 and to a lesser extent cyclin D3 expression 

rather than cyclin D1 [505] and B cells from cyclin D2-deficient mice displayed a lack of 

BCR-mediated proliferation confirming that this cyclin D isoform plays a crucial role in 

cell cycle progression [506]. Additionally, cyclin D2 has been shown, similarly to cyclin 

D1 in other cell types, to be regulated by ERK in mature B cells. Thus, inhibition of the 

MEK/ERK cascade blocked cyclin D2 expression and hence phosphorylation of Rb 

[490]. 

However, the exact mechanism connecting such ERK activation with cyclin D2 

transcriptional regulation has not been experimentally determined. Nevertheless, there 

are a few possible candidates which could potentially link ERK and cyclin D2 

transcription. For example, one of the transcription factors able to regulate cyclin D2 

expression, STAT5 [507], has been shown in other cellular systems to be 

phosphorylated by ERK, increasing its activity [508]. Interestingly, cyclin D2 is also a 
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direct transcriptional target of c-Myc [480] as Myc/Max binding to its’ promoter was 

shown to enhance cyclin D2 expression [274]. Perhaps consistent with a role for c-Myc 

in upregulating cyclin D2 in B cells, in this present study it was shown that 

pharmacological inhibition of ERK activation led to the downregulation of c-Myc protein 

levels (Fig.3.23-25). In WEHI-231 cells, this appeared to reflect ERK-mediated 

stabilisation of c-Myc protein levels rather than increase of c-Myc mRNA levels as c-

Myc transcription was not influenced to the same extent by pharmacological inhibition 

of ERK activation as c-Myc protein levels. This is perhaps not surprising as ERK has 

been shown to regulate c-Myc activity by phosphorylating the serine 62 residue in vitro 

which, if modified, increases the protein stability [387]. Consistent with this, it has now 

been shown in this study that inhibition of ERK abrogated the levels of c-Myc 

phosphorylated on serine 62 hence potentially confirming the link of ERK-mediated 

phosphorylation with the stabilisation of c-Myc in intact cells. Therefore, ERK could be 

connected to the regulation of cell cycle progression by increasing the level of c-Myc 

which in turn enhances cyclin D2 expression. Unlike pharmacological inhibition of ERK, 

BCR-signalling was found to not only reduce the protein levels of c-Myc but also its 

mRNA levels. Ligation of the BCR might therefore induce additional ERK-independent 

pathways to regulate c-Myc mRNA levels. The transcription factor CTCF, a repressor 

of c-Myc transcription [475], has been shown to be upregulated downstream of BCR 

stimulation (Fig.3.29) and so the BCR-mediated increase of CTCF could contribute to 

the reduction of c-Myc mRNA levels. 

Interestingly, pharmacological inhibition of PI3 kinase was also found to influence 

c-Myc expression (Fig.3.23), a finding that is consistent with the proposal that through 

the activation of Akt and inactivation of GSK3, PI3 kinase signalling can directly 

increase c-Myc protein stability by preventing the inhibitory phosphorylation of 

threonine 58. However, it is as yet not clear if this potential direct effect on c-Myc 

regulation is the only reason for reduced c-Myc levels upon inhibition of PI3 kinase 

signalling as ERK activation was found to be partly reduced in cells treated with the PI3 

kinase inhibitor suggesting a link between these two cascades. It therefore remains to 

be determined whether diminished c-Myc expression is due to inhibition of PI3 kinase 

signalling or secondary abrogation of ERK activation. Independently of the inhibitor 

used, c-Myc mRNA levels were not decreased to the same extent as by BCR-ligation 

(Fig.3.26) indicating that both cascades, ERK as well as PI3 kinase, regulate c-Myc 

predominantly at the protein level by stabilisation mechanisms. 

As mentioned before, c-Myc might provide one of the links between ERK 

activation and cell cycle progression as it plays an important role in the regulation of 

the cell cycle machinery. Therefore, by taking advantage of LSC, it was directly tested 

whether a correlation exists between expression levels of important cell cycle 
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regulators such as c-Myc and the cell cycle stage. Thus, cells were firstly analysed for 

the expression of various molecules of interest by Western Blotting to confirm that they 

are indeed regulated by BCR-ligation. Following this, immunofluorescent staining to link 

cell cycle stage with the expression level of the molecules of interest, showed that 

increasing levels of not only pERK, but also of its downstream effector c-Myc as well as 

the phosphorylated (Ser62) and hence stabilised form of c-Myc, were linked to cell 

cycle progression. For example, growth arrested cells, as well as apoptotic cells, 

displayed lower levels of pERK and c-Myc expression compared to cells found in the 

mitotic phases (G2/M and S phase) (Fig.3.10 and 3.27/28) of the cell cycle, findings 

consistent with reports that pERK and c-Myc expression is needed to overcome the 

restriction point and hence G1 growth arrest allowing successful entry into S phase 

[446,509]. Given that in WEHI-231 cells BCR stimulation suppresses sustained ERK 

activation which impacts on c-Myc protein stability, it is therefore perhaps not surprising 

to find a correlation between growth arrest/apoptosis and low levels of pERK/c-Myc 

expression. Proliferation on the other hand is linked to elevated levels of ERK 

activation and hence c-Myc levels confirming the need for WEHI-231 cells to 

upregulate c-Myc levels to enter into and successfully complete the cell cycle.  

 

3.4.4 BCR-mediated regulation of the cell cycle 

It has been established that ERK activation and c-Myc expression play a crucial 

role in determining the fate of WEHI-231 cells. How exactly the ERK/c-Myc cascade 

impacts on cell cycle progression was further examined by analysing downstream-

effectors involved in cell cycle regulation. For example, p27 is a cell cycle inhibitor 

which acts on cyclin/Cdk complexes to reduce their activation [263]. p27 can be 

regulated by various means such as transcriptional upregulation or post-translational 

modifications including phosphorylation [278,510]. p27 provides another potential link 

between an increase of c-Myc levels and enhanced progress through the cell cycle due 

to the ability of c-Myc to influence the rate of degradation of p27. This is because 

components of the SCF-E3 ligase complex, which is responsible for p27 ubiquitination-

mediated degradation, are upregulated by c-Myc [511]. Moreover, c-Myc can directly 

suppress p27 transcription, thereby further decreasing the overall levels of p27. 

Consistent with their effect on the induction of growth arrest, inhibitors of ERK or PI3 

kinase activity mimicked BCR-signalling in increasing the protein levels of p27 

(Fig.3.30), in a manner that correlated with the downregulation of c-Myc levels. In the 

case of BCR-ligation this might be partly due to increased transcription of p27 [481], 

however stabilisation of p27 due to reduced c-Myc levels in these cells might also play 

a role as indicated by partial rescue of p27 levels during inhibition of proteasomal 

degradation (Fig.3.35). 
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BCR-mediated upregulation of p53 (Fig.3.31) could represent another regulatory 

mechanism blocking the progress through the cell cycle as p53 signalling can enhance 

expression of p21, another cell cycle inhibitor regulating entry into S phase by blocking 

the activation of cyclin/Cdk complexes [512]. Alternatively, p53 could also target the 

putative ERK/c-Myc pathway by repressing c-Myc transcription [513,514]. For example, 

Mdm2 (murine double minute 2) is a ubiquitin ligase which binds to p53 and keeps it in 

an inactive state by binding and blocking its transactivation domain, as well as inducing 

p53 degradation [515,516]. Interestingly, it has been shown in hepatocytes that ERK is 

able to phosphorylate Mdm2 at serine 166 which increases Mdm2-dependent 

degradation of p53 [517]. Additionally, ERK signalling has been shown to induce the 

transcription of the Mdm2 gene as well as enhance the export of Mdm2 mRNA into the 

cytoplasm, thereby increasing its translation [518,519]. The reduced levels of active 

ERK in BCR-stimulated WEHI-231 cells could therefore lead to an increase in p53 and 

consequent downregulation of c-Myc by resulting in a decrease of Mdm2 expression 

and activation. Furthermore, the PI3 kinase-activated Akt also phosphorylates and 

activates Mdm2 at serine 166 [520] and therefore reduced levels of PI3 kinase 

activation, observed upon BCR-ligation, could further contribute to increased p53 

levels. As well as being able to repress c-Myc transcription directly [513], p53 can also 

act to do this indirectly through upregulation of miR145 [514]. Taken together, BCR-

mediated events such as an increase of p27 and p53 prevent cells from overcoming 

the G1 restriction point and induce growth arrest or pro-apoptotic pathways contributing 

to BCR-mediated negative signalling.  

Mitotic stimulation of cells drives the transition through the G1 restriction point 

and entry into S phase with the major regulatory switch at this stage being the Rb/E2F 

module. In its hypophosphorylated state Rb is bound to E2F preventing this 

transcription factor from transactivating S phase genes [487]. Hyperphosphorylation of 

Rb by cyclin/Cdk kinase complexes modulates the binding capacity of Rb for E2F, 

ultimately leading to release of E2F [487]. The presence of hyperphosphorylated Rb is 

therefore generally a sign for progression through G1 phase. Hence, as might have 

been predicted, phosphorylated Rb proteins (Ser 807/811 as well as Ser 780) were 

found at higher levels in spontaneously proliferating WEHI-231 cells compared to those 

displayed by cells undergoing BCR-mediated growth arrest (Fig.3.32/33). As sustained 

ERK and c-Myc signalling likely feeds into the upregulation of cyclin D levels, the 

resultant activated cyclin/Cdk complexes would then phosphorylate Rb proteins 

contributing to the entry of WEHI-231 B cells into S phase. Stimulation of BCR-

signalling, on the other hand, abrogates such ERK activation and c-Myc expression 

ultimately leading to reduced phosphorylation of Rb proteins and arrest in the G1 

phase of cell cycle.  
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In line with its important role in cell cycle progress, hyperphosphorylation of Rb at 

Ser 780 as well as Ser 807/811 increased during the cell cycle with highest levels 

being detected in the mitotic phases (Fig.3.32/33). These regulatory sites on Rb are 

phosphorylated by different cyclin/Cdk complexes, thus, for example, cyclin D1/Cdk4 

but not cyclinE/Cdk2 complexes are able to phosphorylate serine 780 [488]. However, 

there were no major differences in their pattern of expression as both forms of Rb were 

mainly found to be highly expressed in S and G2/M phases whereas hardly any cells 

arrested in G1 or undergoing apoptosis expressed hyperphosphorylated Rb 

(Fig.3.32/33). Thus, BCR-ligation on WEHI-231 cells induces growth arrest and 

apoptosis by abrogating cyclic activation of ERK resulting in reduced levels of c-Myc 

and potentially impacting on cyclin D2 levels and consequently diminished levels of 

hyperphosphorylated Rb leading to growth arrest due to insufficient release of E2F and 

induction of S phase genes. 

 

3.4.5 Potential role for ubiquitination and E3 ubiq uitin ligases in 

BCR-induced growth arrest 

There are many ways of regulating protein levels and activity in a cell. 

Ubiquitination provides a mechanism allowing the cell to rapidly change the levels of 

protein present by targeting such molecules for degradation and thereby modulating 

signalling pathways in a quick and reversible manner. It was therefore examined 

whether ubiquitination plays a part in the pathways regulating the proliferative/growth 

arrest response of WEHI-231 cells. Indeed, initial experiments showed that the pattern 

of ubiquitinated protein expression by these cells changed following stimulation via the 

BCR suggesting that ubiquitination is indeed involved in BCR-mediated regulation of 

signal transducers (Fig.3.34). The availability of inhibitors of the proteasome makes it 

possible to analyse the contribution of ubiquitination-dependent proteasomal 

degradation to cellular responses and regulation of protein levels. However, WEHI-231 

cells proved to be very sensitive to the toxic side effects of proteasome inhibitors 

making analysis of longer term signalling difficult. Nevertheless, preliminary results 

were still promising and provided some information on mechanisms regulating c-Myc 

levels in spontaneously proliferating WEHI-231 cells. Thus, protein levels of c-Myc 

were elevated in unstimulated WEHI-231 cells due the addition of MG132, a 

proteasomal inhibitor, indicating a dynamic regulation of c-Myc expression even in the 

absence of external stimuli such as BCR-ligation (Fig.3.35) and could explain the cyclic 

pattern of c-Myc expression observed in proliferating WEHI-231 B cells. Thus, 

stabilisation of c-Myc by post-translational mechanisms such as phosphorylation of 

serine 62 by ERK, as well as transcriptional upregulation, would therefore be 

counteracted by ubiquitin-mediated degradation allowing c-Myc to be maintained at a 
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steady-state level. This tight control of c-Myc levels is certainly very important, as 

mutated and hence de-regulated c-Myc has been detected in many tumours causing 

uncontrolled proliferation of cells [521]. 

The activation of ERK was also found to be potentially regulated by signalling 

involving regulatory mechanisms controlled by proteasomal degradation, as it was 

shown that CD40-mediated rescue of BCR-dependent abrogation of ERK activation 

could be partially prevented by inhibition of the proteasome (Fig.3.36) suggesting that 

such rescue might therefore depend on the degradation of a negative regulator. CD40-

signalling is regulated by TRAF2, TRAF3 and TRAF6 and it has been shown in B cells 

that ubiquitination of TRAF3 is necessary to permit the CD40-mediated activation of 

JNK and p38 [522]. The CD40-dependent activation of ERK in B cells might therefore 

also rely on the ubiquitination of TRAF3 and consequently, proteasomal inhibition 

therefore might block ERK activation. Alternatively, a TRAF6-dependent pathway could 

be targeted by blocking the proteasome as in HEK293 cells, CD40-mediated activation 

of ERK is achieved through Ras-independent signalling by TRAF6 [194]. Consistent 

with this, TRAF6 needs to be auto-ubiquitinated to allow full NF-κB signalling [523]. As 

a side effect of inhibition of the proteasome is the rapid depletion of free ubiquitin [524], 

the reduced availability of ubiquitin could therefore hinder auto-ubiquitination of TRAF6 

and hence reduce its activation and downstream signalling, potentially including the 

ERK cascade. 

Ubiquitination is carried out by an array of enzymes called ubiquitin ligases. E1 

and E2 ligases, the first two enzymes in the cascade are ubiquitously expressed in 

cells whereas E3 ubiquitin ligases confer the substrate specificity to the pathways (see 

section 1.6). In recent years, research has begun to unravel the various roles E3 

ubiquitin ligases play in the immune system. These enzymes function as part of many 

cascades involved in the regulation of immune cells, such as NF-κB signalling [525] 

and have been shown to control events proximal to the antigen receptors of T and B 

cells [492]. The Cbl family of proteins have attracted special attention due to their role 

in TCR- and BCR-signalling and indeed, both c-Cbl and Cbl-b have been identified as 

regulators of signalling events controlling T and B cell activation and proliferation [431]. 

Interestingly, these molecules not only influence signalling pathways via their E3 

ligase-mediated ability to ubiquitinate proteins, but also by functioning as adaptor 

molecules [526]. 

Data shown in this chapter indicates that Cbl-b and to a lesser extent c-Cbl are 

regulated by BCR-mediated signalling. Thus, cells stimulated through their BCR 

displayed enhanced levels of Cbl-b and c-Cbl compared to spontaneously proliferating 

WEHI-231 B cells (Fig.3.37/38). Cbl-b can potentially regulate BCR-signalling by 

multiple mechanisms such as its E3 ligase-mediated ubiquitination of adaptor 
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molecules involved in the activation of Rap. Furthermore, Cbl-b could dampen BCR-

signalling by ubiquitination of Syk leading to its degradation [441]. Additionally, Cbl-b 

might also interfere with the PI3 kinase cascade as it has been shown in T cells that 

Cbl-b enhances the polyubiquitination of the PI3 kinase subunit p85 [436,437] and 

hence inhibits its activation by preventing p85 recruitment to CD28. Thus, Cbl-b could 

similarly contribute to the reduced levels of PI3 kinase signalling detected upon BCR-

ligation [455]. Moreover, Cbl-b might negatively regulate Vav [527] as it has been 

shown that Cbl-b deficient T cells have increased Vav activity and that loss of Cbl-b 

can restore some of the functions of Vav1-deficient T cells [230]. Upon BCR-signalling 

Vav is recruited and acts as a GEF for the Rho-family of GTPases including Rac1, 

RhoA and Cdc42 [146], to influence various cellular functions such as rearrangement 

of the actin cytoskeleton, thereby regulating capping of the antigen receptor, and 

optimal calcium signalling as well as stimulation of PLCγ and PI3 kinase [146]. Cbl-b 

mediated suppression of Vav and its downstream signalling would therefore further 

contribute to the suppression of activation of WEHI-231 B cells upon BCR-ligation. 

Itch and Grail are also E3 ubiquitin ligases which have been implicated in antigen 

receptor signalling [226,528]. Analysis of their expression levels displayed only minor 

changes upon BCR stimulation, however, degradation of Itch and Grail appeared to be 

increased upon CD40-signalling (Fig.3.38). Degradation of Grail has been shown to be 

regulated by otubain-1, a protein which can be transcriptionally upregulated by 

Akt/mTOR-mediated signalling [529]. Binding of otubain-1 is thought to allow auto-

ubiquitination of Grail, targeting it for the proteasome and hence degradation. PI3 

kinase-dependent effects in B cells have been shown to be partially mediated by 

mTOR signalling, as inhibition of mTOR with rapamycin induces growth arrest of B 

cells [530]. Moreover, mTOR levels are positively regulated by PI3 kinase signalling 

[531] and thus, CD40-mediated increased activity of Akt and hence mTOR would 

increase the expression of obutain-1 leading to Grail degradation. Although hardly any 

substrates for Grail have been identified yet, RhoGDI (Rho guanine dissociation 

inhibitor), has been shown to be ubiquitinated by Grail leading to the reduction of RhoA 

activity in T cells [532]. Interestingly, RhoA is involved in the regulation of PLCγ 

signalling and calcium mobilisation and hence proliferation of B cells [533]. Thus, 

CD40-mediated reduction of Grail levels could therefore contribute to the stabilisation 

of RhoA and calcium signalling further enhancing CD40-mediated pro-survival signals. 

 

3.5 Figures 
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Figure 3.1 Signalling pathways regulating apoptosis  in WEHI-231 cells 

In WEHI-231 cells ligation of the BCR leads to a transient increase in ERK activation. 

Activated ERK in turn phosphorylates and activates cPLA2 which translocates to the 

mitochondria. cPLA2 catalyses the production of arachidonic acid at the mitochondria 

hence inducing dissipation of the mitochondrial membrane potential. Due to 

mitochondrial malfunction the cellular ATP levels will be depleted. The final step in this 

apoptotic pathway is the activation of executioner proteases such as cathepsin B. 

CD40 signalling is known to protect from BCR-mediated apoptosis. This protection is 

achieved by CD40-dependent activation and nuclear translocation of NF-κB. This 

transcription factor enhances the expression of pro-survival molecules such as c-Myc 

and Bcl-xL. The anti-apoptotic Bcl-2 family member Bcl-xL is crucial to the inhibition of 

apoptosis and overexpression of Bcl-xL protects cells from BCR-mediated cell death. 

The anti-apoptotic function of Bcl-xL in this model is bipartite: it inhibits the localisation 

of cPLA2 to the mitochondria and it itself translocates to these organelles where it 

protects the integrity of the mitochondrial membrane. 
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Figure 3.2 Regulation of c-Myc protein levels 

Phosphorylation is an important post-translational modification of c-Myc proteins 

determining their stability. Thus, phosphorylation of T58 by glycogen synthase kinase 3 

(GSK3) renders c-Myc prone to ubiquitination followed by degradation by the 

proteasome. PI3 kinase signalling stabilises cyclic expression by inhibiting GSK3 and 

hence reduced phosphorylation of T58. Similarly, phosphorylation of S62 increases c-

Myc stability through as yet unknown mechanisms. The consensus sequence 

surrounding S62 makes it a likely target for ERK MAP kinase which has indeed been 

shown to phosphorylate c-Myc at position S62 in vitro.  
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Figure 3.3 The Rap signalling cascade 

Extracellular stimulation activates Rap GEFs by different mechanisms. For example, 

cAMP will activate Epacs, whilst calcium and DAG are needed for the activation of 

CalDAGGEFs and C3G is activated by protein tyrosine kinases (PTK). GEFs then 

catalyse the exchange of GDP for GTP hence activating Rap. Activated Rap has 

multiple functions depending on the cell type and upstream signalling involved. Thus, it 

can activate ERK through B-Raf dependent signals or inhibit it by sequestering Raf-1 

away from Ras. The regulation of ERK and another MAPK, p38, makes Rap an 

important part of signals controlling proliferation and survival. Additionally, Rap has 

also been found to play a crucial role in regulating cell adhesion and motility through 

adaptor proteins such as RapL which can change integrin affinity and in turn signalling. 
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Figure 3.4 Ligation of the BCR on WEHI-231 induces growth arrest 

(A) WEHI-231 cells (104 cells/well) were cultured in triplicate in round bottom microtitre 

plates in complete medium in the presence of increasing concentrations of anti-IgM 

antibody (0-10 µg/ml) for 48 h. (B) WEHI-231 cells (104 cells/well) were cultured in the 

presence of 10 µg/ml anti-IgM antibody, 10 µg/ml anti-CD40 or the combination of both 

for 48 h. Cells were harvested 4 h after the addition of [3H] thymidine and the 

incorporated label analysed by liquid scintillation measurement. Data are represented 

as counts per minute (cpm) +/- standard deviation (SD) of triplicate values. Data are 

representative of at least five independent experiments. *** p<0.001 
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Figure 3.5 Ligation of the BCR on WEHI-231 cells in duces growth arrest in G0/G1  

WEHI-231 cells (105 cells/well) were cultured in complete medium in the presence of 

10 µg/ml anti-IgM antibody, 10 µg/ml anti-CD40 or a combination of the 

aforementioned antibodies for 48 h. After this time the cells were harvested and 

analysed for DNA content by staining with PI to assess the percentage live cells in 

G1/G0 phase (A), S phase (B) or G2/M phase (C) by excluding the subdiploid cells 

from the analysis. Cells stimulated with media only were included as a control. Data are 

representative of at least four independent experiments. 
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Figure 3.6 Ligation of the BCR on WEHI-231 cells in duces growth arrest and 

apoptosis 

(A-D) WEHI-231 cells (105 cells/well) were cultured in complete medium in the 

presence of 10 µg/ml anti-IgM antibody, 10µg/ml anti-CD40 or a combination of the 

aforementioned antibodies for 48 h. After this time the cells were harvested and 

analysed for DNA content by staining with PI to assess the percentage of subdiploid 

cells representing cells undergoing apoptosis (A), cells in G1/G0 phase (B), cells in S 

phase (C) or G2/M phase (D). Cells stimulated with media only were included as a 

control.  

(E) To determine changes of the mitochondrial membrane potential (MMP) cells (106 

cells/ml) were stimulated with 10 µg/ml anti-IgM, 10 µg/ml anti-CD40 or 10 µg/ml anti-

IgM in combination with anti-CD40. Cells were then stained with DiOC6 and gates were 

set on DiOC6-bright (high MMP) cells. Data are expressed as percentage of cells with 

high MMP. Data are representative of at least four independent experiments. 
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Figure 3.7 BCR stimulation reduces cyclic ERK activ ation and c-Myc expression 

levels 

WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) (A), 1 

µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of both (D) for 0-32 h, as 

indicated. Expression of pERK (T202/Y204), c-Myc and total ERK was assessed by 

SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg protein/lane). This 

experiment is representative of at least three independent experiments. 
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Figure 3.8 BCR stimulation reduces pERK and c-Myc e xpression detected by 

immunofluorescent staining and LSC analysis 

WEHI-231 cells (106 cells/well) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-

CD40 or the combination of both for 48 h. Cells were cytocentrifuged, fixed, 

permeabilised and immunofluorescently stained for intracellular pERK (T202/Y204) or 

c-Myc expression. Expression of the molecules was analysed by LSC using DAPI-

stained nuclei to contour on single cells. (A) Representative immunofluorescence 

pictures (unstimulated control cells) are shown. Data are presented as (i) percentage 

or (ii)  fluorescence integral of pERK (B) or c-Myc (C) expressing cells. Cells stimulated 

with media were included as a control. This experiment is representative of at least two 

independent experiments. 
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Figure 3.9 Analysis of cell cycle progression of WE HI-231 cells after BCR-ligation 

by LSC 

(A) Cells (unstimulated control cells) are gated on according to their Max Pixel value 

(chromatin concentration/condensation) along the x-axis and their Integral value (DNA 

content) along the y-axis (as described in section 2.10.1.2, Fig. 2.9) identifying them as 

cells with subdiploid DNA content (apoptotic cells), cells in G1-G0 phase, G2-M phase, 

S phase or as new daughter cells. The cell cycle status of WEHI-231 cells (106 cells/ml) 

stimulated with media (B-i) , 1 µg/ml anti-IgM (B-ii) , 10 µg/ml anti-CD40 (B-iii)  or the 

combination of both antibodies (B-iv)  for 32 h, was analysed following staining the 

nuclei with DAPI. The percentage of cells at different stages of the cell cycle was 

determined by LSC (C). This experiment is representative of at least two independent 

experiments. 
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Figure 3.10 pERK expression correlates with cell cy cle progress 

WEHI-231 cells (106 cells/well) were cultured for 48 h. Cells were cytocentrifuged, 

fixed, permeabilised and fluorescently stained for intracellular pERK (T202/Y204) 

expression. Expression of pERK as well as DAPI staining was analysed by LSC. Cells 

with subdiploid DNA content (apoptotic cells), cells in G1-G0 phase, G2-M phase, S 

phase or new daughter cells (ND) were gated on as described in Figure 3.9. The pERK 

expression in each cell cycle stage was then analysed. (A) A dot plot depicting DAPI 

Max Pixel against DAPI Integral was used to gate on cells in different stages of the cell 

cycle. Separate histograms for the expression of pERK in each of these gates were 

then displayed. (B) Data are presented as pERK fluorescence integral of cells in each 

cell cycle stage or as (C-i) percentage of the cells that are pERK-expressing cells in 

each cell cycle stage or (C-ii)  percentage of pERK-expressing cells in the total cell 

population that are in each cell cycle stage. 
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Figure 3.11 BCR ligation does not suppress the expr ession of Rap-1, B-Raf or 

Raf-1 in WEHI-231 cells 

(A-D) WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) 

(A), 1 µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of both antibodies 

(D) for 0-32 h, as indicated. Expression of Rap-1, B-Raf, Raf-1, pERK and total ERK 

was assessed by SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg 

protein/lane). This experiment is representative of at least two independent 

experiments. 

(E) WEHI-231 cells (106 cells/well) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-

CD40 or the combination of both for 48 h. Cells were cytocentrifuged, fixed, 

permeabilised and immunofluorescently stained for intracellular Rap-1 expression. 

Rap-1 expression was analysed by LSC using DAPI-stained nuclei to contour on single 

cells. Data are presented as (i) percentage of Rap-1 expressing cells or (ii)  the Rap-1 

fluorescence integral. This experiment is representative of at least two independent 

experiments. 

(F) WEHI-231 cells (0.5 x 107 cells/stimulation) were stimulated with 1 µg/ml anti-IgM, 

10 µg/ml anti-CD40 or the combination of both for 2, 4, 8 or 24 h and samples were 

prepared as per manufacturer’s instructions. Unstimulated cells were included as a 

control (media). Expression of phospho-B-Raf (pS446) and ERK2 was detected on a 

Bio-Plex System (Bio-Rad). Data are displayed as the ratio of phospho-B-Raf 

(pS446)/ERK2 expression, +/- the range of duplicate values.  
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Figure 3.12 Downregulation of Rap-1 signalling foll owing BCR stimulation 

(A-D) WEHI-231 cells (1.25 x 107 cells/stimulation) were stimulated with medium 

(untreated) (A), 1 µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of 

both (D) for 4, 8 or 24 h, as indicated. Levels of active GTP-bound Rap-1 were 

detected using a Rap-1 activity assay. Active Rap-1 specifically binds to Ral GDS-

RBD-agarose allowing to purify it and assess expression levels by Western Blotting. 

This experiment is representative of at least three independent experiments. 

(E-G) WEHI-231 cells (106 cells/well) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml 

anti-CD40 or the combination of both for 24 h. Cells were cytocentrifuged, fixed, 

permeabilised and immunofluorescently stained for active Rap-1 expression using 

GST-labelled recombinant Ral GDS-RBD or GST as a control (E). Active Rap 

expression was analysed by LSC using DAPI-stained nuclei to contour on single cells. 

(F) Histograms are shown for cells stained with the GST control (i), untreated cells (ii) , 

cells stimulated with 1 µg/ml anti-IgM (iii) , 10 µg/ml anti-CD40 (iv)  or the combination 

of both antibodies (v). (G) Data are presented as (i) Rap fluorescence integral or (ii)  % 

of cells expressing Rap at high levels (gate is shown in (F-ii)  to (F-v)). This experiment 

is representative of at least two independent experiments. 
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Figure 3.13 SPA-1 expression is regulated by BCR-me diated signalling 

(A) WEHI-231 cells (107 cells/stimulation) were stimulated with medium, 1 µg/ml anti-

IgM, 10 µg/ml anti-CD40 or the combination of both antibodies for 24 or 48 h, as 

indicated. Expression of SPA-1 and β-actin was assessed by SDS-PAGE gel 

electrophoresis followed by Western Blotting (45 µg protein/lane). This experiment is 

representative of at least three independent experiments. 

(B) To determine SPA-1 expression in subcellular fractions and whole cell lysates, 

WEHI-231 cells (107 cells/well) were stimulated with 10 µg/ml anti-IgM, 10 µg/ml anti-

CD40 or the combination of both antibodies for 24 h and nuclear and cytoplasmic 

fractions as well as whole cell lysates were prepared. Mitochondrial fractions were 

prepared after stimulating 1 x 108 cells/well as described above. Cells stimulated with 

medium were included as a control. Expression of SPA-1 was assessed by SDS-PAGE 

gel electrophoresis of these fractions followed by Western Blotting (25 µg protein/lane 

of nuclear, cytoplasmic and mitochondrial fractions, 80 µg protein/lane of whole cell 

lysates). Gel loading was as follows: Lane 1 media, Lane 2 anti-IgM, Lane 3 anti-CD40, 

Lane 4 anti-IgM+anti-CD40. 

(C) WEHI 231 cells (107 cells/stimulation) were stimulated with media (untreated), 10 

µM PD98059, 1 µM LY294002 or the combination of the two inhibitors for 0-32 h, as 

indicated. Expression of pERK and total ERK was assessed by SDS-PAGE gel 

electrophoresis followed by Western Blotting (15 µg protein/lane). 

(D-E) WEHI-231 cells (106 cells/ml) were stimulated with medium, 1 µg/ml anti-IgM, 10 

µg/ml anti-CD40 or the combination of both antibodies for 0-48 h, as indicated (i). 

WEHI-231 cells were stimulated with 1 µg/ml anti-IgM, 10 µM PD98059, 1 µM 

LY294002 or the combination of the two inhibitors for 0-32 h (ii) . Whole mRNA was 

isolated and transcribed into cDNA. SPA-1 expression levels were detected by 

TaqMan® quantitative RT-PCR using HPRT as endogenous control. (D) Data are 

shown as mean % expression relative to HPRT +/- SD of triplicate values of a 

representative experiment. (E) Data shown are pooled from up to 4 experiments with 

individual time points representing the mean of SPA-1 expression relative to HPRT +/- 

SD of triplicate values in each independent experiment. 
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Figure 3.14 Expression of constitutively-active Ras  mutants protects WEHI-231 

cells from BCR-mediated growth arrest 

(A) WEHI-231 cells (104 cells/well) expressing the empty pcDNA3.1 vector, pcDNA3.1-

RasV12, or pcDNA3.1-RasV12 S35 vectors were stimulated with (i) increasing 

concentrations of anti-IgM antibody (0-10 µg/ml) or (ii)  with 10 µg/ml anti-IgM antibody, 

10µg/ml anti-CD40 or the combination of both for 24 h. Cells were harvested 4 h after 

the addition of [3H] thymidine and incorporated label analysed by liquid scintillation 

measurement. (B) WEHI-231 cells (104 cells/well) containing the empty pcDNA3.1 

vector, pcDNA3.1-RasV12, or pcDNA3.1-RasV12C40 vectors were cultured and 

proliferation assessed as in (A). Data from individual experiments were normalised by 

expressing the mean [3H] thymidine uptake values of treated cells as a percentage of 

those obtained with control cell cultures. The normalised values from 4 independent 

experiments were then pooled and expressed as means ± SEM. 

(C) WEHI-231 cells transfected with empty pcDNA3.1 vector, pcDNA3.1-RasV12, 

pcDNA3.1-RasV12C40 and pcDNA3.1-RasV12S35 (106 cells/ml) were stimulated with 

1 µg/ml anti-IgM or 10 µg/ml anti-CD40 and 1 µg/ml anti-IgM for 24 h. Cells stimulated 

in the presence of medium alone were included as a control. Whole mRNA was 

isolated and transcribed into cDNA. SPA-1 expression levels were detected by 

TaqMan® quantitative RT-PCR using HPRT as endogenous control. Data are shown 

as mean % expression relative to HPRT +/- SD of triplicate values. 
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Figure 3.15 BCR stimulation regulates PAC-1 mRNA le vels 

(A-B)  WEHI-231 cells (106 cells/ml) were stimulated with medium, 1 µg/ml anti-IgM, 10 

µg/ml anti-CD40 or the combination of both antibodies for 0-48 h, as indicated (i). 

WEHI-231 cells (106 cells/ml) were stimulated with 1 µg/ml anti-IgM, 10 µM PD98059, 1 

µM LY294002 or the combination of the two inhibitors for 0-32 h (ii) . Whole mRNA was 

isolated and transcribed into cDNA. PAC-1 expression levels were detected by 

TaqMan® quantitative RT-PCR using HPRT as endogenous control. (A) Data are 

shown as mean % expression relative to HPRT +/- SD of triplicate values of a 

representative experiment. (B) Data shown are pooled from up to 4 experiments with 

individual time points representing the mean of PAC-1 expression relative to HPRT +/- 

SD of triplicate values in each independent experiment. 

(C) WEHI-231 cells transfected with empty pcDNA3.1 vector, pcDNA3.1-RasV12, 

pcDNA3.1-RasV12C40 and pcDNA3.1-RasV12S35 (106 cells/ml) were stimulated with 

1 µg/ml anti-IgM or 10 µg/ml anti-CD40 and 1 µg/ml anti-IgM for 24 h. Cells stimulated 

in the presence of medium alone were included as a control. Whole mRNA was 

isolated and transcribed into cDNA. PAC-1 expression levels were detected by 

TaqMan® quantitative RT-PCR using HPRT as endogenous control. Data are shown 

as mean % expression relative to HPRT +/- SD of triplicate values. 
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Figure 3.16 Subcellular localisation of Rap-1 and p ERK 

To determine Rap-1, pERK and ERK expression in various subcellular localisations 

WEHI-231 cells (5 x 106 cells/well) were stimulated with media or 1 µg/ml anti-IgM or 

10 µg/ml anti-CD40 in combination with 1 µg/ml anti-IgM for 1 h (A) or 24 h (B) and 

cytoplasmic, membrane/organelle, nuclear and cytoskeletal fractions were prepared 

following the manufacturer’s instructions (Perkin Elmer, Cellular Protein fractionation 

Kit). Additionally, whole cell lysates were prepared at the same time. Cells stimulated 

with medium were included as a control. Expression of Rap-1, pERK, ERK as well as 

the marker protein VDAC-1 and HDAC-1 was assessed by SDS-PAGE gel 

electrophoresis followed by Western Blotting. Gel loading was as follows: Lane 1 

media, Lane 2 anti-IgM, Lane 3 anti-IgM+anti-CD40. 

(C) The subcellular localisation of pERK, Rap-1 and ERK signals was furthermore 

analysed using a different protocol of fractionation. Here WEHI-231 cells (107 cells/well) 

were stimulated with 10 µg/ml anti-IgM, 10 µg/ml anti-CD40 or the combination of both 

for 24 h and nuclear and cytoplasmic fractions as well as whole cell lysates were 

prepared. Mitochondrial fractions were prepared after stimulating 108 cells/well as 

described above. Cells stimulated with medium were included as a control. Expression 

of pERK, Rap-1 and ERK was assessed by SDS-PAGE gel electrophoresis followed by 

Western Blotting (25 µg protein/lane of nuclear, cytoplasmic and mitochondrial 

fractions, 80 µg protein/lane of whole cell lysates). Gel loading was as follows: Lane 1 

media, Lane 2 anti-IgM, Lane 3 anti-CD40, Lane 4 anti-IgM+anti-CD40. 
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Figure 3.17 Induction of growth arrest in WEHI-231 cells transfected with 

pcDNA3.1-Rap vectors 

(A) WEHI-231 cells (104 cells/well) transfected with empty pcDNA3.1 vector, 

pcDNA3.1-Rap-1A WT, pcDNA3.1-Rap-1A G12V or pcDNA3.1-Rap-1A S17N were 

stimulated with rising concentration of anti-IgM antibody, as indicated, (i) or with 1 

µg/ml anti-IgM or 1 µg/ml anti-IgM in combination with 10 µg/ml anti-CD40 (ii)  and their 

DNA synthesis measured at 48 h. Cells were harvested 4 h after the addition of [3H] 

thymidine and incorporated label was analysed by liquid scintillation measurement. 

Data represents counts per minute (cpm) as normalised to media values for each 

group +/- SD of triplicate values. This experiment is representative of at least two 

independent experiments. 

(B) WEHI-231- Bcl-xL cells (104 cells/well) transfected with either empty pcDNA3.1 Zeo 

vector, pcDNA3.1 Zeo-Rap-1A WT, pcDNA3.1 Zeo-Rap-1A G12V or pcDNA3.1 Zeo-

Rap-1A S17N were stimulated with rising concentrations of anti-IgM antibody, as 

indicated (i) or 1 µg/ml anti-IgM or 1 µg/ml anti-IgM in combination with 10 µg/ml anti-

CD40 (ii)  and their DNA synthesis measured at 24 h. Cells were harvested 4 h after the 

addition of [3H] thymidine and incorporated label was analysed by liquid scintillation 

measurement. Data represents counts per minute (cpm) as normalised to media values 

for each group +/- SD of triplicate values. This experiment is representative of at least 

two independent experiments. 
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Figure 3.18 Induction of growth arrest and apoptosi s in WEHI-231 cells 

transfected with pcDNA3.1-Rap vectors 

WEHI-231- Bcl-xL cells (0.5 x 106 cells/well) transfected with either empty pcDNA3.1 

Zeo vector, pcDNA3.1 Zeo-Rap-1A WT, pcDNA3.1 Zeo-Rap-1A G12V or pcDNA3.1 

Zeo-Rap-1A S17N were stimulated with rising concentration of anti-IgM antibody (0-1 

µg/ml) for 24 h, as indicated. The cell cycle stage was determined by staining the cells 

with PI followed by FACS analysis. Data are presented as percentage of subdiploid 

cells (A), cells in G1/G0 (B) or cells in the mitotic phases (G2/M and S phase) (C) of 

cell cycle. 
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Figure 3.19 WEHI-231 cells were not stably transfec ted with pcDNA3.1-Rap 

constructs 

(A) WEHI-231-Bcl-xL cells (107 cells/stimulation) transfected with either empty 

pcDNA3.1 Zeo vector, pcDNA3.1 Zeo-Rap-1A WT, pcDNA3.1 Zeo-Rap-1A G12V or 

pcDNA3.1 Zeo-Rap-1A S17N were lysed with RIPA buffer and whole cell lysates 

prepared. MIEV and MIEV-PKCα-HA-tag transfected fibroblast-lysates were used as a 

negative or positive control for the HA-tag detection, respectively. Expression of HA-

tag, Rap-1 and ERK was assessed by SDS-PAGE gel electrophoresis followed by 

Western Blotting (40 µg protein/lane). Gel loading was as follows : Lane1 pcDNA3.1 

Zeo-Rap-1A WT transfected cells, Lane 2 pcDNA3.1 Zeo-Rap-1A G12V transfected 

cells, Lane 3 pcDNA3.1 Zeo-Rap-1A S17N transfected cells, Lane4 pcDNA3.1 Zeo 

(empty vector) transfected cells, Lane5 untransfected cells Lane 6 MIEV-transfected 

fibroblasts, Lane 7 MIEV-PKCα-HA-tag transfected fibroblasts. 

(B) WEHI-231 cells were transfected with empty pIRES2-AcGFP1 vector, pIRES2-

AcGFP1-Rap-1A WT, pIRES2-AcGFP1-Rap-1A G12V, pIRES2-AcGFP1-Rap-1A 

S17N. (i) 24 h (Day 1) or (ii)  11 days after transfection cells were analysed for the 

expression of GFP. (C-i) Table summarising the percentage of GFP-positive cells 

detected 1, 5 or 11 days after transfection. (C-ii)  Table summarising vectors, cells, 

concentrations of selection-antibiotic as well as methods of transfections tested during 

optimisation experiments. (C-iii)  Table summarising experiments carried out to test 

conditions for the production of stably transfected clones. 
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Figure 3.20 HA-tagged Rap-1A WT, Rap-1A G12V and Ra p-1A S17N are 

expressed in the a lentivirus-based transduction sy stem 

(A) HT-1080 cells were transduced or not with lentiviral particles encoding pLVX-IRES-

ZsGreen1-Rap-1A WT, -Rap-1A G12V or -Rap-1A S17N and analysed by FACS to 

detect ZsGreen1 expression after 72 h. (B) The HT-1080 cells described in (A) above 

were lysed in RIPA buffer and the expression of the HA-tag or total ERK was assessed 

by SDS-PAGE gel electrophoresis followed by Western Blotting (60 µg protein/lane). 

Gel loading was as follows: Lane1 untransduced cells, Lane2 pLVX-IRES-ZsGreen1-

Rap-1A WT, Lane3 pLVX-IRES-ZsGreen1-Rap-1A G12V, Lane4 pLVX-IRES-

ZsGreen1-Rap-1A S17N. 
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Figure 3.21 BCR-mediated abrogation and CD40-depend ent rescue of c-Myc 

expression 

WEHI-231 cells (107 cells/stimulation) were stimulated with medium, 1 µg/ml anti-IgM, 

10 µg/ml anti-CD40 or the combination of both antibodies for 0-32 h, as indicated. 

Expression of pERK, c-Myc phospho-c-MycS62, ERK and β-actin was assessed by 

SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg protein/lane). Gel 

loading was as follows: Lane1 media, Lane2 anti-IgM, Lane3 anti-CD40, Lane4 anti-

IgM+anti-CD40. These data are representative of at least two independent 

experiments. 
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Figure 3.22 Ligation of the BCR on WEHI-231 cells r egulates the levels of c-Myc 

WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) (A), 1 

µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of both antibodies (D) 

for 0-32 h, as indicated. Expression of pERK, c-Myc, phospho-c-MycT58/S62, phospho 

c-MycT58 and total ERK was assessed by SDS-PAGE gel electrophoresis followed by 

Western Blotting (15-45 µg protein/lane). This experiment is representative of at least 

three independent experiments. 
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Figure 3.23 c-Myc expression is regulated by the ER K and PI3 kinase signalling 

WEHI-231 cells (107 cells/stimulation) were stimulated with medium, 1 µg/ml anti-IgM, 

10 µg/ml anti-CD40, the combination of both antibodies, 10 µM PD98059, 1 µM 

LY294002 or the combination of both inhibitors for 0-32 h, as indicated. Expression of 

pERK, c-Myc, ERK and β-actin was assessed by SDS-PAGE gel electrophoresis 

followed by Western Blotting (15 µg protein/lane). Gel loading was as follows: Lane1 

media, Lane2 anti-IgM, Lane3 anti-CD40, Lane4 anti-IgM+anti-CD40, Lane5 PD98059, 

Lane6 LY294002, Lane7 PD98059+ LY294002. These data are representative of at 

least two independent experiments. 
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Figure 3.24 c-Myc expression level is regulated by ERK and PI3 kinase signalling 

pathways 

(A-D) WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) 

(A), 10 µM PD98059 (B), 1 µM LY294002 (C) or 10 µM PD98059 in combination with 1 

µM LY294002 (D) for 0-32 h, as indicated. Expression of c-Myc, pERK and ERK was 

assessed by SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg 

protein/lane). (E) To determine c-Myc expression in subcellular localisations WEHI-231 

cells (107 cells/well) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-CD40 or the 

combination of both for 4 h and nuclear and cytoplasmic fractions were prepared. Cells 

stimulated with medium were included as a control. Expression of c-Myc was assessed 

by SDS-PAGE gel electrophoresis followed by Western Blotting (25 µg protein/lane). 

Gel loading was as follows: Lane 1 0 h, Lane 2 media, Lane 3 anti-IgM, Lane 4 anti-

CD40, Lane 5 anti-IgM+anti-CD40. (F) WEHI-231 cells (106 cells/well) were stimulated 

with 1 µg/ml anti-IgM, 10 µg/ml anti-CD40, the combination of both, 10 µM PD98059, 1 

µM LY294002 or the combination of the two inhibitors for 12, 20 or 32 h. Untreated 

cells were included as a control. Cells (0.75 x 105 cells/stain) were cytocentrifuged onto 

glass slides, fixed, permeabilised and immunofluorescently stained for intracellular c-

Myc expression which was analysed by LSC using DAPI-stained nuclei to contour on 

single cells. (i) A representative image of CD40-stimulated cells is shown for the 

immunofluorescent staining. Data are presented as (ii)  percentage of c-Myc expressing 

cells or (iii)  fluorescence integral of the cells. This experiment is representative of at 

least two independent experiments. 
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Figure 3.25 c-Myc phosphorylation is regulated by E RK and PI3 kinase signalling 

pathways 

(A-D) WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) 

(A), 10 µM PD98059 (B), 1 µM LY294002 (C) or 10 µM PD98059 in combination with 1 

µM LY294002 (D) for 0-32 h, as indicated. Expression of phospho-c-MycT58/S62, 

pERK and ERK was assessed by SDS-PAGE gel electrophoresis followed by Western 

Blotting (15 µg protein/lane). (E) To determine phospho-c-MycT58/S62 expression in 

subcellular localisations WEHI-231 cells (107 cells/well) were stimulated with 1 µg/ml 

anti-IgM, 10 µg/ml anti-CD40 or the combination of both for 4 h and nuclear and 

cytoplasmic fractions were prepared. Cells stimulated with medium were included as a 

control. Expression of c-Myc was assessed by SDS-PAGE gel electrophoresis followed 

by Western Blotting (25 µg protein/lane). Gel loading was as follows: Lane 1 0 h, Lane 

2 media, Lane 3 anti-IgM, Lane 4 anti-CD40, Lane 5 anti-IgM+anti-CD40. (F) WEHI-

231 cells (106 cells/well) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-CD40, the 

combination of both, 10 µM PD98059, 1 µM LY294002 or the combination of the two 

inhibitors for 12, 20 or 32 h. Untreated cells were included as a control. Cells (0.75 x 

105 cells/stain) were cytocentrifuged onto glass slides, fixed, permeabilised and 

immunofluorescently stained for intracellular phospho-c-MycS62 expression which was 

analysed by LSC using DAPI-stained nuclei to contour on single cells. (i) A 

representative image of CD40-stimulated cells is shown for the immunofluorescent 

staining. Data are presented as (ii)  percentage of phospho-c-MycS62 expressing cells 

or (iii)  phospho-c-MycS62 fluorescence integral of the cells. This experiment is 

representative of at least two independent experiments. 
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Figure 3.26 Transcriptional regulation of c-Myc exp ression 

(A-B)  WEHI-231 cells (106 cells/ml) were stimulated with medium, 1 µg/ml anti-IgM, 10 

µg/ml anti-CD40 or the combination of both antibodies for 0-48 h, as indicated (i). 

WEHI-231 cells were stimulated with 1 µg/ml anti-IgM, 10 µM PD98059, 1 µM 

LY294002 or the combination of the two inhibitors for 0-32 h (ii) . Whole mRNA was 

isolated and transcribed into cDNA. c-Myc expression levels were detected by 

TaqMan® quantitative RT-PCR using HPRT as endogenous control. (A) Data are 

shown as mean % expression relative to HPRT +/- SD of triplicate values of a 

representative experiment. (B) Data shown are pooled from up to 4 experiments with 

individual time points representing the mean of c-Myc expression relative to HPRT +/- 

SD of triplicate values in each independent experiment. 

(C) WEHI-231 cells transfected with empty pcDNA3.1 vector, pcDNA3.1-RasV12, 

pcDNA3.1-RasV12C40 and pcDNA3.1-RasV12S35 (106 cells/ml) were stimulated with 

1 µg/ml anti-IgM or 10 µg/ml anti-CD40 and 1 µg/ml anti-IgM for 8 h. Cells stimulated in 

the presence of medium alone were included as a control. Whole mRNA was isolated 

and transcribed into cDNA. c-Myc expression levels were detected by TaqMan® 

quantitative RT-PCR using HPRT as endogenous control. Data are shown as mean % 

expression relative to HPRT +/- SD of triplicate values. 

(D) WEHI-231 cells or cells transfected with empty vector, pcDNA3.1-RasV12, 

pcDNA3.1-RasV12C40 and pcDNA3.1-RasV12S35 cells (0.5 x 107 cells/stimulation) 

were stimulated with 1 µg/ml anti-IgM or the combination of 1 µg/ml anti-IgM and 10 

µg/ml anti-CD40 for 24 h. Expression of c-Myc and total ERK was assessed by SDS-

PAGE gel electrophoresis followed by Western Blotting (35 µg protein/lane). Gel 

loading was as follows: Lane 1 media, Lane 2 anti-IgM, Lane 3 anti-IgM+anti-CD40. 
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Figure 3.27 c-Myc expression level correlates with progression through the cell 

cycle 

WEHI-231 cells (0.75 x 105 cells/stain) were analysed for expression of c-Myc or 

phospho-c-MycS62 and gates were set according to the intensity of the c-Myc or 

phospho-c-MycS62 signal. The cell cycle status of the population of cells of increasing 

expression of these markers was then assessed, identifying them as cells with 

subdiploid DNA content (apoptotic cells), cells in G1-G0 phase, G2-M phase, S phase 

or new daughter cells as previously described (section 2.10.1.2, Figure 2.9). (A) 

Representative histogram of CD40-stimulated cells (32 h) and cell cycle plots are 

shown. Data are presented as the percentage of cells in each cell cycle stage present 

in each region (fluorescence integral) of c-Myc (B) and phospho-c-MycS62 (C). 
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Figure 3.28 Growth arrest correlates with reduced c -Myc expression and 

stabilisation 

WEHI-231 cells (106 cells/well) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-

CD40, the combination of both, 10 µM PD98059, 1 µM LY294002 or the combination of 

the two inhibitors for 12, 20 or 32 h. Untreated cells were included as a control. Cells 

(0.75 x 105 cells/stain) were cytocentrifuged onto glass slides, fixed, permeabilised and 

immunofluorescently stained for intracellular c-Myc and phospho-c-MycS62 expression 

as well as DAPI. (A) Cells were analysed by LSC to determine their cell cycle stage: 

G1-G0, S, G2-M phase and mitotic phases (S phase, G2-M phase and new daughter 

cells combined), as previously described (Figure 3.9). The data are presented as the 

percentage of cells in each cell cycle stage at 12, 20 and 32 h. (B) Furthermore, the 

correlation between the fluorescence integral (expression level) of (i) c-Myc or (ii)  

phospho-c-MycS62 detected in each of the differently stimulated samples described 

above (32 h) (A) and the percentage of cells in each cell cycle stage in those samples 

was analysed. 
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Figure 3.29 Regulation of CTCF expression upon BCR stimulation 

WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) (A), 1 

µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of anti-IgM and anti-

CD40 (D) for 0-32 h, as indicated. Expression of CTCF and β-actin was assessed by 

SDS-PAGE gel electrophoresis followed by Western Blotting (45 µg protein/lane). This 

experiment is representative of at least two independent experiments. 

(E) WEHI-231 cells (106 cells/ml) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-

CD40 or the combination of both for 4-48 h, as indicated. Whole mRNA was isolated 

and transcribed into cDNA. CTCF expression levels were detected by TaqMan® 

quantitative RT-PCR using HPRT as endogenous control. Data are shown as mean % 

expression relative to HPRT +/- SD of triplicate values. 
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Figure 3.30 Regulation of phosphorylation of Rb and  p27 expression in WEHI-231 

B cells 

WEHI-231 cells (107 cells/stimulation) were stimulated with medium, 1 µg/ml anti-IgM, 

10 µg/ml anti-CD40, the combination of both antibodies, 10 µM PD98059, 1 µM 

LY294002 or the combination of the two inhibitors for 0-32 h, as indicated. Expression 

of pERK, phospho-RbS780, phospho-RbS807/811 and ERK was assessed by SDS-

PAGE gel electrophoresis followed by Western Blotting (15 µg protein/lane). Gel 

loading was as follows: Lane1 media, Lane2 anti-IgM, Lane3 anti-CD40, Lane4 anti-

IgM+anti-CD40, Lane5 PD98059, Lane6 LY294002, Lane7 PD98059+LY294002. This 

experiment is representative of at least two independent experiments. 
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Figure 3.31 p53 expression is regulated downstream of BCR-ligation 

(A) WEHI-231 cells (107 cells/well) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml 

anti-CD40 antibody or the combination of both for 24 and 48 h and whole cell lysates 

were prepared. Cells stimulated with medium were included as a control. Expression of 

p53 was assessed by SDS-PAGE gel electrophoresis followed by Western Blotting (20 

µg protein/lane). 

(B) WEHI-231 cells (106 cells/ml) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-

CD40 or the combination of both antibodies for 4-48 h, as indicated. Whole mRNA was 

isolated and transcribed into cDNA. p53 expression levels were detected by TaqMan® 

quantitative RT-PCR using HPRT as endogenous control. Data are shown as mean % 

expression relative to HPRT +/- SD of triplicate values. 
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Figure 3.32 Regulation of phospho-Rb Ser780 express ion in WEHI-231 cells 

(A-D) WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) 

(A), 1 µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of anti-IgM and 

anti-CD40 (D) for 0-32 h, as indicated. Expression of phospho-RbS780 and β-actin was 

assessed by SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg 

protein/lane). This experiment is representative of at least three independent 

experiments. 

(E) WEHI-231 (106 cells/ml) cells were stimulated with medium, 1 µg/ml anti-IgM, 10 

µg/ml anti-CD40 or the combination of both for 32 h. Untreated cells were 

cytocentrifuged, fixed, permeabilised and stained for phospho-RbS780 expression. (i) 

A representative picture of the immunofluorescent staining of unstimulated cells is 

shown. Data are presented as (ii)  percentage of cells expressing phospho-RbS780 or 

(ii)  fluorescence integral of phospho-RbS780 staining. 

(F) WEHI-231 cells (106 cells/ml) were stimulated as described above for 48 h. Cells 

were cytocentrifuged, fixed, permeabilised and stained for phospho-RbS780 

expression as well as nuclear DNA content by DAPI staining. As described in Figure 

3.27 cells were then gated according to the intensity of the phospho-RbS780 signal 

and their cell cycle status assessed, identifying them as cells with subdiploid DNA 

content (apoptotic cells), cells in G1-G0 phase, G2-M phase, S phase or new daughter 

cells as previously described (section 2.10.1.2, Figure 2.9). Data are presented as 

percentage of cells in each cell cycle stage present in each region (fluorescence 

integral). 
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Figure 3.33 Regulation of phospho-Rb Ser807/811 exp ression in WEHI-231 cells 

(A-D) WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) 

(A), 1 µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of anti-IgM and 

anti-CD40 (D) for 0-32 h, as indicated. Expression of phospho-RbS807/811 and β-actin 

was assessed by SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg 

protein/lane). This experiment is representative of at least three independent 

experiments. 

(E) WEHI-231 (106 cells/ml) cells were stimulated with medium, 1 µg/ml anti-IgM, 10 

µg/ml anti-CD40 or the combination of both for 32 h. Untreated cells were 

cytocentrifuged, fixed, permeabilised and stained for phospho-RbS807/811 expression. 

(i) A representative picture of the immunofluorescent staining of unstimulated cells is 

shown. Data are presented as (ii)  percentage of cells expressing phospho-RbS807/811 

or (ii)  fluorescence integral of phospho-RbS807/811 staining after deduction of the 

fluorescence integral of the isotype-stained sample. 

(F) WEHI-231 cells (106 cells/ml) were stimulated as described above for 48 h. Cells 

were cytocentrifuged, fixed, permeabilised and stained for phospho-pRbS807/811 

expression as well as nuclear DNA content by DAPI staining. As described in Figure 

3.27 cells were then gated according to the intensity of the phospho-RbS807/811 

signal and their cell cycle status assessed, identifying them as cells with subdiploid 

DNA content (apoptotic cells), cells in G1-G0 phase, G2-M phase, S phase or new 

daughter cells as previously described (section 2.10.1.2, Figure 2.9). Data are 

presented as percentage of cells in each cell cycle stage present in each region 

(fluorescence integral). 
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Figure 3.34 BCR signalling modulates the protein-ub iquitination pattern in WEHI-

231 cells 

(A-D) WEHI-231 cells (107 cells/stimulation) were stimulated with medium (untreated) 

(A), 1 µg/ml anti-IgM (B), 10 µg/ml anti-CD40 (C) or the combination of anti-IgM and 

anti-CD40 (D) for 0-32 h, as indicated. Expression of ubiquitin or β-actin was assessed 

by SDS-PAGE gel electrophoresis followed by Western Blotting (45 µg protein/lane). 

Data are representative of at least two independent experiments. 

(E) WEHI-231 cells (104 cells/well) were cultured in complete medium in the presence 

of 1 µg/ml anti-IgM antibody, 10 µg/ml anti-CD40 or the combination of both for 24 h. At 

0, 8 and 16 h, 0.5 µM MG132 or DMSO control (%v/v) was added. Cells were 

harvested 4 h after the addition of [3H] thymidine and the incorporated label analysed 

by liquid scintillation measurement. Data are represented as counts per minute (cpm) 

+/- SD of triplicate values. 

(F) WEHI-231 cells (0.5 x 106 cells/well) were cultured in complete media -/+ DMSO 

control (%v/v) (i) or 0.5 µM MG132 (ii)  for 24 h. Cells were harvested and stained with 

7-AAD which specifically labels dead cells and then analysed by FACS. Representative 

dot plots indicating % 7-AAD+ (dead) cells are shown. 
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Figure 3.35 Influence of proteasome inhibition on u biquitinated-protein 

expression 

WEHI-231 cells (107 cells/stimulation) were treated with medium, 1 µg/ml anti-IgM, 0.5 

µM MG132 or the combination of anti-IgM and MG132 for (A) 2, 4, 8 h and (B) 12, 16 

and 20 h, as indicated. MG132 (0.5 µM) was added to the cultures at 0, 8 and 16 h. 

Expression of ubiquitin, c-Myc, p27 or total ERK was assessed by SDS-PAGE gel 

electrophoresis followed by Western Blotting (35 µg protein/lane). Gel loading was as 

follows: Lane 1 media, Lane 2 media+MG132, Lane 3 anti-IgM, Lane 4 anti-

IgM+MG132. 
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Figure 3.36 Regulation of c-Myc and pERK by ubiquit ination and proteasomal 

degradation 

(A) WEHI-231 cells (107 cells/stimulation) were stimulated with medium, 1 µg/ml anti-

IgM, 10 µg/ml anti-CD40 or the combination of both antibodies for 24 h. One hour 

before harvesting, the cells were treated with 0.5 µM MG132 after which whole cell 

lysates were prepared. In order to pull-down ubiquitinated proteins 50 µg of each 

sample was treated with the Ubiqapture Q matrix (Biomol) as per the manufacturer’s 

instructions. Ubiquitin and c-Myc expression was analysed in the samples before (25 

µg protein/lane) and after ubiquitin-pull-down (25 µl/lane) by SDS-PAGE gel 

electrophoresis followed by Western Blotting. Gel loading was as follows: Lane1 media, 

Lane2 anti-IgM, Lane3 anti-CD40, Lane4 anti-IgM+anti-CD40. 

(B) WEHI-231 cells (107 cells/stimulation) were pre-treated with 0.5 µM MG132 or 

DMSO vector control for 1 h and then stimulated with medium, 1 µg/ml anti-IgM or 1 

µg/ml anti-IgM with 10 µg/ml anti-CD40 for 1, 2, 4 and 8 h and whole cell lysates were 

prepared. Expression of pERK or ERK was assessed by SDS-PAGE gel 

electrophoresis followed by Western Blotting (50 µg protein/lane). Gel loading was as 

follows: Lane 1 media, Lane 2 anti-IgM, Lane3 anti-IgM+anti-CD40. 
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Figure 3.37 Expression of Cbl-b is regulated by BCR  stimulation at both the 

protein and mRNA level 

(A) WEHI-231 cells (107 cells/stimulation) were pre-treated with 0.5 µM MG132 or 

DMSO vector control for 1 h and then stimulated with medium, 1 µg/ml anti-IgM or 1 

µg/ml anti-IgM and 10 µg/ml anti-CD40 for 8 h and whole cell lysates were prepared. 

Expression of Ubiquitin, Cbl-b or total ERK was assessed by SDS-PAGE gel 

electrophoresis followed by Western Blotting (50 µg protein/lane). 

(B) WEHI-231 cells (107 cells/stimulation) were treated with medium, 1 µg/ml anti-IgM, 

10 µg/ml anti-CD40 or the combination of both antibodies for 12 or 48 h. Expression of 

Cbl-b or ERK was assessed by SDS-PAGE gel electrophoresis followed by Western 

Blotting (90 µg protein/lane). 

(C) WEHI-231 cells (106 cells/ml) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-

CD40 or the combination of both for 0-48 h, as indicated. Whole mRNA was isolated 

and transcribed into cDNA. Cbl-b expression levels were detected by TaqMan® 

quantitative RT-PCR using HPRT as endogenous control. Data are shown as mean % 

expression relative to HPRT +/- SD of triplicate values. This experiment is 

representative of at least two independent experiments. 
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Figure 3.38 c-Cbl, Itch and Grail expression is inf luenced by BCR-ligation 

(A) WEHI-231 cells (106 cells/ml) were stimulated with 1 µg/ml anti-IgM, 10 µg/ml anti-

CD40 or the combination of both antibodies for 0-48 h, as indicated before mRNA was 

isolated and transcribed into cDNA. c-Cbl expression levels were detected by 

TaqMan® quantitative RT-PCR using HPRT as endogenous control. Data are shown 

as mean % expression relative to HPRT +/- SD of triplicate values. This experiment is 

representative of at least two independent experiments. 

(B) WEHI-231 cells (107 cells/stimulation) were treated with medium, 1 µg/ml anti-IgM, 

10 µg/ml anti-CD40 or the combination of the two for 48 h. Expression of c-Cbl, Itch, 

Grail or total ERK was assessed by SDS-PAGE gel electrophoresis followed by 

Western Blotting (90 µg protein/lane). 
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4 Signalling mechanisms underlying Fc γRIIb mediated growth 

arrest and apoptosis 

 

4.1 Introduction 

 

4.1.1 Autoimmune disease  

Autoimmunity is the result of inappropriate responses of the immune system to self-

antigens and is therefore characterised by tissue damage caused by aberrant hyper-

inflammatory processes. Over the last few decades the incidence of autoimmune diseases 

has risen dramatically, especially in the western/industrialised world and it is estimated 

that 4-5% of the human population suffer from some form of autoimmune disease. For 

example, in the United states about 90 people out of 100 000 per year will develop an 

autoimmune disease such as Grave’s disease, rheumatoid arthritis, diabetes or uveitis 

[534]. 

Responses elicited against self-antigens can lead to damage of host tissue by a 

variety of mechanisms. For example, autoreactive B cells produce antibodies against 

molecules expressed by the host, which can be directly harmful by binding to surface 

proteins and interfering with their normal function as in Myasthenia gravis [535]. Similarly, 

in Grave’s disease, the binding of the antibody to its antigen, the thyroid stimulating 

hormone receptor, leads to activation of the receptor cascade and consequent 

overproduction of the hormone [536]. Alternatively, if the autoantibody is specific for a 

surface antigen on circulating cells this may lead to the opsonisation of these cells 

followed by phagocytosis and initiation of Fc receptor-mediated macrophage activation, as 

seen in autoimmune thrombocytopenia purpura [537]. Another effector function of 

autoreactive antibodies can be the formation of immune complexes that, as seen in 

Systemic lupus erythematosus [538], can be deposited in small blood vessels in the kidney 

or in joints where they initiate complement activation and production of inflammatory 

mediators, leading to localised inflammation and aggravation of antigen release with 

consequent further production of immune complexes. However, B cells are not the only 

potentially harmful cells. For example, diseases like insulin-dependent diabetes mellitus 

are initiated by autoreactive T cells which mount responses against pancreatic β-cell 

antigen leading to the destruction of β-cells. 

Genetic susceptibility is also a major contributor to the development of autoimmune 

diseases: indeed, it has been estimated that in rheumatoid arthritis about 60% of the 

susceptibility is caused by genetic factors [539]. For example, some HLA-alleles are very 



 

 189 

strongly associated with the disease indicating that presentation of specific peptides that 

bind well to these HLA alleles plays a role in the disease development. Furthermore, 

various other genes encoding proteins with important regulatory functions in the immune 

system like PD-1, FcγRIIb, CD22, SHIP and CTLA-4 (reviewed in [540]) have been 

implicated in the development of different autoimmune diseases. Nevertheless, the 

multigenic nature of many of the common autoimmune diseases makes the identification 

of susceptibility genes very difficult because of the low penetrance and the very complex 

interaction of the various susceptibility loci with each other. Beside genetic susceptibility, 

environmental factors and their influence should not be underestimated as infections are 

known to aggravate autoimmune diseases, and habits like smoking have been linked to 

susceptibility to autoimmune diseases such as RA [541]. 

 

4.1.1.1 Rheumatoid arthritis (RA) 

RA is a systemic, inflammatory autoimmune disease which mainly affects the joints 

leading to cartilage breakdown and bone destruction. Some patients also develop extra-

articular manifestations such as vasculitis, pericarditis or glomerulonephritis which 

contribute to the increased risk of premature mortality in RA patients. The disease is 

defined as a symmetric polyarticular arthritis caused by chronic inflammation of the 

synovium. The inflammatory cell mass develops into the so-called pannus which invades 

articular structures leading to their destruction. RA primarily affects the small diarthrodial 

joints of the hands and feet. It occurs in about 0.5-1% of the population with the mean 

onset of the disease in the 5th decade of life. As in SLE, there is a higher prevalence in 

women which suggests the involvement of hormones in the disease pathogenesis. 

Moreover, twin and family studies suggest a 60% genetic susceptibility for RA. Candidate 

genes shown in some studies to be linked to RA include HLA-DRB1, one of the genes 

encoding MHC II, PTPN22 which encodes Lyp, a negative regulator of T cell activity and 

CTLA-4, a negative costimulatory surface receptor on T cells [540]. However, as RA is 

thought to be a multigenic disease caused by the contribution of multiple low-penetrance 

susceptibility loci it will need much larger studies to prove any further linkages [540]. 

At the cellular level, the inflammation of the joint leads to massive infiltration of 

inflammatory cells such as T cells, B cells and macrophages. These cells can form 

organised structures which resemble germinal centres. In addition, hyperplasia of the 

synovial membrane is caused by increased proliferation of macrophage- and fibroblast-like 

synoviocytes, but the invading cells are not the only cause of destruction in the joint. 

Indeed, inflammation induces resident cells to produce degradative enzymes like 
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metalloproteinases, serine proteases and aggrecanases, all of which are able to digest 

extracellular matrix and thereby destroy joint structures (reviewed in [542]). 

Production of autoantibodies is a major feature of RA with rheumatoid factor (RF – 

antibodies specific for the Fc portion of IgG) and ACPA (anti-citrunillated protein 

antibodies) representing the best studied specificities [543]. The exact role of these 

antibodies in pathogenesis of RA is still not fully elucidated yet but they can be detected in 

patients before disease onset [544] and it is therefore hypothesised that they might play a 

role in disease initiation. These antibodies are also detected in the synovium, the site of 

inflammation in RA, where they can form immune complexes with their antigens further 

enhancing inflammatory responses [545]. The efficacy of B-cell depleting therapies in RA 

has further confirmed the importance of B cells in RA pathogenesis [546]. 

 

4.1.1.2 Systemic lupus erythematosus (SLE) 

Systemic lupus erythematosus is a systemic autoimmune disease characterised by 

the production of autoantibodies against various antigens such as double stranded (ds)-

DNA, single stranded (ss)-DNA, snRNPs (small nuclear ribonucleoproteins), cardiolipin 

and phospholipids. The pathology of this disease varies widely between patients ranging 

from skin rash and joint pain to severe glomerulonephritis. There is a very high prevalence 

of the disease in women of childbearing age, the ratio of female to male patients being 8:1 

at this age. After the menopause this ratio drops to 2:1 implicating a role for hormones in 

disease development, which is underlined by mouse studies showing that treatment with 

estrogen increases the number of autoreactive B cells escaping deletion [547]. SLE affects 

less people than other inflammatory autoimmune diseases such as RA, occurring only in 

0.2% of the population (reviewed in [548]). 

SLE patients produce very high levels of anti-nuclear antigen (ANA) autoantibodies 

and such antibody-producing B cells from some patients have been shown to be clonally 

expanded and to express somatically hypermutated and class-switched self-reactive 

antibodies, all signs of an antigen specific response. Furthermore peripheral B cells from 

SLE patients have been shown to be hyperactive with upregulated expression of 

costimulatory molecules such as CD154 and CD86 and increased activation of MAPKs 

[538,549,550]. The pathological role of such autoantibodies has not been definitively 

demonstrated but there is evidence that they contribute to tissue damage seen in SLE 

patients. Thus, self-reactive antibodies are able to form immune complexes with their 

antigen in the circulation and are deposited in organs like the kidney, the joints or 

vasculature. Deposition can lead to complement activation and hence induction of 

inflammatory processes accompanied by infiltration of inflammatory cells. In the absence 
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of regulation this inflammation produces a hyperresponse, initiating tissue destruction 

[538]. Moreover, the importance of B cells in disease progression has been underpinned 

recently by the efficacy of a B cell-depleting antibody, Rituximab, in the treatment of SLE 

[551]. 

 

4.1.2 Effector functions of B cells in autoimmunity  

In the last few years it has become apparent that autoantibody production is not the 

only mechanism by which B cells can take part in harmful reactions against self. Thus, 

follicular B cells can also function as secondary APCs being very efficient at binding, 

internalising and processing antigen. That this APC capacity of B cells can play a major 

role in the development and maintenance of inflammation in autoimmune diseases has 

been illustrated by several findings. For example, a study by Takemura and colleagues 

[552] showed that the survival of human CD4+ T cell clones from RA patients in SCID mice 

depended on the presence of CD20-positive B cells. Further support came from another 

model system in which mice that do not secrete antibody (mIgM-mice) were used to 

examine the role of B cells in a proteoglycan (PG) induced arthritis (PGIA) model and 

where it was found that B cell-deficient and mIgM-mice were both resistant to the 

development of arthritis [77]. This study showed that serum transfer of autoantibodies led 

to the development of transient, mild arthritis proving that antibodies do indeed play a 

pathogenic role in the PGIA model. However, T cells from mIgM-mice were not able to 

induce severe arthritis upon transfer into a healthy host indicating that these T cells are not 

properly primed as antigen-specific B cells were needed to prime T cells adequately to 

allow them to induce severe arthritis in the host animals. By contrast, the combination of 

transferring adequately primed T cells and pathogenic serum induced severe arthritis 

underlining the importance for T and B cell interactions in the pathology of such 

autoimmunity [77].  

B cells might also contribute to autoimmune disease pathogenesis by the production 

of cytokines like IL-12 or IL-6 [553,554]. For example, the latter has been shown to play a 

role in diseases such as RA and juvenile idiopathic arthritis and indeed, anti-IL-6 treatment 

seems to be a promising treatment option in RA and other autoimmune diseases [555]. 

However, B cells do not only contribute to the aggravation of disease. The discovery of 

regulatory B cells has shown that these IL-10 producing cells can ameliorate autoimmune 

pathogenesis in disease models for Multiple sclerosis, inflammatory bowel disease, SLE 

as well as RA [82] (see section 1.4).  

B-1 cells produce polyreactive antibodies including low-affinity self-reactive 

specificities, such as those found in increased numbers in some human diseases such as 
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Sjogren’s syndrome. Moreover, there is some evidence that B-1 cells are able to produce 

high affinity antibodies against self-antigens [556] and such B-1 cells are found in 

increased numbers in the autoimmune strain NZB which develops lupus like disease [557] 

and they were found to produce autoantibodies in MRL/MpJ-Faslpr mice, another 

autoimmune-prone strain [558]. 

Some studies indicate that MZ B cells might play a pathogenic role in some 

autoimmune diseases where, for example in Grave’s disease, cells with a MZ B cell 

phenotype have been found in infiltrates at the site of inflammation [559]. Additionally, MZ 

B cells have been found in increased number in lupus-prone autoimmune mice and these 

cells were shown to contribute to the production of anti-DNA antibodies [560,561]. 

Likewise, MZ B cells are similar to B-1 cells in that they are generally polyreactive with a 

restricted antibody diversity. MZ B cells mostly do not re-circulate and are found in the MZ 

of the spleen where, due to their location, they are able to react quickly to blood borne 

pathogens. After antigen-exposure, they rapidly migrate to lymphoid follicles and in this 

way are able to efficiently deliver systemic antigen to follicular dendritic cells [562]. 

Although in mice MZ B cells mainly take part in T-independent responses, in humans MZ 

B cells constitute a heterogenous population including cells with a memory phenotype 

displaying mutated VH genes [563]. The production of autoantibodies may not be the only 

contribution of MZ B cells to the development of autoimmune disease. For example, MZ B 

cells are efficient APCs and can promote T cell activation, proliferation and cytokine 

production [564]. They could therefore also take part in the presentation of auto-antigen to 

T cells leading to their activation, thereby further enhancing the autoimmune response. It is 

not clear why high-affinity self-reactive B-1 and MZ B cells are produced and how 

tolerance is broken but it has been speculated that polyreactive/self-reactive B cells are 

generally recruited into the MZ and maybe also B-1 B cell compartment as means of 

keeping those B cells from any further diversification in order to prevent development of 

high-affinity self-reactivity [565]. A defect in the negative selection process that usually 

eliminates self-reactive clones could therefore lead to an increase in autoreactive cells 

which would be selected into the B-1 and MZ B cell compartment.  

 

4.1.3 B cell tolerance and its role in autoimmunity  

The immune system has to generate an extremely diverse repertoire of antigen-

specific B and T cells to be able to combat all the pathogens a human being might 

encounter during a lifetime. The drawback to this diversity is the potential to produce 

reactivities against host components. Thus both T cells and B cells are negatively selected 

during their development by mechanisms which ensure that the vast majority of 
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autoreactive cells never reach the periphery (central tolerance). In addition, the immune 

system has developed homeostatic controls to ensure that immune responses are 

terminated after the clearance of pathogens as dysregulated responses lead to expanded 

pools of antigen-specific B lymphocytes which can persist in the periphery. Due to the 

relatively high frequency of such B cells recognising self-antigen with low-affinity this would 

increase the number of self-reactive B cells and therefore the chance for chronic activation 

of these clones. This is potentially a very dangerous situation and therefore normally 

regulated by a cascade of checkpoints ensuring not only that autoreactive cells are 

inactivated and/or deleted but also that there is homeostatic regulation of cells that 

recognise foreign antigen. 

 

4.1.3.1 Defects in B cell tolerance observed in aut oimmune 

disease 

It has been postulated that in healthy humans, pathogenic autoreactive B cells are 

either absent or kept in an inactive state by central and/or peripheral tolerance 

checkpoints. Numerous studies in mice and humans have therefore tried to identify these 

checkpoints and potential defects affecting these checkpoints in individuals with 

autoimmune diseases. As stated in section 1.3, the major central tolerance checkpoint 

during B cell development is at the level of immature B cells (Fig 1.8) as in healthy humans 

this checkpoint reduces the initial percentage of self-reactive clones from 75 to 40% [71]. 

Using CD10 as a marker to distinguish between B cells newly emigrated from the bone 

marrow (CD19+IgM+CD10+CD27-) and mature naïve B cells (CD19+IgM+CD10-  CD27-), 

Yurasov et al [566] identified another checkpoint, which in healthy individuals removes 

some further 50% of the autoreactive B cells that have managed to escape central 

tolerance (Fig 1.8). Interestingly, this checkpoint seems to be non-functional in a subgroup 

of SLE patients and some patients with RA [566,567].  

A later checkpoint has recently been identified that normally appears to act at the 

mature naïve B cell stage: thus, in healthy humans such autoreactive B cells which make 

up about 20% of the naïve population are not selected into the IgM+ memory compartment 

[568] (Fig 1.8). To date, there have not been any follow-up studies determining whether 

this checkpoint is defective in patients with autoimmune disease. In addition to being 

excluded from the IgM+ memory cell pool, such autoreactive mature naïve B cells might 

also be prevented from entering the GC reaction as it was shown that potentially 

autoreactive human B cells such as those specific for dsDNA and CD45 (9G4 B cells), 

which are present in normal healthy individuals, are excluded from the GC reaction [75] 

(Fig 1.8). Consequentially, these cells mainly display a naïve phenotype and do not take 
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part in the development of memory cells and IgG-production. However, the block of these 

self-reactive cells from IgG+-memory cell development seems to be defective in some SLE 

patients as indicated by their higher prevalence (10-25 fold) of 9G4 IgG memory cells [75]. 

This defect in exclusion of 9G4 B cells does not seem to be a general mechanism involved 

in autoimmune diseases as patients with RA did not display an increased frequency of 

these cells in their IgG-memory compartment [75]. Moreover, this study only showed GC 

exclusion of one specific B cell clone and thus, it cannot be concluded that this mechanism 

applies to all autoreactive clones. It is therefore interesting that a recent study by Tiller and 

colleagues [569] has found that a higher percentage of IgG+-memory B cells from healthy 

individuals express autoreactive BCRs compared to mature naïve B cells. The authors 

argue that the self-reactivity seen in those cells might be a by-product of affinity maturation 

and selection during the GC reaction leading to the enrichment of these clones [569]. It 

remains to be determined why these autoreactive memory cells do not induce disease in 

healthy individuals and it is therefore of interest to identify the mechanisms preventing 

these cells from being activated. 

Finally, there are some animal studies which indicate that there may be an additional 

final checkpoint ensuring that autoreactive B cells do not produce pathogenic antibodies. 

One such model system uses mice expressing an anti-Sm (ribonucleoprotein) transgenic 

BCR to investigate the activity of these self-reactive B cells in the context of autoimmune 

and non-autoimmune prone backgrounds. For example, in normal mice, these 

autoreactive B cells were found to be unable to proceed past the pre-plasma cell stage to 

the plasma cell stage. By contrast, autoimmune prone mice exhibited a higher percentage 

of anti-Sm-producing B cells indicating deregulation of a checkpoint governing 

development of plasma cells [570] (Fig 1.8). The molecular mechanisms preventing such 

cells from further development in non-autoimmune prone mice are not known, but could 

involve repression of these cells by other cells such as DCs or regulatory T cells or indeed 

B cell intrinsic mechanisms such as anergy resulting from constant antigen exposure 

[570]. It has indeed been shown that TLR-4-activated myeloid DCs and macrophages can 

regulate B cell activation through the production of IL-6. Whereas IL-6 supports plasma 

cell differentiation in cells acutely exposed to antigen, it does not appear to be able to 

stimulate self-reactive cells which have been chronically exposed to antigen but rather acts 

to suppress antibody secretion by such self-reactive cells. These findings highlight that B 

cell tolerance is not solely a cell intrinsic process and hence emphasises the importance of 

other cells of the immune system in the regulation of self-reactive B cells. 

Recent evidence has suggested that negative selection at these multiple maturation 

checkpoints is not the only mechanism controlling activation of self-reactive B cells, 
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however. For example, competition for survival factors as well as space in specific 

environmental niches might also influence the balance between healthy and autoreactive 

B cell survival. Thus, for example, in normal mice whilst high-affinity autoreactive B cells 

are arrested at the immature developmental stage and are also excluded from the B cell 

follicles in the spleen, lower-affinity autoreactive B cells of the same specificity are allowed 

to enter follicles. By contrast, in the absence of tolerant or low-affinity self-reactive B cells, 

high affinity self-reactive B cells could be detected in the follicles indicating that the 

exclusion of high affinity autoreactive B cells might be due to competition [571].  

Probably the most important survival factor B cells compete for in the periphery is 

BAFF (B cell activating factor) which signals through the BAFF-receptor (BAFF-R). The 

need for BAFF-R signalling for survival first occurs at the transitional stage where it 

coincides with upregulation of expression of the BAFF-R [572]. The importance of BAFF 

was first shown using BAFF-R-deficient B cells which proliferated less and displayed 

impaired survival compared to wild-type B cells [33] and was further emphasised by the 

fact that BAFF-R-deficient B cells displayed a reduced lifespan which could be increased 

by administration of BAFF [573]. The survival-enhancing effect of BAFF signaling is 

achieved, at least in part, by the upregulation of anti-apoptotic Bcl-2 family members A1 

and Bcl-xL
.[573]. Thus, the reduced ability of high-affinity self-reactive cells to compete with 

low-affinity self reactive or non-self reactive cells might in part be due to an increased 

dependency on BAFF, as murine studies showed that elevated serum levels of BAFF were 

able to rescue autoreactive B cells which would normally be negatively selected at the 

transitional B cell stage [574]. It has been proposed that the higher dependency on BAFF 

of autoreactive B cells might reflect negative signalling via the BCR by self-antigen 

resulting in an increased threshold for positive signalling resulting from BAFF/BAFF-R 

interactions. This mechanism might have some relevance for human autoimmune 

diseases as certain SLE and RA patients have been found to express significantly 

elevated serum levels of BAFF [575] which might have resulted in an increased survival 

rate of self-reactive B cell clones in these patients.  

 

4.1.4 Role of Fc γRIIb in autoimmune disease 

FcγRIIb is a low affinity receptor for the Fc portion of IgG (section 1.5.5.3). Cross-

linking of BCR and FcγRIIb by immune complexes inhibits BCR-mediated activation and 

proliferation of B cells and thus provides an important homeostatic mechanism for 

terminating ongoing B cell responses [576]. Many studies have examined the implications 

of genetic modulation of FcγRIIb expression on immune responses and the development 

of autoimmune and/or inflammatory diseases. For example, depending on their different 
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genetic backgrounds, FcγRIIb-deficient mice were found to show an increased 

inflammatory response in immune complex alveolitis (Balb/C) [577], enhanced IgE-

mediated anaphylactic responses (C57BL/6) [578] or increased susceptibility for induction 

of collagen-induced arthritis (CIA) (C57BL/6/129/SvJ hybrid) [579]. Other studies, using 

FcγRIIb-/- knockout mice on the C57BL/6 background showed that such mice develop 

spontaneous lupus-like disease with premature mortality [580]. By contrast, studies 

overexpressing FcγRIIb specifically on B cells showed that such mice displayed reduced 

antibody production in T-dependent immune responses as well as milder disease in the 

CIA model and lower levels of disease incidence in the MRL/MpJ-Faslpr model of SLE 

[581]. The mechanisms involved are not clear but it is likely that the lack of this receptor on 

B cells is the cause of the increased susceptibility for autoimmunity seen in these mice. 

Consistent with this, retroviral transfection of FcγRIIb-/- bone marrow cells with FcγRIIb and 

the transfer of these cells into an irradiated host can restore the normal phenotype with 

lower levels of autoantibodies, reduced immune complex deposition and inflammation in 

autoimmune prone strains [582].  

More recent studies have tried to further elucidate the mechanisms that lead to 

lupus-like disease in such FcγRIIb knockout mice. Two independent studies found that 

deficiency in this receptor increases the levels of circulating RF [583] and anti-DNA 

autoantibodies [584] and that the number of anti-DNA specific plasma cells, which mostly 

expressed IgG antibodies, was increased [584]. Thus, expression of FcγRIIb might also 

play a role in controlling the expansion and activation of high affinity self-reactive B cells. 

Consistent with this, FcγRIIb-deficient mice, expressing a transgene-encoded heavy chain 

rendering their B cells specific for DNA, displayed an altered B cell repertoire comprising 

expansion and activation of high affinity anti-DNA B cell clones compared to that of 

FcγRIIb-expressing mice [585]. Moreover, it has also been proposed that FcγRIIb plays a 

role in the GC reaction by regulating the development of antibody-forming cells versus 

memory cells. Consistent with this, it was found that levels of FcγRIIb on GC B cells are 

increased compared with those on non-GC cells in wild-type mice and that this up-

regulation is missing in autoimmune mice [586]. The disturbance of any, or a combination, 

of these functions could therefore influence the development and maintenance of 

autoimmune diseases.  

There have not been many studies investigating the role of FcγRIIb in human 

autoimmune disease to date. However, Enyedy et al [587] have examined the FcγRIIb-

associated inhibition of BCR signalling in B cells from SLE patients and found that they 

showed an increased intracytoplasmic calcium flux upon BCR stimulation relative to 

healthy volunteers. To investigate if this hyperreactivity was due to reduced FcγRIIb 
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signalling or expression, the effect of cross-linking BCR and FcγRIIb on B cells from SLE 

patients was tested. The inhibitory effect of FcγRIIb signalling on calcium flux upon BCR 

stimulation was reduced in SLE B cells, whilst the expression levels of FcγRIIb on the 

surface of these cells were found to be the same as on normal B cells indicating a defect 

in the signalling mechanisms. However, more recent studies, using newly developed 

FcγRIIb-specific antibodies, have looked in more detail at the expression of FcγRIIb by 

SLE patients [588] and have identified some major differences in B cell subsets. Thus, 

comparison between healthy controls and SLE patients showed that the upregulation of 

FcγRIIb expression on memory B cells and plasmablasts from peripheral blood was 

decreased in autoimmune patients leading to increased calcium signalling upon BCR-

ligation. Interestingly, significantly more Afro-American patients showed this defect than 

patients of Caucasian background indicating involvement of a genetic component [588]. A 

reduction of FcγRIIb expression on memory and plasma cells could therefore be one of the 

mechanisms leading to hyperactive B cell responses and increased autoantibody 

production in patients with autoimmune diseases such as SLE. Interestingly, a 

polymorphism of FcγRIIb which changes the isoleucine at position 232 to a threonine was 

found to be associated with SLE in some racial groups such as Japanese patient cohorts 

[589]. This amino acid is in the transmembrane domain of FcγRIIb and the polymorphism 

reduces the signalling capability of FcγRIIb due to its exclusion from lipid rafts [590]. Taken 

together these studies therefore provide another link between reduced FcγRIIb signalling 

and an increased risk of developing SLE. 

 

4.1.5 The role of toll-like receptor (TLR) signalli ng in B cells 

It has become increasingly apparent that TLR signalling might not only play 

important roles in the innate immune system but also in regulating adaptive immune 

responses, including those of B cells. For example, recent data highlight the possibility that 

TLRs might act as a third signal for B cells to optimise their activation, isotype switching 

and terminal differentiation. Thus, proliferation of naïve human B cells was found to be 

prolonged after BCR stimulation in the context of T cell help, only in the presence of TLR 

ligands [37]. The possibility of self-reactive B cells with certain specificities such as anti-

DNA or anti-RNA being activated by their antigen not only through the BCR but also via 

TLRs has led to the hypothesis that TLR signalling might contribute to the unwanted 

activation of autoreactive B cell clones. This is a realistic scenario especially in 

autoimmune diseases like SLE, which is characterised by the production of antibodies 

against potential TLR ligands, such as DNA. In addition to endogenous TLR ligands 

provided by the host itself, pathogens like bacteria or viruses might also induce activation 
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of such self-reactive B cells by providing costimulation via TLRs. This idea is supported by 

a chronic infection model in which Soulas and colleagues [591] used a transgenic RF 

(rheumatoid factor – antibodies specific for host IgG) - producing mouse model to examine 

the effect of chronic Borrelia burgdorferi infection on autoantibody production. They found 

that immune complexes of RF and Borrelia burgdorferi simultaneously stimulated the BCR 

(by the auto-antigen IgG) and TLR (B. burgdorferi antigen most likely through TLR1/2 by 

Pam3Cys-modified lipoproteins) and hence synergistically increased antibody production. 

The hypothesis that TLRs play a role in the activation of autoreactive B cell clones 

was further strengthened by findings in MRL/MpJ-Faslpr mice, a strain prone to 

spontaneously developing lupus-like disease. Unlike their TLR9-expressing littermates, 

TLR9-deficient MRL/MpJ-Faslpr mice do not produce anti-DNA or anti-chromatin 

antibodies. Interestingly however, Sm, cardiolipin and phospholipid autoantibody 

responses were not influenced by TLR9 deficiency and the mice were not protected 

against disease development, indicating that the ability of TLRs to play a role in the 

induction of specific autoantibodies may depend on the nature of the antigen (TLR ligand 

or not) [592]. Similarly, another study found that FcγRIIb-deficient mice which normally 

develop lupus-like disease were protected if they did not express TLR9 and these mice 

also did not produce any anti-DNA antibodies [593]. This latter study also showed that 

MyD88/TLR9 is necessary to develop pathogenic IgG2a and IgG2b autoreactive 

antibodies by inducing T-bet expression in B cells. Indeed, lack of TLR9 prevented the 

class switch to IgG2a/b specifically in anti-DNA B cells but not in other B cell clones. Thus, 

TLR 9 signalling in combination with BCR-ligation can induce class-switching to IgG2a and 

IgG2b, but it is not necessary for class-switching per se [593].  

Interestingly, in normal healthy individuals TLR engagement does not lead to the 

activation of autoreactive B cells and initiation of autoimmune disease, suggesting that 

there are normally potent mechanisms preventing stimulation of self-reactive B cells during 

an infection. Indeed, a mouse model widely used to study B cell anergy, the HEL/anti-HEL 

BCR double transgenic system has proved useful in the elucidation of the mechanisms 

that act to keep autoreactive B cells anergic even in the presence of TLR stimuli. For 

example, in the presence of the auto-antigen HEL, CpG (TLR9) stimulation of HEL-

reactive B cells was not able to induce proliferation or plasma cell differentiation. 

Moreover, signalling by this self-antigen uncoupled the BCR from downstream calcineurin-

dependent pathways thereby reducing proliferation, but led to constitutively elevated ERK 

activation which inhibited plasma cell differentiation [594]. These signals were reversible 

and removal of the self-antigen allowed stimulatory signalling through TLR9 [594]. These 

data therefore fit well with a recent report by Gauld et al [595] showing that constitutive 
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signalling is required to keep B cells in an anergic state. Here they used the Ars/A1 model 

for anergy, taking advantage of the fact that whilst B cells of these mice express an 

antibody specific for a self-antigen thought to be ssDNA, they also bind the hapten 

arsonate with slightly higher affinity than the self-antigen. Addition of excess hapten 

therefore displaces the bound self-antigen and terminates signalling due to the monovalent 

nature of the hapten which is not able to cross-link the BCR. Consistent with the findings in 

the HEL/anti-HEL model, anergic Ars/A1 B cells show reduced life-span, slightly increased 

basal levels of calcium, ERK and MAPK phosphorylation and activation marker 

expression. The increased life span of B cells resulting from the removal of auto-antigen 

from the BCR by hapten application correlated with a reduction of basal calcium levels and 

ERK phosphorylation back to normal levels and the capacity of these cells to upregulate 

CD86 and mobilise calcium upon stimulation with anti-IgM [595]. Collectively, these data 

indicate that constant antigen binding and signalling maintains B cells in an anergic state 

and thus, in normal individuals, B cell anergy induced by self-reactivity is not overcome by 

synergistic TLR signalling. In mice with autoimmune-prone background, or patients with 

autoimmune disease, this negative control mechanism might be defective allowing TLR 

signals to enhance activation and differentiation of self-reactive B cells and production of 

autoantibodies. 

 

4.2 Aims 

 

It is well established that co-ligation of the BCR and FcγRIIb results in inhibition of B 

cell growth and apoptosis with a consequent reduction in antibody production [209,596]. 

Recent studies using FcγRIIb-knockout mice have shown that this inhibitory receptor might 

play a role in suppressing the development of some autoimmune diseases like SLE, as 

deficiency can lead to the development of lupus-like disease [580]. However, the 

mechanisms underlying growth arrest and apoptosis downstream of BCR/FcγRIIb co-

ligation have not yet been fully elucidated. 

 

The specific aims of this chapter are therefore to: 

• Characterise the key signals involved in growth arrest and apoptosis of B 

cells resulting from the cross-linking of BCR/FcγRIIb. 

• Determine if FcγRIIb-mediated negative feedback inhibition is defective in 

MRL/MpJ-Faslpr mice. 
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• Characterise if similar signalling occurs in human B cells from healthy 

individuals and is defective in RA/SLE patients. 
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4.3 Results 

 

4.3.1 Ligation of the BCR on mature B cells mediate s survival and 

proliferation, whereas co-ligation with Fc γRIIb induces growth 

arrest and apoptosis 

The effects of BCR/FcγRIIb co-ligation were investigated in purified mature splenic B 

cells by using different forms of anti-Ig antibodies to mimic stimulation by free antigen 

and/or immune complexes. Thus, as a control, cells were cultured in media alone 

(designated None  in the figures) and stimulation with F(ab’)2 fragments of anti-IgM was 

used to cross-link the BCR and induce mitogenic signals (designated BCR in the figures). 

By contrast, as stimulation with intact anti-IgM/IgG results in the generation of negative 

signals induced by co-ligation of the BCR and FcγRIIb [209], these antibodies were used 

in combination with F(ab’)2 fragments of anti-IgM to mimic the inhibition of antigen-driven 

mitogenic signals by immune complexes resulting in growth arrest and apoptosis [209] 

(designated BCR+FcγRIIb in the figures) (Fig.4.1). It should be noted that it is widely 

established that primary mature B cells cultured with media alone are prone to die in 

culture and hence results acquired with unstimulated cells reflect the spontaneous growth 

arrest and death of cells lacking survival signals in this time period. By contrast, cells 

provided with survival signals such as IL-4 survive but do not undergo proliferation [309]. 

Thus, as expected, the spontaneous levels of DNA synthesis of mature splenic B 

cells after 48 hours are very low if cells are left untreated (Fig.4.2A). By contrast, cross-

linking the BCR induces mitogenic signalling as shown by the addition of F(ab’)2 fragments 

of anti-IgM therefore inducing substantial DNA synthesis (Fig.4.2A). These data are 

corroborated by cell cycle stage analysis (PI staining of DNA content) which demonstrated 

that the vast majority of the untreated cells were arrested in the G1 phase of cell cycle and 

only a very low number of cells were in the mitogenic phases of the cell cycle (S and G2/M 

phase) (Fig.4.2B-C). By contrast, ligation of the BCR reduced the percentage of cells 

arrested at the G1 stage and additionally promoted progress of cells into the S and G2/M 

phases of the cell cycle indicating proliferation of these cells (Fig.4.2B-C). 

Cross-linking the FcγRIIb and BCR on the other hand is known to induce growth 

arrest and apoptosis in B cells [597]. Thus, as expected, co-ligation of FcγRIIb and BCR 

on purified splenic B cells reduced the levels of BCR-driven DNA synthesis compared to 

cells stimulated through their BCR alone (Fig.4.2A). This reduced proliferation is due to 

both growth arrest and apoptosis as there is a strong increase in the percentage of 

subdiploid cells in comparison to BCR-stimulated cells (Fig.4.2C). Additionally, BCR-

mediated progression through the cell cycle was also inhibited by FcγRIIb co-ligation 
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shown by a reduction of cells in S and G2/M phase at 48 hours and indeed, analysis of the 

live cell gate revealed that there are proportionally more of this population in G0/G1 phase 

(Fig.4.2C-ii). Dissipation of the MMP is an early hallmark of apoptosis and consistent with 

this, ligation of the BCR protects the integrity of the mitochondria as shown by the strong 

DiOC6 staining intensity (MMP-sensing dye) which directly correlates with higher and 

therefore more stable MMP compared to untreated cells at 48 h (Fig. 4.2D). Nevertheless, 

a proportion of these cells displayed lower MMP correlating with the cell cycle data 

showing that some BCR-stimulated cells were also undergoing growth arrest and/or or 

dying (Fig.4.2C). Similarly, untreated cells exhibited low MMP consistent with their status 

of G0/G1 arrest and consequent apoptosis. However, inhibition of BCR-driven signalling 

by co-ligation of the BCR with FcγRIIb resulted in the strongest reduction of MMP 

indicating that such FcγRIIb-mediated signals, at least in part, initiate apoptosis through 

dissipation of the MMP (Fig.4.2D). 

 

4.3.2 Caspase-8 inhibition reduces Fc γRIIb-induced apoptosis 

It was shown by this laboratory that FcγRIIb-mediated apoptosis initiates the 

dissipation of the MMP and leads to the release of cytochrome C [309]. This mitochondrial-

dependent apoptotic pathway seems to be induced, at least in part, by the FcγRIIb-

mediated reduction of PI3 kinase-activity as inhibition of PI3 kinase induces apoptosis 

even in the presence of BCR-signalling [309]. PI3 kinase signalling, through activation of 

Akt, keeps the pro-apoptotic molecule Bad in an inactive state [598] and thus, reduced 

levels of activated Akt would therefore result in increased activation of Bad which in turn 

could sequester Bcl-xL/Bcl-2 and stop them from protecting mitochondrial integrity [309]. 

The execution phase of such apoptosis did not appear to be dependent on caspases or 

any other executioner proteases such as cathepsin B or calpain as evidenced by the lack 

of effect on FcγRIIb-mediated apoptosis by the administration of pharmacological inhibitors 

against any of these proteases. Rather, the combination of such inhibitors and hence 

presumably inhibition of more than one of these executioner proteases, was sufficient to 

protect cells from BCR/FcγRIIb-mediated apoptosis [309] suggesting that concerted 

activation of these executioner proteases was required for apoptosis. Caspase 8 is an 

initiator caspase which is known to be able to initiate the intrinsic mitochondrial apoptotic 

pathway as well as the activation of executioner caspases such as caspase 3. As both 

dissipation of the MMP as well as activation of executioner proteases seems to play a role 

in FcγRIIb-induced apoptosis, caspase 8, which also controls both these pathways, might 

therefore be potentially involved in the regulation of this as yet undefined signalling 
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cascade. Therefore, a caspase 8-specific pharmacological inhibitor was used to analyse 

the effects of caspase 8 inhibition on FcγRIIb-mediated B cell responses (Fig. 4.3).  

As shown above, cross-linking the BCR in the presence of negative signalling 

resulting from co-ligation of the BCR and FcγRIIb, strongly increased the percentage of 

apoptotic cells with subdiploid DNA content compared to that observed following mitogenic 

stimulation of the cells via the BCR (Fig.4.3A). This increase was efficiently blocked by the 

addition of a caspase 8 inhibitor which reduced the levels of apoptosis downstream of 

BCR/FcγRIIb ligation from 48% to 22% (Fig.4.3A). Caspase 8 inhibition also slightly 

reduced the percentage of untreated or BCR-stimulated cells undergoing apoptosis 

suggesting that caspase 8 played a general regulatory role in the apoptosis of mature B 

cells. As the caspase 8 inhibitor was shown to efficiently reduce FcγRIIb-mediated 

apoptosis almost to the levels observed in BCR-stimulated cells, it was further analysed 

whether this protection from apoptosis was due to increased stability of mitochondria. 

However, when caspase 8 activation was blocked, it was found that co-ligation of BCR and 

FcγRIIb still reduced the percentage of cells with high MMP to the same extent as seen in 

cells treated with DMSO as a control (Fig.4.3C/D). Furthermore, caspase 8 inhibition did 

not modulate the MMP in either untreated cells or BCR-stimulated cells (Fig.4.3B-E). It is 

therefore concluded that during spontaneous, BCR- or FcγRIIb-mediated apoptosis of 

mature B cells, dissipation of the MMP is a process induced upstream or in parallel with 

caspase 8 activation.  

Consistent with these results, cleaved active caspase 8 was found at higher levels in 

cells after BCR/FcγRIIb co-ligation compared to these observed in untreated or BCR-

stimulated cells, hence further confirming the association of caspase 8 with FcγRIIb-

mediated apoptosis (Fig.4.4A). Moreover, although it is still somewhat controversial as to 

the exact role cFLIPL plays, as it has been shown to both inhibit and enhance apoptosis 

[599], cFLIPL has been proposed to be a major regulator of death receptor signalling 

involving caspase 8. For example, it has been suggested that cFLIPL may act as an 

inhibitor of caspase 8 activation when present at physiological levels, whereas 

overexpression of cFLIPL might drive apoptosis [599]. Perhaps consistent with this, 

preliminary results showed that whilst cFLIPL could be detected in untreated, BCR-

stimulated as well as BCR/FcγRIIb costimulated cells, it was most highly expressed in 

cells in which the BCR and FcγRIIb were crosslinked (Fig.4.4B), indicating that this 

molecule may play some role in negative signalling during FcγRIIb-mediated apoptosis. 
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4.3.3 FcγRIIb-mediated regulation of p53 expression and loca lisation 

and induction of Noxa 

These initial experiments established that caspase 8 is important in the regulation of 

FcγRIIb-mediated apoptosis. In order to shed some light on the downstream molecules 

involved in the apoptotic pathways utilised by FcγRIIb, it was decided to examine the role 

of known key regulators of apoptosis such as p53, a tumor suppressor which regulates 

growth arrest and apoptosis [600,601]. The main function of p53 is that of a transcription 

factor and as such it regulates genes important in the induction of growth arrest like the 

cell cycle inhibitor p21, or in apoptosis such as the pro-apoptotic BH3-only proteins Puma, 

Noxa [484] and Bax [485]. Interestingly, p53 has also recently been found to be able to 

initiate apoptosis by transcription-independent mechanisms. Thus, whilst for its role as a 

transcription factor p53 has to be localised in the nucleus where it is able to regulate 

transcription of its target genes, it was recently shown that p53 can translocate to the 

cytoplasm and mitochondria where it interacts with Bcl-2 family members. Thus, 

translocation of p53 to the mitochondria allows it to interact with Bcl-xL and Bcl-2 liberating 

the pro-apoptotic Bax and Bak and inducing the intrinsic apoptosis pathway [486]. 

Furthermore, p53 was also shown to be capable of activating Bax in the absence of any 

other Bcl-2 family members [602]. Thus, to fully assess p53 activity it might therefore be 

important to analyse not only its overall expression levels but also its subcellular 

localisation.  

To address the role of p53 in FcγRIIb-induced apoptosis its expression at the mRNA 

and protein levels downstream of BCR/FcγRIIb co-ligation was first analysed. Levels of 

p53 mRNA were found to be highest in untreated cells and suppressed by mitogenic 

stimulation through the BCR. Perhaps rather surprisingly, this reduction of p53 expression 

was partially reversed due to co-ligation of the FcγRIIb, remaining at considerably lower 

levels than in unstimulated cells (Fig.4.5A). To determine if these changes at the 

transcriptional level translated into protein expression, whole cell lysates were also 

analysed for p53 expression. At 48 h, p53 protein expression was indeed found to be 

suppressed by BCR signalling and this effect was not only reversed by FcγRIIb-co-ligation 

but p53 expression was strongly upregulated relative to the levels observed in naïve, 

untreated cells (Fig.4.5B). Collectively, these results suggest that p53 may play a role not 

only in driving FcγRIIb-mediated negative signalling but also in maintaining naïve cells in 

an inactive form. Moreover, as the profiles of p53 mRNA and protein expression were 

distinct, these results suggest that the upregulation of p53 observed in response to 

FcγRIIb signalling likely reflected predominantly protein stabilisation rather than de novo 

gene induction.  
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As stated above, the functional consequences of p53 activity are highly dependent 

on its localisation. In the nucleus, p53 functions mainly as a transcriptional regulator 

whereas in the cytoplasm and at the mitochondria it seems to be directly involved in 

regulating the balance between the activity of pro- and anti-apoptotic molecules. To 

determine the effects of BCR and/or FcγRIIb signalling on p53 localisation, subcellular 

fractions (cytoplasmic and nuclear) were prepared 48 hours after stimulation and the levels 

of p53 protein expression determined. In both the cytoplasmic as well as the nuclear 

fractions, p53 could only be detected in samples derived from cells undergoing FcγRIIb-

mediated negative signalling (Fig.4.5C/D). Having established that p53 is indeed regulated 

by BCR and FcγRIIb signalling, the potential connection between p53 and caspase 8 was 

analysed by investigating the effects of caspase 8 inhibition on p53 expression and 

localisation. Inhibition of caspase 8 did not affect the protein levels of p53 detected in 

whole cell lysates in untreated cells or BCR-stimulated cells (Fig.4.5B) but did appear to 

slightly reduce p53 expression in cells stimulated via the BCR and FcγRIIb (Fig.4.5B). 

More striking effects of caspase 8 inhibition, however, could be detected in terms of the 

subcellular localisation of p53. Thus, whilst BCR/FcγRIIb-mediated signalling 

predominantly induced cytoplasmic p53 expression, inhibition of caspase 8 induced a 

striking re-localisation of p53 from the cytoplasm to the nucleus thereby strongly reducing 

the cytoplasmic levels of p53 (Fig.4.5C/D).  

There are various potential effects of increased p53 activity. For example, increased 

p53 levels could enhance the transcription and hence protein levels of its targets such as 

Noxa [603], a pro-apoptotic BH3-only protein. Following transcriptional upregulation Noxa 

can translocate to mitochondria where it binds to anti-apoptotic Bcl-2 family members such 

as Mcl-1 but does not directly bind Bax [289,604]. Noxa-dependent apoptosis is therefore 

most likely initiated by indirect release of Bim and Bak from Mcl-1 allowing them to 

destabilise the mitochondria [605]. In melanoma cells Noxa has also been found to locate 

to the endoplasmic reticulum where it induces intracellular calcium release, but the 

relevance of this mitochondrial-independent pathway has yet to be analysed in other 

cellular systems [606]. Taken together these studies indicate that Noxa can play an 

important role in p53-dependent apoptosis. One of the functional outcomes of the 

increased levels of p53 detected upon ligation of BCR/FcγRIIb (Fig.4.5B) could therefore 

potentially be the upregulation of Noxa expression. It was therefore decided to analyse the 

regulation of Noxa in FcγRIIb-mediated apoptosis. Indeed, Noxa, which could not be 

detected in freshly isolated cells (0 h) was upregulated by cross-linking of the BCR and 

FcγRIIb at 24 and particularly, 48 hours (Fig.4.6A). Untreated cells also slightly 

upregulated the expression of Noxa over time, but not to the same extent as cells 
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stimulated through BCR/FcγRIIb ligation (Fig.4.6A). Noxa expression was below the 

detection limit in BCR-stimulated cells, indicating that BCR-signalling perhaps maintained 

suppression of upregulation of Noxa by reducing p53 expression (Fig.4.5B and 4.6A). 

Taken together these results suggest that FcγRIIb-mediated negative signalling induces 

p53 expression thereby increasing Noxa expression. Both Noxa, and also p53 itself, could 

translocate to the mitochondria and induce dissipation of the MMP by either interacting 

with Bcl-2 family proteins or through direct mechanisms [484,602].  

 

4.3.4 Caspase 8 does not inhibit Fc γRIIb-mediated activation of 

effector caspases 

As described above, data from this laboratory suggested that that FcγRIIb-mediated 

apoptosis might depend on the concerted activation of multiple executioner proteases 

such as effector caspases, cathepsins and calpains [309]. Caspase 8 seems to play an 

important role in apoptosis induced by BCR/FcγRIIb co-ligation and it is known to activate 

caspase 3 [607]. Thus, it was investigated whether blocking of caspase 8 activity resulted 

in inhibition of BCR/FcγRIIb-mediated activation of caspase 3 subfamily caspases as 

evidenced by binding of the FITC-labelled pan-caspase inhibitor, VAD-FMK that can bind 

and inhibit ICE like proteases/group 1 proteases (including caspases 1, 4, 5) and, to a 

lesser extent, caspase 3 subfamily proteases (including caspases 2, 3, 6, 7, 9) [608]. 

Cells, which had been left untreated over the 24 h stimulation period, displayed high levels 

of caspase activation (Fig.4.6B-E) which were not influenced by mitogenic stimulation of 

cells through the BCR (Fig.4.6C-E). By contrast, co-ligation of BCR/FcγRIIb increased the 

level of FITC fluorescence detected after labelling of the cells with FITC-VAD-FMK 

indicating an increase in caspase activation (Fig.4.6C-E). Having established a role for 

caspase activation in the FcγRIIb-signalling pathway, the role of caspase 8 in the 

regulation of such caspase activity was assessed. Again taking advantage of the specific 

caspase 8 inhibitor, it was shown that caspase-8 inhibition did not increase or inhibit 

caspase activation in either untreated, BCR/FcγRIIb or BCR-ligated cells (Fig. 4.6C-E). 

The activity of calpain as well as cathepsin B was tested as well, but no activity could be 

detected. Collectively, these results suggest either that caspase 8 activity is not needed for 

the concerted activation of executioner caspases or perhaps that the combined protease 

inhibitors, which have been previously described to inhibit FcγRIIb-mediated apoptosis, 

might have been targeting caspase 8 activity. 
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4.3.5 Caspase 8 inhibition does not affect BCR/Fc γRIIb induced 

growth arrest 

The experiments described so far have established that caspase 8 plays a pivotal 

role in the regulation of BCR/FcγRIIb-induced apoptosis. Initial cell cycle data indicated 

that although caspase-8 inhibition reduced the level of subdiploid/apoptotic cells (Fig.4.3A-

iv), it did not decrease the percentage of cells arrested in the G1 phase of the cell cycle in 

BCR/FcγRIIb-stimulated cells (Fig.4.7A/B). Indeed, more detailed analysis of the cell cycle 

stages showed that whilst cross-linking of the BCR and FcγRIIb in the presence of the 

caspase 8 inhibitor increased the percentage of live cells in G1 growth arrest (Fig.4.7A and 

B), it did not prevent the FcγRIIb-mediated suppression of BCR-mediated S-phase and 

G2-M phase progression (Fig.4.7C/D). Further corroboration of these results came from 

DNA synthesis experiments in which addition of the caspase 8 inhibitor did not influence 

proliferation of cells at 48 and 72 h, regardless of the stimuli used (Fig.4.7E/F). Thus, 

caspase 8 inhibition protected cells from apoptosis but was not able to restore cell cycle 

progression and proliferation, leading to an accumulation of growth arrested cells. 

 

4.3.6  Effects of Fc γRIIb-signalling on cell cycle regulation 

Having established that cross-linking of the BCR and FcγRIIb results in growth arrest 

in the G1 phase of the cell cycle that ultimately leads to apoptosis, the effects of FcγRIIb-

signalling on regulators of cell survival and cell cycle progression were analysed. c-Myc is 

an important regulator of the cell cycle [609] at multiple levels: for example, c-Myc 

promotes cell cycle progression by increasing the expression of cyclins and indirectly 

leading to degradation of p27 [610,611]. c-Myc itself is regulated at the transcriptional and 

protein level, therefore, firstly, to assess if c-Myc was regulated by BCR or BCR/FcγRIIb-

signalling in mature B cells, c-Myc expression at the mRNA and protein levels were 

analysed. As expected, c-Myc mRNA levels were indeed found to be upregulated following 

mitogenic stimulation via the BCR, but this was transient returning to basal levels within 7 

h (Fig.4.8A). By contrast, and consistent with the growth arrest-inducing effects of FcγRIIb-

mediated signalling, simultaneous cross-linking of the BCR with FcγRIIb suppressed the 

BCR-mediated upregulation of c-Myc RNA levels, although the levels observed were still 

higher than those of untreated cells (Fig.4.8A). Reflecting the differential induction 

observed at the mRNA level, c-Myc protein expression at 24 h was higher in cells 

mitogenically stimulated via the BCR than in those stimulated via the BCR and FcγRIIb 

(Fig.4.8B). Moreover, c-Myc could not be detected at all in untreated cells at this time 

point, presumably reflecting the fact that these cells were spontaneously dying. Although 

c-Myc mRNA levels did not differ between untreated, BCR or BCR/FcγRIIb-stimulated 
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cells at 24 h, the differential protein levels observed not only probably represent the 

delayed kinetics of c-Myc regulation at the protein compared to RNA level (Fig.4.8B), but 

may also reflect the involvement of other regulatory mechanisms such as c-Myc protein 

stabilisation through phosphorylation.  

The key step in the progression of cells through G1 phase and into S phase is 

governed by the hyperphosphorylation-status of Rb proteins [612]. Mitogenic stimuli can 

induce an increase in the activity of Cdk/cyclin complexes which phosphorylate Rb which 

in turn reduces the binding of Rb to E2F and releases E2F to induce the transcription of 

genes controlling the entry into S phase [613]. In order to examine the effect of BCR 

stimulation, as well as inhibitory FcγRIIb-signalling, on this major regulatory mechanism, 

the expression of hyperphosphorylated Rb (phospho-serine 807/811) was detected by 

Western Blotting. Levels of pRbS807/811 were found to be below the detection limit in 

untreated cells but were strongly upregulated upon BCR stimulation (Fig.4.8B) correlating 

with increased proliferation and cell cycle progression in these cells (Fig.4.2A/B). Co-

ligation of the BCR with FcγRIIb reduced the levels of pRbS807/811, correlating with the 

observed reduced c-Myc expression (Fig.4.8B). Thus, FcγRIIb-signals, probably by 

reducing the activation of mitogenic pathways such as PI3 kinase or ERK, reduce the 

upregulation of c-Myc. This in turn could decrease the activation of Cdk/cyclin complexes 

by c-Myc which would explain the reduced levels of phosphorylated Rb. 

The analysis of cell cycle progression and cellular proliferation (DNA synthesis) 

performed above suggested that caspase 8 signalling was not involved in the FcγRIIb-

mediated regulation of growth arrest of B cells mitogenically stimulated via the BCR 

(Fig.4.7A). It was therefore not surprising to find that inhibition of caspase 8 did not restore 

the expression of c-Myc or pRbS807/811 observed in cells costimulated through the BCR 

and FcγRIIb to the levels found in cells mitogenically stimulated via the BCR (Fig.4.8B). 

Moreover, inhibition of caspase 8 did not have any effects on c-Myc or phospho-Rb 

expression in untreated or BCR-stimulated cells (Fig.4.8B).  

 

4.3.7 Involvement of regulatory elements of the ERK  MAPK cascade 

in FcγRIIb-mediated inhibitory effects 

FcγRIIb-mediated negative feedback inhibition downregulates multiple signalling 

pathways including the ERK MAPK cascade. This cascade is important for survival and 

proliferation of mature B cells [331] with inhibition of ERK activation being shown to be 

linked to growth arrest and apoptosis [310], most likely by modulating cyclin D expression 

as well as c-Myc stability, as seen in immature WEHI-231 B cells (section 3.3.9). The 

downregulation of ERK MAPK signalling by FcγRIIb-ligation is therefore one of the major 
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mechanisms inducing growth arrest upon BCR/FcγRIIb co-ligation. This is consistent with 

the finding that the major effector recruited to FcγRIIb is SHIP, which reduces Ras 

activation by several mechanisms and thereby inhibits the activation of ERK [214,614]. It 

was shown previously by this laboratory that ERK activation is rapidly abrogated upon co-

ligation of FcγRIIb within the first 5 minutes and, consistent with its important role in BCR-

induced proliferation and survival, such inhibition is sustained for up to 96 hours [309,453]. 

FcγRIIb-signalling not only inhibits initiation of the ERK cascade, it also decreases ongoing 

activation of ERK, as it has been shown to recruit PAC-1, an ERK-specific MAP kinase 

phosphatase, thereby leading to dephosphorylation of previously activated ERK [209]. 

However, it has not been shown in these previous studies how PAC-1 was regulated by 

FcγRIIb-signalling, and hence it was investigated whether PAC-1 mRNA expression levels 

were influenced by BCR/FcγRIIb co-ligation. Thus, using Taqman RT-PCR to detect PAC-

1 mRNA levels, it was shown that co-ligation of the BCR and FcγRIIb increased PAC-1 

mRNA expression relative to that observed following mitogenic BCR signalling at all 

timepoints analysed (7-24 hours) (Fig.4.9A-ii). This could in turn lead to increased PAC-1 

at the protein level and would further contribute to the FcγRIIb-mediated downregulation of 

ERK signalling. 

It has been proposed that activation of the ERK MAPK cascade in B cells might not 

only depend on Ras activation, but potentially involves another small G protein, Rap which 

couples to the B-Raf/MEK pathway [411]. Indeed, in the DT40 chicken B cell line, B-Raf 

was found to be the major Raf-isoform involved in the activation of MEK and hence ERK 

phosphorylation [170]. SPA-1 is a Rap specific GTPase activating protein and therefore 

able to increase the intrinsic GTPase-activity of Rap leading to the inactivation of Rap 

[396]. It was therefore hypothesised that SPA-1 mediated inhibition of Rap-1 (and hence 

ERK) could also play a part in the FcγRIIb-mediated downregulation of ERK in mature B 

cells. Indeed, SPA-1 mRNA expression was found to be strongly reduced by BCR 

stimulation compared to levels observed in untreated cells at all timepoints analysed (3-24 

hours) (Fig.4.9B-i). Thus, assuming that Rap is linked to the activation of ERK in mature B 

cells, reduction of SPA-1 expression would increase the levels of active Rap and hence 

enhance ERK activation. According to this hypothesis, FcγRIIb-mediated signalling would 

most likely increase the expression of SPA-1 to further strengthen the inhibition of ERK 

activation. Indeed, it was observed that BCR/FcγRIIb co-ligation enhanced SPA-1 

expression between 3 and 24 hours after stimulation (Fig.4.9B-ii). Taken together, these 

results imply that FcγRIIb-signalling induces the transcription of genes which encode 

negative regulators of the ERK cascade. This would allow the sustained repression of ERK 

signals ensuring the commitment of cells to growth arrest and apoptosis.  
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4.3.8 FcγRIIb-dependent regulation of Fas/FasL expression 

The results reported in section 4.3.2 suggested that caspase 8 is the major initiator 

caspase involved in FcγRIIb-induced apoptosis of mature B cells. Caspase 8 is best 

known, however, for its role in death receptor signalling. Thus, ligation of death receptors 

such as Fas leads to the assembly of the DISC complex which activates caspase 8 [615]. 

As B cells can express Fas and be killed by Fas/FasL-dependent apoptosis [284,616], it 

was therefore hypothesised that FcγRIIb-signalling might influence caspase 8 activation by 

enhancing Fas/FasL signalling by, for example, increasing Fas/FasL levels. Indeed, cell 

surface expression of Fas, detected by staining cells with a fluorochrome labelled anti-Fas 

antibody followed by FACS analysis, was found to be strongly enhanced following co-

ligation of the BCR/FcγRIIb both in terms of the percentage of cells expressing Fas as well 

as an increase in the fluorescence intensity. Fas expression was also increased by BCR 

stimulation at 24 h (Fig.4.10A) but on much fewer cells and the increase in fluorescence 

intensity was minimal when compared to the levels detected after BCR/FcγRIIb co-ligation 

(Fig.4.10A/B), presumably reflecting the low percentage of BCR-stimulated cells 

undergoing apotosis at this time point (Fig.4.2). By contrast, no expression could be 

detected in unstimulated cells, suggesting that these cells dying by neglect do not employ 

a Fas/FasL death mechanism. These findings correlated with protein expression data 

acquired by Western Blotting. Again, expression of Fas was enhanced upon FcγRIIb-

signalling at 24 h but it was below the detection limit in samples from untreated as well as 

BCR-stimulated cells (Fig.4.10C). Upregulation of Fas by FcγRIIb-mediated signals and 

hence increased Fas-death receptor signalling could therefore participate in the initiation of 

apoptosis by activating caspase 8. 

Fas signalling is initiated by FasL binding. FasL can be expressed on other cells or 

on activated B cells themselves [617]. It is therefore possible that upregulation of FasL on 

B cells in our purified cultures could induce Fas/FasL-dependent apoptosis. Consistent 

with this, analysis of FasL protein expression showed that a decrease could be detected in 

BCR-stimulated cells when compared either to untreated cells or to cells in which FcγRIIb-

signalling had been initiated (Fig.4.10C). Thus, BCR stimulation not only seems to 

increase Fas levels but also at the same time reduces FasL expression (Fig.4.10A and B). 

By contrast, in combination with the observed increase of Fas levels, the presence of high 

FasL expression in cells after BCR/FcγRIIb co-ligation would therefore allow the efficient 

induction of Fas/FasL-signalling followed by initiation of apoptosis in a caspase 8-

dependent fashion. 
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As a major mechanism of modulating Fas/FasL signalling involves transcriptional 

regulation of their expression [618], Fas and FasL mRNA levels were analysed after BCR- 

or BCR/FcγRIIb co-ligation. Although Fas mRNA was generally found to be expressed at 

low levels at all timepoints analysed, the levels observed following co-ligation of BCR and 

FcγRIIb were higher than those seen in BCR-stimulated cells (Fig.4.11A). It was shown 

that protein levels of FasL had not changed much due to the different stimuli, at least at 24 

hours (Fig.4.10C). To confirm that there were not any major changes at the mRNA level 

either, FasL expression was also analysed by quantitative RT-PCR. Consistent with this, 

the overall levels of FasL were found to be even lower than those of Fas, at all timepoints 

analysed (Fig.4.12A). Untreated cells had no detectable levels of FasL mRNA at 7 and 20 

h, but slightly increased the expression at 24 h allowing detection of very low levels of 

FasL mRNA (Fig.4.12A). BCR stimulation induced detectable levels of FasL at all 

timepoints analysed, whereas ligation of the BCR and FcγRIIb did so only at 20 and 24 h 

(Fig.4.12A). Thus, similar to the situation for Fas, regulation at the transcriptional level 

does not seem to be the major mechanism controlling the protein levels of FasL in these 

cells.  

To further dissect the role of caspase 8 in FcγRIIb-mediated cell death, the influence 

of caspase 8 inhibition on the BCR/FcγRIIb-mediated increase of Fas/FasL expression 

was analysed. Perhaps unsurprisingly, given that caspase 8 is located downstream of 

Fas/FasL signalling in the typical death receptor pathway, the lack of caspase 8 activity did 

not reduce the FcγRIIb-induced upregulation of Fas protein, detected by FACS staining or 

Western Blotting (Fig.4.10B/C). Moreover, caspase 8 inhibition also did not change the 

protein expression of FasL in combination with any of the stimulations used (Fig.4.10C). 

Similarly, caspase 8 inhibition also did not alter the expression of Fas or FasL at the 

mRNA level at 24 h (Fig.4.11/12B). In summary, Fas and FasL expression were regulated 

in a caspase 8-independent manner at both the mRNA and protein levels downstream of 

FcγRIIb-signalling. 

 

4.3.9 The FcγRIIb-mediated apoptosis response is affected in B c ells 

from MRL/MpJ- Faslpr mice 

MRL/MpJ-Faslpr mice are a widely used animal model for SLE [619]. They are 

homozygous for a spontaneous mutation (Faslpr) in the Fas gene reducing the expression 

of Fas and hence show systemic autoimmunity, massive lymphadenopathy associated 

with aberrant proliferation of T cells, arthritis, and immune complex glomerulonephritis. 

Starting at about three months of age, levels of circulating immune complexes rise greatly 

in the MRL/MpJ-Faslpr mice but not in the MRL/MpJ parental strain [620]. The MRL/MpJ-
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Faslpr model therefore provides the opportunity to analyse the role of Fas-mediated 

apoptosis downstream of FcγRIIb-signalling in B cells.  

B cells from MRL/MpJ-Faslpr mice of varying age (9, 12, 16, 20 weeks old) were 

found to show a reduced inhibition of proliferation upon BCR/FcγRIIb co-ligation compared 

to cells from MRL/Mp mice or mice on Balb/C background (Fig.4.13A). This reduction of 

growth arrest was accompanied by a reduced ability of B cells from MRL/MpJ-Faslpr mice 

to undergo apoptosis upon cross-linking of BCR/FcγRIIb (Fig.4.13B) and examination of 

the changes in the MMP upon BCR/FcγRIIb co-ligation showed that the reduced increase 

in apoptosis observed in B cells from MRL/MpJ-Faslpr was at least in part due to failed 

induction of MMP dissipation. Thus, an increased percentage of B cells from MRL/MpJ-

Faslpr mice displayed a high MMP after cross-linking of the BCR and FcγRIIb compared to 

B cells from MRL/MpJ mice (Fig.4.13C).  

Overall, these experiments indicate that B cells defective for Fas-signalling have 

impaired FcγRIIb-dependent inhibitory responses. This implies that Fas/FasL-mediated 

signals play a role in FcγRIIb-induced apoptosis.  

 

4.3.10 Inhibition of Fas/FasL signalling reduces Fc γRIIb-

mediated apoptosis 

Given that Fas/FasL expression is differentially regulated by mitogenic BCR- and 

FcγRIIb-mediated negative signalling and that impaired expression of Fas, as observed in 

MRL/MpJ-Faslpr mice, was found to impact on the ability of B cells to be inhibited by 

FcγRIIb-dependent signals, these data strongly suggested that FcγRIIb-mediated 

apoptosis is linked to Fas/FasL signalling. To more directly prove a connection between 

these two events, Fas/FasL signalling was inhibited with blocking anti-FasL antibodies, 

which act to interfere with Fas/FasL binding, and the effects on FcγRIIb-mediated 

apoptosis analysed. Consistent with the above results, it was shown that inhibition of Fas-

signalling decreased the percentage of subdiploid cells in BCR/FcγRIIb stimulated 

samples at 24 h (Fig.4.13D). Both concentrations of the blocking antibody tested were 

shown to be effective and the reduction of apoptosis was not a non-specific antibody-

effect, as treatment with isotype control antibodies did not affect the response (Fig.4.13D). 

These preliminary findings suggest that upregulation of Fas followed by enhanced Fas-

signalling and downstream activation of caspase 8 is indeed one of the major pathways 

inducing apoptosis downstream of BCR/FcγRIIb co-ligation. 
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4.3.11 Inhibitory Fc γRIIb signalling affects proliferation of 

human peripheral B cells 

Although the important role of FcγRIIb-mediated induction of growth arrest and 

apoptosis in the homeostatic regulation of B cell activation has been widely established in 

the murine immune system [73,576], the investigation of FcγRIIb-associated inhibitory 

mechanisms in human B cells has been less extensive. However, there are promising 

findings that FcγRIIb-mediated inhibition of BCR signalling is defective in B cells from SLE 

patients [587] and that plasmablasts and memory B cells from SLE patients express lower 

levels of FcγRIIb [588]. Moreover, a polymorphism of FcγRIIb which reduces its signalling 

capacity has been found to be associated with SLE in some racial groups [589]. 

Nevertheless, the effects of such reduced expression or signalling efficiency of FcγRIIb on 

B cell proliferation has not been examined in any of these studies. Thus, functional 

analysis of the FcγRIIb-mediated inhibitory response in human B cells from RA and SLE 

patients would therefore give further insight into potential defects in tolerance checkpoints 

in autoimmunity. It was therefore decided to compare the responses of peripheral B cells 

from healthy individuals and patients with RA and SLE, as both of these diseases involve 

autoantibody production and activation of autoreactive B cells. Hence, dysregulated B cell 

activation might be one of the underlying causes of both of these diseases. 

Firstly, the proliferative capacity of human B cells (derived from peripheral blood) 

stimulated via the BCR or following co-ligation of FcγRIIb was assessed. As with the 

murine system, cells were treated with F(ab)2 fragments of anti-human IgG+IgM antibodies 

to cross-link the BCR (designated BCR in the figures) or with intact anti-human IgG+IgM 

antibodies to co-ligate the BCR and FcγRIIb (designated BCR + FcγRIIb in the figures). 

Moreover, the inhibitory effect of FcγRIIb-mediated signalling upon mitogenic BCR 

stimulation was tested by treating cells with F(ab)2 anti-human IgG+IgM in combination 

with intact anti-human IgG+IgM (designated mitogenic BCR+ Fc γRIIb in the figures). 

Finally, unstimulated purified B cells (designated None  in the figures) were included in the 

experiments. Similarly to murine B cells, unstimulated human B cells do not survive well in 

culture and slowly die by neglect. 

CFSE staining and DNA synthesis were the methods chosen to detect proliferation in 

cultures. The comparison of [3H]-labeled thymidine incorporation assays and CFSE 

staining indicated, however, that CFSE staining was not a suitable method to detect 

proliferation of purified human B cells as the data showed that the intensity of CFSE 

staining of purified B cells declined rapidly, having decreased within 4 hours even in the 

absence of stimuli suggesting that the cells were leaky to CFSE (Fig.4.14B-D). To confirm 

that CFSE analysis was indeed not a suitable assay to detect proliferation in such B cell 
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cultures, multiple experiments varying the incubation times, purification methods, stimuli 

and concentrations of antibodies, as well as FCS concentrations used for culture were 

carried out (data not shown). In confirmation with the data shown in Figure 4.14 these 

experiments yielded similar results, with no changes detectable between untreated cells or 

cells treated with different stimuli. By contrast, analysis of DNA synthesis by [3H] thymidine 

incorporation indicated that BCR-stimulated cells did indeed proliferate significantly more 

than untreated cells at 48 hours (Fig.4.14A), indicating that this was the best assay to 

screen for FcγRIIb-mediated growth arrest in CD19+-purified human B cells from the blood. 

Thus, following activation of BCR signalling, DNA synthesis increased whereas it was 

found to be reduced as a result of FcγRIIb/BCR co-ligation (Fig.4.14A). This confirmed that 

human B cells, similar to murine B cells, are sensitive to FcγRIIb-mediated growth arrest.  

Further preliminary experiments were carried out in order to examine how long the 

purified human B cells could be cultured before their proliferative response started to 

decline, and to determine the optimal timepoint to detect the FcγRIIb-mediated growth 

arrest response. To this end, purified human B cells were stimulated as described before 

with BCR and BCR/FcγRIIb cross-linking antibodies, and the proliferation was measured 

after 48, 72 and 96 hours. Increased proliferation following BCR and BCR/FcγRIIb cross-

linking could be detected at all timepoints (Fig.4.14A-ii). The inhibitory effect due to 

simultaneous BCR and FcγRIIb activation is most pronounced at 48 hours, but still 

detectable after 72 hours (Fig.4.14A-ii). Due to a decline of BCR-mediated proliferation at 

96 hours there was no difference between the level of DNA synthesis between BCR and 

BCR/FcγRIIb stimulated cells at this timepoint. In consideration of these results, it was 

decided to routinely analyse B cell responses 48 hours after stimulation. 

 

4.3.12 Correlation between growth inhibition, mitoc hondrial 

membrane potential and cell cycle status of human B  cells 

It has been shown in murine B cells that FcγRIIb-signalling not only induces growth 

arrest but also apoptosis [597]. Thus, to directly assess any correlation between growth 

inhibition and apoptosis in human B cells, their cell cycle status after BCR-ligation or 

BCR/FcγRIIb co-ligation was examined. Rather surprisingly, FcγRIIb co-ligation did not 

substantially increase the percentage of cells with subdiploid DNA content or arrested in 

G0/G1 relative to the levels observed in BCR-stimulated cells at this time point (Fig.4.15-

ii). These effects were observed in a healthy control (Fig.4.15A) as well as three RA 

patients (Fig.4.15B) whose B cells displayed low, but detectable levels of FcγRIIb-

mediated inhibition of BCR-induced DNA synthesis (Fig.4.15-i). Moreover, although the 

FcγRIIb-mediated reduction of cells observed in the mitotic phases of the cell cycle (G2/M 
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and S phase) fitted well with the growth arrest indicated by the DNA synthesis studies 

(Fig.4.15-i/iii), the percentage of B cells, particularly those of patients, cycling at 48 h was 

very low. This suggests that differential effects between the control and patient groups 

might be masked by culture exhaustion as indicated by the high levels of G0/G1 arrest and 

apoptosis in response to both mitogenic and negative feedback stimuli. Cell cycle analysis 

by PI staining of DNA content therefore represents a potentially useful tool for the 

examination of proliferation/apoptosis in human B cells, but it should preferentially be 

assessed at a range of time points and used in combination with additional methods such 

as DNA synthesis assays. 

Apoptosis initiated by FcγRIIb-signalling has been shown to induce the dissipation of 

the MMP in murine B cells. To test whether mitochondrial disintegration was also a 

hallmark of FcγRIIb-mediated apoptosis in human B cells, their MMP was examined by 

DiOC6 staining of mitochondria. This showed a trend towards a reduction of cells with high 

MMP and a corresponding increase of cells with low MMP upon FcγRIIb-signalling 

(Fig.4.15-iv). Collectively, it was shown that although BCR/FcγRIIb co-ligation on human B 

cells initiates similar functional responses as those observed with murine B cells, such as 

reduced proliferation, detected as a decrease of cells in the mitotic phases of the cell cycle 

as well as decreased DNA synthesis, these effects are much less pronounced. Moreover, 

it seems that disruption of the MMP and consequent apoptosis might play only a minor role 

in FcγRIIb-mediated negative feedback inhibition of human peripheral B cells. Rather 

surprisingly, it appeared that the patient samples were, if anything, more susceptible to 

growth arrest and apoptosis in response to both mitogenic and negative feedback 

signalling, suggesting that such circulating cells may not be directly comparable to murine 

splenic B cells. 

 

4.3.13 Some patients with RA and SLE show a defect in FcγRIIb 

inhibitory signalling 

Having established that FcγRIIb-mediated signalling inhibited BCR-driven 

proliferation of purified human B cells from a healthy control subject (Fig.4.14A), it was 

investigated whether B cells from patients with autoimmune disease are refractory to such 

homeostatic regulation. Analysis of B cell responses from a panel of patients and normal 

subjects showed that there was no significant difference between the responses of control 

cells and those derived from patients with RA or SLE. However, closer analysis suggested 

that whilst the B cells from all the healthy controls showed normal inhibitory responses, 

albeit of varying strength, a small percentage of RA and SLE patients showed decreased 

FcγRIIb-mediated inhibitory capacity (Fig.4.16). Some patients whose samples were 
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analysed for inhibition of growth arrest through FcγRIIb-mediated signalling did not suffer 

from RA or SLE, but from other autoimmune disease or a combination of diseases 

including Connective tissue disease, Sjogrens’s syndrome or Psoriatic arthritis (Fig.4.16). 

The data acquired from these patients was therefore grouped separately. Similar to the 

other patient cohorts, no significant differences were found between the responses of B 

cells from healthy controls and patients, again confirming that reduced FcγRIIb-mediated 

inhibitory responses are not a general feature of autoimmune disease. 

Although it was possible that the inhibitory defects observed in a small percentage of 

RA and SLE patients might reflect a long lasting defect, it was also possible that this defect 

might be due to their specific immune-status at the time of analysis. Thus, the B cells of 

two patients who showed defective inhibitory responses were tested again six months later 

to determine whether the refractoriness of their B cells to FcγRIIb-mediated signalling was 

indicative of a stable phenotype. However, whilst the B cells of one of the RA patients 

were again refractory to inhibition (Fig.4.17A), the B cells from the other patient with RA 

responded more normally (Fig.4.17B). These differential responses indicate that the 

responsiveness of B cells to inhibitory signaling by FcγRIIb might indeed change over time 

due to as yet unidentified influences. Thus, to confirm any correlation between immune 

status or different treatments and effective FcγRIIb-mediated inhibition of B cells, a study 

with more patients and more detailed information on the status of the patient would be 

needed. 

 

4.3.14 Patients with autoimmune disease display cha nges in 

the expression of Fc γRIIb isoforms 

Human FcγRIIb encodes three transcripts, FcγRIIb1, FcγRIIb2 and FcγRIIb3, which 

arise by alternative splicing mechanisms. FcγRIIb isoforms are widely expressed by cells 

of haematopoetic origin, with preferential expression of FcγRIIb1 on B cells and FcγRIIb2 

on myeloid cells. The mature forms of FcγRIIb1 and FcγRIIb3 are identical but they differ 

in their peptide leader sequences [621]. FcγRIIb3 lacks the information required for 

surface expression, encoded on the S2 exon, and is thus not expressed. FcγRIIb2 is 

capable of mediating rapid IgG endocytosis by means of clathrin-coated vesicles. 

However, due to an insertion of 19 amino acids in the cytoplasmic tail, FcγRIIb1 is not able 

to mediate receptor internalisation as the insertion disturbs the cytoskeletal attachment 

domain (Fig.4.18) [622].  

Thus, FcγRIIb1 and FcγRIIb2 expression dictates the threshold for BCR signalling 

whereas FcγRIIb2 may be the isoform predominantly utilised by B cells for antigen uptake 

and processing. By downregulating expression of FcγRIIb1, whilst keeping FcγRIIb2 levels 
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constant, an autoreactive B cell might remain responsive to stimulation by immune 

complexes and costimulatory T cell help. CD40 ligand-expressing, activated T cells, in 

conjunction with T cell derived IL-4, will induce proliferation, antibody production and 

isotype switching by B cells in addition to overcoming the inhibitory effects of FcγRIIb1.  

Examination of FcγRIIb1/2 mRNA expression levels in PBMCs from healthy controls 

as well as patients suffering from RA or SLE showed that the mRNA levels of both 

FcγRIIb1 and 2 are significantly reduced in PBMCs from RA, but not SLE, patients 

compared to healthy controls (Fig.4.19). This suggests that, as indicated by the B cell 

functional studies, the B cells from at least some patients may be refractory to FcγRIIb-

mediated negative feedback inhibition. Moreover, analysis of the ratio of 

FcγRIIb1/FcγRIIb2 levels in control and patient cohorts indicated that the FcγRIIb1/2 RNA 

expression ratio is significantly decreased in both the RA and SLE patient groups relative 

to control subjects. This might be important, as the two isoforms differ in their capacity to 

endocytose bound IgG and these data might indicate that the cells from patients are more 

efficient at auto-antigen-presentation and T cell activation than those of healthy individuals 

(Fig.4.19E/F) [623].  

This analysis of FcγRIIb1/2 expression levels was carried out on PBMCs which 

contain multiple cell types such as B and T cells, monocytes as well as natural killer cells. 

The observed differences of FcγRIIb1/2 expression levels and ratio between healthy 

controls and patients might therefore theoretically be due to changes in any of these cell 

types. Thus, to assess the overall contribution of FcγRIIb1/2 expressed by B cells, 

preliminary experiments were carried out to determine the transcript levels in different cell 

preparations. Purification of B cells enriched the levels of FcγRIIb1 or FcγRIIb2 transcripts 

detected 50- or 20-fold compared to levels found in non-B cells (PBMCs after B cells were 

negatively selected), respectively (Fig.4.20A). Indeed, and as expected, CD3+-purified T 

cells were found to express negligible levels of either FcγRIIb1 or FcγRIIb2 (Fig.4.20B). 

Interestingly, purified B cells displayed a different pattern of FcγRIIb1/2 expression 

compared to PBMCs or non-B cells, as they expressed higher levels of FcγRIIb1 

compared to FcγRIIb2 (Fig.4.20B). The recent development of anti-human FcγRIIb-

specific antibodies made it possible to also detect the protein expression of FcγRIIb by 

FACS. Thus, it was shown that around 17% of human PBMCs express FcγRIIb on their 

surface and that almost all B cells express it at relatively high levels (Fig.4.20C). CD11b-

positive cells which includes monocytic cells as well as granulocytes, natural killer cells 

and B-1 B cells are the other major cell class expressing FcγRIIb on the surface, albeit at 

generally lower levels than B cells (Fig.4.20C). Most of the CD11b/FcγRIIb-expressing 

cells were found to be relatively large cells judging by their forward and side scatter 



 

 218 

characteristics on the FACS (data not shown), and therefore most likely represent 

monocytes or granulocytes. A small proportion of the cells though is smaller and less 

granular and hence might be natural killer or B-1 B cells. It would therefore be of interest to 

carry out further studies examining the contribution of the different cell types in peripheral 

blood towards the significant change of isoform expression observed in SLE and RA 

patients.  
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4.4 Discussion  

 

During B cell development harmful self-reactive clones are deleted at various stages 

of development, with negative selection of immature B cells in the bone marrow 

representing a major checkpoint. Nevertheless, a considerable proportion of autoreactive 

cells escapes this mechanism and is released into the periphery. Further checkpoints in 

the periphery therefore ensure the removal or inactivation of these cells at later stages. 

FcγRIIb is an inhibitory receptor which influences the threshold for B cell activation by 

transducing negative signals. This receptor is important in sustaining homeostasis of B 

cells ensuring that activated B cells are removed from the system in a timely manner once 

an infection is under control, hence avoiding an overreaction of the immune system. Due 

to this function, FcγRIIb seems to play an important regulatory function in preventing 

autoimmune disease by reducing activation of a large pool of potentially weakly self-

reactive B cells. 

 

4.4.1 FcγRIIb-mediated apoptosis is caspase 8 dependent 

FcγRIIb signalling plays an important role in the downregulation of B cell responses 

by negatively regulating BCR-dependent proliferation in mature B cells (Fig.4.2). Besides 

growth arrest, BCR/FcγRIIb co-ligation was also shown to induce apoptosis [624] which 

was found to lead to the disruption of the mitochondrial membrane potential (Fig.4.2). 

Previous findings in this laboratory indicated that the apoptotic pathway induced by 

FcγRIIb-mediated signals led to the release of cytochrome C from mitochondria as well as 

upregulation of pro-apoptotic Bcl-2 family members [309]. However, activation of the 

classical executioner protease of the intrinsic pathway, caspase 3, was only slightly 

increased upon cross-linking of BCR/FcγRIIb, and inhibition of this protease had only 

marginal effects on the levels of apoptosis observed suggesting that caspase 3 activation 

was not sufficient for such cell death. Likewise, whilst inhibition of calpain or cathepsin B 

executioner protease activities also failed to block FcγRIIb-mediated apoptosis, by 

contrast, combined inhibition of executioner caspase, calpain and cathepsin B activities 

prevented FcγRIIb-mediated apoptosis [309]. It was therefore unlikely that the caspase-

dependent intrinsical mitochondrial pathway was the only contributor to FcγRIIb-mediated 

apoptosis of B cells. As another major pathway of apoptosis is the caspase 8-mediated 

death receptor signalling pathway, it was decided to examine the role of caspase 8 in 

FcγRIIb-dependent apoptosis. The results presented in this chapter showed that in mature 

B cells caspase 8 is indeed crucial for the induction of cell death downstream of 

BCR/FcγRIIb co-ligation, as inhibition of this initiator caspase reduced the percentage of 
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cells undergoing apoptosis (Fig.4.3). Although dissipation of the MMP was a hallmark of 

apoptosis observed in mature B cells due to cross-linking of the BCR and FcγRIIb, 

inhibition of caspase 8 did not rescue the cells from disruption of the MMP (Fig. 4.3). 

Activation of caspase 8 might therefore be downstream of the disruption of mitochondrial 

function or indeed represent a parallel contributing apoptotic pathway. 

The precise signalling events downstream of caspase 8 in FcγRIIb-mediated 

apoptosis have not been elucidated yet, but the major effects of caspase 8 inhibition 

suggested that caspase 8 might orchestrate the activation of multiple executioner 

proteases such as caspase 3, calpain and cathepsin B. Caspase 3 is a well known 

substrate for caspase 8, and caspase 3 activation occurs downstream of caspase 8 in 

various models of apoptosis [607]. Previous findings showed that caspase 3 was slightly 

upregulated by BCR/FcγRIIb co-ligation [309], but the level of caspase activation, as 

determined by the binding of a pan-caspase reagent, was found not to be significantly 

changed by caspase 8 inhibition (Fig.4.6). Although these data suggest that caspase 8 is 

not essential for the FcγRIIb-mediated activation of these caspases, changes in the 

executioner caspases 3/6 might be masked by other caspases such as caspase 1/2. 

There is some evidence in the literature that cathepsin B and calpain could also be 

activated downstream of caspase 8. For example, caspase 8 dependent cleavage of Bid 

has been found to be involved in a TNFα-dependent apoptosis pathway which induces 

lysosomal permeabilisation and consequent release of cathepsin B in a rat hepatoma cell 

line [625]. Moreover, in a cellular model for Alzheimer’s disease involving Amyloid beta 

peptide-dependent cell death of the neuronal cell line PC12, calpastatin was cleaved by 

caspase 8, leading to calpain activation [626]. Similarly, calpains were found to be involved 

in Fas-dependent apoptosis of CD8+ T cells [627] and as caspase 8 activation is known to 

be downstream of Fas signalling, it therefore suggests itself that calpain activation might 

be caspase 8-dependent in this system. The cascades involved in apoptosis are further 

complicated by the fact that calpains and cathepsin can also be part of positive feedback 

loops in that both enzymes have been shown to activate caspases such as capase 8 [628] 

whilst caspase 3 and 7 can in turn cleave and inactivate the calpain inhibitor calpastatin 

[629,630]. Caspase 8 could therefore represent the major switch potentially integrating all 

these signals. 

 

4.4.2 FcγRIIb-signalling leads to p53 upregulation and trans location 

Interestingly, p53 expression was found to be enhanced at both the transcriptional 

and protein levels upon BCR/FcγRIIb co-ligation (Fig.4.5). p53 is a major regulator of 

growth arrest and apoptosis acting predominantly as a transcription factor, for example, to 
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increase gene expression of p21, Bax or Fas [485,631]. However, p53 can also induce 

apoptosis by translocating to the cytoplasm or the mitochondria where it interacts with Bcl-

2 family members [486]. It is therefore interesting that p53 was mainly found in the 

cytoplasm of cells following co-ligation of the BCR and FcγRIIb and that caspase 8 

inhibition reduced the levels of p53 found in the cytoplasm by seemingly sequestering it in 

the nucleus (Fig.4.5C/D). Caspase 8 might therefore be involved in the regulation of p53 

localisation by, for example, degrading proteins involved in the nuclear retention 

mechanism of p53. Hence, this would allow p53 to localise to the cytoplasm where it could 

potentially bind to and activate pro-apoptotic Bcl-2 members to induce mitochondrial 

destabilisation and drive FcγRIIb-mediated, p53-dependent apoptosis of B cells. There 

have been many studies examining the regulation of caspase 8 by p53. For example, p53 

can upregulate Fas expression and thereby potentially activate caspase 8 [631]. Moreover, 

in tumor cells p53 was found to directly increase caspase 8 mRNA and protein levels, 

thereby rendering these cells sensitive to induction of apoptosis [632]. Additionally, a 

cleavage product of caspase 8 (DEDa) can induce p53-dependent transcription of caspase 

8 thereby creating a positive feedback loop [633]. On the other hand, caspase 8-mediated 

cleavage of Bid might be one of the mechanisms involved in p53-dependent apoptosis 

[634]. Moreover, caspase 8 not only seems to play a role in p53-mediated apoptosis that is 

dependent on the transcription factor-function of p53, but it has also been found to be 

involved in a transcription-independent form of p53-mediated apoptosis [635]. Collectively, 

these studies show that caspase 8 activity can be regulated by p53 and hence plays an 

important role in p53-mediated apoptotic pathways in some systems.  

As mentioned above, a major function of p53 is that of a transcription factor. Besides 

the above mentioned targets, p53 can also upregulate Noxa and Puma, two pro-apoptotic 

Bcl-2 family members [484]. BCR/FcγRIIb co-ligation increased Noxa protein levels 

(Fig.4.6), implying that p53 could promote FcγRIIb-mediated apoptosis by the more 

classical transcription-dependent, as well as transcription-independent, mechanisms. In 

addition to regulating the apoptotic response downstream of BCR/FcγRIIb co-ligation, p53 

could also potentially influence FcγRIIb-mediated growth arrest. For example, PAC-1 

which can de-activate ERK was found to be transcriptionally upregulated by BCR/FcγRIIb 

co-ligation (Fig.4.9A), and whilst the mechanisms responsible for this increase are as yet 

unknown, p53 has been shown to regulate PAC-1 expression [369]. ERK itself might be 

involved in the regulation of p53, as it has been shown by this group that p53 activity is 

increased due to the pharmacological inhibition of ERK [309]. p53 therefore represents an 

interesting candidate for the regulation of multiple pathways involved in FcγRIIb-mediated 
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growth arrest and apoptosis but further studies are needed to define the connection 

between caspase 8 and p53. 

 

4.4.3 Caspase 8 is not involved in Fc γRIIb-dependent growth arrest 

response  

Previous studies in this laboratory have identified ERK as an important regulator of 

proliferation and apoptosis in B cells [310]. In mature B cells ERK was shown to be 

induced by mitogenic signals through the BCR and this activation was found to be reduced 

by simultaneous FcγRIIb-signalling [623]. Moreover, inhibition of ERK mimicked the growth 

arrest-inducing effects of FcγRIIb [309]. Many signalling events leading to decreased ERK 

activation downstream of BCR/FcγRIIb co-ligation have been identified. These include the 

direct competition of SHIP for Shc binding and hence reduced Ras activation, as well as 

events further downstream such as PAC-1 recruitment [209,213,614,636]. In this study we 

identified further potential regulatory events, namely the transcriptional upregulation of 

PAC-1 and SPA-1 (Fig.4.9). PAC-1 can directly inactivate ERK by dephosphorylation [368] 

and SPA-1 could contribute to decreased ERK levels through the inhibition of the Rap/B-

Raf pathway. The FcγRIIb-dependent increase of both of these molecules could therefore 

influence growth arrest by downregulation of ERK activation. 

This study has shown that caspase 8 is a major regulator of FcγRIIb-mediated 

apoptosis. Even though multiple caspases, including caspase 8, have been implicated in 

the regulation of apoptosis-independent events such as cell cycle entry/progression and 

hence proliferation [637] the results obtained in this study did not support a role for 

caspase 8 in FcγRIIb-mediated growth arrest. Thus, inhibition of caspase 8 did not 

influence the levels of DNA synthesis of either untreated, BCR- or BCR/FcγRIIb-stimulated 

cells (Fig.4.7). Moreover, although caspase 8 inhibition efficiently prevented apoptosis, it 

could not re-instate cycling in BCR/FcγRIIb co-ligated cells leading to an accumulation of 

cells arrested in G1 phase (Fig.4.7). Another sign of growth arrest is the reduction of 

positive regulators of the cell cycle and, in confirmation with the previously mentioned 

results, caspase 8 inhibition was not able to prevent the FcγRIIb-mediated downregulation 

of c-Myc or hyperphosphorylated Rb levels. FcγRIIb-signalling therefore seems to initiate 

separate signalling pathways regulating apoptosis (caspase 8-dependent) and growth 

arrest (caspase 8-independent).  

 

4.4.4 FcγRIIb-mediated apoptosis depends on Fas/FasL signall ing 

Caspase 8 is known to be activated downstream of death receptors such as Fas 

[282]. Thus, as it was shown in this study that caspase 8 is crucial for FcγRIIb-mediated 
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apoptosis, Fas/FasL signalling provided an interesting candidate for the upstream 

regulation of caspase 8. Indeed, preliminary results indicated that Fas and to a lower 

extent FasL are upregulated due to BCR/FcγRIIb ligation at both the RNA and protein level 

(Fig.4.10-12). Subsequently, FcγRIIb-mediated apoptosis was found to be reduced due to 

inhibition of Fas signalling with anti-FasL blocking antibodies confirming the involvement of 

this death receptor cascade (Fig.4.13D). Thus, FcγRIIb-signalling might upregulate Fas 

which, due to the presence of FasL in these B cells, can induce death receptor signalling 

and hence caspase 8 activation. 

Further support for this hypothesis comes from the MRL/MpJ-Faslpr mouse model. 

These mice are on an autoimmune background (MRL/MpJ strain) and developed a 

spontaneous mutation in the gene encoding Fas and hence do not express normal levels 

of Fas. Subsequently, Fas/FasL induced apoptosis is defective in these mice leading to 

the accumulation of immune cells and development of lupus-like disease [638]. MRL/MpJ-

Faslpr mice express high levels of self-reactive pathogenic antibodies such as anti-DNA 

antibodies that contribute to the disease by forming immune complexes which can be 

deposited in the kidney and hence have the potential to induce glomerunephritis [638]. The 

massive production of self-reactive antibodies indicates a breach of tolerance in these 

mice, allowing autoreactive B cells to be activated. Defects in FcγRIIb-mediated 

homeostasis of activated B cells could therefore potentially play a role in the accumulation 

of self-reactive cells in this model. Indeed, purified splenic B cells from MRL/MpJ-Faslpr 

mice displayed reduced levels of inhibition of DNA synthesis upon BCR/FcγRIIb co-ligation 

indicating a defect in the growth arrest response of these mice (Fig.4.13A). Moreover, their 

apoptotic response also seemed to be reduced as indicated by reduced percentages of 

subdiploid cells as well as increased numbers of cells with high MMP (Fig.4.13B/C). The 

reduced potential of these cells to undergo FcγRIIb-mediated apoptosis might be due to 

the inability of these cells to signal through Fas/FasL due to the disruptive mutation in the 

Fas gene. It can therefore be hypothesised that the lack of Fas expression in B cells from 

MRL/MpJ-Faslpr mice affects their ability to apoptose due to inhibitory signals downstream 

of BCR/FcγRIIb co-ligation, hence making them insensitive to negative regulation. This in 

turn could lead to an increase of activated B cells, including self-reactive clones. Fas/FasL 

signalling might therefore be an important part of the signals controlling FcγRIIb-

dependent homeostatic regulation of mature B cells in these mice.  
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4.4.5 A small proportion of B cells from RA and SLE  patients display 

a defect in Fc γRIIb-mediated growth arrest 

Homeostatic regulation of B cells is crucial in the human immune system as 

dysregulated activation of weakly self-reactive cells has been implicated in the pathology 

of autoimmune diseases such as SLE and RA. The important role of FcγRIIb in the 

regulation of B cell responses and hence autoimmunity has been firmly established in the 

murine system [73]. Dissection of the role of FcγRIIb in the human system is obviously 

more complicated. There have been few studies examining the connection between 

dysregulation of FcγRIIb-dependent responses and autoimmune disease in humans. 

However, it was shown that FcγRIIb-expression is indeed reduced on plasma and memory 

B cells from SLE patients [588]. Nevertheless, these studies did not address the functional 

outcome of these lower FcγRIIb levels. Here it was investigated whether mature B cells 

from patients with autoimmune disease (RA and SLE) displayed defective growth arrest 

responses upon BCR/FcγRIIb co-ligation. Generally, the FcγRIIb-mediated growth arrest 

response of human B cells did not seem to be as strong as that of murine B cells 

(Fig.4.14). This might be due to the expression of FcγRIIa in the human system, an 

activating Fcγ receptor which is not present in mice [576]. Human B cells might therefore 

express both FcγRIIa and FcγRIIb which would compete for binding to IgG and thus, 

positive signals through FcγRIIa would reduce the inhibitory FcγRIIb-response. Even 

though the growth arrest response in human B cells was not as pronounced as in the 

murine system, B cells from healthy individuals all displayed an intact inhibitory response 

upon BCR/FcγRIIb co-ligation (Fig.4.16). 

Interestingly, a small proportion of patients displayed little or no inhibition of 

proliferation upon FcγRIIb ligation (Fig.4.16). The differences between the healthy control 

and RA or SLE cohorts were not statistically significant though, due to the majority of 

patients still displaying a normal response. Thus although FcγRIIb-mediated regulation of 

proliferation of mature peripheral B cells might not be a major disease-driving mechanism 

in most patients, it might contribute to the disease in some. It remains to be seen if more 

detailed analysis of responses of plasma cells and memory cells, the developmental 

stages which were found to display reduced expression of FcγRIIb in SLE patients, would 

render clearer results as the percentage of these cells in B cells purified from blood is very 

low, and any changes in their response to inhibitory signalling might therefore be 

overlooked due to their small numbers. 
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4.4.6 Patients with autoimmune disease display chan ged FcγRIIb-

isoform expression pattern 

The B cell numbers achieved by purification from patient blood were usually not 

sufficient to carry out functional studies as well as analyse FcγRIIb protein levels by FACS 

or isolate RNA to examine FcγRIIb mRNA expression. This would have been interesting to 

allow the correlation between reduced FcγRIIb-mediated inhibitory responses and 

expression of the receptor. Moreover, changes in the expression of the different FcγRIIb 

isoforms, FcγRIIb1 and FcγRIIb2, could potentially influence the response of B cells due to 

the lack of endocytic capacity of FcγRIIb1 [622]. Thus, higher expression of FcγRIIb2 

could increase antigen uptake and hence presentation to T cells. Therefore, to gain some 

insight into the regulation of FcγRIIb in peripheral immune cells, transcriptional regulation 

of this receptor was analysed in PBMCs from patients and healthy controls, as analysis in 

purified B cells from a bigger panel of patients was not feasible. Interestingly, expression 

of both FcγRIIb1 and FcγRIIb2 was found to be downregulated in PBMCs from RA 

patients (Fig.4.19). This was not the case for PBMCs from SLE patients, as no significant 

differences were found between the patients and the healthy controls concerning either 

FcγRIIb1 and FcγRIIb2 mRNA expression (Fig.4.19). A small proportion of RA patients 

displayed a reduced growth arrest response upon BCR/FcγRIIb co-ligation and, although 

there was no statistically significant difference, there was a noticeable trend for more RA 

patients showing this defect compared to either healthy controls or SLE patients. This 

seems to correlate with the FcγRIIb RNA expression data, which showed that PBMCs from 

RA patients, but not cells from SLE patients, express reduced levels of FcγRIIb1. For 

future experiments it would therefore be interesting to obtain information about FcγRIIb 

RNA levels and the extent of growth arrest of purified B cells from the same patient to 

identify a potential correlation. 

The most striking change between the RA/SLE patient cohorts and the healthy 

patients was the reduction of the FcγRIIb1/FcγRIIb2 ratio (Fig.4.19). The cause of this 

phenomenon was a relative increase of FcγRIIb2 levels in patients compared to healthy 

controls. As discussed before, this change of relative levels of FcγRIIb1 and FcγRIIb2 

could tip the balance between antigen uptake and presentation and inhibitory signalling 

towards an increased ability of cells to present antigen. In an autoimmune-prone setting 

this could increase the presentation of self-antigen by autoreactive B cells, followed by 

activation of autoreactive T cells and thereby create an amplification loop. 

 



 

 226 

4.4.7 Concluding remarks 

In conclusion, it has been demonstrated that BCR/FcγRIIb co-ligation results in 

growth arrest and apoptosis. The signalling pathways underlying apoptosis have been 

further elucidated and it has been shown that caspase 8 is the major initiator caspase 

involved. Moreover, FcγRIIb was found to stimulate expression of Fas and its ligand FasL 

and signalling through this death receptor presumably activates caspase 8. Inhibition of 

Fas/FasL signalling and caspase 8 activation were both sufficient to block apoptosis, 

underscoring the crucial role these signals play. Furthermore, this study has clearly 

demonstrated that p53 is regulated by FcγRIIb-dependent mechanisms inducing its 

upregulation and translocation. Thus, various scenarios can be envisaged, as p53 can 

achieve the initiation of the apoptotic programme by different pathways. p53 could 

increase Fas and caspase 8 expression, thereby initiating as well as propagating this 

signalling axis. Additionally, it might trigger apoptosis by enhancing the expression of pro-

apoptotic molecules such as Noxa or by translocating to the mitochondria and hence 

interaction with pro- and anti-apoptotic molecules at this interface. The growth arrest 

response has not been examined in detail in this study, but some progress has been made 

towards fully elucidating the signals involved. Thus, another level of negative regulation of 

the ERK MAPK pathway has been identified to be transcriptional upregulation of PAC-1 

and SPA-1. Furthermore, FcγRIIb-mediated growth arrest was found to be linked to the 

reduction of positive regulatory elements of the cell cycle, including c-Myc and 

hyperphosphorylated Rb (Fig.4.21).  

The ultimate goal of immunological research is to apply findings to the human 

immune system and support development of disease treatments. This study therefore set 

out to begin to translate some of the findings acquired in the murine system to humans. 

Encouragingly, it was demonstrated that human B cells, like their murine counterparts, 

undergo growth arrest and apoptose upon BCR/FcγRIIb co-ligation. Furthermore, it was 

shown that the B cells of a proportion of patients exhibit a defective inhibitory response, 

indicating that FcγRIIb-mediated negative signalling is affected in these patients. 

Furthermore, major differences between RA patients and healthy controls were found 

concerning the expression of FcγRIIb isoforms. It is therefore concluded that this inhibitory 

receptor could be one of the many contributing factors towards development or 

propagation of autoimmune diseases. 

 

4.5 Figures  
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Figure 4.1 Diagram of stimulations 

Antibodies were used to mimic stimulation of B cells by free antigen and/or immune 

complexes. Stimulation with F(ab’)2 fragments of anti-IgM cross-links the BCR and induces 

mitogenic signals (designated BCR). By contrast, as stimulation with intact anti-IgM/IgG 

results in the generation of negative signals induced by co-ligation of the BCR and 

FcγRIIb, these antibodies were used in combination with F(ab’)2 fragments of anti-IgM to 

mimic the inhibition of antigen-driven mitogenic signals by immune complexes resulting in 

growth arrest and apoptosis (designated BCR+FcγRIIb). 
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Figure 4.2 BCR/Fc γRIIb co-ligation induces growth arrest and apoptosi s 

Purified mature mouse B cells (106 cells/ml) were stimulated for 48 h in the presence of 50 

µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in combination 

with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb), as indicated. Cells stimulated in the 

presence of medium alone were included as a control (None). 

(A) DNA synthesis was assessed by pulsing the cells with 0.5 µCi/well [3H] thymidine for 

the last 6 h of culture and measurement of incorporated label using a liquid scintillation 

counter. Data are shown as counts per minute (cpm) +/- standard deviation (SD) of 

triplicate values. *** p<0.001 

(B) DNA content was determined by propidium iodide (PI) staining followed by FACS 

analysis. A representative histogram is shown and data are presented as (C-i) mean 

percentage of all cells in each cell cycle stage or as (C-ii)  mean percentage of live cells 

(excluding cells with subdiploid DNA content) in each cell cycle stage (+/- range of 

duplicate values). 

(D) For the assessment of the mitochondrial membrane potential the cells were stained 

with DiOC6 and analysed by FACS. A representative histogram is shown and data are 

presented as the mean percentage of cells with high or low membrane potential (+/- range 

of duplicate values). 

Data are representative of at least three independent experiments. 
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Figure 4.3 Caspase 8 inhibition reduces Fc γRIIb-mediated apoptosis 

Purified mature splenic B cells (106 cells/ml) were stimulated for 48 h in the presence of 50 

µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in combination 

with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb), as indicated. Furthermore, cells were 

treated with a caspase 8 inhibitor or DMSO as a control. Cells stimulated in the presence 

of medium alone were included as a control (None). (A) DNA content was determined by 

propidium iodide (PI) staining followed by FACS analysis. Representative FACS histogram 

plots are shown for media (A-i) , F(ab’)2 anti-mouse IgM stimulated cells (A-ii)  or cells 

treated with F(ab’)2 anti-mouse IgM in combination with anti-mouse IgG+IgM (A-iii) . Data 

represents the mean percentage of subdiploid cells (+/- range of duplicate values) (A-iv) .  

For the assessment of the mitochondrial membrane potential the cells were stained with 

DiOC6 and analysed by FACS, representative histograms are shown in (B) and (C). Data 

are expressed as the mean percentage of cells with (D) high or (E) low membrane 

potential (+/- range of duplicate values). Data are representative of at least three 

independent experiments. 
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Figure 4.4 Expression of caspase 8 and cFLIP 

To determine caspase 8 (A) and cFLIP (B) expression in whole cell lysates, purified 

mature splenic B cells (107 cells/well) were stimulated with 50 µg/ml F(ab’)2 anti-mouse 

IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in combination with 75 µg/ml anti-mouse 

IgG+IgM (BCR+FcγRIIb) for 24 or 48 h and whole cell lysates were prepared. Cells 

stimulated with medium were included as a control (None). Expression of caspase 8 was 

assessed by SDS-PAGE gel electrophoresis followed by Western Blotting. 

Gel loading was as follows: Lane 1 None, Lane 2 BCR, Lane 3 BCR+FcγRIIb. 
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Figure 4.5 p53 expression is upregulated by BCR/Fc γRIIb co-ligation 

(A) Purified mature splenic B cells (106 cells/ml) were stimulated for 3, 7, 20 or 24 h in the 

presence of 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in 

combination with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb). Whole mRNA was 

isolated and transcribed into cDNA. p53 expression levels were detected by TaqMan® 

quantitative RT-PCR using GAPDH as endogenous control. Data are shown as mean % 

expression relative to GAPDH, as indicated, +/- SD of triplicate values. 

(B-D) For the detection of p53 protein levels purified mature splenic B cells (107 cells) were 

stimulated for 48 h in the presence of 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml 

F(ab’)2 anti-mouse IgM in combination with B7.6 anti-IgM to ligate the BCR (50 µg/ml), 

2.4G2 IgG to ligate FcγRIIb (50 µg/ml) and 75 µg/ml Donkey anti- Rat IgG to crosslink the 

B7.6 and 24G.2 Abs and hence coligate the BCR and FcγRIIb (BCR+FcγRIIb). 

Furthermore, cells were treated with caspase 8 inhibitor or DMSO as a control. Cells 

stimulated in the presence of medium alone were included as a control (None). After 48 h 

(B) whole cell lysates or (C) nuclear and (D) cytoplasmic fractions were prepared and 

expression of p53 was assessed by SDS-PAGE gel electrophoresis followed by Western 

Blotting. Gel loading was as follows: Lane 1 +DMSO, Lane 2 + caspase 8 inhibitor. 
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Figure 4.6 Noxa expression and effector caspase act ivation are increased by 

FcγRIIb-mediated signalling 

(A) To determine Noxa expression in whole cell lysates, purified mature splenic B cells 

(107 cells/well) were stimulated with 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml 

F(ab’)2 anti-mouse IgM in combination with 75 µg/ml anti-mouse IgM (BCR+FcγRIIb) for 24 

or 48 h and whole cell lysates were prepared. Cells stimulated with medium were included 

as a control (None). Expression of Noxa was assessed by SDS-PAGE gel electrophoresis 

followed by Western Blotting. Gel loading was as follows: Lane 1 None, Lane 2 BCR, Lane 

3 BCR+FcγRIIb. 

(B-E) For the assessment of caspase activation cells (106 cells/ml) were stimulated as 

described above. Furthermore, cells were treated with caspase 8 inhibitor or DMSO as a 

control. After 24 h the cells were labeled with FITC-VAD-FMK and analysed by FACS. 

Representative histograms are shown of the (B) unlabeled control cells as well as (C) 

treated and labelled cells. Data are shown as either (D) the percentage of cells positive for 

FITC-expression or (E) as MFI. Data are representative of at least two independent 

experiments. 
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Figure 4.7 Caspase 8 inhibition does not affect Fc γRIIb-dependent growth arrest 

Murine purified splenic B cells (106 cells/ml) were stimulated for 48 h in the presence of 50 

µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in combination 

with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb), as indicated. Furthermore, cells were 

treated with caspase 8 inhibitor or DMSO as a control. Cells stimulated in the presence of 

medium alone were included as a control (None). DNA content was determined by 

propidium iodide (PI) staining followed by FACS analysis. (A) Data are displayed as the 

percentage of cells in the different phases of cell cycle after stimulation with 50 µg/ml 

F(ab’)2 anti-mouse IgM in combination with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb) 

in the presence or absence of caspase 8 inhibitor, as indicated. (B) % of cells in G1-G0 

phase, (C) % cells in S phase, (D) % of cells in G2-M phase of cell cycle. Data represents 

each cell cycle stage expressed as the mean percentage of the total number of live cells 

(excluding cells with subdiploid DNA content) analysed (+/- range of duplicate values). 

(E-F) To assess DNA synthesis by analysis of labelled thymidine incorporation additional 

cells were stimulated for (E) 48 or (F) 72 h as described above. Proliferation was assessed 

by pulsing the cells with 0.5 µCi/well [3H] thymidine for 6 h and measurement of 

incorporated label using a liquid scintillation counter. Data are shown as counts per minute 

(cpm) +/- SD of triplicate values. Data are representative of at least three independent 

experiments. 
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Figure 4.8 Proteins involved in cell cycle control are not regulated by caspase 8 

(A) Mature purified splenic B cells (106 cells/ml) were stimulated for 3, 7, 20 or 24 h in the 

presence of 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in 

combination with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb). Whole mRNA was 

isolated and transcribed into cDNA. c-Myc expression levels were detected by TaqMan® 

quantitative RT-PCR using GAPDH as endogenous control. Data are shown as mean % 

expression relative to GAPDH +/- SD of triplicate values. 

(B) Cells were stimulated for 24 h with 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or a 

combination of 50 µg/ml F(ab’)2 anti-mouse IgM, 50 µg/ml rat anti-mouse IgM, 50 µg/ml rat 

anti-mouse FcγRIIb and 75 µg/ml donkey anti-rat IgG (H+L) antibodies (BCR+FcγRIIb) 

and whole cell lysates prepared. Expression of c-Myc, phospho-RbS807/811 or β-actin 

was assessed by SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg 

protein/lane). Gel loading was as follows: Lane 1 +DMSO, Lane 2 + caspase 8 inhibitor. 
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Figure 4.9 BCR/Fc γRIIb cross-linking regulates SPA-1 and PAC-1 mRNA e xpression 

Purified mature splenic B cells (106 cells/ml) were stimulated for 3, 7, 20 or 24 h in the 

presence of 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in 

combination with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb). Whole mRNA was 

isolated and transcribed into cDNA. (A) PAC-1 and (B) SPA-1 expression levels were 

detected by TaqMan® quantitative RT-PCR using GAPDH as an endogenous control. 

Data are shown as mean % expression relative to GAPDH, as indicated, +/- SD of 

triplicate values. 
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Figure 4.10 Co-ligation of BCR/Fc γRIIb induces Fas expression 

Purified mature splenic B cells (106 cells/ml) were stimulated for 48 h in the presence of 50 

µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in combination 

with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb), as indicated. Furthermore, cells were 

treated with caspase 8 inhibitor or DMSO as a control. Cells stimulated in the presence of 

medium alone were included as a control (None). Extracellular expression of Fas (CD95) 

was detected by staining with a Fas-specific antibody. (A) Representative histograms are 

shown and (B) data are expressed as (i) mean percentage of B220+ cells expressing Fas 

or (ii) MFI (+/- range of duplicate values). Data are representative of at least two 

independent experiments. 

(C) Cells were stimulated with 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or a combination of 

50 µg/ml F(ab’)2 anti-mouse IgM, 50 µg/ml rat anti-mouse IgM, 50 µg/ml rat anti-mouse 

FcγRIIb and 75 µg/ml donkey anti-rat IgG (H+L) antibodies (BCR+FcγRIIb) for 24 h and 

whole cell lysates were prepared. Expression of Fas, FasL or β-actin was assessed by 

SDS-PAGE gel electrophoresis followed by Western Blotting (15 µg/lane). Gel loading was 

as follows: Lane 1 +DMSO, Lane 2 + caspase 8 inhibitor.  
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Figure 4.11 Caspase 8 is not involved in the regula tion of Fas mRNA levels 

(A) Purified mature splenic B cells (106 cells/ml) were stimulated for 3, 7, 20 or 24 h in the 

presence of 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in 

combination with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb). 

(B) Cells were treated for 24 h as described above in the presence or absence of 10 µM 

caspase 8 Inhibitor or DMSO as control. Whole mRNA was isolated and transcribed into 

cDNA and Fas (CD95) expression levels were detected by TaqMan® quantitative RT-PCR 

using GAPDH as an endogenous control. Data are shown as mean % expression relative 

to GAPDH +/- SD of triplicate values. 

 

 

 

 



 

 238 

Figure 4.12 FasL mRNA expression is not influenced by caspase 8 activation 

(A) Purified mature splenic B cells (106 cells/ml) were stimulated for 3, 7, 20 or 24 h in the 

presence of 50 µg/ml F(ab’)2 anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in 

combination with 75 µg/ml anti-mouse IgG+IgM (BCR+FcγRIIb). 

(B) Cells were treated for 24 h as described above in the presence or absence of 10 µM 

caspase 8 Inhibitor or DMSO as control. Whole mRNA was isolated and transcribed into 

cDNA and FasL (CD178) expression levels were detected by TaqMan® quantitative RT-

PCR using GAPDH as endogenous control. Data are shown as mean % expression 

relative to GAPDH +/- SD of triplicate values. 
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Figure 4.13 Fc γRIIb-dependent growth arrest and apoptosis are redu ced in 

MRL/MpJ- Faslpr  mice and inhibition of Fas/FasL signalling prevent s FcγRIIb-

mediated apoptosis  

Purified mature splenic B cells were stimulated for 48 h in the presence of 50 µg/ml F(ab’)2 

anti-mouse IgM (BCR) or 50 µg/ml F(ab’)2 anti-mouse IgM in combination with 75 µg/ml 

anti-mouse IgG+IgM (BCR+FcγRIIb), as indicated. Cells stimulated in the presence of 

medium alone were included as a control (None). 

(A) DNA synthesis was assessed by pulsing the cells (5 x 105 cells/well) with 0.5 µCi/well 

[3H] thymidine for 6 h of culture and measurement of incorporated label using a liquid 

scintillation counter (A-i ; 17 wks old MRL/MpJ, A-ii ; 12 wks old MRL/MpJ-Faslpr ). (A-iii)  

The data represents values from experiments using B cells from Balb/C mice, MRL/MpJ 

mice and pooled values for B cells from 9, 12, 16 and 20 week old MRL/MpJ-Faslpr  mice. 

*** p<0.001, ** p<0.01, * p<0.05 

(B) DNA content was determined by propidium iodide (PI) staining followed by FACS 

analysis. Data are shown as the percentage of subiploid cells (B-i ; 17 wks old MRL/MpJ, 

B-ii ; 12 wks old MRL/MpJ-Faslpr ). (B-iii)  Data represents subdiploid cells (normalised 

against values from BCR-stimulated cells) and is expressed as a ratio of the MRL/MpJ 

control cells. The values from experiments using B cells from 9, 12, 16 and 20 week old 

MRL/MpJ-Faslpr  mice were pooled. 

(C) The dissipation of the MMP was assessed by staining cells with DiOC6 and data are 

expressed as the percentage of cells with high MMP (C-i; 17 wks old MRL/MpJ, C-ii ; 12 

wks old MRL/MpJ-Faslpr ). (C-iii)  Data represents cells with high DiOC6 fluorescence 

(normalised against values from BCR-stimulated cells) and is expressed as a ratio of the 

MRL/MpJ control cells. The values from experiments using B cells from 9, 12, 16 and 20 

week old MRL/MpJ-Faslpr  mice were pooled. 

(D) Purified mature splenic B cells (106 cells/well) were stimulated as described above. 

Furthermore, cells were treated with 5 or 10 µg/ml armenian hamster IgG as a control or 5 

or 10 µg/ml anti-FasL blocking antibody. Cells stimulated in the presence of medium alone 

were included as a control (None). For the assessment of cell cycle status cells were 

stained with PI and analysed by FACS. Data are shown as the % subdiploid cells after 

treatment with BCR+FcγRIIb. Data are representative of at least two independent 

experiments. 
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Figure 4.14 Proliferation analysis of purified peri pheral B cells by [ 3H] thymidine 

incorporation and CFSE labelling  

Purified peripheral B cells (CD19+-selected) from a healthy control were subjected to 

proliferation analysis. The cells (105 cells/well) were stimulated for (A-i)  4, 24, 48 or (A-ii) 

48, 72 or 96 h in the presence of 50 µg/ml F(ab’)2 anti-human IgG+IgM (BCR), 75 µg/ml 

anti-human IgG+IgM (BCR+FcγRIIb) or the combination of both (mitogenic BCR+FcγRIIb), 

as indicated. Cells stimulated in the presence of medium alone were included as a control 

(None). DNA synthesis was assessed by pulsing the cells with 0.5 µCi/well [3H] thymidine 

for the last 8 h of culture (for 4 h for the 4 h timepoint) followed by measurement of 

incorporated label using a liquid scintillation counter. (A) Data are shown as counts per 

minute (cpm) +/- SD of triplicate values. *** p<0.001, BCR against BCR+FcγRIIb, BCR 

against mitogenic BCR+FcγRIIb 

(B-D) To analyse proliferation by a different method, cells were stained with CFSE after 

CD19+-purification and harvested after the indicated times followed by FACS analysis. The 

data are shown as the percentage of all cells analysed and the number of divisions they 

have undergone (B – 4 h, C – 24 h, D – 48 h). 
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Figure 4.15 Correlation between proliferation, cell  cycle stages and apoptosis  

Purified peripheral B cells (CD19+-selected) from a (A) healthy control and (B) three RA 

patients were subjected to proliferation analysis. The cells (105 cells/well) were stimulated 

for 48 h in the presence of 50 µg/ml F(ab’)2 anti-human IgG+IgM (BCR) or 50 µg/ml 

F(ab’)2 anti-human IgG+IgM in combination with 75 µg/ml anti-human IgG+IgM (mitogenic 

BCR+FcγRIIb), as indicated. Cells stimulated in the presence of medium alone were 

included as a control (None). (i) DNA synthesis was assessed by pulsing the cells with 0.5 

µCi/well for the last 8 h of culture and measurement of incorporated label using a liquid 

scintillation counter. Data are shown as counts per minute (cpm) +/- SD of triplicate values 

(data from the three patients was pooled). (ii)  DNA content was determined by propidium 

iodide (PI) staining followed by FACS analysis. Data represents each cell cycle stage 

expressed as a percentage of the total number of cells analysed or (iii)  the percentage of 

cells in the mitotic phases of the cell cycle. (iv)  For the assessment of the mitochondrial 

membrane potential the cells were stained with DiOC6 and analysed by FACS. Data are 

shown as percentage of cells with high or low membrane potential. (B) The data from the 

three patients was pooled.  
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Figure 4.16 Inhibition of proliferation after BCR/F cγRIIb cross-linking is reduced in 

some patients suffering from autoimmune disease 

Purified peripheral B cells (CD19+ selected) from 12 healthy controls and 16 RA patients, 

10 SLE patients as well as 9 patients with other autoimmune diseases (Sjogren’s 

syndrome, Connective tissue disease, Dermatomyositis, Psoriatic arthritis) were tested for 

their inhibitory capacity upon BCR/FcγRIIb cross-linking. The data are shown as %-

inhibition of DNA synthesis upon stimulation with F(ab’)2+Intact anti-IgG+IgM (the BCR 

response represents 100%). 
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Figure 4.17 Proliferation analysis of purified peri pheral B cells from recalled patients 

with RA 

Purified peripheral B cells (CD19+-selected) from two different patients with RA who had 

been tested before, were subjected to proliferation analysis. The cells (105 cells/well) were 

stimulated for 48 h in the presence of 50 µg/ml F(ab’)2 anti-human IgG+IgM (BCR) or 50 

µg/ml F(ab’)2 anti-human IgG+IgM in combination with 75 µg/ml anti-human IgG+IgM 

(mitogenic BCR+FcγRIIb), as indicated. Cells stimulated in the presence of medium alone 

were included as a control (None). DNA synthesis was assessed by pulsing the cells with 

0.5 µCi/well [3H] thymidine for the last 8 h of culture and measurement of incorporated 

label using a liquid scintillation counter. Data are shown as counts per minute (cpm) +/- SD 

of triplicate values. (A) Patient 72 (i) first experiment, (ii)  recall experiment. (B) Patient 66 

(i) first experiment, (ii)  recall experiment. 

 



 

 244 

Figure 4.18 Differences in the function of the two FcγRIIb isoforms Fc γRIIb1 and 

FcγRIIb2  

(A) Separate exons encode the transmembrane and cytoplasmic domains of FcγRIIb; thus 

several isoforms can be created by alternative splicing of mRNA transcripts. Human 

FcγRIIb encodes three transcripts, FcγRIIb1, FcγRIIb2 and FcγRIIb3, which arise by 

alternative splicing mechanisms. The mature forms of FcγRIIb1 and FcγRIIb3 are identical 

but differences in their peptide leader sequences prevent the expression of FcγRIIb3. 

(B) Upon IgG binding, FcγRIIb2 is capable of mediating rapid endocytosis by means of 

clathrin-coated vesicles allowing antigen processing and presentation on MHC II. 

However, an insertion of 19 amino acids in the cytoplasmic tail of FcγRIIb1 disrupts the 

cytoskeletal attachment domain responsible for modulating receptor internalisation. Thus, 

FcγRIIb1 mainly carries out the inhibitory functions described in this chapter. 
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Figure 4.19 Fc γRIIb1/FcγRIIb2 expression of PBMCs from patients with RA or SLE 

and healthy controls  

Total RNA was extracted from PBMCs from patients with RA (left panel)  or SLE (right 

panel) or healthy controls and reverse transcribed. Expression levels of FcγRIIb1 (A-B)  

and FcγRIIb2 (C-D) were assessed by TaqMan® quantitative RT-PCR and the 

FcγRIIb1/FcγRIIb2 ratio calculated (E-F). Individual mRNA levels are expressed as a 

percentage relative to HPRT mRNA levels. Some of the data were acquired by Kirsty 

Brown and used with her permission. *** p<0.001, ** p<0.01, * p<0.05 
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Figure 4.20 Expression of Fc γRIIb in cells of the immune system 

Total RNA was extracted from either purified peripheral B cells, B cell-depleted PBMCs 

(Non-B cells) (A), whole PBMCs, purified T cells or T cell-depleted PBMCs (Non-T cells) 

(B). Whole mRNA was then transcribed into cDNA and FcγRIIb1/FcγRIIb2 RNA 

expression levels were detected by TaqMan® quantitative RT-PCR using β-actin as 

endogenous control. Data are shown as % expression relative to β-actin. 

(C) PBMCs from a healthy control were stained with anti-FcγRIIb, anti-CD19, anti-CD11b 

antibodies or relevant isotype controls. Data are shown as representative histograms of 

FcγRIIb-positive cells as well as plots showing CD19/FcγRIIb or CD11b/FcγRIIb double-

positive cells. 
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Figure 4.21 Fc γRIIb signalling reduces cell cycle progression/prol iferation 

Co-ligation of the BCR and FcγRIIb reduces the strength of BCR-mediated signalling by 

reducing the activation of various signalling cascades including the ERK MAPK pathway. 

This is achieved by, for example, reducing the activation of Ras/Raf through the 

recruitment of p62 Dok. Furthermore, another level of negative regulation of the ERK 

MAPK pathway has been identified to be transcriptional upregulation of PAC-1 and SPA-1. 

PAC-1 dephosphorylates and thereby inactivates ERK, whereas SPA-1 decreases the 

levels of active Rap. Furthermore, FcγRIIb-mediated growth arrest was found to be linked 

to reduction of positive regulatory elements of the cell cycle, including c-Myc and 

hyperphosphorylated Rb which could be partially due to the reduced levels of ERK 

activation observed upon BCR/FcγRIIb co-ligation.



 

 248 

5 General Discussion 

 

The immune system has evolved to protect the host from invading pathogens. Thus, 

the mammalian immune system consists of highly specialised tissues and cells that 

orchestrate the defense against different pathogens such as viruses, bacteria and 

parasites. B cells and the antibodies they produce are a major part of the protective 

mechanisms of the immune system. The large number of BCR specificities necessary to 

recognise and mount responses against the numerous pathogen antigens that the host is 

likely to encounter in a lifetime is best achieved by random recombination events. The side 

effect of this efficient mechanism, however, is the potential creation of self-reactive antigen 

receptors. Hence the evolution of negative selection events which ensure that autoreactive 

B cells are removed from the repertoire has generally provided the solution to this 

problem. In addition, homeostatic mechanisms have developed in which B cell responses 

in the periphery are tightly regulated and efficiently switched off upon successful removal 

of the pathogens by inhibitory feedback mechanisms such as those depending on 

interactions between immune complexes and FcγRIIb. Thus, co-ligation of this receptor 

with the BCR by the engagement of antigen-antibody immune-complexes allows the cell to 

sense the balance between free and antibody-bound antigen. As, in the event of a 

succesful immune response against pathogens, the majority of antigen will be present in 

immune complexes rather than free monomeric antigen, simultaneous signalling via 

FcγRIIb and the BCR desensitises the activatory signalling cascades allowing the B cell 

response to be switched off. 

Perturbations in the checkpoints controlling negative selection or in the homeostatic 

balance between activation and termination of responses due to changes in the 

expression of FcγRIIb, can therefore potentially increase the chances of survival and 

activation of self-reactive B cell clones or indeed an expanded pool of pathogen-specific B 

cells that are weakly cross-reactive with self-antigens. Such an increase in autoreactive 

cells might therefore lead to the initiation of autoantibody production and hence 

autoimmune diseases such as RA and SLE. Thus the eventual outcome of the core aims 

of this thesis, to identify and dissect the key signalling pathways underlying BCR-mediated 

negative selection of immature B cells as well as those underpinning inhibitory FcγRIIb 

signalling, could therefore shed light on the mechanisms permitting the progression of 

autoimmune disorders and provide information to further the development of targeted 

therapies. 
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5.1 Immature B cell signalling 

 

In confirmation of previous evidence [310], the activation of the MAPK ERK1/2 was 

found to be crucial for the survival of WEHI-231 cells. The WEHI-231 B cell lymphoma, 

which exhibits the phenotype (sIgM+, sIgD-/low, FcγRlow, Faslow, MHC class IIlow) of immature 

B cells, has been widely used as a model for the dissection of the signalling mechanisms 

controlling BCR-mediated negative selection of immature B cells and their rescue by T 

cell-derived and survival factors. Previous studies from this laboratory [310] suggested that 

whilst a strong transient BCR-stimulated spike of ERK activation (1-4 h) correlated with 

induction of apoptosis in WEHI-231 B cells, maintenance of sustained, yet cycling 

activation of the MAPK, ERK1/2 was crucial for the survival and proliferation of WEHI-231 

cells. Indeed, the abrogation of such sustained ERK activation is one of the major 

signalling events leading to BCR-mediated growth arrest and apoptosis of WEHI-231 B 

cells [310]. The mechanisms involved were not fully delineated but these earlier studies 

suggested that in addition to partially suppressing activation of MEK1/2, the upstream 

regulator of ERK1/2, BCR signalling also resulted in termination of ongoing ERK signalling 

by recruitment of the ERK MAPK phosphatase, PAC-1. Rather surprisingly, however, 

given the desensitisation of MEK activity, it was found that Ras activation was not 

suppressed by such BCR-signalling. 

This study has now confirmed and extended these previous findings to show that the 

reduction of such MEK and ERK activation coincides with the downmodulation of the Rap-

1/B-Raf signalling pathway. Thus, ligation of the BCR diminished the levels of active Rap-1 

in the cells (Fig.3.12). These findings are intriguing as Rap-1/B-Raf signalling has been 

shown in various models, including B cells, to activate the ERK cascade [411]. In B cells, 

Rap-1B is the dominant form of Rap-1 [423], and Rap-1B-deficiency impacts on B cell 

development reducing the number of immature B cells in the bone marrow [423], 

consistent with the proposal that such Rap-1-mediated ERK activation promotes immature 

B cell survival. However, both isoforms of Rap, Rap-1 and Rap-2, which share 60% 

homology and are mainly regulated by the same activators/inhibitors, have been shown to 

be activated upon BCR-ligation in WEHI-231 B cells [418,419]. Nevertheless, such Rap-1 

activation is maximal within the first 1-4 hours [373,418] and hence perhaps correlates with 

the coupling of the BCR to the strong, transient spike of apoptotic ERK signalling 

[310,373]. Interestingly, although Rap-1 and Rap-2 seem to carry out similar functions, 

they differ in their interaction with RapGAPs. Thus, Rap-2 has lower sensitivity to 

deactivation by RapGAPs and therefore remains active for longer providing a more long-

lasting Rap signal [395]. It would therefore be interesting to analyse the relative amounts 
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and subcellular localisation of active Rap-1 and Rap-2 after BCR-ligation or in 

spontaneously proliferating WEHI-231 cells to determine if both forms of Rap are needed 

for the activation of ERK, and if indeed inhibition of both forms is necessary to achieve 

abrogation of the ERK signal.  

WEHI-231 cells also express two isoforms of Raf, B-Raf and Raf-1, both of which 

can interact with Rap. However, binding of Rap to Raf-1 and B-Raf is thought to induce 

very different signals. Thus, whilst Rap/B-Raf has been found to mainly activate the ERK 

cascade [411], Rap/Raf-1 interaction has been shown to inhibit ERK activation 

sequestering Raf-1 away from Ras [408]. Indeed, it has been reported previously, that in 

chicken B cells, B-Raf rather than Raf-1 is the major upstream regulator of the ERK 

cascade [170]. Interestingly, the forced expression of B-Raf in peripheral T cells 

transformed Rap-1 into an activator of the ERK cascade whereas in normal peripheral T 

cells, which express little or no B-Raf, Rap-1 generally signals to inhibit ERK activation by 

sequestering Raf-1 [412]. The relative amounts of B-Raf and Raf-1 or characterisation of 

which isoform is generally found complexed with Rap-1 has not been addressed in this 

study. It would therefore be of interest to determine how cells, such as WEHI-231 cells, 

which express both isoforms regulate the binding and activation of one or the other Raf 

isoform. 

Rap signalling can be regulated by various mechanisms including modulation of the 

levels of specific GEFs (responsible for their activation) or RapGAPS (proteins that 

increase the intrinsic GTPase activity of Rap leading to its deactivation) that act to 

homeostatically regulate Rap activity [393]. As the precise mechanisms regulating Rap 

activity after BCR-ligation in WEHI-231 cells have not been identified, this study therefore 

contributed to the dissection of these signalling pathways by establishing a potential role 

for SPA-1. Thus, BCR-ligation was found to upregulate SPA-1 whereas CD40-mediated 

positive signals actively suppressed SPA-1 expression (Fig.3.13) suggesting that the 

reduction of Rap signalling observed due to BCR-ligation could therefore be partly 

achieved by an increase in SPA-1 levels (Fig.5.1). The biological importance of SPA-1 

mediated suppression of Rap-1 in immature B cells has been recently confirmed as SPA-1 

deficient B cells showed signs of skewed receptor editing creating higher numbers of auto-

antigen specific B cells [429]. Thus, the Rap-1/SPA-1 signalling module seems to play a 

crucial role in regulating tolerance checkpoints in developing B cells.  

Although Rap-1 has been found to be important in the regulation of ERK activation, 

more recently its role in the regulation of adhesion and migration has been a major 

research focus [639]. Thus, in B cells Rap was found to be essential for the spreading 

response and immune synapse formation upon antigen encounter [426]. Thus, the 



 

 251 

possibility that the reduction of Rap activity in WEHI-231 cells also influences cell-cell 

interactions or migration and adhesion, processes which could also affect BCR-signalling, 

can not be excluded. Moreover, these functions might explain why Rap is activated via the 

BCR at early time points (< 4 h). Further studies to dissect these separate effects of Rap 

might provide insight into the relative roles of Rap signalling in immature and mature B 

cells. Indeed, studies to address the differential roles of Rap were initiated by attempting to 

analyse the effects of over-expressing dominant negative or constitutively active Rap 

mutants on the regulation of the ERK cascade and consequent functional outcomes of 

WEHI-231 B cells. However, technical difficulties hampered the transfection and selection 

of stable clones and hence further studies examining the effects of forced Rap expression 

are therefore still needed to confirm the role of Rap in ERK signalling. Alternatively, 

primary immature B cells from SPA-1-deficient mice would provide another tool to dissect 

the effects of Rap overexpression. As mentioned above, these mice display defects in their 

B cell development as well as negative selection processes [429]. The analysis of BCR-

mediated responses in SPA-1-deficient immature B cells would therefore potentially yield 

information on the role of SPA-1 and Rap-1 in the negative selection process. 

The experiments analysing SPA-1 expression following BCR ligation revealed 

additional layers of regulation involving PI3 kinase- and ERK-mediated negative feedback 

loops (Fig.5.1). For example, PI3 kinase signalling was found to hamper the transcription 

of SPA-1 as well as PAC-1 mRNA, whereas the ERK cascade only regulated the 

expression of PAC-1, but had no influence on SPA-1 levels (Fig.3.14/15). The inhibition of 

these negative regulators therefore strengthens the survival programme of positively 

stimulated cells by stabilising or even increasing the activity of ERK. These findings are 

not unexpected as other regulatory elements of the ERK cascade, such as DUSPs, have 

previously been shown to be regulated by negative feedback inhibition [361]. The 

elements controlling SPA-1 and PAC-1 RNA expression, especially downstream of PI3 

kinase and ERK signalling have not been identified in this study and it would therefore be 

of interest to determine these factors. 

The functional outcome of ERK activation does not solely depend on the strength of 

the signal but also on its timing. As stated above, previous studies in this laboratory have 

not only confirmed the importance of sustained ERK signalling for proliferation of WEHI-

231 cells but also demonstrated that strong but transient ERK activation, following BCR 

ligation, induces apoptosis [310]. These distinct effects of temporally regulated signals 

could be further influenced by the location of the activated ERK signal. For example, 

depending on the type of cell, GT1-7 cells or HEK293 cells, treatment with gonadotropin-

releasing hormone was found to induce a transient or sustained ERK signal, respectively, 
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which influenced the functional outcome of such ERK activation. Thus, whilst the transient 

signal did not allow the translocation of active ERK to the nucleus, sustained signalling did 

[640], suggesting that the duration of the ERK signal might determine downstream 

signalling by dictating differential localisation of activated ERK. Indeed, in this present 

study it was shown that the transient ERK signal induced by the ligation of the BCR was 

reflected by reduced expression of activated ERK in the nucleus when compared to that 

resulting from the sustained signal in cells rescued from BCR-mediated growth arrest by 

CD40 (Fig.3.16). Thus the strength, duration and localisation (cytoplasmic versus nuclear) 

of ERK activation might influence the balance between pro-survival and apoptotic ERK 

signalling. 

Relating to this, the results in Chapter 3 implicate c-Myc as the major downstream 

effector of sustained cycling ERK signalling in survival and proliferation of WEHI-231 B 

cells and presumably reflect the ability of c-Myc to enhance cell cycle progression by 

various mechanisms such as increasing the transcription of cyclin D genes or the 

suppression of p27 expression [274,278]. With respect to the mechanisms involved, 

pharmacological inhibition of the ERK pathway supported the notion that ERK is involved 

in the stabilisation of c-Myc protein levels as abrogating ERK signalling reduced the 

expression of c-Myc protein but hardly affected its’ transcriptional levels (Fig.3.23-25). The 

stabilisation of c-Myc expression therefore provides a link between ERK signalling and 

proliferation and survival of WEHI-231 cells (Fig.5.2). Further support for the importance of 

activated ERK as well as c-Myc for cell cycle progression and proliferation came from the 

experiments utilising LSC analysis to directly correlate the expression and activation of 

molecules of interest with cell cycle stage on a single cell basis. Thus in confirmation of 

their known roles in cell cycle progression, this analysis revealed that both ERK and c-Myc 

expression levels were found to be highest in mitotic cells and severely diminished in 

growth arrested and apoptotic cells (Fig.3.10 and 3.27). Thus, sustained activation of ERK 

induces stable levels of c-Myc and hence enables cells to overcome the G1 restriction 

point and enter mitosis. 

Both ERK and c-Myc have been implicated in the induction of cyclin expression 

[274,372] and hence the enhanced activation of cyclin D/Cdk complexes and consequent 

hyperphosphorylation of Rb resulting in the release of the E2F transcription factor required 

for induction of S-phase genes [245]. Consistent with this, the reduced levels of c-Myc 

(achieved by the abrogation of ERK activation secondary to either BCR-ligation or 

pharmacological inhibition) correlated with increased levels of the cyclin/Cdk inhibitor, p27 

(Fig.3.30) and severely compromised levels of hyperphosphorylated Rb (Fig.3.30 and 

3.32/33). 



 

 253 

CD40-dependent proliferation requires the induction of cyclin D/Cdk complexes to 

progress through the G1/S transition [336] and the importance of this is indicated by 

studies in which forced expression of E2F can protect Bcl-xL-overexpressing WEHI-231 

cells from BCR-driven growth arrest [641]. CD40-mediated rescue from growth arrest 

appears to be achieved by sustaining ERK activation [310,373] and hence c-Myc levels, 

thereby inducing hyperphosphorylation of Rb proteins and release of E2F via the induction 

of cyclin/Cdk complexes (Fig.5.2). Indeed, CD40 signalling reverses BCR-mediated 

upregulation of the cell cycle inhibitor p27 and likely overcomes the suppression of E2F by 

inducing Rb hyperphosphorylation (Fig.3.30 and 3.32/33).  

The ubiquitination of proteins is important in many cellular processes and signalling 

pathways. It plays a major role in the regulation of cellular protein levels by targeting 

proteins for degradation by the proteasome. Interestingly, many of the proteins involved in 

cell cycle regulation, including c-Myc and p27, can be targeted for ubiquitination and 

proteasomal degradation. It was therefore hypothesised that ubiquitination would be an 

important process in BCR-mediated signalling leading to growth arrest. Indeed, c-Myc as 

well as p27 were found to be regulated by proteasomal degradation and inhibition of the 

proteasome partially protected these molecules from degradation especially in 

spontaneously proliferating WEHI-231 cells (Fig.3.35). These findings are preliminary and 

more in depth studies of the role of ubiquitination might provide a more detailed insight into 

the role of this modification in the signalling leading to growth arrest or survival.  

Consistent with this, E3 ligases, the enzymes carrying out the transfer of ubiquitin to 

target proteins, have been implicated in T cell anergy by, for example, determining the 

signalling threshold and need for costimulation for T cell priming [229]. Some of these E3 

ubiquitin ligases, such as the Cbl family of proteins, have also been found to regulate B 

cell responses [229], where in the majority of cases these enzymes appear to function as 

negative regulators of B cell signalling [431]. Indeed, in this present study, the expression 

of the E3 ubiqutin ligase Cbl-b was found to be regulated by BCR-signalling as ligation of 

the BCR increased the levels of Cbl-b (Fig.3.37), indicating a role for this E3 ligase in 

negative signalling induced by the BCR. Interestingly, Cbl-b has been implicated in the 

regulation of Rap activation by influencing C3G, Crk and Rap complex formation and in T 

cells, Cbl-b mediated ubiquitination of Crk reduced the activation of Rap [438]. 

Grb2/C3G/Crk/Cbl complexes have also been found to be recruited to the BCR in B cells 

and hence Cbl-b might inihibit Rap activation in these cells as well (Fig.5.2) [495]. 

Constructs encoding wild-type or a dominant negative form of Cbl-b are available in this 

laboratory and thus transfection of WEHI-231 cells with these constructs might provide 
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further insight into the role these molecules play in BCR-mediated growth arrest and 

apoptosis in immature WEHI-231 B cells. 

 

5.2 FcγRIIb signalling in mature B cells 

 

FcγRIIb-mediated suppression of immune responses is known to be important for 

the maintenance of B cell homeostasis as indicated by the findings that FcγRIIb-deficient 

animals exhibit increased inflammatory responses and enhanced susceptibility to 

autoimmune disorders [577,579,580]. FcγRIIb-signalling acts, at least in part, by reducing 

the antigen-driven activation of B cells resulting in growth arrest and apoptosis [309]. Such 

apoptosis reflects the dissipation of the mitochondrial membrane potential and ultimately 

the release of cytochrome C and apoptosis [309]. Similar to other types of apoptosis 

induced in B cells, such as that observed in germinal centre B cells [642], execution of 

FcγRIIb-mediated apoptosis did not appear to depend on effector caspases (3,6 or 9) or 

even a single type of protease but rather seemed to involve simultaneous activation of 

multiple executioner proteases including caspases, cathepsins and calpains [309].  

The study presented in Chapter 4 extended these findings by shedding light on the 

role of caspase 8, and the signals controlling it, in this process. Thus, caspase 8 was 

found to be crucial for the induction of FcγRIIb-dependent apoptosis as pharmacological 

inhibition of caspase 8 reduced the levels of apoptosis dramatically (Fig.4.3). As caspase 8 

is the major initiator caspase utilised during death receptor signalling, it was hypothesised 

that FcγRIIb might induce the expression and consequent autocrine signalling of death 

receptors and their ligands, such as Fas/FasL. Indeed, Fas and FasL were found to be 

upregulated due to BCR/FcγRIIb ligation at both the mRNA and protein level. Importantly, 

FcγRIIb-mediated apoptosis was reduced due to inhibition of Fas signalling (Fig.4.13). 

Consistent with this, B cells from MRL/MpJ-Faslpr  mice, a strain harbouring a deleterious 

mutation of the Fas gene, displayed defective growth arrest and apoptotic responses upon 

inhibitory BCR/FcγRIIb co-ligation. Collectively, therefore, these results suggest that 

Fas/FasL death receptor signalling might be involved in controlling FcγRIIb-dependent 

homeostatic regulation of mature B cells.  

The downstream effector mechanisms are not yet clear but p53, which is a major 

regulator of growth arrest and apoptosis, is an important candidate signal. For example, in 

its function as a transcription factor, it can result in growth arrest and apoptosis by 

increasing gene expression of p21, Bax or Fas [485,631]. Moreover, it has recently been 

shown to transduce apoptotic signalling in a transcription-independent manner by 

translocating to the cytoplasm or the mitochondria where it interacts with anti-apoptotic 
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Bcl-2 family members and hence induces the release of pro-apoptotic Bcl-2 proteins such 

as Bax [486]. Consistent with a key role for p53, signalling resulting from BCR/FcγRIIb co-

ligation regulates the expression levels as well as the localisation of p53 (Fig.4.5). Of 

particular interest, it was found that inhibition of caspase 8 prevented p53 from 

translocating from the nuclear to the cytoplasmic/mitochondrial compartments suggesting 

that caspase 8 plays a role in allowing p53 to localise to the cytoplasm where it could 

potentially bind to and activate pro-apoptotic Bcl-2 members and hence induce 

mitochondrial destabilisation. Additionally, p53 has been implied in the transcriptional 

regulation of caspase 8 [632,643] which could create a positive feedback loop between 

p53 and caspase 8. Moreover, the expression of one of the pro-apoptotic downstream 

targets of p53, the BH3-only Bcl-2 family member Noxa, was also found to be increased by 

FcγRIIb-mediated signals further confirming the involvement of p53 and suggesting that a 

signalling axis including Fas/FasL, caspase 8, p53 and Noxa, may be induced by FcγRIIb-

signalling. 

Although the results of this study have provided a model based on such Fas/FasL 

signalling for fully dissecting the mechanisms underlying apoptosis induced by co-ligation 

of BCR and FcγRIIb (Fig.5.3), there are still many unanswered questions. For example, it 

will be of interest not only to determine the mechanisms regulating the expression of 

Fas/FasL downstream of BCR/FcγRIIb co-ligation, but also to elucidate how the regulation 

of p53 and its’ subcellular localisation impact on B cell responses. 

 

5.3 FcγRIIb-mediated inhibition in human B cells 

 

B cells participate in the immune response through various functions such as 

antibody production, antigen-presentation and cytokine production and hence influence the 

responses of other cells including T cells. Thus, de-regulated and excessive B cell 

activation may increase the likelihood of developing autoimmunity. Mechanisms controlling 

B cell homeostasis such as inhibitory FcγRIIb-signalling therefore might play a crucial role 

in determining the threshold for B cell activation and autoantibody production in 

autoimmune diseases such as RA and SLE. Indeed, the pathology of these diseases have 

been shown to be linked to antibody production and B cell depletion has proven beneficial 

in many cases [551]. Moreover, a polymorphism of FcγRIIb which reduces its signalling 

capacity [590] has been found to be associated with SLE in some racial groups such as 

Japanese patients [589]. Thus, FcγRIIb provides a candidate which could potentially 

regulate B cell activation in the human system in the context of autoimmune disease.  
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Interestingly, therefore, in this study it was shown that cells from a small proportion 

of RA and SLE patients displayed little or no inhibition of BCR-driven proliferation upon 

FcγRIIb ligation in vitro (Fig.4.16), although, overall, the differences between the healthy 

control and RA or SLE cohorts were not statistically significant. However, only small 

cohorts of patients were studied, thus investigations of FcγRIIb expression in B cells from 

larger cohorts of patients, potentially from varying ethnic backgrounds, may provide 

statistically significant data to support a role for FcγRIIb function in the dysregulation of B 

cell responses in RA or SLE patients in certain populations. Indeed, it has previously been 

shown that de-regulation of FcγRIIb expression on memory and plasma B cells is more 

apparent in SLE patients with African-American background [588]. Thus, if the defects of 

the inhibitory response observed in this study correlate with overall expression levels of 

FcγRIIb they could also be more obvious and statistically significant in populations of other 

ethnic backgrounds. Nevertheless, the results presented in Chapter 4 indicate that 

FcγRIIb-mediated regulation of proliferation of mature peripheral B cells is not a dominant 

disease-driving mechanism. However, there is a possibility that changes in FcγRIIb-

signalling might contribute to the disease in some patients. Consistent with the theory that 

FcγRIIb expression is important for maintenance of self-tolerance, FcγRIIb1 and FcγRIIb2 

were found to be downregulated in PBMCs from RA patients. However, the most striking 

change between the RA/SLE patient cohorts and the healthy patients was the reduction of 

the FcγRIIb1/FcγRIIb2 ratio (Fig.4.19) due to a relative increase of FcγRIIb2 levels in 

patients compared to healthy controls. This change could influence the balance between 

antigen uptake and presentation and inhibitory signalling towards increased ability of cells 

to present antigen. In an autoimmune prone setting this could increase the presentation of 

self-antigen by autoreactive B cells which in turn could activate autoreactive T cells thus 

perpetuating auto-inflammatory responses. 

The results described in Chapter 4 therefore support a role for FcγRIIb in human 

autoimmune disease. However, there are many areas which are still unexplored such as 

the mechanisms regulating the differential expression of FcγRIIb1 and FcγRIIb2. 

Furthermore, it would be of interest to identify the contribution of the various cell types 

making up the PBMC compartment (B cells, monocytes, dendritic cells) towards the 

changes seen in FcγRIIb1/FcγRIIb2 expression. More detailed studies analysing a 

potential correlation between expression levels of FcγRIIb and changes in the inhibitory 

function of B cells would also contribute to further dissecting the function of this receptor in 

human B cells. Finally, examination of B cells in the location of the auto-inflammatory 

response such as the joint in RA patients would be of even more interest, as circulating B 

cells might not necessarily represent the status of tissue-resident B cells actively involved 
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in inflammation. Thus, the evidence of a role for FcγRIIb in the negative regulation of 

inappropriately activated B cells might provide necessary information for potential 

therapeutic intervention during autoimmune inflammatory diseases. 

 

5.4 Figures 
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Figure 5.1 Regulation of the ERK cascade in WEHI-23 1 B cells 

Cross-linking of the BCR on WEHI-231 cells reduces ERK signalling by multiple 

mechanisms. Thus, BCR-ligation suppresses the activation of the Rap/B-Raf pathway 

which is most likely achieved by the upregulation of SPA-1 levels but might also involve 

the increased expression and recruitment of the E3 ubiquitin ligase Cbl-b. The formation of 

the adaptor complex consisting of C3G, Grb2 and Crk can be inhibited by Cbl-b-dependent 

ubiquitination of Crk. C3G is a GEF for Rap and reduced recruitment and formation of this 

complex therefore reduces the activation of Rap. SPA-1 and the ERK-specific 

phosphatase PAC-1 were both found to be regulated by negative feedback loops involving 

ERK and PI3 kinase signalling. Hence, abrogation of ERK/PI3 kinase signalling induced 

the increase of SPA-1 and PAC-1 mRNA transcription by as yet unknown transcription 

factors. BCR-mediated downregulation of ERK ultimately leads to the reduction of c-Myc 

levels and growth arrest. 
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Figure 5.2 Cell cycle regulation by the ERK/c-Myc c ascade 

Activated ERK phosphorylates c-Myc on serine 62 which stabilises nuclear c-Myc. c-Myc 

and ERK itself facilitate the G1/S transition by inducing cyclin D gene expression. 

Moreover, c-Myc reduces the levels of p27 by inhibiting its transcription and increasing the 

expression of the SCF E3 ubiquitin ligase complex. This complex ubiquitinates 

phosphorylated p27 leading to its degradation by the proteasome. Finally, active 

cyclin/Cdk complexes phosphorylate Rb proteins and hence induce the release of the E2F 

transcription factor to transactivate the expression of S phase genes. The lack of ERK 

activation due to BCR-ligation reduces c-Myc stabilisation and hence protein levels 

thereby contributing to increased levels of p27 and reduced activation of cyclin/Cdk 

complexes. Rb therefore remains in its hypophosphorylated state, inhibiting the release of 

E2F and hence G1/S phase transition.  

 

 



 

 260 

Figure 5.3 Model for Fc γRIIb-mediated apoptosis 

BCR/FcγRIIb co-ligation results in dissipation of the MMP and apoptosis. FcγRIIb-

signalling increases the expression of Fas and its ligand FasL and signalling through this 

death receptor can activate caspase 8 which was shown to be the major initiator caspase 

involved in FcγRIIb-mediated apoptosis. Furthermore, p53 is upregulated by FcγRIIb-

dependent mechanisms and in turn could increase Fas and caspase 8 expression at the 

transcriptional level, thereby initiating as well as propagating this signalling axis. 

Additionally, p53 could trigger apoptosis by enhancing expression of pro-apoptotic 

molecules such as Noxa or by translocating to the mitochondria itself and hence 

interacting with pro- and anti-apoptotic molecules at this interface.  
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Murine

Human

Receptor FcγRI               FcγRIII FcγRIV FcγRIIBAffinity High                              low/ low/
medium medium

activatory inhbitorySignalling

Expression Macrophage
Monocyte
Neutrophil

DC

B  cell
Macrophage

Basophil
Neutrophil
Eosinophil

DC

Receptor FcγRI             FcγRIII             FcγRIV            FcγRIIB

Receptor FcγRI      FcγRIIA   FcγRIIC    FcγRIIIA     FcγRIIIB          FcγRIIB

Affinity          High
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low/
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Specificity of antibody Host Clone Manufacturer
anti-mouse IgM Rat B7.6 made in house
anti-mouse CD40 Rat FGK45 made in house
anti-mouse FcγRII Rat 24G2 made in house
anti-mouse FasL Armenian Hamster MFL3 BioLegend
Armenian Hamster IgG Armenian Hamster HTK888 BioLegend
anti-mouse IgG+IgM (H+L) Rabbit 315-005-044 Jackson ImmunoResearch
F(ab')2  anti-mouse IgM Goat 115-006-020 Jackson ImmunoResearch
anti-human IgG+IgM (H+L) Rabbit 309-005-107 Jackson ImmunoResearch
F(ab')2  anti-human IgG+IgM Goat 109-006-127 Jackson ImmunoResearch
anti-rat IgG (H+L) Donkey 712-005-150 Jackson ImmunoResearch

(A) FACS

(B) Antibodies used for stimulation

Specificity of antibody Reactivity Isotype Clone Conjugated Manufacturer
CD3 Human Mouse IgG1 UCHT1 APC BD Pharmingen
CD11b Human Mouse IgG1 ICRF44 (44) APC BD Pharmingen

CD14 Human Mouse IgG2a M5E2 FITC BD Pharmingen
CD19 Human Mouse IgG1 HIB19 APC/FITC BD Pharmingen
CD20 Human Mouse IgG2b 2H7 PE BD Pharmingen

CD32B Human Human chimeric mouse ch2B6N297Q AF488 MacroGenics

CD56 Human Mouse IgG1 B159 PE BD Pharmingen

Isotype controls Clone Conjugated Manufacturer
Mouse IgG1 MOPC-21 AF488/APC/FITC/PE BD Pharmingen
Mouse IgG2b 27-35 PE BD Pharmingen
Mouse IgG2a G155-178 FITC BD Pharmingen

Specificity of antibody Reactivity Isotype Clone Conjugated Manufacturer
B220 Mouse Rat IgG2a RA3-6B2 FITC BD Pharmingen

CD95 (Fas) Mouse Hamster IgG Jo2 Biotin BD Pharmingen

Isotype controls Conjugated Manufacturer
Rat IgG2a FITC BD Pharmingen
Hamster IgG Biotin BD Pharmingen

Secondary reagents Reactivity Isotype Clone Conjugated Manufacturer
Streptavidin APC 554067 APC BD Pharmingen

Ta
bl

e 
2.

1



(C) Western Blotting

(D) Immunofluorescent staining

Specificity of antibody Host Clone/ID Dilution Manufacturer
β-Actin Mouse sc-47778 1:5000 Santa Cruz
Caspase-8 Mouse Clone 1G12 1:1000 Alexis Biochemicals
Cbl-b Rabbit sc-1705 1:1000 Santa Cruz
c-Cbl Mouse Clone 17 1:1000 BD Transduction Laboratories
FLIP, C-terminus Rabbit 06-864 1:1000 Upstate
c-Myc Rabbit 9402 1:1000 Cell Signaling Technology
c-Myc pThr58 Rabbit ab28842 1:1000 Abcam
c-Myc Ser62 Rabbit ab51156 1:1000 Abcam
c-Myc pThr58/Ser62 Rabbit 9401 1:1000 Cell Signaling Technology
CTCF Rabbit sc-28198 1:1000 Santa Cruz
Fas (CD95) Mouse Clone 13 1:2500 BD Transduction Laboratories
FasL (CD178) Mouse Clone 33 1:1000 BD Transduction Laboratories
Grail Rat Clone H11-744 1:150 BD Pharmingen
HDAC-1 Rabbit sc-7872 1:1000 Santa Cruz
HA tag Rat Clone 3F10 1:1000 Roche
Itch Mouse 32/Itch 1:500 BD Transduction Laboratories
Noxa Rabbit ab13687 1:500 Abcam
p27 Rabbit sc-776 1:1000 Santa Cruz
p53 Rabbit sc-6243 1:1000 Santa Cruz
p42/44 (ERK) Rabbit 9102 1:1000 Cell Signaling Technology
p42/44 (ERK) pThr202/Tyr204 Rabbit 9101 1:1000 Cell Signaling Technology
Rap1 Rabbit sc-65 1:1000 Santa Cruz
B-Raf Rabbit sc-9002 1:1000 Santa Cruz
Raf-1 Rabbit sc-133 1:1000 Santa Cruz
Rb pSer780 Rabbit 9307 1:1000 Cell Signaling Technology
Rb pSer807/811 Rabbit 9308 1:1000 Cell Signaling Technology
SPA-1 Mouse 3/SPA-1 1:250 BD Transduction Laboratories
Ubiquitin Mouse Clone P4D1 1:1000 Cell Signaling Technology
VDAC-1 Rabbit 4866 1:1000 Cell Signaling Technology

Secondary antibodies Host Clone/ID Dilution Manufacturer
anti-rabbit-HRP Goat 7074 1:2000 Cell Signaling Technology
anti-mouse-HRP Horse 7076 1:2000 Cell Signaling Technology

anti-rat-HRP Goat 7077 1:2000 Cell Signaling Technology

Primary antibodies Host Clone/ID Dilution Manufacturer
p42/44 (ERK) pThr202/Tyr204 Rabbit 9101 1:50 Cell Signaling Technology
c-Myc Rabbit 9402 1:50 Cell Signaling Technology
c-Myc Ser62 Rabbit ab51156 1:500 Abcam
Rap-1 Rabbit sc-65 1:100 Santa Cruz
RalGSD-RBD recombinant E.coli Z02039 1:5000 GenScript/Bioquote Ltd.
Rb pSer780 Rabbit 9307 1:500 Cell Signaling Technology
Rb pSer807/811 Rabbit 9308 1:50 Cell Signaling Technology

Isotype control Dilution Manufacturer
Rabbit IgG appropriate Sigma
Secondary antibodies Host Clone/ID Dilution Manufacturer
anti-GST Rabbit 2622 1:100 Cell Signaling Technology
anti-rabbit-HRP Goat 7074 1:100 Cell Signaling Technology

Ta
bl

e 
2.

1



0 200 400 600 800 1000

0

200

400

600

800

1000 89.6

100 101 102 103 104
0

50

100

150

1.32

100 101 102 103 104
0

50

100

150

93.2

CD20

co
un

t

FSC

SS
C

unstained anti-CD20-PE

(A)

(B)

Fi
gu

re
 2

.1



0 200 400 600 800 1000
FSC H

0

200

400

600

800

1000 81.7

10 0 10 1 10 2 10 3 10 4
0

30

60

90

120

0.12

10 0 10 1 10 2 10 3 10 4
0

30

60

90

120

15.7

FSC

SS
C

unstained anti-CD19-FITC

CD19

co
un

t

CD19

co
un

t

10 0 10 1 10 2 10 3 10 4
0

50

100

150

0.45

10 0 10 1 10 2 10 3 10 4
0

30

60

90

120

31.8

10 0 10 1 10 2 10 3 10 4

C C

0

20

40

60

1.76

10 0 10 1 10 2 10 3 10 4

C C

0

30

60

90

120

52.5

CD19

co
un

t
PBMC(A)

B cell isolation kit(B)

Naïve B cell isolation kit(C)

Fi
gu

re
 2

.2



unstained anti-CD3-APC

CD3

co
un

t

CD14

co
un

t

unstained anti-CD14-FITC

100 101 102 103 104

C C

0

50

100

150

0.45

100 101 102 103 104
0

50

100

150

3.91

100 101 102 103 104
0

30

60

90

120

0.48

100 101 102 103 104
0

30

60

90

120

56.6

CD3 – T cells(A)

CD14 - monocytes(B)

Fi
gu

re
 2

.3



0 200 400 600 800 1000

0

200

400

600

800

1000

27.7

100 101 102 103 104
0

5

10

15

20

25

3.73

100 101 102 103 104
0

10

20

30

99.3

100 101 102 103 104

C C

0

3

6

9

12

1.35

100 101 102 103 104
0

20

40

60

98.8

100 101 102 103 104
0

10

20

30

40

50

2.36

100 101 102 103 104
0

10

20

30

40

87.8

FSC

SS
C

unstained anti-CD19-FITC

CD19

co
un

t

CD20

co
un

t

CD19

co
un

t

CD20-sorted cells(A)

CD19-sorted cells(B)

Negatively selected cells(C)

anti-CD20-FITCunstained

unstained anti-CD19-FITC

Fi
gu

re
 2

.4



FL3-linear

co
un

t

FL2-log

co
un

t

0 200 400 600 800 1000
0

50

100

150

200

250

subdiploid

G0-G1

S

G2-M

100 101 102 103 104
0

200

400

600

subdiploid

Fi
gu

re
 2

.5



FL1-Dioc6

co
un

t

FL1-Dioc6

co
un

t

untreated(A)

anti-IgM(B)

100 101 102 103 104
0

50

100

150

200

58.9
41.1

100 101 102 103 104
0

50

100

150

48.7
51.3

Fi
gu

re
 2

.6



(C) Untreated human B cells–

before culture

(A) Murine lymph node cells-

unimmunised mice

(D) Human B cells stimulated with 

F(ab’)2  anti-IgM/IgG for 48 hrs 

(B) Murine lymph node cells-

immunised mice
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Primers human Sequence
FcγRIIb1 fw 5’ ggccttgatctactgcaggaa 3’
FcγRIIb1 fw 5’ gggcgggtctctcccatttc 3’
FcγRIIb2 fw 5’ tgctgctgtagtggccttga 3’
FcγRIIb2 rv 5’ ccccaactttgtcagcctcat 3’

Probes human
FcγRIIb1 FAM - 5’ cggatttcagctctcccaggataccct 3’ - TAMRA
FcγRIIb2 FAM - 5’ aggaaaaagcggatttcagccaatcccacta 3’ - TAMRA  

HPRT Kit (AB Applied Biosystems)
β-Actin Kit (AB Applied Biosystems)

Primers murine
Cbl-b fw 5’ tgtgcacttcgtgccttacc 3’
Cbl-b rv 5’ tgggctccgttccttttatct 3’
c-Cbl fw 5’ tgatccttggaatgggagaga 3’
c-Cbl rv 5’ ttccatttgtgagggcaatg 3’
cMyc fw  5’ agctgaagcgcagctttttt 3’
cMyc rv  5’ gtaggcggtggcttttttga 3’
CTCF fw 5’ ttgtagacaggagcggcacat 3’
CTCF rv 5’ gctgtttctggcggaaggt 3’
p53 fw 5’ aagacgtgccctgtgcagtt 3’
p53 rv 5’ acctccgtcatgtgctgtga 3’

PAC-1 fw 5’ gctggatctctcgctcag 3’
PAC-1 rv 5’ ccccgacgttgcttaacaaa 3’
SPA-1 fw 5’ tcctgaggaagcgtcatatcg 3’
SPA-1 rv 5’ ctggaagtgagagcggattgt 3’

Probes murine
Cbl-b FAM - 5’ ccaaggctgccccttctgtcgc 3’ - TAMRA
c-Cbl FAM - 5’ ttgaccaatcggcactcgcttcc 3’ - TAMRA
cMyc FAM - 5’ ccctgcgtgaccagatccctgaat 3’ - TAMRA
CTCF FAM - 5’ atcatgcacaagcgcactcacacg 3’ - TAMRA

GAPDH Kit (AB Applied Biosystems)
p53 FAM - 5’ tggtcagcgccacacctcca 3’ - TAMRA

PAC-1 FAM - 5’ caccatctgcctggcatacctgattca 3’ - TAMRA
SPA-1 FAM - 5’ caacgatattgtgaccatcgtgttccagg 3’ - TAMRA

Fas Taqman gene expression assay (Applied Biosystems - Mm01204974_m1)
FasL Taqman gene expression assay (Applied Biosystems - Mm00438864_m1)
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5x106 cells
resuspended in 

cytoplasmic buffer

108 cells
resuspended in 
cytosolic buffer

Supernatant Pellet ‐
discard

15 min on ice,
40 strokes in 
homogeniser,
400 x g 20 min

Supernatant 

Pellet ‐
wash in cytosolic buffer

Supernatant ‐
cytoplasmic
fraction

Pellet ‐
membrane/organelle 

buffer

10 min at 4oC
1000 x g, 10 min

Supernatant ‐
membrane/organelle

fraction

Pellet ‐
nuclear buffer

30 min at 4oC
6000 x g, 10 min

Supernatant ‐
nuclear fraction

Pellet ‐
cytoskeletal buffer

cytoskeletal fraction

10 min at 4oC
6800 x g, 10 min

800 x g 10 min

Pellet ‐
discard

8000 x g 20 min

8000 x g 10 min

Pellet ‐
Resuspend in complete 
mitochondria lysis buffer

mitochondrial fraction

on ice 15 min
vortex 10 sec

107 cells
resuspended in 
hypotonic buffer

Supernatant –
cytosolic
fraction 

Pellet ‐
Complete lysis buffer

15 min on ice,
25 µl detergent,

Vortex
14 000 x g 30s

Supernatant –
nuclear fraction
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Vector Inserted via          
restriction sites

Supplier

pcDNATM3.1 (+) Invitrogen

pcDNATM3.1/Zeo (-) Invitrogen

pIRES2-AcGFP1 Clontech

pLVX-IRES-ZsGreen1 Clontech

pcDNATM3.1 (+) - Rap1A WT Missouri S&T cDNA Resource Center 
pcDNATM3.1 (+) - Rap1A G12V Missouri S&T cDNA Resource Center 
pcDNATM3.1 (+) - Rap1A S17N Missouri S&T cDNA Resource Center 
pcDNATM3.1/Zeo (-) - Rap1A WT Nhe I/Xho I

pcDNATM3.1/Zeo (-) - Rap1A G12V Nhe I/Xho I

pcDNATM3.1/Zeo (-) - Rap1A S17N Nhe I/Xho I

pIRES2-AcGFP1 - Rap1A WT Nhe I/Xho I

pIRES2-AcGFP1 - Rap1A G12V Nhe I/Xho I

pIRES2-AcGFP1 - Rap1A S17N Nhe I/Xho I

pLVX-IRES-ZsGreen1 - Rap1A WT Eco RI/Xba I

pLVX-IRES-ZsGreen1 - Rap1A G12V Eco RI/Xba I

pLVX-IRES-ZsGreen1 - Rap1A S17N Eco RI/Xba I

Final construct Parental plasmid for vector Parental plasmid for insert Restriction enzymes 
pcDNATM3.1/Zeo (-) - Rap1A WT pcDNATM3.1/Zeo (-) pcDNATM3.1 (+) - Rap1A WT Nhe I/Xho I
pcDNATM3.1/Zeo (-) - Rap1A G12V pcDNATM3.1/Zeo (-) pcDNATM3.1 (+) - Rap1A G12V Nhe I/Xho I
pcDNATM3.1/Zeo (-) - Rap1A S17N pcDNATM3.1/Zeo (-) pcDNATM3.1 (+) - Rap1A S17N Nhe I/Xho I
pIRES2-AcGFP1 - Rap1A WT pIRES2-AcGFP1 pcDNATM3.1 (+) - Rap1A WT Nhe I/Xho I
pIRES2-AcGFP1 - Rap1A G12V pIRES2-AcGFP1 pcDNATM3.1 (+) - Rap1A G12V Nhe I/Xho I
pIRES2-AcGFP1 - Rap1A S17N pIRES2-AcGFP1 pcDNATM3.1 (+) - Rap1A S17N Nhe I/Xho I
pLVX-IRES-ZsGreen1 - Rap1A WT pLVX-IRES-ZsGreen1 pcDNATM3.1 (+) - Rap1A WT - PCR fragment Eco RI/Xba I

pLVX-IRES-ZsGreen1 - Rap1A G12V pLVX-IRES-ZsGreen1 pcDNATM3.1 (+) - Rap1A G12V - PCR fragment Eco RI/Xba I

pLVX-IRES-ZsGreen1 - Rap1A S17N pLVX-IRES-ZsGreen1 pcDNATM3.1 (+) - Rap1A S17N - PCR fragment Eco RI/Xba I

(A)  Vectors

(B) Primers

(C) Cloning strategy

Primers Sequence
pcDNA3.1-Rap FW (Eco RI) 5' gagagaattcgctggctagcgtttaaactta 3'

pCDNA3.1-Rap RV (Xba I) 5' gagatctagataaacgggccctctagactc 3'
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(B)  pcDNA3.1/Zeo (-)

(A)  pcDNA3.1 (+)
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(B)  pLVX-IRES-ZsGreen1

(A)  pIRES2-AcGFP1
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(i)  Day 1

(ii)  Day 11

(i) day  1 day  5 day  11
p IRES ‐GFP 4.9 1.74 0 .12
p IRES ‐GFP ‐Rap1A  WT 13.7 11.8 0 .2
p IRES ‐GFP ‐Rap1A  G12V 12.2 15 .4 0 .26
p IRES ‐GFP ‐Rap1A  S17N 11 15 .8 0 .22
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HA-tagged control

HA-tag

Rap-1

ERK

vectors used cells used selection conditions linearised/not linearised method of transfection
1 pcDNA3.1(+) WEHI 231 500 µg/ml G418 linearised Amaxa Nucleofector System (Amaxa/Lonza)
2 pcDNA3.1(+) WEHI 231 250 then 500 µg/ml  G418 linearised Amaxa Nucleofector System (Amaxa/Lonza)
3 pcDNA3.1(+) Zeo WEHI 231‐Bcl‐xl 200 µg/ml  Zeocin linearised Amaxa Nucleofector System (Amaxa/Lonza)
4 pIRES2‐AcGFP1 WEHI 231‐Bcl‐xl 500 µg/ml G418 not linearised Amaxa Nucleofector System (Amaxa/Lonza)
5 pIRES2‐AcGFP1 WEHI 231 300 µg/ml G418 not linearised Amaxa Nucleofector System (Amaxa/Lonza)
6 pIRES2‐AcGFP1 WEHI 231 300 then 500 µg/ml G418 not linearised Amaxa Nucleofector System (Amaxa/Lonza)
7 pIRES2‐AcGFP1 WEHI 231 300‐1000 µg/ml G418 not linearised Amaxa Nucleofector System (Amaxa/Lonza)
8 pIRES2‐AcGFP1 WEHI 231 500 then 600 µg/ml G418  linearised Amaxa Nucleofector System (Amaxa/Lonza)
9 pcDNA3.1(+) Zeo WEHI 231‐Bcl‐xl 200 µg/ml  Zeocin linearised Amaxa Nucleofector System (Amaxa/Lonza)

(C)

(ii)

(iii)

vectors used cells used selection conditions method of transfection
pcDNA3.1(+) WEHI 231 150‐1000 µg/ml G418 Gene Pulser Xcell Electroporation System (BioRad) 

pcDNA3.1(‐)Zeo WEHI 231‐Bcl‐xl 50‐500 µg/ml Zeocin Amaxa Nucleofector System (Amaxa/Lonza)
pIRES2‐AcGFP1 MP‐100 Microporator (Labtech)
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