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Abstract

The aim of this thesis is to study the e¤ects of in�ation persistence due to rule-of-

thumb behaviour by price setters on optimal monetary policy. We start with a canonical

log-linearised New Keynesian model, which we extend by allowing a fraction of price setters

to follow a rule-of-thumb when setting a new price. We consider di¤erent speci�cations

for the rule-of-thumb. In all models, steady-state distortions are assumed to be small so

to guarantee the feasibility of optimal monetary policy analysis within a linear-quadratic

framework. We derive utility-based objective functions for the monetary authority and

analyse a range of optimal commitment policies. We perform welfare analysis in order to

rank the range of optimal commitment policies. We analytically derive the optimal steady-

state in�ation rates associated with each commitment policy. We show that rule-of-thumb

behaviour by price setters generates an incentive for positive steady-state in�ation. A type

of timeless perspective commitment policy is also capable of delivering positive steady-state

in�ation, even in the absence of rule-of-thumb behaviour by price setters. The optimal

steady-state in�ation rates are directly proportional to the gap measuring the steady-state

distortions and turn out to be small in magnitude.

We depart from the assumption of small steady-state distortions and consider the case

of a largely distorted steady state within a nonlinear medium-scale model, which adds

both nominal rigidities and real rigidities to the basic New Keynesian model. We extend

the model by allowing a fraction of price setters to follow a rule-of-thumb when posting a

new price. We numerically characterise the optimal rate of in�ation in the Ramsey steady

state. We �nd that rule-of-thumb behaviour implies optimal positive in�ation only in the

absence of transactional frictions. We �nd that the gap re�ecting steady-state distortions

is only slightly larger than in the case of small steady-state distortions. Finally, we study

Ramsey dynamics and the implementation of optimal monetary policy via simple interest-

rate rules, which we expand to explore the importance of welfare-relevant output gaps.
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CHAPTER 1

Introduction

The purpose of this thesis is twofold. First, it aims to study how rule-of-thumb be-

haviour by price setters a¤ects optimal monetary policy in an otherwise basic small-scale

log-linearised New Keynesian model. In doing so, we follow Woodford (2003) as we derive

a utility-based policy objective function and subsequently analyse the policy problem in

a linear-quadratic framework. Second, maintaining the presence of rule-of-thumb price

setters, it aims to the extend the analysis of optimal monetary policy to the medium-scale

economy developed in Altig et al. (2005). We characterise Ramsey-optimal monetary pol-

icy using the methodology and algorithms developed in Schmitt-Grohé and Uribe (2004b,

2007).

New Keynesian economics embeds nominal rigidities and imperfect competition into

the dynamic general equilibrium framework of the Real Business Cycle paradigm. In

its basic formulation, a New Keynesian model features one nominal rigidity modelled in

terms of a constraint on the frequency of price setting. Three main models of nominal

price rigidity are used in the literature: the quadratic price adjustment cost model of

Rotemberg (1982), the random price adjustment signal model of Calvo (1983), and the

model of staggered contracts of Taylor (1980). The Calvo model is the most widely used

in the literature for reasons of tractability and we maintain the assumption of sticky

prices à la Calvo (1983) throughout this thesis. However, the analysis carried out in this

thesis applies equally well to the other models of nominal price rigidity since, as shown in

Rotemberg (1987) and Roberts (1995), they all lead, up to a log-linear approximation, to

the same form of aggregate-supply relation.
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In its basic formulation, a New Keynesian model derived from a discrete-time version of

the Calvo price setting model is purely forward-looking1. In�ation dynamics are described

by what Roberts (1995) labels the New Keynesian Phillips curve (NKPC henceforth)2.

The NKPC relates in�ation today to a measure of excess demand and expected future

in�ation. On the one hand, the appealing features of the NKPC are well known. First, it

is microfounded in the idea that monetary non neutrality is due to nominal price rigidities.

Second, it recognises the importance of in�ationary expectations in the determination of

in�ation today as �rstly stressed by Friedman (1968) and Phelps (1968). Third, it is

simple enough to be useful for theoretical monetary policy analysis. As a result, the New

Keynesian model derived from a discrete-time version of the Calvo price setting model has

become the workhorse for much research on monetary policy and it has been described by

McCallum (1997) as "the closest thing there is to a standard speci�cation"3.

On the other hand, the failures of the NKPC are equally well-known as discussed in

Mankiw (2001). First, as initially pointed out by Ball (1994), it implies costless disin�a-

tion, namely no short-run trade-o¤ between output and in�ation. Second, as pointed out

by Fuhrer and Moore (1995) it fails to capture the empirical fact that in�ation is highly

persistent. These two problems imply that a disin�ation of any size could be achieved

costlessly and immediately by a central bank that could commit to set the path of future

output gaps equal to zero. Third, evidence from VAR studies also show that the response

of in�ation to shocks is �hump-shaped� rather than front loaded as prescribed by the

NKPC. Studies which seek to estimate the NKPC �nd that it �ts the data poorly (e.g.

Fuhrer and Moore (1995), Fuhrer (1997), Nelson (1998), Galì and Gertler (1999), Roberts

(2005), and Sbordone (2005)). These studies frequently reject the NKPC in favour of a

1The �rst use of a discrete-time version of Calvo�s model of price setting, in the context of dynamic general
equilibrium model, is in the work of Yun (1996). Other early applications of the same device inlcude King
and Watson (1996), King and Wolman (1996), and Goodfriend and King (1997).
2Aggregate-supply relation and Phillips curve are used interchangeably in this thesis.
3The survey article by Clarida et al. (1999) and the landmark work by Woodford (2003) are only two
examples among many others.
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hybrid Phillips curve, which entails that current in�ation depends on both in�ationary ex-

pectations and past in�ation, although the estimated relative values of the forward-looking

component and the backward-looking component vary greatly between studies.

To accommodate the persistence in in�ation data, two main variants of the basic New

Keynesian model have been put forward in the literature. Both variants generate the

dependence of current in�ation not only on expected future in�ation but also on lagged

in�ation by making an additional assumption about the price setting mechanism. The

�rst variant is due to Galì and Gertler (1999). They assume that a proportion of the �rms

randomly assigned to reoptimise their prices in the Calvo model do not behave rationally

but follow a rule-of-thumb4. Speci�cally, the rule-of-thumb prices are a weighted average

of the optimal forward-looking prices set in the previous period plus an adjustment based

on lagged in�ation. The second variant is due to Christiano et al. (2005). They assume

that the �rms not assigned to reoptimise their prices will instead index their prices to

lagged in�ation.

In this thesis we consider backward-looking rule-of-thumb behaviour by price setters.

Rule-of-thumb behaviour by price setters is appealing for at least �ve reasons. First,

it involves virtually no computational burden: all that is needed is for rule-of-thumb price

setters to observe last period�s output and/or price setting decisions. Second, it involves

passive learning of the behaviour of forward-looking optimising price setters. Third, it

implies convergence among individual choices once the e¤ects of all shocks are eliminated

from the economy. Fourth, Galì and Gertler (1999) provide empirical evidence of the

presence of rule-of-thumb behaviour in price setting5. Fifth, using backward-looking price

indexation as a modeling strategy is less appealing as it implies that all prices are re-

vised at every point in time, which not only contradicts empirical evidence that some

4An earlier example of the utilization of this type of assumption in order to better explain the deviations
of actual behavior from the predictions of models which assume fully rational agents is Campbell and
Mankiw (1989). They use this type of assumption to explain the relation between consumption and
income.
5Once we take the theoretical economies to the data, we carefully review the empirical evidence provided
by Galì and Gertler (1999).
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prices are �xed for a certain amount of time in nominal terms (e.g. Bils and Klenow

(2004) and Nakamura and Steinsson (2008)) but also clashes with the rationale as to

why models with nominal price rigidity were developed. Moreover, while the implications

of backward-looking indexation are thoroughly analysed in Woodford (2003), the conse-

quences of rule-of-thumb behaviour on the optimal long-run in�ation rate have, to the

best of our knowledge, not been analysed previously in the literature6.

In characterising optimal monetary policy under rule-of-thumb behaviour by price set-

ters, we depart from the widespread practice in New Keynesian economics of restricting

the attention to models in which the deterministic steady state is e¢ cient. The Pareto ef-

�ciency of the deterministic steady state is achieved by assuming the existence of subsidies

which eliminate the steady-state distortions originating from monopolistic competition7.

This widespread practice has two potential shortcomings. First, the instrument necessary

to eliminate steady-state distortions (i.e. subsidies �nanced by lump-sum taxation) is em-

pirically uncompelling. Second, it is ex ante not clear whether a policy that is optimal

for an economy with an e¢ cient steady state remains optimal for an economy where the

steady state is distorted.

For these reasons, we do not make the e¢ cient-steady-state assumption but instead

work with models whose steady state is distorted. This implies that three equilibrium

levels of output coexist in the model: 1) the actual level output, which obtains in the

presence of both nominal rigidities and monopolistic competition; 2) the natural level of

output, which obtains in the presence of monopolistic competition and in the absence of

nominal rigidities; and 3) the e¢ cient level of output, which obtains in the absence of both

nominal rigidities and monopolistic competition.

6Rule-of-thumb behaviour has been extensively used to investigate various issues: responses to supply
shocks (Steinsson (2003)), monetary policy rules (Amato and Laubach (2003)), uncertainty (Kimura and
Kurozumi (2007)), and open economy (Kirsanova et al. (2007)).
7Steady-state and long-run are used interchangeably in this thesis.
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For the purpose of the �rst aim of this thesis, we consider the case of small steady-state

distortions as discussed in Woodford (2003). The degree of ine¢ ciency of the determin-

istic steady state is assumed to be minimal so that it can be treated as an expansion

parameter. This in turn guarantees that it su¢ ces to approximate the equilibrium of the

model to �rst order to obtain a second-order accurate measure of welfare. Steady-state

distortions introduce a gap between the the natural level of output and the e¢ cient level

of output. This wedge is constant and invariant to shocks so that the "divine coincidence"

in Blanchard and Galì (2007) holds8. However, allowing for steady-state distortions mat-

ters for the optimal average levels of in�ation and output, namely for the deterministic

description of optimal monetary policy. This is because, from a welfare point of view, the

constant-over-time gap between the natural level of output and the e¢ cient level of output

appears in the central bank�s utility-based loss function. In other words, the combination

of general equilibrium foundations and steady-state distortions provides a microfoundation

for targeting a level of output above the natural level of output.

Following the theoretical literature on optimal monetary policy, we assume that the

central bank�s policy instrument is the short-term nominal interest rate. The combination

of a cashless economy and the central bank�s control of the nominal interest rate implies

that the economy is fully described by the aggregate-supply relation and the central bank�s

objective function. This model of central bank behaviour then allows determining analyt-

ically the long-run in�ation rate associated with a given policy. In particular, as stressed

by Woodford (2008) "The fact that the equations are log-linearized does not mean that one

simply assumes an average in�ation rate; the equations allow one to derive the average

in�ation rate corresponding to a given policy". We consider three theoretical economies:

1) the purely forward-looking New Keynesian model; 2) the model with rule-of-thumb

behaviour à la Galì and Gertler (1999); and 3) the model with rule-of-thumb behaviour

à la Steinsson (2003). All models are small-scale New Keynesian models as they feature

8That is, percentage changes in the natural level of output correspond in the log-linear approximation to
percentage changes in the e¢ cient level of output.
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only one nominal rigidity (i.e. price stickiness) and one real rigidity (i.e. monopolistic

competition in product markets). We consider di¤erent types of optimal commitment

policy that have been proposed in the literature: the zero-optimal policy, the timeless per-

spective commitment policy in Woodford (1999), and the alternative timeless perspective

commitment policy put forward by Blake (2001), Jensen and McCallum (2002), and Dam-

janovic et al. (2008). Our preference for commitment is based on our focus on analysing

the optimal long-run in�ation rate when the deterministic steady state is distorted9.

For the purpose of the �rst aim of this thesis, three results stand out from the literature

concerning optimal monetary policy in log-linearised New Keynesian models. First, rule-

of-thumb behaviour by price setters, speci�ed either à la Galì and Gertler (1999) or à la

Steinsson (2003), breaks the optimality of zero long-run in�ation found in New Keynesian

models. Indeed, within New Keynesian economics, the optimality of a monetary policy

that aims at zero in�ation is surprisingly robust. Full price stability is optimal despite

the ine¢ ciency of the nonstochastic steady state and the existence of a positively sloped

long-run Phillips-curve trade-o¤. Moreover, as shown in Woodford (2003), zero long-

run in�ation is also robust to the presence backward-looking price indexation. Rule-

of-thumb behaviour, regardless of its speci�cation, implies that the stimulative e¤ect of

higher in�ation is greater than the output cost of higher in�ation thus generating a long-

run incentive for positive in�ation under an optimal commitment. Second, a type of

timeless perspective commitment policy is also capable of delivering positive steady-state

in�ation, even in the purely forward-looking New Keynesian model. Third, all the optimal

long-run in�ation rates are directly proportional to the gap between the natural level of

output and the e¢ cient level of output. Hence, what we show here is that the widespread

assumption of an e¢ cient steady state is not innocuous: a policy that is optimal for an

economy with an e¢ cient steady state does not remain optimal in an economy where the

9Of course, discretionary conduct of monetary policy would result in the well-known in�ation bias stressed
by Kydland and Prescott (1977) and Barro and Gordon (1983).
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steady state is distorted. Moreover, the positive long-run in�ation rates turn out to be

small in magnitude for empirically realistic values of the models�structural parameters.

For the purpose of the second aim of this thesis, we consider the medium-scale model

developed in Altig et al. (2005). This model emphasises the importance of combining

nominal as well as real rigidities in explaining business-cycle �uctuations. Speci�cally,

the model features four nominal rigidities, sticky prices, sticky wages, a transactional

demand for money by households, and a cash-in-advance constraint on the wage bill of

�rms, and four real rigidities, investment adjustment costs, variable capacity utilisation,

habit formation, and imperfect competition in product and labour markets. We extend

the model by allowing a fraction of price setters to behave in a rule-of-thumb manner à la

Galì and Gertler (1999). We depart from the assumption of small steady-state distortions

and consider the case of a largely distorted steady state. We characterise both the Ramsey

steady state and Ramsey dynamics and address the question of implementation of optimal

monetary policy by characterising optimal, simple, and implementable interest-rate rules.

In doing so, we use the algorithms developed in Schmitt-Grohé and Uribe (2004b, 2007).

Speci�cally, large steady-state distortions imply that to obtain a second-order accurate

measure of welfare it does not su¢ ce to approximate the model�s equilibrium conditions

up to �rst order. In characterising interest-rate rules, we use the methodology and the

algorithm developed in Schmitt-Grohé and Uribe (2004b) for second-order approximations

to policy functions of dynamic and stochastic models.

As for the Ramsey steady state, the key policy problem faced by the central bank is the

trade-o¤ between the stabilisation of the degree of price dispersion and the stabilisation

of transactional frictions, which calls for the Friedman rule, namely a de�ation which is

consistent with a zero nominal interest rate. We �nd that the results in Schmitt-Grohé and

Uribe (2007), who consider the possibility of backward-looking price indexation, generally

hold. Rule-of-thumb behaviour by price setters does not alter the high sensitivity of the

long-run in�ation rate with respect to the degree of price stickiness: the optimal long-run

in�ation is always negative and it varies between the level implied by the Friedman rule
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and a level close to price stability. We depart from the analysis in Schmitt-Grohé and

Uribe (2007) and consider the case of a cashless medium-scale macroeconomic model10.

Indeed, we seek to establish a link between the analysis of optimal monetary policy in a

basic log-linearised New Keynesian model and its counterpart in a much richer nonlinear

theoretical economy. We �nd that, in the absence of transactional frictions, rule-of-thumb

behaviour by price setters entails that the optimal long-run in�ation in the steady state of

the Ramsey equilibrium is positive. We thus obtain the same result that we analytically

derive in the linear-quadratic framework. Indeed, the optimal long-run in�ation rate is not

only positive but also small in magnitude. In the linear quadratic framework the in�ation

rate is directly proportional to the gap between the natural level of output and the e¢ cient

level of output. Hence, we solve the social planner problem in the medium-scale economy

so to compare the steady-state gap between the social planner level of output and the

Ramsey level of output with the steady-state e¢ ciency gap in the log-linearised small-

scale economies. We �nd that the di¤erence between the two is in fact rather small.

We study Ramsey dynamics. In doing so, we are interested in addressing two issues.

First, we want to assess whether the zero lower bound on the nominal interest rate con-

stitutes an impediment to optimal monetary policy. Indeed, one argument against setting

a negative in�ation rate, as recommended by the model in the presence of money demand

by households and �rms, or a near-zero in�ation rate, as recommended by the cashless

model, is that at negative or near-zero rates of in�ation the risk of incurring in the zero

lower bound on nominal interest rate would restrict the central bank�s ability to stabilise

the economy. We �nd that this argument is of no relevance in the context of both the

model with money and its cashless counterpart. The reason for this is that under the

Ramsey-optimal policy, the zero lower bound poses an impediment to monetary policy

only in the case of an adverse shock that forces the interest rate to be roughly 8 standard

10Schmitt-Grohé and Uribe (2007) go on to analyse the optimal long-run rate of in�ation by taking into
account the �scal side of the optimal policy problem. They do so by replacing the assumption of lump-
sum taxes with the assumption of distortionary income taxes. The optimal long-run in�ation, although
remaining always negative, is then found to be much closer to price stability.
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deviations below its mean. The probability of this happening is so small that the zero lower

bound on the nominal interest rate does not impose an economically important constraint

on the conduct of optimal monetary policy. Second, we characterise the Ramsey-optimal

impulse responses to the three shocks that drive aggregate �uctuations. Speci�cally, we

present the responses of key macroeconomic variables and we focus on how the Ramsey

planner uses monetary policy to respond to each of the three shocks. We show how the

Ramsey-optimal stabilisation policy is robust to the presence/absence of money in the

model.

Finally, we consider the implementation of optimal monetary policy by characterising

optimal, simple, and implementable interest-rate rules, using the methodology and the al-

gorithm developed in Schmitt-Grohé and Uribe (2004b) for second-order approximations

to policy functions of dynamic and stochastic models. Initially, we show how the imple-

mentation of optimal monetary policy is virtually una¤ected by the presence-absence of

money. We characterise the operational interest-rate rule, which is de�ned exactly as in

Schmitt-Grohé and Uribe (2007), in both the medium-scale model with money and its

cashless counterpart. In both cases, the optimal operational interest-rate rule is con�rmed

to be active in price and wage in�ation, mute in output growth and moderately inertial.

We also consider a modi�cation of the operational interest-rate rule, which prescribes a

concern not for output growth per se but for stabilisation of output around a welfare-

relevant measure of output, namely the gap between the Ramsey level of output and the

e¢ cient level of output. We �nd that the optimal operational interest-rate rule remains

active in price and wage in�ation and moderately inertial, but also implies a positive coef-

�cient on output stabilisation. Regardless of the presence/absence of money in the model,

it is optimal for a central bank to stabilise output gap, namely the log-di¤erence between

the level of output and the e¢ cient level of output.

The remainder of the thesis is organised as follows.
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Chapter 2 lays out a basic New Keynesian model that we extend by allowing a fraction

of price setters to behave in a backward-looking rule-of-thumb manner, speci�ed either à

la Galì and Gertler (1999) or à la Steinsson (2003).

Chapter 3 presents utility-based objective functions for the central bank. We extend

the analysis in Woodford (2003) by allowing a fraction of price setters to behave in a

backward-looking rule-of-thumb manner. The backward-looking behaviour is speci�ed in

two ways: in the manner of Galì and Gertler (1999) and in the manner of Steinsson (2003).

Chapter 4 studies what constitutes optimal monetary policy in the three theoretical

economies. We consider di¤erent types of optimal commitment policy that have been

proposed in the literature: the zero-optimal policy and two types of timeless-perspective

policy. Our preference for commitment is based on our focus on analysing the optimal

long-run in�ation rate when the steady-state is distorted.

Chapter 5 discusses the calibration of the models�structural parameters, evaluates the

optimal long-run in�ation rates, and studies welfare under the alternative commitment

policies.

Chapter 6 characterises the optimal steady-state in�ation rate of the Ramsey planner

in the medium-scale macroeconomic model developed in Altig et al. (2005), which we

extend by allowing a fraction of price setters to behave in a backward-looking rule-of-

thumb manner à la Galì and Gertler (1999).

Chapter 7 studies Ramsey dynamics and address the question of implementation of

optimal monetary policy by characterising optimal, simple, and implementable interest-

rate rules.

Chapter 8 provides concluding remarks.



CHAPTER 2

Basic New Keynesian Model

In this chapter, we lay out a basic New Keynesian model that we extend by allowing

a fraction of price setters to behave in a backward-looking rule-of-thumb manner. This

results in a Phillips curve where current in�ation depends on both expected future in�ation

and on lagged in�ation, namely a hybrid Phillips curve. Backward-looking rule-of-thumb

behaviour is speci�ed in two ways. First, following Galì and Gertler (1999) we allow the

rule-of-thumb price setters to index their prices to lagged in�ation. Second, following

Steinsson (2003) we allow the rule-of-thumb price setters to index their prices to both

lagged output gap and lagged in�ation.

The case of rule-of-thumb behaviour à la Steinsson (2003) contains an original con-

tribution to the literature1. Speci�cally, we correct the hybrid Phillips curve reported

in the original paper. The mistake in Steinsson (2003) relates to the coe¢ cient on the

term in current output gap in the hybrid Phillips curve. It has been acknowledged by

the Steinsson in the Erratum to Optimal Monetary Policy in an Economy with In�ation

Persistence, available on the author�s webpage.

The theoretical economy is assumed closed and there is no capital accumulation. The

model consists of households that supply labour and purchase goods for consumption

and �rms that hire labour and produce and sell di¤erentiated goods in monopolistically

competitive markets. Households and �rms behave optimally: households maximise utility

and �rms maximise pro�ts.

The model is basic in that it features only one real rigidity and one nominal rigidity.

The real rigidity stems from monopolistic competition in the goods�markets, which is

1The hybrid Phillips curve in the case of backward-looking rule-of-thumb behaviour à la Galì and Gertler
(1999) coincides with the one reported in Amato and Laubach (2003).
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modelled as in Dixit and Stiglitz (1977). The nominal rigidity is given by staggered price

adjustment as in Calvo (1983).

Speci�cally, the New Keynesian model laid out here is the basic neo-Wicksellian model

in Woodford (2003). Woodford (2003) calls models of this kind neo-Wicksellian in order to

stress the importance of a monetary policy transmission mechanism in which interest rates

a¤ect intertemporal spending decisions. Yet, following Clarida et al. (1999) among others,

the terminology "New Keynesian" has become common place. We share the basic neo-

Wicksellian model�s assumptions and general formalism. Appendix A reports a detailed

derivation of the hybrid Phillips curve that obtains in the presence of rule-of-thumb à la

Steinsson (2003).

2.1. Households and Market Structure

There is a continuum of households of size one. The representative household seeks to

maximise a discounted sum of utility of the form

(2.1) E0

1X
t=0

�tUt = E0

1X
t=0

�t

24u (Ct; �t)� 1Z
0

v(ht(i); �t)di

35
where 0 < � � 1 is the discount factor, Ct is an aggregate of the household�s consumption

of a continuum of individual goods which are indexed by i over the unit interval, �t is a

vector of exogenous real shocks, namely exogenous shocks to household�s impatience to

consume and to the household�s willingness to supply labour, and ht(i) is the supply of

type i labour.

Following Dixit and Stiglitz (1977), the consumption aggregate is de�ned as

(2.2) Ct =

24 1Z
0

ct(i)
(��1)=�di

35�=(��1)

where ct(i) is the consumption of good i and � > 1 is the constant elasticity of substitution

between goods. For any given realisation of �t, the period utility function, u (Ct; �t),

is assumed to be concave and strictly increasing in Ct whereas the period disutility of
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supplying labour of type i, v(ht(i); �t), is assumed to be convex and increasing in ht(i).

We assume speci�c labour markets in the sense that type i labour is only used in the

production of good i. Moreover, the representative household is assumed to simultaneously

supply all types of labour. Considering di¤erentiated labour inputs, as we shall see below,

has the advantage of delivering a model with labour markets that is equivalent to the

frequently used yeoman farmers model, in which households are assumed to supply goods

directly. Moreover, if one were to replace speci�c labour markets with a single homogenous

labour market, our results would not change qualitatively but only quantitatively. On the

one hand, the assumption on the structure of the labour market a¤ects the way in which

the output gap enters the Phillips curve. On the other hand, as we shall see below,

what matters for our results is that the aggregate-supply relation implies the existence

of a positively sloped long-run trade-o¤ between in�ation and the output gap. As shown

in Woodford (2003, Ch. 3), a positively sloped Phillips-curve long-run trade-o¤ obtains

under both assumptions about the structure of the labour market.

Financial markets are assumed to be complete, such that, through risk sharing, house-

holds face the same budget constraint, which is given by

(2.3)

1Z
0

pt(i)ct(i)di+ Et [Qt;t+1Bt+1] � Bt +

1Z
0

Wt(i)ht(i)di+

1Z
0

�t(i)di� Tt

where pt(i) is the price of good i , Bt is the nominal value of �nancial wealth brought into

the period, Qt;t+1 is the stochastic discount factor for one period ahead payo¤s, Tt is net

nominal tax collection by the government, Wt(i) is the nominal wage for labour of type

i , and �t(i) is the nominal pro�ts from sales of good i. The government is not modelled

endogenously and it is assumed to run a balanced budget at all times. Gt is the exogenous

process that describes government purchases of the aggregate good. Speci�cally, denoting

with gt(i) the government�s consumption of good i , Gt takes the Dixit and Stiglitz (1977)

aggregate form, namely
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(2.4) Gt =

24 1Z
0

gt(i)
(��1)=�di

35�=(��1)

The budget constraint states that, in any period, �nancial wealth carried into the

subsequent period plus consumption cannot be worth more than the value of �nancial

wealth brought into the period plus after-tax non�nancial income earned during the period.

Note that we assume that every household owns an equal share of all the �rms operating

in the economy. The assumption of complete �nancial markets implies that the assumed

�rms�ownership and the assumption that the representative household supplies all types of

labour directly are innocuous; dropping these assumptions would not change the conditions

that determine equilibrium prices and quantities.

The household�s optimal behaviour is described by three sets of conditions.

First, households face a decision in each period about how much to consume of each

individual good. They adjust the share of a particular good in their consumption bundle

so to exploit any di¤erences in relative prices. Minimising the level of total expenditure,

given the consumption aggregate in (2.2), yields the demand for each individual good

(2.5) ct(i) =

�
pt(i)

Pt

���
Ct

where the aggregate price level, Pt, is given by

(2.6) Pt =

24 1Z
0

pt(i)
1��di

351=1��

This speci�cation of the price index has by construction the property that PtCt gives the

minimum price for which an amount Ct of the aggregate consumption can be purchased.

Market clearing implies that the total non�nancial income, that is the economy-wide

sales revenues, can be written as PtYt. Here, Yt is the economy�s total output, which is the

Dixit and Stiglitz (1977) aggregate of the quantities supplied of the various di¤erentiated
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goods, denoted with yt(i), namely

(2.7) Yt =

24 1Z
0

yt(i)
(��1)=�di

35�=(��1)

The household�s budget constraint can thus be rewritten as

(2.8) PtCt + Et [Qt;t+1Bt+1] � Bt + PtYt � Tt

The absence of arbitrage opportunities implies that there exists a unique stochastic dis-

count factor, Qt;t+1. The riskless short-term nominal interest rate, it, has a simple repre-

sentation in terms of the stochastic discount factor, namely

(2.9)
1

1 + it
= Et [Qt;t+1]

A complete description of the household�s budget constraint requires ruling out Ponzi

schemes. The implied constraint for �nancial wealth carried into the subsequent period,

Bt+1, is given by

(2.10) Bt+1 � �
1X

T=t+1

Et+1 [Qt+1;T (PtYt � Tt)] <1

with certainty, that is, in each state of the world that may be reached in the subsequent

period. Here Qt;T discounts nominal income received in period T back to period t , Qt;T =
TQ

s=t+1

Qs�1;s. Equation (2.10) implies that a household�s debt in any state of the world is

bounded by the present value of future after-tax non�nancial income, which is assumed to

be �nite. Furthermore, preventing unlimited consumption also requires that the nominal

interest rate satis�es the zero lower bound, it � 0, at all times: a negative nominal interest

rate would in fact allow households to �nance unbounded consumption by selling enough

bonds. The entire in�nite series of �ow budget constraints and borrowing constraints in
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turn de�nes the lifetime budget constraint for the household

(2.11) E0

1X
t=0

Q0;t [PtCt] � B0 + E0

1X
t=0

Q0;t [(PtYt � Tt)]

We can now complete the description of optimal household behaviour. Maximising

utility (2.1) subject to the intertemporal budget constraint (2.11) yields the optimal allo-

cation of consumption across time

(2.12)
uc (Ct; �t)

uc
�
Ct+1; �t+1

� = �

Qt;t+1

Pt
Pt+1

and the optimal supply of labour of type i

(2.13)
vh(ht(i); �t)

uc (Ct; �t)
=
Wt(i)

Pt

where uc and vh denote respectively the partial derivative of u with respect to the level of

consumption and the partial derivative of v with respect to the supply of labour. Substi-

tuting for the riskless short-term nominal interest rate, as given by (2.9), in the optimal

intertemporal allocation of consumption delivers the familiar Euler equation for consump-

tion

(2.14) �Et

"
uc
�
Ct+1; �t+1

�
uc (Ct; �t)

Pt
Pt+1

#
=

1

1 + it

Allowing for tilting due to interest rates di¤ering from the household�s discount factor,

rational consumers are thus attempting to smooth consumption over time such that the

marginal utility of consumption is equal across periods.

2.2. Firms

We assume that each good i has the linearly homogeneous production function

(2.15) yt(i) = Atht(i)
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where At is a time-varying exogenous technology factor. It follows that the nominal

marginal cost of supplying a quantity yt(i) of good i is given by

(2.16) MCt(i) =Wt(i)A
�1
t

Note that the assumption of speci�c labour markets does not imply that each price

setter is a monopsonist in their labour market. The possibility of �rms having any market

power in their labour market is ruled out by assuming that price setters that change

their prices at the same time also hire labour from the same market2. Speci�cally, this is

achieved by assuming a double continuum of di¤erentiated goods, indexed by (I , j) with

an elasticity of substitution of � between any two goods. Goods belonging to the same

industry I are then assumed to change their prices at the same time and to be produced

using the same type of labour, namely type I labour. The fact that now a continuum

of price setters demand type I labour eliminates the possibility of market power in their

labour market without any change for the degree of market power of each price setter in

their product market.

Combining the optimal supply of labour of type i (2.13) and the nominal marginal

cost speci�cation (2.16), the real marginal cost is given by

(2.17) mc(yt(i);Ct;e�t) = vh(yt(i)=At; �t)

uc (Ct; �t)At

where labour is expressed in terms of output and e�t denotes the vector of exogenous dis-
turbances, which includes exogenous real shocks to technology, to household�s impatience

to consume, and to the household�s willingness to supply labour.

2.3. Market Clearing

Market clearing requires, for each good i and at all times

(2.18) yt(i) = ct(i) + gt(i)

2The Calvo lottery is over industries�prices rather than goods�prices.
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equivalently, in aggregate terms

(2.19) Yt = Ct +Gt

Substituting the market clearing condition into the Euler equation for consumption

(2.14) yields

(2.20) �Et

"euc(Yt+1;e�t+1)euc(Yt;e�t) Pt
Pt+1

#
=

1

1 + it

with

(2.21) eu(Yt;e�t) = u(Yt �Gt; �t)

Equivalently, substituting the market clearing condition into the real marginal cost speci-

�cation (2.17) yields

(2.22) mc(yt(i);Yt;e�t) = evy(yt(i);e�t)euc(Yt;e�t)
with

(2.23) ev(yt(i);e�t) = v(yt(i)=At; �t)

Equations (2.21) and (2.23) are the indirect utility functions3. The former, which is in-

creasing and concave in Yt for each possible realisation of vector e�t, indicates the utility
�ow to the representative household as a function of its aggregate demand for resources,

where aggregate demand adds the household�s share of government purchases to the house-

hold�s private consumption. Under the assumption of Gt being exogenously determined,

variations in the level of government expenditure are simply another source of exogenous

3Note that we use the same notation as in Woodford (2003). Subscript c denotes partial derivatives of
the indirect utility function eu with respect to the level of production, as these derivatives are identical to
the partial derivatives of the direct utility function with respect to the level of aggregate consumption.
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variation in the Euler equation for consumption4. The latter, which is increasing and

convex in yt(i) for each possible realisation of vector e�t, converts the household�s disutility
of supplying labour used for the production of good i into the household�s disutility of

directly supplying good i. Accordingly, the model laid out here is identical to the one

that obtains under the assumption of a single yeoman farmer (i.e. continuum of yeoman

farmers), which is used in both Steinsson (2003) and Amato and Laubach (2003). The

representative household�s discounted sum of utility can in fact be rewritten solely as a

function of all yt(i)

(2.24) E0

1X
t=0

�tUt = E0

1X
t=0

�t

24eu(Yt;e�t)� 1Z
0

ev(yt(i);e�t)di
35

with the period utility Ut being concave in the level of production of each of the di¤eren-

tiated goods.

2.4. Price Setting Behaviour

We now turn to the description of price setting behaviour. Following Calvo (1983),

we assume that only a fraction 1 � � of industries�prices are reset in each period. The

probability of not resetting the price in each period, 0 < � < 1, is independent of both

the time that has gone by since the last price revision and the misalignment between the

actual price and the price that would be optimal to charge, namely pricing decisions in

any period are independent of past pricing decisions. Furthermore, we assume that pro�ts

are discounted using a stochastic discount factor that equals on average �.

We now depart from full rationality by introducing backward-looking rule-of-thumb

behaviour by price setters. Following Galì and Gertler (1999), we assume that only a

fraction 1 � ! of industries behave optimally (i.e. in a forward-looking manner) when

setting the price, the remaining fraction of industries use the same backward-looking rule-

of-thumb when revising their prices. The degree of rule-of-thumb behaviour, 0 � ! < 1,

4Henceforth, the vector e�t includes exogenous real shocks to technology, to Government purchases, to
household�s impatience to consume, and to the household�s willingness to supply labour.
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is thus constant over time and price setters cannot switch between backward-looking and

forward-looking behaviour.

If follows that in each period all forward-looking price setters will set the same price,

which we denote with pft , and all backward-looking price setters will as well charge a

common price, which we denote with pbt . The aggregate price level in (2.6) hence evolves

according to

(2.25) Pt =
�
(1� �)(p�t )

1�� + �P 1��t�1
	 1
1��

where

(2.26) p�t = (1� !)pft + !pbt

denotes the overall reset price.

The �rms allowed to change their price at time t choose pft so to maximise expected

future pro�ts subject to the demand they face. The price setter�s objective is given by

(2.27) Et

1X
s=0

(��)s�(pt(i); p
I
t+s; Pt+s; Yt+s;

e�t+s)
The price setter�s nominal pro�t function, �, is linearly homogeneous in its �rst three

arguments (i.e. good�s price, industry�s price, pIt , and aggregate price level) and, for any

value of the industry price and the aggregate price level, single-peaked for some positive

value of the good�s price5. The common forward-looking reset price, pft , is implicitly

de�ned by the relation

(2.28) Et

1X
s=0

(��)s�1(p
f
t ; p

f
t ; Pt+s; Yt+s;e�t+s) = 0

5Under yt(i) = Atht(i), the nominal pro�t function is given by

�(pt(i); p
I
t ; Pt; Yt;

e�t) = pt(i)�pt(i)Pt
���

Yt �
vh(
�
pIt =Pt

���
Yt=At); �t)

uc (Ct; �t)
Pt

�
pt(i)

Pt

���
Yt
At
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Here �1(p
f
t ; p

f
t ; Pt+s; Yt+s;e�t+s) = 0 implicitly de�nes what Woodford (2003, Ch. 3) labels

the notional short-run aggregate supply curve, which indicates how relative prices would

be set if there was no constraint on the frequency of price setting.

The common rule-of-thumb backward-looking reset price, pbt , is speci�ed as in Steinsson

(2003)

(2.29) pbt = p�t�1
Pt�1
Pt�2

�
Yt�1
Y n
t�1

��
where Y n

t�1 denotes the natural level of output, which we precisely de�ne below, and 0 �

� � 1 is the degree of indexation to past demand conditions. Rule-of-thumb price setters

thus index the previous period overall reset price to past in�ation, fully, and past demand

conditions, according to �. In the case of zero indexation to past demand conditions, the

rule-of-thumb collapses to the speci�cation in Galì and Gertler (1999), pbt = p�t�1
Pt�1
Pt�2

.

2.5. Flexible Price Equilibrium and E¢ cient Equilibrium

We now consider an environment in which all �rms can adjust prices optimally each

period, taking the path of aggregate variables as given. Pro�t-maximising behaviour

under perfectly �exible prices then implies that �rms will operate at the point at which

the relative price is a mark-up over the real marginal cost

(2.30)
pt(i)

Pt
= mc(yt(i);Yt;e�t)�

where � = �=(� � 1) > 1 is the desired constant mark-up, which is common to all �rms.

The relative supply of good i thus satis�es

(2.31)
�
yt(i)

Yt

��1=�
= mc(yt(i);Yt;e�t)�

Given identical prices and demand conditions the equilibrium under perfectly �exible

prices is symmetric: each good is produced and consumed in the same quantity. Within

New Keynesian economics, the natural level of output in Friedman (1968), which we
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denote with Y n
t (
e�t), has a precise meaning: it is simply the equilibrium level of output

under perfectly �exible prices. It follows from (2.31) that the natural level of output is

implicitly de�ned by

(2.32) mc(Y n
t ;Y

n
t ;
e�t) = ��1

In the case of fully �exible prices, equilibrium output thus equals the natural level of

output at all times, Yt = Y n
t (
e�t). The natural level of output in turn depends only on the

exogenous real shocks, which entails that the equilibrium output under perfectly �exible

prices is completely independent of monetary policy.

In the case of sticky prices, equilibrium output can instead di¤er from the natural

level of output. The concept of output gap in fact plays a major role in New Keynesian

economics, both as a force bringing about �uctuations in in�ation as well as a target for

monetary policy. Speci�cally, the output gap, which we denote with xt, has a precise

meaning: it is the deviation of actual output from the natural level of output, namely

xt = bYt � bY n
t = log(Yt=Y

n
t ).

The natural steady-state level of output is the equilibrium level of output that obtains

in the presence of fully �exible prices and in the absence of exogenous real shocks, that ise�t = 0 at all times. We denote a variable�s value at steady state with a bar. The natural
steady-state level of output, Y , is implicitly de�ned by

(2.33) mc(Y ;Y ; 0) = ��1

Note that we do not use the superscript n in denoting the natural steady-state level of

output. This is because, if e�t = 0 and Yt = Y at all times, (2.25) has a solution with

zero in�ation at all times. In other words, in the presence of zero steady-state in�ation,

the steady state of the economy with sticky prices coincides with the natural steady-state

level of output. Indeed, we later log-linearise the model around a steady-state with zero

in�ation and the natural steady-state level of output, Y .
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We must stress that the natural level of output is not Pareto e¢ cient. The e¢ cient

level of output is in fact the equilibrium level of output under both perfectly �exible prices

and perfect competition. The e¢ cient level of output, Y �
t (
e�t), is thus implicitly de�ned by

(2.34) mc(Y �
t ;Y

�
t ;
e�t) = 1

Accordingly, the e¢ cient steady-state level of output, Y
�
, is implicitly de�ned by

(2.35) mc(Y
�
;Y

�
; 0) = 1

2.6. Log-linearised Model

Log-linearising requires choosing the steady state around which the log-linear approxi-

mation is taken. We log-linearise the model around a steady-state with zero in�ation and

the natural steady-state level of output.

We denote a variable�s log-deviation from its steady-state value, which is denoted with

a bar, with a hat. Taking a �rst-order Taylor series expansion to euc (Yt; �t) yields
(2.36) beuc �Yt;e�t� = euccYeuc

�bYt + euc�euccY e�t
�

where bYt = log(Yt=Y ) and all partial derivatives are evaluated at steady state6. Similarly,
taking a �rst-order Taylor series expansion to evy(yt(i);e�t) gives
(2.37) bevy �yt(i);e�t� = evyyYevy

�byt(i) + evy�evyyY e�t
�

where byt(i) = log(yt(i)=Y ).
Log-linearising the Euler equation for consumption (2.20) yields

(2.38) bit = brt + Et�t+1

6In what follows we use the notation in Woodford (2003). subscript � denotes partial derivatives of the
indirect utility functions with respect to all exogenous real disturbances in vector e�t.
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where bit = log[(1 + it)=(1 + i)] and �t = bPt � bPt�1 = log(Pt=Pt�1). Here the log-deviation
in the ex ante short-term real interest rate, brt, is a process given by
(2.39) brt = ��1

h
Et(bYt+1 � gt+1)� (bYt � gt)

i
where the constant coe¢ cient

(2.40) � = � euceuccY > 0

measures the intertemporal elasticity of substitution of aggregate expenditure and the

disturbance term

(2.41) gt = �
euc�euccY e�t

indicates the percentage variation in output required to keep the marginal utility of ex-

penditure at its natural steady-state level, given shocks to government purchases and to

household�s impatience to consume. Equation (2.38) can be reformulated as an intertem-

poral expectational IS relation of the form

(2.42) bYt = EtbYt+1 � �
hbit � Et�t+1 � ��1(gt � Etgt+1)

i
The expectational IS relation, (2.42), can be expressed in terms of output gap as

(2.43) xt = Etxt+1 � �
�bit � Et�t+1 � brnt �

where

(2.44) brnt = ��1
h
(gt � bY n

t )� Et(gt+1 � bY n
t+1)
i

is the natural real rate of interest, namely the real interest rate that would obtain if all

prices were perfectly �exible.
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Log-linearising the real marginal cost speci�cation (2.22) yields

(2.45) cmct(i) = $ (byt(i)� qt) + ��1(bYt � gt)

where cmct(i) = log(mct(i)=�). Here the constant coe¢ cient
(2.46) $ =

evyyYevy > 0

measures the elasticity of real marginal cost with respect to own output and the distur-

bance term

(2.47) qt = �
evy�evyyY e�t

indicates the percentage variation in output required to keep the marginal disutility of

labour supply at its natural steady-state level, given shocks to technology and to the

household�s willingness to supply labour.

Under perfectly �exible prices, (2.45) reduces to

(2.48) log

�
��1

��1

�
= $

�bY n
t � qt

�
+ ��1(bY n

t � gt)

Solving for bY n
t = log(Y

n
t =Y ) yields

(2.49) bY n
t =

$qt + ��1gt
$ + ��1

Using (2.45), percentage �uctuations in the e¢ cient level of output are given by

(2.50) bY �
t =

$qt + ��1gt
$ + ��1

which is the same as (2.49). On the one hand, percentage �uctuations in the e¢ cient

level of output are equal, to second order, to percentage �uctuations in the natural level

of output. On the other hand, monopolistic competition brings about a constant wedge

between the natural steady-state level of output and the e¢ cient steady-state level of
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output. The natural steady-state level of output, Y , can in fact be rewritten as

(2.51) mc(Y ;Y ; 0) = ��1 = 1� �y

where the parameter �y summarises the distortions in the natural steady-state level of

output due to monopolistic competition. When �y is small enough, the steady-state

e¢ ciency gap, x� = log(Y
�
=Y ), can be log-linearised as

(2.52) log(Y
�
=Y ) =

�y
$ + ��1

+O
�
k�yk2

�
2.7. Hybrid Phillips Curves

We can now turn to the aggregate supply function. Under rule of thumb behaviour à la

Steinsson (2003), the in�ation rate and the output gap in any period satisfy an aggregate

supply relation of the form

(2.53) �t = �f�Et�t+1 + �b�t�1 + �2xt + �3xt�1

Appendix A reports a detailed derivation of the hybrid Phillips curve. The coe¢ cients on

the terms in in�ation are given by

(2.54) �f =
�

�
; �b =

!

�
; � = �+ ! � (1� �)!�

The coe¢ cients on the terms in output gap are given by

(2.55) �2 =
(1� !)��� (1� �)��!�

�
; �3 =

(1� �)!�

�

with

(2.56) � =
(1� �)(1� ��)(��1 +$)

(1 +$�)�

The parameters reported in Steinsson (2003) (p. 1451-1452) are the same as above

apart from �2. As acknowledged by the author, the mistake in the coe¢ cient on the term
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in current output gap is due to an incorrect speci�cation for the elasticity of the notional

short-run aggregate supply curve. This mistake implies that, once the possibility of rule-

of-thumb behaviour by price setters is ruled out (i.e. ! = 0), the hybrid Phillips curve

in Steinsson (2003) does not collapse to the NKPC in Woodford (2003, 2:12 and 2:13, p.

187), namely

(2.57) �t = �Et�t+1 + �xt

where � is given as in (2.56). On the contrary, absent rule-of-thumb behaviour by price

setters, our speci�cation for the hybrid Phillips curve, namely (2.53), is easily seen to

collapse to the NKPC in Woodford

If the fraction ! is reset according to backward-looking rule-of-thumb behaviour à la

Galì-Gertler (1999) (i.e. � = 0 in (2.53)), the aggregate supply relation is of the form

(2.58) �t = �f�Et�t+1 + �b�t�1 + �1xt

The parameters on the terms in in�ation are de�ned as in (2.54). The parameter on the

term in output gap is given by

(2.59) �1 =
(1� !)��

�

where � is de�ned as in (2.56). Of course, absent rule-of-thumb behaviour by price setters,

(2.58) collapses to the NKPC in Woodford (2003), namely (2.57).

Rule-of-thumb behaviour is indeed capable of providing a rationale for the dependence

of current values of in�ation on past as well as expected in�ation conditions. Under rule-

of-thumb behaviour, current in�ation depends on a convex combination of expected future

in�ation and lagged in�ation. Moreover, the weights on the expected future in�ation and

lagged in�ation are functions of the model�s structural parameters.

Both the hybrid Phillips curves (2.53) and (2.58) have the property that they nest the

NKPC. Additionally, Steinsson (2003) shows how (2.53) has the property that it also nests



40

a purely backward-looking Phillips curve (i.e. �t = �t�1+ (1��)�xt�1) in the limit when

! ! 1.

On the one hand, the property displayed by (2.53) of collapsing to the purely backward-

looking Phillips curve is certainly appealing. Nonetheless, empirical studies (e.g. Fuhrer

and Moore (1995), Fuhrer (1997), Galì and Gertler (1999), and Roberts (2005), and Sbor-

done (2005)) are not only able to reject the purely forward-looking Phillips curve but

also the purely backward-looking Phillips curve. On the other hand, an implication, not

previously noted in the literature, of allowing rule-of-thumb price setters to index their

prices to lagged output gap is that the long-run Phillips-curve trade-o¤ is a¤ected.

Indeed, all Phillips curves imply a positively sloped long-run Phillips-curve trade-o¤.

Denoting with � and x the steady-state values of in�ation and output gap, the NKPC

(2.57) implies an upward sloping relation of the form

(2.60) x =
(1� �)

�
�

The long-run relation between in�ation and output gap is in fact due to the smaller

coe¢ cient on the expected-in�ation (i.e. �) term relative to that on current in�ation (i.e.

1).

On the one hand, rule-of-thumb behaviour à la Galì and Gertler (1999) desirably im-

plies that all price setters behave identically once shocks are eliminated from the economy.

In other words, Galì-Gertler�s backward-looking rule-of-thumb behaviour does not alter

the steady state that would obtain under forward-looking behaviour by all price setters.

The long-run Phillips-curve trade-o¤ is in fact not a¤ected by the presence of rule-of-

thumb price setters: (2.58) evaluated at steady state results in (2.60). On the other hand,

the same is not true under rule-of-thumb behaviour à la Steinsson (2003). The fact that

rule-of-thumb price setters index their prices to the lagged output gap alters the long-run

Phillips-curve trade-o¤ that obtains in the purely forward-looking model. Indeed, the
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hybrid Phillips curve (2.53) evaluated at steady state yields

(2.61) x =
(1� �)(1� !)�

(1� !)��+ (1� �)(1� ��)!�
� = ��

which collapses to (2.60) under � = 0. As we shall see below, this will have important con-

sequences once we consider what constitutes the optimal in�ation rate under a particular

type of commitment policy.



CHAPTER 3

Policy Objective Functions

In this chapter, we specify objective functions for the central bank. The general equi-

librium foundations of New Keynesian models allow deriving the objective a central bank

should pursue starting from the utility of the representative household. Woodford (2003,

Ch. 6) provides a detailed analysis of the utility-based framework for the evaluation of

monetary policy. Accordingly, the central bank�s objective is the discounted sum of utility

of the representative household, which is approximated to second order by the discounted

sum of central bank�s single-period loss function. The central bank�s single-period loss

function in turn depends on the details of the price setting.

We extend the analysis in Woodford (2003) by allowing a fraction of price setters to

behave in a backward-looking rule-of-thumb manner. The backward-looking behaviour is

speci�ed in two ways. First, following Galì and Gertler (1999) we allow the rule-of-thumb

price setters to index their prices to lagged in�ation. Second, following Steinsson (2003)

we allow the rule-of-thumb price setters to index their prices to both lagged output gap

and lagged in�ation.

The case of rule-of-thumb behaviour à la Steinsson (2003) contains an original contri-

bution to the literature1. Speci�cally, we correct the utility-based objective function of

the central bank reported in the original paper. The mistake in Steinsson (2003) relates

to his reported �4 coe¢ cient in the single-period central bank�s loss function. It has been

acknowledged by the Steinsson in the Erratum to Optimal Monetary Policy in an Economy

with In�ation Persistence, available on the author�s webpage.

1The hybrid Phillips curve in the case of backward-looking rule-of-thumb behaviour à la Galì and Gertler
(1999) coincides with the one reported in Amato and Laubach (2003).

42
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Correcting the mistake allows us to show how the quadratic terms that stem from the

presence of rule-of-thumb behaviour by price setters can be combined in a single quadratic

term. As a result, rule-of-thumb behaviour, regardless of its speci�cation, can now be seen

as introducing a single extra term in the central bank�s single-period loss function relative

to the case of purely forward-looking price setting. Interestingly, this single extra term has

a precise economic interpretation: it penalises variations in the di¤erence between general

in�ation and rule-of-thumb price increases.

We �rst review the conditions that guarantee the validity of the utility-based approach

to monetary policy analysis in the presence of a linear approximation to the model�s

structural relations. We then proceed to compute a second-order approximation to the

period utility of the representative household. Finally, we specify the objective functions

for the central bank. Appendix B reports a detailed derivation of the objective function

that obtains in the presence of rule-of-thumb à la Steinsson (2003).

3.1. Theoretical Background

The problem at hand is how to evaluate expected utility, E[U(x; �)], under alterna-

tive policies on the basis of a log-linear approximation to �uctuations in the endogenous

variables. Here, x denotes a vector of endogenous variables, � is a vector of stochastic

exogenous shocks, and the utility function U(x; �) is concave for each realisation of � and

at least twice di¤erentiable.

The model�s structural equations are log-linearised around the deterministic steady

state, x, which is the vector of steady-state values of the endogenous variables in the

absence of shocks, � = 0. The model is then closed by an approximate policy rule, which

can either be assumed or, as we will do in the next chapter, optimally derived by specifying

a loss function for the central bank.
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Supposing that the linear approximate model is determinate2, a �rst-order approxima-

tion to the equilibrium �uctuations of the endogenous variables for any given policy rule

is given by

(3.1) x = x0 + A� +O
�
k�; %k2

�
where x0 is the policy-driven deterministic steady state, A is a matrix of coe¢ cients, and

the second-order residual is a function of the bound on the size of the exogenous shocks,

k�k, and of the bound on the policy-driven deterministic steady state, k%k.

The deterministic steady state x does not need to correspond to x0. The parameter

vector % in fact indexes aspects of the policy rule that a¤ect the steady state. A single

linear approximate general equilibrium model can thus be used for the evaluation of any

policy provided that the policy-driven deterministic steady state is close enough to the

steady state around which the model�s structural equations are log-linearised. Precisely,

the residual in (3.1) is of order O
�
k�; %k2

�
independently of the policy rule only if ex0 = x0�

x = O (k%k).

Taking a second-order approximation to the utility function delivers

(3.2) U(x; �) = U + Uxex+ U�� +
1

2
ex0Uxxex+ ex0Ux�� + 1

2
�
0
U��� +O

�
k�; %k3

�
where U = U(x; 0), ex = x� x, and all partial derivatives of U are evaluated at steady

state. The third-order residual stems from (3.1), which implies that x�x = x0�x+A� =

O (k�; %k). Given that the shocks are normalised to zero, namely E [�] = 0, taking the

expected value of the second-order approximation to the utility function (3.2) yields the

2The issue of whether a linear approximate general equilibrium model is determinate, namely the system
has a unique bounded solution in the case of bounded disturbances, is discussed in Blanchard and Kahn
(1980), Klein (2000), and Soderlind (1999).
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approximate welfare criterion

E[U(x; �)] = U + UxE [ex] + 1
2
tr fUxxvar [ex]g+ tr fUx�cov(�; x)g(3.3)

+
1

2
tr fU��var [�]g+O

�
k�; %k3

�
where E [ex] is the expectation of the random vector ex, var [ex] and var [�] are respectively
the variance-covariance matrices of the random vectors ex and �, and cov(�; x) is the matrix
of covariances between the random vectors ex and �.

We can now consider the validity of the welfare criterion for a given policy rule sat-

isfying (3.1). Substituting the �rst-order approximation to equilibrium �uctuations (3.1)

in ex delivers ex = ex0 + A�, which implies that E [ex] = ex0. Accordingly, the approximate
welfare criterion (3.3) is now given by

(3.4) U0 = U+Uxex0+1
2
tr fUxxvar [ex]g+tr fUx�cov(�; x)g+1

2
tr fU��var [�]g+O

�
k�; %k3

�
Comparing the approximate welfare criteria, (3.4) and (3.3), we note that

(3.5) E[U(x; �)]� U0 = UxE
�ex� ex0�+O

�
k�; %k3

�
Equation (3.5) implies that U0 cannot correctly rank alternative policies, even in the

case of a small bound on the amplitude of the disturbances, unless

(3.6) UxE
�ex� ex0� = O

�
k�; %k3

�
Condition (3.6) shows that the problem at hand here is one of a general nature. That

is the inaccuracy of evaluating welfare in terms of a second-order approximation to utility

on the basis of a linear approximation to the model structural equations given that the

residual in a linear approximation is only of second order and not of third order. Indeed,

the problem arises from the presence of the linear term in the second-order approximation

to the utility function: there may be second-order terms that are left as part of the
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second order-residual in a linear approximation but that may make a nonzero second

order contribution to the left-hand side of condition (3.6) thus spoiling the validity of the

approximate welfare criterion (3.3). Moreover, the issue whether such terms are nonzero

or not cannot generally be addressed unless considering a second-order approximation for

the model�s structural equations3.

Nonetheless, the inaccuracy of the linear approximation for the purpose of policy eval-

uation can also be overcome without having to discard the linear approximation to the

model�s structural relations. The validity of welfare ranking on the basis of log-linear ap-

proximation to the model structural equations can be gained by restricting Ux so to make

condition (3.6) hold.

The easiest restriction on Ux one can think of is the zero restriction

(3.7) Ux(x; 0) = 0

so that condition (3.6) necessarily holds and the approximate welfare criterion (3.3) does

not contain linear terms. Accordingly, comparisons of the value of U0 provide a correct

welfare ranking of alternative policies under the conditions that assure the determinacy

of rational expectation equilibrium. Equation (3.7) guarantees that in order to avoid the

inaccuracy of the log-linearised equations one should linearise the model�s structural equa-

tions around the Pareto e¢ cient steady state. Indeed, this is the widespread practice in the

New Keynesian literature: the steady-state distortions due to monopolistic competition in

the goods�markets are eliminated by assuming the existence of a subsidy to production.

This assumption is uncompelling for two main reasons. First, there is no evidence of the

existence of the kind of subsidies needed to assume away steady-state distortions. Second,

it is not clear whether a policy that is optimal for an economy with an e¢ cient steady

3Second-order solution methods are discussed in Benigno and Woodford (2005), Collard and Juillard
(2001), Jin and Judd (2002), and Schmitt-Grohè and Uribe (2004b).
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state remains optimal in an economy where the steady state is distorted. With this lat-

ter respect, we will indeed show how maintaining steady-state distortions has important

consequences on the characterisation of the optimal in�ation rate for monetary policy.

The accuracy of �rst-order approximations to correctly evaluate welfare up to second

order does not necessarily require for the steady state to be e¢ cient. Condition (3.7) can

in fact be weakened by imposing only that

(3.8) Ux(x; 0) = O (k�yk)

where the parameter �y, introduced in Chapter 2, summarises the distortions in the

natural steady-state level of output due to monopolistic competition. If condition (3.7)

provides a benchmark for the steady state in order to gain the accuracy of the linear

approximation for the purpose of welfare evaluation, condition (3.8) simply requires the

steady state be near such a benchmark, namely not to be too ine¢ cient. Imposing con-

dition (3.8) thus amounts to binding the equilibrium ine¢ ciency. The additional bound

introduced in turns guarantees that

(3.9) UxE
�ex� ex0� = O

�
k�y; �; %k3

�
which entails that the approximate welfare criterion (3.3) does not contain linear terms,

namely

(3.10) E[U(x; �)] = U0 +O
�
k�y; �; %k3

�
To summarise, it is possible to use �rst-order approximations to evaluate welfare ac-

curately up to second order as long as: I) the exogenous disturbances are small enough,

II) the policy-driven steady state is close enough to the steady-state around which the

log-linearisations are taken, and III) the steady-state distortions are small enough.
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3.2. Utility-based Welfare Criterion

We consider the scenario of small steady-state distortions discussed in the previous

section. Substituting the indirect utility functions, the period utility of the representative

household in (2.1) can be rewritten as a function solely of all yt(i) as given by (2.24). For

convenience, we report here the period utility

(3.11) Ut = eu(Yt;e�t)� Z 1

0

ev(yt(i);e�t)di
This change of variables matters because the small ine¢ ciency of the steady state is never

in terms of the endogenous variables in the utility function per se. In other words, neither

the marginal disutility of labour nor the marginal utility of consumption is small enough at

steady state. The small ine¢ ciency of the steady state is rather in terms of the structural

relationship relating labour to consumption. This structural relationship characterises

feasible consumption-work outcomes as a result of the production function. Accordingly,

we need to express utility as a function of the level of production, an endogenous variable

for which the marginal utility is close enough to zero.

A second-order Taylor approximation of the �rst term in the period utility (3.11) is

given by

(3.12) eu(Yt;e�t) = u+ euceYt + eu�e�t + 12eucceY 2
t + euc� eYte�t + 12e�0teu��e�t +O

�


e�; %


3�

where u = eu(Y ; 0) and eYt = Yt � Y . eYt is related to bYt through the second-order Taylor
approximation, Yt = Y (1 + bYt + 1

2
bY 2
t ) +O(




e�; %


3). Substituting accordingly for eYt yields
eu(Yt;e�t) = u+ eucY (bYt + 1

2
bY 2
t ) + eu�e�t + 12euccY 2

�bYt + 1
2
bY 2
t

�2
(3.13)

+euc�Y (bYt + 1
2
bY 2
t )
e�t + 12e�0teu��e�t +O

�


e�; %


3�
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Dropping the terms that are higher than second order and collecting terms that are inde-

pendent of policy in the term t:i:p, we obtain

(3.14) eu(Yt;e�t) = Y euc�bYt + 1
2
(1� ��1)bY 2

t + ��1gtbYt�+ t:i:p+O

�


e�; %


3�

where � and gt are respectively given by (2.40) and (2.41).

The second term in the period utility (3.11) can be approximated to second order by

(3.15) ev(yt(i);e�t) = v + evyeyt(i) + ev�e�t + 12evyyey2t (i) + evy�eyt(i)e�t + 12e�0tev��e�t +O

�


e�; %


3�

where v = ev(Y ; 0) and eyt(i) = yt(i)� Y . eyt(i) is related to byt(i) through the second-order
Taylor approximation, yt(i) = Y (1+ byt(i)+ 1

2
by2t (i))+O(


e�; %


3). Substituting accordingly

for eyt(i) yields
ev(yt(i);e�t) = v + evyY (byt(i) + 1

2
by2t (i)) + ev�e�t + 12evyyY 2

(byt(i) + 1
2
by2t (i))2(3.16)

+evy�Y (byt(i) + 1
2
by2t (i))e�t + 12e�0tev��e�t +O

�


e�; %


3�

Dropping the terms that are higher than second order and collecting terms that are inde-

pendent of policy in the term t:i:p, we obtain

(3.17) eu(Yt;e�t) = Y evy �byt(i) + 1
2
(1 +$)byt(i)2 �$qtbyt(i)�+ t:i:p+O

�


e�; %


3�

where $ and qt are respectively given by (2.46) and (2.47). Using the real marginal cost

speci�cation (2.22) evaluated at steady state and the de�nition of the natural steady-state

level of output as given by (2.51), it is possible to substitute euc(1 � �y) for evy, with �y
being an expansion parameter. Accordingly, equation (3.17) can be rewritten as

(3.18) ev(yt(i);e�t) = Y euc
8><>: (1� �y)byt(i)
+1
2
(1 +$)byt(i)2 �$qtbyt(i)

9>=>;+ t:i:p+O

�


�y;e�; %


3�
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Integrating this over the di¤erentiated goods i gives

Z 1

0

ev(yt(i);e�t)di = Y euc
8><>: (1� �y)Eibyt(i)�$qtEibyt(i)
+1
2
(1 +$) [(Eibyt(i))2 + varibyt(i)]

9>=>;(3.19)

+t:i:p+O

�


�y;e�; %


3�

where Eibyt(i) and varibyt(i) denote respectively the mean value and the variance of byt(i)
across all di¤erentiated goods i at date t. Using a second-order approximation to the

Dixit-Stiglitz output index, bYt = Eibyt(i) + 1
2
(1� ��1)varibyt(i) + O(




e�; %


3), to substitute
for Eibyt(i) yields

Z 1

0

ev(yt(i);e�t)di = Y euc
8><>: (1� �y)bYt + 1

2
(1 +$)bY 2

t �$qtbYt
+1
2
(��1 +$)varibyt(i)

9>=>;(3.20)

+t:i:p+O

�


�y;e�; %


3�

Putting back together the second-order approximations to the two terms entering the

period utility function, (3.14) and (3.20), a second-order approximation to the period

utility function is given by

(3.21) Ut = �
Y euc
2

8><>: (��1 +$)
h
�2x�bYt + bY 2

t � 2bY n
t
bYti

+(��1 +$)varibyt(i)
9>=>;+ t:i:p+O

�


�y;e�; %


3�

where we use equations (2.49) and (2.52) to express the period utility function in terms

of the percentage �uctuations in the natural level of output, bY n
t , and the steady-state

e¢ ciency gap, x�.

Recalling that each supplier faces a constant elasticity demand as given by (2.5) , it

follows that the variance of yt(i) across all di¤erentiated goods i at date t is related to the

variance of prices across all di¤erentiated goods i at date t according to vari log yt(i) =

�2vari log pt(i). Using this and noting that (xt � x�)2 = bY 2
t � 2x�bYt +�2bY n

t
bYt + t:i:p, we
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obtain

(3.22) Ut = �
Y euc
2

264 (��1 +$)(xt � x�)2

+(1 +$�)�vari log pt(i)

375+ t:i:p+O

�


�y;e�; %


3�

which coincides with Woodford (2003, 2:13, p. 396).

There are two main points to take from (3.22). First, absent the steady-state distortions

due to monopolistic competition (i.e. x� = 0), the welfare-relevant measure of output gap

is precisely the same that enters the aggregate supply curve. The monetary authority

should stabilise the output gap, xt, that is it should stabilise the actual level of output

around the natural level of output, which would be e¢ cient. In the presence of steady-state

distortions, the monetary authority should instead try to stabilise the output gap around

the steady-state e¢ ciency gap, x�. In other words, the combination of general equilibrium

foundations and steady-state distortions provides a microfoundation for targeting a level

of output above the ine¢ cient natural level of output.

Second, it is also appropriate for monetary policy to aim to curb price dispersion. In

the presence of sticky prices, price dispersion is costly because it reduces the utility of the

representative household. This happens for two reasons. First, the representative house-

hold�s utility depends on the consumption of an aggregate good. Faced with dispersion

of prices for the individual goods produced in the economy, the household consumes more

of the relatively cheaper goods and less of the relatively more expensive goods. Given

diminishing marginal utility, the loss in utility due to consuming less of the relatively

more expensive goods is greater than the increase in utility due to consuming more of the

relatively cheaper goods. Second, the representative household�s utility depends on the

supply of each individual labour type. Given increasing marginal disutility of supplying

labour, the loss in utility due to producing more of the relatively more expensive goods is

greater than the increase in utility due to producing less of the relatively cheaper goods.

For these reasons, price dispersion reduces utility. When prices are sticky, price dispersion

is caused by in�ation. However, how �uctuations in the general price level a¤ect price
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dispersion, hence the central bank�s objective function, depend upon the details of price

setting.

3.3. Utility-based Objective Functions

We can now specify the utility-based objective functions for monetary policy. The

central bank�s objective is the discounted sum of utility of the representative household,

which is approximated to second-order by the discounted sum of central bank�s single-

period loss function. The central bank�s single-period loss function, denoted with Lt,

depends on the details of price setting. Denoting with W the central bank�s objective

function, we have

(3.23) W =
1X
t=0

�tUt = �

1X
t=0

�tLt + t:i:p+O

�


�y;e�; %;�1=2
�1




3�

where the constant 
 is given by 
 = Y euc(��1 + $)�=2�. Appendix B reports a de-

tailed derivation of the central bank�s objective function in the presence of rule-of-thumb

behaviour à la Steinsson (2003).

Under rule-of-thumb behaviour à la Steinsson (2003), the single-period central bank�s

loss function takes the form

(3.24) Lt = �2t + �1(xt � x�)2 + �2 [�t � (�t�1 + (1� �)�xt�1)]
2

The coe¢ cients �1 and �2 are given by

(3.25) �1 =
�

�
and �2 =

!

(1� !)�

where � is de�ned as in (2.56).

The single-period central bank�s loss function (3.24) constitutes an original contribution

to the literature4. As acknowledged by Steinsson, the mistake in his derivation relates to

4The hybrid Phillips curve in the case of backward-looking rule-of-thumb behaviour à la Galì and Gertler
(1999) coincides with the one reported in Amato and Laubach (2003).
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the coe¢ cient he denotes with �4. Correcting the mistake allows us to show, as we detail

in Appendix B, how the quadratic terms that stem from the presence of rule-of-thumb

behaviour by price setters can be combined in a single quadratic term. As a result, rule-

of-thumb behaviour by price setters à la Steinsson (2003), can now be seen as introducing

a single extra term in the central bank�s single-period loss function relative to the case

of purely forward-looking price setting. Interestingly, as we discuss below, we can give a

clear and intuitive interpretation to this single extra term.

In the presence of backward-looking rule-of-thumb behaviour à la Galì-Gertler (1999)

(i.e. � = 0), the single-period central bank�s loss function is given by

(3.26) Lt = �2t + �1(xt � x�)2 + �2 (�t � �t�1)
2

with �1 and �2 de�ned as in (3.25).

Absent rule-of-thumb behaviour, ! = 0, (3.24) and (3.26) collapse to the loss function

in Woodford (2003, 2:22, p. 400), namely

(3.27) Lt = �2t + �1(xt � x�)2

with �1 de�ned as in (3.25).

A loss function similar to (3.27) has indeed been widely assumed in the literature on

optimal monetary policy evaluation. Walsh (2003, Ch. 8) provides a survey of earlier

works on optimal monetary policy that assume a quadratic loss function closely related to

(3.27). As discussed in Woodford (2003, Ch. 6) the main advantage of the utility-based

approach to monetary policy analysis lies in providing a theoretical justi�cation, namely

a microfoundation, for such widely used loss function. There are two critical di¤erences

between the utility-based loss function (3.27) and the nonmicrofounded loss functions

assumed by the earlier literature on optimal monetary policy. First, the output gap is

measured relative to the natural level of output, namely the equilibrium level of output

under perfectly �exible prices. In the earlier literature, the output variable was instead
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interpreted as being output relative to trend or output relative to an unspeci�ed natural

level of output. Second, as described above, in�ation enters the loss function because

of sticky prices: price dispersion reduces the utility of the representative household and,

when �rms cannot adjust their prices every period, price dispersion is brought about by

in�ation. Moreover, the relative weights on in�ation and output gap stabilisation are

again determined by the model�s structural parameters. Speci�cally, the relative weight

on output variations depends linearly on the slope of the purely forward-looking Phillips

curve.

An evident implication of allowing for rule-of-thumb behaviour is that it a¤ects the

objective that monetary policy seeks to pursue. Rule-of-thumb behaviour implies that

the single-period central bank�s loss function includes an extra term with respect to the

single-period loss function in the purely forward-looking model.

Indeed, the extra terms in the single-period loss function due to the presence of

backward-looking rule-of-thumb à la Steinsson (2003) can now be combined in a single

quadratic term. Interestingly, this extra term can now be seen as penalising variations in

the di¤erence between general in�ation and rule-of-thumb price increases. In the presence

of Galì-Gertler�s rule-of-thumb behaviour, rule-of-thumb price setters index their prices

to lagged in�ation, which is re�ected in the term in in�ation acceleration, �t � �t�1.

In the presence of Steinsson�s rule-of-thumb behaviour, rule-of-thumb price setters index

their prices to both lagged in�ation and lagged output gap, which is re�ected in the term

�t � (�t�1 + (1� �)�xt�1).

Moreover, an implication of allowing rule-of-thumb price setters to index their prices to

lagged output gap is that the steady-state loss function is a¤ected. Galì and Gertler (1999)

rule-of-thumb behaviour does not alter the steady-state loss function that would obtain

under forward-looking behaviour by all price setters as the term in in�ation acceleration

in (3.26) does not matter at steady state. The same is not true under rule-of-thumb

behaviour à la Steinsson (2003): the fact that rule-of-thumb price setters index their prices

to the lagged output gap entails that the additional, with respect to (3.27), term in (3.24)
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matters at steady state. As we shall see below, this will have important consequences

once we consider what constitutes the optimal in�ation rate under a particular type of

commitment policy.



CHAPTER 4

Optimal Monetary Policy: Optimal Long-run In�ation Rates

In this chapter, we study what constitutes optimal monetary policy in our theoretical

economies, which are all characterised by the existence of a long-run Phillips-curve trade-

o¤ and by an ine¢ cient natural level of output. Speci�cally, we concentrate on what

constitutes the optimal long-run in�ation rate. Throughout the chapter we assume that

the central bank is able to act under commitment. We consider di¤erent types of optimal

commitment policy that have been proposed in the literature: the zero-optimal policy, the

timeless perspective commitment policy in Woodford (1999), and the alternative timeless

perspective commitment policy put forward by Blake (2001), Jensen andMcCallum (2002),

and Damjanovic et al. (2008). Our preference for commitment is based on our focus on

analysing the optimal long-run in�ation rate when the steady-state is distorted1.

The analysis we carry out in this chapter is entirely about steady-state outcomes.

Certainty equivalence guarantees that the results we obtain in the purely deterministic

setting hold in the presence of random disturbances. While we initially characterise the

steady state of our theoretical economies, the dynamic nature of the three models derived

in the previous chapters is later employed for the analysis of stochastic outcomes, such as

the dynamic analysis of responses to shocks and the welfare costs due to the stabilisation

of shocks.

Within New Keynesian literature, Woodford (2003) studies the optimal long-run rate of

in�ation in the basic NKmodel and its extension where in�ation inertia is due to backward-

looking price indexation by price setters, which is considered by, among others, Christiano

et al. (2005) and Smets and Wouters (2003). This chapter provides the �rst derivation of

1Of course, discretionary conduct of monetary policy would result in the well-known in�ation bias stressed
by Kydland and Prescott (1977) and Barro and Gordon (1983).

56
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the optimal long-run in�ation rate in a small New Keynesian model where in�ation inertia

is due to backward-looking rule-of-thumb behaviour by price setters speci�ed either à la

Galì and Gertler (1999) or à la Steinsson (2003).

In the standard New Keynesian framework, the optimality of a monetary policy that

pursues complete price stability is well-known. Price stability is complete as it charac-

terises both the deterministic and the stochastic component of optimal monetary policy:

zero in�ation is optimal in the steady state and in�ation should not vary in response

to the shocks bu¤eting the economy. The intuition for zero OLIR, as �rstly stressed by

Goodfriend and King (1997) is neat. The welfare-theoretical loss function re�ects the two

distortions in a basic NK model: distortions due to monopolistic competition in products

markets and distortions due to relative-price distortions. Under the widespread assump-

tion of a subsidy to production aimed at eliminating the long-run distortions originating

from monopolistic competition, zero steady-state in�ation is optimal as it allows to fully

stabilise the distortions due to relative-price distortions. Zero long-run in�ation remains

optimal even in the presence of the steady-state distortions due to monopolistic competi-

tion: the central bank �nds optimal to fully stabilise the distortions due to relative-price

distortions whereas it does not intervene on the distortions due to monopolistic compe-

tition. Woodford (2003) thus concludes "It is sometimes supposed that the existence of

a long-run Phillips-curve trade-o¤, together with an ine¢ cient natural rate, should imply

that the Phillips curve should be exploited to some extent, resulting in positive in�ation

forever, even under commitment. But here that is not true because the smaller coe¢ -

cient on the expected in�ation-term relative to that on current in�ation-which results in

the long-run trade-o¤- is exactly the size of the shift term in the aggregate supply that is

needed to precisely eliminate any long-run incentive for nonzero in�ation under an opti-

mal commitment." Woodford (2003, p. 415). Moreover, as shown in Woodford (2003),

zero OLIR is robust to in�ation inertia due to backward-looking price indexation by price
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setters, regardless of the assumption about the distortions originating from monopolistic

competition in products market2.

This is the �rst study of the optimal long-run in�ation rate in a small NK model

where in�ation inertia is due to backward-looking rule-of-thumb behaviour by price setters,

speci�ed either à la Galì and Gertler (1999) or à la Steinsson (2003).

We show how backward-looking rule-of-thumb behaviour, speci�ed either à la Galì and

Gertler (1999) or à la Steinsson (2003), breaks the optimality of zero long-run in�ation. In

other words, backward-looking rule-of-thumb behaviour brings about a long-run incentive

for nonzero in�ation. This is because the stimulative e¤ect of higher in�ation is generally

greater than the output cost of higher in�ation. Optimal steady-state in�ation collapses

to zero in the absence of backward-looking rule-of-thumb behaviour, in the absence of a

long-run Phillips-curve trade-o¤, and in the absence of steady-state distortions.

Positive optimal long-run in�ation also obtains in the purely forward-looking New Key-

nesian model under a type of timeless perspective commitment policy that has recently

been proposed in the literature. Blake (2001), Jensen and McCallum (2002), and Dam-

janovic et al. (2008) propose considering a timeless perspective policy which is based on

the optimisation of the unconditional value of the central bank�s objective function. More-

over, the alternative timeless perspective commitment policy is robust to the introduction

of backward-looking rule-of thumb behaviour, when this is characterised as in Galì and

Gertler (1999), with the optimal long-run in�ation rate being invariant to the degree of

rule-of-thumb behaviour.

Overall, of the six optimal long-run in�ation rates we derive, �ve are positive. In

all the theoretical cases considered, optimal steady-state in�ation collapses to zero in the

absence of a long-run Phillips-curve trade-o¤and in the absence of steady-state distortions.

Taking together the basic message of our results is that the widespread practice in the

New Keynesian literature of restricting the attention to the case of an e¢ cient natural

2The only consequence of introducing in�ation inertia due to backward-looking price indexation is that
the existence of a positive rate of in�ation before the adoption of the optimal commitment policy a¤ects
the rate at which the central bank brings in�ation back to the zero long-run optimal target.
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level of output is not innocuous. A policy that is optimal for an economy with an e¢ cient

steady state di¤ers from what is optimal in an economy where the subsidies that achieve

Pareto e¢ ciency are unavailable.

We �rst review di¤erent types of optimal commitment policy that have been proposed

in the literature. We then proceed to set up the policy problem faced by the central

bank. Finally, we evaluate what constitutes optimal long-run in�ation in our theoretical

economies. Table 1 summarises the six optimal long-run in�ation rates we derive.

4.1. Di¤erent Perspectives on Optimal Monetary Policy

The past few years have been characterised by a large body of literature on the topic

of optimal monetary policy. However, there is disagreement as to which is the appro-

priate perspective for monetary policy optimality. Following the work of Kydland and

Prescott (1977), the literature has focused on two main approaches to monetary policy

analysis: commitment and discretion. These two approaches correspond to two di¤erent

assumptions about central bank behaviour. The di¤erence of the two approaches in fact

lies in the central bank�s ability to precommit about its future actions. As Kydland and

Prescott (1977) �rstly pointed out, commitment is not time consistent. That is, the be-

haviour which the central bank would like to commit itself to carrying out at a future date

does not generally remain optimal for the bank when that future date actually arrives.

Conversely, discretion is time consistent as the central bank is free to choose at any date

the best policy given the conditions existing in the economy.

On the one hand, the New Keynesian literature has emphasised that discretionary

conduct of policy leads, in addition to the well-known in�ation bias stressed by Kydland

and Prescott (1977) and Barro and Gordon (1983), to the so-called stabilisation bias3.

Woodford (1999, 2003, Chapter 7) and Clarida et al. (1999) discuss how a central bank

that is able to credibly commit can in�uence private sector expectations in a way that leads

to more favorable responses to shocks. In particular, Woodford (1999, 2003, Chapter 7)

3Earlier papers which discuss this e¤ect include Jonsson (1997) and Svensson (1997).
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shows that optimal policy under commitment is history dependent whereas discretionary

policy is purely forward-looking. The logic behind the optimality of history dependence

is quite intuitive. In an economy where private sector expectations are formed rationally,

commitment by the central bank can in�uence these expectations only if the central bank�s

earlier commitments are sustained in later periods. Hence, successful steering of private

sector expectations requires that the central bank�s conduct in later periods depends not

only on the current state of the economy but also on the state of the economy in earlier

periods.

On the other hand, within the commitment class of policy, the literature has proposed

three types of policy strategy, which represent di¤erent perspectives on the concept of

optimal monetary policy.

First, there is full commitment on the basis of the initial conditions at an arbitrary date

zero, when the policy is implemented. Following the terminology in Woodford (2003), we

refer to this type of strategy as being the zero-optimal commitment. This strategy entails

that existing expectations need not to be ful�lled as they are taken as given at date

zero. The exploitation of existing expectations implies that zero-optimal policy is not

time invariant. The central bank�s behaviour is in fact not described by a time invariant

rule but rather by a set of rules: one rule for date zero and one rule for all subsequent

dates. In other words, the policy chosen at later dates is not a continuation of the policy

selected at date zero. With this respect, we must stress that by rule we mean an optimal

targeting rule, namely a target criterion for in�ation that is derived by combining the

optimality conditions with respect to in�ation and output gap.

Second, there is timeless perspective commitment, which, originally introduced by

Woodford (1999), has subsequently received a great deal of attention. This strategy seeks

to overcome the lack of continuation that characterises the zero-optimal policy. Indeed,

the timeless perspective re�ects a type of commitment that, unlike the zero-optimal com-

mitment, constraints the central bank�s rule to be time invariant. It does so by relying

upon optimality conditions that would have been chosen under a commitment regime if
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this had been adopted in the distant past. In other words, by ignoring the temptation to

exploit the expectations existing in the economy, the initial conditions prevailing at date

zero are not the ones utilised, but the economy�s initial evolution is constrained to be the

the one associated with the policy. The zero-optimal policy and the timeless perspective

policy in fact di¤er only with respect to the central bank�s posited behaviour in the initial

period. Given the intertemporal nature of the aggregate-supply relation, it follows that

the two policies imply di¤erent transition paths for in�ation and output gap to the same

optimal long-run values.

Third, Blake (2001), Jensen and McCallum (2002), and Damjanovic et al. (2008) argue

that timeless perspective commitment, as usually described, is not thoroughly timeless.

The timeless perspective developed by Woodford is in fact based on optimality conditions

obtained from a conditional optimality calculation. The authors thus propose considering

an alternative timeless perspective policy which is based on optimisation of the uncondi-

tional value of the central bank�s objective function. In this sense, the rule they obtain

is globally optimal in the sense of Taylor (1979). Taylor (1979) proposes adopting a

monetary policy that, given complete knowledge, in terms of both structural equations

and exogenous shock processes, of the structure of an economy characterised by rational

expectations, is optimal on average. Monetary policy is optimal on average if it yields

the smallest unconditional expectation of the central bank�s objective function. The rule

implied by this third perspective is both timelessly optimal and globally optimal with

respect to the unconditional variance. In what follows, we refer to this third approach as

implying an alternative timeless perspective policy to the standard timeless perspective

policy in Woodford (1999).

Here we concentrate on the optimal long-run in�ation rates entailed by these alternative

commitment policies. We consider the forward-looking canonical New Keynesian economy

and its alterations due to backward-looking rule-of-thumb behaviour by a fraction of price

setters, speci�ed either à la Galì and Gertler (1999) or à la Steinsson (2003). In so doing,

we consider the empirically realistic case of an economy where the deterministic steady
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state is ine¢ cient as the distortions due to monopolistic competition are not o¤set by

subsidies to production.

4.1.1. The Policy Problem

Before analysing the optimal long-run in�ation rates under the di¤erent commitment

policies, we present the problem faced by the central bank. Following the theoretical

literature on optimal monetary policy, we assume that the central bank�s policy instrument

is the short-term nominal interest rate. The combination of cashless economy, which entails

that there are no costs associated with varying the nominal interest rate, and central�s

bank control of the nominal interest rate implies that the intertemporal expectational IS

relation imposes no real constraint on the central bank. Given the central bank�s optimal

choices for in�ation and output gap, the expectational IS equation simply determines the

path of nominal interest rate necessary to achieve the optimal path for the output gap.

As a consequence, it is more convenient to treat output gap as if it were the central bank�s

policy instrument.

The economy is thus fully described by the aggregate-supply relation and the central

bank�s objective function. This model of central bank behaviour allows determining the

long-run in�ation rate corresponding to a given policy. In particular, as stressed by Wood-

ford (2008) "The fact that the equations are log-linearized does not mean that one simply

assumes an average in�ation rate; the equations allow one to derive the average in�ation

rate corresponding to a given policy".

As described in the previous chapters, both the central bank�s single-period loss func-

tion, Lt, and the aggregate-supply relation depend upon the details of price setting. How-

ever, regardless of the details of price setting, a central bank able to precommit faces a

constrained minimisation problem. That is, the central bank chooses a path for current and

future in�ation and a path for current and future output gap to minimise its objective

function subject to the aggregate-supply relation. Speci�cally, the utility-based central

bank�s objective function at an arbitrary time t = 0, is here taken to be the expected
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discounted sum of central bank�s loss function. In other words, we drop the constant �
,

which multiplies the discounted sum of central bank�s loss function in (3.23), as it does

not matter for the constrained minimisation problem.

The commitment policies then di¤er as for expected value of the central bank�s objec-

tive function being unconditional or conditional on information available at date 0.

A central bank acting under zero-optimal or timeless perspective commitment faces

the problem of minimising the expected value of its objective function conditional on

information available at date 0, namely

(4.1) E0

1X
t=0

�tLt

where E0 denotes the expectation operator conditional on information available at date 0.

The two commitment policies then di¤er because the timeless perspective policy ignores

the conditions actually prevailing in the economy at the policy�s implementation date.

Conversely, a central bank acting under the alternative timeless perspective commit-

ment faces the problem of minimising the unconditional expected value of its objective

function. Denoting with E the unconditional expectation operator, the law of iterated

expectations implies that

(4.2) E

 
E0

1X
t=0

�tLt

!
= (1� �)�1E(Lt)

Except for discounting, the unconditional expectation of the expected value of the central

bank�s objective function conditional on information available at date zero corresponds

to the unconditional expectation of the single-period central bank�s loss function, E(Lt).

The optimality conditions under the alternative timeless perspective policy are obtained

as done in Blake (2001). Blake (2001) describes the rule under the alternative timeless

perspective policy as being implied by the expected undiscounted minimisation problem
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conditional on information available at date zero, under which the central bank minimises

E0
1P
t=0

Lt.

In what follows, superscripts FL, GG, and S denote respectively the purely forward-

looking New Keynesian model, the model with rule-of-thumb behaviour à la Galì and

Gertler (1999), and the model with rule-of-thumb behaviour à la Steinsson (2003). Su-

perscript Z0 denotes the zero-optimal commitment policy, superscript TP designates the

standard timeless perspective policy, and superscript ATP indicates the alternative time-

less perspective policy. We can now proceed to characterise each commitment policy in

terms of target criterion and optimal long-run in�ation rate.

4.2. Basic New Keynesian Model

A central bank acting under commitment faces the problem of choosing paths for

in�ation and the output gap, f�t; xtg1t=0, to minimise the expected discounted sum of

central bank�s loss function, with the single period-loss given by (3.27), conditional on

information available at date zero subject to the constraint that the sequences must satisfy

(2.57) each period. The Lagrangian associated with this problem is of the form

(4.3) LFL0 = E0

1X
t=0

�t
�
1

2
�2t +

�1
2
(xt � x�)2 + 't [�t � ��t+1 � �xt]

�

where 't is the Lagrangian multiplier associated with period t aggregate-supply relation.

Di¤erentiating with respect to �t and xt, we get the optimality conditions

(4.4)
@LFL0
@�t

= 0) �t + 't � 't�1 = 0

(4.5)
@LFL0
@xt

= 0) �1(xt � x�)� �'t = 0

Under zero-optimal commitment policy, there is no ful�llment of the expectations existing

at the time of the policy implementation, that is (4.4) in period 0 holds with '�1 = 0.

Hence, zero-optimal commitment policy is characterised by the output gap optimality
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condition (4.5) for all t � 0 and two in�ation optimality conditions: one for period zero

and one for all subsequent periods

(4.6) �t + 't = 0 t = 0

(4.7) �t + 't � 't�1 = 0 t � 1

Combining the optimality conditions (4.5) and (4.6) delivers the central bank�s target

criterion in period 0

(4.8) �0 = �
�1
�
(x0 � x�)

whereas combining the optimality conditions (4.5) and (4.7), the central bank in any

period t � 1 behaves according to the rule

(4.9) �t = �
�1
�
(xt � xt�1)

Woodford (2003) hence concludes "Thus it is optimal (from the point of minimizing dis-

counted losses from date zero onward) to arrange an initial in�ation, given that the decision

to do so can have no e¤ect upon expectations prior to date zero (if one is not bothered by

the non-time-consistency of such a principle of action). The optimal policy involves pos-

itive in�ation in subsequent periods as well, but there should be a commitment to reduce

in�ation to its optimal long-run value of zero asymptotically" Woodford (2003, p. 414�5).

Despite the ine¢ ciency of the nonstochastic steady state, namely x� > 0, and the

existence of a positively sloped long-run Phillips-curve trade-o¤, as implied by (2.60)

evaluated at steady state, there is an advantage for having positive in�ation only in period

0, whereas there is no long-run incentive for positive in�ation. This is because the increase

in output in any period caused by higher in�ation in the same period, 't, is exactly o¤set

by the cost of the reduction in output in the previous period as a result of expected higher
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in�ation, 't�1. The steady-state e¢ ciency gap thus enters (4.8), but it does not appear

in (4.9). Hence, the optimal long-run in�ation rate is zero.

Alternatively, the same result can be illustrated without having to rely on the optimal-

ity conditions of the minimisation problem. Integrating forward the NKPC (2.57) entails

that, regardless of policy, the expected discounted sum of future output gaps conditional

on information available at date 0 can be rewritten as a function solely in�ation at time

0, �0 = �E0
P1

t=0 �
txt. Accordingly, the central bank�s objective function in (4.1) can be

rewritten as

(4.10) E0

( 1X
t=0

�tLt

)
= �1E0

( 1X
t=0

�tx�2

)
� 2x

�

�
�0 + E0

( 1X
t=0

�t
�
�2t + �1x

2
t

�)

The �rst term is purely a function of steady-state e¢ ciency gap, x�. The other terms are

minimised by choosing �t = 0 each period, which, given the NKPC, implies xt = 0 each

period, except the one that is function of the initial rate of in�ation �0. The presence

of this term implies a welfare gain from an initial positive rate of in�ation, but because

it only applies to in�ation in the initial period, it is optimal to commit to zero long-run

in�ation. Moreover, the linear term in �0 a¤ects the zero-optimal commitment policy

for periods later than 0 as the NKPC implies an intertemporal linkage between current

in�ation and future in�ation. The welfare gain resulting from positive �0 can be obtained

with less increase in period 0 output gap, x0, thus resulting in less increase in �1x20, if it

is associated with an increase in expected in�ation at date one, E0�1. Given that the loss

associated with E0�1 occurs later in time, and is thus weighted less strongly, the transition

to zero-optimal in�ation lasts for more than one period.

Woodford (1999) argues that zero-optimal commitment policy is not attractive as it is

not time invariant. As an alternative to zero-optimal policy, Woodford (1999) puts forward

another commitment policy, which he labels timeless perspective. The policy proposal is

simple to outline. What makes the zero-optimal commitment policy not time invariant is

the separate treatment of initial period and all other periods. At time 0, the central bank
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sets in�ation according to the rule (4.8) and promises to follow the rule (4.9) at any later

date. Yet, if a central bank reoptimised in any later period, it would �nd optimal to set

in�ation according to (4.8), updated to that period. By ignoring the conditions existing

in the economy at the policy�s implementation, commitment policy is in fact timeless as it

can be thought of as a policy rule that was chosen in the distant past. The current values of

in�ation and output gap are the values chosen form that earlier perspective to satisfy the

two optimality conditions (4.4) and (4.5). Woodford�s timeless perspective commitment

policy thus ignores the start-up condition (4.6) and the central bank�s rule in all periods

t � 0 is given by (4.9). Hence, despite the steady-state distortions and the existence of

long-run Phillips-curve trade-o¤, there is never advantage from having positive in�ation.

More recently, it has been recognised that the use of (4.9) in all periods t � 0 is not

optimal within the class of time-invariant policy rules. Speci�cally, Blake (2001), Jensen

(2001), Jensen and McCallum (2002), and Damjanovic et al. (2008) show that there is a

slightly di¤erent policy rule that is not only timeless but also globally optimal with respect

to the unconditional expectation of the central bank�s objective function. As discussed

above, the optimality conditions under this alternative timeless perspective policy can in

fact be found by considering the expected undiscounted minimisation problem conditional

on information available at date zero. That is, the Lagrangian (4.3) becomes

(4.11) LFL0;Undis = E0

1X
t=0

�
1

2
�2t +

�1
2
(xt � x�)2 + 't [�t � ��t+1 � �xt]

�

where the subscript Undis indicates that the undiscounted minimisation problem is con-

sidered. Di¤erentiating with respect to �t and xt, the output gap optimality condition

(4.5) is una¤ected but instead of the in�ation optimality condition (4.4) we obtain

(4.12)
@LFL0;Undis
@�t

= 0) �t + 't � �'t�1 = 0

From a timeless perspective, the central bank sets policy according to optimality conditions

(4.5) and (4.12) in all periods t � 0. Combining these optimality conditions, the central
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bank�s rule is given by

(4.13) �t = �
�1
�
(xt � �xt�1) +

(1� �)�1
�

x�

Comparing the policy rule under the alternative timeless perspective policy (4.13) with

the policy rule under the standard timeless perspective policy (4.9), we note that the alter-

native timeless perspective brings about an incentive for committing to positive in�ation.

Speci�cally, evaluating (4.13) at steady state delivers

(4.14) � +
(1� �)�1

�
x =

(1� �)�1
�

x�

Taking into account the positively sloped relationship between steady-state output gap,

x, and steady-state in�ation, �, implied by the NKPC (2.60), the alternative timeless

perspective policy entails positive steady-state in�ation of the form

(4.15) �FLATP =
(1� �)�

��+ (1� �)2
x�

Given k > 0, �FLATP is positive and collapses to zero in the absence of long-run Phillips

curve trade o¤ (i.e. � = 1) or in the absence of steady-state distortions (i.e. x� = 0).

The logic behind this result is quite intuitive. If the central bank shares the discount

factor of the private sector, the cost resulting from the anticipation of higher in�ation

occurs earlier in time and it is thus weighted more strongly (by a factor 1=� > 1) than the

bene�t stemming from higher in�ation (weighted by a factor 1). However, expected future

in�ation enters the NKPC with a coe¢ cient � that is smaller than the unitary coe¢ cient

on actual in�ation. Hence, as in (4.9), the increase in output in any period caused by

higher in�ation in the same period, 't, is o¤set by the cost of the reduction in output in

the previous period as a result of expected higher in�ation, 't�1. Accordingly, there is no

long-run incentive for positive in�ation and optimal steady-state in�ation is zero.

Under the alternative timeless perspective policy, the private sector�s discount factor

appears in the model�s structural equations, thus resulting in the long-run Phillips curve
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trade-o¤. On the other hand, the central bank now equally weighs the increase in output

in any period caused by higher in�ation in the same period and the cost of the reduction

in output in the previous period as a result of expected higher in�ation. Hence, the

stimulative e¤ect of higher in�ation on output is greater than the output cost of higher

in�ation. The long-run Phillips curve trade-o¤ is then exploited and it is optimal for the

central bank to commit to positive steady-state in�ation.

The result can be interpreted as highlighting the e¤ects of discounting on monetary

policy choices. With this respect, Henry et al. (2006) show how the result derived by

Bean (1998) depends on the central bank not discounting the future. Bean (1998) shows

that the outcomes of monetary policy, in terms of the variances of in�ation and output,

are very similar for a wide range of central bank�s preferences with respect to in�ation and

output stability4.Conversely, Henry et al. (2006) show that when the monetary authority

discounts the future, the outcomes of monetary policy become more sensitive to the central

bank�s preferences.

What we show here is that the e¤ects of discounting on the optimal target for monetary

policy are remarkable. If the central bank shares the same discount factor of the private sec-

tor, there is no long-run incentive for positive in�ation and optimal steady-state in�ation

is zero. Conversely, if the central bank does not discount the future, positive steady-state

in�ation emerges under commitment even in the purely forward-looking model.

4.3. Rule-of-thumb Behaviour

We now proceed to compare the three alternative commitment policies when the

Phillips curve becomes hybrid due to the presence of backward-looking rule-of-thumb

price setters. We consider �rst the rule-of-thumb behaviour à la Galì and Gertler (1999)

and subsequently turn our attention to Steinsson�s (2003) rule-of-thumb behaviour. In

both cases, we formalise the policy problem and we characterise the three commitment

policies in terms of target criterion and optimal long-run in�ation rate.

4The model considered by Bean (1998) is a closed-economy monetary policy model that prescribes that
monetary policy acts with a lag. The same model is also considered in Ball (1999) and Svensson (1997).
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4.3.1. Rule-of-thumb Behaviour à la Galì and Gertler

A central bank acting under commitment faces the problem of choosing paths for in�a-

tion and the output gap, f�t; xtg1t=0, to minimise the expected discounted sum of central

bank�s loss function, with the single-period loss given by (3.26), conditional on information

available at date zero subject to the constraint that the sequences must satisfy (2.58) each

period. The Lagrangian associated with this problem is of the form

(4.16)

LGG0 = E0

1X
t=0

�t
�
1

2

�
�2t + �1(xt � x�)2 + �2(�t � �t�1)

2
�
+ 't

�
�t � �f��t+1 � �b�t�1 � �1xt

��

Di¤erentiating with respect to �t and xt, we get the optimality conditions

(4.17)
@LGG0
@�t

= 0) �t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't � �f't�1 � ��b't+1 = 0

(4.18)
@LGG0
@xt

= 0) �1(xt � x�)� �1't = 0

Under zero-optimal commitment policy, there is no ful�llment of the expectations existing

at the time of the policy implementation, that is (4.17) in period 0 holds with '�1 = 0.

Hence, zero-optimal commitment policy is characterised by the output gap optimality

condition (4.18) for all t � 0 and two in�ation optimality conditions: one for period zero

and one for all subsequent periods

(4.19) �t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't � ��b't+1 = 0 t = 0

(4.20) �t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't � �f't�1 � ��b't+1 = 0 t � 1
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Combining the optimality conditions (4.18) and (4.19) delivers the central bank�s target

criterion in period 0

(4.21) �0 =
1

1 + �2(1 + �)

�
�2��1 + ��2�1 +

�1
�1
[��bx1 � x0 + (1� ��b)x

�]

�

whereas combining the optimality conditions (4.18) and (4.20), the central bank in any

period t � 1 behaves according to a rule of the form

(4.22) �t =
1

1 + �2(1 + �)

8><>: �2�t�1 + ��2�t+1

+�1
�1

�
��bxt+1 + �fxt�1 � xt + (1� ��b � �f )x

��
9>=>;

Under the standard timeless perspective commitment policy, the start-up condition

(4.19) is ignored and the central bank�s rule in all periods t � 0 is given by (4.22). Given

x� > 0, there is an advantage for having positive long-run in�ation. Indeed, evaluating

(4.22) at steady state delivers

(4.23) � = �(1� �)(1� �)!

(1� !)��
(x� x�)

Note that here, and in what follows, all parameters in the hybrid Phillips curve are rewrit-

ten in terms of structural parameters (keeping � implicit).

Rule-of-thumb behaviour à la Galì and Gertler (1999) desirably implies that all price

setters behave identically once shocks are eliminated from the economy. As we have seen

in the previous chapters, Galì-Gertler�s backward-looking rule-of-thumb behaviour does

not alter the steady state that would obtain under forward-looking behaviour by all price

setters. Speci�cally, the long-run Phillips-curve trade-o¤ is not a¤ected by the presence

of rule-of-thumb price setters: (2.58) evaluated at steady state results in (2.60). Using

this to eliminate x from (4.23), the optimal long-run in�ation rate, which equally obtains

under zero-optimal and the standard timeless perspective policy, is given by

(4.24) �GGZOTP =
(1� �)(1� �)!�

(1� !)���+ (1� �)(1� �)2!
x�
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Given k > 0 and 0 < � < 1, �GGZOTP is positive and collapses to zero in the absence

of backward-looking rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run

Phillips-curve trade-o¤ (i.e. � = 1), and in the absence of steady-state distortions (i.e.

x� = 0).

The reason behind the optimality of positive steady-state in�ation is intuitive. The only

di¤erence implied by Galì-Gertler�s rule-of-thumb behaviour, with respect to the purely

forward-looking model, is in terms of the �rst-order condition with respect to in�ation,

(4.17). Substituting for �f and �b in terms of structural parameters yields

(4.25) �t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't �
�

�
't�1 �

�!

�
't+1 = 0

Higher in�ation in any period results in output increase in the same period, 't, and

reduction in output in both the previous period as a result of expected higher in�ation,

(�=�)'t�1, and the subsequent period, (�!=�)'t+1. Recalling that � = �+! [1� �(1� �)],

(4.25) evaluated at steady state delivers

(4.26) � +

�
1� �+ �!

�+ ! [1� �(1� �)]

�
' = 0

Checking the relationship between the stimulative e¤ect of higher in�ation on output and

the output cost of higher in�ation amounts to solve the inequality

(4.27) 1 � �+ �!

�+ ! [1� �(1� �)]

The solution is given by

(4.28) !(1� �)(1� �) � 0

Backward-looking rule-of-thumb behaviour results in the stimulative e¤ect of higher in-

�ation on output being generally greater than the output cost of higher in�ation. The

stimulative e¤ect of higher in�ation equals the output cost of higher in�ation in the absence

of backward-looking rule-of-thumb behaviour (i.e. ! = 0) or in the absence of long-run
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Phillips curve trade o¤ (i.e. � = 1). Otherwise, there exists a long-run incentive for

positive in�ation. The long-run Phillips curve trade-o¤ is then exploited and it is optimal

for the central bank to commit to positive steady-state in�ation.

The optimality conditions under the alternative timeless perspective policy can be

found by considering the expected undiscounted minimisation problem conditional on

information available at date zero. That is, the Lagrangian (4.3) becomes

(4.29)

LGG0;Undis = E0

1X
t=0

�
1

2

�
�2t + �1(xt � x�)2 + �2(�t � �t�1)

2
�
+ 't

�
�t � �f��t+1 � �b�t�1 � �1xt

��

Di¤erentiating with respect to �t and xt, the output gap optimality condition (4.18) is

una¤ected but instead of the in�ation optimality condition (4.17) we obtain

(4.30)
@LGG0;Undis
@�t

= 0) �t + �2(�t � �t�1)� �2(�t+1 � �t) + 't � �f�'t�1 � �b't+1 = 0

From a timeless perspective, the central bank sets policy according to optimality conditions

(4.18) and (4.30) in all periods t � 0. Combining these optimality conditions, the central

bank�s target criterion is given by

(4.31)

�t =
1

1 + 2�2

�
�2�t�1 + �2�t+1 +

�1
�1

�
�bxt+1 + �f�xt�1 � xt + (1� �b � �f�)x

���

Evaluating the central bank�s rule (4.31) at steady state, we obtain the same steady-

state target criterion that is implied by the alternative timeless perspective in the purely

forward-looking model, namely (4.14). This is because the terms in in�ation acceleration

in the in�ation optimality condition (4.30) do not matter at steady state. Additionally, the

di¤erent coe¢ cient on the steady-state Lagrange multiplier, ', simpli�es once the output

gap optimality condition, (4.18), is taken into account5.

5The optimality condition for in�ation (4.30) implies that at steady state � + [(1� �)(1� !)�=�]' = 0.
The optimality condition for output gap (4.30) implies that at steady state �1(x� x�)� �1' = 0. Given
the de�nition of �1 = (1 � !)��=�, it follows that combining (4.30) and (4.30) at steady state yields
(4.14).
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Moreover, as discussed in Chapter 2, the long-run Phillips-curve trade-o¤ is not af-

fected by the introduction of rule-of-thumb behaviour à la Galì and Gertler (1999). There-

fore, the alternative timeless perspective commitment policy is robust to the introduction

of backward-looking rule-of thumb behaviour, when this is characterised as in Galì and

Gertler (1999), with the optimal long-run in�ation rate being invariant to the degree of

rule-of-thumb behaviour, namely

(4.32) �FLATP = �GGATP

4.3.2. Rule-of-thumb Behaviour à la Steinsson

A central bank acting under commitment faces the problem of choosing paths for in�a-

tion and the output gap, f�t; xtg1t=0, to minimise the expected discounted sum of central

bank�s loss function, with the single-period loss given by (3.24), conditional on information

available at date zero subject to the constraint that the sequences must satisfy (2.53) each

period. The Lagrangian associated with this problem is of the form

(4.33) LS0 = E0

1X
t=0

�t

8><>:
1
2
�2t +

�1
2
(xt � x�)2 + �2

2
[�t � (�t�1 + (1� �)�xt�1)]

2

+'t
�
�t � �f��t+1 � �b�t�1 � �2xt � �3xt�1

�
9>=>;

Di¤erentiating with respect to �t and xt, we get the optimality conditions

(4.34)
@LS0
@�t

= 0)

8>>>><>>>>:
�t + 't � �f't�1 � ��b't+1

+�2 [�t � (�t�1 + (1� �)�xt�1)]

���2 [�t+1 � (�t + (1� �)�xt)]

9>>>>=>>>>; = 0

(4.35)
@LS0
@xt

= 0)

8><>: �1(xt � x�)� �2't � ��3't+1

���2(1� �)� [�t+1 � (�t + (1� �)�xt)]

9>=>; = 0

Under zero-optimal commitment policy, there is no ful�llment of the expectations existing

at the time of the policy implementation, that is (4.34) in period 0 holds with '�1 = 0.
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Hence, zero-optimal commitment policy is characterised by the output gap optimality

condition (4.35) for all t � 0 and two in�ation optimality conditions: one for period zero

and one for all subsequent periods

(4.36)

8>>>><>>>>:
�t + 't � ��b't+1

+�2 [�t � (�t�1 + (1� �)�xt�1)]

���2 [�t+1 � (�t + (1� �)�xt)]

9>>>>=>>>>; = 0 t = 0

(4.37)

8>>>><>>>>:
�t + 't � �f't�1 � ��b't+1

+�2 [�t � (�t�1 + (1� �)�xt�1)]

���2 [�t+1 � (�t + (1� �)�xt)]

9>>>>=>>>>; = 0 t � 1

Combining the optimality conditions (4.35) and (4.36) delivers the central bank�s target

criterion in period 0

�0(1 + �2) = �2 (��1 + (1� �)�x�1) +
�1

(1� �)�
(x0 � x�)(4.38)

+(�b �
�3

(1� �)�
)| {z }

0

�'1 � (
�2

(1� �)�
+ 1)'0(4.39)

whereas combining the optimality conditions (4.35) and (4.37), the central bank in any

period t � 1 behaves according to a rule of the form

(4.40) �t =
1

1 + �2

8><>: �2 (�t�1 + (1� �)�xt�1) +
�1

(1��)� (xt � x�)

�
�

�2
(1��)� + 1

�
't + �f't�1

9>=>;
It is interesting to note that, in any period, the Lagrangian multiplier associated with the

subsequent period aggregate-supply relation does not enter the target criterion. This is

because, as shown in (4.38), the coe¢ cient on the Lagrangian multiplier associated with

the subsequent period hybrid Phillips curve is constantly equal to zero.
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However, given the intertemporal nature of the output gap optimality condition (4.35),

it is cumbersome to express the central bank�s rule as a function of in�ation and output gap

only. Hence, when we analyse monetary policy in the presence of rule-of-thumb behaviour

à la Steinsson (2003) we consider the two optimality conditions separately. In other words,

the Lagrangian multiplier becomes an additional endogenous variable and we have three

equations for the determination of the three endogenous variables.

Under the standard timeless perspective commitment policy, the start-up condition

(4.36) is ignored and the central bank�s rule in all periods t � 0 is given by (4.40). Given

x� > 0, there is an advantage for having positive long-run in�ation. The two optimality

conditions, (4.34) and (4.35), can be simultaneously satis�ed only if

(4.41) � =
(1� �)(1� �)(1� !)(�� � 1)�!�
(1� !)�� [(1� !)��+ (1� �)2�!�]

x+
(1� �)(1� �)!�

� [(1� !)��+ (1� �)2�!�]
x�

As discussed in Chapter 2, rule-of-thumb behaviour à la Steinsson (2003) does not imply

that all price setters behave identically once shocks are eliminated from the economy.

Speci�cally, the fact that rule-of-thumb price setters index their prices to lagged output

gap alters the long-run Phillips-curve trade-o¤ that obtains in the purely forward-looking

model. Using the long-run Phillips-curve trade-o¤ in (2.61) so to eliminate x from (4.41),

the optimal long-run in�ation rate, which equally obtains under zero-optimal and the

standard timeless perspective policy, is given by

(4.42)

�SZOTP =
(1� �)(1� �)���1! [(1� !)��+ (1� �)(1� ��)!�]8><>: (1� !)(1� �)(��1 � �)(1� �)2�!�+

[(1� !)��+ (1� �)2�!�] [(1� !)��+ (1� �)(1� ��)!�]

9>=>;
x� = 	x�

Given k > 0 and 0 < � < 1, �SZOTP is positive and collapses to zero in the absence

of backward-looking rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run

Phillips-curve trade-o¤ (i.e. � = 1), and in the absence of steady-state distortions (i.e.

x� = 0).
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The reason behind the optimality of positive in�ation is the same we have described

above in the case of rule-of-thumb behaviour à la Galì and Gertler (1999). The reason for

this is quite intuitive. On the one hand, the fact that rule-of-thumb price setters index

their prices to lagged output gap under Steinsson�s rule-of-thumb behaviour alters the

relationship between in�ation and output gap implied by the optimality conditions. In

particular, the output gap enters the in�ation optimality condition and in�ation enters the

output gap optimality condition. On the other hand, the indexation to past output gap

does not a¤ect the way in which current in�ation is related to the Lagrange multipliers

through the in�ation optimality condition. In other words, the Lagrange multipliers enter

the in�ation optimality condition in the same way as under rule-of-thumb behaviour à la

Galì and Gertler (1999). This can be clearly seen by comparing the in�ation optimality

conditions (4.17) and (4.34).

It follows that backward-looking rule-of-thumb behaviour, regardless of its speci�ca-

tion, results in the stimulative e¤ect of higher in�ation on output being generally greater

than the output cost of higher in�ation. The stimulative e¤ect of higher in�ation equals

the output cost of higher in�ation in the absence of backward-looking rule-of-thumb be-

haviour (i.e. ! = 0) or in the absence of long-run Phillips curve trade o¤ (i.e. � = 1).

Otherwise, there exists a long-run incentive for positive in�ation. The long-run Phillips

curve trade-o¤ is then exploited and it is optimal for the central bank to commit to positive

steady-state in�ation.

The optimality conditions under the alternative timeless perspective policy can be

found by considering the expected undiscounted minimisation problem conditional on

information available at date zero. That is, the Lagrangian (4.33) becomes

(4.43) LS0;Undis = E0

1X
t=0

8><>:
1
2
�2t +

�1
2
(xt � x�)2 + �2

2
[�t � (�t�1 + (1� �)�xt�1)]

2

+'t
�
�t � �f��t+1 � �b�t�1 � �2xt � �3xt�1

�
9>=>;
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Di¤erentiating with respect to �t and xt, both optimality conditions are a¤ected. The

in�ation optimality condition is now given by

(4.44)
@LS0;Undis
@�t

= 0)

8>>>><>>>>:
�t + 't � �f�'t�1 � �b't+1

+�2 [�t � (�t�1 + (1� �)�xt�1)]

��2 [�t+1 � (�t + (1� �)�xt)]

9>>>>=>>>>; = 0

whereas the output gap optimality condition takes the form

(4.45)
@LS0;Undis
@xt

= 0)

8><>: �1(xt � x�)� �2't � �3't+1

��2(1� �)� [�t+1 � (�t + (1� �)�xt)]

9>=>; = 0

From a timeless perspective, the central bank sets policy according to optimality conditions

(4.44) and (4.45) in all periods t � 0. Combining the �rst order conditions, the central

bank�s target criterion is given by

(4.46) �t =
1

1 + �2

8><>: �2 (�t�1 + (1� �)�xt�1) +
�1

(1��)� (xt � x�)

�
�

�2
(1��)� + 1

�
't + �f�'t�1

9>=>;
Given x� > 0, there is an advantage for having positive long-run in�ation. The two

optimality conditions, (4.44) and (4.45), can be simultaneously satis�ed only if

(4.47)

� = �
�
(1� !)��+ (1� �)2�2�!

�
(1� �)

� [(1� !)��+ (1� �)(1� ��)!�]
x+

(1� �)(1� !)��

� [(1� !)��+ (1� �)(1� ��)!�]
x�

Using the long-run Phillips-curve trade-o¤(2.61) to eliminate x from (4.47), the alternative

timeless perspective policy implies positive steady-state in�ation of the form6

(4.48) �SATP =
[(1� !)��+ (1� �)(1� ��)!�] (1� �)(1� !)��8><>: � [(1� !)��+ (1� �)(1� ��)!�]2

+
�
(1� !)��+ (1� �)2�2�!

�
(1� �)2(1� !)�

9>=>;
x� = �x�

6Under � = 0, �SBJM collapses to �FLBJM .
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Given k > 0 and 0 < � < 1, �SATP is positive and collapses to zero in the absence of long-

run Phillips-curve trade-o¤ (i.e. � = 1) and in the absence of steady-state distortions (i.e.

x� = 0). If the rule-of thumb is characterised as in Steinsson (2003), the optimal long-run

in�ation rate under the alternative timeless perspective commitment policy ceases to be

the same as in the purely forward-looking New Keynesian model.

4.4. Discussion

Table 1 summarises the results obtained for the optimal long-run in�ation rates.

Model/Policy Timeless Perspective Alternative Timeless Perspective

Purely Forward-Looking �FLZOTP = 0 �FLATP > 0

Galì-Gertler rule-of-thumb �GGZOTP > 0 �GGATP = �FLATP

Steinsson rule-of thumb �SZOTP > 0 �SATP > 0

Table 4.1. Optimal Long-run In�ation Rates

Zero long-run in�ation is the optimal target for monetary policy only in the purely

forward-looking model under the standard timeless perspective policy (or the zero-optimal

policy).

In all the other cases, it is optimal for the central bank to target a positive in�ation

rate. Two di¤erent reasons emerge as to why the combination of a long-run Phillips

curve trade-o¤ and steady-state distortions results in positive in�ation forever, even under

commitment.

First, backward-looking rule-of-thumb behaviour, speci�ed either à la Galì and Gertler

(1999) or à la Steinsson (2003), entails that the stimulative e¤ect of higher in�ation on

output is generally greater than the output cost of higher in�ation. The stimulative e¤ect

of higher in�ation equals the output cost of higher in�ation in the absence of backward-

looking rule-of-thumb behaviour or in the absence of a long-run Phillips-curve trade-o¤.

Otherwise, there exists a long-run incentive for positive in�ation. The long-run Phillips
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curve trade-o¤ is then exploited and it is optimal for the central bank to commit to positive

steady-state in�ation.

Second, the alternative timeless perspective policy put forward by Blake (2001), Jensen

and McCallum (2002), and Damjanovic et al. (2008) is also capable of delivering optimal

positive steady-state in�ation. The result can be interpreted as highlighting the e¤ects

of discounting on monetary policy choices. If the central bank shares the same discount

factor of the private sector, there is no long-run incentive for positive in�ation and optimal

steady-state in�ation is zero (i.e. �FLZOTP ). Conversely, if the central bank does not

discount the future, positive steady-state in�ation emerges under commitment even in

the purely forward-looking model (i.e. �FLATP ). In particular, the alternative timeless

perspective commitment policy is robust to the introduction of backward-looking rule-

of thumb behaviour, when this is characterised as in Galì and Gertler (1999), with the

optimal long-run in�ation rate being invariant to the degree of rule-of-thumb behaviour.

In all theoretical economies, optimal steady-state in�ation collapses to zero in the

absence of a long-run Phillips-curve trade-o¤and in the absence of steady-state distortions.

Taking together the basic message of our results is that the widespread practice in the

New Keynesian literature of restricting the attention to the case of an e¢ cient natural

level of output is not innocuous. A policy that is optimal for an economy with an e¢ cient

steady state di¤ers from what is optimal in an economy where the subsidies that achieve

Pareto e¢ ciency are unavailable.



CHAPTER 5

Quantitative Analysis and Welfare Analysis

In this chapter we begin by discussing the calibration of the models�structural para-

meters. The models�primitives are the average duration that an individual price is �xed,

namely the degree of price stickiness, �, and the fraction of �rms that reset prices in

a backward-looking manner, that is the degree of rule-of-thumb behaviour, !. Available

empirical estimates of the degree of price stickiness vary greatly according to whether they

are based on macro or micro data. Similarly, available empirical estimates of the degree

of rule-of-thumb behaviour span over a large range. Hence, we consider ample ranges for

both the average duration that an individual price is �xed and the fraction of �rms that

reset prices in a backward-looking manner.

We proceed by evaluating the optimal long-run in�ation rates derived in Chapter 4.

All optimal long-run in�ation rates turn out to be small in magnitude. On the one hand,

the optimal long-run in�ation rates we derive are not capable of explaining the observed

in�ation rates. On the other hand, the policy-driven steady state is very close to the

steady state around which the models are log-linearised, which is characterised by zero

in�ation. It follows that, as discussed in Chapter 3, we can use �rst-order approximations

to evaluate welfare accurately up to second order.

We conclude by evaluating welfare under the alternative commitment policies. We ini-

tially characterise welfare on the basis of the deterministic equilibrium to establish whether

steady-state in�ation is welfare enhancing with respect to a policy of zero steady-state in-

�ation. However, welfare analysis is typically conducted in a stochastic environment so to

quantify the welfare costs due to the stabilisation of shocks. We thus employ the dynamic

nature of the three models derived in the previous chapters. As discussed in Chapter 2,

the monetary authority, in our models, should not respond to movements in output which

81



82

are caused by preference shocks or shocks to productive capabilities. This is because the

movements in output brought about by those shocks are e¢ cient, namely they represent

variations in the e¢ cient level of output. Following Clarida et al. (1999), we hence aug-

ment the aggregate-supply relations with an ine¢ cient shock (i.e. a cost-push shock) and

analyse the welfare costs due to the stabilisation of the cost-push shock. Similarly, if we

were to drop the assumed complete and e¢ cient �nancial markets we would then be able

to consider the stabilisation, and the welfare costs associated with it, of �nancial shocks.

In performing welfare analysis, our main objective is, as in Jensen and McCallum

(2002), to simply rank the alternative commitment policies. We present robustness analy-

sis for ample ranges of two structural parameters rather than, as in Blake (2001) and

Jensen and McCallum (2002), coe¢ cients that are functions of structural parameters..

On the basis of the deterministic equilibrium, the zero-optimal commitment policy

ranks �rst followed by the alternative timeless perspective policy and the standard timeless

perspective policy. Moreover, steady-state in�ation is found to be welfare enhancing with

respect to a policy of zero steady-state in�ation. The reason for this is that positive

steady-state in�ation, by bringing about positive output gap, allows eliminating some of

the steady-state loss due to monopolistic competition. This conclusion is only slightly

a¤ected in the presence of rule-of-thumb behaviour. Precisely, we �nd that the alternative

timeless perspective policy is always superior to a policy of zero in�ation at all times

whereas the same it is not always true under the standard timeless perspective policy:

unrealistically high levels of the degree of rule-of-thumb behaviour would imply that having

positive steady-state in�ation, hence a positive degree of price dispersion, would only add

to the steady-state loss due to monopolistic competition.

On the basis of the stochastic equilibrium, we consider both an unconditional welfare

measure and a measure of welfare conditional on initial conditions. When considering

unconditional welfare, the alternative timeless perspective policy ranks �rst followed by

the standard timeless perspective policy and the zero-optimal policy. When considering
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welfare conditional on initial conditions, the zero-optimal policy ranks �rst followed by

the standard timeless perspective policy and the alternative timeless perspective policy.

5.1. Calibration

Before proceeding to evaluate the optimal long-run in�ation rates and welfare under

the alternative commitment policies, we discuss how we calibrate the model. The time unit

is a quarter. Table (5.1) presents our benchmark calibration together with a description

of the structural parameters.

The purely forward-looking model contains �ve structural parameters (�, �, �, $, and

��1), for which values must be speci�ed. Allowing for rule-of-thumb behaviour, introduces

the additional parameter !. Finally, under rule-of-thumb behaviour à la Steinsson (2003),

there is the further need to calibrate the parameter �.

Given that the purely forward-looking model considered here is exactly the basic neo-

Wicksellian model in Woodford (2003), it follows that it is natural to consider the bench-

mark calibration in Woodford (2003, p. 431). The calibration stems from the estimation

results in Rotemberg and Woodford (1997), which presents estimates based on quarterly

data for a purely forward-looking New Keynesian model using a moment-matching ap-

proach. Consequently, (�, �, $, and ��1) are given by: � = 0:99, � = 7:88, $ = 0:47,

and ��1 = 0:16. The parameter that summarises steady-state distortions, �y, is implied

by the de�nition of the natural steady-state level of output, as in equation (2.51): given

� = 7:88, it follows that �y = 0:127. Accordingly, the de�nition of the the steady-state

e¢ ciency gap, as given by equation (2.52), entails that x� is equal to 0:2, which, of course,

is the same value used by Woodford (2003).

In the absence of an empirical estimate for the degree of indexation to lagged output

gap, �, by rule-of-thumb price setters, we follow Steinsson (2003) and set it to 0:052.

Steinsson (2003) obtains this value by imposing that the coe¢ cient on xt�1 in the purely

backward-looking Phillips curve, which as discussed above is implied in the limit when

! ! 1, is equal to the coe¢ cient on xt in the hybrid Phillips curve (2.53) when ! = 0.
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The remaining two structural parameters are in fact the key model�s primitives: the

average duration that an individual price is �xed, namely the degree of price stickiness,

�, and the fraction of �rms that reset prices in a backward-looking manner, that is the

degree of rule-of-thumb behaviour, !. Galì and Gertler (1999) report estimates of !

between 0:077 and 0:552, with 3 of their 6 estimates between 0:2 and 0:3. As for the

degree of price stickiness, empirically realistic values of the average price duration based

on macroeconomic data vary between 2 and 5 quarters, namely 0:5 � � � 0:8. Evidence

on price stickiness based on microeconomic data suggest a much higher frequency of price

changes than the evidence based on macro data. Available empirical estimates using

microeconomic data, as in Bils and Klenow (2004) and Golosov and Lucas (2007), suggest

in fact a lower average price duration of around 1:5 quarters, that is a value of � of about

0:33.

In what follows we want to assess the robustness of our results with respect to alter-

native values for these two parameters. We thus consider 0:33 � � � 0:8 and extend the

range for the degree of rule-of-thumb behaviour up to 0:7, namely 0:01 � ! � 0:7. This

is because ! = 0:7 implies that the hybrid Phillips curve under rule-of-thumb behaviour,

regardless of its speci�cation, puts equal weight on future expected in�ation and lagged

in�ation.

Wemust stress that, once we assess the robustness of the welfare ranking in the presence

of rule-of-thumb behaviour by price setters, we pick � = 0:66, namely an average price

duration of 3 quarters, and ! = 0:3 as our benchmark values This is because they both sit

in the middle of the respective range of available empirical estimates. The results presented

below are una¤ected if one were to consider di¤erent benchmark estimates for both � and

!. Speci�cally, we have considered limiting values for ! (i.e. ! = 0:01 and ! = 0:7)

when analysing robustness with respect to � and limiting values for � (i.e. � = 0:33 and

� = 0:8) when studying robustness with respect to !.
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Parameter Value Description

� 0:99 Subjective discount factor

� 7:88 Elasticity of substitution between varieties of goods

$ 0:47 Elasticity of real marginal cost with respect to own output

��1 0:16 Intertemporal elasticity of substitution of aggregate expenditure

x� 0:2 Steady-state e¢ ciency gap

� 0:052 Degree of indexation to past output gap

� 0:33� 0:8 Degree of price stickiness

! 0� 0:7 Degree of rule-of-thumb behaviour

Table 5.1. Benchmark Calibration

5.2. Optimal Long-run in�ation rates

We now proceed to evaluate the positive optimal long-run in�ation rates. We through-

out present the annualised percentage optimal long-run in�ation rates.

Figure (5.1) reports the annualised percentage optimal steady-state in�ation which is

implied by the alternative timeless perspective policy in both the purely forward-looking

model and in the model with rule-of-thumb behaviour à la Galì and Gertler (1999). Figure

(5.2) presents the annualised percentage optimal steady-state in�ation which is implied by

the standard timeless perspective policy in the model with rule-of-thumb behaviour à la

Galì and Gertler (1999). Figure (5.3) shows the annualised percentage optimal steady-state

in�ation which is implied by the standard timeless perspective policy in the model with

rule-of-thumb behaviour à la Steinsson (2003). Finally, Figure (5.4) displays the annu-

alised percentage optimal steady-state in�ation which is implied by the alternative timeless

perspective policy in the model with rule-of-thumb behaviour à la Steinsson (2003).

There are two main observations to take from Figures (5.1)-(5.4).

First, the deviation from zero in�ation is observed to be minimal. On the one hand, the

optimal long-run in�ation rates we derive are thus not capable of explaining the observed
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Figure 5.1. Purely forward-looking model and model with rule-of-thumb
behaviour à la Galì and Gertler (1999). Annualised percentage optimal
steady-state in�ation implied by the alternative timeless perspective policy.

Figure 5.2. Model with rule-of-thumb behaviour à la Galì and Gertler
(1999). Annualised percentage optimal steady-state in�ation implied by
the standard timeless perspective policy.

in�ation rates. In e¤ect, in developed countries in�ation rates vary between 2% and 4%

per year whereas slightly higher targets are observed in developing countries. On the other

hand, the policy-driven steady state is, both in terms of in�ation and output gap, very close

to the steady state around which the models are log-linearised, which is characterised by

zero in�ation and zero output gap. It follows that we can rest assured that it is possible to

use �rst-order approximations to evaluate welfare accurately up to second order. Indeed,
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Figure 5.3. Model with rule-of-thumb behaviour à la Steinsson (2003). An-
nualised percentage optimal steady-state in�ation implied by the standard
timeless perspective policy.

Figure 5.4. Model with rule-of-thumb behaviour à la Steinsson (2003). An-
nualised percentage optimal steady-state in�ation implied by the alternative
timeless perspective policy.

as we shall see below, the di¤erent commitment policies rank in terms of welfare in line

with the intuition.

Second, the behaviour with respect to the structural parameters is quite robust across

the di¤erent optimal long-run in�ation rates. Table (5.2) presents comparative statics.

The optimal long-run in�ation rates are observed to be monotonically decreasing in the

structural parameters. It is only under the standard timeless perspective policy that an
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increasing degree of rule-of-thumb behaviour, regardless of its speci�cation, is associated

with an increasing in�ation rate.

in�ation rate Monotonically Decreasing Monotonically Increasing

�FLATP = �GGATP �, �, �, $, and ��1

�GGZOTP �, �, �, $, and ��1 !

�SZOTP �, �, �, $, ��1, and � !

�SATP �, �, �, $, ��1, �, and !

Table 5.2. Comparative Statics

5.3. Welfare Analysis

We evaluate the alternative commitment policies both on the basis of the deterministic

equilibrium and on the basis of the stochastic equilibrium, which stems from augmenting

the aggregate-supply with a cost push shock. In so doing, our main objective is, as in

Jensen and McCallum (2002), to simply rank the alternative commitment policies. We

present robustness analysis for ample ranges of two structural parameters rather than,

as in Blake (2001) and Jensen and McCallum (2002), coe¢ cients that are functions of

structural parameters.

The natural welfare criterion is the discounted sum of utility of the representative

household, which, as shown in Chapter 3, is approximated to second-order by the dis-

counted sum of central bank�s single-period loss function. In other words, the welfare

criterion is given by the central bank�s objective function (3.23), which we report here for

convenience

(5.1) W = �

1X
t=0

�tLt

The constant 
 is given by 
 = Y euc(��1 + $)�=2�. Following Erceg et al. (2000),

we express welfare as a proportion of steady-state level of output. Moreover, we present

welfare in percent terms. Expressing welfare as a proportion of steady-state level of output
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implies manipulating 
. Dividing 
 by Y euc, welfare would be expressed as a proportion
of one period�s steady-state level of output. Applying the perpetuity formula, welfare as

a proportion of steady-state level of output implies that the constant 
 is given by

(5.2) 
 =
(1� �)(��1 +$)�

2�

The level of welfare that obtains in the deterministic equilibrium, denoted with W ,

takes the form

(5.3) W = � 
L

(1� �)
= �(�

�1 +$)�

2�
L

where L is the steady-state loss function.

On the basis of the stochastic equilibrium, we report two measures of welfare. First,

we consider welfare conditional on information available at date zero, which is given by

W = �
E0
1X
t=0

�tLt

with 
 given as in (5.2). In evaluating welfare conditional on information available at

date zero, we assume that the economy�s initial condition is the steady state implied by

the policy under consideration.

Second, we report average values of the central bank�s objective function so to abstract

from initial conditions. That is, we evaluate alternative policies by taking the uncondi-

tional expectation of the welfare criterion in (5.1). The unconditional welfare measure

is the most commonly employed in the literature. Opposite to the conditional welfare

measures, that is conditional on the initial point, the unconditional one by design �inte-

grates away�the role of the initial state. Denoting with E the unconditional expectation

operator, the law of iterated expectations then implies that welfare is proportional to the
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unconditional expectation of the single-period loss function.

(5.4) E(W ) = E

 
�


1X
t=0

�tLt

!
= �
(1� �)�1E(Lt) = �

(��1 +$)�

2�
E(Lt)

Here, as in Woodford (2003, Ch. 7), the measure of variability of any random variable z

entering the single-period loss function is given by V [z] = (1� �)
1P
t=0

�tvar(zt).

5.3.1. Welfare on the basis of the Deterministic Equilibrium

We �rst consider welfare on the basis of the deterministic equilibrium. The purposes of

this exercise are twofold.

First, we want to establish the ranking of the alternative commitment policies. In-

tuitively, the zero-commitment policy should rank �rst followed by the two timeless per-

spective policies. The intuition follows from two observations. First, it is only under the

zero-optimal policy that we observe a transition toward the steady state whereas under

the timeless perspective policies the economy is already at steady state and remains there

forever. Second, the transition toward the steady state is always welfare-enhancing. The

presence of the linear term in the steady-state e¢ ciency gap, x�, in the single-period cen-

tral bank�s loss function implies a welfare gain from rate of in�ation that, at least initially,

di¤ers from the steady-state rate of in�ation. This welfare gain can only be achieved if

there is transition toward the steady-state rate of in�ation, which only happens under

zero-optimal policy.

Second, we can compare whether a positive long-run in�ation improves welfare relative

to a policy of zero in�ation at all times. In other words, we want to assess whether steady-

state in�ation is welfare reducing due to its e¤ects on relative price dispersion. In the

purely forward-looking model the comparison is straightforward as the standard timeless

perspective policy implies zero steady-state in�ation whereas the alternative timeless per-

spective policy implies positive steady-state in�ation. In the models with rule-of-thumb

behaviour, the steady-state loss function can instead be seen as the sum of the loss that
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obtains in the presence of zero in�ation at all times and the loss attributable to positive

optimal long-run in�ation. Hence, in all our theoretical models, we are able to address

whether positive long-run in�ation improves welfare relative to a policy of zero in�ation

at all times.

The results we obtain are in line with the a priori beliefs. First, in all our theoretical

economies, zero-optimal commitment policy delivers the highest level of welfare on the ba-

sis of the deterministic equilibrium followed by the alternative timeless perspective policy

and the standard timeless perspective commitment.

Second, steady-state in�ation is welfare enhancing with respect to a policy of zero

steady-state in�ation. A positive but small level of in�ation, which generates positive

steady-state price dispersion, is thus preferable to a policy of zero in�ation at all times,

which implies zero steady-state price dispersion. The reason for this is that positive

steady-state in�ation, by bringing about positive output gap, allows eliminating some of

the steady-state loss due to monopolistic competition. This conclusion is only slightly

a¤ected in the presence of rule-of-thumb behaviour. Precisely, we �nd that the alterna-

tive timeless perspective policy is always superior to a policy of zero in�ation at all times

whereas the same is not always true under the standard timeless perspective policy. In

other words, under the alternative timeless perspective policy a small but positive level of

in�ation, which brings about a positive level of price dispersion, invariably allows elimi-

nating some of the steady-state loss due to monopolistic competition. Conversely, under

the standard timeless perspective policy, unrealistically high levels of the degree of rule-of-

thumb behaviour would imply that having positive steady-state in�ation, hence a positive

degree of price dispersion, would only add to the steady-state loss due to monopolistic

competition.

5.3.1.1. Basic New Keynesian Model. Woodford (2003, Ch. 6) shows that under

the zero-optimal commitment policy there exists a unique nonexplosive solution for the

Lagrange multiplier associated with the NKPC. This solution, which is consistent with the

zero-optimal commitment policy not ful�lling the period-minus-one NKPC (i.e. '�1 = 0
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in (4.3)), is of the form

(5.5) 't = �(1� ut+11 )
�

�
x�

where u1 < 1 depends on the model�s structural parameters, namely u1 = [
 � (
2 � 4�)0:5] =2�

with 
 = 1 + � + (�2=�). Given the optimal path for in�ation (i.e. (4.4)), this solution

for the multiplier implies that in�ation under the zero-optimal commitment policy evolves

according to

(5.6) �t = (1� u1)
�

�
ut1x

�

Similarly, given the optimal path for output gap (i.e. (4.5), output gap under the zero-

optimal commitment policy evolves according to

(5.7) xt = ut+11 x�

The single-period loss function, (3.27), can thus be rewritten solely as a function of the

model�s structural parameters

(5.8) LFLZOt =

�
1 + (1� u1)

2 �

�2
u2t1 + u

2(t+1)
1 � 2ut+11

�
�x�2

which implies that welfare on the basis of the deterministic equilibrium under the zero-

optimal commitment policy is of the form

(5.9) W
FLZO

= �
�x�2E
1X
t=0

�t
�
1 + (1� u1)

2 �

�2
u2t1 + u

2(t+1)
1 � 2ut+11

�

Given � < 1 and u1 < 1, all the terms entering the sums to in�nity are converging

geometric series. Hence, it is possible to eliminate the in�nite sums, so that (5.9) becomes

(5.10)

W
FLZO

= �(�
�1 +$)

2
x�2�(1� �)(��1 +$)

2
x�2
�

1

1� �u21

�
u21 +

(1� u1)
2�

�2

�
� 2u1
1� �u1

�
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Under the alternative timeless perspective policy, it is optimal to have positive steady-

state in�ation. Given the long-run trade-o¤ implied by the NKPC (i.e. (2.60)), combining

the steady-state loss function, L
FL
= �2 + �(x� x�)2, with the optimal positive long-run

in�ation rate (i.e. (4.15)), yields

(5.11) L
FLATP

=
1

[1 + (1� �)2(��)�1]
�x�2

which implies that welfare on the basis of the deterministic equilibrium under the alter-

native timeless perspective policy is of the form

(5.12) W
FLATP

= � (��1 +$)

2 [1 + (1� �)2(��)�1]
x�2

Under the standard timeless perspective commitment policy, it is optimal to have zero

in�ation. The steady-state loss function takes the form

(5.13) L
FLTP

= �x�2

which implies that welfare on the basis of the deterministic equilibrium under the standard

timeless perspective is invariant to the degree of price stickiness, that is

(5.14) W
FLTP

= �(�
�1 +$)

2
x�2

Welfare on the basis of the deterministic equilibrium under the alternative timeless

perspective policy is thus seen to be always better than the one under the standard timeless

perspective policy, namely

(5.15)
W

FLATP

W
FLTP

=
1

[1 + (1� �)2(��)�1]
< 1

In other words, steady-state in�ation is welfare enhancing with respect to a policy

of zero steady-state in�ation. A positive but small level of in�ation, which generates
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positive steady-state price dispersion, is thus preferable to a policy of zero in�ation at all

times, which implies zero steady-state price dispersion. The reason for this is that positive

steady-state in�ation, by bringing about positive output gap, allows eliminating some of

the steady-state loss due to monopolistic competition.

Figure (5.5) plots W
FLZO

, W
FLTP

, and W
FLATP

for alternative values of the degree

of price stickiness, 0:33 � � � 0:8, with W
FLTP

not depending on �. Zero-optimal

commitment policy delivers the highest level of welfare given that, as discussed above, the

transition to the steady state is always welfare-enhancing. Welfare on the basis of the

deterministic equilibrium under both zero-optimal commitment policy and the alternative

timeless perspective commitment policy is monotically increasing in the degree of price

stickiness. This is consistent with the results presented in Blake (2001) and Jensen and

McCallum (2002), which show that a greater weight on output �uctuations is welfare-

worsening. In the present framework, the output gap coe¢ cient, �, hence the coe¢ cient on

output �uctuation �, is monotically decreasing in the degree of price stickiness. Therefore,

a higher average price duration results in better welfare on the basis of the deterministic

equilibrium.

Figure 5.5. Purely forward-looking model. Welfare on the basis of the de-
terministic equilibrium.
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It is relevant to note that using Soderlind�s (1999) method, with the time horizon set

to 1000 periods1, to derive welfare under the zero-optimal policy delivers the same level of

welfare that obtains under the analytical solution, as given by (5.10), up to the seventh

decimal �gure, namely up to the �fth decimal �gure when, as done here, welfare levels are

expressed in percent terms.

5.3.1.2. Rule-of-thumb Behaviour à la Galì and Gertler. We do not attempt to

analytically derive the evolution of in�ation and output gap under the zero-optimal com-

mitment policy, hence welfare on the basis of the deterministic equilibrium, W
GGZO

, but

we resort to Soderlind�s (1999) method. In doing so, we assume that economy is at the

steady state.

Under both timeless perspective policies, the steady-state loss function, namely L
FL
=

L
GG
, can be seen as the sum of the loss that obtains in the presence of zero in�ation

at all times, L
FLTP

, and the loss attributable to positive optimal long-run in�ation ,

�2 + �1x
2 � 2�1x�x. Hence, we are able to address whether positive long-run in�ation

improves welfare relative to a policy of zero in�ation at all times, which implies W
FLTP

.

As described above, the alternative timeless perspective policy is robust to the intro-

duction of backward-looking rule-of thumb behaviour à la Galì and Gertler (1999). It

follows that W
GGATP

= W
FLATP

, which in always better than W
FLTP

.

Under the standard timeless perspective policy, it is also optimal to have positive

steady-state in�ation. Given the long-run trade-o¤ implied by the hybrid Phillips curve

(i.e. (2.60)), combining the steady-state loss function, L
GG
, with the optimal positive

long-run in�ation rate (i.e. (4.24)), yields

(5.16) L
GGTP

= �1x
�2+�1

(1� �)(1� �)2!

8><>: �� [! + �(! � 2)]

�(1� �)(1� �)2!

9>=>;
[(1� !)���+ (1� �)(1� �)2!]2

x�2 = �1x
�2(1+�)

1Whenever we employ Soderlind�s method, the time horizon is set to 1000 periods.
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which implies that welfare on the basis of the deterministic equilibrium is of the form

(5.17) W
GGTP

= �(�
�1 +$)

2
(1 + �)x�2

The standard timeless perspective policy is hence not always superior to a policy of a

policy of zero steady-state in�ation. The condition that guarantees W
GGW

> W
FLW

is

easily seen to be � < 0, where the sign of � is determined by the term in curly brackets

in (5.16). Solving in terms of ! yields

(5.18) !
�
(1 + �)��� (1� �)(1� �)2

�
� 2���, ! � 2���

[(1 + �)��� (1� �)(1� �)2]

If one plotted condition (5.18), holding with equality, for the full range of the degree of

price stickiness, 0:01 � � � 0:99, the values of ! that imply W
GGTP

< W
FLTP

would

be observed to be well outside the estimates of the degree of rule-of-thumb behaviour

reported in Galì and Gertler (1999), especially when limiting the range of the degree of

price stickiness to 0:33 � � � 0:8.

The alternative timeless perspective policy is thus always superior, in terms of welfare

on the basis of the deterministic equilibrium, to a policy of zero in�ation at all times

whereas the same it is not always true under the standard timeless perspective policy. In

other words, under the alternative timeless perspective policy a small but positive level of

in�ation, which brings about a positive level of price dispersion, invariably allows elimi-

nating some of the steady-state loss due to monopolistic competition. Conversely, under

the standard timeless perspective policy, unrealistically high levels of the degree of rule-of-

thumb behaviour would imply that having positive steady-state in�ation, hence a positive

degree of price dispersion, would only add to the steady-state loss due to monopolistic

competition.

Figure (5.6) plots W
GGZO

, W
GGTP

, and W
GGATP

for alternative values of the degree

of price stickiness, 0:33 � � � 0:8. Given the relationship between � and �, welfare on the

basis of the deterministic equilibrium under all commitment policies is increasing in the
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degree of price stickiness. Zero-optimal commitment policy ranks �rst. The alternative

timeless perspective commitment policy entails welfare on the basis of the deterministic

equilibrium that is always better than the one implied by the standard timeless perspective

policy.

Figure 5.6. Model with rule-of-thumb behaviour à la Galì and Gertler
(1999). Welfare on the basis of the deterministic equilibrium for alterna-
tive values of the degree of price stickiness.

As for the relation between welfare on the basis of the deterministic equilibrium and the

degree of backward-looking rule-of-thumb behaviour, Figure (5.7) plots W
GGZO

, W
GGTP

,

and W
GGATP

for 0:01 � ! � 0:7. The alternative timeless perspective policy implies the

same level of welfare that obtains in the purely forward-looking model, which is invariant

to the degree of rule-of-thumb behaviour. Welfare on the basis of the deterministic equi-

librium under zero-optimal policy is observed to be monotonically decreasing in the degree

of rule-of-thumb behaviour. The standard timeless perspective policy instead implies that

a larger fraction of �rms resetting prices in a backward-looking rule-of-thumb manner is

initially welfare-enhancing, although never delivering better welfare levels than the alterna-

tive timeless perspective commitment policy, and subsequently becomes welfare-worsening.

Once again, zero-optimal policy is better than the two timeless perspective policies, with

the alternative timeless perspective policy being always superior to the standard timeless

perspective policy.
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Figure 5.7. Model with rule-of-thumb behaviour à la Galì and Gertler
(1999). Welfare on the basis of the deterministic equilibrium for alterna-
tive values of the degree of rule-of-thumb behaviour.

5.3.1.3. Rule-of-thumb Behaviour à la Steinsson. We do not attempt to analyti-

cally derive the evolution of in�ation and output gap under the zero-optimal commitment

policy, hence welfare on the basis of the deterministic equilibrium, W
SZO

, but we resort

to Soderlind�s (1999) method. In doing so, we assume that economy is at the steady state.

Steinsson�s (2003) rule-of-thumb behaviour alters both the long-run trade-o¤ between

output gap and in�ation and the steady-state loss function (i.e. L
S
= L

FL
+ �2(1 �

�)2�2)x2) that obtain in the purely forward-looking New Keynesian model. Under both

timeless perspective policies, the steady-state loss function can again be seen as the sum of

the loss that obtains under zero in�ation at all times, L
FLTP

, and the loss due to positive

long-run in�ation, �2 + (�1 + �2(1� �)2�2)x2 � 2�1x�x.

Given the long-run trade-o¤ implied by the hybrid Phillips curve (i.e. (2.61)) and the

optimal positive long-run in�ation rate (i.e. (4.42)), the standard timeless perspective

policy involves a steady-state loss function of the form

(5.19) L
STP

= �1x
�2 +	x�2

�
	� 2�1� + (�1 + �2(1� �)2�2)�2	

�



99

which implies that welfare on the basis of the deterministic equilibrium is given by

(5.20) W
STP

= �(�
�1 +$)�

2�
L
STP

Similarly, the alternative timeless perspective policy, under which the optimal positive

long-run in�ation rate is given by (i.e. (4.48), entails a steady-state loss function of the

form

(5.21) L
SATP

= �1x
�2 +�x�2

�
�� 2�1� + (�1 + �2(1� �)2�2)�2�

�
which implies that welfare on the basis of the deterministic equilibrium is given by

(5.22) W
SATP

= �(�
�1 +$)�

2�
L
SATP

As under Galì-Gertler�s rule-of-thumb behaviour, we can compare welfare under positive

steady-state in�ation at all times vis-a-vis welfare under a policy of zero steady-state

in�ation at all times. The derivation of the condition that guarantees an increase in

welfare on the basis of the deterministic equilibrium is cumbersome. However, quantitative

analysis con�rms that the alternative timeless perspective is always superior to a policy

of zero in�ation at all times, whereas the same it is not always true under the standard

timeless perspective policy. Under the alternative timeless perspective policy a small

but positive level of in�ation, which brings about a positive level of price dispersion,

invariably allows eliminating some of the steady-state loss due to monopolistic competition.

Conversely, under the standard timeless perspective policy, unrealistically high levels of the

degree of rule-of-thumb behaviour would imply that having positive steady-state in�ation,

hence a positive degree of price dispersion, would only add to the steady-state loss due to

monopolistic competition.

Figure (5.8) plot respectively W
SZO

, W
STP

, and W
SATP

for alternative values of the

degree of price stickiness, 0:33 � � � 0:8. Given that the coe¢ cient on output �uctu-

ation is monotically decreasing in the degree of price stickiness, welfare on the basis of
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the deterministic equilibrium under all commitment policies is increasing in the degree

of price stickiness. Zero-optimal commitment policy ranks �rst. The alternative timeless

perspective commitment policy is con�rmed to entail welfare on the basis of the deter-

ministic equilibrium that is always better than the one implied by the standard timeless

perspective policy.

Figure 5.8. Model with rule-of-thumb behaviour à la Steinsson (2003). Wel-
fare on the basis of the deterministic equilibrium for alternative values of
the degree of price stickiness.

As for the relation between welfare on the basis of the deterministic equilibrium and

the degree of backward-looking rule-of-thumb behaviour, Figure (5.9) plot respectively

W
SZO

, W
STP

, and W
SATP

for 0:01 � ! � 0:7. Welfare on the basis of the deterministic

equilibrium under both zero-optimal policy and the alternative timeless perspective policy

is observed to be monotonically decreasing in the degree of rule-of-thumb behaviour. The

standard timeless perspective policy implies that a larger fraction of �rms resetting prices

in a backward-looking rule-of-thumb manner is associated initially with improvements in

welfare and subsequently becomes welfare-worsening. Once again, zero-optimal policy

is better than the the two timeless perspective policies, with the alternative timeless

perspective policy being always superior to the standard timeless perspective policy.
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Figure 5.9. Model with rule-of-thumb behaviour à la Steinsson (2003). Wel-
fare on the basis of the deterministic equilibrium for alternative values of
the degree of rule-of-thumb behaviour.

5.3.2. Welfare on the basis of the Stochastic Equilibrium

Having shown how the alternative commitment policies unequivocally rank on the basis

of the deterministic equilibrium, we proceed to describe the performance of these policies

in the face of shocks. Indeed, we now evaluate policies on the basis of the stochastic

equilibrium. As discussed in Chapter 2, the monetary authority, in our models, should

not respond to movements in output which are caused by preference shocks or shocks

to productive capabilities. This is because the movements in output brought about by

those shocks are e¢ cient, namely they represent variations in the e¢ cient level of output.

Following Clarida et al. (1999), we hence augment the aggregate-supply relations with

an ine¢ cient shock (i.e. a cost-push shock) and analyse the welfare costs due to the

stabilisation of the cost-push shock. which stems from augmenting the aggregate-supply

relation with a cost-push shock. For instance, the NKPC is now given by

(5.23) �t = �Et�t+1 + �xt + �t

where, using the terminology in Clarida et al. (1999), �t represents a cost-push shock,

which is assumed to be autoregressive of order one with AR parameter � and innovation
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shock �t being i.i.d, namely �t = ��t�1 + �t
2. We calibrate the standard deviation of the

cost-push shock innovation to 0:016, which is the value estimated in Smets and Wouters

(2003) and we set the AR parameter, �, to 0. The same remark in Jensen and McCallum

(2002) applies here, changing the standard deviation of the mark-up shock innovation

would only scale welfare values up or down proportionately3.

Augmenting the aggregate-supply relation with a cost-push shock does not alter the

central bank�s target criterion, but it implies that the monetary authority should react to

movements in output which are caused by a cost-push shock while it should not react to

movements in output which are caused by any other shocks.

The experiment we undertake in order to rank the alternative commitment policies on

the basis of the stochastic equilibrium is simple to illustrate. We consider a draw of 100

cost-push shocks, which we maintain across all the theoretical cases studied4. For each

(�; !) pair we calculate welfare as the mean value that obtains across the 100 shocks. From

this initial level of welfare we then subtract the corresponding welfare on the basis of the

deterministic equilibrium. The levels of welfare on the basis of the stochastic equilibrium

we report thus abstract from consideration of steady-state outcomes as they do not take

into account steady-state welfare. We do so as we want to analyse welfare that is purely

due to the stabilisation of the cost-push shock.

It is important to note that Soderlind�s (1999) method solves for the evolution of

endogenous variables under zero-optimal commitment policy. However, it can be used

for the evolution of the endogenous variables under timeless perspective policy on the

provision that a dummy control variable is introduced into the system. That is, while

under zero-optimal policy the output gap is the control variable and the central bank�s only

constraint is the aggregate-supply relation, under timeless perspective policy the control

2Of course, (2.58) and (2.53) are also augmented with �t.
3The results we present are robust to the possibility of a positive AR parameter. Speci�cally, we have
considered � = 0:5 and � = 0:8.
4The results we report are not altered when considering a larger number of shocks. Speci�cally, we have
considered a draw of 1000 positive cost-push shocks.
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variable equals zero at all times and the central bank is constrained by the aggregate-

supply relation and the target criterion5.

We report two measures of welfare on the basis of the stochastic equilibrium. We

consider both unconditional welfare and welfare conditional on information available at

date zero. When the criterion is unconditional welfare, the a priori beliefs suggest that the

alternative timeless perspective policy should rank �rst followed by the standard timeless

perspective policy and the zero-optimal policy. This is because, by construction, the alter-

native timeless-perspective commitment policy optimises the unconditional expectation of

the central bank�s objective function. Similarly, the standard timeless-perspective com-

mitment policy is expected to perform better than the zero-optimal policy as the latter

responds best to one particular shock. In evaluating welfare conditional on information

available at date zero, we assume that the economy�s initial condition is the steady state

implied by the policy under consideration. Second, we report average values of the cen-

tral bank�s objective function so to abstract from initial conditions. When considering

welfare conditional on information available at date zero, the a priori beliefs suggest that

the zero-commitment policy should rank �rst followed by the two timeless perspective

policies. This is because, as discussed in the previous chapter, the zero-optimal policy

is truly the optimal policy from a conditional perspective. Indeed, timelessness imposes

an extra condition on the optimal evolution of in�ation and output gap so as to obtain

continuation of policy.

The results we obtain are in line with the a priori beliefs. First, in all our theoretical

economies, zero-optimal commitment policy delivers the highest level of welfare conditional

on information available at date zero followed by the alternative timeless perspective pol-

icy and the standard timeless perspective commitment. Second, in all our theoretical

5As described above, under rule-of-thumb behaviour à la Steinsson (2003), the target criterion is replaced
by the �rst-order conditions with respect to in�ation and output gap
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economies, the alternative timeless perspective policy delivers the highest level of uncon-

ditional welfare followed by the standard timeless perspective policy and the zero-optimal

policy.

5.3.2.1. Basic New Keynesian Model. Figure (5.10) plots unconditional welfare on

the basis of the stochastic equilibrium for alternative values of the degree of price stickiness,

0:33 � � � 0:8. Under all policies, welfare is monotonically decreasing in the degree of

price stickiness. This is contrary to the relation between welfare on the basis of the

deterministic equilibrium and degree of price stickiness, but the logic for this result is

quite intuitive. In an economy where price setting is staggered, a higher degree of price

stickiness implies a higher degree of price dispersion, which is in fact costly as it brings

about dispersion of output levels across goods6. Hence, a higher average price duration

results in larger losses associated with the stabilisation of the cost-push shock. The policies

rank according to the a priori beliefs. Zero-optimal policy ranks last. The two timeless

perspective policies imply nearly the same welfare levels, but if one plotted the di¤erence

in welfare levels between the two policies, the alternative timeless perspective policy would

invariably deliver better welfare than the standard timeless perspective policy.

Figure (5.11) plots conditional welfare on the basis of the stochastic equilibrium for

alternative values of the degree of price stickiness, 0:33 � � � 0:8. Under all policies,

welfare is monotonically decreasing in the degree of price stickiness. The three policies

imply nearly the same welfare levels. Yet, if one plotted the di¤erence in welfare levels

between any pair of policies, the zero-optimal policy would invariably rank �rst, followed

by the standard and the alternative timeless perspective policies.

6The degree of price dispersion at time t in the purely forward-looking model is given by �t = ��t�1 +
�

(1��)�
2
t +O

�


�1=2�1 ;
e�; %


2�, which is easily seen to be increasing in �.
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Figure 5.10. Purely forward-looking model. Unconditional welfare on the
basis of the stochastic equilibrium.

Figure 5.11. Purely forward-looking model. Conditional welfare on the basis
of the stochastic equilibrium.

5.3.2.2. Rule-of-thumb Behaviour à la Galì and Gertler. Figure (5.12) plots un-

conditional welfare on the basis of the stochastic equilibrium for alternative values of the

degree of price stickiness, 0:33 � � � 0:8. Under all policies, welfare is monotonically de-

creasing in the degree of price stickiness. The ranking across the alternative commitment

policies is univocal. The alternative timeless perspective policy ranks �rst, followed by

the standard timeless perspective policy and the zero-optimal policy.

Figure (5.13) plots conditional welfare on the basis of the stochastic equilibrium for

alternative values of the degree of price stickiness, 0:33 � � � 0:8. Under all policies,

welfare is monotonically decreasing in the degree of price stickiness. The three policies
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imply nearly the same welfare levels. Yet, if one plotted the di¤erence in welfare levels

between any pair of policies, the zero-optimal policy would invariably rank �rst, followed

by the standard and the alternative timeless perspective policies.

Figure (5.14) plots unconditional welfare on the basis of the stochastic equilibrium for

alternative values of the degree of rule-of-thumb behaviour, 0:01 � ! � 0:7. Under all

policies, welfare is monotonically decreasing in the degree of rule-of-thumb behaviour. A

larger fraction of �rms resetting prices in a backward-looking is indeed associated with

higher degree of price dispersion, hence larger losses associated with the stabilisation of

the cost-push shock7. The ranking across the alternative commitment policies is univocal.

The alternative timeless perspective policy ranks �rst, followed by the standard timeless

perspective policy and the zero-optimal policy.

Figure (5.15) plots conditional welfare on the basis of the stochastic equilibrium for

alternative values of the degree of rule-of-thumb behaviour, 0:01 � ! � 0:7. Under all

policies, welfare is monotonically decreasing in the degree of rule-of-thumb behaviour. The

three policies imply nearly the same welfare levels. Yet, if one plotted the di¤erence in

welfare levels between any pair of policies, the zero-optimal policy would invariably rank

�rst, followed by the standard and the alternative timeless perspective policies.

Note that backward-looking rule-of-thumb behaviour implies inferior welfare on the

basis of the stochastic equilibrium than in the purely forward-looking model. Intuitively,

backward-looking rule-of-thumb behaviour invariably increases the degree of price disper-

sion, which results in additional welfare losses associated with the stabilisation of the

cost-push shock.

5.3.2.3. Rule-of-thumb Behaviour à la Steinsson. Figure (5.16) plots unconditional

welfare on the basis of the stochastic equilibrium for alternative values of the degree of

price stickiness, 0:33 � � � 0:8. Under all policies, welfare is monotonically decreasing in

7The degree of price dispersion at time t in the model with rule-of-thumb à la Galì and Gertler (1999) is

given by �t = ��t�1 + �
(1��)�

2
t +

!
(1�!)(1��) (�t � �t�1)

2 +O

�


�1=2�1 ;
e�; %


2�, which is easily seen to be

increasing in both � and !.
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Figure 5.12. Model with rule-of-thumb behaviour à la Galì and Gertler
(1999). Unconditional welfare on the basis of the stochastic equilibrium
for alternative values of the degree of price stickiness.

Figure 5.13. Model with rule-of-thumb behaviour à la Galì and Gertler
(1999). Conditional welfare on the basis of the stochastic equilibrium for
alternative values of the degree of price stickiness.

the degree of price stickiness. The ranking across the alternative commitment policies is

univocal. The alternative timeless perspective policy ranks �rst, followed by the standard

timeless perspective policy and the zero-optimal policy.

Figure (5.17) plots conditional welfare on the basis of the stochastic equilibrium for

alternative values of the degree of price stickiness, 0:33 � � � 0:8. Under all policies,

welfare is monotonically decreasing in the degree of price stickiness. The three policies

imply nearly the same welfare levels. Yet, if one plotted the di¤erence in welfare levels
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Figure 5.14. Model with rule-of-thumb behaviour à la Galì and Gertler
(1999). Conditional welfare on the basis of the stochastic equilibrium for
alternative values of the degree of rule-of-thumb behaviour.

Figure 5.15. Model with rule-of-thumb behaviour à la Galì and Gertler
(1999). Conditional welfare on the basis of the stochastic equilibrium for
alternative values of the degree of rule-of-thumb behaviour.

between any pair of policies, the zero-optimal policy would invariably rank �rst, followed

by the standard and the alternative timeless perspective policies.

Figure (5.18) plots unconditional welfare on the basis of the stochastic equilibrium for

alternative values of the degree of rule-of-thumb behaviour, 0:01 � ! � 0:7. Under all

policies, welfare is monotonically decreasing in the degree of rule-of-thumb behaviour. A

larger fraction of �rms resetting prices in a backward-looking is indeed associated with

higher degree of price dispersion, hence larger losses associated with the stabilisation of
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the cost-push shock8. The ranking between the alternative commitment policies is univo-

cal. The ranking across the alternative commitment policies is univocal. The alternative

timeless perspective policy ranks �rst, followed by the standard timeless perspective policy

and the zero-optimal policy.

Figure (5.19) plots conditional welfare on the basis of the stochastic equilibrium for

alternative values of the degree of rule-of-thumb behaviour, 0:01 � ! � 0:7. Under all

policies, welfare is monotonically decreasing in the degree of rule-of-thumb behaviour. The

three policies imply nearly the same welfare levels. Yet, if one plotted the di¤erence in

welfare levels between any pair of policies, the zero-optimal policy would invariably rank

�rst, followed by the standard and the alternative timeless perspective policies.

Note that backward-looking rule-of-thumb behaviour à la Steinsson (2003) implies

superior welfare on the basis of the stochastic equilibrium than under rule-of-thumb be-

haviour à la Galì and Gertler (1999). Intuitively, indexation to lagged output gap curbs

the degree of price dispersion, which results in smaller welfare losses associated with the

stabilisation of the cost-push shock.

Figure 5.16. Model with rule-of-thumb behaviour à la Steinsson (1999). Un-
conditional welfare on the basis of the stochastic equilibrium for alternative
values of the degree of price stickiness.

8The degree of price dispersion at time t in the model with rule-of-thumb à la Galì and Gertler (1999) is

given by �t = ��t�1 + �
(1��)�

2
t +

!
(1�!)(1��) (�t � �t�1)

2 +O

�


�1=2�1 ;
e�; %


2�, which is easily seen to be

increasing in both � and !.
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Figure 5.17. Model with rule-of-thumb behaviour à la Steinsson (1999).
Conditional welfare on the basis of the stochastic equilibrium for alternative
values of the degree of price stickiness.

Figure 5.18. Model with rule-of-thumb behaviour à la Steinsson (2003). Un-
conditional welfare on the basis of the stochastic equilibrium for alternative
values of the degree of rule-of-thumb behaviour.
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Figure 5.19. Model with rule-of-thumb behaviour à la Steinsson (2003).
Conditional welfare on the basis of the stochastic equilibrium for alternative
values of the degree of rule-of-thumb behaviour.



CHAPTER 6

Optimal in�ation rate in a Medium-Scale Macroeconomic Model

with Rule-of-thumb Price Setters

In this chapter we characterise the optimal steady-state in�ation rate of the Ram-

sey planner in the medium-scale macroeconomic model developed in Altig et al. (2005).

The model emphasises the importance of combining nominal as well as real rigidities in

explaining business-cycle �uctuations. Speci�cally, the model features four nominal rigidi-

ties, sticky prices, sticky wages, a transactional demand for money by households, and a

cash-in-advance constraint on the wage bill of �rms, and four real rigidities, investment

adjustment costs, variable capacity utilisation, habit formation, and imperfect competi-

tion in product and labour markets. We extend the model by allowing a fraction of price

setters to behave in a backward-looking rule-of-thumb manner. In other words, we extend

the analysis in Schmitt-Grohé and Uribe (2007) to an economy where in�ation persistence

is due to rule-of-thumb behaviour by price setters à la Galì and Gertler (1999), rather

than backward-looking price indexation.

The quali�cation Ramsey is worthy to note. The origin of the quali�cation traces

back to the seminal work by Ramsey (1927). The policy problem in Ramsey�s study takes

the form of an allocation problem, in which the policymaker can be thought of choosing

directly a feasible allocation subject to those constraints that summarise the evolution of

the economy. Studies of optimal policy in dynamic economies (e.g. Atkinson and Stiglitz

(1976), Lucas and Stokey (1983), Chari, Christiano and Kehoe (1992)) have employed

the same approach, labelling it Ramsey-type approach. Speci�cally, the Ramsey planner,

maximises the household�s utility subject to a resource constraint, to the constraints de-

scribing the equilibrium in the private sector economy, and via an explicit consideration

of all the distortions that characterise the economy. In what follows, we conform to this

112
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practice in the literature. We employ a Ramsey-type approach to characterise optimal

monetary policy and we use the quali�cation Ramsey for both steady-state outcomes (i.e.

Ramsey steady state) and dynamic outcomes (i.e. Ramsey impulse response functions).

We must stress that the linear-quadratic approach, which we have employed in the �rst

part of this thesis, and the Ramsey-type approach rely on the same kind of intertemporal

optimisation by the policymaker. However, while in the linear-quadratic approximation

the objective of the policymaker is a quadratic approximation to the utility of the repre-

sentative household, the Ramsey planner is concerned with the maximisation of the utility

of the representative household per se.

Recently, there has been a resurgence of interest for a Ramsey-type approach in dy-

namic general equilibrium models with nominal rigidities. Khan at al. (2003) analyse

optimal monetary policy in a closed economy where the relevant distortions are imperfect

competition, staggered price setting and monetary transaction frictions. Schmitt-Grohé

and Uribe (2004a, 2005), and Siu (2004) focus on the joint optimal determination of mon-

etary and �scal policy in an economy with sticky prices, imperfect competition,and money

demand. The key policy problem faced by the central bank in setting the optimal rate

of in�ation is the trade-o¤ between the stabilisation of the degree of price dispersion,

which calls for zero in�ation, and the stabilisation of transactional frictions, which calls

for the Friedman rule, namely a de�ation which is consistent with a zero nominal interest

rate. These studies �nd that the Friedman prescription for de�ation governs the optimal

steady-state in�ation: the average level of the nominal interest rate should be su¢ ciently

low so that there should be de�ation on average. Speci�cally, the level of optimal in�ation

varies with the degree of price stickiness: the Ramsey-optimal steady-state in�ation can

range from close to the Friedman rule to close, but below, price stability.

Our main goal in characterising the optimal rate of in�ation in the Ramsey steady

state is the investigation of whether the features that deliver optimal positive long-run

in�ation in the linear-quadratic framework are capable to overturn the Friedman rule. In

characterising the optimal in�ation rate, we in fact consider again the case of an ine¢ cient
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deterministic steady state. Nonetheless, the steady-state distortions are assumed not to be

small as in the linear-quadratic framework. Considering a model with large steady-state

distortions implies that, as we discussed in Chapter 3, to obtain a second-order accurate

measure of welfare it does not su¢ ce any longer to approximate the model�s equilibrium

conditions up to �rst order1. In this chapter, we characterise the long-run state of the

Ramsey equilibrium in an economy without uncertainty, namely the Ramsey steady state.

Given the complexity of the model, the Ramsey steady state cannot be characterised

analytically. We thus employ the algorithm in Schmitt-Grohé and Uribe (2007). The

algorithm characterises and numerically solves the Ramsey steady-state in medium-scale

macroeconomic models. Speci�cally, it yields an exact numerical solution for the Ramsey

steady-state

We �nd that the results in Schmitt-Grohé and Uribe (2007) generally hold. Rule-of-

thumb behaviour by price setters does not alter the sensitivity of the long-run in�ation

rate with respect to the degree of price stickiness. Indeed, the optimal long-run in�ation

is always negative and it varies between the level implied by the Friedman rule and a level

close to price stability.

We depart from the analysis in Schmitt-Grohé and Uribe (2007) and consider the case

of a cashless medium-scale macroeconomic model. The motivation for this is twofold.

First, maintaining the cashless quali�cation of the economy, we seek to establish a link

between the analysis of optimal steady-state in�ation carried out in the previous chapters

within a basic New Keynesian model and its counterpart in a much richer theoretical

nonlinear economy. Second, we want to study the case of large steady-state distortions

in order to assess whether dropping the assumptions of small steady-state distortions is

capable of delivering larger positive in�ation rates.

1Indeed, when we consider the implementation of optimal monetary policy in the next chapter we are
forced to solve the model up to second order. We use the methodology and the algorithm developed
in Schmitt-Grohé and Uribe (2004b) for second-order accuarate approximations to policy functions of
dynamic and stochastic models.
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We �nd that the Ramsey-optimal steady-state in�ation in the cashless model with rule-

of-thumb behaviour by price setters is positive. However, as found in the linear-quadratic

framework, the in�ation rate is still observed to be small. Moreover, the in�ation rate

is again observed to be monotonically decreasing in the degree of price stickiness and

monotonically increasing in the degree of rule-of-thumb behaviour.

We proceed to analyse the social planner allocation. The social planner decides how to

allocate the consumption and the production of goods within the economy regardless of

the details of the price and wage mechanisms and the nature of the factors�markets and

goods�markets. Indeed, in chapter 4 we have shown that in the linear-quadratic framework

the steady-state in�ation rate is directly proportional to the steady-state e¢ ciency gap,

which is the constant gap between the steady-state level of output and the e¢ cient steady-

state level of output. Solving the social planner�s problem allows us to derive the e¢ cient

steady-state level of output. We subsequently compute its log-di¤erence with the Ramsey

steady-state level of output so to obtain a measure of the gap between the two steady-state

levels of output. We �nd that this steady-state gap is only slightly larger than in the case

of small steady-state distortions assumed in the linear quadratic framework. Speci�cally,

while the steady-state e¢ ciency gap in the linear-quadratic framework is equal to 0:2 under

benchmark calibration, the steady-state e¢ ciency gap in the medium-scale model is found

to be in the region of 0:26 both in the model with money and in its cashless counterpart.

We �rst present the theoretical model. We then describe how to solve for the Ramsey

steady state and present the calibration of the model. We characterise the Ramsey steady

state in both the model with money and its cashless counterpart. Finally, we characterise

the social planner allocation.

6.1. The model

The theoretical economy is the neoclassical growth model augmented with a number

of real and nominal frictions developed in Altig et al. (2005), which is taken in its setup

from Schmitt-Grohé and Uribe (2007). This model has been estimated econometrically and
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shown to account fairly well for business-cycle �uctuations in the postwar United States.

We extend the model by allowing a fraction of price setters to behave in a backward-

looking rule-of-thumb manner, speci�ed as in Galì and Gertler (1999). The equilibrium

conditions of the model are presented in their nonlinear recursive form.

The theoretical framework emphasizes the importance of combining nominal as well

as real rigidities in explaining the propagation of macroeconomic shocks. The nominal

rigidities include price and wage stickiness à la Calvo (1983) and money demands by both

households and �rms. On the one hand, di¤erently from Schmitt-Grohé and Uribe (2007),

prices are not indexed to past in�ation, but two types of price setters are assumed to exist.

Given Calvo-type constraints on price setting, one type of �rms acts rationally, the other

type sets prices according to a backward-looking rule-of-thumb. On the other hand, wages

are still assumed to be indexed to past in�ation. The real frictions stem from internal

habit formation in consumption, monopolistic competition in both factors� and goods�

markets, investment adjustment costs, and variable costs of adjusting capacity utilisation.

Aggregate �uctuations are driven by three shocks: a permanent neutral technology

shock, a permanent investment-speci�c technology shock, and temporary variations in

government spending. Altig et al. (2005) and Christiano et al. (2005) argue that the

theoretical economy for which we study optimal monetary policy is in fact capable of

explaining the observed responses of in�ation, real wages, nominal interest rates, money

growth, output, investment, consumption, labor productivity, and real pro�ts to neutral

and investment-speci�c productivity shocks and monetary shocks in the postwar United

States. The model we derive in this Chapter thus di¤ers, relative to the small-scale New

Keynesian models employed in the �rst part of this thesis, for one important respect: the

ability to replicate business cycle �uctuations. The medium-scale model retains all the

features of the basic New Keynesian framework, but builds on it so as to improve its

empirical �t. While the basic New Keynesian model has become the workhorse for the

analysis of optimal policy and welfare, the models of last generation improve on the basic

framework in the direction of better empirical realism and are thus more suitable for an
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explicit consideration of the business cycle �uctuations. Indeed, in the next Chapter, we

employ the medium-scale model to study business cycle dynamics and we study the impulse

response functions to the three macroeconomic shocks driving aggregate �uctuations.

6.1.1. Households and Market Structure

The economy is assumed to be populated by a large representative household with a

continuum of members that are identical as for consumption and hours worked. The

representative household seeks to maximise a discounted sum of utility with the period

utility depending on per capita consumption, ct, and per capita labour e¤ort, ht, namely

(6.1) E0

1X
t=0

�tU (ct � bct�1;ht)

where E0 is the mathematical operator that denotes expectation conditional on informa-

tion available at time 0, 0 < � < 1 measures the subjective discount factor, and 0 � b < 1

denotes the degree of internal habit formation in consumption. The period utility func-

tion, U , is assumed to be strictly increasing in ct, strictly decreasing in ht, and strictly

concave. Following Dixit and Stiglitz (1977), per capita consumption is de�ned in terms

of a composite good made of a continuum of di¤erentiated goods indexed by i over the

unit interval

(6.2) ct =

�Z 1

0

c
1�1=�
it di

�1=(1�1=�)

where cit is the consumption of good i and � > 1 measures the constant elasticity of

substitution between di¤erent varieties of consumption goods.

The household faces a decision in each period about how much to consume of each

variety of consumption goods. Denoting the nominal price of good i with Pit, the household

adjusts the share of each di¤erentiated good in the consumption bundle so to exploit any

relative price di¤erences. Minimising the level of total expenditure,
R 1
0
Pitcitdi, given the
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consumption aggregate in (6.2), yields the demand for each di¤erentiated good

(6.3) cit =

�
Pit
Pt

���
ct

where the aggregate price level, Pt, is given by

(6.4) Pt =

�Z 1

0

P 1��it di

�1=(1��)

This speci�cation of the price index has by construction the property that Ptct gives the

minimum expenditure for which an amount ct of the composite consumption good can be

purchased.

The labour input used in the production of good i, hit, is correspondingly assumed to

be a composite quantity made of a continuum of di¤erentiated labour inputs indexed by

j over the unit interval

(6.5) hit =

�Z 1

0

h
j 1�1=e�
it dj

�1=(1�1=e�)

where e� > 1 measures the constant elasticity of substitution between di¤erent varieties

of labour inputs and the aggregate labour demand, hdt , satis�es h
d
t =

R 1
0
hitdi. Denoting

the nominal wage paid to labour of variety j with W j
t , the �rm adjusts the share of

each di¤erentiated labour service in the composite labour input so to exploit any relative

wage di¤erences. Minimising the level of total labour cost,
R 1
0
W j
t h

j
itdj, given the labour

aggregate in (6.5), yields the demand for each di¤erentiated labour service

(6.6) hjit =

 
W j
t

Wt

!�e�
hit

where the aggregate nominal wage level, Wt, is given by

(6.7) Wt =

�Z 1

0

W j 1�e�
t dj

�1=(1�e�)
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This speci�cation of the wage index has by construction the property that Wthit gives the

minimum cost for which an amount hit of the composite labour input can be hired.

The labour decisions are assumed to be made by a union within the household, which

monopolistically supplies labour to the continuum of labour markets. Note that we assume

that the household supplies all types of labour. In each labour market, the union is here

regarded not to be powerful enough as to in�uence aggregate labour variables. Taking Wt

and hdt as given, the union is assumed to supply enough labour in each market j, h
j
t , to

satisfy demand, namely

(6.8) hjt =

Z 1

0

 
W j
t

Wt

!�e�
hitdi =

 
wjt
wt

!�e�
hdt

where wjt = W j
t =Pt and wt = Wt=Pt denote respectively the real wage paid to labour of

variety j and the aggregate real wage level. Moreover, the aggregate labour supply, ht,

satis�es ht =
R 1
0
hjtdj, which, combined with the supply of labour of type j in (6.8), implies

that aggregate labour supply and aggregate labour demand are related through

(6.9) ht = hdt

Z 1

0

 
wjt
wt

!�e�
dj

The household is assumed to own physical capital, kt, which accumulates according to

(6.10) kt+1 = (1� �) kt + it

�
1� S

�
it
it�1

��

where it denotes gross investment and � measures the rate at which physical capital de-

preciates. The function S introduces investment adjustment costs, which are assumed to

be zero up to �rst order in the neighbourhood of the deterministic steady state, namely

S = S 0 = 0 and S 00 > 0.

As in Fisher (2006) and Altig et al. (2005), investment is subject to exogenous per-

manent investment-speci�c shocks, which are denoted with �t. Permanent investment-

speci�c shocks are shown by Fisher (2006) to account for a large share of business cycle

�uctuations in the United States of America in the period after World War II. Goods
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can either be consumed or transformed in investment goods. Speci�cally, ��1t units of

the composite consumption good yield one unit of investment good, which is accord-

ingly assumed to be a composite good made of a continuum of di¤erentiated goods as in

(6.2). It follows that the demand for each di¤erentiated good for investment is given by

iit = (Pit=Pt)
�� ��1t it. Denoting with �� the growth rate of �t in the deterministic steady

state, the percentage deviation of the gross growth rate of �t, ��;t = �t=�t�1, from its

steady-state value, b��;t = ln ���;t=���, is assumed to be autoregressive of order one with
AR parameter ��� and innovation shock "��;t, namely b��;t = ���b��;t�1 + "��;t:

The household can control the intensity at which physical capital is utilised with �t

measuring the capacity utilisation. Using the stock of capital with intensity �t is assumed

to imply a cost of ��1t a (�t) kt units of the composite consumption good. The function

a is assumed to satisfy a(1) = 0, a0(1) > 0, and a00(1) > 0, meaning that overutilising

physical capital entails a strictly convex cost in terms of composite consumption good.

The household rents physical capital to �rms at the real rental rate rkt per unit of capital,

which implies that the total real revenue that accrues to the household from the rental of

capital is rkt �tkt.

Demand for money by the household is rationalised by assuming that purchasing con-

sumption goods entails a proportional transaction cost that is increasing in the velocity

of money, vt, which is of the form

(6.11) vt =
ct
mh
t

Money velocity is thus based on consumption, being the ratio of consumption to real

money balances in the hands of the household, denoted by mh
t . Speci�cally, purchasing a

unit of composite consumption good implies a cost given by ` (vt), where the transaction

cost function satis�es four assumptions. First, ` (v) is non negative and twice continu-

ously di¤erentiable, which means that money changing hands does not generate resources.

Second, there exists a positive �nite value of money velocity, 0 < v < 1, such that
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` (v) = `0 (v) = 0. This ensures that the level of real money balances associated with v sa-

tiates the household�s demand for money so that the Friedman rule, namely a zero nominal

interest rate, is not connected with an in�nite demand for money. Third, (v � v) `0 (v) > 0

for v 6= v, which guarantees that in equilibrium money velocity is never smaller than the

satiation level v. Fourth, 2`0 (v)+ v`00 (v) > 0 for all v � v, which implies that demand for

money is decreasing in the nominal interest rate.

The household can access a complete set of nominal state-contingent assets. Formally,

consumers in any period t � 0 can purchase any nominal state-contingent payment in

the subsequent period, denoted by Xh
t+1. Denoting with rt;t+1 the stochastic nominal

discount factor for one period ahead payo¤s, the cost of purchasing Xh
t+1 is thus given by

Etrt;t+1X
h
t+1. The absence of arbitrage opportunities in �nancial markets implies that there

exists a unique stochastic nominal discount factor and the gross riskless short-term nominal

interest rate, Rt, has a simple representation in terms of rt;t+1, namely Et [rt;t+1] = 1=Rt.

The household�s budget constraint expressed in real terms is then of the form

(6.12)
Etrt;t+1x

h
t+1 +mh

t + ct[1 + ` (vt)]

+��1t (it + a (ut) kt)
=

�t +
xht +m

h
t�1

�t
+ rkt utkt

+
R 1
0
wjt

�
wjt
wt

��e�
hdtdj � � t

where xht = Xh
t =Pt denotes the real payo¤ of a state-contingent payment bought in the

previous period, �t measures the real dividends from the ownership of �rms, �t = Pt=Pt�1 is

the gross in�ation rate, and � t indicates real lump-sum taxes. The budget constraint states

that, in any period, �nancial wealth carried into the subsequent period plus consumption,

either genuine or for investment purposes, cannot be worth more than the value of �nancial

wealth brought into the period plus after-tax non�nancial income earned during the period.

Following Calvo (1983), in each period, the union within the household can optimally

set the nominal wage in a fraction 1 � e� of randomly chosen labour markets. The prob-
ability of not resetting the nominal wage in each period, 0 < e� < 1, is independent of

both the time that has gone by since the last nominal wage revision and the misalignment

between the actual wage and the wage that would be optimal to charge, namely wage
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decisions in any period are independent of past wage decisions. In those e� markets, the
nominal wage is postulated to be indexed to both average real wage growth, �z�, and to

the previous period�s in�ation rate, according to W j
t = W j

t�1 (�z��t�1)
e�, where 0 � e� � 1

measures the degree of wage indexation.

The household chooses processes for ct, xht+1, ht, kt+1, it, m
h
t , ut, and w

j
t so to maximise

the discounted sum of utility (6.1) subject to (a) (6.9)-(6.12); (b) the wage stickiness; and

(c) a no-Ponzi-scheme condition, taking as given (a) the processes wt, rkt , h
d
t , rt;t+1, �t, �t,

and � t; and (b) the initial conditions xh0 , k0, and m
h
�1. Combining (6.11) with (6.12) and

denoting with �twt=e�t, �tqt, and �t the Lagrangian multipliers associated with constraints
(6.9), (6.10), and (6.12), we form the following Lagrangian

Lh = E0

1X
t=0

�t

8>>>>>>>><>>>>>>>>:

U (ct � bct�1; ht) + �twt=e�t �ht � hdt
R 1
0

�
wjt
wt

��e�
dj

�
+�tqt

h
(1� �) kt + it

h
1� S

�
it
it�1

�i
� kt+1

i
+�t

264 xht +m
h
t�1

�t
+ �t ++r

k
t utkt + hdt

R 1
0
wjt

�
wjt
wt

��e�
dj � � t

�rt;t+1xht+1 �mh
t � ct

h
1 + `

�
ct
mh
t

�i
���1 (it + a (ut) kt)

375

9>>>>>>>>=>>>>>>>>;
The �rst-order conditions are given by

(6.13)
@Lh
@ct

= 0) Uc (ct � bct�1; ht)�b�EtUc (ct+1 � bct; ht+1) = �t [1 + ` (vt) + vt`
0 (vt)]

(6.14)
@Lh
@xht+1

= 0) �trt;t+1 = ��t+1
Pt
Pt+1

(6.15)
@Lh
@ht

= 0) �Uh (ct � bct�1; ht) =
�twte�t

(6.16)
@Lh
@kt+1

= 0) �tqt = �Et�t+1[r
k
t+1ut+1 ���1t+1a(ut+1) + qt+1 (1� �)]



123

(6.17)
@Lh
@it

= 0) �t
�t
=

8><>: �tqt

h
1� S

�
it
it�1

�
�
�

it
it�1

�
S 0
�

it
it�1

�i
+�Et�t+1qt+1

�
it+1
it

�2
S 0
�
it+1
it

�
9>=>;

(6.18)
@Lh
@mh

t

= 0) v2t `
0(vt) = 1� �Et

�t+1
�t�t+1

(6.19)
@Lh
@ut

= 0) rkt = �
�1
t a0 (ut)

@Lh

@wjt
= 0) wjt =

8><>: ewt if wjt is set optimally in t
wjt�1 (�z��t�1)

e� =�t if wjt cannot be reset in t
Writing Et [rt;t+1] = 1=Rt, the optimality condition for real state-contingent payments

(6.14) can be rewritten as a standard Euler equation for pricing nominal riskless assets

(6.20) �t = �RtEt�t+1
Pt
Pt+1

= �RtEt
�t+1
�t+1

Combining this with the optimality condition for money holdings (6.18), yields

(6.21) v2t `
0(vt) = 1�R�1t

On the one hand, 1 � R�1t measures the opportunity cost of holding money, which is

clearly increasing in the nominal interest rate. On the other hand, given the assumptions

on the transaction cost function `, v2t `
0(vt) is increasing in the consumption-based velocity

of money. It follows that the optimality condition for money holdings, (6.18), rewritten

in terms of Rt de�nes a liquidity preference function, which is decreasing in the nominal

interest rate and unit elastic in consumption.

The variable ewt is the real wage in the 1 � e� labour markets in which the union

can optimally set at time t the nominal wage, accordingly denoted with fWt. Indeed,

we assume that fWt is identical across all the 1 � e� labour markets where the union is
allowed to optimally reset nominal wage. Given that the demand for labour faced by
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the union is identical across all labour markets, as given by (6.5), and because the wage

paid is postulated to be the same in all the 1 � e� markets, it follows that the supply of
labour, denoted with eht = ( ewt=wt)�e�hdt , is also identical across all labour markets in which
nominal wage is reset optimally in period t. Hence, the only distinction that matters is

the one between the 1 � e� labour markets and the remaining e� markets. In any labour
market where the nominal wage is set optimally in period t, the real wage is ewt. If

in the subsequent period the union cannot reoptimise the nominal wage in that labour

market, the new real wage, denoted with ewt;12, is given by ewt;1 = fWt (�z��t)
e� =Pt+1 =

ewt (�z��t)e� =�t+1. This is because we have postulated that in the e� markets the nominal
wage is indexed, according to e�, to both average real wage growth, �z�, and to the previous
period�s in�ation rate. Generally, if s periods go by without the union being allowed

to reoptimise the nominal wage in a given labour market, the real wage in that labour

market is ewt;s = fWt

Qs
k=1 (�z��t+k�1)

e� =Pt+s = ewtQs
k=1

h
(�z��t+k�1)

e�
�t+k

i
. It follows from the

speci�cation of the aggregate nominal wage level in (6.7) that the aggregate real wage

level evolves according to

(6.22) w1�e�t = (1� e�) ( ewt)1�e� + e�w1�e�t�1

 
(�z��t�1)

e�
�t

!1�e�

The union is here assumed to set ewt, taking Wt, hdt , and �t as given. To this end, it is

convenient to report the parts of the household�s problem that are relevant for the wage

2The �rst subscript refers to the period in which the union is allowed to optimally reset the nominal wage.
The second subscript indicates the number of periods that elapsed since the last optimal updating of the
nominal wage.
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setting problem, namely

Lhewt = E0

1X
t=0

�t�th
d
t

8><>:
R 1
0
wjt

�
wjt
wt

��e�
dj

�wte�t
R 1
0

�
wjt
wt

��e�
dj

9>=>; = E0

1X
t=0

�t�th
d
tw

e�
t

8><>: ew1�e�t

�wte�t ew�e�t
9>=>;

= Et

1X
s=0

(e��)s�t+shdt+swe�t+s
8>><>>:

ew1�e�t

sQ
k=1

h
(�z��t+k�1)

e�
�t+k

i1�e�
�wt+se�t+s ew�e�t sQ

k=1

h
(�z��t+k�1)

e�
�t+k

i�e�
9>>=>>;

= Et

1X
s=0

(e��)s�t+shdt+swe�t+s sY
k=1

"
�t+k

(�z��t+k�1)
e�
#e�8><>:

ew1�e�t

sQ
k=1

h
�t+k

(�z��t+k�1)
e�
i�1

�wt+se�t+s ew�e�t
9>=>;

where the discount factor accounts for the probability of not being able to optimally reset

the nominal wage, e�. The �rst-order condition with respect to ewt is given by

0 = Et

1X
s=0

(e��)s �t+shdt+swe�t+s sY
k=1

"
�t+k

(�z��t+k�1)
e�
#e�8>>>><>>>>:

e� � 1e� ewt sY
k=1

"
�t+k

(�z��t+k�1)
e�
#�1

| {z }ewt;s
� wt+se�t+s

9>>>>=>>>>;
where e�=(e��1) is the markup of wages over marginal cost of supplying labour that would
prevail in a world of perfectly �exible wages. Using the optimal supply of labour in (6.15),

the �rst-order condition can be rewritten as

0 = Et

1X
s=0

(e��)s �t+shdt+swe�t+s sY
k=1

"
�t+k

(�z��t+k�1)
e�
#e� �e� � 1e� ewt;s � �Uh (ct+s � bct+s�1; ht+s)

�t+s

�

The �rst-order condition states that, in setting ewt, the union tries to equate future expected
average marginal revenue to future expected average marginal cost of supplying labour. On

the one hand, the marginal revenue s periods after the last nominal wage reoptimisation is

simply the marked up real wage s periods after the last nominal wage reoptimisation. On

the other hand, the marginal cost of supplying labour is the marginal rate of substitution

between consumption and leisure, �Uh (ct+s � bct+s�1; ht+s) =�t+s = wt+s=e�t+s. e�t thus
represents a wedge between the disutility of supplying labour and the aggregate real wage.

Hence, e�t can be regarded as the average markup that the union imposes in the labour
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markets. If relaxing the period-by-period budget constraint by one unit entails a �t increase

in utility, supplying an extra unit of labour then achieves a �twt=e�t increase in utility. The
wage-setting equation can be rewritten in recursive form, namely

(6.23) f 1t = f 2t

with

f 1t =

�e� � 1e�
� ewtEt 1X

s=0

(e��)s �t+shdt+s�wt+sewt
�e� sY

k=1

"
�t+k

(�z��t+k�1)
e�
#e��1

=

�e� � 1e�
� ewt�thdt �wtewt

�e�
+ e��Et �t+1

(�z��t)
e�
!e��1� ewt+1ewt

�e��1
f 1t+1(6.24)

and

f 2t = � ew�e�t Et

1X
s=0

(e��)s hdt+swe�t+sUh (ct+s � bct+s�1; ht+s)
sY
k=1

"
�t+k

(�z��t+k�1)
e�
#e�

= �
�
wtewt
�e�

hdtUh (ct � bct�1; ht) + e��Et �t+1

(�z��t)
e�
!e� � ewt+1ewt

�e�
f 2t+1(6.25)

6.1.2. The Government

We denote government�s consumption of the composite good with gt =
hR 1
0
g
1�1=�
it di

i1=(1�1=�)
.

The government faces a decision in each period about how much to consume of each va-

riety of consumption goods. The government, like the household, adjusts the share of

each di¤erentiated good in gt so to exploit any relative price di¤erences. Minimising the

level of total public expenditure,
R 1
0
Pitgitdi, given the consumption aggregate gt, yields

the government�s demand for each di¤erentiated good, namely git = (Pit=Pt)
�� gt.

Recollecting that demand for good i for consumption purposes is given by (6.3), it

follows that aggregate demand for good i, yit, is of the form yit = (Pit=Pt)
�� yt, where

aggregate demand, yt =
hR 1
0
y
1�1=�
it di

i1=(1�1=�)
, adds government�s consumption of the

composite good to the household�s consumption, either genuine or for investment purposes,
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namely

(6.26) yt = ct [1 + ` (vt)] + �
�1
t [it + a (ut) kt] + gt

We postulate that along the balanced-growth path the share of government expen-

diture in total output, gt=yt, is constantly equal to sg, namely limj!1Etgt+j=yt+j = sg.

Formally, we impose that gt = z�t gt where z
�
t denotes a permanent shock, which we precisely

de�ne below, and gt represents temporary exogenous variations in government expendi-

ture. Denoting with g the level of government expenditure in the deterministic steady

state, the percentage deviation of gt from its steady-state value, bgt = ln (gt=g), is assumed
to be autoregressive of order one with AR parameter �g and innovation shock "g;t, namelybgt = �gbgt + "g;t.

The variablemf
t denotes demand for real money balances by �rms, which we rationalise

below. The monetary authority is assumed to issue enough money, with mt measuring

real money balances supply, so to satisfy demand, that is

(6.27) mt = mf
t +mh

t

It follows that seigniorage in real terms is of the form mt �mt�1=�t. For simplicity, we

postulate that our theoretical economy starts with a zero level of government debt and we

further assume that government never contracts debt. This latter assumption implies that

the �scal authority levies real lump-sum taxes, � t, so to achieve a balanced government

budget in any period, namely

(6.28) gt = � t +mt �mt�1=�t

6.1.3. Firms

Each di¤erentiated good i is produced by a single �rm in a monopolistically competitive

environment by means of labour and physical capital. Firms are assumed to rent capital

and hire labour from centralised markets. We assume that each variety of goods has the
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linearly homogeneous production function F (kit; zthit) �  z�t , where kit denotes physical

capital services, hit denotes labour services, and zt is a permanent neutral technological

shock. For any given realisation of zt, the production function F is assumed to be concave

and strictly increasing in both capital services and labour services. The parameter  > 0

measures �xed costs of operating a �rm in each period, which entails that the production

function displays increasing returns to scale. Following Altig et al. (2005), we postulate

that �xed costs are subject to permanent shocks, z�t , and that �xed costs do not disappear

along the balanced-growth path, namely z�t =zt = �
�

1��
t . Denoting with �z the growth

rate of zt in the deterministic steady state, the percentage deviation of the gross growth

rate of zt, �z;t = zt=zt�1, from its steady-state value, b�z;t = ln
�
�z;t=�z

�
, is assumed to

be autoregressive of order one with AR parameter ��z and innovation shock "�z ;t, namelyb�z;t = ��zb�z;t�1 + "�z ;t.

On the one hand, each �rm expects to sell a quantity of their good in any period given

by yit. On the other hand, each �rm produces their own good according to the same

linearly homogeneous production function. The linear homogeneity assumption implies

that aggregate output, yt, can be expressed in terms of aggregate labour, ht, and the stock

of capital, kt =
R 1
0
kitdi, as yt = F (kt; ztht) �  z�t . Given that z

�
t is postulated to enter

the speci�cation of gt, it follows that government expenditure and aggregate output are

cointegrated. Moreover, both factor inputs are understood to be homogeneous across all

�rms. Every �rm can thus produce an additional unit of output according to the same

production technology by hiring labour at the real wage wt per unit of labour and renting

capital at the real rate rkt per unit of capital. It follows that in any period the cost of

production of an extra unit of output is identical across all �rms in the economy. We

denote the common marginal cost with mcit3.

Demand for money by �rms is rationalised by assuming that wages are paid before the

�rm cashes in on the sale of goods. Speci�cally, we postulate a cash-in-advance constraint

3Indeed, given the postulated common production function, the subscript i could be dropped. We maintain
it here and drop it once we consider market clearing.
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on wage payments of the form

(6.29) mf
it = vwthit

where mf
it measures the demand for real money balances by �rm producing good i and

v � 0 denotes the fraction of wage payments that must be sustained by monetary assets.

Of course, holding money entails forgoing the riskless nominal interest rate. Recollecting

that the opportunity cost of holding money, 1 � R�1t , is increasing in the nominal inter-

est rate, Rt, the �nancial cost incurred by �rms is thus given by
�
1�R�1t

�
mf
it, namely�

1�R�1t
�
vwthit when m

f
it is substituted for according to (6.29) . Denoting with �it the

real pro�ts that �rm i distributes to the shareholders, the budget constraint of �rm i

expressed in real terms is of the form

Etrt;t+1x
f
it+1 +mf

it =
xfit +mf

it�1
�t

+

�
Pit
Pt

�1��
yt � rkt kit(6.30)

�wthit
�
1 +

�
1�R�1t+s

�
v
�
� �it

where Etrt;t+1x
f
it+1 denotes the real cost of uniperiod state-contingent that the �rm carries

into the subsequent period. The budget constraint states that, in any period, �rm pro-

ducing good i can carry into the subsequent period �nancial wealth that is worth as much

as the �nancial wealth brought into the period plus after-dividend non�nancial income

earned during the period. The �rm is understood to be committed to supply whatever

quantity buyers may wish to purchase at the posted price, namely supply of good i at

least equals aggregate demand for good i

(6.31) F (kit; zthit)�  z�t �
�
Pit
Pt

���
yt

The �rm chooses processes for Pit, hit, kit, x
f
it, and m

f
it so to maximise the expected

present discounted value of pro�ts, namely Et
P1

s=0 rt;t+sPt+s�it+s, subject to (6.30) and

(6.31), and a no-Ponzi-scheme condition. Here, rt;t+s =
Qs
k=1 rt+k�1;t+k for s � 1 denotes

the stochastic nominal discount factor for s periods ahead payo¤, and rt;t = 1. Indeed,
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given that rt;t+s represents both the �rm�s stochastic discount factor and the market�s

pricing kernel for �nancial assets and because the �rm�s budget constraint is linear in

assets holdings, any assets accumulation plan that satis�es the no-Ponzi game condition

must be optimal. Postulating, without loss of generality, that the �rmmanages their assets

so to have a nil �nancial position at the beginning of each period, that is xfit+1 +mf
it = 0

at all dates t � �1 and in all states, implies that the �rm�s budget constraint can be

rewritten as

(6.32) �it =

�
Pit
Pt

�1��
yt � rkt kit � wthit

�
1 +

�
1�R�1t+s

�
v
�

Denoting the Lagrangian multiplier associated with constraint (6.31), holding with

equality, with rt;t+sPt+smcit+s, we form the following Lagrangian

Lf = Et

1X
s=0

rt;t+sPt+s

8><>: (Pit+s=Pt+s)
1�� yt+s � rkt+skit+s � wt+shit+s

�
1 +

�
1�R�1t+s

�
v
�

+mcit+s
�
F (kit+s; zt+shit+s)�  z�t+s � (Pit+s=Pt+s)

�� yt+s
�
9>=>;

The �rst-order conditions are given by

(6.33)
@Lf
@hit

= 0) mcitztF2 (kit; zthit) = wt

�
1 + v

Rt � 1
Rt

�

(6.34)
@Lf
@kit

= 0) mcitF1 (kit; zthit) = rkt

@Lf
@Pit

= 0) Pit =

8>>>><>>>>:
P ft if Pit is set optimally in t

P bt if Pit is set according to rule-of-thumb behaviour in t

Pit�1 if Pit cannot be reset in t



131

The �rst order-conditions (6.33) and (6.34) are the standard cost minimisation condi-

tions, which state that the ratio of factors�prices is equal to the marginal rate of technical

substitution between the two factors. The postulated cash-in-advance constraint on wage

payments implies that hiring labour also entails a �nancial cost, which is increasing in the

nominal interest rate.

Following Calvo (1983), we assume that only a randomly chosen fraction 1 � � of

goods�nominal prices are reset in each period. The probability of not resetting the price

in each period, 0 � � < 1, is independent of both the time that has gone by since the last

price revision and the misalignment between the actual price and the price that would be

optimal to charge, namely pricing decisions in any period are independent of past pricing

decisions.

We depart from full rationality by introducing backward-looking rule-of-thumb behav-

iour by price setters. Following Galì and Gertler (1999), we assume that only a fraction

1�! of the 1�� �rms behave optimally (i.e. in a forward-looking manner) when setting the

price, the remaining ! fraction of �rms use the same backward-looking rule-of-thumb when

revising their prices. The degree of backward-looking rule-of-thumb behaviour, 0 � ! < 1,

is thus constant over time and price setters cannot switch between backward-looking and

forward-looking behaviour.

We thus need to distinguish both between the 1�� goods�markets and the remaining

� markets and, within the 1 � � goods�markets, between the 1 � ! goods�markets and

the remaining ! markets. In any good�s markets where the nominal price cannot be

reoptimised in period t, �rms keep on charging the price posted in period t � 1, Pit�1.

In any good�s market where the nominal price is set optimally in period t, the nominal

forward-looking reset price is denoted with P ft , with the real price being given by p
f
t . In

any good�s market where the nominal price is set according to rule-of-thumb behaviour in

period t, the nominal backward-looking price is denoted with P bt , with the real reset price
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being price is pbt . Hence, the overall reset real price at time t, denoted with ept, is given by
(6.35) ept = (1� !)pft + !pbt

It follows that the aggregate price level in (6.4) evolves according to

(6.36) 1 = ����1t + (1� �) ep1��t

Following Galì and Gertler (1999), rule-of-thumb price setters are postulated to set

P bt equal to the previous period overall nominal reset price, ePt�1, fully indexed to past
in�ation, namely P bt = ePt�1�t�1. It follows that pbt is of the form
(6.37) pbt = ept�1�t�1�t

The price P ft is set so to maximise the expected present discounted value of pro�ts,

namely

Lf
P ft
= Et

1X
s=0

�srt;t+sPt+s

8><>:
�
P ft =Pt+s

�1��
yt+s � rkt+skit+s � wt+shit+s

�
1 +

�
1�R�1t+s

�
v
�

+mcit+s

�
F (kit+s; zt+shit+s)�  z�t+s �

�
P ft =Pt+s

���
yt+s

�
9>=>;

where the discount factor accounts for the probability of not being able to optimally reset

the nominal price, �. The �rst-order condition with respect to P ft is given by

0 = Et

1X
s=0

�srt;t+s

 
P ft
Pt+s

!���1
yt+s

"
� � 1
�

 
P ft
Pt+s

!
�mcit+s

#

where �=(�� 1) is the markup of prices over marginal cost of supplying goods that would

prevail in a world of perfectly �exible prices. The �rst order-condition states that, in

setting P ft , the �rm tries to equate future expected average marginal revenue to future

expected average marginal cost. The price-setting equation can be rewritten in recursive

form, namely

(6.38) x1t =
� � 1
�

x2t



133

with4

x1t = Et

1X
s=0

�srt;t+s

 
P ft
Pt+s

!���1
yt+smct+s =

8>><>>:
�
P ft
Pt

����1
ytmct

+�rt;t+1

�
P ft
P ft+1

����1
Etx

1
t+1

9>>=>>;
=

�
pft

����1
ytmct + ��Et

�t+1
�t

 
pft

pft+1

!���1
��t+1x

1
t+1(6.39)

and

x2t = Et

1X
s=0

rt;t+s�
s

 
P ft
Pt+s

!���1
yt+s

 
P ft
Pt+s

!
=

8>><>>:
�
P ft
Pt

���
yt

+�rt;t+1

�
P ft
P ft+1

���
Etx

2
t+1

9>>=>>;
=

�
pft

���
yt + ��Et

�t+1
�t

 
pft

pft+1

!��
���1t+1x

2
t+1(6.40)

where we use (6.14) to substitute ��t+1Pt=�tPt+1 for rt;t+1.

6.1.4. Market Clearing

Market clearing in the goods�markets requires, for each good i and at all times that supply

equals demand, namely

(6.41) F
�
kit; zth

d
it

�
�  z�t =

�
ct [1 + ` (vt)] + gt +�

�1
t [it + a (ut) kt]

	�Pit
Pt

���
Equivalently, in aggregate terms, we obtain

(6.42) F
�
utkt; zth

d
t

�
�  z�t =

�
ct [1 + ` (vt)] + gt +�

�1
t [it + a (ut) kt]

	
st

with

(6.43) mctztF2 (utkt; ztht) = wt

�
1 + v

Rt � 1
Rt

�

4Note that we drop the subscript i.
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and

(6.44) mctF1 (kt; ztht) = rkt

where the production function is expressed in terms of the aggregate e¤ective level of

capital, utkt, and (6.43) and (6.44) are the cost minimisation conditions (6.33) and (6.34)

at the aggregate level. The state variable st measures the degree of price dispersion in the

economy brought about by stickiness in the adjustment on goods�nominal prices, namely

st =

Z 1

0

�
Pit
Pt

���
di = (1� �)

 ePt
Pt

!��
+ (1� �)�

 ePt�1
Pt

!��
+ :::

= (1� �)
1X
s=0

�s

 ePt�s
Pt

!��
= (1� �) (ept)�� + ���t st�1(6.45)

The state variable st thus summarizes the resource costs stemming from ine¢ cient price

dispersion, with s�1 given. Indeed, as shown in Schmitt-Grohé and Uribe (2007), price

dispersion is always a costly distortion in this model, namely st is bounded below by

1. Denoting with s the level of price dispersion in the deterministic steady state, we

accordingly denote with bst the percentage deviation of st from its steady-state value,

that is bst = ln (st=s). In an economy with zero in�ation in the nonstochastic steady

state, that is a unitary level of gross in�ation, bst follows, up to �rst order, the univariate
autoregressive process bst = �bst�1. Hence, restricting the analysis to linear approximations
to the equilibrium conditions justi�es neglecting the price dispersion only if the model

features no price dispersion in the deterministic steady state. Indeed, that is always

the case in a model log-linearised around the perfectly �exible prices equilibrium, which,

trivially, implies absence of price dispersion across goods. Yet, st matters up to �rst order

when the deterministic steady state features movements in relative prices across goods

varieties. More importantly, even if relative prices are stable in the deterministic steady

state, price dispersion must be taken into account if one is interested in approximations

to the equilibrium conditions that are of order higher than linear.
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Market clearing in the labour markets requires, for each type of labour j and at all

times that supply equals demand, as implied by (6.8). Equivalently, in aggregate terms,

we have equation (6.9). Moreover, as discussed above, the supply of labour is identical

across all labour markets in which nominal wage is reset optimally in period t, namely

ewe�t eht = we�t hdt . Combining this with (6.8) and (6.9), yields

(6.46) ht = (1� e�)hdt 1X
s=0

e�s fWt�s
Qs
k=1 (�z��t+k�s�1)

e�
Wt

!�e�

Letting est = (1� e�)P+1
s=0 e�s �fWt�s

Qs
k=1 (�z��t+k�s�1)

e� =Wt

��e�
denote the degree of

wage dispersion across di¤erent types of labour, we obtain

(6.47) ht = esthdt
with

est = (1� e�) 1X
s=0

e�s� ewt�s
wt

��� 
�t+s

(�z��t+s�1)
e�
!e�

= (1� e�)� ewt
wt

��e�
+ e��wt�1

wt

��e� 
�t

(�z��t�1)
e�
!e� est�1(6.48)

The state variable est thus summarizes the resource costs stemming from ine¢ cient wage

dispersion, with es�1 given. Indeed, wage dispersion is always a costly distortion in this
model, namely est is bounded below by 1. Denoting with es the level of wage dispersion
in the deterministic steady state, we accordingly denote with best the percentage deviation
of es from its steady-state value, namely best = ln

�es=es�. In an economy with zero wage
dispersion in the nonstochastic steady state, best follows, up to �rst order, the univariate
autoregressive process best = e�best�1. Hence, restricting the analysis to linear approximations
to the equilibrium conditions justi�es neglecting the wage dispersion only if the model fea-

tures no wage dispersion in the deterministic steady state. Indeed, that is always the case

in a model log-linearised around the perfectly �exible wages equilibrium, which, trivially,

implies absence of wage dispersion across types of labour. Yet, est matters up to �rst order
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when the deterministic steady state features movements in relative wages across labour

varieties. More importantly, even if relative wages are stable in the deterministic steady

state, wage dispersion must be taken into account if one is interested in approximations

to the equilibrium conditions that are of order higher than linear.

Finally, it follows from pro�ts at the �rm�s level, (6.32), that aggregate pro�ts are

given by

(6.49) �t = yt � rkt utkt � wth
d
t

�
1 +

�
1�R�1t

�
v
�

and, equations (6.29) and (6.27), imply that real money balances in equilibrium are of the

form

(6.50) mt = vwth
d
t +mh

t

6.2. Solving the Model

Given the complexity of the theoretical economy, the long-run state of the Ramsey

equilibrium in an economy without uncertainty, that is the Ramsey steady state, can-

not be characterised analytically, but we use the algorithm used in Schmitt-Grohé and

Uribe (2007). The algorithm numerically solves the Ramsey steady state in medium-scale

macroeconomic models. Speci�cally, it yields an exact numerical solution for the Ramsey

steady state. The only inputs that need to be provided are the set of equilibrium condi-

tions and the steady-state level of the model�s variables and parameters in the competitive

equilibrium.

The solution for the Ramsey steady state is obtained in �ve steps. First, we need to

specify functional forms for utility, technology, the investment adjustment cost function,

the transaction cost function, and the cost of higher capacity utilisation. We use the same

functional forms in Schmitt-Grohé and Uribe (2007). Second, some variables are not sta-

tionary along the balanced-growth path as the theoretical economy displays two types of

permanent shocks. This requires rescaling those variables so that the model�s equilibrium
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conditions are functions of stationary variables only, which we denote with the correspond-

ing capital letters. The nonstationary variables and the respective scaling factors are the

same as in Schmitt-Grohé and Uribe (2007). Appendix C presents the functional forms

and reports the complete set of equilibrium conditions in terms of stationary variables.

Third, we need to de�ne the competitive equilibrium. A stationary competitive equi-

librium is formally de�ned as being a set of stationary processes Ct, Mh
t , Mt, Wt, fWt, Yt,

Gt, �t, X1
t , X

2
t , Tt, Kt+1, It, F 1t , F

2
t , Qt, R

k
t , �t, p

f
t , p

b
t , ept, ut, vt, mct, ht, hdt , st, est, and �t

satisfying (6.10), (6.11), (6.13), (6.15)-(6.26), (6.28), (6.35)-(6.45), and (6.47)-(6.50) writ-

ten in terms of stationary variables, given I) the exogenous stochastic processes for ��;t,

�z;t, and gt, II) the policy process Rt, and III) initial conditions c�1, w�1, s�1, es�1, ��1,
i�1, and �0. Fourth, we need to derive the steady state of the competitive equilibrium.

In our economy, the equilibrium conditions in terms of stationary variables contain 29

equations and 29 variables, which are listed above. In addition the equilibrium conditions

feature 29 parameters: �1, �2, �3, �4, 
1, 
2, �, �, b, �, �, �, ~�, �, ~�, !, ~�, �,  , �I , �z,

��,��z , ��� , ��z , ���, �g, �"g , g. In order to obtain values for the steady-state levels of

all variables and for the structural parameters, we thus need to impose 29 restrictions.

These 29 restrictions come from using the same calibration in Schmitt-Grohé and Uribe

(2007), which draws on the estimation results in Altig at al. (2005). In other words, we

�x all structural parameters and we then �nd the steady-state levels of all variables as a

function of the structural parameters. In particular, this entails that, apart from the equa-

tions describing the price setting, the speci�cation of the steady state of the competitive

equilibrium is the same as the one presented in the technical appendix to Schmitt-Grohé

and Uribe (2007) (i.e. the one that obtains when all structural parameters are known).

Fifth, we can de�ne the Ramsey equilibrium. Speci�cally, we assume that a t = 0 the

Ramsey planner has been operating for an in�nite number of periods. In choosing the

optimal policy, namely fRtg1t=0, the Ramsey planner is assumed to sustain commitments

made in the past. In other words, we study commitment from a timeless perspective. The

Ramsey equilibrium is formally de�ned as being a set of stationary processes Ct, Mh
t , Mt,
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Wt, fWt, Yt, Gt, �t, X1
t , X

2
t , Tt, Kt+1, It, F 1t , F

2
t , Qt, R

k
t , �t, p

f
t , p

b
t , ept, ut, vt, mct, ht, hdt ,

st, est, �t, and Rt for t � 0 that maximises

E0

1X
t=0

�t
(z�0
Qt
k=1 �z�;s)

(1��4)(1��3)
��
Ct � bCt�1

�z�;t

�1��4
(1� h)�4

�1��3
� 1

1� �3

subject to I) the competitive equilibrium conditions (6.10), (6.11), (6.13), (6.15)-(6.26),

(6.28), (6.35)-(6.45), and (6.47)-(6.50) written in terms of stationary variables, and II)

Rt � 1 for t > �1 and given: I) the exogenous stochastic processes for ��;t, �z;t, and

gt, II) values of the variables listed above dated t < 0 and III) values of the Lagrange

multipliers associated with the constraints listed above dated t < 0. The fact that we

consider commitment from a timeless perspective implies that the optimality conditions

associated with the Ramsey equilibrium are time-invariant. Conversely, under the stan-

dard Ramsey equilibrium de�nition, the equilibrium conditions in the initial periods are

di¤erent from the ones applying in later periods. Before characterising the Ramsey steady

state, we describe the calibration of the model.

6.2.1. Calibration

The time unit is a quarter. The calibration in Schmitt-Grohé and Uribe (2007) draws

most parameters from Altig et al. (2005). To simplify the presentation of the calibration

we partition the parameters�set into three groups: preferences, technology and shocks and

the market structure. A complete presentation of the calibration is shown in Table (6.1).

6.2.1.1. Preferences. The discount factor � is set equal to 1:03�1=4 so to match an

annualised real interest rate of 3 percent. Preferences are assumed to be separable in

consumption and labour and logarithmic in habit-adjusted consumption, which implies

that �3 = 1. �4 is calibrated to match a unit elasticity of labour supply in the competitive

steady state, chosen in this way �4 = 0:53. The parameters governing the demand for

money (�1 and �2) are calibrated assuming that the steady-state share of money held by

households is 0:44 percent and that the annualized interest rate semi-elasticity of money
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demand is �0:81, as estimated by Altig et al. (2005). This implies that �1 = 0:0458 and

�2 = 0:1257. Additionally, it also follows that the share of the wage bill subject to a cash-

in-advance constraint is 60%, that is � = 0:6011. As for the degree of habit formation,

measured by the parameter b, Altig et al. (2005) estimate it to be 0:69.

6.2.1.2. Technology and Shocks. Altig et al. (2005) assume a steady-state share of

capital income equal to 36 percent (i.e. � = 0:36) and 10 percent rate of depreciation of

capital per year (i.e. � = 0:025 per quarter). The �xed cost parameter in the aggregate

production function,  , is set so that in the competitive steady state there are zero pro�ts

(i.e.  = 0:2503). The parameter in the investment adjustment cost function, �, has

been estimated by Altig et al. (2005) to be equal to 2:79. The parameters in the capi-

tal utilisation cost function are calibrated assuming that in competitive steady state the

capital utilisation is full, namely u = 1. This results in 
1 and 
2 being respectively given

by 0:0412 and 0:06015. As for the steady-state growth rate of investment, �I , we follow

Schmitt-Grohé and Uribe (2007) in setting it so that in steady state adjustment costs are

nil, chosen in this way �I = 1:028.

The exogenous stochastic processes for the investment speci�c and the neutral tech-

nology shocks are calibrated using results in Altig et al. (2005). That is, the parameters

of the exogenous stochastic process for the investment speci�c shock, ��;t, and the neu-

tral technology shock, �z;t, are respectively (��; ��� ; ���) = (1:0042; 0:0031; 0:20) and

(�z; ��z ; ��z) = (1:00213; 0:0007; 0:89). The exogenous stochastic process for the govern-

ment spending shock is calibrated as in Ravn (2005), namely (G; �"g ; �g) = (0:2141; 0:008; 0:9).

6.2.1.3. Market Structure. Following Altig at al. (2005), we set the steady-state mark-

up of wages over the marginal rate of substitution between leisure and consumption to 5

percent, which implies a value for the elasticity of substitution between labour services, ~�,

equal to 21. The steady state mark-up in product markets is assumed to be 20 percent,

which implies a value for the elasticity of substitution between goods, �, equal to 6.

5Schmitt-Grohé and Uribe (2005) experiment other functional forms for the capacity utilisation cost
function and various calibrations in a model similar to the one in this paper. They �nd that the results
about optimal monetary policy are not a¤ected by these parameters.
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The average duration of wage contracts, about three quarters, has been estimated by

Altig et al. (2005) and implies a value for ~� of 0:69. In those labour markets in which

households can not set an optimal wage, the old wage is fully indexed to past in�ation

(~� = 1).

As in the linear-quadratic framework, we consider ample ranges for the average du-

ration that an individual price is �xed, namely the degree of price stickiness, �, and the

fraction of �rms that reset prices in a backward-looking manner, that is the degree of

rule-of-thumb behaviour, !. Galì and Gertler (1999) report estimates of ! between 0:077

and 0:552, with 3 of their 6 estimates between 0:2 and 0:3. As for the degree of price stick-

iness, empirically realistic values of the average price duration based on macroeconomic

data vary between 2 and 5 quarters, namely 0:5 � � � 0:8. Evidence on price stickiness

based on microeconomic data suggest a much higher frequency of price changes than the

evidence based on macro data. Available empirical estimates using microeconomic data,

as in Bils and Klenow (2004) and Golosov and Lucas (2007), suggest in fact a lower av-

erage price duration of around 1:5 quarters, that is a value of � of about 0:33. In what

follows we want to assess the robustness of our results with respect to alternative values

for these two parameters. We thus consider 0:33 � � � 0:8 and extend the range for the

degree of rule-of-thumb behaviour up to 0:7, namely 0:01 � ! � 0:7. This is because, as

discussed in Chapter 5, ! = 0:7 implies that the hybrid Phillips curve under rule-of-thumb

behaviour puts equal weight on future expected in�ation and lagged in�ation.
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Parameter Value Description

� 1:03�1=4 Subjective discount factor

� 0:36 Share of capital in value added

 0:2503 Fixed cost parameter

� 0:025 Depreciation rate

� 6 Elasticity of substitution of di¤erent varieties of goods

~� 21 Elasticity of substitution of labour services

� 0:33� 0:8 Probability of not setting a new price each period

~� 0:69 Probability of not setting a new wage each period

! 0� 0:7 Share of rule-of-thumb price setters

b 0:69 Degree of habit persistence

�1 0:0458 Transaction cost parameter

�2 0:1257 Transaction cost parameter

�3 1 Preference parameter

�4 0:5300 Preference parameter

� 0:6011 Share of wage bill subject to CIA constraint

� 2:48 Investment adjustment cost parameter

~� 1 Degree of wage indexation


1 0:0412 Capital utilisation cost function parameter


2 0:0601 Capital utilisation cost function parameter

�� 1:0042 Growth rate of investment-speci�c technology shock

��� 0:0031 Stad. Dev. of the innovation to the investment-speci�c tech. shock

��� 0:20 Autoregressive parameter in the investment speci�c tech. shock
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�z 1:0213 Growth rate of neutral technology shock

��z 0:0007 Stad. Dev. of the innovation to the neutral tech. shock

��z 0:89 Autoregressive parameter in the neutral tech. shock

�I 1:028 Steady-state growth rate of investment

g 0:2141 Steady-state value of government consumption

�"g 0:008 Stad. Dev. of the innovation to the government spending process

�g 0:9 Autoregressive parameter in the government spending process

Table 6.1. Benchmark Calibration

6.3. The Ramsey Steady State

In this section, we characterise the long-run state of the Ramsey equilibrium in an

economy without uncertainty, namely the Ramsey steady state. We �rst characterise the

Ramsey steady state in the model with money and subsequently proceed to analyse how

the Ramsey steady state is a¤ected when demand for money by both households and �rms

is assumed away.

In the presence of money, we �nd that the results in Schmitt-Grohé and Uribe (2007)

generally hold. Figure (6.1) shows the relationship between the optimal long-run rate of

in�ation, which is throughout expressed in annualised percentange points, and the degree

of price stickiness. Rule-of-thumb behaviour by price setters does not to alter the high

sensitivity of the long-run in�ation rate with respect to the degree of price stickiness. In

the absence of rule-of-thumb behaviour, the optimal rate of in�ation coincides with the

one presented in Schmitt-Grohé and Uribe (2007). Introducing rule-of-thumb behaviour

does not a¤ect the shape of the relationship between the long-run rate of in�ation and the

degree of price stickiness. Speci�cally, relatively low values for the degree of rule-of-thumb

behaviour imply nearly the same levels for the optimal rate of in�ation. If, as we do in

Figure (6.1), a relatively high value for the degree of rule-of-thumb behaviour is considered,

the optimal rate of in�ation would be only slightly a¤ected for values of the degree of price
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stickiness that are in line with macroeconomic evidence. However, the optimal long-run

in�ation is always negative and it is found to vary between the level implied by the

Friedman rule and a level close to price stability. Moreover, the relationship between the

optimal long-run rate of in�ation and the degree of price stickiness is still observed to be

steep for the range of � values that are in line with macroeconomic evidence.

Figure 6.1. Model with money: degree of price stickiness and the Ramsey
steady-state rate of in�ation.

As for the relationship between the optimal long-run rate of in�ation and the degree of

rule-of-thumb behaviour, Figure (6.2) shows how a larger fraction of �rms resetting their

prices in a backward-looking manner is associated with a less negative optimal in�ation

rate. In particular, the relationship is observed to be nearly �at for relatively low values

of the degree of rule-of-thumb behaviour.

Finally, to complete the analysis of the Ramsey steady state in the presence of money,

we study the relationship between the long-run rate of infation and the parameters de-

termining the demand of money. Figure (6.3) displays the optimal rate of in�ation as a

function of the two structural parameters underpinning the demand of money by house-

holds, �1 and �2 for two alternative values of the degree of price stickiness (i.e. � = 0:66
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Figure 6.2. Model with money: degree of rule-of-thumb behaviour and the
Ramsey steady-state rate of in�ation.

and � = 0:8)6. The results we obtain are again very similar to the ones in Schmitt-Grohé

and Uribe (2007). Considering an average duration of prices of 5 quarters (i.e. � = 0:8),

the benchmark value of 0:05 for the parameter �1 implies that the optimal rate of in�a-

tion is �0:38 percent per year and money demand is 18 percent of annual output. If �1

increases by a factor of 10 to 0:5, the optimal rate of in�ation is �1 percent per year, but

the demand for money increases to 37 percent of annual output. Finally, if �1 increases

by a factor of more than 150 to around 8, the optimal rate of in�ation is close to the level

implied by the the Friedman rule. However, at this value of �1, the demand for money is

larger than one entire annual output. As stressed by Schmitt-Grohé and Uribe (2007), the

sensitivity of the optimal long-run rate of in�ation relative to the parameter �1 hinges on

the importance of price stability. This is clearly shown in the �rst panel of Figure (6.3). If

we consider a lower degree of price stickiness (i.e. � = 0:66) the optimal rate of in�ation

converges faster to the value called for by the Friedman rule. A similar message emerges

as one varies the other transaction cost parameter, �2. Considering an average duration

of prices of 5 quarters (i.e. � = 0:8), the benchmark value of 0:126 for the parameter �2

implies that the optimal rate of in�ation is �0:4 percent per year and money demand is
6In producing Figure 3, we set the degree of rule-of-thumb behaviour equal to 0:5. Considering alternative
values for the degree of rule-of-thumb behaviour does not a¤ect the results presented.
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Figure 6.3. Model with money: transaction cost parameters and the Ramsey
steady-state rate of in�ation.

16 percent of annual output. If �2 decreases by a factor of 5 to 0:025, the optimal rate of

in�ation is �0:7 percent per year, but the demand for money increases to 39 percent of

annual output. Finally, if �2 decreases by a factor of 10 to 0:0, the optimal rate of in�ation

is close to the level implied by the the Friedman rule. However, at this value of �2, the

demand for money is larger than one entire annual output. Moreover, the sensitivity of

the optimal long-run rate of in�ation relative to the parameter �2 again hinges on the

importance of price stability. This is clearly shown in the second panel of Figure (6.3). If

we consider a lower degree of price stickiness (i.e. � = 0:66) the optimal rate of in�ation

converges faster to the value called for by the Friedman rule.

6.3.1. The Cashless Model

Schmitt-Grohé and Uribe (2007) go on to analyse the optimal long-run rate of in�ation

by taking into account the public �nance aspect of the optimal policy problem. They do

so by replacing the assumption of lump-sum taxes with the assumption of distortionary

income taxes. Speci�cally, they consider the theoretical economy in Schmitt-Grohé and

Uribe (2005) and analyse the possibility of a social planner setting jointly monetary policy
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and �scal policy in a Ramsey-optimal fashion. The optimal long-run in�ation, although

remaining always negative, is then found to be much closer to price stability. Moreover, the

high sensitivity of the long-run in�ation rate with respect to the degree of price stickiness

disappears thus making mild de�ation robust to the uncertainty about the exact degree of

price stickiness. The intutition for this resul is quite neat. The �scal authority can �nance

government�s consumption through seignorage or distortionary taxation. A higher rate of

in�ation then allows the social planner to trade revenue due to distortionary taxation for

seignorage revenue. It follows that the trade-o¤ between price stability and the Friedman

rule is resolved in favour of price stability.

We depart from the analysis in Schmitt-Grohé and Uribe (2007) and consider the

case of a cashless medium-scale macroeconomic model. The reasons for this are primarily

two. First, maintaining the cashless quali�cation of the economy, we seek to establish a

link between the analysis of optimal monetary policy carried out in the previous chapters

within a canonical log-linearised New Keynesian model and its counterpart in a much

richer theoretical nonlinear economy. Second, we want to study the case of large steady-

state distortions in order to assess whether dropping the assumptions of small steady-state

distortions is capable of delivering larger positive in�ation rates.

In the model at hand money is demanded both by households for transactional reasons

and by �rms given the assumed cash-in-advance constraint on wage payments. Considering

the possibility of a cashless medium-scale macroeconomic model thus amounts to drop both

assumptions. The consequences on the equilibrium conditions of the model are as follow.

First, (6.11) ceases to apply. The household�s budget constraint expressed in real terms

is then of the form

(6.51) Etrt;t+1xht+1+ct+�
�1
t (it + a (ut) kt) =

xht
�t
+�t+r

k
t utkt+

Z 1

0

wjt

 
wjt
wt

!�e�
hdtdj�� t
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which implies that I) (6.18) ceases to apply; II) (6.14)-(6.17) are una¤ected; III) (6.16)

becomes

(6.52)
@Lh
@ct

= 0) Uc (ct � bct�1; ht)�b�EtUc (ct+1 � bct; ht+1) = �t [1 + ` (vt) + vt`
0 (vt)]

Second, the aggregate resource constraint is now given by

(6.53) yt = ct +�
�1
t [it + a (ut) kt] + gt

which implies that (6.42) becomes

(6.54) F
�
utkt; zth

d
t

�
�  z�t =

�
ct + gt +�

�1
t [it + a (ut) kt]

	
st

Third, the government budget constraint is now given by

(6.55) gt = � t

Fourth, the absence of a cash-in-advance constraint on the wage payments implies that

the cost minimisation condition with respect to labour becomes

(6.56) mctztF2 (utkt; ztht) = wt

which implies that aggregate pro�ts are now given by

(6.57) �t = yt � rkt utkt � wth
d
t

The complete set of equilibrium conditions in the cashless model is then given by 26

equations, namely (6.10), (6.15)-(6.17), (6.19)-(6.25), (6.35)-(6.40), (6.44), (6.45), (6.47),

(6.48), (6.52), (6.53), (6.54), (6.55), (6.56), and (6.57). We use the same functional forms

as in the model with money. Moreover, the nonstationary variables and the respective

scaling factors are the same as in the model with money. The complete set of equilibrium
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conditions in terms of stationary variables is reported in Appendix C. On the one hand,

a stationary competitive equilibrium is a set of stationary processes Ct, Wt, fWt, Yt, Gt,

�t, X1
t , X

2
t , Tt, Kt+1, It, F 1t , F

2
t , Qt, R

k
t , �t, p

f
t , p

b
t , ept, ut, mct, ht, hdt , st, est, and �t

satisfying (6.10), (6.15)-(6.17), (6.19)-(6.25), (6.35)-(6.40), (6.44), (6.45), (6.47), (6.48),

(6.52), (6.53), (6.54), (6.55), (6.56), and (6.57) written in terms of stationary variables,

given I) exogenous stochastic processes for ��;t, �z;t, and gt, II) the policy process Rt,

and III) initial conditions c�1, w�1, s�1, es�1, ��1, i�1, and �0. The equilibrium conditions
in terms of stationary variables contain 26 equations and 26 variables, which are listed

above. In addition the equilibrium conditions feature 26 parameters: �1, �2, �3, �4, �,

�, b, �, �, �, ~�, �, ~�, !, ~�,  , �I , �z, ��,��z , ��� , ��z , ���, �G, �g, G. In order to

obtain values for the steady-state levels of all variables and for the structural parameters,

we thus need to impose 26 restrictions. These 26 restrictions come from using the same

calibration in Schmitt-Grohé and Uribe (2007), which is reported in Table (6.1). In other

words, as we do above for the model with money, we �x all structural parameters and we

then �nd the steady-state levels of all variables as a function of the structural parameters.

In particular, this entails that we only need to modify the speci�cation of the steady state

of the competitive equilibrium presented in the technical appendix to Schmitt-Grohé and

Uribe (2007) (i.e. the one that obtains when all structural parameters are known).

On the other hand, the Ramsey equilibrium is formally de�ned as being a set of

stationary processes Ct, Wt, fWt, Yt, Gt, �t, X1
t , X

2
t , Tt, Kt+1, It, F 1t , F

2
t , Qt, R

k
t , �t, p

f
t ,

pbt , ept, ut, mct, ht, hdt , st, est, �t, and Rt for t � 0 that maximises

E0

1X
t=0

�t
(z�0
Qt
k=1 �z�;s)

(1��4)(1��3)
��
Ct � bCt�1

�z�;t

�1��4
(1� h)�4

�1��3
� 1

1� �3

subject to I) (6.10), (6.15)-(6.17), (6.19)-(6.25), (6.35)-(6.40), (6.44), (6.45), (6.47), (6.48),

(6.52), (6.53), (6.54), (6.55), (6.56), and (6.57) written in terms of stationary variables,

and II) Rt � 1 for t > �1 and given: I) the exogenous stochastic processes for ��;t,
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�z;t, and gt, II) values of the variables listed above dated t < 0 and III) values of the

Lagrange multipliers associated with the constraints listed above dated t < 0.

Figure (6.4) shows the relationship between the optimal long-run rate of in�ation and

the degree of price stickiness. The optimal long-run in�ation is observed to be positive.

Speci�cally, the optimal long-run in�ation is observed to spike for extremely low values

of �, which are empirically unrealistic. Within the range of empirically realistic values of

the degree of price stickiness, the optimal long-run in�ation is instead small.

Figure 6.4. Cashless model: degree of price stickiness and the Ramsey
steady-state rate of in�ation.

As for the relationship between the optimal long-run rate of in�ation and the degree of

rule-of-thumb behaviour, Figure (6.5) shows how a larger fraction of �rms resetting their

prices in a backward-looking manner is associated with an increasingly positive optimal

in�ation rate.

We thus �nd that the Ramsey-optimal steady-state in�ation in the cashless model

with rule-of-thumb behaviour by price setters is positive. However, as found in the linear-

quadratic framework, the in�ation rate is still observed to be small. Moreover, the in�ation
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Figure 6.5. Cashless model: degree of rule-of-thumb behaviour and the
Ramsey steady-state rate of in�ation.

rate is again observed to be monotonically decreasing in the degree of price stickiness and

monotonically increasing in the degree of rule-of-thumb behaviour.

6.4. The Social Planner Allocation

The social planner decides how to allocate the consumption and the production of

goods within the economy regardless of the details of the price and wage mechanisms and

the nature of the factors�markets and goods�markets.

The purpose of this analysis is twofold. First, in chapter 4 we have shown that in the

linear-quadratic framework the steady-state in�ation rate is directly proportional to the

steady-state e¢ ciency gap, which is the constant gap between the steady-state level of

output and the e¢ cient steady-state level of output. Solving the social planner�s problem

allows us to derive the e¢ cient steady-state level of output. We subsequently compute

its log-di¤erence with the Ramsey steady-state level of output so to obtain a measure

of the gap between the two steady-state levels of output. We �nd that this steady-state

gap is only slightly larger than in the case of small steady-state distortions assumed in

the linear quadratic framework. Speci�cally, while the steady-state e¢ ciency gap in the
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linear-quadratic framework is equal to 0:2 under benchmark calibration, the steady-state

e¢ ciency gap in this model is found to be in the region of 0:26 both in the model with

money and in its cashless counterpart. Moreover, we perform sensitivity analysis in terms

of the degree of price stickiness and the degree of rule-of-thumb behaviour. The steady-

state e¢ ciency gap is observed to be highly stable with respect to the degree of rule-of-

thumb behaviour and the degree of price stickiness. Indeed, the di¤erences in the steady-

state e¢ ciency gap for varying degrees of rule-of-thumb behaviour and price stickiness are

so small that the scale of the di¤erences may be simply due to numerical approximation

noises related to the numerical solution of the Ramsey steady-state level of output.

Within the economy developed in Altig et al. (2005) and presented above, the social

planner decides how to allocate the consumption and the production of goods within the

economy regardless of the details of the price and wage mechanisms and the nature of the

factors�and goods�markets. Here, we report the equations that are relevant for the social

planner problem. The social planner is constrained by the production technology

(6.58) yt = F (utkt; ztht)�  z�t

the aggregate resource constraint

(6.59) yt = ct + gt +�
�1
t [it + a (ut) kt]

and the law of motion of physical capital

(6.60) kt+1 = (1� �) kt + it

�
1� S

�
it
it�1

��

Subject to these constraints, the social planner chooses processes for ct, ht, kt+1, it, and

ut so to maximise the discounted sum of utility. The Lagrangian is then given by

LSP = E0

1X
t=0

�t

8><>: U (ct � bct�1; ht) + �tqt

h
(1� �) kt + it

h
1� S

�
it
it�1

�i
� kt+1

i
+�t

�
F (utkt; ztht)�  z�t � ct � gt ���1t [it + a (ut) kt]

�
9>=>;
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The �rst-order conditions are given by

(6.61)
@Lh
@ct

= 0) Uc (ct � bct�1; ht)� b�EtUc (ct+1 � bct; ht+1) = �t

(6.62)
@Lh
@ht

= 0) �Uh (ct � bct�1; ht) = �tztF2 (utkt; ztht)

(6.63)
@Lh
@kt+1

= 0) �tqt = �Et�t+1[ut+1F1 (ut+1kt+1; zt+1ht+1)���1t+1a(ut+1) + qt+1 (1� �)]

(6.64)
@Lh
@it

= 0) �t
�t
= �tqt

�
1� S

�
it
it�1

�
�
�

it
it�1

�
S 0
�

it
it�1

��
+�Et�t+1qt+1

�
it+1
it

�2
S 0
�
it+1
it

�

(6.65)
@Lh
@ut

= 0) ktF1 (utkt; ztht) = �
�1
t a0 (ut) kt

The complete set of equilibrium conditions is given by 8 equations, namely (6.58)-

(6.65). The solution to the social planner�s problem is obtained in �ve steps. First,

we need to specify functional forms for utility, technology, the investment adjustment

cost function, and the cost of higher capacity utilisation. We use the same functional

forms considered for the Ramsey steady state, which come from Schmitt-Grohé and Uribe

(2007). Second, some variables are not stationary along the balanced-growth path as the

economy displays two types of permanent shocks. This requires rescaling those variables so

that the model�s equilibrium conditions are functions of stationary variables only, which

we denote with the corresponding capital letters. The nonstationary variables and the

respective scaling factors are the same as in the Ramsey economy. Appendix D presents

the functional forms and reports the complete set of equilibrium conditions in terms of

stationary variables. The equilibrium conditions in terms of stationary variables contain 8
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equations (not counting the law of motion of the exogenous variables) and 8 variables (not

counting the exogenous variables): Ct, Yt, Kt+1, It, Qt, �t, ut, and ht. The equilibrium

conditions feature 11 parameters (�3, �4, 
1, 
2, �, �, b, �, �,  , �I). The three exogenous

processes feature 9 parameters (�z, ��,��z , ��� , ��z , ��� , �G, �g, G). This means that in

order to obtain values for the e¢ cient steady-state levels of all variables and deep structural

parameters we need to impose 20 calibration restrictions, namely we have 8 equations and

28 between variables and parameters. The 20 restrictions come from imposing that all the

deep structural parameters are identical to those that obtain in the competitive steady

state of the theoretical economy, which are given Table (6.1). Given the 20 restrictions,

we can proceed to analytically derive the steady state of the social planner equilibrium.

Under the restriction �3 = 1, the nonstochastic steady state of the e¢ cient equilibrium

is described by

(6.66) Y =
�
uK��1I

��
(h)1�� �  

(6.67) Y = C +
�
I + a (u)Kt�

�1
I

�
+G

(6.68) I = K

�
1� (1� �)

�I

�

(6.69) �4 (1� h)�1 = �(1� �)(uK��1I )
�(h)��

(6.70) (1� �4) [C(1� b=�z�)]
�1 (1� b���) = �
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(6.71) Q = �
��
��

264 ���(K��1I )
��1(h)1��

�a(u) +Q (1� �)

375

(6.72) Q = 1

(6.73) �(uK��1I )
��1(h)1�� = 
1

Equation (6.72) determines Q. Substituting (6.72) and (6.73) in (6.71), delivers

(6.74) 1 = �
��
��
[�
1 � a(u) + (1� �)]

In the competitive steady state, the numerical value for the parameter 
1 was chosen such

that 1 = � ��
��
[
1 + (1� �)] : Hence, equation (6.74) entails that u = 1: in both the steady

state of the e¢ cient equilibrium and the competitive steady state capacity utilisation is

full. On the one hand, the steady-state values for Q and u in the steady state of the

e¢ cient equilibrium are the same that obtain in the competitive steady state. On the

other hand, the steady-state values for C, Y , K, I, �, and h di¤er as the social planner

is not constrained by the details of the price and wage mechanisms and the nature of the

factors�and goods�markets. To determine the steady-state values for C, Y , K, I, �, and

h we have 6 equations, namely (6.66)-(6.70) and (6.73), which under u = 1 take the form

(6.75) Y =
�
K��1I

��
(h)1�� �  

(6.76) Y = C + I +G
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(6.77) I = K

�
1� (1� �)

�I

�

(6.78) �4 (1� h)�1 = �(1� �)(K��1I )
�(h)��

(6.79) (1� �4) [C(1� b=�z�)]
�1 (1� b���) = �

(6.80) �(K��1I )
��1(h)1�� = 
1

Rewriting equation (6.80), the capital to labour ratio is given by

(6.81)
K

h
=
�
1
�

� 1
��1

�I

Accordingly, equations (6.75) and (6.78) can be rewritten as

(6.82) Y =

�

1
��I

�
K �  

(6.83) �4 (1� h)�1 = �(1� �)
�
1
�

� �
��1

Substituting equation (6.79) in equation (6.83) and solving for C yields

(6.84) C =
(1� �4)(1� b���)(1� �)

�
1
�

� �
��1

�4(1� b=�z�)
(1� h)

Using (6.81), the steady-state consumption can be rewritten as

(6.85) C =
(1� �4)(1� b���)(1� �)

�
1
�

� �
��1

�4(1� b=�z�)
(1�K

�
1
�

�� 1
��1

��1I )
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Substituting equations (6.77), (6.82), and (6.85) into equation (6.76), we note that we can

now �nd K as a function solely of the deep structural parameters

�

1
��I

�
K �  =

(1� �4)(1� b���)(1� �)
�
1
�

� �
��1

�4(1� b=�z�)
(1�K

�
1
�

�� 1
��1

��1I )(6.86)

+K

�
1� (1� �)

�I

�
+G

Solving for K delivers

(6.87) K =
(1� �4)(1� b���)(1� �)

�
1
�

� �
��1 + (G+  )�4(1� b=�z�)

(1� �4)(1� b���)(1� �)��1I + �4(1� b=�z�)(
1�
�1��1I � 1 + (1� �)��1I )

Equation (6.87) gives the steady-state value of the level of capital in the social planner

equilibrium as a function solely of the deep structural parameters. Given K, the steady-

state values of C, Y , I, and h are respectively given by equations (6.85), (6.82), (6.77),

and (6.81). Given C, the steady-state value of � is given by equation (6.79).

We proceed to compare the log-di¤erence between the level of output in the social

planner steady state and the level of output in the Ramsey steady state. We consider

both the cashless economy and the economy with money. Figure (6.6) and Figure (6.7)

plot the steady-state output gap in the model with money for alternative values of the

degree of price stickiness and the degree of rule-of-thumb behaviour. Figure (6.8) and

Figure (6.9) plot the steady-state output gap in the cashless model for alternative values

of the degree of price stickiness and the degree of rule-of-thumb behaviour.

There are two main points to take from these �gures. First, the steady-state output

gap is larger than its equivalent in the linear-quadratic framework, which is obtained under

the assumption of small steady-state distortions, although the di¤erence between the two

is observed to be small. Speci�cally, the steady-state output gap is observed to be in the

region of 0:26 whereas the steady-state output gap in the linear-quadratic framework, as

given in equations (2.51) and (2.52), is found to be equal to 0:2. Second, the steady-

state e¢ ciency gap is observed to be highly stable with respect to both the degree of
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Figure 6.6. Model with money: the steady-state output gap for alternative
values of the degree of price stickiness.

Figure 6.7. Model with money: the steady-state output gap for alternative
values of the degree of rule-of-thumb behaviour.

rule-of-thumb behaviour and the degree of price stickiness. Indeed, the di¤erences in

the steady-state e¢ ciency gap for varying degrees of rule-of-thumb behaviour and price

stickiness are so small that the scale of the di¤erences may be simply due to numerical
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Figure 6.8. Cashless model: the steady-state output gap for alternative val-
ues of the degree of price stickiness.

Figure 6.9. Cashless model: the steady state output gap for alternative
values of the degree of rule-of-thumb behaviour.

approximation noises related to the numerical solution of the Ramsey steady-state level

of output.

On the one hand, as shown in Chapter 4, the in�ation rates in the linear-quadratic

framework are directly proportional to the steady-state output gap. On the other hand,
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the steady-state output gap in the medium-scale economy is found to be only slightly larger

that its counterpart in the linear-quadratic framework. This could explain the reason as

to why the in�ation rate in the cashless medium-scale model is again positive but only

slightly di¤ers from the one that obtains in the linear-quadratic framework. Indeed, the

steady-state level of in�ation in the Ramsey equilibrium is greater than the the optimal

steady state-state in�ation that obtains in the linear-quadratic framework, as given by

(4.24), albeit the di¤erence between the two in�ation rates is small.



CHAPTER 7

Ramsey Dynamics and Optimal Operational Interest-rate Rules

In this chapter, we study Ramsey dynamics and address the question of implementation

of optimal monetary policy by characterising optimal, simple, and implementable interest-

rate rules.

First, we study the business cycle dynamics that arise in the stochastic steady state of

the Ramsey equilibrium. In doing so, we are interested in addressing two issues. First, we

want to assess whether the zero lower bound on the nominal interest rate constitutes an

impediment to optimal monetary policy. Indeed, one argument against setting a negative

in�ation rate, as recommended by the model in the presence of money demand by house-

holds and �rms, or a near-zero in�ation rate, as recommended by the cashless model, is

that at negative or near-zero rates of in�ation the risk of incurring in the zero lower bound

on nominal interest rate would restrict the central bank�s ability to stabilise the economy.

We �nd that this argument is of no relevance in the context of both the model with money

and its cashless counterpart. The reason for this is that under the Ramsey-optimal pol-

icy, the zero lower bound poses an impediment to monetary policy only in the case of an

adverse shock that forces the interest rate to be more that 8 standard deviations below its

mean. The probability of this happening is so small that, as in Schmitt-Grohé and Uribe

(2007), the zero lower bound on the nominal interest rate does not impose an econom-

ically important constraint on the conduct of optimal monetary policy. We proceed to

characterise the Ramsey-optimal responses to the three shocks that drive aggregate �uc-

tuations: the permanent neutral technological shock, the permanent investment-speci�c

technological shock, and temporary variations in government expenditure. Speci�cally, we

present the responses of key macroeconomic variables and we focus on how the Ramsey

planner uses monetary policy to respond to each of the three shocks. We show how the

160
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Ramsey-optimal stabilisation policy is robust to the presence/absence of money in the

model.

Second, we study the implementation of optimal monetary policy by characterising op-

timal, simple, and implementable interest-rate rules. Insofar as equilibrium distortions are

neither nil nor small, it no longer su¢ ces to approximate the equilibrium of the model to

�rst order to obtain a second-order accurate measure of welfare. We use the methodology

and the algorithm developed in Schmitt-Grohé and Uribe (2004b) for second-order approx-

imations to policy functions of dynamic and stochastic models. Initially, we show how the

implementation of optimal monetary policy is virtually una¤ected by the presence-absence

of money. We characterise the operational interest-rate rule, which is de�ned exactly as

in Schmitt-Grohé and Uribe (2007), in both the medium-scale model with money and its

cashless counterpart. In both cases, the optimal operational interest-rate rule is con�rmed

to be active in price and wage in�ation, mute in output growth and moderately inertial.

However, in the cashless economy the coe¢ cients on price and wage in�ation are greater

than in the model that features transactional frictions.

Finally, we also consider a modi�cation of the operational interest-rate rule, which

prescribes a concern not for output growth per se but for stabilisation of output around a

welfare-relevant measure of output, namely the gap between the Ramsey level of output

and the e¢ cient level of output. We �nd that the optimal operational interest-rate rule

remains active in price and wage in�ation and moderately inertial, but also implies a

positive coe¢ cient on the output gap. This is true in both the model with money and its

cashless counterpart.

We �rst characterise Ramsey dynamics in both the model with money and its cashless

counterpart. We then proceed to study optimal operational interest-rate rules.

7.1. Ramsey Dynamics

In this section, we describe the business cycle dynamics that arise in the stochastic

steady state of the Ramsey equilibrium, namely the Ramsey dynamics. The Ramsey
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dynamics are approximated by solving a �rst-order approximation to the Ramsey equilib-

rium conditions. The literature provides evidence that �rst-order approximations to the

Ramsey equilibrium conditions deliver dynamics that are close to those implied by the

exact solution. For instance, Schmitt-Grohé and Uribe (2004c) compute the exact solu-

tion to the Ramsey dynamics in a model characterised by �exible prices and monopolistic

competition. Schmitt-Grohé and Uribe (2004b) instead compute Ramsey dynamics in the

same model using a �rst-order approximation to the Ramsey equilibrium conditions. They

conclude that the dynamics implied by the exact solution and the ones obtained under the

�rst-order approximation are not signi�cantly di¤erent. Moreover, Benigno and Woodford

(2006) show that, within the context of optimal taxation in the standard Real Business

Cycle model, the �rst-order approximation to the Ramsey equilibrium conditions implies

second moments that are very similar to the second moments computed from the exact

solution.

In addressing the characterisation of Ramsey dynamics we are concerned with two is-

sues. First, we want to study how the Ramsey planner resolves the stabilisation of volatility

in the endogenous variables. In doing so, we want to analyse whether the zero lower bound

on nominal interest rate imposes an economically important constraint on the conduct of

monetary policy. With this respect, an argument against setting a negative in�ation rate,

as recommended by the model in the presence of money demand by households and �rms,

or a near-zero in�ation rate, as recommended by the cashless model, is that at negative or

near-zero rates of in�ation the risk of incurring in the zero lower bound on nominal inter-

est rate would restrict the central bank�s ability to stabilise the economy. This argument

is in fact advocated by Summers (1991), among others, as the main reason for setting a

positive in�ation rate. Second, we want to characterise the Ramsey-optimal responses to

the three shocks that drive aggregate �uctuations: the permanent neutral technological

shock, the permanent investment-speci�c technological shock, and temporary variations in

government expenditure. Speci�cally, we focus on how the Ramsey planner uses monetary



163

policy to respond to each of the three shocks. In addressing these questions we consider

both the model with money and its cashless counterpart1.

In the model with money, the Ramsey planner faces a three-way trade-o¤ in deter-

mining the optimal degree of volatility in the endogenous variables. First, the distortion

due to sticky prices calls for minimising in�ation volatility. Second, the distortion due to

transactional frictions calls for minimising volatility in the nominal interest rate. Third,

the distortion due to sticky wages implies that minimisation of wage in�ation net of lagged

price in�ation, given full indexation to past price in�ation, is also Ramsey optimal. Table

(7.1) reports the standard deviations, measured in percentage point per year, of some

macroeconomic variables under the Ramsey-optimal policy in the model with money. Ta-

ble (7.1) shows that the three-way trade-o¤ is resolved in favour of price stability. Indeed,

in�ation volatility is observed to be much smoother than any other endogenous variable�s

volatility over the business cycle. Moreover, in order to assess how sensitive in�ation

stability is with respect to the size of the sticky wage distortions, we also consider the

case of a higher degree of wage stickiness (i.e. e� = 0:9), which implies that wages are

reoptimised only every ten quarters. In this case, as shown in column 2 of Table (7.1), the

optimal volatility of price in�ation increases and the optimal volatility of wage in�ation

decreases. However, price in�ation remains much smoother over the business cycle than

wage in�ation. In this sense, the Ramsey pursues a policy of in�ation targeting. As for

the importance of the zero lower bound on nominal interest rate, Table (7.1) shows that

the standard deviation of the nominal interest rate is 0:4 percentage points at an annual

rate. On the other hand, the mean of the nominal interest rate in the Ramsey stochastic

steady state is 3:4 percent. This implies that for the nominal interest rate to reach the

zero lower bound it must fall by more than 8 standard deviations below its target level.

The likelihood of this taking place is so small that within the theoretical economy, the

1All structural parameters of the model take the values shown in Table (6.1) and we consider a degree of
price stickiness of 0:66 and a degree of rule-of-thumb behaviour of 0:3.
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zero lower bound on the nominal interest rate does not impose an economically strong

constraint on the conduct of optimal monetary policy.

Variable � = 0:66 e� = 0:69 � = 0:66 e� = 0:9
Nominal interest rate 0:4 0:4

Price In�ation 0:2 0:4

Wage In�ation 1:1 0:9

Output Growth 0:7 0:7

Consumption Growth 0:4 0:4

Investment Growth 1:2 1:4

Table 7.1. Model with Money: Standard Deviations under the Ramsey Op-

timal Stabilisation Policy

The same message carries on to the case of a cashless economy. The Ramsey planner

now faces a two-way trade-o¤as the absence of the distortion due to transactional frictions

implies that minimising volatility of the nominal interest rate is not Ramsey optimal. Table

(7.2) reports the standard deviations, measured in percentage point per year, of in�ation

and other macroeconomic variables under the Ramsey-optimal stabilisation policy. On

the one hand, the table shows that the standard deviation of the nominal interest rate

is 0:3 percentage points at an annual rate. On the other hand, the mean of the nominal

interest rate in the Ramsey stochastic steady state is 2:8 percent. This implies that for the

nominal interest rate to reach the zero lower bound it must fall by more than 8 standard

deviations below its target level. Hence, the zero lower bound on the nominal interest rate

does not impose a strong constraint in the conduct of monetary policy. Moreover, the

policy trade-o¤ faced by the Ramsey planner is again resolved in favour of price stability.

In the case of a higher degree of wage stickiness, as shown in column 2 of Table (7.2), the

optimal volatility of price in�ation increases and the optimal volatility of wage in�ation

decreases. However, price in�ation remains much smoother over the business cycle than

wage in�ation.
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Variable � = 0:66 e� = 0:69 � = 0:66 e� = 0:9
Nominal interest rate 0:35 0:35

Price In�ation 0:1 0:3

Wage In�ation 1:2 1:0

Output Growth 0:6 0:6

Consumption Growth 0:4 0:4

Investment Growth 1:1 1:3

Table 7.2. Cashless Model: Standard Deviations under the Ramsey Optimal

Stabilisation Policy

We now proceed to characterise the Ramsey-optimal impulse responses to the three

shocks that drive aggregate �uctuations: the permanent neutral technological shock, the

permanent investment-speci�c technological shock, and temporary variations in govern-

ment expenditure. Speci�cally, we present the responses of key macroeconomic variables

and we focus on how the Ramsey planner uses monetary policy to respond to each of

the three shocks. We consider both the model with money and its cashless counterpart.

In characterising impulse response functions, we follow Schmitt-Grohè and Uribe (2007).

The nominal interest rate and the in�ation rate are expressed in levels in percent per year.

Output, wages, investment, and consumption are expressed in cumulative growth rates

in percent. Hours and capacity utilisation are expressed in percentage deviations from

their steady-state values. The two models indeed imply very similar stabilisation policies.

Moreover, the dynamic responses in both economies closely resemble the ones presented

in Schmitt-Grohé and Uribe (2007), who consider backward-looking price indexation.

Figure (7.1) and Figure (7.2) show the response to a one percentage increase in the

growth rate of the neutral technology shock in the model with money and its cashless

counterpart respectively. The Ramsey planner raises nominal interest rate and allows

in�ation to fall. By doing so, the Ramsey planner is trying to replicate the allocation

that would prevail in an economy characterised by �exible prices and �exible wages. In a
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�exible-price and �exible-wage economy, the real interest rate should rise in response to

a positive shock to the growth rate of technology. When prices are sticky, the Ramsey

planner �nds optimal to induce a rise in the real interest rate without having to rely

on costly movements in the rate of in�ation. Since the real interest rate is simply the

di¤erence between the nominal interest rate and the in�ation rate, the Ramsey-optimal

policy is to raise nominal interest rates by more or less the same amount that real interest

rates would rise in the �exible-price and �exible-wage economy. This is true in both

the model with money and its cashless counterpart, although the nominal interest rate

is tightened to avoid de�ation in the model with money whereas is tightened to avoid

in�ation in the cashless model. A permanent increase in technology raises the demand

for capital and labour. Speci�cally, hours decline on impact in response to a permanent

increase in neutral technology. This is line with the �nding in Galì (1999) whereas it runs

contrary to what found in Altig et al. (2005). The intuition for the initial decline in hours

is linked to the Ramsey planner�s intent of replicating the allocation that would prevail

in the �exible-price and �exible-wage economy. Given that the Ramsey planner �nds

optimal to induce a strong increase in the real interest rate on impact, the initial increase

in consumption is small. It follows that, at least initially, the positive wealth e¤ect brought

about by the increase in technology results in an increase in consumption of leisure. After

the initial period, higher real wages make households substitute current work for future

leisure. Capital is used more intensively which generates additional changes in hours

given that the two factors are complementary in the production of goods. Overall, both

models are capable of explaining a strong rise in equilibrium hours, output, consumption,

investment and real wage.

Figure (7.3) and Figure (7.4) show the response to a one percent innovation in gov-

ernment expenditure in the model with money and its cashless counterpart respectively.

Ramsey-optimal policy calls for a contraction in monetary policy, which is in line with

conventional wisdom, and implies a higher nominal interest rate that reverts the initial

increase in the rate of in�ation. An exogenous and temporary increase in government
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Figure 7.1. Model with money: Ramsey response to a neutral productivity shock.

Figure 7.2. Cashless model: Ramsey response to a neutral productivity shock.
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Figure 7.3. Model with money: Ramsey response to a government expendi-
ture shock.

expenditure reduces the present value of households�after-tax income which results in an

increase in the labor supply which leads to temporarily higher equilibrium employment

and output and a decrease in real wage. However, there is still a crowding out e¤ect of

private consumption and investment. Given the complementarity between capital and

labour in production, the increase in hours determines an increase in the degree of capital

utilisation.

Figure (7.5) and Figure (7.6) show the response to a one percentage point increase in

the growth rate of the investment-speci�c technological shock in the model with money and

its cashless counterpart respectively. The Ramsey planner �nds optimal to ease monetary

policy. The intuition is that the Ramsey planner replicates what would prevail in the

�exible-price and �exible-wage economy. In the absence of stickiness in prices and wages,

the real interest rate would fall. The Ramsey planner thus lowers nominal rates so to

achieve a fall in real rates without putting pressure on the rate of in�ation. This is true

in both the model with money and its cashless counterpart. A permanent increase in
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Figure 7.4. Cashless model: Ramsey response to a government expenditure shock.

investment-speci�c technology raises the demand for capital and labour. Hours rise on

impact in response to a permanent increase in investment-speci�c technology. On impact,

the increase in investment-speci�c technology results in a decrease in consumption and

investment. Capital is used more intensively which generates additional changes in hours

given that the two factors are complementary in the production of goods. Overall, both

models are capable of explaining a strong rise in equilibrium hours, output, consumption,

investment and real wage.

7.2. Optimal Operational Interest-rate Rules

In this section, we analyse the issue of the implementation of optimal monetary policy

by characterising optimal, simple, and implementable interest-rate rules. On the one hand,

the solution to the Ramsey problem de�nes the equilibrium behaviour of the policy vari-

able, namely the nominal interest rate. On the other hand, the equilibrium process of the
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Figure 7.5. Model with money: Ramsey response to an investment-speci�c
productivity shock.

Figure 7.6. Cashless model: Ramsey response to an investment-speci�c pro-
ductivity shock.
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nominal interest rate depends on all the state variables of the Ramsey equilibrium, which

include all the exogenous driving forces and all the endogenous predetermined variables.

Most of these variables, such as the past values of the Lagrange multipliers associated with

the constraints of the Ramsey problem, are not readily available nor easily controllable

in reality. Moreover, even if the policy maker could observe all these variables, using the

equilibrium process of the nominal interest rate as the policy regime could bring about

multiplicity of equilibria.

The �rst example of operative rules for the nominal interest rate is the so-called Taylor

Rule, introduced in the seminal paper of Taylor (1993). Much of the recent literature has

concentrated on simple instrument rules that can be considered extensions of the original

speci�cation by Taylor2. In our analysis we �rst follow Schmitt-Grohé and Uribe (2007)

as we characterise simple interest-rate feedback rules of the form

(7.1) ln
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The nominal interest rate thus depends linearly on its own lag, price in�ation, wage in�a-

tion, and the growth rate of output. The target values R�, ��, �W� and ��y are postulated

to be the Ramsey steady-state values of the respective endogenous variables. Beyond

simplicity, as in Schmitt-Grohé and Uribe (2007), we also require for the the rule to be

operational. That is, the rule must induce a unique rational expectation equilibrium and

the associate path for the nominal interest rate rule must not violate the zero bound3.

Moreover, we study optimal operational interest-rate rule as we look for rules that max-

imise welfare. In other words, the four policy parameters (��, �W , �y, �R) are chosen so

as to maximise welfare. Welfare is given by the conditional expected value of the repre-

sentative household lifetime utility. Speci�cally, welfare is conditional on the initial state

2For instance, among others, McCallum and Nelson (1999) and Taylor (1999). Clarida et al. (1998) show
how Taylor rules provide a good approximation for the actual conduct of monetary policy over the past
forty years.

3Speci�cally we follow Schmitt-Grohé and Uribe (2005) requiring the target value for the nominal interest
rate be greater than two times the standard deviation of the nominal interest rate (formally ln(R�) �
2�R̂t

).
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of the economy being the Ramsey steady state. We solve the model with the perturbation

method, and the algorithm that implements it, developed in Schmitt-Grohé and Uribe

(2004b). The algorithm approximates the conditional welfare measure to second-order

accuracy by using a second-order approximation to the policy function.

We consider both the model with money and the cashless model. With this respect,

it is important to stress that the target values in the two rules are di¤erent, as discussed

in the previous sections4. The optimal operational interest-rate rule in the model with

money is of the form

(7.2) ln
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The policy parameters are observed to be nearly identical to the ones reported in Schmitt-

Grohé and Uribe (2007), namely (�� = 5, �W = 1:6, �y = �0:1, �R = 0:4). The rule

displays a greater-than-unity response to both price and wage in�ation (i.e. it is an active

rule) and basically no response to the growth rate of output. Furthermore, it prescribes

that the optimal policy is inertial, since the autoregressive parameter on the lagged value

of the interest rate is signi�cantly greater than zero but lower then one. As stressed in

Schmitt-Grohé and Uribe (2007) "the optimal interest-rate rule can indeed be interpreted

as a pure in�ation targeting rule". The same result obtains in the cashless economy. In

this case the optimal operational interest-rate rule is given by

(7.3) ln
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There are virtually no di¤erences between the coe¢ cients on the output gap and on lagged

interest rate of this rule and the one in the model with money. However, the coe¢ cients

on price and wage in�ation are greater than their counterparts shown in (7.2). In other

4In characterising the optimal operational interest-rate rules we set the degree of price stickiness, �, to
0:66 and the degree of rule-of-thumb behaviour, !, to 0:3. The interest-rate rules are robus to alternative
specifaction for � and !. Speci�cally, we have considered combining limiting values for ! (i.e. ! = 0:01
and ! = 0:7) with limiting values for � (i.e. � = 0:3 and � = 0:8). The coe¢ cients in the rule change
slightly, but the rule is always found to be active in price and wage in�ation, mute in output growth and
moderately inertial.
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words, the message given by these rules is the same (i.e. a pure in�ation targeting rule),

with a stronger evidence in the case of the cashless economy5.

Finally, we consider optimal operational interest-rate rules that replace output growth

with a measure of output stabilisation. Speci�cally, we consider the possibility of an

interest-rate rule that replaces the growth rate of output with a measure of output gap,

namely the log-di¤erence between the level of output in the Ramsey economy and the

social planner level of output. In other words, the interest-rate rule prescribes that the

nominal interest rate depends linearly on the log-di¤erence between the Ramsey level of

output and the social planner level of output, denoted with ySPt .
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The optimal operational interest-rate rule in the model with money is of the form
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whereas the optimal operational interest-rate rule in the cashless model is given by
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There are two main observations to take from the interest-rate rules (7.5) and (7.6).

First, the optimal policy reacts positively to the gap between the level of output in

the Ramsey economy and the social planner level of output. Regardless of the pres-

ence/absence of money in the model, the optimal interest-rate rule remains active in both

price and wage in�ation and inertial, but also prescribes a concern for stabilising the

level of output around the e¢ cient level of output. Second, the rules are virtually iden-

tical across the models. In other words, if demand of money is seen to matter when the

interest-rate rule implies a concern for the rate of growth of output, the same is not true

once the measure of output stabilisation that enters the operational interest-rate rule is

5Note however that the relative importance of price and wage in�ation in the two rules, i.e. the ratio
��=�w; is almost the same.
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the gap between the level of output in the Ramsey economy and the social planner level

of output.



CHAPTER 8

Conclusions

The main contribution of this thesis is the investigation of the e¤ect of in�ation per-

sistence due to rule-of-thumb behaviour by price setters on optimal monetary policy. The

analysis takes place in New Keynesian models where the supply-side of the economy is

characterised by monopolistically competitive �rms that face rigidity in the setting of

prices. A fraction of price setters does not behave rationally when setting a new price,

but follows a rule-of-thumb. This introduces persistence in the evolution of in�ation. The

e¤ects of in�ation persistence due to rule-of-thumb behaviour by price setters are stud-

ied when the monetary authority acts under commitment. The thesis addresses what

constitutes optimal monetary policy in:

1) The basic purely forward-looking New Keynesian model which we extend by al-

lowing a fraction of price setters to behave in a backward-looking rule-of-thumb

manner. This results in a Phillips curve with both a forward-looking term and

a backward-looking term. Backward-looking rule-of-thumb behaviour is speci�ed

in two ways. First, following Galì and Gertler (1999) we allow the rule-of-thumb

price setters to index their prices to lagged in�ation. Second, following Steins-

son (2003) we allow the rule-of-thumb price setters to index their prices to both

lagged output gap and lagged in�ation. In all models, steady-state distortions

are assumed to be small so that it su¢ ces to approximate the equilibrium of the

model to �rst order to obtain a second-order accurate measure of welfare. We

derive utility-based objective functions for the monetary authority and analyse a

range of optimal commitment policies that have been proposed in the literature:

the zero-optimal policy and two types of timeless perspective commitment policy

175
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2) The medium-scale New Keynesian model developed by Altig et al. (2005) which

we extend by allowing a fraction of price setters to behave in a backward-looking

rule-of-thumb manner à la Galì and Gertler (1999). We depart from the assump-

tion of small steady-state distortions and consider the case of a largely distorted

steady state. We characterise optimal monetary policy with a Ramsey-type ap-

proach. We describe the Ramsey steady state and the Ramsey dynamics using

the algorithms developed in Schmitt-Grohé and Uribe (2007). We study the im-

plementation of optimal monetary policy by characterising optimal, simple, and

implementable interest-rate rules. Large steady-state distortions imply that to ob-

tain a second-order accurate measure of welfare it does not su¢ ce to approximate

the model�s equilibrium conditions up to �rst order. In characterising interest-

rate rules, we use the methodology and the algorithm developed in Schmitt-Grohé

and Uribe (2004b) for second-order approximations to policy functions of dynamic

and stochastic models.

Regarding (1):

a) Rule-of-thumb behaviour by price setters, speci�ed either à la Galì and Gertler

(1999) or à la Steinsson (2003), breaks the optimality of zero long-run in�ation

found in New Keynesian models. A key implication of the purely forward-looking

New Keynesian model is that zero long-run in�ation is the optimal target of mon-

etary policy. Woodford (2003) writes "It is sometimes supposed that the existence

of a long-run Phillips-curve trade-o¤, together with an ine¢ cient natural rate,

should imply that the Phillips curve should be exploited to some extent, resulting

in positive in�ation forever, even under commitment. But here that is not true

because the smaller coe¢ cient on the expected in�ation-term relative to that on

current in�ation-which results in the long-run trade-o¤- is exactly the size of the

shift term in the aggregate supply that is needed to precisely eliminate any long-

run incentive for nonzero in�ation under an optimal commitment." Woodford
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(2003, p. 415). Moreover, as shown in Woodford (2003), zero long-run in�ation

is also robust to the presence backward-looking price indexation. Rule-of-thumb

behaviour, regardless of its speci�cation, implies that the stimulative e¤ect of

higher in�ation is greater than the output cost of higher in�ation thus generating

a long-run incentive for positive in�ation under an optimal commitment. Optimal

steady-state in�ation collapses to zero in the absence of backward-looking rule-

of-thumb behaviour, in the absence of a long-run Phillips-curve trade-o¤, and in

the absence of steady-state distortions.

b) Positive optimal long-run in�ation also obtains in the purely forward-looking New

Keynesian model under a type of timeless perspective commitment policy that has

recently been proposed in the literature (i.e. Blake (2001), Jensen and McCallum

(2002), and Damjanovic et al. (2008)) and is based on the optimisation of the

unconditional value of the central bank�s objective function. The intuition for

this result hinges on the discount factor. If the central bank shares the same

discount factor of the private sector, there is no long-run incentive for positive

in�ation and optimal steady-state in�ation is zero. Conversely, if the central

bank does not discount the future, positive steady-state in�ation emerges under

commitment even in the purely forward-looking model. Moreover, the alternative

timeless perspective commitment policy is robust to the introduction of backward-

looking rule-of thumb behaviour, when this is characterised as in Galì and Gertler

(1999), with the optimal long-run in�ation rate being invariant to the degree of

rule-of-thumb behaviour.

c) All optimal positive long-run in�ation rates turn out to be small in magnitude.

We perform sensitivity analysis for ample ranges of two key structural parameters,

namely the degree of price stickiness and the degree of rule-of-thumb behaviour.

On the one hand, the optimal long-run in�ation rates we derive are not capable

of explaining the observed in�ation rates. On the other hand, the policy-driven
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steady state is very close to the steady state around which the models are log-

linearised, which is characterised by zero in�ation.

d) The di¤erent commitment policies rank in terms of welfare in line with the intu-

ition. We consider both welfare the on the basis of the deterministic equilibrium

and on the basis of the stochastic equilibrium, which stems from augmenting the

aggregate-supply with a cost-push shock. Our main objective is, as in Jensen

and McCallum (2002), to rank the alternative commitment policies. On the basis

of the deterministic equilibrium, the zero-optimal commitment policy ranks �rst

followed by the alternative timeless perspective policy and the standard timeless

perspective policy. Moreover, steady-state in�ation is found to be welfare en-

hancing with respect to a policy of zero steady-state in�ation. A positive but

small level of in�ation, which generates positive steady-state price dispersion,

is thus preferable to a policy of zero in�ation at all times, which implies zero

steady-state price dispersion. The reason for this is that positive steady-state

in�ation, by bringing about positive output gap, allows eliminating some of the

steady-state loss due to monopolistic competition. On the basis of the stochastic

equilibrium, we consider both an unconditional welfare measure and a measure of

welfare conditional on initial conditions. In both cases the di¤erent commitment

policies rank according to the a priori belief. When considering unconditional

welfare, the alternative timeless perspective policy ranks �rst followed by the

standard timeless perspective policy and the zero-optimal policy. When consid-

ering welfare conditional on initial conditions, the zero-optimal policy ranks �rst

followed by the standard timeless perspective policy and the alternative timeless

perspective policy.

Regarding (2):

a) Rule-of-thumb behaviour by price setters, speci�ed à la Galì and Gertler (1999)

implies optimal positive in�ation in the Ramsey steady state only in the absence of
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transactional frictions. Otherwise, the Friedman prescription for de�ation governs

the optimal steady-state in�ation: the average level of the nominal interest rate

should be su¢ ciently low so that there should negative in�ation on average. As in

the linear-quadratic framework, the positive in�ation rate in the Ramsey steady

state target is found to be small for ample ranges of the degree of price stickiness

and the degree of rule-of-thumb behaviour. Moreover, the in�ation rate is again

observed to be monotonically decreasing in the degree of price stickiness and

monotonically increasing in the degree of rule-of-thumb behaviour. In the linear-

quadratic framework the steady-state in�ation rate is directly proportional to the

steady-state e¢ ciency gap, which is the gap between the steady-state level of

output and the e¢ cient steady-state level of output. We proceed to analyse the

social planner allocation so to compute the social planner steady state. We �nd

that the steady-state e¢ ciency gap in the medium-scale economy is only slightly

larger than in the case of small steady-state distortions assumed in the linear

quadratic framework. This may explain the reason as to why the in�ation rate

in the cashless medium-scale model is again positive but it is only slightly larger

than the one that obtains in the linear-quadratic framework.

b) Ramsey dynamics are not a¤ected by the presence/absence of money in the the-

oretical economy. The zero lower bound on the nominal interest rate does not

constitute an impediment to optimal monetary policy. The reason for this is that

under the Ramsey-optimal policy, the zero lower bound poses an impediment to

monetary policy only in the case of an adverse shock that forces the interest rate

to be more that 8 standard deviations below its mean. The probability of this

happening is so small that, as found by Schmitt-Grohé and Uribe (2007) in the

case of backward-looking price indexation, the zero lower bound on the nomi-

nal interest rate does not impose an economically important constraint on the

conduct of optimal monetary policy. We study Ramsey-optimal responses to the
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three shocks that drive aggregate �uctuations: the permanent neutral technologi-

cal shock, the permanent investment-speci�c technological shock, and temporary

variations in government expenditure. The Ramsey-optimal stabilisation policy

to all three shocks is robust to the presence/absence of money in the model.

c) Optimal operational interest-rate rules are not a¤ected by the presence/absence

of money in the theoretical economy. We characterise the operational interest-

rate rule, which is de�ned exactly as in Schmitt-Grohé and Uribe (2007), in both

the medium-scale model with money and its cashless counterpart. In both cases,

the optimal operational interest-rate rule is con�rmed to be active in price and

wage in�ation, mute in output growth and moderately inertial. However, in the

cashless economy the coe¢ cients on price and wage in�ation are greater than

in the model that features transactional frictions. We consider a modi�cation

of the operational interest-rate rule, which prescribes a concern not for output

growth per se but for stabilisation of output around a welfare-relevant measure of

output, namely the gap between the Ramsey level of output and the e¢ cient level

of output. We �nd that the optimal operational interest-rate rule remains active

in price and wage in�ation and moderately inertial, but also implies a positive

coe¢ cient on the output gap. This is true in both the model with money and its

cashless counterpart.

Taking together the basic message of our results is that

� The widespread practice in the New Keynesian literature of restricting the atten-

tion to the case of an e¢ cient natural level of output is not innocuous. A policy

that is optimal for an economy with an e¢ cient steady state di¤ers from what

is optimal in an economy where the subsidies that achieve Pareto e¢ ciency are

unavailable.

� The two most popular sources of in�ation persistence, namely rule-of-thumb be-

haviour and price indexation, have di¤erent consequences as for the optimal



181

steady-state in�ation rate. In this sense, the results we obtain in the linear-

quadratic framework con�ict with Woodford (2003).

� The results in the linear-quadratic framework carry on to the case of a medium-

scale model only when the theoretical model does not feature transactional fric-

tions. Interestingly, while the presence of money matters for the Ramsey steady

state, it does not seem to a¤ect the Ramsey-optimal stabilisation policy and the

implementation of optimal monetary policy via simple interest-rate rules.

Our results are sensitive to both the assumption of in�ation persistence being caused by

rule-of-thumb behaviour by price setters and the Calvo�s (1983) assumption of a constant

probability of price adjustment, irrespective of the duration of prices. Future research

based on this thesis may address the consequences of relaxing these two assumptions. Dif-

ferent sources of in�ation persistence have in fact been put forward in the literature. The

importance of these ideas is discussed further in Woodford (2007). For instance, Milani

(2005; 2007) shows how a process of adaptive learning by agents explains some persistence.

In a similar vein, Paloviita (2006) and Roberts (1997) account for in�ation persistence by

arguing that it results from in�ation expectations not being formed rationally. Moving

away from Calvo�s (1983) assumption of a constant probability of price adjustment can

also be achieved in di¤erent ways. For instance, Goodfriend and King (1997) suggest that

an upward-sloping probability of changing price would be a more appropriate assumption

than the constant probability of the Calvo model. Sheedy (2007a) builds on this sug-

gestion and derives a Phillips curve that exhibits intrinsic in�ation persistence. In�ation

persistence is intrinsic in the sense that in�ation determination is partially backward-

looking even though all agents remain forward-looking1. Mankiw and Reis (2002) replace

the assumption of sticky prices with that of sticky information and show how in�ation

persistence is also implied by agents�limited ability to update or absorb information. Per-

haps, the most natural extension of this thesis would be an investigation of the e¤ects of

1Sheedy (2007b) goes on to analyse optimal monetary policy in response to shocks, but the steady state
he considers is Pareto e¢ cient.
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these di¤erent reasons for in�ation persistence on the optimal target for monetary policy

in economies where the steady state is not assumed to be Pareto e¢ cient.



CHAPTER 9

Appendices

9.1. Appendix A. Detailed Derivation of the Hybrid Phillips Curve under

Rule-of-thumb Behaviour à la Steinsson (2003)

We begin by log-linearising the aggregate price level (2.25)

(9.1) bPt = (1� �)bp�t + � bPt�1

A log-linearisation to the overall reset price (2.26) is given by

(9.2) bp�t = (1� !)bpft + !bpbt
As shown in Woodford (2003, Chapter 3), a log-linearisation of the notional short-run

aggregate supply curve, which is implicitly de�ned by �1(p
f
t ; p

f
t ; Pt+s; Yt+s;e�t+s) = 0, takes

the form

(9.3) log(pft =Pt) = �xt

where � is the elasticity of the notional short-run aggregate supply curve curve. Under

the assumption of speci�c labour markets, � is given by

(9.4) � =
(��1 +$)

(1 +$�)
> 0

Combining the de�nition of the forward-looking reset price (2.28) with the log-linearisation

of the notional short-run aggregate supply curve (9.3) yields

(9.5) bpft = (1� ��)Et

1X
s=0

(��)s
h bPt+s + �xt+s

i
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Quasi-di¤erencing (9.5), we obtain the log-linearised forward-looking reset price

(9.6) bpft = (1� ��)�xt + (1� ��) bPt + ��Etbpft+1
Log-linearising the backward-looking reset price under rule-of-thumb behaviour à la Steins-

son, (2.29), delivers

(9.7) bpbt = bp�t�1 + �t�1 + �xt�1

Combining the log-linearised aggregate price level (9.1) with the log-linearised overall

reset price (9.2) we obtain the evolution of the aggregate in�ation rate

(9.8) �t =
1� �

�

h
(1� !)(bpft � bPt) + !(bpbt � bPt)i

In order to derive the hybrid Phillips curve we need to �nd: I) the di¤erence between

the log-linearised forward-looking reset price and the log-linearised aggregate price level,

namely bpft � bPt and II) the di¤erence between the log-linearised backward-looking reset
price and the log-linearised aggregate price level, that is bpft � bPt.

Using the log-linearised aggregate price level (9.1) at time t� 1 to substitute for bp�t�1
in the log-linearised backward-looking reset price (9.7), bpbt � bPt takes the form
(9.9) bpbt � bPt = 1

1� �
�t�1 � �t + �xt�1

Rewriting the log-linearised forward-looking reset price (9.6) in terms of bpft � bPt yields
(9.10) bpft � bPt = (1� ��)�xt + ��Et(bpft+1 � bPt)
We thus need to �nd the expected value of the di¤erence between the log-linearised

forward-looking reset price at time t + 1 and the log-linearised aggregate price level at

time t, namely bpft+1� bPt. Combining the log-linearised overall reset price, as given by (9.2)
at t+ 1, with the log-linearised backward-looking reset price, as implied by (9.7) at t+ 1,
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gives

(9.11) bp�t+1 � bPt = (1� !)(bpft+1 � bPt) + !(bp�t � bPt�1 + �xt)

where we subtract bPt from both sides. Rewriting the log-linearised price level (9.1) allows
�nding an expression for the di¤erence between the log-linearised overall reset price and

the log-linearised aggregate price level in the previous period, that is

(9.12) bp�t � bPt�1 = 1

1� �
�t�1

Using this to substitute for both bp�t � bPt�1 and bp�t+1� bPt in (9.11) and taking the expected
value at t, Et(bpft+1 � bPt) is given by
(9.13) Et(bpft+1 � bPt) = 1

(1� �)(1� !)
Et(�t+1 � !�t)�

!�

(1� !)
xt

We can now go back to equation (9.10) for bpft � bPt. Substituting Et(bpft+1 � bPt), as given
by (9.13), in (9.10), bpft � bPt takes the form
(9.14) bpft � bPt = (1� ��)�xt +

��

(1� �)(1� !)
Et(�t+1 � !�t)�

��!�

(1� !)
xt

Having found both bpft � bPt and bpft � bPt as functions of in�ation and output gap only, the
hybrid Phillips curve is the solution to the system of equations (9.8), (9.9), and (9.14).

Combining them and solving for in�ation delivers

(9.15)
�+ ��! + (1� �)!

�
�t =

8><>:
��
�
Et�t+1 +

!
�
�t�1 +

(1��)!�
�

xt�1

+
h
(1��)(1�!)(1���)��(1��)��!�

�

i
xt

9>=>;
Normalising on �t and taking into account the speci�cation of � in (9.4), we obtain

the hybrid Phillips curve under rule-of-thumb behaviour à la Steinsson in the main text

(i.e. (2.53) with the coe¢ cients de�ned as in (2.54) and (2.55)).
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9.2. Appendix B. Detailed Derivation of the Utility-based Objective

Function under Rule-of-thumb Behaviour à la Steinsson (2003)

Under Calvo (1983) staggered price setting and backward-looking rule-of-thumb be-

haviour by price setters, the distribution of prices in any period, fpt(i)g, consists of � times

the distribution of prices in the previous period, fpt�1(i)g, an atom of size (1� �)(1� !)

at the forward-looking reset price, pft , and an atom of size (1� �)! at the rule-of-thumb

backward-looking reset price, pbt

(9.16) fpt(i)g = � fpt�1(i)g+ (1� �)(1� !)pft + (1� �)!pbt

Let �t = vari log pt(i) denote the degree of price dispersion and P t = Ei flog pt(i)g denote

the average price, hence P t � P t�1 = Ei
�
log fpt(i)g � P t�1

�
. Recalling the overall reset

price (9.2), which implies that log p�t = (1�!) log p
f
t +! log p

b
t , and using the distribution

of prices in (9.16), P t � P t�1 can be rewritten as

(9.17) P t � P t�1 =

0z }| {
�Ei

�
flog pt�1(i)g � P t�1

�
+ (1� �)(log p�t � P t�1)

Similarly, �t can be rewritten as

�t = Ei

n�
log fpt(i)g � P t�1

�2o� �Ei log fpt(i)g � P t�1
�2

=
�Ei

n�
log fpt�1(i)g � P t�1

�2o
+ (1� �)(1� !)(log pft � P t�1)

2

+(1� �)!(log pbt � P t�1)
2 � (P t � P t�1)

2

(9.18)

P t is related to the Dixit-Stiglitz price index through the log-linear approximation

(9.19) P t = logPt +O

�


�1=2
�1 ;
e�; %


2�

the second-order residual follows from the fact that the equilibrium in�ation process (as

the equilibrium output process) satis�es a bound of second order O(



e�; %


2) together with

a second-order bound on the initial degree of price dispersion, ��1. Note that, as in
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Woodford (2003), ��1 is assumed to be of second order (that is why it enters the second-

order residual in (9.19) to the power of 1=2). It then follows that this measure of price

dispersion continues to be only of second order in the case of �rst-order deviations of

in�ation from zero.

In order to derive the utility-based objective function we need to �nd: I) the log-

di¤erence between the forward-looking reset price and the lagged aggregate price level,

namely log pft � P t�1 and II) the log-di¤erence between the backward-looking reset price

and the lagged aggregate price level, that is log pbt � P t�1.

Recalling the backward-looking reset price under rule-of-thumb behaviour à la Steins-

son (9.7), which implies that log pbt = log p�t�1 + �t�1 + �xt�1, and using the log-linear

approximation (9.19), log pbt � P t�1 is given by

(9.20) log pbt � P t�1 = log p
�
t�1 � P t�2 + �xt�1 +O

�


�1=2
�1 ;
e�; %


2�

Similarly, using I) the overall reset price in (9.2), II) the backward-looking reset price

under rule-of-thumb behaviour à la Steinsson (9.7), and III) the log-linear approximation

(9.19), we can rewrite log pft � P t�1 as

log pft � P t�1 =
1

1� !
(log p�t � P t�1)�

!

1� !
(log p�t�1 � P t�2)(9.21)

� !�

1� !
xt�1 +O

�


�1=2
�1 ;
e�; %


2�

Using the log-linear approximation (9.19), the distribution of prices in (9.17) can be rewrit-

ten as

(9.22) �t = (1� �)(log p�t � P t�1) +O

�


�1=2
�1 ;
e�; %


2�

Accordingly substituting in the expressions for log pbt �P t�1, (9.20), and for log p
f
t �P t�1,

(9.21), we obtain

(9.23) log pbt � P t�1 =
1

1� �
�t�1 + �xt�1 +O

�


�1=2
�1 ;
e�; %


2�
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(9.24) log pft � P t�1 =
1

(1� !)(1� �)
(�t � !�t�1)�

!�

(1� !)
xt�1 +O

�


�1=2
�1 ;
e�; %


2�

Having found both log pbt�P t�1 and log p
f
t �P t�1 as functions of in�ation and output gap

only, the degree of price dispersion (9.18), by taking into account the log-linear approxi-

mation (9.19), can be rewritten as

�t = ��t�1 +
�

(1� �)
�2t +

!

(1� !)(1� �)
[�t � �t�1 � (1� �)�xt�1]

2(9.25)

+O

�


�1=2
�1 ;
e�; %


2�

Integrating forward, starting from any small initial degree of price dispersion, ��1, the

degree of price dispersion in any period t � 0 is given by

�t =
1X
s=0

�t�s

264 �
(1��)�

2
t+

!
(1�!)(1��) [�t � �t�1 � (1� �)�xt�1]

2

375(9.26)

+�t�1��1 +O

�


�1=2
�1 ;
e�; %


3�

The term �t�1��1 is independent of monetary policy. Taking the discounted value of the

degree of price dispersion (9.26) over all periods t � 0 gives

1X
t=0

�t�t =
1

1� ��

1X
t=0

�t

2666664
�

(1��)�
2
t+

!
(1�!)(1��)

264 �t � �t�1

�(1� �)�xt�1

375
2

3777775(9.27)

+t:i:p+O

�


�1=2
�1 ;
e�; %


3�

Taking the discounted value of the second-order approximation to the period utility func-

tion (3.22) over all periods t � 0 delivers

(9.28)
1X
t=0

�tUt = �
Y euc
2

2664 (�
�1 +$)

1P
t=0

�t(xt � x�)2

+(1 +$�)�
1P
t=0

�t�t

3775+ t:i:p+O

�


�y;e�; %


3�
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Combining (9.27) with (9.28) and normalizing on in�ation, we obtain the utility-based

objective function under rule-of-thumb behaviour à la Steinsson in the main text (i.e.

(3.23) with the single-period loss function as in (3.24) and the coe¢ cients de�ned as in

(3.25)).

9.3. Appendix C. Functional Forms and Equilibrium Conditions in

Stationary Variables

9.3.1. Functional Forms

We use the same functional forms in Schmitt-Grohé and Uribe (2007). The period utility

function is given by

(9.29) U =

h
(ct � bct�1)

1��4 (1� ht)
�4
i1��3

� 1
1� �3

This entails that equilibrium conditions (6.13), (6.15), and (6.25) become respectively

(9.30)8><>: (1� �4) (ct � bct�1)
(1��3)(1��4)�1 (1� ht)

�4(1��3)

�b�Et(1� �4) (ct+1 � bct)
(1��3)(1��4)�1 (1� ht+1)

�4(1��3)

9>=>; = �t [1 + ` (vt) + vt`
0 (vt)]

(9.31) �4 (ct � bct�1)
(1��3)(1��4) (1� ht)

�4(1��3)�1 =
�twte�t

(9.32)

f 2t =
h
�4 (ct � bct�1)

(1��3)(1��4) (1� ht)
�4(1��3)�1

i�wtewt
�e�

hdt+e��Et
 

�t+1

(�z � �t)
e�
!e� � ewt+1ewt

�e�
f 2t+1

The production function takes the Cobb-Douglas the form

(9.33) F (k; h) = k�h1��

This implies that equilibrium conditions (6.42), (6.43), and (6.44) become respectively
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(9.34)
�
utkt)

�(zth
d
t

�1�� �  z�t =
�
ct [1 + ` (vt)] + gt +�

�1
t [it + a (ut) kt]

	
st

(9.35) mctzt(1� �)(utkt)
�(zth

d
t )
�� = wt

�
1 + v

Rt � 1
Rt

�

(9.36) mct�(utkt)
��1(zth

d
t )
1�� = rkt

The investment adjustment cost function is assumed to be the same as in Christiano et

al. (2005), namely

(9.37) S

�
it
it�1

�
=
k

2

�
it
it�1

� �I

�2
with �I being the steady-state growth rate of investment. This implies that equilibrium

conditions (6.10) and (6.17) become respectively

(9.38) kt+1 = (1� �) kt + it

"
1� k

2

�
it
it�1

� �I

�2#

(9.39)
�t
�t
= �tqt

"
1� k

2

�
it
it�1

� �I

�2
�
�

it
it�1

�
k

�
it
it�1

� �I

�#
+�Et�t+1qt+1

�
it+1
it

�2
k

�
it+1
it
� �I

�

The transaction cost function takes the functional form used in Schmitt-Grohé and Uribe

(2004a), that is

(9.40) l (v) = �1 + �2=v � 2
p
�1�2



191

which implies that demand for money is given by

(9.41) v2t =
�2
�1
+
1

�1

Rt � 1
Rt

Finally, the costs of higher capacity utilisation take the form

(9.42) a (u) = 
1 (u� 1) +

2
2
(u� 1)2

9.3.2. Stationary Variables

The theoretical economy displays two permanent shocks. Hence, some variables are not

stationary along the balanced-growth path. The nonstationary variables and the respective

rescaling factors are the same as in Schmitt-Grohé and Uribe (2007). Speci�cally, I)

variables ct, mh
t , mt, wt, ewt, yt, gt, �t, x1t , x2t , and � t are rescaled by z�t ; II) variables kt+1

and it are rescaled by �tz�t ; III) variables f
1
t and f

2
t are rescaled by z

�(1��3)(1��4)
t ; IV )

variables qt and rkt are rescaled by 1=�t; and V ) variable �t is rescaled by z
�(1��3)(1��4)�1
t .

The remaining variables, namely pft , p
b
t , ept, vt, ut, mct, ht, hdt , st, est, and �t, are instead

stationary.

Dividing the nonstationary variables by the associated scaling factor, we obtain the

stationary variables, which we denote with the corresponding capital letters. That is:

(9.43) Ct = ct=z
�
t

(9.44) Mh
t = mh

t =z
�
t

(9.45) Mt = mt=z
�
t

(9.46) Wt = wt=z
�
t
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(9.47) fWt = ewt=z�t
(9.48) Yt = yt=z

�
t

(9.49) Gt = gt=z
�
t

(9.50) �t = �t=z
�
t

(9.51) X1
t = x1t=z

�
t

(9.52) X2
t = x2t=z

�
t

(9.53) Tt = � t=z
�
t

(9.54) Kt+1 = kt+1=�
1

1��
t zt given z�t =zt = �

�
1��
t

(9.55) It = it=�
1

1��
t zt

(9.56) F 1t = f 1t =z
�(1��3)(1��4)
t

(9.57) F 2t = f 2t =z
�(1��3)(1��4)
t

(9.58) Qt = qt�t
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(9.59) Rkt = rkt�t

(9.60) �t = �t=z
�(1��3)(1��4)�1
t

9.3.3. Equilibrium Conditions in terms of Stationary Variables

We report the complete set of equilibrium conditions in the model with money, namely

(6.10), (6.11), (6.13), (6.15)-(6.26), (6.28), (6.35)-(6.45), and (6.47)-(6.50), written in sta-

tionary form. To this end, we de�ne �z�;t = z�t =z
�
t�1. Recalling that I) z

�
t =zt = �

�
1��
t , II)

�z;t = zt=zt�1, and III) ��;t = �t=�t�1, it follows that �z�;t = �
�

1��
�;t �z;t.

(9.61)

Kt+1 = (1� �)
Kt

�I;t
+ It

"
1� k

2

�
It
It�1

�I;t � �I

�2#
with �I;t = ��;t�z�;t = �

1
1��
�;t �z;t

(9.62) vt =
Ct
Mh
t

(9.63)8><>: (1� �4)
�
Ct � bCt�1=�z�;t

�(1��3)(1��4)�1 (1� ht)
�4(1��3)

�b�Et(1� �4)
�
Ct+1�z�;t+1 � bCt

�(1��3)(1��4)�1 (1� ht+1)
�4(1��3)

9>=>; = �t [1 + ` (vt) + vt`
0 (vt)]

(9.64) �4
�
Ct � bCt�1=�z�;t

�(1��3)(1��4) (1� ht)
�4(1��3)�1 =

�tWte�t
(9.65)

�tQt = �Et
��;t+1
��;t+1

�t+1[R
k
t+1ut+1 � a(ut+1) +Qt+1 (1� �)] with ��;t = �

(1��3)(1��4)�1
z�;t
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(9.66) �t =

8><>:
�tQt

�
1� k

2

�
It
It�1

�I;t � �I

�2
�
�

It
It�1

�I;t

�
k
�

It
It�1

�I;t � �I

��
+�Et

��;t+1
��;t+1

�t+1Qt+1

�
It+1
It
�I;t+1

�2
k
�
It+1
It
�I;t+1 � �I

�
9>=>;

(9.67) v2t `
0(vt) = 1� �Et

�t+1
�t

��;t+1
1

�t+1

(9.68) Rkt = a0 (ut)

(9.69) �t = �RtEt
�t+1
�t+1

��;t+1

(9.70) W 1�e�
t = (1� e�)fW 1�e�

t + e� �Wt�1=�z�;t
�1�e� (�z��t�1)e�

�t

!1�e�

(9.71) F 1t = F 2t

(9.72) F 1t =

8><>:
�e��1e� �fWt�th

d
t

�
WtfWt

�e�
+e��Et � �t+1

(�z��t)
e�
�e��1 �fWt+1fWt

�z�;t+1

�e��1
F 1t+1��;t+1�z�;t+1

9>=>;

(9.73) F 2t =

8><>:
h
�4
�
Ct � bCt�1=�z�;t

�(1��3)(1��4) (1� ht)
�4(1��3)�1

i �
WtfWt

�e�
hdt

+e��Et � �t+1

(�z��t)
e�
�e� �fWt+1fWt

�z�;t+1

�e�
F 2t+1��;t+1�z�;t+1

9>=>;
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(9.74) Yt = Ct [1 + ` (vt)] +
�
It + a (ut)Kt�

�1
I;t

�
+Gt

(9.75) Gt = Tt +Mt(1�R�1t )

(9.76) ept = (1� !)pft + !pbt

(9.77) 1 = ����1t + (1� �) ep1��t

(9.78) pbt = ept�1�t�1�t

(9.79) X1
t =

� � 1
�

X2
t

(9.80) X1
t =

�
pft

����1
Ytmct + ��Et

�t+1
�t

��;t+1

 
pft

pft+1

!���1
��t+1X

1
t+1�z�;t+1

(9.81) X2
t =

�
pft

���
Yt + ��Et

�t+1
�t

��;t+1

 
pft

pft+1

!��
���1t+1X

2
t+1�z�;t+1

(9.82)
�
utKt�

�1
I;t

�� �
hdt
�1�� �  =

�
Ct [1 + ` (vt)] +Gt +

�
It + a (ut)Kt�

�1
I;t

�	
st
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(9.83) mct(1� �)(utKt�
�1
I;t )

�(hdt )
�� = Wt

�
1 + v

Rt � 1
Rt

�

(9.84) mct�(utKt�
�1
I;t )

��1(hdt )
1�� = Rkt

(9.85) st = (1� �) (ept)�� + ���t st�1

(9.86) ht = esthdt

(9.87) est = (1� e�) fWt

Wt

!�e�
+ e�� Wt�1

Wt�z�;t

��e� 
�t

(�z��t�1)
e�
!e� est�1

(9.88) �t = Yt �Rkt utKt�
�1
I;t �Wth

d
t

�
1 +

�
1�R�1t

�
v
�

(9.89) Mt = vWth
d
t +Mh

t

9.3.3.1. Cashless model. We report the complete set of equilibrium conditions in the

cashless model, namely (6.10), (6.15)-(6.17), (6.19)-(6.25), (6.35)-(6.40), (6.44), (6.45),

(6.47), (6.48), (6.52), (6.53), (6.54), (6.55), (6.56), and (6.57), written in terms of station-

ary variables.

(9.90)

Kt+1 = (1� �)
Kt

�I;t
+ It

"
1� k

2

�
It
It�1

�I;t � �I

�2#
with �I;t = ��;t�z�;t = �

1
1��
�;t �z;t
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(9.91)

8><>: (1� �4)
�
Ct � bCt�1=�z�;t

�(1��3)(1��4)�1 (1� ht)
�4(1��3)

�b�Et(1� �4)
�
Ct+1�z�;t+1 � bCt

�(1��3)(1��4)�1 (1� ht+1)
�4(1��3)

9>=>; = �t

(9.92) �4
�
Ct � bCt�1=�z�;t

�(1��3)(1��4) (1� ht)
�4(1��3)�1 =

�tWte�t
(9.93)

�tQt = �Et
��;t+1
��;t+1

�t+1[R
k
t+1ut+1 � a(ut+1) +Qt+1 (1� �)] with ��;t = �

(1��3)(1��4)�1
z�;t

(9.94) �t =

8><>:
�tQt

�
1� k

2

�
It
It�1

�I;t � �I

�2
�
�

It
It�1

�I;t

�
k
�

It
It�1

�I;t � �I

��
+�Et

��;t+1
��;t+1

�t+1Qt+1

�
It+1
It
�I;t+1

�2
k
�
It+1
It
�I;t+1 � �I

�
9>=>;

(9.95) Rkt = a0 (ut)

(9.96) �t = �RtEt
�t+1
�t+1

��;t+1

(9.97) W 1�e�
t = (1� e�)fW 1�e�

t + e� �Wt�1=�z�;t
�1�e� (�z��t�1)e�

�t

!1�e�

(9.98) F 1t = F 2t
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(9.99) F 1t =

8><>:
�e��1e� �fWt�th

d
t

�
WtfWt

�e�
+e��Et � �t+1

(�z��t)
e�
�e��1 �fWt+1fWt

�z�;t+1

�e��1
F 1t+1��;t+1�z�;t+1

9>=>;

(9.100) F 2t =

8><>:
h
�4
�
Ct � bCt�1=�z�;t

�(1��3)(1��4) (1� ht)
�4(1��3)�1

i �
WtfWt

�e�
hdt

+e��Et � �t+1

(�z��t)
e�
�e� �fWt+1fWt

�z�;t+1

�e�
F 2t+1��;t+1�z�;t+1

9>=>;

(9.101) Yt = Ct +
�
It + a (ut)Kt�

�1
I;t

�
+Gt

(9.102) Gt = Tt

(9.103) ept = (1� !)pft + !pbt

(9.104) 1 = ����1t + (1� �) ep1��t

(9.105) pbt = ept�1�t�1�t

(9.106) X1
t =

� � 1
�

X2
t

(9.107) X1
t =

�
pft

����1
Ytmct + ��Et

�t+1
�t

��;t+1

 
pft

pft+1

!���1
��t+1X

1
t+1�z�;t+1
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(9.108) X2
t =

�
pft

���
Yt + ��Et

�t+1
�t

��;t+1

 
pft

pft+1

!��
���1t+1X

2
t+1�z�;t+1

(9.109)
�
utKt�

�1
I;t

�� �
hdt
�1�� �  =

�
Ct +Gt +

�
It + a (ut)Kt�

�1
I;t

�	
st

(9.110) mct(1� �)(utKt�
�1
I;t )

�(hdt )
�� = Wt

(9.111) mct�(utKt�
�1
I;t )

��1(hdt )
1�� = Rkt

(9.112) st = (1� �) (ept)�� + ���t st�1

(9.113) ht = esthdt

(9.114) est = (1� e�) fWt

Wt

!�e�
+ e�� Wt�1

Wt�z�;t

��e� 
�t

(�z��t�1)
e�
!e� est�1

(9.115) �t = Yt �Rkt utKt�
�1
I;t �Wth

d
t

9.4. Appendix D. The Social Planner Allocation: Equilibrium Conditions in

Stationary Variables

We maintain the same functional forms for utility, technology, investment adjustment

cost, and costs of higher capacity utilisation described in Appendix C. The economy dis-

plays two permanent shocks. Hence, some variables are not stationary along the balanced-

growth path. The nonstationary variables and the respective rescaling factors are the same

as in Schmitt-Grohé and Uribe (2007). Speci�cally, I) variables ct, yt, and gt are rescaled
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by z�t ; II) variables kt+1 and it are rescaled by �tz
�
t ; III) variable qt is rescaled by 1=�t;

and IV ) variable �t is rescaled by z
�(1��3)(1��4)�1
t . The remaining variables, namely ut and

ht, are instead stationary.

Dividing the nonstationary variables by the associated cointegrating factor, we obtain

the stationary variables, which we denote with the corresponding capital letters. That is:

(9.116) Ct = ct=z
�
t

(9.117) Yt = yt=z
�
t

(9.118) Gt = gt=z
�
t

(9.119) Kt+1 = kt+1=�
1

1��
t zt given z�t =zt = �

�
1��
t

(9.120) It = it=�
1

1��
t zt

(9.121) Qt = qt�t

(9.122) �t = �t=z
�(1��3)(1��4)�1
t

9.4.1. Equilibrium Conditions in terms of Stationary Variables

We report the complete set of equilibrium conditions, namely (6.58)-(6.65), written in

terms of stationary variables. To this end, we de�ne �z�;t = z�t =z
�
t�1. Recalling that I)

z�t =zt = �
�

1��
t , II) �z;t = zt=zt�1, and III) ��;t = �t=�t�1, it follows that �z�;t = �

�
1��
�;t �z;t.

(9.123) Yt =
�
utKt�

�1
I;t

�� �
hdt
�1�� �  with �I;t = ��;t�z�;t = �

1
1��
�;t �z;t
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(9.124) Yt = Ct +
�
It + a (ut)Kt�

�1
I;t

�
+Gt

(9.125) Kt+1 = (1� �)
Kt

�I;t
+ It

"
1� k
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It�1

�I;t � �I
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