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Abstract

The use of sound to communicate information as part of a user interface has been an active research area

for several years. Research has shown that sound can be concurrently presented to users to increase the

bandwidth and rate of data presentation. However, when sounds are concurrently presented, they may inter-

fere with each other, such that determining the data encoded in the sound becomes difficult. Modifications

to the sounds can help to avoid such interference, but due to the nature of the sounds the impact of the

modifications may be constrained.

This thesis investigates such interaction with concurrently presented earcons. One experiment investi-

gates how the identification of earcons is affected by the number concurrently presented. It was found that

increasing the number of earcons concurrently presented lead to a significant decrease in the proportion

of earcons and their attributes successfully identified by participants. With identification falling from 70%

correct for one presented earcon to 30% for four concurrently presented earcons.

A second experiment identified how modifications to the design and presentation of concurrently pre-

sented earcons affected their identification. It was found that presenting each earcon with a unique timbre

as well as introducing an onset-to-onset delay of at least 300ms caused a significant improvement in earcon

identification, and the timbre encoded attribute of earcons. However overall identification levels remained

low at around 30%.

Two further experiments investigated the impact of spatialisation on concurrent earcon identification.

They showed that spatial presentation of earcons which did not incorporate the findings of the previous

experiment significantly improved identification of earcons and the register encoded earcon attribute, over

earcons that were not spatially presented but did incorporate the findings of the previous experiment. An-

other experiment showed that spatial presentation of earcons which incorporated the unique timbre and

300ms onset-to-onset modifications significantly improved the identification of the timbre encoded earcon

attribute, although overall identification remained low.

These four experiments yielded a set of guidelines for concurrent earcon presentation. Due to the nature

of those experiments however, a further experiment was conducted to determine the impact of the guidelines

on more ecologically valid tasks. A set of modified and unmodified earcons which represented entries in a

mobile diary system were compared. Overall task accuracy remained low, although participants rated the

modified earcons to require significantly less subjective workload.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

How sound can be integrated into a human computer interface, and how it can be effectively used to present

information to users has been an active area of research for over fifteen years [68]. Such auditory displays

have been shown to offer significant advantages over interfaces which use a purely visual display [20, 9,

3, 2], or in some cases have allowed systems to be created which have no visual interface component at

all [28, 41, 43, 44]. Sound can be used to reduce the number of errors when users are interacting with

small screen visual displays such as with personal digital assistant (PDA’s) [20], and may also increase

the available display space on such mobile devices [22]. Sound may also be used to reduce users’ visual

demands in “eyes busy” tasks [140, 62], and provide effective access to computers for visually impaired

users [41, 91].

Sound is however, not without its problems. The lower spatial acuity of the human auditory system,

in comparison to the visual perceptual system [68], limits the bandwidth of communication in auditory

displays. In most work on auditory displays, only one auditory source (which will be assumed to represent

a data source) is presented at any one time. This is unlike the rich, parallel presentation that occurs in

graphical user interfaces, where multiple icons, pictures, user interface widgets and textual information

can be simultaneously presented to a user. Such presentation allowing users to browse large information

spaces more quickly, and keep demands on short term memory low by being able to quickly switch between

different information. For example, when undertaking a writing task, a user may wish to have a document

processor, bibliography manager and electronic summary notes all visible on screen at the same time,

thereby exploiting the spatial acuity of the human visual system. The auditory system however, is highly

temporal and does not posses the degree of spatial acuity and separation available with the visual system.

Audio is more suited to data which can be encoded in short auditory sounds, such as with Earcons [16] and

Auditory Icons [52], or with temporally changing data (or data which can be easily mapped to the temporal

domain, and be presented quickly such as graphs [76]). Due to the slowness of speech based sound, non-

speech sound mapping techniques such as sonification, earcons and auditory icons are, in many cases,

better suited when presenting information. However, even when using these methods, the communication
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bandwidth of audio is limited in comparison to a visual display.

There are an increasing number of situations where it would be desirable to increase the bandwidth of

the auditory channel for information presentation. Mobile computing devices, such as the HP iPAQ have

capabilities that rival desktop computers of just a few years ago, but in a form factor that allows them to

be fitted in a pocket. The power of mobile telephones has allowed them to become much more than just

devices for making telephone calls; applications such as Web browsers and diaries are commonly found

in today’s mobile telephones. However, for such devices to be mobile, the size of their visual display is

limited, restricting the bandwidth of communication available to present information to users. Additionally,

if applications are being used on the move, the user is attempting to use the device in an “eyes busy”

situation and as such must also attend to the environment and be aware of obstacles or danger. Users cannot

therefore constantly look at the device. To leverage the full power of such devices and the advantages of

having contact and email information available on small personal devices, new forms of human computer

interaction must be developed. Increasing the bandwidth of data communication in an Auditory Display

can also assist with applications for blind and visually impaired people, where sound based applications

would be able to more closely, and easily, replicate the expressability of a visual interface, allowing for less

demanding interaction on the part of the user, and a richer communications channel for designers to exploit.

One way in which the bandwidth of auditory displays can be increased is through the concurrent pre-

sentation of sound. In other words, instead of presenting information one sound at a time, present multiple

sounds at the same time, reducing the time to present information, as well as allowing real time comparison

of multiple data [27].

Several systems which use concurrent audio presentation have been developed over the last few years,

such as Gaver, Smith and O’Shea’s ARKola bottling plant simulator [55] (see Section3.3.3) and Sawhney

and Schamndt’s Nomadic Radio [124] personal notification diary system (see Section3.4). Kobayashi and

Schmandt [67] have developed a speech based recording browser (see Section3.4) which uses concurrent

presentation to monitor different parts of the recording. Fernström and Bannon [46] (see Section4.2.3) have

created a music browsing system, which uses concurrent audio presentation to assist in browsing musical

compositions. Such systems allowing comparison between multiple auditory sources to be made, something

which is more difficult to do when only one auditory source is presented at a time.

Although there have been several systems which use concurrent sound presentation, and those systems

seem to be effective, there has been little formal evaluation to determine the extent of their effectiveness,

or potential issues with such concurrent presentation of sound. An outcome of this is that there are no

guidelines for designers to use when designing auditory displays which incorporate concurrently presented

audio, making it difficult to fully exploit the advantages such presentation affords. Work by Gerth [57], Papp

[104] and Brungart, Ericson and Simpson [29], indicates that when sounds are concurrently presented they

may interfere with each other and thus any data which are encoded within those sounds becomes difficult

to identify. Such a hypothesis is supported by Auditory Scene Analysis [14], a branch of psychology
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which investigates the perception of concurrently presented sounds. This creates problems for designers

who wish to employ the advantages of concurrent presentation in auditory displays as it may be difficult to

design sounds which both do not interfere with each other when concurrently presented, and can effectively

communicate information. Whilst it may be possible to modify the design and presentation of sounds to

reduce the likelihood of them interfering either each other, auditory displays implicitly assume there is some

mapping between data and the attributes of the sound used to represent the data. It may not be possible to

modify a sound enough to reduce its interference, whilst retaining intact the mapping between data and

sound. This is particularly a problem for certain types of earcon, short structured audio messages which

can be used to communicate information to a user in an auditory display [13]. Earcons are formed from

a “grammar” and as such individual earcons may be very similar, meaning that they both interfere with

each other, as well as be difficult to modify to avoid such interference. This creates significant problems

when trying to use earcons in concurrent presentation situations. This thesis investigates such issues with

concurrently presented earcons, and determines ways in which earcons can be redesigned to reduce the

impact of interferences between them.

1.2 Aims of the Thesis

1.2.1 Thesis Statement

Identifying concurrently presented earcons where those earcons are constructed from a complex “grammar”

is difficult. Whilst modifications can be undertaken to significantly improve earcon identification, these

modifications are constrained due to the need to preserve the mapping between data and sound.

This statement will be defended through work which seeks to answer the following four research ques-

tions:

RQ1 What is the effect on earcon identification of varying the number of earcons which are concurrently

presented?

RQ2 How can concurrently presented earcons be more robustly designed and presented in order to increase

the number which can be identified?

RQ3 What is the impact of presenting concurrent earcons in a spatialised auditory environment?

RQ4 How much do modifications to the design and presentation of concurrently presented earcons affect

performance in “real world” tasks?

These research questions seek to determine two key aspects of concurrent earcon presentation: how

well are earcons identified when concurrently presented, and how can the design and presentation of those

earcons be changed to improve their identification. This work is novel in that no previous study has at-

tempted an extensive investigation to identify how earcon identification varies by changing the number
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concurrently presented. Whilst such a trend has been identified for other forms of audio (such as speech

[29, 31]), one has not been identified for earcons. Further, no previous study has empirically investigated

how interactions between earcons can be reduced whilst not destroying the “grammar” that connects the

earcons (and provides many of their advantages). The answers to these research questions will provide a

set of guidelines for concurrent earcon presentation which can be used by future auditory display designers

to make informed decisions when incorporating concurrent earcons into a human computer interface.

1.3 Contents of the Thesis

The argument of this thesis is divided into chapters in the following way:

Chapter 2 “Basics of Sound” Provides an overview of audio essential to understand the original and novel

work presented in this thesis. This chapter starts by introducing sound and its basic dimensions. The

chapter follows this with a discussion of various attributes of sound that will be later used to build

earcons. How these attributes can be understood in terms of the basic dimensions of sound, and as

such how psychological work on concurrent sound identification can be applied to earcon design is

discussed. The chapter concludes with a discussion of the localisation of sound in three dimensions

(3D) as well as how concurrently presented sounds may be interpreted by the human auditory system.

Chapter 3 “Auditory Display” Provides an overview of auditory displays, or how the work on sound dis-

cussed in Chapter 2 can be applied in a human computer interface and communicate information

effectively to users. The chapter starts by discussing the advantages and disadvantages of using

sound in such a way. Following this, a taxonomy of the main four methods by which data can be

encoded in sound, and the relative advantages and disadvantages of each is outlined. The chapter

concludes with the advantages of the use of 3D, or spatialised sound, as part of an auditory display.

Chapter 4 “Issues Involving Concurrent Audio Presentation”Follows from Chapter 2 and 3 by discussing

concurrent audio presentation in more detail. The advantages for using concurrent audio presenta-

tion are discussed. The disadvantages, including the interference of concurrently presented sounds

are then outlined. A study which motivated this research, and illustrates how the problems of con-

current sound presentation can easily outweigh the advantages is discussed. The chapter follows by

discussing the limited research that has been carried out on concurrent audio as part of an auditory

display, before discussing the research questions posed in Section1.2.

Chapter 5 “Number of Earcons versus Identification”Describes a novel experiment which provides an-

swers for RQ1,“What is the effect on earcon identification of varying the number of earcons which

are concurrently presented?”. The experiment compares the identification of 1, 2, 3 and 4 concur-

rently presented earcons, and identifies how earcon identification is affected when the number of
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concurrently presented earcons is varied. Guidelines for the concurrent presentation of earcons are

identified and presented.

Chapter 6 “Engineering More Robust Earcons”Describes a novel experiment which provides answers

for RQ2, “How can concurrently presented earcons be more robustly designed and presented in

order to increase the number which can be identified?”. The experiment compares the identification

of four concurrently presented earcons, when various modifications to the design and presentation of

the earcons, based on auditory scene analysis research [14] have been undertaken. Guidelines for the

concurrent presentation of earcons are identified and presented.

Chapter 7 “The Impact of Spatialisation on Concurrent Earcon Identification”Describes two novel exper-

iments which provide answers for RQ2,“How can concurrently presented earcons be more robustly

designed and presented in order to increase the number which can be identified?”, and RQ3,“What

is the impact of presenting concurrent earcons in a spatialised auditory environment?”. The first

experiment compares the identification of earcons presented in the same spatial location which incor-

porated the guidelines identified from the work of Chapter 6, with spatial presentation of earcons not

incorporating the guidelines (“base” earcons). The second experiment compares the identification of

four concurrent earcons that both incorporate the guidelines identified from the experiment in Chapter

6, and are presented in distinct spatial locations, with spatially presented “base” earcons. Guidelines

for the concurrent presentation of earcons from these experiments are identified and presented.

Chapter 8 “An Ecological Investigation into Concurrent Earcons”The experiments from Chapters 5, 6

and 7 are of an abstract nature. The novel experiment of this chapter seeks to provide answers for

RQ4,“How much do modifications to the design and presentation of concurrently presented earcons

affect performance in “real world” tasks?”, and ground the guidelines from Chapters 5, 6 and 7 in

a more ecological context. The experiment of this chapter compares performance in a mobile diary

browsing task when diary entries are represented by non-spatially presented “base” earcons, and by

spatially presented earcons which incorporate the guidelines of concurrent earcon presentation from

Chapters 5, 6 and 7. The results of the experiment are discussed and directions for future work are

outlined.

Chapter 9 “Conclusions” Summarises the work from the previous chapters and relates this back to the

research questions from Section1.2, discussing to what extent those four research questions have

been answered. The limitations of the thesis, and how these might be resolved are described. Future

directions for further investigations based on the results of the work described in the thesis are also

outlined.
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Chapter 2

Basics of Sound

2.1 Introduction

The previous chapter introduced the main research focus of this thesis, namely the investigation of con-

currently presented structured sounds called earcons. Before discussing the novel work of this thesis in

detail, it is important to understand a little about sound, what it is and how it is interpreted by human lis-

teners, so that a background can be provided to understand the issues and solutions in the identification of

concurrently presented earcons.

This chapter starts by describing the physical, objective components of simple sounds, before discussing

how such components are interpreted by the human auditory system to form much richer auditory attributes

such as those used in the construction of earcons. This is important as the work which will be applied

later in the thesis to improve the identification of concurrently presented earcons, was undertaken with the

lower level attributes of sound. The discussion then turns to two features of sound which will become of

great significance through the remainder of the thesis: the interpretation of multiple concurrently presented

sounds (see Chapters6 and7), and how the location of sound sources can be determined by the human

auditory system (see Chapter7).

2.2 Introduction to Sound

Sound, as defined by Moore [88], “originates from the motion or vibration of an object. This motion is

impressed upon the surrounding medium (usually air) as a pattern of changes in pressure”. Sound consists,

at its most basic level, of three objectively measurable components. Frequency is the number of times a

waveform repeats itself in a given amount of time. This is usually measured in Hertz (Hz), where 1Hz is

equivalent to 1 complete playing of the waveform each second. Amplitude relates to the size of the pressure

increase or decrease from the mean pressure. It can crudely be considered a metric of loudness, although

as will be explained in Section2.3, things are slightly more complex. Finally, the phase of a sound is“the

proportion of the cycle through which the wave has advanced in relation to some fixed point in time”[88].

These three features are illustrated on a sinusoidal waveform in Figure2.1.

The intensity of a sound is the pressure per unit squared, generally measured in Newtons per meter
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Figure 2.1: Graph of a sinusoidal waveform illustrating the basic components of a sound (frequency, amplitude and
phase). Adapted from Moore [88].

squared, and is proportional to the square of the amplitude. Because of the large range of intensities the

human auditory system can detect (the largest intensity is around1014 that of the smallest), a ratio scale

is commonly used, the units of which are decibels (dB) [152]. The decibel scale is a logarithmic scale of

intensity relationships. Therefore if a sound is described as having an intensity of 1.3dB, it in fact means that

the sound has an intensity (approximately) 20 times greater than that of some reference pressure. In order

to simplify comparing different intensities measured in decibels, standard reference pressure levels have

been defined. Sound Pressure Level (SPL) is the most common, using a reference pressure equivalent to

the hearing threshold of a 1kHz sinusoidal tone [88]. See Section2.3.2for a discussion on the relationship

between intensity and frequency.

2.3 The Perception of Sound

2.3.1 The Limits of Human Hearing

Whilst sound can be objectively described in mathematical terms, it is generally more useful to consider

how it is perceived by the human auditory system. Humans can hear sound with frequencies in the range

of 20Hz to 20kHz [56]. However with the onset of age, the upper limit on hearing tends to reduce to about

15kHz [88]. To hear all of these various frequencies, the intensity with which they are presented needs to be

altered, with lower frequency sounds being presented with a greater intensity than higher frequency sounds.

The point at which a particular frequency is presented with enough intensity to be audible is known as the
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Figure 2.2: Graph showing how detectability of a source at a particular frequency is dependent on the intensity with
which it is presented. The Minimum Audible Field (MAF) shows the minimum intensity with which a particular fre-
quency needs to be presented to be heard by a listener. The other lines show equal loudness contours, relationships
between intensity and frequency where the sounds are judged to be equally loud, see Section2.3.2. Taken from Gelfand
[56].

minimum audible field (MAF) [56]. A graph showing how the MAF changes with respect to the frequency

and intensity of a sound is shown in Figure2.2.

2.3.2 Auditory Attribute Perception

Whilst sound has physical characteristics (see Section2.2), it has other properties that exist because of its

interaction with the human auditory system. This section will describe the three main characteristics of this

interaction which are used in the construction of earcons, and are therefore relevant to this thesis: pitch,

timbre and loudness. How these relate to the basic attributes of sound, and therefore how the work described

later in Section2.6can be applied to the design of earcons is also discussed.
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Figure 2.3: A figure showing a chromatic scale, and the names of the notes involved. The lowest pitch is the lowest E
and the highest is the top F. Adapted from Taylor [135].

Pitch

Pitch, defined by the American Standards Association [6] as“that attribute of auditory sensation in terms of

which sounds may be ordered on a musical scale extending from low to high”, is the subjective equivalent

of frequency. Indeed, the pitch of a sound is largely related to its frequency [88]. Whilst most listeners

can identify the relative pitch between two sounds, or judge general classes of pitch, where there are large

differences between values, e.g. low, medium or high, very few listeners can identify absolutely the pitch

of a sound without the use of a reference tone. This ability known as perfect pitch appears to be present

in less than 0.01% of the population [122]. This means that when pitch is used to encode information it

is unlikely to be useful unless large differences between different pitch values are used. Pitch perception

also suffers from the “pitch of the missing fundamental” issue [152]. Here, if a listener is presented with

tones that are harmonics (a component of a complex tone whose frequency is an integral multiple of the

fundamental frequency of that complex [88]) of some frequency, they will perceive a sound with a pitch of

the fundamental frequency, even when that frequency is not present in the sound. For example, presenting

the frequencies of 400Hz, 800Hz, 1000Hz etc., which are harmonics of a 200Hz tone will cause the listener

to hear the same pitch as a separately presented 200Hz tone [88]. Therefore care should be taken to avoid

such a phenomenon when concurrent sounds are used as part of an auditory display. Since earcons as will

be described in Section3.3.4are“abstract, synthetic tones that can be used in structured combinations to

create auditory messages”[16], it is most appropriate to think in terms of musical pitch. In this thesis a

standard musical chromatic scale will be used to denote pitch [116]. An example musical stave showing

the notes and their positions as used in this thesis, is given in Figure2.3. This thesis also discusses register

which is regarded to be a particular pitch class [116], or a scale which is referenced to a particular pitch.

For example C4 represents has a frequency of around 261Hz, where as C5 has a frequency of around 523Hz

[63].
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Timbre

Timbre is perhaps one of the most obvious qualities of a sound, yet is difficult to properly define [88]. The

American National Standard Institute (ANSI) define timbre as“that attribute of auditory sensation in terms

of which a listener can judge two sounds similarly presented and having the same loudness and pitch are

dissimilar” [6]. In other words timbre is composed of those features of a sound which do not have any

other name, as Bregman notes“The problem with timbre is that it is the name for an ill-defined wastebasket

category” [14]. He offers a further definition of timbre as“we do not know how to define timbre but it is

not loudness and is not pitch”.

Whilst all the components of timbre are not fully understood, there is research which indicates some

components. The number of harmonics, and relative amplitudes for each of those harmonics has a strong

influence on timbre [39]. In work on the pitch of the missing fundamental problem, as described in the

previous section, although no variation in pitch was found between a tone of a certain frequency and a

tone formed from only the harmonics of that frequency, listeners reported that the timbre of the tones were

different [88].

Although the number of harmonics and amplitude for each of those harmonics has a strong influence on

timbre they can not explain timbre fully. As Deutch notes [39] “a saxophone remains a saxophone whether

it is heard over a distortion-ridden pocket-sized transistor radio or directly in a concert hall.”. Work by

Stumpf as reported by Risset and Wessel [119], showed that removing the attack portion of notes played by

certain instruments significantly impaired the ability of listeners to identify the instruments used. Again,

as reported in Risset and Wessel [119], work by George showed that by playing a recording of a piano

backwards gave a non-piano like quality to the sound, in spite of the sound having the same frequencies and

amplitudes whichever way the recording was played. Indeed, more expensive wavetable music synthesisers,

where each sound is produced from a mathematical manipulation of a pre-stored musical recording, store

different recordings for the attack and decay, in order to produce a more realistic sound [20]. This is

important to note as when sounds are used in human computer interfaces, and the timbre of those sounds

has been synthetically generated, the timbre may not sound like the instrument that it synthesises.

Because timbre is not fully understood and is multi-dimensional, it is difficult to quantitively deter-

mine the similarity or dissimilarity between two timbres in the same way as with pitch or loudness [88].

This presents a problem for auditory display designers in attempting to choose sounds which will effec-

tively communicate information and not be confused. Fortunately Rigas [118] has carried out experimental

studies in order to categorise MIDI (Musical Instrument Digital Interface) [85] sounds in groups based on

their subjective similarity. He presented listeners separately with tunes of 8 notes played on 23 different

synthesised musical instruments and asked them to write down the name of the instrument that played the

tune. He found that pianos, organs, xylophones and drums were particularly well identified by listeners. In

a further study he presented listeners with a list of five named instruments (Piano, Guitar, Drums, Violin,

Saxophone, Flute and Harp). Listeners were then played a sound of one of the instruments and had to select
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Group Instruments
Piano piano, harp, guitar celesta, xylophone
Organ organ, harmonica
Wind trumpet, French horn, tuba, trombone, saxophone
Woodwind clarinet, English horn, pan pipes, piccolo, oboe,

bassoon, flute
Strings violin, cello, harp

Table 2.1: Groupings of MIDI synthesised instruments based on similarity. Taken from Rigas [118].

which one they heard. Rigas found that in all cases recognition of the sounds was high with over 80%

correct responses for each instrument except the harp which had only 30% correct responses. These results

highlight the problems of cheap MIDI synthesisers not accurately representing sounds, as Rigas believes

the MIDI synthesizer used did not accurately synthesise the harp timbre. Rigas proposed a grouping of

timbre families, the members of which were unlikely to be confused with members of another family. His

grouping is described in Table2.1.

Whilst the similarity groupings of Rigas [118] may not be generally applicable since he used a relatively

cheap wavetable synthesiser [20] to generate the sounds, they do provide guidance on the use of musical

timbres in auditory displays. Therefore although it is not possible to fully explain timbre, it is possible at

least musically, to provide general comparisons of similarity, which can be used in the design of earcons.

In the remainder of this thesis whenever timbre is mentioned it will refer to musical timbre (the musical

instrument used to play a sound).

Loudness

Loudness, defined as“that attribute of auditory sensation in terms of which sounds may be ordered on

a scale extending from soft to loud”[152], is (as with pitch) subjective. Loudness is measured on the

phon scale, where 1 phon is the loudness of a 1000Hz tone presented with the intensity of 1dB SPL [152].

As is implied by the minimum audible levels of sound is Section2.3.1, loudness varies in terms of both

frequency and intensity. Figure2.2 presents a graph of equal loudness contours, showing the relationship

between frequency and intensity required to equate in phones.

One of the issues surrounding the concurrent presentation of audio with different degrees of loudness

is that the sounds may obscure or mask each other. Masking is“the process by which the threshold of

audibility for one sound is raised by the presence of another (masking) sound”[6]. The most common form

of masking is simultaneous masking, which occurs when two sounds are concurrently presented, where one

sound is presented with such intensity, commonly called the masker, that the other sound, commonly called

the maskee [56], cannot be detected [88]. In order for masking to occur, not only does the intensity of

the masker need to exceed that of the maskee but it must also contain the same frequencies. Research by

Fletcher [47] has shown that as the bandwidth of the masker is increased, the intensity that the maskee needs

to be presented at to remain audible increases, but only up to a certain point beyond which increasing the
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Figure 2.4: A diagram showing how the azimuth (direction) and elevation (vertical position) of a sound relate to a
listener.

bandwidth of the masker has no effect on the amount of masking. The frequency range at which the amount

of masking does not increase is known as the critical bandwidth (CB). It is believed that the human auditory

system contains a number of filters each of which deals with a critical band [88]. If the masker and maskee

fall into different critical bands, due to frequency variations, then masking will not occur. This indicates that

using broadband sounds, which contain a range of frequencies, will be more robust to masking than pure

tones when used in an auditory display if sounds are to be presented concurrently. It is also essential when

using concurrent audio presentation to ensure that sounds are of equal perceivable loudness as possible to

reduce the possibility of masking [88].

2.4 Spatial Audio

Whilst the previous sections have described how the human auditory system interacts with basic sound,

it misses one important characteristic of human hearing: our ability to localise or identify the location in

space of a sound source. In this section, how the human auditory system localises sound will be outlined,

and the limitations of current “off the shelf” spatialisation technologies will be discussed.

2.4.1 Binaural Cues

Our ability to localise sound depends on several factors, the most important of which are the differences

between the sounds reaching our left and right ears. These binaural cues [88] incorporate variations in both

the timing and the spectra of sound between the ears to determine the azimuth (direction) and elevation

(vertical height) of a sound source (see Figure2.4).

The interaural time difference (ITD) (also known as the interaural phase difference (IPD)) uses phase

differences (see Section2.2) between the sounds arriving at the left and right ears to determine sound source

location [88]. Because a listener’s ears are on opposite sides of the head, unless a sound is directly in front

or behind the listener, it will take longer to reach one ear than the other. There will therefore be a time delay
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Figure 2.5:Sound takes longer to reach each ear, creating an interaural time delay (ITD) between a sound arriving at
the left and right ear. Adapted from Gelfand [56].

between reaching the ears that can be used by the auditory system to identify the azimuth of a sound (see

Figure2.5).

The interaural intensity difference (IID) [8], sometimes called the interaural level difference (ILD) [152]

uses intensity variations in the spectra of the sounds reaching each ear to determine azimuth. In order to

reach the ears sound will have to move, or diffract, around the head. The ability of sound to do this depends

on the frequency of the sound. Higher frequency sounds, bend less well than lower frequency sounds and

hence the head casts an “auditory shadow” over the ear causing the intensity of the sound reaching it to be

reduced (see Figure2.6) [88].

The binaural cues are sometimes called Duplex Theory [8], as they are interrelated. The ITD tends to

be more effective at localising lower frequency sounds, below about 1500Hz, since above this frequency,

the phase difference between the ears is a multiple of the distance between the ears and as such becomes

ambiguous. Similarly, the IID becomes useful for relatively high frequencies, above 1500Hz, when head

shadowing becomes noticeable [152]. Taking these into account it seems that listeners are worst at localising

sound in the range of 1500Hz. This should be taken into account by auditory display designers who choose

to use spatial presentation, as sounds around that frequency may be poorly localised. The use of broadband

stimuli, i.e. using a range of different frequencies instead of pure tones tend to be more accurately localised

and may help to reduce this issue [89].
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Figure 2.6: Diagram showing how high frequency sounds cast a shadow over one ear due to their inability to bend
around the head.

2.4.2 Localisation Performance

The localisation of sound is also affected by the relative location of the sound source to the listener’s

head. For example, sounds which are directly in front of the head are more accurately localised than those

presented to the side of the head. The minimum audible angle (MAA) is the minimum amount by which two

sequentially presented sounds need to be separated in azimuth for a listener to determine that they originate

from different positions [56]. Work undertaken on the MAA shows that for sounds directly in front of the

listener only 1-2o of separation is required for listeners to determine the sounds as being located in different

positions. This is due to the relatively large change in interaural cues for movements in this region. In

comparison, the MAA for sounds located around the listener’s ears dramatically increases, due to the small

relative changes in the binaural cues when sound sources are moved. This leads to the so called cones of

confusions, see Figure2.7, within which the MAA is extremely large.

As this thesis deals with concurrent auditory presentation, another important feature is the concurrent

minimum audible angle (CMAA) [110]. The CMAA denotes the amount of spatial separation required

Figure 2.7:Diagram showing a cone of confusion, an area around a listener’s ear where sound is poorly localised and
the minimum audible angle (MAA) is large.
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between two concurrently presented sounds for them to be determined as coming from different positions.

As with the MAA, the CMAA is much smaller for positions directly in front of the listener than for those

around the listener’s ears. However, the CMAA is also affected by spectral differences between the sounds,

such as timbre, pitch etc. [56]. The degree of similarity between the sounds can cause wide variation in

the CMAA. For example, Best, van Schaik and Carlile [10] have found for sounds which are spectrally the

same, the CMAA could be up to 60o. It is important therefore that when using concurrent auditory stimuli

and spatial audio, especially when those stimuli are similar, that large azimuthal separations between the

auditory sources is maintained to reap the full benefits of spatialisation. However, as will be discussed in

the next chapter, this may not always be possible.

2.4.3 Elevation

The perception of elevation, or vertical position, of a sound source (see Figure2.4) is determined principally

by the interaction of the sound wave with the head and pinnae (outer ear) which creates spectral cues that

can be used by the auditory system to determine elevation. The pinnae is a highly directionally dependent

filter [88], and works best at frequencies above 6kHz [126], as well as with broadband sounds containing

a range of frequencies [152]. The interaction with the pinnae causes certain frequencies in the sound to be

attenuated more than others, the principle being similar to that used in the IID. Depending on the elevation

of a sound source, the amount of attenuation to different frequencies varies [56]. These cues can therefore

be used by the auditory system to determine sound source elevation.

2.4.4 Distance Perception

The ability of listeners to determine the distance of an auditory source depends on both auditory and non-

auditory features [154]. As would be expected, the intensity of a sound, and thus its perceived loudness, is

reduced the further the listener is from the sound source due to absorption by the air [152]. This can be used

by a listener to identify the distance of an auditory stimulus. However to be effective, the listener would

need to be familiar with the object generating the auditory source [126]. For example, if a bumble bee and

a jet aeroplane were presented at the same loudness and listeners were asked to judge which was closer,

it is likely that the bumble bee would be judged as closer since a jet aeroplane is generally much louder

than a bumble bee (at a given distance). Moore [88] notes that this cue is also effective to judge the relative

distances of concurrently presented sources where such familiarity with the sound may not be necessary.

In addition, the ability of sound to reflect off surfaces (reverberation), can be used to judge source

distance [126]. The reverberant to direct sound ratio defines the proportion of direct and reverberant sound

reaching the ears. As a listener moves further away from a sound source, the intensity of direct sound, sound

coming directly from the sound source, drops, whilst the intensity of reverberant sound remains constant,

hence distance can be determined [8]. Some studies however, note that whilst reverberation can assist in the
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perception of distance, it can have a negative impact on azimuthal localisation, particularly in cases where

there are multiple sources, or the ability to extract information from the sound source is required [126].

This is important for auditory display designers as if complex auditory messages (see Section3.3.4) are to

be identified by the user, incorporating reverberation may impair users’ ability to identify that information.

2.5 Spatial Sound Synthesis

Whilst the issues outlined in Section2.4have been known about for many years, and the ability to spatialise

sounds in limited environments for psychoacoustics research has been available for some time, it is only

recently that general purpose computing tools have been available to auditory display designers for sound

spatialisation [8]. Tools and technologies such as Microsoft DirectX [7] and the Open AL project [101],

combined with sophisticated audio hardware such as the Creative Audigy [35] and the Turtle Beach Santa

Cruz [137], are now found in many of the personal computers (PC’s) sold today, making spatial presentation

of sound a practical tool for Auditory Display designers to employ.

2.5.1 Head Related Transfer Functions

The ability to create such synthetic spatial environments is due to a head related transfer function (HRTF).

An HRTF modifies (by applying duplex theory (see Section2.4.1) as well as spectral cues (see Section

2.4.3)) a sound source such that the listener’s auditory system perceives the sound to be coming from some

position in space [146]. HRTFs provide the advantage of being able to construct auditory environments

that can be easily changed and reconfigured without having to physically move the sound sources (e.g.

repositioning loud speakers), allowing virtual spatialised auditory environments to be created. In addition,

these sound environments can be presented to listeners over headphones or two shoulder mounted speakers,

which makes it feasible to create sound environments that can be used in a mobile context [124].

The binaural and spectral cues used in an HRTF can be measured by placing microphones in a listener’s

ear canal, or by using a Kemar dummy, with pinnae shaped closely to those of the listener [8]. Sounds of

varying frequency are played from fixed locations around the user, and compared with the in ear recordings

to create finite impulse response (FIR) filters. These can then be mathematically modified to approximate

FIR filters from locations where recordings were not made, to provide all round spatialisation ability [146].

2.5.2 Generalised Head Related Transfer Functions

Whilst the use of HRTFs can provide comparable localisation accuracy to free field listening [149], they are

not without practical problems for auditory display designers. HRTFs are both time consuming and costly

to produce, requiring a listener to be available so that a “customised” HRTF can be created for them [127].

Whilst “off the shelf” spatialisation hardware that can support customised HRTFs exist such as the Lake

Huron [71], such technology is expensive.
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To overcome these problems, auditory display designers can use generalised HRTFs (GHRTF), which

incorporate the same cues found in the customised HRTF (see Section2.5.1), except an “average” head

and pinnae are used to calculate the FIRs [8]. This is the type of HRTF that is embodied on most current

PC sound cards. Studies carried out on generalised HRTFs have found that whilst azimuth localisation is

comparable to individualised HRTFs, elevation accuracy is degraded [148, 147]. In addition, the number of

front back confusions is also increased when using generalised HRTFs since a listener’s pinnae are highly

individual to that particular listener [127]. However this issue can somewhat be reduced by attaching a

location and orientation sensing device to a listener’s head and using it to allow a listener to reorientate

themself in the auditory environment, thereby providing more dynamic cues to determine orientation [126,

67]. There has also been a limited amount of research to determine if users can be trained to improve

their localisation performance when using generalised HRTFs [145]. Work by Zotkin et al. [155] has

investigated the selection of an HRTF based on measurement of the listener’s pinnae. Here listeners’ pinnae

are matched using a number of comparative measurements to the pinnae of listeners from whom the HRTFs

were measured. The HRTF of the pinnae which offers the closest match to the listener’s pinnae is then used

as the HRTF for that listener. This work is at an early stage however, and it remains unclear how effective

it will be.

The limitations of generalised HRTFs mean that when spatialised auditory displays are used, they will

be most effective if sounds are positioned only in azimuth, with elevation not being used to separate sources

or encode information. The use of a tracking device to dynamically respatialise the environment in response

to listener’s head movements should also increase the effectiveness of the display. Such dynamic respatial-

isation allows for “cones of confusion” areas to be remapped in front of the listener, thereby allowing some

of the problems with the MAA and CMMA to be overcome [74].

2.6 Auditory Scene Analysis

2.6.1 Introduction to Auditory Scene Analysis

In the previous sections, sound, from its physical properties to its interpretation by the human auditory

system has been described. One feature of sound which was not considered in that discussion, which is es-

sential to this thesis, is the interpretation of multiple concurrently presented sounds. Whilst the phenomena

of masking (see Section2.3.2), the CMAA (see Section2.4.2) and the harmonics of a sound contributing to

its timbre (see Section2.3.2), can be considered as the interaction of concurrently presented sounds, there

are interactions which can occur between sounds, that are of a more complex nature. In this section the

study of these complex interactions, Auditory Scene Analysis (ASA), is discussed.

Auditory Scene Analysis is the study of why we hear the world the way we do, in other words, how

do we make sense of all of the distinctive sounds which reach our ears at any point in time. For example,

if you are listening to a performance by a concert orchestra, and one player decided to perform a different
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composition, it will be quickly obvious that they are not playing along with the rest of the orchestra. Simi-

larly if at a performance, someone’s mobile telephone starts to ring, it is likely that you would not consider

it as part of the performance. Conversely, the sound of a car driving along a road is composed of distinct

sounds, such as the engine noise, the noise caused by the tyres on the road etc. Whilst it is possible to detect

the surface on which the car is driving, whether the engine is petrol or diesel etc, you can still amalgamate

the sounds and consider them as coming from a single car.

Auditory Scene Analysis therefore tries to explain how the multiple complicated sounds which reach

our ears (the auditory scene) are categorised by the human auditory system into separate streams. Streams as

defined by Bregman [14] (pp.10), are“a perceptual unit that represents a physical happening”, for example

in the concert orchestra telephone example, there would be two streams, one for the concert orchestra and

another for the mobile telephone ring. Note that the word stream is not interchangeable with the word

sound, as a stream can be made up of more than one sound, such as the concert orchestra. Whilst some

(experienced) listeners will be able to pick out individual instruments, most will only hear the overall

composite sound formed from all of the individual instruments playing at the same time.

The reasons why the concert orchestra and mobile telephone are placed in separate streams are obvious;

they sound very different from each other. The mobile telephone is likely to have a timbre formed from

a sine or square wave generator, whereas the instruments that form the orchestra will have much richer

timbres formed of many harmonics. The melodic components of both sounds are also likely to be quite

different. In other words, it is the differences and similarities between sounds which determine whether

they will be placed in the same or different streams. The greater the differences between the sounds, the

more likely it is they will be placed in different streams. The greater the similarities between sounds the

more likely they will be placed in the same stream. As will be shown in Chapter4, trying to identify

sounds in a human computer interface which are concurrently presented can be difficult if those sounds are

(undesirably) placed in the same stream.

2.6.2 Determining Differences in Auditory Scene Analysis

Whilst it is simple to provide examples of streaming in everyday life, understanding how sounds are grouped

into streams, and determining what auditory factors influence that grouping, and how those factors are

related, is much more difficult. Indeed Auditory Scene Analysis is a very active area of research within

psychology. Since Auditory Scene Analysis is not (yet) fully understood, it is not possible to analyse a

composite sound and then determine how it will be streamed by the auditory scene analysis system.

Most research into auditory scene analysis has involved the investigation of one particular auditory

attribute, and investigated how changing it affects the streaming of an auditory source. The results of such

work show that streaming is much related to visual gestalt psychology [150], and as such can be classified in

various gestalt categories. Modifying sounds along such dimensions can influence how they are streamed by

the ASA system. Whilst it is impossible in this thesis to provide a complete overview of all ASA research,
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several examples of work are given to illustrate the principles of each category, and research which has

been directly applied to improve the identification of concurrently presented earcons is discussed in Section

6.1.1. For a much more comprehensive overview of Auditory Scene Analysis, the reader is referred to

Bregman [14] and Deutsch [39]. The following sections describe the various gestalt categories (taken from

Williams [150]) and how they relate to auditory streaming.

Similarity

Components which have similar attributes are more likely to be grouped together. Singh [129] found that

by presenting a pair of alternating tones, each of which had a different number of harmonic components (a

key feature of Timbre, see Section2.3.2), separation of the tones into two separate streams was found to

require a smaller difference in fundamental frequency between the two tones than if both tones had the same

harmonics. Additionally, work by Gerth (described further in Section4.6.1) found that the presentation of

concurrently presented melodies, each with a different timbre significantly improved melody identification

over all melodies being presented with the same timbre.

Proximity

Components of a sound which are close to each other are likely to be grouped together. This can occur in

three main ways: frequency proximity, temporal proximity and spatial proximity.

Frequency Proximity: Frequency proximity has been shown to have an influence on streaming by

several researchers, but most notably by van Noorden [139], who performed several experiments which

showed that the greater the frequency difference between two alternating tones became, the more likely it

was that the tones would be perceived as two separate streams; one stream of high frequency tones and

another of low frequency tones (see Figure2.8). van Noorden further showed that if the presentation rates

of the tones increased, the frequency difference required to separate the tones into separate streams was

reduced.

Temporal Proximity: Several experiments have shown how the perception of other auditory components

can be altered by presenting audio sources at slightly different times. Rasch [117] as described in Deutsch

[39] presented users with basic patterns of high and low pitched tones which alternated between the subject’s

ears. He found that making the onset of the tones asynchronous allowed better discrimination of the higher

and lower pitched tones, so much so that after 30 msec it was possible to discriminate the tones as well as

if they had been presented separately. Further evidence to the use of onset synchrony having an effect is

shown by Darwin and Ciocca [37]. They found that by mistiming an harmonic in a complex tone, and by

moving the onset of this mistimed harmonic relative to the tone, the mistimed harmonic contributed less

to the perceived pitch of the complex. When the harmonic was mistimed by 300ms they found it made no

contribution to perceived pitch.
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Figure 2.8: Overview of the effect of presentation speed on streaming. Taken from van Noorden [139]. (A) When
tones A and B are relatively close in frequency the listener hears a galloping melody. However at larger frequency
separations (B), the listener will perceive two distinct streams, one of high frequency tones, another of lower frequency
tones.

Spatial Proximity: From Section2.4, it was shown that the human auditory system is capable of de-

termining the direction of a sound source in space. Such information is also used to assist in the auditory

streaming process [5]. As Bregman [14] notes“It would be a good bet that sounds emanating from the

same location have been created by the same sound source”. Work undertaken in the study of concurrently

presented speech, and the separation of multiple talkers by spatial location has been found to improve the

identification of those talkers [29, 31, 30].

Good Continuation

Sounds which continue to change in predictable ways will be more likely to be grouped together. Heisse and

Miller [ 61] identified that if a sequence of tones which continually rose or fell in frequency was presented (a

frequency glide), and one tone in the sequence was sufficiently altered in frequency, it would stand out and

be separately streamed. Good continuation can also assist in cases where a sound may be partly masked.

Bregman [14] identified that if a frequency glide was presented to a user which was partially masked by

a broadband frequency noise (see Section2.3.2), participants would identify one auditory stream, with the

tone sequence continuing through the noise; instead of two tone sequences separated by a broadband noise.

Belongingness

This is an important property where each component can form part of only one stream at any one time

[150]. It is analogous with the visual illusion of the vase and face. In this illusion it is possible to see either

a vase, or the profile of two faces, however it is impossible to see both at the same time (see Figure2.9 for

an example). In this property the auditory system will work to resolve any conflicts to come to a stable state

[14], and having reached it, the interpretation will remain fixed until it is no longer appropriate [150]. This

may mean that when sounds are concurrently presented, components of one sound may influence those of

another and force those sounds to be inappropriately streamed when used in an Auditory Display.
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Figure 2.9: A visual example of the principle of belongingness. Whilst it is possible to see a vase or the profile of two
faces, it is difficult to see both at the same time.

Familiarity

Sounds which are familiar are likely to be picked out more easily from compound sounds. This is similar to

the way that a familiar voice will stand out more at a party from the other competing talkers and conversa-

tions [5]. Dowling [40], for example, found that the identification of melodies in an embedded sequence of

other sounds was improved dependent on participants’ prior familiarity with the melody. This indicates that

learning of sounds which need to be concurrently identified is important and may improve identification.

Articulation

There is evidence to support the conclusion that Auditory Scene Analysis requires a certain amount of

attention to operate. One example being the so called cocktail party effect [5, 134] which describes the

phenomenon where guests at parties are able to selectively attend to different simultaneously occurring

conversations (auditory streams), and switch between them based on the amount of attention given, although

other factors such as those described in the previous section also have an impact. van Noorden [139] as

described earlier, investigated the effect of tempo and frequency separation on tonal sequences. In his

experiments participants were played a sequence of tones, which were modified in terms of the difference

between their frequencies, and the repetition rate of the tones (tempo). Participants were asked two different

questions. One question asked them to indicate when they could no longer hear the tonal sequence as a

coherent stream, and another question which asked participants to indicate when they could include all of

the tones in the same auditory stream. A graph highlighting his results is shown in Figure2.10.

van Noorden found two limits in his experimental work which he termed the temporal coherence bound-

ary (TCB), which is the limit above which it was not possible for participants to hear the tonal sequence as

a single stream, and the fission boundary (FB), below which participants were unable to separate the tonal

sequence into separate streams. The area between these boundaries allowed participants to hear either one

or two streams dependent on the attention given. van Noorden’s work also shows that if the sound sources
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Figure 2.10:A graphical illustration of the role of attention in the work of van Noorden. The graph shows that there are
two regions where the tone sequences are too different or similar to be able to be separated. However, there is a large
area in which participants could apply attention to hear either precept. Slightly modified from van Noorden [139].

are sufficiently similar or different, the effect will be so strong that participants will not be able, even when

trying, to control how the auditory scene is interpreted. This indicates that if sounds which are concurrently

presented are desired to be streamed separately, incorporating the maximum differences between the differ-

ent sounds will increase the streaming effect and listeners will require less attention to separate the different

auditory sources.

2.6.3 Other Issues with Auditory Scene Analysis

Whilst all research pertaining to ASA can be fitted into one of the gestalt categories previously mentioned,

and as such modifications along those dimensions will affect the perception of sound, there is still no clear

understanding as to the interaction of different auditory features in the creation of an auditory stream. Do

small changes to sound along some dimension dominate over larger changes in some other dimension?

In many respects, the factors influencing ASA are dynamic, each exerting a gravitational like influence

to pull an auditory scene into a reasonably consistent interpretation. There is therefore no definitive rule

book which will take an auditory scene and determine how it will be perceived. This creates problems for

auditory display designers who may wish to play multiple concurrent sounds for a user to interpret, as it is

difficult to understand how the sounds will interact together.

In addition, most ASA research is undertaken on objectively measurable sound dimensions such as

frequency (see Section2.2). When higher order sound dimensions are used, these tend to be limited in

some way, e.g. Singh [129] used sounds with a varying number of harmonics to investigate the impact of
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timbre in stream segregation. Therefore it is not possible to directly apply such ASA research to sounds

with richer perceptual attributes (see Section2.3) and assume that the same effect will exist. The influence

of such features must be explicitly determined.

Because of these issues ASA can not be arbitrarily applied to sounds in order to influence their stream-

ing, and as will be shown in Chapter6, the sounds whose streaming is to be influenced may not allow such

arbitrary application anyway. ASA research does however offer a framework to understand interactions be-

tween sounds, and to consider how the streaming of specific sounds can be influenced. This is particularly

important when concurrently presented sounds are used as part of an Auditory Display since, as will be

described in the next chapter, such Auditory Displays incorporate a mapping between sounds and the data

they represent. If each sound is not placed into a separate stream by the ASA system, then it may become

very difficult to extract the information encoded in the sounds. This, as will be discussed in Chapter4, is a

specific problem for Earcons.

2.7 Conclusions

In this chapter, sound and its interpretation by the human auditory system has been discussed. The objective

physical components (frequency, amplitude etc.) from which sound is generated have been described. The

interpretation of sounds by the human auditory system, which leads to further more subjective qualities of

sound such as timbre, pitch etc. has been discussed. How the physical and subjective properties of sound

relate, which is important in the context of this thesis in order to understand how research on concurrent

sounds can be applied to improve concurrent earcon identification, has been discussed. The localisation of

sound sources, and how the cues which allow this can be synthesised to create virtual acoustic displays has

been described. The limitations of such virtual displays have also been discussed. Finally, the interactions

which can occur between sounds when more than one is concurrently presented have been discussed. Un-

derstanding these issues is important as this thesis investigates the identification of concurrently presented

earcons. Earcons are built from the attributes of sound discussed in Section2.3, and due to their similarity

along dimensions of pitch, timbre etc., and the discussion of Auditory Scene Analysis from Section2.6, are

likely to be streamed in an undesirable way when concurrently presented. The thesis will use the work on

ASA and spatialisation, to redesign and present the earcons to encourage them to stream in more desirable

ways. The discussions of this chapter allows for the understanding of the novel work undertaken in this

thesis (the understanding and improvement in identification of concurrently presented earcons), as well as

the its limitations. The following chapter demonstrates how the lower level auditory features of this chap-

ter can, and have, been used to create “auditory displays” which can effectively communicate information

through the medium of sound.
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Chapter 3

Auditory Display

3.1 What is an Auditory Display?

In the previous chapter what sound is and how it is interpreted by the human auditory system was outlined.

In this chapter, how such knowledge can be exploited to create auditory displays will be discussed.

Unfortunately, there is no explicit definition of an auditory display. However, for the purposes of this

thesis, and based on the papers that have been published as part of the International Conference on Audi-

tory Display (ICAD) [65], an auditory display can be considered to be the use of sound to communicate

information about the state of an application or computing device to a user. Such displays have also been

called auditory interfaces [54]. In the definition used here auditory displays comprise only of the use of

sound to communicate from the computing device to the user. This thesis defines auditory interfaces to be

a superclass of auditory displays which use sound (mainly through speech) to communicate from the user

to the device (e.g. voice controlled car navigation systems [112]).

In this chapter advantages and disadvantages of using auditory displays both in isolation, and in addition

to visual displays will be outlined. The major techniques by which data can be encoded into sound will be

discussed, followed by the specific advantages of using spatialised sound (see Section2.4) as part of an

auditory display.

3.2 Advantages and Disadvantages of Auditory Display

3.2.1 Advantages of Auditory Display

There are several reasons why the inclusion of sound to communicate data in a computer interface is bene-

ficial both with and without a visual interface. These reasons are outlined in the following sections.

Eyes Free Displays

One situation where there are advantages in using an auditory display, is as part of an interface for eyes busy

situations, which require eyes free displays. In such situations the user is engaged in another important task

whilst interacting with the computing device. Operating theatres, factory floors [68], operating controls
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on a car dashboard whilst driving the car [140], or in aircraft cockpits where pilots may not have sufficient

visual ability to both monitor all of their instruments as well as concentrating on flying the plane [96], are all

examples of situations where the computing task is important but cannot demand the user’s full attention.

In many respects designing interfaces for such situations poses similar problems to those of providing

interfaces for the visually impaired (see next section), and hence auditory displays have similar advantages

when used in such situations. As Newell [96] points out“a particular person’s capabilities are specified to

a substantial degree by the environment within which he or she has to operate.”.

Whilst there are several situations in which auditory displays have been applied to eyes busy situations,

one of the major areas of current research is the application of auditory displays to mobile computing

devices such as PDA’s (Personal Digital Assistants) and mobile telephones. When using such devices the

user will be involved in activities which require a high demand of visual attention, such as walking, avoiding

pedestrians, street furniture etc., which will be much more important than the computing task, and hence

leave a limited amount of visual attention that can be used on the computing task [62]. These demands

can be reduced by an auditory display which can allow for information presentation to be moved from the

visual to the aural domain, both reducing the demands on the users’ visual attention, as well as increasing

the overall display space available on the device. Several systems have incorporated auditory displays into

the designs for mobile devices. Sawhney and Schmandt [124], developed an audio based diary notification

system (see Section3.4). Mynattet al. [94, 93], developed a status information system which used audio,

as well as mobile tracking technologies to provide contextual information about other users. For example,

if a user walked past an empty office they would be provided with an auditory cue to indicate how long that

person had been out of their office. Using auditory cues in this way instead of visual cues allows the user to

avoid interrupting their main walking task (by slowing down, due to needing to monitor the environment).

Unfortunately there has been little empirical evaluation on such devices to determine the actual reduction

on the user’s visual attention they provide.

One study which has empirically investigated the use of sound on mobile devices was undertaken by

Brewster [20]. He investigated how the addition of sound to a simple number entry task on a PDA keypad

improved its usability. Simple sounds were used to indicate whether a button had been successfully pressed

or not, and participants had to key in numbers whilst walking a predefined route. Brewster identified that

the addition of sounds to this task allowed for significantly more numbers to be successfully entered by

participants. Additionally, the size of the buttons on the visual display could be reduced when sounds were

presented without a significant drop in performance. This indicates that in cases where sound is used in

addition to a visual display it may allow more efficient use of that visual display to be achieved, which

would be especially important when the visual display resources are limited. Brewster also found that when

sounds were not present, the task was significantly more annoying than when sounds were present.
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Orientation in Information

One feature of audio is its omnipresent quality. That is, unlike in a visual display were we can avoid looking

at the display, we cannot “shut our ears” to avoid listening to an auditory display [68]. This makes audio

advantageous as we may hear information before seeing it and thus use it to guide our eyes, or be able to

“mark” interesting data in a large information space with an auditory source, which can be easily referred

to whilst looking at some other area of the space [69]. The ability to encode the spatial location of a sound

(see Section2.5), allows a user’s understanding of space to be exploited to help orientation in both real

and virtual environments. Holland, Morse and Gedenryd [62], developed an audio GPS (global positioning

system) to provide orientation and location information in real world environments. In many environments

where GPS is used it may clearly be unsafe to look at a visual display, and hence audio is better suited.

They found that the auditory display was useful at providing course bearing information, allowing the user

to advance consistently in the correct direction without needing to avert their eyes from the terrain to look

at a visual display.

Interfaces for Visually Impaired Users

The major way with which computing devices communicate with us is visually, through a visual display unit

(VDU). This presents problems for blind and visually impaired people of which there are approximately

11.4 million currently resident in the United States (US) [121], and 2 million in the United Kingdom (UK)

[120]. Auditory displays present a potential way for such people to interact with computers. Screen reader

systems such as JAWS [49], can read information that is presented on the screen to the user, however such

systems work with predominantly textual data. Mercator [91, 43] developed by Mynatt and colleagues,

mapped the structure of a visual windowing interface, e.g. windows, menus etc., to a hierarchical structure,

with windows at the top of the hierarchy, moving down to menus for those windows, entries in the menus

etc, at lower levels in the hierarchy. Whilst speech was used, other forms of audio could also be used to

present information about the current point in the hierarchy to the users. Other research has investigated

how specific components of graphical displays can be made accessible to the visually impaired such as line

graphs [76] (described further in Section3.3.1), or with mathematic equations, where even small misin-

terpretations in the presentation of information can have a serious impact on the meaning of the equation

[42].

Alerting and Alarms

Possibly the most common use of auditory displays is to alert users to problems or undesirable situations

quickly. Because the ears, as already mentioned are omni-directional, the use of an auditory display to

alert a user to problems is in many cases more suitable than indicating problems visually. When presenting

problems visually the user might not be able to constantly monitor a visual display to identify problems,
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when performing surgery or operating plant machinery for example. This is a particular issue if the alarm

indicates a critical issue which requires immediate attention, such as a heart rate monitor detecting that

the patient’s heart has stopped [45]. Guidelines for the design of warnings for use in intensive care units

have been developed by Patterson, Edworthy and Shailer [108]. Amongst their recommendations were that

sounds should repeat and get louder if the equipment was not attended to, as well as having an increasing

gap between repetitions of the alarm sound increasing from 1-2 seconds up to 4 seconds to allow time for

users to process the alarm messages.

3.2.2 Disadvantages with Auditory Displays

Whilst auditory displays have many advantages, they also suffer from various disadvantages that need to be

considered when using them in practice. Some of these disadvantages taken from Kramer [68] are outlined

below.

Low Spatial Fidelity

Whilst in a graphical computer display it is possible to present multiple concurrent applications close to-

gether and allow users to rapidly switch their attention between them, doing so in an auditory display is

much more difficult. As already discussed in Section2.4, whilst it is possible to discriminate that two

sounds originate in different spatial locations when those sounds are separated by one degree in the az-

imuthal plane [88], this assumes that “free field” listening, not incorporating a synthetic auditory environ-

ment using a generalised head related transfer function (GHRTF) as might be used in an auditory display

(see Section3.4). When sounds are concurrently presented, the degree of spatial separation required in-

creases. The degree of separation required is also dependent on the similarity of the sounds used [10].

This disadvantage can best be overcome by accepting the limitations of the human auditory system when

designing auditory displays. However, when using concurrent sounds as part of an auditory display it is

unclear where these limitations are, as little work or evaluation has been undertaken on auditory displays

which use concurrent audio presentation. Work is therefore required to determine where these limitations

are when sounds which would be used in an auditory display are concurrently presented.

Audio is Annoying

One of the claims made against the use of auditory displays are that they are annoying. Since as already

explained, we cannot “listen away” to an auditory display in the same way as we can look away from a

visual display, the user may become annoyed by the use of sound. However, Buxton [32] points out that we

exhibit little influence in the ambient sounds of our working environment, such as air conditioning units,

computers, telephones ringing etc. He further notes that sounds can either provide us with information and

therefore help us in our task or can impede us in our task and can be categorised as noise. Therefore in
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order to reduce the annoyance of auditory displays sounds should be designed and used where they contain

more information and less noise. This requires that auditory displays are designed effectively and that

guidelines exist for auditory display designers to do so. This, as will be shown in Chapter4, is a particular

problem with the concurrent presentation of sounds, with little empirical evaluation of displays with such

presentation being undertaken, and as such a lack of guidelines for designing concurrently present sounds

effectively.

Another related issue to the annoyance of auditory displays is the volume, or loudness (see Section

2.3.2), of the sounds used. Imagine trying to work with a noisy pneumatic drill outside your window,

communicating no other information than it exists. Patterson [106, 107] investigated problems with auditory

warnings in aircraft cockpit environments. He found that a better safe than sorry approach was applied with

warning sounds, with sounds being so loud that pilots would try to turn off any warning sound before

dealing with the situation that the sound was warning about. Patterson recommended that the loudness of

sounds should be reduced which would also reduce the annoyance of the sounds. Reducing the loudness of

sounds works well in controlled environments like aircraft cockpits, where the loudness of ambient sound

can be accurately predicted. However in other environments such as when using a mobile device, it may

be difficult to predict ambient noise and as such determine the volume of an auditory display to avoid

masking (see Section2.3.2). In order to control for this, the volume of audio should be placed under the

control of a user and the volumes of different sounds used in the auditory display should be kept as equal

as possible since higher frequency sounds are louder at given intensities than lower frequency sounds at the

same intensity (see Figure2.2from Section2.3.2) [152].

Difficulties in Presenting Absolute Data

Unless speech is used in an auditory display (see Section3.3.2), it is difficult to communicate large numbers

of absolute values due to variations in the ability of different listeners’ auditory systems. For example, as

explained in Section2.3.2less than 1% of the population have perfect pitch; meaning that they can identify

the pitch of a tone precisely without reference to any comparison tone [88]. The ability to localise sounds

also degrades dependent on where the sound is relative to the user (see Section2.4).

These interpretation issues reduce the accuracy with which data can be communicated through sound.

This problem of auditory display is best solved by accepting the limitations of the human auditory system

and taking these limitations into account when designing auditory displays [19].

Transience of Information

Because sound is defined as a waveform of varying pressure (see Section2.2), and as such is constantly

moving, sound “disappears” immediately after it has been presented [68]. This is an issue for long auditory

messages such as speech (see Section3.3.2) since human short term memory only allows 7± 2 chunks of

information to be retained for any length of time [86]. Again this issue can best be dealt with by taking it

44



Auditory Display

into account when designing auditory displays to ensure that unreasonable demands are not placed on users’

short term memory. Mitsopoulos and Edwards [87] have proposed that increasing the speed of playback of

auditory encoded information may be effective in overcoming this problem. They proposed that Auditory

Scene Analysis (ASA) could be employed in the design of user interface widgets such as checkboxes. The

speed of presentation being used to allow auditory streams to form which would provide an overview of

the state of the widgets, with lower speeds of presentation being used to provide more detailed information.

Mitsopoulos and Edwards found this an effective way to present and overview of complex user interface

widgets (such as menus) to users. Another way of overcoming the transience of information, as will be

discussed in Chapter4, is to concurrently present sounds to users, such that the need to remember large

numbers of sounds is reduced, and comparisons between multiple data presented through sound can be

better supported.

Lack of Orthogonality

Due to the subjective nature of sound, changing one attribute of sound may also cause the perception of

other attributes of a sound to change. As shown in Section2.3.2, loudness is dependent on the frequency

of a sound. Hence by changing the frequency, the loudness of the sound will also change in sympathy.

Changing the timbre will cause changes in the pitch of a sound since they are both derived in part from the

frequency. This issue further contributes to the problems of presenting absolute data mentioned. Again,

as with the problems of absolute data representation previously mentioned, lack of orthogonality must be

accepted and taken into account in the design of auditory displays [19].

3.3 Mapping Data to Sound

In the previous section the advantages and disadvantages of auditory displays were outlined. However for

an auditory display to be effective in communicating data, there must be some mapping between the data

to be communicated and the sound which is presented to the user. In the same way that icons, pictures and

text [128] can be used to encode information in visual displays, auditory displays have their own techniques

for encoding data, which have their own advantages and disadvantages. As with visual displays, there are

properties of the relationships between data and their representations that can be used to evaluate the relative

advantages and disadvantages of different mapping techniques.

Linguistic mappings use a set of rules called a grammar1 to define how symbols can be constructed,

and also how they should be interpreted. Such mappings are powerful and allow for complex messages to

be constructed and interpreted. Speech is an example of such a mapping system used in an auditory display.

Sign mappings use a cause and effect relationship between data and representation [77]. For example

1Note the term grammar as used here should not be confused with the definition from Section3.3.4and used in the remainder of

this thesis.
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smoke is a sign of fire, and more smoke indicates a bigger fire. For example Mansur’s [76] sound graphs

used increases and decreases in pitch to indicate the rise or fall of a data variable. The remaining three

mappings (Iconic, Metaphorical and Symbolic) [52] use progressively less obvious relationships between

data and their representations to communicate information. With an iconic mapping, the sound directly

reflects the properties of the world; a tapping noise for example, can be used to indicate the selection of a

folder [52]. As such the meaning of the sound is obvious in the context of use. Metaphorical mappings use

an “is like” relationship between data and sound, allowing designers to exploit users’ real world knowledge

of scenarios when there is no iconic mapping available. For example, Gaver’s SonicFinder application

(see Section3.3.3) used a metaphorical mapping between the file copy operation and the sound of water

being poured into a container. Whilst metaphoric mappings can be useful, it is important the metaphor is

familiar to the user, otherwise its usefulness will be lost. Finally symbolic mappings do not rely on any

pre-existing knowledge of mappings between data and sound, these mappings are to all extents arbitrary,

requiring users to learn the mappings between data and sound explicitly. In the following sections the main

techniques used to present information in sound as part of an auditory display will be discussed, however it

should be remembered that these techniques only represent a subset of possibilities afforded by the previous

discussion. It may be that other mappings, which have as yet not been considered in auditory displays may

help to alleviate some of the problems as discussed in the next chapter of concurrently presented sounds in

auditory display.

In auditory displays there are four main ways in which data can be encoded in sound (Sonification,

Speech, Auditory Icons and Earcons). In the remainder of this section these four techniques, their advan-

tages and disadvantages and examples of their usage will be discussed.

3.3.1 Sonification

Sonification can be defined as“a mapping of numerically represented relations in some domain under

study to relations in an acoustic domain for the purposes of interpreting, understanding, or communicating

relations in the domain under study”[125], and can be considered from the previous discussion to be a

sign system. There have been several systems which have successfully used sonification, one of the earliest

being the Geiger counter developed by Hans Geiger in the early 20th century [70]. The Geiger counter

periodically “clicks” to inform the user as to the level of radiation in the environment. The closer together

the clicks are, the greater the level of radiation. Tzelgovet al. [138] found that searching for radioactive

sources using such an auditory display was significantly faster than when a visual display was used.

One of the major research domains for sonification however, has been the presentation of graphs to both

sighted and visually impaired users. Mansur [76] pioneered the technique of using pitch to represent they

axis of a line graph and allowing the user to navigate thex axis with keys on the keyboard, such that as the

user navigated along thex axis, the pitch representing the current value on they axis would be played.

The use of such line graphs has been heavily studied [27, 144], and it has been shown that users are able
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to identify both key features of the graphs, as well as draw reasonable approximations of their shapes [28].

The use of auditory graphs has also been shown to be effective in the monitoring of stock market prices on

mobile devices, where the continually changing prices of stock could not be continuously presented on the

mobile device display [22].

Because of the temporal nature of audio, sonification allows users to get a rapid overview of data such

that they can perceive trends in a way not possible with other mapping techniques such as speech (see

Section3.3.2). However, it is difficult for users to get precise values from sonification systems. Most

sonification systems map data to the pitch of a sound since this is one of the few one-dimensional parameters

of sound. As described in Section2.3.2very few people have absolute pitch, hence most of the population

are only able to identify if a pitch is greater or lower than a comparison, and as shown by Neuhoff, Kramer

and Wayand [95], listeners may make different judgments on the size of the difference between two pitches

dependent on the first pitch being lower or higher than the second.

3.3.2 Speech

Whilst sonification is good for showing trends in large datasets, it is less useful for communicating absolute

values, and therefore different techniques are required. The most common way to do this is through speech.

Speech can either be synthesized or concatenated from audio recordings of human speakers. Synthesized

speech is very flexible as it can be created “on the fly” from a given text [133]. Concatenated speech

from human speakers is less flexible in that all of the speech must pre-exist as audio recordings to be

used, however it is generally of higher quality [133]. Speech has been used in many contexts, from screen

readers for blind and visually impaired users such as JAWS [49], to telephone enquiry systems, airline

cockpits and subway announcement systems [97]. Its popularity in these contexts is most likely due to

the meaning of the auditory messages being obvious. Unlike the other three forms of data encoding, it is

likely that the way in which the data is mapped to sound will already be understood (the user will have

been able to interpret the language used since childhood). This can mean that speech is used in cases

where other forms of auditory mapping would be better suited. As Petrieet al. [111] note on interfaces

for the visually impaired using speech,“Most interfaces for this group use synthetic speech to convey both

the contents of the application and the interface element. This is potentially confusing, a relatively slow

method to communicate information.”. Speech is also problematic for the presentation of continuous data

such as would visually be presented in a graph [153], as due to the speed of presentation available and the

transience of an auditory display (see Section3.2.2) it would be difficult to gain an overview of the data

such as would be available with sonification (see Section3.3.1), due to the time taken to present auditory

messages and the demands on short term memory that would be required.
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3.3.3 Auditory Icons

Auditory icons defined by Gaver [54] as “Everyday sounds mapped to computer events by analogy with

everyday sound-producing events”, are another popular way of mapping data to sound in an auditory dis-

play. Here everyday familiar sounds are mapped onto computer events to which there is some obvious

relationship. Auditory icons have been successfully used in several systems. Gaver [52] developed an audi-

tory interface, called Sonic Finder, to augment the graphical user interface (GUI) for the Apple Macintosh

computer, where he used various everyday sounds to express user interaction in the interface. For example,

when a folder was selected the sound of an object being struck was played, as the folder was dragged a

scraping sound was used. When copying files the sound of water being poured was used, with the pitch of

the sound indicating the amount of data copied. Whilst Gaver produced no empirical evaluation of Sonic

Finder, informal demonstrations yielded positive comments from users.

Gaver, Smith and O’Shea [55] have also investigated how auditory icons perform when they are con-

currently presented. The ARKola system simulated a cola production and bottling plant that was controlled

by two users in physically separate locations. Operators were able to control the rate of several pieces of

equipment such as the bottle capping machine, the bottle filling machine etc., as well as being able to fix

broken equipment. Producing bottles of capped cola generated sales, whereas buying raw ingredients such

as bottles, cola nuts etc., cost money. If supplies were allowed to run out or machines were run too fast

(causing, for example, the capping machine being unable to cope with the rate of filled bottles arriving and

causing bottles to be lost) profits fell. Machines breaking down also caused profit to fall, and raw materials

to be lost if the machines were not quickly fixed. Users were instructed to make as much profit as possi-

ble, as efficiently as possible. Gaver, Smith and O’Shea implemented a set of auditory icons to represent

activity and errors inside the plant. For example, the capping machine made the sound of clanking bottles

to indicate that it was operational. The rhythm, or repetition rate of the sounds, indicated the speed of the

machine. If a machine stopped or had broken down, the sound representing it would be stopped. Other

sounds were used to indicate errors where materials were being lost, e.g. running a machine too fast would

cause bottles to be lost, indicated by a breaking glass sound. Because of the number of processes involved

in the factory, several sounds (up to fourteen) could be concurrently presented. Gaver took care to ensure

that concurrent sounds were of equal loudness to avoid masking, which as stated in Section2.3.2could be

a problems when sounds are concurrently presented.

ARKola indicates that concurrently presenting auditory icons to users can be effective. No formal eval-

uation of ARKola was performed, certainly as regards the identification of concurrently presented auditory

icons, but there seem to be no adverse comments from users regarding the concurrency of audio presenta-

tion. This may seems surprising given the discussion on auditory scene analysis from Section2.6, however

as will be shown in the next section this is not as surprising as it may seem.
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Designing Auditory Icons

Whilst there have been several examples of the use of auditory icons [52, 55, 2, 43], there is comparatively

little known about how they should be designed, or what sounds should and should not be used to represent

them. Some experiments have however been undertaken by Mynatt [91], who looked at how auditory

display designers should make decisions on which sounds to use and what those sounds should represent

as auditory icons. She proposed that there were four factors which affected the usability of auditory icons.

These included the users’ ability to identify the sounds used, how well the sound mapped onto the data that

it was to represent, and the quality and other physical parameters of the sound [92]. In order for designers

to deal with such factors she proposed a methodology to follow when producing auditory icons. This

methodology recommended performing tests to have subjects identify sounds that might be used as auditory

icons, testing to determine if the mappings chosen for those auditory icons were intuitive, determining the

cohesiveness of the set of auditory icons and their mappings, and to identify any unwarranted interactions

between auditory icons if they are to be presented simultaneously. On evaluating her methodology Mynatt

observed that the ability of users to correctly identify 64 common sounds was poor, with only 13 of the

sounds reaching 80% accuracy of identification. However, many of the participants were able to identify

some aspects of the sound, e.g. the sound of a metal mailbox being closed was identified as the closing of

a filing cabinet drawer. Mynatt also found that care needed to be taken to avoid similar sounds which could

be confused with each other, for example the sound of a typewriter and a keyboard may be confused. As

Mynatt states [91], “although the sounds of a copier and printer may be quite distinct, it may be difficult to

correctly identify them when they are both used in the same interface.”. Following such guidelines means

that when concurrently presented, auditory icons will be quite dissimilar (according to Section2.6), and

thereby less likely to interfere with each other and be placed in the same auditory stream (see Section2.6).

Advantages and Disadvantages of Auditory Icons

Auditory icons as implied from their definition, are everyday sounds the meaning of which should be

intuitive and obvious in the context of their use. In terms of general mapping techniques they fall into

the iconic and metaphorical categories. Therefore it is unnecessary to learn the mapping explicitly, in the

same way as with sonification (see Section3.3.1). Auditory icons also seem to be easily used in concurrent

auditory displays such as with ARKola [55]. This can be understood in terms of Auditory Scene Analysis

(ASA) (see Section2.6), as the sounds used were very different from each other, and as Mynatt’s design

methodology states, similar sounds should not be used as auditory icons as they may be confused. That

auditory icons should behave in such a way is not surprising since they are everyday sounds, and it is

precisely these kinds of sounds our auditory system has been designed to separate [54].

Unfortunately, auditory icons do have drawbacks. Firstly, they do require an intuitive mapping (either

iconic or a good metaphor) between the sound and the datum that the sound is to represent. In some cases

this may not be possible [19]. Abstract operations such as renaming a file, or changing the font size of a
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document, are likely to prove difficult to find an appropriate sound for. Auditory icons are also difficult

to parameterise to communicate more than one bit of information since sound synthesis techniques do not

support modifying sounds along real world dimensions such as material, force of impact, etc. [98]. As

Gaver [53] notes, standard synthesis techniques“do not make it easy to change a sound from indicating

a large wooden object, for instance, to one specifying a small metal one.”. In addition, when a sound is

changed in such a way it may not be clear what that modification relates too, thereby forcing users to learn

the mapping between sound and data. For example, what is the intuitive difference between a metal hitting

sound and a wooden hitting sound when used in a computer interface?

3.3.4 Earcons

Earcons, as defined by Blattneret al. [13], are “non-verbal audio messages used in the user-computer

interface to provide information to the user about some computer object, operation, or interaction”. Brew-

ster [16] further refines this definition and defines earcons as“abstract, synthetic tones that can be used

in structured combinations to create auditory messages”. Earcons can be used in all of the places where

auditory icons can be used. However, whereas auditory icons rely on intuitive relationships between a data

item and the sound used to represent it, earcons use an abstract mapping between a musical like sound and

data. This gives earcons the advantage of being able to represent any event, object, or interaction in a human

computer interface, the disadvantage being that the association between the sound and what it represents

(unlike auditory icons) must, at least initially, be explicitly learned. Earcons being in the symbolic, rather

than iconic category of mapping. There are four types of earcon (one-element, compound, hierarchical and

transformational) [13] which are described below.

One-Element Earcons

One-element earcons are the simplest type and can be used to communicate only one bit of information.

These earcons may be only a single pitch, or have rhythmic qualities. In either case the one-element earcon,

unlike the other three types, cannot be further decomposed to yield more information [13]. In many ways

one-element earcons are like auditory icons except they use abstract sounds whose meaning must be learned

as opposed to the intuitive meaning of auditory icons. Such earcons are in many ways analogous to the

“new text message arrival” sound on mobile telephones. Whilst there may be different sounds to indicate

messages from different types of people, work, home etc., there is no structured relationship between the

sounds, each is unique and its meaning must be individually learned. For large datasets, or in cases where

more than one parameter of the data must be communicated, the number of sounds, and mappings of data

to those sounds that must be learned, could become extremely large. The following three types of earcon

attempt to provide solutions to such situations.
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Compound Earcons

Compound earcons are formed by concatenating one-element, or any other form of earcon, together to

form more meaningful messages. In many ways they are analogous to forming a sentence out of words,

where one-element earcons represent words and compound earcons represent phrases. For example, three

one-element earcons representing “save”, “open” and “file” can form compound earcons by being played

in combinations to form earcons for the “open file” and “save file” operations [24].

When using compound earcons it is important to consider earcon length as the messages can easily

become too long to be usable. Brewster [16], who has performed extensive work on the usability of both

compound and hierarchical earcons, found that even short compound earcons such as those mentioned

earlier could take up to 2.6 seconds to be played, which may be too long in many situations. Brewster,

Wright and Edwards [26] showed that the use of compound parallel earcons, where each earcon part is

played concurrently in opposite ears, could be effective in reducing the time taken to play compound earcons

without reducing their intelligibility (see Section4.2.2).

Hierarchical Earcons

Hierarchical earcons are constructed around a “grammar”, where each earcon is a node in a tree, and each

node inherits all of the properties of the nodes above it in the tree. Hence an un-pitched rhythm might

represent an error, the next level will alter the pitch of that rhythm to represent the type of error etc. This is

summarised in Figure3.1, taken from Blattneret al. [13].

x xx

Error

click

x xx

click sine

Operating System Error

x xx

click sine

Execution Error

x xx

triangleclick sine

Underflow

x xx

File Unknown

click sine sawtooth

x xx

Overflow

sineclick square

x xx

sineclick square

Illegal Device

x
= unpitched sound

Figure 3.1: An overview of the “grammar” used to construct a set of hierarchical earcons representing computer error
messages. Taken from Blattner et al. [13].

Work by Lepl̂atre and Brewster [72, 73] has shown that hierarchical earcons can be used to significantly

improve interaction in mobile telephone based menus. Such menus are commonly difficult to interact with

due to the lack of context over where a user is in the menu structure at a particular time [73]. Leplâtre
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and Brewster implemented a set of hierarchical earcons to deal with this problem, and evaluated mobile

telephone tasks on a simulated mobile telephone, comparing a visual only menu condition and a visual

plus auditory menu condition, which used earcons as well as the visual interface to provide the users with

context in the menu. They found that the number of keystrokes required to successfully complete a task

was significantly reduced in the visual plus auditory menu condition over the visual only menu condition.

Unfortunately, due to technical constraints they did not evaluate the visual plus auditory menu condition on

a real mobile device to determine the impact of the earcons in a more ecologically valid context. However,

their work does indicate, as discussed in Section3.2.1, that sound can be a useful addition to devices where

visual display space is limited.

Transformational Earcons

Transformational earcons are similar to hierarchical earcons in that they are constructed around a “gram-

mar”, where there exists a consistent set of structured symbolic mappings from individual data parameters

(such as file type) to individual sound parameters (such as timbre). Specific values of data parameters (e.g.

a paint file) are then mapped to specific values of the corresponding auditory attribute (e.g. a piano timbre).

See Section8.3.5for an example grammar of transformational earcons. Due to the consistency in the map-

pings used, a relatively large set of complex auditory messages can be represented by a relatively small set

of rules making learning of those messages easier for users to undertake. This is advantageous over having

to learn each individual mapping between data and sound explicitly, such as with compound earcons (see

Section3.3.4); it is only necessary to learn the rules by which earcons are constructed and the auditory

parameters used, in order to understand the earcons, unlike one-element earcons where each data item has

its own sound, without any structured relationship between all of the sounds and the data they represent. In

the remainder of this thesis, wherever the term grammar is used it shall refer to such a system and should

not be confused with more complex linguistic definitions such as used in speech. Transformational earcons

have been less studied, however they share many similarities with hierarchical earcons, and as Blattneret

al. [13] note, their principles may be used to shorten hierarchical earcons for “expert users”. How this is

done is shown in Figure3.2, taken from Blattneret al. [13]. Because earcons are constructed around a

grammar, and it is that which provides their ease of learning, earcons constructed from the same grammar

may be quite similar to each other according to Section2.6 (sharing the same timbre, pitch, rhythm etc.),

and as such when concurrently presented may interfere with each other in a way that auditory icons appear

not to. Recall from Section3.3.3, that auditory icons used in the same auditory display should be different

from each other, and as such when concurrently presented are more likely to stream correctly (see Section

2.6).
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Figure 3.2: A shortening of hierarchical earcons from Figure3.1, showing the similarities between the transformational
and hierarchical earcon types. Taken from Blattner et al. [13].

Designing Earcons

In the previous sections the various different kinds of earcons that can be used to convey data in an auditory

display were outlined. However, how can earcons be designed to accurately and unambiguously convey

the information that is encoded in them to the user? For example, how different do two timbres need to

be in order to be identifiable as representing different attributes, or how much should two pitches differ in

order not to be confused? Brewster [16] performed various experiments to identify how understandable

earcons were and how they could be better designed. Although all of his work dealt with the compound

and hierarchical earcon types, it is reasonable to consider it applicable to the two other earcon types since,

compound earcons are generally formed from one-element earcons and, as already stated in Section3.3.4,

transformational earcons are similar to hierarchical earcons. Brewster’s work lead to a set of guidelines [25]

for how auditory attributes should be used to develop earcons which are more easily understood by users.

These guidelines are outlined in Table3.1.

Advantages and Disadvantages of Earcons

Earcons have been shown to be useful in communicating the same data as auditory icons [23, 21, 17] as part

of an auditory display. However, where as auditory icons have iconic or metaphorical mappings which rely

on intuitive links between data and everyday sounds, earcons use symbolic mappings which require explicit

learning.

Brewster [19], has proposed that auditory icons and earcons are at the extreme ends of a continuum from

representational mappings to abstract mappings. This is consistent with the discussion of metaphorical,
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Timbre Musical instrument timbres that are subjectively easy to tell apart should be used.
For example use MIDI patches brass and organ instead of brass 1 and brass 2. It is
important that care is taken so that the timbres chosen can play at the registers chosen,
since not all instruments can play all pitches.

Rhythm Rhythms being used should be as different as possible. Using different numbers of
notes can be used to do this effectively. However care must be taken to ensure that
earcons are short enough to keep up with interactions in a computer interface. In order
to ensure this, rhythms with more than six notes should not be used. Using tempo with
rhythm is another effective way to improve the differentiation of earcons.

Pitch The use of complex intra-earcon pitch structures can be effective in differentiating
earcons if used with another attribute such as rhythm.

Register If absolute identification of register is to be made then it should be used with care,
with gross differences between the registers used.

Table 3.1: Table describing the main guidelines of earcon design from Brewster, Wright and Edwards (BWE) [25].

iconic and symbolic mappings from Section3.3. Figure3.3shows how earcons and auditory icons can be

considered in terms of these mapping techniques.

Given the clear relationship between auditory icons and earcons the advantages of earcons are really

the disadvantages of auditory icons. Earcons are easy to create and parameterise, it is relatively easy to use

tools to create and manipulate earcons along musical dimensions such as pitch and timbre, unlike auditory

icons which require to be manipulated along the dimensions of natural sounds [53]. Since the relationship

between the data to be communicated and the sound is abstract as opposed to representational, earcons

can represent any data that may be required for them to communicate, as opposed to auditory icons which

require an intuitive link between the data and the sound used to represent that data.

The disadvantages of earcons are also the advantages of auditory icons. Because the mapping between

earcons and the data they represent is abstract, it must be learned. This requires the user to invest time to

learn the mapping, something which is not required with auditory icons, where the relationship between

the data and the sound is intuitive. However as indicated by Figure3.3 it may be possible to use more

metaphorical earcons, for example using a melody which decreases in loudness to indicate file deletion

[52]. Such earcons have not yet been explicitly researched so it remains unclear what their effectiveness

would be. Also, as discussed in Section3.3.3, auditory icons can easily be used when more than one is

concurrently presented. As will be shown in Chapter4, this is problematic for earcons. Because of this

complementary relationship between earcons and auditory icons it is likely that designers may wish to use

both as part of an auditory display.

3.4 Use of 3D Sound in Auditory Display

In Section3.3 the main four techniques (auditory icons, speech, sonification and earcons) which can be

used to map data to sound in an auditory display were introduced. In this section spatialised audio, which

has recently become available to auditory display designers, will be discussed. Spatialised or 3D sound has
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Figure 3.3: A diagrammatic representation of the mapping techniques that can be used between data and sound for
both auditory icons and earcons.

already been outlined in Section2.5; in this section the use of such technologies to create auditory displays

will be explored.

There are two main ways in which the use of spatial audio can provide advantages in auditory displays.

Firstly, the ability to position sounds in space can be used to encode a further parameter of data. Hence

instead of using just melody, timbre, pitch etc., to encode information, the position of the sound can also

be used [146]. This has advantages since the spatial location of objects is remembered even if there is no

explicit determination to do so, such information tends to be learned automatically [75].

Walkeret al. [143] compared the recall of appointments in a simple diary when that diary was presented

either visually, or as synthesised speech with the spatial position that the speech was presented at encoding

the time of the appointment. In the spatial audio condition, a 2D audio plane (only azimuth was used, all

sounds had the same elevation) located laterally with the user’s ears was mapped to a clock face metaphor,

twelve o’clock being in front of the user, six o’clock behind the user and nine and three o’clock to the left

and right of the user. In the visual condition, each day’s appointments were presented as text which the

user could scroll through using a standard scroll bar. Participants were presented with a day’s appointments

(one each at twelve, three, six and nine o’clock). Participants were asked to provide both relative (“Did A

occur before or after B?”) and absolute (“What occurred at X time?”), information about the appointments.

In the spatial audio condition each day’s appointments were presented only once, in the visual condition

participants were given eight seconds to scroll through the display (eight seconds being about the same time

as the audio took to be presented).

Walker et al. found that the audio condition significantly improved the recall of both absolute and

relative appointments, and many of the participants commented that the time of appointments came “for

free” in the audio condition due to the spatial encoding of appointment time. Whilst the use of spatial

location of an auditory source to encode data about it can be useful, in Walkeret al’s. system it is unclear
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how performance would be affected by the incorporation of more fine grained appointments, due to the low

fidelity of spatial position encoding at certain positions around the head (see Section2.4.2). Additionally,

the amount of time taken to present the diary (eight seconds) may be too long and frustrating to users,

especially if a user wants to be reminded what they are doing at 9PM and doesn’t want to listen to all of

the previous appointments first. If entries in the diary were concurrently presented this might reduce such

problems.

The other advantage of spatial audio in auditory displays is related, and afforded by the first advantage.

As has been shown in Section2.6, an important part of Auditory Scene Analysis [14], is that two sounds

coming from different places are more easily segregated by the auditory system than two sounds which

originate from the same spatial location. This means that when using a spatial auditory display, it is possible

to simultaneously present auditory information to the user and therefore increase the bandwidth of the

auditory channel [146]. Whilst some systems, such as ARKola [55], have used concurrent sounds in a non-

spatialised environment, such systems use auditory icons, which by design are dissimilar [91] according to

the taxonomy of Section2.6. Spatialised presentation has been shown to assist identification of concurrently

presented sounds which may be much more similar than auditory icons.

Cohen and Ludwig [34] proposed that spatialisation could be used to effectively present both an audio

implementation of a graphical user interface and to present a conference calling system. They noted that

spatialisation could help to separate concurrently presented sounds and proposed a number of gestures that

could be used to grab and move auditory sources in space to increase the separation between concurrent

sounds, which should improve the identification of the sounds. Unfortunately no evaluation of these systems

was carried out to determine their effectiveness.

Brewster, Wright and Edwards [26], who identified that compound earcons (see Section3.3.4), which

can take a long time to be played to a user, could be split such that each component earcon from which

the compound earcon was composed could be presented concurrently to opposite ears. This reduced the

time taken for the earcons to be presented, and allowed them to more effectively keep pace with events in

the computer interface. These parallel earcons were evaluated by Brewster, Wright and Edwards [26] who

found that although information was being presented to the user at a faster rate, identification of earcons

was not significantly impaired when compared to sequentially presented compound earcons. Although

Brewster, Wright and Edwards used the extremities of spatialisation, with one sound being presented to

each ear, they did show that concurrent presentation of auditory information using spatial separation can be

effective. Unfortunately, they did not investigate if parallel earcons significantly increased the demands on

the users who were identifying them, which may be the case, due to an increase in the presentation rate of

the data.

Finally of course, it is possible to combine both advantages of spatial audio, such that the spatial location

of a sound encodes some data attribute, and there is more than one sound concurrently presented. Kobayashi

and Schmandt [67] developed a browsing tool for speech based audio called Dynamic Soundscape. As with
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the work by Walker and Brewster [142], azimuth was used to encode a data parameter, in this case the

current time counter of a speech based audio recording. As the recording was played it moved around the

listener’s head 1.2o every second. The sound files used by the system were broken down into topics, as

might be the case in news reports, which assisted the user in mapping a portion of the recording to a specific

location (see Figure3.4).

Figure 3.4: An illustration of Dynamic Soundscape showing how audio was mapped to time. Taken from Kobayashi
and Schmandt [67].

If a listener found a topic that they were particularly interested in, or later wished to review information

contained in a prior topic, they could use a knob or touchpad to select that topic, whereupon a new “speaker”

would be spawned at that location (if one did not already exist) and would start to “read” the recording from

that location. If an additional speaker already existed, this speaker could be selected, or “grabbed”, by

the user, and moved to the appropriate location. The original speaker would continue to carry on albeit

at a reduced loudness (see Figure3.5), allowing the user to monitor that speaker for any new relevant

information by making use of the cocktail party effect discussed in Section2.6.

Whilst Kobayashi and Schmandt performed an informal evaluation of their system in terms of the best

way to select speakers, and how fast the audio should move around the user, they performed no evaluation

studies of the usefulness of their system in terms of its suitability for those who need to browse large

collections of speech based audio, such as those who produce transcripts from taped conversations etc.

Whilst the previous systems have dealt with the use of only one type of audio being concurrently pre-

sented at a time (e.g. speech, earcons etc.), it is possible to successfully combine different types of sounds

into a spatialised auditory display as shown by Sawhney and Schmandt’s Nomadic Radio system [123, 124].

Nomadic radio was a wearable computing system which acted as a personal notification system, informing

the user of upcoming appointments, incoming email or text messages, as well as news items. As well as

an auditory display, users interacted with the device through speech. Nomadic radio, as with the work de-
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Figure 3.5: An illustration of Dynamic Soundscape showing a new speaker, the original speaker is represented as grey
to indicate that its volume has been reduced. Taken from Kobayashi and Schmandt [67].

scribed previously on Walkeret al’s spatialised diary [141], used a clock metaphor encoded by azimuth to

denote the time of arrival of messages as well as the position to play upcoming appointments from. When

the system was activated there was the constant sound of running water at a low volume, when mail or other

messages arrived they were represented as faster flowing water, the length of time the water flowed faster,

the greater the amount of data being downloaded (and hence the length of the message). When messages

arrived, the system used rules which it had been both explicitly told by the user as well as those learned from

past experience, to determine how to notify the user of the incoming message. Depending on the priority of

an arriving email message, the system could categorise the message and play an auditory cue (assigned by

the user) dependent on the message’s category. If the message was rated as important, or the user was not

involved in an important task, nomadic radio could provide a spoken summary of the first 100 characters of

the message [123]. Similar techniques existed for other types of messages, a telephone ringing for example,

was used for currently low importance voice messages, and a short excerpt of a radio station’s signature

tune “jingle” was used to indicate a news summary. If a message was determined to be important enough

by the user they could elect to play it in full.

Unfortunately, as with most systems which present concurrent data via a spatialised auditory display,

Nomadic Radio was not fully evaluated. Whilst some informal evaluations on such systems have shown a

positive user reaction, such studies do not allow for the extraction of design guidelines for the sounds used.

This makes it difficult for designers to design systems which exploit such advantages of spatialised sound

presentation. It is unclear therefore how many sounds can be presented, or how far apart those sounds need

to be. How similar can those sounds be and can they be redesigned to improve identification. Without

access to such information, using concurrent spatialised sound presentation may simply lead to an increase
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in the annoyance of the display (see Section3.2.2). Lack of guidance in exploiting the concurrency of

spatialised environments is unfortunately, as will be shown in the next chapter, a problem with all forms of

concurrent auditory display.

3.5 Conclusions

This chapter has shown how research on sound introduced in Chapter2 can be used to construct information

displays that use sound to effectively communicate information to a user. Such auditory displays can be

used to create effective user interfaces for mobile environments and for situations where users are visually

impaired in some way, either temporarily such as with driving [140] or more permanently such as with

blindness [41]. They can also be used to orient users in information and provide warning alerts and alarms

[62, 108] . However, such auditory displays suffer several problems, some, such as presenting absolute data

can be overcome by accepting such limitations in the design of audio. Others such as transience of data,

may be overcome by the concurrent presentation of sound, allowing a reduction of the demands on users

to remember information. Another more recent feature is synthetic spatialised sound presentation, which

allows for the location of a sound to be used to map a data parameter, as well as increase the amount of

information to a user, which may assist in the effective presentation of concurrent sound. Whilst systems

which use spatialisation to increase the data presented to users have generally been shown to be useful, there

has been very little empirical evaluation carried out on them. This makes it difficult to extract guidelines for

future designers to build such displays and avoid problems with concurrently presented sounds, as discussed

in Section2.6. As will be shown in the next chapter, there is a great lack of design guidelines for concurrent

auditory displays in general, which is likely to be a bigger problem for sounds which are similar to each

other, such as earcons, even if they are spatially presented. If design guidelines for such displays are not

identified, displays which use such concurrent presentation are likely to be annoying and of little use to

users.
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Chapter 4

Issues Involving Concurrent Audio

Presentation

4.1 Introduction

The previous chapter investigated how sound could be used in human computer interfaces to effectively

communicate information to users. In this chapter a smaller aspect of such auditory displays will be inves-

tigated: concurrent presentation of multiple auditory sources. This has already been mentioned in Chapter

3 through systems such as the personal messaging centre, Nomadic Radio [124], and the ARKola [52] bot-

tling plant simulation. For the purposes of this thesis however, it is necessary to understand more about why

the presentation of multiple audio sources may be useful, as well as some of the associated problems.

4.2 Why use Concurrent Audio Presentation?

4.2.1 Increased Bandwidth of Communication

One advantage of concurrent auditory displays is their ability to increase the rate of information which

can be presented to a user. This means that information can be pertinently delivered, without having to

be delayed until other auditory messages have finished playing. Whilst auditory displays can be designed

to associate a priority to each message delivered to a user [104], there may be several instances where

messages are of equal importance to the system, and it is up to the user to determine which message is of

greatest importance. Several systems such as the ARKola [55] bottling plant simulator, and Nomadic Radio

[123, 124], have used this technique to allow the user, rather than the system, to determine what data are

and are not important, and therefore what should be attended to. Consider for example, the “diary in the

sky” system by Walkeret al. [143] (described in Section3.4), which used a spatialised audio environment

to encode the times of certain diary appointments. Sounds were consecutively presented according to their

time of appointment. If a user remembered that they had something important scheduled at 9PM, but

could not remember what it was, they would need to consecutively listen to all of the appointments up to

9PM before reaching the information required, which may take a long time (around eight seconds for four
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appointments). If all of the diary entries were presented in parallel, the user could make use of the spatial

proximity and articulation features of Auditory Scene Analysis (see Section2.6.2), to “tune in” to the 9PM

appointment, reducing the time taken to locate the required information.

Such an application of concurrently presented audio may be of specific use with mobile computing

interfaces which, as described in Section3.2.1are claimed to be a key application area for auditory displays.

Mobile devices suffer from both small screen displays [142], and that users may not be able to constantly

attend to that visual display in the same way as with a desktop computer [62]. Concurrent audio may allow

for more information to be presented through audio and thus relieve some of the demands on a user’s visual

resource.

4.2.2 Faster Information Presentation

It may be possible for some types of sound used in auditory displays to be split into chunks, and then for

those chunks to be presented in random order without having any impact on the meaning of the message to

be communicated. If this is possible, chunks of the sound could be presented to the user in parallel, thereby

decreasing the presentation time of the information. Such presentations may be advantageous if long sounds

are used and their presentation must keep pace with a user’s interaction in a computer interface.

Brewster, Wright and Edwards [26], as discussed in Section3.4, found that such a technique could

be successfully employed to shorten the presentation time of compound earcons. They identified that for

compound earcons which contained only two component earcons, playing each component in different

ears, as well as introducing an octave difference in the registers (one component’s pitch was approximately

double that of the other’s [116]) each of the component earcons was played in, did not significantly impact

participants’ ability to identify the earcons. Such presentation did however half the time taken to present

the earcons to users. Unfortunately they did not investigate the impact of such presentation on the cognitive

demands of users, or expand their work to earcons with more than two parts, which would be much more

likely to require a shortening to their presentation time.

4.2.3 Browsing Multiple Data

One of the drawbacks of auditory displays is their temporal nature (see Section3.2.2). This can make

it difficult to make comparisons between multiple data in an auditory display, for example determining

relationships between two sonified graphs [27]. Concurrently presenting data through audio however, has

been shown to be an effective way to overcome the temporal issues of sound, and thus allows comparisons

between data to be made more easily. Comparing data through sound in such a way is akin to the way

in which we interpret the real world, and as such is a natural task to perform in an auditory display. As

Blattner, Papp and Gilnert [13] note “Our awareness and comprehension of the auditory world around

us for the most part is done in parallel”. In addition, the cocktail party effect [5, 134] (see Section2.6)
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has long been an interesting problem for psychologists seeking to explain how the human auditory system

works.

Brown et al. [27] investigated if users could identify key features of two concurrently presented sound

graphs [76]. Graphs were constructed by mapping the y-axis to the musical pitch of a MIDI acoustic grand

piano timbre, and using cursor keys to navigate along the x-axis. As a user moved along the x-axis, the

pitch representing the appropriate y-axis value was played. Each graph was presented to different ears,

to avoid the sounds perceptually fusing together (see Section2.6). Brown et al. found in comparison to

serial presentation, where each graph was presented individually, that whilst concurrently presenting sound

graphs did not have a significant effect on the accuracy of responses, it did significantly reduce the time

taken to find intersection points between the graphs.

Fernstr̈om and Bannon [46] created a system to allow browsing in the Fleischmann Collection of tra-

ditional Irish music. Their Sonic Browser had a visual interface which allowed each musical composition

to be graphically laid out in a starfield like display [1]. This allowed users to map the x and y axes of the

visualisation to different data parameters. As a cursor was moved across the visualisation, the eight nearest

musical compositions would be concurrently played in representative spatial locations around the user’s

head. The use of spatialisation, and the variations between the musical compositions, helping to avoid them

being placed in the same auditory stream [14]. Unfortunately, Fernstr̈om and Bannon did not perform a

user evaluation of their system. Sonic Browser does however indicate that concurrently presenting multiple

audio sources can have benefits over visual presentation since it is difficult to present music visually in a

meaningful way to non-musicians [46]. Similar advantages are apparent in the concurrent presentation of

speech based audio, such as Kobayashi and Schmandt’s Dynamic Soundscape [67] as described in Section

3.4, which used 3D sound presentation to allow users to simultaneously browse and monitor multiple parts

of the same audio recording.

Hankinson and Edwards [59] have used comparisons between concurrently presented compound earcons

to provide information to users about the validity of computer interface operations. For example if a user

tried to copy a printer, the copy and printer earcons would be concurrently presented but would be designed

in such a way that they would sound inharmonic when presented, whereas the copy and file earcons would

be harmonious when concurrently presented. This provided the user with information due to the compari-

son of the earcons, that would otherwise not be available. This work is an example of using the interactions

that can occur with ASA, that this thesis seeks to avoid. Because Hankinson and Edwards used one-element

earcons (see Section3.3.4), they could introduce large modifications between the auditory attributes used

for each earcon to avoid streaming problems, which as will be shown later, are a problem with hierarchical

and transformational earcons.
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4.3 Problems with Concurrent Audio Presentation

As described in the previous section and through the examples of Section3.4, there are clear advantages in

using concurrent audio presentation as part of an auditory display. However, there are also problems which

must be considered.

The major issue is that sounds which are concurrently presented may interfere with each other in unde-

sirable ways. As Norman [100] notes on the interference of multiple warning alarms,“they often conflict,

and the resulting cacophony is distracting enough to hamper performance”. As shown in Section2.3.2,

sounds which are concurrently presented, where one sound is a harmonic of another will interfere, such that

the sound which is the harmonic will not be heard. In addition, one sound may be presented at a particular

intensity to mask, or hide, another sound which is of a similar frequency and of lower intensity. Such simple

interference can be easily controlled, however as discussed in Section2.6 sounds may interfere with each

other in more complex ways. These interferences can be difficult to predict and control.

Whilst there have been several studies which have used concurrently presented audio in some form or

another [55, 124, 27, 26, 67, 4], there is very little guidance for designers of auditory displays who wish to

exploit some of the advantages of concurrent audio presentation, to design sounds which will not interfere

with each other. This may be a particular problem for the more powerful types of Earcon (transformational

and hierarchical) (see Section3.3.4), since any two earcons formed from the same grammar are likely to

share certain attributes, such as timbre or rhythm, which would increase the likelihood that they would be

placed in the same auditory stream, causing the interpretation of those earcons to become problematic. It

is not possible to make arbitrary changes to earcons to increase differences between them and thus avoid

such interferences, as there is a mapping between a data item and the sound which represents it (see Section

3.3.4). So if, for example, the Save operation is mapped to a melody played with a piano timbre, and two

Save operations were played at the same time, it would not be possible to arbitrarily change the timbre

of one earcon, as this would destroy the grammar which defines the mapping between data and sound,

making it impossible to interpret the data encoded in an earcon. It may be possible to modify the design and

presentation of the earcons to make them less likely to interfere, and as such increase their identification

when concurrently presented. However, such modifications are likely to be constrained due to the need to

preserve the earcon grammar. Since there are no guidelines for designers to use when designing displays

which use concurrent earcons, it is unclear what modifications to earcon design and presentation will reduce

undesirable streaming, or the degree of such modifications that will improve earcon streaming without

destroying the grammar, both between earcons and the data they represent, which makes them powerful

communicating sounds.

As a way of highlighting the problem of concurrent audio presentation, the next section describes an

investigation into the use of concurrent earcons as part of a system designed to overcome the restricted

visual displays of mobile computing devices. This study acted as a motivational exercise for this thesis,
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and indicates that when concurrently presented, earcons will interfere, causing their meaning to be lost or

confused.

4.4 Dolphin

4.4.1 Overview

Dolphin was an attempt to overcome the visual display limitations of mobile devices (see Section3.2.1)

by augmenting the visual display with a spatialised auditory display (see Section3.4). The technique used

borrows many of the ideas from focus and context visualisation research [50, 51, 132]. In focus and context

visualisation, the data which are most important (e.g. the procedure currently being debugged etc.) are

given a large amount of the available display resource. The rest of the data is reduced in size in some way

and is thus presented in less detail, allowing the user to retain a sense of orientation in large information

spaces. As described in Section3.2.1providing a user with a sense of orientation in a large information

space is one of the advantages of auditory displays.

In Dolphin, the visual display of the mobile device was used to represent the focus, and a spatialised

auditory display was used to represent the context. Dolphin was used to display maps of theme parks (since

this is an environment that users may be unfamiliar with, yet wish to navigate quickly and easily), using

icons to represent theme park rides visually, and transformational earcons to represent rides in the auditory

display. It was hoped that Dolphin would be the first step of a generic map based navigation system that

would be initially applied to theme parks, hence this particular data mapping. However as the mapping

between data and sound is abstract, the earcons could equally well represent any data values (see Chap-

ter 8 for an example). The earcons were spatialised using a Generalised Head Related Transfer Function

(GHRTF) (see Section2.5) as found on the PURE Digital Sonic Fury soundcard [115]. Unfortunately no

device was available to allow for dynamic respatialisation of the earcons based on listeners’ head move-

ments (see Section2.5). Due to the problems of GHRTFs as outlined in Section2.5.2, elevation was not

used as a parameter to encode information.

In Dolphin the focus essentially “floated” over the context and users saw the focus on the PDA screen.

The data which were to the right and forward of the focus were “played” in the auditory display to the right

and forward of the user. The data which were to the left and rear of the focus were played to the left and

rear of the user (see Figure4.1).

Users navigated through the map via scrollbars on the visual display. The act of moving a part of the

display from the focus to the context actually involved moving map items from the visual to the audio

modality. When this occurred the visual representation of the map item (icon) was replaced with a spa-

tialised audio representation (earcon). For example, scrolling to the right caused the left part of the focus

to move from the visual display to the auditory display (and hence move from the focus to the context). In

essence, a “lens” (the visual display) moved over a large information space. The data that the visual display
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Figure 4.1: An overview of the Dolphin system showing how the focus and context were mapped to different modalities.

is over are represented visually; the rest of the information space is represented in audio.

Audio representations of map items remain the same relative distance from each other as when dis-

played on the visual display. This means there was limited spatial separation between concurrently pre-

sented sources, which may reduce the ability of spatial location to promote separate streaming between

concurrently presented earcons (see Section2.6), but does highlight the point that if a parameter is mapped

to the spatial position of a sound as part of an auditory display, and sounds are concurrently presented, it

may not be possible to ensure that sounds are spatially separated to ensure they can be separately streamed.

4.4.2 Cluttered Audio Spaces

One issue with Dolphin was that there was a much greater amount of information to be presented in the

auditory display (context) than on the visual display (focus). For example, if a particular theme park map

contained twenty seven rides, and therefore twenty seven items which would be represented either visually

or aurally; the visual display would only be able to display around four rides at any time, leaving twenty

three rides to be presented in audio. Twenty three concurrently presented earcons would clearly cause the

user to become overloaded, and it was clear during pilot testing, that some way to reduce the amount of

concurrently presented audio whilst still retaining the ability of the audio to present contextual information

was important.

A technique called “priority zones” was developed to provide a framework for the rule-based reduction

of the number of concurrently presented Earcons. Priority zones borrow many of the ideas of the Degree

of Interest (DOI) function of Furnas’s original fisheye concept [51]. The idea is that less important things,

that are far away, should be given less display resource than closer, more important things. Far away, but
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FOCUS

ZONE 1

ZONE 2

ZONE 3

CONTEXT

Figure 4.2:An example of priority zones used in Dolphin.

very important things, should have more resource than very unimportant but close things. It is simple in the

visual domain, to determine what is meant by using “less resource” to display information; the size of the

visual icon is reduced. In the audio domain determining what “less resource” means is more difficult. The

technique employed in Sawhney and Schmandt’s Nomadic Radio personal notification system [124] was

considered. There, more important messages were played using more detailed audio means. For example,

for low priority messages, auditory icons were used, whereas for high importance messages, speech was

used (see Section3.4 for a more detailed discussion of Nomadic Radio). This approach was rejected since

sounds would dynamically change their representations at different distances from the user which may

become confusing. Reducing the volume at which an Earcon was presented was also considered. This

is a direct analogy with the reduction of a visual stimuli size. However, the volume of a sound is an

important cue to its distance (see Section2.3.2), particularly when the object the sound is generated from

is not familiar. Reducing the volume is therefore likely to confuse the user over the distances of objects.

In addition, due to the similar properties of each earcon, such as similar registers, and therefore frequency,

reducing the volume of one earcon may perceptually mask it when presented concurrently with a similar,

louder earcon (see Section2.3.2). Because of these issues, a more extreme solution to the problem of audio

overload, which was to completely switch off audio that is not required, was employed.

In Dolphin, each of the rides (represented by an Earcon in the auditory display) is given a priority

number between 1 and 3 which specifies its “importance”. The lower the number, the less important the

ride. Numbers were allocated based on the highest value of the cost and intensity attribute of the ride (see

Section4.5.1for a description of the attributes of each ride). Therefore a low cost, low intensity ride would

be allocated a priority number of 1, whereas a low cost, high intensity ride would be allocated a priority

of 3. Extending out from the focus, and fixed relative to it, in concentric circles are the priority zones (see

Figure4.2).

66



Issues Involving Concurrent Audio Presentation
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Figure 4.3:Example of an audio space with three Earcons, labelled A, B and C.

For a sound (representing a ride) to be played, it must lie in a priority zone with a number less than

or equal to its priority number. This means that sounds are switched on and off dynamically as they move

between zones. In doing so those audio sources that are unlikely to be important based on the user’s current

map location can be removed. For example, Figure4.3represents the 2D planar audio space for a particular

map. The focus (which is represented visually on a mobile device display) is at the centre.

This particular map contains three Earcons, A, B and C. Earcon A represents a low intensity, low cost

ride, Earcon B a medium intensity, low cost ride, and Earcon C a low intensity, high cost ride. According

to the previously outlined system for allocating priority numbers, Earcon A will have a priority number of

1, Earcon B will have a priority number of 2 and Earcon C will have the priority number of 3. Therefore in

this map Earcons B and C will be audible to the user since they are lying in a priority zone with a number

less than or equal to their own. Earcon A lies in priority zone 2, and since it has a priority number of 1, will

not be played. Figure4.4shows the same map after the user has moved the focus position by scrolling the

visual display. As the priority zones are fixed relative to the focus they also move. Here, Earcon A will be

played as it has moved from priority zone 2 to priority zone 1. However Earcon B has moved from priority

zone 2 to priority zone 3 and will stop being played. Earcon C has not switched zones so will continue to

be played.

4.5 Evaluation of Dolphin

4.5.1 Procedure

To determine if Dolphin would be a useful technique for displaying large information spaces on restrictive

displays, an evaluation which compared participants’ abilities to create shortest length (minimum) tours
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Figure 4.4: Example of the audio space from Figure4.3, shown after the user has scrolled the visual display, and thus
moved the focus.

around given types of theme park rides was carried out. To provide a comparison in performance, Dolphin

was compared to a standard scrolling display. This can be considered to be Dolphin, albeit with all audio

switched off. Such a comparison is useful since scrolling displays are a standard way to present large

information spaces on small displays.

Sixteen participants undertook the experiment, which was of a within groups design. All participants

were undergraduate students at Glasgow University, and ranged in age from 18-24, each was paid£5 on

completion. There were two conditions in the experiment, thestandard scrollingcondition where partici-

pants navigated the map using scrollbars at the right and bottom of a 6x6 cm dialogue box, which simulated

a Personal Digital Assistant’s (PDA’s) visual display (see Figure4.5for a screenshot of this display), and the

Dolphin condition where participants navigated theme park maps using the Dolphin system as previously

discussed. The visual interface of which was the same as that used for the standard scrolling condition (see

Figure4.5). Participants were randomly assigned to one of two groups to determine the order in which they

undertook the conditions. Each condition consisted of two parts, a training phase and a testing phase. The

order in which conditions were undertaken by each group is summarised in Table4.1.

First Training
Session

First Testing
Session

Second Training
Session

Second Testing
Session

Group 1 Standard Scrolling
Condition

Standard Scrolling
Condition

Dolphin Condition Dolphin Condition

Group 2 Dolphin Condition Dolphin Condition Standard Scrolling
Condition

Standard Scrolling
Condition

Table 4.1:Table showing the procedure for the two groups of participants undertaking the experiment.

68



Issues Involving Concurrent Audio Presentation

Figure 4.5: Example of the display from the standard scrolling condition, which is also an example of the visual
interface (focus) from Dolphin.

Attribute Possible Values Description
Ride Type Rollercoaster, Water

Ride, Static Ride
Categorises theme park rides by their properties.

Ride Intensity Low Intensity,
Medium Intensity,
High Intensity

How intense the ride is. Large, fast rollercoasters
would be categorised as high intensity, whereas a
miniature railway designed to transport customers
around the park would be of low intensity.

Cost Low Cost, Medium
Cost, High Cost

How much it costs to be admitted to the ride.

Table 4.2:Table showing the attributes and their values encoded in the earcons and icons used in the experiment.

Earcons and Icons

As stated in Section4.4.1, when a theme park ride was presented on the visual display it was represented

with an icon, and when in the auditory display by an Earcon. Each Earcon and icon encoded the same three

attributes of a theme park ride. These are shown with descriptions and possible values in Table4.2.

Encoding Earcons

The attributes from Table4.2were encoded into Earcons according to the guidelines of Brewster, Wright

and Edwards [25] (see Section3.3.4), and were recorded from the output of a Roland Super JV-1080

MIDI (Musical Instrument Digital Interface) synthesiser. Although the guidelines of Brewster, Wright and

Edwards note the differences between the various auditory parameters required to make earcons useful, they

provide little guidance on which data attributes should be mapped to which auditory parameters. Norman

[99], notes a difference between additive and substitutive dimensions, i.e. those dimensions where there

is some concept of linear ordering, such as price; and substitutive dimensions, where there is only choice

amongst many, such as with ride type. In the mapping of theme park rides to earcons, wherever possible,

substitutive data parameters were mapped to substitutive auditory parameters (such as timbre), and additive

data parameters were mapped to additive auditory parameters (such as pitch, loudness etc.).
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Ride type was mapped to timbre. Three distinct timbres were used, with a grand piano (General MIDI

patch No. 000), used to represent Rollercoasters, a violin (General MIDI patch No. 040) used to represent

Water Rides, and a trumpet (General MIDI patch No. 056) used to represent Static Rides.

Ride Intensity was mapped to Melody, which is a combination of a rhythm and a pitch structure for that

rhythm [116], as Brewster, Wright and Edward’s [25] guidelines note that such combinations can be useful

in differentiating earcons. The Melodies used for high, medium and low intensity rides are shown in Figure

4.6.

High Intensity Medium Intensity Low Intensity

Figure 4.6:Melodies used to represent high, medium and low intensity theme park rides.

The cost of the ride was mapped to the register that the melody was played in. Although Brewster,

Wright and Edward’s guidelines [25] generally advise against register, the gross differences between the

registers that guidelines recommend have been used, additionally the notes for each melody in each register

have been staggered so that they sound slightly inharmonic (dissonant) when played with each other in

order to help the earcons be distinguishable, and avoid lower level psychoacoustical perceptual interference

(see Section2.3.2). Register was mapped in such a way that the low cost rides were played in the lowest

register, medium cost rides were played in the next highest register and high cost rides were played in the

highest register. The registers used were the octave of C4 for low cost (approximately 261Hz), the octave

of C5 for medium cost (approximately 523Hz) and the octave of C6 (approximately 1046Hz) for high cost

(see Section2.3.2).

Encoding Icons

In order to encode data in the visual icons, abstract icons as opposed to representational icons were used

[13] as it was found to be difficult to encode all ride parameters in representational icons, and therefore

to provide a fair comparison between Dolphin and the standard scrolling condition. As with the design

of the earcons, Norman’s distinction [99] between substitutive and additive dimensions was employed,

with substitutive data parameters being encoded in substitutive attributes of the icons, and additive data

parameters being encoded in additive attributes of the icons. The ride type was mapped to the shape of

the icon, with a square, circle and triangle used to represent rollercoasters, static rides and water rides

respectively. The intensity of the ride was mapped to the shade of dots on the icon, with dark, medium and

light shades representing high, medium and low intensity rides. The cost of the ride was encoded using a
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Rollercoaster
High Intensity

High Cost

Rollercoaster
Medium Intensity

High Cost

Static Ride
High Intensity

Low Cost

Water Ride
Low Intensity
Medium Cost

Water Ride
High Intensity

High Cost

Figure 4.7:Examples of icons used to represent theme park rides.

different number of dots within the icon. High, medium and low cost rides were represented with three, two

and one dots. Figure4.7provides examples of the icons used.

Training Phase

Because of the abstract mapping between the Earcons and icons, and the data they represent, it was impor-

tant that participants were trained on them before undertaking the experiment. Training involved partici-

pants firstly being presented with a sheet describing the parameters of a theme park ride and how these were

encoded into the icons (see AppendixB). Participants were then given 10 minutes of self guided training on

the icons via a Web page, which displayed all of the icons that would be used in the experiment, together

with descriptions of those icons (see Section A of the accompanying CD-ROM for the Web page used (Ap-

pendixM)). After 10 minutes participants were asked to independently identify three icons without any

form of assistance. If they were unable to do so, the sheet describing the icons was returned along with the

Web page, and a further five minutes training was allowed. After that time the test was carried out again.

If participants were still unable to identify the three icons, they took no further part in the experiment. No

participants however failed training.

In the Dolphin condition, after training on the icons had been successfully completed, participants were

trained on the earcons used in a similar manner. Participants were provided with a sheet describing the

grammar of the earcons (see AppendixB) as well as a Web page containing the earcons, their descrip-

tions, and the complementary icon (see Section A of the accompanying CD-ROM for the Web page used

(AppendixM)). Again, 10 minutes was allowed for participants to learn the earcons. After 10 minutes

participants were asked to identify three individually presented earcons. If they were unable to do so, as

with the icon training, a further five minutes was allowed before retesting took place. If participants were

still unable to identify the earcons, they took no further part in the experiment. No participants however

failed training.

This training technique for earcons is similar to that used by Brewster [16], who found that allowing

participants to train by listening to the earcons used provided a significant improvement in task performance

[18].
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Figure 4.8:An example theme park map used in the experiment. Note the size of the map has been substantially reduced
from the size used in the experiment.

Testing Phase

The testing phase of each condition comprised of participants making shortest path length tours around

specific theme park rides in four simulated theme park maps. Each map was 992 x 850 pixels and contained

27 rides (around the size and number of rides that were found in example theme park maps). The same 27

rides were used for all maps, however the locations of the rides in each map were randomly assigned. An

example map is shown in Figure4.8.

Participants were provided with a question in a dialogue box which asked them to create a minimum

tour around all of the rides on the map which contained the two ride attributes given. In real world situations

it may not always be the case that all data parameters encoded in an earcon will always be required, and a

subset of parameters may be all that is required, thereby asking about specific combinations of parameters

is useful. See Figure4.9for an example of the dialogue used as well as an example question.

The main hypotheses of the experiment were:

H1 Participants will take less time to complete tours in the Dolphin condition than in the standard scrolling

condition.

H2 Participants will create shorter routes in the Dolphin condition than in the standard scrolling condition.
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Figure 4.9:An example question as used in the experiment.

H3 There will be fewer occasions in the Dolphin condition where one or more rides will either be missed

from a tour, or extra rides will be erroneously added to a tour.

The independent variable (IV) was the system used to present the maps, either Dolphin or the standard

scrolling view. The dependent variables (DVs) were the time taken to complete each map, the length of the

tour created by participants, and the number of occasions on which one or more rides were either missed,

or erroneously added to the tour.

In addition, it was hypothesised that the Dolphin condition would reduce the subjective workload of

participants required to carry out the task. Workload is important to determine since it is possible that

whilst there may not be a significant variation between the objectively measurable data for each condition,

if one condition subjectively increases workload a user may consider themselves to be overloaded and shed

work, and as such lower their performance criteria or become psychologically distressed [60]. This may

lead to a user refusing to use a system which incorporates one condition over the other, even if their is a

significant objective improvement in task performance. A set of modified NASA Task Load Index (TLX)

scales [60] were used to collect data to test this hypothesis.

NASA TLX scales allow for participants to rate on a set of unmarked scales, the subjective workload

that they experienced during an experiment. A table of the attributes used to define workload in the modified

TLX scales used in this experiment is shown in Table4.3.

The scales used in this experiment have been modified to include the annoyance experienced attribute,

which was originally included in the work of Brewster [16]. As noted by Buxton [32] (see section3.2.2)

auditory displays which are uninformative are likely to be annoying to a user. Therefore, measuring the

annoyance of an auditory display is of importance when considering its usability. The overall preference

attribute as devised by Brewster [16] has also been incorporated as a metric to provide an overall subjective

rating of which condition made the experimental task easier. Before the testing phase proper, participants

were given a trial run of the experiment with two maps not used in the testing phase, in order to familiarise

themselves with the task they would be performing.
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Attribute End Points Description
Mental Demand Low/High How much mental, visual and auditory activity

was required? (e.g. thinking, deciding, calculat-
ing, looking, listening, scanning, searching)

Physical Demand Low/High How much physical activity was required?(e.g.
pushing, pulling, turning, controlling)

Time Pressure Low/High How much time pressure did you feel because of
the rate at which things occurred? (e.g. slow,
leisurely, rapid, frantic)

Effort Expended Low/High How hard did you work (mentally and physically)
to accomplish your level of performance?

Performance Level Achieved Poor/Good How successful do you think you were in doing
the task set by the experimenter? How satisfied
were you with your performance?

Frustration Experienced Low/High How much frustration did you experience? (e.g.
were you relaxed, content, stressed, irritated, dis-
couraged)

Annoyance Experienced Low/High How annoying did you find the graphics and/or the
sounds in the condition?

Overall Preference Low/High Rate your preference for the two conditions.
Which one made the task the easiest? The one
with sounds or the one without.

Table 4.3: Table showing the attributes and descriptions of NASA TLX workload questionnaires used in the experiment.
Modified from Hart and Staveland [60].

4.5.2 Results

For hypothesis one (H1), the time taken by each participant to create a tour for each map was collected. Each

participant’s overall score was determined to be the mean time taken for all those tours which incorporated

all of the required rides and did not miss rides, or have additional incorrect rides added to a tour. The mean

time taken, across all sixteen participants is graphically presented in Figure4.10. Raw data are presented in

AppendixC. A within groups t-test on this data failed to show significance (t(15) = 1.54, p = 0.144).

For hypothesis two (H2), the tour for each correctly completed map (i.e. those which did not miss or

have additional rides which were not asked for), was converted into a percentage of the optimal shortest path

length for that map. The average of each participant’s percentage optimal path length was then taken. The

average of these data across all participants is shown in Figure4.11. Raw data are presented in Appendix

C. A within groups t-test on these data failed to show significance (t(15) = 0.03, p = 0.979).

For hypothesis three (H3), the average number of tours where a ride was erroneously added or missed

from a tour is graphically presented in Figure4.12. Raw data are presented in AppendixC. A within groups

t-test failed to show significance (t(15) = 0.58, p = 0.572).

As stated in the previous section, to measure participants’ subjective workload, modified NASA TLX

questionnaires were used. The results of these questionnaires is shown in Figure4.13. Raw data are

presented in AppendixC. To determine if the difference in workload was significant, each participant’s

scores for each attribute (excluding overall preference and annoyance experienced since these do not form
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Figure 4.10:Graph showing the average time taken to complete a tour in the standard scrolling and Dolphin conditions,
showing standard deviations.

part of the standard TLX set of attributes) were added together and a within groups t-test was performed.

This t-test showed that workload was rated significantly higher in the Dolphin condition than in the standard

scrolling condition (t(15) = 2.06, p = 0.050). To determine which attributes caused this increase in workload

eight within groups t-tests were carried out, one for each modified NASA TLX attribute.

The t-tests showed that participants recorded significantly greater mental demand in the Dolphin con-

dition than in the standard scrolling condition (t(15) = 2.10, p = 0.050). t-tests also showed significantly

greater frustration recorded for the Dolphin condition than the standard scrolling condition (t(15) = 3.43,

p = 0.004). Significantly greater annoyance was also recorded in the Dolphin condition than in the stan-

dard scrolling condition (t(15) = 4.76, p< 0.001). In addition participants rated overall preference of the

standard scrolling condition to be significantly greater than that of the Dolphin condition (t(15) = 2.83, p =

0.013). The t-tests for physical demand (t(15) = 0.34, p = 0.7390), time pressure (t(15) = 1.63, p = 0.124),

effort expended (t(15) = 2.02, p = 0.061) and performance level achieved (t(15) = 0.79, p = 0.444), were not

found to be significant.

4.5.3 Discussion

The results show that there were no significant differences between the Dolphin and standard scrolling

conditions for any of the objectively measurable data. There does however, appear to be a trend where the

Dolphin condition has poorer performance than the standard scrolling condition. Some understanding of

why this occurred may come from the modified NASA TLX questionnaire results. Participants reported that
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Figure 4.11:Graph showing the average percentage optimal path length tours for the standard scrolling and Dolphin
conditions. Shown with standard deviations.

mental demand, frustration and annoyance were significantly greater in the Dolphin condition than in the

standard scrolling condition. This indicates that not only did the auditory display used not assist participants

in their given task, it actually caused a detrimental effect on perceived performance.

Understanding why the audio should cause such problems cannot be shown from the results of this

experiment. However, informal discussions with participants after the experiment revealed that the sounds

had merged together and interfered with each other causing the identification of earcon attributes to become

difficult. Therefore in order to use concurrent earcons it is necessary to understand the extent of interfer-

ences between concurrently presented sounds and ways in which such interferences can be reduced. This

issue will be investigated in the remainder of this thesis.

4.5.4 Dolphin Conclusions

It seems clear from the results of this experiment that to successfully employ the advantages of concur-

rent audio presentation as discussed in Section4.2, it is essential to understand how concurrently presented

sounds interfere with each other. Unfortunately, as already stated there is little guidance on how the tech-

niques used as part of auditory displays (see Section3.3) can be modified to reduce unwanted interference

when concurrent presentation is used. Such guidance is likely to be of great importance to Earcons, since

Earcons which are formed from the same grammar (see Section3.3.4) are likely to share components such

as timbre or melody. For example in the Dolphin condition, all rollercoasters shared the same timbre, and
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Figure 4.12:Graph showing the average number of tours either missing rides or incorporating incorrect rides into a
tour in the standard scrolling and Dolphin conditions, showing standard deviations.

all high intensity rides shared the same melody. According to auditory scene analysis (ASA) (see Section

2.6), sounds which share components in such a way are likely to be merged together. Such issues are not as

prevalent in other auditory display mapping techniques such as auditory icons where guidelines state that

using similar sounds should be avoided [91]. For example, the ARKola system [55], where up to fourteen

sounds could be concurrently presented, whilst only being informally evaluated did not appear to show

significant problems due to the density of sounds presented. Indeed Gaver, Smith and O’Shea noted that

“Sounds served as shared reference points for partners, allowing to to refer directly to events they couldn’t

see” [55]. In the Dolphin system it was considered that the use of spatialised sound would help to remove

this issue, however this appears not to have been the case. It is therefore likely that spatially separating

earcons does not guarantee that they will be perceived as distinct, and further work to determine the extent

of interference and action that can be taken in combating it, needs to be undertaken.

4.6 Related Work

In this section the limited amount of work which has been undertaken investigating the problems of concur-

rently presented audio as part of an auditory display is reviewed and discussed. Several features from such

work may be able to be applied to earcon design to improve the identification of concurrently presented

earcons.
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Figure 4.13: Graph showing the mean values for NASA TLX workload data for the standard scrolling and Dolphin
conditions. Shown with standard deviations.

4.6.1 Gerth

Gerth [57] carried out several experiments which investigated how discrimination of concurrently presented

audio was affected by both the density of sound (number of concurrent sounds presented), and differences

between the timbre of concurrently presented sounds.

One experiment involved two complex sounds which were consecutively presented to participants with

a short intervening delay. The first complex consisted of between one and four distinct temporal patterns

(rhythms) which were concurrently presented using the same timbre (either piano, violin, “sewing machine”

or “metal hits”). The second complex tone was the same as the first except that in 50% of cases, a rhythm

was either removed or added to the complex. Participants had to determine if the two consecutively pre-

sented complexes were the same or different. Gerth identified that as sound source density increased (as

the number of concurrently presented sounds increased), the number of errors in accuracy increased from

around 2% to 20%.

Gerth’s second experiment was the same as that previously discussed however, instead of all sounds in a

complex having the same timbre, each was presented with a different timbre. Hence, instead of all rhythms

being presented with a piano timbre, one would be presented with a violin, another with a piano, etc. Gerth

found, as with his previous experiment, that as sound density increased the accuracy of responses dropped,

from around 100% for one and two concurrent rhythms per complex, to around 80% for four concurrent

rhythms per complex. Gerth claimed that using different timbres for each rhythm increased the accuracy of

participant responses, however he failed to provide clear evidence to validate this assertion; the accuracy of
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responses seems to be the same irrespective of timbre differences. It may be that Gerth’s task was so simple

that a ceiling effect was observed in his results. If timbre differences between concurrent sound sources

do however improve their discrimination, and evidence from auditory scene analysis research does exist

to support this [129] (see Section2.6), incorporating timbre differences between concurrently presented

earcons may help their identification.

For Gerth’s final experiment he changed his methodology, from identifying if two complex sounds were

the same or different, to identifying exactly what the change between the two complexes was. In this exper-

iment, participants had to identify what temporal component and timbre had either been deleted, added or

substituted between the first and second sequentially presented complexes. In order to successfully under-

take this task, participants were first trained to identify the sixteen possible sounds that could be included

in a complex (four timbres combined with the four temporal patterns). If participants could not reach 80%

accuracy in identifying those sounds, their results were not used. In order for participants to be able to

identify the temporal patterns used, Gerth used the names “regular”, “fast”, “slow” and “chopped” to rep-

resent each pattern. In some respects this is like the identification required to decode earcons, since the

mapping between data and sound is abstract and must be learned. However the descriptions Gerth used

were likely representative descriptions of the temporal patterns and may not be entirely the same as those

used for earcons such as in Dolphin (see Section4.5). Gerth found that, as with his previous experiments,

performance fell as the density of sounds was increased. The accuracy of participant responses in identi-

fying the change between the two complex sounds was found to be lower than the simple identification of

sameness or difference in the two sounds from the first two experiments, however accuracy stayed around

the 60% correct level.

Gerth’s work indicates several issues that may be relevant to concurrent earcon research, notably that

increasing the number of earcons which are concurrently presented is likely to lead to a decrease in the

number which can be correctly identified. He showed that this trend still occurs even when modifications

to the sound (in the form of a unique timbre for each temporal pattern) are introduced.

However, Gerth’s research incorporates maximum possible differences between concurrently presented

sounds, with each having a different rhythm and timbre. It may not always be possible to guarantee this

with earcons since there is a concrete mapping between sounds and the data they represent which would be

broken if maximum differences between sounds were forcibly incorporated.

4.6.2 Multi-Talker Speech

Brungart, Ericson and Simpson [29] have investigated how the intelligibility of multi-talker speech envi-

ronments (where more than one talker is speaking at a time) can be improved.

In their experiments, they looked at the identification of coordinate response measure (CRM) speech

intelligibility tests [90]. In CRM, listeners hear one or more simultaneously presented phrases of the follow-

ing type“Ready,(Call Sign), go to(color) (number) now”, where call sign is either “Baron”, “Charlie”,
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Figure 4.14: Graph showing the percentage of correct performances on a coordinate response measure (CRM) task
with 0, 1, 2 and 3 competing talkers. Taken from Brungart, Ericson and Simpson [29].

“Ringo”, “Eagle”, “Arrow”, “Hopper”, “Tiger” or “Laker”, color is one of red, green, blue or white and

number is between one and eight. Participants had to listen for a particular call sign and record the colour

and number associated with it.

Brungart, Ericson and Simpson investigated how several modifications to the presentation of the various

concurrent speeches affected task performance amongst participants. In investigating how the number of

competing talkers (density in terms of Gerth [57], see previous section) influenced performance, they found

a similar effect to that of Gerth. As the number of concurrent talkers was increased from zero to three, the

percentage of correct responses fell from around 95% to around 20% (See Figure4.14).

Gerth found that increasing the density of his complex sounds, increased error rates from 2% (98% cor-

rect) for complexes with one or two components, to 20% errors (80% correct) for complexes with three to

four component sounds. The trend identified by Brungart, Ericson and Simpson is therefore much steeper

than that identified by Gerth. This raises the question of which trend more accurately represents the identi-

fication of concurrently presented earcons when the number concurrently presented is varied. On one hand,

Earcons, as stated in Section4.6.1, are much more like the temporal patterns used by Gerth; although the

task that Gerth used is much simpler than would be required for Earcons, where individual identification of

parameters would be required, rather than differences between two consecutively presented sequences of

sounds. However, Earcons which are formed from the same grammar are likely to share components (See

Section3.3.4), as is the case in the CRM tasks of Brungart, Ericson and Simpson, who also used the same

talker to speak all of the texts; Gerth ensured maximum differences between each component in his complex

sounds. Therefore although it is likely that increasing the number of concurrently presented earcons will

80



Issues Involving Concurrent Audio Presentation

cause their identification to fall, it is difficult to predict if that fall will be steep, like Brungart, Ericson and

Simpson, or more shallow such as with Gerth.

Further experiments by Brungart, Ericson and Simpson where the target talker (the voice speaking the

phrase containing the participant’s call sign) was of a different sex than the other concurrently presented

phrases, found that this increased task performance to 80% when there was one other competing talker,

and task performance was increased to 60% when there were three competing talkers; although task perfor-

mance still fell as the number of talkers was increased. Changing the sex of the speaker, causes a change

in the fundamental frequency of the speaker’s voice, and thus changes the timbre of the voice, although

as already discussed in Section2.6 changes in other parameters of sound such as pitch may also occur.

Gerth also claimed that the introduction of timbre differences between concurrently presented sounds in-

creased participants’ ability to detect concurrently presented stimuli, and such differences may improve the

identification of concurrently presented earcons.

Brungart, Ericson and Simpson also identified that by placing each concurrent talker in a different spatial

location in azimuth (See Figure2.4) (at -45o, 0o, 45o and 90o relative to the listener), performance could

also be improved, although again, as the number of talkers was increased, performance fell.

Unfortunately Brungart, Ericson and Simpson did not perform statistical analyses on their data to deter-

mine if the improvements in performance were significant. Their work does point however to several sound

manipulation techniques which could be applied to concurrently presented earcons, in order to improve

earcon identification.

4.6.3 The Computational Auditory Scene Synthesizer

An alternative approach to solving the problems of concurrently presented sounds in an auditory display

from that attempted by Gerth [57] and Brungart, Ericson and Simpson [29], is to control all of the sounds

that might be presented in an computer interface from a central point.

Papp [104], proposed that an audio server could be used to manage conflicting audio in a user interface.

His “Computational Auditory Scene Synthesizer”, acted like a controller of the computer’s auditory system.

Applications would request that a particular item of auditory feedback was presented to the user, and the

audio server would decide, based on a set of heuristics which incorporated some auditory scene analysis

features, what the impact of introducing the feedback would be based on the sounds already playing. In

addition to just accepting or rejecting the request, the audio server could modify the sound to encourage it

to stream separately, or present the feedback using a different method (an auditory icon instead of an earcon

etc.).

Whilst Papp’s work has a number of advantages, such as the designer of one auditory display not having

to worry about the design of a different auditory display running as another application in a multitasking

system, it does have a number of issues. Firstly, as explained in Section2.6, it is difficult to predict how

different auditory scene analysis factors influence each other. This is even harder for complex auditory
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sources since most ASA research is done on simple sinusoidal tones [14]. Papp performed no evaluation of

his system on users to determine the validity of his criteria for playing or rejecting a sound in the interface.

Further, the ability to modify a sound to make it stand out more may be undesirable for many types of

sound. The problems with arbitrary modification of earcons have already been discussed (see Section4.3),

however it can also be difficult for other auditory information types, such as auditory icons (see Section

3.3.3), where the modification of a sound may cause identification problems for the user [53]. Finally, the

ability of the server to dynamically change the type of audio presented based on what audio is currently

being presented (perhaps from other applications) may be undesirable since the user could perform exactly

the same interactions, in the same application, in the same order, and have different auditory feedback

simply on the basis of other concurrently executing applications. This breaks Shneiderman’s“strive for

consistency”golden rule of interface design [128].

4.7 Research Questions

The discussion of Dolphin, and the work on auditory displays from both Chapter3 and Section4.2, have

shown that whilst auditory displays can make effective use of concurrent sound presentation, great care is

required to ensure that the sounds used in such a display do not interfere with each other, causing the display

to be ineffective. Unfortunately, little guidance is available to auditory display designers to make informed

decisions about the amount of audio, or modification to that audio, which would be beneficial in reducing

unwanted interactions between sounds. This is especially the case for earcons, where Dolphin is only one

of two example auditory displays to evaluate the usability of concurrently presented earcons (the other

being Brewster, Wright and Edwards’s parallel earcons [26], as described in Section3.4). Whilst auditory

scene analysis (see Section2.6) and the work described in the previous section indicates that it is possible

to modify earcons to influence their streaming and thus reduce unwanted interactions between them, it is

unclear what modifications will be useful. As discussed in Section4.3, due to the grammar earcons are

formed from there is a limitation to the extent of any modifications since if the mapping between data and

sound is broken, it will be irrelevant if all concurrently presented earcons stream separately. If earcons

are to be successfully concurrently presented in an auditory display, work must be undertaken into both

determining the extent of the problems of concurrently presented earcons as well as modifications to their

design which can be used to reduce such problems. By doing so, guidance for future auditory display

designers on the use of concurrently presented earcons can be determined. Guidance, which is currently

lacking in the literature.

The remainder of this thesis investigates how earcons perform when concurrently presented and what

steps may be taken by auditory display designers to combat the issues of undesirable interactions between

concurrently presented earcons, such as occurred in Dolphin. These investigations will lead to a set of

guidelines which can be used by future designers of auditory displays which use concurrent audio, and
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specifically concurrent earcons, to design more effective and usable displays. To tackle this problem four

research questions are derived, the answers to which will be explored through the following chapters:

RQ1 What is the effect on earcon identification of varying the number of earcons which are concurrently

presented?

RQ2 How can concurrently presented earcons be more robustly designed and presented in order to increase

the number which can be identified?

RQ3 What is the impact of presenting concurrent earcons in a spatialised auditory environment?

RQ4 How much do modifications to the design and presentation of concurrently presented earcons affect

performance in “real world” tasks?

These research questions provide a basis for a thorough investigation of the field of concurrent earcon

presentation, as well as allowing a relationship to prior concurrent audio research (as outlined in the previous

sections) to be established.

Research Question 1 attempts to identify if there is a trend in earcon identification when the number of

earcons which are concurrently presented is varied. Work by both Gerth [57] and Brungart, Ericson and

Simpson [29] has identified such a trend, however as stated in Section4.6.2, there are differences between

their work in exactly how identification performance decreases when the number of concurrent sources is

increased. This research question will allow the trend of number of earcons versus their identification to be

identified.

The research from the previous section, as well as that described in Section2.6, has shown that the

modification of sounds can affect the way they are streamed by the auditory system. Research Question 2

will investigate ways in which earcons can be better designed and presented so that such interferences are

reduced. Gerth found an increase in identification when different timbres were used for different rhythms,

and Brungart, Ericson and Simpson identified a similar finding when they used different sex speakers for

different texts. In doing so however, the rules that earcons are constructed from (the earcon grammar) must

be retained to ensure the relationships between earcons are not lost and therefore one of their strengths is

destroyed. This may mean that the extent of any modifications on earcon design and presentation are con-

strained, making it important that any improvements gained from a specific modification are determined in

isolation to other modifications. This is especially important, as such modifications may place constraints on

earcon designers such as having multiple similar timbres, or needing to constrain the structure of melodies

(see Section6.2.3), which without individually investigating each earcon modification may be needlessly

placed on earcon design.

One of the features of auditory scene analysis that is likely to be beneficial at improving the number of

concurrently presented earcons which can be attended to, is the use of spatialisation, or 3D sound presen-

tation, to separate concurrently presented earcons. As Bregman notes“it would be a good bet that sounds

83



Issues Involving Concurrent Audio Presentation

emanating from the same spatial location have been created by the same source”[14]. Also as discussed

in Section3.4, many systems which have successfully used concurrent audio presentation have also used

spatial presentation. Therefore Research Question 3 will investigate how concurrent earcon identification is

affected by spatial separation. However, when considering the impact of spatialisation in auditory displays

both practical and technical limitations must be considered. As discussed in Section2.4, the localisation

of sound depends on differences in sound reaching the left and right ears. This requires either properly

calibrated speakers, or the user to wear headphones, which may not always be possible or convenient. In

addition, although spatialisation was used in the Dolphin system (see Section4.4) undesirable interactions

between the earcons still occurred. It is therefore likely that it may not always be possible to separate con-

current earcons enough to cause them to stream separately. Investigating spatialisation in isolation to other

features is therefore useful.

Finally, although the Dolphin system identified that concurrently presented earcons are likely to be a

problem, it provided little guidance on exactly what features and aspects of the earcons caused problems.

Therefore Research Questions 1-3 will investigate concurrent earcons using a more abstract experimental

methodology, in order to be able to determine in exactly which way any modifications to the design or

presentation of earcons affects their identification. This creates the problem of understanding how the

useful modifications to earcons which have been identified, perform in more realistic environments and

applications. Research Question 4 will attempt to determine this.

4.8 Conclusions

This chapter has explored the use of auditory displays where more than one sound is presented simulta-

neously. These concurrent auditory displays can increase both the rate and amount of data which can be

presented to users through audio, as well as allowing users to more easily make comparisons between mul-

tiple data. Whilst several examples of auditory displays which use concurrent sound presentation exist,

comparatively little guidance on the number of sounds which should be concurrently presented, or how

those sounds should be designed for such situations, exists. In addition, concurrently presented sounds may

interfere with each other in undesirable ways, and any parameters of data encoded in the sound may be

impossible to determine. This is especially problematic with earcons since they are formed from a common

grammar, and are likely to be very similar (sharing the same timbre, rhythm etc.), which according to au-

ditory scene analysis will make it more likely that concurrently presented earcons will interfere with each

other.

Whilst some research [57, 29] has investigated ways to improve the identification of concurrently pre-

sented sounds as part of an auditory display, very little research [26] has yet been undertaken to identify

how to improve the identification of concurrently presented earcons in such environments. The Dolphin

system, which incorporated concurrent earcon presentation was not successful, with a significant increase
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in users’ perceived frustration and annoyance over a standard scrolling display. Participants claimed that

the earcons interfered with each other and thus became unusable.

This thesis proposes an investigation into concurrently presented earcons to identify how well they are

identified, as well as how their identification can be improved in concurrent auditory displays. Four research

question are proposed as a method to investigate concurrently presented earcons. These four questions are

explored in the remaining chapters of this thesis.
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Chapter 5

Number of Earcons versus Identification

5.1 Introduction

In the previous chapter several questions derived from the main research statement posed in this thesis

were described. In this chapter an experiment is described which attempts to answer one of these questions

(RQ1),“What is the effect on earcon identification of varying the number of earcons which are concurrently

presented?”.

There are several reasons why understanding how concurrent earcon identification is affected by the

number of earcons which are concurrently presented is important. Firstly, although the work on Dolphin

(see Section4.4) has indicated that the identification of concurrent earcons is difficult, there is no empirical

evidence to support this claim.

Whilst there has been some work on the identification of different types of concurrently presented

auditory stimuli, such as Brungartet al’s [29, 31] work on concurrent speech identification and Gerth’s [57]

work on the identification of concurrently presented rhythms, both of which are described in Section4.6,

there has been only one study, by Brewster, Wright and Edwards [25], which has empirically investigated the

identification of concurrently presented compound earcons (see Section7.1.1). That work only considered

two concurrent earcons and incorporated large differences in both the spatial location of the earcons and

the registers in which each was presented. No work which investigates how the more powerful hierarchical

and transformational earcon types are identified in concurrent presentation situations has been undertaken.

As described in Section4.3, these earcon types are believed to be the most problematic when concurrently

presented. Due to earcons sharing the same grammar and as such being similar according to the work of

Section2.6, they are likely to stream in such a way that makes the identification of their attributes difficult.

It would be useful therefore to determine how the identification of concurrently presented earcons relates

to these previously undertaken studies in order to help determine future research directions to improve their

identification.

Finally, one of the aims of this thesis is to provide a set of guidelines which can be used to guide the

designers of future auditory displays which use concurrent earcons, to make informed choices to improve

the identifiability of such earcons that they may use in a specific application. Guidelines which are currently
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lacking in the literature. It may be that reducing the number of earcons concurrently presented from say 4 to

3, which may cause an increase in earcon identification for example, from 0.5 to 3, would be an acceptable

solution for an auditory display designer when using concurrent presentation of sounds. It is also the case

that although a reduction in performance was identified by increasing the number of concurrently presented

sounds by both Gerth [57] and Brungart, Ericson and Simpson [29], the degree to which performance

dropped was different in each case (see Section4.6). Understanding of how varying the number of earcons

concurrently presented affects their identification is therefore important to contextualise the answers of the

other research questions of Section4.7, and therefore the remainder of the work in this thesis.

5.2 Methodology

5.2.1 Issues With The Experimental Design

One of the issues with the evaluation of Dolphin (see Section4.4), was that whilst neither condition was

significantly better than the other, there was no indication as to why this occurred, other than the anecdotal

evidence about the problems with concurrent identification of earcons from experimental participants. In

the Dolphin experiment, data on earcon identification could not be recorded with enough fidelity to identify

why and in what way earcons interfered with each other. If an investigation into the presentation of con-

current earcons is to yield the maximum understanding of how earcons work concurrently, it is essential

to focus more tightly on the aspect of interest, namely the identification of concurrently presented earcons,

at the expense of the more ecological aspects of any work such as existed in Dolphin. This raises some

limitations to the applicability of this experiment and the experiments in the following two chapters. It

will not be possible to claim, simply by showing an increase in participants’ ability to identify concurrently

presented earcons, that any presentation modifications, or redesign of the earcons will lead to performance

improvements in real interfaces which use concurrent earcons. However, since there is so little understand-

ing on the identification of concurrently presented earcons, and due to the gap between the psychological

investigations of auditory scene analysis and how it would be implemented in auditory displays, investi-

gating this topic through further experiments like Dolphin may yield little information to understand how

modifications to the design and presentation of concurrently presented earcons affect their identification.

The ecological validity and applicability of the work contained in this chapter, and Chapters6 and7, is

explored further in Chapter8.

With regard to these issues, an experimental technique similar to that of Gerth [57] was chosen to in-

vestigate how varying the number of concurrently presented earcons affected their identification. Whilst

Gerth however, was only interested if participants could identify differences between two consecutive se-

quences of concurrently presented sounds, earcons, as already stated in Section3.3.4, need to be accurately

identified.

It is not sufficient to simply present two consecutive sequences of concurrent earcons, and ask whether
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Figure 5.1: A diagram showing the stages involved in the identification of concurrent earcons. Participants must first
recognise and separate both perceptual and cognitive processes, the earcons contained within the composite sound.
Participants must then use cognitive processes to recall the mapping between earcon sound attributes and the labels
associated with those sound attributes.

the second sequence contained more or less earcons than the first. In the experiment described in this

chapter, participants were asked to listen to sequences of concurrently presented earcons and identify the

attributes of each earcon presented. The steps involved by participants in this identification are outlined in

Figure5.1.

5.2.2 Procedure

Sixty four participants undertook the experiment, which was of a between groups design. All participants

were aged 18-24, and comprised of a mix of both males and females. All were paid£5 on completion. The

earcons used were the same as those from the Dolphin investigation (see Section4.4). There is no reason

to consider that the earcons from Dolphin were worse than any other set of earcons, and using the same set

of earcons may assist in further understanding the problems with Dolphin. As with Dolphin, each earcon

encoded three parameters of a theme park ride: the ride type (either rollercoaster, static ride or water ride),

the intensity of the ride (either low intensity, medium intensity or high intensity) and the cost of the ride

(either low cost, medium cost or high cost).
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The main hypothesis of the experiment was that varying the number of concurrently presented earcons

would significantly alter the proportion of presented earcons which could be successfully identified. The

independent variable (IV) was the number of earcons concurrently presented, and the dependent variables

(DV’s) were the number of earcons, ride types, ride intensities and ride costs successfully identified. Un-

derstanding how the identification of earcon attributes varies with the number presented is important, since

as discussed in Section4.4, although all attributes of an earcon are important, it may not always be the case

that identifying all attributes of an earcon is always necessary. In such cases actual performance may be

closer to the identification of individual earcon attributes than total earcons. Additionally, the number of

attributes encoded in each earcon are around the maximum that can be realistically incorporated, and to date

not other work has used more than three attributes in each earcon. Therefore, determining the individual

attribute performance may also indicate what would happen to identification performance if the number of

data attributes encoded in each earcon was reduced.

In addition it was hypothesised that varying the number of earcons concurrently presented would sig-

nificantly affect the subjective workload of participants. A set of modified NASA Task Load Index (TLX)

scales [60] were used to collect data to test this hypothesis (see Section4.5.1).

There were four conditions in the experiment: the one earcon condition (where only one earcon was

presented “concurrently”), the two earcon condition (where two earcons were concurrently presented), the

three earcon condition (where three earcons were concurrently presented) and the four earcon condition

(where four earcons were concurrently presented). The one earcon condition, whilst not incorporating

concurrent earcon presentation, since only one earcon was presented at a time, allowed a general comparison

of earcon identification to be made back to the work of Brewster [16], and a determination of the quality of

the earcons used in both this experiment and Dolphin (see Section4.4) to be made. Each condition in the

experiment had two phases, a training phase and a testing phase. Both are described later in this section.

Issues with the Experiment

The experiment reported in this chapter was originally part of a larger between groups experiment which

also incorporated the experiment from Chapter6. Originally, the only intended investigation into varying the

number of concurrently presented earcons was comparing three concurrently presented earcons with four

concurrently presented earcons. It was felt that this could be achieved best by including the three earcon

condition as one of the conditions of the experiment described in Chapter6. However, after the three earcon

condition had been performed it became clear that further studies of varying the number of concurrently

presented earcons would be necessary. Therefore the larger experiment was split, with one experiment

(reported in this chapter) investigating the effect of varying the number of concurrently presented earcons,

and another (reported in Chapter6) investigating how earcons can be more robustly designed and presented

to increase earcon identification. However, because the three earcon condition had already been performed,

there is some linkage between the two experiments. Therefore although this is a between groups experiment,
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participants who performed a condition of this experiment also performed a condition from the experiment

described in Chapter6. The way in which conditions from this and the experiment from Chapter6 were

paired together is shown in AppendixD. Note that for each pair of conditions the order in which participants

performed them was counterbalanced in order to remove any order effects in the data. Since no participant

performed two conditions of the experiment described in this chapter, between groups statistical analyses

are relatively easy to perform, and there should be no anomalies in the results which could be caused by the

interleaving of the experimental conditions of the two experiments.

Training Phase

The training phase was similar to that of the Dolphin evaluation4.4and involved participants reading a sheet

which described the grammar of the earcons used (see AppendixE), followed by ten minutes of self guided

training via a Web page interface (see Section B of the accompanying CD-ROM for the Web page (Appendix

M)), where participants could listen individually to all possible earcons which could be composed from

the earcon grammar. After this time participants were presented with three earcons independently, and

were required to identify them without any form of assistance or feedback. If participants were unable

to successfully identify the three earcons, they were given back the earcon grammar sheet and the web

page for a further five minutes of training before retaking the test. If they were still unable to successfully

identify the earcons, they took no further part in the experiment. Overall, one participant failed to complete

the training phase. The purpose of this training methodology was to quickly allow the participants to learn

the earcons. Brewster [18] compared a number of different training methods and identified that providing

participants with a description of the earcons, and allowing them to listen to the the earcons was an effective

training method. He did note however, that it may not be the most common way that participants are trained

in real world applications, and a simple description of the earcons may be more likely. The work presented

in this thesis however, investigates the identification of concurrent earcons and it would be unfortunate if

the results of these experiments were confounded due to participants being unable to identify the earcons

individually, hence a “best case” training methodology was chosen.

Testing Phase

The testing phase involved participants listening to twenty sets of concurrently presented earcons. The

presentation order of each set was randomly selected for each participant to avoid order effects in the data.

Each set of earcons was diotically presented (monaural presentation to both ears) to participants seven

times in rapid succession (see Figure5.2 for an example of presentation from the three earcon condition).

The number of earcons in each set was dependent on the experimental condition, with four, three, two

and one earcons used in the four, three, two and one earcon conditions. Seven repetitions being, for the

four earcon condition, approximately four times greater than the number of repetitions used by Brewster,

Wright and Edwards [24] when investigating single earcon identification. Earcons were repeated seven
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Earcon 1 Earcon 1 Earcon 1Earcon 1 Earcon 1 Earcon 1

Earcon 2 Earcon 2 Earcon 2 Earcon 2Earcon 2Earcon 2

Earcon 3 Earcon 3 Earcon 3Earcon 3 Earcon 3 Earcon 3

Time

Figure 5.2:An example of the presentation of concurrent earcons. Showing how each set of earcons were concurrently
presented seven times. Taken from the three earcon condition.

times as Bregman [14] notes that it is difficult to listen in detail to multiple streams at the same time, hence

participants would need to re-listen to the earcons to retrieve all of the information contained within them.

However, it may be the case that the number of earcon repetitions has an effect on earcon identification, and

if more or fewer repetitions were used, performance may increase or decrease. If participants did not have

to identify all of the earcons then this would reduce the need for so many repetitions and may overcome

some of the issues that exist with multiple repetitions. However, this would mean that the experiment would

have to ask participants to identify differences between two sets of sequentially presented earcon sets. This,

as already discussed in Section5.2.1is an unrealistic approximation of earcon identification.

Figure 5.3: A screenshot of the dialog used by participants to fill in earcons identified. Taken from the four earcon
condition.
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Rollercoaster
High Intensity
High Cost

Static Ride
Medium Intensity
Medium Cost

Water Ride
Medium Intensity
Low Cost

Water Ride
Low Intensity
High Cost

Water Ride
High Intensity
Low Cost

Static Ride
High Intensity
High Cost

Rollercoaster
High Intensity
Low Cost

Static Ride
Medium Intensity
Medium Cost

Set of Earcons Presented (SEP)

Set of Participant Responses (SPR)

Figure 5.4: An example from the four earcon condition of how the set of participant responses (SPR) were mapped to
the set of earcons presented (SEP) in order to determine the number of correctly identified earcons, ride types, ride
intensities and ride costs.

Participants had to identify the attributes of each earcon in a set and record what those attributes were

in a dialogue box. See Figure5.3 for an example of the dialog box as used in the four earcon condition.

The experiment was of a forced choice design. Participants were presented with the response dialog box as

the earcons started to be played and were able to fill in the dialog box as the earcons were being presented,

or wait until the earcon presentations had ended before filling in responses. Between successive sets of

earcons, a mandatory rest break for participants of at least four seconds was introduced, since some research

suggests that this is the period of time required by the auditory streaming mechanism to fully reset itself [14],

thereby removing any possibility of one set of earcons influencing the perception of the next. Before the

testing phase proper, each participant carried out a reduced version of the testing phase involving two sets

of earcons, not used in the testing phase proper, to familiarise themselves with the experimental procedure.

5.3 Results

5.3.1 Identified Earcons and Attributes

To determine the number of earcons, ride types, ride intensities and ride costs correctly identified by par-

ticipants, the following method was used. For each set of (one, two, three or four) concurrently presented

earcons, the set of earcons presented (SEP) and the set of participant responses to those earcons (SPR)

were compared. If all parameters of an earcon (ride type, ride intensity and ride cost) in the SPR matched

an earcon in the SEP, and neither earcon had already been correctly identified (marked as allocated), the

number of correctly identified earcons was increased by one, and both earcons were marked as allocated,

i.e. they had been correctly identified.
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Figure 5.5: Graph showing the average proportion of earcons, ride types, ride intensities and ride costs correctly
identified for the one, two, three and four earcon conditions.

Once the number of earcons which had been correctly identified had been determined, the number of

correctly identified ride types, ride intensities and ride costs were determined. All possible permutations

of earcons from the SPR which had not been fully correctly identified and thus were not allocated, were

compared against the unallocated earcons from the SEP, and the attributes were compared. The permutation

which yielded the highest overall number of correctly identified ride attributes, was used to determine the

number of correctly identified ride types, ride intensities and ride costs. An example mapping between the

SEP and SPR, from the four earcon condition is shown in Figure5.4.

One issue with this experiment was that the number of earcons to be identified in each condition was

different. Because of this, a direct numerical comparison between the earcons and their attributes correctly

identified for different conditions would be unfair, and of limited value. Therefore, the average number

of earcons, ride types, ride intensities and ride costs identified by each participant were converted into

percentages of the number of earcons that were concurrently presented. For example, in the three earcon

condition, if on average two earcons were correctly identified, the percentage was calculated as (2/3) * 100

= 66%. The average proportion of correctly identified earcons, ride types, ride intensities and ride costs

across all participants is presented graphically in Figure5.5. Raw data are presented in AppendixF.

To determine if any of the differences shown in Figure5.5 were statistically significant, four between

groups, one-way analysis of variance (ANOVA) tests were carried out; one for the percentage of correctly

identified earcons, and one for each of the percentage of earcon attributes (ride type, ride intensity and

ride cost) correctly identified. The ANOVA for percentage of earcons correctly identified was found to
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Figure 5.6: Graph showing the mean values for NASA TLX workload data for the one, two, three and four earcon
conditions.

be significant (F(3,60) = 23.28, p< 0.001). Post hocTukey Honesty Significance Difference (HSD) tests

[64] showed that earcons were significantly better identified in the one earcon condition than in the two,

three and four earcon conditions (p< 0.05). The ANOVA for percentage of ride types identified was also

found to be significant (F(3,60) = 22.29, p< 0.001). Here,post hocTukey HSD tests showed that ride

types were significantly better identified in the one and two earcon conditions than in the three and four

earcon conditions (p< 0.05), and ride types in the one, two and three earcon conditions were significantly

better identified than those in the four earcon condition (p< 0.05). For the percentage of ride intensities

correctly identified, the ANOVA again showed significance (F(3,60) = 31.16, p< 0.001).Post hocTukey

HSD tests showed that the ride intensities were significantly better identified in the one and two earcon

conditions than in the three and four earcon conditions (p< 0.05), and ride intensities in the one, two and

three earcon conditions were significantly better identified than those in the four earcon condition (p<

0.05). The ANOVA for ride costs identified was not found to be significant (F(3,60) = 2.24, p = 0.093).

5.3.2 Workload Data

In addition to collecting data about the number of earcons and their attributes that were correctly identified,

participants also completed modified NASA TLX questionnaires for each condition (see Section4.5.1) to

determine variations in subjective workload. A graphical summary of these data is presented in Figure5.6.

Raw data are presented in AppendixF. To determine if workload significantly differed between conditions,

overall workload was calculated as a summation of each participant’s individual workload attributes (ex-
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cluding annoyance experienced). An analysis of variance (ANOVA) test on these data showed significance

(F(3,60) = 5.96, p = 0.001).Post hocTukey HSD tests identified that workload was significantly lower in

the one and two earcon conditions than in the four earcon condition (p< 0.05).

To determine which attributes contributed to this variation in workload between conditions, seven one

way ANOVAs, one for each NASA TLX attribute were carried out. For the performance level achieved,

the ANOVA showed significance (F(2,45) = 6.19, p = 0.004).Post hocTukey HSD tests showed that

participants had rated performance for the one earcon and two earcon conditions significantly higher than

for the four earcon condition (p< 0.05). For frustration experienced, the ANOVA again was significant

(F(2,45) = 9.71, p< 0.001). Post hocTukey HSD tests showed that participants had rated frustration

significantly higher in the four earcon condition than the two and one earcon conditions (p< 0.05). The

ANOVA for effort expended was significant (F(2,45) = 6.94, p = 0.002).Post hocTukey HSD tests showed

that effort was rated significantly higher in the four earcon condition than the two earcon condition (p

< 0.05). Effort was also rated significantly higher in the one earcon condition than in the two earcon

condition. For time pressure, the ANOVA again showed significance (F(2,45) = 9.28, p< 0.001). Post

hoc Tukey HSD tests showed that participants rated time pressure significantly higher in the four earcon

condition than the two and one earcon conditions (p< 0.05). The ANOVAs for mental demand (F(2,45)

= 1.66, p = 0.186), and physical demand (F(2,45) = 3.47, p = 0.060) were not significant. For the amount

of annoyance experienced, the ANOVA was again significant (F(3,60) = 9.04, p< 0.001).Post hocTukey

HSD tests showed that annoyance for the three, two and one earcon conditions was rated significantly lower

than the four earcon condition (p< 0.05).

5.4 Discussion

The results from the previous section have confirmed the conclusion from the Dolphin experiment from

Section4.4, that trying to identify concurrently presented earcons is difficult, with on average only 30% of

earcons correctly identified in the four earcon condition; four earcons being the average number of earcons

concurrently presented in Dolphin. The results from the one earcon condition showed around 70% accuracy

in earcon identification. Although using a different experimental procedure, Brewster [16] found similar

levels of identification for individually presented earcons. The set of earcons used in this work can therefore

be regarded as being of similar quality. Therefore, the problems with the concurrent identification of earcons

cannot be attributed to a poorly designed earcon set, which causes poor individual earcon identification.

The results from Section5.3support the hypothesis that varying the number of concurrently presented

earcons has a significant effect on a participant’s ability to identify those earcons. The greater the number

of earcons concurrently presented to participants, the lower the proportion of those earcons that can be

successfully identified. This can be illustrated by the graph in Figure5.7 which shows best fit trend lines

between the number of concurrently presented earcons, and the percentage of earcons and earcon attributes
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Figure 5.7: Graph showing best fit trend lines for the one, two, three and four earcon conditions, showing how the
proportion of earcons and earcon attributes correctly identified is affected by the number of concurrently presented
earcons.

correctly identified. The trend for the percentage of correctly identified earcons agrees both with the work

of Brungart, Ericson and Simpson [29], and Gerth [57], described in Section4.6. However, it shows the

same relatively steep drops in performance as Brungart, Ericson and Simpson who investigated the effect

on the identification of a target CRM (Coordinate Response Measure) phrase when the number of con-

current talkers were increased. They found for zero, one, two and three interfering talkers, similar levels

of identification to the proportion of earcons identified in the one, two, three and four earcon conditions.

This indicates that modifications undertaken by Brungart, Ericson and Simpson to improve identification

in concurrent talker environments may be useful in improving the identification of concurrently presented

earcons. In addition, Figure5.7 shows that whilst the percentage of correctly identified ride types and in-

tensities closely follow the same trend as the percentage of correctly identified earcons, the percentage of

correctly identified ride costs has a much shallower gradient. This is believed to be a combination of the

relatively poor performance of ride cost identification as well as the slightly inharmonic register intervals

between the three registers chosen to represent ride cost (see Section4.5.1). Indicating such intervals may

reduce the likelihood of concurrent earcons interfering with each other, and they will be better identified.

Whilst the proportion of correctly identified earcons is greatly reduced as the number concurrently

presented is increased, identification of individual earcon attributes is much higher, dropping to only 70%

correct for ride types (timbre) and ride intensities (melody) when four earcons were concurrently presented.
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As discussed in Section4.4, it may not always be the case that all parameters of an earcon are required to be

identified to make use of the earcon, therefore in real world tasks the identification of individual attributes

may be a more realistic metric of performance. Additionally, the earcons used encoded three separate data

attributes, which is around the maximum number which can be encoded in any one earcon, and no studies

have been carried out which attempt to incorporate more than three data attributes into an earcon. The

earcons used in this study can therefore be regarded as being of maximum complexity, and therefore the

results of this experiment can be regarded as being a “worst case scenario”. If the complexity of the Earcons

was reduced by removing one or more data attributes encoded in each earcon, identification performance

may increase.

5.4.1 Guidelines for Concurrent Earcon Presentation

From the experiment described in this chapter the following guidelines for designers of auditory displays

which use concurrent earcons can be drawn:

• Increasing the number of concurrently presented earcons significantly reduces the proportion of the

earcons which can be successfully identified. Increasing the number of Earcons concurrently pre-

sented can reduce correct identification from 70% to 30%. Great care should be taken when consid-

ering the amount of information users will need to extract from earcons when considering the number

of earcons which will be concurrently presented.

• If register is used to encode a data attribute, it may be beneficial to ensure that inharmonic intervals

are used between concurrently presented registers. This is likely to reduce the impact on register

identification when the number of concurrently presented earcons is increased.

5.5 Conclusions

In conclusion, this chapter has provided answers to one of the research questions posed in Section4.7

namely, RQ1:“What is the effect on earcon identification of varying the number of earcons which are

concurrently presented?”. Increasing the number of concurrently presented earcons from one to two re-

duces the proportion which can be successfully identified from 70% (identification levels similar to work

on earcons undertaken by Brewster [16]), to around 50%, with further increases in the number of con-

currently presented earcons reducing the proportion of earcons successfully identified even more. Whilst

concurrent earcon identification is poor, it should be recalled from Section4.4that it is not always the case

that all parameters of an earcon are required, and the identification of individual earcon parameters faired

much better, with identification for the timbre and melody encoded attributes falling from 90% to 70%

as the number of earcons concurrently presented was increased from one to four. Additionally, three data

attributes were encoded in each earcon (the maximum realistic number possible); this task can therefore
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be seen as a worst case scenario, with a reduction in the complexity of each earcon possibly increasing the

proportion of earcons identified. However, it is clear that trying to identify concurrently presented earcons

is a difficult task. It is important therefore to understand how the design and presentation of earcons can be

modified to reduce the impact on their identification when the number of earcons concurrently presented is

increased.
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Chapter 6

Engineering More Robust Earcons

6.1 Introduction

As shown in the previous chapter, varying the number of earcons which are concurrently presented to a

user has a significant effect on the proportion which can be successfully identified. With an increase in the

number of concurrently presented earcons causing a significant reduction in the proportion of earcons that

can be successfully identified.

Although reducing the number of concurrently presented earcons significantly increases the proportion

which can be identified, there are still specific interactions between them that are likely to prove problematic.

Take as an example problem two earcons as used in Dolphin (see Section4.4) representing a high intensity,

high cost rollercoaster, and a medium intensity, high cost rollercoaster. In other words, two earcons which

because of the grammar they are derived from, share the same timbre, and will be played in the same

register; they will differ only in melody (see Figure6.1(A) and (B)). If these two earcons were concurrently

presented, Auditory Scene Analysis (ASA) (see Section2.6) indicates that the only information available

to perceptually segregate the earcons would be the listener’sa priori knowledge of the melody of the two

earcons. In addition, the shared timbre and register of the earcons would weight the auditory system to

group the two earcons in the same auditory stream (see Figure6.1 (C)). This makes the user’s task of

identifying the earcons difficult, if not impossible.

The only way to overcome such problems when concurrently presenting earcons is through changes

to the design and presentation of those earcons. One way of doing so is to vary one of the other earcon

attributes as well as the melody, such as presenting each earcon with a distinct timbre. The guidelines of

(A) (B) (D)(C)

Figure 6.1: Two melodies representing, (A) high intensity, and (B) medium intensity, high cost theme park rides. (C)
The same two earcons concurrently presented with the same, and (D) with different timbres (denoted by note colour).
Note how the addition of timbre differences makes the earcons easier to separate.
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Brewster, Wright and Edwards [25] (BWE) acknowledge this is an effective way of discriminating between

earcons. Compare the concurrent presentation of the earcons from Figure6.1(C) where they are presented

with the same timbre, and as shown in Figure6.1 (D) where they are presented with different timbres

(denoted by a different colour). Including this difference in timbre helps to make the two earcons stand out

more, and will encourage them to be placed in separate auditory streams.

Modifying the timbre in addition to the melody would provide more information for the auditory system

to separate the earcons (see Section2.6). However, the strength of the transformational and hierarchical

earcon types, as already discussed in Section3.3.4, is due to the grammar that a particular set of earcons is

derived from. If arbitrary changes are made to earcons in order for them to be more easily discriminated,

the grammar that connects them is likely to be destroyed. Therefore, in making modifications to the design

and presentation of earcons for concurrent presentation situations, a tension exists between modifying the

earcons enough so that even similar earcons can be uniquely identified, but not modifying them so much

that the grammar that binds them together (and thus provides the mapping between data and sound), is

destroyed.

This chapter therefore, investigates the issue of separating concurrently presented earcons, and provides

answers to one of the research questions in Section4.7 (RQ2),“How can concurrently presented earcons

be more robustly designed and presented in order to increase the number which can be identified?”.

6.1.1 Earcons and Auditory Scene Analysis

The experiment described in this chapter applies ASA research (see Section2.6) to the design and pre-

sentation of concurrently presented earcons in order to improve their identification. There are several rea-

sons why auditory scene analysis is an appropriate technique to apply to concurrent earcon identification.

Earcons are modified and designed according to musical parameters such as timbre, rhythm, melody etc.

(see Section3.3.4) and much auditory scene analysis research can easily be considered in terms of these

parameters. For example, Singh’s [129] and Singh and Hirsh’s work [131] on the influence of harmonic

structure in auditory scene analysis (as mentioned in Section2.6.2) can be considered in terms of timbre

(see Section2.3.2), a key earcon design parameter [24]. The work of van Noorden [139] (see Section

2.6.2), which investigated the effect of frequency separation and repetition rate on auditory streaming can

be considered in terms of melody, and the register of earcon presentation. Frequency, in the context of van

Noorden, can be considered to be a component of pitch (see Section2.3.2), and hence as the register com-

ponent from the guidelines of BWE (see Section3.3.4). Understanding the relationship between low level

attributes of sound as investigated by ASA research, and higher level auditory parameters used to design

earcons (as discussed in Chapter2) makes it straightforward to consider ASA features which may improve

the identification of earcons. In addition, the use of auditory scene analysis was accurate in predicting

that the identification of concurrent earcons would be problematic (see Section4.3 for a discussion, and

Chapter5 for evidence to support this), therefore auditory scene analysis should also be able to offer useful
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modifications to concurrently presented earcons to make them more easily identifiable.

Whilst the application of auditory scene analysis to the identification of concurrent earcons should be

productive, there are several issues with the design of most auditory scene analysis studies which need

to be borne in mind when applying such work to the identification of concurrently presented earcons.

Although a large body of work which identifies the effect of changing individual auditory parameters on

the perception of a sinusoidal tonal sequence exists, there is little research which investigates the relative

influence of multiple changes to auditory attributes on the perception of a sound source (see Section2.6).

Therefore all modifications to the design and presentation of concurrent earcons which prove to be effective

should be combined and evaluated to ensure they do not conflict, and thus reduce earcon identification

performance. Auditory scene analysis research tends to involve a participant listening to a composite sound,

whilst some auditory parameter is gradually changed until the perception of the sound a participant is

listening to changes by either being perceived as one, or two, distinct auditory streams [14]. Identifying

earcons is more complex, requiring the user to identify the auditory parameters of each earcon and recall

the mapping of data to those parameters. Therefore, although experimental work may show that certain

features of a sound will influence it to be perceived as either one or two streams, it may not be the case

that the application of those features to earcon design will have a significant impact on concurrent earcon

identification. Additionally, any modification to the design of earcons is likely to constrain the earcon

grammar in some way, for example reducing the number of timbres which can be used to represent different

values of a data parameter. Therefore it is important to compare each auditory scene analysis modification

to a set of standard earcons, compliant with the earcon design guidelines of BWE (see Section3.3.4), to

identify if that modification actually does improve concurrent earcon identification, and therefore ensuring

unnecessary constraints are not placed onto earcon designers.

Because BWE’s earcon design guidelines have been experimentally evaluated [16], it is known how

well earcons following these guidelines are identified when presented in isolation to each other. Due to the

already mentioned lack of clear design guidelines for presenting concurrent audio as part of an auditory

display, and the lack of clarity on the specific impact of individual auditory scene analysis features using

BWE’s guidelines provides a solid basis to build upon and is a logical starting point to investigate modifi-

cations to improve the identification of concurrently presented earcons. This approach may also allow for

existing earcon sets to be “retrofitted”, at minimal additional design effort, to allow for there presentation

of those earcons in concurrent presentation situations.

6.1.2 Applying Auditory Scene Analysis to Earcons

Since earcons are extremely complex in the context of ASA research, and there is little guidance on how

different ASA modifications to a sound interact, the approach of the experiment described in this chapter is

to apply ASA research to modify the design and presentation of earcons in a way that is likely to directly

increase the identification of specific earcon attributes.
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The remainder of this section will discuss in detail two aspects of ASA and how they will be applied

to redesign earcon parameters (timbre and melody modifications), and two features which will alter the

presentation of the earcons (timing and training).

Modifying Earcon Timbre

One feature that is important in ASA is timbre [14]. Whilst as discussed in Section2.3.2, there is no

universal definition of timbre, known elements have been found to be important in auditory scene analysis.

Singh [129, 130], Cusack and Roberts [36], and Singh and Hirsh [131] found that alternately presenting

two complex tones (A and B), each of which contained a different number of harmonics (see Section2.3.2),

a known element of timbre, required less separation between the fundamental frequency of the A and B

tones to be heard as two separate streams (one composed of A tones and one composed of B tones), than

when each tone contained the same number of harmonics. Brungart, Ericson and Simpson [29], found that

in a CRM (Coordinate Response Measure) identification task, having different texts spoken by different

sex speakers, effectively changing the timbre of the speaker’s voice, produced a 20% improvement in the

identification of a target spoken phrase.

Timbre therefore exerts a strong influence in how an auditory scene is perceived and how audio is

grouped into streams. This thesis claims that in cases where concurrent earcons are presented which are of

the same ride type, thereby sharing the same timbre, the influence the shared timbre exerts on the grouping

of the earcons is so strong that it greatly reduces the effect of other differences between the earcons which

would be used to influence their streaming, such as register and melody.

If each concurrently presented earcon was presented with a different timbre, the influence that timbre

exerts would work at separating rather than merging the earcons. Unfortunately, since timbre forms part

of the earcon grammar, arbitrary changes which are likely to have the maximum improvement in earcon

discrimination are also likely to destroy the grammar, and therefore make earcon identification difficult, if

not impossible. It may be possible however to use slightly different timbres for each earcon, which would

affect the influence timbre exerts in the auditory streaming process without adversely affecting the inter-

pretation of the earcons. Rigas [118], as described in Section2.3.2grouped instruments into subjectively

similar groups. Therefore instead of mapping a particular ride type to a single timbre, it could be mapped

to a group of similar timbres, any one of which could represent that ride type. In such a way, if more than

one earcon of a particular ride type was presented concurrently, each would have a different timbre from the

same timbre group. Whilst the earcon design guidelines of Brewster, Wright and Edwards [25] recommend

against using very similar timbres, it is not important that participants can explicitly differentiate between

the different timbres used for each ride type; only that they can differentiate between the three groups of

timbres used for different ride types. The different timbres for each ride type should weaken the effect

of timbre in the grouping of concurrently presented earcons, and increase the importance placed on other

differences between concurrently presented earcons (such as melody and register) in the grouping process.
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One issue with such a solution however is that a sufficient number of instrument groups must be avail-

able (one for each distinct data value encoded by earcon timbre), and each instrument group must contain

a sufficient number of instruments (one for each earcon that is to be concurrently presented which encodes

the same data value). It may be difficult to identify enough distinct instrument groups to represent all data

parameters that a user may wish.

Modifying Earcon Melodies

One ASA feature, which can be categorised under the common fate principle (see Section2.6.2), is the

robustness of tones which glide in frequency to be grouped together. That is, sequences of tones which

consistently rise, fall or stay the same in frequency over time (see Figure6.2 for an example). Bregman

[14] notes that when listeners were presented with a frequency glide, which was occluded in places by

broadband noise, thereby masking (see Section2.3.2) part of the frequency glide, listeners associated the

frequency glide as continuing through the noise burst, as opposed to hearing two separate frequency glides

on either side of the noise. Van Noorden [139], as discussed in Section2.6.2, found that if two sequences of

tones were concurrently presented they could be forced to be perceived as being separate by increasing the

frequency difference between the tones of each sequence and reducing the time between consecutive tones,

thereby increasing the tempo, or playing speed of the sequence [116]. Frequency glides conform to the

research of van Noorden with small increases in frequency (pitch in the context of this thesis (see Section

2.3.2)) between consecutive notes fusing those notes into a coherent stream.

Figure 6.2:Example of an upward frequency glide.

One problem with this approach is that if two glides are played concurrently, they may cross over each

other (see Figure6.3(A)). Studies which have investigated this have shown that at the point of intersection

of the two glides, grouping will occur by frequency proximity, rather than by common fate [136, 58, 39].

The example glides in Figure6.3 (A), would therefore be perceived as two glides which bounce apart

(Figure6.3 (B)), rather than two glides which cross (Figure6.3 (C)). Halpern [58] identified that if the

timbre of one of the glides was different, the glides would be heard as shown in Figure6.3 (C). Such a

result was also identified by Tougas and Bregman [136]. However, as timbre is loosely defined (see Section

2.3.2), it is unclear how different two timbres would need to be. It is therefore not possible to guarantee that

if two earcons are concurrently presented their timbres will be sufficiently different; indeed they may have

the same timbre (see Section3.3.4). If the modifications to the timbre of the earcons previously discussed

have a positive effect on earcon identification, then each concurrently presented earcon would have a unique
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Figure 6.3: An example of two crossing frequency glides (A) and how they will be perceived by the auditory system if
they are presented with the same timbre (B) and with different timbres (C).

timbre, which might be enough for frequency glides to stream separately. This issue is further discussed in

Section6.2.3.

Onset Asynchronicity of Earcons

Whilst modifications to the design of earcons may improve their identification, it may also be the case that

modifying the presentation of concurrent earcons will increase their identification.

Auditory Scene Analysis research shows that sounds which start at different times tend to be grouped

separately. Research which has investigated temporal differences in the presentation of sound has shown

that such differences exert a strong influence in how those sounds are grouped. Bregman and Pinker [15]

found that when a tone formed of two separate, harmonically related tones (a complex tone), was presented

asynchronously with a third tone, the greater the onset to onset difference that was introduced between

the two tones which comprised the complex tone, the more likely it was that the three tones would be

perceived as a melodic sequence rather than an alternating complex and simple tone. Therefore as the time

between the presentation of the harmonic tones increased, the influence of the harmonic relationship in the

grouping process was reduced as the influence of the temporal distance between both of the tones increased.

Deutsch [38] found that when melodies, the components of which were alternately presented in opposite

ears, with a corresponding noise in the other ear, that introducing onset-to-onset differences between the

melodic component and the noise of 15ms significantly improved the identification of the melody. Darwin

and Ciocca [37] showed that mistiming an harmonic component in a complex tone by 300ms removed the

contribution of the mistimed component to the perceived pitch of the complex tone (see Section2.3.2).

Therefore, if a short gap is placed between the starts of concurrent earcons, will this allow them to be better

identified?
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Increased Earcon Training

As described in Section3.3.4, because the relationship between an earcon and the data it represents is ab-

stract, training participants to correctly identify earcons is important if they are to be effectively used in a

human computer interface [18]. In a similar way, there is evidence which suggests that a lot of auditory

scene analysis situations are influenced by the listener’s prior knowledge of the stimuli [14]. For example,

work by Dowling [40] found that familiarising participants with an arbitrary tone sequence improved the

detection of that sequence when it was concurrently presented with other tones. Given that learning indi-

vidual earcons is important, and learning of melodies improves their detection in a composite sound, will

familiarisation with concurrently presented earcons improve their identification?

6.1.3 Why Not Spatial Audio?

One feature of concurrent earcon presentation, that will be absent from this chapter, is the use of a distinct

spatial location for each concurrently presented earcon. The advantages that the incorporation of spatial

audio presentation brings to auditory displays have already been discussed in Section3.4. Spatialised audio

allows for an increase in the amount of data that can be concurrently presented, as well as a new auditory

parameter (the spatial location of sound) to encode a data attribute [124, 67, 141].

This thesis argues that whilst spatial audio can be used to improve concurrent earcon identification (see

next chapter), there are several reasons why investigating non-spatial concurrent earcon design and presen-

tation modifications in isolation to spatial presentation is advantageous. Firstly, there are several situations

in which good quality spatial audio may not be practical. As explained in Section2.4, the perception of

spatial location is largely dependent on the differences in auditory cues reaching the left and right ears. This

means that to use spatial audio, a user would need to either wear headphones, or have a set of properly cal-

ibrated speakers. There are several application areas where this may be difficult. If concurrent spatialised

earcons are used in a mobile telephone interface [73], a user may not wish to wear headphones just to per-

form simple and short interactions, thereby rendering any advantages of spatial audio useless. Additionally,

in cases where the spatial location of information is used to encode a data parameter, such as was the case in

Dolphin [79, 80] (see Section4.4), it may not be possible to move audio sources far enough apart to allow

them to be distinct, this may be a particular problem due to the similarity of earcons. Recall from Section

2.4.2that to separate concurrently presented sounds in space is as much a function of their similarity as

their angular separation. Hence, an understanding of how earcons perform when concurrently presented in

a non-spatialised environment, and how identification can be improved in such environments is essential.
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6.2 Methodology

Sixty four participants between the ages of 18-24 undertook this experiment, which was of a between

groups design. As already stated in Section5.2.1, this experiment was originally intertwined with the

experiment from Chapter5, but was later split, with each condition in this experiment being coupled with

a condition from the experiment described in Chapter5. The pairing of conditions from this experiment

and the experiment as discussed in Chapter5 is provided in AppendixD. There were five conditions (the

original earcon set condition, themelody altered earcon set condition, themulti-timbre earcon set condition,

theextended training conditionand thestaggered onset condition) in this experiment. Written consent was

obtained from all participants prior to the start of the experiment, and each was paid£5 on completion.

As with the experiment from Chapter5, each condition consisted of a training phase and a testing phase,

which are described in Section6.2.1and Section6.2.2. The earcons used in this experiment were the same

as those used in Dolphin (see Section4.4), however various modifications, dependent on the experimental

condition, to the design and presentation of the earcons were carried out. These modifications are described

later in this section. Each earcon encoded three parameters of a theme park ride: the ride type (either

rollercoaster, static ride or water ride), the intensity of the ride (either low intensity, medium intensity or

high intensity) and the cost of the ride (either low cost, medium cost or high cost). The main hypothesis of

the experiment was that earcons and their attributes which had been modified according to ASA principles

would be significantly better identified than earcons which only complied with the guidelines of BWE.

The independent variable (IV) was the modification undertaken to the earcons, and the dependent variables

were the number of earcons, ride types, ride intensities and ride costs correctly identified. Additionally it

was hypothesised that modifications to the earcons would significantly reduce the subjective workload of

participants. Modified NASA TLX questionnaires were used evaluate this hypothesis.

6.2.1 Training Phase

As with the experiment described in Chapter5, the training phase provided participants with an opportunity

to learn the earcons that they would be asked to identify in the testing phase.

Participants were provided with a page describing the grammar from which the earcons for that partic-

ular condition were derived. When participants had read and understood the grammar, they were provided

with a Web page containing the earcons derived from the grammar (see Section C of the accompanying

CD-ROM for the Web pages used for each condition (AppendixM)). Participants were allowed to listen to

the earcons individually for ten minutes. After ten minutes participants were asked to identify three individ-

ually presented earcons. If participants were not able to correctly identify the earcons, they were provided

with the sheet describing the earcon grammar and the Web page containing the earcons for a further five

minutes. After this time the test was retaken. If participants were still unable to correctly identify the three

earcons they took no further part in the experiment. One participant failed to complete the training phase.
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6.2.2 Testing Phase

The testing phase of this experiment was similar to the testing phase used for the experiment in Chapter

5. It comprised of participants listening to twenty sets of diotically, concurrently presented earcons, and

trying to identify the attributes of each earcon presented. Unlike the previous experiment, each earcon set

contained four earcons. The four earcons used in each set were randomly selected. The same twenty sets

of concurrent earcons were used for all conditions, and were randomly presented to avoid any order effects.

Each earcon set was repeatedly played seven times and participants recorded the attributes of each presented

earcon in a dialogue box (see Figure5.3 for an example of the dialogue box used). As with the previous

experiment, a mandatory four second break was introduced between successive sets of earcons to allow the

Auditory Scene Analysis mechanism to fully reset [14].

Before carrying out the testing phase proper, participants carried out a shortened version involving

two sets of earcons not used in the experiment, in order to familiarise themselves with the experimental

condition.

6.2.3 Conditions

This section outlines the conditions used in the experiment, each of which incorporates an addition (in-

formed by ASA) to either the design or presentation of earcons which are compliant with the earcon design

guidelines of BWE [25].

Original Earcon Set Condition

The earcons used in this condition incorporated no modifications to either their design or presentation. The

earcons were the same as those described in Section3.3.4, and the presentation was the same as used in

the experiment described in the previous chapter. As such this condition is the same as the four earcon

condition of the previous experiment, and, instead of re-running that condition, the data from the four

earcon condition (see Section5.2.2) were used in this experiment.

Multi-Timbre Earcon Set Condition

As discussed in Section6.1.2, presenting each earcon with a different timbre may improve their identifica-

tion. Whilst as discussed in Section4.3, it would not be possible to use grossly different timbres for each

presented earcon as this would destroy the grammar of the earcons (e.g. presenting two concurrent roller-

coasters, one with a trumpet and another with a piano), using a set of similar timbres for each ride type

which may be used interchangeably to represent that ride type attribute could be employed. This would

ensure that no two earcons were concurrently presented with the same timbre, whilst not destroying the

“grammar” that interconnects the earcons and provides their advantages (see Section3.3.4).
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Since timbre is not fully understood, determining what is and is not a similar timbre is difficult. The

work of Rigas [118], which identified groups of MIDI instruments which were subjectively determined to

be similar (see Section2.3.2), was used to provide guidance in selecting similar timbres. Three groups of

timbres were chosen, and three similar timbres from each group (there were no cases in the 20 stimuli sets

of 4 earcons that all four earcons had the same ride type) were chosen to represent each ride type. Table6.1

shows the instruments and their general MIDI patch numbers used to represent rollercoasters, static rides

and water rides in the multi-timbre earcon set condition. Whilst BWE earcon design guidelines recommend

against MIDI patches so similar to each other as those in Table6.1, it is not important that participants

can differentiate between the three timbres used for each ride type, only that they can differentiate between

the three groups of timbres used for different ride types. The different timbres for each ride type should

however weaken the effect of timbre in the grouping of concurrently presented earcons, and increase the

importance placed on other differences between concurrently presented earcons in the grouping process,

such as melody and register.

This condition does however place limitations on the timbres that can be used to encode data parameters.

It is necessary to be able to determine enough timbre groups for each data parameter which would be

encoded as timbre, and for those timbre groups to contain enough timbres such that there is one distinct

timbre for each earcon (encoding the same parameter) which may be concurrently presented. Therefore if

three earcons with the same timbre mapped data parameter are concurrently presented, there would need

to be three separate timbres from the same timbre group available so that each earcon was played with a

different timbre.

Because Rigas [118] used MIDI instruments in his categorisation experiment, and MIDI does not define

exactly the timbres that are used by a midi synthesiser or how they are generated, there is a variation in the

timbres of different synthesisers. With the synthesiser used in this work (Roland super JV-1080), in order

to have three groups of instruments as distinct as possible, a Marimba, Shamisen (a plucked Japanese

instrument) and Kalimba (a “thumb” piano) were used to represent water rides. On the synthesiser used

these were subjectively distinct from the other groups and were subjectively similar to each other, whereas

other groups that might be used according to the guidelines of Rigas, seemed subjectively similar when

played on the synthesiser used in this work.

Ride Type Instrument General MIDI Patch No.
Rollercoaster Acoustic Grand Piano 000
Rollercoaster Electric Acoustic Piano 001
Rollercoaster Electric Grand Piano 002
Static Ride Tuba 058
Static Ride French Horn 060
Static Ride Synth Brass 1 062
Water Ride Marimba 012
Water Ride Shamisen 106
Water Ride Kalimba 108

Table 6.1: Table showing the timbres used to represent ride types in the multi-timbre earcon set condition.
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High Intensity Medium Intensity Low Intensity

Figure 6.4: Examples of the melodies used for high, medium and low intensity theme park rides as used in the melody
altered earcon condition.

Melody Altered Earcon Set Condition

As previously discussed, sequences of tones which consistently rise, fall or stay the same in pitch are more

robustly segregated by the auditory scene analysis system (see Section2.6). In this condition, the melodies

of the earcons from Section4.5.1, which were used in the original earcon set condition, were altered to

use frequency glides in the hope that this would increase their robustness and ability to be identified when

concurrently presented. The revised melodies for high, medium and low intensity theme park rides are

shown in Figure6.4.

As also previously discussed, if two glides cross each other, they are likely to group according to pitch

proximity rather than by common fate. However, if each glide is presented with a different timbre, then this

will assist the desired grouping of the glides. It is unclear however, how different two timbres would need

to be to create such a situation. It may be the case that the changes in timbre between concurrent earcons

provided by the multi-timbre earcon set condition would be sufficient. However, the melody altered earcon

set condition places severe limitations on the number of possible melodies which can be incorporated into an

earcon grammar. Further limitations on the grammar are imposed by the multi-timbre earcon set condition.

It would be unwise if both conditions were combined before each had been shown to be individually useful,

in case one was not effectual in increasing the identification of earcons, and guidelines from that condition

unnecessarily placed constraints on the design of earcons for concurrent presentation. In addition, most

earcon stimuli sets used in the experiment which had a different melody were also accompanied by changes

in another parameter. Therefore if this cue is effective, an improvement in concurrent earcon identification

may be found without explicit modifications to other earcon parameters.

Staggered Onset Condition

As previously discussed in Section2.6.2, staggering the onsets of two tones can have a significant influence

in the way they will be grouped by the auditory system. This condition investigated if staggering the onsets

of concurrently presented earcons has a similar effect in improving the identification of those earcons. In

this condition although the four earcons in each set were still presented concurrently, a 300ms onset-to-

onset delay was introduced between the presentations of each earcon. An example of the presentation
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method used is shown in Figure6.5. The order of presentation of the earcons in each earcon set was

randomised between participants to avoid any order effects affecting the results, due to one earcon always

being presented before another. In terms of Figure6.5, the earcon allocated as earcon 1, earcon 2 etc. was

randomly varied between participants.

Extended Training Condition

As previously discussed, familiarity with identifying concurrent earcons would be expected to increase

their identification. In this condition a second testing phase was introduced between the training and testing

phases, which presented participants with the application shown in Figure6.6. Participants were allowed

to listen to two sets of four concurrently presented earcons, which were not used in the testing phase. This

allowed participants to switch on and off individual earcons in order to understand the kinds of interactions

that might occur when multiple earcons are concurrently presented. The list at the bottom of the application

(see Figure6.6), shows all possible permutations of the four earcons. Clicking a list item changed the order

of the earcons in the top part of the application to the selected permutation. Training was self guided and

participants were instructed to listen to the changes that occurred when a new earcon was added or removed

from the mix. Participants had to select all of the possible permutations in the list before finishing the

training. On average this training phase took twenty minutes to complete.

6.3 Results

6.3.1 Identified Earcons and Attributes

As with the previous experiment, participants’ responses to the earcons presented were collected, and the

number of correctly identified earcons, ride types, ride intensities and ride costs were determined using

the method from Section5.3.1. A preliminary analysis of the results revealed significant improvements in

earcon attribute identification in the multi-timbre earcon set and staggered onset earcon conditions over the

original earcon set condition. To determine the overall improvement in earcon identification, the features
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Figure 6.5:An example of concurrent earcon presentation from the staggered onset earcon condition. The four earcons
are still concurrently presented seven times, however a 300ms onset-to-onset delay between the start of each earcon is
introduced.
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Figure 6.6:A screenshot of the concurrent earcon training tool, designed to give participants an opportunity to under-
stand how earcons interfere with each other when concurrently presented.

of these two conditions were combined, to yield the final condition, which was performed using the same

method as the other conditions with a further 16 participants. The average number of correctly identified

earcons, ride types, ride intensities and ride costs for all six conditions are presented graphically in Figure

6.7. Raw data are presented in AppendixH.

To determine if any of the differences in the data presented in Figure6.7 were statistically significant,

four one way ANOVA tests, one for each of the parameters, were carried out. The ANOVA for number of

rides identified was found to be significant (F(5,90) = 7.12, p< 0.001).Post hocTukey HSD tests showed

that the number of earcons identified in the staggered onset and final conditions were significantly greater

than the original earcon set condition (p< 0.05). The ANOVA for the number of ride types identified

was also significant (F(5,90) = 7.84, p< 0.001).Post hocTukey HSD tests revealed that the multi-timbre

earcon set, the staggered onset and the final conditions had a significantly greater number identified than

in the original earcon set condition (p< 0.05). For the number of ride intensities identified, the ANOVA

was again significant (F(5,90) = 3.16, p = 0.011).Post hocTukey HSD tests showed that ride intensity in

the staggered onset and multi-timbre earcon set conditions were significantly better identified than in the

melody altered earcon set condition (p< 0.05). The ANOVA for ride costs identified was not significant

(F(5,90) = 0.31, p = 0.907).
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Figure 6.7: Graph showing the average number of earcons, number of correctly identified ride types, ride intensities,
ride costs and their standard deviations for the original earcon set, melody altered earcon set, multi-timbre earcon set,
extended training, staggered onset and final experimental conditions.

6.3.2 Workload Data

As with the experiment of Chapter5, NASA TLX workload ratings were recorded. The average score for

each rating in each condition is presented graphically in Figure6.8. Raw data are presented in Appendix

H. To determine if workload significantly differed between conditions, overall workload was calculated as

a summation of each participant’s individual workload attributes (excluding annoyance experienced). An

analysis of variance (ANOVA) on these data failed to show significance (F(5,90) = 0.69, p = 0.629).

An additional ANOVA was carried out separately on the scores for annoyance experienced. This

ANOVA showed significance (F(5,90) = 2.33, p = 0.049).Post hocTukey HSD tests showed that the stag-

gered onset condition was judged to be significantly less annoying than the original earcon set condition (p

< 0.05).

6.4 Discussion

The results show that both the multi-timbre earcon set condition and the staggered onset condition signif-

icantly improved the identification of earcon attributes over the original earcon set condition; the number

of correctly identified ride types in each condition being significantly greater than the number correctly

identified in the original earcon set condition. The number of earcons which were correctly identified in the

staggered onset condition was also significantly greater than in the original earcon set condition.
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Figure 6.8: Graph showing the mean values for NASA TLX workload data with standard deviations for the original
earcon set, melody altered earcon set, multi-timbre earcon set, extended training, staggered onset and final experimental
conditions. Shown with standard deviations.

The final condition which incorporated the staggered onset condition and multi-timbre earcon set con-

dition, these being the only conditions which significantly increased the identification of earcons or their

attributes over the original earcon set condition, had significantly higher earcon and ride type identification

than the original earcon set condition. However, there was no significant interaction between the final, stag-

gered onset and multi-timbre earcon set conditions. Given that both the staggered onset and multi-timbre

earcon set conditions significantly improved the identification of ride type, they may both have solved the

same earcon interaction problems (see Section6.1).

Whilst the modified NASA TLX workload ratings participants provided for each condition show few

significant results, participants did rate the staggered onset condition to be significantly less annoying than

the original earcon set condition. This result again echoes the claim of Buxton from Section3.2.2, that by

improving the effectiveness of auditory displays they will be less annoying to users. It is however unclear

why the final condition failed to produce a significant result for this attribute.

The melody altered earcon set condition did not show any significant improvement over the original

earcon set condition. Indeed, the original earcon set condition appears to outperform the melody altered

earcon set condition in the number of earcons, ride types, ride intensities and ride costs correctly identified.

As was discussed in Section6.2.3describing the melody altered earcon set condition, the identification of

crossing glides is difficult without further differences between the two glides in terms of their timbre. It

was considered that in a large number of cases, the earcon sets presented which had different ride inten-

sities would also vary in timbre, thereby assisting the correct interpretation of the melody [58]; or both
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earcons would be played in different registers, and as such would be inharmonicaly separated so that the

melodies would not actually cross in pitch. If an improvement in the identification of earcons or their at-

tributes had been seen, even if this was not significant, it would have indicated that melody alterations to

concurrently presented earcons may have been useful in improving their identification if each earcon also

had a unique timbre. Future investigations could have determined if applying the multi-timbre earcon set

features to guarantee more than just the melody differences between earcons would significantly improve

earcon identification. However, given that the results appear to show that the melody altered earcon set

condition reduces correct identification of earcons and their attributes over the original earcon set condi-

tion, melody alteration of concurrently presented earcons may not assist in improving earcon identification.

Further investigation into melody modifications to concurrent earcons may therefore be required.

The issues with the melody altered earcon set condition provide supporting evidence to the claim made

in Section6.1.1, that because certain modifications to sounds have been shown to influence how sounds are

grouped together to form auditory streams, it can not be assumed that incorporating such features into the

design of concurrently presented earcons will lead to significant improvements in the identification of those

earcons. This is especially important to consider given that certain ASA features, such as those incorporated

into the melody altered earcon set condition, constrain the design of the earcon grammar and as such, the

number of different data values an earcon is capable of encoding. Therefore identifying that a specific ASA

feature improves the identification of concurrent earcons must be experimentally determined, and cannot

be assumed.

The extended training condition did not show a significant improvement in the identification of con-

currently presented earcons or their attributes. However, for the number of earcons, ride types and ride

intensities identified, identification performance is closer to the staggered onset and multi-timbre earcon set

conditions than the original earcon set condition. It is unlikely that the lack of significant results for the

extended training condition can be attributed to participants not spending time using the concurrent earcon

trainer (see Figure6.6). On average participants spent 13 minutes on the first training session, and 8 min-

utes on the second. Because there is no guidance on training participants to listen to concurrently presented

earcons, it is possible that a redesign of the training tool may improve concurrent earcon identification. As

with the melody altered earcon set condition, further investigation into this issue is required.

Although significant improvements in earcon identification were found in some conditions, these im-

provements were not large and overall identification performance was low which raises questions over the

practical usefulness of the modification. However, from the results of the previous experiment described

in Chapter5, it was considered that four concurrently presented earcons of maximum complexity was a

“worst case scenario”. Applying modifications to the design and presentation of the earcons however may

make it acceptable for designers to increase the number of earcons concurrently presented. Other studies

which have investigated modifications to the design and presentation of concurrent sounds, have shown that

whilst increasing the number of concurrently presented sounds still causes a reduction in performance, that
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reduction is much less severe [29]. Hence if modifications to the design and presentation of earcons were

carried out, the gradient in the graph from Figure5.7would be expected to be much flatter.

Although modifications to the design and presentation of Earcons were found to have significantly

improved their identification, in order to avoid destroying the grammar of the earcons and therefore making

it impossible to retrieve the data encoded within them, the degree of such modifications were constrained.

The degree of such constraints is partially due to the number of data attributes encoded within the earcon.

If a data parameter is encoded by an auditory attribute, there is a limited amount of modification that can

be undertaken on that audio attribute to allow concurrently presented earcons to be separately streamed.

The earcons used in this work, as already stated, encode three data parameters and as such are a “worst

case scenario”. If less data attributes are encoded in each earcon, this would free an audio attribute, such

as timbre or register, which may allow greater changes between concurrently presented earcons without

destroying the “grammar” of the earcons used, since the audio attribute would not be used as part of the

earcon grammar. This may lead to increased improvements in earcon identification, however the amount of

information encoded in each earcon would be significantly reduced.

The modification to concurrently presented earcons were all applied to a pre-existing set derived from

the guidelines of BWE (see Section3.3.4), and used only those musical elements that the guidelines discuss.

For example, the use of dynamics (the variation in the degree of loudness of a composition [116]) was not

used as part of the earcon design. Additionally some of the aspects of BWE’s guidelines were grouped,

such as using melody to represent ride intensities rather than just using rhythm, since Brewster’s work

shows that combinations of parameters in such a way allows for earcons to be more robustly identified.

Whilst following BWE’s guidelines as a starting point to investigate the issues of concurrently presented

earcons is logical (since they are the only evaluated guidelines for earcon construction), it may be that more

practically useful results would be found by a radical redesign of the earcons rather than the “augmentation”

of those earcons with specific modifications. Such a redesign would remove the reliance on the underlying

guidelines of BWE, however it would be necessary not only to determine how well those earcons were

identified concurrently but also how they could be parameterised to encode information and how easily the

mappings between earcons and the data they represent can be learned, issues which the work of Brewster

[16] has already investigated and provided solutions for.

Guidelines for Concurrent Earcon Presentation

From the results of the experiment undertaken in this chapter, the following guidelines for the concurrent

presentation of non-spatialised earcons can be derived. These guidelines will help designers who need to

concurrently present earcons do so more effectively, allowing the earcons to be more accurately identified.

• When timbre is used to encode a data parameter, each concurrently presented earcon should have

a different timbre. The guidelines of Brewster, Wright and Edwards [25], should be used to select

timbres to encode different values of a data parameter, but if two earcons with the same timbre
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encoded value are to be concurrently presented, each should use a different musical timbre from

the same instrument group. The work of Rigas [118] can be used to determine distinct instrument

groupings.

• Concurrently presenting earcons which start at the same time should be avoided. The introduction of

at least a 300ms onset-to-onset gap between the starts of concurrently presented earcons will make

the earcons more identifiable to users.

6.5 Conclusions

This chapter has provided answers to one of the research question posed in Section4.7, namely RQ2:“How

can concurrently presented earcons be more robustly designed and presented in order to increase the num-

ber that can be identified?”. The experimental work from this chapter has shown that by presenting each

earcon with a unique timbre as well as having a 300ms onset-to-onset gap between the starts of concurrently

presented earcons, provides a significant increase in the number of earcons and their attributes which can

be successfully identified. Increasing the training given to participants, and modifying the melodies of the

earcons did not lead to significant improvements in earcon identification. Additionally, modifying the tim-

bres of concurrently presented earcons only lead to an increase in the identification of the timbre encoded

earcon attribute. It did not lead, as suggested in Section6.1.2, to a significant reduction in the influence of

timbre in the grouping process, leading to a significant increase in the number of earcons which could be

identified. Due to the need to avoid destroying the grammar, the degree of modifications which could be ap-

plied to concurrent earcon presentation was limited. Incorporating larger modifications between the earcons

would improve streaming, but would put the earcon grammar at risk. The results showed that although there

were significant improvements in identification those improvements were small and of questionable “real

world” practicality. Therefore, it may be more effective to reduce the number of data parameters encoded in

each earcon, “freeing up” an auditory parameter which can incorporate large arbitrary changes without de-

stroying the earcon grammar. However such an approach would lead to a reduction in the data which could

be encoded in each earcon. The guidelines derived from this work however, should allow designers who

require concurrent earcon presentation to make more informed decisions when designing auditory displays.
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Chapter 7

The Impact of Spatialisation on Concurrent

Earcon Identification

7.1 Introduction

In the previous two chapters, work investigating how the identification of concurrently presented earcons

was affected by varying the number of earcons concurrently presented, as well as modifying the design

and presentation of those earcons to incorporate principles derived from auditory scene analysis (ASA)

research was discussed. This work however does not include one feature of audio presentation which should

provide a significant improvement in concurrent earcon identification: spatial presentation, where each

concurrent earcon is presented in a unique spatial location. The work described in this chapter comprises

two experiments designed to contribute towards answering RQ2:“How can concurrently presented earcons

be more robustly designed and presented in order to increase the number which can be identified?”, and

RQ3: “What is the impact of presenting concurrent earcons in a spatialised auditory environment?”, from

Section4.7.

One experiment compares the performance of non-spatialised earcons formed from the guidelines de-

scribed in Chapter6, with spatialised earcons created solely from the guidelines of Brewster, Wright and

Edwards (BWE) [25]. The second experiment investigates if spatially presented earcons formed from the

guidelines for concurrent earcon design and presentation from Chapter6, are better identified than spa-

tialised earcons formed solely from the guidelines of BWE [25].

7.1.1 Previous Spatial Research

Whilst there has been some research which has investigated systems that use spatial audio as a mean of

presenting information (see Section3.4), and further research into the basics of how spatialisation works

as part of ASA, little empirical research has been undertaken to determine if the spatial presentation of

concurrently presented audio is superior to non-spatial presentation in auditory displays, especially with

earcons.
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The only pre-existing study investigating the impact of the spatial presentation of earcons on their

identification, was performed by Brewster, Wright and Edwards [26]. They were concerned that the length

of time compound earcons (see Section3.3.4) took to present was excessive, and could mean that they

would fail to keep up with interactions in a human computer interface. As a way to solve these problems

parallel earcons were proposed. These consisted of compound earcons which were split, with the parts

of each compound earcon being presented to opposite ears, thereby halving the time taken to play each

earcon. Whilst Brewster, Wright and Edwards used spatial position to separate the earcons, they did not do

so in the way described in Section2.4, or in the way which this thesis determines spatialisation. Brewster,

Wright and Edwards used stereo panning, which incorporates only the IID described in Section2.4.1; this

thesis regards spatialisation of sound to involve the convolution of a sound via an HRTF (see Section2.5).

BWE also modified the earcons that would be presented to the left and right ears such that there was at

least an octave difference [116] between them, thus encouraging each component earcon to be placed in

a separate auditory stream. This was possible since the compound earcon parts presented to the left and

right ears were formed from different grammars and as such were not similar to each other in the same

way that two earcons derived from the same grammar would be. Those in the left ear represented objects

such as “file”, “folder”, “application” etc. Those in the right ear represented actions for the objects such

as “open”, “print” etc. Brewster, Wright and Edwards found that there was no significant difference in

identification between the use of standard compound and parallel earcons. However, since they had to

modify their one-element earcons to ensure the spatially separated parallel earcons would be separately

streamed, separating sounds spatially may, as was also indicated by Dolphin (see Section4.4) and the

discussion of the concurrent minimum auditory angle from Section2.4.2, not be sufficient to discriminate

concurrently presented earcons when it is the only cue available. Therefore it is important to determine

both the impact of spatial separation and the impact of the non-spatial presentation guidelines identified in

previous chapters.

7.2 Spatial versus Non-Spatial Earcons

7.2.1 Motivation

Previous research described in Chapter6, has shown that the identification of concurrently presented

earcons based on the guidelines of Brewster, Wright and Edwards [25] can be significantly improved by pre-

senting each earcon with a unique timbre as well as staggering the start of each earcon by at least 300ms. It

is believed that presenting each earcon in a different spatial position by the use of a 3D audio environment

will further improve the identification of concurrently presented earcons. The experiment in this section

therefore compares the identification of earcons designed using the guidelines of BWE [25], but with each

presented in a unique spatial location, with earcons which also incorporate the guidelines for concurrent
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First Training
Session

First Testing
Session

Second Training
Session

Second Testing
Session

Group 1 Original Spatial
Condition

Original Spatial
Condition

Revised Non-Spatial
Condition

Revised Non-Spatial
Condition

Group 2 Revised Non-Spatial
Condition

Revised Non-Spatial
Condition

Original Spatial
Condition

Original Spatial
Condition

Table 7.1: Table showing the procedure for the two groups of participants undertaking the spatial versus non-spatial
experiment.

earcon presentation from Chapter6, but with all earcons presented in a common spatial location. This is

important to determine since if the concurrent earcon guidelines are superior to spatial presentation, this

would mean that devices would not need to support the computational requirements of spatialisation and

other issues involved in spatial audio as described in Section6.1.3to effectively present concurrent earcons.

On the other hand, if spatialisation is superior to the concurrent earcon guidelines, this may remove the re-

quirement for designers to have multiple similar timbres for each presented earcon. As described in section

6.2.3, selecting such timbres can be difficult, as well as limiting the number of potential data values that can

be mapped to the timbre attribute of an earcon (see Section6.1.2).

7.2.2 Methodology

Sixteen participants aged 18-24, none of whom had taken part in the previous experiments, undertook the

experiment described in this section, which was of a within groups design and involved two conditions, the

spatial condition and thenon-spatialcondition, both of which are explained below. Written consent was

obtained from all participants prior to the experiment, and all were paid£5 on completion. Participants were

randomly assigned to one of two groups to determine the order in which they undertook the conditions.

Each group contained the same number of participants. The experiment followed a similar procedure to

those described in Chapters5 and6, with each condition having a training and testing phase. The order of

conditions for each group is shown in Table7.1.

The main hypothesis of the experiment was that earcons in the spatial condition, which did not incorpo-

rate the concurrent earcon guidelines from Chapter6 but were spatially separated, would be better identified

than those from the non-spatial condition which incorporated the concurrent earcon guidelines from Chap-

ter 6 but were spatially collocated. The independent variable (IV) was the design and presentation of the

earcons, and the dependent variables (DV’s) were the number of earcons, ride types, ride intensities and

ride costs successfully identified.

Training Phase

The training phase provided participants with an opportunity to learn the earcons appropriate to the condi-

tion they were to perform in the testing phase, and was the same as the previous experiments. This involved

participants reading a sheet describing the grammar of the earcons used (see AppendixI), followed by ten
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minutes of self guided training on the earcons via a Web page interface (see Section D of the accompanying

CD-ROM (AppendixM)). After this time participants were asked to identify three independently presented

earcons without any form of assistance or feedback. If they were unable to do so, a further five minutes of

training was provided after which the test was retaken. If participants were still unable to correctly iden-

tify the three test earcons, they took no further part in the experiment. When participants had successfully

completed this phase they carried onto the testing phase. No participants however failed this phase.

Testing Phase

The testing phase comprised, as in the previous experiment from Chapter6, of participants listening to

twenty sets of four concurrently presented earcons which repeated seven times and trying to identify the

attributes of each earcon. Variations in the presentation of earcons between the two conditions are described

in the following sections. Participants recorded their selection in a computer based dialogue box as shown

in Figure5.3, and were given no feedback as to the correctness of their responses. The same twenty stimuli

sets were used for both conditions, but were randomly presented to avoid any order effect. After each testing

phase each participant completed a modified NASA TLX questionnaire to measure subjective workload.

Spatial Condition

The spatial condition used the earcons described in Section4.5.1. Each earcon was presented in a different

spatial location on a lateral plane collocated with the listener’s ears. Due to the lengthy procedure and

specialised equipment required to create individualised HRTFs (see Section2.5.2), and since many of the

potential applications of this work (as described in Chapter1) would make it currently infeasible to produce

individualised HRTF’s for each user, the earcons have been spatialised using a generalised HRTF (GHRTF).

GHRTF’s as described in Section2.5.2, are particularly poor at encoding elevation, hence the earcons were

only separated on the horizontal plane. In terms of Figure2.4, the sounds varied spatial location in azimuth

only, they did not vary in elevation. The GHRTF used was that found on the PURE Digital Sonic Fury PC

sound card1.

Each earcon was placed approximately 20cm from the listener’s head, one at each of the four main

points of the compass. The placement of the earcons is summarised in Figure7.1. To overcome some

of the problems of GHRTFs, a Polhemus Fastrak 6 degree of freedom tracking device [114] was used to

dynamically respatialise the sounds relative to the participant as they moved and rotated their head, hence

incorporating the small head movements that can be used to localise and discriminate sound sources (see

Section2.5.2).

During pilot testing, participants responded that the earcons were presented too quickly. Initially, there

was no time between consecutive repetitions of the earcons, since Bregman [14] notes that rapidly repeating

a stimulus allows streaming to build up over time. However, in response to pilot participants’ comments,

1This card is marketed as the Turtle Beach Santa Cruz in the USA
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Earcon

Earcon

Earcon
Earcon

Figure 7.1:An illustration showing how the earcons used in the spatial condition were located relative to the listener’s
head.

a 1.5 second break was inserted between consecutive presentations of the earcons. This time, as recom-

mended by Patterson, Edworthy and Shailer [108] in guidelines for the use of auditory warnings in hospital

equipment, was designed to give listeners thinking time between consecutive stimuli presentations. This

issue is further discussed in Section7.2.3.

Non-Spatial Condition

As previously described in Section7.2.1, the non-spatial condition comprised the earcons from Section

4.5.1whilst also incorporating the concurrent earcon guidelines from Chapter6. As such it is the same as

the final condition described in Chapter6. However, as with the spatial condition, a 1.5 second break was

incorporated between consecutive presentations of the earcons.

7.2.3 Results

Identified Earcons and Attributes

As with the experiments described in Chapters5 and6, the numbers of correctly identified ride types, ride

intensities and ride costs were collected, and from this the number of correctly identified earcons was de-

termined using the same method as described in Section5.3.1. The average number of correctly identified

earcons and earcon attributes across all participants for each condition is shown in Figure8.8. Raw data are

presented in AppendixJ.
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Figure 7.2: Graph showing the average number of earcons, number of correctly identified ride types, ride intensities
and ride costs for the non-spatial and original spatial experimental conditions. Shown with standard deviations

To determine if any of the differences shown in Figure7.2 were significant, four within groups t-tests

were carried out, one on the number of earcons correctly identified and one each on the number of correctly

identified ride types, ride intensities and ride costs.

The t-test on the number of correctly identified earcons showed that participants identified significantly

more earcons in the spatial condition than in the non-spatial condition (t(15) = 2.61, p = 0.020). The t-test

for the number of correctly identified ride costs showed that participants identified significantly more ride

costs in the spatial condition than in the non-spatial condition (t(15)= 2.37, p = 0.031). The t-test on the

number of correctly identified ride types (t(15) = 0.55, p = 0.591) and ride intensities (t(15) = 1.42, p =

0.176) were not significant.

Workload Data

In addition to collecting data about the number of earcons and their attributes that were correctly identified,

participants also completed modified NASA TLX questionnaires for each condition (see Section4.5.1). A

summary of these data across all participants is presented in Figure7.3. Raw data are presented in Appendix

J. To determine if workload was significantly different, overall workload for each participant was calculated

by summing the individual scores for each attribute (excluding overall preference and annoyance as these

do not form part of the standard TLX set of scales). A within groups t-test on these results failed to show

significance (t(15) = 1.60, p = 0.130). Individual t-tests for annoyance experienced (t(15) = 0.30, p = 0.765)

and overall preference (t(15) = 0.59, p = 0.564) failed to show significance.
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Figure 7.3: Graph showing the mean values for NASA TLX workload data for the non-spatial and original spatial
experimental conditions. Shown with standard deviations.

7.2.4 Discussion

The results show that having a unique spatial location for each concurrently presented earcon can signif-

icantly improve identification, over concurrently presented earcons which are spatially collocated. This

holds even when the earcons which are spatially collocated have been modified to make them more easily

identifiable than the earcons which are at spatially unique locations. The results also show that the identifi-

cation of the ride cost attribute is significantly improved in the spatial condition. This may be due to cases in

the non-spatial condition where two earcons which differ only in ride cost (which is encoded as the register

the earcon is played in) are concurrently presented, and the timbre and melody of the earcons then dominate

in the grouping process, streaming the two sounds together and thus forming a composite sound from the

belongingness principle from Section2.6.2. As stated in Section4.5.1, registers were chosen to avoid har-

monic intervals between the earcons, however this may not have provided a strong enough grouping effect

to dominate the timbre and melody similarity of such earcons. The results of the modified NASA TLX

questionnaires failed to show any significant interactions between the conditions, which indicates that spa-

tialisation did not increase subjective workload on task performance. However as with the work described

in Chapter6, the overall increase in identification performance is low and again, spatialisation would not

appear to be practically useful on its own.

As described in Section7.2.2, the experiment incorporated a 1.5 second break between consecutive

presentations of each set of earcons, as recommended in guidelines by Patterson, Edworthy and Shailer

[108] on hospital warning alarms. They claimed that these breaks allowed users to process the alarm
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and decide on a response. In the previous experiments (Chapters5 and6) there was no significant gap

between consecutive earcon presentations, as Bregman [14] explains that constant repetition allows the

effects of auditory streaming to accumulate. This poses the question“What is more important when trying

to understand concurrently presented earcons, a 1.5 second gap between consecutive presentations, or no

gap between consecutive presentations?”. Whilst it was possible to evaluate this question by comparing

the results of the non-spatial condition with the results of the final condition from Chapter6, between

groups statistical analyses for both the objective and subjective data failed to show significance. However,

such results do not provide any conclusive answers and it may be useful for future work to specifically

investigate the impact of gap time between concurrent earcon presentation.

In conclusion, spatially separating the locations of concurrently presented earcons allows the listener

to correctly group earcon attributes as whole earcons more easily than when all earcons are located in

the same spatial location. The ASA modifications applied to earcon design as described in Chapter6,

tended to increase the number of earcon attributes that were correctly identified rather than the number

of whole earcons correctly identified. The experimental results described in this section tend to show

an increase in the number of correctly identified earcons but not an increase in the number of correctly

identified attributes of the earcons. Therefore it seems that spatial concurrent earcon presentation, improves

the ability of participants to group the right attributes with each other to form correct earcons, rather than

improving the identification of individual earcon attributes. Hence, if the modifications to the earcons and

their presentation as used in the non-spatial condition were combined with the spatial placement used in

the spatial condition, this may result in further improvements to the identification of concurrently presented

earcons. This is important to determine given the overall low identification of the earcons by participants.

Such modifications may also allow earcons to be placed closer together if data were mapped to spatial

position due to the differences between the earcons (see Section2.4.2).

7.3 Spatial versus Revised Spatial Earcons

7.3.1 Motivation

The previous section has shown the importance of spatialisation when presenting concurrent earcons. The

presentation of earcons, based only on the guidelines of BWE [25], which were presented in a spatial audio

environment, significantly outperformed non-spatially presented earcons which had been revised based on

the guidelines for concurrent earcon presentation from Chapter6.

This result indicates a possible divergence of guidance for designers to improve the identification of

concurrently presented earcons. One possibility is that if spatial audio presentation is available, earcons

should be presented in spatially distinct locations and be designed strictly to the guidelines of BWE [25].

If spatial audio presentation is unavailable however, earcons should be designed with the guidelines of

concurrent earcon presentation described in Section6.4. Alternately, the identification of concurrent earcons
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may be further improved by the incorporation of the guidelines of concurrent earcon identification described

in Section6.4as well as the spatial presentation of the earcons. As shown by Best, van Schaik and Carlile

[10] (see Section3.2.2), spatial location is not a totally dominating factor in auditory scene analysis, and

in applications which seek to encode some parameter of data as the position of an earcon (see Section

3.4), sufficient spatial separation of earcons to avoid interference with each other may not be possible. As

Bregman [14] (pp. 302) notes“the human auditory system does not give an overriding importance to the

spatial cues for belongingness but weighs these cues against all the others. When these cues all agree, the

outcome is a clear perceptual organisation, but when they do not, we can have a number of outcomes.”.

Thereby having other differences between concurrently presented earcons, such as those provided by the

guidelines of Section6.4, should work with spatialisation to desirably stream the earcons. Given the results

from the previous experiment and those from Chapter6 this is important and would allow users to be

better able to identify information encoded in earcons and as such may increase the practical usefulness

of concurrently presented earcons. It is important therefore to determine how well concurrently presented

earcons which incorporate the guidelines from Section6.4are identified when each earcon is presented in

a spatially distinct location.

The experiment described in this section investigates the impact on identification of concurrently pre-

sented spatialised earcons based only on the guidelines of BWE [25], compared to concurrently presented

spatialised earcons which also incorporate the concurrent earcon guidelines from Chapter6.

7.3.2 Methodology

The procedure and methodology of this experiment is largely the same as that of the experiment described

in Section7.2. Again, sixteen participants between the ages 18-24 undertook the experiment, none of whom

had taken part in the previous experiment. The experiment was of a within groups design, with participants

randomly assigned to one of two groups. There were two conditions, the“spatial(2)” condition and the

“revised spatial” condition. The conditions are explained below. The order in which participants undertook

the conditions was counterbalanced to avoid any order effects. Each condition consisted of a training and

testing phase. The order of the conditions for each group of participants is summarised in Table7.2. Written

consent was obtained prior to the experiment from all participants, and all were paid£5 on completion.

The main hypothesis of the experiment was that earcons and earcon attributes in the revised spatial con-

dition, which incorporated the concurrent earcon guidelines from Chapter6 and were spatially separated,

would be better identified those from the spatial(2) condition which were only spatially separated and in-

corporated no other modifications to their design or presentation. The independent variable (IV) was the

design and presentation of the earcons, and the dependent variables (DV’s) were the number of earcons, ride

types, ride intensities and ride costs successfully identified, and participant responses for modified NASA

TLX questionnaires.
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First Training
Session

First Testing
Session

Second Training
Session

Second Testing
Session

Group 1 Spatial(2)
Condition

Spatial(2)
Condition

Revised Spatial
Condition

Revised Spatial
Condition

Group 2 Revised Spatial
Condition

Revised Spatial
Condition

Spatial(2)
Condition

Spatial(2)
Condition

Table 7.2: Table showing the procedure for the two groups of participants undertaking the spatial versus revised spatial
experiment

Spatial(2) Condition

The spatial(2) condition, is, as its name suggests, the same as the spatial condition described in Section

7.2.2. The name has been changed to avoid confusion with the results from the spatial condition.

Revised Spatial Condition

The revised spatial condition was the same as the spatial(2) condition, but used the earcons from the final

condition of the experiment in Chapter6, which incorporated the concurrent earcon guidelines from Section

6.4.

Because of the 300ms onset-to-onset time difference between the start of each earcon there would have

existed a predictable spatial pattern in the order of earcon presentation. If the spatial positions of the first,

second, third and fourth earcons to be presented were always the same. This could have lead to a learning

effect which would have been undesirable and could confound the results. To overcome this issue, the

spatial positions of the first, second, third and fourth earcons, were randomly alternated for each trial in the

condition. However, the order of presentation was held constant during each trial.

7.3.3 Results

Identified Earcons and Attributes

As with the previous spatial experiment (Section7.2), the numbers of correctly identified ride types, ride

intensities and ride costs were collected, and from these the number of correctly identified earcons was

determined using the method described in Section5.3.1. The average values for these data are summarised

graphically in Figure7.4. Raw data are presented in AppendixJ.

To determine if any of the differences shown in Figure7.4 were statistically significant, four within

groups t-tests were carried out, one on the number of earcons correctly identified, and one each on the

number of correctly identified ride types, ride intensities and ride costs.

The t-test on the number of correctly identified ride types showed that participants identified signifi-

cantly more ride types in the revised spatial condition than in the spatial(2) condition (t(15) = 3.11, p =

0.007). The t-tests for the number of earcons (t(15) = 1.73, p = 0.104), ride intensities (t(15) = 0.81, p =

0.429), and ride costs identified (t(15) = 0.95, p = 0.356), failed to show significance.
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Figure 7.4:Graph showing the average number of earcons, number of correctly identified ride types, ride intensities and
ride costs for the second original spatial and revised spatial experimental conditions. Shown with standard deviations.

Workload Data

In addition to collecting data about the number of earcons and their attributes that were correctly identified,

participants also completed modified NASA TLX questionnaires for each condition (see Section4.5.1).

The averages of these data across all participants is presented in Figure7.5. Raw data are presented in

AppendixJ. To determine if workload differed significantly between conditions, overall workload for each

participant was calculated by summing the individual scores for each attribute (excluding overall preference

and annoyance as these do not form part of the standard TLX set of scales). A within groups t-test on these

results showed significance (t(15) = 3.32, p = 0.005). To determine which individual workload factors

caused this increase in workload, eight within groups t-tests were carried out, one for each modified NASA

TLX attribute.

Participants reported that performance level achieved (t(15) = 3.36, p = 0.004) was significantly higher

in the revised spatial condition than in the spatial(2) condition. Participants also reported significantly

lower physical demand (t(15) = 2.75, p = 0.015) in the revised spatial condition than in the spatial(2)

condition. Participants also reported significantly lower time pressure (t(15) = 2.52, p = 0.024) in the

revised spatial condition than in the spatial(2) condition. The t-tests for mental demand (t(15) = 1.50, p

= 0.154), effort expended (t(15) = 1.25, p = 0.231), frustration experienced (t(15) = 1.18, p = 0.258) and

annoyance experienced (t(15) = 1.52, p = 0.150), failed to show significance. Participants did not express a

significant overall preference for either condition (t(15) = 1.63, p = 0.123).

127



The Impact of Spatialisation on Concurrent Earcon Identification

0

2

4

6

8

10

12

14

16

18

20

Mental Demand Physical Demand Time Pressure Effort Expended Performance

Level Achieved

Frustration

Experienced

Annoyance

Experienced

Overall

Preference

NASA TLX Attribute

S
c

o
re

Spatial(2) Condition Revised Spatial Condition

Figure 7.5: Graph showing the mean values for NASA TLX workload data for the second original spatial and revised
spatial experimental conditions. Shown with standard deviations.

7.3.4 Discussion

The results from Section7.3.3show that the identification of earcons in a spatialised audio environment

can be improved by the application of the concurrent earcon guidelines from Chapter6. The identification

of ride type, encoded as timbre, was significantly improved in the revised spatial condition. The subjective

physical demand of participants was significantly lower in the revised spatial condition, this may indicate

that less head movement (using the headtracking device) was required for participants to perceptually sepa-

rate the earcons, which may be useful in reducing fatigue if a display incorporating spatial earcons is to be

used for a prolonged period. However, further studies are required to identify if this is the case. Participants

also reported significantly lower time pressure and higher perceived performance in the revised spatial con-

dition, which may make any interface which uses such a technique a more enjoyable experience for users.

However, overall results remain low and may not practicaly improve performance in real world tasks. This

issue is investigated in Chapter8.

Although the number of ride types that were correctly identified was significantly greater in the re-

vised spatial condition than in the spatial(2) condition, the actual number of earcons identified was not

significantly different in either condition. In many ways this is predictable, given the previous work on

non-spatial earcon modification that the revised spatial condition incorporated (see Chapter6), where mod-

ifications to the design and presentation of earcons tended to increase the number of earcon parameters that

were successfully identified, rather than the total number of earcons identified. As discussed in Section

3.2.2however, spatialisation is not a totally dominating parameter in ASA, hence having more cues avail-
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able to separate different earcons from each other is advantageous in reducing the reliance solely on spatial

location to separate earcons, and may allow the separation between earcons to be reduced, which would be

advantageous if spatial location was used to map a data parameter.

Concurrent Earcon Guidelines

From these experiments, the following guidelines which extend those previously discovered and described

in Chapters5 and6 have been identified. These guidelines can be used for future designers of auditory

displays which use concurrent earcon presentation to communicate information.

• The use of spatialised presentation with headtracking significantly improves the identification of con-

currently presented earcons. Therefore spatialised presentation should be employed whenever prac-

tically possible in cases where earcons will be concurrently presented.

• Whilst spatial audio significantly increases the number of concurrent earcons that can be identified,

it does not always guarantee that earcons will be desirably streamed, hence the maximum amount

of angular (in azimuth) separation between concurrently presented earcons should be used. The

guidelines of Chapters5 and6 should also be incorporated when using spatial presentation to improve

earcon identification.

7.4 Conclusions

The two experiments described in this chapter have significantly contributed to answering two of the re-

search questions posed in this thesis (see Section4.7), namely, RQ2:“What is the impact of presenting

earcons in a spatialised auditory environment?”, and RQ3:“How can earcons be more robustly designed

and presented to increase the number which can be concurrently identified?”.

The first experiment investigated the effect on concurrent earcon identification when earcons were de-

signed solely from the guidelines of BWE [25], but were presented in spatially distinct locations (the spatial

condition). This method was compared to the non-spatial presentation of concurrent earcons which were

based on the guidelines of BWE [25], but also included the concurrent earcon guidelines described in Sec-

tion 6.4, which had already been shown to significantly improve the identification of non-spatial, concur-

rently presented earcons (the non-spatial condition). Participants were found to have identified significantly

more earcons and ride costs in the spatial condition than in the non-spatial condition. These results showed

that the separation of earcons in space is an effective way to concurrently present them. Indeed it is a

superior method than if those earcons were non-spatially presented but included presentation and design

modification which have already been shown to improve earcon identification in concurrent situations.

The second experiment answers the obvious question arising from the first experiment. Can the use

of earcons which incorporate the non-spatial concurrent earcon guidelines from Section6.4 be used in a
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spatial audio environment to further improve the identification of concurrently presented earcons? This

is an important question to answer as in some applications it may not be possible to sufficiently separate

earcons in space to allow them to be uniquely identified; such as when a data parameter is mapped to spatial

location [141, 124] (see Section3.4). Best, van Schaik and Carlile [10] have shown that interference may

still occur with up to 60o separation between concurrently presented audio sources. The experiment there-

fore compared identification of earcons based only on the guidelines of BWE [25], which were spatially

presented (the spatial(2) condition), to earcons which were also spatially presented but also incorporated the

non-spatial earcon guidelines of Section6.4(the revised spatial condition). The results showed participants

identified significantly more ride types in the revised spatial condition, and that participants’ subjective

physical demand and time pressure were significantly lower in the revised spatial condition than the spa-

tial(2) condition. The lower physical demand indicates that less physical movement of participants’ heads

was required when more cues for the separation of sounds existed, as was the case in the revised spatial

condition.

Both of the experiments in this chapter investigated only the maximum possible azimuthal separations

between concurrently presented earcons. As discussed in Section3.4, one of the advantages of spatial pre-

sentation of sound is that spatial location can be used to map a data parameter. As already discussed, when

mapping spatial location to a data parameter it may not be possible to arbitrarily ensure such maximum

differences between the spatial location of sounds. Therefore the work of this chapter has only investigated

the “best case scenario” for spatial sound presentation, whereas the experiments of Chapters5 and6 have

investigated the worst case of spatial separation (where all sounds are spatially collocated). As discrimi-

nation of concurrently presented spatialised sounds is a function of both the similarity of those sounds as

well as their azimuthal separation (see Section2.4.2), it would be useful if future work investigated this re-

lationship, so that the “middle ground” could also be mapped out. Additionally, although both experiments

have investigated four concurrently presented earcons, reducing this number (as suggested by the guidelines

in Section5.4), in cases where spatial location is not mapped to a particular data parameter, would allow

greater separation between concurrently presented earcons, and, by the discussion of Section2.4.2, should

increase the number of earcons which can be identified. This is important since although significant im-

provements in earcon identification were found by both spatialisation and other modifications to the design

and presentation of the earcons, the magnitude of these improvements was not large and it is questionable

if such modifications would be of practical use in “real world” interfaces, allowing users to exploit the

advantages of concurrent auditory display discussed in Section4.2. However, the experiments which have

been described in both this chapter, and Chapters5 and6, have elicited a great deal of knowledge and in-

formation as to the limitations of concurrent earcon presentation, as well as improving the identification of

concurrently presented earcons. This knowledge should assist future designers of auditory displays which

use concurrent earcons, to produce more effective and informative displays which, in the terms of Buxton

[32], provide more information and less noise.
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Chapter 8

An Ecological Investigation into

Concurrent Earcons

8.1 Introduction

Chapters5, 6 and7 have investigated how well the complex types of earcons which are formed from a

structured grammar are identified when they are concurrently presented. Investigations which have varied

the number of earcons concurrently presented, modified the design and presentation of earcons based on

auditory scene analysis research, as well as having each earcon in a different spatial location have been

carried out. The results of this work have lead to a set of guidelines for concurrent earcon presentation

which are outlined below:

Guideline 1: Increasing the number of concurrently presented earcons significantly reduces the proportion

of the earcons which can be successfully identified. Increasing the number of Earcons concurrently

presented can reduce correct identification from 70% to 30%. Great care should be taken when

considering the amount of information users will need to extract from earcons when considering the

number of earcons which will be concurrently presented.

Guideline 2: If register is used to encode a data attribute, it may be beneficial to ensure that inharmonic

intervals are used between earcons concurrently presented in different registers. This is likely to

reduce the impact on register identification when the number of concurrently presented earcons is

increased.

Guideline 3: When timbre is used to encode a data parameter, each concurrently presented earcon should

have a different timbre. The guidelines of Brewster, Wright and Edwards [25], should be used to

select timbres to encode different values of a data parameter, but if two earcons with the same timbre

encoded value are to be concurrently presented, each should use a different musical timbre from

the same instrument group. The work of Rigas [118] can be used to determine distinct instrument

groupings.

Guideline 4: Concurrently presenting earcons which start at the same time should be avoided. The intro-
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duction of at least a 300ms onset-to-onset gap between the starts of concurrently presented earcons

will make the earcons more identifiable to users.

Guideline 5: The use of spatialised presentation with headtracking significantly improves the identification

of concurrently presented earcons. Therefore spatialised presentation should be employed whenever

practically possible in cases where earcons will be concurrently presented.

Guideline 6: Whilst spatial audio significantly increases the number of concurrent earcons that can be

identified, it does not always guarantee that earcons will be desirably streamed, hence the maximum

amount of angular (in azimuth) separation between concurrently presented earcons should be used.

Guidelines 1-5 should also be incorporated when using spatial presentation to improve earcon iden-

tification.

One of the issues of the previously undertaken work, and thus the guidelines derived from it, is that it

uses an abstract methodology. In other words, although the previously undertaken work allows the issues in

the identification of concurrently presented earcons to be understood, the tasks undertaken by participants

in Chapters5, 6 and 7, do not represent “real” tasks that may be performed using concurrent earcons

in a human computer interface (a justification of the experimental design used in Chapters5, 6 and7 is

given in Section5.2.1). Whilst identifying concurrently presented earcons would be part of the task users

would perform, it would be only part of the task; users would use their identification of the earcons to

make a decision in some larger task. If the guidelines previously mentioned concerning concurrent earcon

presentation are to be claimed to be useful in real world interfaces, their impact on performance in such

tasks must be determined. This is important given the overall low identification scores from the previously

undertaken work which call into question the practical usefulness of the guidelines in a real world context.

In this chapter an experiment which investigates the research question (RQ4),“How much do modifica-

tions to the design and presentation of concurrently presented earcons affect performance in “real world”

tasks?”, from Section4.7, is described and its implications are discussed.

8.2 Methodology

8.2.1 Outline of Evaluation Domain

One of the advantages of concurrently presented audio in an auditory display (as discussed in Section4.2.1)

is an increase in communications bandwidth. Such an increase in bandwidth may be of specific advantage

in auditory displays for mobile devices which have a small visual display, where information could be

moved from the visual domain to the auditory domain and relieve demands on the user’s visual system [62],

which would be required for more important activities. Such reasons mean mobile tasks are ideally suited

to evaluating concurrently presented earcons in more ecologically valid situations.
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Figure 8.1:An example of the week at a glance view from the standard Palm date book application.

In choosing a task with which to evaluate concurrently presented earcons, it is important that the task

is well understood. Dolphin (see Section4.4), whilst highlighting the problems with concurrent earcons, is

itself a relatively new idea. Because of this, even improving the identification of the earcons may not be

enough to improve task performance since Dolphin may have other, currently unknown issues, which could

confound any results. Due to such issues, the task of browsing a diary was chosen for the evaluation.

Diaries are ubiquitous mobile applications, and several studies of their usage have been undertaken

[66, 102, 11]. Although the majority of these studies have been carried out on desktop systems, they provide

useful information on the kinds of tasks that users perform and diary features which are useful. Blandford

[11] identified that one of the most important features of a diary was to support “prospective remembering”,

and Payne [109] noted in another study that users regularly looked ahead a week or so at a time, and used

such information to assist with preparation for appointments (e.g. to help decide what to wear the next day

(pp. 92)). Such claims are also described by a much earlier study by Kincaid [66] who noted that “week

at a glance” and “day at a glance” features were amongst the most popular diary features for users. Payne

[109] however noted that,“Most electronic calendars severely compromise the browsability of calendars.

Often entries are accessed for a single day at a time (making it impossible to simultaneously review entries

for other days)”. Such issues are compounded on mobile devices due to their small visual displays which

restricts the information which can be presented. For example, Figure8.1shows a “week at a glance” type

view from the standard Palm PDA [103] diary, which can only show when appointments are taking place,
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and not provide information about those appointments without switching the view, losing the “at a glance”

information available.

Studies on diary systems have also shown that users will categorise appointments in some way. Bland-

ford [11] notes that in paper based diaries, users would use different coloured pens or underlining to denote

the priority of appointments, with other “symbols” being used to denote particular details of those appoint-

ments.

8.2.2 Outline of Experimental Task

In the experiment described in this chapter, participants had to browse audio diaries, each of which consisted

of five days, with four appointments on each day. Attributes of each diary entry (the type of appointment,

the importance of appointment, and the time of day of the appointment) were encoded as earcons and used

to represent appointments. Although the attributes chosen are to some degree arbitrary, due to the abstract

mapping between data attributes and earcons, other attributes of the data could easily be mapped to the

earcons by users, thereby allowing them to customise the diary to suit themselves. Lack of user customisa-

tion is a claim frequently made against electronic diaries [11]. The earcons for each day are concurrently

presented, thus increasing the rate of data presentation and reducing the overall time to play one day’s

appointments (see Section4.2.1). This should allow participants to quickly move between different days

and build up a “picture” of that week’s diary. The procedure of the experiment is further discussed in the

following section.

8.3 Procedure

8.3.1 Introduction

Sixteen participants between 18-24 undertook the experiment described in this section which was of a within

groups design. Written consent was obtained from all participants, and all were paid£5 on completion.

Participants were randomly assigned to one of four groups to determine the order in which they undertook

the experiment. There were two conditions, thenon-spatialcondition and thespatial condition. Each

condition comprised of a training and a testing phase. Both conditions are described later in this section.

Both conditions involved browsing several diaries and answering questions about them. There were two

sets of diaries (A and B). To avoid any learning effects, participants used a different set of diaries for each

condition. The order of presentation for each diary set was counterbalanced between conditions to avoid

order effects. Prior to carrying out any condition participants undertook a baseline measuring phase, this is

described later. The details of each group are shown in Table8.1.
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Training
Session 1

Testing
Session 1

Training
Session 2

Testing
Session 2

Group 1 Baseline
Measuring
Phase

Non-Spatial
Condition

Non-Spatial
Condition
Diary Set A

Spatial
Condition

Spatial
Condition
Diary Set B

Group 2 Baseline
Measuring
Phase

Spatial
Condition

Spatial
Condition
Diary Set A

Non-Spatial
Condition

Non-Spatial
Condition
Diary Set B

Group 3 Baseline
Measuring
Phase

Non-Spatial
Condition

Non-Spatial
Condition
Diary Set B

Spatial
Condition

Spatial
Condition
Diary Set A

Group 4 Baseline
Measuring
Phase

Spatial
Condition

Spatial
Condition
Diary Set B

Non-Spatial
Condition

Non-Spatial
Condition
Diary Set A

Table 8.1:Table showing the order in which each group of participants undertook the experiment.

8.3.2 Baseline Measuring Phase

One of the advantages of using audio in a mobile device, is that it removes some of the demands on users’

visual attention (see Section3.2.1). To determine if there was an effect on the user’s visual demands

which could be attributed to one of the experimental conditions, a metric was included to measure how

participants’ walking speed varied between conditions. Checking a diary whilst walking is a reasonably

common occurrence, where it is the walking task which is of most importance, as users must avoid obstacles

and continue to walk in the correct direction towards their destination [62], thereby requiring them to

continually avert their eyes from the device.

Whilst it is possible to directly measure the distance walked by a participant during an experiment and

the time taken, making summaries across all participants would cause a widely spread distribution of scores.

Clark-Carter, Heyes and Howarth [33] have noted that each person has a preferred walking speed which is

most efficient for them, which can be affected by factors such as weight, age and leg length. To normalise

such issues between participants, they proposed percentage preferred walking speed (PPWS). Here, the

speed participants walk during the condition is converted into a percentage of some pre-measured walking

speed. For example, if a participant walked at 2mph in the experimental condition, and had previously

walked at 4mph in a pre-testing measurement, the PPWS of that participant would be 50%. PPWS was

originally developed as a way of evaluating the quality of mobile guides for the visually impaired [33, 111],

but has recently been used for mobile interfaces in general [113]. When used with mobile devices PPWS

also provides a rough global guide of the impact of a device or application on a user, since PPWS is

measured in relation to optimal walking speed.

The baseline measuring phase therefore involved measuring each participant’s normal walking speed.

Participants were instructed to walk a predetermined route around three cones ten times, whilst wearing

(but not using) the device used in the testing phase (see Section8.3.4). See Figure8.2 for the route used.

Participants were instructed to walk at what they felt was a comfortable pace. The time taken for participants
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Figure 8.2:An example of the route walked by participants whilst carrying out the experiment.

to complete each lap was recorded using a computer program. The average time taken to walk the middle

six laps was used as that participant’s baseline walking speed.

8.3.3 Training Phase

A training phase similar to that from the experiments described in Chapters4, 5, 6 and7 was used. It

involved participants reading a sheet which described the grammar of the earcons used (see AppendixK),

followed by ten minutes of self-guided training via a Web page (see Section E of the accompanying CD-

ROM for the Web page (AppendixM)), where participants could listen individually to all possible earcons

which could be composed from the earcon grammar. After this time, participants were presented with

three earcons independently and were required to identify them without any form of assistance or feedback.

If participants were unable to successfully identify the three earcons, they were given back the earcon

grammar sheet and the Web page for a further five minutes of training, before retaking the test. If they were

still unable to successfully identify the earcons, they took no further part in the experiment. No participants

however failed training.
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Figure 8.3: An example of the visual display of the experiment. Participants could switch between days by using the
“ <<<<<” and “ >>>>>” buttons.

8.3.4 Testing Phase

In the testing phase participants browsed twelve diaries. Each diary consisted of five days (Monday -

Friday), and each day consisted of four appointments. Each appointment was represented as an earcon.

All four earcons were concurrently presented. There were differences to the design and presentation of the

earcons depending on the condition the participant was performing. These modifications are described in

Sections8.3.6and8.3.7. Only one day’s appointments were presented at a time, which were continuously

repeated. Participants could switch to the next, or previous day by using buttons at the bottom of a 6 x 6 cm

dialogue box which represented the visual display of a mobile computing device. The name of the current

day was also presented on this display. See Figure8.3for an example of this dialogue.

Whilst browsing the diary participants attempted to answer a question about it. Each question asked

about only two of the earcon attributes. As discussed in Section4.4, it is not always necessary to know all

three earcon attributes. Since there are many different types of questions which can be asked about data in a

diary, two types of question were used. One type of question (Type S) asked how many times certain kinds

of appointments occurred in a week. This type of question required a single, numerical answer. A dialogue

illustrating such a question is shown in Figure8.4. The other type of question required one or more answers

which were not numerical (Type M). A dialogue which illustrates such a question is shown in Figure8.5.

When participants had decided on an answer for the question, they clicked the “NEXT QUESTION” button

on the dialogue (see Figure8.5) to be presented with the next diary.

An equal number of questions of each type were used, and there were an even number of questions

which asked about each possible pair of data parameters. All questions were randomly presented to avoid

order effects.
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Figure 8.4:An example of a question dialogue from the experiment, where only one answer was required.

Figure 8.5:An example of a question dialogue from the experiment, where more than one was required.

Participants carried out the testing phase on a Xybernaut Mobile Assistant V [151] wearable computer,

via a touch sensitive display (see Figure8.6). Sound was presented through a set of Sennheiser HD-25

headphones. Whilst carrying out this task participants walked the route as described in Section8.3.2.

There were three main hypotheses in the experiment:

H1 Participants will have a greater PPWS in the spatial condition than in the non-spatial condition.

H2 Participants will answer more type S questions correctly in the spatial condition than in the non-spatial

condition.

H3 Participants will answer more type M questions correctly in the spatial condition than in the non-spatial

condition.

The independent variable (IV) was the design and presentation of the earcons for each condition (see

Sections8.3.6and8.3.7). The dependent variables (DV’s) were, the average time for each participant to

walk a lap, the number of correctly answered type S questions and the number of correctly answered type

M questions. Additionally, it was hypothesised that participants’ workload would be significantly reduced

in the spatial condition. To determine this, as with the previous experiments of Chapters4, 5, 6 and7,

modified NASA TLX questionnaires (see Section4.5.1) were filled in by each participant after they had

completed each condition.
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Figure 8.6:An example of how the Xybernaut device was worn by participants and (insert) the device itself.

Before the testing phase proper, each participant carried out a reduced version involving two diaries, not

used in the testing phase proper, to familiarise themselves with the experimental procedure.

8.3.5 Earcons Used

The earcons used in this experiment were the same as those used for the previous experiments; however

they were remapped to represent appointment types that may be found in a diary. Three parameters of

appointments were chosen to be encoded in the earcons: the type of appointment (either meeting, lecture or

seminar), the importance of the appointment (either mildly important, very important or essential), and the

time of the appointment (either early morning, mid-morning or late afternoon).

Appointment type was mapped to timbre. Three distinct timbres were used: a grand piano (General

MIDI patch No. 000), was used to represent meetings, a violin (General MIDI patch No. 040) was used to

represent lectures, and a trumpet (General MIDI patch No. 056) was used to represent seminars.

Ride Intensity was mapped to melody, which is a combination of a rhythm and a pitch structure for that
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Essential Very Important Mildly Important

Figure 8.7:Melodies used to represent mildly important, very important and essential appointments.

rhythm. The melodies used for mildly important, very important and essential appointments are shown in

Figure8.7.

Finally the time of the appointment was mapped to the register that the melody was played in. The

registers used were the octave of C4 for early morning, the octave of C5 for mid morning and the octave

of C6 for late afternoon. Each melody was staggered in each register to avoid the same melodies having

musically harmonic intervals as suggested by Guideline 2 (see Section8.1).

8.3.6 Non-Spatial Condition

In the non-spatial condition, the earcons representing each day’s appointments were dioticly presented

(monaural presentation to both ears) to participants continuously in rapid succession. The earcons used

were those described in Section8.3.5, and were continuously concurrently presented until a new day was

selected.

8.3.7 Spatial Condition

In the spatial condition, the concurrent earcon guidelines from Chapter5, 6 and7 were implemented on

the earcons from Section8.3.5. Three timbres were chosen to represent each appointment type. See Table

8.2 for the timbres used. Earcons were fixed in spatially distinct locations egocentrically [34] relative to

a participant’s head (see Figure7.1 for the placement of earcons). The presentation of the earcons in this

condition can be regarded as largely similar to that used in the revised spatial condition from Section7.3.

One difference with the revised spatial condition from Section7.3however, is that the use of dynamic

respatialisation, using a position and orientation sensor mounted on the headphones (see Section7.2.2), was

not incorporated. Primarily this was due to the device used in previous experiments being unsuitable for

use in a mobile context. Another device which was capable of detecting movement in a reduced number of

dimensions was considered, however it was not available in a reasonable amount of time to be incorporated.

Additionally, the Xybernaut device used in the experiment did not incorporate a hardware based HRTF,

as the experiments from Chapters4 and7 did. In this experiment a lower quality spatialisation system

which is incorporated into Microsoft DirectX [78] was used. The spatialisation used in this experiment can
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Appointment Type Instrument General MIDI Patch No.
Meeting Acoustic Grand Piano 000
Meeting Electric Acoustic Piano 001
Meeting Electric Grand Piano 002
Lecture Tuba 058
Lecture French Horn 060
Lecture Synth Brass 1 062
Seminar Marimba 012
Seminar Shamisen 106
Seminar Kalimba 108

Table 8.2:Table showing the timbres used to represent appointment types in the spatial condition.

therefore be considered of lower quality than that previously used. However, the spatialisation system can

be considered as more realistic for current generation mobile devices, which do not currently incorporate

hardware based HRTFs, or have enough processing power to use full software based HRTFs.

8.4 Results

8.4.1 Correctly Answered Questions

Each correctly answered type S question (those requiring only one answer) was awarded a mark. Each

participant could have therefore received up to 6 marks for type S questions. The average mark across

all participants for each condition is shown in Figure8.8. Raw data are presented in AppendixL. The

difference in performance between the two conditions was not found to be significant (t(15) = 0.50, p =

0.627).

A mark was allocated for each type M question (those requiring one or more answers). For each cor-

rectly identified part of the answer, a proportion of that mark was awarded. For example if the correct

answer was Monday, Tuesday and Wednesday, but a participant only gave Monday and Tuesday, 2/3 of

a mark would be awarded. Again the maximum possible score was 6. The average mark across all par-

ticipants is shown in Figure8.8. Raw data are presented in AppendixL. The difference in performance

between the conditions was not found to be significant (t(15) = 0.49, p = 0.629).

8.4.2 PPWS

The walking speed of each participant was measured in the same way as described in Section8.3.2; the

time taken for each lap was recorded, the first and last two lap times were discarded, and the remaining

laps were averaged. This average was then converted into a percentage of the lap time recorded in the base-

line measuring phase (see Section8.3.2), to yield that participant’s PPWS. An average of all participants’

PPWS for each condition is shown in Figure8.9. Raw data are presented in AppendixL. The difference in

performance was not found to be significant (t(15) = 1.46, p = 0.164).
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Figure 8.8: Graph showing the mean number of type S and type M questions correctly identified in the experiment.
Shown with standard deviations.

8.4.3 Modified NASA TLX Workload Ratings

As mentioned in Section8.3.4, modified NASA TLX questionnaires were used to assess participants’ sub-

jective workload. A graphical summary of these results is shown in Figure8.10. Raw data are presented

in AppendixL. To determine if workload differed significantly between the conditions, overall workload

for each participant was calculated by summing the individual scores for each attribute (excluding overall

preference and annoyance as these do not form part of the standard TLX set of scales). A within groups

t-test on these results showed significance (t(15) = 2.06, p = 0.045). To determine which attributes caused

this difference in workload, eight within groups t-tests were performed, one for each TLX attribute. These

showed that participants had recorded significantly lower mental demand (t(15) = 3.08, p = 0.008) and an-

noyance (t(15) = 3.07, p = 0.008) in the spatial condition. Participants also recorded significantly higher

overall preference (t(15) = 4.07, p = 0.001) in the spatial condition. The tests for physical demand (t(15) =

0.64, p = 0.530), time pressure (t(15) = 1.80, p = 0.092), effort expended (t(15) = 1.16, p = 0.263), perfor-

mance level achieved (t(15) = 0.93, p = 0.368) and frustration experienced (t(15) = 0.46, p = 0.650) were

not significant.
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8.5 Discussion

The results from the previous section showed that there were no significant results for any of the objec-

tively measured data parameters. Neither accuracy of response on either type of question, or PPWS, was

significantly affected by modifications to the design and presentation of the earcons used. However, sig-

nificant differences were identified in the results of the modified NASA TLX questionnaires, with mental

demand and annoyance being significantly reduced in the spatial condition. Overall preference was also

significantly higher in the spatial condition.

Therefore although the modifications to the design and presentation of the earcons did not significantly

improve task performance, they did have a significant impact on participants’ perceptions of each condition.

The significant reduction in annoyance indicates that participants found the spatial condition to be less

distracting which may make them more likely to enjoy using the system. A reduction in mental demand

may be important in mobile devices since there are likely to be other, more important mental demands on

participants, such as navigating their environments, though these subjective improvements are not reflected

in the objectively measured data. However, although significant results were found, as with the previous

experiments overall task performance was low, indicating that participants still found it extremely difficult

to separate the concurrently presented earcons, which means that identifying concurrently presented earcons

is still difficult and further research will be required before concurrent earcons can exploit the advantages

of concurrent presentation as discussed in Section4.2.
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Figure 8.10: Graph showing mean results from the modified NASA TLX questionnaires. Shown with standard devia-
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It is unclear from the results of the experiment why the improvements in earcon design and presentation

did not significantly improve task performance, whilst significantly affecting participants’ attitudes to the

task. There are however several possibilities.

Firstly, there were technical variations in the equipment used for this experiment and the previous exper-

iments described in this thesis. Notably, due to the mobile element of this experiment, a general hardware

based HRTF, as used in the experiments from Chapter7, could not be used. Due to the computational

requirements of HRTFs and the performance of the Xybernaut device used in these experiments, it was also

not possible to use a software based HRTF. Therefore the standard 3D algorithm of Microsoft’s DirectX,

which is to use standard stereo reproduction with some “muffling” (attenuation of higher frequency com-

ponents) of sounds placed to the rear of the user was used [7]. In addition, as already explained in Section

8.3.7, a headtracking device was unavailable for use, so it was not possible for participants to use small

head movements to better separate the earcons. Due to the poor sound spatialisation system available, this

may have seriously reduced the advantages of spatialisation. To determine the actual effect the spatialisa-

tion hardware had on performance, the previous experiments from Chapter7 should be undertaken on the

hardware used for this experiment which would allow for hardware dependent variations in performance

to be undertaken. In addition to the restrictions on the quality of the spatialisation system used in the ex-

periment, the guidelines from Chapter5 were not incorporated into the spatial condition. These guidelines

were not incorporated, as varying the number of concurrently presented earcons has such a large effect on

their identification. It was felt, that reducing the number of earcons which were concurrently presented
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would not allow for a fair comparison between the two conditions. The impact of the other guidelines on

real world earcon identification would not be able to be determined since varying the number of earcons

presented would have such a large effect on the results. The identification of four concurrently presented

earcons, from the results of Chapters6 and7, is known to be low, and by reducing this number a signifi-

cant effect may have been observed. Additionally other studies [48] have indicated that the modifications

to earcon identification from Chapters6 and7 may flatten the trend shown in Figure5.7, thereby perhaps

allowing more earcons to be presented but without a significant drop in identification. In order to explore

such issues, further experiments should be carried out which do vary the number of concurrently presented

earcons between the conditions, whilst incorporating the guidelines from Chapters6 and7. Initially the

experiments should be of the same methodology as used in Chapters5, 6 and7, in an attempt to identify

if there is a flattening of the trend of Figure5.7, as indicated there might be by both Brungart, Ericson and

Simpson [31] and Folds and Gerth [48]. Further experiments involving the methodology of this chapter

should then be carried out to re-evaluate the full set of guidelines in a more ecologically valid context.

Alternately, as indicated in Section8.1the lack of improvement in task performance may be down to the

modifications to the design and presentation of the earcons not providing a large enough improvement in

earcon identification to significantly impact on task performance. Whilst in many ways this may be caused

by the previous possible reason, it may be the case that even with better spatialisation there would be no

significant improvement in task performance. The tasks which participants were asked to perform on each

set of four earcons was different to previous experiments. In the previous experiments, participants had to

identify each of the four earcons which were presented. In the experiment described in this chapter, each

participant must make a decision if an earcon with particular attributes exists in the mix of four earcons. It

is likely, due to the scoring system used in this experiment, that an incorrect decision will have a greater

impact on the results than in previous experiments. This is a likely situation with other “real world” tasks as

well. Therefore, a greater improvement in earcon identification would be necessary to identify a significant

improvement in performance above the subjective measures already identified.

In order to identify it the issues outlined above contributed to the lack of significance in the results,

further investigations involving concurrently presented earcons are required.

8.6 Conclusions

The experiment described in this chapter attempted to answer the research question“How much do modifi-

cations to the design and presentation of concurrently presented earcons affect performance in ‘real world’

tasks?” (RQ4), as outlined in Section4.7. The previous chapters have investigated the identification of

concurrently presented earcons using a more abstract experimental design, this chapter sought to ground

the results of previous work in a more ecological context.

The experiment compared participants’ abilities to answer questions on mobile audio diaries, where
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each diary entry was represented as an earcon. Two sets of earcons were compared, one non-spatially

presented set based on the guidelines of Brewster, Wright and Edwards [25], and another set which were

spatially presented and incorporated the guidelines of concurrent earcon presentation from Chapters5, 6

and7 (albeit without the use of a headtracking device to dynamically respatialise the sounds). Analysis

of several objective measures found that neither condition was significantly different to the other. This

runs contrary to the research presented in Chapters6 and 7 which showed that concurrently presented

earcons were significantly better identified when the incorporated the guidelines from Chapter6 and 7.

However, it was determined that participants’ subjective workload was significantly reduced in the spatial

condition, with significant reductions in mental demand and annoyance being observed. This indicates that

the modifications to earcon design and presentation do have some positive impact on task performance

albeit not to the extent that was expected. Whilst significant results were found, overall performance by

participants, as was also found by the experiments of Chapters6 and7, was low, indicating that further

research into the concurrent identification of earcons is required if concurrent earcons are to be practically

useful in an auditory display.

There are several possible reasons why the experiment failed to produce the results expected. Firstly, the

system used to spatialise the earcons was of considerably lower quality than that previously used. This may

have made it difficult to separate the earcons. Additionally, whilst the earcon identification task used in this

experiment can be regarded as being easier than in previous experiments, the consequences on overall task

performance of an incorrect determination are much greater. This is likely to be a standard feature of any

“real world” task and as such indicates that a greater increase in earcon identification using the experimental

methodology of Chapter6 would be needed to increase performance on a specific task like diary browsing.

This also indicates that if the experimental methodology of this chapter had been employed in Chapters5, 6

and7, our understanding of concurrent earcon identification would be significantly worse than it currently

is due to a likely increase in non-significant results.

It is not possible, given the results of this experiment, to provide conclusive answers to the research

question“How much do modifications to the design and presentation of concurrently presented earcons

affect performance in “real world” tasks?”, from Section4.7. Potential reasons for the lack of significant

results were given in the previous paragraph, however there is no evidence available to determine their

validity. However, overall user performance was low and it is clear that further research into both the effect

on ecological task performance of concurrently presented earcons, as well as research to further improve

the identification of concurrently presented earcons should be undertaken.
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Chapter 9

Conclusions

The final chapter of this thesis provides a summary of the work undertaken, as well as its limitations. In

addition possible future directions in the study of concurrently presented earcons are discussed.

9.1 Summary of the Thesis

9.1.1 Literature Review and Motivation

This thesis started by introducing an initial motivation for this work, that concurrently presenting multiple

sounds as part of a human computer interface can be advantageous, allowing for example, an increase

in the bandwidth of data presentation. However when concurrently presenting sounds they may interfere

with each other making it difficult to determine the data which are encoded in each sound. Chapter 2

introduced a basic overview of sound and how it is perceived by the human auditory system, as well as

providing some background information to several features used later in the thesis, such as spatialised

sound presentation and Auditory Scene Analysis. The chapter concluded with a short discussion on why

sounds interfere with each other when concurrently presented, and provided a taxonomy of the dimensions

by which such interference can be considered. Chapter 3 followed on from the basic introduction of sound

by introducing the topic of auditory displays, systems which use audio to communicate information to

users. The advantages and disadvantages of using such systems were outlined, and the four main means

of encoding data in sound (sonification, speech, auditory icons and earcons) were described. Earcons as

discussed in Section3.3.4, were structured sounds which could be easily parameterised. The most powerful

types of earcon (hierarchical and transformational) were composed of a grammar, therefore allowing them

to be more easily learned on account of their internal structure. It was also discussed that the grammar

made earcons from the same set similar, with those earcons sharing the same timbre, melody or register.

Thereby, earcons used in a particular auditory display will sound quite similar to each other. The chapter

concluded with a discussion of spatialised sound presentation as part of an auditory display and several

example systems (many of which used concurrent sound presentation) were described.

Chapter 4 elaborated on the work of the previous two chapters by discussing concurrent sound presen-

tation in detail. With the use of examples and counter examples, the advantages of using concurrent audio
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were described. The disadvantages of concurrent audio were then described, the most notable of which

being that sounds which are similar to each other (according to the taxonomy described in Chapter 2) will

interfere, making it difficult for a user to extract data from the sounds. Although examples of the use of

concurrent audio in various systems exist, very few of these systems have been evaluated to determine prob-

lems with such concurrent presentation of audio. In addition, there are no guidelines available for designers

to use when constructing auditory displays which use concurrent audio to do so effectively. It was argued

that this would be a specific problem for concurrently presented earcons formed from the same grammar, as

these would have sounds which are similar according to the taxonomy of Chapter 2. In addition, although

modifying the earcons to make them more distinguishable would be possible, it is important not to change

the earcons so much that they lose their relationship with each other and the data they represent, and thus

the “grammar” which allows their easy identification, is destroyed. No guidelines to allow designers to

redesign earcons for concurrent presentation existed. A study which compared user performance in a map

navigation task, where one condition involved a solely visual display and the other incorporated concurrent

earcons to represent map items which were not displayed on the visual display, found that the use of earcons

did not significantly improve participants’ speed or efficiency in the map navigation task, additionally par-

ticipants’ subjective workload was significantly increased in the condition which used the earcons. Some

participants described that the earcons “fused” together such that their individual attributes were difficult to

distinguish. This was argued as an example of the problems of concurrent earcon presentation. The chapter

then discussed the limited amount of previous work which had been undertaken to investigate concurrent

sound presentation in auditory displays. It was determined from this that identifying concurrently presented

earcons was a difficult problem, and if earcons were to be used in such a way, an investigation into how

well they were identified when concurrently presented, and how they could be better designed to increase

identification needed to be carried out. The thesis then described and justified four research questions, the

answers to which would be investigated in the following chapters.

9.1.2 Original Thesis Work

Chapter 5 investigated how the identification of concurrently presented earcons was affected by the number

concurrently presented. Sets of one, two, three and four earcons were concurrently presented, and partici-

pants had to identify all of the data attributes encoded in each earcon. Results showed that as the number of

earcons concurrently presented increased above one, the proportion of those earcons which could be iden-

tified was reduced, with correct earcon identification falling from 70% correct for one presented earcon, to

30% for four concurrently presented earcons. This was confirmed by subjective workload assessments by

participants which showed that as the number of concurrently presented earcons was increased above one

subjective workload increased. It was argued that the results of this experiment validated the conclusion of

Chapter 4 that identifying concurrently presented earcons was difficult.

Once the problems of concurrent audio had been identified, Chapter 6 considered how the identification
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of earcons could be improved by modifications to the design and presentation of those earcons. Sets of

four earcons were concurrently presented to participants, with each set being presented multiple times with

different modifications based on Auditory Scene Analysis (ASA) research (see Section2.6), to either the

design or presentation of the earcons. Those modifications which significantly improved the identification

of earcons or their attributes (incorporating a 300ms onset-to-onset gap between concurrently presented

earcon, and presenting each earcon with a different timbre) were combined to measure the overall improve-

ment in earcon identification. A discussion of the results and guidelines for the design and presentation of

concurrent earcons in non-spatial environments was presented.

Chapter 7 extended the work of the previous two by considering the identification of concurrent earcons

when those earcons were presented in different spatial locations around a user’s head ( A discussion on

the reasons why spatial presentation was investigated separately from non-spatial presentation was pro-

vided in Chapter 6), two studies investigating concurrent spatial presentation of concurrent earcons were

discussed. The first experiment compared the identification of non-spatially presented earcons which incor-

porated the guidelines identified in Chapter 6, with spatially presented earcons.The results showed that the

identification of earcons and their attributes was significantly (though not largely) better when spatial pre-

sentation was used.The second experiment compared the identification of two sets of spatially presented

earcons. One condition presented earcons spatially, the other condition also spatially presented earcons but

incorporated the guidelines of concurrent earcon presentation from Chapter 6. That experiment showing

that again significant improvements in earcon attribute identification occurred when spatialisation and the

earcon guidelines of Chapter 6 were combined. Although, as with the previous experiment the magnitude

of the differences in identification were not great enough to ensure that the improvements in identification

would be practically useful. These results were discussed and guidelines for concurrent earcon presentation

identified. Guidelines from these experiments were identified, and these extended those from Chapters 5

and 6.

Because the experimental work from Chapters 5-7 was of an abstract nature, Chapter 8 sought to ground

the guidelines for earcon presentation in a more ecologically valid scenario. A discussion of mobile based

diaries and some of their problems was undertaken. An audio based diary was created to identify the net

improvement in task performance of the earcons described in Chapters 5-7. Participants had to walk a route

whilst carrying out browsing tasks on the diary, answering summary questions about entries in the diary.

Each diary contained four appointments per day, each of which was presented as an earcon. A set of earcons

which incorporated the guidelines from Chapters 5-7 were compared to a set which did not. The results

of this experiment failed to show any significant differences in performance between the two conditions.

However, overall subjective workload was significantly reduced in the condition which incorporated the

guidelines from Chapters 5-7. The possible reasons for a lack of significance between the two conditions

was discussed and possible future directions were outlined.

149



Conclusions

9.2 Contributions of the Thesis

This thesis has presented the first investigation which has identified the extent to which concurrently pre-

sented earcons interfere with each other, and the impact on earcon identification of such interference. This

thesis has also carried out the first investigation to empirically evaluate the effectiveness of modifications

to the design and presentation of earcons to avoid earcons interfering with each other. Additionally, this

thesis has identified and considered that the more powerful earcon types (transformational and hierarchical,

see Section3.3.4) cannot be arbitrarily modified to make them more easily identifiable when concurrently

presented, as the relationships between the earcons that make them powerful communicating sounds, their

grammar, will be destroyed, thus making it difficult to identify the data encoded in the earcons. Previous

studies [104] have failed to take this important aspect of concurrent earcon presentation into account. The

novel contributions of this thesis will be outlined in further detail based around the four research questions,

introduced in Chapter1, and further justified in Section4.7.

RQ1: What is the effect on earcon identification of varying the number of earcons which are concurrently

presented?

One issue identified from the literature review was that varying the number of concurrently presented audi-

tory sources affected their identification. Work by Brungart, Ericson and Simpson [29], on the identification

of concurrently presented speech, and work on concurrently presented melodies by Gerth [57], found a lin-

ear relationship between the number of auditory sources presented, and performance on an identification

task. However, their work disagreed as to the magnitude of the relationship between number of sources

and identification performance, with Gerth proposing that there was a much lower degradation in perfor-

mance as the number of auditory sources increased. RQ1 sought to identify if such a linear relationship

existed between the number of concurrently presented earcons and, by identifying the gradient of any such

relationship, how difficult it was to identify concurrently presented earcons.

Chapter5 investigated this question via an experiment where sets of one, two, three and four earcons

were concurrently presented, and participants had to identify all three data parameters encoded in each

earcon. The results showed that there was a linear relationship between the number of concurrently pre-

sented earcons, and the proportion of those earcons which could be identified. This trend agrees most

closely with the work of Brungart, Ericson and Simpson [29], with performance for earcon identification

dropping from 70% correct for one “concurrently” presented earcon, to 30% for four concurrently presented

earcons (see Figure5.7). Identification of earcon attributes showed the same trend but with much higher

levels of identification. The identification of timbre and melody reduced from 90% for one earcon to around

65% for four. Identification of register was lower, and consistent with earlier work with individual earcons

by Brewster, Wright and Edwards [16]. More surprisingly, the identification of register was similar irre-

spective of the number of earcons concurrently presented. This was possibly due to prior modifications to
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the earcons to avoid lower level interference (see Section2.3.2), indicating that modifications to the design

and presentation of the earcons may improve identification. Additionally, if the number of data parame-

ters encoded in each earcon was reduced (the earcons used in this work encoding the maximum number

of parameters, and therefore being a “worst case” scenario), the individual attribute results indicate that

overall earcon identification may be higher. Participants’ subjective workload, measured by a set of modi-

fied NASA TLX questionnaires [60], agreed with the identification performance results showing significant

increases in workload as the number of concurrently presented earcons was increased.

RQ2: How can concurrently presented earcons be more robustly designed and presented in order to increase

the number which can be identified?

The work on RQ1 identified that significant reductions in performance occur when more than one earcon

is concurrently presented. However, several studies on concurrent auditory sources other than earcons have

shown that improvements in identification can occur if the sounds which are concurrently presented are

modified to increase the differences between them [29, 31, 57]. Such a conclusion is also validated by the

discussion of Auditory Scene Analysis (ASA) from Section2.6.

Chapter6 investigated how modifications to the design and presentation of concurrent earcons based

on ASA could improve earcon identification. Several ASA principles which were considered to offer the

best possibility of improving earcon identification were applied to a set of earcons. Each modification to

the earcons was evaluated separately, as the modifications, if successful, would constrain the design of

the earcons in some way. In making these changes however, it was important to ensure that concurrently

presented earcons are not changed so much that the “grammar” that linked them together was destroyed and

their identification became harder; so all modifications were designed such that they would work within the

grammar of the existing set of earcons used.

An experiment using the same methodology as that of Chapter5 was carried out. This experiment used

four concurrently presented earcons to allow easy comparison back to previous work, as well as avoiding

any possibility of a ceiling effect in the data, and therefore represents a “worst case scenario” in earcon

identification. Modifying the earcons, such that each concurrently presented earcon with the same timbre

encoded attribute was presented with a different timbre from the same instrument group was found to sig-

nificantly improve identification of the timbre of the earcon. In addition, staggering the onset of each earcon

by 300ms was found to significantly improve earcon identification as well as earcon timbre identification.

Combining both features together again showed significant improvement in the identification of earcons

over those with no modifications; however improvements were not great enough to be significantly better

than any one individual modification. This was possibly due to the constraints on the extent of modifica-

tions which could be applied in order to preserve the earcon grammar. If fewer attributes could be encoded

in each earcon, this would leave major auditory attributes which may be arbitrarily modified to promote

particular streaming, albeit at a loss of the communicating power of the earcons. Whilst the previously
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described modifications to the earcons showed a significant improvement, this improvement was not large,

with only an average increase in identification of 0.5 earcons. Such an improvement would, as indicated

by the work of Chapter8, not be enough to allow for a practical improvement in user task performance.

However, if fewer earcons were concurrently presented and such an improvement could be maintained, 0.5

earcons would be a much greater improvement in identification. Other studies [48, 57, 29], indicate that

although the trend between the number of auditory sources presented and identification (as shown in Fig-

ure 5.7) still exists with modifications to the auditory sources, the gradient can be significantly flattened.

Although the impact of such a modification on earcon would need to be determined.

RQ3: What is the impact of presenting concurrent earcons in a spatialised auditory environment?

One aspect of concurrent earcon identification which can also be considered as contributing towards an

answer for RQ2, is the impact on identification of presenting each earcon in a distinct position around the

user’s head. There are several reasons for investigating such a presentation modification in isolation from

those investigated under RQ2. Most notably, as discussed in Section2.5, spatial sound perception uses

differences in the auditory signals reaching the left and right ears to determine sound source direction, and

thus to separate concurrent sounds in space. An Auditory Display which used such a technique would

require a user to wear headphones, or have a set of properly calibrated speakers with the user located at a

specific point [126]. There are several scenarios where such a situation may be impractical or impossible.

In addition, from the literature review in Section3.4, it was identified that when spatial sound presentation

is used as part of an auditory display, spatial position of a sound source may be mapped to some other data

parameter, such as time [141, 124]. In such situations there is a structured mapping between sound location

and data, such a mapping (as with the mapping between data attributes and sound parameters in earcons)

cannot be arbitrarily changed to promote better streaming as the mapping will be destroyed. Therefore it

cannot be assumed that simply by spatialising sounds, those sounds will be far enough apart that they will

not interfere (see Section2.4.2). Taking these issues into account shows the validity of investigating the

spatialisation of concurrent earcons as a separate feature to those investigated in Chapter6.

The work described in Chapter7 examined two features of spatialised earcon presentation. The first

was to compare earcon identification performance of non-spatially presented earcons which incorporated

the earcon design guidelines which had been identified from the work on RQ2, with spatially presented

earcons which had no other design or presentation modifications. In other words, if spatial presentation is

available to designers, is earcon identification superior to non-spatial presentation which incorporates pre-

viously identified design and presentation guidelines? An experiment similar to those used for the work on

RQ1 and RQ2 was undertaken. The results showed that earcon identification performance was indeed supe-

rior to non-spatial presentation; additionally, the identification of earcon register was significantly improved

by spatial earcon presentation. The obvious question to follow from these results is will the application of

the concurrent earcon guidelines discovered from the work of RQ2 to spatial earcon presentation further
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increase the identification of those earcons? This is important due to the issues of sufficient spatial sepa-

ration previously discussed (see Section2.4.2), which may mean that inspite of the superiority of spatial

presentation for concurrent earcon identification, it may still be the case that earcons cannot be sufficiently

separated, requiring the implementation of the non-spatial earcon presentation guidelines. As Bregman [14]

(pp. 302) notes“ the human auditory system does not give an overriding importance to the spatial cues

for belongingness but weighs these cues against all the others. When these cues all agree, the outcome is

a clear perceptual organisation, but when they do not, we can have a number of outcomes.”. An experi-

ment of the same methodology as that previously undertaken was carried out. This experiment compared

the identification of concurrent earcons which were spatially presented, and concurrent earcons which were

spatially presented and incorporated the guidelines identified in the work of RQ2. The results failed to show

a significant difference between the number of earcons identified, but did show a significant improvement

in the identification of the timbre encoded earcon parameter in the spatial condition which incorporated

the concurrent earcon presentation guidelines. Whilst these results show that the non-spatial earcon pre-

sentation guidelines can be used in spatial presentation situations, and provide significant improvements in

identification, over spatially presented earcons which do not incorporate the non-spatial earcon presenta-

tion guidelines, the magnitude of those improvements is, as with the work on RQ2 low. The relationships

that exist between concurrently presented earcons are so strong that the modifications and degree of those

modifications that can be applied to desirably stream the earcons do not have a large impact and such may

be of limited practical benefit.

RQ4: How much do modifications to the design and presentation of concurrently presented earcons affect

performance in “real world” tasks?

The work undertaken in answering the previous research questions elicited a great deal of knowledge on

the identification of concurrently presented earcons, as well as a set of guidelines which could be used

by designers of auditory displays to make more informed choices when incorporating concurrent earcons

into their displays. However, due to the nature of the experiments undertaken in this work, it could not be

assumed that the improvements in earcon identification found would translate into improvements in real

human computer interface tasks. Such performance is important to determine given the significant yet low

improvements in earcon identification from the previous experiments. Chapter8 investigated this issue by

comparing performance between earcons which included the guidelines for concurrent earcon identification,

identified from the work with RQ2 and RQ3 with earcons which did not. Again, to ensure their was no

ceiling effect in the data, four earcons were concurrently presented in each condition. The experiment

attempted to exploit some of the key advantages argued for the use of both auditory displays (see Section

3.2.1), and concurrent sound presentation (see Section4.2). Participants had to perform a diary browsing

task and answer questions about the entries in the diary. Diary entries were encoded as earcons. Participants

had to walk a predefined route whilst carrying out the task to simulate checking the diary “on the move”.

153



Conclusions

It was hypothesised that participants would answer more questions correctly, walk closer to their optimal

walking speed, and would record significantly lower subjective workload (measured via modified NASA

TLX questionnaires), when the earcons were modified to incorporate the guidelines for concurrent earcon

presentation previously identified. The results, however, did not show a significant variation between the

conditions for any objectively measurable performance metric. Participants did record significantly lower

subjective workload when the earcon design guidelines were incorporated. An improvement in subjective

workload is important and should make a system using concurrent earcon presentation more acceptable to

users [60]. However, it is only possible to consider this result as a partial answering of RQ4, and more

work needs to be undertaken to identify the impact of concurrent earcon presentation on “real world” task

performance. This issue is further discussed in Section9.3.

As previously discussed, the work of this thesis represents the most comprehensive and thorough inves-

tigation into the identification of concurrently presented earcons undertaken. Whilst other studies have used

concurrently presented earcons [25], or have indicated that problems exist in their concurrent presentation

[104], no study has previously empirically investigated their identification when their number is varied, or

how they can be modified to improve their identification. The studies of this thesis have found that the

identification of concurrent earcons as part of an auditory display is difficult and that there is a limited

amount (at least given the approach of this thesis) which can be done to practically reduce the problems of

concurrent earcon identification. Whilst it is possible to apply modifications to improve concurrent earcon

identification, it must be concluded given the results of Chapters 6 and 7 and the experiment from Chapter

8 that the degree of modifications that can be applied allows for limited practical benefit. Any practical

benefit is likely to be found, as indicated in Section6.4 and by other studies [29], when the number of

earcons concurrently presented is significantly reduced (see Section9.3).

The results of this thesis indicate that although concurrently presenting earcons can bring significant

advantages (see Section4.2), because of the inherent relationships between earcons from the same gram-

mar it is difficult to leverage these advantages. Based on the results of the work contained within this

thesis, designers who wish to employ concurrent earcons as part of an auditory display should consider

their use carefully and reduce the number to be presented as much as possible. Additionally the use of sim-

pler earcons such as compound or one-element (see Section3.3.4) may be more practical since there is no

requirement, as with the transformational and hierarchical types, to share attributes and as such greater dif-

ferences may be introduced between concurrent earcons. Other possibilities to improve concurrent earcon

identification performance are discussed in Section9.4. Additionally specific guidelines (given below) for

the improvement of concurrent earcon identification derived from the work of this thesis have been identi-

fied and should be used whenever concurrent earcons are employed.

Guideline 1: Increasing the number of concurrently presented earcons significantly reduces the proportion

of the earcons which can be successfully identified. Increasing the number of Earcons concurrently

presented can reduce correct identification from 70% to 30%. Great care should be taken when
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considering the amount of information users will need to extract from earcons when considering the

number of earcons which will be concurrently presented.

Guideline 2: If register is used to encode a data attribute, it may be beneficial to ensure that inharmonic

intervals are used between earcons concurrently presented in different registers. This is likely to

reduce the impact on register identification when the number of concurrently presented earcons is

increased.

Guideline 3: When timbre is used to encode a data parameter, each concurrently presented earcon should

have a different timbre. The guidelines of Brewster, Wright and Edwards [25], should be used to

select timbres to encode different values of a data parameter, but if two earcons with the same timbre

encoded value are to be concurrently presented, each should use a different musical timbre from

the same instrument group. The work of Rigas [118] can be used to determine distinct instrument

groupings.

Guideline 4: Concurrently presenting earcons which start at the same time should be avoided. The intro-

duction of at least a 300ms onset-to-onset gap between the starts of concurrently presented earcons

will make the earcons more identifiable to users.

Guideline 5: The use of spatialised presentation with headtracking significantly improves the identification

of concurrently presented earcons. Therefore spatialised presentation should be employed whenever

practically possible in cases where earcons will be concurrently presented.

Guideline 6: Whilst spatial audio significantly increases the number of concurrent earcons that can be

identified, it does not always guarantee that earcons will be desirably streamed, hence the maximum

amount of angular (in azimuth) separation between concurrently presented earcons should be used.

Guidelines 1-5 should also be incorporated when using spatial presentation to improve earcon iden-

tification.

The work presented in this thesis can therefore be considered as defending the thesis statement described

in Chapter1 that “Identifying concurrently presented earcons where those earcons are constructed from a

grammar is difficult. Whilst modifications can be undertaken to significantly improve earcon identification,

these modifications are constrained due to the need to preserve the mapping between data and sound”.

9.3 Limitations of the Thesis

Whilst this thesis has contributed a great deal of knowledge on the identification of concurrently presented

earcons, there are a few limitations to its work which must be outlined.

Firstly, this thesis has been unable to show that the earcon guidelines identified through work in Chapters

5 to 7 improve task performance in real world usage. Whilst the earcon design guidelines do significantly
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reduce subjective workload in real world tasks, and as such are likely to be useful if implemented when

concurrent earcons are presented, without showing an improvement in task performance their impact is

limited. As already discussed in Section8.5 there are several possible reasons why no improvement in

task performance was found in the experiment of Chapter8. Although, it is not possible with the data

available to make definitive conclusions as to the lack of improvement in task performance, it is likely that

the overall poor identification of earcons in Chapters 6 and 7 have a strong impact. Further work which

applies the concurrent earcon guidelines in different types of environments and situations, as well as a

reimplementation of the experiments from Chapter7 using the spatialisation system from the experiment

described in Chapter8 would be useful to further understand and overcome this issue.

Another limitation of this thesis is the emphasis on consistency between the experiments of Chapters5,

6 and7. Namely that sets of four concurrently presented earcons were used for the experiments in Chapter

6 and7. This was due to two factors, firstly it allowed comparisons to other work on the identification

of concurrent sounds which tended to use four concurrent sources [29, 57] to be made, additionally other

researchers claim that it is reasonable to concurrently present four sounds in real interfaces [12, 105, 48]. It

was also unclear what the impact of the earcon modifications of Chapter6 and the spatialisation of earcons

from Chapter7 would be. It was important that no ceiling effect in the results was obtained. In other

words, any modification to the design and presentation of the earcons should not make their identification

so easy that there are an insufficient number of earcons presented to measure the actual improvement in

identification. Therefore the work of this thesis has investigated the boundary of concurrent earcon iden-

tification. Whilst it can be reasonably assumed based on other work (see Section4.6), that reducing the

number of concurrently presented earcons and applying the concurrent earcon guidelines would improve

identification, it is not clear what the numerical improvement would be. Would a linear relationship still ex-

ist between the identification of one, two and three concurrently presented earcons? Further work applying

the concurrent earcon guidelines to sets of one, two and three concurrently presented earcons would yield

useful results which would allow designers to make even better informed decisions when using concurrent

earcon presentation.

9.4 Future Work

In the previous sections, the main contributions of the thesis and the limitations of those contributions

were outlined. This section discusses ways in which the work of this thesis may be expanded upon to

further improve our understanding of concurrent earcon presentation and identification, and its relationship

to other auditory displays.
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9.4.1 Spatial Separation versus Identification

A final issue with the work of this thesis concerns the identification of earcons in a spatialised environ-

ment. Whilst the thesis has shown improvements in earcon identification when those earcons are spatially

separated, it has not investigated the relationship between the degree of spatial separation and earcon iden-

tification. As discussed in Section2.4.2, the ability to distinguish two sounds concurrently presented in

space, is a function of both the azimuthal distance between those sounds in space and the similarity of those

sounds. This is consistent with the discussion of auditory scene analysis from Section2.6. Best, van Schaik

and Carlile [10], as discussed in Section3.2.2, found that to separate two broadband sounds in space could

require 60o separation in azimuth before they could confidently be perceived as separate. In the experimen-

tal work of this thesis, maximum azimuthal differences between concurrently presented earcons were used

to ensure separation in space. However, if a designer wished to present concurrent earcons, and map some

data parameter to spatial position (one of the advantages of spatial sound presentation as described in Sec-

tion 3.4), it would be useful to know how close two earcons could be situated before they began to interfere

with each other, and the extent of such interferences. This thesis has only considered the two extremities,

where earcons are all collocated, and where they are maximally separated in azimuth. Mapping the “middle

group” would give designers who wished to exploit such advantages a great deal more knowledge to make

informed decisions.

9.4.2 Reducing Earcon Parameters

One feature from the results of the experimental work of this thesis, is that even when modifications to the

design and presentation of earcons yield significant results, the magnitude of such increases is small. In part

this may be due to investigating the “worst case scenario” of earcon identification, as discussed in Section

9.3, but is also likely due to the constraints placed on any modifications, due to the need to protect the earcon

grammar and the mapping between sound and data, where arbitrarily large modifications between concur-

rently presented earcons cannot be introduced. As indicated by the results of the experiment in Chapter5,

reducing the number of data parameters encoded in each earcon may increase the identification of those

earcons. Additionally, this would leave auditory parameters that did not form part of the earcon grammar.

As such, arbitrarily large modifications may be introduced between concurrently presented earcons, along

that parameter, which would be likely to further influence the auditory streaming process. However, in-

corporating such a feature would reduce the amount of information that could be encoded in each earcon.

Additionally, the earcon designer would be faced with choices concerning which auditory parameters to

use as part of the earcon grammar and auditory parameters to increase the differences between concurrently

presented earcons. However, given the limitations of the modification applied to the work of this thesis,

such a study may be useful.
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9.4.3 Identification in Mixed Concurrent Auditory Environments

It is highly unlikely that most interfaces which would use concurrent earcon presentation would only use

earcons. As already discussed in Section3.3 there are several ways of encoding data in sound, and it is

likely that a designer would use a variety of methods including earcons, dependent on the use to which

the data would be put. It would be important for such designers to understand how concurrently presented

earcons interacted with other auditory display techniques such as sonification or speech. However such a

study is extremely complex, and would take many experiments to determine solutions, given the scope of

the solution space that would be available. However it would allow the relationship between the work of

this thesis and other previously undertaken studies to be further explored.

9.5 Final Remarks

In conclusion, whilst the presentation of concurrent sound as part of an auditory display has several ad-

vantages, there are a number of issues that must be considered. One issue being that sounds which are

concurrently presented may interfere with each other, making it difficult to determine the information en-

coded within them. This thesis has identified that a lack of guidelines for the design and presentation of

concurrent sounds as part of an auditory display exist, making it difficult for designers to exploit the ad-

vantages of concurrent sound presentation. The work of this thesis has identified that the presentation of

concurrent earcons makes it difficult for those earcons to be identified by users. Work has been undertaken

showing the extent of the problem and how identification of concurrent earcons is affected by the number

of earcons concurrently presented. This thesis has sought to reduce the problems of concurrent earcon

identification, by bringing together guidelines for the design of effective earcons [26] and research into

auditory scene analysis [14]. Empirically evaluated modifications to the design and presentation of earcons

have been developed, that significantly improve their identification when concurrently presented, without

destroying the relationships between individual earcons that make them powerful communicating sounds.

However in avoiding destroying the grammar, the degree to which these modifications impact earcon iden-

tification is limited, leading to little practical increase in earcon identification. These modifications to the

design and presentation of concurrent earcons have also been applied and evaluated in a “real world” in-

terface. This evaluation showed that incorporating the design and presentation modifications significantly

reduced participants’ subjective workload, although no significant improvement in task performance was

found. The work of this thesis has yielded a set of empirically evaluated guidelines for the presentation of

concurrent earcons, which can be used by future designers of auditory displays to make informed design

decisions, and as such significantly improve our understanding of concurrently presented earcons.
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Glossary

Attack: The time between a sound starting and that sound reaching a steady amplitude [116].

Attenuation: A reduction in the amplitude of certain frequencies in a sound [152].

Dynamic Respatialisation: The use of a position and orientation sensing device to adjust the position of

auditory sources relative to a listener as the listener moves their head.

Free Field: Listening to spatialised sounds generated from monaural sound sources. I.e. instead of syn-

thesising sounds coming from a location, the sound is actually generated from that location.

Head Shadowing: The inability of higher frequency sounds to diffract around the head causing the head

to cast an auditory “shadow” across the ears.

Human Auditory System: The human system used to detect and derive meaning from a sound.

Kemar Dummy: A plastic dummy of the head and shoulders of a human being, used in the recording and

creation of head related transfer functions (HRTFs).

Melody: A rhythmic structure where successive notes may have different pitches.

Rhythm: The relative durations of the notes and gaps between notes in a particular sequence of notes.

Scale: A sequence of pitch intervals referenced to a particular pitch. This thesis uses a chromatic scale

which consists of eight distinct pitch intervals, each of which raises the perceived pitch of a sound by

an even amount.

Spectra: The frequencies and relative amounts of those frequencies contained within a sound.

Tempo: The speed of a composition [116].

Tone: An auditory waveform composed of sinusoids.
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Appendix B

Dolphin Evaluation - Training Sheets

This appendix contains copies of the training sheets from the Dolphin evaluation described in Section4.4.
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Appendix C

Dolphin Evaluation - Raw Data

This appendix presents the raw results from the experiment described in Chapter4.

C.1 Average Time to Create a Tour

Participant Dolphin Condition (sec) Standard Scrolling Condition (sec)
1 217 174
2 124 59
3 54 66
4 142 145
5 73 73
6 488 96
7 59 74
8 206 56
9 119 109
10 117 97
11 126 102
12 63 89
13 43 52
14 0 0
15 142 145
16 73 73

C.2 Percentage Optimal Path Length

Participant Dolphin Condition Standard Scrolling Condition
1 95 99
2 85 87
3 84 86
4 88 87
5 81 93
6 88 91
7 90 100
8 100 96
9 92 92
10 97 95
11 84 91
12 100 95
13 100 91
14 95 67
15 87 87
16 81 89
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C.3 Tours with Missing or Added Rides

Participant Dolphin Condition Standard Scrolling Condition
1 3 0
2 0 0
3 1 1
4 0 0
5 0 2
6 0 1
7 0 3
8 3 1
9 2 0
10 2 1
11 1 0
12 1 1
13 3 0
14 3 3
15 0 0
16 0 2

C.4 Modified NASA TLX Workload Ratings

Participant Modified NASA TLX Attribute Standard Scrolling Condition Dolphin Condition
1 Annoyance Experienced 3 19
2 Annoyance Experienced 7 15
3 Annoyance Experienced 2 14
4 Annoyance Experienced 9 17
5 Annoyance Experienced 6 16
6 Annoyance Experienced 1 18
7 Annoyance Experienced 4 13
8 Annoyance Experienced 1 3
9 Annoyance Experienced 1 9
10 Annoyance Experienced 1 18
11 Annoyance Experienced 2 2
12 Annoyance Experienced 10 14
13 Annoyance Experienced 7 6
14 Annoyance Experienced 6 7
15 Annoyance Experienced 5 5
16 Annoyance Experienced 2 7
1 Effort Expended 5 11
2 Effort Expended 5 18
3 Effort Expended 6 14
4 Effort Expended 12 14
5 Effort Expended 8 18
6 Effort Expended 20 7
7 Effort Expended 11 14
8 Effort Expended 11 11
9 Effort Expended 5 13
10 Effort Expended 16 18
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Participant Modified NASA TLX Attribute Standard Scrolling Condition Dolphin Condition
11 Effort Expended 12 14
12 Effort Expended 12 14
13 Effort Expended 6 10
14 Effort Expended 12 13
15 Effort Expended 14 14
16 Effort Expended 12 11
1 Frustration Experienced 3 16
2 Frustration Experienced 9 13
3 Frustration Experienced 6 20
4 Frustration Experienced 7 17
5 Frustration Experienced 9 17
6 Frustration Experienced 4 2
7 Frustration Experienced 17 16
8 Frustration Experienced 1 3
9 Frustration Experienced 1 9
10 Frustration Experienced 10 19
11 Frustration Experienced 7 7
12 Frustration Experienced 6 8
13 Frustration Experienced 7 7
14 Frustration Experienced 6 5
15 Frustration Experienced 8 11
16 Frustration Experienced 4 6
1 Mental Demand 9 11
2 Mental Demand 6 13
3 Mental Demand 2 16
4 Mental Demand 11 13
5 Mental Demand 11 17
6 Mental Demand 18 7
7 Mental Demand 13 18
8 Mental Demand 13 11
9 Mental Demand 3 17
10 Mental Demand 16 18
11 Mental Demand 11 15
12 Mental Demand 13 17
13 Mental Demand 10 13
14 Mental Demand 13 15
15 Mental Demand 15 14
16 Mental Demand 14 13
1 Overall Preference 19 9
2 Overall Preference 18 7
3 Overall Preference 20 4
4 Overall Preference 20 1
5 Overall Preference 17 5
6 Overall Preference 11 11
7 Overall Preference 8 13
8 Overall Preference 20 1
9 Overall Preference 19 7
10 Overall Preference 19 1
11 Overall Preference 15 16
12 Overall Preference 13 10
13 Overall Preference 10 10
14 Overall Preference 11 17
15 Overall Preference 15 15
16 Overall Preference 12 17
1 Performance Level Achieved 11 11
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Participant Modified NASA TLX Attribute Standard Scrolling Condition Dolphin Condition
2 Performance Level Achieved 16 11
3 Performance Level Achieved 20 10
4 Performance Level Achieved 16 13
5 Performance Level Achieved 16 12
6 Performance Level Achieved 20 19
7 Performance Level Achieved 9 12
8 Performance Level Achieved 20 19
9 Performance Level Achieved 19 11
10 Performance Level Achieved 13 15
11 Performance Level Achieved 10 12
12 Performance Level Achieved 15 12
13 Performance Level Achieved 10 14
14 Performance Level Achieved 13 17
15 Performance Level Achieved 12 12
16 Performance Level Achieved 8 14
1 Physical Demand 1 1
2 Physical Demand 8 10
3 Physical Demand 10 19
4 Physical Demand 5 6
5 Physical Demand 5 5
6 Physical Demand 11 2
7 Physical Demand 10 7
8 Physical Demand 1 1
9 Physical Demand 3 9
10 Physical Demand 14 18
11 Physical Demand 2 2
12 Physical Demand 3 3
13 Physical Demand 3 2
14 Physical Demand 15 4
15 Physical Demand 12 5
16 Physical Demand 6 8
1 Time Pressure 7 11
2 Time Pressure 4 14
3 Time Pressure 6 14
4 Time Pressure 10 9
5 Time Pressure 5 18
6 Time Pressure 1 1
7 Time Pressure 9 5
8 Time Pressure 7 5
9 Time Pressure 1 9
10 Time Pressure 4 8
11 Time Pressure 10 11
12 Time Pressure 11 11
13 Time Pressure 2 2
14 Time Pressure 9 16
15 Time Pressure 11 11
16 Time Pressure 12 2
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Condition Grouping For Non-Spatial
Experiments

As discussed in Section5.2.2, the conditions from the experiments described in Chapters5 and6 were interleaved.
With each participant performing one condition of each experiment in a counterbalanced order. The table below shows
how the conditions from each experiment were paired.

Condition from experi-
ment in Chapter 5

Condition from experi-
ment in Chapter 6

Four Earcon Condition (aka
Original Earcon Set Condi-
tion from Chapter6)

was paired with Melody Altered Earcon Set
Condition

Three Earcon Condition was paired with Multi-timbre Earcon Set
Condition

N/A Extended Training Condi-
tion

Two Earcon Condition was paired with Staggered Onset Condition
One Earcon Condition was paired with Final Condition
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Appendix E

Number of Earcons versus Identification -
Training Sheets

This appendix contains copies of the training sheets from the experiment described in Chapter5.
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Appendix F

Number of Earcons versus Identification -
Raw Data

This appendix presents the raw results from the experiment described in Chapter5.

F.1 One Earcon Condition

F.1.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Percentage Rides Identified 70.00
2 Average Percentage Rides Identified 70.00
3 Average Percentage Rides Identified 80.00
4 Average Percentage Rides Identified 75.00
5 Average Percentage Rides Identified 45.00
6 Average Percentage Rides Identified 75.00
7 Average Percentage Rides Identified 80.00
8 Average Percentage Rides Identified 50.00
9 Average Percentage Rides Identified 70.00
10 Average Percentage Rides Identified 85.00
11 Average Percentage Rides Identified 50.00
12 Average Percentage Rides Identified 80.00
13 Average Percentage Rides Identified 70.00
14 Average Percentage Rides Identified 90.00
15 Average Percentage Rides Identified 80.00
16 Average Percentage Rides Identified 67.00
1 Average Percentage Ride Types Identified 100.00
2 Average Percentage Ride Types Identified 90.00
3 Average Percentage Ride Types Identified 95.00
4 Average Percentage Ride Types Identified 90.00
5 Average Percentage Ride Types Identified 95.00
6 Average Percentage Ride Types Identified 95.00
7 Average Percentage Ride Types Identified 95.00
8 Average Percentage Ride Types Identified 80.00
9 Average Percentage Ride Types Identified 100.00
10 Average Percentage Ride Types Identified 100.00
11 Average Percentage Ride Types Identified 75.00
12 Average Percentage Ride Types Identified 100.00
13 Average Percentage Ride Types Identified 70.00
14 Average Percentage Ride Types Identified 100.00
15 Average Percentage Ride Types Identified 100.00
16 Average Percentage Ride Types Identified 90.00
1 Average Percentage Ride Intensities Identified100.00
2 Average Percentage Ride Intensities Identified95.00
3 Average Percentage Ride Intensities Identified100.00
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Participant Attribute Value
4 Average Percentage Ride Intensities Identified100.00
5 Average Percentage Ride Intensities Identified90.00
6 Average Percentage Ride Intensities Identified100.00
7 Average Percentage Ride Intensities Identified100.00
8 Average Percentage Ride Intensities Identified90.00
9 Average Percentage Ride Intensities Identified90.00
10 Average Percentage Ride Intensities Identified95.00
11 Average Percentage Ride Intensities Identified95.00
12 Average Percentage Ride Intensities Identified92.00
13 Average Percentage Ride Intensities Identified65.00
14 Average Percentage Ride Intensities Identified90.00
15 Average Percentage Ride Intensities Identified100.00
16 Average Percentage Ride Intensities Identified90.00
1 Average Percentage Ride Costs Identified 70.00
2 Average Percentage Ride Costs Identified 75.00
3 Average Percentage Ride Costs Identified 85.00
4 Average Percentage Ride Costs Identified 85.00
5 Average Percentage Ride Costs Identified 30.00
6 Average Percentage Ride Costs Identified 80.00
7 Average Percentage Ride Costs Identified 80.00
8 Average Percentage Ride Costs Identified 70.00
9 Average Percentage Ride Costs Identified 55.00
10 Average Percentage Ride Costs Identified 90.00
11 Average Percentage Ride Costs Identified 45.00
12 Average Percentage Ride Costs Identified 90.00
13 Average Percentage Ride Costs Identified 65.00
14 Average Percentage Ride Costs Identified 90.00
15 Average Percentage Ride Costs Identified 80.00
16 Average Percentage Ride Costs Identified 80.00

F.1.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 10
2 Mental Demand 10
3 Mental Demand 11
4 Mental Demand 9
5 Mental Demand 20
6 Mental Demand 6
7 Mental Demand 16
8 Mental Demand 15
9 Mental Demand 17
10 Mental Demand 10
11 Mental Demand 11
12 Mental Demand 11
13 Mental Demand 12
14 Mental Demand 13
15 Mental Demand 11
16 Mental Demand 10
1 Physical Demand 2
2 Physical Demand 7
3 Physical Demand 4
4 Physical Demand 1
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Participant Attribute Value
5 Physical Demand 6
6 Physical Demand 6
7 Physical Demand 4
8 Physical Demand 1
9 Physical Demand 7
10 Physical Demand 2
11 Physical Demand 6
12 Physical Demand 3
13 Physical Demand 4
14 Physical Demand 2
15 Physical Demand 1
16 Physical Demand 1
1 Time Pressure 3
2 Time Pressure 3
3 Time Pressure 7
4 Time Pressure 1
5 Time Pressure 20
6 Time Pressure 1
7 Time Pressure 10
8 Time Pressure 1
9 Time Pressure 14
10 Time Pressure 1
11 Time Pressure 15
12 Time Pressure 1
13 Time Pressure 12
14 Time Pressure 13
15 Time Pressure 1
16 Time Pressure 4
1 Effort Expended 16
2 Effort Expended 17
3 Effort Expended 12
4 Effort Expended 9
5 Effort Expended 16
6 Effort Expended 10
7 Effort Expended 13
8 Effort Expended 7
9 Effort Expended 17
10 Effort Expended 17
11 Effort Expended 16
12 Effort Expended 15
13 Effort Expended 17
14 Effort Expended 18
15 Effort Expended 16
16 Effort Expended 16
1 Performance Level Achieved 12
2 Performance Level Achieved 16
3 Performance Level Achieved 10
4 Performance Level Achieved 18
5 Performance Level Achieved 3
6 Performance Level Achieved 11
7 Performance Level Achieved 11
8 Performance Level Achieved 13
9 Performance Level Achieved 11
10 Performance Level Achieved 18
11 Performance Level Achieved 16
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Participant Attribute Value
12 Performance Level Achieved 10
13 Performance Level Achieved 12
14 Performance Level Achieved 11
15 Performance Level Achieved 12
16 Performance Level Achieved 13
1 Frustration Experienced 5
2 Frustration Experienced 10
3 Frustration Experienced 6
4 Frustration Experienced 1
5 Frustration Experienced 19
6 Frustration Experienced 4
7 Frustration Experienced 10
8 Frustration Experienced 13
9 Frustration Experienced 11
10 Frustration Experienced 1
11 Frustration Experienced 11
12 Frustration Experienced 12
13 Frustration Experienced 10
14 Frustration Experienced 10
15 Frustration Experienced 11
16 Frustration Experienced 3
1 Annoyance Experienced 2
2 Annoyance Experienced 11
3 Annoyance Experienced 6
4 Annoyance Experienced 1
5 Annoyance Experienced 19
6 Annoyance Experienced 1
7 Annoyance Experienced 2
8 Annoyance Experienced 13
9 Annoyance Experienced 14
10 Annoyance Experienced 1
11 Annoyance Experienced 8
12 Annoyance Experienced 5
13 Annoyance Experienced 3
14 Annoyance Experienced 5
15 Annoyance Experienced 2
16 Annoyance Experienced 1

F.2 Two Earcon Condition

F.2.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Percentage Rides Identified 30.00
2 Average Percentage Rides Identified 55.00
3 Average Percentage Rides Identified 67.50
4 Average Percentage Rides Identified 47.50
5 Average Percentage Rides Identified 32.50
6 Average Percentage Rides Identified 85.00
7 Average Percentage Rides Identified 30.00
8 Average Percentage Rides Identified 80.00
9 Average Percentage Rides Identified 67.50
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Participant Attribute Value
10 Average Percentage Rides Identified 55.00
11 Average Percentage Rides Identified 32.50
12 Average Percentage Rides Identified 57.50
13 Average Percentage Rides Identified 40.00
14 Average Percentage Rides Identified 32.50
15 Average Percentage Rides Identified 82.50
16 Average Percentage Rides Identified 77.50
1 Average Percentage Ride Types Identified 67.50
2 Average Percentage Ride Types Identified 90.00
3 Average Percentage Ride Types Identified 95.00
4 Average Percentage Ride Types Identified 95.00
5 Average Percentage Ride Types Identified 92.50
6 Average Percentage Ride Types Identified 100.00
7 Average Percentage Ride Types Identified 55.00
8 Average Percentage Ride Types Identified 95.00
9 Average Percentage Ride Types Identified 87.50
10 Average Percentage Ride Types Identified 82.50
11 Average Percentage Ride Types Identified 75.00
12 Average Percentage Ride Types Identified 80.00
13 Average Percentage Ride Types Identified 80.00
14 Average Percentage Ride Types Identified 75.00
15 Average Percentage Ride Types Identified 97.50
16 Average Percentage Ride Types Identified 100.00
1 Average Percentage Ride Intensities Identified65.00
2 Average Percentage Ride Intensities Identified97.50
3 Average Percentage Ride Intensities Identified87.50
4 Average Percentage Ride Intensities Identified97.50
5 Average Percentage Ride Intensities Identified62.50
6 Average Percentage Ride Intensities Identified100.00
7 Average Percentage Ride Intensities Identified85.00
8 Average Percentage Ride Intensities Identified100.00
9 Average Percentage Ride Intensities Identified100.00
10 Average Percentage Ride Intensities Identified97.50
11 Average Percentage Ride Intensities Identified75.00
12 Average Percentage Ride Intensities Identified95.00
13 Average Percentage Ride Intensities Identified80.00
14 Average Percentage Ride Intensities Identified95.00
15 Average Percentage Ride Intensities Identified95.00
16 Average Percentage Ride Intensities Identified97.50
1 Average Percentage Ride Costs Identified 60.00
2 Average Percentage Ride Costs Identified 65.00
3 Average Percentage Ride Costs Identified 72.50
4 Average Percentage Ride Costs Identified 52.50
5 Average Percentage Ride Costs Identified 62.50
6 Average Percentage Ride Costs Identified 85.00
7 Average Percentage Ride Costs Identified 55.00
8 Average Percentage Ride Costs Identified 85.00
9 Average Percentage Ride Costs Identified 80.00
10 Average Percentage Ride Costs Identified 72.50
11 Average Percentage Ride Costs Identified 65.00
12 Average Percentage Ride Costs Identified 70.00
13 Average Percentage Ride Costs Identified 70.00
14 Average Percentage Ride Costs Identified 45.00
15 Average Percentage Ride Costs Identified 90.00
16 Average Percentage Ride Costs Identified 80.00
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Number of Earcons versus Identification - Raw Data

F.2.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 17
2 Mental Demand 8
3 Mental Demand 17
4 Mental Demand 18
5 Mental Demand 14
6 Mental Demand 14
7 Mental Demand 18
8 Mental Demand 7
9 Mental Demand 7
10 Mental Demand 11
11 Mental Demand 9
12 Mental Demand 18
13 Mental Demand 19
14 Mental Demand 10
15 Mental Demand 16
16 Mental Demand 4
1 Physical Demand 7
2 Physical Demand 8
3 Physical Demand 12
4 Physical Demand 2
5 Physical Demand 3
6 Physical Demand 8
7 Physical Demand 10
8 Physical Demand 3
9 Physical Demand 3
10 Physical Demand 5
11 Physical Demand 13
12 Physical Demand 4
13 Physical Demand 12
14 Physical Demand 3
15 Physical Demand 3
16 Physical Demand 2
1 Time Pressure 17
2 Time Pressure 6
3 Time Pressure 16
4 Time Pressure 2
5 Time Pressure 7
6 Time Pressure 5
7 Time Pressure 11
8 Time Pressure 10
9 Time Pressure 1
10 Time Pressure 5
11 Time Pressure 18
12 Time Pressure 13
13 Time Pressure 6
14 Time Pressure 4
15 Time Pressure 14
16 Time Pressure 4
1 Effort Expended 16
2 Effort Expended 8
3 Effort Expended 18
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Number of Earcons versus Identification - Raw Data

Participant Attribute Value
4 Effort Expended 18
5 Effort Expended 9
6 Effort Expended 11
7 Effort Expended 19
8 Effort Expended 4
9 Effort Expended 4
10 Effort Expended 6
11 Effort Expended 12
12 Effort Expended 16
13 Effort Expended 10
14 Effort Expended 6
15 Effort Expended 15
16 Effort Expended 7
1 Performance Level Achieved 5
2 Performance Level Achieved 12
3 Performance Level Achieved 7
4 Performance Level Achieved 18
5 Performance Level Achieved 12
6 Performance Level Achieved 16
7 Performance Level Achieved 9
8 Performance Level Achieved 13
9 Performance Level Achieved 14
10 Performance Level Achieved 4
11 Performance Level Achieved 8
12 Performance Level Achieved 10
13 Performance Level Achieved 13
14 Performance Level Achieved 10
15 Performance Level Achieved 16
16 Performance Level Achieved 17
1 Frustration Experienced 10
2 Frustration Experienced 6
3 Frustration Experienced 17
4 Frustration Experienced 3
5 Frustration Experienced 10
6 Frustration Experienced 6
7 Frustration Experienced 8
8 Frustration Experienced 3
9 Frustration Experienced 3
10 Frustration Experienced 2
11 Frustration Experienced 8
12 Frustration Experienced 11
13 Frustration Experienced 2
14 Frustration Experienced 8
15 Frustration Experienced 12
16 Frustration Experienced 4
1 Annoyance Experienced 4
2 Annoyance Experienced 6
3 Annoyance Experienced 14
4 Annoyance Experienced 3
5 Annoyance Experienced 2
6 Annoyance Experienced 6
7 Annoyance Experienced 2
8 Annoyance Experienced 1
9 Annoyance Experienced 1
10 Annoyance Experienced 1
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Number of Earcons versus Identification - Raw Data

Participant Attribute Value
11 Annoyance Experienced 12
12 Annoyance Experienced 4
13 Annoyance Experienced 8
14 Annoyance Experienced 10
15 Annoyance Experienced 8
16 Annoyance Experienced 3

F.3 Three Earcon Condition

F.3.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Percentage Rides Identified 58.33
2 Average Percentage Rides Identified 25.00
3 Average Percentage Rides Identified 38.33
4 Average Percentage Rides Identified 50.00
5 Average Percentage Rides Identified 45.00
6 Average Percentage Rides Identified 33.33
7 Average Percentage Rides Identified 50.00
8 Average Percentage Rides Identified 28.33
9 Average Percentage Rides Identified 26.67
10 Average Percentage Rides Identified 30.00
11 Average Percentage Rides Identified 50.00
12 Average Percentage Rides Identified 60.00
13 Average Percentage Rides Identified 33.33
14 Average Percentage Rides Identified 26.67
15 Average Percentage Rides Identified 53.33
16 Average Percentage Rides Identified 58.33
1 Average Percentage Ride Types Identified 81.67
2 Average Percentage Ride Types Identified 75.00
3 Average Percentage Ride Types Identified 61.67
4 Average Percentage Ride Types Identified 86.67
5 Average Percentage Ride Types Identified 73.33
6 Average Percentage Ride Types Identified 65.00
7 Average Percentage Ride Types Identified 73.33
8 Average Percentage Ride Types Identified 76.67
9 Average Percentage Ride Types Identified 63.33
10 Average Percentage Ride Types Identified 75.00
11 Average Percentage Ride Types Identified 90.00
12 Average Percentage Ride Types Identified 75.00
13 Average Percentage Ride Types Identified 71.67
14 Average Percentage Ride Types Identified 70.00
15 Average Percentage Ride Types Identified 86.67
16 Average Percentage Ride Types Identified 81.67
1 Average Percentage Ride Intensities Identified80.00
2 Average Percentage Ride Intensities Identified73.33
3 Average Percentage Ride Intensities Identified75.00
4 Average Percentage Ride Intensities Identified86.67
5 Average Percentage Ride Intensities Identified75.00
6 Average Percentage Ride Intensities Identified75.00
7 Average Percentage Ride Intensities Identified80.00
8 Average Percentage Ride Intensities Identified75.00
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Number of Earcons versus Identification - Raw Data

Participant Attribute Value
9 Average Percentage Ride Intensities Identified75.00
10 Average Percentage Ride Intensities Identified61.67
11 Average Percentage Ride Intensities Identified78.33
12 Average Percentage Ride Intensities Identified86.67
13 Average Percentage Ride Intensities Identified63.33
14 Average Percentage Ride Intensities Identified66.67
15 Average Percentage Ride Intensities Identified73.33
16 Average Percentage Ride Intensities Identified80.00
1 Average Percentage Ride Costs Identified 75.00
2 Average Percentage Ride Costs Identified 45.00
3 Average Percentage Ride Costs Identified 66.67
4 Average Percentage Ride Costs Identified 60.00
5 Average Percentage Ride Costs Identified 75.00
6 Average Percentage Ride Costs Identified 65.00
7 Average Percentage Ride Costs Identified 71.67
8 Average Percentage Ride Costs Identified 50.00
9 Average Percentage Ride Costs Identified 60.00
10 Average Percentage Ride Costs Identified 50.00
11 Average Percentage Ride Costs Identified 70.00
12 Average Percentage Ride Costs Identified 83.33
13 Average Percentage Ride Costs Identified 61.67
14 Average Percentage Ride Costs Identified 61.67
15 Average Percentage Ride Costs Identified 78.33
16 Average Percentage Ride Costs Identified 75.00

F.3.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 18
2 Mental Demand 11
3 Mental Demand 17
4 Mental Demand 8
5 Mental Demand 18
6 Mental Demand 15
7 Mental Demand 16
8 Mental Demand 7
9 Mental Demand 16
10 Mental Demand 12
11 Mental Demand 17
12 Mental Demand 12
13 Mental Demand 17
14 Mental Demand 19
15 Mental Demand 18
16 Mental Demand 16
1 Physical Demand 1
2 Physical Demand 4
3 Physical Demand 5
4 Physical Demand 1
5 Physical Demand 1
6 Physical Demand 1
7 Physical Demand 3
8 Physical Demand 3
9 Physical Demand 6
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Participant Attribute Value
10 Physical Demand 2
11 Physical Demand 1
12 Physical Demand 2
13 Physical Demand 1
14 Physical Demand 2
15 Physical Demand 1
16 Physical Demand 2
1 Time Pressure 16
2 Time Pressure 8
3 Time Pressure 17
4 Time Pressure 11
5 Time Pressure 17
6 Time Pressure 15
7 Time Pressure 11
8 Time Pressure 7
9 Time Pressure 4
10 Time Pressure 17
11 Time Pressure 4
12 Time Pressure 15
13 Time Pressure 14
14 Time Pressure 18
15 Time Pressure 13
16 Time Pressure 10
1 Effort Expended 14
2 Effort Expended 9
3 Effort Expended 17
4 Effort Expended 10
5 Effort Expended 17
6 Effort Expended 16
7 Effort Expended 15
8 Effort Expended 9
9 Effort Expended 14
10 Effort Expended 17
11 Effort Expended 14
12 Effort Expended 12
13 Effort Expended 17
14 Effort Expended 18
15 Effort Expended 18
16 Effort Expended 15
1 Performance Level Achieved 7
2 Performance Level Achieved 16
3 Performance Level Achieved 14
4 Performance Level Achieved 12
5 Performance Level Achieved 7
6 Performance Level Achieved 13
7 Performance Level Achieved 10
8 Performance Level Achieved 17
9 Performance Level Achieved 9
10 Performance Level Achieved 12
11 Performance Level Achieved 12
12 Performance Level Achieved 11
13 Performance Level Achieved 3
14 Performance Level Achieved 4
15 Performance Level Achieved 15
16 Performance Level Achieved 14
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Number of Earcons versus Identification - Raw Data

Participant Attribute Value
1 Frustration Experienced 15
2 Frustration Experienced 9
3 Frustration Experienced 18
4 Frustration Experienced 9
5 Frustration Experienced 15
6 Frustration Experienced 9
7 Frustration Experienced 8
8 Frustration Experienced 7
9 Frustration Experienced 15
10 Frustration Experienced 7
11 Frustration Experienced 1
12 Frustration Experienced 15
13 Frustration Experienced 17
14 Frustration Experienced 14
15 Frustration Experienced 11
16 Frustration Experienced 12
1 Annoyance Experienced 14
2 Annoyance Experienced 13
3 Annoyance Experienced 12
4 Annoyance Experienced 8
5 Annoyance Experienced 9
6 Annoyance Experienced 10
7 Annoyance Experienced 14
8 Annoyance Experienced 3
9 Annoyance Experienced 13
10 Annoyance Experienced 1
11 Annoyance Experienced 1
12 Annoyance Experienced 15
13 Annoyance Experienced 3
14 Annoyance Experienced 11
15 Annoyance Experienced 6
16 Annoyance Experienced 3

F.4 Four Earcon Condition

F.4.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Percentage Rides Identified 17.50
2 Average Percentage Rides Identified 38.75
3 Average Percentage Rides Identified 23.75
4 Average Percentage Rides Identified 45.00
5 Average Percentage Rides Identified 18.75
6 Average Percentage Rides Identified 38.75
7 Average Percentage Rides Identified 25.00
8 Average Percentage Rides Identified 41.25
9 Average Percentage Rides Identified 22.50
10 Average Percentage Rides Identified 20.00
11 Average Percentage Rides Identified 23.75
12 Average Percentage Rides Identified 38.75
13 Average Percentage Rides Identified 23.75
14 Average Percentage Rides Identified 45.00
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Number of Earcons versus Identification - Raw Data

Participant Attribute Value
15 Average Percentage Rides Identified 18.75
16 Average Percentage Rides Identified 41.25
1 Average Percentage Ride Types Identified 63.75
2 Average Percentage Ride Types Identified 66.25
3 Average Percentage Ride Types Identified 56.25
4 Average Percentage Ride Types Identified 70.00
5 Average Percentage Ride Types Identified 65.00
6 Average Percentage Ride Types Identified 66.25
7 Average Percentage Ride Types Identified 58.75
8 Average Percentage Ride Types Identified 78.75
9 Average Percentage Ride Types Identified 66.25
10 Average Percentage Ride Types Identified 61.25
11 Average Percentage Ride Types Identified 72.50
12 Average Percentage Ride Types Identified 67.50
13 Average Percentage Ride Types Identified 56.25
14 Average Percentage Ride Types Identified 70.00
15 Average Percentage Ride Types Identified 65.00
16 Average Percentage Ride Types Identified 78.75
1 Average Percentage Ride Intensities Identified55.00
2 Average Percentage Ride Intensities Identified70.00
3 Average Percentage Ride Intensities Identified72.50
4 Average Percentage Ride Intensities Identified75.00
5 Average Percentage Ride Intensities Identified55.00
6 Average Percentage Ride Intensities Identified70.00
7 Average Percentage Ride Intensities Identified75.00
8 Average Percentage Ride Intensities Identified60.00
9 Average Percentage Ride Intensities Identified60.00
10 Average Percentage Ride Intensities Identified61.25
11 Average Percentage Ride Intensities Identified57.50
12 Average Percentage Ride Intensities Identified70.00
13 Average Percentage Ride Intensities Identified72.50
14 Average Percentage Ride Intensities Identified75.00
15 Average Percentage Ride Intensities Identified55.00
16 Average Percentage Ride Intensities Identified60.00
1 Average Percentage Ride Costs Identified 60.00
2 Average Percentage Ride Costs Identified 62.50
3 Average Percentage Ride Costs Identified 53.75
4 Average Percentage Ride Costs Identified 68.75
5 Average Percentage Ride Costs Identified 62.50
6 Average Percentage Ride Costs Identified 62.50
7 Average Percentage Ride Costs Identified 70.00
8 Average Percentage Ride Costs Identified 68.75
9 Average Percentage Ride Costs Identified 57.50
10 Average Percentage Ride Costs Identified 55.00
11 Average Percentage Ride Costs Identified 48.75
12 Average Percentage Ride Costs Identified 73.75
13 Average Percentage Ride Costs Identified 53.75
14 Average Percentage Ride Costs Identified 68.75
15 Average Percentage Ride Costs Identified 62.50
16 Average Percentage Ride Costs Identified 68.75
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Number of Earcons versus Identification - Raw Data

F.4.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 20
2 Mental Demand 16
3 Mental Demand 13
4 Mental Demand 20
5 Mental Demand 3
6 Mental Demand 14
7 Mental Demand 12
8 Mental Demand 15
9 Mental Demand 19
10 Mental Demand 20
11 Mental Demand 15
12 Mental Demand 18
13 Mental Demand 16
14 Mental Demand 14
15 Mental Demand 3
16 Mental Demand 20
1 Physical Demand 1
2 Physical Demand 11
3 Physical Demand 6
4 Physical Demand 4
5 Physical Demand 1
6 Physical Demand 1
7 Physical Demand 4
8 Physical Demand 1
9 Physical Demand 1
10 Physical Demand 4
11 Physical Demand 5
12 Physical Demand 2
13 Physical Demand 11
14 Physical Demand 1
15 Physical Demand 1
16 Physical Demand 1
1 Time Pressure 13
2 Time Pressure 18
3 Time Pressure 13
4 Time Pressure 4
5 Time Pressure 13
6 Time Pressure 19
7 Time Pressure 9
8 Time Pressure 15
9 Time Pressure 15
10 Time Pressure 20
11 Time Pressure 14
12 Time Pressure 18
13 Time Pressure 18
14 Time Pressure 19
15 Time Pressure 13
16 Time Pressure 13
1 Effort Expended 20
2 Effort Expended 15
3 Effort Expended 11
4 Effort Expended 16
5 Effort Expended 17
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Number of Earcons versus Identification - Raw Data

Participant Attribute Value
6 Effort Expended 14
7 Effort Expended 17
8 Effort Expended 15
9 Effort Expended 17
10 Effort Expended 20
11 Effort Expended 13
12 Effort Expended 18
13 Effort Expended 15
14 Effort Expended 14
15 Effort Expended 17
16 Effort Expended 20
1 Performance Level Achieved 7
2 Performance Level Achieved 11
3 Performance Level Achieved 12
4 Performance Level Achieved 13
5 Performance Level Achieved 10
6 Performance Level Achieved 6
7 Performance Level Achieved 7
8 Performance Level Achieved 8
9 Performance Level Achieved 3
10 Performance Level Achieved 1
11 Performance Level Achieved 11
12 Performance Level Achieved 3
13 Performance Level Achieved 11
14 Performance Level Achieved 6
15 Performance Level Achieved 10
16 Performance Level Achieved 7
1 Frustration Experienced 11
2 Frustration Experienced 18
3 Frustration Experienced 11
4 Frustration Experienced 10
5 Frustration Experienced 15
6 Frustration Experienced 18
7 Frustration Experienced 18
8 Frustration Experienced 13
9 Frustration Experienced 3
10 Frustration Experienced 18
11 Frustration Experienced 7
12 Frustration Experienced 18
13 Frustration Experienced 18
14 Frustration Experienced 18
15 Frustration Experienced 15
16 Frustration Experienced 11
1 Annoyance Experienced 15
2 Annoyance Experienced 16
3 Annoyance Experienced 15
4 Annoyance Experienced 17
5 Annoyance Experienced 15
6 Annoyance Experienced 11
7 Annoyance Experienced 15
8 Annoyance Experienced 5
9 Annoyance Experienced 1
10 Annoyance Experienced 18
11 Annoyance Experienced 13
12 Annoyance Experienced 14

191



Number of Earcons versus Identification - Raw Data

Participant Attribute Value
13 Annoyance Experienced 16
14 Annoyance Experienced 11
15 Annoyance Experienced 15
16 Annoyance Experienced 15

192



Appendix G

Engineering More Robust Earcons -
Training Sheets

This appendix contains copies of the training sheets from the experiment described in Chapter6.
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Appendix H

Engineering More Robust Earcons - Raw
Data

This appendix presents the raw results from the experiment described in Chapter6.

H.1 Original Earcon Set Condition
For raw data for the number of earcons and ride attributes identified see sectionF.1.1. For raw results for the modified
NASA TLX workload ratings, see sectionF.1.2.

H.2 Melody Altered Earcon Set Condition

H.2.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Number Rides Identified 0.75
2 Average Number Rides Identified 1.60
3 Average Number Rides Identified 1.35
4 Average Number Rides Identified 1.10
5 Average Number Rides Identified 0.05
6 Average Number Rides Identified 1.10
7 Average Number Rides Identified 1.40
8 Average Number Rides Identified 1.30
9 Average Number Rides Identified 1.45
10 Average Number Rides Identified 0.55
11 Average Number Rides Identified 0.65
12 Average Number Rides Identified 1.65
13 Average Number Rides Identified 1.35
14 Average Number Rides Identified 1.10
15 Average Number Rides Identified 0.90
16 Average Number Rides Identified 1.30
1 Average Number Ride Types Identified 2.30
2 Average Number Ride Types Identified 3.10
3 Average Number Ride Types Identified 2.90
4 Average Number Ride Types Identified 2.35
5 Average Number Ride Types Identified 1.20
6 Average Number Ride Types Identified 2.55
7 Average Number Ride Types Identified 2.70
8 Average Number Ride Types Identified 2.65
9 Average Number Ride Types Identified 2.65
10 Average Number Ride Types Identified 2.60
11 Average Number Ride Types Identified 2.55
12 Average Number Ride Types Identified 2.70
13 Average Number Ride Types Identified 2.90
14 Average Number Ride Types Identified 2.35
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
15 Average Number Ride Types Identified 2.75
16 Average Number Ride Types Identified 2.65
1 Average Number Ride Intensities Identified 1.90
2 Average Number Ride Intensities Identified 2.90
3 Average Number Ride Intensities Identified 2.80
4 Average Number Ride Intensities Identified 2.65
5 Average Number Ride Intensities Identified 1.00
6 Average Number Ride Intensities Identified 2.10
7 Average Number Ride Intensities Identified 2.75
8 Average Number Ride Intensities Identified 2.35
9 Average Number Ride Intensities Identified 2.95
10 Average Number Ride Intensities Identified 2.15
11 Average Number Ride Intensities Identified 2.10
12 Average Number Ride Intensities Identified 2.75
13 Average Number Ride Intensities Identified 2.80
14 Average Number Ride Intensities Identified 2.65
15 Average Number Ride Intensities Identified 2.15
16 Average Number Ride Intensities Identified 2.35
1 Average Number Ride Costs Identified 2.40
2 Average Number Ride Costs Identified 2.60
3 Average Number Ride Costs Identified 2.55
4 Average Number Ride Costs Identified 2.60
5 Average Number Ride Costs Identified 1.00
6 Average Number Ride Costs Identified 2.65
7 Average Number Ride Costs Identified 2.85
8 Average Number Ride Costs Identified 2.75
9 Average Number Ride Costs Identified 2.40
10 Average Number Ride Costs Identified 2.45
11 Average Number Ride Costs Identified 2.40
12 Average Number Ride Costs Identified 2.65
13 Average Number Ride Costs Identified 2.55
14 Average Number Ride Costs Identified 2.60
15 Average Number Ride Costs Identified 2.35
16 Average Number Ride Costs Identified 2.75

H.2.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 20
2 Mental Demand 18
3 Mental Demand 15
4 Mental Demand 20
5 Mental Demand 7
6 Mental Demand 15
7 Mental Demand 10
8 Mental Demand 17
9 Mental Demand 19
10 Mental Demand 20
11 Mental Demand 17
12 Mental Demand 19
13 Mental Demand 17
14 Mental Demand 15
15 Mental Demand 7
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
16 Mental Demand 20
1 Physical Demand 15
2 Physical Demand 17
3 Physical Demand 16
4 Physical Demand 20
5 Physical Demand 20
6 Physical Demand 18
7 Physical Demand 20
8 Physical Demand 15
9 Physical Demand 18
10 Physical Demand 20
11 Physical Demand 17
12 Physical Demand 19
13 Physical Demand 7
14 Physical Demand 15
15 Physical Demand 17
16 Physical Demand 16
1 Time Pressure 13
2 Time Pressure 18
3 Time Pressure 15
4 Time Pressure 4
5 Time Pressure 13
6 Time Pressure 20
7 Time Pressure 8
8 Time Pressure 15
9 Time Pressure 15
10 Time Pressure 16
11 Time Pressure 13
12 Time Pressure 18
13 Time Pressure 13
14 Time Pressure 20
15 Time Pressure 13
16 Time Pressure 13
1 Effort Expended 17
2 Effort Expended 17
3 Effort Expended 15
4 Effort Expended 18
5 Effort Expended 19
6 Effort Expended 15
7 Effort Expended 14
8 Effort Expended 17
9 Effort Expended 17
10 Effort Expended 20
11 Effort Expended 17
12 Effort Expended 18
13 Effort Expended 17
14 Effort Expended 15
15 Effort Expended 19
16 Effort Expended 17
1 Performance Level Achieved 3
2 Performance Level Achieved 8
3 Performance Level Achieved 11
4 Performance Level Achieved 3
5 Performance Level Achieved 9
6 Performance Level Achieved 7
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
7 Performance Level Achieved 7
8 Performance Level Achieved 5
9 Performance Level Achieved 8
10 Performance Level Achieved 1
11 Performance Level Achieved 13
12 Performance Level Achieved 2
13 Performance Level Achieved 13
14 Performance Level Achieved 7
15 Performance Level Achieved 9
16 Performance Level Achieved 3
1 Frustration Experienced 13
2 Frustration Experienced 18
3 Frustration Experienced 11
4 Frustration Experienced 10
5 Frustration Experienced 17
6 Frustration Experienced 18
7 Frustration Experienced 14
8 Frustration Experienced 15
9 Frustration Experienced 3
10 Frustration Experienced 16
11 Frustration Experienced 13
12 Frustration Experienced 18
13 Frustration Experienced 13
14 Frustration Experienced 18
15 Frustration Experienced 17
16 Frustration Experienced 13
1 Annoyance Experienced 13
2 Annoyance Experienced 16
3 Annoyance Experienced 14
4 Annoyance Experienced 7
5 Annoyance Experienced 17
6 Annoyance Experienced 11
7 Annoyance Experienced 13
8 Annoyance Experienced 7
9 Annoyance Experienced 1
10 Annoyance Experienced 10
11 Annoyance Experienced 17
12 Annoyance Experienced 15
13 Annoyance Experienced 17
14 Annoyance Experienced 11
15 Annoyance Experienced 17
16 Annoyance Experienced 13

H.3 Multi-Timbre Earcon Set Condition

H.3.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Number Rides Identified 2.00
2 Average Number Rides Identified 0.60
3 Average Number Rides Identified 1.60
4 Average Number Rides Identified 1.50
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
5 Average Number Rides Identified 2.00
6 Average Number Rides Identified 1.00
7 Average Number Rides Identified 1.60
8 Average Number Rides Identified 1.25
9 Average Number Rides Identified 1.40
10 Average Number Rides Identified 0.80
11 Average Number Rides Identified 2.15
12 Average Number Rides Identified 2.35
13 Average Number Rides Identified 1.00
14 Average Number Rides Identified 1.30
15 Average Number Rides Identified 1.75
16 Average Number Rides Identified 2.00
1 Average Number Ride Types Identified 3.15
2 Average Number Ride Types Identified 2.45
3 Average Number Ride Types Identified 3.10
4 Average Number Ride Types Identified 2.90
5 Average Number Ride Types Identified 3.40
6 Average Number Ride Types Identified 2.60
7 Average Number Ride Types Identified 2.80
8 Average Number Ride Types Identified 2.95
9 Average Number Ride Types Identified 3.55
10 Average Number Ride Types Identified 2.80
11 Average Number Ride Types Identified 3.40
12 Average Number Ride Types Identified 3.10
13 Average Number Ride Types Identified 2.75
14 Average Number Ride Types Identified 2.80
15 Average Number Ride Types Identified 3.35
16 Average Number Ride Types Identified 3.40
1 Average Number Ride Intensities Identified 3.35
2 Average Number Ride Intensities Identified 1.75
3 Average Number Ride Intensities Identified 3.00
4 Average Number Ride Intensities Identified 3.55
5 Average Number Ride Intensities Identified 2.90
6 Average Number Ride Intensities Identified 2.95
7 Average Number Ride Intensities Identified 2.85
8 Average Number Ride Intensities Identified 2.75
9 Average Number Ride Intensities Identified 2.30
10 Average Number Ride Intensities Identified 3.25
11 Average Number Ride Intensities Identified 3.30
12 Average Number Ride Intensities Identified 1.90
13 Average Number Ride Intensities Identified 2.50
14 Average Number Ride Intensities Identified 2.90
15 Average Number Ride Intensities Identified 3.55
16 Average Number Ride Intensities Identified 3.10
1 Average Number Ride Costs Identified 2.65
2 Average Number Ride Costs Identified 2.70
3 Average Number Ride Costs Identified 2.25
4 Average Number Ride Costs Identified 2.35
5 Average Number Ride Costs Identified 2.25
6 Average Number Ride Costs Identified 2.50
7 Average Number Ride Costs Identified 2.70
8 Average Number Ride Costs Identified 2.30
9 Average Number Ride Costs Identified 2.30
10 Average Number Ride Costs Identified 2.25
11 Average Number Ride Costs Identified 2.45
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
12 Average Number Ride Costs Identified 3.20
13 Average Number Ride Costs Identified 2.30
14 Average Number Ride Costs Identified 2.50
15 Average Number Ride Costs Identified 2.50
16 Average Number Ride Costs Identified 2.25

H.3.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 19
2 Mental Demand 17
3 Mental Demand 19
4 Mental Demand 19
5 Mental Demand 18
6 Mental Demand 19
7 Mental Demand 16
8 Mental Demand 13
9 Mental Demand 16
10 Mental Demand 20
11 Mental Demand 19
12 Mental Demand 13
13 Mental Demand 18
14 Mental Demand 19
15 Mental Demand 19
16 Mental Demand 16
1 Physical Demand 1
2 Physical Demand 6
3 Physical Demand 15
4 Physical Demand 1
5 Physical Demand 1
6 Physical Demand 1
7 Physical Demand 3
8 Physical Demand 1
9 Physical Demand 6
10 Physical Demand 2
11 Physical Demand 1
12 Physical Demand 8
13 Physical Demand 3
14 Physical Demand 2
15 Physical Demand 3
16 Physical Demand 1
1 Time Pressure 18
2 Time Pressure 16
3 Time Pressure 17
4 Time Pressure 20
5 Time Pressure 18
6 Time Pressure 17
7 Time Pressure 15
8 Time Pressure 9
9 Time Pressure 6
10 Time Pressure 19
11 Time Pressure 3
12 Time Pressure 20
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
13 Time Pressure 12
14 Time Pressure 19
15 Time Pressure 15
16 Time Pressure 12
1 Effort Expended 16
2 Effort Expended 13
3 Effort Expended 17
4 Effort Expended 17
5 Effort Expended 18
6 Effort Expended 18
7 Effort Expended 15
8 Effort Expended 15
9 Effort Expended 15
10 Effort Expended 20
11 Effort Expended 17
12 Effort Expended 13
13 Effort Expended 15
14 Effort Expended 18
15 Effort Expended 19
16 Effort Expended 17
1 Performance Level Achieved 9
2 Performance Level Achieved 9
3 Performance Level Achieved 5
4 Performance Level Achieved 8
5 Performance Level Achieved 7
6 Performance Level Achieved 10
7 Performance Level Achieved 8
8 Performance Level Achieved 11
9 Performance Level Achieved 11
10 Performance Level Achieved 8
11 Performance Level Achieved 14
12 Performance Level Achieved 8
13 Performance Level Achieved 3
14 Performance Level Achieved 3
15 Performance Level Achieved 12
16 Performance Level Achieved 2
1 Frustration Experienced 13
2 Frustration Experienced 5
3 Frustration Experienced 18
4 Frustration Experienced 18
5 Frustration Experienced 13
6 Frustration Experienced 15
7 Frustration Experienced 7
8 Frustration Experienced 9
9 Frustration Experienced 15
10 Frustration Experienced 10
11 Frustration Experienced 1
12 Frustration Experienced 11
13 Frustration Experienced 17
14 Frustration Experienced 4
15 Frustration Experienced 16
16 Frustration Experienced 14
1 Annoyance Experienced 12
2 Annoyance Experienced 6
3 Annoyance Experienced 18
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
4 Annoyance Experienced 18
5 Annoyance Experienced 6
6 Annoyance Experienced 14
7 Annoyance Experienced 14
8 Annoyance Experienced 3
9 Annoyance Experienced 9
10 Annoyance Experienced 1
11 Annoyance Experienced 1
12 Annoyance Experienced 15
13 Annoyance Experienced 5
14 Annoyance Experienced 11
15 Annoyance Experienced 15
16 Annoyance Experienced 15

H.4 Extended Training Condition

H.4.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Number Rides Identified 1.60
2 Average Number Rides Identified 1.45
3 Average Number Rides Identified 1.75
4 Average Number Rides Identified 1.75
5 Average Number Rides Identified 1.10
6 Average Number Rides Identified 1.40
7 Average Number Rides Identified 1.20
8 Average Number Rides Identified 1.45
9 Average Number Rides Identified 1.50
10 Average Number Rides Identified 1.45
11 Average Number Rides Identified 1.35
12 Average Number Rides Identified 1.60
13 Average Number Rides Identified 1.15
14 Average Number Rides Identified 1.15
15 Average Number Rides Identified 1.40
16 Average Number Rides Identified 1.15
1 Average Number Ride Types Identified 2.95
2 Average Number Ride Types Identified 3.30
3 Average Number Ride Types Identified 3.10
4 Average Number Ride Types Identified 2.90
5 Average Number Ride Types Identified 2.60
6 Average Number Ride Types Identified 2.95
7 Average Number Ride Types Identified 2.90
8 Average Number Ride Types Identified 3.00
9 Average Number Ride Types Identified 3.10
10 Average Number Ride Types Identified 3.00
11 Average Number Ride Types Identified 3.10
12 Average Number Ride Types Identified 3.05
13 Average Number Ride Types Identified 2.55
14 Average Number Ride Types Identified 2.95
15 Average Number Ride Types Identified 2.70
16 Average Number Ride Types Identified 2.80
1 Average Number Ride Intensities Identified 2.55
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
2 Average Number Ride Intensities Identified 2.70
3 Average Number Ride Intensities Identified 2.80
4 Average Number Ride Intensities Identified 2.95
5 Average Number Ride Intensities Identified 2.75
6 Average Number Ride Intensities Identified 3.05
7 Average Number Ride Intensities Identified 2.45
8 Average Number Ride Intensities Identified 2.85
9 Average Number Ride Intensities Identified 2.60
10 Average Number Ride Intensities Identified 3.25
11 Average Number Ride Intensities Identified 2.35
12 Average Number Ride Intensities Identified 2.90
13 Average Number Ride Intensities Identified 2.55
14 Average Number Ride Intensities Identified 2.05
15 Average Number Ride Intensities Identified 2.65
16 Average Number Ride Intensities Identified 2.55
1 Average Number Ride Costs Identified 2.45
2 Average Number Ride Costs Identified 2.10
3 Average Number Ride Costs Identified 2.65
4 Average Number Ride Costs Identified 2.90
5 Average Number Ride Costs Identified 2.40
6 Average Number Ride Costs Identified 2.50
7 Average Number Ride Costs Identified 2.30
8 Average Number Ride Costs Identified 2.45
9 Average Number Ride Costs Identified 2.60
10 Average Number Ride Costs Identified 2.15
11 Average Number Ride Costs Identified 2.45
12 Average Number Ride Costs Identified 2.60
13 Average Number Ride Costs Identified 2.75
14 Average Number Ride Costs Identified 2.85
15 Average Number Ride Costs Identified 2.60
16 Average Number Ride Costs Identified 2.30

H.4.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 18
2 Mental Demand 19
3 Mental Demand 15
4 Mental Demand 18
5 Mental Demand 20
6 Mental Demand 20
7 Mental Demand 18
8 Mental Demand 18
9 Mental Demand 20
10 Mental Demand 18
11 Mental Demand 20
12 Mental Demand 17
13 Mental Demand 17
14 Mental Demand 18
15 Mental Demand 19
16 Mental Demand 20
1 Physical Demand 1
2 Physical Demand 5
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
3 Physical Demand 7
4 Physical Demand 11
5 Physical Demand 1
6 Physical Demand 8
7 Physical Demand 4
8 Physical Demand 1
9 Physical Demand 1
10 Physical Demand 3
11 Physical Demand 2
12 Physical Demand 1
13 Physical Demand 1
14 Physical Demand 8
15 Physical Demand 2
16 Physical Demand 1
1 Time Pressure 18
2 Time Pressure 17
3 Time Pressure 19
4 Time Pressure 5
5 Time Pressure 14
6 Time Pressure 16
7 Time Pressure 19
8 Time Pressure 20
9 Time Pressure 17
10 Time Pressure 13
11 Time Pressure 12
12 Time Pressure 13
13 Time Pressure 13
14 Time Pressure 13
15 Time Pressure 14
16 Time Pressure 6
1 Effort Expended 16
2 Effort Expended 16
3 Effort Expended 13
4 Effort Expended 18
5 Effort Expended 20
6 Effort Expended 16
7 Effort Expended 18
8 Effort Expended 15
9 Effort Expended 11
10 Effort Expended 15
11 Effort Expended 19
12 Effort Expended 15
13 Effort Expended 15
14 Effort Expended 17
15 Effort Expended 14
16 Effort Expended 20
1 Performance Level Achieved 7
2 Performance Level Achieved 9
3 Performance Level Achieved 11
4 Performance Level Achieved 11
5 Performance Level Achieved 4
6 Performance Level Achieved 9
7 Performance Level Achieved 2
8 Performance Level Achieved 5
9 Performance Level Achieved 9
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Engineering More Robust Earcons - Raw Data

Participant Attribute Value
10 Performance Level Achieved 9
11 Performance Level Achieved 8
12 Performance Level Achieved 9
13 Performance Level Achieved 11
14 Performance Level Achieved 6
15 Performance Level Achieved 12
16 Performance Level Achieved 2
1 Frustration Experienced 14
2 Frustration Experienced 13
3 Frustration Experienced 18
4 Frustration Experienced 14
5 Frustration Experienced 11
6 Frustration Experienced 13
7 Frustration Experienced 17
8 Frustration Experienced 16
9 Frustration Experienced 12
10 Frustration Experienced 15
11 Frustration Experienced 7
12 Frustration Experienced 9
13 Frustration Experienced 11
14 Frustration Experienced 8
15 Frustration Experienced 15
16 Frustration Experienced 11
1 Annoyance Experienced 11
2 Annoyance Experienced 12
3 Annoyance Experienced 20
4 Annoyance Experienced 7
5 Annoyance Experienced 1
6 Annoyance Experienced 7
7 Annoyance Experienced 15
8 Annoyance Experienced 5
9 Annoyance Experienced 5
10 Annoyance Experienced 15
11 Annoyance Experienced 6
12 Annoyance Experienced 6
13 Annoyance Experienced 3
14 Annoyance Experienced 8
15 Annoyance Experienced 14
16 Annoyance Experienced 11

H.5 Staggered Onset Condition

H.5.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Number Rides Identified 1.05
2 Average Number Rides Identified 1.85
3 Average Number Rides Identified 2.05
4 Average Number Rides Identified 1.30
5 Average Number Rides Identified 1.15
6 Average Number Rides Identified 1.95
7 Average Number Rides Identified 1.80
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Participant Attribute Value
8 Average Number Rides Identified 1.85
9 Average Number Rides Identified 1.85
10 Average Number Rides Identified 1.60
11 Average Number Rides Identified 1.85
12 Average Number Rides Identified 1.95
13 Average Number Rides Identified 1.65
14 Average Number Rides Identified 1.45
15 Average Number Rides Identified 2.25
16 Average Number Rides Identified 1.70
1 Average Number Ride Types Identified 2.95
2 Average Number Ride Types Identified 3.25
3 Average Number Ride Types Identified 3.25
4 Average Number Ride Types Identified 3.15
5 Average Number Ride Types Identified 2.80
6 Average Number Ride Types Identified 3.65
7 Average Number Ride Types Identified 2.35
8 Average Number Ride Types Identified 3.30
9 Average Number Ride Types Identified 3.20
10 Average Number Ride Types Identified 3.15
11 Average Number Ride Types Identified 2.65
12 Average Number Ride Types Identified 2.65
13 Average Number Ride Types Identified 2.60
14 Average Number Ride Types Identified 2.65
15 Average Number Ride Types Identified 3.25
16 Average Number Ride Types Identified 3.10
1 Average Number Ride Intensities Identified 2.30
2 Average Number Ride Intensities Identified 2.85
3 Average Number Ride Intensities Identified 3.40
4 Average Number Ride Intensities Identified 2.85
5 Average Number Ride Intensities Identified 2.65
6 Average Number Ride Intensities Identified 3.25
7 Average Number Ride Intensities Identified 2.65
8 Average Number Ride Intensities Identified 3.20
9 Average Number Ride Intensities Identified 3.30
10 Average Number Ride Intensities Identified 2.80
11 Average Number Ride Intensities Identified 2.25
12 Average Number Ride Intensities Identified 2.65
13 Average Number Ride Intensities Identified 3.00
14 Average Number Ride Intensities Identified 2.85
15 Average Number Ride Intensities Identified 3.10
16 Average Number Ride Intensities Identified 2.60
1 Average Number Ride Costs Identified 2.55
2 Average Number Ride Costs Identified 2.95
3 Average Number Ride Costs Identified 2.75
4 Average Number Ride Costs Identified 2.20
5 Average Number Ride Costs Identified 2.25
6 Average Number Ride Costs Identified 2.50
7 Average Number Ride Costs Identified 2.35
8 Average Number Ride Costs Identified 2.55
9 Average Number Ride Costs Identified 2.50
10 Average Number Ride Costs Identified 2.70
11 Average Number Ride Costs Identified 2.30
12 Average Number Ride Costs Identified 2.25
13 Average Number Ride Costs Identified 3.00
14 Average Number Ride Costs Identified 2.45
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Participant Attribute Value
15 Average Number Ride Costs Identified 3.20
16 Average Number Ride Costs Identified 2.80

H.5.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 16
2 Mental Demand 12
3 Mental Demand 20
4 Mental Demand 19
5 Mental Demand 16
6 Mental Demand 17
7 Mental Demand 20
8 Mental Demand 17
9 Mental Demand 14
10 Mental Demand 15
11 Mental Demand 14
12 Mental Demand 20
13 Mental Demand 20
14 Mental Demand 17
15 Mental Demand 20
16 Mental Demand 16
1 Physical Demand 12
2 Physical Demand 16
3 Physical Demand 18
4 Physical Demand 2
5 Physical Demand 10
6 Physical Demand 10
7 Physical Demand 10
8 Physical Demand 6
9 Physical Demand 5
10 Physical Demand 10
11 Physical Demand 8
12 Physical Demand 5
13 Physical Demand 20
14 Physical Demand 1
15 Physical Demand 6
16 Physical Demand 4
1 Time Pressure 17
2 Time Pressure 10
3 Time Pressure 19
4 Time Pressure 2
5 Time Pressure 17
6 Time Pressure 6
7 Time Pressure 18
8 Time Pressure 12
9 Time Pressure 15
10 Time Pressure 12
11 Time Pressure 20
12 Time Pressure 20
13 Time Pressure 18
14 Time Pressure 7
15 Time Pressure 19
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Participant Attribute Value
16 Time Pressure 19
1 Effort Expended 17
2 Effort Expended 14
3 Effort Expended 20
4 Effort Expended 19
5 Effort Expended 18
6 Effort Expended 17
7 Effort Expended 18
8 Effort Expended 16
9 Effort Expended 12
10 Effort Expended 13
11 Effort Expended 13
12 Effort Expended 17
13 Effort Expended 18
14 Effort Expended 16
15 Effort Expended 19
16 Effort Expended 17
1 Performance Level Achieved 10
2 Performance Level Achieved 6
3 Performance Level Achieved 9
4 Performance Level Achieved 10
5 Performance Level Achieved 6
6 Performance Level Achieved 10
7 Performance Level Achieved 4
8 Performance Level Achieved 6
9 Performance Level Achieved 10
10 Performance Level Achieved 8
11 Performance Level Achieved 7
12 Performance Level Achieved 4
13 Performance Level Achieved 5
14 Performance Level Achieved 3
15 Performance Level Achieved 8
16 Performance Level Achieved 10
1 Frustration Experienced 8
2 Frustration Experienced 12
3 Frustration Experienced 18
4 Frustration Experienced 11
5 Frustration Experienced 8
6 Frustration Experienced 11
7 Frustration Experienced 18
8 Frustration Experienced 10
9 Frustration Experienced 2
10 Frustration Experienced 8
11 Frustration Experienced 14
12 Frustration Experienced 14
13 Frustration Experienced 5
14 Frustration Experienced 6
15 Frustration Experienced 14
16 Frustration Experienced 13
1 Annoyance Experienced 4
2 Annoyance Experienced 4
3 Annoyance Experienced 17
4 Annoyance Experienced 4
5 Annoyance Experienced 7
6 Annoyance Experienced 9
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Participant Attribute Value
7 Annoyance Experienced 14
8 Annoyance Experienced 4
9 Annoyance Experienced 1
10 Annoyance Experienced 1
11 Annoyance Experienced 8
12 Annoyance Experienced 4
13 Annoyance Experienced 16
14 Annoyance Experienced 10
15 Annoyance Experienced 13
16 Annoyance Experienced 14

H.6 Final Condition

H.6.1 Earcons and Earcon Attributes Identified

Participant Attribute Value
1 Average Number Rides Identified 1.55
2 Average Number Rides Identified 1.65
3 Average Number Rides Identified 1.50
4 Average Number Rides Identified 1.70
5 Average Number Rides Identified 1.60
6 Average Number Rides Identified 1.95
7 Average Number Rides Identified 1.55
8 Average Number Rides Identified 1.50
9 Average Number Rides Identified 1.45
10 Average Number Rides Identified 1.60
11 Average Number Rides Identified 1.40
12 Average Number Rides Identified 2.00
13 Average Number Rides Identified 1.89
14 Average Number Rides Identified 1.70
15 Average Number Rides Identified 1.82
16 Average Number Rides Identified 1.70
1 Average Number Ride Types Identified 3.25
2 Average Number Ride Types Identified 2.70
3 Average Number Ride Types Identified 2.60
4 Average Number Ride Types Identified 3.40
5 Average Number Ride Types Identified 3.15
6 Average Number Ride Types Identified 3.10
7 Average Number Ride Types Identified 3.05
8 Average Number Ride Types Identified 3.00
9 Average Number Ride Types Identified 3.00
10 Average Number Ride Types Identified 3.40
11 Average Number Ride Types Identified 2.85
12 Average Number Ride Types Identified 3.10
13 Average Number Ride Types Identified 3.10
14 Average Number Ride Types Identified 2.85
15 Average Number Ride Types Identified 3.20
16 Average Number Ride Types Identified 3.50
1 Average Number Ride Intensities Identified 2.70
2 Average Number Ride Intensities Identified 2.35
3 Average Number Ride Intensities Identified 2.25
4 Average Number Ride Intensities Identified 2.85
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Participant Attribute Value
5 Average Number Ride Intensities Identified 2.55
6 Average Number Ride Intensities Identified 3.20
7 Average Number Ride Intensities Identified 2.75
8 Average Number Ride Intensities Identified 2.55
9 Average Number Ride Intensities Identified 2.70
10 Average Number Ride Intensities Identified 2.20
11 Average Number Ride Intensities Identified 2.60
12 Average Number Ride Intensities Identified 3.20
13 Average Number Ride Intensities Identified 3.20
14 Average Number Ride Intensities Identified 2.60
15 Average Number Ride Intensities Identified 2.98
16 Average Number Ride Intensities Identified 2.93
1 Average Number Ride Costs Identified 2.25
2 Average Number Ride Costs Identified 2.35
3 Average Number Ride Costs Identified 2.15
4 Average Number Ride Costs Identified 2.60
5 Average Number Ride Costs Identified 2.25
6 Average Number Ride Costs Identified 3.00
7 Average Number Ride Costs Identified 2.65
8 Average Number Ride Costs Identified 1.90
9 Average Number Ride Costs Identified 2.65
10 Average Number Ride Costs Identified 2.00
11 Average Number Ride Costs Identified 2.30
12 Average Number Ride Costs Identified 3.00
13 Average Number Ride Costs Identified 3.00
14 Average Number Ride Costs Identified 2.30
15 Average Number Ride Costs Identified 2.70
16 Average Number Ride Costs Identified 2.48

H.6.2 Modified NASA TLX Workload Ratings

Participant Attribute Value
1 Mental Demand 15
2 Mental Demand 17
3 Mental Demand 16
4 Mental Demand 20
5 Mental Demand 20
6 Mental Demand 18
7 Mental Demand 20
8 Mental Demand 15
9 Mental Demand 18
10 Mental Demand 20
11 Mental Demand 17
12 Mental Demand 19
13 Mental Demand 7
14 Mental Demand 15
15 Mental Demand 17
16 Mental Demand 16
1 Physical Demand 4
2 Physical Demand 12
3 Physical Demand 4
4 Physical Demand 1
5 Physical Demand 4
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Participant Attribute Value
6 Physical Demand 12
7 Physical Demand 1
8 Physical Demand 1
9 Physical Demand 1
10 Physical Demand 4
11 Physical Demand 12
12 Physical Demand 11
13 Physical Demand 8
14 Physical Demand 5
15 Physical Demand 3
16 Physical Demand 9
1 Time Pressure 20
2 Time Pressure 3
3 Time Pressure 13
4 Time Pressure 11
5 Time Pressure 20
6 Time Pressure 20
7 Time Pressure 17
8 Time Pressure 17
9 Time Pressure 18
10 Time Pressure 19
11 Time Pressure 19
12 Time Pressure 5
13 Time Pressure 7
14 Time Pressure 11
15 Time Pressure 15
16 Time Pressure 12
1 Effort Expended 16
2 Effort Expended 16
3 Effort Expended 16
4 Effort Expended 20
5 Effort Expended 15
6 Effort Expended 4
7 Effort Expended 20
8 Effort Expended 19
9 Effort Expended 19
10 Effort Expended 19
11 Effort Expended 19
12 Effort Expended 19
13 Effort Expended 7
14 Effort Expended 15
15 Effort Expended 19
16 Effort Expended 15
1 Performance Level Achieved 4
2 Performance Level Achieved 8
3 Performance Level Achieved 5
4 Performance Level Achieved 12
5 Performance Level Achieved 1
6 Performance Level Achieved 4
7 Performance Level Achieved 9
8 Performance Level Achieved 11
9 Performance Level Achieved 12
10 Performance Level Achieved 6
11 Performance Level Achieved 11
12 Performance Level Achieved 11

215



Engineering More Robust Earcons - Raw Data

Participant Attribute Value
13 Performance Level Achieved 2
14 Performance Level Achieved 5
15 Performance Level Achieved 11
16 Performance Level Achieved 10
1 Frustration Experienced 16
2 Frustration Experienced 17
3 Frustration Experienced 8
4 Frustration Experienced 1
5 Frustration Experienced 20
6 Frustration Experienced 16
7 Frustration Experienced 7
8 Frustration Experienced 19
9 Frustration Experienced 18
10 Frustration Experienced 3
11 Frustration Experienced 11
12 Frustration Experienced 11
13 Frustration Experienced 12
14 Frustration Experienced 13
15 Frustration Experienced 11
16 Frustration Experienced 10
1 Annoyance Experienced 5
2 Annoyance Experienced 17
3 Annoyance Experienced 8
4 Annoyance Experienced 1
5 Annoyance Experienced 20
6 Annoyance Experienced 16
7 Annoyance Experienced 7
8 Annoyance Experienced 19
9 Annoyance Experienced 18
10 Annoyance Experienced 3
11 Annoyance Experienced 11
12 Annoyance Experienced 11
13 Annoyance Experienced 12
14 Annoyance Experienced 11
15 Annoyance Experienced 13
16 Annoyance Experienced 12
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Appendix I

Spatial Experiments - Training Sheets

This appendix contains copies of the training sheets from the experiments described in Chapter7.
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Appendix J

Spatial Experiments - Raw Data

This appendix presents the raw results from the experiments described in Chapter7.

J.1 Spatial versus Non-Spatial Conditions

J.1.1 Earcons and Earcon Attributes Identified

Participant Attribute Non-Spatial Condition Spatial Condition
1 Average Rides Identified 0.55 1.30
2 Average Rides Identified 2.50 2.65
3 Average Rides Identified 1.45 2.25
4 Average Rides Identified 0.85 1.10
5 Average Rides Identified 0.95 0.70
6 Average Rides Identified 0.95 0.70
7 Average Rides Identified 2.50 1.95
8 Average Rides Identified 1.50 2.60
9 Average Rides Identified 1.75 1.75
10 Average Rides Identified 1.40 2.10
11 Average Rides Identified 1.70 1.45
12 Average Rides Identified 0.95 1.95
13 Average Rides Identified 1.50 1.80
14 Average Rides Identified 0.80 1.15
15 Average Rides Identified 1.40 1.80
16 Average Rides Identified 2.00 2.60
1 Average Ride Types Identified 2.95 2.85
2 Average Ride Types Identified 3.65 3.65
3 Average Ride Types Identified 2.40 3.30
4 Average Ride Types Identified 2.60 2.95
5 Average Ride Types Identified 2.95 2.90
6 Average Ride Types Identified 3.15 2.65
7 Average Ride Types Identified 3.65 3.30
8 Average Ride Types Identified 3.05 3.35
9 Average Ride Types Identified 3.35 3.20
10 Average Ride Types Identified 2.95 3.70
11 Average Ride Types Identified 3.30 3.05
12 Average Ride Types Identified 2.85 3.40
13 Average Ride Types Identified 3.55 2.55
14 Average Ride Types Identified 2.40 2.60
15 Average Ride Types Identified 2.95 3.25
16 Average Ride Types Identified 3.15 3.25
1 Average Ride Intensities Identified 1.55 2.45
2 Average Ride Intensities Identified 3.35 3.50
3 Average Ride Intensities Identified 3.50 3.30
4 Average Ride Intensities Identified 2.75 2.40
5 Average Ride Intensities Identified 2.70 2.55
6 Average Ride Intensities Identified 2.50 2.10
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Participant Attribute Non-Spatial Condition Spatial Condition
7 Average Ride Intensities Identified 3.55 3.10
8 Average Ride Intensities Identified 2.50 3.30
9 Average Ride Intensities Identified 3.20 3.25
10 Average Ride Intensities Identified 2.90 3.30
11 Average Ride Intensities Identified 3.00 2.90
12 Average Ride Intensities Identified 2.55 3.70
13 Average Ride Intensities Identified 3.15 3.35
14 Average Ride Intensities Identified 2.40 2.40
15 Average Ride Intensities Identified 3.05 3.25
16 Average Ride Intensities Identified 3.20 3.70
1 Average Ride Costs Identified 2.25 2.55
2 Average Ride Costs Identified 2.80 3.15
3 Average Ride Costs Identified 2.70 2.85
4 Average Ride Costs Identified 2.00 2.50
5 Average Ride Costs Identified 2.10 1.85
6 Average Ride Costs Identified 2.20 2.00
7 Average Ride Costs Identified 2.70 2.55
8 Average Ride Costs Identified 2.40 3.00
9 Average Ride Costs Identified 2.70 2.65
10 Average Ride Costs Identified 2.55 2.80
11 Average Ride Costs Identified 2.20 2.05
12 Average Ride Costs Identified 2.30 2.30
13 Average Ride Costs Identified 2.20 2.75
14 Average Ride Costs Identified 2.50 2.55
15 Average Ride Costs Identified 2.50 2.85
16 Average Ride Costs Identified 2.75 3.10

J.1.2 Modified NASA TLX Workload Ratings

Participant Attribute Non-Spatial Condition Spatial Condition
1 Annoyance Experienced 6 9
2 Annoyance Experienced 16 9
3 Annoyance Experienced 2 2
4 Annoyance Experienced 9 9
5 Annoyance Experienced 3 18
6 Annoyance Experienced 18 19
7 Annoyance Experienced 8 5
8 Annoyance Experienced 6 6
9 Annoyance Experienced 13 15
10 Annoyance Experienced 5 5
11 Annoyance Experienced 11 5
12 Annoyance Experienced 12 8
13 Annoyance Experienced 5 9
14 Annoyance Experienced 2 2
15 Annoyance Experienced 2 2
16 Annoyance Experienced 2 3
1 Effort Expended 15 19
2 Effort Expended 15 13
3 Effort Expended 16 20
4 Effort Expended 14 6
5 Effort Expended 13 18
6 Effort Expended 18 18
7 Effort Expended 10 17
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Participant Attribute Non-Spatial Condition Spatial Condition
8 Effort Expended 16 13
9 Effort Expended 14 15
10 Effort Expended 13 10
11 Effort Expended 18 18
12 Effort Expended 12 14
13 Effort Expended 15 19
14 Effort Expended 10 13
15 Effort Expended 17 18
16 Effort Expended 16 17
1 Frustration Experienced 10 6
2 Frustration Experienced 20 15
3 Frustration Experienced 3 3
4 Frustration Experienced 13 15
5 Frustration Experienced 11 19
6 Frustration Experienced 18 19
7 Frustration Experienced 8 13
8 Frustration Experienced 17 10
9 Frustration Experienced 13 13
10 Frustration Experienced 18 5
11 Frustration Experienced 11 16
12 Frustration Experienced 14 12
13 Frustration Experienced 12 14
14 Frustration Experienced 7 13
15 Frustration Experienced 4 5
16 Frustration Experienced 11 9
1 Mental Demand 15 18
2 Mental Demand 18 19
3 Mental Demand 18 20
4 Mental Demand 16 17
5 Mental Demand 14 18
6 Mental Demand 19 19
7 Mental Demand 14 18
8 Mental Demand 20 12
9 Mental Demand 12 13
10 Mental Demand 17 11
11 Mental Demand 13 18
12 Mental Demand 18 12
13 Mental Demand 17 19
14 Mental Demand 13 16
15 Mental Demand 16 14
16 Mental Demand 19 18
1 Overall Preference 17 10
2 Overall Preference 2 18
3 Overall Preference 17 14
4 Overall Preference 6 8
5 Overall Preference 18 10
6 Overall Preference 10 7
7 Overall Preference 17 13
8 Overall Preference 12 18
9 Overall Preference 14 11
10 Overall Preference 2 17
11 Overall Preference 15 8
12 Overall Preference 4 18
13 Overall Preference 15 10
14 Overall Preference 11 16
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Participant Attribute Non-Spatial Condition Spatial Condition
15 Overall Preference 14 7
16 Overall Preference 8 17
1 Performance Level Achieved 16 14
2 Performance Level Achieved 9 11
3 Performance Level Achieved 17 15
4 Performance Level Achieved 4 6
5 Performance Level Achieved 14 10
6 Performance Level Achieved 2 2
7 Performance Level Achieved 16 11
8 Performance Level Achieved 12 15
9 Performance Level Achieved 9 5
10 Performance Level Achieved 6 15
11 Performance Level Achieved 16 11
12 Performance Level Achieved 12 12
13 Performance Level Achieved 9 4
14 Performance Level Achieved 19 9
15 Performance Level Achieved 10 3
16 Performance Level Achieved 13 16
1 Physical Demand 4 11
2 Physical Demand 2 12
3 Physical Demand 1 12
4 Physical Demand 1 1
5 Physical Demand 1 1
6 Physical Demand 14 16
7 Physical Demand 6 19
8 Physical Demand 2 2
9 Physical Demand 10 9
10 Physical Demand 1 2
11 Physical Demand 13 5
12 Physical Demand 1 1
13 Physical Demand 1 3
14 Physical Demand 11 16
15 Physical Demand 1 2
16 Physical Demand 1 13
1 Time Pressure 10 19
2 Time Pressure 20 16
3 Time Pressure 4 5
4 Time Pressure 18 14
5 Time Pressure 11 20
6 Time Pressure 20 19
7 Time Pressure 9 19
8 Time Pressure 18 15
9 Time Pressure 12 16
10 Time Pressure 13 10
11 Time Pressure 13 18
12 Time Pressure 10 12
13 Time Pressure 14 17
14 Time Pressure 7 10
15 Time Pressure 14 18
16 Time Pressure 15 13
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J.2 Spatial(2) versus Revised Spatial Conditions

J.2.1 Earcons and Earcon Attributes Identified

Participant Attribute Spatial(2) Condition Revised Spatial Condition
1 Average Rides Identified 2.70 2.55
2 Average Rides Identified 2.95 3.05
3 Average Rides Identified 2.45 2.40
4 Average Rides Identified 1.50 1.15
5 Average Rides Identified 2.00 2.70
6 Average Rides Identified 1.75 1.40
7 Average Rides Identified 0.60 0.60
8 Average Rides Identified 2.70 2.60
9 Average Rides Identified 1.45 0.80
10 Average Rides Identified 1.65 1.10
11 Average Rides Identified 2.05 1.85
12 Average Rides Identified 0.85 1.25
13 Average Rides Identified 1.05 1.00
14 Average Rides Identified 1.75 1.30
15 Average Rides Identified 1.65 1.10
16 Average Rides Identified 2.05 1.85
1 Average Ride Types Identified 3.20 3.55
2 Average Ride Types Identified 3.60 3.80
3 Average Ride Types Identified 3.35 3.90
4 Average Ride Types Identified 2.60 2.60
5 Average Ride Types Identified 3.10 3.75
6 Average Ride Types Identified 2.75 3.00
7 Average Ride Types Identified 2.90 2.80
8 Average Ride Types Identified 3.60 3.90
9 Average Ride Types Identified 2.85 2.45
10 Average Ride Types Identified 2.95 3.20
11 Average Ride Types Identified 3.20 3.45
12 Average Ride Types Identified 2.20 2.40
13 Average Ride Types Identified 2.50 2.60
14 Average Ride Types Identified 2.60 3.10
15 Average Ride Types Identified 2.90 2.80
16 Average Ride Types Identified 3.60 3.90
1 Average Ride Intensities Identified 3.55 3.90
2 Average Ride Intensities Identified 3.70 3.70
3 Average Ride Intensities Identified 3.65 3.95
4 Average Ride Intensities Identified 3.30 3.20
5 Average Ride Intensities Identified 3.35 3.50
6 Average Ride Intensities Identified 3.10 3.20
7 Average Ride Intensities Identified 2.10 2.05
8 Average Ride Intensities Identified 3.50 3.85
9 Average Ride Intensities Identified 2.85 2.65
10 Average Ride Intensities Identified 2.95 2.75
11 Average Ride Intensities Identified 3.40 3.45
12 Average Ride Intensities Identified 3.20 3.20
13 Average Ride Intensities Identified 2.70 3.10
14 Average Ride Intensities Identified 3.55 2.95
15 Average Ride Intensities Identified 3.70 3.70
16 Average Ride Intensities Identified 3.65 3.95
1 Average Ride Costs Identified 3.45 2.90
2 Average Ride Costs Identified 3.20 3.30
3 Average Ride Costs Identified 3.10 2.45

233



Spatial Experiments - Raw Data

Participant Attribute Spatial(2) Condition Revised Spatial Condition
4 Average Ride Costs Identified 2.90 2.50
5 Average Ride Costs Identified 2.50 3.25
6 Average Ride Costs Identified 2.55 2.20
7 Average Ride Costs Identified 1.70 1.80
8 Average Ride Costs Identified 3.05 2.65
9 Average Ride Costs Identified 2.20 2.30
10 Average Ride Costs Identified 2.50 1.90
11 Average Ride Costs Identified 2.60 2.40
12 Average Ride Costs Identified 2.15 2.40
13 Average Ride Costs Identified 2.50 2.40
14 Average Ride Costs Identified 3.00 2.40
15 Average Ride Costs Identified 2.50 3.25
16 Average Ride Costs Identified 3.20 3.30

J.2.2 Modified NASA TLX Workload Ratings

Participant Attribute Spatial(2) Condition Revised Spatial Condition
1 Annoyance Experienced 8 10
2 Annoyance Experienced 6 6
3 Annoyance Experienced 1 1
4 Annoyance Experienced 4 1
5 Annoyance Experienced 5 2
6 Annoyance Experienced 17 11
7 Annoyance Experienced 17 15
8 Annoyance Experienced 6 5
9 Annoyance Experienced 9 13
10 Annoyance Experienced 7 4
11 Annoyance Experienced 1 1
12 Annoyance Experienced 10 16
13 Annoyance Experienced 4 4
14 Annoyance Experienced 7 4
15 Annoyance Experienced 9 2
16 Annoyance Experienced 10 5
1 Effort Expended 17 18
2 Effort Expended 20 19
3 Effort Expended 15 15
4 Effort Expended 15 18
5 Effort Expended 18 18
6 Effort Expended 15 11
7 Effort Expended 19 19
8 Effort Expended 13 16
9 Effort Expended 14 14
10 Effort Expended 19 16
11 Effort Expended 16 17
12 Effort Expended 17 18
13 Effort Expended 10 11
14 Effort Expended 17 10
15 Effort Expended 19 11
16 Effort Expended 15 12
1 Frustration Experienced 16 15
2 Frustration Experienced 6 6
3 Frustration Experienced 1 1
4 Frustration Experienced 11 12
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Participant Attribute Spatial(2) Condition Revised Spatial Condition
5 Frustration Experienced 13 3
6 Frustration Experienced 14 10
7 Frustration Experienced 20 19
8 Frustration Experienced 14 5
9 Frustration Experienced 10 17
10 Frustration Experienced 10 4
11 Frustration Experienced 12 16
12 Frustration Experienced 14 15
13 Frustration Experienced 10 11
14 Frustration Experienced 5 7
15 Frustration Experienced 12 8
16 Frustration Experienced 11 9
1 Mental Demand 19 19
2 Mental Demand 18 16
3 Mental Demand 19 19
4 Mental Demand 18 19
5 Mental Demand 10 14
6 Mental Demand 15 10
7 Mental Demand 15 15
8 Mental Demand 19 19
9 Mental Demand 18 19
10 Mental Demand 19 19
11 Mental Demand 16 16
12 Mental Demand 20 19
13 Mental Demand 14 15
14 Mental Demand 19 8
15 Mental Demand 20 15
16 Mental Demand 20 16
1 Overall Preference 2 4
2 Overall Preference 6 17
3 Overall Preference 1 20
4 Overall Preference 10 12
5 Overall Preference 4 17
6 Overall Preference 8 12
7 Overall Preference 13 18
8 Overall Preference 7 15
9 Overall Preference 9 5
10 Overall Preference 9 5
11 Overall Preference 18 3
12 Overall Preference 18 12
13 Overall Preference 12 9
14 Overall Preference 10 13
15 Overall Preference 5 16
16 Overall Preference 7 17
1 Performance Level Achieved 12 13
2 Performance Level Achieved 10 13
3 Performance Level Achieved 9 13
4 Performance Level Achieved 12 14
5 Performance Level Achieved 12 17
6 Performance Level Achieved 11 13
7 Performance Level Achieved 12 12
8 Performance Level Achieved 10 15
9 Performance Level Achieved 8 6
10 Performance Level Achieved 3 8
11 Performance Level Achieved 8 5
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Spatial Experiments - Raw Data

Participant Attribute Spatial(2) Condition Revised Spatial Condition
12 Performance Level Achieved 10 13
13 Performance Level Achieved 6 5
14 Performance Level Achieved 12 14
15 Performance Level Achieved 6 12
16 Performance Level Achieved 9 16
1 Physical Demand 11 7
2 Physical Demand 7 3
3 Physical Demand 2 1
4 Physical Demand 18 10
5 Physical Demand 18 14
6 Physical Demand 10 5
7 Physical Demand 11 11
8 Physical Demand 3 3
9 Physical Demand 9 9
10 Physical Demand 5 8
11 Physical Demand 7 5
12 Physical Demand 1 1
13 Physical Demand 3 3
14 Physical Demand 16 12
15 Physical Demand 5 5
16 Physical Demand 8 7
1 Time Pressure 14 17
2 Time Pressure 13 13
3 Time Pressure 19 10
4 Time Pressure 18 19
5 Time Pressure 19 14
6 Time Pressure 12 12
7 Time Pressure 19 19
8 Time Pressure 16 10
9 Time Pressure 18 18
10 Time Pressure 15 7
11 Time Pressure 13 16
12 Time Pressure 17 11
13 Time Pressure 11 11
14 Time Pressure 20 2
15 Time Pressure 14 10
16 Time Pressure 15 9
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Appendix K

Diary Experiment - Training Sheets

This appendix contains copies of the training sheets from the experiment described in Chapter8.
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Appendix L

Diary Experiment - Raw Data

This appendix presents the raw results from the experiment described in Chapter8.

L.1 Type S & M Question Scores

Participant Condition Type S Question Score Type M Question Score
1 Non-Spatial Condition 4 2.8
2 Non-Spatial Condition 3 3.0
3 Non-Spatial Condition 2 2.3
4 Non-Spatial Condition 3 2.0
5 Non-Spatial Condition 2 4.0
6 Non-Spatial Condition 3 2.1
7 Non-Spatial Condition 5 2.1
8 Non-Spatial Condition 2 3.3
9 Non-Spatial Condition 2 0.8
10 Non-Spatial Condition 1 1.6
11 Non-Spatial Condition 2 3.3
12 Non-Spatial Condition 2 1.8
13 Non-Spatial Condition 0 1.5
14 Non-Spatial Condition 3 2.3
15 Non-Spatial Condition 2 2.1
16 Non-Spatial Condition 1 2.3
1 Spatial Condition 1 1.2
2 Spatial Condition 3 3.0
3 Spatial Condition 1 2.8
4 Spatial Condition 2 1.4
5 Spatial Condition 5 2.8
6 Spatial Condition 1 1.7
7 Spatial Condition 1 2.7
8 Spatial Condition 1 4.3
9 Spatial Condition 1 1.8
10 Spatial Condition 2 3.2
11 Spatial Condition 3 1.7
12 Spatial Condition 3 1.8
13 Spatial Condition 0 2.7
14 Spatial Condition 1 3.8
15 Spatial Condition 5 2.8
16 Spatial Condition 3 1.8
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Diary Experiment - Raw Data

L.2 PPWS Scores

Participant PPWS Non-Spatial Condition PPWS Spatial Condition
1 65.56 74.33
2 70.55 71.88
3 70.14 69.70
4 71.43 65.63
5 67.31 74.47
6 77.34 80.80
7 78.34 75.93
8 47.42 47.33
9 44.81 43.90
10 57.61 59.22
11 57.61 53.54
12 68.05 76.16
13 49.25 50.19
14 64.86 65.53
15 75.36 74.88
16 74.81 82.77

L.3 Modified NASA TLX Workload Ratings

Participant Attribute Non-Spatial Condition Spatial Condition
1 Annoyance Experienced 18 16
2 Annoyance Experienced 9 5
3 Annoyance Experienced 18 17
4 Annoyance Experienced 9 3
5 Annoyance Experienced 11 11
6 Annoyance Experienced 13 8
7 Annoyance Experienced 16 12
8 Annoyance Experienced 18 15
9 Annoyance Experienced 17 20
10 Annoyance Experienced 18 16
11 Annoyance Experienced 19 11
12 Annoyance Experienced 5 4
13 Annoyance Experienced 3 8
14 Annoyance Experienced 8 6
15 Annoyance Experienced 19 11
16 Annoyance Experienced 18 12
1 Effort Expended 19 18
2 Effort Expended 13 11
3 Effort Expended 12 13
4 Effort Expended 1 13
5 Effort Expended 1 15
6 Effort Expended 18 19
7 Effort Expended 19 18
8 Effort Expended 14 13
9 Effort Expended 2 20
10 Effort Expended 19 18
11 Effort Expended 18 14
12 Effort Expended 17 16
13 Effort Expended 10 13
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Diary Experiment - Raw Data

Participant Attribute Non-Spatial Condition Spatial Condition
14 Effort Expended 18 18
15 Effort Expended 17 14
16 Effort Expended 20 16
1 Frustration Experienced 19 15
2 Frustration Experienced 13 7
3 Frustration Experienced 18 17
4 Frustration Experienced 12 4
5 Frustration Experienced 11 11
6 Frustration Experienced 7 12
7 Frustration Experienced 15 15
8 Frustration Experienced 16 14
9 Frustration Experienced 14 20
10 Frustration Experienced 18 16
11 Frustration Experienced 5 14
12 Frustration Experienced 5 8
13 Frustration Experienced 2 5
14 Frustration Experienced 11 12
15 Frustration Experienced 5 13
16 Frustration Experienced 18 15
1 Mental Demand 20 19
2 Mental Demand 17 14
3 Mental Demand 16 16
4 Mental Demand 13 12
5 Mental Demand 17 19
6 Mental Demand 19 15
7 Mental Demand 19 18
8 Mental Demand 16 14
9 Mental Demand 20 20
10 Mental Demand 20 15
11 Mental Demand 19 17
12 Mental Demand 19 17
13 Mental Demand 15 15
14 Mental Demand 19 19
15 Mental Demand 19 16
16 Mental Demand 18 18
1 Overall Preference 4 14
2 Overall Preference 5 16
3 Overall Preference 1 2
4 Overall Preference 5 11
5 Overall Preference 12 14
6 Overall Preference 7 16
7 Overall Preference 10 16
8 Overall Preference 7 12
9 Overall Preference 11 11
10 Overall Preference 5 10
11 Overall Preference 1 17
12 Overall Preference 5 17
13 Overall Preference 14 10
14 Overall Preference 12 8
15 Overall Preference 1 17
16 Overall Preference 5 16
1 Performance Level Achieved 3 7
2 Performance Level Achieved 6 9
3 Performance Level Achieved 2 4
4 Performance Level Achieved 14 16
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Diary Experiment - Raw Data

Participant Attribute Non-Spatial Condition Spatial Condition
5 Performance Level Achieved 12 12
6 Performance Level Achieved 17 9
7 Performance Level Achieved 7 8
8 Performance Level Achieved 8 10
9 Performance Level Achieved 11 6
10 Performance Level Achieved 10 11
11 Performance Level Achieved 2 6
12 Performance Level Achieved 5 5
13 Performance Level Achieved 16 18
14 Performance Level Achieved 6 5
15 Performance Level Achieved 2 6
16 Performance Level Achieved 7 8
1 Physical Demand 13 12
2 Physical Demand 9 6
3 Physical Demand 4 4
4 Physical Demand 12 13
5 Physical Demand 5 4
6 Physical Demand 15 14
7 Physical Demand 6 7
8 Physical Demand 6 6
9 Physical Demand 11 10
10 Physical Demand 6 6
11 Physical Demand 10 10
12 Physical Demand 5 5
13 Physical Demand 16 17
14 Physical Demand 12 14
15 Physical Demand 11 10
16 Physical Demand 7 7
1 Time Pressure 19 15
2 Time Pressure 4 4
3 Time Pressure 3 3
4 Time Pressure 9 9
5 Time Pressure 5 5
6 Time Pressure 16 7
7 Time Pressure 13 14
8 Time Pressure 18 17
9 Time Pressure 1 1
10 Time Pressure 18 17
11 Time Pressure 16 16
12 Time Pressure 15 13
13 Time Pressure 12 12
14 Time Pressure 14 14
15 Time Pressure 16 17
16 Time Pressure 17 14
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Appendix M

Companion CD-ROM

This appendix contains a CD-ROM containing the earcons used in the experiments from Chapters4 to 8.
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