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Abstract 

AMP-activated protein kinase (AMPK) has been proposed to be a therapeutic target for 

patients with type 2 diabetes and the metabolic syndrome. In skeletal muscle AMPK 

stimulates glucose uptake and fatty acid oxidation, whereas in liver it inhibits fatty acid 

and cholesterol synthesis. The Rab GTPase activating proteins Akt substrate of 160 kDa 

(AS160) and tre-2/USP6, BUB2, cdc16 domain family member 1 (TBC1C1) have been 

identified as potential targets of both protein kinase B (PKB, also known as Akt) and 

AMPK which mediate glucose transporter 4 (GLUT4) translocation to the plasma 

membrane in response to insulin and 5-aminoimidazole-4-carboxamide riboside (AICAR) 

respectively in muscle. Previous work in our laboratory has demonstrated that AICAR 

modestly stimulates basal glucose transport, yet inhibits insulin-stimulated glucose 

transport in 3T3-L1 adipocytes, which is in contrast to the effect of AICAR in skeletal 

muscle.  Currently the role of AMPK in adipocytes remains poorly characterised despite 

the importance of fat tissue in energy homeostasis.  

To address this, the molecular mechanism of AMPK activation by known stimuli, the acute 

effect of various AMPK activators on glucose transport, the effect of AMPK inhibition and 

knockdown on AICAR mediated inhibition of insulin-stimulated glucose transport and the 

effect of acute AICAR treatment on PKB substrate phosphorylation in 3T3-L1 adipocytes 

was investigated. In addition the effect of sustained AMPK activation on glucose transport 

and insulin signaling in 3T3-L1 adipocytes, and the effect of sustained AMPK activation 

on insulin signaling in human adipose tissue was also investigated. 

The AMPK activators; sorbitol, metformin, rosiglitazone, arsenite, azide, hydrogen 

peroxide and isoproterenol were all shown to stimulate AMPK activity in the presence of 

the Ca2+/Calmodulin dependent protein kinase kinase (CaMKK) inhibitor STO-609, 

suggesting that these activators activate AMPK via a CaMKK-independent pathway in 

3T3-L1 adipocytes. However, A23187-stimulated AMPK activity was abrogated in the 

presence of STO-609. Isoproterenol, sodium azide and rosiglitazone, were all shown to 

cause an increase in the ADP/ATP ratio in 3T3-L1 adipocytes compared to control as 

assessed by high performance liquid chromatography, suggesting that they stimulate 

AMPK activity in an LKB1-dependent manner. These results suggest a possible role for 

CaMKK as an upstream AMPK kinase in 3T3-L1 adipocytes, in addition to LKB1. There 

may also exist other upstream AMPK kinases in 3T3-L1 adipocytes that are both 

nucleotide and calcium independent since sorbitol, metformin, arsenite, hydrogen peroxide 
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and leptin were found to activate AMPK independently of CaMKK and also showed no 

significant effect on adenine nucleotide ratios. 

Sorbitol, rosiglitazone, AICAR, isoproterenol and A769662 all significantly inhibited 

insulin-stimulated glucose transport. Furthermore, in the presence of the AMPK inhibitor, 

Compound C, the inhibitory effect of AICAR on insulin-stimulated glucose transport was 

no longer apparent. However, AICAR still displayed a tendency to inhibit insulin-

stimulated glucose transport in 3T3-L1 adipocytes infected with adenoviruses expressing a 

dominant negative AMPK mutant. 

The effect of AICAR on basal and insulin-stimulated AS160/TBC1D1 phosphorylation at 

phospho-Akt substrate (PAS) sites, was assessed. AICAR did not alter AS160/TBC1D1 

phosphorylation compared to basal levels, nor perturb insulin-stimulated AS160/TBC1D1 

phosphorylation at PAS sites. In addition, AICAR did not appear to alter the 

phosphorylation of any other proteins at PAS sites.   

Prolonged AMPK activation by AICAR in 3T3-L1 adipocytes also significantly inhibited 

insulin-stimulated glucose transport and was not associated with altered PKB protein 

expression or insulin-stimulated PKB Ser473 phosphorylation. In addition, chronic AMPK 

activation by metformin in adipose tissue of type 2 diabetic subjects was not associated 

with altered expression of three key insulin signalling molecules; PKB, the 

phosphoinositide 3-kinase (PI3K) p85 subunit and insulin receptor substrate 1 (IRS-1).  

Overall these results suggest a prominent role for LKB1 as an AMPK kinase and a 

potential role for CaMKK as an AMPK kinase in adipocytes. This study also suggests that 

both acute and prolonged AMPK activation in adipocytes inhibits insulin-stimulated 

glucose uptake, however the precise mechanism of inhibition has yet to be elucidated. 

 

 

 

 



4 

Table of Contents  
Abstract ..................................................................................................................................2 
List of Tables..........................................................................................................................8 
List of Figures ........................................................................................................................9 
Acknowledgements..............................................................................................................11 
Declaration ...........................................................................................................................12 
Abbreviations .......................................................................................................................13 
Chapter 1 - Introduction.......................................................................................................20 

1.1 Adipose Tissue...........................................................................................................20 
1.1.1 Adipose Tissue Structure ....................................................................................20 
1.1.2 Lipogenesis .........................................................................................................20 
1.1.3 Lipolysis..............................................................................................................22 

1.2 Adipose Tissue Related Disorders .............................................................................23 
1.2.1 Obesity ................................................................................................................23 
1.2.2 Type 2 diabetes ...................................................................................................24 

1.2.2.1 Insulin secretion ...........................................................................................24 
1.2.2.2 Insulin-stimulated glucose transport ............................................................25 
1.2.2.3 Other actions of insulin ................................................................................29 

1.2.3 Lipotoxicity.........................................................................................................30 
1.2.4 Lipodystrophies...................................................................................................31 

1.3 Adipocytokines ..........................................................................................................32 
1.3.1 The adipocyte and adipocytokines......................................................................32 
1.3.2 Leptin ..................................................................................................................33 
1.3.3 TNFα ...................................................................................................................34 
1.3.4 IL-6......................................................................................................................35 
1.3.5 Adiponectin.........................................................................................................35 

1.4 AMPK ........................................................................................................................36 
1.4.1 Reversible phosphorylation.................................................................................36 
1.4.2 Discovery of AMPK ...........................................................................................38 
1.4.3 AMPK overview .................................................................................................38 
1.4.4 AMPK Structure .................................................................................................39 
1.4.5 Naturally Occurring AMPK mutations ...............................................................42 
1.4.6 Regulation of AMPK by AMP and phosphorylation..........................................43 
1.4.7 AMPK Function..................................................................................................45 
1.4.8 Activators of AMPK ...........................................................................................46 
1.4.9 AMPK Targets ....................................................................................................51 
1.4.10 Role of AMPK in glucose homeostasis ............................................................52 
1.4.11 Role of AMPK in lipid metabolism ..................................................................53 
1.4.12 Role of AMPK and adipocyte differentiation ...................................................55 
1.4.13 Role of AMPK and adipokine secretion ...........................................................56 
1.4.14 Role of AMPK in mitochondrial biogenesis.....................................................57 
1.4.15 Role of AMPK in protein synthesis ..................................................................57 

1.5 Aims ...........................................................................................................................59 
Chapter 2 – Materials and methods......................................................................................61 

2.1 Materials.....................................................................................................................61 
2.1.1 List of materials and suppliers ............................................................................61 
2.1.2 List of specialist equipment and suppliers ..........................................................65 
2.1.3 List of antibodies and conditions of use..............................................................66 

2.1.3.1 Primary antibodies for Western blotting......................................................66 
2.1.3.2 Secondary detection agents for Western blotting.........................................70 

2.1.4 Standard solutions ...............................................................................................71 
2.2 Methods......................................................................................................................75 

2.2.1 Cell Culture Procedures ......................................................................................75 
2.2.1.1 Cell culture plastic ware...............................................................................75 



5 

2.2.1.2 Cell culture growth media for 3T3-L1 preadipocytes..................................75 
2.2.1.3 Cell culture growth media for HEK 293 cells..............................................75 
2.2.1.4 Preparation of 3T3-L1 fibroblast differentiation medium ...........................75 
2.2.1.5 3T3-L1 fibroblast differentiation protocol ...................................................76 
2.2.1.6 Passaging of 3T3-L1 fibroblasts ..................................................................76 
2.2.1.7 Passaging of HEK 293cells..........................................................................76 
2.2.1.8 Resurrection of frozen 3T3-L1 cell stocks from liquid nitrogen .................77 
2.2.1.9 Resurrection of frozen HEK 293 cell stocks from liquid nitrogen ..............77 
2.2.1.10 Preparation of 3T3-L1 murine fibroblast cells for freezing .......................77 
2.2.1.11 Preparation of HEK 293 for freezing.........................................................78 

2.2.2 Preparation of 3T3-L1 lysates.............................................................................78 
2.2.3 Protein concentration determination ...................................................................78 
2.2.4 Immunoprecipitation...........................................................................................79 

2.2.4.1 Immunoprecipitation of AMPK α1, AMPK α2 and CaMKK β from 3T3-L1 
adipocytes.................................................................................................................79 
2.2.4.2 Immunoprecipitation of AS160 and TBC1D1 from 3T3-L1 adipocytes.....79 

2.2.5 AMPK Assay ......................................................................................................80 
2.2.6 SDS-Polyacrylamide Gel Electrophoresis ..........................................................80 
2.2.7 Western Blotting of Proteins...............................................................................81 

2.2.7.1 Electrophoretic transfer of proteins from gels onto nitrocellulose 
membranes ...............................................................................................................81 
2.2.7.2 Blocking of membranes and probing with antibodies..................................81 
2.2.7.3 Immunodetection of proteins using western blotting and the ECL detection 
system.......................................................................................................................82 
2.2.7.4 Stripping of nitrocellulose membranes ........................................................82 
2.2.7.5 Densitometric quantification of protein bands.............................................82 

2.2.8 2-deoxy-D-glucose uptake assay ........................................................................82 
2.2.9 Nucleotide extraction and analysis .....................................................................83 

2.2.9.1 Nucleotide extraction ...................................................................................83 
2.2.9.2 Reversed-phase chromatography .................................................................83 
2.2.9.3 Preparation of TEA phosphate buffer ..........................................................84 

2.2.10 Recombinant  adenoviruses ..............................................................................84 
2.2.10.1 AMPK adenoviruses ..................................................................................84 
2.2.10.2 Adenovirus propagation.............................................................................84 
2.2.10.3 Adenovirus purification .............................................................................84 
2.2.10.4 Adenovirus titration ...................................................................................85 
2.2.10.5 3T3-L1 adipocyte adenovirus infection .....................................................85 

2.2.11 Albumin and IgG depletion...............................................................................86 
2.2.12 Statistical Analysis............................................................................................86 

Chapter 3 - Activation parameters and mechanism of AMPK activation by various stimuli 
in 3T3-L1 cells .....................................................................................................................87 

3.1 Introduction ................................................................................................................87 
3.1.1 Known activators of AMPK in adipocytes .........................................................87 
3.1.2 Role for LKB1 as an AMPK kinase in adipocytes.............................................87 
3.1.3 AMPK subunit isoform expression.....................................................................88 
3.1.5 Aims....................................................................................................................88 

3.2 Results ........................................................................................................................90 
3.2.1 Investigating the expression of LKB1, CaMKKα, CaMKKβ, ACC1 and ACC2 
in 3T3-L1 adipocytes ...................................................................................................90 
3.2.2 AMPK subunit isoform expression during adipogenesis....................................93 
3.2.3 Investigating catalytic α-subunit isoform specific AMPK activity during 
adipogenesis ...............................................................................................................102 
3.2.4 Investigating AMPK activation parameters by various stimuli in 3T3-L1 
adipocytes...................................................................................................................104 



6 

3.2.5 Investigation of the molecular mechanism of AMPK activation by various 
stimuli in 3T3-L1 adipocytes .....................................................................................119 

3.2.5.1 Effect of STO-609 on AMPK activity in response to various stimuli .......119 
3.2.5.2 Effect of various stimuli on the AMP/ATP and ADP/ATP ratios .............121 

3.3 Discussion ................................................................................................................130 
Chapter 4 - Role of acute AMPK activation in adipocyte insulin action...........................139 

4.1 Introduction ..............................................................................................................139 
4.1.1 Insulin-stimulated glucose uptake.....................................................................139 
4.1.2 Insulin indepedent glucose uptake ....................................................................139 
4.1.3 The role of AS160 and TBC1D1 in glucose transport......................................140 
4.1.4 Rab proteins ......................................................................................................143 
4.1.5 Aims..................................................................................................................144 

4.2 Results ......................................................................................................................146 
4.2.1 Effect of various AMPK activators on basal and insulin-stimulated glucose 
transport .....................................................................................................................146 
4.2.2 Investigating whether the inhibition of insulin-stimulated glucose transport by 
AICAR is dependent on AMPK activation................................................................146 

4.2.2.1 Effect of Compound C on AICAR mediated inhibition of insulin-stimulated 
glucose uptake........................................................................................................146 
4.2.2.2 Effect of a DN AMPK mutant on AICAR mediated inhibition of insulin-
stimulated glucose transport...................................................................................147 

4.2.3 Investigating the mechanism of AICAR mediated inhibition of insulin-
stimulated glucose uptake in 3T3-L1 adipocytes.......................................................151 

4.2.3.1 Specificity of anti-AS160 and anti-TBC1D1 antibodies ...........................151 
4.2.3.2 Effect of AICAR on basal and insulin-stimulated AS160 phosphorylation at 
PAS sites and association of 14-3-3 proteins.........................................................151 
4.2.3.3 Effect of AICAR on basal and insulin-stimulated TBC1D1 phosphorylation 
at PAS sites. ...........................................................................................................154 
4.2.3.4 Effect of AICAR on PKB substrate phosphorylation ................................154 

4.3 Discussion ................................................................................................................157 
Chapter 5 - Effect of sustained AMPK activation on adipocyte insulin action .................167 

5.1 Introduction ..............................................................................................................167 
5.1.1 Aims..................................................................................................................167 

5.2 Results ......................................................................................................................169 
5.2.1 Effect of sustained AMPK activation on basal and insulin-stimulated glucose 
transport in 3T3-L1 adipocytes. .................................................................................169 

5.2.1.1 Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with AICAR on 
AMPK expression, ACC expression, AMPK Thr12 phosphorylation and ACC 
Ser79 phosphorylation ...........................................................................................169 
5.2.1.2 Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with metformin 
on AMPK expression, ACC expression, AMPK Thr12 phosphorylation and ACC 
Ser79 phosphorylation ...........................................................................................169 
5.2.1.3 Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with AICAR on 
insulin-stimulated glucose transport ......................................................................172 
5.2.1.4 Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with metformin 
on insulin-stimulated glucose transport .................................................................172 
5.2.1.5 Effect of overexpression of a constitutively active AMPK mutant on basal 
and insulin-stimulated glucose transport in 3T3-L1 adipocytes. ...........................172 
5.2.1.6 Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with AICAR on 
PKB expression and insulin-stimulated PKB phosphorylation .............................176 
5.2.1.7 Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with metformin 
on PKB expression and insulin-stimulated PKB phosphorylation ........................176 

5.2.2 Effect of chronic AMPK activation in human adipose tissue...........................179 



7 

5.2.2.1 Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
AMPK activity in human adipose tissue................................................................179 
5.2.2.2 Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
the expression of GAPDH in human adipose tissue ..............................................181 
5.2.2.3 Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
the expression of PI3K in human adipose tissue....................................................181 
5.2.2.4 Depletion of albumin from human adipose tissue samples........................181 
5.2.2.5 Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
the expression of IRS-1 and PKB in human adipose tissue...................................185 
5.2.2.6 Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
FAS expression in human adipose tissue. ..............................................................185 

5.3 Discussion ................................................................................................................189 
Chapter 6 – Final discussion ..............................................................................................195 
List of References ..............................................................................................................202 

 



8 

List of Tables 

Table  1-1: Classification of lipodystrophy syndromes. .......................................................31 
Table  1-2: Bioactive proteins secreted by adipose...............................................................32 
Table  2-1: Primary antibodies used for western blotting.....................................................66 
Table  2-2: Secondary detection agents for western blotting................................................70 
Table  5-1: Clinical and metabolic parameters of test subjects...........................................179 



9 

List of Figures 

Figure  1-1: Cellular compartments of the adipose tissue.....................................................20 
Figure  1-2: Regulation of lipogenesis in adipocytes............................................................22 
Figure  1-3: Hormonal control of adipocyte lipolysis...........................................................23 
Figure  1-4:  The stimulus-secretion coupling pathway of glucose-dependent insulin 
exocytosis.............................................................................................................................25 
Figure  1-5: Insulin receptor signalling.................................................................................28 
Figure  1-6: A model that depicts the transport of GLUT4 in insulin-responsive cells........29 
Figure  1-7: Leptin stimulates decreased feeding and increased energy expenditure...........33 
Figure  1-8: Domain structure of AMPK subunit isoforms and slice variants .....................41 
Figure  1-9: The positions of known mutations that cause cardiac disease are marked on the 
γ2 subunit. ............................................................................................................................42 
Figure  1-10: Role of AMPK in regulating energy balance at the cellular level. .................45 
Figure  1-11: Role of AMPK in regulating energy balance at the whole-body level. ..........46 
Figure  1-12: Model for the stimulatory effect of AMPK on fatty acid oxidation in muscle.
..............................................................................................................................................47 
Figure  1-13: Model for activation of AMPK by A-769662 or AMP...................................50 
Figure  1-14: Targets for AMPK...........................................................................................51 
Figure  1-15: Regulation of protein synthesis and cell growth by AMPK and PKB/Akt by 
the mTOR pathway. .............................................................................................................58 
Figure  3-1: LKB1, CaMKKα, CaMKKβ and LKB1 expression in 3T3-L1 adipocytes......91 
Figure  3-2: ACC1 and ACC2 expression in 3T3-L1 adipocytes.........................................92 
Figure  3-3: AMPK α1 subunit expression during adipogenesis ..........................................95 
Figure  3-4: AMPK α2 subunit expression during adipogensis. ...........................................96 
Figure  3-5: AMPK β1 subunit expression during adipogenesis ..........................................97 
Figure  3-6: AMPK β2 subunit expression during adipogenesis. .........................................98 
Figure  3-7: AMPK γ1 subunit expression during adipogenesis...........................................99 
Figure  3-8: AMPK γ2 subunit expression during adipogenesis.........................................100 
Figure  3-9: AMPK γ3 subunit expression during adipogenesis.........................................101 
Figure  3-10: Contribution of the AMPK α1 and AMPK α2 subunits to total AMPK activity 
throughout adipogenesis.....................................................................................................103 
Figure  3-11: Effect of 0.6 M sorbitol on AMPK activity and Thr172 phosphorylation....105 
Figure  3-12: Effect of 2 mM AICAR on AMPK activity and Thr172 phosphorylation....106 
Figure  3-13: Effect of 100 µM arsenite on AMPK activity and Thr172 phosphorylation.108 
Figure  3-14: Effect of 5 µM A23197 on AMPK activity and phosphorylation.................109 
Figure  3-15: Effect of 100 µM rosiglitazone on AMPK activity and phosphorylation. ....110 
Figure  3-16: Effect of 1 mM metformin on AMPK activity and phosphorylation............111 
Figure  3-17: Effect of 1 µM isoproterenol on AMPK activity in 3T3-L1 adipocytes .......114 
Figure  3-18: Effect of 5 mM sodium azide on AMPK activity and phosphorylation........115 
Figure  3-19: Effect of 1 mM hydrogen peroxide on AMPK activity and phosphorylation.
............................................................................................................................................116 
Figure  3-20: Effect of 0.1 µM leptin on AMPK activity and phosphorylation..................117 
Figure  3-21: Effect of 300 µM A769662 on AMPK activity and phosphorylation...........118 
Figure  3-22: Effect of STO-609 on AMPK activity, stimulated by different AMPK 
activators. ...........................................................................................................................120 
Figure  3-23: Elution times of AMP, ADP and ATP. .........................................................122 
Figure  3-24: Elution time of adenosine..............................................................................123 
Figure  3-25: Elution time of cAMP. ..................................................................................124 
Figure  3-26: Elution time of ZMP. ....................................................................................125 
Figure  3-27: Identification of a ZMP peak in a nucleotide extract from AICAR treated cells 
using HPLC........................................................................................................................126 



10 

Figure  3-28: Identification of an AICAR peak in a nucleotide extract from AICAR treated 
cells using HPLC. ..............................................................................................................127 
Figure  3-29: The effect of various AMPK activators on the ADP/ATP ratio. ..................128 
Figure  3-30: The effect of various AMPK activators on the AMP/ATP ratio...................129 
Figure  3-31: Effects of various stimuli on AMPK activity versus ADP/ATP ratio...........137 
Figure  3-32: Mechanism of acute AMPK activation in 3T3-L1 adipocytes......................138 
Figure  4-1: The Rab GTPase cycle. ...................................................................................144 
Figure  4-2: Effect of various AMPK activators on basal and insulin-stimulated glucose 
transport..............................................................................................................................148 
Figure  4-3: Effect of Compound C on AICAR mediated inhibition of insulin-stimulated 
glucose transport. ...............................................................................................................149 
Figure  4-4: Effect of overexpression of a dominant negative AMPK mutant on AICAR 
mediated inhibition of insulin stimulated glucose transport in 3T3-L1 adipocytes...........150 
Figure  4-5: Specificity of anti-AS160 and anti-TBC1D1 antibodies. ...............................152 
Figure  4-6: Effect of AICAR on basal and insulin-stimulated AS160 phosphorylation at 
PAS sites and association with 14-3-3 proteins. ................................................................153 
Figure  4-7: Effect of AICAR on basal and insulin-stimulated TBC1D1 phosphorylation at 
PAS sites. ...........................................................................................................................155 
Figure  4-8: Effect of AICAR on PKB substrate phosphorylation. ....................................156 
Figure  4-9: Fold increase in AMPK activity versus % inhibition of insulin-stimulated 
glucose transport. ...............................................................................................................160 
Figure  5-1: Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with AICAR on 
AMPK expression, ACC expression, AMPK Thr172 phosphorylation and ACC Ser79 
phosphorylation..................................................................................................................170 
Figure  5-2: Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with metformin on 
AMPK expression, ACC expression, AMPK Thr172 phosphorylation and ACC Ser79 
phosphorylation..................................................................................................................171 
Figure  5-3: Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with AICAR on 
basal and insulin-stimulated glucose transport. .................................................................173 
Figure  5-4: Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with metformin on 
basal and insulin-stimulated glucose transport. .................................................................174 
Figure  5-5: Effect of overexpression of a constitutively active AMPK mutant on basal and 
insulin stimulated glucose transport in 3T3-L1 adipocytes. ..............................................175 
Figure  5-6: Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with AICAR on 
PKB expression and insulin-stimulated PKB phosphorylation. ........................................177 
Figure  5-7: Effect of 24 hr and 48 hr incubation of 3T3-L1 adipocytes with AICAR on 
PKB expression and insulin-stimulated PKB phosphorylation. ........................................178 
Figure  5-8: Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
AMPK activity and expression in human adipose tissue. ..................................................180 
Figure  5-9: Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
GAPDH expression in human adipose tissue.....................................................................182 
Figure  5-10: Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
the expression of the PI3K p85 subunit in adipose tissue..................................................183 
Figure  5-11: Albumin depletion from adipose tissue sample............................................184 
Figure  5-12: Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
the expression of IRS-1 in adipose tissue. .........................................................................186 
Figure  5-13: Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
the expression of PKB in adipose tissue. ...........................................................................187 
Figure  5-14: Effect of prolonged treatment of type 2 diabetic subjects with metformin on 
the expression of FAS in adipose tissue.............................................................................188 
Figure  6-1: Proposed mechanism of acute AMPK activation and subsequent inhibition of 
insulin-stimulated glucose transport in 3T3-L1 adipocytes. ..............................................196 
 

 



11 

Acknowledgements 

I should firstly like to thank my supervisor Dr. Ian Salt for his endless patience, consistent 

reassurance and guidance throughout the last three years, for which I am sincerely grateful. 

To all members of Lab 241 past and present, thank you for your advice throughout and for 

making my time in the lab both memorable and enjoyable. In particular, I would like to 

thank Stephen Miller from the Glasgow Cardiovascular Research Centre for his technical 

assistance with the HPLC machine, and Dr Colin Moran from the Faculty of Biomedical 

Life Sciences for his advice regarding statistical analysis of human adipose biopsies. 

Thanks to Christopher for his emotional support and motivational talks throughout, and for 

tolerating in depth accounts of my laboratory work over the last few years. 

Thanks also to my two sisters, Charlotte and Lucinda, for the many times that they 

volunteered to provide a test audience for presentations. 

Finally and most importantly, I would like to thank my parents Agnes and Eric for their 

love, patience, support and encouragement – this thesis is dedicated to them. 

Funding for this project was provided by the Biotechnology and Biological Sciences 

Research Council. 



12 

Declaration 

I declare that the work presented in this thesis has been carried out by myself, unless 

otherwise stated. It is entirely of my own composition and has not, in whole or in part, 

been submitted for any other degree. 

 

 

Pamela Jane Logan 

September 2009 

 



13 

Abbreviations 

4E-BP1 Elongation factor-4E binding protein 1  

α-MSH α-Melanocyte-stimulating hormone  

ACC                Acetyl-CoA carboxylase 

Ad.α1312 Adenovirus encoding a constitutively active AMPK mutant 

Ad.α1-DN Adenovirus encoding a dominant negative AMPK mutant 

ADP  Adenosine diphosphate 

AgRP  Agouti related peptide  

AICAR 5-aminoimidazole-4-carboxamide riboside 

AMP  Adenosine monophosphate 

AMPK  AMP-activated protein kinase 

AMPKK AMP- activated protein kinase kinase 

APS  Ammonium peroxydisulphate 

ART  Arcuate nucleus 

AS160  Akt substrate of 160 kDa 

ASC  Association with Snf-1 complex  

ATP  Adenosine triphosphate 

BSA  Bovine serum albumin 

C3G   Crk SH3 binding Guanine-nucleotide releasing Factor 



14 

CaMKK Ca2+/Calmodulin dependent protein kinase kinase 

cAMP  Cyclic adenosine monophosphate 

CBS  Cystathionine β-synthase 

C/EBPα CAAT/enhancer-binding protein alpha  

CPT1               Carnitine palmitoyl transferase 1 

CRKII  CT10 sarcoma oncogene cellular homolog II 

DAB  Diaminobenzidin 

DG  Diglyceride 

DMEM Dulbecco’s modified Eagle’s medium 

DMSO  Dimethyl sulphoxide 

DTT                 Dithiothreitol 

DYRK  Dual specificity tyrosine phosphorylation regulated kinase 

ECL                 Enhanced chemiluminescence 

EDTA              Diaminoethanetetra-acetic acid, disodium salt 

eEF2  Eukaryotic elongation factor 2 

EGFR  Epidermal growth factor receptor 

EGTA             Ethylene glycol-bis (β-amino-ethylether)-N,N,N’,N’-tetraacetic acid 

ERK  Extracellular signal-regulated kinase 

FAS  Fatty acid synthase 

FAT  Fatty acid translocase 



15 

FCS                 Foetal calf serum 

G6Pase Glucose-6-phosphatase 

Gab1  GRB2-associated binding protein 1  

GAP                GTPase activating protein 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GBD  Glycogen binding domain 

GDP  Guanosine diphosphate 

GFP  Green fluorescent protein 

GH                  Growth hormone 

GLUT             Glucose transporter 

GMP               Guanosine monophosphate 

GS  Glycogen synthase 

GSK-3  Glycogen synthase kinase-3 

GTP                Guanosine triphosphate 

HA            Haemagglutinin 

HEK            Human embryonic kidney cells 

HEPES           N-2-hydroxyethylpiperazine-N’ 2-ethane sulphonic acid 

HIPK2            Homeodomain-interacting protein kinase 2 

HMGR           3-Hydroxy-3-methylglutaryl-CoA reductase 

HPLC             High performance liquid chromatography 



16 

HRP            Horseradish peroxidase 

HSL            Hormone sensitive lipase 

IBMX  Isobutylxanthine 

IgG  Immunoglobulin gamma 

Il-  Interleukin 

IMP  Inosine monophosphate 

IP  Immunoprecipitation 

IR  Insulin receptor 

IRS-1  Insulin receptor substrate-1 

KIS  Kinase-interacting sequence  

KRH  Krebs-Ringer HEPES 

KRP  Krebs-Ringer phosphate 

Lck  Leukocyte-specific protein tyrosine kinase 

MAP  Mitogen activated protein 

MC4R  Melanocortin 4 receptor  

MEF-2  Myocyte enhancer factor-2 

MELK  Maternal embryonic leucine zipper kinase 

MG  Monoglyeride 

MGL  Monoglyceride lipase 

MLCK  Myosin light chain kinase 



17 

MNK-1 MAP kinase-interacting kinase-1 

NCS                Newborn calf serum 

NEFA  Non-esterified fatty acid 

NHE-1  Na+/H+ exchanger-1 

NPY  Neuropeptide Y  

OCT  Organic cation transporter  

PAS  Phospho Akt/PKB substrate 

PBS  Phosphate buffered saline 

PD  pleckstrin-homology 

PDE3B Phosphodiesterase 3B 

PDK-1            Protein dependent kinase-1 

PEPCK Phosphoenolpyruvate carboxykinase 

PFK-1  Phospho-fructose kinase-1 

PFK-2  Phospho-fructose kinase-2 

PGC1a  Peroxisome-proliferator-activated receptor (PPAR)γ co-activator 1a  

PHK  Phosphorylase kinase 

PI3K  Phosphoinositide 3-kinase 

PKA  Protein kinase A 

PKB  Protein kinase B 

PKC  Protein kinase C 
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PLD  Phospholipase D 

POMC  Proopiomrlanocortin 

PPARγ            Peroxisome proliferator-activated receptor gamma  

PTB  Phospho tyrosine binding 

PtdIns  Phosphatidylinositol 

PtdInsP2 Phosphatidylinositol 4,5 bisphosphate 

PtdInsP3 Phosphatidylinositol 3,4,5-trisphosphate 

PVN  Paraventricular nucleus 

PYK2  Proline-rich tyrosine kinase 2 

RICTOR rapamycin insensitive companion of mTOR 

S6K1  Ribosomal protein S6 kinase 

SBTI  Soybean trypsin inhibitor 

SDS  Sodium dodecyl sulphate 

SDS-PAGE SDS-polyacrylamide gel electrophoresis 

Ser  Serine 

SNARE    Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor       

SNS  Sympathetic nervous system 

SDS  Sodium dodecyl sulphate 

SOCS-3 Suppressor of cytokine signalling-3 

Src  Sarcoma kinase 
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SREBP-1 Sterol regulatory element binding protein-1 

TG  Triglyceride 

TAK-1  Transforming growth factor-beta activated kinase 

TBC1D1          tre-2/USP6, BUB2, cdc16 domain family member 1 

TBS  Tris buffered saline 

TBST  Tris buffered saline + Tween 20 

TC10  GTP-binding protein TC10 

TEA  Triethylamine 

TEMED N, N, N’, N’-tetramethylenediamine 

Thr  Threonine 

TNF  Tumour necrosis factor 

TOR  Target of rapamycin 

Tris  Tris(hydroxymethyl)aminoethane 

TSC  Tuberous sclerosis complex 

Tye  Tyrosine 

TZD  Thiazolidinedione 

UCP-1/2 Un-coupling protein-1/2 

UMP  Uridine monophosphate 

ZMP  5-Aminoimidazole-4-carboxamide riboside monophosphate 
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Chapter 1  - Introduction 

1.1 Adipose Tissue  

1.1.1 Adipose Tissue Structure 

Adipose tissue is constructed of different components including; adipocytes, connective 

tissue matrix, nerve tissue, stromovascular cells and immune cells (Fig. 1.1). 

 

Figure  1-1: Cellular compartments of the adipose tissue.  

 
One role of adipocytes in adipose tissue is to store triglyceride (TG) during periods of 

caloric excess and to mobilize this reserve when energy expenditure exceeds intake. 

Adipocytes regulate the amount of stored fat in adipose tissue through the mechanisms of 

lipogenesis and lipolysis. 

1.1.2 Lipogenesis 

Lipogenesis is stimulated by insulin during the fed state in adipocytes (Fig. 1.2). Insulin 

increases the uptake of glucose (Fig. 1.2) in the adipose cell via recruitment of glucose 

transporters to the plasma membrane (Saltiel and Kahn 2001). In the cytosol glucose enters 

into glycolysis, where it is converted to pyruvate. Pyruvate is then converted to acetyl-CoA 

in the mitochondria by pyruvate dehydrogenase (Patel and Roche 1990). Acetyl-CoA 

produced in the mitochondria is condensed with oxaloacetate to form citrate, which is then 

transported into the cytosol and broken down to yield acetyl-CoA by citrate lyase (Srere 

1959). Acetyl-CoA carboxylase (ACC), a biotin-dependent enzyme, then catalyses the 

carboxylation of acetyl-CoA to malonyl-CoA (Tong 2005). Fatty acids are synthesized 

from acetyl-CoA and malonyl-CoA by fatty acid synthase (FAS) (Wakil et al 1983, Wakil 
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1989), an enzyme system consisting of a multifunctional polypeptide. The first step in the 

synthesis of TG is the synthesis of phosphatidate which is formed by the addition of two 

fatty acids to glycerol-3-phosphate. Fatty acids must first be activated via esterification, by 

fatty acyl CoA synthetase (Watkins 1997), with Coenzyme A before they can be utilized in 

the synthesis of TG. Glycerol phosphate acyltransferase catalyses the acylation of glycerol 

3-phosphate to lysophoshophatidate, and the subsequent acylation of lysophoshophatidate 

to phosphatidate (Coleman and Lee 2004, Gimeno and Cao 2008). Finally in the synthesis 

of TG, phosphatidate is hydrolysed by a phosphatase to generate diglyceride (DG) which is 

acylated to a TG by diglyceride acyltransferase (Coleman and Lee 2004, Gimeno and Cao 

2008).  

In addition to stimulating glucose uptake, insulin also increases the expression of lipogenic 

enzymes (Assimacopoulos-Jeannet et al 1995) (Fig. 1.2). In liver, insulin is thought to 

increase the expression of genes connected with lipogenesis via the transcription factor 

sterol regulatory element binding protein-1 (SREBP-1) (Horton and Shimomura 1999, 

Kersten 2001). However, currently the regulation of gene expression by insulin via 

SREBP-1 has yet to be clearly defined in adipocytes (Kersten 2001). The nuclear hormone 

receptor, peroxisome proliferator-activated receptor gamma (PPARγ), is an important 

transcription factor in adipocytes involved in the differentiation of preadipocytes into 

mature fat cells. Expression of PPARγ, which regulates the expression of various lipid 

metabolism genes in adipocytes including; adipocyte fatty acid binding protein, lipoprotein 

lipase, fatty acid transport protein and acyl-CoA synthetase (Kersten et al 2000, Yoon et al 

2000), has been shown to be increased by both insulin (Vidal-Puig et al 1997) and SREBP-

1 (Fajas et al 1999). This suggests that in adipocytes insulin may regulate the expression of 

lipogenic enzymes primarily via elevated PPARγ expression. 

Growth hormone (GH) is also involved in the regulation of lipogenesis in adipose tissue. 

GH has been shown to reduce lipogenesis by reducing insulin sensitivity, resulting in 

down-regulation of fatty acid synthase expression in adipose tissue (Yin et al 1998).  

Leptin, synthesised by adipocytes, is another hormone which has been shown to regulate 

lipogenesis. Leptin (Fig. 1.2) has been shown to inhibit lipogenesis (Wang and Sul 1997), 

by down-regulating the expression of genes involved in fatty acid and triglyceride 

synthesis, (Soukas et al 2000). Leptin is thought to mediate these changes in gene 

expression by reducing SREBP-1 expression (Soukas et al 2000). 
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Figure  1-2: Regulation of lipogenesis in adipocytes (adapt ed from Kersten 2001). 
PPARγ = peroxisome proliferator-activated receptor gamma, SREBP-1 = sterol regulatory element 

binding protein-1. TG = triglyceride 

1.1.3 Lipolysis 

Lipolysis is a catabolic pathway, where by stored TG is hydrolysed to yield non-esterified 

fatty acids (NEFAs), and glycerol. This process is activated in adipose tissue during fasting 

and is regulated by the hormones noradrenaline and insulin. Binding of noradrenaline to β-

adrenergic receptors (Fig. 1.3), coupled to adenylate cyclase via the stimulatory Gs-protein, 

leads to an increased production of cyclic adenosine monophosphate (cAMP) and 

subsequent activation of protein kinase A (PKA) (Holm et al 2000, Holm et al 2003, 

Collins et al 2004). PKA subsequently phosphorylates target proteins including hormone 

sensitive lipase (HSL) and perilipins. Perilipins are characteristic proteins in mature 

adipocytes, which cover lipid droplets in the adipocyte thereby preventing HSL activity 

(Londos et al 1999). However, phosphorylation of perilipins by PKA abolishes their ability 

to inhibit HSL. PKA phosphorylates HSL at three serine residues, Ser563, Ser659 and 

Ser660 (rat HSL) (Anthonsen et al 1998). Once active, HSL migrates to the lipid droplet 

surface where it cleaves the first fatty acid from TG yielding diglyceride (DG) (Fredrikson 
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et al 1986). Diglyceride lipase then cleaves the second fatty acid from DG to yield 

monglyceride (MG) (Fredrikson et al 1986). Finally monoglyceride lipase (MGL) exerts 

its lipase activity and cleaves MG yielding the final fatty acid and glycerol (Fredrikson et 

al 1986). NEFAs and glycerol are exported to muscle and liver respectively. Insulin 

antagonises lipolysis (Fig. 1.3) by reducing PKA activity via a reduction in cAMP levels, 

mediated via activation of phosphodiesterase 3B (PDE3B) (Shakur et al 2001).  

 

Figure  1-3: Hormonal control of adipocyte lipolysis.   
β-AR = beta adrenergic receptor, AC = adenylate cyclase, PKA =  protein kinase A, HSL = 

hormone sensitive lipase, TG = triglyceride, DG = diglyceride, MG = monoglyceride, MGL = 

monoglyceride lipase, NEFA = non-esterified fatty acid, IR =  insulin receptor, PDE3B = 

phosphodiesterase 3B. 

 
1.2 Adipose Tissue Related Disorders 

1.2.1 Obesity 

Adipose tissue has a fundamental role in regulating energy balance and metabolism, thus a 

normal amount of adipose tissue is necessary for maintaining metabolic homeostasis. 
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Excess or loss of adipose tissue is detrimental to health, and results in obesity and 

lipodystrophy respectively.  

Obesity results from an increase in adipose tissue mass. Currently obesity has reached 

epidemic proportions. The world health organisation projects that by 2015 2.3 billion 

adults will be overweight, and at least 700 million of them will be clinically obese (World 

Health Organisation, 2009). Obesity and overweight increases the risk of chronic diseases 

including; type 2 diabetes, cardiovascular disease, hypertension, stroke, 

hypercholesterolaemia, hypertriglyceridaemia, arthritis, asthma and some cancers (Mokdad 

et al 2003), thereby increasing morbidity and mortality. 

1.2.2 Type 2 diabetes 

1.2.2.1 Insulin secretion  

Insulin, a hormone produced in the pancreas, lowers blood glucose levels by stimulating 

the uptake of glucose into target tissues. Diabetes is a disease in which the body does not 

produce enough insulin, or respond properly to insulin, and is characterized by elevated 

fasting blood glucose levels. Type 1 diabetes is an autoimmune disease that results in the 

destruction of insulin-producing β-cells in the pancreas (Marino and Grey 2008). Type 2 

diabetes is characterized by a fasting hyperglycemia due to the combination of insulin 

resistance in peripheral tissue and an insulin secretory defect of the β-cell. Type 2 diabetes 

is the most common form of diabetes mellitus and is associated with a family history of 

diabetes (American Diabetes Association, 2000), obesity (Sinha et al 2002) and older age 

(Pagano et al 1984). 

After feeding, in the healthy individual, elevated blood glucose levels trigger exocytosis of 

the insulin secretory vesicles and release of insulin into the bloodstream (Fig. 1.4). Glucose 

transporter 2 (GLUT2), facilitates the entry of glucose into the pancreatic β-cells (1). Once 

inside the cell glucose is phosphorylated by glucokinase to glucose 6-phosphate (2), and 

metabolized with a resultant increase in the adenosine triphosphate / adenosine 

diphosphate (ATP/ADP) ratio (3) (Kennedy et al 1999), triggering closure of the ATP-

gated potassium channels (4) in the cellular membrane and depolarization (5) (Cook and 

Hales 1984). Membrane depolarization of the β-cell opens voltage dependent calcium 

channels (VDCC) (6) resulting in an influx of calcium into the β-cell. The increased 
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intracellular calcium concentration (7) subsequently triggers exocytosis of insulin granules 

into the bloodstream (8) (Rorsman et al 2000) (Fig. 1.4). 

 

Figure  1-4:  The stimulus-secretion coupling pathway of gl ucose-dependent insulin 
exocytosis. 
VDCC = voltage dependent calcium channels, GLUT2 = glucose transporter 2, PM = plasma 

membrane. 

1.2.2.2 Insulin-stimulated glucose transport 

In normal insulin signalling (Fig. 1.5), insulin stimulates glucose transport in muscle and 

adipocytes via the regulated translocation of vesicles containing the glucose transporter 

GLUT4 to the plasma membrane. The complete mechanism by which insulin regulates the 

translocation of GLUT4 vesicles to the plasma membrane remains currently incompletely 

defined. However, the mechanism established to date is discussed below. 

The initial step in insulin-stimulated GLUT4 translocation to the plasma membrane 

involves the binding of insulin to its receptor. The insulin receptor (IR) is a transmembrane 

receptor, composed of two α-subunits and two β-subunits linked by disulphide bonds. The 

α-subunits are entirely extracellular and contain insulin binding domains, while the linked 

β-subunits penetrate through the plasma membrane into the cytosol (Lee and Pilch 1994). 
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The binding of insulin to its receptor causes a conformational change in the α-subunits. 

This in turn induces a conformational change in the β-subunits which promotes tyrosine 

autophosphorylation of the β-subunits of the insulin receptor (IR). This occurs through an 

intramolecular trans-autophosphorylation mechanism in which one β-subunit tyrosine 

kinase domain phosphorylates the adjacent β-subunit resulting in the activation of the 

intrinsic substrate kinase activity of the insulin receptor (Ullrich and Schlessinger 1990, 

Czech and Corvera 1999, Ward and Lawrence 2009).  

Substrates of the IR are termed insulin receptor substrate (IRS) proteins. IRS proteins are 

characterized by the presence of an NH2-terminal pleckstrin-homology (PH) domain 

adjacent to a phosphotyrosine binding (PTB) domain, followed by a variable-length 

COOH-terminal tail that contains numerous tyrosine and serine phosphorylation sites (Sun 

and Liu 2009). IRS proteins bind to phosphorylated IR Tyr960 via the PTB domain (White 

1998). In addition, the IRS protein PH domain is also thought to mediate specific 

interactions with the IR kinase (Burks et al 1997). Once bound to the IR, IRS is 

phosphorylated on tyrosine residues by the IR (Ward and Lawrence 2009). At least three 

IRS proteins occur in humans, including IRS-1 and IRS-2, which are widely expressed, 

and IRS-4, which is limited to the thymus, brain, and kidney and possibly β-cells (Bernal 

et al 1998, Uchida et al 2000). Both IRS-1 and IRS-2 have key roles in insulin-stimulated 

glucose uptake in fat and muscle, and the independent genetic ablation of either isoform 

leads to peripheral insulin resistance (White 2002). Mechanistically the insulin-dependent 

tyrosine phosphorylation of IRS proteins generates docking sites for the Src homology 2 

(SH2)-domain-containing downstream effector phosphatidylinositol 3’-kinase (PI3K) 

(Whitehead et al 2000). 

PI3Ks are a family of related intracellular signal transduction enzymes which 

phosphorylate the 3 position hydroxyl group of the inositol ring of phosphatidylinositol 

(PtdIns). The PI3K family is divided into three different classes based on their sequence 

homology. Class I PI3Ks are further divided between IA and IB subsets based on their 

structure and mechanism of activation (Vanhaesebroeck et al 1997). Class-1A PI3Ks are 

heterodimers composed of a regulatory p85 subunit and a catalytic p110 subunit. The p85 

subunit contains SH2 domains that bind phosphotyrosine residues in IRS proteins, which 

allosterically regulates the activity of the p110 catalytic subunit (Vanhaesebroeck et al 

1997, Shepherd 2005). Class-1A PI3Ks preferentially phosphorylate phosphatidylinositol 

4,5-bisphosphate (PtdInsP2) to form phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) at 

the plasma membrane (Vanhaesebroeck et al 1997). Accumulation of this lipid leads to the 
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PH-domain-dependent recruitment of 3-phosphoinositide-dependent protein kinase-1 

(PDK1) and protein kinase B (PKB), two PH-domain-containing enzymes involved in 

GLUT4 translocation to the plasma membrane  (Brazil et al 2004, Currie et al 1999, 

(Calleja et al 2009). 

PKB (also known as Akt) is a serine/threonine kinase, which in mammals comprises three 

highly homologous members known as PKBα, PKBβ, and PKBγ (Scheid and Woodgett 

2003). Activation of PKB requires phosphorylation at two sites. PDK1 phosphorylates 

PKB at Thr308, a residue located in its kinase-domain activation loop (Alessi et al 1997). 

In addition, Ser473 in the C-terminal hydrophobic motif of PKB is also phosphorylated, 

however the identity of the kinase responsible has been controversial, with several 

enzymes having been proposed as candidates to mediate this phosphorylation event 

(Bayascas et al 2005). However, studies by Hresko and co-workers, and Sarbassov and co-

workers have provided evidence that an enzyme complex consisting of mTOR 

(mammalian target of rapamycin) and RICTOR (rapamycin insensitive companion of 

mTOR) mediates the phosphorylation of PKB at Ser473 (Hresko and Mueckler 2005, 

Sarbassov et al 2005). Various studies have strongly linked PKBβ to GLUT4 translocation. 

In 3T3-L1 adipocytes depletion of PKBβ by RNAi was reported to inhibit insulin 

responsiveness in 3T3L1 adipocytes (Jiang et al 2003). In addition knockout of PKBβ in 

mice has been reported to result in impaired glucose uptake in skeletal muscle and hepatic 

insulin resistance (Cho et al 2001). Furthermore, a mutation in PKBβ was recently 

identified in a human family with severe insulin resistance and diabetes (George et al 

2004). 

At the start of this project a Rab GTPase activating protein (GAP), termed Akt substrate of 

160 kDa (AS160), had been identified as a downstream target of PKB (Sano et al 2003). 

More recently another Rab GAP, tre-2/USP6, BUB2, cdc16 domain family member 1 

(TBC1D1), was also identified as a downstream target of PKB (Roach et al 2007). It is 

thought that PKB phosphorylation inhibits Rab-GAP activity, leading to a higher 

proportion of Rabs in the guanosine triphosphate (GTP)-bound state (Sakamoto K, Holman 

GD 2008), which via a currently poorly characterised mechanism, involving SNARE 

(soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins, promotes 

exocytosis of GLUT4 vesicles to the plasma membrane (Bryant et al 2002). 
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Figure  1-5: Insulin receptor signalling. 
IRS = insulin receptor substrate,  PIP2  = phosphatidylinositol 4,5 bisphosphate,  PIP3  =  

phosphatidylinositol 3,4,5-trisphosphate,  PKB = protein kinase B,  PDK1 = protein dependent 

kinase 1, AS160 = Akt substrate of 160 kDa . 

In addition, a parallel insulin-signalling pathway has been reported to contribute to GLUT4 

translocation. Insulin-stimulated phosphorylation of Cbl activates the small GTP-binding 

protein TC10, which functions to stimulate trafficking of GLUT4 vesicles due to actin 

rearrangement (Saltiel and Pessin 2002).   

Current models have proposed that GLUT4 populates two inter-related endosomal cycles 

(the fast cycle 1 and the slow cycle 2) involving the trans-golgi network and a population 

of vesicles called GLUT4-storage vesicles (Fig. 1.6). In the absence of insulin, GLUT4 is 

thought to be sequestered away from the cell surface into the fast cycling endosomal 

system (cycle 1). Once there, unique sequences within GLUT4 direct it into a slowly 

recycling pathway (cycle 2). The selective routing of GLUT4 into this slowly recycling 

pathway results in the effective sequestration of GLUT4 away from the cell surface, in a 

population of vesicles available for rapid mobilisation upon insulin binding (Bryant et al 

2002). 
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Figure  1-6: A model that depicts the transport of GLUT4 in  insulin-responsive cells (adapted 
Bryant et al 2002) 
 

1.2.2.3 Other actions of insulin 

Insulin stimulates glycogen synthesis in muscle by inhibiting glycogen synthase kinase-3 

(GSK-3), and increasing the activity of glycogen synthase (GS) (Cross et al 1995, 

Borthwick et al 1995). Gluconeogenesis in the liver is inhibited by insulin via suppression 

of the genes for the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase 

(PEPCK) and glucose-6-phosphatase (G6Pase) (Agati et al 1998, Dickens et al 1998). As 

previously described, insulin also inhibits lipolysis by reducing cyclic AMP levels via PKB 

mediated activation of PDE3B (Shaker et al 2001).  
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1.2.3 Lipotoxicity 

Lipotoxicity is characterised by the build up of fatty acids in tissues other than adipose. 

Circulating NEFA concentrations are higher in obese individuals than in lean people 

(Campbell et al 1994) and are proposed to cause insulin resistance through inhibition of the 

insulin signalling transduction system (Shulman 2000).  

For example, it has been shown that the decrease in insulin-induced IRS-1 tyrosine 

phosphorylation mediated by NEFAs is linked to an increase in the activity of protein 

kinase C (PKC) theta in rat skeletal muscle (Griffin et al 1999). Active PKC results in 

phosphorylation of IRS-1 at Ser 307 which inhibits the interaction of IRS-1 with the 

insulin receptor (Aguirre et al 2000, Aguirre et al 2002). In addition, it has also been 

shown that elevated concentrations of NEFAs inhibit insulin stimulation of PKB in muscle 

cells (Chavez et al 2003). It has been proposed that ceramides produced from the 

metabolism of NEFAs could activate protein phosphatase 2A, which dephosphorylates and 

inactivates PKB, thus inducing insulin resistance in target tissues (Chavez et al 2003). 

Thus impaired insulin action, induced by elevated NEFAs, results in an increase in hepatic 

gluconeogenesis, an increase in lipolysis and reduction of glucose uptake in adipose tissue, 

and a reduction in glucose uptake and glycogen synthesis in muscle. 

Elevated plasma NEFAs after a meal are transported into the β-cell via fatty acid binding 

protein 2. In the cytosol the NEFAs are converted to their acyl-CoA derivatives which 

have been shown to stimulate insulin secretion (Newgard and McGarry 1995, Prentki and 

Corkey 1996). Carnitine palmitoyl transferase 1 (CPT1) is associated with the 

mitochondria outer membrane and mediates the transport of long chain fatty acids across 

the membrane where they are subsequently oxidized. An increase in glucose levels after 

feeding leads to an increase in malonyl-CoA concentration within the β-cell. Malonyl-CoA 

inhibits CPT1, thus increasing cystolic fatty acyl-CoAs (Prentki and Corkey 1996). Thus it 

has been proposed (Prentki and Corkey 1996) that NEFAs work in tandem with glucose to 

stimulate insulin secretion. However, long term elevated NEFA levels have a detrimental 

effect on insulin secretion by the pancreatic β-cells. Chronic exposure to elevated NEFAs 

in human β-cells in vitro (Zhou and Grill 1995) and in vivo (Kashyap et al 2002) resulted 

in β-cell dysfunction characterized by enhanced insulin secretion at low glucose 

concentration, depletion of insulin stores and an impaired response of the β-cell to 

stimulatory concentrations of glucose. It has been demonstrated that apoptosis is increased 

in islets of obese Zucker diabetic fatty rats that are progressing through the pre-diabetic 
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and diabetic stages of their disease. The β-cell apoptosis is thought to be induced by 

NEFAs via de novo ceramide formation and increased nitric oxide (NO) production 

(Shimabukuro et al 1998). In addition, incubation of human β-cells with elevated levels of 

NEFAs also resulted in β-cell apoptosis (Lupi et al 2002), thought to be the result of 

caspase activation, partially dependent on the ceramide pathway and possibly Bcl-2 

regulation.  

1.2.4 Lipodystrophies 

Lipodystrophies are characterized by selective loss of body fat. They are classified 

according to their origin, either genetic or acquired, and on the extent of fat loss, either 

generalized or partial (Table 1.1). Interestingly, lipodystrophies pre-dispose to similar 

metabolic complications associated with obese patients including insulin resistance, type 2 

diabetes, hepatic steatosis (fatty liver) and dyslipidemia. 

 

Table  1-1: Classification of lipodystrophy syndromes (Gar g et al 2006). 
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1.3 Adipocytokines 

1.3.1 The adipocyte and adipocytokines 

Historically the adipocyte was considered a passive tissue for the storage of excess energy 

in the form of fat. However, it has become apparent that adipocytes secrete a number of 

bioactive proteins called adipocytokines thus establishing adipose tissue as an endocrine 

organ (Table 1.2). 

Protein Reference 

Leptin [Campfield et al 1995] 

Adiponectin [Scherer et al 1995; Hu et al 1996; Maeda et al 1996] 

IL-6 [Mohaamed-Ali et al 1997] 

TNF-α [Kern et al 1995] 

resistin [Steppan et al 2001] 

Plasminogen activator-inhibitor [Wiman et al 1984] 

Adipsin [Cook et al 1985] 

Acylation-stimulating protein [Maslowska et al 1997] 

IL-8 [Bruun et al 2001] 

Agouti protein [Manne et al 1995] 

Transforming growth factor-β [Samad et al 1996, Jones et al 1997] 

Adipophilin [Heid et al 1998] 

Apelin [Castan-Laurell et al 2005] 

Omentin [Schaffler et al 2005] 

Visfatin   [Fukuhara et al 2005] 

Chemerin [Bozaogula et al 2007] 

Table  1-2: Bioactive proteins secreted by adipose.   
 

Leptin, tumour necrosis factor alpha (TNFα), interleukin (IL)-6 and adiponectin are some 

of the best characterized adipocytokines and are discussed below. They appear to play an 

important role in insulin resistance. In obesity the secretion levels of these adipocytokines 

are altered. Thus, there is intense interest in the role of adipocytokines in the pathogenesis 

of obesity related disorders such as type 2 diabetes. 
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1.3.2 Leptin 

Leptin is predominantly expressed in adipose tissue (Green et al 1995). It is the protein 

product of the ob (obese) gene and was discovered in 1994 after positional cloning of the 

monogenic mutant responsible for the morbidly obese phenotype observed in the obese 

(ob/ob) mouse (Zhang et al 1994).   

Leptin serves to inform the hypothalamus of the quantity of stored fat. In adults leptin 

crosses the blood brain barrier via a saturable transport system. In the arcuate nucleus 

(ARH) leptin stimulates the proconvertase 1-dependent cleavage of proopiomrlanocortin 

(POMC) neurons, to produce the anorexigenic peptide α-melanocyte-stimulating hormone 

(α-MSH) (Rouille et al 1995) which is an agonist of the melanocortin 4 receptor (MC4R). 

Also, in the ARH, leptin inhibits neurons which co-express the orexigenic peptides, 

neuropeptide Y (NPY) and agouti related peptide (AgRP), which is an antagonist of MC4R 

(Zigman and Elmquist 2003). This consequently results in the activation of the MC4R in 

the paraventricular nucleus (PVN) consequently resulting in a decrease in feeding and an 

increase in energy expenditure (Fig. 1.7). Thus, conversely a decrease in leptin levels 

results in a decrease in energy expenditure and an increase in food intake (Adan et al 1994) 

(Hwa et al 2001).  

 

Figure  1-7: Leptin stimulates decreased feeding and increa sed energy expenditure.   
POMC = proopiomrlanocortin, α-MSH = α-melanocyte-stimulating hormone, MC4R = melanocortin 

4 receptor, NPYR = neuropeptide Y receptor, AgRP = agouti related peptide, MC4R = melanocortin 

4 receptor, PVN = paraventricular. 
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Spontaneous mutations in leptin or in the leptin receptor result in obesity in mice and in 

humans (Chen et al 1996, Zhang et al 1994, Montague et al 1997, Clement et al 1998). 

Leptin deficient mice and humans were shown to be successfully treated with leptin (La 

Campfield et al 1995, Farooqi et al 1999). This finding fuelled excitement that leptin could 

be used to treat obese patients. Unfortunately the level of leptin secreted from adipocytes is 

proportional to body fat stores (Maffei et al 1995), with greater secretion occurring from 

subcutaneous adipose tissue compared with visceral adipose tissue (Fain et al 2004, 

Wajchenberg 2000). Thus, obese individuals have high levels of circulating leptin in their 

blood stream due to increased amounts of leptin-secreting adipose tissue (Considine et al 

1996). In fact most obese patients appear to be leptin resistant as treatment with exogenous 

leptin does not ameliorate their obesity (Bjorbaek and Kahn 2004, Flier 2004). Leptin 

resistance is thought to be due to saturable transport across the blood-brain barriers or due 

to abnormalities of the leptin receptor activation and / or signal transduction (El-Haschimi 

et al 2000). 

In addition to regulating appetite and bodyweight leptin has also been shown to be 

involved in other processes. Leptin appears to play a role in immune responsiveness by 

modulating the T-cell immune response (Gainsford et al 1996, Lord et al 1998), inhibit 

bone formation (Ducy et al 2000) and correct sterility in leptin deficient mice (Chehab et 

al 1996, Chehab et al 1997, Ahima et al 1997). 

1.3.3 TNFα 

TNFα is an inflammatory cytokine which can stimulate the production of other cytokines 

e.g IL-1 and IL-6 (Warne et al 2003, Wajant et al 2003). TNFα is produced by many 

different tissues including adipose (Kern et al 1995, Wajant et al 2003).  

Adipose tissue TNFα expression is increased in obese rodents and humans and positively 

correlates with adiposity and insulin resistance (Ruan and Lodish 2003, Hotamisligil 2003, 

Fernandez-Real and Ricart 2003). Targeted knock out of the TNFα gene in obese mice 

resulted in improved insulin sensitivity (Uysal et al 1997). In addition, in rat models of 

obesity and insulin resistance, neutralizing TNFα with injections of a soluble TNF-

receptor-immunoglobulin gamma (IgG) fusion protein, resulted in increased insulin 

sensitivity (Hotamisligil et al 1993). However the effects of neutralizing TNFα using an 

engineered human anti-TNFα antibody appeared to have no significant effects on insulin 

sensitivity in patients with type 2 diabetes (Ofei et al 1996).  
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1.3.4 IL-6 

IL-6 is another cytokine which positively correlates with body mass index (Vgontzas et al 

1997). As much as a third of total circulating concentrations of IL-6 is thought to originate 

from adipose tissue (Mohamed-Ali et al 1997, Xing et al 1997).  

Elevated levels of IL-6 are associated with obesity and insulin resistance (Fernandez-Real 

and Ricart 2003). TNFα whose expression is elevated in obesity has been shown to 

increase IL-6 production in 3T3-L1 adipocytes (Grunfeld and Feingold 1991). Peripheral 

administration of IL-6 was shown to induce hyperlipidemia, hyperglycemia and insulin 

resistance in rodents and humans (Fernandez-Real and Ricart 2003). In rats peripheral 

administration of IL-6 induced hypertriglyceridemia by stimulating hepatic triglyceride 

secretion (Nonogaki et al 1995), and in humans an IL-6 infusion resulted in an increase in 

NEFA concentration (Stouthard et al 1995). In addition IL-6 has been shown to inhibit 

insulin signalling by inducing suppressor of cytokine signalling-3 (SOCS-3), a negative 

regulator of insulin signalling (Senn et al 2003).  

1.3.5 Adiponectin 

Adiponectin is expressed exclusively in adipocytes (Weyer et al 2001). Adiponectin exists 

in plasma as trimeric, hexameric and higher order polymeric structures (Pajvani et al 

2003). Adiponectin is the only adipocytokine whose secretion is decreased in the obese 

state. Further more, adiponectin has been shown to be able to inhibit the secretion of 

inflammatory cytokines including IL-6 and IL-8 by human adipocytes (Sell et al 2006). 

Reduced adiponectin levels are documented in obese, insulin resistant and type 2 diabetes 

patients (Hotta et al 2000). Analysis of a Pima Indian population showed that the 

development of type 2 diabetes was associated with lower plasma adiponectin levels prior 

to diagnosis of type 2 diabetes (Lindsay et al 2002). Overexpression of adiponectin in mice 

resulted in improved insulin sensitivity, glucose tolerance and serum NEFAs (Combs et al 

2004). Conversely adiponectin deficient mice exhibit insulin resistance, glucose 

intolerance and increased serum NEFAs (Kubota et al 2002, Maeda et al 2002).  
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1.4 AMPK 

1.4.1 Reversible phosphorylation 

In 1992 Krebs and Fischer were awarded a Nobel Prize for ‘their discoveries concerning 

reversible protein phosphorylation as a biological regulatory mechanism’ (Kresge et al 

2005). Reversible protein phosphorylation regulates many cellular signal transduction 

pathways, which underlie many biological processes, including metabolism, growth, 

differentiation, membrane trafficking, muscle contraction, immunity, and memory 

(Manning et al 2002). Reversible phosphorylation involves the phosphorylation of a target 

protein by a protein kinase and subsequent dephosphorylation of that protein by a protein 

phosphatase. 

Protein kinases are one of the largest families of genes in eukaryotes. The human genome 

contains about 500 protein kinase genes, which accounts for approximately 2% of all 

human genes (Manning et al 2002). 

Approximately 30% of human proteins can be modified by kinases (Hubbard and Cohen, 

1993). Protein kinases phosphorylate target substrate proteins by catalyzing the transfer of 

the γ phosphate from ATP to a target amino acid residue. In eukaryotes, phosphorylation 

usually occurs on serine (Ser), threonine (Thr) and tyrosine (Tyr) residues. 

Phosphorylation of these residues is mediated by Ser/Thr-specific kinases such as PKA, 

PKB and PKC (Filippa et al 1999, Newton et al 1995), Tyr-specific kinases such as 

epidermal growth factor receptor (EGFR) and IR (Carpenter et al 2000) and dual 

specificity kinases such as mitogen activated protein (MAP) kinase kinases (MAPKK) 

(Dhanasekaran and Reddy 1998) which phosphorylate Ser/Thr and Tyr. Interestingly, of 

the ~500 protein kinases encoded by the human genome, the majority, ~400, encode 

Ser/Thr kinases, while only ~90 encode Tyr kinases and ~40 encode dual-specificity 

protein kinases (Manning et al 2002). 

Phosphorylation on other amino acid residues such as histidine, arginine and lysine occurs 

mostly in prokaryotic proteins (Cozzon 1988, Stock et al 1989). 

Eukaryotic protein kinases are structurally similar (Hanks et al 1988). The catalytic 

domain contains an N-terminal lobe of β-sheets and a larger C-terminal lobe of α-helices 

(Knighton et al 1991, Lowe et al 1997). This lobe structure forms an ATP-binding cleft 
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that constitutes the active site. ATP binds in a clef between the two lobes. It is orientated 

with adenosine sitting in a hydrophobic pocket and the hydrophilic phosphate chain 

pointing outwards away from the hydrophobic pocket. The substrate binds along the cleft 

and conserved residues within the kinase catalytic domain catalyse the removal of the γ 

phosphate from ATP and the covalent attachment of it to a free hydroxyl group on either 

Ser/Thr or Tyr residues. Despite the fact that kinases share a common fold, they can still 

selectively phosphorylate their target substrates. Specificity can be determined by the 

structure of the catalytic cleft of the kinase, local interactions between the cleft and the 

substrate phosphorylation site, and distal binding between the kinase and the substrate 

(Ubersax and Ferrell 2007).  

Phosphorylation of a protein can alter the protein activity, subcellular location, half-life 

and the association of that particular protein with other proteins. Thus, multisite 

phosphorylation of a protein can allow several of these effects to operate in the same 

protein (Cohen 2000). 

It is well established that protein kinases are themselves phosphorylated. Thus giving rise 

to protein kinase cascades, such as the AMPK signalling cascade (Hardie 2004a) and the 

MAPK signalling cascades (Seger and Krebs 1995), which are formed when two or more 

proteins act in series.  

Interestingly, the human genome encodes ~200 protein phosphatases, comprising of ~40 

Ser/Thr, ~100 Tyr and ~50 dual specificity (Alonso et al 2004, Arena et al 2005, 

Moorhead et al 2007). Thus is comparison to the number of protein kinases (~500) there 

are substantially less protein phosphatases. 

It has become apparent that each Ser/Thr phosphatase must regulate many more substrates 

than each Ser/Thr kinase since there are only ~40 Ser/Thr kinases compared to ~400 

Ser/Thr kinases. Specificity of Ser/Thr phosphatases is thought to occur through the 

association of phosphates catalytic domains with particular regulatory subunits, which 

target the catalytic core to different cellular locations and target substrates (Cohen 2002). 

In comparison, there are similar numbers of Tyr phosphatases and Tyr kinases. Thus, 

unlike Ser/Thr phosphatases, Tyr phosphatases do not require different regulatory subunits. 

They exist mostly as modular proteins with separate catalytic and targeting domains 

(Alonso et al 2004). 
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1.4.2 Discovery of AMPK 

AMP-activated protein kinase (AMPK) was initially discovered three decades ago. Two 

separate groups showed that preparations of two enzymes involved in liver fat metabolism; 

ACC (Carlson and Kim 1973) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) 

(Beg et al 1978) became inactivated in the presence of ATP. This effect was concluded by 

both groups to be due to the contamination of the enzyme preparation with a protein 

kinase. It was later shown that the kinases responsible for the inhibitory effects on ACC 

and HMGR were stimulated by 5’-adenosine monophosphate (AMP) (Yeh et al 1980) 

(Ferrer et al 1985). Subsequently, it was discovered that the inactivation of both ACC and 

HMGR was catalysed by the same single protein kinase (Carling et al 1987). It soon 

became apparent that the protein kinase initially termed HMGR kinase was in fact a 

multisubstrate kinase, thus it was renamed AMP-activated protein kinase after its allosteric 

activator 5’-AMP (Munday et al 1988). 

1.4.3 AMPK overview 

AMPK is a conserved sensor of cellular energy status and is present in all eukaryotes. 

AMPK is activated when there is a decrease in cellular energy level i.e an increase in the 

cellular AMP/ATP ratio. Metabolic stresses which activate AMPK include muscle 

contraction (Hutber et al 1997) which increases ATP consumption, and deprivation of 

oxygen (Kudo et al 1995, Marsin et al 2000) or glucose (Salt et al 1998b) which depletes 

ATP levels. AMPK exists as a heterotrimeric complex consisting of a catalytic α subunit 

and regulatory β and γ subunits. The β subunit contains a glycogen binding domain and the 

γ subunit contains cystathionine β-synthase (CBS) motifs which bind the two nucleotides; 

AMP and ATP (Towler and Hardie, 2007). AMPK is regulated by phosphorylation by 

upstream kinases. The tumour suppressor LKB1 (Hawley et al 2003; Woods et al 2003) 

and Ca2+/Calmodulin dependent protein kinase kinase (CaMKK) (Hawley et al 2005) are 

two well characterized AMPK kinases. Active AMPK stimulates ATP-producing pathways 

such as glycolysis and fatty acid oxidation, while inhibiting ATP consuming pathways 

such as gluconeogenesis, fatty acid synthesis and cholesterol synthesis (Hardie 2004a). 

AMPK mediates these effects via phosphorylation of downstream metabolic enzymes 

(Hardie 2004a) and by effects on gene (Foretz et al 1998) and protein expression (Winder 

et al 2000). In addition to regulating energy balance at the cellular level it has become 

apparent that AMPK also regulates food intake and energy expenditure at the whole body 
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level, in particular by mediating the effects of hormones and cytokines such as leptin 

(Minokoshi et al 2002, Minokoshi et al 2004) and adiponectin (Yamauchi et al 2002).  

1.4.4 AMPK Structure 

AMPK exists as a heterotrimer comprising of a catalytic α subunit and a regulatory β and γ 

subunit (Hardie et al 2003). In mammals there are two genes encoding isoforms of both the 

α and β subunits; α1, α2, β1 and β2, and three genes encoding isoforms of the γ subunit; 

γ1, γ2, and γ3 (Hardie et al 1998, Stapleton et al 1996, Stapleton et al 1997, Woods et al 

1996a/b). Along with splice variants and different combinations of isoforms there exists a 

diverse array of different complexes. Expression levels of the subunit isoforms vary 

between different tissues and cellular localization (Salt et al 1998a, Thornton et al 1998, 

Stapleton et al 1996, Mahlapuu et al 2004). 

AMPK appears to be a fundamental feature of all eukaryotic cells, as genes encoding 

orthologues of the α, β and γ subunits are present in all eukaryotic species whose genome 

sequence has been determined. Indeed orthologues of AMPK have been found in the yeast 

Saccharomyces cerevisiae and the parasite Giardia lamblai (Carling 2004, Hardie et al 

2003). 

The α1 and α2 mammalian subunits share 90% identity at their N-terminal catalytic 

domains, but only 60% identity at their C-terminal domains (Stapleton et al 1996). The C-

terminal domain has been shown to be required to form a complex with the non-catalytic 

subunits β and γ (Fig. 1.8) (Crute et al 1998). 

The β subunits contain two conserved regions (Fig. 1.8). These regions were originally 

termed kinase-interacting sequence (KIS) and association with Snf-1 complex (ASC) 

domains. Based on two hybrid analysis in yeast it was originally thought that the KIS 

domain was required for interacting with the α subunit, while the ASC domain was 

required for interaction with the γ subunit (Jiang and Carlson 1997). However, it has since 

been discovered that only the ASC domain is required for complex formation. The KIS 

domain is actually a glycogen binding domain (GBD) (Hudson et al 2003). This domain is 

present in enzymes which metabolize the α1→ 6 branch points in α1→ 4 linked glucans 

such as starch and glycogen (Hudson et al 2003, Polekhina et al 2003). GBD has been 

shown to cause association of AMPK with glycogen particles, where one of its substrates 

GS is located (Hudson et al 2003). Interestingly, prior glycogen loading of skeletal muscle 
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suppresses activation of AMPK by exercise in humans (Wojtaszewshi et al 2003). In 

addition, glycogen has also been shown to inhibit AMPK in cell-free assays, an effect that 

is dependent on binding to the GBD and varies according to the branching content of the 

glycogen i.e glycogen branch points inhibit AMPK activity (McBride et al 2009). Thus it 

has been proposed by McBride and co-workers that in muscle containing a high glycogen 

content, AMPK may be bound to the non-reducing ends at the surface of glycogen, 

sequestering AMPK away from other downstream targets. This is thought to account for 

the reduced apparent activation of AMPK in response to exercise (Wojtaszewshi et al 

2003) when muscle is in a glycogen-loaded state. Since the outer chains prevent access of 

AMPK to the internal glycogen branch points, AMPK would not be inhibited and thus 

would phosphorylate and inhibit GS. In contrast, exposure of the glycogen branch points 

by phosphorylase after contraction would inhibit AMPK. Thus, GS would no longer be 

phosphorylated and inhibited by AMPK, which would allow glycogen re-synthesis. Thus 

essentially the GBD may function as a regulatory domain which allows AMPK to act as a 

glycogen sensor in vivo. 
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Figure  1-8: Domain structure of AMPK subunit isoforms and splice variants  
Regions shown in the same colour are related, and their functions, where known, are indicated 

(amended from Towler and Hardie 2007). 

There exist three γ isoforms, with splice variants creating both long and short forms of γ2 

and γ3. The γ subunits differ from each other in the length of their N-terminal sequence, 

but they all contain conserved CBS motifs (Fig. 1.8). Bateman discovered the CBS motifs, 

which are named after the enzyme cystathionine β-synthase which contains a pair of such 

motifs at the C-terminus (Bateman 1997). These motifs occur as tandem pairs, therefore 

the term ‘Bateman domain’ was derived to describe the structure formed by two tandem 

CBS motifs (Kemp 2004). The recent determination of the crystal structure of the 

regulatory core of mammalian AMPK revealed that there was a nucleotide binding site on 

three of the four CBS motifs in the γ subunit. Two of these sites can bind AMP or ATP 
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with approximately equal affinity, and the third site contains a tightly-bound AMP that 

appears to be non-exchangeable (Xiao et al 2007). 

1.4.5 Naturally Occurring AMPK mutations 

Currently, a total of five missense mutations and an insert mutation in the γ2 subunit of 

AMPK have been detected in different families with the hereditary heart disease in humans 

called Wolff-Parkinson-White syndrome. Four of these mutations affect the N-terminal 

Bateman domain, while the other two affect the C-terminal Bateman domain (Fig. 1.9) 

(Gollob et al 2001, Arad et al 2002, Gollob et al 2002, Blair et al 2001). These mutations 

cause both defective activation of the intact AMPK complex by AMP (Daniel and Carling 

2002) and defective binding of AMP to the isolated Bateman domains (Scott et al 2004). 

Interestingly, the mutations also decrease the binding of the inhibitor ATP (Scott et al 

2004). Therefore, although the mutations prevent activation by AMP, they also appear to 

increase the basal activity (Burwinkel et al 2005). In addition, these studies provide strong 

evidence that the Bateman domains are indeed the regulatory AMP and ATP binding sites.  

 

Figure  1-9: The positions of known mutations that cause ca rdiac disease are marked on the 
γ2 subunit (adapted from Kemp et al 2003).  
 

A feature of Wolff-Parkinson-White syndrome is elevated storage of glycogen in cardiac 

myocytes (Burwinkel et al 2005). Thus the dominant effect of the mutations to increase 

basal AMPK phosphorylation has led to the proposal that elevated AMPK activity leads to 
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a higher basal glucose uptake into the myocytes. This would result in excessive glycogen 

storage, thought to underlie the cardiomyopathy (Arad et al 2007). 

1.4.6 Regulation of AMPK by AMP and phosphorylation 

AMPK is stimulated by an elevated AMP/ATP ratio. As eukaryotic cells have significant 

levels of adenylate kinase to maintain the reaction: 2 ADP ↔ ATP + AMP close to 

equilibrium, the AMP/ATP ratio varies approximately with the square of the ADP/ATP 

ratio (Hardie and Hawley 2001) making the AMP/ATP ratio extremely sensitive to cellular 

energy levels. 

It is thought that under physiological conditions, AMPK exists in its inactive form in 

complex with the much more abundant ATP, with only a small proportion binding AMP 

(Xiao et al 2007). Xiao and co-workers have proposed that a 2-3 fold increase in the AMP 

concentration (low µМ range) results in a similar fold increase in the proportion of AMP 

bound enzyme in the presence of a much higher (mМ range) concentration of ATP (Xiao 

et al 2007). 

AMPK is regulated by AMP by two distinct mechanisms. Firstly, AMP causes allosteric 

activation of AMPK (Hardie et al 1999). Secondly, the binding of AMP to AMPK makes it 

a worse substrate for protein phosphatases, especially protein phosphatase-2C (Davies et al 

1995). These effects by AMP are antagonised by high concentrations of ATP, 

demonstrating that the system responds to the AMP/ATP rather than to just AMP levels 

(Corton et al 1995, Hawley et al 1996, Davies et al 1995).  

AMPK is activated by an upstream kinase, AMPK kinase (AMPKK). Phosphorylation 

occurs in the α subunit at Thr172 which lies in the activation loop (Hawley et al 1996). 

The major breakthrough in identifying upstream kinases came from the study of the 

regulation of the AMPK orthologue, Snf-1 in Saccharomyces cerevisiae. Snf-1 was shown 

to be phosphorylated and activated by three closely related kinases, Elm 1, Pak 1 and Tos 3 

(Hong et al 2003). Database searches with these yeast sequences revealed that LKB1 and 

CaMKK α and β were closely related mammalian kinases.  

LKB1 is encoded by the Peutz-Jegher syndrome tumour suppressor gene (Jenne et al 

1998). Peutz-Jegher syndrome is an autosomal dominant disorder, characterised by a 

predisposition to gastrointestinal neoplasms marked by a high risk of benign and malignant 
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pancreatic tumours (Hemminki 1999). AMPK kinase purified from rat liver was found to 

correspond to LKB1 (Hawley et al 2003, Woods et al 2003). In addition, cells which 

lacked LKB1 were shown to have a reduced AMPK activity compared to cells expressing 

LKB1, and AMPK was not found to be activated by stimuli which normally activate it 

(Shaw et al 2004, Hawley et al 2003, Woods et al 2003). These findings provided evidence 

that LKB1 is an AMPKK. The discovery that LKB1 is not regulated by stimuli which 

activate AMPK in cells (Lizcano et al 2004, Woods et al 2003) or in skeletal muscle 

(Sakamoto et al 2004), and that it is not directly activated by AMP (Hawley et al 2003, 

Woods et al 2003) suggested that LKB1 is ‘constitutively active’ and that the regulation of 

AMPK phosphorylation is regulated by effects on AMPK itself. 

Initially it was thought that AMP also made AMPK a better substrate for the upstream 

kinase LKB1 (Hawley et al 1995). However, subsequent work has shown that this is not 

the case (Sanders et al 2007b). Earlier results indicating that AMP stimulates 

phosphorylation of AMPK by LKB1 can be plausibly explained by the presence of 

endogenous protein phosphatase 2C in the preparations of the rat liver kinases used in the 

study i.e AMP inhibited dephosphorylation of AMPK by the phosphatase, rather than 

increasing phosphorylation of AMPK by LKB1. 

The current AMP-dependent AMPK activation model proposed by Sanders and co-workers 

(Sanders et al 2007b) suggests that in addition to the allosteric effect of AMP on AMPK, 

when there is an increases in the AMP/ATP ratio, dephosphorylation of AMPK is 

inhibited. Since LKB1 functions as a constitutively active kinase, inhibition of the 

dephosphorylation reaction leads to an increase in AMPK Thr172 phosphorylation and 

activation of AMPK. Thus, AMPK phosphorylation by LKB1 occurs in response to 

decreased dephosphorylation following a rise in the AMP/ATP ratio.  

CaMKKα/β are also important intracellular AMPKKs which phosphorylate and activate 

AMPK in the presence of an increased calcium concentration, independently of an increase 

in AMP concentration. Hawley and co-workers showed that there is significant basal 

activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by 

Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and CaMKK isoform-

specific siRNAs show that CaMKKβ is required for this effect (Hawley et al 2005). K+-

induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ 

without disturbing cellular adenine nucleotide levels, was also shown to activate AMPK, 

and to be blocked by STO-609 (Hawley et al 2005).  It was also shown that CaMKKβ 
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appears to activate AMPK much more rapidly than CaMKKα in cell-free assays (Hawley 

et al 2005). However, 2-deoxyglucose- and ionomycin-stimulated AMPK activity and 

phosphorylation, was reported to be reduced in HeLa cells transfected with small 

interfering RNAs specific for both CaMKKα and CaMKKβ (Hurley et al 2005). 

Recently transforming growth factor-β activated kinase (TAK1) was identified as a 

possible candidate for a novel AMPK kinase in mammalian cells (Momcilovic et al 2006). 

TAK1 was shown to activate the Snf1 protein kinase in vivo and in vitro and co-expression 

of TAK1 and its binding partner TAB1 in HeLa cells stimulated AMPK Thr172 

phosphorylation.  

1.4.7 AMPK Function 

Active AMPK can inhibit ATP consuming pathways and stimulate ATP producing 

pathways. Historically AMPK was thought to act as a regulator of energy balance 

primarily at the cellular level (Fig. 1.10). However, it has since been shown to have a  

 

Figure  1-10: Role of AMPK in regulating energy balance at the cellular level.  

 
fundamental role in regulating energy balance at the level of the whole organism (Fig. 

1.11). Active AMPK results in many changes including glucose uptake and metabolism by 

muscle and other tissues, reduced glucose production in the liver and reduced synthesis and 

increased oxidation of fatty acids. All of these effects are beneficial to people with type 2 

diabetes and the metabolic syndrome, thus making AMPK an attractive therapeutic target. 
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Figure  1-11: Role of AMPK in regulating energy balance at the whole-body level (adapted 
from Hardie 2004b).   

 

 
1.4.8 Activators of AMPK 

Metabolic poisons such as arsenite, an inhibitor of the tricarboxylic acid cycle (Corton et al 

1994), antimycin A and azide, inhibitors of the respiratory chain (Witters et al 1991), 

oligomycin, an inhibitor of mitochondrial ATP synthase (Marsin et al 2000) and 

dinitrophenol, an uncoupler of oxidative phosphorylation (Witters et al 1991) all activate 

AMPK by depleting cellular ATP levels. 

Pathological stresses can activate AMPK by increasing the AMP/ATP ratio. These include 

glucose deprivation (Salt et al 1998b), ischemia (Kudo et al 1995, Marsin et al 2000) and 

oxidative stress (Choi et al 2001). Interestingly, hyperosmotic stress, induced by sorbitol, 

in muscle cells was shown to activate AMPK without altering the cellular AMP/ATP ratio 

(Fryer et al 2002b). 
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Exercise (Winder and Hardie 1996) or contraction in skeletal muscle (Hutber et al 1997) 

activates AMPK by increasing ATP consumption. In muscle the level of activation of 

AMPK depends on both the intensity and duration of the work. 

Leptin activates AMPK in muscle by direct effects via the leptin receptor and indirectly via 

the hypothalamic-sympathetic nervous system (SNS) axis through α-adrenergic receptors 

(Fig. 1.12). A decrease in cellular energy levels (AMP/ATP) is thought to occur during 

direct AMPK activation by leptin, but not during the indirect activation in muscle 

(Minokoshi et al 2002). 

 

Figure  1-12: Model for the stimulatory effect of AMPK on f atty acid oxidation in muscle.  
ACC = acetyl CoA carboxylase, CPT1 = carnitine palmitoyl transferase 1. 

 
In skeletal muscle, phosphorylation and activation of AMPK by leptin (Minokoshi et al 

2002), results in fatty-acid oxidation via phosphorylation and inhibition of ACC (discussed 

further in the text 1.4.11). Briefly, inhibition of ACC leads to a decrease in malonyl-CoA 

levels, which prevents inhibition of CPT1, subsequently allowing the uptake of fatty acids 

into the mitochondria where they are oxidized (Fig. 1.12).  
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As previously mentioned leptin has an anorexigenic action in the hypothalamus. This 

effect is mediated by inhibition of AMPK activity in the ART and PVN (Minokoshi et al 

2004). Decreased AMPK activity in the ART results in the inhibition of the orexigenic 

peptides NPY/AgRP. It would appear that that MC4Rs are required for the physiological 

and hormonal regulation of AMPK in the paraventricular hypothalamus as an agonist for 

this receptor which inhibits food intake also inhibits AMPK activity in the paraventricular 

nucleus, and mice lacking the MC4R are hyperphagic and obese and are unable to inhibit 

AMPK activity in response to feeding or leptin (Minokoshi et al 2004).  

In muscle and liver, in vivo and in vitro, adiponectin has been demonstrated to stimulate 

AMPK phosphorylation and activation (Yamauchi et al 2002). The activation of AMPK in 

muscle that occurs five minutes after adiponectin treatment may result from an increase in 

the concentration of cellular AMP (Yamauchi et al 2002). In parallel with its activation of 

AMPK, adiponectin stimulates phosphorylation of ACC, fatty-acid oxidation, glucose 

uptake and lactate production in myocytes, phosphorylation of ACC and reduction of 

molecules involved in gluconeogenesis in the liver, and reduction of glucose levels in vivo. 

Blocking AMPK activation by a dominant-negative mutant inhibits each of these effects 

demonstrating that the stimulation of glucose utilization and fatty acid oxidation by 

adiponectin occurs through activation of AMPK (Yamauchi et al 2002). In addition AMPK 

can also be activated in adipocytes by adiponectin, however the biological effect has yet to 

be determined (Wu et al 2003). 

The thiazolidinediones (TZDs) are a class of drugs used to treat type 2 diabetes. They 

stimulate PPARγ mediated adipocyte differentiation and increase the number of small 

adipocytes (Okuno et al 1998). This is associated with reduced serum NEFAs and reduced 

TNFα expression, which increases insulin sensitivity in the liver and skeletal muscle 

(Quinn et al 2008). In addition, TZDs can also elevate levels of adiponectin. This is 

achieved in part via the generation of the small adipocytes which abundantly express and 

secrete adiponectin (Yamauchi et al 2001) and by the up-regulation of adiponectin via 

direct effects of TZDs on adiponectin gene transcription (Iwaki et al 2003). As discussed, 

above, activation of AMPK by adiponectin results in reduced gluconeogenesis in the liver 

and increased fatty acid oxidation and glucose uptake in muscle. Therefore, TZDs are able 

to activate AMPK indirectly via adiponectin. In addition, the TZD, rosiglitazone (Fryer et 

al 2002b) has been shown to increase the activity of AMPK after 30min in H-2Kb muscle 

cells, suggesting that TZDs can also directly activate AMPK. 
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The biguanides are another class of drugs used for the treatment of type 2 diabetes. This 

class of drug primarily acts to inhibit hepatic gluconeogenesis. Metformin has been shown 

to stimulate AMPK activity in cultured primary rat and human hepatocytes (Zhou et al 

2001) and 3T3-L1 adipocytes (Huypens et al 2005). In addition another biguanide, 

phenformin, has been shown to activate AMPK in isolated rat adipocytes (Daval et al 

2005). 

The TZDs (Brunmair et al 2004) and metformin (El-Mir et al 2000) have also been 

reported to inhibit Complex 1 in the mitochondrial electron transport chain. In addition 

TZDs (Fryer et al 2002b, Saha et al 2004) have been reported to increase the intracellular 

AMP/ATP ratio, however this has not yet been demonstrated with metformin (Fryer et al 

2002b, Hawley et al 2002).  

Many studies of AMPK have utilised 5-aminoimidazole-4-carboxamide riboside (AICAR), 

which is a cell permeable molecule that is taken up readily by cells and phosphorylated by 

adenosine kinase (Bontemps et al 1986) to 5-aminoimidazole-4-carboxamide riboside 

monophosphate (ZMP), which functions as a cellular mimetic of AMP. Unfortunately 

ZMP is not a specific activator of AMPK in that it also mimics the effects of AMP on other 

molecules or processes. For example AICAR has been shown to suppress gluconeogenesis 

by inhibiting fructose-1, 6-bis phosphatase in isolated rat hepatocytes (Vincent et al 1991) 

and in vivo (Vincent et al 1996), and increase glycogenolysis by increasing glycogen 

phosphorylase activity in rat muscle preparations in vitro (Young et al 1996). 

Recently, a novel AMPK activator, A769662, was discovered (Cool et al 2006). This new 

AMPK activator, directly activates native rat AMPK by mimicking both effects of AMP, 

i.e. allosteric activation and inhibition of dephosphorylation (Göransson et al 2007). In 

addition, A769662 has been shown to have no direct effect on the ability of the LKB1 or 

CaMKK to phosphorylate AMPK (Sanders et al 2007a). However, the mechanism of 

AMPK activation by A769662 is thought to be distinct from that of AMP. AMP is unable 

to activate AMPK containing a mutation in the γ subunit, whereas A769662 can (Sanders 

et al 2007a). Also, A769662 stimulated AMPK activity was shown to be inhibited by a 

mutation in the β1 AMPK subunit (Ser108 to Ala), an autophosphorylation site within the 

GBD, however the same mutation only partially reduces AMPK activation by AMP 

(Sanders et al 2007a). Sanders and co-workers have proposed a model of AMPK activation 

by A769662 (Fig 1.13). They suggest that binding of A769662 to AMPK stabilizes a 

conformation that is resistant to dephosphorylation of Thr172. This conformation requires 
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phosphorylation of Ser108 within β1, and phospho-Ser108 is thought to then interact with 

another region of the AMPK heterotrimer (Sanders et al 2007a). Scott and co-workers 

showed that A769662 appears to exclusively activate AMPK containing the β1 subunit 

isoform (Scott et al 2008). Furthermore the activation of AMPK by A769662 appears to 

involve the interaction of the β1 subunit GBD and residues from the γ subunit that are not 

involved in AMP binding (Scott et al 2008). Currently, the mechanism of AMPK 

activation by A769662 is not completely understood, although the mechanism does not 

appear to involve the binding of A769662 to the GBD or the nucleotide binding sites on 

the γ subunit (Scott et al 2008). 

 

Figure  1-13: Model for activation of AMPK by A-769662 or A MP. 
In the inactive conformation, ATP is bound to the γ subunit, and Thr172 within the catalytic subunit 

(α) is freely accessible to protein phosphatases (PPase). In this conformation, Thr172 is maintained 

predominantly in the unphosphorylated form. Binding of A-769662 (denoted by the small white 

circle) stabilises a conformation of AMPK that inhibits dephosphorylation of Thr172, depicted here 

as steric hindrance by the β subunit. This conformation requires phosphorylation of Ser108 in the 

GBD of the β subunit. The active conformation is also promoted when AMP displaces ATP from the 

γ subunit. In this case, however, phosphorylation of Ser108 alone is not sufficient to maintain the 

conformation, and additional phosphorylation sites (within either α or β) may be required to 

maintain the active form (shown here by ?-PO4). 
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1.4.9 AMPK Targets 

AMPK targets many different proteins and pathways in different tissues. The well-

established downstream protein targets are summarized below (Fig. 1.14). 

 

Figure  1-14: Targets for AMPK (adapted from Hardie 2004a).   
Target proteins and processes activated by AMPK activation are shown in green, and those 

inhibited by AMPK activation are shown in red. Where the effect is caused by a change in gene 

expression, an upward-pointing green arrow next to the protein indicates an increase, whereas a 

downward-pointing red arrow indicates a decrease in expression. Abbreviations: ACC1/ACC2, 1 (α) 

and 2 (β) isoforms of acetyl-CoA carboxylase; CD36/FAT, CD36/fatty acid translocase; CFTR, 

cystic fibrosis transmembrane regulator; EF2, elongation factor-2; eNOS/nNOS. 

endothelial/neuronal isoforms of nitric oxide synthase; FAS, fatty acid synthase; G6Pase, glucose-

6-phosphatase; GLUT1/4, glucose transporters; GS, glycogen synthase; HMGR, 3-hydroxy-3-

methyl-CoA reductase; HSL, hormone-sensitive lipase; MEF2, myocyte-specific enhancer factor-2; 

NRF1, nuclear respiratory factor-1; PEPCK, phosphoenolpyruvate carboxykinase; PGC1 , 

peroxisome proliferator-activated receptor-  co-activator-1 ; TOR, mammalian target of 

rapamycin. 
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1.4.10 Role of AMPK in glucose homeostasis 

AMPK plays an important role in the regulation of glycogen synthesis, glycolysis, 

gluconeogenesis and glucose transport.  

It has been shown that AMPK can phosphorylate and inactivate the muscle isoform of GS 

(Carling and Hardie 1989) which is the key regulatory enzyme in glycogen synthesis.  

Phospho-fructose-kinase-2 (PFK-2) stimulates the production of fructose-2, 6-bisphosphate 

which is a physiological activator of a key enzyme in glycolysis, 6-phosphofructo-1-

kinase, also known as phospho-fructose-kinase-1 (PFK-1). In ischemic cardiac muscle, 

AMPK has been shown to stimulate glycolysis by phosphorylating and activating PFK-2 

(Marsin et al 2000).  

The AMPK activator AICAR has been shown to reduce the expression of the genes for the 

gluconeogenic enzymes PEPCK and G6Pase in hepatoma cells (Lochhead et al 2000). 

As discussed, the IRS-1 is phosphorylated by the active insulin receptor and then acts as a 

binding site for PI3K leading to the uptake of glucose by cells. Interestingly AMPK has 

been shown to phosphorylate the IRS-1 protein in the muscle cell line C2C12 in response 

to the AMPK activator AICAR (Jakobsen et al 2001). Thus potentially in muscle AMPK 

may play a role in increasing insulin sensitivity, thus consequently lowering blood glucose 

levels. 

In muscle AICAR, was shown to increase glucose uptake by promoting GLUT4 

translocation to the cell surface (Kurth-Kraczek et al 1999, Russell et al 1999, Ojuka et al 

2000) and GLUT4 gene transcription (Zheng et al 2001). In addition GLUT1 and GLUT4 

transport to the plasma membrane was also shown to be increased in the presence of a 

constitutively active AMPK mutant in a skeletal muscle cell line (Fryer et al 2002a). 

Furthermore, AICAR has been shown to potentiate insulin-stimulated glucose transport in 

isolated rat muscle (Bergeron et al 1999, Hayashi et al 1998). In 3T3-L1 adipocytes 

AICAR was found to stimulate basal glucose transport (Salt et al 2000, Yamaguchi et al 

2005) and inhibit insulin-stimulated glucose uptake and GLUT4 translocation to the plasma 

membrane (Salt et al 2000) which is in contrast to the effect of AICAR in muscle.  
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In contrast, another study reported that overexpression of a dominant negative mutant of 

AMPK in 3T3-L1 adipocytes treated with AICAR abolishes AMPK activation without 

affecting the increase in glucose uptake, suggesting that AICAR-induced glucose uptake 

by 3T3-L1 adipocytes is independent of AMPK activation (Sakoda et al 2002).  

1.4.11 Role of AMPK in lipid metabolism 

AMPK has been shown to phosphorylate and inhibit ACC activity (Park et al 2002, Kim et 

al 1989, Davies et al 1990). ACC is the rate-controlling step in the conversion of acetyl-

CoA to malonyl CoA (Tong 2005). The product of ACC, malonyl-CoA, is both a precursor 

for the biosynthesis of fatty acids (Wakil et al 1983) and a potent inhibitor of fatty acid 

oxidation because it inhibits CPT1 (McGarry 1995) and, thereby, the transport of long-

chain fatty acids into the mitochondrial matrix. In mammals there are two isoforms of 

ACC. ACC1 (265kDa) is expressed predominantly in lipogenic tissues such as liver, 

adipose and lactating mammary gland (Ha et al 1996, Abu-Elheiga et al 2005), and is 

reported to primarily regulate the biosynthesis of long-chain fatty acids (Ruderman et al 

2003). In contrast ACC2 (280kDa) is predominantly expressed in cardiac and skeletal 

muscle (Ha et al 1996, Abu-Elheiga et al 2005), and is reported primarily to regulate fatty 

acid oxidation (Merrill et al 1997).  

In adipocytes, ACC has been shown to be phosphorylated and inhibited by AICAR and 

overexpression of a constitutively active AMPK mutant (Sullivan et al 1994, Daval et al 

2005). Sullivan and co-workers also showed that this inhibition of ACC was concomitant 

with a decrease in the lipogenic rate (Sullivan et al 1994). In addition, Gaidhu and co-

workers also showed that AICAR stimulated AMPK activation inhibited lipogenesis in 

isolated rat adipocytes, (Gaidhu et al 2006). It has been proposed that inhibition of 

lipogenesis would conserve ATP under conditions of cellular stress (Gaidhu et al 2006). 

In skeletal muscle and liver it has been established that activation of AMPK results in 

increased mitochondrial import and oxidation of fatty acids to provide ATP as a fuel 

(Ruderman et al 1999, Chien et al 2000). Some studies suggest that AMPK activation in 

adipose tissue may also drive fatty acid oxidation. Overexpression of un-coupling protein 1 

(UCP-1) in white fat was reported to be associated with an increase in the AMP/ATP ratio, 

activation of AMPK and increased lipid oxidation (Matejkova et al 2004). In addition, in 

hyper-leptinized rats there is an increase in UCP-1 and UCP-2 expression, AMPK activity 

and inactivation of ACC (Orci et al 2004) in rat epididymal fat pads. However, in contrast 
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AICAR stimulated AMPK activation and subsequent inhibition of ACC in isolated rat 

adipocytes was shown to inhibit fatty acid oxidation (Gaidhu, et al 2006). Gaidhu and co-

workers proposed that suppression of fatty acid oxidation would spare fatty acids for 

exportation to other tissues where oxidation is crucial for energy production (Gaidhu, et al 

2006). Interestingly, a recent study by Gaidhu and co-workers showed that prolonged 

AICAR-induced AMPK activation promotes energy dissipation by activating fatty acid 

oxidation (Gaidhu et al 2008).  

As discussed, the β-adrenergic signalling pathway regulates triglyceride breakdown, acting 

via the accumulation of cAMP and subsequent PKA-dependent phosphorylation of HSL. 

The AMPK activator AICAR and was shown to antagonise isoproterenol induced lipolysis 

by phosphorylating HSL, which inhibits phosphorylation and activation of HSL by PKA in 

isolated adipocytes (Corton et al 1995, Sullivan et al 2004, Daval et al 2005, Dagon et al 

2006). In addition, overexpression of a constitutively active AMPK in rat adipocytes was 

also shown to inhibit isoproterenol-induced lipolysis, whereas overexpression of a 

dominant negative form of AMPK had a converse effect (Daval et al 2005). Gauthier and 

co-workers also showed that AMPK is activated as a consequence of lipolysis in 

adipocytes (Gauthier et al 2008). When the rate at which fatty acids are being produced by 

lipolysis exceeds the rate at which they are being exported from the cell, they are re-

esterified back into TG in an energy dependent manner. Thus, it has been proposed that 

AMPK activation and subsequent inhibition of lipolysis by AMPK would prevent futile 

cycling and depletion of ATP (Hardie et al 2007, Gauthier et al 2008). 

Contrary to the above findings, Yin and co-workers have shown that adrenergic 

stimulation results in AMPK phosphorylation and activation which results in the 

stimulation of lipolysis in 3T3-L1 adipocytes (Yin et al 2003). It has been proposed that 

upon β-adrenergic stimulation, AMPK is phosphorylated and activated via an intermediary 

rise in cAMP, and this activation contributes to lipolysis, possibly by phosphorylating HSL 

at Ser565 and promoting HSL translocation to the lipid droplet (Yin et al 2003). Yin and 

co-workers also showed that overexpression of a dominant negative form of AMPK 

inhibits isoproterenol-induced lipolysis suggesting, rather, a lipolytic action of AMPK 

activation (Yin et al 2003). However, AMPK activity was not measured in these conditions 

and thus final conclusions from these experiments are difficult to draw.  

It has been reported that the duration of AMPK stimulation may be important with respect 

to lipolysis, as Gaidhu and co-workers found that lipolysis was first suppressed in 
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adipocytes, but then increased both in vitro and in vivo with prolonged AICAR treatment 

(Gaidhu et al 2008). 

Other potential targets of AMPK include fatty acid translocase (FAT), which plays an 

important role in long-chain fatty acid uptake in adipocytes. FAT knock out mice showed 

increased serum fasting levels of NEFAs and showed reduced uptake of oleate in isolated 

adipocytes (Febbraio et al 1999). Interestingly, signalling through AMPK has been 

proposed to mediate FAT translocation to the membrane in rat cardiac myocytes (Luiken et 

al 2003).  Finally, cholesterol and isoprenoid biosynthesis, for which HMG-CoA reductase 

(HMGR) catalyses the rate limiting step is also influenced by AMPK activity. Active 

AMPK can phosphorylate and inactivate HMGR resulting in reduced cholesterol and 

isoprenoid synthesis (Beg et al 1978).  

1.4.12 Role of AMPK and adipocyte differentiation 

There is some evidence to suggest that AMPK activation can inhibit preadipocyte 

differentiation. Studies investigating the role of AMPK in adipogenesis have reported that 

AMPK activation by AICAR inhibits differentiation of 3T3-L1 preadipocytes into 

adipocytes and blocks the expression of the early adipogenic transcription factors PPARγ, 

CAAT/enhancer-binding protein alpha (C/EBPα), CAAT/enhancer-binding protein beta 

(C/EBPβ) and the late adipogenic markers such as FAS and ACC (Habinowski and Witters 

2001, Giri et al 2006, Tong et al 2008). Thus it has been suggested by these studies that 

AMPK activation inhibits differentiation of preadipocytes by turning off anabolic adipose-

specific gene expression. However, intra-peritoneal administration of AICAR to a mouse 

diet induced obesity model, blocked body weight gain and reduced total epididymal fat in 

these mice. The reduction in adipose tissue content was due to reduced lipid accumulation 

in the pre-existing adipocytes and by activating expression of peroxisome-proliferator-

activated receptor (PPAR)γ co-activator 1a (PGC1a) without reducing adipocyte-specific 

transcription factors such as C/EBPα and PPARγ in the diet induced obesity model mice 

(Giri et al 2006). 

Furthermore, other studies concluded that AMPKα2 does not regulate adipocyte 

differentiation in vivo. AMPKα2 knockout mice were subjected to a high-fat diet to 

examine the effect of AMPK on adipose tissue formation. These mice were found to 

exhibit higher body weight, with a specific increase in adipose tissue compared to wild 

type mice. However the expression of genes that control adipogenesis, including C/EBPα 
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and PPARγ were found not to be changed in the AMPKα2 knockout mice suggesting that 

the increased adipose tissue mass is not due to an enhancement of preadipocyte 

differentiation into adipocytes and therefore that AMPKα2 does not regulate adipocyte 

differentiation in vivo. The augmentation in adipose tissue mass in AMPKα2 knockout 

mice is thought to be due to the enlargement of pre-existing adipocytes, with an increase in 

triglyceride accumulation (Villena et al 2004).  

Thus it is currently not clear whether AMPK has a physiological regulatory function in 

adipocyte differentiation. 

1.4.13 Role of AMPK and adipokine secretion 

The biguanide metformin is used to treat type 2 diabetic patients. In these patients 

metformin lowers blood glucose levels by reducing hepatic glucose production and 

facilitating glucose utilization in skeletal muscle (Bailey et al 1996, Galuska et al 1991, 

Hundal et al 1992, Hundal et al 2000). These effects appear to be mediated through 

inhibition of complex I in the mitochondrial respiratory chain (Owen et al 2000, El-Mir et 

al 2000) and / or stimulation of AMPK (Zhou et al 2001). In 3T3-L1 adipocytes, 

metformin was shown to activate AMPK and suppress adiponectin expression and 

secretion (Huypens et al 2005). Since treatment of 3T3-L1 adipocytes with AICAR 

(Huypens et al 2005) also caused a decrease in adiponectin expression and secretion it has 

been proposed that metformin induced suppression involves AMPK activation. However, 

as metformin is a metabolic poison and not a specific AMPK activator, the role of AMPK 

is uncertain. In addition, there has been no observed change in adiponectin serum 

concentration or adiponectin mRNA concentration in adipose tissue of type 2 diabetic 

patients treated with metformin (Phillips et al 2003, Tiikkainen et al 2004). Conversely, 

AICAR has been shown to increase the expression of adiponectin in human adipose tissue 

(Sell et al 2006, Lihn et al 2004). AICAR has also been shown to inhibit the expression 

and secretion of the pro-inflammatory cytokines TNFα and IL-6 in human adipose tissue 

(Lihn et al 2004, Sell et al 2006). Given that adiponectin has also been shown to decrease 

the secretion of pro-inflammatory cytokines (Sell et al 2006), it has been proposed that 

AICAR may mediate its effects on the pro-inflammatory cytokines via adiponectin. Thus, 

the inhibition of secretion of these pro-inflammatory cytokines by AMPK could be 

beneficial, as inflammation contributes to disorders such as cardiovascular disease and 

insulin resistance, which are associated with obesity.  
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1.4.14 Role of AMPK in mitochondrial biogenesis 

Studies have shown that in rodent muscle AMPK activation correlates with increased DNA 

binding by the transcription factors nuclear respiratory factor-1 (NRF-1) (Bergeron et al 

2001) and myocyte enhancer factor-2 (MEF-2) (Zheng et al 2001) which results in 

increased mitochondrial biogenesis. In addition AMPK activation was also shown to 

correlate with the up-regulation of the expression of the co-activator PGC1α (Terada et al 

2002) which may also be involved in the increased expression of mitochondrial genes in 

muscle (Zong et al 2002). 

1.4.15 Role of AMPK in protein synthesis 

AMPK has been shown to inhibit protein synthesis and cell growth in cultured cells. 

Translational elongation is blocked through the activation of eukaryotic elongation factor-2 

(eEF-2) kinase, which phosphorylates and inhibits eEF2, allowing protein translocation to 

pause until ATP levels are restored. Hypoxia inhibits protein synthesis in hepatocytes and 

is mediated by AMPK-dependent activation of eEF2 kinase and subsequent 

phosphorylation of eEF2 (Horman et al 2002). 

The target of rapamycin (TOR) pathway is activated by growth factors and amino acids 

and is a major positive stimulus for protein synthesis, cell growth and cell size (Fig. 1.15) 

(Schmelzle and Hall 2000). Tuberous sclerosis complex 1/2 (TSC1/TSC2) form a stable 

complex in the cells, with mutations in either leading to the human disease tuberous 

sclerosis (Young and Povey 1998). Recent genetic studies in Drosophilia demonstrated 

that TSC1/TSC2 complex acts to negatively regulate cell growth and cell size and have 

shown that it acts downstream of PKB/Akt in the insulin-signalling pathway  
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Figure  1-15: Regulation of protein synthesis and cell grow th by AMPK and PKB/Akt by the 
mTOR pathway.  
AMPK = AMP-activated protein kinase, PKB = protein kinase B, TSC1/2 = Tuberous sclerosis 

complex 1/2, TOR = target of rapamycin, S6K1 = ribosomal protein S6 kinase, 4E-BP1 = 

elongation factor-4E binding protein 1. 

 
and upstream of mammalian TOR (Gao and Pan 2001, Gao et al 2002, Tapon et al 2001). 

AMPK phosphorylates TSC2 at two sites, Thr1227 and Ser1345. Activation of TSC2 by 

AMPK-dependent phosphorylation results in activation of the TSC1/TSC2 complex and 

subsequent inhibition of the TOR pathway, thus inhibiting protein synthesis and cell 

growth through ribosomal protein S6 kinase (S6K1) and elongation factor-4E binding 

protein 1 (4E-BP1) (Inoki et al 2003). 
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1.5 Aims 

The overall aim of this study was to characterise the role of AMPK in adipocytes. 

Although AMPK activation has been previously reported in adipose tissue and cultured 

adipocytes, a thorough investigation of the expression of components of the AMPK 

cascade, kinetics/mechanism of AMPK stimulation and role of AMPK in adipocyte insulin 

action has yet to be undertaken.  

The initial aim of this study was to investigate the expression of the upstream AMPK 

kinases; LKB1 and CaMKKα/β, and the downstream AMPK substrates ACC1/2 in 3T3-L1 

adipocytes. Since AMPK has been shown to play a role in the regulation of adipogenesis 

and 3T3-L1 cells are widely used as a model system to study the differentiation of 

preadipocytes to adipocytes, the expression of AMPK subunit isoforms and the relative 

contribution of the catalytic AMPKα subunits to total AMPK activity throughout 

development from fibroblasts to adipocytes in 3T3-L1 cells was also investigated.  

The parameters of AMPK activation in 3T3-L1 in response to various stimuli; AICAR, 

arsenite, azide, metformin, rosiglitazone, leptin, sorbitol, hydrogen peroxide, A23187, 

isoproterenol and A769662 were then determined. In addition, the mechanism by which 

each activator stimulates AMPK activity in 3T3-L1 adipocyte was investigated using the 

CaMKK inhibitor STO-609 and high performance liquid chromatography (HPLC) to 

detect changes in cellular energy levels.  

Acute AICAR treatment has previously been shown in our laboratory to modestly 

stimulate basal glucose transport and inhibit insulin stimulated glucose transport in 3T3-L1 

adipocytes (Salt et al 2000), which is in contrast to the effect of AICAR in muscle 

Bergeron et al 1999) . In order to further characterise the role of AMPK in the inhibition of 

insulin-stimulated glucose transport the acute effect of various other AMPK activators on 

basal and insulin stimulated glucose uptake was assessed using 2-[3H] deoxy-D-glucose. 

The effect of AMPK inhibition and knockdown, using Compound C and Ad.α1DN 

respectively, on AICAR stimulated basal glucose transport and inhibition of insulin-

stimulated glucose transport was also assessed to determine whether the effects of AICAR 

on glucose transport are dependent on AMPK activation. 

Previous work in our laboratory also showed that AICAR did not alter IRS-1 

phosphorylation, PI3K association with IRS-1 or PKB activity in 3T3-L1 adipocytes (Salt 
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et al 2000). During the course of this project AS160 and TBC1D1 have emerged as Rab 

GAPs (Thong et al 2007, Roach et al 2007) involved in the regulation of glucose transport. 

Therefore another aim of this study was to investigate the mechanism by which AICAR 

inhibits insulin-stimulated glucose transport in adipocytes, with particular attention being 

paid to the effect of AICAR on basal and insulin-stimulated AS160/TBC1D1 

phosphorylation at phospho-Akt/PKB (PAS) sites. 

Finally the effect of sustained AMPK activation on glucose transport and insulin signaling 

in 3T3-L1 adipocytes was also to be determined. In addition, the effects of sustained 

AMPK activation on insulin signaling in human adipose tissue was investigated.
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Chapter 2 – Materials and methods 

2.1 Materials 

2.1.1 List of materials and suppliers 

American Type Culture Collection, Manassas, Virginia, USA 

3T3-L1 preadipocytes 

 

AXXORA (UK) Ltd, Bingham, Nottingham, UK 

Rosiglitazone  

Gliclazide  

 

BDH Laboratory Supplies, Poole, UK 

Calcium chloride (CaCl2) 

Coomassie Brilliant Blue G-250  

Dipotassium hydrogen phosphate (K2HPO4)  

Hydrogen peroxide (H2O2) 

Magnesium chloride (MgCl2) 

Magnesium sulphate (MgSO4)   

Potassium chloride (KCl)  

Sodium chloride (NaCl)   

Tetrasodium pyrophosphate (Na4P2O7)  

 

Cambridge Bioscience Ltd, Cambridge, UK 

Quick TiterTM Adenovirus Titer Immunoassay kit  

 

Dundee University, Dundee, UK 

A-769662 (AMPK activator), was a generous gift from Prof. D.G. Hardie. 

 

Eastman Kodak Company, Rochester, New York, USA 

Kodak Medical X-ray film 

 

Fisher Scientific UK Ltd, Loughborough, Leicestershire, UK 

Corning tissue culture T75/ T150 flasks 
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D-Glucose  

Ethanol   

Glycine  

HEPES (N-2-hydroxyethylpiperazine-N’ 2-ethane sulphonic acid)   

Potassium dihyrogen phosphate (KH2PO4)  

Tris base (tris(hydroxymethyl)aminoethane) 

 

GE Healthcare, Little Chalfont, Buckinghamshire, UK 

Protein A-sepharose beads   

Protein G-sepharose beads   

 

Hopkin and Williams, Chadwell Health, Essex, UK 

Sodium azide (NaN3) 

 

Inverclyde Biologicals, Bellshill, Lanarkshire, UK 

Nitrocellulose transfer membrane, 0.45 µm pore size 

 

Invitrogen (GIBCO Life Technologies Ltd), Paisley, UK 

Dulbecco’s modified Eagles media (DMEM) 

Foetal calf serum (FCS) (USA origin)  

Newborn calf serum (NCS) (EU origin) 

Penicillin/streptomycin  

L-glutamine  

Trypsin  

 

Premier International Foods, Cheshire, UK 

Dried skimmed milk 

 

Melford Laboratoried Ltd, Chelsworth, Ipswich, Suffolk, UK 

Dithiothreitol (DTT) 

 

Merck Chemicals Ltd, Nottingham, UK 

Compound C 

A23187  
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National Diagnostics (UK) Ltd, Hessle, East Riding of Yorkshire, UK 

Ecosint A   

 

New England Biolabs, Hertfordshire, UK 

Prestained protein markers (broad range 6-175kDa) 

 

Novo-Nordisk, Bagsvaerd, Denmark 

Porcine insulin 

 

Pepceuticals, Leicester, UK 

SAMS peptide (HMRSAMSGLHLVKRR) 

 

PeproTech, London, UK 

Leptin  

 

Perkin Elmer, Beaconsfield, Buckinghamshire, UK 

2-[3H]-deoxy-D-glucose  

[γ-32P] ATP  

 

Pierce, Perbio Science, UK Ltd, Tattenhall, Cheshire, UK 

10,000 MWCO slide-a-lyzer  

 

Severn Biotech Ltd, Kidderminster, Hereford, Worcester, UK 

Acrylamide:Bisacrylamide (37.5:1; 30% (w/v) Acrylamide)  

 

Sigma-Aldrich (Steinheim, Germany; Seelze, Germany; St Louis, MO, USA) 

5-Amino-2,3-dihydro-1,4-phthalazinedione (luminol) 

Adenosine 5’-diphosphate (ADP) 

Adenosine 5’-monophosphate (AMP)  

Adenosine 5’-triphosphate (ATP) 

Ammonium peroxydisulphate (APS) 

Bovine serum albumin (BSA)  

Benzamidine 

p-Coumaric acid 

Cytochalasin B  

Dexamethasone 
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Dimethyl sulphoxide (DMSO) 

Disodium hydrogen phosphate (Na2HPO4) 

D-mannitol 

Ethylenediamine tetraacetic acid (EDTA) 

Ethylene glycol-bis (β-amino-ethylether)-N,N,N’,N’-tetraacetic acid (EGTA) 

Glycerol 

Isobutylxanthine (IBMX)  

Metformin  

Methanol 

ProteoPrep Blue Albumin and IgG Depletion Kit  

Sodium flouride (NaF) 

Sodium hydrogen carbonate (NaHCO3) 

Sodium dihydrogen phosphate (NaH2PO4) 

Sodium orthovanadate (Na4VO3) 

Soybean trypsin inhibitor (SBTI) 

Sodium dodecyl sulphate (SDS) 

N,N,N′,N′-Tetramethylethylenediamine (TEMED) 

Triethylamine (TEA) 

Triton X-100  

Tween-20  

 

Tocris Cookson Ltd, Fouth Way, Avonmouth, UK 

STO-609  

 

Toronto Research Chemicals Inc, Ontario, Canada 

AICAR (5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside) 

 

Varian, California, USA 

Chrom Spher C18 octadecylsilane (5 µm)  

 

VWR, Lutterworth, Leicestershire, UK 

Falcon tissue culture 10 cm dishes and 6/12 well plates 

Whatman P81 phosphocellulose paper   
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2.1.2 List of specialist equipment and suppliers 

Beckman CoulterTM High Wycombe, UK 

OptimaTM XL-80K ultracentrifuge 

SW40 rotor 

Multi-Purpose scintillation counter LS 6500 

 

Bio-Rad Laboratories, Hemel Hempstead, UK 

Protein gel casting and Western blotting equipment (Mini Protean III) 

 

Fisher Scientific, Loughborough, UK 

Polycarbonate freezing container 

 

Optika Microscopes, Ponteranica, Italy 

XDS-1B light microscope 

 

WPA, Cambridge, UK 

S2000 spectrophotometer 

 

Varian Limited, Oxford, UK 

Varian ProStar 410 high performance liquid chromatography (HPLC) AutoSampler   

Stainless-steel column (250 x 4.6 mm I.D) packed with Chrom Spher C18 octadecylsilane 

(ODS)  

 

 

 

 

 

 

 

 

 

 



Pamela Jane Logan, 2009   Chapter 2, 66 

2.1.3 List of antibodies and conditions of use 

2.1.3.1 Primary antibodies for Western blotting 

Table  2-1: Primary antibodies used for western blotting 
n/a: not applicable. All antibodies were incubated overnight at 4°C. 

Epitope Clonality Host 

species 

Dilution Diluent 

(w/v in 

TBST) 

Source 

14-3-3  polyclonal rabbit 1:1000 5% milk Abcam, Cambridge, 

UK. (#9093) 

ACC1 N-

term (cDEP) 

polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK. 

CDEPSPLAKTLELN

Q (C + residues 2-15 of 

rat ACC coupled to 

KLH. 

ACC2 (146) polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK. 

CEDKKQAPIKRQLM

T (C + residues 146-

159 of rat ACC2 

coupled to KLH. 

ACC Ser79  polyclonal rabbit 1:1000 5% BSA New England Biolabs, 

Hertfordshire, UK. 

(#3661) 
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AMPKα1 polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK (Woods et 

al 1996b). 

AMPKα2 polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK (Woods et 

al 1996b). 

AMPK Pan 

α1/ α2 

polyclonal sheep 1:500 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK. 

CDPMKRAT(phospho

)IKDIRE (C + residues 

252-264 of rat alpha-1). 

AMPK 

T172  

polyclonal rabbit 1:1000 5% BSA New England Biolabs, 

Hertfordshire, UK. 

(#2531) 

AMPKβ1 polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK (Woods et 

al 1996a). 

AMPKβ2 polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 
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Dundee, UK (Woods et 

al 1996a). 

AMPKγ1 polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK (Cheung 

et al 2000). 

AMPKγ2 polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK 

DLEGSGKHSSRKVD 

(residues 51-63 human 

gamma 2). 

AMPKγ3 polyclonal sheep 1:1000 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK 

LSPAGIDPSGPEKI 

(residues 479-492 

human gamma 3). 

AS160  polyclonal rabbit 1:1000 5% BSA New England Biolabs, 

Hertfordshire, UK. 

(#2447) 

CaMKKα  monoclonal 

clone: F-2 

mouse 1:200 5% milk Santa Cruz, 

Biotechnology, 

California. (#17827) 
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CaMKKβ  polyclonal goat 1:200 5% milk Santa Cruz, 

Biotechnology, 

California. (#9629) 

FAS  monoclonal

clone: 23 

mouse 1:250 5% milk BD transduction 

laboratories, Oxford 

science park, Oxford, 

UK. (#610962) 

GAPDH  monoclonal

clone: 6C5 

mouse 1:40000 5% milk Ambion, Ermine 

Business Park, 

Cambridgeshire, UK. 

(#4300) 

IRS1  polyclonal rabbit 1:1000 5% BSA New England Biolabs, 

Hertfordshire, UK. 

(#2382) 

LKB1  polyclonal sheep 1:500 5% milk A generous gift from 

Prof. D.G. Hardie, 

University of Dundee, 

Dundee, UK. 

LKB1 antibody was 

raised against the 

whole protein in sheep 

and was purified using 

protein G. 

myc  monoclonal

clone: 9E10 

mouse 1:1000 5% milk Sigma, St Louis, MO, 

USA. (#5546) 
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PAS  monoclonal

clone:110B 

rabbit 1:1000 5% BSA New England Biolabs, 

Hertfordshire, UK. 

(#9614) 

PKB  ployclonal rabbit 1:1000 5% milk New England Biolabs, 

Hertfordshire, UK. 

(#9272) 

PKB Ser473  polyclonal rabbit 1:1000 5% BSA New England Biolabs, 

Hertfordshire, UK. 

(#9271) 

TBC1D1 polyclonal sheep 1:1000 5% BSA A generous gift from 

Prof. C. Mackintosh 

University of Dundee, 

Dundee, UK, (Chen et 

al 2008). 

 

2.1.3.2 Secondary detection agents for Western blot ting 

Table  2-2: Secondary detection agents for western blottin g 
Linked 

molecule 

Epitope Host 

species 

Dilution Diluent       

(w/v in 

TBST) 

Source 

HRP mouse IgG  sheep 1:1000 5% milk or 

BSA 

GE Healthcare, 

Little Chalfont, 

Buckinghamshire, 

UK. (#NA931) 

 

HRP rabbit IgG  donkey 1:1000 5% milk or 

BSA 

GE Healthcare, 

Little Chalfont, 

Buckinghamshire, 
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UK. (#NA934) 

 

HRP streptococcus 

sp. Protein G  

n/a 1:1000 5% milk or 

BSA 

Sigma, St Louis, 

MO, USA. 

(#P8170) 

 

2.1.4 Standard solutions 

Unless stated otherwise, all buffers and reagents were made up with distilled water. 

Bradford’s reagent 

35.0 mg/L coomassie brilliant blue 

5.0% (v/v) ethanol 

5.1% (v/v) orthophosphoric acid 

Bradford’s reagent was filtered and stored in the dark. 

 

Coomassie stain 

0.05% (w/v) coomassie brilliant blue  

50% (v/v) methanol 

10% (v/v) acetic acid 

Coomassie stain was filtered. 

 

Coomassie de-stain 

10% (v/v) methanol 

10% (v/v) acetic acid 

 

Enhanced chemiluminescence (ECL) detection reagents 

Solution 1 

0.1 mM Tris-HCl, pH 8.5  

450 mg/L luminol in 2% (v/v) DMSO 

130 mg/L coumaric acid in 1% (v/v) DMSO 
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Solution 2 

0.1 mM Tris-HCl , pH 8.5 

0.02% (v/v) H2O2 

 

HEPES Brij-35 buffer 

50 mM HEPES, pH 7.4 at 4˚C 

1 mM DTT  

0.02% (v/v) Brij-35 

 

Immunoprecipitation (IP) buffer 

50 mM Tris-HCl, pH 7.4 at 4˚C 

150 mM NaCl 

50 mM NaF 

5 mM Na4P2O7 

1 mM EDTA  

1 mM EGTA 

1% (v/v) Triton X-100  

1% (v/v) glycerol 

1 mM DTT 

0.1 mM benzamidine                            added on day of use 

0.1 mM PMSF  

5 µg/ml SBT1  

1 mM Na3VO4 

 

Krebs-Ringer HEPES (KRH) buffer 

119.0 mM NaCl 

20.0 mM HEPES-NaOH, pH 7.4 

5.0 mM NaHCO3 

10.0 mM glucose  

4.8 mM KCl 

2.5 mM CaCl2 

1.2 mM MgSO4 

1.2 mM NaH2PO4  

0.1 mM L-Arginine 
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Krebs-Ringer phosphate (KRP) buffer 

130 mM NaCl 

4.8 mM KCl 

5 mM NaH2PO4, pH 7.4 

1.25 mM MgSO4 

1.25 mM CaCl2
 

 

Lysis buffer 

50 mM Tris-HCl, pH 7.4 (at 4°C)     

50 mM NaF              

1 mM Na4P2O7          

1 mM EDTA              

1 mM EGTA              

1% (v/v) Triton X-100 

250 mM mannitol 

1 mM DTT 

1 mM Na3VO4                            added on day of use 

0.1 mM benzamidine  

0.1 mM PMSF 

5 µg/ml SBTI 

 

Phosphate-buffered saline (PBS) (pH 7.2) 

85 mM NaCl 

1.7 mM KCl 

5 mM Na2HPO4 

0.9 mM KH2PO4 

 

Ponceau S Stain 

0.2% (w/v) ponceau S 

1% (v/v) acetic acid 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) Running buffer 

190 mM glycine 

 62 mM Tris base 

 0.1% (w/v) SDS 
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4 X SDS-PAGE sample buffer 

200 mM Tris-HCl, pH 6.8 

8% (w/v) SDS 

40% (v/v) glycerol 

0.4% (w/v) bromophenol blue 

200 mM DTT 

 

Transfer buffer 

25 mM Tris base 

192 mM glycine 

20% (v/v) ethanol 

 

Tris buffered saline (TBS)  

20 mM Tris-HCl, pH 7.5  

137 mM NaCl 

 

Tris buffered saline + Tween 20 (TBST) 

20 mM Tris-HCl, pH 7.5  

137 mM NaCl 

0.1% (v/v) tween 20 
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2.2 Methods 

2.2.1 Cell Culture Procedures 

2.2.1.1 Cell culture plastic ware 

3T3-L1 cells were cultured in Corning T75 flasks and Falcon 10 cm dishes, 6 well plates 

and 12 well plates. 

Human embryonic kidney (HEK) 293 cells, a generous gift from Dr. S. Yarwood, 

University of Glasgow, were cultured in Corning T75 flasks, T150 flasks, and 24 well 

plates. 

2.2.1.2 Cell culture growth media for 3T3-L1 preadi pocytes 

Preadipocytes were maintained as fibroblasts (passage 2-12) in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% (v/v) newborn calf serum (NCS) and 

200 IU penicillin and 200 µg streptomycin/500ml. Cells were cultured at 37˚C in a 

humidified atmosphere of 10% (v/v) CO2 in media replaced every 48 hr. 

2.2.1.3 Cell culture growth media for HEK 293 cells  

HEK 293 cells were maintained in DMEM supplemented with 5% (v/v) foetal calf serum 

(FCS), 2 mM glutamine and 200 IU penicillin and 200 µg streptomycin/500ml. Cells were 

cultured at 37̊C in a humidified atmosphere of 5% (v/v) CO2 in media replaced every 48 

hr. 

2.2.1.4 Preparation of 3T3-L1 fibroblast differenti ation medium 

Differentiation was initiated using DMEM medium containing 10% (v/v) FCS, 0.5 mM 

methyl isobutylxanthine (IBMX), 0.25 µM dexamethasone, and porcine insulin (1 µg/ml), 

prepared as outlined below. 

A 2.5 mM sterile solution of dexamethasone in ethanol was diluted 1:20 with 10% (v/v) 

FCS/DMEM medium immediately prior to use yielding a 500X stock solution. A 500X 

concentrated sterile solution of IBMX was also prepared by dissolving 110 mg IBMX in 2 
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ml of 1 M KOH. Insulin (1 mg/ml) was then prepared in 0.01 M HCl. Sterile solutions of 

dexamethazone, IBMX and insulin were achieved by passing through a 0.22 µm filter.  

3T3-L1 differentiation medium was prepared by diluting both the dexamethasone and 

IBMX solutions to a 1X concentration in 10% (v/v) FCS/DMEM and then adding insulin 

to a final concentration of 1 µg/ml. 

2.2.1.5 3T3-L1 fibroblast differentiation protocol 

To differentiate the 3T3-L1 fibroblast cells into adipocytes, the cells were grown to 

confluency in 10% (v/v) NCS/DMEM. At 48 hr post confluence, cell medium was 

aspirated and replaced with differentiation medium consisting of 10% (v/v) FCS/DMEM 

containing 0.25 µM dexamethasone, 0.5 mM IBMX and insulin (1 µg/ml). After a further 

two days this medium was aspirated and replaced with 10% (v/v) FCS/DMEM containing 

1 µg/ml insulin. The cells were incubated in this medium for two days, and then the 

medium was aspirated and replaced with 10% (v/v) FCS/DMEM.  At 8-12 days post-

induction of differentiation, cells were used for experimentation.   

2.2.1.6 Passaging of 3T3-L1 fibroblasts 

When cells in T75 flasks were 70-80% confluent, DMEM growth medium was aspirated 

and 5 ml of sterile trypsin (0.05% (v/v) in diaminoethanetetra-acetic acid, disodium salt 

(EDTA)) was added to each T75 flask.  Flasks were then incubated at 37˚C until the cells 

began to lift off. Trypsin was titurated over the surface of the flask until all of the cells 

were detached. An appropriate amount of DMEM growth medium was then added to the 5 

ml of trypsin and used to seed 10 cm cell culture plates, 12 well plates, 6 well plates and 

T75 flasks. 

2.2.1.7 Passaging of HEK 293cells 

When cells in T75 flasks were 70-80% confluent, DMEM growth medium was aspirated 

and 5 ml of sterile trypsin (0.05% (v/v) in EDTA) was added to each T75 flask.  Flasks 

were then incubated at 37˚C until the cells began to lift off. Trypsin was titurated over the 

surface of the flask until all of the cells were detached. 10-15 ml of DMEM was added to 

neutralize the trypsin. The trypsinised cells were then transferred to a 50 ml falcon tube. 

Cells were centrifuged at 2000 x g for 5 min. The media was then aspirated and the cells 
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re-suspended in the appropriate amount of media to seed T75, T150 flasks and 12 well 

plates. 

2.2.1.8 Resurrection of frozen 3T3-L1 cell stocks f rom liquid nitrogen 

Cell cryogenic vials were removed from liquid nitrogen and incubated in a water bath at 

37°C until the cells were thawed. Vials were then transferred to a cell culture sterile flow 

hood where the following procedure was performed. 

The cells were transferred to a T75 flask containing 15 ml of 10% (v/v) NCS/DMEM. 3T3-

L1 cells were then maintained in an incubator at 37°C in an atmosphere of 10% CO2. The 

following day the medium was aspirated to remove dead cell debris and was replaced with 

fresh medium. 

2.2.1.9 Resurrection of frozen HEK 293 cell stocks from liquid nitrogen 

Cell cryogenic vials were removed from liquid nitrogen and incubated in a water bath at 

37°C until the cells were thawed. Vials were then transferred to a cell culture sterile flow 

hood where the following procedure was performed. 

The cells were transferred to a T75 flask containing 15 ml of 5% (v/v) FCS/DMEM. HEK 

293 cells were then maintained in an incubator at 37°C in an atmosphere of 5% CO2. The 

following day the medium was aspirated to remove dead cell debris and was replaced with 

fresh medium. 

2.2.1.10 Preparation of 3T3-L1 murine fibroblast ce lls for freezing 

DMEM medium was aspirated from T75 flasks and 5 ml of trypsin (0.05% (v/v) in EDTA) 

was added to each flask. Flasks were then incubated at 37̊C for 3-5 min until the cells 

were just beginning to lift off the flask. The trypsin solution was gently titurated over the 

surface of the flask until all of the cells were detached. 5 ml of 10% (v/v) NCS/DMEM 

was added to each flask. The cell suspension was then transferred to a 15 ml universal 

tube. The trypsin/cell mix was then centrifuged at 2000 x g for 3 min and the trypsin 

supernatant aspirated. The cell pellet was then re-suspended in 1 ml of freeze medium; 

10% (v/v) NCS/DMEM containing 10% (v/v) dimethyl sulphoxide (DMSO). The re-

suspended cell pellet was then transferred into 1.8 ml polypropylene cryogenic tubes and 
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left for 10 min at room temperature. The cryogenic tubes were then placed into a 

polycarbonate container and stored overnight at -80˚C. The following morning the vials 

were transferred to liquid nitrogen and stored until required. 

2.2.1.11 Preparation of HEK 293 for freezing 

DMEM medium was aspirated from T75 flasks and 5ml of trypsin (0.05% (v/v) in EDTA) 

was added to each flask. Flasks were then incubated at 37̊C for 3-5 min until the cells 

were just beginning to lift off the flask. The trypsin solution was gently titurated over the 

surface of the flask until all of the cells were detached. 5 mls of 5% (v/v) FCS/DMEM was 

added to each flask containing HEK 293 cells. The cell suspension was then transferred to 

a 15 ml universal tube. The trypsin/cell mix was then centrifuged at 2000 x g for 3 min and 

the trypsin supernatant aspirated. The cell pellet was then re-suspended in 1 ml of freeze 

medium; 5% (v/v) FCS/DMEM containing 10% (v/v) DMSO. The re-suspended cell pellet 

was then transferred into 1.8 ml polypropylene cryogenic tubes and was left for 10 min at 

room temperature. The cryogenic tubes were placed into a polycarbonate container and 

stored overnight at -80˚C. The following morning the vials were transferred to liquid 

nitrogen and stored until required. 

2.2.2 Preparation of 3T3-L1 lysates 

3T3-L1 cells cultured on 10 cm diameter Falcon tissue culture dishes were incubated for 2 

hr at 37˚C in 5 ml Krebs-Ringer HEPES (KRH) per dish. After incubating the cells in fresh 

KRH, test substances were then added to the dishes for various durations at 37˚C. The 

medium was removed and 0.4 ml lysis buffer was added to the dishes on ice. The cell 

extract was scraped off using a cell lifter and transferred into pre-cooled 1.5 ml 

microcentrifuge tubes. The extracts were vortex-mixed and centrifuged (21,910 x g, 3 min, 

4˚C) on a bench top centrifuge. The supernatants were stored at -80˚C. 

2.2.3 Protein concentration determination 

Spectrophotometric analysis of 3T3-L1 lysates according to the Bradford method 

(Bradford 1976) was carried out at 595 nm in a spectrophotometer using disposable plastic 

cuvettes. Duplicates of 2 µg, 4 µg and 6 µg bovine serum albumin (BSA) were made up to 

100 µl with H2O and utilised as reference standards. Lysates, analysed in duplicate, were 

diluted (1:10) using distilled water. 5 µl of diluted lysate was then added to 95 µl of 
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distilled water in a cuvette. To all samples and reference standards, 1 ml Bradford’s 

reagent was added and spectrophotometric analysis performed in a WPA S2000 

spectrophotometer within 10 min of reagent addition. The mean absorbance for each 

sample duplicate was calculated and the protein concentration determined by comparison 

to the calculated mean A595 / µg BSA derived from the linear portion of the BSA reference 

standard curve.  

2.2.4 Immunoprecipitation 

2.2.4.1 Immunoprecipitation of AMPK α1, AMPK α2 and CaMKK β from 3T3-

L1 adipocytes 

10 µl (per sample) of protein G-sepharose beads were washed three times in screw cap 

microcentrifuge tubes using 1 ml of immunoprecipitation (IP) buffer (21,910 x g, 1 min at 

4˚C). AMPK α1 (2 ug/sample), AMPK α2 (2 ug/sample) or CaMKKβ (2 ug/sample) were 

then added to the beads. 250 µl of IP buffer was added to the mixture and mixed by 

rotation for 1 hr at 4˚C. The beads were pelleted (21,910 x g, 1 min at 4˚C) and re-

suspended in IP buffer (25% v/v). In 1.5 ml microcentrifuge tubes, 3T3-L1 adipocyte 

lysate (200 µg) was added to 20 µl of the protein G-sepharose bead slurry pre-bound to 

sheep anti-AMPK α1, sheep anti-AMPK α2 antibody or goat anti-CaMKKβ antibody. The 

volume was made up to 300 µl with IP buffer and was mixed for 4 hr at 4˚C on a rotating 

mixer. The beads were then pelleted (21,910 x g, 1 min at 4˚C) and the supernatant 

aspirated. The pellet was washed twice (21,910 x g, 1 min at 4˚C) with 1 ml of high salt (1 

M NaCl) IP buffer and twice (21910 x g, 1 min at 4˚C) with 1 ml of IP buffer. For AMPK 

IPs the pellets were washed (21910 x g, 1 min at 4˚C) with 1 ml of HEPES Brij-35. The 

pellets were stored at -20˚C. 

2.2.4.2 Immunoprecipitation of AS160 and TBC1D1 fro m 3T3-L1 adipocytes 

Using 1.5 ml microcentrifuge tubes, 3T3-L1 adipocyte lysate (200 µg) was added to 6 µl 

of rabbit anti-AS160 antibody (1:12) or (1.5 µg/sample) of sheep anti-TBC1D1 antibody 

and mixed by rotation overnight at 4˚C in screw cap micocentrifuge tubes. The following 

morning 10 µl (per sample) of protein A-sepharose beads or protein G-sepharose beads 

were washed three times (21,910 x g, 1 min at 4˚C) with 1 ml of IP buffer. The beads were 

then re-suspended in IP buffer (25% v/v). 20 µl of the protein A-sepharose bead slurry was 

added to the lysate/anti-AS160 antibody mixture and 20 µl of the protein G-sepharose bead 
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slurry was added to the lysate/anti-TBC1D1 antibody mixture. The mixture was then 

mixed by rotation for 3 hr at 4˚C. The beads were then pelleted (21,910 x g, 1 min at 4˚C) 

and the supernatant aspirated. The pellet was washed twice with 1 ml of high salt (1 M 

NaCl) IP buffer (21,910 x g for 1 min at 4˚C), except when looking for 14-3-3 co-

immunoprecipitation, before washing three times with 1 ml of IP buffer (21,910 x g for 1 

min at 4˚C). The pellets were stored at -20˚C. 

2.2.5 AMPK Assay 

AMPK activity in immunocomplexes was determined by phosphorylation of the peptide 

HMRSAMSGLHLVKRR [SAMS]. The AMPK pellets were re-suspended in 20 µl of 

HEPES Brij-35 buffer. Reaction mixtures (20 µl) containing 5 µl of HEPES Brij-35 buffer, 

5 µl of 1 mM SAMS peptide in HEPES Brij-35 buffer, 5 µl of 1 mM AMP in HEPES Brij-

35 buffer and 5 µl of immunoprecipitate re-suspended in HEPES Brij-35 buffer, were 

prepared in 1.5 ml microcentrifuge tubes on ice and the reaction initiated by the addition of 

5 µl of MgATP solution (1 mM [γ-32P] ATP, 250 - 500 c.p.m./pmol; 25 mM MgCl2 in 

HEPES Brij-35 buffer). Reaction mixtures were then incubated on a vibrating platform in 

an air incubator at 30°C for 10 min. Assay mixtures (15 µl) were spotted onto P81 

phosphocellulose paper, and rinsed, with gentle stirring to remove free ATP, for 5 min in 

1% (v/v) phosphoric acid. A further 2 x 5 min water washes were performed on the 

phosphocellulose paper, before a final 5 min wash with 1% (v/v) phosphoric acid. A 

Beckman Multi-Purpose scintillation counter LS 6500 was used to measure [32P]-labelled 

substrate. 3 ml of scintillation fluid was used per sample. Results were corrected for 

radioactivity recovered in blank reactions lacking the SAMS peptide. One unit of AMPK 

activity is that required to incorporate 1 nmol of 32P into the SAMS substrate 

peptide/min/mg protein.  

2.2.6 SDS-Polyacrylamide Gel Electrophoresis 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed 

using 1.5 mm thick vertical slab gels containing either 6% or 10% acrylamide. 

Slab gels were prepared using Bio-Rad mini-Protean III gel units, with a stacking gel of 

approximately 2 cm deep. The stacking gel consisted of 5% acrylamide/0.136% 

bisacrylamide in 125 mM Tris-HCl, pH 6.8, 0.1% SDS, polymerized with 0.1% (w/v) 
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ammonium peroxidisulphate (APS) and 0.05% (v/v) tetramethylethylenediamine 

(TEMED). 

Cell lysate samples were mixed 3:1 with 4 X SDS-containing sample buffer and heated to 

95°C in a heating block for 5 min prior to separation by SDS-PAGE on Tris buffered gels. 

Prestained broad range (6-175 kDa) protein markers, were used as a standard. 

Gels were electrophoresed using the Bio-Rad Protean III system at a constant voltage of 80 

V for stacking and 150 V through the separating gel. Gels were electrophoresed until the 

tracking dye had migrated to the bottom of the gel and good separation of the molecular 

weight markers had been obtained. 

2.2.7 Western Blotting of Proteins 

2.2.7.1 Electrophoretic transfer of proteins from g els onto nitrocellulose 

membranes 

Proteins were separated by SDS-PAGE as previously described (2.2.6). The gels were 

removed from the plates and placed on top of an equal-sized sheet of nitrocellulose (0.45 

µm pore size), pre-wet with transfer buffer and then placed between 2 layers of 3 MM filter 

paper also pre-wet with transfer buffer. The ‘sandwich’ was then inserted between the 

plates of the gel holder cassette and transfer was performed using a Bio-Rad mini Protean 

III trans-blot electrophoretic transfer cell at a constant current of 40 mA overnight or at 60 

V for 2 hr. The nitrocellulose membranes were then removed from the transfer cassette and 

the efficiency of transfer determined by the presence and intensity of pre-stained molecular 

weight standards. Membranes were also briefly stained with Ponceau to check for equal 

loading of the gels. 

2.2.7.2 Blocking of membranes and probing with anti bodies 

Non-specific sites on the nitrocellulose membranes were blocked by incubation with 

shaking in tris buffered saline (TBS)/5% (w/v) milk for 30 min at room temperature. After 

washing (3 x 5 min) the membrane in tris buffered saline tween (TBST), the primary 

antibody was applied to the blot and incubated, with shaking, overnight at 4˚C in 

TBST/5% (w/v) milk or TBST/5% (w/v) BSA. After washing (3 x 5 min) in TBST the 

membranes were incubated, with shaking, for 1 hr at room temperature with the 
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appropriate horseradish peroxidase (HRP)-conjugated secondary antibody in TBST/5% 

(w/v) milk or TBST/5% (w/v) BSA. The membranes were then washed (5 x 5 min) in 

TBST. If required, membranes were further washed (3 x 5 min) in high salt (0.5 M NaCl) 

TBST and then washed (2 x 5 min) in TBST.  

2.2.7.3 Immunodetection of proteins using western b lotting and the ECL 

detection system 

Enhanced chemiluminescence (ECL) is a light emitting non-radioactive method for the 

detection of immobilized specific antigens, conjugated directly or indirectly with HRP-

labeled antibodies. HRP is used to catalyze the oxidation of luminol in the presence of 

hydrogen peroxide. Immediately after the oxidation, the luminol is in an excited state 

which decays to ground state via a light emitting pathway. 

Equal volumes of ‘detection reagent 1’ and ‘detection reagent 2’ were mixed and the 

membranes, prepared as described in 2.2.7.2, were immersed in the mix with shaking for 

60 seconds. The detection reagents were then removed, membranes wrapped in cling-film 

and exposed to Kodak film. Finally the films were developed using the X-OMAT 

processor. 

2.2.7.4 Stripping of nitrocellulose membranes 

Nitrocellulose membranes were incubated in 50 mM glycine, pH 2.5 with shaking for 5 

min. Membranes were then washed in TBST for 5 mins. 

2.2.7.5 Densitometric quantification of protein ban ds 

The antibody-detected bands on the developed film were scanned on a Mercury 1200c 

scanner, using Adobe Photoshop software. The intensity of the immuno-detected protein 

bands on the film was measured using ImageJ software. 

2.2.8 2-deoxy-D-glucose uptake assay 

Glucose uptake was measured by the uptake of 2-[3H]-deoxy-D-glucose according to the 

method of Gibbs (Gibbs et al 1988). Cells were cultured on 12 well plates and incubated at 

37˚C in 1 ml of serum free DMEM for 2 hr prior to use. Cells were subsequently incubated 

at 37˚C in 475 µl/well of Krebs-Ringer phosphate (KRP) for 1 hr and test substances added 
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to the plates for various durations at 37˚C. The cells were then stimulated with 10 nΜ 

insulin for 15 min. Glucose transport was initiated by the addition of 2-[3H]-deoxy-D-

glucose (final concentration 50 µmol/l and 1 µCi/ml) to each well. The reaction was 

terminated after 3 min by inverting the plates rapidly to remove the incubation buffer, and 

then by immersing them sequentially in 2 x 2l and 1l of ice-cold phosphate buffered saline 

(PBS). After air drying the plates for 1 hr, 0.5 ml of 1% (v/v) Triton X-100/H2O was 

added to the cell monolayers. A Beckman Multi-Purpose scintillation counter LS 6500 was 

used to measure 2-[3H]-deoxy-D-glucose uptake. 5 ml of scintillation fluid was used per 

sample. Non-specific association of radioactivity was determined in parallel incubations in 

the presence of 10 µmol/l cytochalasin B. 

2.2.9 Nucleotide extraction and analysis 

2.2.9.1 Nucleotide extraction 

3T3-L1 cells cultured in 10 cm diameter dishes were incubated for 2 hr at 37˚C in 5 ml of  

KRH buffer. Test substances were added at 37˚C for various durations. The buffer was 

removed and 500 µl of 5% (w/v) ice cold perchloric acid added to the dishes on ice. The 

extract was scraped off with a cell scraper and transferred to a screw cap microcentrifuge 

tube. Precipitated protein was removed by centrifugation of the extract at 21,910 x g for 3 

min in a microcentrifuge at 4˚C. The supernatant was then extracted twice to remove 

perchloric acid with 10% excess (by volume) of a 1:1 mixture of tri-n-octylamine and 

1,1,2-trichlorotrifluoroethane. Nucleotides were separated by reversed-phase 

chromatography adapted from the method published by Uesugi (Uesugi et al 1997).  

2.2.9.2 Reversed-phase chromatography 

Neutralised perchloric acid extracts were prepared as described (see 2.2.9.1). All analyses 

were performed on a stainless-steel column (250 x 4.6 mm I.D) packed with Chrom Spher 

C18 octadecylsilane (ODS) (5 µm) attached to a Varian Prostar HPLC system. The column 

was equilibrated (30-60 min) with the eluent 0.1 M triethylamine (TEA) phosphate buffer 

pH 8 and methanol (96:4, v/v) at a flow rate of 1.0 ml/min for 25 min at ambient 

temperature (22-23˚C) prior to sample injection. Nucleotides were detected by their 

absorbance at 259 nm, and compared with the elution position of standards; AMP, ADP 

and ATP. Retention times were measured from the time between the injection point (50 µl 

sample) and the peak maximum on the chromatogram. 



Pamela Jane Logan, 2009   Chapter 2, 84 

The concentration of each nucleotide was determined by quantifying the area under the 

peaks, after calibration using standards of a known concentration.  

2.2.9.3 Preparation of TEA phosphate buffer 

Stock solutions of 0.1 M TEA and a mixture of 0.1 M TEA and 0.1 M phosphoric acid 

were filtered through a 0.45 µM filter and kept at 4˚C. The pH of the TEA phosphate buffer 

was adjusted to pH 8 by admixing both of the stock solutions at 23˚C. 

2.2.10 Recombinant  adenoviruses  

2.2.10.1 AMPK adenoviruses 

Adenovirus encoding a dominant negative AMPK mutant (Ad.α1-DN) was constructed 

from cDNA encoding AMPKα1 containing a mutation that alters aspartic acid residue 157 

to alanine (D157A), and adenovirus encoding a constitutively active AMPK mutant 

(Ad.α1312) was constructed from cDNA encoding residues 1-312 of AMPKα1, containing a 

mutation that alters threonine 172 to an aspartic acid (T172D) as described previously 

(Woods et al 2000). These AMPK adenoviruses were a generous gift from Dr. F. Foufelle, 

Centre Biomédical des Cordeliers, Paris. 

2.2.10.2 Adenovirus propagation  

HEK 293 cells in T75 flasks were cultured in DMEM growth media (see 2.2.1.5) and 

passaged at 70-80 % confluency (see 2.2.1.7). Each T75 flask was split into 5 x T150 

flasks. Once 30 x T150 flasks were obtained, and grown to 70-80% confluency, 

recombinant adenoviruses were propagated in the HEK 293 cells. Detached cells were then 

pelleted in 50 ml falcon tubes (5 min at 2000 x g). 100 ml of the supernatant was retained 

to infect more HEK 293 cells, and the pellets pooled and re-suspended in 5 ml of sterile 

PBS.  

2.2.10.3 Adenovirus purification 

In order to lyse the HEK 293 cells containing the adenovirus particles, 5 ml of Arklone P 

(trichlorotrifluroethane) was added to the HEK 293 cell suspension (2.2.10.2) and mixed 

gently by inverting the tube for about 10 seconds. The mixture was left at room 

temperature for 3 min and then centrifuged at 2000 x g for 10 min. The upper layer 
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containing virus was separated from cell debris (interface) and the Arklone P layer (bottom 

layer). 2.5 ml sterile CsCl dissolved in Tris/EDTA (5 mM Tris-HCl, 1 mM EDTA pH 7.8) 

at a density of 1.33 g/ml was added to a sterile centrifuge tube. This was underlaid with 1.5 

ml of sterile 1.45 g/ml CsCl. The virus layer was loaded on the CsCl gradient and 

centrifuged at 100,000 x g in a SW40 rotor using an OptimaTM XL-80K ultracentrifuge at 

8˚C for 90 min. The tube was then punctured just below the virus band with a 21 guage 

needle, and withdrawn into a 2.5 ml syringe. The virus was transferred to a 10 micron 

Slide-A-Lyzer cassette and dialysed against cold Tris/EDTA buffer at 4˚C overnight, and 

against fresh buffer containing 10% (v/v) glycerol for a further 2 hr the following morning. 

The purified virus was removed and stored at -80˚C. 

2.2.10.4 Adenovirus titration 

The Quick TiterTM Adenovirus Titer Immunoassay kit was used to titre the virus. Briefly, 

HEK cells were plated onto a 24 well plate. After 1 hr 100 µl of 10-3, 10-4, 10-5 and 10-6 

diluted virus solutions were added to the wells. The cells were then incubated for 48 hr at 

37°C, 5% (v/v) CO2. To fix the cells the media was removed and replaced with 0.5 ml cold 

methanol and incubated for 20 min at 20˚C. Cells were washed three times in PBS prior to 

blocking with PBS containing 1% (w/v) BSA at room temperature for 1 hr. 250 µl of anti-

Hexon antibody was added to each well and incubated for 1 hr at room temperature. The 

cells were then washed three times in PBS prior to the addition of 250 µl of the HRP-

conjugated secondary antibody to each well and incubated for 1 hr at room temperature. 

The cells were then washed five times in PBS. 250 µl of diaminobenzidine (DAB) was 

added to each well and incubated for 10 min at room temperature. DAB was then aspirated 

and the wells were washed twice with PBS. 1 ml of PBS was added to each well. The 

positive stained cells were counted for at least five separate fields per well using a light 

microscope and 10X objective. Calculation of adenovirus titre was determined (Infectious 

Units/ml). 

2.2.10.5 3T3-L1 adipocyte adenovirus infection 

6 days post differentiation 500 µl of serum free DMEM was added to 3T3-L1 adipocytes 

cultured on 12 well plates. Adenovirus was added (600 ifu/cell) to the dishes and incubated 

for 6 hr at 37̊C in a humidified atmosphere of 10% (v/v) CO2. 500 µls of DMEM / 20% 

FCS was added to the cells for a further 24 hr. The media was replaced with 1 mls DMEM 
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/ 10% FCS and incubated for a further 24 hr before 3T3-L1 cell lysates were prepared (see 

2.2.2) or a glucose transport assay performed (2.2.8). 

2.2.11 Albumin and IgG depletion 

Albumin and immunoglobulin gamma (IgG), two abundant proteins in serum, were 

depleted from human adipose samples collected by Dr J Boyle, University of Glasgow, 

using the ProteoPrep Blue Albumin and IgG Depletion Kit. 

2.2.12 Statistical Analysis 

Results are expressed as mean +/- SEM. Statistically significant differences were 

determined using a one or two-tailed Student's t test (two-sample assuming unequal 

variance), or one-way ANOVA where appropriate, with p < 0.05 as significant.  

The statistics package, Minitab, was used for data analysis of results obtained from human 

adipose tissue samples (chapter 5). Each data set was tested separately for normality using 

the Ryan-Joiner test and subsequently (when required) transformed by logarithmic (log10) 

or square route (sqrt) transformation. The mean and 95% confidence intervals of the mean 

were calculated using transformed data; however, for presentation results were back 

transformed. Statistically significant differences were determined using a paired T-test, 

with p < 0.05 as significant. 
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Chapter 3  - Activation parameters and mechanism 

of AMPK activation by various stimuli in 3T3-L1 

cells 

3.1 Introduction 

3.1.1 Known activators of AMPK in adipocytes 

AMPK has been shown to be activated by some AMPK activators in adipocytes and 

adipose tissue. The adipocytokines leptin (Orci et al 2004) and adiponectin (Wu et al 

2003) have both been shown to activate AMPK in rat white fat tissue and isolated rat 

adipocytes respectively. AICAR has been shown to activate AMPK in isolated rat 

adipocytes and 3T3-L1 adipocytes (Corton et al 1995, Salt et al 2000). The biguanides 

metformin and phenformin have been reported to activate AMPK in 3T3-L1 adipocytes 

and isolated rat adipocytes respectively (Huypens et al 2005, Daval et al 2005). In addition 

the TZD, pioglitazone has also been shown to activate AMPK in vivo in rat adipose tissue 

(Saha et al 2004). Furthermore, the β adrenergic agonist, isoproterenol, has been shown to 

stimulate AMPK activity in isolated rat adipocytes (Moule and Denton 1998) and in 3T3-

L1 adipocytes (Yin et al 2003, Gauthier et al 2008). 

3.1.2 Role for LKB1 as an AMPK kinase in adipocytes 

Indirect arguments suggest that the upstream kinase LKB1 is involved in AMPK activation 

in adipocytes. Phenformin can induce AMPK activation in isolated rat adipocytes by 

decreasing the ATP concentration (Daval et al 2005) and AICAR, which is converted to 

ZMP, a cellular mimetic of AMP, activates AMPK in isolated rat adipocytes and 3T3-L1 

adipocytes (Corton et al 1995, Salt et al 2000). In addition, in transgenic mice expressing 

UCP1 in white adipose tissue, the AMP/ATP ratio is increased and AMPK is activated 

(Matejkova et al 2004). However, a potential role for CaMKK in AMPK activation has yet 

to be demonstrated in adipocytes.  
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3.1.3 AMPK subunit isoform expression  

AMPK is a heterotrimeric complex containing two α, two β, and three γ subunit isoforms 

of which the expression level of each varies between different tissues. The liver 

predominantly expresses the α1 subunit (Stapleton et al 1996) and β1 subunit (Thornton et 

al 1998), where as skeletal muscle predominantly expresses the α2 subunit (Stapleton et al 

1996) and β2 subunit (Thornton et al 1998). Expression profiling of the AMPK γ subunit 

expression across different tissues in human, rat and mouse found that the γ3 subunit 

appears to be predominantly expressed in skeletal muscle, while the γ1 and γ2 subunits 

showed broad tissue distributions (Cheung et al 2000, Mahlapuu et al 2004). In 3T3-L1 

adipocytes both the α1 and α2 catalytic subunits have been shown to be expressed (Salt et 

al 2000). 

In addition to tissue distribution, subunit isoforms can also exhibit preferential cellular 

localization. Salt and co-workers showed that the α2 subunit was clearly localized in the 

nucleus of both INS-1 cells and CCL13 cells, while both α subunit isoforms could be 

found in the cytoplasm (Salt et al 1998a). 

3.1.5 Aims 

Although AMPK activation has been previously reported in adipose tissue and cultured 

adipocytes, a thorough investigation of expression of components of the AMPK cascade 

and kinetics of AMPK stimulation has yet to be undertaken.  

AMPK has been shown to be involved in the regulation of adipogenesis (Habinowski and 

Witters 2001, Dagon et al 2006, Giri et al 2006, Tong et al 2008), however the AMPK 

subunit isoform expression throughout adipogenesis remains unknown. 

The 3T3-L1 cell line is derived from disaggregated Swiss mouse embryos. The cell line 

isolated and cloned by Green and Kehinde have a fibroblast like morphology, but, under 

appropriate conditions, the cells differentiate into cells resembling adipocytes which 

synthesise and store TG (Green and Hehinde 1974, Green and Hehinde 1975, Green and 

Hehinde 1976). 3T3-L1 fibroblasts, once confluent, convert to adipocytes in the presence 

of IBMX, dexamethasone, and insulin. Thus, 3T3-L1 cells are used widely as a model 

system to study the differentiation of preadipocytes to adipocytes.  
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In the current study the expression of the upstream AMPK kinases; LKB1 and CaMKKα/β, 

and the downstream AMPK substrates ACC1/2 in 3T3-L1 adipocytes, was investigated. In 

addition, the expression of AMPK subunit isoforms and the relative contribution of the 

catalytic AMPKα subunits to total AMPK activity throughout development from 

fibroblasts to adipocytes was determined using 3T3-L1 cells as a model system. Finally, 

the parameters and molecular mechanism of AMPK activation by various stimuli in 3T3-

L1 adipocytes was investigated.  
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3.2 Results 

3.2.1 Investigating the expression of LKB1, CaMKKαααα, CaMKKββββ, 

ACC1 and ACC2 in 3T3-L1 adipocytes 

The expression of molecules both upstream and downstream of AMPK in the AMPK 

signalling cascade was investigated. The presence of the upstream AMPK kinases; LKB1, 

CaMKKα and CaMKKβ and the downstream substrates of AMPK; ACC1 and ACC2  

were determined by western blotting analysis of 3T3-L1 adipocyte lysates. 

The tumour suppressor LKB1, is expressed in 3T3-L1 adipocytes as demonstrated by the 

presence of two bands (splice variants of LKB1) situated between the 62kDa and 47.5kDa 

molecular weight markers (Fig. 3.1A). These two bands are not present in HeLa cells, 

which lack LKB1. CaMKKα is expressed in 3T3-L1 adipocytes as demonstrated by the 

presence of a band at approximately 63kDa in 3T3-L1 cell lysates (Fig. 3.1B) which 

corresponds to a band present in rat brain extract which is rich in CaMKKα. It appears that 

CaMKKβ is also expressed in 3T3-L1 adipocytes, as there appears to be a faint band at 

approximately 66kDa (Fig. 3.1C) in the 3T3-L1 cell lysate immunoprecipitated with anti-

CaMKKβ antibody corresponding to a band present in rat brain extract, which is abundant 

in CaMKKβ.  

Using anti-ACC antibodies, the presence of a band at approximately 260kDa (Fig. 3.2A) in  

the 3T3-L1 cell lysate, corresponds to a band present in rat liver extract which is rich in 

ACC1, indicating that 3T3-L1 adipocytes express ACC1.  

3T3-L1 cell lysate probed with anti-ACC2 antibody displays a doublet at approximately 

280kDa (Fig. 3.2B). Muscle is rich in ACC2, yet the band detected by the anti-ACC2 

antibody in the rat muscle extract, runs at a molecular weight in between the doublet in the 

3T3-L1 lysate. In addition, the single band in the rat muscle extract (assumed to be ACC2), 

corresponds to the lower molecular weight band, from the doublet, in the rat liver extract. 

Thus the higher molecular weight band, from the rat liver doublet, may be a non-specific 

band and the lower band may correspond to ACC2.  
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Figure  3-1: LKB1, CaMKK α, CaMKKβ and LKB1 expression in 3T3-L1 adipocytes.    
3T3-L1 lysate (25 µg) was resolved by 10% SDS-PAGE, transferred to nitrocellulose, and probed 

with (A) anti-LKB1 antibody or (B) anti-CaMKKα antibody. (C) 3T3-L1 lysate (200 µg) was 

immunoprecipitated using anti-CaMKKβ antibody, resolved by 6% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti-CaMKKβ antibody. Negative control for LKB1 was HeLa cell 

lysate. Br = rat brain extract. IP+ = immunoprecipitation using anti-CaMKKβ antibody in the 

presence of 3T3-L1 lysate. IP- = immunoprecipitation using anti-CaMKKβ antibody in the absence 

of 3T3-L1 lysate. The positions of the molecular weight markers are shown to the left of the gels. 
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Figure  3-2: ACC1 and ACC2 expression in 3T3-L1 adipocytes.  
3T3-L1 lysate (60 µg) was resolved by 6% SDS-PAGE, transferred to nitrocellulose, and probed 

with (A) anti-ACC1 antibody or (B) anti-ACC2 antibody. Li = rat liver extract, Mu = rat muscle 

extract. The position of the molecular weight markers are shown to the left of the gel. 
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3.2.2 AMPK subunit isoform expression during adipogenesis 

To investigate AMPK subunit isoform expression during adipogenesis, lysates obtained 

from 3T3-L1 cells every 48 hr post differentiation were analysed by western blotting.  

As shown below (Fig. 3.3) the α1 subunit isoform expression level was not significantly 

altered throughout adipogenesis.  

Unfortunately, densitometric analysis for α2 expression could not be accurately performed 

on fibroblasts (day 0) due to smearing in most blots. The α2 subunit isoform expression 

level (Fig. 3.4) is undetectable at 2 days post differentiation. Modest expression levels of 

α2 were detected at 4 days post differentiation, however a significant (p < 0.05) increase, 

compared to 2 days post differentiation, in α2 expression was observed at 6, 8, 10 and 12 

days post differentiation. Interestingly, there is also an intense band recognised by the anti- 

AMPK α2 antibody resolving with a higher molecular mass than that of α2 which appears 

to decrease throughout adipogenesis. 

β1 is expressed in fibroblasts, however expression levels (Fig. 3.5) are significantly (p < 

0.05) decreased throughout differentiation. The maximum significant (p < 0.05) reduction 

in expression level, compared to fibroblasts at day 0, was 74 +/- 3.5 % which was observed 

after 8 days post differentiation.  

β2 (Fig. 3.6) is also expressed in fibroblasts, however there is a general increase in β2 

expression levels throughout adipogenesis. A maximum 1.66 +/- 0.2 fold increase in 

expression levels, of β2 was observed at 10 days post differentiation, compared to 

fibroblasts at day 0.  

γ1 (Fig. 3.7) is expressed in fibroblasts, and expression levels were found to increase 

during adipogenesis with significant (p < 0.05) increases, compared to fibroblasts, in 

expression levels at 10 and 12 days post differentiation. A maximum significant (p < 0.05), 

2.55 +/- 0.31 fold increase in expression levels of γ1 was observed at 12 days post 

differentiation, compared to fibroblasts at day 0. 

 γ2 (Fig. 3.8) and γ3 (Fig. 3.9) are both expressed in fibroblasts. It should be noted that the 

doublet (52/54 kDa) recognised by the anti-AMPK γ3 antibody corresponds to different 

splice variants of the γ3 isoform. Unfortunately, densitometric analysis could not be 
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accurately performed on fibroblasts (day 0) due to smearing.  In general, the expression 

levels of both γ2 and γ3 are decreased through out adipogenesis. Significant (p < 0.05) 

reductions in γ3 expression levels occurred at 8, 10 and 12 days post differentiation, with a 

maximum significant (p < 0.05) 51 +/- 13 % reduction in expression occurring at 12 days 

post differentiation, compared to 2 days post differentiation.  
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Figure  3-3: AMPK α1 subunit expression during adipogenesis 
Lysates (15 µg) obtained from cells at various time points post differentiation were resolved by 10% 

SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK α1 and anti-GAPDH 

antibodies. K = purified rat liver AMPK (positive control). (A) Quantification of AMPK α1 expression 

was determined by comparison with total GAPDH by densitometric analysis. Data shown 

represents the mean % maximum +/- S.E.M of three independent experiments. (B) Representative 

blots from three independent experiments. The position of the molecular weight markers are shown 

to the left of the gel. 
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Figure  3-4: AMPK α2 subunit expression during adipogensis. 
Lysates (15 µg) obtained from cells at various time points post differentiation were resolved by 10% 

SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK α2 and anti-GAPDH 

antibodies. K = purified rat liver AMPK (positive control). (A) Quantification of AMPK α2 expression 

was determined by comparison with total GAPDH using densitometric analysis, *p < 0.05 (one-way 

ANOVA), compared to 2 days post differentiation. Data shown represents the mean % maximum 

+/- S.E.M of three independent experiments. (B) Representative blots from three independent 

experiments. The position of the molecular weight markers are shown to the left of the gel. 
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Figure  3-5: AMPK β1 subunit expression during adipogenesis 
Lysates (15 µg) obtained from cells at various time points post differentiation were resolved by 10% 

SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK β1 and anti-GAPDH 

antibodies. K = purified rat liver AMPK (positive control). (A) Quantification of AMPK β1 expression 

was determined by comparison with total GAPDH using densitometric analysis, *p < 0.05 (one-way 

ANOVA), compared to 0 days post differentiation. Data shown represents the mean % maximum 

+/- S.E.M of three independent experiments. (B) Representative blots from three independent 

experiments. The position of the molecular weight markers are shown to the left of the gel. 
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Figure  3-6: AMPK β2 subunit expression during adipogenesis. 
Lysates (15 µg) obtained from cells at various time points post differentiation were resolved by 10% 

SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK β2 and anti-GAPDH 

antibodies. H = rat heart extract, M = rat muscle extract (positive controls). (A) Quantification of 

AMPK β2 expression was determined by comparison with total GAPDH using densitometric 

analysis. Data shown represents the mean % maximum +/- S.E.M, of three independent 

experiments. (B) Representative blots from three independent experiments. The position of the 

molecular weight markers are shown to the left of the gel. 
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Figure  3-7: AMPK γ1 subunit expression during adipogenesis. 
Lysates (15 µg) obtained from cells at various time points post differentiation were resolved by 10% 

SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK γ1 and anti-GAPDH 

antibodies. (A) Quantification of AMPK γ1 expression was determined by comparison with total 

GAPDH using densitometric analysis, *p < 0.05 (one-way ANOVA), compared to 0 days post 

differentiation. Data shown represents the mean % maximum +/- S.E.M of three independent 

experiments. (B) Representative blots from three independent experiments. The position of the 

molecular weight markers are shown to the left of the gel. 
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Figure  3-8: AMPK γ2 subunit expression during adipogenesis. 
Lysates (15 µg) obtained from cells at various time points post differentiation were resolved by 10% 

SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK γ2 and anti-GAPDH 

antibodies. (A) Quantification of AMPK γ2 expression was determined by comparison with total 

GAPDH using densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of 

three independent experiments. (B) Representative blots from three independent experiments. The 

position of the molecular weight markers are shown to the left of the gel. 
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Figure  3-9: AMPK γ3 subunit expression during adipogenesis. 
Lysates (15 µg) obtained from cells at various time points post differentiation were resolved by 10% 

SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK γ3 and anti-GAPDH 

antibodies. (A) Quantification of AMPK γ3 expression was determined by comparison with total 

GAPDH using densitometric analysis, *p < 0.05 (one-way ANOVA), compared to 2 days post 

differentiation. Data shown represents the mean % maximum +/- S.E.M of three independent 

experiments. (B) Representative blots from three independent experiments. The position of the 

molecular weight markers are shown to the left of the gel. 
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3.2.3 Investigating catalytic α-subunit isoform specific AMPK 

activity during adipogenesis 

AMPK was immunoprecipitated from fibroblasts and 3T3-L1 adipocytes in order to 

determine the contribution of the two catalytic AMPK subunits to total AMPK activity 

throughout adipogenesis. As shown below (Fig. 3.10A), the α1 subunit was found to 

contribute almost all of the total basal AMPK activity in both fibroblasts and adipocytes. In 

addition there was no significant change in total AMPK activity observed between 

fibroblasts and adipocytes throughout adipogenesis. To ensure that the α2 AMPK subunit 

was successfully immunoprecipitated from the 3T3-L1 lysates, α2 immunoprecipitates 

were subjected to western blotting. As shown in figure 3.10B the α2 AMPK subunit was 

successfully immunoprecipitated. Western blotting of the α2 AMPK subunit 

immunoprecipitates also clearly shows (Fig. 3.10B) that α2 AMPK subunit expression is 

increased throughout adipogenesis, which is in support of a previous observation (Fig. 3.4). 
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Figure  3-10: Contribution of the AMPK α1 and AMPK α2 subunits to total AMPK activity 
throughout adipogenesis.  
Fibroblast and 3T3-L1 adipocyte lysates were prepared at the indicated time points throughout 

adipogenesis. Anti-α1 and anti-α2 antibodies were used to immunoprecipitate α1 containing AMPK 

complexes, α2 containing AMPK complexes and total AMPK complexes (α1 and α2) from 3T3-L1 

lysates (100 µg). (A) Immunoprecipitates were then assayed for AMPK activity. Data shown 

represents the mean % basal +/- S.E.M of three independent experiments. The remaining 5 µl from 

the AMPK α2 immunoprecipitates were resolved on 10% SDS-PAGE, transferred to nitrocellulose 

and probed with anti-AMPK α2 antibody. (B) Representative blot from the three independent 

experiments. K=purified rat liver kinase, 3T3-L1 = adipocyte lysate (3 µg) from 12 days post 

differentiation. The position of the molecular weight markers are shown to the left of the gel. 
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3.2.4 Investigating AMPK activation parameters by various stimuli 

in 3T3-L1 adipocytes 

Using a mixture of anti-AMPKα1 and anti-AMPKα2 antibodies, AMPK was 

immunoprecipitated from 3T3-L1 lysates prepared from cells incubated for various 

durations with different stimuli and assayed for AMPK activity. In addition, 

phosphorylation of AMPK at Thr172 in these lysates was also assessed by western 

blotting.  

The AMPK activation parameters and the extent of Thr172 phosphorylation after 

incubation of 3T3-L1 adipocytes with 0.6 M sorbitol, 2 mΜ AICAR, 100 µΜ arsenite, 5 

µΜ A23187, 100 µΜ rosiglitazone, 1 mΜ metformin, 1 µΜ isopreterenol, 5 mΜ sodium 

azide, 1 mΜ H2O2  0.1 µΜ leptin and 300 µM A769662, are shown below (Figs. 3.11 – 

3.21).  

Sorbitol 

Incubation of 3T3-L1 adipocytes with sorbitol (Fig. 3.11) caused a significant (p < 0.05) 

increase, compared to the basal level, in AMPK activity after 5 min, 15 min, 30 min and 60 

min. A significant (p < 0.05) maximum 3.71 +/- 0.54 fold increase in AMPK activity 

occurred after 30 min and was sustained for a further 30 min. In parallel, AMPK Thr172 

phosphorylation was also increased, compared to the basal level. Statistically significant (p 

< 0.05) increases in Thr172 phosphorylation were observed after 5 min, 15 min, 30 min 

and 60 min, with a significant (p < 0.05) maximum 3.5 +/- 0.6 fold increase in Thr172 

phosphorylation, occurring after 30 min.  

AICAR 

AICAR (Fig. 3.12) displayed a tendency to increase AMPK activity. A maximum 2.05 +/- 

0.55 fold increase, compared to the basal level, in AMPK activity, occurred after 30 min, 

although this did not reach statistical significance (p < 0.05), and was sustained for a 

further 30 min. A maximum 1.38 +/- 0.24 fold increase, compared to the basal level, in 

AMPK Thr172 phosphorylation, was observed after 15 min.  
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Figure  3-11: Effect of 0.6 M sorbitol on AMPK activity and  Thr172 phosphorylation. 
3T3-L1 cells were incubated in 0.6 M sorbitol for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 and 

α2 antibodies and assayed for AMPK activity. Data shown represents the mean % basal +/- S.E.M 

of three independent experiments performed in duplicate, *p < 0.05 (1-tail t-test). Basal AMPK 

activity (nmol 32P incorporated into the SAMS substrate peptide/min/mg protein) is 0.15 +/- 0.03 

(mean +/- S.E.M). Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to nitrocellulose, 

and probed with anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) Representative blots are 

shown, from three independent experiments in duplicate. (C) Quantification of AMPKα Thr172 

phosphorylation was determined by comparison with total AMPK using densitometric analysis. 

Data shown represents the mean % maximum +/- S.E.M of three independent experiments 

performed in duplicate, *p < 0.05 (one-way ANOVA). 
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Figure  3-12: Effect of 2 mM AICAR on AMPK activity and Thr 172 phosphorylation. 
3T3-L1 cells were incubated in 2 mM AICAR for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti- AMPK α1 and 

α2 antibodies and assayed for AMPK activity. Data shown represents the mean % basal +/- S.E.M 

of three independent experiments performed in duplicate. Basal AMPK activity (nmol 32P 

incorporated into the SAMS substrate peptide/min/mg protein) is 0.28 +/- 0.06 (mean +/- S.E.M). 

Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to nitrocellulose, and probed with 

anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) Representative blots are shown, from 

three independent experiments in duplicate. (C) Quantification of AMPKα Thr172 phosphorylation 

was determined by comparison with total AMPK using densitometric analysis. Data shown 

represents the mean % maximum +/- S.E.M of three independent experiments performed in 

duplicate. 
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Arsenite 

There was no significant (p < 0.05) increase, compared to the basal level, in AMPK 

activity in 3T3-L1 adipocytes incubated with arsenite for various durations. However, a 

modest maximum 1.76 +/- 0.8 fold increase, compared to the basal level, in AMPK 

activity, was obtained after incubation of 3T3-L1 adipocytes with arsenite (Fig. 3.13) for 

15 min. In addition, there was no significant increase, compared to the basal level, in 

AMPK Thr172 phosphorylation. However, a maximum 1.81 +/- 0.66 fold increase in 

Thr172 phosphorylation occurred after 15 min.  

A23187 

Incubation of 3T3-L1 adipocytes with A23187 (Fig. 3.14) displayed a modest 1.4 increase, 

compared to the basal level, in AMPK activity after 5 min. A significant (p < 0.05) 

maximum 1.61 +/- 0.25 fold increase in AMPK activity occurred at 60 min. There was no 

significant increase, compared to the basal level, in AMPK Thr172 phosphorylation. 

However, a maximum 1.54 +/- 0.73 fold increase in AMPK Thr172 phosphorylation 

occurred at 60 min.  

Rosiglitazone 

A significant (p < 0.05) increase, compared to the basal level, in AMPK activity was 

obtained after incubation of 3T3-L1 adipocytes in rosiglitazone (Fig. 3.15) for 5 min, 15 

min and 60 min. A maximum 2.27 +/- 0.75 fold increase in AMPK activity occurred after 

30 min, although this did not reach statistical significance. There was no significant  

increase, compared to the basal level, in AMPK Thr172 phosphorylation. However, 

rosiglitazone displayed a tendency to increase Thr172 phosphorylation after 15 min, and 

reached a maximum 1.53 +/- 0.41 fold increase after 30 min.  

Metformin 

Metformin (Fig. 3.16) stimulated a subtle significant (p < 0.05) 1.30 +/- 0.07 fold increase, 

compared to the basal level, in AMPK activity after 5 min in 3T3-L1 adipocytes. A 

maximum 1.35 +/- 0.35 fold increase was observed after 30 min, although this did not 

reach statistical significance (p < 0.05). There was no significant increase, compared to the 

basal level, in AMPK Thr172 phosphorylation. However, a maximum 1.79 +/- 0.51 fold 

increase in Thr172 phosphorylation was obtained after 5 min. 
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Figure  3-13: Effect of 100 µM arsenite on AMPK activity and Thr172 phosphorylat ion. 
3T3-L1 cells were incubated in 100 µM arsenite for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti- AMPK α1 and 

α2 antibodies and assayed for AMPK activity. Data shown represents the mean % maximum +/- 

S.E.M of three independent experiments performed in duplicate. Basal AMPK activity (nmol 32P 

incorporated into the SAMS substrate peptide/min/mg protein) is 0.14 +/- 0.01 (mean +/- S.E.M). 

Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to nitrocellulose, and probed with 

anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) Representative blots are shown, from 

three independent experiments in duplicate. (C) Quantification of AMPKα Thr172 phosphorylation 

was determined by comparison with total AMPK using densitometric analysis. Data shown 

represents the mean % maximum +/- S.E.M of three independent experiments performed in 

duplicate. 
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Figure  3-14: Effect of 5 µM A23187 on AMPK activity and phosphorylation. 
3T3-L1 cells were incubated in 5 µM A23187 for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 and 

α2 antibodies and assayed for AMPK activity. . Data shown represents the mean % maximum +/- 

S.E.M of three independent experiments performed in duplicate, *p < 0.05 (1-tail t-test). Basal 

AMPK activity (nmol 32P incorporated into the SAMS substrate peptide/min/mg protein) is 0.30 +/- 

0.13 (mean +/- S.E.M).  Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) 

Representative blots are shown, from three independent experiments in duplicate. (C) 

Quantification of AMPKα Thr172 phosphorylation was determined by comparison with total AMPK 

using densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments performed in duplicate. 
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Figure  3-15: Effect of 100 µM rosiglitazone on AMPK activity and phosphorylatio n. 
3T3-L1 cells were incubated in 100 µM rosiglitazone for various times and lysates prepared. (A) 

Total AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 

and α2 antibodies and assayed for AMPK activity. Data shown represents the mean % maximum 

+/- S.E.M of three independent experiments performed in duplicate, *p < 0.05 (1-tail t-test). Basal 

AMPK activity (nmol 32P incorporated into the SAMS substrate peptide/min/mg protein) is 0.32 +/- 

0.04 (mean +/- S.E.M). Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti- AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) 

Representative blots are shown, from three independent experiments in duplicate. (C) 

Quantification of AMPKα Thr172 phosphorylation was determined by comparison with total AMPK 

using densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments performed in duplicate. 
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Figure  3-16: Effect of 1 mM metformin on AMPK activity and  phosphorylation. 
3T3-L1 cells were incubated in 1 mM metformin for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 and 

α2 antibodies and assayed for AMPK activity. Data shown represents the mean % maximum +/- 

S.E.M of three independent experiments performed in duplicate, *p < 0.05 (1-tail t-test). Basal 

AMPK activity (nmol 32P incorporated into the SAMS substrate peptide/min/mg protein) is 0.27 +/- 

0.02 (mean +/- S.E.M). Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) 

Representative blots are shown, from three independent experiments in duplicate. (C) 

Quantification of AMPKα Thr172 phosphorylation was determined by comparison with total AMPK 

using densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments performed in duplicate. 
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Isoproterenol 

A significant (p < 0.05) (Fig. 3.17) increase, compared to the basal level, in AMPK activity 

was observed after incubation of 3T3-L1 adipocytes with isoproterenol for 15 min. A 

maximum 1.99 +/- 0.78 fold increase in AMPK activity was obtained after 30 min, 

although this did not reach statistical significance. There was no significant increase, 

compared to the basal level, in AMPK Thr172 phosphorylation. However, a maximum 

subtle 1.18 +/- 0.40 fold increase in Thr172 phosphorylation did occur after 15 min. 

Sodium azide 

Incubation of 3T3-L1 adipocytes with sodium azide (Fig. 3.18) displayed a tendency to 

increase AMPK activity, compared to the basal level. A maximum 3.01 +/- 0.79 fold 

increase was obtained after 30 min, although this did not reach statistical significance. A 

maximum 2.3 +/- 0.37 fold increase, compared to the basal level, in AMPK Thr172 

phoshorylation was observed after incubation of the 3T3-L1 adipocytes with azide for 15 

min. 

Hydrogen peroxide 

Incubation of 3T3-L1 adipocytes with hydrogen peroxide (Fig. 3.19) caused a significant 

increase, compared to the basal level, in AMPK activity after 15 min, 30 min and 60 min. 

A maximum 1.92 +/- 0.17 fold increase in AMPK activity occurred after 30 min, and was 

sustained for a further 30 min. In parallel, hydrogen peroxide displayed a significant 

increase, compared to the basal level, in Thr172 phosphorylation after 5 min, 15 min, 30 

min and 60 min, with a maximum 3.32 +/- 0.33 fold increase in Thr172 phosphorylation 

occurring after 60 min. 

Leptin 

Incubation of 3T3-L1 adipocytes with leptin (Fig. 3.20) displayed a tendency to increase 

AMPK activity, compared to the basal level. A maximum 2.3 +/- 0.72 fold increase in 

AMPK activity occurred after 30 min, although it did not reach statistical significance. 

There was no significant increase, compared to the basal level, in AMPK Thr172 

phosphorylation. However, a maximum 1.55 +/- 0.66 fold increase in Thr172 

phosphorylation was observed at 30 min. 
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A769662 

Incubation of 3T3-L1 adipocytes with the novel direct AMPK activator, A769662, (Fig. 

3.21) caused a significant (p < 0.05) increase, compared to the basal level, in AMPK 

activity after 30 min and 60 min. A maximum 1.9 +/- 0.29 fold increase in AMPK activity 

was observed after 60 min. In parallel, A769662 caused an increase, compared to the basal 

level, in Thr172 phosphorylation after 15 min, 30 min and 60 min, with a maximum 

significant (p < 0.05) 1.92 +/- 0.10 fold increase in Thr172 phosphorylation, occurring 

after 60 min. 
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Figure  3-17: Effect of 1 µM isoproterenol on AMPK activity in 3T3-L1 adipocyt es 
3T3-L1 cells were incubated in 1 µM isoproterenol for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 and 

α2 antibodies and assayed for AMPK activity. Data shown represents the mean % maximum +/- 

S.E.M of three independent experiments performed in duplicate, *p < 0.05 (1-tail t-test). Basal 

AMPK activity (nmol 32P incorporated into the SAMS substrate peptide/min/mg protein) is 0.36 +/- 

0.16 (mean +/- S.E.M). Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) 

Representative blots are shown, from three independent experiments in duplicate. (C) 

Quantification of AMPKα Thr172 phosphorylation was determined by comparison with total AMPK 

using densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments performed in duplicate. 
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Figure  3-18: Effect of 5 mM sodium azide on AMPK activity and phosphorylation. 
3T3-L1 cells were incubated in 5 mM sodium azide for various times and lysates prepared. (A) 

Total AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 

and α2 antibodies and assayed for AMPK activity. Data shown represents the mean % maximum 

+/- S.E.M of three independent experiments performed in duplicate. Basal AMPK activity (nmol 32P 

incorporated into the SAMS substrate peptide/min/mg protein) is 0.40 +/- 0.04 (mean +/- S.E.M). 

Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to nitrocellulose, and probed with 

anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) Representative blots are shown, from 

three independent experiments in duplicate. (C) Quantification of AMPKα Thr172 phosphorylation 

was determined by comparison with total AMPK using densitometric analysis. Data shown 

represents the mean % maximum +/- S.E.M of two independent experiments performed in 

duplicate. 
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Figure  3-19: Effect of 1 mM hydrogen peroxide on AMPK acti vity and phosphorylation. 
3T3-L1 cells were incubated in 1 mM hydrogen peroxide for various times and lysates prepared. 

(A) Total AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK 

α1 and α2 antibodies and assayed for AMPK activity. Data shown represents the mean % 

maximum +/- S.E.M of three independent experiments performed in duplicate, *p < 0.05 (1-tail t-

test). Basal AMPK activity (nmol 32P incorporated into the SAMS substrate peptide/min/mg protein) 

is 0.10 +/- 0.01 (mean +/- S.E.M). Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) 

Representative blots are shown, from three independent experiments in duplicate. (C) 

Quantification of AMPKα Thr172 phosphorylation was determined by comparison with total AMPK 

using densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments performed in duplicate, *p < 0.05 (one-way ANOVA). 
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Figure  3-20: Effect of 0.1 µM leptin on AMPK activity and phosphorylation. 
3T3-L1 cells were incubated in 0.1 µΜ leptin for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 and 

α2 antibodies and assayed for AMPK activity. Data shown represents the mean % maximum +/- 

S.E.M of three independent experiments performed in duplicate, *p < 0.05 (1-tail). Basal AMPK 

activity (nmol 32P incorporated into the SAMS substrate peptide/min/mg protein) is 0.28 +/- 0.14 

(mean +/- S.E.M). Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to nitrocellulose, 

and probed with anti-AMPKα Thr172 and anti-Pan AMPKα antibodies. (B) Representative blots are 

shown, from three independent experiments in duplicate. (C) Quantification of AMPKα Thr172 

phosphorylation was determined by comparison with total AMPK using densitometric analysis. . 

Data shown represents the mean % maximum +/- S.E.M of three independent experiments 

performed in duplicate. 
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Figure  3-21: Effect of 300 µM A769662 on AMPK activity and phosphorylation. 
3T3-L1 cells were incubated in 300 µМ A769662 for various times and lysates prepared. (A) Total 

AMPK was immunoprecipitated from 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 and 

α2 antibodies and assayed for AMPK activity. Data shown represents the mean % maximum +/- 

S.E.M of three independent experiments, *p < 0.05 (1-tail t-test). Basal AMPK activity (nmol 32P 

incorporated into the SAMS substrate peptide/min/mg protein) is 0.25 +/- 0.025 (mean +/- S.E.M). 

Lysates (30 µg) were resolved by 7% SDS-PAGE, transferred to nitrocellulose, and probed with 

anti-AMPKα Thr172 and anti-AMPKα1 antibodies. (B) Representative blots are shown, from three 

independent experiments in duplicate. (C) Quantification of AMPKα Thr172 phosphorylation was 

determined by comparison with total AMPK using densitometric analysis. Data shown represents 

the mean % maximum +/- S.E.M of three independent experiments, *p < 0.05 (one-way ANOVA). 

 



Pamela Jane Logan, 2009   Chapter 3, 119 

3.2.5 Investigation of the molecular mechanism of AMPK 

activation by various stimuli in 3T3-L1 adipocytes 

3.2.5.1 Effect of STO-609 on AMPK activity in respo nse to various stimuli 

To determine whether any of the stimuli activate AMPK via CaMKK in 3T3-L1 

adipocytes, the cells were treated with the different stimuli, in the presence or absence of 

the CaMKK inhibitor STO-609 (Tokumitsu et al 2002). AMPK was immunoprecipitated 

with a mixture of anti-AMPKα1 and anti-AMPKα2 antibodies, and total AMPK activity 

assayed. 

In the presence of STO-609, A23187-stimulated AMPK activity was significantly (p < 

0.05) abrogated. A statistically significant (p < 0.05) increase in AMPK activity was 

obtained from AICAR, sorbitol and azide in the presence and absence of STO-609, 

isoproterenol, metformin, arsenite and A23187 in the absence of STO-609 and 

rosiglitazone in the presence of STO-609. AMPK stimulated activity by all these 

activators, apart from A23187, was not significantly altered in the presence of STO-609. 

Leptin and hydrogen peroxide, in the presence and absence of STO-609, did not cause a 

significant (p < 0.05) increase in AMPK activity compared to basal levels. 

These results suggest these activators, apart from A23187, may activate AMPK via a 

CaMKK independent pathway (Fig. 3.22).  
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Figure  3-22: Effect of STO-609 on AMPK activity, stimulate d by different AMPK activators. 
Lysates were prepared from cells pre-incubated in the presence and absence of the CaMKK 

inhibitor STO-609 (25 µM) for 20 min, prior to the addition of 5 mM sodium azide, 0.6 M sorbitol, 2 

mM AICAR, 5 µM A23187, 100 µM rosiglitazone, 1 mM metformin, 1 µM isopreterenol, 1 mM H2O2 

and 0.1 µM leptin for 30 min or 100 µM arsenite for 15 min. Total AMPK activity was 

immunoprecipitated from the 3T3-L1 lysates (200 µg) with a mixture of anti-AMPK α1 and α2 

antibodies and assayed for AMPK activity. Data shown represents the mean % basal +/- S.E.M of 

three independent experiments performed in duplicate, *p < 0.05 (1-tail t-test), increase in AMPK 

activity, relative to control. †p < 0.05 (2-tail t-test), compared to the presence of STO-609. Basal 

AMPK activity was 0.315 +/- 0.03 nmol/min/mg (SEM). 
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3.2.5.2 Effect of various stimuli on the AMP/ATP an d ADP/ATP ratios 

HPLC was used to determine whether any of the AMPK activators caused a change in the 

cellular adenine nucleotide ratios (AMP/ATP or ADP/ATP). 

The elution times of AMP, ADP, and ATP are shown below (Fig. 3.23).  

To ensure that other common nucleosides/nucleotides did not have an elution time that 

would mask the AMP, ADP or ATP peaks, the elution times of the candidate molecules; 

adenosine, cAMP and ZMP were determined. It was established that these molecules had 

distinct elution times, as shown below (Fig. 3.24-3.26).  

As AICAR is phosphorylated to the nucleotide ZMP in cells, nucleotide extracts from 

AICAR-treated cells were subjected to HPLC to ensure separation and identification of the 

ZMP/AMP peaks. Analysis (Figs. 3.27 and 3.28) of the chromatogram from the nucleotide 

extract of AICAR treated cells, suggested that the peaks occurring at 4.4 min and 5.4 min 

are ZMP and AICAR respectively.  

3T3-L1 adipocytes were incubated in the presence of various stimuli, prior to nucleotide 

extraction and analysis using HPLC. A significant (p < 0.05) 4.14 +/- 0.38, 4.14 +/- 0.96 

and 2.71 +/- 0.38 fold increase in the ADP/ATP ratio, compared to basal level, was 

observed in cells incubated in the presence of isoproterenol, sodium azide, and 

rosiglitazone respectively (Fig. 3.29).  

None of the AMPK stimuli produced a significant fold increase in the AMP/ATP ratio, 

compared to basal level. However, isoproterenol, sodium azide, rosiglitazone and AICAR 

all displayed a tendency to increase the AMP/ATP ratio compared to basal levels. 
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Figure  3-23: Elution times of AMP, ADP and ATP. 
HPLC analysis, as described in section 2.2.9, of a mixture of 1 nmol each of AMP, ADP and ATP. 

Individual runs of each nucleotide were performed in order to identify the elution time for each 

molecule (data not shown).  
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Figure  3-24: Elution time of adenosine.  
HPLC analysis, as described in section 2.2.9, of (A) a mixture of 2.5 nmol each of AMP, ADP, ATP 

and adenosine, (B) a mixture of 5 nmol each of AMP, ADP and ATP, and (C) 5 nmol adenosine. 
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Figure  3-25: Elution time of cAMP.  
HPLC analysis, as described in section 2.2.9, of (A) a mixture of 5 nmol each of AMP, ADP, ATP 

and cAMP, (B) a mixture of 5 nmol each of AMP, ADP and ATP, and (C) 1 nmol cAMP. 
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Figure  3-26: Elution time of ZMP. 
HLPC analysis, as described in section 2.2.9 of (A) a mixture of 2.5 nmol each of AMP, ADP, ATP 

and ZMP, (B) a mixture of 5 nmol each of AMP, ADP and ATP, and (C) 5 nmol ZMP. 
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Figure  3-27: Identification of a ZMP peak in a nucleotide extract from AICAR treated cells 
using HPLC. 
HPLC analysis, as described in section 2.2.9, of (A) 5 nmol ZMP, (B) a nucleotide extract obtained 

from AICAR treated cells, (C) a nucleotide extract obtained from control cells, spiked with 2.5 nmol 

ZMP and (D) a nucleotide extract obtained from control cells. 
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Figure  3-28: Identification of an AICAR peak in a nucleoti de extract from AICAR treated cells 
using HPLC. 
HPLC analysis, as described in section 2.2.9, of (A) a nucleotide extract obtained from AICAR 

treated cells, (B) a nucleotide extract obtained from control cells, spiked with 1 nmol AICAR, (C) a 

nucleotide extract obtained from control cells and (D)5 nmol AICAR. 
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Figure  3-29: The effect of various AMPK activators on the ADP/ATP ratio. 
Nucleotide extracts were prepared from cells incubated for 15 min in 100 µM arsenite and 30 min 

in 5 mM sodium azide, 0.6 M sorbitol, 1 µM isoproterenol, 2 mM AICAR, 100 µM rosiglitazone, 1 

mM metformin, 5 µM A23187, 0.1 µM leptin or  1 mM hydrogen peroxide. Analysis of nucleotide 

ratios (ADP/ATP) was performed using HPLC, as described in section 2.2.9. Data shown 

represents the mean ADP/ATP ratio +/- S.E.M of three independent experiments performed in 

duplicate, *p < 0.05 (one-way ANOVA). Basal ADP and ATP concentrations were 2.07 µM +/- 0.14 

and 32 µM +/- 1.82 respectively. 

 

 

 



Pamela Jane Logan, 2009   Chapter 3, 129 

 

Figure  3-30: The effect of various AMPK activators on the AMP/ATP ratio 
Nucleotide extracts were prepared from cells incubated for 15 min in 100 µM arsenite and 30 min 

in 5 mM sodium azide, 0.6 M sorbitol, 1 µM isoproterenol, 5 mM azide, 2 mM AICAR, 100 µM 

rosiglitazone, 1 mM metformin, 5 µM A23187, 0.1 µM leptin or 1 mM hydrogen peroxide. AMP and 

ATP were separated and quantified by HPLC, as described in section 2.2.9. Data shown 

represents the mean AMP/ATP ratio +/- S.E.M of three independent experiments performed in 

duplicate. Basal AMP and ATP concentrations were 3.7 µM +/- 0.21 and 32 µM +/- 1.82 

respectively. 
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3.3 Discussion 

The initial studies reported here investigated the expression of molecules both upstream 

and downstream of AMPK in the AMPK signalling cascade.  

3T3-L1 adipocytes expressed LKB1, CaMKKα and CaMKKβ at the protein level. Tumour 

cell lines have been shown to lack the tumour suppressor LKB1 (Tiainen et al 1999). As 

shown in figure 3.1A LKB1 is expressed in 3T3-L1 adipocytes, which is as expected since 

only tumour cells lack the tumour suppressor LKB1. 

CaMKKα/β are both expressed in brain tissue (Sakagami et al 1998) and in mouse skeletal 

muscle (Witczak et al 2007, Jensen et al 2007, McGee et al 2008). In addition CaMKKα 

has been shown to be expressed in mouse liver and adipose tissue (McGee et al 2008). 

Previous work in 3T3-L1 adipocytes has shown the expression of CaMKKβ at the mRNA 

level (Yamauchi et al 2008) however this study is, to our knowledge, the first to show the 

expression at the protein level of both CaMKK isoforms in 3T3-L1 adipocytes (Fig. 

3.1B/C). 

Downstream of AMPK, ACC catalyses the conversion of acetyl CoA to malonyl CoA. The 

relative levels of expression of the two isoforms of ACC, termed ACC1 and ACC2 are 

tissue specific. ACC1 is primarily expressed in liver and adipose, where as ACC2 is 

primarily expressed in cardiac and skeletal muscle (Ha et al 1996).  

As malonyl-CoA is the substrate for fatty acid synthesis, ACC1 which is predominantly 

expressed in liver and adipose, regulates the biosynthesis of long-chain fatty acids. Thus, 

expression of the lipogenic enzyme ACC1 in 3T3-L1 adipocytes (Fig. 3.2A) is also not 

surprising as 3T3-L1 adipocytes undergo significant lipogenesis. In addition previous work 

has shown the expression of ACC1 in 3T3-L1 adipocytes at the mRNA level (Mizuarai et 

al 2005, Kim et al 2004). 

In contrast, ACC2 which is primarily expressed in cardiac and skeletal muscle (Ha et al 

1996), is reported to primarily regulate fatty acid oxidation, whereby malonyl-CoA inhibits 

CPT1, the rate-limiting step in fatty acid uptake and oxidation by mitochondria. The 

identification of the band in the 3T3-L1 lysate (Fig. 3.2B) corresponding to ACC2 remains 

uncertain. Rat and mouse ACC2 are known to differ from each other by 8 amino acid 

residues, whereby rat ACC2 has 2456 amino acid residues and mouse ACC2 has 2448 
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amino acid residues. This would suggest that mouse ACC2 may run at a slightly lower 

molecular weight than rat muscle ACC2. Thus perhaps the intense lower molecular weight 

band, from the doublet, in the 3T3-L1 lysate lane corresponds to ACC2. However, the 

difference of 8 amino acid residues, approximately 800Da, is probably too small to observe 

any difference in migration between rat and mouse ACC2. Previous work in 3T3-L1 

adipocytes has shown the expression of ACC2 at the mRNA level (Du et al 2008). Thus in 

summary, it is likely that the ACC2 protein is expressed in 3T3-L1 adipocytes, however as 

the antibody appears not to be particularly specific, the band corresponding to mouse 

ACC2 in 3T3-L1 adipocytes remains unclear.  

Investigation of AMPK subunit isoform expression (Fig. 3.3-3.9) revealed changes in all 

subunit isoform expression levels throughout adipogenesis, apart from AMPKα1 subunit 

expression which remained at a constant level throughout adipogenesis. An increase in 

expression throughout development from fibroblasts to adipocytes was observed with the 

α2, β2 and γ1 subunits. In contrast β1, γ2 and γ3 subunit expression decreased throughout 

adipogenesis. As the differentiation process involves treatment of fibroblasts with insulin, 

dexamethasone and IBMX on day 0 and insulin on day 2 it is possible that insulin and / or 

IMBX and / or dexamethasone may suppress or promote the expression levels of the 

different subunit isoforms. 

Both α1 and α2 subunits recognise the *(X,β)XXS/TXXX* motif (where * represents a 

hydrophobic residue and β a basic residue). However, it appears that the subunits exhibit 

differences with respect to preferences for the hydrophobic residues as the P-5 and P+4 

positions (Woods et al 1996b). These subtle differences may confer substrate specificity of 

the two isoforms within the cell. Thus increased expression of the α2 subunit throughout 

adipogenesis may allow phosphorylation of specific substrates, such as lipogeneic proteins, 

which may not be phosphorylated by α1.   

Previous work using recombinant AMPK heterotrimeric complexes (Scott et al 2004) and 

native rat complexes (Cheung et al 2000) found that the different γ isoform complexes 

differed in their degree of stimulation by AMP. γ2 displayed the greatest stimulation by 

AMP, while γ1 displayed an intermediate stimulation by AMP and γ3 the lowest 

stimulation by AMP. In this study during adipogenesis the γ1 subunit expression is 

increased, where as the γ2 and γ3 subunit expression is decreased. There was no significant 

(p < 0.05) difference in total AMPK activity (Fig. 3.10), as determined under a saturating 

AMP concentration (200µМ), between fibroblasts and adipocytes. Thus it would be 
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interesting to investigate the sensitivity to AMP, of AMPK complexes 

immunoprecipitated, from both fibroblasts and adipocytes, given that the expression levels 

of the γ subunit isoforms are altered during adipogenesis.   

Previous work in human adipose tissue (Lihn et al 2004) and rat adipocytes (Daval et al 

2005) found that the α1 catalytic subunit accounts for the major part of basal AMPK 

activity. Interestingly, the α1 subunit was found to account for almost all total basal AMPK 

activity in both fibroblasts and adipocytes throughout adipogenesis, while the α2 subunit 

displayed negligible contribution to total basal AMPK activity (Fig. 3.10). Salt and co-

workers also found that the α1 subunit accounts for the majority of the basal AMPK 

activity in 3T3-L1 adipocytes (Salt et al 2000). However, in contrast to this study, Salt and 

co-workers (Salt et al 2000), also found that the α2 subunit contributed about 20% to the 

total basal AMPK activity. Thus in this current study it was initially thought that the lack 

of α2-specific AMPK activity might be due to the failure of the anti-α2 antibody to 

successfully immunoprecipitate the AMPK complexes containing α2 subunits. However, 

this seems unlikely as α2 is detected in the α2 immunoprecipitates as shown in figure 3.10 

The relative contribution of the α1 and α2 isoforms to total AMPK activity in rat liver is 

approximately equal (Woods et al 1996b). Equal volumes of the rat liver kinase (K) were 

used as a positive control for α1 and α2 subunit expression blots (Fig. 3.3 and 3.4). 

Comparable intensities of the rat liver kinase (K) with expression levels of the α1 and α2 

isoforms suggests there is indeed far less α2 subunit expression in fibroblasts and 

adipocytes compared to α1 i.e the intensity of the α2 band in the purified rat liver kinase 

detected by the anti-α2 antibody is more intense compared to the 3T3-L1 lysate, whereas 

the α1 band detected by the anti-α1 antibody in the purified liver kinase is less intense 

compared to the 3T3-L1 lysates suggesting that α1 expression is far more abundant than α2 

throughout adipogenesis. Thus, in conclusion, it is likely that α1 may account for almost all 

total AMPK activity in this study, due to its predominant expression level. Thus the only 

other possible explanation for the discrepancy is that the 3T3-L1 cell passage number and 

initial source were different in this work compared to the work by Salt and co-workers 

(Salt et al 2000), and that either of these differences altered the contribution of the α2 

subunit to the total basal AMPK activity. 

In this study the kinetics of AMPK activity in response to various activators was assessed, 

in order to determine whether there is a correlation between AMPK activation and various 

downstream effects such as glucose transport. The extent of AMPK activation and Thr172 

phosphorylation in the 3T3-L1 adipocytes varied for each of the different stimuli, as shown 
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in (Figs. 3.11-21). In 3T3-L1 adipocytes sorbitol produced the greatest fold increase in 

AMPK activity compared to basal levels. It should be noted that the direct AMPK activator 

A769662 has been shown to activate only β1 containing AMPK complexes (Scott et al 

2008), whereas it is probable that the other stimuli can activate both β1 and β2 containing 

AMPK complexes. Thus potentially this may account for the very modest increase in 

AMPK activity observed with the direct AMPK activator A769662.  

These results support previous studies reporting the stimulation of AMPK activity by 

various AMPK activators in various tissues; arsenite in rat hepatocytes (Corton et al 1994), 

azide in fao hepatoma cells (Witters et al 1991), rosiglitazone in mouse muscle cells (Fryer 

et al 2002b) and in vivo in rat adipose tissue (Ye et al 2004), metformin in rat hepatocytes 

(Zhou et al 2001) and adipocytes (Huypens et al 2005), sorbitol in mouse muscle cells 

(Fryer et al 2002b), AICAR in rat hepatocytes (Corton et al 1995) and adipocytes (Corton 

et al 1995), hydrogen peroxide in NIH-3T3 cells (Choi et al 2001),  leptin in skeletal 

muscle (Minokoshi et al 2002) and adipose tissue (Orci et al 2004), adiponectin in muscle 

and liver (Yamauchi et al 2002) and adipose (Wu et al 2003) and isoproterenol in isolated 

rat epididymal fat cells (Moule and Denton 1998) and in 3T3-L1 adipocytes (Yin et al 

2003).   

Subsequently, this study investigated the molecular mechanisms by which AMPK is 

activated by each test substance in 3T3-L1 adipocytes. This included using the CaMKK 

inhibitor STO-609 and determining whether there was a change in the nucleotide 

ADP/ATP ratio and AMP/ATP ratio by HPLC.  

As mentioned AICAR is converted into ZMP in the cell which functions as a cellular 

mimetic of AMP. Thus like AMP, ZMP causes allosteric activation of AMPK and protects 

phosphorylation of Thr172, by the constitutively active AMPK kinase LKB1, from 

dephosphorylation. Thus, it was not surprising that STO-609 did not inhibit AICAR 

stimulated AMPK activity (Fig. 3.22), and that AICAR did not significantly alter the 

ADP/ATP ratio (Fig. 3.29) and AMP/ATP (Fig. 3.30) ratio. In contrast, the calcium 

ionophore A23187 stimulates AMPK activity via CaMKK. Therefore in the presence of 

STO-609, A23187 stimulated AMPK activity is significantly (p < 0.05) attenuated (Fig. 

3.22). Thus, this study shows that 3T3-L1 adipocytes express CaMKK and exhibit 

CaMKK-dependent AMPK activation upon A23187 stimulation. These results suggest a 

potential role for CaMKK as an upstream AMPK kinase in 3T3-L1 adipocytes. However, 

Hawley et al 2005 showed that CaMKKβ appears to activate AMPK much more rapidly 
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than CaMKKα in cell-free assays. Further work such as siRNA knockdown of CaMKKα/β, 

is required to determine which CaMKK isoform is most catalytically active in 3T3-L1 

adipocytes. 

This current study found that sorbitol did not significantly increase the ADP/ATP ratio 

(Fig. 3.29) and AMP/ATP ratio (Fig. 3.30). Indeed, previous observations in a mouse 

skeletal muscle cell line (Fryer et al 2002b) have concluded that sorbitol can activate 

AMPK without altering the cellular energy level. Sorbitol has been shown to be able to 

increase intracellular calcium levels in the chicken B cell line DT40 (Qin et al 1997) and 

was recently suggested to stimulate AMPK activity in LKB1 deficient HeLa cells via 

CaMKKβ (Woods et al 2005). However this current study suggests that in 3T3-L1 

adipocytes sorbitol appears to be able to activate AMPK in a CaMKK independent and 

nucleotide independent manner (Fig. 3.22). Thus, sorbitol may stimulate AMPK activity in 

adipocytes via an alternative AMPK kinase. A recent study has suggested that TAK1 

(Momcilovic et al 2006) may function as a novel mammalian AMPK kinase. Furthermore 

it should be noted that there is still residual basal AMPK activity in CaMKKβ knockout 

studies in HeLa cells, which lack LKB1 (Woods et al 2005). This could be explained in 

part by the incomplete knockdown of CaMKKβ protein expression in these cells, however 

the possibility still remains that another unidentified upstream kinase is contributing to 

AMPK activity in these cells. This supports the idea that there may be as yet unidentified 

mammalian AMPK kinases, which may exhibit differential tissue expression. 

The β adrenoreceptor agonist isoproterenol has previously been shown to activate AMPK 

in rat epididymal fat cells (Moule and Denton 1998) and 3T3-L1 adipocytes (Yin et al 

2003, Gauthier et al 2008). In addition incubation of isolated adipocytes with the β 

adrenoreceptor agonists, adrenaline and forskolin, also increased AMPK activity and the 

AMP/ATP ratio (Koh et al 2007) (Gauthier et al 2008). This study showed that ST0-609 

does not perturb the ability of isoproterenol (Fig. 3.22) to stimulate AMPK activity in 3T3-

L1 adipocytes, and that it stimulates a statistically significant (p < 0.05) increase in the 

ADP/ATP ratio (Fig. 3.29), and displays a tendency to increase the AMP/ATP ratio (Fig. 

3.30). This suggests that isoproterenol activates AMPK by a mechanism which is 

independent of CaMKK, and dependent on a decrease in the cellular energy level. Thus, in 

3T3-L1 adipocytes, isoproterenol potentially activates AMPK via LKB1. 

A recent study (Gauthier et al 2008) concluded that the activation of AMPK, and 

subsequent inhibition of lipolysis, in 3T3-L1 adipocytes, by agents (isoproterenol, IBMX 



Pamela Jane Logan, 2009   Chapter 3, 135 

and forskoline) that increase cAMP appears to be secondary to an increase in the 

AMP/ATP ratio that accompanies lipolysis and not the direct result of increases in cAMP 

levels and PKA activity, as treatment of cells with orlistat partially inhibited isoproterenol 

induced lipolysis and AMPK activity, yet did not alter cAMP levels or PKA activity. The 

re-esterification of NEFAs back into TG requires their acylation, which is catalysed by 

acyl-CoA synthetase. This process is energy dependent consequently reducing ATP levels 

and increasing AMP levels. Gauthier and co-workers concluded that reduced energy levels 

are possibly due in part to acylation of fatty acids produced during lipolysis, as Triacsin C, 

an acyl-CoA synthetase inhibitor, blunted isoproterenol induced increases in AMPK 

activity and the AMP/ATP ratio.  

Other events may contribute to the reduced energy state which accompanies lipolysis. 

NEFAs cause uncoupling of oxidative phosphorylation which depletes energy levels, 

(Wojtczak et al 1993) and the formation of glycerol-3-phosphate used for the re-

esterification of NEFAs into TG is also energy dependent. 

In addition, NEFAs have been shown to activate AMPK in rat islets, the MIN6 β cell line 

(Wang et al 2007) and  rat L6 skeletal muscle cells (Fediuc et al 2006). Thus, it is possible 

that NEFAs accumulating in adipose tissue following isoproterenol induced lipolysis 

activate AMPK via an AMP/ATP dependent pathway.  

In contrast it has also been shown that activation of AMPK in 3T3-L1 adipocytes by 

isoproterenol stimulates lipolysis (Yin et al 2003). Interestingly, Yin et al 2003, showed 

that cAMP analogues also stimulated AMPK phosphorylation. Furthermore, they showed 

that insulin, which inhibits lipolysis via the activation of PDE3B which breaks down 

cAMP to AMP, antagonized the activation of AMPK by forskolin. Therefore Yin and co-

workers suggested that isoproterenol is activating AMPK via an intermediary rise in cAMP 

levels and not via an increase in AMP levels resulting from degradation by PDE3B (Yin et 

al 2003). 

In this current study the source of this decrease in cellular energy level was not 

investigated. As maximum AMPK activity was observed after 30 min, it is perhaps more 

likely that NEFAs or re-esterification of NEFAs and glycerol to TG may play a role in the 

AMP/ATP dependent stimulation of AMPK activity, rather than elevated AMP levels 

resulting from the degradation of cAMP to AMP by PDE3. To confirm this, a PDE3B 

inhibitor could be used to determine whether isoproterenol is activating AMPK via  
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elevating AMP levels resulting from degradation of cAMP into AMP, or indeed whether 

re-esterification of NEFAs is playing a role in the AMP/ATP dependent stimulation of 

AMPK activity. 

In cells treated with metformin, hydrogen peroxide, leptin and arsenite there was no 

observed increase in the ADP/ATP or AMP/ATP ratio (Fig. 3.29, 3.30). In addition, these 

stimuli did not appear to stimulate AMPK activity in a CAMKK dependent manner (Fig. 

3.22). These results suggest that metformin, hydrogen peroxide, leptin and arsenite all 

activate AMPK via a nucleotide and CAMKK independent manner. However, in general, 

the effect of these activators on AMPK activity is very subtle in 3T3-L1 adipocytes, thus 

potentially masking any alterations in nucleotide levels and effects of STO-609. Leptin, 

hydrogen peroxide and arsenite have previously been shown to activate AMPK, in skeletal 

muscle, NIH-3T3-L1 cells, and rat hepatocytes respectively, and cause an increase in the 

AMP/ATP ratio (Minokoshi et al 2002, Chou et al 2001, Corton et al 1994). Previous 

studies in CHO cells, the rat hepatoma cell line H4IIE and the skeletal muscle cell line H-

2Kb have also reported that metformin activates AMPK without altering the cellular energy 

level (Hawley et al 2002, Fryer et al 2002b). Interestingly, Huypens and co-workers 

showed that prolonged stimulation of 3T3-L1 adipocytes with metformin stimulated 

AMPK activity, as shown by an increase in AMPK Thr172 phosphorylation (Huypens et al 

2005). It has been demonstrated that metformin is transported into liver cells via the 

organic cation transporter 1 (OCT1), stimulating AMPK phosphorylation (Shu et al 2007). 

The same study found that acute treatment of 3T3-L1 adipocytes with metformin did not 

stimulate AMPK Thr172 phosphorylation, and that 3T3-L1 adipocytes exhibited little 

OCT-activity (Shu et al 2007). Thus, it has been suggested (Shu et al 2007) that perhaps 

prolonged metformin treatment results in passive diffusion of metformin into 3T3-L1 

adipocytes which consequently causes an increase in AMPK activity.  

In this study azide and rosiglitazone were both shown to cause a significant (p < 0.05) 

increase in the ADP/ATP ratio (Fig. 3.29), and displayed a tendency to increase the 

AMP/ATP ratio (Fig. 3.30). This supports previous work by Witters and co-workers 

(Witters et al 1991) in fao hepatoma cells and Fryer and co-workers (Fryer et al 2002b) in 

mouse muscle cells that azide and rosiglitazone can both decrease the cellular energy level. 

In addition, in this study these activators did not appear to stimulate AMPK activity in a 

CAMKK dependent manner (Fig. 3.22). Thus, it is possible that both azide and 

rosiglitazone stimulate AMPK activity in 3T3-L1 adipocytes in a LKB1 dependent 

manner. 
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It should be noted that in this study the basal AMP concentration appeared to be greater 

than the basal ADP concentration, which differs from the studies by Fryer and co-workers 

(Fryer et al 2002b) and Luo and co-workers (Luo et al 2007) which reported that the ADP 

concentration was greater than the AMP concentration under basal conditions in muscle 

cells and 3T3-L1 adipocytes respectively. Also, the AMP/ATP ratio in the muscle cells 

under basal conditions was 0.05 and in the 3T3-L1 cells, 0.04, which is lower than the 

AMP/ATP ratio of 0.14 under basal condition in this study. It is possible that another 

molecule not tested in this study such as guanosine monophosphate (GMP), inosine 

monophosphate (IMP), or uridine monophosphate (UMP) may have a similar elution time 

as AMP in this system, which could mask the real AMP peak and account for the 

apparently elevated AMP concentrations. Thus further work is required to determine the 

elution time of other candidates including GMP, IMP and UMP. Furthermore, the 

equilibrium between adenine nucleotides (2ADP ↔ AMP + ATP) refers to free AMP in 

the cell. This study measured the adenine nucleotide ratio using total cellular nucleotide 

concentrations, i.e including AMP bound to proteins. Thus in general these results should 

be taken with caution, given that AMPK is only regulated by the cytosolic AMP/ATP ratio.  

As shown in figure 3.31, there was no simple linear relationship between the fold increase 

in AMPK activity and the ADP/ATP ratio for each stimuli in 3T3-L1 adipocytes. 

 

Figure  3-31: Effects of various stimuli on AMPK activity v ersus ADP/ATP ratio. 
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Figure 3.32 summarises the proposed mechanisms of AMPK activation in 3T3-L1 

adipocytes. AICAR is converted into ZMP in the cell which functions as a cellular mimetic 

of AMP i.e ZMP causes allosteric activation of AMPK and protects phosphorylation of 

Thr172, by the constitutively active AMPK kinase LKB1, from dephosphorylation. The 

novel direct AMPK activator A769662 activates AMPK by mimicking the effects of AMP. 

The calcium ionophore A23187 is thought to stimulate AMPK activity through CaMKK, 

as A23187 stimulated AMPK activity is perturbed by STO-609. AMPK activation by 

isoproterenol, azide and rosiglitazone caused a significant (p < 0.05) increase in the 

ADP/ATP ratio and displayed a tendency to increase the AMP/ATP ratio. In addition 

AMPK stimulated activity by these activators was not significantly altered in the presence 

of STO-609. Therefore it is possible that these activators are stimulating AMPK via an 

LKB1 dependent pathway. Sorbitol, metformin, arsenite, hydrogen peroxide and leptin 

were found to have no significant (p < 0.05) effect on the nucleotide ratios, and AMPK 

stimulated activity by these activators was not significantly altered in the presence of STO-

609. In summary, these results suggest a role for both LKB1 and CaMKK as AMPK 

kinases in 3T3-L1 adipocytes. However, potentially there exists other as yet unidentified 

AMPK kinases in 3T3-L1 adipocytes, which are both nucleotide and calcium independent.  

 

Figure  3-32: Mechanism of acute AMPK activation in 3T3-L1 adipocytes. 
 



139 

Chapter 4 - Role of acute AMPK activation in 

adipocyte insulin action 

4.1 Introduction 

4.1.1 Insulin-stimulated glucose uptake 

Insulin is a polypeptide hormone which is produced in the Islets of Langerhans in the 

pancreas. After feeding, elevated blood glucose levels trigger exocytosis of the insulin 

secretary vesicles and release of insulin into the bloodstream (see 1.2.2). 

Upon insulin signalling (see 1.2.2) in target tissues, glucose transporters which facilitate 

the uptake of glucose into target cells, are transported to the plasma membrane in vesicles. 

In muscle and fat cells the glucose transporter, GLUT4, is responsible for the uptake of 

glucose into the cells where it is stored as glycogen and TG respectively (Saltiel et al 

2001). 

4.1.2 Insulin indepedent glucose uptake 

In muscle, exercise has been reported to stimulate AMPK activity (Winder and Hardie 

1996) and increase glucose transport in an insulin-independent manner, resulting in 

increased translocation of GLUT4 to the plasma membrane from intracellular stores 

(Hayashi et al 1997, Douen et al 1990, Douen et al 1989, Goodyear et al 1991). In 

addition, contraction of isolated rat epitrochlearis muscles via electrical stimulation has 

also been shown to increase AMPK activity and glucose transport in an insulin-

independent manner (Hayashi et al 1998). Like physical exercise, contraction has also been 

reported to increase GLUT4 translocation to the plasma membrane (Goodyear et al 1990, 

Lund et al 1995). 

The AMPK activator AICAR has also been reported to increase glucose transport in L6 

myocytes (Chen et al 2002), isolated rat epitrochlearis muscles (Hayashi et al 1998, 

Hayashi et al 2000, Bergeron et al 1999), perfused rat hindlimbs (Merrill et al 1997) and in 

skeletal muscle of conscious rats (Bergeron et al 1999). In addition, AICAR has been 

shown to potentiate insulin-stimulated glucose transport (Bergeron et al 1999, Hayashi et 
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al 1998) in isolated rat epitrochlearis muscles, and stimulate GLUT4 translocation to the 

plasma membrane in perfused rat hindlimbs (Kurth-Kraczek et al 1999).  

Since exercise, contraction and AICAR all activate AMPK activity and stimulate glucose 

uptake into skeletal muscle independently of insulin-stimulated glucose transport, it has 

been hypothesised that AMPK mediates this effect (Hayashi et al 1998). However 

currently there exists a great deal of confusion as to whether AMPK mediates contraction-

stimulated glucose uptake into muscle due to conflicting studies. Experiments using 

genetically manipulated mice with knockout catalytic (Jørgensen et al 2004) or regulatory 

(Barnes et al 2004) AMPK subunits in skeletal muscles have reported that contraction-

stimulated glucose transport was unaffected. Although AMPK activity was only partially 

reduced in these studies, the AMPK knockouts did inhibit the effect of AICAR on muscle 

glucose transport (Jørgensen et al 2004, Barnes et al 2004). In contrast, another study 

using genetically manipulated mice where AMPK was completely knocked down in 

skeletal muscle by overexpression of functionally inactive AMPK (Mu et al 2001) reported 

that there was a significant reduction in contraction-stimulated glucose transport in fast and 

slow twitch muscles. Interestingly, another study in perfused rat hindlimbs (Derave et al 

2000) showed that there was a significant correlation between AMPK activity and glucose 

transport in contracting fast-twitch muscles, however in slow-twitch muscles glucose 

transport was increased during contraction whereas AMPK activity did not increase. This 

suggests that the role of AMPK may differ between muscle fibre type. 

Interestingly, in adipocytes AICAR was shown to modestly stimulate basal glucose 

transport while demonstrating an inhibitory effect on insulin-stimulated glucose transport 

and GLUT4 translocation to the plasma membrane (Salt et al 2000). Thus the effect of 

AICAR in adipocytes contrasts with the effect of AICAR in skeletal muscle. 

4.1.3 The role of AS160 and TBC1D1 in glucose transport 

AS160 has been identified as a potential target of PKB and AMPK which both mediate 

GLUT4 translocation in response to insulin and AICAR respectively in muscle cells (Bruss 

et al 2005, Thong et al 2007).  

AS160 is a 160kDa Rab GAP which was first discovered using the PAS antibody to 

immunoprecipitate proteins harbouring phosphorylated PKB substrate motifs from insulin-

stimulated adipocytes (Kane et al 2002). In addition to a GAP domain at the C-terminus, 
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AS160 also contains two phospho-tyrosine binding domains and six potential 

phosphorylation sites (Ser318, Ser341, Ser570, Ser588, Thr642, Ser751) that match the 

criteria for a PKB consensus motif (RXRXXS*/T*) (Sano et al 2003). Quantification of 

the relative amount of phosphopeptides derived from extracts of 3T3-L1 adipocytes in the 

presence or absence of insulin revealed that levels of phosphorylation at five of these 

phosphorylation sites (Ser318, Ser570, Ser588, Thr642, and Thr751) was increased with 

insulin (Sano et al 2003). More recently, in HEK 293 cells, Geraghty and co-workers 

identified two novel AS160 sites Thr568 and Ser666, which lie within a motif which is not 

a consensus sequence for PKB (Geraghty et al 2007).   

AS160 has been implicated in insulin-stimulated GLUT4 trafficking of vesicles to the 

plasma membrane. It has been demonstrated in 3T3-L1 cells that AS160 can retain GLUT4 

vesicles intracellularly by the activity of its GAP domain under basal conditions (Eguez et 

al 2005, Larance et al 2005). It has been proposed that AS160 phosphorylation at PAS 

sites in response to insulin promotes exocytosis of GLUT4 vesicles by reducing the GAP 

activity of the protein towards Rab proteins associated with GLUT4 vesicles, as 

transfection of 3T3-L1 adipocytes and L6 GLUT4-myc myoblasts with a constitutively 

active AS160 incapable of being phosphorylated at PAS regulatory motifs displayed 

reduced insulin-induced GLUT4 translocation (Sano et al 2003, Thong et al 2005). 

Despite the finding that AS160 is thought to integrate signals from both PKB and AMPK 

in muscle cells (Bruss et al 2005, Thong et al 2007), it is possible that this is not the case in 

adipocytes due to the opposing action of AICAR on insulin-stimulated glucose transport 

(Salt et al 2000). In addition, it is thought that the inhibitory effect of AICAR on insulin-

stimulated glucose transport in adipocytes is at a site downstream of PKB in the insulin 

signalling cascade, as AICAR appears to have no effect on IRS-1 tyrosine phosphorylation, 

PI3K recruitment to IRS-1 or PKB activity (Salt et al 2000).   

TBC1D1 is a paralogue of AS160, with a predicted molecular mass of 133kDa (Chen et al 

2008). TBC1D1 and AS160 both contain GAP domains which are highly conserved, but 

display sequence variation at the N-terminus and within the two distinct clusters of 

phosphorylated sites that are located either side of the second phospho-tyrosine binding 

domain. TBC1D1 contains predicted PKB phosphorylation sites at Thr596 and Ser507 

corresponding to Thr642 and Ser570 on AS160, respectively (Roach et al 2007). Mass 

spectrometer analysis of TBC1D1 isolated from HEK 293 cells incubated in medium 

containing serum identified Thr596, Ser507, Ser237, Ser263, Ser565, Ser566 and Ser585 
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as phosphorylation sites on TBC1D1 (Chen et al 2008). Interestingly it has been 

established that Ser237 on TBC1D1 becomes phosphorylated in response to treatments that 

elevate levels of active and phosphorylated AMPK in 3T3-L1 adipocytes, HEK 293 cells 

and rat L6 myotubes (Chavez et al 2008, Chen et al 2008). During the course of this work 

TBC1D1 emerged as a Rab GAP also involved in regulating glucose transport. 

TBC1D1 is expressed in 3T3-L1 adipocytes (Chavez et al 2008), however it appears to be 

only 1/20 as abundant as AS160. Insulin treatment of 3T3-L1 adipocytes has been shown 

to cause phosphorylation of TBC1D1 on Thr596 in the PKB phosphorylation motif 

RRRANTL (Roach et al 2007).  TBC1D1 is thought not to be as important as AS160 in 

3T3-L1 cells as TBC1D1 did not contribute significantly to the total GAP activity towards 

the Rab(s) involved in GLUT4 translocation. This was shown by knockdown of TBC1D1 

which did not increase the amount of GLUT4 at the cell surface in the absence of insulin 

(Chavez et al 2008), whereas knockdown of AS160 did (Eguez et al 2005). Interestingly, 

overexpression of TBC1D1 was shown to markedly inhibit insulin-stimulated GLUT4 

translocation (Roach et al 2007) in 3T3-L1 adipocytes, whereas overexpression of AS160 

did not (Sano et al 2003). It was initially thought that perhaps the endogenous PKB was 

insufficient to phosphorylate ectopic TBC1D1 to the extent required. However, in a 

subsequent study overexpressed TBC1D1 was also shown to inhibit GLUT4 translocation 

elicited by ectopic activated PKB which suggests that the GAP activity of TBC1D1 is not 

suppressed by PKB phosphorylation (Chavez et al 2008), whereas the GAP activity of 

AS160 is suppressed by PKB phosphorylation. Thus, although TBC1D1 is expressed in 

3T3-L1 adipocytes, it is considered unlikely to participate significantly in insulin-

stimulated GLUT4 translocation. Hence, in adipocytes it is thought that insulin signals 

GLUT4 translocation primarily through AS160 and not TBC1D1.  

TBC1D1 is highly expressed in skeletal muscle (Chavez et al 2008, Taylor et al 2008) and 

was shown to be phosphorylated at PAS sites in mouse skeletal muscle in vivo by insulin, 

AICAR and contraction (Taylor et al 2008). However AMPK is thought to be the more 

important regulator as semi-quantitative analysis of spectra suggested that AICAR caused 

greater overall phosphorylation of TBC1D1 sites compared to insulin (Taylor et al 2008). 

Recent work by Chavez and co-workers, showed that AICAR partially reversed the 

inhibition of insulin-stimulated GLUT4 translocation by overexpressed TBC1D1 in 3T3-

L1 cells (Chavez et al 2008). These findings have led to the proposal that TBC1D1 may 

participate in the regulation of GLUT4 translocation in response to contraction and/or 

AMPK activation.  
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Insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes is thought to require insulin-

stimulated association of 14-3-3 proteins with phosphorylated AS160 (Ramm et al 2006). 

In rat L6 myotubes, insulin was shown to promote the phosphorylation of Thr596 on 

TBC1D1 but not the binding of 14-3-3 proteins, whereas AMPK activation by AICAR, 

phenformin and A-769662 was shown to promote the phosphorylation of Ser237 on 

TBC1D1 and binding of 14-3-3 proteins. In contrast, AS160 was shown to be 

phosphorylated on its 14-3-3 binding sites (Ser341 and Thr642) and to bind 14-3-3 

proteins in response to insulin, but not the AMPK activator A-769662 in rat L6 myotubes 

(Chen et al 2008). These findings further support the proposal that TBC1D1 and AS160 

may have complementary roles in regulating vesicle trafficking in response to insulin and 

AMPK activation in skeletal muscle. 

The mechanism by which AS160/TBC1D1/Rabs mediate exocytosis of GLUT4 vesicles 

remains undefined. However, the v-SNARE VAMP2 and the t-SNAREs syntaxin4 and 

SNAP23 have been shown to be involved in GLUT4 exocytosis (Bryant et al 2002, Hou 

and Pessin 2007). In addition, the syntaxin 4-binding proteins, Munc18c, tomosyn and 

synip have also been proposed to regulate SNARE complex assembly and GLUT4 

translocation (Kanda et al 2005,  Widberg et al 2003, Yamada  et al 2005). 

4.1.4 Rab proteins 

Rabs are small G-proteins that in their GTP-bound form participate in vesicle movement 

and membrane fusion (Zerial et al 2001). Rabs are activated by replacement of GDP with 

GTP catalysed by GEFs (guanine nucleotide exchange factors). Active Rabs can interact 

with Rab effector proteins on target membranes, which allows tethering of the vesicle to its 

target membrane and other membrane proteins, including the SNARE proteins, to interact, 

facilitating docking of the vesicle to the plasma membrane. SNARE proteins can be 

classified as either v-SNARES, (SNARES associated with the vesicle) and, t-SNARES, 

(SNARES associated with the target membrane) (Bryant et al 2002). GAP degrades GTP 

to GDP which allows the Rabs to be recycled. GDP dissociation inhibitor (GDI) binds the 

Rab inhibiting the exchange of GDP for GTP, and a Rab escort protein escorts the Rab 

back to its original membrane (Fig. 4.1). 
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Figure  4-1: The Rab GTPase cycle. 
The Rab GTPase switches between GDP- and GTP-bound forms, which have different 

conformations. Conversion from the GDP- to the GTP-bound form is caused by nucleotide 

exchange, catalyzed by a GDP/GTP exchange factor (GEF). Conversion from the GTP-to the 

GDP-bound form occurs by GTP hydrolysis, facilitated by a GTPase-activating protein (GAP). The 

GTP-bound form interacts with effector molecules, whereas the GDP-bound form interacts with 

Rab escort protein (REP) and GDP dissociation inhibitor (GDI). Pi, inorganic phosphate.  

Miinea and co-workers identified specific Rab isoforms (Rab1A, 1B, 2A, 3A, or 3D; Rab 

4B, 5A, 5B, 5C, 6A, or 6B; Rab7, 8A, or 8B; Rab10, 11B, 14, 18, and 35) associated with 

GLUT4 vesicles in 3T3-L1 cells by immunoprecipitation (Miinea et al 2005). Also in 3T3-

L1 adipocytes, Larance and co-workers found that GLUT4 vesicles were associated with 

Rab 10, 11 and 14 (Larance et al 2005). In addition RNAi knockdown of Rab10 was found 

to result in an approximately 80% reduction in GLUT4 translocation in 3T3-L1 adipocytes 

(Sano et al 2007). Thus, Rab 10 is currently thought to be the most likely Rab involved in 

GLUT4 vesicle translocation in 3T3-L1 adipocytes. 

4.1.5 Aims 

Previous work (Salt et al 2000) showed that AICAR inhibits insulin-stimulated glucose 

transport in 3T3-L1 adipocytes, which is in contrast to the effect of AICAR in muscle. In 

order to further characterise the role of AMPK in the inhibition of insulin-stimulated 

glucose transport, this study investigated the effect of various AMPK activators, including 

the direct AMPK activator A769662, on insulin-stimulated glucose transport in 3T3-L1 

adipocytes. The effect of AMPK inhibition and knockdown, on AICAR stimulated basal 
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glucose transport and inhibition of insulin-stimulated glucose transport was also assessed 

to determine whether the effects of AICAR on glucose transport were dependent on 

AMPK activation.  

Previous work by Salt and co-workers showed that AICAR did not alter IRS-1 

phosphorylation, association of PI3K with IRS-1 or PKB activity in 3T3-L1 adipocytes 

(Salt et al 2000). During the course of this project AS160 and TBC1D1 have both emerged 

as Rab GAPs involved in the regulation of glucose transport. Therefore, in this study the 

mechanism by which AICAR inhibits insulin-stimulated glucose transport in adipocytes 

was further investigated, with particular attention being paid to the effect of AICAR on 

basal and insulin-stimulated AS160/TBC1D1 phosphorylation at PAS sites. 
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4.2 Results        

4.2.1 Effect of various AMPK activators on basal and insulin-

stimulated glucose transport 

The effect of various AMPK activators on basal and insulin-stimulated glucose transport 

was investigated using 2-[3H] deoxy-D-glucose. A significant (p < 0.05) 39.7 +/- 2.28 %, 

49 +/- 10.7 %, 73.6 +/- 5.7 %, 38.7 +/- 3.5 % and 67.5 +/- 7.8 % inhibition of insulin-

stimulated glucose transport (Fig. 4.2) was observed in cells pre-treated with AICAR, 

sorbitol, rosiglitazone, isoproterenol and A769662 respectively. A23187 did display an 

apparent tendency to inhibit insulin-stimulated glucose transport, however this effect was 

not statistically significant (Fig. 4.2). In addition, sorbitol produced a significant (p < 0.05) 

5.74 +/- 0.55 fold increase in basal glucose transport, whereas the other stimuli did not 

significantly alter basal glucose transport. 

4.2.2 Investigating whether the inhibition of insulin-stimulated 

glucose transport by AICAR is dependent on AMPK activation 

4.2.2.1 Effect of Compound C on AICAR mediated inhi bition of insulin-

stimulated glucose uptake 

The AMPK inhibitor, Compound C, was utilized to determine the effect of AMPK 

inhibition on the inhibition of insulin-stimulated glucose transport by AICAR. Western 

blotting assessing phosphorylation of the AMPK target protein ACC, at Ser79, was 

performed to determine whether AMPK activity was inhibited by Compound C. As shown 

in figure 4.3B/C, AICAR caused a significant (p < 0.05) 2.18 +/- 0.69 and 2.54 +/- 0.49 

fold increase in ACC Ser79 phosphorylation, in non-insulin-stimulated cells and insulin-

stimulated cells respectively. In comparison, AICAR was not found to significantly 

increase ACC Ser79 phosphorylation, under non-insulin-stimulated and insulin-stimulated 

conditions, in 3T3-L1 adipocytes incubated in the presence of Compound C. Incubation of 

3T3-L1 adipocytes in AICAR caused a significant (p < 0.05) 28.4 +/- 3.5 % inhibition of 

insulin-stimulated glucose transport (Fig. 4.3A). However, in the presence of Compound 

C, AICAR did not inhibit insulin-stimulated glucose transport in 3T3-L1 adipocytes (Fig. 

4.3A). In addition, a significant (p < 0.05) 32 +/- 1.2 % reduction in insulin-stimulated 
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glucose transport was observed in 3T3-L1 adipocytes incubated in the presence of 

Compound C.  

4.2.2.2 Effect of a DN AMPK mutant on AICAR mediate d inhibition of insulin-

stimulated glucose transport 

Adenovirus-mediated gene transfer was used to overexpress a dominant negative AMPK 

mutant (Ad.α1DN) in 3T3-L1 adipocytes, in order to further investigate the effect of down-

regulation of AMPK on AICAR mediated inhibition of insulin-stimulated glucose 

transport.  

The α1DN mutant protein is based on the entire α1 subunit sequence and contains an N-

terminal myc tag. The expression of α1DN is shown by the presence of a band detected by 

the myc antibody at about 62kDa (Fig. 4.4A). In addition, AICAR stimulated ACC Ser79 

phosphorylation was decreased in Ad.α1DN infected cells, compared to Ad.null infected 

cells. 

AICAR caused a 22.4 +/- 9.2 % and 41 +/- 26.8 % inhibition of insulin-stimulated glucose 

transport in Ad.null and Ad.α1DN infected cells, respectively. In addition, this current 

work also found that both insulin-stimulated and basal glucose transport were exacerbated 

in Ad.α1DN infected cells, compared to Ad.null infected cells (Figure 4.4B). In Ad.null 

infected cells the fold increase in glucose transport upon insulin-stimulation was 8 +/- 0.62 

and 4.38 +/- 0.8 in non-AICAR treated cells and AICAR treated cells respectively. 

However, in Ad.α1DN infected cells the fold increase in glucose transport upon insulin-

stimulation was 4.54 +/- 1.42 and 2.27 +/- 0.8 in non-AICAR treated cells and AICAR 

treated cells respectively. This implies that suppression of AMPK increases basal glucose 

transport, while reducing the extent by which insulin activates glucose transport. 
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Figure  4-2: Effect of various AMPK activators on basal and  insulin-stimulated glucose 
transport.  
3T3-L1 adipocytes were pre-incubated for 30 min in the presence of 2 mM AICAR, 0.6 M sorbitol, 

100 µM rosiglitazone, 1 µM isoproterenol, 5 µM A23187or 300 µM A-769662 prior to stimulation 

with 10 nΜ insulin for 15 min. Glucose transport was initiated by the addition of 2-[3H]-deoxy-D-

glucose, and terminated after 3 min. Data shown represents the mean % insulin-stimulated +/- 

S.E.M of three independent experiments, *p < 0.05 (2-tail t-test), compared to insulin-stimulated, •p 

< 0.05 (2-tail t-test), compared to control. Insulin-stimulated glucose transport was 644 +/- 34 

(mean +/- SEM) pmol glucose transported / min / mg protein. 
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Figure  4-3: Effect of Compound C on AICAR mediated inhibit ion of insulin-stimulated 
glucose transport.  
3T3-L1 adipocytes were pre-incubated for 30 min in the presence of 60 µM Compound C, prior to 

the addition of 2 mM AICAR for 30 min. The cells were then stimulated with 10 nΜ insulin for 15 

min. (A) Glucose transport was initiated by the addition of 2-[3H]-deoxy-D-glucose, and terminated 

after 3 min. Data shown represents the mean % insulin-stimulated +/- S.E.M of three independent 

experiments, *p < 0.05 (one-way ANOVA). Insulin-stimulated glucose transport was 940 +/- 378 

(mean +/- SEM) pmol glucose transported / min / mg protein. 3T3-L1 lysates (10 µg) were resolved 

on 10% polyacrylamide gels, transferred to nitrocellulose and probed with anti-ACC Ser79 and anti-

GAPDH antibodies. (B) Representative blots from three independent experiments. (C) 

Quantification of ACC Ser79 phosphorylation was determined by comparison with total GAPDH 

using densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments, *p < 0.05 (one-way ANOVA). The position of the molecular weight 

markers are shown to the left of the gel.  
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Figure  4-4: Effect of overexpression of a dominant negativ e AMPK mutant on AICAR 
mediated inhibition of insulin stimulated glucose t ransport in 3T3-L1 adipocytes 
(A) 3T3-L1 adipocytes were infected (600 ifu/cell) for 48 hr with Ad.α1DN or Ad.null prior to 

stimulation for 30 min with 2 mM AICAR. Cell lysates (25 µg) were resolved by SDS-PAGE, 

transferred to nitrocellulose and probed with anti-ACC Ser79, anti-AMPKα1, anti-c-myc and anti-

GAPDH antibodies. The position of the molecular weight markers are shown to the left of the gel. 

(B) 3T3-L1 adipocytes cultured on 12 well plates were infected (600 ifu/cell) with Ad.α1DN or 

Ad.null. After 48 hr 3T3-L1 adipocytes were pre-incubated  for 30 min in the presence of  2 mM 

AICAR prior to stimulation with 10 nΜ insulin for 15 min. Glucose transport was initiated by the 

addition of 2-[3H]-deoxy-D-glucose, and terminated after 3 min. Data shown represents the mean 

% insulin-stimulated +/- S.E.M of three independent experiments. Insulin-stimulated glucose 

transport in Ad.null cells was 540 +/- 126 (mean +/- SEM) pmol glucose transported / min / mg 

protein. A = AICAR, I = insulin. 
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4.2.3 Investigating the mechanism of AICAR mediated inhibition 

of insulin-stimulated glucose uptake in 3T3-L1 adipocytes. 

4.2.3.1 Specificity of anti-AS160 and anti-TBC1D1 a ntibodies 

AS160 and TBC1D1 are highly related Rab GAPs. To investigate the specificity of the 

anti-AS160 and anti-TBC1D1 antibodies, AS160 and TBC1D1 were immunprecipitated 

from 3T3-L1 lysates using anti-TBC1D1 and anti-AS160 antibodies. The 

immunoprecipitates and respective supernatants were analysed by western blotting using 

anti-TBC1D1 and anti-AS160 antibodies. As shown in figure 4.5A TBC1D1 is detected in 

the TBC1D1 immunoprecipitate and the supernatants from both TBC1D1 and AS160 

immunoprecipitates. However, it would appear that the anti-AS160 antibody does not 

immunoprecipitate TBC1D1 since TBC1D1 is not detected in the AS160 

immunoprecipitate. Conversely, as shown in figure 4.5B, AS160 is detected only in the 

AS160 immunoprecipitate, suggesting that the anti-TBC1D1 antibody does not 

immunoprecipitate AS160.  

4.2.3.2 Effect of AICAR on basal and insulin-stimul ated AS160 

phosphorylation at PAS sites and association of 14- 3-3 proteins. 

In order to determine the effect of AICAR on basal and insulin-stimulated AS160 

phosphorylation at PAS sites and association of 14-3-3 proteins with phosphorylated 

AS160, AS160 was immunoprecipitated from 3T3-L1 lysates treated in the presence and 

absence of AICAR, prior to stimulation with insulin. Immunoprecipitates were then 

subjected to western blotting with anti-PAS and anti-14-3-3 antibodies. 

As shown in figure 4.6, AICAR did not significantly alter basal or insulin stimulated 

phosphorylation of AS160 at PAS sites. Interestingly, the amount of proteins that co-

immunoprecipited with AS160 with apparent molecular masses matching those of the 14-

3-3 proteins, did not differ between basal and insulin-stimulated conditions. 
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Figure  4-5: Specificity of anti-AS160 and anti-TBC1D1 anti bodies. 
(A) AS160 and TBC1D1 were immunoprecipitated from 3T3-L1 adipocyte lysates (200 µg) using 

anti-TBC1D1 and anti-AS160 antibodies. Immunoprecipitates and respective supernatants were 

then resolved on 10% SDS-PAGE, transferred to nitrocellulose and probed with (A) anti-TBC1D1 

antibody, (B) anti-AS160 antibody.  Representative blots from two independent experiments. The 

position of the molecular weight markers are shown to the left of the gel. IP = immunoprecipitate, 

sup = supernatant. 
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Figure  4-6: Effect of AICAR on basal and insulin-stimulate d AS160 phosphorylation at PAS 
sites and association with 14-3-3 proteins. 
AS160 was immunoprecipitated from 3T3-L1 lysates (250 µg) obtained from cells treated in the 

presence and absence of 2 mM AICAR for 30 min, prior to stimulation with 10 nM insulin for 30 

min. Immunoprecipitates were resolved on 10% SDS-PAGE, transferred to nitrocellulose and 

probed with anti-PAS and anti-14-3-3 antibodies. (A) Quantative analysis of AS160 phosphorylation 

at PAS sites. Data shown represents the mean % insulin-stimulated +/- S.E.M of three independent 

experiments with duplicates in each. (B) Representative western blot, from three independent 

experiments with duplicates. C = control, A = AICAR, I = insulin. The position of the molecular 

weight markers are shown to the left of the gel.  
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4.2.3.3 Effect of AICAR on basal and insulin-stimul ated TBC1D1 

phosphorylation at PAS sites. 

In order to determine the effect of AICAR on basal and insulin-stimulated TBC1D1 

phosphorylation at PAS sites, TBC1D1 was immunoprecipitated from 3T3-L1 lysates 

treated in the presence and absence AICAR, prior to stimulation with insulin. 

Immunoprecipitates were then subjected to western blotting with anti-PAS antibody. 

As shown below in figure 4.7, there was no detectable levels of PAS phosphorylated 

TBC1D1 in control or AICAR treated 3T3-L1 adipocytes. In addition, AICAR did not 

significantly alter insulin-stimulated TBC1D1 phosphorylation at PAS sites. 

4.2.3.4 Effect of AICAR on PKB substrate phosphoryl ation  

To determine whether AICAR alters the phosphorylation of any insulin-stimulated PKB 

substrate proteins, lysates from 3T3-L1 adipocytes pre-incubated for 30 min in the 

presence of 2 mM AICAR, prior to stimulation with 10 nΜ insulin for 15 min, were 

resolved by SDS-PAGE and western blotted with the anti-PAS antibody. As shown in 

figure 4.8, AICAR does not appear to perturb insulin-stimulated phosphorylation of any 

proteins. However, AICAR does appear to increase PAS phosphorylation, compared to 

basal levels, of two proteins * with molecular masses of about 40kDa and 48kDa. 
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Figure  4-7: Effect of AICAR on basal and insulin-stimulate d TBC1D1 phosphorylation at PAS 
sites. 
TBC1D1 was immunoprecipitated from 3T3-L1 lysates (200 µg) obtained from cells treated in the 

presence and absence of 2 mM AICAR for 30 min, prior to stimulation with 10 nM insulin for 30 

min. Immunoprecipitates were resolved on 10% SDS-PAGE, transferred to nitrocellulose and 

probed with anti-PAS and anti-TBC1D1 antibodies. (A) Quantification of TBC1D1 phosphorylation 

was determined by comparison with total TBC1D1 using densitometric analysis. Data shown 

represents the mean % insulin-stimulated +/- S.E.M of two independent experiments. (B) 

Representative western blot, from two independent experiments. C = control, A = AICAR, I = 

insulin. The position of the molecular weight markers are shown to the left of the gel.  
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Figure  4-8: Effect of AICAR on PKB substrate phosphorylati on.  
3T3-L1 adipocytes were pre-incubated for 30 min in the presence of 2 mM AICAR, prior to 

stimulation with 10 nΜ insulin for 15 min. Lysates (25 µg) were then resolved on 10% SDS-PAGE 

gels, transferred to nitrocellulose and probed with the anti-PAS antibody. Representative blot from 

four independent experiments with duplicates. C = control, A = AICAR, I = insulin. The position of 

the molecular weight markers are shown to the left of the gel. * = AICAR increases basal PAS 

phosphorylation of the indicated proteins. 
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4.3 Discussion 

The key findings of this chapter are that multiple AMPK stimuli inhibited insulin-

stimulated glucose transport, that in the presence of the AMPK inhibitor Compound C the 

inhibitory effect of AICAR on insulin-stimulated glucose transport was no longer apparent, 

and that inhibition of insulin-stimulated glucose transport by AICAR was not associated 

with altered PKB-mediated phosphorylation of AS160/TBC1D1. 

AMPK and glucose transport 

AICAR 

In muscle cells, AICAR stimulates basal glucose transport and potentiates insulin-

stimulated glucose transport (Bergeron et al 1999). In contrast this study showed that 

AICAR significantly (p < 0.05) inhibits insulin-stimulated glucose uptake in 3T3-L1 

adipocytes, which supports previous work by Salt and co-workers (Salt et al 2000). 

AICAR has also been shown to inhibit insulin-stimulated glucose transport in isolated rat 

adipocytes (Gaidhu et al 2006), and rat cardiomyocytes (Segalen et al 2008). Salt and co-

workers also reported that AICAR inhibited insulin-stimulated GLUT4 translocation to the 

plasma membrane in 3T3-L1 adipocytes by assay of plasma membrane lawns (Salt et al 

2000). In contrast, Chavez and co-workers measured the amount of GLUT4 at the cell 

surface by the quantitative single-cell fluorescence assay that employs the reporter 

construct of GLUT4 with a haemagglutinin (HA) tag in the amino-terminal extracellular 

loop and green fluorescent protein (GFP) fused to the carboxyl terminus (HA-GLUT4-

GFP), and reported that AICAR did not alter insulin-stimulated GLUT4 translocation to 

the plasma membrane (Chavez et al 2008). Potentially the tagged GLUT4 construct may 

behave differently to endogenous GLUT4 in the 3T3-L1 adipocytes, which could explain 

the contrasting results. For example AICAR may increase the rate at which endogenous 

GLUT4 is trafficked from the plasma membrane into intracellular storage vesicles, which 

would deplete the amount of GLUT4 at the plasma membrane, whereas potentially the 

tagged GLUT4 maybe retained at the plasma membrane. 

Sorbitol 

This study found that sorbitol caused a significant (p < 0.05) 5 fold increase in basal 

glucose transport and significantly (p < 0.05) inhibited insulin-stimulated glucose uptake. 

Previous studies have also shown that sorbitol stimulates basal glucose transport in rat 

adipocytes, L6 myotubes and 3T3-L1 adipocytes (Sajan et al 2002, Chen et al 1997, Chen 
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et al 1999). In 3T3-L1 adipocytes, signalling pathways downstream of Grb2-associated 

binding protein 1 (Gab1), and specifically the Gab1 / CT10 sarcoma oncogene cellular 

homolog II (CrkII) / GTP binding protein TC10 (TC10) signalling pathway, are thought to 

play a crucial role in osmotic-stress induced glucose transport (Janez et al 2000, Gual et al 

2002). It has also been reported that hyperosmotic stress activates the proline-rich tyrosine 

kinase 2 (PYK2) / extracellular signal-regulated kinase (ERK) / phospholipase D (PLD) / 

aPKC pathway in 3T3-L1 adipocytes and rat adipocytes, leading to GLUT4 translocation 

and glucose uptake (Sajan et al 2002). 

In muscle overexpression of a dominant-negative form of AMPK blocked the stimulation 

of GLUT4 translocation by hyperosmotic stress (Fryer et al 2002a), suggesting a role for 

AMPK activation in hyperosmotic-induced glucose uptake. In skeletal muscle, 

hyperosmotic stress was shown to stimulate AMPK activity and increase insulin-stimulated 

glucose transport (Smith et al 2005). In addition, the increase in insulin-stimulated glucose 

transport caused by hyperosmotic stress was prevented by inclusion of the AMPK inhibitor 

Compound C, suggesting that AMPK activation may mediate the synergistic effect of 

hyperosmotic stress on insulin-stimulated glucose transport (Smith et al 2005). This is in 

stark contrast to the findings of this study and a previous study in 3T3-L1 adipocytes 

(Chen et al 1999), which found that hyperosmotic stress induced by sorbitol inhibited 

insulin-stimulated glucose transport in 3T3-L1 adipocytes. Similarly, in rat epididymal 

adipose cells, hyperosmotic stress was shown to markedly reduce insulin-induced glucose 

transport (Komjati et al 1998). The proposed modes of action of hyperosmotic stress 

induced inhibition of insulin-stimulated glucose transport in 3T3-L1 adipocytes include; 

inactivation of PKB (Chen et al 1999) serine phosphorylation of IRS1 (Gual et al 2003) 

and enhanced degradation of IRS proteins (Gual et al 2003). 

Rosiglitazone 

This study showed that acute treatment of 3T3-L1 adipocytes with the anti-diabetic drug, 

rosiglitazone, significantly (p < 0.05) inhibited insulin-stimulated glucose transport. It 

should be noted that using concentrations of 100µM rosiglitazone in this study was merely 

a tool to stimulate activation of AMPK, and that this acute inhibition of insulin-stimulated 

glucose transport with 100µM rosiglitazone has no clinical significance as the maximum 

concentration of rosiglitazone reached in patients is approximately 1µM. Indeed previous 

work, showed that chronic (48hr) treatment of 3T3-L1 adipocytes with increasing 

concentrations (1nМ-10µM) of rosiglitazone resulted in progressive increases in both basal 

and insulin-stimulated 2-deoxyglucose uptake (Standaert et al 2002). Interestingly, a recent 
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study showed that long-term TZD treatment enhanced AMPK-stimulated glucose uptake 

into muscle and adipose tissue in insulin-resistant states in rats (Ye et al 2006).  

Isoproterenol 

This current study showed that isoproterenol significantly (p < 0.05) inhibited insulin-

stimulated glucose transport. Previously, isoproterenol was shown to induced a two fold 

increase in glucose transport (Smith et al 1984) and inhibit insulin-stimulated glucose 

uptake in rat adipose cells (Smith et al 1984, Joost et al 1986, Kirsch et al 1983, Kashiwagi 

et al 1983, Yang et al 2002).  

A23187 

It has been reported that calcium is involved in insulin signalling in muscle (Clausen et al 

1974) and adipose (Clausen et al 1974, Draznin et al 1987, Yang et al 2000). Calcium is  

thought to be involved in at least two different steps of the insulin-dependent recruitment 

of GLUT4 to the plasma membrane. One involves the translocation step. The second 

involves the fusion of GLUT4 vesicles with the plasma membrane (Whitehead et al 2001). 

In this study the calcium ionophore A23187 displayed a modest tendency to inhibit insulin-

stimulated glucose transport, however this was not statistically significant. Previous work 

by Draznin and co-workers also showed that another calcium ionophore, ionomycin, 

inhibited insulin-stimulated glucose transport in isolated rat adipocytes (Draznin et al 

1987). Draznin and co-workers proposed that high and/or sustained levels of intracellular 

calcium may function as a postreceptor feedback sensor to diminish cellular 

responsiveness to insulin (Draznin et al 1987). Potentially elevated intracellular calcium 

levels by the two ionophores may activate AMPK via CaMKK, which in turn may mediate 

inhibition of insulin-stimulated glucose transport. 

A769662 

Interestingly, this current study also found that the novel, direct AMPK activator, 

A769662, significantly (p < 0.05) inhibited insulin-stimulated glucose transport. Given that 

A769662 is a direct AMPK activator, these results provide the best evidence so far that 

activation of AMPK inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. 

As AICAR, sorbitol, rosiglitazone, isoproterenol and the direct AMPK activator, A769662, 

have all been shown to stimulate AMPK activity (Figs. 3.11-3.21), and inhibit insulin-

stimulated glucose transport in 3T3-L1 adipocytes (Fig. 4.1), it is possible that activation 
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of AMPK inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. In addition, 

there did appear to be a correlation between the % inhibition of insulin-stimulated glucose 

transport and fold increase in AMPK activity in 3T3-L1 adipocytes (Fig. 4.9) i.e 

rosiglitazone displayed a large % inhibition of insulin-stimulated glucose transport and 

stimulated a large fold increase in AMPK activity, isoproterenol and AICAR displayed a 

lower % inhibition of insulin-stimulated glucose transport and stimulated a lower fold 

increase in AMPK activity compared to rosiglitazone, and A23187 displayed the lowest % 

inhibition of insulin-stimulated glucose transport and stimulated the lowest fold increase in 

AMPK activity. The exceptions were the direct AMPK activator A769662, which 

displayed the second greatest % inhibition of insulin-stimulated glucose uptake, despite 

only modestly stimulating AMPK activity, and sorbitol which displayed the third highest 

% inhibition of insulin-stimulated glucose transport, despite stimulating the greatest fold 

increase in AMPK activity. The direct AMPK activator, A769662, has been reported to 

activate only β1 containing AMPK complexes (Scott et al 2008), which is likely to account 

for the modest increase in AMPK activity observed in cells incubated with A769662. Since 

sorbitol, is not a direct AMPK activator it is possible that through non-AMPK mediated 

pathways sorbitol is having additional effects on insulin-stimulated glucose transport.  

 

Figure  4-9: Fold increase in AMPK activity versus % inhibi tion of insulin-stimulated glucose 
transport. 
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It should also be noted that the most potent AMPK activator, sorbitol, displayed a highly 

significant (p < 0.05) five fold increase in basal glucose transport, whereas all the other 

stimuli did not significantly alter basal glucose transport. This suggests that the 

exceptionally high increase in basal glucose transport by sorbitol may be mediated by both 

AMPK-dependent and -independent mechanisms. 

Interestingly in isolated hepatocytes and heart, insulin has been shown to inhibit AMPK 

activity (Witters and Kemp 1992, Gamble and 1997). However, in the liver cell line H4IIE 

insulin was found to have no effect on AMPK activity (Lochhead et al 2000). In this 

current work insulin did not significantly alter AMPK activity as assessed by ACC Ser79 

phosphorylation (Fig. 4.3). In addition, previous work in our lab showed that insulin did 

not alter AMPK activity, as assessed by AMPK assays, in 3T3-L1 adipocytes (personal 

correspondence with Dr. I.P Salt). 

In order to investigate whether the effect of AICAR on insulin-stimulated glucose transport 

is mediated by AMPK activation, the effect of AICAR on insulin-stimulated glucose 

transport was assessed in the presence of the AMPK inhibitor Compound C (Fig. 4.3). This 

study found that in the presence of Compound C, AICAR did not inhibit insulin-stimulated 

glucose transport. This suggests that AMPK activation in 3T3-L1 adipocytes inhibits 

insulin-stimulated glucose transport. However, it is difficult to conclude whether 

Compound C is rescuing the inhibition of insulin-stimulated glucose transport by AICAR, 

given the fact that Compound C itself significantly inhibits insulin-stimulated glucose 

transport. 

In general the results obtained using Compound C should be interpreted with caution as 

Compound C is not a specific AMPK inhibitor. It has been shown to also inhibit a number 

of other protein kinases in vitro including; ERK 8, MAP kinase-interacting kinase 1 

(MNK1), phosphorylase kinase (PHK), maternal embryonic leucine zipper kinase 

(MELK), dual specificity tyrosine phosphorylation and regulated kinase (DYRK) isoforms, 

homeodomain-interacting protein kinase2 (HIPK2), sarcoma kinase (Src) and lymphocyte 

cell-specific protein-tyrosine kinase (Lck) (Bain et al 2007). Bain and co-workers also 

found that the CaMKK inhibitor STO-609 was a more potent AMPK inhibitor than 

Compound C in vitro (Bain et al 2007). In the previous chapter, 25 µМ STO-609 was used 

to inhibit CaMKK in 3T3-L1 adipocytes. However, 25 µМ STO-609 did not appear to 

inhibit AMPK since AICAR stimulated AMPK activity was not perturbed in the presence 

of STO-609. Potentially a higher concentration of STO-609 could be used to inhibit 
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AMPK and assess the role of AMPK in AICAR mediated inhibition of insulin-stimulated 

glucose transport.  

Interestingly, Fryer and co-workers, showed that Compound C can inhibit the adenosine 

transporter, which is the main transport system used by cells in the uptake of AICAR 

(Fryer et al 2002c). Thus, the reduction in AICAR stimulated ACC Ser79 phosphorylation 

in the presence of Compound C could have resulted from the inhibition of AMPK 

activation by AICAR and/or inhibition of AICAR uptake into the cell.  

Adenoviral DN AMPK was also used to investigate whether the effect of AICAR on 

insulin-stimulated glucose transport is mediated by AMPK activation (Fig. 4.4). Although 

inhibition of insulin-stimulated glucose transport by AICAR did not reach statistical 

significance in Ad.null and Ad.α1DN infected cells, the results do suggest that the effect of 

AICAR on insulin-stimulated glucose transport is not dependent on AMPK activation. This 

is in contrast to results obtained using the AMPK inhibitor Compound C. However, 

perhaps in this current study Compound C inhibited a greater proportion of total AMPK in 

3T3-L1 adipocytes compared to Ad.α1DN, which could explain the discrepancy between 

the results. In addition, this study found that both basal and insulin-stimulated glucose 

transport were exacerbated in Ad.α1DN infected cells, compared to Ad.null infected cells. 

However, the fold increase in glucose transport upon insulin-stimulation was reduced in 

Ad.α1DN infected cells compared to Ad.null infected cells. These results suggest that long 

term suppression of AMPK improves glucose transport while reducing the extent by which 

insulin increases glucose transport. The increase in glucose transport may be due to the 

inhibition of endogenous AMPK activity, which if the case, supports the possibility that 

AMPK activation may inhibit insulin-stimulated glucose transport. In addition, long-term 

treatment of adipocytes with Ad.α1DN maybe increasing glucose transport by altering the 

expression level of key insulin-signalling molecules such as SNARES, AS160 and PKB. 

Previous work in muscle showed that prolonged AMPK activation increased expression 

levels of GLUT4 (Holmes et al 1999). However, currently the effect of prolonged AMPK 

activation on GLUT4 expression in adipocytes has yet to be determined. 

Interestingly, Sakoda and co-workers found that overexpression of α1DN abolishes AMPK 

activation, without affecting the increase in basal glucose uptake by AICAR, thereby 

suggesting that AICAR-induced glucose uptake in 3T3-L1 adipocytes is independent of 

AMPK activation (Sakoda et al 2002). However, in this current study AICAR did not 

significantly increase basal glucose transport in Ad.null infected cells. 
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Since the inhibition of insulin-stimulated glucose transport by AICAR is rescued in cells 

incubated in Compound C, but not in Ad.α1DN, further work is required to determine 

whether AMPK activation inhibits insulin-stimulated glucose transport. This might involve 

investigating the effect of Compound C and Ad.α1DN on the inhibition of insulin-

stimulated glucose transport by other AMPK stimuli. In particular, sorbitol and 

rosiglitazone which both displayed a large % inhibition of insulin-stimulated glucose 

transport, and the novel AMPK activator A769662 which differs from the other AMPK 

stimuli including AICAR, in that it directly activates AMPK. 

Mechanism of AICAR mediated inhibition of insulin-stimulated glucose transport 

The mechanism by which AICAR inhibits insulin-stimulated glucose transport in 3T3-L1 

adipocytes was explored. This study (Fig. 4.6) found that in 3T3-L1 adipocytes AICAR 

does not appear to alter AS160 phosphorylation at PAS sites compared to basal levels, 

which is in contrast to observed effects in skeletal muscle where AICAR has been shown 

to increase AS160 phosphorylation at PAS sites (Bruss et al 2005). Figure 4.6 also shows 

that concomitant incubation of AICAR with insulin does not alter insulin-stimulated 

AS160 phosphorylation at PAS sites, thus it is unlikely that AMPK inhibits insulin-

stimulated glucose transport by inhibiting insulin-stimulated AS160 phosphorylation.  

In addition, this study found that the anti-AS160 antibody did not appear to 

immunoprecipitate TBC1D1, which has an apparent molecular weight of 130kDa (Fig. 

4.5). Thus the intense dark band present at approximately 140kDa in the AS160 IP’s (Fig. 

4.6) detected with the PAS antibody is most likely to be a short splice variant of AS160 or 

another PKB substrate molecule which co-immunoprecipitates with AS160, and not 

TBC1D1. 

Ramm and co-workers previously showed that in 3T3-L1 adipocytes, insulin-stimulated a  

4 fold increase in the amount of 14-3-3 associated with AS160 (Ramm et al 2006).  This 

current study also looked at whether AICAR altered insulin-stimulated AS160 binding to 

14-3-3 proteins. The several protein bands detected by the anti-14-3-3 antibody with 

apparent molecular masses matching those of the 14-3-3 proteins were thought to 

correspond to the various 14-3-3 protein isoforms (Fig. 4.6). However, the intense band, 

recognised by the anti-14-3-3 antibody, which resolves at about approximately 27kDa is 

most likely to correspond to the AS160 antibody light chain (Fig 4.6). The identity of the 

14-3-3 proteins and antibody light chain could be confirmed by comparison with a 

negative control i.e antibody and protein G beads, which is lacking in this experiment. In 
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contrast to the work by Ramm and co-workers, in this current study the amount of proteins 

that co-immunoprecipitated with AS160 with apparent molecular masses matching that of 

the 14-3-3 proteins, did not differ between basal and insulin-stimulated conditions. Chen 

and co-workers, used cross linking to stabilize the insulin-stimulated 14-3-3 interactions 

with TBC1D1 (Chen et al 2008), thus perhaps the interaction between 14-3-3 proteins and 

AS160 in this study were lost during the immunoprecipitation process.  

TBC1D1 was shown to be phosphorylated at PAS sites in mouse skeletal muscle in vivo by 

insulin, AICAR and contraction (Taylor et al 2008). Although, insulin was shown to 

stimulate TBC1D1 phosphorylation at PAS sites, this current study could not detect any 

TBC1D1 phosphorylation at PAS sites in AICAR treated 3T3-L1 cells (Fig. 4.7). The 

current study also found that AICAR did not alter insulin-stimulated PAS phosphorylation 

of TBC1D1 (Fig. 4.7). Interestingly, anti-TBC1D1 appears to immunoprecipitate a protein 

with a molecular weight of about 160kDa, which is PAS phosphorylated. A likely 

candidate was thought to be AS160. However, western blotting of TBC1D1 and AS160 

immunoprecipitates, with the anti-AS160 antibody, suggested that anti-TBC1D1 does not 

immunoprecipitate AS160. However, this experiment remains inconclusive, as unlike 

TBC1D1, AS160 was not detected in the immunoprecipitation supernatants, suggesting 

that the AS160 antibody is relatively weak. Thus potentially anti-TBC1D1 may 

immunoprecipitate small quantities of AS160 which are detected by the more sensitive 

anti-PAS antibody, but not by the anti-AS160 antibody. 

It should be noted that AMPK may be altering insulin-stimulated AS160/TBC1D1 

phosphorylation at PAS sites which are not primarily recognized by the anti-PAS antibody 

in 3T3-L1 adipocytes which may alter AS160/TBC1D1 activity. Indeed in HEK 293 cells 

the anti-PAS antibody was found to primarily detect phospho-Thr642 on AS160 (Geraghty 

et al 2007). Furthermore AMPK activation in 3T3-L1 adipocytes may result in 

phosphorylation of AS160/TBC1D1 at non-PAS sites, and such phosphorylations may 

have additional effects on AS160/TBC1D1 function and GLUT4 trafficking. 

Antibodies against specific phosphorylation sites on AS160 and TBC1D1 could be used in 

order to determine whether AICAR alters phosphorylation of these Rab GAP proteins at 

PAS sites not primarily detected by the anti-PAS antibody and/or stimulates 

phosphorylation at non-PAS sites. Site directed mutagenesis of any such sites could be 

used to investigate whether AICAR inhibits insulin-stimulated glucose transport, by 

altering phosphorylation of AS160 /TBC1D1 at a specific site.  
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Finally this study found that AICAR did not appear to perturb insulin-stimulated 

phosphorylation of any PKB target proteins. However, interestingly it appears that AICAR 

stimulates phosphorylation at PAS sites, compared to basal levels, of two proteins with 

molecular weights of approximately 37kDa and 50kDa. However, the identity of these 

bands remains unknown. Potentially, mass spectrometry could be used to identify the 

proteins. 

Interestingly, intracellular acidification shown to be induced by the AMPK stimuli AICAR 

and isoproterenol, has been proposed to mediate the inhibition of insulin-stimulated 

glucose transport by these reagents (Segalen et al 2008, Yang et al 2002, Civelek et al 

1996).  

Exposure of cells to insulin has been shown to cause an increase in intracellular pH in rat 

adipocytes (Civelek et al 1996), 3T3-L1 cells (Klip et al 1988), muscle (Fidelman et al 

1982, Klip et al 1986), and liver (Peak et al 1992). This alkalinization of cells by insulin is 

reported to be required for optimal glucose transport. 

Inhibition of insulin-induced glucose uptake by AICAR in rat cardiomyocytes is reported 

to occur via the inhibition of the Na+/H+ exchanger-1 (NHE-1), which subsequently 

decreases the insulin mediated increase in intracellular pH (Segalen et al 2008). In addition 

AICAR is thought to exert these effects independently of AMPK activation (Segalen et al 

2008). Although the Na+/H+ exchanger 1 is ubiquitously expressed (Fliegel 2005), it is 

possible that this is a cell type specific mechanism of inhibition by AICAR, and that the 

mechanism of inhibition of insulin-stimulated glucose transport by AICAR in 3T3-L1 

adipocytes is different. This may well be the case given that the effect of AICAR on basal 

glucose transport differs between the two cell types i.e AICAR inhibits basal glucose 

transport in rat cardiomyocytes, while modestly stimulating basal glucose transport in 3T3-

L1 adipocytes (Salt et al 2000).  

Civelek and co-workers have suggested that treatment of adipocytes with isoproterenol 

induces acidification in adipocytes due to the lipolytic release of free fatty acids (Civelek et 

al 1996). Thus it has been proposed that the inhibition of insulin-stimulated glucose 

transport by isoproterenol may occur through cytosol acidification, which essentially 

reverses the alkalinizing effects of insulin required for optimum glucose transport (Yang et 

al 2002). 
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Overall this current work suggests that acute AMPK activation by AICAR in adipocytes 

inhibits insulin-stimulated glucose uptake, yet this is not associated with altered PKB-

mediated phosphorylation of AS160/TBC1D1. As discussed (1.1.2) glucose is taken up 

into adipocytes in the fed state and stored as TG. Therefore inhibition of glucose uptake 

into adipocytes would subsequently reduce fatty acid and TG synthesis. Thus, it could be 

reasoned that AMPK activation inhibits insulin-stimulated glucose uptake in adipocytes in 

order to reduce the ATP-dependent synthesis of fatty acids and TG in adipocytes. 

Furthermore, the inhibition of glucose transport would allow glucose to be used by other 

tissues as a source of energy, rather than adipocytes, which would start using the stored 

triglyceride. 
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Chapter 5 - Effect of sustained AMPK activation on 

adipocyte insulin action  

5.1 Introduction 

In chapter 4 it was reported that acute treatment of 3T3-L1 adipocytes with various AMPK 

stimuli inhibited insulin-stimulated glucose transport. Furthermore, in the presence of the 

AMPK inhibitor, Compound C, the inhibitory effect of AICAR on insulin-stimulated 

glucose transport was no longer apparent. However, AICAR still displayed a tendency to 

inhibit insulin-stimulated glucose transport in Ad.α1DN infected cells. In addition, 

sustained AMPK knockdown in Ad.α1-DN infected cells appeared to enhance both basal 

and insulin-stimulated glucose transport. Currently, the effect of sustained AMPK 

activation on insulin-stimulated glucose transport in adipocytes has still to be determined.  

As discussed in section 1.4.12, previous studies have reported that sustained AMPK 

activation by AICAR inhibits differentiation of 3T3-L1 preadipocytes (Habinowski and 

Witters 2001, Giri et al 2006, Tong et al 2008). In contrast other studies suggest that 

AMPK may not play a role in regulating adipocyte differentiation in vivo (Villena et al 

2004, Giri et al 2006). Huypens and co-workers showed that long term treatment with the 

AMPK activators metformin and AICAR reduced adiponectin protein expression and 

release in 3T3-L1 adipocytes (Huypens et al 2005). A recent study by Gaidhu and co-

workers showed that prolonged AICAR-induced AMPK activation promotes energy 

dissipation in white adipocytes by preventing TG storage and by activating pathways that 

promote energy dissipation within the adipocyte, such as fatty acid oxidation (Gaidhu et al 

2008). Interestingly, Gaidhu and co-workers also reported that lipolysis was first 

suppressed, but then increased both in vitro and in vivo with prolonged AICAR treatment 

in rat epididymal adipocytes (Gaidhu et al 2008). However, in general the effect of 

prolonged AMPK activation in mature adipocytes remains poorly characterized, 

particularly with respect to glucose transport and insulin signalling. 

5.1.1 Aims 

The principal aim of this study was, therefore, to investigate the effect of sustained AMPK 

activation on glucose transport and insulin signaling in 3T3-L1 adipocytes. In addition, the 
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effects of sustained AMPK activation on insulin signaling in human adipose tissue was 

investigated. 
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5.2 Results 

5.2.1 Effect of sustained AMPK activation on basal and insulin-

stimulated glucose transport in 3T3-L1 adipocytes.  

5.2.1.1 Effect of 24 hr and 48 hr incubation of 3T3 -L1 adipocytes with AICAR 

on AMPK expression, ACC expression, AMPK Thr12 phos phorylation and 

ACC Ser79 phosphorylation 

As shown in figure 5.1 a significant (p < 0.05) 2.02 +/- 0.36 and 2.08 +/- 0.57 fold increase 

in AMPK Thr172 phosphorylation was obtained in 3T3-L1 adipocytes incubated with 

AICAR for 24 hr and 48 hr, respectively, in insulin-stimulated cells. These significant (p < 

0.05) increases in Thr172 phsophoryaltion were not associated with altered AMPK α1 

protein expression. In addition, a significant (p < 0.05) 3.1 +/- 0.69 and 2.84 +/- 0.73 fold 

increase in phosphorylation of the AMPK downstream target ACC at Ser79 was obtained 

in 3T3-L1 adipocytes incubated with AICAR for 24 hr and 48 hr respectively, in insulin-

stimulated cells. These significant increases were also not associated with altered ACC 

protein expression (Fig. 5.1). 

5.2.1.2 Effect of 24 hr and 48 hr incubation of 3T3 -L1 adipocytes with 

metformin on AMPK expression, ACC expression, AMPK Thr12 

phosphorylation and ACC Ser79 phosphorylation 

As shown in figure 5.2, AMPK Thr172 phosphorylation, ACC Ser79 phosphorylation, 

AMPK protein expression and ACC protein expression were not significantly altered in 

non-insulin-stimulated and insulin-stimulated 3T3-L1 adipocytes incubated with 

metformin for 24 hr and 48 hr. 

 

 



Pamela Jane Logan, 2009   Chapter 5, 170 

 

Figure  5-1: Effect of 24 hr and 48 hr incubation of 3T3-L1  adipocytes with AICAR on AMPK 
expression, ACC expression, AMPK Thr172 phosphoryla tion and ACC Ser79 
phosphorylation. 
3T3-L1 lysates (15 µg) obtained from cells incubated for 24 hr and 48 hr with 1mМ AICAR were 

resolved by 10% SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK α1, anti-

AMPK Thr172, anti-ACC Ser79, anti-ACC1 and anti-GAPDH antibodies. (A) Quantification of 

AMPK Thr172 phosphorylation and AMPK α1 expression were determined by comparison with 

GAPDH by densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of 

three independent experiments, *p < 0.05 (one-way ANOVA). (B) Quantification of ACC Ser79 

phosphorylation and ACC1 expression were determined by comparison with GAPDH by 

densitometric analysis. Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments, *p < 0.05 (one-way ANOVA). (C) Representative blots from three 

independent experiments. The position of the molecular weight markers are shown to the left of the 

gel.  A = AICAR, I = insulin. 
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Figure  5-2: Effect of 24 hr and 48 hr incubation of 3T3-L1  adipocytes with metformin on 
AMPK expression, ACC expression, AMPK Thr172 phosph orylation and ACC Ser79 
phosphorylation. 
3T3-L1 lysates (15 µg) obtained from cells incubated for 24 hr and 48 hr with 1mМ metformin were 

resolved by 10% SDS-PAGE, transferred to nitrocellulose, and probed with anti-AMPK α1, anti-

AMPK Thr172, anti-ACC Ser79, anti-ACC1 and anti-GAPDH antibodies. (A) Quantification of 

AMPK Thr172 phosphorylation and AMPK α1 expression. Data shown represents the mean % 

maximum +/- S.E.M of three independent experiments. (B) Quantification of ACC Ser79 

phosphorylation and ACC1 expression were determined by comparison with GAPDH by 

densitometric analysis.  Data shown represents the mean % maximum +/- S.E.M of three 

independent experiments. (C) Representative blots from three independent experiments. The 

position of the molecular weight markers are shown to the left of the gel.  M = metformin, I = insulin 

 

. 
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5.2.1.3 Effect of 24 hr and 48 hr incubation of 3T3 -L1 adipocytes with AICAR 

on insulin-stimulated glucose transport 

The effect of sustained incubation of 3T3-L1 adipocytes with AICAR, on basal and 

insulin-stimulated glucose transport was investigated. As shown in figure 5.3 a significant 

(p < 0.05) 73 +/- 11.3 % and 67 +/- 27 % inhibition of insulin-stimulated glucose transport 

was observed in cells incubated with AICAR for 24 hr and 48 hr respectively. However, 24 

hr and 48 hr treatment of 3T3-L1 adipocytes with AICAR did not significantly alter basal 

glucose transport. 

5.2.1.4 Effect of 24 hr and 48 hr incubation of 3T3 -L1 adipocytes with 

metformin on insulin-stimulated glucose transport 

As shown in figure 5.4, basal and insulin-stimulated glucose transport were not 

significantly altered in 3T3-L1 adipocytes incubated with metformin for 24 hr and 48 hr.  

5.2.1.5 Effect of overexpression of a constitutivel y active AMPK mutant on 

basal and insulin-stimulated glucose transport in 3 T3-L1 adipocytes. 

Adenovirus-mediated gene transfer was used to overexpress a constitutively active (CA) 

AMPK mutant (α1312) in 3T3-L1 adipocytes in order to investigate the effects of sustained 

AMPK activation on basal and insulin-stimulated glucose transport.  

The α1312 mutant protein is based on the first 312 amino acid residues of the AMPK α1 

subunit and contains an N-terminal myc tag. Therefore the expression of the α1312 mutant 

in 3T3-L1 adipocytes was confirmed by the presence of a band detected by the myc 

antibody at about 35kDa (Fig. 5.5A). As expected the AMPK activator sorbitol increased 

ACC Ser79 phosphorylation in control infected cells (Ad.null). In addition, basal ACC 

Ser79 phosphorylation was increased in Ad.α1312 infected cells, compared to Ad.null 

infected cells.  

Interestingly, in Ad.α1312 infected cells there appears to be a reduction in insulin-

stimulated glucose transport compared to Ad.null infected cells (Fig. 5.5B).  
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Figure  5-3: Effect of 24 hr and 48 hr incubation of 3T3-L1  adipocytes with AICAR on basal 
and insulin-stimulated glucose transport. 
3T3-L1 adipocytes were incubated for 24 hr and 48 hr in the presence of 1 mM AICAR prior to 

stimulation with 10 nΜ insulin for 15 min. Glucose transport was initiated by the addition of 2-[3H]-

deoxy-D-glucose, and terminated after 3 min. Data shown represents the mean % insulin-

stimulated +/- S.E.M of three independent experiments, *p < 0.05 (2-tail), compared to insulin-

stimulated. Insulin-stimulated glucose transport was 3366 +/- 3173 (S.E.M) pmol transported / min / 

mg protein.  
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Figure  5-4: Effect of 24 hr and 48 hr incubation of 3T3-L1  adipocytes with metformin on 
basal and insulin-stimulated glucose transport. 
3T3-L1 adipocytes were incubated for 24 hr and 48 hr in the presence of 1 mM metformin prior to 

stimulation with 10 nΜ insulin for 15 min. Glucose transport was initiated by the addition of 2-[3H]-

deoxy-D-glucose, and terminated after 3 min. Data shown represents the mean % insulin-

stimulated +/- S.E.M of three independent experiments. Insulin-stimulated glucose transport was 

519 +/- 357 (S.E.M) pmol transported / min / mg protein. This work was performed by Dr.I.Salt 

(FBLS, University of Glasgow). 
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Figure  5-5: Effect of overexpression of a constitutively a ctive AMPK mutant on basal and 
insulin stimulated glucose transport in 3T3-L1 adip ocytes. 
(A) 3T3-L1 adipocytes were infected (600 ifu/cell) for 48 hr with Ad. α1312 or Ad.null prior to 

stimulation for 30 min with 0.6M sorbitol. Cell lysates (25 µg) were resolved by SDS-PAGE, 

transferred to nitrocellulose and probed with anti-ACC Ser79, anti-AMPKα1, anti-c-myc and anti-

GAPDH antibodies. The position of the molecular weight markers are shown to the left of the gel. 

(B) 3T3-L1 adipocytes cultured on 12 well plates were infected (600 ifu/cell) with Ad. α1312 or 

Ad.null. After 48 hr 3T3-L1 adipocytes were incubated for 30 min in the presence of  2 mM AICAR 

prior to stimulation with 10 nΜ insulin for 15 min. Glucose transport was initiated by the addition of 

2-[3H]-deoxy-D-glucose, and terminated after 3 min. Data compiled from one experiment. A = 

AICAR, I = insulin. 
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5.2.1.6 Effect of 24 hr and 48 hr incubation of 3T3 -L1 adipocytes with AICAR 

on PKB expression and insulin-stimulated PKB phosph orylation 

Stimulation of 3T3-L1 adipocytes with insulin caused a significant (p < 0.05) 13.38 +/- 

3.16, 12.46 +/- 2.73 and 13.8 +/- 2.59 fold increase in PKB Ser473 phosphorylation under 

control conditions and incubation of adipocytes with AICAR for 24 hr and 48 hr 

respectively (Fig. 5.6). Insulin-stimulated PKB Ser473 phosphorylation was not altered in 

3T3-L1 adipocytes incubated in AICAR for 24 hr and 48 hr. In addition, in non-insulin-

stimulated cells and insulin-stimulated cells PKB protein expression was not significantly 

altered in 3T3-L1 adipocytes incubated with AICAR for 24 hr or 48 hr.  

5.2.1.7 Effect of 24 hr and 48 hr incubation of 3T3 -L1 adipocytes with 

metformin on PKB expression and insulin-stimulated PKB phosphorylation 

Stimulation of 3T3-L1 adipocytes with insulin caused a significant (p < 0.05) 6.35 +/- 

1.07, 6.28 +/- 0.64 and 5.64 +/- 1.06 fold increase in PKB Ser473 phosphorylation under 

control conditions and pre-treatment of adipocytes with metformin for 24 hr and 48 hr 

respectively (Fig. 5.7). Insulin-stimulated PKB Ser473 phosphorylation was not altered in 

3T3-L1 adipocytes incubated in metformin for 24 hr and 48 hr. In addition, in non-insulin-

stimulated cells and insulin-stimulated cells PKB protein expression was not significantly 

altered in 3T3-L1 adipocytes incubated with metformin for 24 hr or 48 hr.  
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Figure  5-6: Effect of 24 hr and 48 hr incubation of 3T3-L1  adipocytes with AICAR on PKB 
expression and insulin-stimulated PKB phosphorylati on. 
3T3-L1 lysates (15 µg) obtained from cells incubated for 24 hr and 48 hr with 1mМ AICAR prior to 

stimulation for 15 min with 10nМ insulin were resolved by 10% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti-PKB, anti-PKB Ser473 and anti-GAPDH antibodies.  (A) 

Quantification of PKB expression was determined by comparison with GAPDH, and quantification 

of PKB phosphorylation was determined by comparison with PKB by densitometric analysis. Data 

shown represents the mean % maximum +/- S.E.M of three independent experiments, *p < 0.05 

(one-way ANOVA) compared to non-insulin stimulated cells. (B) Representative blots from three 

independent experiments. The position of the molecular weight markers are shown to the left of the 

gel. A = AICAR, I = insulin. 
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Figure  5-7: Effect of 24 hr and 48 hr incubation of 3T3-L1  adipocytes with metformin on PKB 
expression and insulin-stimulated PKB phosphorylati on. 
3T3-L1 lysates (15 µg) obtained from cells incubated for 24 hr and 48 hr with 1mМ metformin prior 

to stimulation for 15 min with 10nМ insulin were resolved by 10% SDS-PAGE, transferred to 

nitrocellulose, and probed with anti-PKB, anti-PKB Ser473 and anti-GAPDH antibodies.  (A) 

Quantification of PKB expression was determined by comparison with GAPDH, and quantification 

of PKB phosphorylation was determined by comparison with PKB by densitometric analysis. Data 

shown represents the mean % maximum +/- S.E.M of three independent experiments, *p < 0.05 

(one-way ANOVA) compared to non-insulin-stimulated cells. (B) Representative blots from three 

independent experiments. The position of the molecular weight markers are shown to the left of the 

gel. M = metformin, I = insulin. 
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5.2.2 Effect of chronic AMPK activation in human adipose tissue 

5.2.2.1 Effect of prolonged treatment of type 2 dia betic subjects with 

metformin on AMPK activity in human adipose tissue.  

In a separate study undertaken by others in the laboratory, the effect of metformin on 

adipose tissue AMPK activity was assessed in subjects with type 2 diabetes. 20 men (aged 

50-70, BMI 27-33) with type 2 diabetes, treated with diet or monotherapy were recruited 

for the study. The study was a double-blinded crossover design, randomised to gliclazide 

(80 mg twice a day) or metformin (500 mg once a day) for 10 weeks with a 6 week 

washout period. Subjects were treated with gliclazide in order to try to match glycaemic 

control at the end of each treatment phase. The clinical and metabolic parameters of test 

subjects after each treatment phase are shown below (Table 5.1). There was no significant 

difference in BMI, total serum adiponectin concentration, total cholesterol concentration, 

HDL cholesterol concentration or triglyceride concentration after each phase of therapy. 

However, gliclazide therapy was more effective at lowering HbA1c than metformin (7.8 

+/- 1.73 % versus 8.3 +/- 1.7 %, p < 0.001). This was complemented by significantly lower 

fasting blood glucose with gliclazide versus metformin therapy (10.3 +/- 3.2 mM versus 

12.1 +/- 4.7 mM). Furthermore LDL cholesterol concentration was significantly lower 

after gliclazide therapy compared with metformin therapy (2.42 +/- 0.74 mM versus 2.79 

+/- 0.74 mM, p = 0.022).  

 Metformin 
mean (SD) 

Gliclazide 
mean (SD) 

p-value 

BMI (Kg/m2) 31.0 (4.3) 31.0 (4.5) 0.80 

Adiponectin (ng/ml) 4193 (2670) 4648 (3291) 0.054 

HbA1c (%) 8.34 (1.70) 7.82 (1.74) <0.001 

Fasting blood glucose (mM) 12.1 (4.7) 10.3 (3.2) 0.005 

Insulin (U/L) 15.6 (13.8) 14.3 (6.0) 0.69 

Cholesterol (mM) 5.16 (1.16) 4.75 (1.59) 0.054 

HDL-C (mM) 1.25 (0.24) 1.20 (0.24) 0.13 

LDL-C (mM) 2.79 (0.74) 2.42 (0.73) 0.022 

Triglycerides (mM) 2.78 (3.76) 2.94 (4.80) 0.58 

Table  5-1: Clinical and metabolic parameters of test subj ects 
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As shown in figure 5.8, metformin did not alter AMPK expression levels, but did cause an 

approximate 2 fold significant (p < 0.01) increase in AMPK activity in adipose tissue in 

type 2 diabetic subjects. 

 

 

Figure  5-8: Effect of prolonged treatment of type 2 diabet ic subjects with metformin on 
AMPK activity and expression in human adipose tissu e. 
Total AMPK was immunoprecipitated from the adipose biopsies (100 µg) with a mixture of anti- 

AMPK α1 and α2 antibodies and assayed for AMPK activity. (A) AMPK activity in each experiment 

was standardized against the activity of purified rat liver AMPK kinase (K). Data shown represents 

the mean +/- 95% confidence intervals of the mean, of 20 subjects, each treated for 10 weeks with 

gliclazide (80 mg) and 10 weeks with metformin (500 mg), *p < 0.01. The values given for the 

means and 95% confidence intervals were calculated using logarithmic transformed data, and back 

transformed for purposes of presentation. Adipose tissue (80 µg) was resolved on 10% SDS-

PAGE, transferred to nitrocellulose and probed with anti-Pan AMPKα antibody. (B) Quantification of 

AMPK expression. Data shown represents the mean +/- 95% confidence intervals of the mean, of 

19 subjects, each treated for 10 weeks with gliclazide (80 mg) and 10 weeks with metformin (500 

mg).This work was performed by Dr Jim Boyle (FBLS, University of Glasgow). 
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5.2.2.2 Effect of prolonged treatment of type 2 dia betic subjects with 

metformin on the expression of GAPDH in human adipo se tissue 

As the human adipose tissue lysates used in the study described in 5.2.2.1 represent 

sustained activation of AMPK by metformin in vivo, the expression of several key insulin 

signalling molecules was assessed. As shown below in figure 5.9, prolonged treatment of 

type 2 diabetic subjects with metformin did not significantly alter the expression of 

GAPDH in adipose tissue. Thus, GAPDH was used as a loading control in subsequent 

blotting which assessed the expression of the PI3K p85 subunit, PKB, IRS-1 and FAS. 

5.2.2.3 Effect of prolonged treatment of type 2 dia betic subjects with 

metformin on the expression of PI3K in human adipos e tissue. 

As shown below in figure 5.10, prolonged treatment of type 2 diabtic subjects with 

metformin did not significantly alter the expression of the PI3K subunit p85 in adipose 

tissue. 

5.2.2.4 Depletion of albumin from human adipose tis sue samples. 

Subsequent western blotting of the adipose tissue samples with anti-PKB antibody, anti-

IRS-1 antibody and anti-FAS antibody was problematic, as they produced unclear data 

even after numerous high salt washes. Albumin is an abundant protein in these samples. 

Thus in an attempt to improve the quality of the western blots, an albumin depletion kit 

was used to remove albumin from the adipose tissue samples.  As shown below in figure 

5.11, the kit was efficient at removing most of the albumin (albumin depletion column). 

Elution of the unbound proteins, which included proteins of interest, did cause elution of 

some bound albumin, however the amount of albumin in this elution fraction was an 

improvement compared to the amount in the initial starting material.  
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Figure  5-9: Effect of prolonged treatment of type 2 diabet ic subjects with metformin on 
GAPDH expression in human adipose tissue. 
Adipose tissue (80 µg) was resolved on 10% SDS-PAGE, transferred to nitrocellulose and probed 

with anti-GAPDH antibody. (A) Quantification of GAPDH expression, relative to an internal control 

(subject 14). Data shown represents the mean +/- 95% confidence intervals of the mean, of 19 

subjects, each treated for 10 weeks with gliclazide (80 mg) and 10 weeks with metformin (500 mg). 

(C) Representative western blot (subject 13). The position of the molecular weight markers are 

shown to the left of the gel. G = gliclazide, M = metformin.  
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Figure  5-10: Effect of prolonged treatment of type 2 diabe tic subjects with metformin on the 
expression of the PI3K p85 subunit in adipose tissu e. 
Adipose tissue (80 µg) was resolved on 10% SDS-PAGE, transferred to nitrocellulose and probed 

with anti-PI3K p85 antibody. (A) Quantification of PI3K p85 subunit expression, relative to an 

internal standard (subject 14) and GAPDH. Data shown represents the mean +/- 95% confidence 

intervals of the mean, of 19 subjects, each treated for 10 weeks with gliclazide (80 mg) and 10 

weeks with metformin (500 mg). The values given for the means and 95% confidence intervals 

were calculated using square root transformed data, and back transformed for purposes of 

presentation. (C) Representative western blot (subject 13). The position of the molecular weight 

markers are shown to the left of the gel. G = gliclazide, M = metformin.  
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Figure  5-11: Albumin depletion from adipose tissue sample.  
Equal equivalent volumes from samples obtained at various points throughout the albumin 

depletion process, from one adipose tissue sample (subject 13), were resolved by 10% SDS-

PAGE. Proteins were visualized by Coomassie stain. 
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5.2.2.5 Effect of prolonged treatment of type 2 dia betic subjects with 

metformin on the expression of IRS-1 and PKB in hum an adipose tissue. 

The albumin depleted samples were then subjected to western blotting to investigate the 

effect of prolonged treatment of type 2 diabetic subjects with metformin on IRS-1 and 

PKB expression in adipose tissue. As shown below in figure 5.12 and 5.13, IRS-1 

expression and PKB expression, respectively, were not significantly altered by metformin.  

5.2.2.6 Effect of prolonged treatment of type 2 dia betic subjects with 

metformin on FAS expression in human adipose tissue . 

As the AMPK assays were performed on adipose biopsies obtained from subjects treated 

with metformin which contain other cells such as endothelial and fibroblasts, it is possible 

that AMPK activation is occuring in another cell type different from that of adipocytes.  

To determine whether AMPK activation was occurring in adipocytes within adipose tissue 

the effect of metformin on the expression of the late adipogenic marker FAS, whose 

expression has previously been shown to be reduced during differentiation of 3T3-L1 

preadipocytes by AMPK activation (Habinowski and Witters 2001), was investigated. As 

shown in figure 5.14 prolonged treatment of type 2 diabetic subjects with metformin did 

not appear to significantly alter the expression of FAS in adipose.  

The expression of the transcription factors C/EBPα and PPARγ have also previously been 

shown to be reduced by AMPK activation during differentiation of 3T3-L1 preadipocytes 

(Habinowski and Witters 2001, Giri et al 2006, Tong et al 2008) and in fully differentiated 

3T3-F442A adipocytes (Dagon et al 2006). In addition AMPK activation in muscle has 

been shown to increase the expression level of GLUT4 (Holmes et al 1999). Thus the 

effect of metformin on the expression of C/EBPα, PPARγ and GLUT4 were also 

investigated. Unfortunately it was not possible to reliably determine expression by western 

blotting (data not shown). 
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Figure  5-12: Effect of prolonged treatment of type 2 diabe tic subjects with metformin on the 
expression of IRS-1 in adipose tissue. 
Albumin depleted adipose tissue (80 µg) was resolved on 10% SDS-PAGE, transferred to 

nitrocellulose and probed with anti-IRS-1 antibody. (A) Quantification of IRS-1 expression, relative 

to an internal standard (subject 14) and GAPDH. Data shown represents the mean +/- 95% 

confidence intervals of the mean, of 19 subjects, each treated for 10 weeks with gliclazide (80 mg) 

and 10 weeks with metformin (500 mg). (B) Representative western blot (subject 9). The position of 

the molecular weight markers are shown to the left of the gel. G = gliclazide, M = metformin.  

 



Pamela Jane Logan, 2009   Chapter 5, 187 

 

 

Figure  5-13: Effect of prolonged treatment of type 2 diabe tic subjects with metformin on the 
expression of PKB in adipose tissue. 
Albumin depleted adipose tissue (80 µg) was resolved on 10% SDS-PAGE, transferred to 

nitrocellulose and probed with anti-PKB antibody. (A) Quantification of PKB expression, relative to 

an internal standard (subject 14) and GAPDH. Data shown represents the mean +/- 95% 

confidence intervals of the mean, of 19 subjects, each treated for 10 weeks with gliclazide (80 mg) 

and 10 weeks with metformin (500 mg). The values given for the means and 95% confidence 

intervals were calculated using logarithmic transformed data, and back transformed for purposes of 

presentation. (B) Representative western blot (subject 13). The position of the molecular weight 

markers are shown to the left of the gel. G = gliclazide, M = metformin.  
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Figure  5-14: Effect of prolonged treatment of type 2 diabe tic subjects with metformin on the 
expression of FAS in adipose tissue. 
Albumin depleted adipose tissue (80 µg) was resolved on 10% SDS-PAGE, transferred to 

nitrocellulose and probed with anti-FAS antibody. (A) Quantification of FAS expression, relative to 

an internal standard (subject 14) and GAPDH. Data shown represents the mean +/- 95% 

confidence intervals of the mean, of 13 subjects, each treated for 10 weeks with gliclazide (80 mg) 

and 10 weeks with metformin (500 mg). The values given for the means and 95% confidence 

intervals were calculated using logarithmic transformed data, and back transformed for purposes of 

presentation. (B) Representative western blot (subject 13). The position of the molecular weight 

markers are shown to the left of the gel. G = gliclazide, M = metformin. 
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5.3 Discussion 

The principal findings of this study are that prolonged treatment of 3T3-L1 adipocytes with 

AICAR, but not metformin, increased AMPK Thr172 phosphorylation and inhibited 

insulin-stimulated glucose transport. Inhibition of insulin-stimulated glucose transport by 

AICAR in 3T3-L1 adipocytes was not associated with altered PKB protein expression or 

insulin-stimulated PKB Ser473 phosphorylation. Chronic AMPK activation in adipose 

tissue was observed in metformin treated type 2 diabetic subjects, and was not associated 

with altered expression of three key insulin signalling molecules; PKB, the PI3K p85 

subunit and IRS-1.  

Incubation of 3T3-L1 adipocytes with AICAR for 24 hr and 48 hr was shown to 

significantly (p < 0.05) increase AMPK Thr172 phosphorylation in insulin-stimulated cells 

(Fig. 5.1), and significantly (p < 0.05) inhibit insulin-stimulated glucose transport (Fig. 

5.3). Total AMPK expression was not altered in 3T3-L1 adipocytes incubated with AICAR 

for 24 hr and 48 hr (Fig. 5.1), suggesting that it is the specific activity of AMPK that is 

increasing rather than an increase in AMPK protein expression. However it should be 

noted that only AMPK α1 protein expression levels were assessed. Thus, it is possible that 

incubation of 3T3-L1 adipocytes with AICAR for 24 hr and 48 hr may increase AMPK α2 

protein expression which could account for the increase in AMPK Thr172 

phosphorylation. In addition, this study also found that incubation of 3T3-L1 adipocytes 

with AICAR for 24 hr and 48 hr displayed a significant increase in phosphorylation of the 

AMPK downstream target ACC at Ser79 in insulin-stimulated cells (Fig. 5.1). Habinowski 

and Witters, previously showed that prolonged AMPK activation by AICAR during 

differentiation of 3T3-L1 preadipocytes decreased the expression level of ACC 

(Habinowski and Witters 2001). However, in contrast this current study found that 

prolonged treatment of 3T3-L1 adipocytes with AICAR did not significantly alter ACC1 

expression (Fig. 5.1). Thus, perhaps the effect of AICAR on ACC expression differs 

between fibroblasts and fully differentiated adipocytes. In addition to assessing ACC1 

protein expression it would have been interesting to have also investigated the effect of 

AICAR on ACC2 protein expression, as it is possible that the effect of AICAR on ACC 

expression observed by Habinowski and Witters was ACC2 specific. 

In contrast, incubation of 3T3-L1 adipocytes with metformin for 24 hr and 48 hr did not 

significantly alter AMPK Thr172 phosphorylation (Fig. 5.2), nor alter insulin-stimulated 

glucose transport (Fig. 5.4). It should be noted that this work is in contrast to a previous 
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study (Huypens et al 2005) which showed that treatment of 3T3-L1 adipocytes with 1mM 

metformin for 48 hr did not alter AMPK protein expression levels, but did increase AMPK 

Thr172 phosphorylation. Since this current study found that treatment of 3T3-L1 

adipocytes with metformin for 24 hr and 48 hr did not significantly alter AMPK Thr172 

phosphorylation, it was not surprising that phosphorylation of the AMPK downstream 

target ACC at Ser 79 was also not found to be significantly altered (Fig. 5.2). In addition, 

ACC1 protein expression was also found not to be significantly altered (Fig. 5.2).  

In hepatocytes and intestinal cells metformin is transported into the cell by the organic 

cation transporter1 (OCT1) (McKinney and Hosford 1992, Wang et al 2002). However, 

there was no detectable level of OCT1 mRNA expression in 3T3-L1 adipocytes (Helen M 

McLeod, University of Glasgow personal communication). However, as mentioned 

previously, Huypens and co-workers (Huypens et al 2005) have suggested that metformin 

may be taken up into 3T3-L1 adipocytes via another transporter or by diffusion, although 

this does not appear to be the case in this current study.  

A preliminary experiment showed that in Ad.α1312 infected cells there appeared to be a 

reduction in insulin-stimulated glucose transport compared to Ad.null infected cells (Fig. 

5.5). This suggests that prolonged AMPK activation in 3T3-L1 adipocytes does indeed 

inhibit insulin-stimulated glucose transport. However, it is important to stress that this was 

a preliminary experiment (n=1), thus further repetitions are required in order to confirm 

this observation.  

Collectively, these results suggest that prolonged AMPK activation in adipocytes inhibits 

insulin-stimulated glucose transport. This is in stark contrast to the effect of chronic 

AMPK activation by AICAR in skeletal muscle. Long-term activation of AMPK with 

AICAR increases glycogen content, hexokinase activity, and total GLUT4 protein content 

in rat skeletal muscle (Holmes et al 1999, Ojuka et al 2000). In addition, long term 

treatment of rats with AICAR was shown to induce a pronounced increase in insulin-

stimulated glucose uptake and GLUT4 cell surface content in rat skeletal muscle (Buhl et 

al 2001).  

This current work showed that long-term AMPK activation by AICAR in 3T3-L1 

adipocytes did not alter PKB protein expression levels, nor alter insulin-stimulated PKB 

phosphorylation at Ser473 (Fig. 5.6). However, it is highly possible that prolonged AMPK 

activation in 3T3-L1 adipocytes may inhibit insulin-stimulated glucose transport by 
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altering the expression level of other key insulin-signalling molecules, as prolonged 

AMPK activation has previously been demonstrated to alter protein expression. Activation 

of AMPK by AICAR during differentiation of 3T3-L1 preadipocytes has been shown to 

reduce the expression of the early adipogenic transcription factors C/EBPα, C/EBPβ and 

PPARγ (Habinowski and Witters 2001, Giri et al 2006, Tong et al 2008), and the late 

adipogenic markers FAS and ACC (Habinowski and Witters 2001). Incubation of rat 

hepatocytes with AICAR was also found to inhibit glucose activated FAS gene expression 

(Foretz et al 1998). In addition the expression of the genes for the gluconeogenic enzyme 

phosphoenolpyruvate carboxy kinase and glucose-6-phosphatase were also shown to be 

reduced in hepatoma cells by activating AMPK using AICAR (Lochhead et al 2000). In 

muscle, AMPK activation by AICAR, was shown to increase both GLUT4 and hexokinase 

gene transcription (Holmes et al 1999, Zheng et al 2001, Ojuka et al 2000). AMPK has 

been proposed to regulate gene expression by directly phosphorylating certain transcription 

factors and co-activators including; p53, p300, TRIP6, and TORC2 (Leff 2003, Imamura et 

al 2001, Solaz-Fuster et al 2006, Shaw et al 2005). 

The biguanide metformin, used in the treatment of type 2 diabetes, works primarily by 

reducing hepatic glucose release from hepatic glycogen stores (Kirpichnikov et al 2002). 

Metformin is thought to mediate its effects on hepatic glucose production via AMPK 

activation in cultured primary rat and human hepatocytes (Zhou et al 2001). This AMPK 

dependent mechanism has been further investigated and recent work suggests that 

metformin increases the expression of the nuclear receptor gene, SHP, via AMPK 

activation and that this in turn inhibits the expression of the hepatic gluconeogenic genes 

PEPCK and G6Pase (Kim et al 2008). Metformin has also been shown to increase AMPK 

activity in human muscle of subjects with Type 2 diabetes (Musi et al 2002). Furthermore 

this metformin-induced increase in AMPK activity in muscle is associated with higher 

rates of glucose disposal (Musi et al 2002). Prolonged treatment of 3T3-L1 adipocytes with 

metformin has previously been reported to stimulate AMPK activity (Huypens et al 2005), 

in contrast to the data presented here, yet metformin increases adipose AMPK activity in 

vivo in adipose tissue of subjects with type 2 diabetes compared with gliclazide (Fig. 5.8). 

The increase in adipose AMPK activity was not associated with an increase in AMPK 

protein expression. This suggests that the change in AMPK activity is due to an increase in 

the specific activity of AMPK rather than simply a difference in the total amount of AMPK 

between phases. The study design aimed to match glycaemic control at the end of each 

phase but this, in the event, proved not to be possible. Metformin increased AMPK activity 
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when compared to gliclazide despite better glycaemic control with the latter, supporting a 

glucose-independent mechanism for this metformin effect. 

Prolonged AMPK activation in vivo in adipose tissue could occur under other conditions. 

The β adrenoreceptor agonists isoproterenol and adrenaline have both previously been 

shown to stimulate acute AMPK activity in adipocytes (Moule and Denton 1998, Yin et al 

2003, Koh et al 2007). Thus it is feasible that sustained isoproterenol or adrenaline levels 

could result in prolonged AMPK activation in vivo in human adipose tissue. Leptin (Orci et 

al 2004) has been shown to acutely activate AMPK in adipose tissue. Given that leptin 

secretion increases with adipose tissue mass (Maffei et al 1995), it is possible that 

prolonged AMPK activation may occur in vivo in adipose tissue in obese individuals. 

Hypoxia/ischaemia has previously been shown to stimulate AMPK activity (Marsin et al 

2000, Kudo et al 1995) in rat hearts. Thus, sustained ischemia in vivo in adipose tissue may 

also cause prolonged AMPK activation given that it is well established that adipose tissue 

is highly susceptible to ischemia (Kovach et al 1976, Coban et al 2005).   

The TZD’s are another class of drugs used in the treatment of type 2 diabetes. They 

stimulate PPARγ mediated adipocyte differentiation and increase the number of small 

adipocytes (Okuno et al 1998). This is associated with reduced serum NEFAs and reduced 

TNFα expression, which increases insulin sensitivity in liver and skeletal muscle (Quinn et 

al 2008). In addition, TZDs can also elevate levels of adiponectin. This is achieved in part 

via the generation of the small adipocytes which abundantly express and secrete 

adiponectin (Yamauchi et al 2001) and by the up-regulation of adiponectin via direct 

effects of TZDs on adiponectin gene transcription (Iwaki et al 2003). Adiponectin has 

previously been demonstrated to activate AMPK in muscle, liver and adipocytes 

(Yamauchi et al 2002, Wu et al 2003). In addition, Yamauchi and co-workers have shown 

that adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-

activated protein kinase in liver and muscle (Yamauchi et al 2002). Thus TZDs are able to 

activate AMPK indirectly via adiponectin. In addition, the TZD, rosiglitazone has been 

shown to stimulate AMPK activity after 30 min in H-2Kb muscle cells suggesting an 

adiponectin independent effect (Fryer et al 2002b). Saha and co-workers showed that 

prolonged treatment of rats with pioglitazone increased the activity of AMPK in rat 

adipose and liver tissue, however, it is unclear whether it does so by a direct effect and/or 

by increasing plasma levels of adiponectin (Saha et al 2004). Therefore rosiglitazone may 

directly or indirectly, via adiponectin, cause sustained AMPK activation in vivo in human 

adipose tissue. 
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Metformin has also been shown to reduce the expression of various genes involved in the 

endocrine system in adipocytes; i.e inhibition of resistin (Rea and Donnelly 2006) leptin 

(Klein et al 2004) and adiponectin (Huypens et al 2005). The study by Huypens and co-

workers is one of the few that effectively links metformin’s suppression of gene expression 

with AMPK activation. In this current study the effect of chronic AMPK activation by 

metformin on the expression of key insulin signalling molecules in the human adipose 

biopsies was investigated. In summary, this study found that chronic AMPK activation by 

metformin in human adipose tissue did not appear to significantly alter the expression of 

IRS-1 (Fig. 5.12), the PI3K p85 subunit (Fig. 5.10) and PKB (Fig. 5.13). However, it still 

remains to be determined whether metformin alters the insulin sensitivity of these 

molecules in adipose tissue of type 2 diabetic subjects. 

It should be noted that potentially metformin may not be having a direct effect on adipose 

tissue in vivo. Perhaps another molecule secreted from the liver, the primary site of 

metformin action, may be activating AMPK in vivo in human adipose tissue. 

Adiponectin is secreted exclusively from adipocytes and has been shown to activate 

AMPK in isolated rat adipocytes (Wu et al 2003). Thus potentially metformin, via a direct 

or indirect effect on adipose tissue, could increase the adiponectin expression level in 

plasma and/or locally in adipose tissue in type 2 diabetic subjects which could 

subsequently result in adiponectin-mediated AMPK activation in adipose tissue. However, 

this seems unlikely since the data (Table 5.1) presented in this study shows that the 

increase in adipose AMPK activity after metformin treatment was not associated with any 

difference in the serum adiponectin level. This is in agreement with other previous studies 

which also found that metformin did not alter serum adiponectin concentration in type 2 

diabetic subjects (Phillips et al 2003, Tiikkainen et al 2004). In addition it has also been 

reported that treatment of type 2 diabetic subjects with metformin does not alter 

adiponectin mRNA concentration in adipose tissue or the adipocyte adiponectin protein 

content (Tiikkainen et al 2004, Phillips et al 2003). However it should also be noted that 

measuring the total serum adiponectin level does not discriminate between adiponectin 

trimeric, hexameric and higher order polymeric structures which all exist in plasma 

(Pajvani et al 2003). The biological activity of adiponectin depends on its structure, with 

different oligomeric complexes activating different pathways. For example only globular 

and trimeric adiponectin were found to activate AMPK in myocytes (Tasao et al 2003, 

Tomas et al 2002). 
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Adipose tissue is constructed of different components including; adipocytes, connective 

tissue matrix, nerve tissue, stromovascular cells and immune cells. Thus potentially 

metformin may not be directly or indirectly activating AMPK in adipocytes within human 

adipose tissue. This current study found that the expression of FAS, whose expression has 

previously been shown to be reduced by AMPK activation during differentiation of 3T3-

L1 preadipocytes (Habinowski and Witters 2001) was not significantly altered (Fig. 5.14) 

in adipose tissue from type 2 diabetic subjects treated with metformin. This suggests that 

metformin, either directly or indirectly, may be stimulating an increase in AMPK activity 

in non-adipocyte cells within adipose tissue. Prolonged AMPK activation by AICAR 

during differentiation of 3T3-L1 preadipocytes has also been reported to block the 

expression of the early adipogenic transcription factors C/EBPα, C/EBPβ and PPARγ, and 

of the late adipogenic marker ACC (Habinowski and Witters 2001, Giri et al 2006, Tong et 

al 2008). In addition, 24 hr AICAR treatment has also been shown to inhibit the expression 

of C/EBPα and PPARγ in fully differentiated 3T3-F442A cells (Dagon et al 2006). 

Therefore it would be useful to determine whether the expression of these adipogenic 

transcription factors and adipogenic markers in metformin treated type 2 diabetic subjects 

is altered in order to establish whether chronic AMPK activation by metformin in type 2 

diabetic subjects activates AMPK in adipocytes within adipose tissue. However it is 

possible that the effect of AMPK activation on the expression of the adipogenic 

transcription factors and adipogenic markers may differ in mature adipocytes. In addition, 

adipocytes could be isolated from the adipose tissue biopsies and AMPK activity assessed. 

However, this would take several hours which may result in any non-genomic effects of 

metformin on the AMPK activity being lost.  

Overall the findings of this study suggest that prolonged AMPK activation in 3T3-L1 

adipocytes inhibits insulin-stimulated glucose transport and that this is not associated with 

altered PKB protein expression or insulin-stimulated PKB Ser473 phosphorylation. This 

study also reported that prolonged treatment of type 2 diabetic subjects with metformin 

increased AMPK activity in adipose tissue and that this was not associated with altered 

expression of three key insulin signalling molecules; PKB, the PI3K subunit p85 and IRS-

1. The very modest effect of acute metformin treatment on AMPK activity in 3T3-L1 

adipocytes, the lack of effect of prolonged metformin treatment on AMPK activity in 3T3-

L1 adipocytes and the lack of effect of metformin on FAS expression in human adipose 

tissue suggests metformin’s effects in adipose may not represent direct effects on the 

adipocytes within that tissue. 
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Chapter 6 – Final discussion 

The principal findings of this study were that AMPK activity in 3T3-L1 adipocytes is 

sensitive to multiple stimuli that act via different mechanisms, did not alter substantially 

during adipogenesis and is associated with reduced insulin-stimulated glucose transport. 

AMPK has been proposed to be a therapeutic target for patients with type 2 diabetes and 

the metabolic syndrome due to its beneficial effects on metabolic parameters. In skeletal 

muscle AMPK stimulates glucose uptake and fatty acid oxidation, whereas in liver it 

inhibits gluconeogenesis, fatty acid synthesis and cholesterol synthesis (Hardie 2004a). 

Overall the beneficial metabolic effects of AMPK activation in muscle and liver have been 

well-studied. However, despite the importance of adipose tissue in energy homeostasis the 

potential role of AMPK in the regulation of adipocyte biology was poorly characterised 

prior to this study.   

Work in this current study showed that AMPK can be acutely activated in 3T3-L1 

adipocytes by a variety of different stimuli; sorbitol, AICAR, arsenite, A23187, 

rosiglitazone, metformin, isopreterenol, sodium azide, H2O2, leptin and A769662. The 

mechanism of AMPK activation differs for the different stimuli (Fig. 6.1). AICAR is 

converted into ZMP in the cell which functions as a cellular mimetic of AMP i.e ZMP 

causes allosteric activation of AMPK and protects phosphorylation of Thr172, by the 

constitutively active AMPK kinase LKB1, from dephosphorylation. The novel direct 

AMPK activator A769662 activates AMPK by mimicking the effects of AMP. The 

calcium ionophore A23187 elevates intracellular calcium concentrations, thereby 

stimulating AMPK activity via a CaMKK dependent pathway. AMPK activation by 

isoproterenol, azide and rosiglitazone was not significantly altered in the presence of the 

CaMKK inhibitor STO-609. In addition these stimuli caused a significant increase in the 

ADP/ATP ratio which suggests that these stimuli activate AMPK via an LKB1-dependent 

pathway. Sorbitol, metformin, arsenite, hydrogen peroxide and leptin were found to have 

no significant effect on the nucleotide ratios, and AMPK stimulated activity by these 

activators was not significantly altered in the presence of STO-609. This suggests that 

these stimuli may be activating AMPK via novel AMPK kinases which are both nucleotide 

and calcium independent. One potential candidate is TAK1, which has recently been 

identified as a possible novel AMPK kinase in mammalian cells (Momcilovic et al 2006), 

however there may also exist other currently unidentified AMPK kinases. 
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Previous work by Salt and co-workers reported that stimulation of AMPK is associated 

with reduced insulin-stimulated glucose transport in 3T3-L1 adipocytes (Salt et al 2000), 

which is in contrast to the effect in muscle.  

Acute stimulation of AMPK activity by sorbitol, rosiglitazone, isoproterenol, AICAR and 

A769662 in 3T3-L1 adipocytes significantly (p < 0.05) inhibited insulin-stimulated 

glucose transport. Although AICAR still displayed a tendency to inhibit insulin-stimulated 

glucose transport in Ad.α1DN infected cells, in the presence of the most effective AMPK 

inhibitor available, compound C, the inhibitory effect of AICAR on insulin-stimulated 

glucose transport was no longer apparent. Taken together these results provide strong 

evidence that acute AMPK activation does inhibit insulin-stimulated glucose transport. 

Results from this current study also showed that AMPK activation does not impair insulin-

stimulated phosphorylation of AS160 or TBC1D1 at PAS sites. Thus, the molecular 

mechanism by which AMPK elicits the inhibition of insulin-stimulated glucose uptake still 

remains to be determined, but may potentially occur at a site downstream of 

AS160/TBC1D1 in the insulin signalling cascade. These findings are summarized below 

(Fig. 6.1). 

 

Figure  6-1: Proposed mechanism of acute AMPK activation an d subsequent inhibition of 
insulin-stimulated glucose transport in 3T3-L1 adip ocytes. 
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This current work also investigated the long-term effects of AMPK activation on insulin-

stimulated glucose transport. Prolonged treatment of 3T3-L1 adipocytes with AICAR was 

found to activate AMPK activity and dramatically inhibit insulin-stimulated glucose 

transport. In addition a preliminary experiment showed that infection of 3T3-L1 adipocytes 

with Ad.α1312 also inhibited insulin-stimulated glucose transport. Collectively, these results 

suggest that prolonged AMPK activation also inhibits-insulin-stimulated glucose transport 

in 3T3-L1 adipocytes. The mechanism of inhibition of insulin-stimulated glucose transport 

by prolonged AMPK activation in adipocytes was also investigated in this current study. 

However prolonged treatment of 3T3-L1 adipocytes was not associated with altered PKB 

expression or insulin-stimulated PKB phosphorylation. Furthermore chronic AMPK 

activation by metformin in adipose tissue of type 2 diabetic subjects was not associated 

with altered expression of three key insulin signalling molecules; PKB, the PI3K p85 

subunit and IRS-1.  

Overall this study suggests that both acute and prolonged AMPK activation in adipocytes 

inhibits insulin-stimulated glucose uptake. As discussed (1.1.2) glucose is taken up into 

adipocytes in the fed state and is stored as TG. Therefore inhibition of glucose uptake into 

adipocytes would subsequently reduce fatty acid and TG synthesis. The synthesis of fatty 

acids and TG from glucose is an energy dependent process. Thus, it could be reasoned that 

AMPK activation inhibits insulin-stimulated glucose uptake in adipocytes in order to 

reduce the ATP-dependent synthesis of fatty acids and TG in adipocytes. Furthermore, the 

inhibition of glucose transport would allow glucose to be used as an energy source by other 

tissues, rather than adipocytes, which would start using the stored triglyceride. 

Although this current work reported that there was no change in total AMPK activity, as 

determined under a saturating AMP concentration (200µМ), between fibroblasts and 

adipocytes throughout adipogenesis, there was an observed change in the expression levels 

of the γ subunit isoforms throughout adipogenesis i.e there was an increase in the γ1 

isoform expression level and a reduction in the expression level of the γ2 and γ3 isoforms. 

Previous studies using native rat complexes and recombinant AMPK heterotrimeric 

complexes (Cheung et al 2000, Scott et al 2004) reported that different γ isoform 

complexes differed in their degree of stimulation by AMP i.e γ2 displayed the greatest 

stimulation by AMP, while γ1 displayed an intermediate stimulation by AMP and γ3 the 

lowest stimulation by AMP. Since the expression level of the different γ isoforms is altered 

during adipogenesis it would be interesting to investigate the sensitivity of AMPK 

complexes immunoprecipitated from fibroblasts and adipocytes to AMP, as it is possible 
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that during adipogenesis the sensitivity of adipocytes to energy balance changes may be 

altered.  

Currently the mechanism by which AMPK activation in 3T3-L1 adipocytes inhibits 

insulin-stimulated glucose transport remains to be elucidated. This current work reported 

that AMPK activation did not impair insulin-stimulated phosphorylation of 

AS160/TBC1D1 at PAS sites. AS160 contains six potential PKB phosphorylation sites 

(Ser318, Ser341, Ser570, Ser588, Thr642, Ser751) (Sano et al 2003), and TBC1D1 

contains two potential PKB phosphorylation sites (Thr596 and Ser507) (Roach et al 2007). 

The anti-PAS antibody only gives a measure of total phosphorylated AS160/TBC1D. Thus 

although the total PAS phosphorylation is unaltered, the actual extent of phosphorylation at 

each PAS site may be altered, with consequent effects on AS160/TBC1D1 activity. Since 

AMPK (*( Xβ)XX(S/T)XXX*);  *= Met, Val, Leu, Ile, or Phe, and β = Arg, Lys, or His) 

(Dale et al 1995) and PKB (RXRXX(S/T) (Yaffe et al 2001) have subtly different substrate 

specificities it is feasible that AICAR would preferentially cause phosphorylation of some 

PAS sites, and insulin (via PKB) of different ones. This could result in a different 

phosphorylation pattern on AS160/TBC1D1 with the same phosphorylation stoichiometry. 

It is not known precisely which PAS sites are important for regulating activity in vivo, thus 

it is possible that AICAR/PKB may cause phosphorylation at different PAS sites with 

corresponding changes in AS160/TBC1D1 activity, without altering total AS160/TBC1D1 

PAS phosphorylation. 

In HEK 293 cells the anti-PAS antibody was found to primarily detect phospho-Thr642 on 

AS160 (Geraghty et al 2007). Thus potentially AMPK may be altering insulin-stimulated 

AS160/TBC1D1 phosphorylation at PAS sites which may not be primarily recognized by 

the anti-PAS antibody in 3T3-L1 adipocytes. 

In addition activation of AMPK in 3T3-L1 adipocytes may result in phosphorylation of 

AS160/TBC1D1 at non-PAS sites which may subsequently alter the activity of 

AS160/TBC1D1. Since the AMPK phosphorylation sites on AS160 lie within the PAS 

sites, and are thus detected by the PAS antibody, it is more likely that AMPK activation 

may result in the subsequent activation of a downstream kinase which may then 

phosphorylate AS160 at non-PAS sites, rather than AMPK directly phosphorylating 

AS160 at non-PAS sites. Thr568 and Ser666 have previously been identified as 

phosphorylation sites on AS160 which do not lie within a PKB consensus phosphorylation 

motif, and have been shown to be phosphorylated by RSK1 and SGK1 in vivo in HEK 
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cells (Geraghty et al 2007). Thus it is feasible that AMPK activation in adipocytes may 

result in activation of downstream kinases which may subsequently phosphorylate 

Thr568/Ser666 or novel sites on AS160. 

Ser237, which lies within an AMPK consensus phosphorylation motif on TBC1D1, has 

been shown to be phosphorylated in response to treatments that elevate levels of active and 

phosphorylated AMPK in HEK 293 cells and rat L6 myotubes (Chen et al 2008). As 

previously mentioned overexpression of TBC1D1 was shown to markedly inhibit insulin-

stimulated GLUT4 translocation in 3T3-L1 adipocytes (Roach et al 2007). Furthermore, 

this inhibition was reported to be partially reversed by AICAR (Chavez et al 2008). 

Interestingly, phosphorylation at Ser237 did not appear to underlie the effect of AICAR to 

relieve in part TBC1D1 inhibition of the insulin-stimulated increase in cell surface GLUT4 

in 3T3-L1 adipocytes (Chavez et al 2008). In addition to Ser237, human TBC1D1 contains 

three other Ser/Thr residues that conform to the AMPK consensus phosphorylation 

sequence at amino acid residues 69, 372, and 565 (Chavez et al 2008). Thus in 3T3-L1 

adipocytes it is possible that AMPK may phosphorylate TBC1D1 at non-PAS sites, which 

may subsequently alter the activity of TBC1D1. 

Mass spectrometer analysis of TBC1D1 isolated from HEK 293 cells incubated in medium 

containing serum also identified Ser263, Ser566 and Ser585 as phosphorylation sites on 

TBC1D1 (Chen et al 2008). Thus, as discussed with regards to AS160, AMPK activation 

in 3T3-L1 adipocytes may result in the activation of downstream kinases which may 

subsequently phosphorylate TBC1D1 at non-PAS sites and alter its activity. 

Although antibodies against specific phosphorylation sites could be used to further 

investigate the effect of AMPK activation on AS160/TBC1D1 phosphorylation, it is 

currently not possible to directly assess endogenous AS160/TBC1D1 Rab-GAP activity or 

Rab activation in adipocytes. 

It is also possible that AICAR inhibits insulin-stimulated glucose transport at a site 

downstream of AS160/TBC1D1. It has been established that the SNARE complex 

VAMP2/SNAP23/syntaxin4 is involved in insulin-stimulated GLUT4 translocation to the 

plasma membrane (Bryant et al 2002). In addition, the accessory proteins, munc18c, synip 

and tomosyn, have also been proposed to regulate SNARE complex assembly and GLUT4 

translocation (Kanda et al 2005, Widberg et al 2003, Yamada et al 2005). 
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Since the known molecular machinery (VAMP2/SNAP23/syntaxin4, munc18c, synip, 

tomosyn) that regulates GLUT4 exocytosis, downstream of AS160/TBC1D1, is common 

to muscle and adipocytes (Foster and Klip 2000, Randhawa et al 2000, Olson et al 1997, 

Widberg et al 2003, Yang et al 2001, Kanda et al 2005, Spurlin et al 2003, Yamada et al 

2005, Min et al 1999), it is possible that the inhibition of insulin-stimulated glucose 

transport by AMPK activation in adipocytes is mediated by an effector specific to 

adipocytes that is absent or not functioning in muscle. 

Thus the aim of future experiments would be to determine the molecular mechanism by 

which AMPK suppresses insulin-stimulated glucose transport in adipocytes. There a few 

potential mechanisms by which AMPK may be mediating inhibition of insulin-stimulated 

glucose transport in adipocytes; 1. AMPK may alter the subcellular location of key 

components of the insulin-stimulated GLUT4 trafficking pathway, subsequently altering 

their function, 2. AMPK may phosphorylate a currently unidentified protein which may 

inhibit insulin-stimulated glucose transport at a site downstream of AS160/TBC1D1, 3. 

AMPK may increase the rate at which GLUT4 is trafficked from the plasma membrane 

into intracellular storage vesicles, thus effectively reducing the amount of GLUT4 at the 

plasma membrane under insulin-stimulated conditions, 4. AMPK could potentially be 

altering the Cbl-TC10 pathway which is required for insulin-stimulated glucose transport. 

In order to determine the effect of AMPK activation on the subcellular localization of key 

insulin-signalling molecules, cell lysates obtained from 3T3-L1 adipocytes incubated in the 

presence or absence of insulin and AMPK activators, could be subjected to subcellular 

fractionation. Proteins from the cytosolic, plasma membrane and microsomal fractions 

could then be subjected to immunoblotting with specific antibodies to insulin signalling 

and GLUT4 trafficking proteins.  

In order to try to identify the AMPK effector proteins that inhibit insulin-stimulated 

glucose transport, 3T3-L1 adipocytes would be labelled with 33PO4
3- and incubated in the 

presence or absence of insulin and AMPK activators.  Incorporation of 33PO4
3- into any 

proteins in the presence of AMPK activators could be detected by autoradiography, with 

target protein bands being subsequently excised and identified by sequencing. The effect of 

knockdown of the potential AMPK effector proteins in 3T3-L1 adipocytes, using siRNA, 

on AMPK mediated inhibition of insulin-stimulated glucose transport would help identify 

the AMPK effector mediating inhibition of insulin-stimulated glucose transport.  
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In the absence of insulin, GLUT4 is sequestered away from the cell surface plasma 

membrane, and stored in GLUT4 storage vesicles, available for rapid mobilisation upon 

insulin binding (Bryant et al 2002). To determine whether AMPK activation in 3T3-L1 

adipocytes accelerates internalization and sequestration of GLUT4 from the plasma 

membrane under insulin-stimulated conditions, the rate of reversal of insulin-stimulated 

glucose transport could be determined by washing away insulin, as previously described 

(Proctor et al 2006), in the presence and absence of AMPK activators. If a change in 

trafficking was observed, 3T3-L1 adipocytes transfected with a GLUT4 tagged with an HA 

on the extracellular loop (HA-GLUT4) could be utilized to permit the precise 

determination of GLUT4 internalisation under basal and insulin-stimulated conditions.  

The Cbl-TC10 pathway is a parallel insulin-signalling pathway which has been reported to 

contribute to GLUT4 translocation. Insulin-stimulated phosphorylation of Cbl activates the 

small GTP-binding protein TC10, which functions to stimulate trafficking of GLUT4 

vesicles due to actin rearrangement (Saltiel and Pessin 2002). To determine the effect of 

AMPK activation on the Cbl-TC10 pathway, Cbl phosphorylation could be assessed by 

western blotting using phospho-specific antibodies in lysates obtained from 3T3-L1 

adipopcytes incubated in the presence or absence of insulin and AMPK activators. In 

addition, analysis of TC10 activity (GTP-loading) could also be determined in cell lysates. 

Impaired insulin-stimulated glucose transport in muscle and adipose contributes to 

hyperglycaemia in patients with diabetes. Thus elucidation of the molecular mechanisms 

which mediate the regulation of insulin-stimulated glucose transport in adipocytes, may 

uncover potential novel therapeutic targets, which may lead to the development of novel 

therapies for treating type 2 diabetes. 

        



202 

List of References 

2000. Type 2 diabetes in children and adolescents. American Diabetes Association. 

Diabetes Care. 23:381-9. 

Abu-Elheiga, L., A. Jayakumar, A. Baldini, S.S. Chirala, and S.J. Wakil. 1995. Human 

acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two 

isoforms. Proc Natl Acad Sci U S A. 92:4011-5. 

Adan, R.A., R.D. Cone, J.P. Burbach, and W.H. Gispen. 1994. Differential effects of 

melanocortin peptides on neural melanocortin receptors. Mol Pharmacol. 46:1182-90. 

Agati, J.M., D. Yeagley, and P.G. Quinn. 1998. Assessment of the roles of mitogen-

activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein 

kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene 

transcription. J Biol Chem. 273:18751-9. 

Aguirre, V., T. Uchida, L. Yenush, R. Davis, and M.F. White. 2000. The c-Jun NH(2)-

terminal kinase promotes insulin resistance during association with insulin receptor 

substrate-1 and phosphorylation of Ser(307). J Biol Chem. 275:9047-54. 

Aguirre, V., E.D. Werner, J. Giraud, Y.H. Lee, S.E. Shoelson, and M.F. White. 2002. 

Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the 

insulin receptor and inhibits insulin action. J Biol Chem. 277:1531-7. 

Ahima, R.S., J. Dushay, S.N. Flier, D. Prabakaran, and J.S. Flier. 1997. Leptin accelerates 

the onset of puberty in normal female mice. J Clin Invest. 99:391-5. 

Alessi, D.R., S.R. James, C.P. Downes, A.B. Holmes, P.R. Gaffney, C.B. Reese, and P. 

Cohen. 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which 

phosphorylates and activates protein kinase Balpha. Curr Biol. 7:261-9. 

Alonso, A., J. Sasin, N. Bottini, I. Friedberg, A. Osterman, A. Godzik, T. Hunter, J. Dixon, 

and T. Mustelin. 2004. Protein tyrosine phosphatases in the human genome. Cell. 117:699-

711. 



203 

Anthonsen, M.W., L. Ronnstrand, C. Wernstedt, E. Degerman, and C. Holm. 1998. 

Identification of novel phosphorylation sites in hormone-sensitive lipase that are 

phosphorylated in response to isoproterenol and govern activation properties in vitro. J 

Biol Chem. 273:215-21. 

Arad, M., D.W. Benson, A.R. Perez-Atayde, W.J. McKenna, E.A. Sparks, R.J. Kanter, K. 

McGarry, J.G. Seidman, and C.E. Seidman. 2002. Constitutively active AMP kinase 

mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin 

Invest. 109:357-62. 

Arad, M., C.E. Seidman, and J.G. Seidman. 2007. AMP-activated protein kinase in the 

heart: role during health and disease. Circ Res. 100:474-88. 

Arena, S., S. Benvenuti, and A. Bardelli. 2005. Genetic analysis of the kinome and 

phosphatome in cancer. Cell Mol Life Sci. 62:2092-9. 

Assimacopoulos-Jeannet, F., S. Brichard, F. Rencurel, I. Cusin, and B. Jeanrenaud. 1995. 

In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter 

expression in rat liver and adipose tissues. Metabolism. 44:228-33. 

Bailey, C.J. 1992. Biguanides and NIDDM. Diabetes Care. 15:755-72. 

Bailey, C.J., and R.C. Turner. 1996. Metformin. N Engl J Med. 334:574-9. 

Bain, J., L. Plater, M. Elliott, N. Shpiro, C.J. Hastie, H. McLauchlan, I. Klevernic, J.S. 

Arthur, D.R. Alessi, and P. Cohen. 2007. The selectivity of protein kinase inhibitors: a 

further update. Biochem J. 408:297-315. 

Barnes, B.R., S. Marklund, T.L. Steiler, M. Walter, G. Hjalm, V. Amarger, M. Mahlapuu, 

Y. Leng, C. Johansson, D. Galuska, K. Lindgren, M. Abrink, D. Stapleton, J.R. Zierath, 

and L. Andersson. 2004. The 5'-AMP-activated protein kinase gamma3 isoform has a key 

role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem. 

279:38441-7. 

Bateman, A. 1997. The structure of a domain common to archaebacteria and the 

homocystinuria disease protein. Trends Biochem Sci. 22:12-3. 



204 

Bayascas, J.R., N.R. Leslie, R. Parsons, S. Fleming, and D.R. Alessi. 2005. Hypomorphic 

mutation of PDK1 suppresses tumorigenesis in PTEN(+/-) mice. Curr Biol. 15:1839-46. 

Beg, Z.H., J.A. Stonik, and H.B. Brewer, Jr. 1978. 3-Hydroxy-3-methylglutaryl coenzyme 

A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation. 

Proc Natl Acad Sci U S A. 75:3678-82. 

Bergeron, R., J.M. Ren, K.S. Cadman, I.K. Moore, P. Perret, M. Pypaert, L.H. Young, C.F. 

Semenkovich, and G.I. Shulman. 2001. Chronic activation of AMP kinase results in NRF-

1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 281:E1340-6. 

Bergeron, R., R.R. Russell, 3rd, L.H. Young, J.M. Ren, M. Marcucci, A. Lee, and G.I. 

Shulman. 1999. Effect of AMPK activation on muscle glucose metabolism in conscious 

rats. Am J Physiol. 276:E938-44. 

Bernal, D., K. Almind, L. Yenush, M. Ayoub, Y. Zhang, L. Rosshani, C. Larsson, O. 

Pedersen, and M.F. White. 1998. Insulin receptor substrate-2 amino acid polymorphisms 

are not associated with random type 2 diabetes among Caucasians. Diabetes. 47:976-9. 

Bjorbaek, C., and B.B. Kahn. 2004. Leptin signaling in the central nervous system and the 

periphery. Recent Prog Horm Res. 59:305-31. 

Blair, E., C. Redwood, H. Ashrafian, M. Oliveira, J. Broxholme, B. Kerr, A. Salmon, I. 

Ostman-Smith, and H. Watkins. 2001. Mutations in the gamma(2) subunit of AMP-

activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the 

central role of energy compromise in disease pathogenesis. Hum Mol Genet. 10:1215-20. 

Bontemps, F., G. Van den Berghe, and H.G. Hers. 1986. Pathways of adenine nucleotide 

catabolism in erythrocytes. J Clin Invest. 77:824-30. 

Borthwick, A.C., A.M. Wells, J.J. Rochford, S.J. Hurel, D.M. Turnbull, and S.J. Yeaman. 

1995. Inhibition of glycogen synthase kinase-3 by insulin in cultured human skeletal 

muscle myoblasts. Biochem Biophys Res Commun. 210:738-45. 

Bozaoglu, K., K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, and D. 

Segal. 2007. Chemerin is a novel adipokine associated with obesity and metabolic 

syndrome. Endocrinology. 148:4687-94. 



205 

Brazil, D.P., Z.Z. Yang, and B.A. Hemmings. 2004. Advances in protein kinase B 

signalling: AKTion on multiple fronts. Trends Biochem Sci. 29:233-42. 

Brunmair, B., K. Staniek, F. Gras, N. Scharf, A. Althaym, R. Clara, M. Roden, E. Gnaiger, 

H. Nohl, W. Waldhausl, and C. Furnsinn. 2004. Thiazolidinediones, like metformin, inhibit 

respiratory complex I: a common mechanism contributing to their antidiabetic actions? 

Diabetes. 53:1052-9. 

Bruss, M.D., E.B. Arias, G.E. Lienhard, and G.D. Cartee. 2005. Increased phosphorylation 

of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or 

contractile activity. Diabetes. 54:41-50. 

Bruun, J.M., S.B. Pedersen, and B. Richelsen. 2001. Regulation of interleukin 8 production 

and gene expression in human adipose tissue in vitro. J Clin Endocrinol Metab. 86:1267-

73. 

Bryant, N.J., R. Govers, and D.E. James. 2002. Regulated transport of the glucose 

transporter GLUT4. Nat Rev Mol Cell Biol. 3:267-77. 

Buhl, E.S., N. Jessen, O. Schmitz, S.B. Pedersen, O. Pedersen, G.D. Holman, and S. Lund. 

2001. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside 

increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal 

muscles in a fiber type-specific manner. Diabetes. 50:12-7. 

Burks, D.J., S. Pons, H. Towery, J. Smith-Hall, M.G. Myers, Jr., L. Yenush, and M.F. 

White. 1997. Heterologous pleckstrin homology domains do not couple IRS-1 to the 

insulin receptor. J Biol Chem. 272:27716-21. 

Burwinkel, B., J.W. Scott, C. Buhrer, F.K. van Landeghem, G.F. Cox, C.J. Wilson, D. 

Grahame Hardie, and M.W. Kilimann. 2005. Fatal congenital heart glycogenosis caused by 

a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein 

kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet. 76:1034-49. 

Calleja, V., D. Alcor, M. Laguerre, J. Park, B. Vojnovic, B.A. Hemmings, J. Downward, 

P.J. Parker, and B. Larijani. 2007. Intramolecular and intermolecular interactions of protein 

kinase B define its activation in vivo. PLoS Biol. 5:e95. 



206 

Campbell, P.J., M.G. Carlson, and N. Nurjhan. 1994. Fat metabolism in human obesity. 

Am J Physiol. 266:E600-5. 

Campfield, L.A., F.J. Smith, Y. Guisez, R. Devos, and P. Burn. 1995. Recombinant mouse 

OB protein: evidence for a peripheral signal linking adiposity and central neural networks. 

Science. 269:546-9. 

Carling, D. 2004. The AMP-activated protein kinase cascade--a unifying system for energy 

control. Trends Biochem Sci. 29:18-24. 

Carling, D., and D.G. Hardie. 1989. The substrate and sequence specificity of the AMP-

activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. 

Biochim Biophys Acta. 1012:81-6. 

Carling, D., V.A. Zammit, and D.G. Hardie. 1987. A common bicyclic protein kinase 

cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. 

FEBS Lett. 223:217-22. 

Carlson, C.A., and K.H. Kim. 1973. Regulation of hepatic acetyl coenzyme A carboxylase 

by phosphorylation and dephosphorylation. J Biol Chem. 248:378-80. 

Carpenter, G. 2000. The EGF receptor: a nexus for trafficking and signaling. Bioessays. 

22:697-707. 

Castan-Laurell, I., J. Boucher, C. Dray, D. Daviaud, C. Guigne, and P. Valet. 2005. Apelin, 

a novel adipokine over-produced in obesity: friend or foe? Mol Cell Endocrinol. 245:7-9. 

Chadt, A., K. Leicht, A. Deshmukh, L.Q. Jiang, S. Scherneck, U. Bernhardt, T. Dreja, H. 

Vogel, K. Schmolz, R. Kluge, J.R. Zierath, C. Hultschig, R.C. Hoeben, A. Schurmann, 

H.G. Joost, and H. Al-Hasani. 2008. Tbc1d1 mutation in lean mouse strain confers 

leanness and protects from diet-induced obesity. Nat Genet. 40:1354-9. 

Chavez, J.A., T.A. Knotts, L.P. Wang, G. Li, R.T. Dobrowsky, G.L. Florant, and S.A. 

Summers. 2003. A role for ceramide, but not diacylglycerol, in the antagonism of insulin 

signal transduction by saturated fatty acids. J Biol Chem. 278:10297-303. 

Chavez, J.A., W.G. Roach, S.R. Keller, W.S. Lane, and G.E. Lienhard. 2008. Inhibition of 

GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal 



207 

muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem. 

283:9187-95. 

Chehab, F.F., M.E. Lim, and R. Lu. 1996. Correction of the sterility defect in homozygous 

obese female mice by treatment with the human recombinant leptin. Nat Genet. 12:318-20. 

Chehab, F.F., K. Mounzih, R. Lu, and M.E. Lim. 1997. Early onset of reproductive 

function in normal female mice treated with leptin. Science. 275:88-90. 

Chen, D., J.S. Elmendorf, A.L. Olson, X. Li, H.S. Earp, and J.E. Pessin. 1997. Osmotic 

shock stimulates GLUT4 translocation in 3T3L1 adipocytes by a novel tyrosine kinase 

pathway. J Biol Chem. 272:27401-10. 

Chen, D., R.V. Fucini, A.L. Olson, B.A. Hemmings, and J.E. Pessin. 1999. Osmotic shock 

inhibits insulin signaling by maintaining Akt/protein kinase B in an inactive 

dephosphorylated state. Mol Cell Biol. 19:4684-94. 

Chen, H., O. Charlat, L.A. Tartaglia, E.A. Woolf, X. Weng, S.J. Ellis, N.D. Lakey, J. 

Culpepper, K.J. Moore, R.E. Breitbart, G.M. Duyk, R.I. Tepper, and J.P. Morgenstern. 

1996. Evidence that the diabetes gene encodes the leptin receptor: identification of a 

mutation in the leptin receptor gene in db/db mice. Cell. 84:491-5. 

Chen, H.C., G. Bandyopadhyay, M.P. Sajan, Y. Kanoh, M. Standaert, R.V. Farese, Jr., and 

R.V. Farese. 2002. Activation of the ERK pathway and atypical protein kinase C isoforms 

in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated 

glucose transport. J Biol Chem. 277:23554-62. 

Chen, S., J. Murphy, R. Toth, D.G. Campbell, N.A. Morrice, and C. Mackintosh. 2008. 

Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK 

activators. Biochem J. 409:449-59. 

Chien, D., D. Dean, A.K. Saha, J.P. Flatt, and N.B. Ruderman. 2000. Malonyl-CoA 

content and fatty acid oxidation in rat muscle and liver in vivo. Am J Physiol Endocrinol 

Metab. 279:E259-65. 

Cho, H., J. Mu, J.K. Kim, J.L. Thorvaldsen, Q. Chu, E.B. Crenshaw, 3rd, K.H. Kaestner, 

M.S. Bartolomei, G.I. Shulman, and M.J. Birnbaum. 2001. Insulin resistance and a 



208 

diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). 

Science. 292:1728-31. 

Choi, S.L., S.J. Kim, K.T. Lee, J. Kim, J. Mu, M.J. Birnbaum, S. Soo Kim, and J. Ha. 

2001. The regulation of AMP-activated protein kinase by H(2)O(2). Biochem Biophys Res 

Commun. 287:92-7. 

Christ-Crain, M., B. Kola, F. Lolli, C. Fekete, D. Seboek, G. Wittmann, D. Feltrin, S.C. 

Igreja, S. Ajodha, J. Harvey-White, G. Kunos, B. Muller, F. Pralong, G. Aubert, G. 

Arnaldi, G. Giacchetti, M. Boscaro, A.B. Grossman, and M. Korbonits. 2008. AMP-

activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel 

mechanism in Cushing's syndrome. Faseb J. 22:1672-83. 

Ciaraldi, T.P., A.P. Kong, N.V. Chu, D.D. Kim, S. Baxi, M. Loviscach, R. Plodkowski, R. 

Reitz, M. Caulfield, S. Mudaliar, and R.R. Henry. 2002. Regulation of glucose transport 

and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic 

subjects. Diabetes. 51:30-6. 

Cigolini, M., O. Bosello, C. Zancanaro, P.G. Orlandi, O. Fezzi, and U. Smith. 1984. 

Influence of metformin on metabolic effect of insulin in human adipose tissue in vitro. 

Diabete Metab. 10:311-5. 

Civelek, V.N., J.A. Hamilton, K. Tornheim, K.L. Kelly, and B.E. Corkey. 1996. 

Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma 

membrane, lipolytic agonists, and insulin. Proc Natl Acad Sci U S A. 93:10139-44. 

Clausen, T., J. Elbrink, and B.R. Martin. 1974. Insulin controlling calcium distribution in 

muscle and fat cells. Acta Endocrinol Suppl (Copenh). 191:137-43. 

Clement, K., C. Vaisse, N. Lahlou, S. Cabrol, V. Pelloux, D. Cassuto, M. Gourmelen, C. 

Dina, J. Chambaz, J.M. Lacorte, A. Basdevant, P. Bougneres, Y. Lebouc, P. Froguel, and 

B. Guy-Grand. 1998. A mutation in the human leptin receptor gene causes obesity and 

pituitary dysfunction. Nature. 392:398-401. 

Cohen, P. 2000. The regulation of protein function by multisite phosphorylation--a 25 year 

update. Trends Biochem Sci. 25:596-601. 



209 

Cohen, P.T. 2002. Protein phosphatase 1--targeted in many directions. J Cell Sci. 115:241-

56. 

Coleman, R.A., and D.P. Lee. 2004. Enzymes of triacylglycerol synthesis and their 

regulation. Prog Lipid Res. 43:134-76. 

Collins, S., W. Cao, and J. Robidoux. 2004. Learning new tricks from old dogs: beta-

adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol 

Endocrinol. 18:2123-31. 

Collison, M., D.J. James, D. Graham, G.D. Holman, J.M. Connell, A.F. Dominiczak, G.W. 

Gould, and I.P. Salt. 2005. Reduced insulin-stimulated GLUT4 bioavailability in stroke-

prone spontaneously hypertensive rats. Diabetologia. 48:539-46. 

Combs, T.P., U.B. Pajvani, A.H. Berg, Y. Lin, L.A. Jelicks, M. Laplante, A.R. Nawrocki, 

M.W. Rajala, A.F. Parlow, L. Cheeseboro, Y.Y. Ding, R.G. Russell, D. Lindemann, A. 

Hartley, G.R. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti, and P.E. Scherer. 

2004. A transgenic mouse with a deletion in the collagenous domain of adiponectin 

displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology. 

145:367-83. 

Considine, R.V., M.K. Sinha, M.L. Heiman, A. Kriauciunas, T.W. Stephens, M.R. Nyce, 

J.P. Ohannesian, C.C. Marco, L.J. McKee, T.L. Bauer, and et al. 1996. Serum 

immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 

334:292-5. 

Cook, D.L., and C.N. Hales. 1984. Intracellular ATP directly blocks K+ channels in 

pancreatic B-cells. Nature. 311:271-3. 

Cook, K.S., D.L. Groves, H.Y. Min, and B.M. Spiegelman. 1985. A developmentally 

regulated mRNA from 3T3 adipocytes encodes a novel serine protease homologue. Proc 

Natl Acad Sci U S A. 82:6480-4. 

Cool, B., B. Zinker, W. Chiou, L. Kifle, N. Cao, M. Perham, R. Dickinson, A. Adler, G. 

Gagne, R. Iyengar, G. Zhao, K. Marsh, P. Kym, P. Jung, H.S. Camp, and E. Frevert. 2006. 

Identification and characterization of a small molecule AMPK activator that treats key 

components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3:403-16. 



210 

Corton, J.M., J.G. Gillespie, and D.G. Hardie. 1994. Role of the AMP-activated protein 

kinase in the cellular stress response. Curr Biol. 4:315-24. 

Corton, J.M., J.G. Gillespie, S.A. Hawley, and D.G. Hardie. 1995. 5-aminoimidazole-4-

carboxamide ribonucleoside. A specific method for activating AMP-activated protein 

kinase in intact cells? Eur J Biochem. 229:558-65. 

Cozzone, A.J. 1988. Protein phosphorylation in prokaryotes. Annu Rev Microbiol. 42:97-

125. 

Cross, D.A., D.R. Alessi, P. Cohen, M. Andjelkovich, and B.A. Hemmings. 1995. 

Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 

378:785-9. 

Crute, B.E., K. Seefeld, J. Gamble, B.E. Kemp, and L.A. Witters. 1998. Functional 

domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 

273:35347-54. 

Currie, R.A., K.S. Walker, A. Gray, M. Deak, A. Casamayor, C.P. Downes, P. Cohen, 

D.R. Alessi, and J. Lucocq. 1999. Role of phosphatidylinositol 3,4,5-trisphosphate in 

regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. 

Biochem J. 337 ( Pt 3):575-83. 

Czech, M.P., and S. Corvera. 1999. Signaling mechanisms that regulate glucose transport. 

J Biol Chem. 274:1865-8. 

Dagon, Y., Y. Avraham, and E.M. Berry. 2006. AMPK activation regulates apoptosis, 

adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun. 

340:43-7. 

Dale, S., W.A. Wilson, A.M. Edelman, and D.G. Hardie. 1995. Similar substrate 

recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA 

reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. 

FEBS Lett. 361:191-5. 

Daniel, T., and D. Carling. 2002. Functional analysis of mutations in the gamma 2 subunit 

of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-

Parkinson-White syndrome. J Biol Chem. 277:51017-24. 



211 

Daval, M., F. Diot-Dupuy, R. Bazin, I. Hainault, B. Viollet, S. Vaulont, E. Hajduch, P. 

Ferre, and F. Foufelle. 2005. Anti-lipolytic action of AMP-activated protein kinase in 

rodent adipocytes. J Biol Chem. 280:25250-7. 

Davies, S.P., N.R. Helps, P.T. Cohen, and D.G. Hardie. 1995. 5'-AMP inhibits 

dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein 

kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native 

bovine protein phosphatase-2AC. FEBS Lett. 377:421-5. 

Davies, S.P., A.T. Sim, and D.G. Hardie. 1990. Location and function of three sites 

phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J 

Biochem. 187:183-90. 

Derave, W., H. Ai, J. Ihlemann, L.A. Witters, S. Kristiansen, E.A. Richter, and T. Ploug. 

2000. Dissociation of AMP-activated protein kinase activation and glucose transport in 

contracting slow-twitch muscle. Diabetes. 49:1281-7. 

Dhanasekaran, N., and E. Premkumar Reddy. 1998. Signaling by dual specificity kinases. 

Oncogene. 17:1447-55. 

Dickens, M., C.A. Svitek, A.A. Culbert, R.M. O'Brien, and J.M. Tavare. 1998. Central role 

for phosphatidylinositide 3-kinase in the repression of glucose-6-phosphatase gene 

transcription by insulin. J Biol Chem. 273:20144-9. 

Douen, A.G., T. Ramlal, G.D. Cartee, and A. Klip. 1990. Exercise modulates the insulin-

induced translocation of glucose transporters in rat skeletal muscle. FEBS Lett. 261:256-

60. 

Douen, A.G., T. Ramlal, A. Klip, D.A. Young, G.D. Cartee, and J.O. Holloszy. 1989. 

Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal 

muscle. Endocrinology. 124:449-54. 

Draznin, B., K. Sussman, M. Kao, D. Lewis, and N. Sherman. 1987. The existence of an 

optimal range of cytosolic free calcium for insulin-stimulated glucose transport in rat 

adipocytes. J Biol Chem. 262:14385-8. 



212 

Du, J., Q. Chen, H. Takemori, and H. Xu. 2008. SIK2 can be activated by deprivation of 

nutrition and it inhibits expression of lipogenic genes in adipocytes. Obesity (Silver 

Spring). 16:531-8. 

Ducy, P., M. Amling, S. Takeda, M. Priemel, A.F. Schilling, F.T. Beil, J. Shen, C. Vinson, 

J.M. Rueger, and G. Karsenty. 2000. Leptin inhibits bone formation through a 

hypothalamic relay: a central control of bone mass. Cell. 100:197-207. 

Eguez, L., A. Lee, J.A. Chavez, C.P. Miinea, S. Kane, G.E. Lienhard, and T.E. McGraw. 

2005. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating 

protein. Cell Metab. 2:263-72. 

El-Haschimi, K., D.D. Pierroz, S.M. Hileman, C. Bjorbaek, and J.S. Flier. 2000. Two 

defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J 

Clin Invest. 105:1827-32. 

El-Mir, M.Y., V. Nogueira, E. Fontaine, N. Averet, M. Rigoulet, and X. Leverve. 2000. 

Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory 

chain complex I. J Biol Chem. 275:223-8. 

Fajas, L., K. Schoonjans, L. Gelman, J.B. Kim, J. Najib, G. Martin, J.C. Fruchart, M. 

Briggs, B.M. Spiegelman, and J. Auwerx. 1999. Regulation of peroxisome proliferator-

activated receptor gamma expression by adipocyte differentiation and determination factor 

1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and 

metabolism. Mol Cell Biol. 19:5495-503. 

Farooqi, I.S., S.A. Jebb, G. Langmack, E. Lawrence, C.H. Cheetham, A.M. Prentice, I.A. 

Hughes, M.A. McCamish, and S. O'Rahilly. 1999. Effects of recombinant leptin therapy in 

a child with congenital leptin deficiency. N Engl J Med. 341:879-84. 

Febbraio, M., N.A. Abumrad, D.P. Hajjar, K. Sharma, W. Cheng, S.F. Pearce, and R.L. 

Silverstein. 1999. A null mutation in murine CD36 reveals an important role in fatty acid 

and lipoprotein metabolism. J Biol Chem. 274:19055-62. 

Fediuc, S., M.P. Gaidhu, and R.B. Ceddia. 2006. Regulation of AMP-activated protein 

kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. J 

Lipid Res. 47:412-20. 



213 

Fernandez-Real, J.M., and W. Ricart. 2003. Insulin resistance and chronic cardiovascular 

inflammatory syndrome. Endocr Rev. 24:278-301. 

Ferrer, A., C. Caelles, N. Massot, and F.G. Hegardt. 1985. Activation of rat liver cytosolic 

3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5'-

monophosphate. Biochem Biophys Res Commun. 132:497-504. 

Fidelman, M.L., S.H. Seeholzer, K.B. Walsh, and R.D. Moore. 1982. Intracellular pH 

mediates action of insulin on glycolysis in frog skeletal muscle. Am J Physiol. 242:C87-93. 

Filippa, N., C.L. Sable, C. Filloux, B. Hemmings, and E. Van Obberghen. 1999. 

Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol 

Cell Biol. 19:4989-5000. 

Fliegel, L. 2005. The Na+/H+ exchanger isoform 1. Int J Biochem Cell Biol. 37:33-7. 

Flier, J.S. 1998. Clinical review 94: What's in a name? In search of leptin's physiologic 

role. J Clin Endocrinol Metab. 83:1407-13. 

Foretz, M., D. Carling, C. Guichard, P. Ferre, and F. Foufelle. 1998. AMP-activated 

protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat 

hepatocytes. J Biol Chem. 273:14767-71. 

Foster, L.J., and A. Klip. 2000. Mechanism and regulation of GLUT-4 vesicle fusion in 

muscle and fat cells. Am J Physiol Cell Physiol. 279:C877-90. 

Fredrikson, G., H. Tornqvist, and P. Belfrage. 1986. Hormone-sensitive lipase and 

monoacylglycerol lipase are both required for complete degradation of adipocyte 

triacylglycerol. Biochim Biophys Acta. 876:288-93. 

Fryer, L.G., F. Foufelle, K. Barnes, S.A. Baldwin, A. Woods, and D. Carling. 2002a. 

Characterization of the role of the AMP-activated protein kinase in the stimulation of 

glucose transport in skeletal muscle cells. Biochem J. 363:167-74. 

Fryer, L.G., E. Hajduch, F. Rencurel, I.P. Salt, H.S. Hundal, D.G. Hardie, and D. Carling. 

2000. Activation of glucose transport by AMP-activated protein kinase via stimulation of 

nitric oxide synthase. Diabetes. 49:1978-85. 



214 

Fryer, L.G., A. Parbu-Patel, and D. Carling. 2002b. The Anti-diabetic drugs rosiglitazone 

and metformin stimulate AMP-activated protein kinase through distinct signaling 

pathways. J Biol Chem. 277:25226-32. 

Fryer, L.G., A. Parbu-Patel, and D. Carling. 2002c. Protein kinase inhibitors block the 

stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide 

riboside. FEBS Lett. 531:189-92. 

Fukuhara, A., M. Matsuda, M. Nishizawa, K. Segawa, M. Tanaka, K. Kishimoto, Y. 

Matsuki, M. Murakami, T. Ichisaka, H. Murakami, E. Watanabe, T. Takagi, M. Akiyoshi, 

T. Ohtsubo, S. Kihara, S. Yamashita, M. Makishima, T. Funahashi, S. Yamanaka, R. 

Hiramatsu, Y. Matsuzawa, and I. Shimomura. 2005. Visfatin: a protein secreted by visceral 

fat that mimics the effects of insulin. Science. 307:426-30. 

Gaidhu, M.P., S. Fediuc, N.M. Anthony, M. So, M. Mirpourian, R.L. Perry, and R.B. 

Ceddia. 2009. Prolonged aicar-induced amp-kinase activation promotes energy dissipation 

in white adipocytes: Novel mechanisms integrating HSL and ATGL. J Lipid Res. 50:704-

15. 

Gaidhu, M.P., S. Fediuc, and R.B. Ceddia. 2006. Aicar-induced AMPK phosphorylation 

inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid 

oxidation in isolated rat adipocytes. J Biol Chem. 281:25956-64. 

Gainsford, T., T.A. Willson, D. Metcalf, E. Handman, C. McFarlane, A. Ng, N.A. Nicola, 

W.S. Alexander, and D.J. Hilton. 1996. Leptin can induce proliferation, differentiation, and 

functional activation of hemopoietic cells. Proc Natl Acad Sci U S A. 93:14564-8. 

Galuska, D., J. Zierath, A. Thorne, T. Sonnenfeld, and H. Wallberg-Henriksson. 1991. 

Metformin increases insulin-stimulated glucose transport in insulin-resistant human 

skeletal muscle. Diabete Metab. 17:159-63. 

Gamble, J., and G.D. Lopaschuk. 1997. Insulin inhibition of 5' adenosine monophosphate-

activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase 

and inhibition of fatty acid oxidation. Metabolism. 46:1270-4. 

Gao, X., and D. Pan. 2001. TSC1 and TSC2 tumor suppressors antagonize insulin 

signaling in cell growth. Genes Dev. 15:1383-92. 



215 

Gao, X., Y. Zhang, P. Arrazola, O. Hino, T. Kobayashi, R.S. Yeung, B. Ru, and D. Pan. 

2002. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell 

Biol. 4:699-704. 

Gauthier, M.S., H. Miyoshi, S.C. Souza, J.M. Cacicedo, A.K. Saha, A.S. Greenberg, and 

N.B. Ruderman. 2008. AMP-activated protein kinase is activated as a consequence of 

lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem. 

283:16514-24. 

George, S., J.J. Rochford, C. Wolfrum, S.L. Gray, S. Schinner, J.C. Wilson, M.A. Soos, 

P.R. Murgatroyd, R.M. Williams, C.L. Acerini, D.B. Dunger, D. Barford, A.M. Umpleby, 

N.J. Wareham, H.A. Davies, A.J. Schafer, M. Stoffel, S. O'Rahilly, and I. Barroso. 2004. A 

family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 

304:1325-8. 

Geraghty, K.M., S. Chen, J.E. Harthill, A.F. Ibrahim, R. Toth, N.A. Morrice, F. 

Vandermoere, G.B. Moorhead, D.G. Hardie, and C. MacKintosh. 2007. Regulation of 

multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA 

and AICAR. Biochem J. 407:231-41. 

Gimeno, R.E., and J. Cao. 2008. Thematic review series: glycerolipids. Mammalian 

glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res. 49:2079-

88. 

Giri, S., R. Rattan, E. Haq, M. Khan, R. Yasmin, J.S. Won, L. Key, A.K. Singh, and I. 

Singh. 2006. AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic 

alterations in diet-induced obesity mice model. Nutr Metab (Lond). 3:31. 

Gollob, M.H., M.S. Green, A.S. Tang, T. Gollob, A. Karibe, A.S. Ali Hassan, F. Ahmad, 

R. Lozado, G. Shah, L. Fananapazir, L.L. Bachinski, and R. Roberts. 2001. Identification 

of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 

344:1823-31. 

Gollob, M.H., M.S. Green, A.S. Tang, and R. Roberts. 2002. PRKAG2 cardiac syndrome: 

familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. 

Curr Opin Cardiol. 17:229-34. 



216 

Goodyear, L.J., M.F. Hirshman, and E.S. Horton. 1991. Exercise-induced translocation of 

skeletal muscle glucose transporters. Am J Physiol. 261:E795-9. 

Goodyear, L.J., P.A. King, M.F. Hirshman, C.M. Thompson, E.D. Horton, and E.S. 

Horton. 1990. Contractile activity increases plasma membrane glucose transporters in 

absence of insulin. Am J Physiol. 258:E667-72. 

Goransson, O., A. McBride, S.A. Hawley, F.A. Ross, N. Shpiro, M. Foretz, B. Viollet, 

D.G. Hardie, and K. Sakamoto. 2007. Mechanism of action of A-769662, a valuable tool 

for activation of AMP-activated protein kinase. J Biol Chem. 282:32549-60. 

Grau, G.E., and J. Lou. 1993. TNF in vascular pathology: the importance of platelet-

endothelium interactions. Res Immunol. 144:355-63. 

Green, E.D., M. Maffei, V.V. Braden, R. Proenca, U. DeSilva, Y. Zhang, S.C. Chua, Jr., 

R.L. Leibel, J. Weissenbach, and J.M. Friedman. 1995. The human obese (OB) gene: RNA 

expression pattern and mapping on the physical, cytogenetic, and genetic maps of 

chromosome 7. Genome Res. 5:5-12. 

Green, H., and O. Kehinde. 1975. An established preadipose cell line and its differentiation 

in culture. II. Factors affecting the adipose conversion. Cell. 5:19-27. 

Green, H., and O. Kehinde. 1976. Spontaneous heritable changes leading to increased 

adipose conversion in 3T3 cells. Cell. 7:105-13. 

Green, H., and M. Meuth. 1974. An established pre-adipose cell line and its differentiation 

in culture. Cell. 3:127-33. 

Griffin, M.E., M.J. Marcucci, G.W. Cline, K. Bell, N. Barucci, D. Lee, L.J. Goodyear, 

E.W. Kraegen, M.F. White, and G.I. Shulman. 1999. Free fatty acid-induced insulin 

resistance is associated with activation of protein kinase C theta and alterations in the 

insulin signaling cascade. Diabetes. 48:1270-4. 

Grunfeld, C., and K.R. Feingold. 1991. The metabolic effects of tumor necrosis factor and 

other cytokines. Biotherapy. 3:143-58. 



217 

Gual, P., T. Gonzalez, T. Gremeaux, R. Barres, Y. Le Marchand-Brustel, and J.F. Tanti. 

2003. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct 

mechanisms in 3T3-L1 adipocytes. J Biol Chem. 278:26550-7. 

Gual, P., S. Shigematsu, M. Kanzaki, T. Gremeaux, T. Gonzalez, J.E. Pessin, Y. Le 

Marchand-Brustel, and J.F. Tanti. 2002. A Crk-II/TC10 signaling pathway is required for 

osmotic shock-stimulated glucose transport. J Biol Chem. 277:43980-6. 

Gunton, J.E., P.J. Delhanty, S. Takahashi, and R.C. Baxter. 2003. Metformin rapidly 

increases insulin receptor activation in human liver and signals preferentially through 

insulin-receptor substrate-2. J Clin Endocrinol Metab. 88:1323-32. 

Ha, J., J.K. Lee, K.S. Kim, L.A. Witters, and K.H. Kim. 1996. Cloning of human acetyl-

CoA carboxylase-beta and its unique features. Proc Natl Acad Sci U S A. 93:11466-70. 

Habinowski, S.A., and L.A. Witters. 2001. The effects of AICAR on adipocyte 

differentiation of 3T3-L1 cells. Biochem Biophys Res Commun. 286:852-6. 

Hanks, S.K., A.M. Quinn, and T. Hunter. 1988. The protein kinase family: conserved 

features and deduced phylogeny of the catalytic domains. Science. 241:42-52. 

Hardie, D.G. 2004a. The AMP-activated protein kinase pathway--new players upstream 

and downstream. J Cell Sci. 117:5479-87. 

Hardie, D.G. 2004b. AMP-activated protein kinase: the guardian of cardiac energy status. J 

Clin Invest. 114:465-8. 

Hardie, D.G., D. Carling, and M. Carlson. 1998. The AMP-activated/SNF1 protein kinase 

subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 67:821-55. 

Hardie, D.G., and S.A. Hawley. 2001. AMP-activated protein kinase: the energy charge 

hypothesis revisited. Bioessays. 23:1112-9. 

Hardie, D.G., I.P. Salt, S.A. Hawley, and S.P. Davies. 1999. AMP-activated protein kinase: 

an ultrasensitive system for monitoring cellular energy charge. Biochem J. 338 ( Pt 3):717-

22. 



218 

Hardie, D.G., J.W. Scott, D.A. Pan, and E.R. Hudson. 2003. Management of cellular 

energy by the AMP-activated protein kinase system. FEBS Lett. 546:113-20. 

Hawley, S.A., J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd, T.P. Makela, D.R. Alessi, and 

D.G. Hardie. 2003. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta 

and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J 

Biol. 2:28. 

Hawley, S.A., M. Davison, A. Woods, S.P. Davies, R.K. Beri, D. Carling, and D.G. 

Hardie. 1996. Characterization of the AMP-activated protein kinase kinase from rat liver 

and identification of threonine 172 as the major site at which it phosphorylates AMP-

activated protein kinase. J Biol Chem. 271:27879-87. 

Hawley, S.A., A.E. Gadalla, G.S. Olsen, and D.G. Hardie. 2002. The antidiabetic drug 

metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-

independent mechanism. Diabetes. 51:2420-5. 

Hawley, S.A., D.A. Pan, K.J. Mustard, L. Ross, J. Bain, A.M. Edelman, B.G. Frenguelli, 

and D.G. Hardie. 2005. Calmodulin-dependent protein kinase kinase-beta is an alternative 

upstream kinase for AMP-activated protein kinase. Cell Metab. 2:9-19. 

Hawley, S.A., M.A. Selbert, E.G. Goldstein, A.M. Edelman, D. Carling, and D.G. Hardie. 

1995. 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin 

activates the calmodulin-dependent protein kinase I cascade, via three independent 

mechanisms. J Biol Chem. 270:27186-91. 

Hayashi, T., M.F. Hirshman, N. Fujii, S.A. Habinowski, L.A. Witters, and L.J. Goodyear. 

2000. Metabolic stress and altered glucose transport: activation of AMP-activated protein 

kinase as a unifying coupling mechanism. Diabetes. 49:527-31. 

Hayashi, T., M.F. Hirshman, E.J. Kurth, W.W. Winder, and L.J. Goodyear. 1998. Evidence 

for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on 

glucose transport. Diabetes. 47:1369-73. 

Hayashi, T., J.F. Wojtaszewski, and L.J. Goodyear. 1997. Exercise regulation of glucose 

transport in skeletal muscle. Am J Physiol. 273:E1039-51. 



219 

Heid, H.W., R. Moll, I. Schwetlick, H.R. Rackwitz, and T.W. Keenan. 1998. Adipophilin 

is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue 

Res. 294:309-21. 

Hemminki, A. 1999. The molecular basis and clinical aspects of Peutz-Jeghers syndrome. 

Cell Mol Life Sci. 55:735-50. 

Holm, C. 2003. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. 

Biochem Soc Trans. 31:1120-4. 

Holm, C., T. Osterlund, H. Laurell, and J.A. Contreras. 2000. Molecular mechanisms 

regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr. 20:365-93. 

Holmes, B.F., E.J. Kurth-Kraczek, and W.W. Winder. 1999. Chronic activation of 5'-

AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J 

Appl Physiol. 87:1990-5. 

Hong, S.P., F.C. Leiper, A. Woods, D. Carling, and M. Carlson. 2003. Activation of yeast 

Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad 

Sci U S A. 100:8839-43. 

Horman, S., G. Browne, U. Krause, J. Patel, D. Vertommen, L. Bertrand, A. Lavoinne, L. 

Hue, C. Proud, and M. Rider. 2002. Activation of AMP-activated protein kinase leads to 

the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 

12:1419-23. 

Horton, J.D., and I. Shimomura. 1999. Sterol regulatory element-binding proteins: 

activators of cholesterol and fatty acid biosynthesis. Curr Opin Lipidol. 10:143-50. 

Hotamisligil, G.S. 1999. The role of TNFalpha and TNF receptors in obesity and insulin 

resistance. J Intern Med. 245:621-5. 

Hotamisligil, G.S. 2003. Inflammatory pathways and insulin action. Int J Obes Relat 

Metab Disord. 27 Suppl 3:S53-5. 

Hotamisligil, G.S., N.S. Shargill, and B.M. Spiegelman. 1993. Adipose expression of 

tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 

259:87-91. 



220 

Hou, J.C., and J.E. Pessin. 2007. Ins (endocytosis) and outs (exocytosis) of GLUT4 

trafficking. Curr Opin Cell Biol. 19:466-73. 

Hresko, R.C., and M. Mueckler. 2005. mTOR.RICTOR is the Ser473 kinase for 

Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 280:40406-16. 

Hubbard, M.J., and P. Cohen. 1993. On target with a new mechanism for the regulation of 

protein phosphorylation. Trends Biochem Sci. 18:172-7. 

Hudson, E.R., D.A. Pan, J. James, J.M. Lucocq, S.A. Hawley, K.A. Green, O. Baba, T. 

Terashima, and D.G. Hardie. 2003. A novel domain in AMP-activated protein kinase 

causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. 

Curr Biol. 13:861-6. 

Hundal, H.S., T. Ramlal, R. Reyes, L.A. Leiter, and A. Klip. 1992. Cellular mechanism of 

metformin action involves glucose transporter translocation from an intracellular pool to 

the plasma membrane in L6 muscle cells. Endocrinology. 131:1165-73. 

Hundal, R.S., M. Krssak, S. Dufour, D. Laurent, V. Lebon, V. Chandramouli, S.E. 

Inzucchi, W.C. Schumann, K.F. Petersen, B.R. Landau, and G.I. Shulman. 2000. 

Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 

49:2063-9. 

Hurley R.L., K.A. Anderson, J.M Franzone, B.E Kemp, A.R Means, L.A Witters. 2005. 

The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase 

kinases. J Biol Chem. 280:29060–66. 

Hutber, C.A., D.G. Hardie, and W.W. Winder. 1997. Electrical stimulation inactivates 

muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol. 

272:E262-6. 

Huypens, P., E. Quartier, D. Pipeleers, and M. Van de Casteele. 2005. Metformin reduces 

adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of 

AMP activated protein kinase. Eur J Pharmacol. 518:90-5. 

Hwa, J.J., L. Ghibaudi, J. Gao, and E.M. Parker. 2001. Central melanocortin system 

modulates energy intake and expenditure of obese and lean Zucker rats. Am J Physiol 

Regul Integr Comp Physiol. 281:R444-51. 



221 

Ibanez, L., K. Ong, C. Valls, M.V. Marcos, D.B. Dunger, and F. de Zegher. 2006. 

Metformin treatment to prevent early puberty in girls with precocious pubarche. J Clin 

Endocrinol Metab. 91:2888-91. 

Imamura, K., T. Ogura, A. Kishimoto, M. Kaminishi, and H. Esumi. 2001. Cell cycle 

regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-

aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular 

carcinoma cell line. Biochem Biophys Res Commun. 287:562-7. 

Inoki, K., T. Zhu, and K.L. Guan. 2003. TSC2 mediates cellular energy response to control 

cell growth and survival. Cell. 115:577-90. 

Iwaki, M., M. Matsuda, N. Maeda, T. Funahashi, Y. Matsuzawa, M. Makishima, and I. 

Shimomura. 2003. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic 

factor, by nuclear receptors. Diabetes. 52:1655-63. 

Jakobsen, S.N., D.G. Hardie, N. Morrice, and H.E. Tornqvist. 2001. 5'-AMP-activated 

protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 

5-aminoimidazole-4-carboxamide riboside. J Biol Chem. 276:46912-6. 

James, D.J., F. Cairns, I.P. Salt, G.J. Murphy, A.F. Dominiczak, J.M. Connell, and G.W. 

Gould. 2001. Skeletal muscle of stroke-prone spontaneously hypertensive rats exhibits 

reduced insulin-stimulated glucose transport and elevated levels of caveolin and flotillin. 

Diabetes. 50:2148-56. 

Janez, A., D.S. Worrall, T. Imamura, P.M. Sharma, and J.M. Olefsky. 2000. The osmotic 

shock-induced glucose transport pathway in 3T3-L1 adipocytes is mediated by gab-1 and 

requires Gab-1-associated phosphatidylinositol 3-kinase activity for full activation. J Biol 

Chem. 275:26870-6. 

Jenne, D.E., H. Reimann, J. Nezu, W. Friedel, S. Loff, R. Jeschke, O. Muller, W. Back, 

and M. Zimmer. 1998. Peutz-Jeghers syndrome is caused by mutations in a novel serine 

threonine kinase. Nat Genet. 18:38-43. 

Jensen, T.E., A.J. Rose, S.B. Jorgensen, N. Brandt, P. Schjerling, J.F. Wojtaszewski, and 

E.A. Richter. 2007. Possible CaMKK-dependent regulation of AMPK phosphorylation and 



222 

glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol 

Endocrinol Metab. 292:E1308-17. 

Jiang, R., and M. Carlson. 1997. The Snf1 protein kinase and its activating subunit, Snf4, 

interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. 

Mol Cell Biol. 17:2099-106. 

Jiang, Z.Y., Q.L. Zhou, K.A. Coleman, M. Chouinard, Q. Boese, and M.P. Czech. 2003. 

Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-

mediated gene silencing. Proc Natl Acad Sci U S A. 100:7569-74. 

Jones, B.H., M.K. Standridge, J.W. Taylor, and N. Moustaid. 1997. Angiotensinogen gene 

expression in adipose tissue: analysis of obese models and hormonal and nutritional 

control. Am J Physiol. 273:R236-42. 

Joost, H.G., T.M. Weber, S.W. Cushman, and I.A. Simpson. 1986. Insulin-stimulated 

glucose transport in rat adipose cells. Modulation of transporter intrinsic activity by 

isoproterenol and adenosine. J Biol Chem. 261:10033-6. 

Jorgensen, S.B., B. Viollet, F. Andreelli, C. Frosig, J.B. Birk, P. Schjerling, S. Vaulont, 

E.A. Richter, and J.F. Wojtaszewski. 2004. Knockout of the alpha2 but not alpha1 5'-

AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-

4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol 

Chem. 279:1070-9. 

Kanda, H., Y. Tamori, H. Shinoda, M. Yoshikawa, M. Sakaue, J. Udagawa, H. Otani, F. 

Tashiro, J. Miyazaki, and M. Kasuga. 2005. Adipocytes from Munc18c-null mice show 

increased sensitivity to insulin-stimulated GLUT4 externalization. J Clin Invest. 115:291-

301. 

Kane, S., H. Sano, S.C. Liu, J.M. Asara, W.S. Lane, C.C. Garner, and G.E. Lienhard. 2002. 

A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte 

protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem. 277:22115-8. 

Kashiwagi, A., T.P. Huecksteadt, and J.E. Foley. 1983. The regulation of glucose transport 

by cAMP stimulators via three different mechanisms in rat and human adipocytes. J Biol 

Chem. 258:13685-92. 



223 

Kemp, B.E. 2004. Bateman domains and adenosine derivatives form a binding contract. J 

Clin Invest. 113:182-4. 

Kemp, B.E., D. Stapleton, D.J. Campbell, Z.P. Chen, S. Murthy, M. Walter, A. Gupta, J.J. 

Adams, F. Katsis, B. van Denderen, I.G. Jennings, T. Iseli, B.J. Michell, and L.A. Witters. 

2003. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 

31:162-8. 

Kennedy, H.J., A.E. Pouli, E.K. Ainscow, L.S. Jouaville, R. Rizzuto, and G.A. Rutter. 

1999. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-

cells. Potential role for strategically located mitochondria. J Biol Chem. 274:13281-91. 

Kern, P.A., M. Saghizadeh, J.M. Ong, R.J. Bosch, R. Deem, and R.B. Simsolo. 1995. The 

expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight 

loss, and relationship to lipoprotein lipase. J Clin Invest. 95:2111-9. 

Kersten, S. 2001. Mechanisms of nutritional and hormonal regulation of lipogenesis. 

EMBO Rep. 2:282-6. 

Kersten, S., S. Mandard, N.S. Tan, P. Escher, D. Metzger, P. Chambon, F.J. Gonzalez, B. 

Desvergne, and W. Wahli. 2000. Characterization of the fasting-induced adipose factor 

FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 

275:28488-93. 

Kim, K.H., F. Lopez-Casillas, D.H. Bai, X. Luo, and M.E. Pape. 1989. Role of reversible 

phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. Faseb J. 

3:2250-6. 

Kim, K.H., M.J. Song, E.J. Yoo, S.S. Choe, S.D. Park, and J.B. Kim. 2004. Regulatory 

role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J Biol 

Chem. 279:51999-2006. 

Kim, Y.D., K.G. Park, Y.S. Lee, Y.Y. Park, D.K. Kim, B. Nedumaran, W.G. Jang, W.J. 

Cho, J. Ha, I.K. Lee, C.H. Lee, and H.S. Choi. 2008. Metformin inhibits hepatic 

gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan 

nuclear receptor SHP. Diabetes. 57:306-14. 



224 

Kirpichnikov, D., S.I. McFarlane, and J.R. Sowers. 2002. Metformin: an update. Ann 

Intern Med. 137:25-33. 

Kirsch, D.M., M. Baumgarten, T. Deufel, F. Rinninger, W. Kemmler, and H.U. Haring. 

1983. Catecholamine-induced insulin resistance of glucose transport in isolated rat 

adipocytes. Biochem J. 216:737-45. 

Klein, J., S. Westphal, D. Kraus, B. Meier, N. Perwitz, V. Ott, M. Fasshauer, and H.H. 

Klein. 2004. Metformin inhibits leptin secretion via a mitogen-activated protein kinase 

signalling pathway in brown adipocytes. J Endocrinol. 183:299-307. 

Klip, A., T. Ramlal, and E.J. Cragoe, Jr. 1986. Insulin-induced cytoplasmic alkalinization 

and glucose transport in muscle cells. Am J Physiol. 250:C720-8. 

Klip, A., T. Ramlal, and U.M. Koivisto. 1988. Stimulation of Na+/H+ exchange by insulin 

and phorbol ester during differentiation of 3T3-L1 cells. Relation to hexose uptake. 

Endocrinology. 123:296-304. 

Knighton, D.R., J.H. Zheng, L.F. Ten Eyck, V.A. Ashford, N.H. Xuong, S.S. Taylor, and 

J.M. Sowadski. 1991. Crystal structure of the catalytic subunit of cyclic adenosine 

monophosphate-dependent protein kinase. Science. 253:407-14. 

Koh, H.J., M.F. Hirshman, H. He, Y. Li, Y. Manabe, J.A. Balschi, and L.J. Goodyear. 

2007. Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein 

kinase activation in adipocytes. Biochem J. 403:473-81. 

Kola, B., M. Christ-Crain, F. Lolli, G. Arnaldi, G. Giacchetti, M. Boscaro, A.B. Grossman, 

and M. Korbonits. 2008. Changes in adenosine 5'-monophosphate-activated protein kinase 

as a mechanism of visceral obesity in Cushing's syndrome. J Clin Endocrinol Metab. 

93:4969-73. 

Komjati, M., G. Kastner, W. Waldhausl, and P. Bratusch-Marrain. 1988. Detrimental 

effect of hyperosmolality on insulin-stimulated glucose metabolism in adipose and muscle 

tissue in vitro. Biochem Med Metab Biol. 39:312-8. 

Kresge, N., R.D. Simoni, and R.L. Hill. 2005. Reversible Phosphorylation and Kinase 

Cascades: the Work of Edwin G. Krebs. J. Biol. Chem. 280:e40-. 



225 

Kudo, N., A.J. Barr, R.L. Barr, S. Desai, and G.D. Lopaschuk. 1995. High rates of fatty 

acid oxidation during reperfusion of ischemic hearts are associated with a decrease in 

malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of 

acetyl-CoA carboxylase. J Biol Chem. 270:17513-20. 

Kumar, N., and C.S. Dey. 2002. Metformin enhances insulin signalling in insulin-

dependent and-independent pathways in insulin resistant muscle cells. Br J Pharmacol. 

137:329-36. 

Kurth-Kraczek, E.J., M.F. Hirshman, L.J. Goodyear, and W.W. Winder. 1999. 5' AMP-

activated protein kinase activation causes GLUT4 translocation in skeletal muscle. 

Diabetes. 48:1667-71. 

Larance, M., G. Ramm, J. Stockli, E.M. van Dam, S. Winata, V. Wasinger, F. Simpson, M. 

Graham, J.R. Junutula, M. Guilhaus, and D.E. James. 2005. Characterization of the role of 

the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol 

Chem. 280:37803-13. 

Lee, J., and P.F. Pilch. 1994. The insulin receptor: structure, function, and signaling. Am J 

Physiol. 266:C319-34. 

Leff, T. 2003. AMP-activated protein kinase regulates gene expression by direct 

phosphorylation of nuclear proteins. Biochem Soc Trans. 31:224-7. 

Lihn, A.S., N. Jessen, S.B. Pedersen, S. Lund, and B. Richelsen. 2004. AICAR stimulates 

adiponectin and inhibits cytokines in adipose tissue. Biochem Biophys Res Commun. 

316:853-8. 

Lindsay, R.S., T. Funahashi, R.L. Hanson, Y. Matsuzawa, S. Tanaka, P.A. Tataranni, W.C. 

Knowler, and J. Krakoff. 2002. Adiponectin and development of type 2 diabetes in the 

Pima Indian population. Lancet. 360:57-8. 

Lizcano, J.M., O. Goransson, R. Toth, M. Deak, N.A. Morrice, J. Boudeau, S.A. Hawley, 

L. Udd, T.P. Makela, D.G. Hardie, and D.R. Alessi. 2004. LKB1 is a master kinase that 

activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. Embo J. 23:833-

43. 



226 

Lochhead, P.A., I.P. Salt, K.S. Walker, D.G. Hardie, and C. Sutherland. 2000. 5-

aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of 

the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 49:896-903. 

Londos, C., D.L. Brasaemle, C.J. Schultz, J.P. Segrest, and A.R. Kimmel. 1999. Perilipins, 

ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal 

cells. Semin Cell Dev Biol. 10:51-8. 

Lord, G.M., G. Matarese, J.K. Howard, R.J. Baker, S.R. Bloom, and R.I. Lechler. 1998. 

Leptin modulates the T-cell immune response and reverses starvation-induced 

immunosuppression. Nature. 394:897-901. 

Lord, J.M., I.H. Flight, and R.J. Norman. 2003. Metformin in polycystic ovary syndrome: 

systematic review and meta-analysis. Bmj. 327:951-3. 

Lowe, E.D., M.E. Noble, V.T. Skamnaki, N.G. Oikonomakos, D.J. Owen, and L.N. 

Johnson. 1997. The crystal structure of a phosphorylase kinase peptide substrate complex: 

kinase substrate recognition. Embo J. 16:6646-58. 

Luiken, J.J., S.L. Coort, J. Willems, W.A. Coumans, A. Bonen, G.J. van der Vusse, and 

J.F. Glatz. 2003. Contraction-induced fatty acid translocase/CD36 translocation in rat 

cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes. 

52:1627-34. 

Lund, S., G.D. Holman, O. Schmitz, and O. Pedersen. 1995. Contraction stimulates 

translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism 

distinct from that of insulin. Proc Natl Acad Sci U S A. 92:5817-21. 

Luo, B., G.J. Parker, R.C. Cooksey, Y. Soesanto, M. Evans, D. Jones, and D.A. McClain. 

2007. Chronic hexosamine flux stimulates fatty acid oxidation by activating AMP-

activated protein kinase in adipocytes. J Biol Chem. 282:7172-80. 

Lupi, R., F. Dotta, L. Marselli, S. Del Guerra, M. Masini, C. Santangelo, G. Patane, U. 

Boggi, S. Piro, M. Anello, E. Bergamini, F. Mosca, U. Di Mario, S. Del Prato, and P. 

Marchetti. 2002. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic 

effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, 

partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 51:1437-42. 



227 

Maeda, N., I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, N. 

Furuyama, H. Kondo, M. Takahashi, Y. Arita, R. Komuro, N. Ouchi, S. Kihara, Y. 

Tochino, K. Okutomi, M. Horie, S. Takeda, T. Aoyama, T. Funahashi, and Y. Matsuzawa. 

2002. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 

8:731-7. 

Maffei, M., J. Halaas, E. Ravussin, R.E. Pratley, G.H. Lee, Y. Zhang, H. Fei, S. Kim, R. 

Lallone, S. Ranganathan, and et al. 1995. Leptin levels in human and rodent: measurement 

of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1:1155-61. 

Mahlapuu, M., C. Johansson, K. Lindgren, G. Hjalm, B.R. Barnes, A. Krook, J.R. Zierath, 

L. Andersson, and S. Marklund. 2004. Expression profiling of the gamma-subunit isoforms 

of AMP-activated protein kinase suggests a major role for gamma3 in white skeletal 

muscle. Am J Physiol Endocrinol Metab. 286:E194-200. 

Manne, J., A.C. Argeson, and L.D. Siracusa. 1995. Mechanisms for the pleiotropic effects 

of the agouti gene. Proc Natl Acad Sci U S A. 92:4721-4. 

Manning, G., D.B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam. 2002. The protein 

kinase complement of the human genome. Science. 298:1912-34. 

Marchesini, G., M. Brizi, G. Bianchi, S. Tomassetti, M. Zoli, and N. Melchionda. 2001. 

Metformin in non-alcoholic steatohepatitis. Lancet. 358:893-4. 

Marino, E., and S.T. Grey. 2008. A new role for an old player: do B cells unleash the self-

reactive CD8+ T cell storm necessary for the development of type 1 diabetes? J 

Autoimmun. 31:301-5. 

Marsin, A.S., L. Bertrand, M.H. Rider, J. Deprez, C. Beauloye, M.F. Vincent, G. Van den 

Berghe, D. Carling, and L. Hue. 2000. Phosphorylation and activation of heart PFK-2 by 

AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 10:1247-55. 

Maslowska, M., T. Scantlebury, R. Germinario, and K. Cianflone. 1997. Acute in vitro 

production of acylation stimulating protein in differentiated human adipocytes. J Lipid Res. 

38:1-11. 

Matejkova, O., K.J. Mustard, J. Sponarova, P. Flachs, M. Rossmeisl, I. Miksik, M. 

Thomason-Hughes, D. Grahame Hardie, and J. Kopecky. 2004. Possible involvement of 



228 

AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in 

white fat. FEBS Lett. 569:245-8. 

Matthaei, S., A. Hamann, H.H. Klein, H. Benecke, G. Kreymann, J.S. Flier, and H. Greten. 

1991. Association of Metformin's effect to increase insulin-stimulated glucose transport 

with potentiation of insulin-induced translocation of glucose transporters from intracellular 

pool to plasma membrane in rat adipocytes. Diabetes. 40:850-7. 

Matthaei, S., J.P. Reibold, A. Hamann, H. Benecke, H.U. Haring, H. Greten, and H.H. 

Klein. 1993. In vivo metformin treatment ameliorates insulin resistance: evidence for 

potentiation of insulin-induced translocation and increased functional activity of glucose 

transporters in obese (fa/fa) Zucker rat adipocytes. Endocrinology. 133:304-11. 

McBride, A., S. Ghilagaber, A. Nikolaev, and D.G. Hardie. 2009. The glycogen-binding 

domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell 

Metab. 9:23-34. 

McGarry, J.D. 1995. The mitochondrial carnitine palmitoyltransferase system: its 

broadening role in fuel homoeostasis and new insights into its molecular features. Biochem 

Soc Trans. 23:321-4. 

McGee, S.L., K.J. Mustard, D.G. Hardie, and K. Baar. 2008. Normal hypertrophy 

accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 

following overload in LKB1 knockout mice. J Physiol. 586:1731-41. 

McKinney, T.D., and M.A. Hosford. 1992. Organic cation transport by rat hepatocyte 

basolateral membrane vesicles. Am J Physiol. 263:G939-46. 

Merrill, G.F., E.J. Kurth, D.G. Hardie, and W.W. Winder. 1997. AICA riboside increases 

AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J 

Physiol. 273:E1107-12. 

Meyre, D., M. Farge, C. Lecoeur, C. Proenca, E. Durand, F. Allegaert, J. Tichet, M. Marre, 

B. Balkau, J. Weill, J. Delplanque, and P. Froguel. 2008. R125W coding variant in 

TBC1D1 confers risk for familial obesity and contributes to linkage on chromosome 4p14 

in the French population. Hum Mol Genet. 17:1798-802. 



229 

Miinea, C.P., H. Sano, S. Kane, E. Sano, M. Fukuda, J. Peranen, W.S. Lane, and G.E. 

Lienhard. 2005. AS160, the Akt substrate regulating GLUT4 translocation, has a 

functional Rab GTPase-activating protein domain. Biochem J. 391:87-93. 

Min, J., S. Okada, M. Kanzaki, J.S. Elmendorf, K.J. Coker, B.P. Ceresa, L.J. Syu, Y. Noda, 

A.R. Saltiel, and J.E. Pessin. 1999. Synip: a novel insulin-regulated syntaxin 4-binding 

protein mediating GLUT4 translocation in adipocytes. Mol Cell. 3:751-60. 

Minokoshi, Y., T. Alquier, N. Furukawa, Y.B. Kim, A. Lee, B. Xue, J. Mu, F. Foufelle, P. 

Ferre, M.J. Birnbaum, B.J. Stuck, and B.B. Kahn. 2004. AMP-kinase regulates food intake 

by responding to hormonal and nutrient signals in the hypothalamus. Nature. 428:569-74. 

Minokoshi, Y., Y.B. Kim, O.D. Peroni, L.G. Fryer, C. Muller, D. Carling, and B.B. Kahn. 

2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. 

Nature. 415:339-43. 

Mizuarai, S., S. Miki, H. Araki, K. Takahashi, and H. Kotani. 2005. Identification of 

dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis. J Biol 

Chem. 280:32434-41. 

Mohamed-Ali, V., S. Goodrick, A. Rawesh, D.R. Katz, J.M. Miles, J.S. Yudkin, S. Klein, 

and S.W. Coppack. 1997. Subcutaneous adipose tissue releases interleukin-6, but not 

tumor necrosis factor-alpha, in vivo. In J Clin Endocrinol Metab. Vol. 82. 4196-200. 

Mokdad, A.H., E.S. Ford, B.A. Bowman, W.H. Dietz, F. Vinicor, V.S. Bales, and J.S. 

Marks. 2003. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. 

Jama. 289:76-9. 

Momcilovic, M., S.P. Hong, and M. Carlson. 2006. Mammalian TAK1 activates Snf1 

protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol 

Chem. 281:25336-43. 

Montague, C.T., I.S. Farooqi, J.P. Whitehead, M.A. Soos, H. Rau, N.J. Wareham, C.P. 

Sewter, J.E. Digby, S.N. Mohammed, J.A. Hurst, C.H. Cheetham, A.R. Earley, A.H. 

Barnett, J.B. Prins, and S. O'Rahilly. 1997. Congenital leptin deficiency is associated with 

severe early-onset obesity in humans. Nature. 387:903-8. 



230 

Moorhead, G.B., L. Trinkle-Mulcahy, and A. Ulke-Lemee. 2007. Emerging roles of 

nuclear protein phosphatases. Nat Rev Mol Cell Biol. 8:234-44. 

Moule, S.K., and R.M. Denton. 1998. The activation of p38 MAPK by the beta-adrenergic 

agonist isoproterenol in rat epididymal fat cells. FEBS Lett. 439:287-90. 

Moule, S.K., G.I. Welsh, N.J. Edgell, E.J. Foulstone, C.G. Proud, and R.M. Denton. 1997. 

Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-

adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by 

wortmannin-sensitive and -insensitive mechanisms. J Biol Chem. 272:7713-9. 

Mu, J., J.T. Brozinick, Jr., O. Valladares, M. Bucan, and M.J. Birnbaum. 2001. A role for 

AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in 

skeletal muscle. Mol Cell. 7:1085-94. 

Munday, M.R., D.G. Campbell, D. Carling, and D.G. Hardie. 1988. Identification by 

amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA 

carboxylase. Eur J Biochem. 175:331-8. 

Musi, N., M.F. Hirshman, J. Nygren, M. Svanfeldt, P. Bavenholm, O. Rooyackers, G. 

Zhou, J.M. Williamson, O. Ljunqvist, S. Efendic, D.E. Moller, A. Thorell, and L.J. 

Goodyear. 2002. Metformin increases AMP-activated protein kinase activity in skeletal 

muscle of subjects with type 2 diabetes. Diabetes. 51:2074-81. 

Newgard, C.B., and J.D. McGarry. 1995. Metabolic coupling factors in pancreatic beta-cell 

signal transduction. Annu Rev Biochem. 64:689-719. 

Newton, A.C. 1995. Protein kinase C: structure, function, and regulation. J Biol Chem. 

270:28495-8. 

Nonogaki, K., G.M. Fuller, N.L. Fuentes, A.H. Moser, I. Staprans, C. Grunfeld, and K.R. 

Feingold. 1995. Interleukin-6 stimulates hepatic triglyceride secretion in rats. 

Endocrinology. 136:2143-9. 

Ofei, F., S. Hurel, J. Newkirk, M. Sopwith, and R. Taylor. 1996. Effects of an engineered 

human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in 

patients with NIDDM. Diabetes. 45:881-5. 



231 

Ojuka, E.O., L.A. Nolte, and J.O. Holloszy. 2000. Increased expression of GLUT-4 and 

hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol. 

88:1072-5. 

Okuno, A., H. Tamemoto, K. Tobe, K. Ueki, Y. Mori, K. Iwamoto, K. Umesono, Y. 

Akanuma, T. Fujiwara, H. Horikoshi, Y. Yazaki, and T. Kadowaki. 1998. Troglitazone 

increases the number of small adipocytes without the change of white adipose tissue mass 

in obese Zucker rats. J Clin Invest. 101:1354-61. 

Olson, A.L., J.B. Knight, and J.E. Pessin. 1997. Syntaxin 4, VAMP2, and/or 

VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for 

insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol. 17:2425-35. 

Orci, L., W.S. Cook, M. Ravazzola, M.Y. Wang, B.H. Park, R. Montesano, and R.H. 

Unger. 2004. Rapid transformation of white adipocytes into fat-oxidizing machines. Proc 

Natl Acad Sci U S A. 101:2058-63. 

Ouchi, N., S. Kihara, Y. Arita, K. Maeda, H. Kuriyama, Y. Okamoto, K. Hotta, M. 

Nishida, M. Takahashi, T. Nakamura, S. Yamashita, T. Funahashi, and Y. Matsuzawa. 

1999. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma 

protein adiponectin. Circulation. 100:2473-6. 

Owen, M.R., E. Doran, and A.P. Halestrap. 2000. Evidence that metformin exerts its anti-

diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. 

Biochem J. 348 Pt 3:607-14. 

Pagano, G., M. Cassader, P. Cavallo-Perin, A. Bruno, P. Masciola, A. Ozzello, A.M. 

Dall'Omo, and A. Foco. 1984. Insulin resistance in the aged: a quantitative evaluation of in 

vivo insulin sensitivity and in vitro glucose transport. Metabolism. 33:976-81. 

Pajvani, U.B., X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. 

Brownlee, and P.E. Scherer. 2003. Structure-function studies of the adipocyte-secreted 

hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol 

Chem. 278:9073-85. 



232 

Park, S.H., S.R. Gammon, J.D. Knippers, S.R. Paulsen, D.S. Rubink, and W.W. Winder. 

2002. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in 

muscle. J Appl Physiol. 92:2475-82. 

Patel, M.S., and T.E. Roche. 1990. Molecular biology and biochemistry of pyruvate 

dehydrogenase complexes. Faseb J. 4:3224-33. 

Peak, M., M. al-Habori, and L. Agius. 1992. Regulation of glycogen synthesis and 

glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization 

in mediating the effects of insulin. Biochem J. 282 ( Pt 3):797-805. 

Phillips, S.A., T.P. Ciaraldi, A.P. Kong, R. Bandukwala, V. Aroda, L. Carter, S. Baxi, S.R. 

Mudaliar, and R.R. Henry. 2003. Modulation of circulating and adipose tissue adiponectin 

levels by antidiabetic therapy. Diabetes. 52:667-74. 

Polekhina, G., A. Gupta, B.J. Michell, B. van Denderen, S. Murthy, S.C. Feil, I.G. 

Jennings, D.J. Campbell, L.A. Witters, M.W. Parker, B.E. Kemp, and D. Stapleton. 2003. 

AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol. 13:867-71. 

Prentki, M., and B.E. Corkey. 1996. Are the beta-cell signaling molecules malonyl-CoA 

and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and 

NIDDM? Diabetes. 45:273-83. 

Proctor, K.M., S.C. Miller, N.J. Bryant, and G.W. Gould. 2006. Syntaxin 16 controls the 

intracellular sequestration of GLUT4 in 3T3-L1 adipocytes. Biochem Biophys Res 

Commun. 347:433-8. 

Pryor, P.R., S.C. Liu, A.E. Clark, J. Yang, G.D. Holman, and D. Tosh. 2000. Chronic 

insulin effects on insulin signalling and GLUT4 endocytosis are reversed by metformin. 

Biochem J. 348 Pt 1:83-91. 

Qin, S., Y. Minami, M. Hibi, T. Kurosaki, and H. Yamamura. 1997. Syk-dependent and -

independent signaling cascades in B cells elicited by osmotic and oxidative stress. J Biol 

Chem. 272:2098-103. 

Quinn, C.E., P.K. Hamilton, C.J. Lockhart, and G.E. McVeigh. 2008. Thiazolidinediones: 

effects on insulin resistance and the cardiovascular system. Br J Pharmacol. 153:636-45. 



233 

Ramm, G., M. Larance, M. Guilhaus, and D.E. James. 2006. A role for 14-3-3 in insulin-

stimulated GLUT4 translocation through its interaction with the RabGAP AS160. J Biol 

Chem. 281:29174-80. 

Randhawa, V.K., P.J. Bilan, Z.A. Khayat, N. Daneman, Z. Liu, T. Ramlal, A. Volchuk, 

X.R. Peng, T. Coppola, R. Regazzi, W.S. Trimble, and A. Klip. 2000. VAMP2, but not 

VAMP3/cellubrevin, mediates insulin-dependent incorporation of GLUT4 into the plasma 

membrane of L6 myoblasts. Mol Biol Cell. 11:2403-17. 

Rea, R., and R. Donnelly. 2006. Effects of metformin and oleic acid on adipocyte 

expression of resistin. Diabetes Obes Metab. 8:105-9. 

Ren, T., J. He, H. Jiang, L. Zu, S. Pu, X. Guo, and G. Xu. 2006. Metformin reduces 

lipolysis in primary rat adipocytes stimulated by tumor necrosis factor-alpha or 

isoproterenol. J Mol Endocrinol. 37:175-83. 

Ritchie, S.A., M.A. Ewart, C.G. Perry, J.M. Connell, and I.P. Salt. 2004. The role of 

insulin and the adipocytokines in regulation of vascular endothelial function. Clin Sci 

(Lond). 107:519-32. 

Roach, W.G., J.A. Chavez, C.P. Miinea, and G.E. Lienhard. 2007. Substrate specificity and 

effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem J. 

403:353-8. 

Rorsman, P., L. Eliasson, E. Renstrom, J. Gromada, S. Barg, and S. Gopel. 2000. The Cell 

Physiology of Biphasic Insulin Secretion. News Physiol Sci. 15:72-77. 

Rouille, Y., S.J. Duguay, K. Lund, M. Furuta, Q. Gong, G. Lipkind, A.A. Oliva, Jr., S.J. 

Chan, and D.F. Steiner. 1995. Proteolytic processing mechanisms in the biosynthesis of 

neuroendocrine peptides: the subtilisin-like proprotein convertases. Front 

Neuroendocrinol. 16:322-61. 

Ruan, H., and H.F. Lodish. 2003. Insulin resistance in adipose tissue: direct and indirect 

effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev. 14:447-55. 

Ruderman, N.B., H. Park, V.K. Kaushik, D. Dean, S. Constant, M. Prentki, and A.K. Saha. 

2003. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. 

Acta Physiol Scand. 178:435-42. 



234 

Ruderman, N.B., A.K. Saha, D. Vavvas, and L.A. Witters. 1999. Malonyl-CoA, fuel 

sensing, and insulin resistance. Am J Physiol. 276:E1-E18. 

Russell, R.R., 3rd, R. Bergeron, G.I. Shulman, and L.H. Young. 1999. Translocation of 

myocardial GLUT-4 and increased glucose uptake through activation of AMPK by 

AICAR. Am J Physiol. 277:H643-9. 

Saha, A.K., P.R. Avilucea, J.M. Ye, M.M. Assifi, E.W. Kraegen, and N.B. Ruderman. 

2004. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and 

adipose tissue in vivo. Biochem Biophys Res Commun. 314:580-5. 

Sajan, M.P., G. Bandyopadhyay, Y. Kanoh, M.L. Standaert, M.J. Quon, B.C. Reed, I. 

Dikic, and R.V. Farese. 2002. Sorbitol activates atypical protein kinase C and GLUT4 

glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, 

the extracellular signal-regulated kinase pathway and phospholipase D. Biochem J. 

362:665-74. 

Sakagami, H., S. Saito, T. Kitani, S. Okuno, H. Fujisawa, and H. Kondo. 1998. 

Localization of the mRNAs for two isoforms of Ca2+/calmodulin-dependent protein 

kinase kinases in the adult rat brain. Brain Res Mol Brain Res. 54:311-5. 

Sakamoto, K., O. Goransson, D.G. Hardie, and D.R. Alessi. 2004. Activity of LKB1 and 

AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. 

Am J Physiol Endocrinol Metab. 287:E310-7. 

Sakamoto, K., and G.D. Holman. 2008. Emerging role for AS160/TBC1D4 and TBC1D1 

in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab. 295:E29-37. 

Sakoda, H., T. Ogihara, M. Anai, M. Fujishiro, H. Ono, Y. Onishi, H. Katagiri, M. Abe, Y. 

Fukushima, N. Shojima, K. Inukai, M. Kikuchi, Y. Oka, and T. Asano. 2002. Activation of 

AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not 

adipocytes. Am J Physiol Endocrinol Metab. 282:E1239-44. 

Salpeter, S.R., E. Greyber, G.A. Pasternak, and E.E. Salpeter. 2003. Risk of fatal and 

nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review 

and meta-analysis. Arch Intern Med. 163:2594-602. 



235 

Salt, I., J.W. Celler, S.A. Hawley, A. Prescott, A. Woods, D. Carling, and D.G. Hardie. 

1998a. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear 

localization, of complexes containing the alpha2 isoform. Biochem J. 334 ( Pt 1):177-87. 

Salt, I.P., J.M. Connell, and G.W. Gould. 2000. 5-aminoimidazole-4-carboxamide 

ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 

adipocytes. Diabetes. 49:1649-56. 

Salt, I.P., G. Johnson, S.J. Ashcroft, and D.G. Hardie. 1998b. AMP-activated protein 

kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may 

regulate insulin release. Biochem J. 335 ( Pt 3):533-9. 

Saltiel, A.R., and C.R. Kahn. 2001. Insulin signalling and the regulation of glucose and 

lipid metabolism. Nature. 414:799-806. 

Saltiel, A.R., and J.E. Pessin. 2002. Insulin signaling pathways in time and space. Trends 

Cell Biol. 12:65-71. 

Samad, F., and D.J. Loskutoff. 1996. Tissue distribution and regulation of plasminogen 

activator inhibitor-1 in obese mice. Mol Med. 2:568-82. 

Sanders, M.J., Z.S. Ali, B.D. Hegarty, R. Heath, M.A. Snowden, and D. Carling. 2007a. 

Defining the mechanism of activation of AMP-activated protein kinase by the small 

molecule A-769662, a member of the thienopyridone family. J Biol Chem. 282:32539-48. 

Sanders, M.J., P.O. Grondin, B.D. Hegarty, M.A. Snowden, and D. Carling. 2007b. 

Investigating the mechanism for AMP activation of the AMP-activated protein kinase 

cascade. Biochem J. 403:139-48. 

Sano, H., L. Eguez, M.N. Teruel, M. Fukuda, T.D. Chuang, J.A. Chavez, G.E. Lienhard, 

and T.E. McGraw. 2007. Rab10, a target of the AS160 Rab GAP, is required for insulin-

stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab. 5:293-

303. 

Sano, H., S. Kane, E. Sano, C.P. Miinea, J.M. Asara, W.S. Lane, C.W. Garner, and G.E. 

Lienhard. 2003. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein 

regulates GLUT4 translocation. J Biol Chem. 278:14599-602. 



236 

Sarbassov, D.D., D.A. Guertin, S.M. Ali, and D.M. Sabatini. 2005. Phosphorylation and 

regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098-101. 

Saxena, R., B.F. Voight, V. Lyssenko, N.P. Burtt, P.I. de Bakker, H. Chen, J.J. Roix, S. 

Kathiresan, J.N. Hirschhorn, M.J. Daly, T.E. Hughes, L. Groop, D. Altshuler, P. Almgren, 

J.C. Florez, J. Meyer, K. Ardlie, K. Bengtsson Bostrom, B. Isomaa, G. Lettre, U. Lindblad, 

H.N. Lyon, O. Melander, C. Newton-Cheh, P. Nilsson, M. Orho-Melander, L. Rastam, 

E.K. Speliotes, M.R. Taskinen, T. Tuomi, C. Guiducci, A. Berglund, J. Carlson, L. 

Gianniny, R. Hackett, L. Hall, J. Holmkvist, E. Laurila, M. Sjogren, M. Sterner, A. Surti, 

M. Svensson, R. Tewhey, B. Blumenstiel, M. Parkin, M. Defelice, R. Barry, W. Brodeur, 

J. Camarata, N. Chia, M. Fava, J. Gibbons, B. Handsaker, C. Healy, K. Nguyen, C. Gates, 

C. Sougnez, D. Gage, M. Nizzari, S.B. Gabriel, G.W. Chirn, Q. Ma, H. Parikh, D. 

Richardson, D. Ricke, and S. Purcell. 2007. Genome-wide association analysis identifies 

loci for type 2 diabetes and triglyceride levels. Science. 316:1331-6. 

Schaffler, A., M. Neumeier, H. Herfarth, A. Furst, J. Scholmerich, and C. Buchler. 2005. 

Genomic structure of human omentin, a new adipocytokine expressed in omental adipose 

tissue. Biochim Biophys Acta. 1732:96-102. 

Schaffler, A., J. Scholmerich, and C. Buchler. 2005. Mechanisms of disease: 

adipocytokines and visceral adipose tissue--emerging role in intestinal and mesenteric 

diseases. Nat Clin Pract Gastroenterol Hepatol. 2:103-11. 

Scheid, M.P., and J.R. Woodgett. 2003. Unravelling the activation mechanisms of protein 

kinase B/Akt. FEBS Lett. 546:108-12. 

Schmelzle, T., and M.N. Hall. 2000. TOR, a central controller of cell growth. Cell. 

103:253-62. 

Scott, J.W., S.A. Hawley, K.A. Green, M. Anis, G. Stewart, G.A. Scullion, D.G. Norman, 

and D.G. Hardie. 2004. CBS domains form energy-sensing modules whose binding of 

adenosine ligands is disrupted by disease mutations. J Clin Invest. 113:274-84. 

Scott, J.W., B.J. van Denderen, S.B. Jorgensen, J.E. Honeyman, G.R. Steinberg, J.S. 

Oakhill, T.J. Iseli, A. Koay, P.R. Gooley, D. Stapleton, and B.E. Kemp. 2008. 

Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-

containing complexes. Chem Biol. 15:1220-30. 



237 

Segalen, C., S.L. Longnus, D. Baetz, L. Counillon, and E. Van Obberghen. 2008. 5-

aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside reduces glucose uptake via the 

inhibition of Na+/H+ exchanger 1 in isolated rat ventricular cardiomyocytes. 

Endocrinology. 149:1490-8. 

Seger, R., and E.G. Krebs. 1995. The MAPK signaling cascade. Faseb J. 9:726-35. 

Sell, H., D. Dietze-Schroeder, K. Eckardt, and J. Eckel. 2006. Cytokine secretion by 

human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone. 

Biochem Biophys Res Commun. 343:700-6. 

Senn, J.J., P.J. Klover, I.A. Nowak, T.A. Zimmers, L.G. Koniaris, R.W. Furlanetto, and 

R.A. Mooney. 2003. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of 

interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem. 278:13740-6. 

Shakur, Y., L.S. Holst, T.R. Landstrom, M. Movsesian, E. Degerman, and V. Manganiello. 

2001. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene 

family. Prog Nucleic Acid Res Mol Biol. 66:241-77. 

Shaw, R.J., M. Kosmatka, N. Bardeesy, R.L. Hurley, L.A. Witters, R.A. DePinho, and L.C. 

Cantley. 2004. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase 

and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 101:3329-

35. 

Shaw, R.J., K.A. Lamia, D. Vasquez, S.H. Koo, N. Bardeesy, R.A. Depinho, M. 

Montminy, and L.C. Cantley. 2005. The kinase LKB1 mediates glucose homeostasis in 

liver and therapeutic effects of metformin. Science. 310:1642-6. 

Shepherd, P.R. 2005. Mechanisms regulating phosphoinositide 3-kinase signalling in 

insulin-sensitive tissues. Acta Physiol Scand. 183:3-12. 

Shimabukuro, M., Y.T. Zhou, M. Levi, and R.H. Unger. 1998. Fatty acid-induced beta cell 

apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 95:2498-502. 

Shu, Y., S.A. Sheardown, C. Brown, R.P. Owen, S. Zhang, R.A. Castro, A.G. Ianculescu, 

L. Yue, J.C. Lo, E.G. Burchard, C.M. Brett, and K.M. Giacomini. 2007. Effect of genetic 

variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 

117:1422-31. 



238 

Shulman, G.I. 2000. Cellular mechanisms of insulin resistance. J Clin Invest. 106:171-6. 

Sinha, R., G. Fisch, B. Teague, W.V. Tamborlane, B. Banyas, K. Allen, M. Savoye, V. 

Rieger, S. Taksali, G. Barbetta, R.S. Sherwin, and S. Caprio. 2002. Prevalence of impaired 

glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 

346:802-10. 

Smith, J.L., P.B. Patil, and J.S. Fisher. 2005. AICAR and hyperosmotic stress increase 

insulin-stimulated glucose transport. J Appl Physiol. 99:877-83. 

Smith, U., M. Kuroda, and I.A. Simpson. 1984. Counter-regulation of insulin-stimulated 

glucose transport by catecholamines in the isolated rat adipose cell. J Biol Chem. 

259:8758-63. 

Solaz-Fuster, M.C., J.V. Gimeno-Alcaniz, M. Casado, and P. Sanz. 2006. TRIP6 

transcriptional co-activator is a novel substrate of AMP-activated protein kinase. Cell 

Signal. 18:1702-12. 

Soukas, A., P. Cohen, N.D. Socci, and J.M. Friedman. 2000. Leptin-specific patterns of 

gene expression in white adipose tissue. Genes Dev. 14:963-80. 

Spurlin, B.A., R.M. Thomas, A.K. Nevins, H.J. Kim, Y.J. Kim, H.L. Noh, G.I. Shulman, 

J.K. Kim, and D.C. Thurmond. 2003. Insulin resistance in tetracycline-repressible 

Munc18c transgenic mice. Diabetes. 52:1910-7. 

Srere, P.A. 1959. The citrate cleavage enzyme. I. Distribution and purification. J Biol 

Chem. 234:2544-7. 

Standaert, M.L., Y. Kanoh, M.P. Sajan, G. Bandyopadhyay, and R.V. Farese. 2002. Cbl, 

IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-lambda, and glucose 

transport in 3T3/L1 adipocytes. Endocrinology. 143:1705-16. 

Stapleton, D., K.I. Mitchelhill, G. Gao, J. Widmer, B.J. Michell, T. Teh, C.M. House, C.S. 

Fernandez, T. Cox, L.A. Witters, and B.E. Kemp. 1996. Mammalian AMP-activated 

protein kinase subfamily. J Biol Chem. 271:611-4. 

Stapleton, D., E. Woollatt, K.I. Mitchelhill, J.K. Nicholl, C.S. Fernandez, B.J. Michell, 

L.A. Witters, D.A. Power, G.R. Sutherland, and B.E. Kemp. 1997. AMP-activated protein 



239 

kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 

409:452-6. 

Stock, J.B., A.J. Ninfa, and A.M. Stock. 1989. Protein phosphorylation and regulation of 

adaptive responses in bacteria. Microbiol Rev. 53:450-90. 

Stone, S., V. Abkevich, D.L. Russell, R. Riley, K. Timms, T. Tran, D. Trem, D. Frank, S. 

Jammulapati, C.D. Neff, D. Iliev, R. Gress, G. He, G.C. Frech, T.D. Adams, M.H. 

Skolnick, J.S. Lanchbury, A. Gutin, S.C. Hunt, and D. Shattuck. 2006. TBC1D1 is a 

candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity 

predisposition. Hum Mol Genet. 15:2709-20. 

Stouthard, J.M., J.A. Romijn, T. Van der Poll, E. Endert, S. Klein, P.J. Bakker, C.H. 

Veenhof, and H.P. Sauerwein. 1995. Endocrinologic and metabolic effects of interleukin-6 

in humans. Am J Physiol. 268:E813-9. 

Stumvoll, M., N. Nurjhan, G. Perriello, G. Dailey, and J.E. Gerich. 1995. Metabolic effects 

of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 333:550-4. 

Sullivan, J.E., K.J. Brocklehurst, A.E. Marley, F. Carey, D. Carling, and R.K. Beri. 1994. 

Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-

permeable activator of AMP-activated protein kinase. FEBS Lett. 353:33-6. 

Sun, X.J., and F. Liu. 2009. Phosphorylation of IRS proteins Yin-Yang regulation of 

insulin signaling. Vitam Horm. 80:351-87. 

Tapon, N., N. Ito, B.J. Dickson, J.E. Treisman, and I.K. Hariharan. 2001. The Drosophila 

tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell. 

105:345-55. 

Taylor, E.B., D. An, H.F. Kramer, H. Yu, N.L. Fujii, K.S. Roeckl, N. Bowles, M.F. 

Hirshman, J. Xie, E.P. Feener, and L.J. Goodyear. 2008. Discovery of TBC1D1 as an 

insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J 

Biol Chem. 283:9787-96. 

Terada, S., M. Goto, M. Kato, K. Kawanaka, T. Shimokawa, and I. Tabata. 2002. Effects 

of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis 

muscle. Biochem Biophys Res Commun. 296:350-4. 



240 

Thong, F.S., P.J. Bilan, and A. Klip. 2007. The Rab GTPase-Activating Protein AS160 

Integrates Akt, Protein Kinase C, and AMP-Activated Protein Kinase Signals Regulating 

GLUT4 Traffic. Diabetes. 56:414-23. 

Thong, F.S., C.B. Dugani, and A. Klip. 2005. Turning signals on and off: GLUT4 traffic in 

the insulin-signaling highway. Physiology (Bethesda). 20:271-84. 

Thornton, C., M.A. Snowden, and D. Carling. 1998. Identification of a novel AMP-

activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J 

Biol Chem. 273:12443-50. 

Tiainen, M., A. Ylikorkala, and T.P. Makela. 1999. Growth suppression by Lkb1 is 

mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci U S A. 96:9248-51. 

Tiikkainen, M., A.M. Hakkinen, E. Korsheninnikova, T. Nyman, S. Makimattila, and H. 

Yki-Jarvinen. 2004. Effects of rosiglitazone and metformin on liver fat content, hepatic 

insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with 

type 2 diabetes. Diabetes. 53:2169-76. 

Tokumitsu, H., H. Inuzuka, Y. Ishikawa, M. Ikeda, I. Saji, and R. Kobayashi. 2002. STO-

609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J Biol 

Chem. 277:15813-8. 

Tomas, E., T.S. Tsao, A.K. Saha, H.E. Murrey, C. Zhang Cc, S.I. Itani, H.F. Lodish, and 

N.B. Ruderman. 2002. Enhanced muscle fat oxidation and glucose transport by ACRP30 

globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase 

activation. Proc Natl Acad Sci U S A. 99:16309-13. 

Tong, J., M.J. Zhu, K.R. Underwood, B.W. Hess, S.P. Ford, and M. Du. 2008. AMP-

activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J 

Anim Sci. 86:1296-305. 

Tong, L. 2005. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive 

target for drug discovery. Cell Mol Life Sci. 62:1784-803. 

Towler, M.C., and D.G. Hardie. 2007. AMP-activated protein kinase in metabolic control 

and insulin signaling. Circ Res. 100:328-41. 



241 

Tsao, T.S., E. Tomas, H.E. Murrey, C. Hug, D.H. Lee, N.B. Ruderman, J.E. Heuser, and 

H.F. Lodish. 2003. Role of disulfide bonds in Acrp30/adiponectin structure and signaling 

specificity. Different oligomers activate different signal transduction pathways. J Biol 

Chem. 278:50810-7. 

Ubersax, J.A., and J.E. Ferrell, Jr. 2007. Mechanisms of specificity in protein 

phosphorylation. Nat Rev Mol Cell Biol. 8:530-41. 

Uchida, T., M.G. Myers, Jr., and M.F. White. 2000. IRS-4 mediates protein kinase B 

signaling during insulin stimulation without promoting antiapoptosis. Mol Cell Biol. 

20:126-38. 

Ullrich, A., and J. Schlessinger. 1990. Signal transduction by receptors with tyrosine 

kinase activity. Cell. 61:203-12. 

Ullrich, K.J. 1994. Specificity of transporters for 'organic anions' and 'organic cations' in 

the kidney. Biochim Biophys Acta. 1197:45-62. 

Uysal, K.T., S.M. Wiesbrock, M.W. Marino, and G.S. Hotamisligil. 1997. Protection from 

obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 389:610-4. 

Vanhaesebroeck, B., S.J. Leevers, G. Panayotou, and M.D. Waterfield. 1997. 

Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 

22:267-72. 

Vgontzas, A.N., D.A. Papanicolaou, E.O. Bixler, A. Kales, K. Tyson, and G.P. Chrousos. 

1997. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of 

sleep disturbance and obesity. J Clin Endocrinol Metab. 82:1313-6. 

Vidal-Puig, A.J., R.V. Considine, M. Jimenez-Linan, A. Werman, W.J. Pories, J.F. Caro, 

and J.S. Flier. 1997. Peroxisome proliferator-activated receptor gene expression in human 

tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J 

Clin Invest. 99:2416-22. 

Villena, J.A., B. Viollet, F. Andreelli, A. Kahn, S. Vaulont, and H.S. Sul. 2004. Induced 

adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-

alpha2 subunit. Diabetes. 53:2242-9. 



242 

Vincent, M.F., M.D. Erion, H.E. Gruber, and G. Van den Berghe. 1996. Hypoglycaemic 

effect of AICAriboside in mice. Diabetologia. 39:1148-55. 

Vincent, M.F., P.J. Marangos, H.E. Gruber, and G. Van den Berghe. 1991. Inhibition by 

AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 40:1259-66. 

Wajchenberg, B.L. 2000. Subcutaneous and visceral adipose tissue: their relation to the 

metabolic syndrome. Endocr Rev. 21:697-738. 

Wakil, S.J. 1989. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry. 

28:4523-30. 

Wakil, S.J., J.K. Stoops, and V.C. Joshi. 1983. Fatty acid synthesis and its regulation. Annu 

Rev Biochem. 52:537-79. 

Wang, D., and H.S. Sul. 1997. Upstream stimulatory factor binding to the E-box at -65 is 

required for insulin regulation of the fatty acid synthase promoter. J Biol Chem. 

272:26367-74. 

Wang, D.S., J.W. Jonker, Y. Kato, H. Kusuhara, A.H. Schinkel, and Y. Sugiyama. 2002. 

Involvement of organic cation transporter 1 in hepatic and intestinal distribution of 

metformin. J Pharmacol Exp Ther. 302:510-5. 

Wang, X., L. Zhou, G. Li, T. Luo, Y. Gu, L. Qian, X. Fu, F. Li, J. Li, and M. Luo. 2007. 

Palmitate activates AMP-activated protein kinase and regulates insulin secretion from beta 

cells. Biochem Biophys Res Commun. 352:463-8. 

Ward, C.W., and M.C. Lawrence. 2009. Ligand-induced activation of the insulin receptor: 

a multi-step process involving structural changes in both the ligand and the receptor. 

Bioessays. 31:422-34. 

Warne, J.P. 2003. Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J 

Endocrinol. 177:351-5. 

Watkins, P.A. 1997. Fatty acid activation. Prog Lipid Res. 36:55-83. 



243 

Weyer, C., T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, and P.A. 

Tataranni. 2001. Hypoadiponectinemia in obesity and type 2 diabetes: close association 

with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 86:1930-5. 

White, M.F. 1998. The IRS-signalling system: a network of docking proteins that mediate 

insulin action. Mol Cell Biochem. 182:3-11. 

White, M.F. 2002. IRS proteins and the common path to diabetes. Am J Physiol 

Endocrinol Metab. 283:E413-22. 

Whitehead, J.P., S.F. Clark, B. Urso, and D.E. James. 2000. Signalling through the insulin 

receptor. Curr Opin Cell Biol. 12:222-8. 

Whitehead, J.P., J.C. Molero, S. Clark, S. Martin, G. Meneilly, and D.E. James. 2001. The 

role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J Biol Chem. 

276:27816-24. 

Widberg, C.H., N.J. Bryant, M. Girotti, S. Rea, and D.E. James. 2003. Tomosyn interacts 

with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulin-stimulated GLUT4 

translocation. J Biol Chem. 278:35093-101. 

Wiman, B., J. Chmielewska, and M. Ranby. 1984. Inactivation of tissue plasminogen 

activator in plasma. Demonstration of a complex with a new rapid inhibitor. J Biol Chem. 

259:3644-7. 

Winder, W.W., and D.G. Hardie. 1996. Inactivation of acetyl-CoA carboxylase and 

activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 

270:E299-304. 

Winder, W.W., B.F. Holmes, D.S. Rubink, E.B. Jensen, M. Chen, and J.O. Holloszy. 2000. 

Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal 

muscle. J Appl Physiol. 88:2219-26. 

Witczak, C.A., N. Fujii, M.F. Hirshman, and L.J. Goodyear. 2007. Ca2+/calmodulin-

dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake 

independent of AMP-activated protein kinase and Akt activation. Diabetes. 56:1403-9. 



244 

Witters, L.A., and B.E. Kemp. 1992. Insulin activation of acetyl-CoA carboxylase 

accompanied by inhibition of the 5'-AMP-activated protein kinase. J Biol Chem. 267:2864-

7. 

Witters, L.A., A.C. Nordlund, and L. Marshall. 1991. Regulation of intracellular acetyl-

CoA carboxylase by ATP depletors mimics the action of the 5'-AMP-activated protein 

kinase. Biochem Biophys Res Commun. 181:1486-92. 

Wojtaszewski, J.F., C. MacDonald, J.N. Nielsen, Y. Hellsten, D.G. Hardie, B.E. Kemp, B. 

Kiens, and E.A. Richter. 2003. Regulation of 5'AMP-activated protein kinase activity and 

substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 

284:E813-22. 

Wojtczak, L., and P. Schonfeld. 1993. Effect of fatty acids on energy coupling processes in 

mitochondria. Biochim Biophys Acta. 1183:41-57. 

Woods, A., P.C. Cheung, F.C. Smith, M.D. Davison, J. Scott, R.K. Beri, and D. Carling. 

1996a. Characterization of AMP-activated protein kinase beta and gamma subunits. 

Assembly of the heterotrimeric complex in vitro. J Biol Chem. 271:10282-90. 

Woods, A., K. Dickerson, R. Heath, S.P. Hong, M. Momcilovic, S.R. Johnstone, M. 

Carlson, and D. Carling. 2005. Ca2+/calmodulin-dependent protein kinase kinase-beta acts 

upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21-33. 

Woods, A., S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. 

Schlattner, T. Wallimann, M. Carlson, and D. Carling. 2003. LKB1 is the upstream kinase 

in the AMP-activated protein kinase cascade. Curr Biol. 13:2004-8. 

Woods, A., I. Salt, J. Scott, D.G. Hardie, and D. Carling. 1996b. The alpha1 and alpha2 

isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit 

differences in substrate specificity in vitro. FEBS Lett. 397:347-51. 

Wu, X., H. Motoshima, K. Mahadev, T.J. Stalker, R. Scalia, and B.J. Goldstein. 2003. 

Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular 

domain of adiponectin in primary rat adipocytes. Diabetes. 52:1355-63. 



245 

Xiao, B., R. Heath, P. Saiu, F.C. Leiper, P. Leone, C. Jing, P.A. Walker, L. Haire, J.F. 

Eccleston, C.T. Davis, S.R. Martin, D. Carling, and S.J. Gamblin. 2007. Structural basis 

for AMP binding to mammalian AMP-activated protein kinase. Nature. 449:496-500. 

Xing, H., J.P. Northrop, J.R. Grove, K.E. Kilpatrick, J.L. Su, and G.M. Ringold. 1997. 

TNF alpha-mediated inhibition and reversal of adipocyte differentiation is accompanied by 

suppressed expression of PPARgamma without effects on Pref-1 expression. 

Endocrinology. 138:2776-83. 

Xu, H., K.M. Williams, W.S. Liauw, M. Murray, R.O. Day, and A.J. McLachlan. 2008. 

Effects of St John's wort and CYP2C9 genotype on the pharmacokinetics and 

pharmacodynamics of gliclazide. Br J Pharmacol. 153:1579-86. 

Yaffe, M.B., G.G. Leparc, J. Lai, T. Obata, S. Volinia, and L.C. Cantley. 2001. A motif-

based profile scanning approach for genome-wide prediction of signaling pathways. Nat 

Biotechnol. 19:348-53. 

Yamada, E., S. Okada, T. Saito, K. Ohshima, M. Sato, T. Tsuchiya, Y. Uehara, H. 

Shimizu, and M. Mori. 2005. Akt2 phosphorylates Synip to regulate docking and fusion of 

GLUT4-containing vesicles. J Cell Biol. 168:921-8. 

Yamagishi, S.I., D. Edelstein, X.L. Du, Y. Kaneda, M. Guzman, and M. Brownlee. 2001. 

Leptin induces mitochondrial superoxide production and monocyte chemoattractant 

protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via 

protein kinase A. J Biol Chem. 276:25096-100. 

Yamaguchi, S., H. Katahira, S. Ozawa, Y. Nakamichi, T. Tanaka, T. Shimoyama, K. 

Takahashi, K. Yoshimoto, M.O. Imaizumi, S. Nagamatsu, and H. Ishida. 2005. Activators 

of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport 

activity in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 289:E643-9. 

Yamauchi, M., F. Kambe, X. Cao, X. Lu, Y. Kozaki, Y. Oiso, and H. Seo. 2008. Thyroid 

hormone activates adenosine 5'-monophosphate-activated protein kinase via intracellular 

calcium mobilization and activation of calcium/calmodulin-dependent protein kinase 

kinase-beta. Mol Endocrinol. 22:893-903. 



246 

Yamauchi, T., J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. 

Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, 

S. Kimura, R. Nagai, B.B. Kahn, and T. Kadowaki. 2002. Adiponectin stimulates glucose 

utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 

8:1288-95. 

Yang, C., K.J. Coker, J.K. Kim, S. Mora, D.C. Thurmond, A.C. Davis, B. Yang, R.A. 

Williamson, G.I. Shulman, and J.E. Pessin. 2001. Syntaxin 4 heterozygous knockout mice 

develop muscle insulin resistance. J Clin Invest. 107:1311-8. 

Yang, C., R.T. Watson, J.S. Elmendorf, D.B. Sacks, and J.E. Pessin. 2000. Calmodulin 

antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by 

preventing the formation of phosphatidylinositol 3,4,5-trisphosphate in 3T3L1 adipocytes. 

Mol Endocrinol. 14:317-26. 

Yang, J., A. Hodel, and G.D. Holman. 2002. Insulin and isoproterenol have opposing roles 

in the maintenance of cytosol pH and optimal fusion of GLUT4 vesicles with the plasma 

membrane. J Biol Chem. 277:6559-66. 

Ye, J.M., N. Dzamko, M.E. Cleasby, B.D. Hegarty, S.M. Furler, G.J. Cooney, and E.W. 

Kraegen. 2004. Direct demonstration of lipid sequestration as a mechanism by which 

rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with 

metformin. Diabetologia. 47:1306-13. 

Ye, J.M., N. Dzamko, A.J. Hoy, M.A. Iglesias, B. Kemp, and E. Kraegen. 2006. 

Rosiglitazone treatment enhances acute AMP-activated protein kinase-mediated muscle 

and adipose tissue glucose uptake in high-fat-fed rats. Diabetes. 55:2797-804. 

Yeh, L.A., K.H. Lee, and K.H. Kim. 1980. Regulation of rat liver acetyl-CoA carboxylase. 

Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the 

adenylate energy charge. J Biol Chem. 255:2308-14. 

Yin, D., S.D. Clarke, J.L. Peters, and T.D. Etherton. 1998. Somatotropin-dependent 

decrease in fatty acid synthase mRNA abundance in 3T3-F442A adipocytes is the result of 

a decrease in both gene transcription and mRNA stability. Biochem J. 331 ( Pt 3):815-20. 



247 

Yin, W., J. Mu, and M.J. Birnbaum. 2003. Role of AMP-activated protein kinase in cyclic 

AMP-dependent lipolysis In 3T3-L1 adipocytes. J Biol Chem. 278:43074-80. 

Yoon, J.C., T.W. Chickering, E.D. Rosen, B. Dussault, Y. Qin, A. Soukas, J.M. Friedman, 

W.E. Holmes, and B.M. Spiegelman. 2000. Peroxisome proliferator-activated receptor 

gamma target gene encoding a novel angiopoietin-related protein associated with adipose 

differentiation. Mol Cell Biol. 20:5343-9. 

Young, J., and S. Povey. 1998. The genetic basis of tuberous sclerosis. Mol Med Today. 

4:313-9. 

Young, M.E., G.K. Radda, and B. Leighton. 1996. Activation of glycogen phosphorylase 

and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated 

protein kinase. FEBS Lett. 382:43-7. 

Zerial, M., and H. McBride. 2001. Rab proteins as membrane organizers. Nat Rev Mol Cell 

Biol. 2:107-17. 

Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J.M. Friedman. 1994. 

Positional cloning of the mouse obese gene and its human homologue. Nature. 372:425-32. 

Zheng, D., P.S. MacLean, S.C. Pohnert, J.B. Knight, A.L. Olson, W.W. Winder, and G.L. 

Dohm. 2001. Regulation of muscle GLUT-4 transcription by AMP-activated protein 

kinase. J Appl Physiol. 91:1073-83. 

Zhou, G., R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. 

Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, and D.E. Moller. 2001. Role 

of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 

108:1167-74. 

Zhou, Y.P., and V. Grill. 1995. Long term exposure to fatty acids and ketones inhibits B-

cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab. 

80:1584-90. 

Zigman, J.M., and J.K. Elmquist. 2003. Minireview: From anorexia to obesity--the yin and 

yang of body weight control. Endocrinology. 144:3749-56. 



248 

Zong, H., J.M. Ren, L.H. Young, M. Pypaert, J. Mu, M.J. Birnbaum, and G.I. Shulman. 

2002. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response 

to chronic energy deprivation. Proc Natl Acad Sci U S A. 99:15983-7. 

 

 


