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PREFACE.

Then to the Heav'n itself I cried,
Asking, "What Lamp had Destiny to guide.
Her little Children stumblirg in the Dark?"

Ard - "A blind U‘nderstcmdfn'g!inr Heav'n replied. '

»

Rubaiyat of Omar Khayyam

It seems that not everybody in Persia in ;he eleventh century
was as convinced as the astrologers that the movements of the heavens
controlled the destiny of Man, Nevgrtheless, for many centuries before
and since, kings and empérors rewarded handsomely those astronomer/
astrologers who could give them advice based on the movements of the
planets and other celestial bodies. (TherE*mgy be some astronomers
today who would wish for similar generous patronage). Since the
adveht of modern celestial mechanics with the work of Isaac Newton,
orbital motion has been studied for its own sake and, in the last
thirty years, for the purposes of sending artificial satellites and
manned craft into space. Yetlfor 300 years, one of the most 1mportant
~questions posed by celestial mechanics remains unanswered: are the
motions of the planets in the Solar System stable?  Could planets
collide or even escape? Countless workers since Newton's time have
sought Lamps to the Destiﬁy of the Solar System, but our Understanding
is still obscured by many blind-spots.

This thesis does not claim to_give any definitive answers to
these questions. ' It does indicate how to obtain quantitative estimates

of the likelihood of certain events occurring. Simple statistical
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fnethods are applied to the résults of numerical experiments and give
probabilities of planetary orbits crossing or bodies escaping dynamiéal
systems altogether.

In Chapter 1 a general review of the problem of the Solar System's
stability is given along with brief descriptions of methods and
definitions of stability which have been used in the past. This thesis
studies the stability of real and fictitious dynamical systems not
necessarily associated with the Solar System. It investigates one
particular definition of stability, namely hierarchical stability, using
special perturbation methods. The definitions of hierarchical systems,
hierarchical stability and empirical stability parameters are reviewed
in Chapter 2. These will form the basis for subseéuent numerical
experiments.

One further definition of stability - Hill stability is an
important condition for hierarchical stability. It has been studied
in a mathematically rigorous way in the problem of three massive
bodies in mutually perturbed‘orbits. Tﬁis analysis as we}l;as some "~ -
new numerical results are éivenqin Chapter 3.

Numerical integration experiments were carried out, with the aid
of a mainframe computer, to study the period of time for which various
three-body systems remain stable. Several hundred fictitious systems
with different masses and starting conditions were studied. In each
case, all three bodies' orbits lay in the same plane. In some systems,
all the bodies orbited in the same direction (direct):; for other
systems, one body orbited in the opposite direction from the other two
(retrograde). The results of these experiments are presented in

Chapter 4 (for retrograde systems) and Chapter 5 (for direct systems).

The results are grouped in such a way that analytical curves may be
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fitted to the data. This allows predictions of stability 1i fetimes

for similar systems without the need for lengthy numerical integration
experiments. Systems whose masses, initial positions and initial
velocities fall into certain ranges are always stable. These regions

of hierarchical stability are mapped out and compared with corresponding
~regions of Hill stability. 1In the case of direct systems, commensura-
bilities give rise to large fluctuations in stability lifetimes, if

the initial conditions are varied slightly., Additional statistical
methods are described in Chapter 5 to cope'with.this effect.

In Chapter 6, the results of Chapters 4 and 5 are compared with
real three-body systems within the Solar System. Possible origins
"0of the Solar System are discussed 1in tﬁe light of the results.

In Chapter 7, four and more body systems are examined for élign-
ments. of the bodies in their orbits (syzygies). A statistical analysis
of the numbers of syzygies occurring in a given time leads to the
discovery of resonances in the orbital frequencies. The theory is
developed and épplied to the results of numerical experiments.

Chapter 8 briefly states some of the questions that have not been
considered in this work as well as some new ones that have arisen
from 1t.

‘Appendix A is a set of useful statistical tables, Appendix B
is a discussion of some limiting cases of Hill stability in the
general thrée-body problem. Appendix C gives a detailed mathematical
background to the statistical methods used in Chapter 5.

The original work of this tﬁesis is contalned 1in phgpters 4 to 7,
the second half of Chapter 3; and Appendices B andtC; Rgsults from
Chapter 5 have been published in Stability of the Solar System ard Its

Minor Natural arvd Artificial Bodies, in the  NATO ASI Series.
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Results from Chapter 7 have been'aCCEpted for pgblicafion in Celestial
Mbchérics. Parts of Chapters 3 to 6 are in prEparation as papers.

This work does not answer any questions about the ultimate
stability of the Solar Systém; I shall be happy though if it helps to
irradicate even one blind-spot in our understanding of the Solar System's

destiny. I leave the study of Man's destiny to others. (Besides, we

Scorpios don't believe in astrology).
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SUMMARY -

After 300 years, celestial mechanics is stiil unable to say
whether or not the orbits of the planets and satellites in the Solar
System are stable. The studies that have been performed along with
‘the observational evidence strongly suggest that the majority of
orbits are stable, including all planetary orbits. However a definitive
answer is still not available. One of the main objectives of this
thesis 1s to obtailn statistical estimates of the likelihood of
particular orbits being stable.

Hany dynamical systems in nature can be defined as_hiefarchical;
where the boﬁies' mutual separations can be ordered and that ordering
(hierarchy) is preserved for a timeléonsiderably longer than any of
the periods of revolution. The equations of motions are expressed
in Jacobian coordinates. An expansion of the force function yields
a set of dimensionless paraﬁeters, the_ampirical étaéilityparameters,
which represent the perturbations on the osculating Keplerian ellipses.

This thesis investigates the stability of coplanar hierarchicai
systems. Particular consideration is given to coplanar 1nitially
circular, three-body systems, which can be divided intq two classes
according to their rotational sense: direct and retrograde.

There are many definitions of stability.. This study uses the
concept of hterarchical stability, i.e. no bodies escape the system;
there are no secular changes in the semi-major axes, eccentricities
and inclinations defining the osculating orbits; the hierarchy of
the system is preserved. This last condition is guaranteed if Hill-
type stability can be proved. An analytical theory exists for the

Hill-type stability of three bodies, which makes use of the topology
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of the zero velocity curves. In this theory, it is found that direct
Systems are stable for a wider'fange of initial conditions than retrograde
systems.

Several hundred numerical integfation experiments have been
‘performed for a variety of fictitious direct and retrogradg three-body
systems; The osculating elements of certain retrograde systems are
studied in detail to show the differences between stabie and unstable
behaviour.

For unstable systems, the times until instabilities have appeared
are noted., The resulting data, which compares these stability lifetimes
~against the 1initial relative separations of the bodies, is grguped into
classes of equal empirical stability parameters. A curve is fitted to
each class of data. For retrograde systems, the data %aries smoothly
and the curves are 1n good agreement., This allows subsequent pre-
dictions of stability lifetimes with good accuracy. The existence of
commensurabillities produces wide fluctuations in the data for direct
systems, so the curves do not fit so well, Additional statistical
techniques are employed to derive probable':anges of stgbilify life-
times without the need for numerical integration.

The results of these numericdl experiments indicate that retro-
grade systems are stable for a wider range of initial conditions than
direct systems. This contradicts the Hill-type stability theory;

The numericai results are compared with real three-body subsystems of
the Solar System. They imply that the observed lack of retrograde
systems may be due to the manner of the origin of the Solar System;
not to any stability selection effect. Possible origins of the Solar

System are discussed.

Four and more body systems are discussed with reference to an



dfrery model of hierarchical, coplanar, unﬁerturbed circular orbits.

A theory 1s developed which predicts the average period of occurrence
of near syzygies (alignments*of'the bodies). 'The theory 1s found to
be 1in agreement with niumerical simulations. Commensurable systems

are characterised as having a period of syzygy occurrence which 1is.
radically different from that predicted. Examples are givenrqf
coﬁmensurable systeméwithin the Solar.System;that are detected by
thismethod.- This method can be used to search for critical arguments
using apsidal as well as bodily syzygies. This would best be achieved
'using a numerical integration method with the orrery model acting as
interpolator. MiIrror configuratiowns could also be found leading to a

discovery of near periodic-motion.inthe Solar System.
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STABILITY OF DYNAMICAL SYSTEMS IN CELESTIAL

MECHANICS

.1 The Structure and Stability of the Solar System

.2 The Restricted Three-Body Problem and Hill Stability
.3 Periodic Orbits

.4 Commensurabilities

.5 Gengrai Perturbations and KAM Theory

.6 Special Perturbétion Methods

.7 Summary



1.1 The Structure and*Stabilitz of the Solar-sttem

The Earth i1s but one body in the thousands that make up the Solar
System. The principal object 1is the Sun, a star which 1is a thousand
times more massive than Jupiter, the second largest body. Orbiting the
Sun are nine major planets (Figure 1.1) many having their own systems

of satellites.

S =Sun
¥ = Meraury
¢ ? = Venus
| 1[[)! ,30,0 e = Ecrth
0 200 g = Mots -
Mitlions of
kilometres Z = Jupiter
p :_SG‘UI‘I’I-
e/ = Uranus
Y = Neptune
P = Pluto
3 -
1000 3200
S v
0 2000
Millions of
kKilomelres

Figure 1.1: Orbits of the major planets in the
Solar System +
There are over forty major satellites, (although the definitions of
major and minor satellites become increasinglﬁ hazy as more small bodies
are discovered by the Voyager mission and ever improving ground-based

observations). Minor bodies include the asteroids, comets and meteor
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streams, On the very small scale we must consider the planetary rings
and the interstellar medium.

In terms of composition, the planets may-be divided into two groups.
Firstly, there are the gas giants; Jupiter, Safurn, Uranus and Neptune.
As 1mplied, these planetshare much larger than the other five and are
mainly comprised of hydrogen and helium. All have their own satellite
systems and three of them have been observed to have rings. It may
well be that the fourth, Neptune, also possesses rings but these have not
yet been detected. The second group is composed of the terrestrial
planets; Mercury, Venus, Earth, Mars and Pluto. These planets are
much smaller and are mostly composed of silicate material. They have
fewer satellites than the gas gilants, Mercury and Vénus haviﬁg none

whatsoever,

Kepler was able to describe the motions of the planets by his

three famous laws:-

(1) The orbit of each ﬁlanet 1s an ellipse withlthe Sun at one
focus.
(ii) Thé rate at which the radius vector from Sun to planet sweeps
area is constant.
(1ii) The cubes of the semi-major axes of the planetary orbits are
proportional to the squares of the planets' orbital periods.
These three laws are exact 1f we assume that the bodies are points
and that the planets do not gravitationally disturb each other. In
reality neither assumptions are true but Kepler's laws still give, in
most cases, very good approximations to both planetary motion about
the Sun and satellite motibn about the planets.

Most of the planets' orbits are inclined within a few degrees of
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the Earth'é orbit and possess near elliptical orbits with low ecéen-_
tricities. The two exceptions are Mercury (ecceﬁtricity v 0,21,
inclination v7°) and Pluto (eccentricity ~ 0.25, inclination n17°),
Without exception, all the planets orbit in the same direction about

the Sun. Most of the.planets rotate on their axes in the same directions
as they move in theilr orbits, the two exceptions being Venus, whose
equator 1is inclined at % 1790 to its orbit, and Uranus, whose equatorial
inclination 1is %'98?.

In general the planets' orbits are well spaced and can be unam-
biguously ordered in increasing size, i.e. in a hierarchical arrange-
ment (Figure 1.1). The exceptions are Neptuné and Pluto whose orbits
cross. However, Pluto's highly inclined orbit prevents the two bodies
from getting too close to each other and there is evidence from numerical
experiments to suggest that additional dynamical mechanisms may be
present_Which preserve this sfate, (see Section 1.6).

The planetary distances from the Sun may be roughly described by

Bode's law, namely

r = 0.4 + 0.3 (2™

where rn 1s measured in-units of the Sun-Earth distance. For Mercury,
n+> -« ; Venus , n = 0; Earth, n = 1; and so on, including the
asteroids at n = 3, This empirical result works well out to Uranus,

but is poor for Neptune and fails for Pluto. Because of its lack of
physical justification, many believe Bode's law to be coincidental.
However similar laws can be found for the larger satellite systems, so

the controversy continues,

The satellite systems, while similar to the planetary system but
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on a smaller scale, show a greater variety of behaviour. Many of the
satellite orbits have high eccentricities and inclinatibﬁs. At least

two satellites are spiralling in, towards their planets. These are
Phobos around Mars and Triton around Neptune, In both cases this 1is
due to tidal deformation of the planet acting as a brake on the
satellite, (Section 6.5). Some satellites are observed to be orbiting

in the opposite direction from the other bodies. Triton is one and 1is
close to Neptuhe. The others are the four outermost satellites of
Jupiter and the outermost satellite of Saturn. Many believe these
satellites to be captured asteroids and not permanent members of the
system in question., This topic will be discussed at length in Chapter

6. Whatever their subsequent behaviour, the-Voyager mission has given us
much information about the very individual compositions of the satellites
which may lead to a better understanding of their history and the
history of the Solar System as a whole. A general description of these
bodies can be found in the Cambridge Atlas of Astronomy (1985);

There are many near comménsufébilities iq'meaﬁ motions (average
orbital angular velocities) present in the Solar System. By a near
commensurability we mean that the ratio of two mean motions may be closely
approximated by a simple vulgar fraction. Some commensurabilities are
important for maintaining stability. Some examples are Neptune-Pluto
(3:2), Titan-Hyperion (4:3), and Enceladus-Dione (2:1)., Other
commensurabilities such as Jupiter-Saturn (5:2) and Uranus-Neptune (2:1)
do not seem to be critical for maintaining stability. Roy and Ovenden
(1954, 1955) have shown that there are significantly more occurrences
of near commensurabilities than expected by chance. This implies that

these resonant states are preferred, and may be selected by a dynamical
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mechanism, for example, tidal interactions (Goldreich, 1965).
The asteroids are seen in a variéty of orbits. Most are in near

circular orbits between the orbits.of’Hars and JUpiter (Figure 1.1),

but other families exist which have higher eccentricities and cross
planetéry orbits, includihg the Earth's. Examples of the latter type
are the Apoilo and Amor objects and the Hidalgo group. On examining

the main asteroid belt, gaps can be observed at certain distances from
the Sun where there are relatively few asteroids, At other distances
there is'a greater concentration of bodies than average. Figure 1.2
shows the distribution of asteroids with respect to their mean motions.
The so-called Kirkwood gaps are clearly seen. Along the top df the
figure are given the orders of commensurabilities between Jupiter and
the asteroids at the given mean motion. It becomes apparent that the
most prominent gaps occur at commensurabilities-(3:1),_(5:2) and (7:3).
The main belt is cut off sharply at the.(2:15 commensurability, (called
the Hecuba Gap). There are two further clusters of asteroids.‘ These
are the Hilda and Trojan groups assﬁciéted with the (3:2) and (1:1)
commensurabilities respectively. The Trojans will be referred to again
in connection with the restricted three-body problem, (Section 1.2),

At first sight, it might appear that these gaps are regions of unstable
motion., However it was suggested by Brouwer (1963) and Message (1966)
that the associated commensurabilities are stable and that asteroids are
in orbits that oscillate about a mean position given by the gap. There-
fore more asteroids would be observed to boﬁnd the gap than be present
in 1it,

Ring structure exists on a smaller scale around at least three of
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the gas giants, Themost-naticeable.fings are around Saturn, These
rings of small particles contain gaps similar to the Kirkwood Gaps which
are caused by resonances with nearby_satellites. Figure 1.3 shows
some of theqprincipal gaps and associated commensurabilities. The
1argesf gap 1is Cassinl's division between the A and B rings, which
arises from commensurabilities with Mimas, Eﬁceladus_andTethys in

the ratios (2:1), (3:1) and (4:1) respectively. The boundary between
the B and C rings 1is called Encke's division and occurs at a distance
ﬁhich allows for a (3:1) 6ommensurabi1ity'with'Himas. Images from the
Voyager mission have shown that the rings are fery finely structured,
reflecting many différent resonances at work. Small satellites have
been found that graze the rings and must play an important part in
deciding their evolution.

-Comets and meteors are small bodies in highly eccentric, inclined
orbits. The most popular explanation for the origin of the comets,
given by Oort, 1s that many millions of them form a shell around the
Solar-System, Through perturbations by nearby stars, some are sent
~into the planetary region where subsequent perturbations by Jupitér
‘and the other gas giants, render them in orbits that are either hyper-
bolic or have semi-major axes comparable with the planetary orbits.

As an exaﬁple, Brook's Comet (1889'V) had a period of revolution 29.2
years, its orbit lying outside Jupiter. On July 20 1886 after a close
encounter with Jupiter, its period became 7.10 years, its orbit inside
Jupiter's,

Meteors are much smaller silicate bodies that occur in streams
whose orbital characteristics are similar to the comets; It may be

expected that these streams are also prone to disturbances from the
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.plaﬂets; They cannot however be observed unless they fall through

the Eartﬁ's-atmOSPhere. It 1s suspected that meteors originate at the
same time as comets or are remmants of disrupted comets. It is hoped
that the rendezvous between Halley's Comet and the Giotto Probe this
year may shed some light on these questians.l

With the possible exception. of the comets in Oort's Cloud, all
the bodies of the Solar System are effectively isolated from other
external influences such as nearby stars or the galactic bulge. Tidal
and relativistic effects within the Solar System are more important.

Civen that the Solar System 1s isolated, we may ask various
questions concerning its past and future evolution. How old are the
planets and the satellites? How stable are the planets' orbits
against their mutual gravitational disturbances? Are_the satellites 1in
stable orbits or will they be disrupted by dynamical mechanisms such as
tidal effecté? Given that most bodies orbit in the same direction,
how have the retrograde satellites evolved?

Cratering on the Moon and other satellites indicates that in the
past there were many collisions with small bodies. ' The rings are
presumably formed by satellites which have been tidally disrupted.
There can be little doubt that some bodies are unstable. The reverse
question of whether any are stable for all time is a more difficult
question to answer.

Records exist from Babylonia around 500 B.C. which describe the
motions of Mercury, Venus, Mars, Jupiter and Saturn. They indicate
that the planets' orbits differ very little from those followed at the

present day. By studying megalithic observatories, we can see that

around 3000 B.C, the Moon was moving in the orbit predicted by modern
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lunar theory. -These planets have been observed for hundreds of
revolutions so drastic changes seem unlikely. The largest satellites

have been observed for less than four hundred years. However in that
time, they too have performed many thousands of revolutions. A few are
observed to be spiralling in towards their respective planets but tth-
majority show little change in the genéral s1ze and shapé of their orbits.
Only in the case of the most recently discovered planets; Uranus, Neptune
and Pluto, are we short of direct observational evidence. Since their
discoveries, Uranus has undergone 2;4 orbits; Neptune, one orbit and
Pluto 1/5 of an‘orbit. We must therefore resort to numerical integration
experiments to augment our meagre knowledge of their evolution.

From geological and astrophysical -evidence, the Solar System is
estimated as being around 4000 million years old, Our observational
information over 3000 years*is no more than a énapshot when confronted
with such timescales, No one shoﬁld therefore underestimate the
difficulties in predicting the long term évolution of the Solar System
by extrapolating from these closely grouped data. Thus the questions
coﬁcerning stability in the Solar System have yet to be answered con-

clusively.

Having asked the question, '"Is the Solar System stable?", we
must define what we mean by stabié. It is probably still true that
the number of workers in the field exceeds the number of definitions of
stability. However there are sufficiently many definitions used that
extreme'caré must be taken to specify exactly the_conditions for

‘stability. A particular system may be stable according to one definition,

yet unstable for another.
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As an example, consider the motion of a planet abouf the Sun in the
absence~of any other pertursing bodies. This 1is the classical two-
body problem which yields an analytic solution for the planet's motion.
It describes a fixed ellipse, characterised by six constants_including

the semi-major axis a The time-dependent variable is the true

1.

anomaly £ If the planet is displaced by a small amount, it will

1°
describe a different ellipse with a different semi-major axis a,, and
true anomaly f2. We examine two definitions of stability. The first

by Liapunov asks, "if the two orbits differ only slightly, at some
initial time, will the tw6 bodies remgin close for all time?" The
answer is "mo", since by changing the seml-major axis, the orbital

period 1s also changed and the bodies will drift  apart with time, the
maximum separation being the major axis of their orbits. The second
definition by Poincaré_asks, "1f the‘fwo orBits differ énly slightly

at some 1nitial time,*will the differences in size, shape and orientation
,remaih small for all time?" The answer in this case is ''yes'.

Birkhoff (1927) found it appropriate to define time-dependent
stability when a body remains in a specified neighbourhood for a specified
time. (If the time is infinite we have completé stability).

Hagihara (1957) asks the converse question, ''After what length of

time will a system deviate from its initial conditions by a previously
specified amount?"

There 1s the possibility that a system.may or may not be stable
depending on the choiée of initial conditions. There are therefore
many choices of definition, each apprdp£iate in 1ts own way. Comparisons

have been made by many authors,eg:Jefferys and Szebehely (1978), Szebehely
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(1985). The rest of this chapter is devoted to looking at some of the

more important_definitions'of stability as well as mentioning any relevant

applications,

1.2 The Restricted Three-Body Problem and Hill-Stabilitz

Much of the work of this thesis will be concerned ﬁith the study
of the general three-body problem. Given three bodies of finite'mass
and given their initial positions and velocities, the object is to derive
their positions within their mutual gravitational field at any future
time. In order to solve the nine second order differential equations,
it is necessary to hgve 18 integrals'of the motion. Unfortunatély only
10 exist, thus the problem does not admit an analytical solution. Even
by eliminating the time as independent variable and carrying out the

so-called 'eliminatidn of the podes’_procedure, thé'problemhis‘still of
sixth order.

The complexity of the general problem has promptedmény workers
to consider a simpler model where one of the three bodies has an infini-
tesimally small mass, In this case the two massive bodies describe
circular orbits, unperturbed by the particle. This so;called circular
restricted three-body problem requires us to derive the orbit of the
third body in.the gravitational field of the othegttwo (a reduction
from 18 unknowns to 6). The problem may be simplified further by con-
sidering only coplanar orbits, in which case, there are only four unknowns,
namely the position and veloéity of the particle in two dimensions.

'In order to make this simplificétioﬁ,'we have been forced to

discard the ten integrals., However, Jacobi (1836) derived another

integral of the motion (Jacobi's integral) which is related to the total
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energy of Fhe system, Tﬁis integrél‘#as used by Hill (18785, to
s tudy the-stability of. the particlé's orbif; Hill stability is also
a useful concept fbr the general three-body problem. Therefore, by
way of introduciﬁg the work of subsequent chapters, we employ it 1n
the circular restricted three-body problem, (Danby, 1962; Roy, 1978).

Denote the two massive primaries by P, and P, (see Figure 1.4),

7
X .
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Figure 1.4: The Circular Restricted Three-Body Problem. The

two massive bodies are Pl’PZ and the particle is P.

We take the unit of mass to be the total mass of the primaries,

m, +*m2. Hence we denote the mass of Pl and P2 by 1=y and ﬁ res-

pectively, Without loss of generality, assume that P2 is less massive.
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. Hence O <pu<Xk, Let P1 and P2 describe circular orbits about

their common mass~-centre C. Hence their separation is a constant

which is taken to be the unit of length. KEpleris third law states

that

n?ad = G(m, + m2) | i (1)

1
whére a is the separation and n the mean motion of the primaries.
(In the case of circular orbits, n is equal to the angular velocity).
If we choose the unit of time such that the gravitational constant G
1s unity, then the éngular velocity is also unity.

The equationé of motion of a particle P, placed in the gravitational
- field of'P and P2, are now reqﬁired; In a non-rotating coordinate

1

system, with its origin C, Pl’ P2’ P have coordinates (&,,n3,2y),

(Eo,N5,Z9), (E,n,C) respectively. The equations of motion are

) £1E £, E
- rl r2
n1™n No™ N
n = (1']1) 3 + H 3 (3)
| 1"1 r2
. 1 C Lo~ C
C = (1—]_!) 3 + U -——-—-—-'—3 (4)
rl rz

where '.' refers to differentiation with respect to time and

-k

v | 2 V2 %
r, = [(gx-g) + (nl'n) + (Cl'C) ] (5)
ré - t(gz'g)z + (nz'n)z + (Cz'g)z 12

Since Pl and P, are not disturbed by P, it is assumed that (&y,M1,Ty)

and (g, ,n ) are known functions of time. Without loss of generality

2155

we orientate the coordinate axes so that the motion of the primaries

14



1.2
is wholly in the &n-plane, i.e. T; = Lo,= O for all time.

We shall be more interested in the motion of P relative to P and

1
P2. We therefore adopt a new rotaFing coordinate system Xx,y,z with the
origin still at C and the z-axis'éoincidingwith the r-axis. However
the system rotates with angular velocity equal to unity, such that the
primaries always lie on the x-axis.f In the new system, P1 and P2 have
coordinates (-u, 0,0) and (l-u, O, O) respectively.

Let O be the angle ECx at a given time t. Then the new coordinates

of P (x,y,z) are given by

cos O -s1n O O X
= | sin © cos © 0| y . (6)
0 0 1 .

Since the angular velocity is unity, © = t + constant, This constant

may be set to zero without loss of generality. Using Matrix Equation

(6), we may obtain £, n, £ and their derivatives. On substitution

in Equations (2), (3), (4),

(x-2y-%) cos t - (y +2% - y) sin t =

N B Xg = % r—I-U T -1 . R
(1-4) —m——— + Y ————— cos £t + — o — sin t (7)
3 T3 3 3 B
- | 2 1 2 |

- I TRREY
(1"1-1) -—]:-—3-—— + 1 ——2—3'— sin t - }—3-— + 3 cos t (8)
| ) o] )

15
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where
r, = [(x; - x)2 + y2 + 22 ]Ji
(10)
r, = llx, - 02 +y2+22 13
and X, =-u , %, = 1-u (11)

If we multiply Equation (7) by cos t and Equation (8) by sin t
and add, then multiply Equation (7) by - sin t and Equation (8) by
cos t and add, we obtain two equations which, along with Equation (9)

comprise the equations of motion of P in the rotating coordinate frame,

viz,

. . d

X - 2y = ‘5‘% (12)

. . 3

y o+ 2% = 33’ (13)

93U

VA - 'B-E (14)
where

U =2 (x24y2) + 2R LB (15)

_ 2 * r T

1 2

Multiplying Equations (12), (13), (14) by x,y,z respectively

and adding, we obtain

Y PR L BU ® aU ° BU o -
+ + 2z =S x + Xy + &< > (16
XX + yy - 5y y - )

Since U does not depend on t explicitly, Equation (16) is a perfect

differential which we may integrate once to obtain
2U - (X2 + y2 + 22) = C - - (17)

where C 1s a constant of integration known as Jacobi's 1 ntegral.
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Sinceh(;c2 + ;2 + 22) is always positive or zero it follows that 2U > C.
For a given value of C, there are therefore regions in the coordinate
space where we may position the particle (2U > C).and regions where

we may not (2U < C, implying an imaginary relative velocity). Clearly
the boundary 1is given when x2 + §2 + z2 equals zero, 1.e. the velocity

of P in the rotating frame is zero. These zero-velocity surfaces are

given by

x2 + y2 4 2Q1-w) 2n (18)

L | )

We now examine the tnpolégy of these surfaces as C varies, although
it should be remembered that for any given dynamical system, C is an
integral of the motion and hence constant for all time, It is from
such an examination that we derive the concept of Hill Stability.

Consider the caseﬁhen the particle is restricted to the (x,y)-
plane (c0planar'motion) .Sets of cuffes are.presented in Figures 1.5
which represent Equation (18) as C is varied. The region of_fofbidden
motion is shaded.

For C = C, >> 1 (Figure 1.5(a)), there are three disconnected
regions of allowed motion; one'bdunded region around each primary and
an unbounded region when x% + y? is sufficiently large. The particie
is confined to one of the three regions and is prohibited from moving
to the other two. If the particle 1is confined to one of the bounded
regions around a primary, it can never approach the other binary or
escape to infinity. This consideration of the boundedness of the

particle's orbit is the basis of Hill stability. We can say nothing

concerning the character of the orbit within the region. We do not
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‘know how close it may approach thebprimary which 1t 1s orbiting.

All we know is that it is constrained to remain close to that primary.
If C is decreased to C, (Figure 1.5(b)), the bounded regions

are seen to have a common tangent at the point L If C is reduced

1
further to C3, (Figure 1.5(c)) then the bounded régions coalesce
to form a dumb-bell shape. The particle, if confined to this region,
is free to wander from one primary to the other (although it is not
obliged to do so). It is still unable to escape to infinity from
this region. -

If C is decreased further to 04‘(Figure 1.5(d)), the two remaining
regions of allowed motion have a common tangent at the point L2' If
C 1s reduced furfher then these regiqns coalesce. The particle is now
free to move between primaries or wander into the external area.
5 (Figure 1.5(e)), a common tangent occurs at the

point L.  Further reductions in C (Figure 1.5(f)), result in there-

Once C = C

being two disconnected regions of forbidden motion, which shrink .- -

eventually to points L, and L., where r, = r, = 1. Sections through the

5 1 2

zero-velocity surfaces in the xz- and yz-planes are shown in Figures
1.6 and 1.7 for the same values of the Jacobi Integral as are given in
Figures 1.5.

The critical values of the Jacobi Integral are C and CS’ which

224
determine the connectedness of the various regions of allowed motion.
Hill stability can be applied to a variety of dynamical systems.

(a) Consider a massless planet ‘in an inferior orbit about the
larger star of a double star Systent(u;i%).' Alternatively, consider

a planet in an inferior orbit about the Sun, perturbed by a massive

superior planet (u << %), If C 2 C_,, then the planet 1is constrained

9°



Figure 1.6:

Figure 1.7:

Section through the zero-velocity surfaces

of the circular restricted three-body problem
in the xz-plane.

C?

C, G ’

-E:-CS | 1
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P4 .\C C]
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C - C, 1
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Section through the zero-velocity surfaces
of the circular restricted three-body problem
in the yz-plane.
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to orbit the larger primary. If 04 € C < 02, then it could transfer
its orbit to P, or alternate between P, and P_,, If C < C,, then the

2 1 2 !

plgnet could escape from the two primaries altogether,

(bj Consider a massless planet in an inferior orbit about the
smaller star of a double star system (y < %), or a satellite orbiting
a planet (u << %). 1In both these cases the argument is identical to
(a).

(c) Consider a (massless) body in a superior orbit about a double
star system (y < %) or a Sun-pianet system (p << %), The particle cannot
approach either primary so long as C 2 CA' In this case it does not
matter if the two regions around the_primaries are-connected.

It is possible to use the initial conditions to calculate C from
Equation (17), We may then compare it with the critical values C2 and
C4 to determine whether the particle 1is p;dhibited from approaching one
or both primaries.

Critical vélues of C occur when the particle is at one of the
points Ll’ L2, L3, Lh’ LS’ (the most important being'L1 and-LZLWhenyﬁu:-u::
considering Hill stability). These points are double points where
tangents to the zero-velocity curves coincide. By definition, this

is where the partial derivatives of the function2U-C vanish. (Recall

that 2U=C is the equation of the zero-velocity curves). Hence at these

polnts

= em— = e = () (19)

However, being zero-velocity curves, x = § =z = 0. By Equations
(12), (13) and (14), %, ¥, Z are all zero, implying there are no

resultant forces on the particle. Ll’ L2, L3, L4 and L5 are therefore
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the familiar Lagrange equilibrium solutions. The L1 and L, points

may be found by solving Equations (19) with y =z = 0. Hence C, and

2
C4 may be evaluated and the Hill staEility of the system determined.

It is possible to study the stability of the particle at these
équilibrium points (xo,ﬁyo, zo)‘by displacing it a small amount to a new
position (xo + x', y, * y', Z + z'). If the particle oscillates
about this point, it is defined to be in-a stable position. If the
particle departs from the neighbourhopg of the point; it 1s unstable,
The equations of motion, (12), (13), (14) may be expanded as Taylor
series in powers of x', y', and z'. Because the displacement is small,

we retain only the linear terms. The general solution of these

linearised differential equations may be expressed in the form

x' = g a. exp (A.t)
. 1 R
1=1
6
y' = I B exp (X, t)
: 1 1
1=]
: A
P =
Z | Y. exp ( it}
1=1 |
where @, are constants of integration, Bi and Y, depending on a..
The li are obtained by substituting x' = aelt, y' = Belt, z'= yeXt

into the linearised differential equations., By eliminating o,B,y
amongithe three equations we are left with a polynomial equation 1n

l- , with highest power A® . The solution of this equation provides

at most six distinct values of A , If all of them are purely imaginary

then x', y', z' are purely oscillatory with time and hence give stable

solutions.

When this linear stability criterion is applied to the five Lagrange

22



23

1,2

2 4

points it is found that Ll’ L and L3 are always unstable while L, and
L5 are stable provided u < 0.0385. A practical example of this stébility

can be found in the Trojan asteroids which exist at the L, and L_ points

4 5
of the Sun and Jupiter.

In recent years, there has been considerable interest in the
circular restricted three-body problem when non-gravitational forces are
taken i1nto account., Particular attention has been paid to the exiétence
and stability of equilibrium points when radiation pressure from o&e or
both primaries is considered, - (Schuerman, 1980; Mignard, 1982;
Mignard and Henon, 1984; Simmons et al; 1985). The effect on a charged
particle in the presence of two revolving dipoles is an allied préblem
which has been studied by Goudas and Petsagourakis (19855.

Hill stability has been applied to many real systems. Szebehely
and McKenzie have applied it to the cases Sun-JuPiter-Saturn (1977a)
and Earth-Moon-Sun (1977b) and shown them to be étéblé; Hagihara (1952)
‘applied the Jacobi integral to the-otherlnatural satellites of the‘Solar_
System., The zero-velocity surfaces ﬁave Been-used extensively to study
matter transfer between.binary star components (Roy, 1978; Bo&le, 1984),

It must be remembered however that = - .. = - the resuits
derived in these cases are only as valid as tﬁe model they are derived
from, naﬁely the circular restricted three-body problem. In general
the orbits will have non-zero ecéentricities and the "particle" may be
rather massive (particularly in the case when Saturn is assumed to be
massless beside the Sun and Jupiter). Using the theory that will be
described in Chapter 3, Szebehely and McKenzie have shown tha; relaxing
the conditions on the eccentricities and masses produces profound changes

on the Hill-type stability. Indeed there is no longer any guarantee
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that the Earth—Mbon-Sun:system-is étable.

When the pfimary bodies are allowed to describe elliptic orbits,
there is no Jacobi integral to which we can apply Hill stability. It
1s possible to derive formal expressions for the angular momentum
and Jacobi integrals (Ovenden and Roy, 1961; Sarris, 1982), but they
are explicitly time-dependent. The zero-velocity surf;ces vary with
time which implies that Hill stability cannot be guaranteed at future
epochs, -

Because of these problems, Hill stability in the restricted three-
body problem is of limited use when applied to the Solar System, except
when dealing with circular orﬁits and very small satellites. A more
useful generalisation of Hill stability in the general three-body
problem is presented in Chapter 3,

1.3 Periﬁdic Orbits

Periodic orbits have played an important part in the study of
dynamical systems this century. Théy*may be defined most generally as
follows. A system.édmprising n bodies can be described at any instant
by a point in the 6n-dimensional phase space defined by the 6n spatial
coordinates and velocities of the bodies. Denote this position by
vector 5 which isia function o% time t. As t varies, so does g
and the system describes a trajectory in the phase space corresponding

to an orbit in the 3-dimensional coordinate space. A periodic orbit is

defined to be an orbit where

s(t) =s(t + T) ' | (20)

for any t and some fixed value T, If T is the smallest value such that
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Equation (20) holds for all t;'then it is calledjthe period of the
orbit,

Since Poincare (1895) applied periodic orbits to the restricted
three~body problem, many workers have made comprehensive studies of
their properties. In recent years with the advent of faster computers,
workers have been able to study periodic orbits in the general three-
body problem as well as other conservative and dissipative Hamiltonian
systems. This has éllowed studies into a variety of problems such as
_galactic rotation (Contopoulos, 1983a). Although the concepts
described in this section apply to general dynamical systems, we shall
mostly refer to the reﬁtricted three-body problem,

Roy and Ovenden (1955) describe their mirror theorem as follows:
1f n point masses are acted on by their mutual gravitational forces
only, and at a certain epoch, every radius vector from the centre of
mass of the system 1is pérpeﬁdicular to every velocity vector, then the
orbit of each mass after that epoch is a mirror image of its orbit
prior to that epoch. Such a configﬁration of radius and velocity
vectors 1s called a mirror configuration'. As a result of this theorem,

they point out that any system which undergoes two mirror configurations

f

must be a symmetric periodic orbit,

There are manylreasons'why periodic orbits are useful in practical
situations:

(1) The conjecture of Poincare states that for any bounded
solution to the equations of motion of a dynamical system, 1t is possible

at any time to find a periodic solution which 1s arbitrarily close to

the original, (although the same periodic solution may not remain close
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for all time)., For this reason periodic solutioné have applications
as reference orbits,-for example in Encke-type numerical algorithms
(Section 1.6).

(i1) Many real dynamical systeﬁs are found to exhibit_resonances,
for which periddic orbits are directly relevant to stability.

(1ii) Periodic prbits may be found and classified by analytical
and numerical techniques. In thiS'way it is possible to find all the

‘periodic solutions to a given problem, The stability of more general
solutions may be found b§ studying the stability of nearby periodic
orbits.

It 1s possible to classify periodic orbits according to their
initial conditions. A group of periodic orbits whose initial conditions
vary continuously one to another is called a family. Due to this
continuity, it has proved fruitful to search for distinct famiiies using
numerical techniques applied to an analytical continuation theory.
Markellos (19743) describes one such method for the restricted three-
body problem, replacing one initial velocity component by Jacobi's
integral to act as an independent vériable.

A linear stability analysis, similar to that described in Section
1.2 may be applied to per;odic orbits. Let S correspond to an

A

- initial state of the orbit and s _correspond to a state which is only
n,

slightly displaced from s . Define the variational matrix

n,0O
3(5i )
A(s ,t) = —m—
0]
where s., s . refer to components of s, s respectively, The
1 0] a2 ‘a0

condition for stability of the periodic orbit at s is that all the
"
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eigenvalues of Lb(io;t)‘have.modulus equal_tp unit?. For-the restricted
three-body problem'theré are fouf eigehvalues, two of which are always
equal to-unity. The other two have product unity and may be represented
by exp(AT) and exp(-AT), where T is the period of the orbit. A and

-A are called Poincare's characteristic exponents and must be purely
imaginary for stability.

Another important concept for stability analysis 1is the surféce of
séction. In thé circular coplanar restricted three-body problem, the
position and velocity of the particle relative to the primaries, (x;y,i;§)
define its orbit (see Section'l.é). By choosing a particular value
of Jacobi's integral C, we may EXPTESS“§ in terms of x,y,;h' Hence
the orbit 1in phase‘SPace is given by the locus of poiﬁts (x,y,i, C’ ).
A particular value of C is chosen, We wish to examine the particle's
orbit whenever y 1s a particular value ‘y* and x > 0, We therefore
define a mapping MPwhich maps a point in the orbit (xo;y*;i ;C) to the

o

point in the orbit (x,y*,x,C) which is reached as the orbit crosses

the line y = y* (x > 0) for the nth

time. For example, if y* = O and
n =1, we are examining (x,;) everytime the orbit crosses thé positive
x-axis, In this case, if the orbit closes after one+synodic period then 1t
is characterised by one invariant point on the plane (x,%), x > 0.
This plane is called Poincare's surface of section and is only one of
many examples of surfaces of section., If the orbit closes after two
synodic. periods then it will 5e characterised by two invariant points

! or by one invariant point on the

surface of section defined byMz. | -

on the surface of section defined by M

Figure 1.8 gives an example of a surface of section for the case



Figure 1.8: Surface of section y=0,
x>0 on a fixed value C = -1.52 of the

Jacobi integral in the Sun-Jupiter-
Asteroid restricted circular problem.
Each point gives the x, X values when
the orbit crosses the y=0 axis with
x>0; the x axis is aligned with the

ﬂ.iﬂ‘ | S

e ARy Sun-Jupiter vector and Jupiter 1s at
“,i l'i x=1~-y. The chaotic region (crosses)
A A LA A Y has been obtained by following the
L AL :":;Ei same orbit for a few hundred synodic

0.05 }

_ @ ;4  periods,

e OB g (Reproduced from Milani & Nobili, 1985).

0.00 L

of Sun-Jupiter-Asteroid. A symmetric periodic orbit which closés after
one synodic period is represented by a single point on the x-axis. If
the'mapﬁing Ml implies the point-is elliptic, then the éorreSponding
periodic orbit is stable.. This 1is ﬁbserved when_a stérting point near an
elliptic point is mapped onto a closed (invariant) curve around the elliptic
- point. As the starting point 1is moved further away from the elliptic point
the invariant curve breaks up into a series of islands which gradually
shrink into a set of invariant points, cprrespo;ding to a periodic'orbit
of 1onger pe:iod.mﬂy-where T 1is the period of the elliptic point and m
is the number of island points. Each stable island pointmay-in turn have
invariant curves around it and so on.

There are also regions where stable periodic orbits do not exist.
In these chao tie regions a point on the surface of sectioﬁ 1s mapped
to other points within a certain region but in a random manner (Figure
1.8). It is clearly seen from this figure that the ;ﬁrface of section
may be .divided into regions of chaotic (unstable) motion and regions
where invariant curves may be found around stable elliptic points.,

Hénon (1966) describes  a méthod for finding the extent of the

"region of curves' around elliptic points, requiring numerical inte-

gration of the variational equations. There is a further problem in that
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the bﬁundary between stability and instability 1s not clearly defined.
Markellos (1974b) points out that, due to the set of rational numbers
being dense in the set of real numbers, chains of islands lie arbi-
trarily close to any invariant curves. This guarantees the existence

of invariant points of the mapping M" where n may be as-large as

we please. 1In other-wor&s, regionsrof invariant curves correspond to
regions of chains of islands. He describeé an alternative'metho& of
finding thése regions by examining regioné where branching (bifurcations)
of periodic orbits occur, resulting in new families of higher periodi
(Contopouloé and PinotsisT(1984) discuss infinite sequences of

bifurcations in the restricted three-body problem).

The circular restricted three-body éroblem 1s an eﬁample of a
dynamical system of two degrees of freedom. When the dynamical system
has three (or more) degrees of freedom, the difficulties in using
periodic orbits are greater. New concepts such as inverse bifur-
cations and complex instability are introduced and surfaces of section ' -

occur in three (or more) dimensions. (See Contopoitlos, 1983 B,c).

Because the stability analysis described here requires tﬁe system
of equations to be linearised we must neglect the higher order ferms.
If the linearised system is unstable, this implies that the original
system 1s also.unstable. However a stable linearised system does not
1imply that the original system 1is stable.  This 1s a considerable
drawback when trying to consider long term stability except where

resonances are involved.
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Before leaving this section it is worth noting one:result by Hénon
(1970), In the circular rgstricted.three-body problem, on examining
the zero velocity curves, a Hill stability examination implies that
retrograde particle orbits should be stable for a smaller range of
initial conditions than direct orbits. By examining regions of invariant
curves, Henon concluded that retrggrade orbits weré stable for a larger
range of initial conditions than direct orbits. Chapters 3-6 of the work
presented here are concerned with verifying a similar result for the

general three-body problem.

1:4 Commensurgbilities

In Section 1.1, examples within the Solar System of commensurabilities
in mean motion were given, When two bodies orbit another more massive
body, they are éaid-to_be commensurable if the ratio of their mean
motions approximates to a rational number m/n where m and n are
integers. Because rational numbers are dense in the set of real numbers,
any two bodies can be defined as commensurable to arbitrary precision by
taking m and n 1large enough. 1In generél however when we refer to a

commensurable system we may take it that m and n are reasonably

small ( é 10).

The importance of commensurabilities may be judged in the light of
general perturbation theory (Plummer, 1918). The motion of a bodf in
the presence pf other bodies may be dgrivea from the Lagrange plgnetary
equations which make reference to a quantity called the disturbing
functiO?i(éee Section 1.5). This function is generally made up of an

infinite series of periodic terms, each term involving a linear combination
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of the fundamental frequencies of the system.- In order to solve the
plaﬁetary equations 1t 1is necégsary to integrate thesé terms; ﬁhereupon
the linear combinations of frequencies appear as divisors 1n each term,

A commensurable system may render some of these divisors very small,
hence magnifying the effect of these terms on the motion of the bodies.

- It may be shown-thgtthe principal effect of a near-commensurability will
be observed in perturbations of the mean 1ongitude; (eg. Roy, 1979).

As was mentioned in Section 1.1, the number of commensurabilities
observed in the Solar System is significantly greater than expected by
chance (Roy and Ovenden, 1954, 1955); Commensurabilities ofteﬁ‘manifest,
themselves in the appearancé of stable resonant behaviour, where the
conjunction line of two satellites orbiting a planet librates about a
specific direction, often the apse line of one of the satellites.

A quantity O may be defined which is a linear combination of mean
longitudes.l and longitudes of pericentre @ . One of the best known
examples 1s that of Neptune énd Plptq-Where O = BXP - 2AN - mP

oscillates about 1800'with an amplitude of " 80° and a period of 19440

yvears (Cohen et al., 1967). In the case of the Saturnian satellites

" Enceladus and Dione, 0 ZAb - XE - GE oscillates about 0° with an

amplitude of 1.5°.

Goldreich (1965) proposed that tidal forces between planets and
satellites could stabilise such resonant systems. Due to tiéal friction,
angular momentum from the spinning planet is transferred to the two

satellites in the form of orbital angular momentum causing their semi-

major axes to increase., The inner satellite spins outwards faster. In

this way the system may evolve from a non-commensurable state to a commensurabl
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state. Having reached that state, the angular mﬁmentum is shared between
the satellites in such a manner as to maintain the.commensurability.
This assumes that the gravitational interaction between the satellites
is strong enough. The method for stabilising the resonance may be
1llustrated by the follawing example (see Figures 1l9 a,b),

Consider two satellites orbiting planet P: S.. the inner and S

1 O

the outer with periods Ti and 'I‘O respectively, (Ti < To)' Assume that
tidal forces have caused the system to evolve into a resonant state.

Suppose that a conjunction of the satellites occurs just prior to S0
being at aphelion. After a further synodic period, the two satellites
will be at conjunction once more. ﬁowever angular momentum will have
been transferred from S0 to Si’ due to the asymmetry of the configuration.,
This will result in To shortening and Ti lengthening. Hence the

conjunction line will have drifted closer to the apse line of-So. This

process will continue over successive synodic periods until the line
of conjunction crosses the apse 1in¢. When this happens the process
is reversed. Si-gives up angular momentum to So’ T0 increases, Ti
decreases and the line of conjunétion begins to drift back towards
the apse line once more. In this ﬁénner a critical argument may be

observed.

Another way in which commensurable behaviour is manifested 1is the

Laplactan resonance between three satellites. The most famous example
is that of the Galilean satellites 1o, Europa and Ganymede where

)\I - BXE + 2)\G ='180°, This system has been studied by many workers,
For example, the stability of periodic Qrbits in the vicinity of the

real solution has ' been examined, (Wiesel, 1980). A less well known

example of a Laplacian resonance can be found in the three Uranian



Figure 1.9(a):

Figure 1.9(b):
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APHELION OF JUTER SATELUITE
i

l
| LINE OF CONTJUNCTICN

If two satellites are in resonance, and their conjunction
occurs before reaching the aphelion of the outer satellite,

angular momentum 1s transferred from the outer to the inner
body.

APHELION OF OUTER SATELLITE

LINE OF

CONTUNCTION
DRIFTS

Transfer of angular momentum from the outer to the inner
body causes the period of the outer to shorten and the
inner to lengthen., Therefore, the line of conjunction
drifts towards the apse line. After crossing the apse
line, the flow of angular momentum is reversed. The

drift of the line of conjunction 1is slowed down, halted
and reversed. | '
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satellites Miranda,_Ariel'and Unbriel, (see Lazzaro, Ferraz-Mello and

Veillet, 1984),

It seems certain that tidal effects are responsible for the

evolution of many satellite orbits. It is also likely that they are

responsible for stabilising some satellite systems in commensurabilities.

Tidal effects are too small to have an effect on planetary orbits,
within the Solar System as it is presently arranged. During planetary
formation, such effects were greater and may account for some of the

resonances observed today (eg. Jupiter-Saturn 1s in a 5:2 near-

commensurability).

1.5 General Perturbations: and KAM Theory

This section is concerned with the study of Laplace's definition
of stability by the use of general perturbaiions_and Kolmogorov-Arnol'd-
Moser (KAM) theory. Laplace's definition of stability in a n-body

dynamical system requires that no collisions take place and no bodies

escape the system.

This simple, qualitative definition can be applied to the Sun and

major planets of the Solar System as well as a host of satellite systems.

In the case of the Solar System, the only planet that does not come
under the scope of Laplace's definition is of course Pluto. All the

other planetary orbits are well spaced and non-crossing (recall Figure
1.1). The question then arises: will the status quo be maintained or

will some orbits evolve so as to cross others?

Laplace himself made one of the first attempts to answer this

question, by solving the Lagrange planetary equations (mentioned in

34
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Section 1.4). They describe the rate of change of a set of érbital
elements when that orbit is perturbed, these perturbations beiﬁg
chiaracterised by the disturbing function . (It should be noted that
the Lagrange planetary equations hold for many different classes of
perturbations. Only the form of the diéturbing function will alter),
Lapléce found thgt the first order solution contained no secular
terms * 1n the expressions which yield the changes in the semi-
major axes. The existence of secular terms would imply that the semi-
major axes change linearly with time., This result thérefore implies
that eéch planet 1s restricted to an annulus containing its present
orbit. The size of the periodic variations in the semi-major axes
govern the widths of the annuli. Laplace demonstrated that the pianetary
annuli do not cross and are of small width in comparison to the orbits'
‘mutual separations. He concluded that to -first order, collisions and
escapes were 1mpossible,

In later years the second order theory was studied by Poisson and
the third order by many others.” At'preseﬁf the stafe of the problem
is that, 1f expanded in a-particular %ay, the theory shows no secular
terms in the changes in semi-major axis to any order (Message, 1978).

It should be pointed out that these results require that only point-mass
Newtonian gravitational forces act on the bodies.

Laplace's approach was generalised by Newcomb (1876) who showed
that the n-body problem admitted purely periodic.solutionS'whose only
secular terms arose in the angular variables. This assumed that the
central mass was large compared to the others and that the others moved
in near circular, coplanar orbits about the central mass. A few years

later, Poincare showed that the resulting trigonometrical series were in
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general divergent, thus ruling out this approach for studying the long-
term stability of the Solar System,

The interest in pefturbation theories was revived in the middle
of this century, principally by Kolmogorov (1954): followed by Arnol'd
(1963) and Moser (1973). 1In their work (now known as KAM theory),
they gave conditions under which the approach used by.Laﬁlace, Lagrange
and Poisson could give rise to convergent series. With certain
mathematical constraints, convergent series arise if:

(1) the perturbations within the system are sufficiently small.

(ii) the ratios of the natural frequencies of the system are

poorly approximated by rational numbers.

Although KAM theory can be usefully employed for stuﬁying satellite
orbits, it is unfortunately not applicable to the study of the stability
of the Solar System.' The second condition 1s satisfied except in cases
of high resonance (not found amongst the planets). The first qondition
1s not satisfied because the masses of the planets are too large in .
comparison to that of the Sun. It éhould be ﬁqinted ou; howevef that
the limits on perturbations are lower bounds only, It may be that the
KAM theory is valid for a larger range of perturbations which encompass
those found between the planets. Another drawback is the fact that
there exist solutions to the differential equations which faillthe
second condition of irrationality and are unstable, but exist arbitrarily
close to well behaved stable solutions. It may turn out therefore that
the KAM theory, while attractive in principle, is of little use in

deciding the stability of the Solar System,



1.6 SEecial Perturbation Methods

We saw in the previous section; that general perturbations produce
an elegant method for solving the equations of motion of a dynamical
system, Unfortunately thése analytical Eéthods are often unusable 1in
practice, due to such problems as small divisors énd the need to go to
high orders to achieve accuracy.

The alternative is'to use special perturbation methods to solve
the equations of motion by a numerical algorithm. Given the positions
and velocities of the bodies at a particular epoch, it is possible to
compute the displacements a short time later due to the forces each
bbdy exerts. Using these new updated positions and velocities, the
procedure may be repeated many times in a step-by-step manner until
numerical errors accumulate so much as to render any positions hopelessly
inaccurate,

In choosing a numerical procedure for solving the equations of
motion 1t is necessary to weigh carefully all factors before deciding.-
These factors may be grouped as follows:

(a) Orbit Type. Is the orbit in question near circular,hiéhly
elliptical or hyperbolic? Could it evolve Qrastically during the
period of study?

(b) OEerational Reguirements. For how long 1s the integration
to last? Is one long computation better than many smaller ones with
different initial conditions? What accuracy requirements need to be
imposed?

-(c) Equations 0£ M$£i$n. Are they formulated as first-order or

second-order differential equations?

37
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(d) Nﬁmerical'Algorithﬁn 'Which is.prefErabIe: a single-gtep
or a multi-step method; a Cowell-type method or an Encke-type method?
(These terms are explained below);

(e) éomgutiﬁg:faéilitiégl How sophisticated are the computing
facilities at your'disposal? (Do you have your own desk-top vector
processdr, or a pencil, notepad and your fingers?) .How fast and how
accurate are they? How much memory is required? How expensive
is it?

| Most of these questions can only be angwered in the light of a
particular problem. However it is worth considering two factors in
~more detail: accuracy and the choice of algorithm.

There are many factors which affect the accuracy of the results
at the end of a computation. Some examples of sour ces of error are:

- (1) truncation of infinite series to a finite number of terms.
The error is the remainder at each step and may be negligible if'enough
terms are retained. This assumes that the series converges'

(1i) round off error. A computér‘holds only a finite nuﬁber of
digits for each number., Any arithmetic operation is rounded to fhat
number of significant figures. Round off error is always present, but
may be reduced by increasing the number of significant figures,

(ii1) imperfect convergence, While performing any iteration,
the convergence after a finite number of steps is not complete but can
be made negligibly small,

(iv) the physical model, Relevant physical effects may be omitted
from. the theory. The initial conditions and masses may be in error,

(v) theoretical instability. Two nearby orbits may be 1n a'region of

chaos (Section 1.3) and diverge exponentially.
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All these effeéts combine to cause inaccuracies which accumulate with
each step of the integration. It-is never clear how the various sources
of error ipte?act with each other. Workers usually minimise the errors-
as much. as possible. They need to be aware however that an increase
in the accuracy of an integration procedure is usually accompanied by
a decrease 1n speed.

Numerical algorithms may be divided into single-step and multi-
step methods, Multi-step methods require that the positions and
velocities of the bodies from several previous steps be used to calculate
the next step. Singlé-step'methodsrequire only the lést known positions
and velocities. In general multi-step methods are faster;*morg stable
and simpler to impiément. Unfortunately they need a special procedure
for generating the first few steps before the main infegrator can start.
The single-step method 1s preferred if frequent changes in the step
size are necessary, for example when dealing with highly eccentric
orbits or near collisiops.

The other main classification is between Cowell-type and Encke-type
methods. Cowell-type methods generally refer to methods where no
knowledge of the orbital behaviour is assumed. Encke-type methods
measure the differences between a real orbit and a fixed reference orbit
(usually taken to be a Keplerian ellipse). At some epoch, when the
differences become too great,‘the reference orbit is changed to that
given by the present osculating elements of the real orbit. This
process 1s called rectification. The advantages of the Encke methods
over the Cowell mgthoés are greater accuracy and a larger step size 1if

the differences remain small, If the differences grow fast so that

frequent rectification is required, a Cowell method may be preferable.
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Also the Cowell methods are easier to implement and of wider application,
One final method worth mentioning is that of numerically inte-
grating the Lagrange planetary equations. This may be done on a step-by-

step basis as for other integration methods. Alternatively, the
osculating elements at the start are substituted into the equations
which are integrated over an extended per;od. This provides the first
order perturbations'which may be substituééd into the equations.: The
procedure is then repeated to obtain the second order perturbations,

and so on. This is a strict perturbation method of wide applicability.
A larger step size may be used than is possible with rectangular
coordinates. Unfortunately the method is unstable when the eccentricity
of the orbit tends to zero or unity, or when the inclination tends to zero
or T . Various changeé of variable can be used to eliminate these
problems, but this method is still difficult to implement.

There are many different numeriéal integration methods (Isaacson
and Keller, 1966) and every worker has his/her favourife,twhicﬁ he/she
feels 1s most appropriate for a particular prqblem; Fox (1982) provides
a useful critique of some of the more popular me thods .

At this point, 1t 1s worth discussing the use opriapunov
characteristic exponents in determining orbital s;ability from the
results of a numerical integration. We wish to investigate the stability

of the orbit described by the points Po’ P,., P

10 Poaeee in Figure 1.10.

At time t = 0, a body 1s at position Po in 1ts orbit.

At time t = T , 1t will be at P at t = 2T it will be at P,, etc.

1’ 2}

1f the body is displaced from P0 by an amount d, 1t will travel to a

point Pi after time T which will be displaced from:Pl by an amount dl'
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Figure 1.10: Numerical computation of a Liapunov characteristic
exponent, | '

Similarly, 1f a body is displaced'ffom.Pl*by an amount d, ‘the - displacement
at t = 271 , from.Pz, will be d2’ and so on, The LiaPUTDV'charécteristic |

exponent may be presented in the form

d.
L = 1lim 1og-§£

_ _ n-'}'m i

1 o 3

1

If L < 0, the orbit 1s considered to be asympto tiecally stable.

If L = 0, the orbit is described as quasi-periodiec. 1f L > 0, the

orbit is chavtie (unstable). Although this stability criterioﬂ 18
widely applicablé and givés useful information, 1t 1s sometimes difficult

to decide the value of L in the limit.



* 42
1.6 |

We now consider some of the more noteable special perturbation
studies concentrating on those investigating the-stability of the Solar
System. Three studies of the orbits of the five outer planets have
been made b& Cohen and Hubba¥d (1965), and Cohén, Hubbard and
Oestgrwinter(1967; 1972). The first integration spanned 120,000 years
and showed the existence of a critical argument between Neptune and
Pluto which prevents a close ép?roach bf less than 18 astronomical,unité
(Section 1.4). The second study refined these results using improved
elements for Pluto.

Theirrlast study spanned 500;000 years forward and backwards from
epoch Jan, 6.0 1941, They found no evidence of ény secular trends in
the elements a,e,i for any of the planets (Figure 1.11), The evidence
was inconclusive for Pluto, which showed variations in the elements
with a period of 19500 years, It was possible that the Qccentricity
*and inclination possessed secular trends. .

Wiliiams and Benson (1971) performed a ﬁﬁmerical_intégratidn-of *
Pluto over a period of 4.5 x lﬂﬁmyears“té look - for secular or resonant °
behaviour. Assuming that the other four (outer) planets' orbits were
known, they eliminated the short period terms in Pluto's orbit, using
the method of Gauss secular variations, They found that the argument
of perihelion librates about 90° with an amplitude of 24° in a period

of 3.995 x.106 years.

More recently , Kinoshita and Nakai (1984) integrated the equations
of motion for the outer planets over a period of 5 x 106 years. These

results have been analysed by Milani and Nobili (1984) who showed that

the angle between the-perihelia of Jupiter and Saturn librate around

180° with an amplitude of 70° and a period of 1.1 x 106 years.
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Most recently, a project 1s 1n progress to study the behaviour of-

8 years, (Roy, 1983), Studies

- the outer planets over a period of 10
involving all nine planets span a much smaller time, the longest being
4400 years (JPL DE102). This is due primarily to the inérease in the
number of bodies making the integration time per step longer. It islalso
due to the greater speed of the inner bodies requiring a small step size
.with the possible inclusion of relativistic effects.

Finally we consider some studies of fictitious systems. Nacozy
(1977) has studied the stability of the Sun-Jupiter-Saturn system by
integrating the equations of motion with augmented Jupiter and Saturn
masses. He found that 1f the masses of the planets exceeded their real
values by a factor of around thirty, then secular trends apﬁeared in
the semi-major axes and eccentricities, He implied that the real masses,
being much smaller, should give rise to stable orbits,

Harrington (1972,1977) has considered several classes of hierarchical
three-body systems (one body widely separated from the other two, as

described in Chapter 2). Consider Figure 1.12 showing three bodies

S., S,., S, with masses m,, m,, m

1° 91 °3 respectively. Harrington studied:

3

(a) triple stellar systems, (m vm, Vom ).
1 2 3 /

(b) inferior planets in double star systems (m2<ﬂﬁml‘%*m3)

(c) superior planets in double star systems ('m3;=:<:m1 %*mz).

For class (a), Harrington found that the stability varied depending on.
the rotation of the third body.with respect to the other two, i.e. direct
(arrow 1 in Figure 1.12) or retrograde (arrow 2). The stabiiity also
varied with the ratio of the pericentre distance of the outer orbit to

the semi-major axis of the inner orbit (AC:BC in Figure 1.12),
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S .
Sl’SZ’ 3ldenote stars
C 1s the mass-centre of
the close binary,

A 1s the position of

the pericentre of Sge

| Figure 1.12%

In the case of equal mass triple stellar systems, 1t was found that
this ratio must exceed 3,5 for direct systems and 2,75 for retrograde
systems to ensure that no irreparable changes occur to the overall
structure of the systems,

For inferior and superior planets (b), (c) in double star systems,
stabi1lity seemed assured 1if the ratio AC:BC exceeded a value between
3 and 4, regardless of rotational sense. Harrington's results are extremely
relevant to the following work and are discussed again in Chapter 6.

A much more thorough study of direct hierarchical three-body systems
has been performed by Walker and Roy, usihg empirical stability parameters.
Their formulation of the three-body problem as well as many of their‘ -
results form the basis for the work presented in'subsequent chapters.

Their work is therefore reviewed in more detail within Chapters 2,4 and 5,

1.7 Summary

The purpose of this chapter has been to introduce various definitions
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of étability and comment on their usefulness. Many of these definitions
are relevant to the work presented in subsequent chaptérs. Examplgs
of_their-applications have mostly been taken from the Solar System.

Many questions were asked in Section 1.1 concerning the stabiiity of
bodies in the Solar System. Few if ény can be answered with much
confidence given the studies to date. The main problem is that the
conclusions drawn from a particular study are only as valid as the
physical model and stability definition used. For example, if the model
uses point-mass bodies and Newtonian gravity, critical effects due to
tidal interactions (Section 1.4) and general relativity may be missed,
(there is a discrepancy between classical theory and observation in the
precession rate of Mercury's apse which ﬁay be remedied by a rela-
tivistic correction). These effects may not be negligible over the age

? years).

of thé‘Solar System ( v 5 x 10
Given that it is impossible to say conclusively whether a real
system 1s stable or not, another question may be asked: how.likely 18
1t, that the system will beéome-gnsfable du;ing a given length of time?
Unless we are content to use phrases such as '"extremely', '"possible",
or 'mot very', the help of probability and statistical theory should
be sought, to give a quantitative estimate. With the advent of high
speed computers, it is now possible to generate large amounts of data
by numerical integration. For the first time, the worker has the
opportunity to gather enough results in his lifetime to make a thorough
statistical examination,
In subsequent chapters, it 1is shown how simple statisficai tools

can be applied to the results of numerical integration experiments.

Quantitative predictions of stability lifetimes 1n three-body systems
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are obtained, and a method for observing resonances 1is described.

The work presented here concentrates on the stability of
hierarchical systems. The definitions of a hterarchical systém and
hierarchical stﬁbilify as given by Walker and Roy ére presented in
Chapter 2. The definition of hierarchical stability ié Laplace-1like
in its qualitative ﬁature; neverthéless quantitative criteria can be
derived from 1t.

Hill-type stability (Section 1.2) can be applied to the general
three-body‘problem;(Zare, 1976, 1977; Marchal and Saari, 1975) and
has been used in the étudy of real and fictitiqus systems (Szebehely,
1977; Szebehely and McKenzie, 1977 a,b; Szebehely and Zare, 1977).

This definition, reviewed in Chapter 3, forms one of the conditions for
the more stringent definition of hierarchical stability.

In Chaptérs 4 and 5, special perturbation methods are used to study
general three-body systems. All the systems are fictitious, coplanar
and maybe direct or retrograde. Statistical techniques are used to
analyse these results. Particular attention is paid to the influeﬁce
of commensurabilities (Section 1.4).

In Chapter 6, the results for the fictitious systems are compared
with real systems and with the results -of Harrington (Section 1.6).
Harrington showed that retrograde orbits were generally more stable than
the corresponding direct orbits. The range of parameters that he inves-
tigated was rather small and he performed fewer experiments than are
carried out here. The results of this work confirm his findings and mirror
the results of Hénon who found similar results for the restricted three-
body problem, (Sécticn 1.3)‘. For the restriéted o:‘m‘f géneral problems,
the numerical results contradict the results of a Hill stability analysis,

which shows that retrograde systems are less stable than direct systems.
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~ Finally, in Ch;pter7; commensurabilities and mirror configurations
for four and more body systems are examined. In planetary systems, a 
statistical analysis offhe_numbers-of syzygies (alignments) of the
bodies in a given time, leads to the discovery of resonances. The
theory for this method is developed and its application to the results

- of numerical experiments is discussed.
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2.1 Introduction

Celestiélmechanics 1s concerned ﬁith determining the relafive
motion of n bodies that are gravitationally interacting in three-
dimensional space. 1In general, the problems encountered are insoluble
by purely analytical methods. It i1s usually necessary to make certain
simplifying assumptions. The basic assumptions expressed in this
chapter will be used throughout all the chapters in this thesis.

The first simplification that is made is to treat all bodies
according to Newton's Law of Gravity and neglect any relativistic
effects. The accuracy of this assumption will be governed by the speéd |
of the bodies in question as well asjby the duration of study of the
system.

The second simplification is that only point masses are considered.
This means that we will negléct aﬁy effects due to the fiﬁite size,
irregularity of shape or non-uniformity in internal distribution of mass
of the bodies. If the bodies have spherically symmetric mass distri-
butions then'they-may be exactly represented by point masses.  This
is a reasonable assumption for most bodies in the Solar System with
the exception of some satellites and-asteroids.

Thirdly, we will be concerned only with two-dimensional motion.
This assumption of coplanarity is reasonable for the Solar System and
most satellite systems. The most notable exceptions to this rule, are
Pluto, (inclined at 17° to the ecliptic) and some of the Jovian satellites.

The fourth assumption is that the system is hierarchical in structure.
A full description of this concept is given 1in Section 2.2 as well as a

definition of hierarchical stability that will be used throughout this

work,
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In Section 2.3, Jacobian coordinates are discussed. The‘derivatinn |
of the equations of motion for n bodies in Jacobian coordinates is given
in Section 2.4, The particular case of three bodies is discussed in
more detail in Section 2.5.

The contents of this thesis rely heavily on definitions and results
taken from the work of 1. W. Walkér‘énd A. E. Roy. In this chapter,
some of the relevant concepts are explained. More detailed explanations
are given in Walker (1980) and a summary is available in Roy (1979).
Much of their work is explained in five papers by them, written between

1980 and 1983. 1In future these will be referred to as Walker and Roy

I, II, II1I, IV and V.

2.2 Hierarchical Systems and their Stability

A dynamical n-body system is described as hierarchical 1f, when
described by a suitable coordinate system, the orbital radii may be
ordered in ascending size and that order is maintained for a time
interval at least as long as the longest orbital period in the system,
As we shall see in the next section, a Jacobian coordinate system

is preferred in dealing with hierarchical systems (Roy et al. (1985)).

Evans (1968) described the hiefarchical arrangement of systems
by "mobile diagrams", (Figures 2,1 (a)-(c)). Figure 2.1(a) shows a
planetary system where each planet 1is sucpessively further from the
sun, Satellite systems around a planet can be characterised in the
same way, and Figure 2.1(b5 shows the arrangement when both planetary
and satellite systems are given 1in the same diagram. Multiple star

systems can take up very complex arrangements, depending on the number
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Binary

Triple

‘—i_i:—‘,—'—l Quedruple shierarchy 3

Quedruple :hierorchy 2

Figure 2.1 Evans mobile diagrams for (a) planets
(b) planets and satellites and (c) multiple
stellar systems,

of bodies (Figure 2,1(c¢c)). Binary and triple systems can be arranged

in only one way. A quadruple system may be arranged in two distinct
ways. The simple hierarchy (3) is equivalent to thekplanetéry hierarchy
while the double binary hierarchy (2) has two binary systems ofbiting

a common centre of mass,

Complex hierarchical arrangements may be broken down into their
constituent simple hierarchies (i.e, hierarchies where the bodies are
successively further away from the first (principal) body). In this
case a ''body" may refer to the centre of mass of a subsystem. A nested
set of numbers can describe any hierarchy, by breaking it uﬁ into 1its
constituent simple hierarchies, (Walker and Roy V). For example, the
simple four-body system would be a 4-system, while the double binary
would be a 4(2,2)-system. The Solar System of Sun, planets and major

satellites (5% bodies in all) is described as
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54(52(49(43(25(8(5(3,2),3),17),18),6),3),2). -

The (3,2) system is the triplet of Sun-Mercury-Venus with the Earth-

Moon binary. This 5-body sYstem.forms a binary with the Martian system -

(3 bodies). This 8-body system forms a binary with the Jovian system,
and so on, |

In all future work, we shall restrict ourselves to éxamining_only
simple hiérarchies and in particular, three-body hierarchical systems,
where two of the bodies form a close binéry relative to the third body.

Walker and Roy III give the following definition of hierarchical

‘stability. A hierarchical dynamical n-body system is held to be stable

1f, during an interval of time substantially longer than the periods

of revolution of the bodies in the system:
(i) none of the bodies escapes from the system;

(11) the ordering of the sizes of the radius vectors that

define the hierarchy remains unchanges;

(111) no irreversible changes occur in any orbit's size, shape

or orientation to the invariable plane of the system.

These conditions ensure that the perturbed binary orbits that make up

the system, undergo no drastic changes.

This is the definition of stability that will be used throughout

the rest of this work and will be explained in more detail in Chapter

4 when the numerical experiments will be discussed,

2.3 Jacobian Coordinates

The Jacobian coordinate system and its application to the general
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n-body problem was introduced by Jacobi and Lagrange (Plummef, 1918).

This coordinate system is particularly useful for hierarchical dynamical

systems where we are interested in the separation of a body from the

centre of mass of an adjacent subsystem.

Consider an n-body system with masses m,,m,y...,m , (see Figure

©2.2). With respect to an inertial reference frame (origin 0) the

equations of motion are

m. Ei = v U (i=1,2,...,n) (1)
n n

In
2
- where U = -%- G ) > k
| k=1 %=1 Tk
24Kk

(2)

1s the force function.

my 23 my

O

Figure 2.2 A particular case of the Jacobian coordinate system
where n=4. (see text for definition of symbols used).
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—)

Ri 1s the position vector Omi

Vi 1s the gradient operator with respect to Ri

G 1s the gravitational constant,

and a dot denotes differentiation with respect to time.

Let us suppose that the bodies lie in a simple hierarchical

arrangement. This means that successive bodiesmi (1=2,...,n) lie at

a greater distance than the previous (i-1) bodies, from the centre of

mass of the (i-1)-body subsystem. The vector connecting this centre
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of mass to m, 1s denoted by p. and 1s called the Jacobian radius vector.

The p'sform the basis of the Jacobian coordinate system. It is now

necessary to express the equations of motion in terms of the new

coordinates 0 -

The centre of mass of the first j masses has position vector R,

where
. ]
Moy = Wl m Ry (3=1,...,n)
and
J
Mj = k£1 m ; (3=1,...,n)

From the definition,

P; = %i - Ei-l (i=2,...,n)
i.e.
1 1-1
- - )X s =
°F AT k=1 "k Rk (i=2,...,n)

(3)

(4)

(5)
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We differentiate Equation (5) twice, multiply it by mi,'and substitute

“Equation (1) in, to get

m. 1-1 | -
Bt L UCE LRV Gew ©
1-1 =1
Let R, = (Xi, Y., Zi), P, = (gi, n., ci) ) in the inertial frame.

The x-component of Equation (6) is therefore

1-1
3 m. 1 | .
m, € = -B-Pf - 5 -a-f-{-?- (i=2,...,n) (7)
i i-1 k=1 K

From the x-component of Egquation (5), we see that

_zi. ; 0 if 3 <1 (j=2,...,n)
i 1 1f 3 =1 (i=1,...,n)
- 4if j > i
M
Hence
| n o& .
oU _ oU ) _
30X, .t 3L, X, (i=1,...,n)
1 =2 3 1
U - 1 93U .
= =— - m ) — — (1=1, ,1)
9% * j=i+l Mj-l agJ

where we define 3U/3€1 = 0, Equation (7) becomes

U D UL A S i
1 71 a 1 » & L L
L9 s My %% Mi ke %G
m, 1-1 Il Hﬁ(
1. oU
+ .. SR
v ) V. (8)

i-. k=1 j=k+1 Mj-1 9&;

By changing the order, the double summation becomes
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m 1-1 n m 1 j-1
i ™ W _ i 1 3U
— X L e S W Loy 3. & R
i-1 k=1 j3j=k+1 3j-1 73 1-1 j=2 "3-1 7°3 k=1
m " 1-1
+ i r 13U 7 m
-1 j=i+l U3-1 %3 k=1

s | S SR L
Mic1 =2 %% 1 g=ial My 96;
using Equation (4). Hence Equation (8) becomes
m. 1 1-1
S L N L e R T
Since BU/Bgl = 0,
mg = .-a—[—]- -}-.n;];_ ﬂ.}.:E.i_'_. .g.g—.
L ok My 9% M 9%

With similar results for the y and z-components, we have the equations

of motion for n bodies in Jacobian coordinates,

1 1-l V. U (i=2,...,n) (9)

V. now denotes the gradient operator with respect to 05

where
~1

Equations (9) form a (-6n-6)th order system, This is a reduction from

the original 6nth'order system, since we have exchanged the inertial

frame for one moving with the centre of mass of the system,

In the next section we derive the force function U in terms of

ratios pi/pj

37
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2.4 EannSion of the Force Function of a Hierarchical n-Body

‘Dynamical System.

This section is a summary of work performed by Walker who describes
it in much greater detail, (Walker, 1980). The notation of Section 2.3

still applies.

From Equation (2), U may be rewritten as

n 2-1 |
U=G I m, L -EE (10)
=2 k=1 Tk&

Thus it 1s required to find l/rkg in terms of the Jacobian radii. -

Using equation (3) twice with éubscfiptSj and j-1, we get

_ "
L m )
Rt @R G

Summing this over j from-k to £-1 (k < £ ) yields

~ ~ 2-1 :Ti ~
Eﬁ-l - §k-1 = ji Mj (Ej - Ej'l) (11)

Now
To = Rg = B = (Ry - Ry - (R, - R )+, ; - R )

Thus, using equation (11) and defining p, = 0,

]
rg = Py T Py E T Ej : (1 € k <2< n)
J- J
On constructing (Ekﬂ' %kﬁ) , we obtain
2-1 2-1 m,
1 1 2 "
—_— = . | = g, C. - 20 C..
Ty Py { 0‘k | J"'k hek Mth i2 “he “jh kg k2%
-1 m _,1 ré (12)
+ 2 C. - . 1
_]Ek 3 %32 ( e ~ %kg CJk) _
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where
. Py
i T b,
3
P P . o -
C.. = = = (i < j) (13)
1] Py P,
J
oy = oyl
| . : . th .th
Note that cij 1s just the cosine of the angle between the 1 and j

Jacobian radius vector. Note also that up to this point, there has
been no assumptions made concerning any hierarchical structure. Now,
however, it 1is desirable to apply a binomial expansion of the form

(1 + x)_% to Equation (12) and truncéte the expression after the second
order in the a's. In order for this to be a valid procedure, we must

now impose a hierarchical structure on the system. The conditions are

SR O

ST vk, (k<)
PR |

akR - < 1 J

These conditions will be satisfied for a simple hierarchy of the form
given in Figure 2.2, with nﬁéi m, and the Jacobian radius vector

increasing 1in size as we move out fromm1 towards m . With these

assumptions,

2-1 2-1 m
1 2 1 - i "h
1 1 ] - =0 - = ) ) -_— o C +
—_—— S 2 ki 2z - B M. M 1% "hg jh
*-1 fj_ 3 2 9
+ + X . .. = (C, o+ -
k& CkR j=k HjaJR (akﬂ CJk CJR) f 2 Qkﬂ Ckﬁ *
£-1 ¢2-1 I [
3 * mh 1
3
+ o(akg, ) (14)
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Lemma 1 -1 m, =1 o
¢ kla, ., C. - ¥ 3§ a.,C.,|=.0 V&= 2,...,n0,
k=1 3 [ ke k& =k T JL JR}-
£ ]
Lemma 2 2-1 , &1 -1 _ o
2okl 2oz T Th (3¢,, C , - C, ) -
k=1 P, j=k b=k W, ¥ i “he 2 “h2 ~ “3h
-1 2-1 2
A AT 3¢, ¢ ~-C. )| =~ % ;Ei a., P.(C..)
3= MJ Jj2 k& 32 k& jk Py =1 MJ JR 727738
Vi =2, , 1,
where

gy 2
P,(x) = 5 (3x2-1)
1s the Legendre polynomial of order two.

Proofs See Walker (1980).

We substitute Equation (14) into Equation (10) and make use of

Lemmas 1 and 2, to-obtain, (after a little reduction)

; o Sl w2 W
U=G I oMy, + Tk k-1 a o P,(C ) | +0 (a,)
=2 Py | k=1 Mk

(15)

We use this expanded form of U to obtain the equations of motion in
Jacobian coordinates. Thus, by Equation (9), noting the independence

of the p's,

1 1 2 k1

( 1-1 . o
N 1 k1
o, =G M, V. | = ll + T e PG )+ & e Py(Co) | 1 (16)
Py k=1 . =i+1

(1

2,..,0).
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where-
M n
ekl :k k-1 ki (1 <k <1i g n)
1-1 "k
| (17)
_ .TE 3 .
©oi I i (1 <i<2% <n)

where we define M = 0. and Py = o .

On examining Equation (16), it is seen that the first term on the

right hand side represents the undisturbed elliptic motion of the ith

body about the mass-centre of the subsystem.of*masses‘m',...;mi_l. The

e terms provide a measure of the disturbance of this elliptic motion

1 . - . L
by the other masses, gkl denotes the disturbance of the 1 n

th

the k (inferior) body, while €01 denotes the disturbance of the 1

body 5y the lth (superior) body. These disturbances are normalized

body by
th

with respect to the central "two body" force.
There are several important points to be made concerning the
appropriateness of this particular expansion to subsystems of the

Solar System. This is a series in powers of a , and assumes that o 5

1is murh less than 1, \fij’ i < j, 1in order to give good convergence.

Clearly, as any o approaches 1, some neglected terms become increasingly
important and in fact may exceed some of the présent terms. While this
is not a problem for three-body satellite systems like Earth-Moon-Sun,

it does present a problem for planetary systems, where the a's may be

quite large,

A second point, following from the first is that the first summation

: : . . ki . ' :
in Equation (16), containing the € ls, gives the disturbance on m. by

the inner bodies. These are only the leading terms in the expansion and

. 5, gives the

contain aii . The second summation, containing the €03
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disturbance on m, by the outer bodies. These leading terms contain az_
- ' 1

3

o] in the first summation

Thus there may be neglected terms of order
which dominate ovér_the leading terms in the second summation.

Walker (1980) recognised these limitations and rederived the
equations of motion for planetary systems. Thus the a's were no longer

assumed to be small, but m (Fhe Sun) was assumed to be much larger

1

than the other masses (planets). In a method similar to the one described

here, he expanded the force function in powers of'mi/ml, to obtain

) 1 1-1 ki s 1 '
b‘i = G Mi Ei [ '5 1l + % S Sk. + ) GR’i S;:_R. ] (18)
™ i k=1 PooogEidl |
(1=2, ,0)
where
. 2
5k1___fk_aki (2 sk <ig<n)
|
h _ (19)
— L 3 |
Ggi o as o (2 <1< g g n)
and
¢! €0 r
Sij - rio aij Pr+2 (Clj (20)

where Pr(x) is the Legendre polynomial of order r.
Comparing Equations (17) with Equations (19), we see that, correct to

the first order in the masses,

sKL o (ki and 6.. =¢€_. (2 s k €1 <2 <n)(k#FL)(1#2)
21 1

n

using the approximation M, Z m

1 1°?

In addition, if we neglect all but the lowest powers of aij ratios, then

Sij = PZ(Cij)’ Vi,j and Equation (18) reduces to Equation (16) correct

to lst order in the masses.

Vi=1,...,n, 1in Equations(17).

!



-2.5_ EmEirical-Stabilitz Parameters for Three-BodX Systems

The major part of this work will be concerned with the thfee-body
problem. It 1s therefore useful to consider Equations (16) and (17)

for n=3 (see Figure 2.3).°

m
4
L2z
\
My
\ .
\ p /
\ ~ 3 /
- r /
Ly A
_ \ /
/
M, \ L3 /
/
/
\
R, 1
~
~ \ /
~ \ /
Rl."\ 4
N \ /
I S
NV
O
Figure 2.3 Definitions of quantities in the Jacobian Coordinate
System in the case n=3,
They become
1
i 5, =GM, V. 1= |1+ F P(C)] (21)
. 2m2[p2[ 32 ©2 23]
_ 1 23 '
By = G M., Vs [ 3 [1 + P, (C,3) ” (22)
where o 5 ‘
23 _ 1M g (23)
e = @2 2
1 2 |
m
- 3 3
32 7 m. + m,. %23 (24)
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23

Walker remarks that the €°~ term agrees with the term derived by Brownm

in his lunar theory (1896).

823 1s a measure of the disturbance of the third Body by the other

two (in a close binary). This disturbance is due to the fact that m, and

m,, are displaced from the centre of mass and have a separation P, If

2
23

the separation decreases, a,, tends to zero as does. € =~ and the motion of

23

m, tends to perfect Keplerian motion about the centre of mass of m, and m,.

1 2

€,, Measures the disturbance on the binary (m m2) by the outer

1°
mass m,. If m, recedes from the binary, i.e. 93 increases, then %, 4 (and
832) tend to zero. The motion of the inner binary becomes Keplerian..

It 1s seen that for 623,_5 << 1, we are dealing with two approxi-

32

mately Keplerian orbits. We can assign a set of six osculating elements

to each orbit, viz:-

a = semi-major axis of the ellipse

e = eccentricity of the ellipse
1 = inclination of the orbital plane to the invariable

plane of the system

Q0 = longitude of the ascending node of the orbital plane

w =" argument of pericentre
T = the time of pericentre passage.
Let (az, e,y iy, 92, W, T2) describe the orbit of m, about m, and

(a3, €5, 13, 93, w3, T3) describe the orbit of m., about MZ’ themass-cen?re

of m, and m,, These elements are defined at any instant by the relative

positions and velocities of the three bodies, and are linked to Py and P4

by the followling equation,
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-,
a, (1 -e,)

i
i

Py
1 + e, cos f2

where the position of m_ in its orbit is given by the true anomaly f

2

There is a similar equation for p

9
3°
If the disfurbances are small, 1.é. small 523, 832, then any periodic
changes 1n the elemeﬁﬁs should be small, and any secular changes should
take place over long periods of time. On the other hand, if either of

the ¢€'s approach unity, then the relevant perturbation is of a

comparable size to the Keplerian orbit and we should expect violent

changes in the orbital elements.

2.6 Summary

In this chapter, the concept of a hierarchical dynamical system
has been introduced. We have seen that Jacobianqcoordinates are 1deally
suited to modelling simple hierarchical structure. By concentrating
on simple hierarchies, we exclude the possibility of studying non-
hierarchical systems such as open clusters, and complex hierarchical
systems (eg. Castor); In the Solar System, however, the orbits of

satellites about planets, and planets about the Sun, can be considered

as simple hierarchical systems.

Two expansions of the force function have been performed; one

when o,.<< 1, Vi,j=2,...,n; the other for m,>> M, y...,M , In each
' 13 1 2 n
case the leading terms in the series are factored by skl and Eo; @S
- given in Equations (17).- =~ In most cases, they give a reasonable

estimate of the perturbations compared to the central "two-body" forces

acting on the Jacobian radius vectors.
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A definition of hierarchical stability was given in Section 2,2,
It is the aim in Chapters 3, 4, 5 and 6 to study the stability of
hierarchical thfee—body systems, principally by examining the qrbital
elements that describe the neér—Keplerian'motion of the two binary

).

systems, (ml, m2) and (m1 +m,, m

3

-Many fictitious three-body systems will be examined. They will be
grouped not by equal masses, but by equal e-values, for the follbwing
reasons, A system with large masses 1s not necessarily less stable than
a system with smaller masses, provided one of the masses is sufficiently
far from the other two. It is the'combination of masses and their sepa-
-?ations which will determine if a system is stable for all time or if
this particular hierarchical structure will only last for a short time
before changing irreparably. The € parameters give an 1dea of the size
of the pe;turbations on one of}the binary systems compared to the
central two-body gravitationél force. We have already seen that there may
be neglected terms in the expansions which may, for some systems, be
comparable with the leading terms, or even dominate them. However,
we have also seen that the same €-terms occur in both expansions and
this would seem to indicate their usefulness in describing perturbatidns
of all simple hierarchical systems. Systems with common relative
perturbations intuitively seem more likely to exhibit the same behaviour
than systems with common masses (or mass ratios).

For these reasons, we will examine the stability of three-body
systems‘grouped by equal g=zvalues. Because it would take too long

to examine all possible initial conditions for three-body systems, the

examination is restricted to coplanar, initially circular systems that
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always start from conjunction of the three bodies. This limits the

choosing of initial parameters toiknu:(523, €a01 5135 i3),‘having chosen

the units of mass, length and time. We set i, = 0%and allow i, = 0°

| 2 3
or 180° corresponding to direct and retrograde systems rgspectively.
In Chapters 4, 5 and 6 we proceed to investigate and compare the
stability of these direct and retrogrgde systems by means of_numerical-
integration experiments and statistical daga reduction. In the next

chapter, we review some of the work performed using analytical techniques

for determining sufficient conditions for stability.
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CHAPTER 3

SUFFICIENT CONDITIONS FOR THE STABILITY OF

HIERARCHICAL THREE-BODY SYSTEMS

Introduction

A Review of Work by Marchal and Saari
Determinétion of Critical Surfaces

Discussion
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3.1 Iﬂtroduction

A definition of hierarchical stability was given in Section 2.2,
which is now applied to the general c0p1aﬁar hierarchical three-body
problem@ The condition that none of the three bodies escapes is obviously
essential for the maintenance of any three-body-system. The condition
+thét requires the preservation of the shape and orientation of the orbits
is without doubt the most difficult to investigate by numerical experiments
and will be discussed at greater length in Chapters 4 and 5. The tﬁird
condition requires that the ordering of the sizes of '92 and p, ig
unchanged, (1.e. Cpq < 1), This is the condition for preserving the
- particular hierarchical structure of the system and is the subject of this
Chapter.

In the three-body problem, sufficient conditions can be derived
which guarantee the preservation of a hierarchy for all subsequent times,
by examining the topology of tﬂe regions of forbidden motion of the three
bodies. This is analogous to the Hill stability criterion for the
restricted three-body problem (Section 1.2). The treatment given here
1s by Marchal and Saari (Section 3.2), It holds for the non-coplanar
three-body problem and indicates wit£ some clarity why the conditions
given are sufficient but not necessary for hierarchical preservation,

Zare and Szebehely derived similar results fbr the coplanar three-body
problemn.

We saw in Chapter 2, that for a system with prescribed masses, the
perturbations on the‘orbits decrease as 0y decreases, Thus, in all
likelihood, a system will be more stable, the smaller we make Coy s
‘Indeed we may. find the critical value of Coas called o , below which a

C

system will have its hierarchical structure preserved for all time.

In Section 2.4 the method for determining o as a function of €23 ,e3p 1is

C
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described and results for direct and retrograde coplanar three-Body

systems are given,

3.2 A Review of Work by Marchal and Saari

The theory presented here 1is described in much greater detail by
Marchal and Saari (1975) and Marchal (1985)., In the circular restricted
three-body_problem, there exist regions of forbidden motion bounded by
the zero velocity curves which are determined by the value of the Jacobi
constant, (Section 1.2). If these regions enclose two of the bodies with
the third outside, then the hierarchical nature is preserved for all time.
There is an analogous result for the general three-body problem,

The constant of angular momentum c, and the total energy of thé
system h, determine manifoldg in the phase space of the system. By
projecting these manifolds into.the configuration space we find there are
similar regions of forbidden motion. As in the restricted case, for

particular values of ¢ and h, these regions may enclose the inner binary

L

for all time, thus preserving the_hiérarchy;

Consider a three-body system with masses m, ,m We will use

gotige

the notation of Chapter 2, but in addition define the following quantities,

M=m +m, +m, - (1)
K =
M m,m, + m,m, + m,m., (2)
a=- GM*/2h (3)
p = Mc2/G(M*)2, | (4)

a and p are respectively the semi-major axis and the semi-latus rectum
- of the elliptic orbit for two of the bodies when the third has negligible

mass (i1.e. the restricted three-body probiem). Define the mean quadratic

69
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distance* ¢ and the mean harmonic distance v by

2 2 2 2
Mxgs = m, 2r12 + m,m,T] 3 +'m2m3r23 (5)
M  _ 12 . 173 Tal3 (6)
v “12 T13 t23 '

Defining the moment of inertia as 2I and recalling the force function

U from Equation 2.2, it_bah be shown that

M*%g 2 IMI (7)

M% /v U/G (8)

Define the Sundman function j,

P_ . 0012

i= 5t tTow | (9)

where o' = do/dt. Using Equations 1-9, the following classical results

may be rewritten,

(2) The Lagrange-Jacobi identity

4’1 _

-&-Ef' = U + 2h
becomes

dz(cz) 1 1

(b) The Sundman inequality
41(U+h) > (9-1> + 2

becomes

> z ] (11)

%Marchal and Saari denote the mean quadratic distance by p. To
avold ambiguity with the Jacobian radius vectors p, we shall denote

it by o.
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It can be shown that

It is easily seen that v =0 in the restricted problem or when all
three bodies form an equilateral triangle,

This is one of two classical sets of solutions, given by Lagrange
and Fuler. In these solutions, the configuration of the system does not
alter with time, although the scale might. The acceleration on each of
the bodies is always radial from the céﬁtre of mass of the system and
| 1s proportional to the distance of the body from the mass centre.

The Lagrangian configuration mentioned above is shown in Figure 3.1(a).

For this solution, r _ = =

12 = Ty, =0 =v, and Jj =1, for all time,

r23
Thus the three bodies always form an equilateral triangle by describing
coplanar ellipses with equal eccentricities, about the mass centre O.

The Eulerian solutions (Figure 3.1(b))aré given when the bodies
are arranged in a straight line for all time by descfibing homothetic
ellipses about the mass centre. There ére-three such solutions depending
oh'whether the middle body is m,,m, Or m,, In each case oyv and ]
are both constant but not equal to 1, as in the Lagrangian solﬁtions.
The conditions on accelerations are automatically satisfied.for the
Lagrangian solutions, For the Eulerian solution, this condition defines
ﬁhe position of one of the bodies with respect to the other two, which
can be derived in general by solving a quintic polynomial. This is more
fully discuésed 1n the next section,

The ratio o/v , defined by Equations (2), (5), (6), is dependent

on the shape, but not on the scale of the triangle described by the three

bodies. Figures 3.2 show the contours of o/v in the configuration space



(a)

(b)

Figures 3.1! Examples of (a) Lagrangian motion, (b) Eulerian
motion in the general three-body problem, with

m1<m2<m3.

12
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for masses 10, 5 and 2, In each diagram the configuration is described
by the position of one of the bodies relative to the other two. All the

diagrams are equivalent but, as we will see, all are useful for describing

the preservation of the hierarchy.
In all cases, o/v attains its minimum (unity) at the triangular

Lagrangé_points LA and L_, and tends to infinity at infinity and the two

5’

fixed masses., There are saddle points at the Euler p01nts L L

1’ 2’ 3

Throughout this section we will order the masses in increasing size

as in Figures 3.2, 1i,e.

0O <m, gm $£m (12)

1~ 2 3 °

We denote each of the Eulerian configurations by the points Ll’ L2, L3,

where Li 1s the configuration which hasmi as the middle body. By

studying Figures 3.2, we see that for the given ordering of the masses

(Inequalities (12)), we have

o
—(Ll) (L2) 2 5Ly > 1
Consider Equation (9) and the Sundman Inequality, i.e.

P_.]._.....;. g g'?

2 2a 2 GM (13)

g
V

When the total energy of the system 1s positive, the system is deemed
immediately unstable, since one of the bodies is in the process of escape.
Assume therefore thét h < 0, hence a > 0. For a system with prescribed
masses, a and p, the minimum of the right hand side of Equation (13),

with respect to o, 1s obtained when ¢' = 0 and o = vYap, hence

o, /P s -
h<0=>vaa (14)



Figures 3.2:
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o/v contours for m, = 2,*m2 = 5 and m, = 10, (in terms

‘of the position of one body with respect to the other two).

The values of ¢g/v for the contours are: (A) 1.5,

(B) 1.1562, (C) 1.1283, (D) 1.0952, (E) 1.02. oga/v =1
at L4,L5 and 1s infinite at the two fixed masses and
infinity., All three diagrams are equivalent,

(a) m,,m, are fixed and the position of m, is varied.



Figure 3.2(b):

o/v contours when My, m

1

positlion ofm2 1s varied.

are fixed and the

75
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Figure 3.2(c):

d/v contours when m,, m

ofm3 1s varied.

1

are fixed and the position
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where vp/a 1is the minimum.of the Sundman function, and -

p . M 253
" W)g . Ch.' (15)

. Since 0 2 v , Inequality (14) gives no restrictions on the allowed
configurations of the system, so long as p/a < 1, i.e. Inequality (14)
1s automatically satisfied for all configurations. If p/a is slightly
greater than one, then there are small forbidden'regions around the.L4
and L5 points, since o/v cannot tend to unity. The larger the value of
p/a is,'thE*more extensive are the forbidden regions.,

The analogy with the zero velocity curves in the restricted three—
body problem now becomes apparent, as'simiiar fdrbidden regions appear 1in
both problems. They are characterised in the‘restricted-problem.by the
Jacobi constant and in the general problem by c?h, We can thus apply-
Hill-type stability to the general problem by considering the topology-
of the forbidden regions. | |

If vYp/a > o/v (Ll)’ then the three collinear Eulerian configurations
‘are forbidden and there are three unconnected zones of allowed motion.

Thus one body is necessarily isolated from the other two, i.e. any
hierarchicai arrangement is preserved for all time. If v/p/a = U/v(Ll),

then the L1 point is an allowed configuration, but no body can pass

from one region, through this neck, to another.,.

il

1f u/v(Ll) > vpla > o/v(Lz), then the L, point is an allowed
configuration and there are now only two unconnected regions of possible
motion, one of finite extent, the other of infinite extent, If the
hierarchical arrangement is such that a binary exists in the finite
region,withjthe third mass in the infinite region, then the hierarchy

will still be preserved. If this is not the case, then there is a possibility
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that the ordering of the Jacobian radius vectors may chaﬁge and the-
hierarchy will be broken ﬁp.

If Vp/a = G/Q(Lz), then the L2 point is an allowed configuration,
but no exchange of bodies through this neck is possible, so the results
of the previous paragraph still apply.

1f vYp/a < U/v(Lz), then the L, and L, points are allowed configurations.

1
There 1s now one region of possible motion and thus there is no guarantee
that any hierarchy will be preserved., If in addition vp/a < U/v(L3) then
there are two unconnected regions of forbiaden motion around each of the
L&’ L5 points,

By way of example consider the system described in Figureé 3.2, where
m, = 2, m, =5, m, = iO. Since m, 1s the smallest mass, Figure 3.2(a),
1s the one we are most familiar with, On comparing it wit':h the zero
velocity curves in the restricted problem, we see tha;vthe forbidden regions

open up 1n the same order with Ll'in between the two fixed masses, as usual.

As*ml tends to zero; the general problem tends to the restricted problem,

so this is to be expected., If however we consider Figures 3.2(b), (c),
then the smailest'mass_is no longer the one that 1s allowed to move over
13 L2, L3 points, and:

hence of connection of the allowed regions is not so familiar. It is

the configuration space., Thus the order of the L

‘however equivalent to the order in Figure 3.2(a). -

We are interested in determining the critical values of /p/a for
which the preservation of the hierarchy is guaranteed for all time. We
now impose a hierarchical structure on the three body system, with one
body significantly further away from the other two, which form a binary.

m

- There are three different hierarchies, depending on the choice of*ml, )

or m, for the outer body.

3
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Let my be the outer‘body. In addition, let vp/a 2 G/v(Ll) (e.g.
contour A, ¢/v = 1,5), In Eigure-S.Z(a), m, must lie in the unbounded

1

region of allowed motion, 1In Figure 3.2(b), m, must lie in the region

2

around m,. In Figure 3.2(c), m, must lie in the region around m This

. 2
is in order to conform to the imposed hierarchy. Since vp/a 2 U/v(Ll),

the hierarchy is guaranteed for all time.
Let Ulv(Ll) > Ypfa 2 U/v(LZ). In Figure 3.2(a), the regions around

m, and m, have been connected, but m, is still unable to approach either

2 1

through the L, or L, points, The hierarchy is still preserved. In Figures

3.2(b), (c), m, is now free to move into the .unbounded region but still

cannot approach either m,

Let /;73' < U/V(LZ). m

or*ms,'which are in the other region.

" can now approach m, or m, through the "L

1 2 3 2

neck', There is no guarantee of hierarchical preservation. Thus the

—-

critical value of ¥Yp/a is G/v(Lz).

Now consider the case whénm2 is the outer body and Yp/a =2 U/v(Ll).

In Figure 3,2(a), m, must lie in the region aroundm3. In Figure 3.2(b),

1

'mz*muét lie in the unbounded region. 1In Figure 3.2(c), m, must lie in

the region around*ml. The given hierarchical arrangement is guaranteed
for all time,

Let Yp/fa < U/V(Ll). In Figure 3,2(a), m, is free to approach m

1 2°

via the L1 neck, changing the hierarchy. 1In Figure 3.2(5); m, 1s free

to approach m,, through the L, neck. In Figure 3.2(c), m, is able to

1’ 1

wander into the unbounded region and move far from'ml, compared to m,.
In each case, there is a possible alteration of the hierarchy of the
system, Thus the critical value of vp/a is U/Q(Ll).‘

When m, is the outer body, the results are similar to the case when

3

m, is outermost.. The critical value of Yp/a is U/v(Ll).

It is seen that for a hierarchical three-body system, the critical

value of vp/a for hierarchical preservation is 0/v(L2) 1f the smallest
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mass 1s Qutermnst. Otherwise the critical ﬁélue 18 U/v(Ll). By
considering Figures 3.2, it 1s clear that in any case, .the critical
value of o/v is derived when the three bodies are in the Euler
configuration which has the smaller of the two masses in the close binary,
as the central mass. If the hierarchy 1is ((m3;m2);m1).then the relevant

configuration 1is m, = m, - m (L2 point); whereas for hierarchies

((mz,ml) ,m3) and ((ml,mB),mz), the relevant configuration 1s m,~m, ~M,
(Llpoint).

In Chapter 2, it was pointed out that a hierarchical s&stem,of three
bodies could be described by two binary orbits with osculating elements.
In the next section we shall use this theory to derive critical values

of Cog = p27p3, such that any system with 0y less than the critical

value will be guaranteed as hierarchically preserved, for all time.

3.3 Determination of Critical Surfaces

The results of the previous section were also derived by Zare (1976,
1977) for the coélanar three-body problem by considering the surfaces
of zero veloqity—of the reduced Hamiltonian., He went on to derive a
quintic polynomial'ﬁhich has as a solution, onelof the Eulerian configuf-
ations, from which the critical value of c2h, could be obtained. Walker and
Roy apply the analytical stability criterion of Zare to hierarchical
coplanar three-body systems, whose binary systems (mlgmz), ((m1+m2);m3)
have circular orbits initially. They numerically derive the critical
value of ay3 as a function of e23,e30 » for which any system, with (o 3
less than this critical value, is guaranteed to maintain its present

hierarchy, This approach will now be summarised in terms of the notation

of Marchal and Saari.



3.3
Throughout the remainder of this chapter as well as Chapters 4, 5, 6,

we will drop the subscript 1231 on a, -, and;merely denote the ratio p2/p3
by o« . There will be no ambiguity as these chapters are solely concerned

with the three-body problem.

Using the notation of Chapter 2, we define the hierarchy of a three-
“body system in terms of two binary orbits, exhibiting approximate

Keplerian motion, The orbits are m, about*ml, and m about_Mz, the centre

3

of mass of m, ,m, . These orbits are characterised by the osculating

elements a, s ez,mz,Tz and aqs e3,53 » T respectively, assuming the orbits
are coplanar.

The total energy of the system is approximately

m M_m
‘h=%[‘“12+23] (16)

49 93

being the sum of the individual Keplerian energies. It does neglect

the displacement of m, and m, from M2 which gives rise to a small error

in the energy of the outer binary for sufficiently small ¢ .

The angular momentum of the system is exactly the sum of the angular

momenta of the binaries.

| 2 1 2 %
c = /G {m.m --———-—---32(1 82) + M.m I——————aB(l EB) (17)
1 2 M = 2 3 M
~ 2 , 3

where the + sign refers to direct systems and the - sign refers to

reﬁrograde systems. Rewriting Equation (15) in the notation of Chapter

2, we have

P _ - 2 My oy - | (18)

a - G2 (M:':)S
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where M* = m,m, + m,m, + m,m, as before., Combining EQuations (16); (17),
(18),
M a . (M3 } a, |
) 2 2 _e2) 22 2 _2 —e2) (1-e2)) (-2
5 = arys | mimms (1 6:2)a3 t 2m,m,m, M2 M, ((1-e5) (1-e3)) (33)
mimg 2 mg Mg 2
+ Y (1-e2) + v (1—e3)
2 3
M, } } a, } mmm® M } a
2 2 2 2., 2 3 123 2 . 2.°,73
t 2ulmom, (D) ((1-e2)(1-ed)) () + 2222 (1-ed) (D)
3 2 3 2
(19)

We now normalise the masses with respect to the mass of the inner

binary, M,, by defining

" |
M, _
o | p* = u(l-u) + upg + (L -wnz (20)
3 |

u — —

3 M, J

Hence, Equation _(19) becomes

| (1"'1-[ ) -a Y ' a %

P - 3 (1-1)2p2pr1-e2) 2 421w M 2N 12\ 3, 2
3 ) “pcpll-es) +2 3 ((1-e5)(1-e3)) (=)

a (u*) \: 3 T2 a, (——————-1_1_113)% 2 - 3 a,

+2 (1-p) 4

i S —

1- 2 1- x.’.))g (i?_)"£ +
, (A-eDya-e5)*
(1+1,)

2 ~ 2 -
! 113 (1 U)]JIJB 2 32) l]
3 1+

(21

.

: . : 1
Without loss of generallty we may assume that m, < m, 1.8. U S5 oo

2'&.

Wy may of course take any positive value. Through Equation (21), the
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mass ratios, the shape and relative sizes of the binary orbits, define a
value of p/a. TFor a guarantee of hierarchical preservation, we require

that /p/a 3 ¢/v, where g/ is evaluated at the Eulerian cohfiguration with

m, as the middle mass.

In order to find this value of 4/y, we normalise the masses as before

and also normalise the distances r.. with respect to r We choose

1] 12 °

2-dimensional coordinates such that m, 1s at the origin,m2

at (1 + x,y). Thus the configuration is described by x,y. Thus,

at (1,0), m,

\
Lyp = 1 \
2 2
ra= (40 +y) (22)
' 2 2
Fa3 = (X ¥ )’ - }
After normalising the masses, '
UZ..3 :
(30 (u*)~ = f2g. (23)
where
f=u@-n) + (A-wuy +uw, (24)
L13 L23 '
2. 2
g = u(l-p) + (1 -u) pg ryy + U,y rog (25)
The critical values of f2g are given by
3 (£%g) /ox = 3(f2g) /oy = O,
Noting that £ > 0 we are required to solve
28 4 9, 3 _
fo‘+ 2g o 0 (26)
a8 af |
fay + 2g T 0 . (27)

T

The rest is straightforward, if rather tedious., It can be verified that

the Lagrangian solution, r,, = = 1, satisfies Equations (26) and (27).

13 - T23

It 1s also easy to show that y = 0 is a solution of Equation (27).
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Substitution into Equation (26) yields three solutions for x in the

~ domains (-», -1), (-1,0), (0,®) respectively. Since we are i1nterested
in the sdlutionwhenm2 is the middle mass, we take the positive value

of x. Hence EQuation (26) becomes

p(x) = x> + (3-w)x"* + (3-2u)x3 - (n+3p)x2 = (2u+ 3ug)x = (u+u,) = O

(28)
which by Descartes Rule of Signs, has only one real positive solution.

We shall be concerned only with coplanar systems that have initially

circular orbits. Thus e, = e,; = O, and a = p2/p3 = a2/a3 at time zero

(although not necessarily at subsequenﬁ times). This means that to every

pair of mass ratios, we may ascribe o , a critical value of a s.t. any

C

systems that have an initial o less than @, are guaranteed to preserve

the hierarchy for all time. If a exceeds o, no such guarantee exists.

The method 1s as follows, For prescribed HyHq, calculate x from

Equation (268), by a suitable iterative method. For example, a Newton-

Raphson method can. be used, where

p(x,)
/I T p‘(xl)

is the new approximation of x, given a previous approximation X .

From the value of x, fzg can be calculated from.Equétion (24) and '

1

(25), with r,, = 1 + X, I,y = X, In order to find a,» We must set

13
(c/v)2 = p/a, withg= s e2'= e, = 0. Hence, by Equations (21) and (23),

"

— 2
fig = (1‘u)2u2u3(1+u3)aci2(1"11)11113(1"“113)i Gci

_33 3i _'22 %u""i
+(1_U)11(1+U3)+U3 2(1-1)"H U3(1+u3) .

+ (1-p)upl aC"I ' (29)
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Equation (29) may be expressed as a quartic polynomial in uci, hence ..
may be described By an iterative scheme similar to that used for
deriving X.
Figures 3.3 and 3,4 give the surfaces g =ac(u,ﬁ3) for direct-

c
and retrograde systems., In each case the range 1s 10_9 <y £ 10_0'5,

10_9 S uj's 107,‘with logarithmic scales in u,'u3. For the direct

systems,.the general behaviour is as expected. o increases monotonically
to unity as p and Hy tend to zero. This is not the case for the retrograde
systems, Indeed, for u much greater than uj3,0, 1s almost zero. This 1s
better seen in Figure 3.5, which shows a, against Hy for u = 0.5, the
~largest value of u allowed. We see that for uB*ﬁCI, a, %'ug . Thus

any retrograde system with small y, will in all probability have no
guarantee of hierarchical preservation. This seems counter—intuitive,

and will be discussed agaln later.

It is also of interest to see the surfaces o_ = a (e%3,e35). The
c c _

easiest method is to calculate from the (u, Mg, ac) data, the corresponding

values of 623,532 , from
£23 = y(1-n)a? | (30)
€32 = My o | (31)

where a 1s set equal to a.. By the use of various numerical interpolation

routines, approximate contours may be drawn.

Figures 3.6 and 3.7 show for direct and retrograde systems respectively,

how a grid of (u,u3) values transform into the (e43,e35) space when ¢ = a..

The scales are logarithmic with p = 102, p = - 9,-8,5, -8, ..., =0.5,
and Hq =.10q, q=-9, - 8;5, ceey 0.0, 7. The arrows indicate increasing

y with u. fixed, or vice versa. There is a region in (e%3,e3,) space

3
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3.3

Figure 3.5¢ log ac against log p3 for i = 0.5, For yu

3 c

that does not correspond to real systemé (u,ﬁ3,a) when o = - The
. _ _ 1
region has as a boundary, the curve €490 T Egq9 (323,ac)when H = 5,

and My is varied.
It is seen that for the direct systems (Figure 3.6), €ng > W>

€39 > Hq»s 35 Wypg > O, thus preserving the rectangular look of the

projected gridpoints, This is a consequence of the fact that g -~ 1 as

TPRTEN + 0, For the retrograde systems, o + 1 as TPRIRY + 0., Hence

£

transformation assumes a more irregular shape.

<<]l, o Ny

the

2
3
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There are various asymptotic limits present under this transformation,

the derivations of which are described in Appendix B. As Mg > ®

632-+ 3.02 X% 10f-2 for direct systems and E3z-+ 7.10 X 10_3 for retro-
gradé systems., For u = 0.5, u3+- 0, e23 > 0,048 for direct systems
| 25’«”2 7y '
and €39 "\ €, q ﬁor retrograde systems.
The contours of « for direct and retrograde systems in (623,332 )

C

space are given in Figures 3.8 and 3.9 respectively. Although ac'
mDnotonically increases to unity as 623,632 + (O for direct systems this
1s not the case for retrograde systems,

23 and

The diagrams show qualitatively the behaviour of a. with €
€32 .. Because of the interpolation routine used for finding contours
of a s the errors in the actual values of a, for indi?idual (e43,e37 )
pairs may be fairly large., This is'particularly true for the retrograde
systems near y = 0.5 at the boundaries of possible (e23,e32 ) points.

In order to find the value of ¢ at a parf:icular pair 32_3, €39 » 4

C

more refined technique is used. For the chosen values of 523,53é ,
the value of a, 1s estimated roughly. This-may be done by using the

contour plots., Alternatively, if ¢ is being determined for a lattice of

C

(e23,e5,) points, then values of ¢ for neighbouring lattice points may

provide a good first estimate, Having estimated Gos M and g may be
calculated, from Equations (30) and (31), viz.
1 4e23 172 |
U3 = 832433 (33)

witha= o . The procedure is now the same as before. x is calculated

by the Newton-Raphson method applied to Equation (28). f2g is calculated
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from Equations (22), (24), (25). From Equation (29), a new value of «

C

'is calculated by Newton-Raphson, The procedure 1s then repeated, by

recalculating u, M, from Equations (32), (33), and so on, until the value

of a, has converged to sufficient accuracy.

This procedure is performed for a range of e43,e3, for direct and

retrograde systems and are presented in Tables 3.1, 3.2,

1074 ‘ 1 0.502  0.502  0.499  0.474  0.291
102 | 0.759 0.758 0.750  0.681  0.343
1074 l 0.888 0.884  0.856  0.734  0.355
10" i 0.946  0.934  0.881  0.740  0.356
106 ‘ 0.970  0.946  0.885  0.741  0.356
1070 107> 104 1073 10~2 23
for various e23

Table 3.1:

€32
102 - ~ - - -
10 > 0.212  0.212  0.203  0.145 -
T 0.241  0.233  0.180 - =
10> 0.239 . 0,188 0,081 ~ —
10°° 0.189  0.084 - - -
10" ° 10> 107" 10> 102 e23

Table 3.2:

Values of a«

C

A dash indicates that no value of ¢ exists.

,€32, for direct systéms.

Values of o, for various e23,e4, , for retrograde systems.
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The values of o for direct systems are slightly smaller than those

calculated by Walker and Roy (Paper III), since they used the exact

expression for c’h rather than the two-body apprbximation of Szbehely

and Zare.

3.4 Discussion

This chapter has been concerned with examining the conditions for
ensuring hierarchical preservation of three-body systems. For coplanar,
initially circular systems, critical values ¢, have been determined such

that any system with g < &, 1s guaranteed to be hierarchically preserved

for all time, This does not mean that such a system is hierarchically

stable. For example, the criterion does not rule out the possibility

of the outer body m,, esbaping.the system, Marchal (1985) shows possible
1imité of bounded motion, and describes separate tests for the eventual

escape of the outer body.

¢ . . * | * 2 3
Intuitively, 1t 1s felt that e should 1ncrease as ¢  and €39

decrease. In other words, as the perturbations on the two-body systems

decrease, m, can stand being closer to m, without their proximity

3

drastically affecting each others orbit. 1Indeed, 1f there are no per-

-

turbations at allh(523 = = 0), the Keplerian orbits would remain

©32

unchanged, no matter how close m, was to m,, in which case y may exceed

2
1.
. This reasoning'is reflected for direct systems by & > 1 as 23,
€39 + 0, The same ié not true of retrbgrade systems. For constant
23 , g4, (or constant y,y,), the retrograde value of o is always less
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than the direct value, For many values of ¢23, €49 there 1s no guarantee
of hierarchical preservation no matter how small the value of g 1s,

for the'retrograde case.

Two questions arise out of‘this chapter. The first is whether all
systems with no guarantee 6f hierarchical preservation are hierarchically
unstable or not, The analyticai criterion indicates regions in the
configuration space which guarantee hierarchical preservation. 1Is there
a larger region in the cbnfiguration space, inside which all systems are
hierarchically stable? The second question is this: given that such an
empirical stability reglon exists, is it larger for direct systems than 1t
is for retrqgrade systems,'or vice versa?

There is some evidence to support the view that an empirical stability
region outside the analytical region does exist. The analytical criterion
is based on the fact that-the minimum of the Sundman function (/p/a) 1is
greéter than o/v(Li). There is no reason to suppose that if this
condition is not satisfied, that the actual value of o/v for a system must
be less than o/v(Ll), at some time inlits evolution. Even 1f o/v < olv(Ll)
at some time, this does not mean that the outer body must come close to
one of the other bodies. Thus the criterion, although obviously sufficient -
for hierarchical preservation, may not be necessary.

For the restricted problem; the Hill stability curves provide a
similar criterion for stability to the c?h criterion. However, it can be
shown that there are regions where stable periodic orbits exist which are
not Hill stable, (e.g. Markellos, 1973). Thus an empirical stability region
1s possible in the restricted problemn.

Nacozy (1977) found that the Sun-Jupiter-Saturn system is stable even

if the planetary masses are multiplied by a factor up to about 30. The
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analytical criterion only guarantees hierarchical preservation for
planetafy masses up to 25 times their actual value, Walker and Roy (Paper III)
indicated thatan empirical stability region exists for c0p1anar,_initiélly
circular, direct, three-body systems, b§ performingmény numerical
integration experiments, Thus thefe 1s some experiméntal'evidence for
the existence of an empirical stability region in the general three-body
problem,
The methods used by Walker-and Roy will be used in this work.
Their results for direct systems will be confirmed and it will be shown
that a similar empirical region of stability exists for retrograde systems.
1f tbe surface$ of a, = o, (e?3,e3, ) are to be taken at face value,
then it seems likely that the empirical stability region for direct systems
1s larger than that for retrqgrade systems. We shall see in Chapters 4

and 6 that this is not the case. - In fact, for constant £23 €32,0 , the

retrograde system 1s more stable than its direct counterpart.
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NUMERICAL EXPERIMENTS FOR FICTITIOUS
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Three-Body Systems
4.3 -The Numerical Integration Routine

4.4  Curve-Fitting Techniques Applied to Retrograde

Systems

4.5 On the General Behaviour of Retrograde

Three-Body Systems

4,6  Summary
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4.1 Introduction -

In the previous chapter, sufficienﬁ conditions were described for
a three-body system to have its given hierardhy preserved for all time.
These conditions corresponded to regions in the configuration space.
The values of o obtained reflect qualitatively the expected behaviour

C

of direct systeﬁs, 1.e, ac;increases as €23 ,e3, decrease. This is
not the case for the retrograde systems. - Thus either our intuitive
ideas concerning the stability of retrograde systems is wrong, or the
ahalytical stability criterion is not an adequate tool for our examin-
ation,

This is allied with the fact that the definition of hierarchical
stability given in Chapter 2, i1s a more stringent concept than the
hierarchical preservation of Chapter 3. 1In the absence of any rigorous
analytical treatment of hierarchical stability, the easiest approach
is by numerically modelling individual systems.

In this chapter, particular attention is paid tolfictitious
retrograde systems, while direct systems are considered in Chapter 5,
The numerical procedures and subsequent curve fitting techniques
are based on those used by Walker and Roy,'Paper 111, for direct
systems. These results are briefly reviewed in Section 4,2, The
curve fitting techniques and their subsequent augmentation for both
direct and retrograde systems are explained in Section 4.4, The
results from several hundred numerical models are also presented 1n
this section. A brief discussion of the behaviour of the systems
as they approach instability is given 1in Section 4.5,

A historical note is in order at this point. The work on

direct systems was started before the work on retrograde systems. The
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reasonlfor discussing-the retrograde systems first ié that in many
ways the data from these systems 1s easier to handle and explain;
Additional curve-fitting techniques are needed for the direct systems
in order to predict the stable lifetimes of direcf systems. This

1s necessary due to the effect of sommensurabilities. These added

complications will be explained in Chapter 5,

4.2 The Empirical Stability Region for Direct Three-Body Systems.
In Walker andRoy, Paper III, the authors describe the results

of several hundred numerical experiments for direct coplanar three-

body systems. They concentrated their examination on the following

values of 823, €39

N
w
il

10 3

107K k

i . 832 2’3,4,5’6l

for orbits that are initially circular and starting from.conjunétion
with*m2 between m1 andm3. For a given pair-of'ePsilons, the initial
value of o was varied and the equations of motion for the given

system were numerically integrated, The system was thus studied until
1t exhibited an instability according to the definition of hierarchical
stability, given 1n Chapter 2, The lifetime of the system until
instability was noted, In this way, graphs of the lifetime against

23

@ were obtained for fixed € , €392.

The unit of time was the-synodic period of the system. It was
considered that the system was most highly perturbed near a coﬁjunction,
hence 1t seemed important to monitor the number of conjunctions that a
system 'survives" for, This will be discussed again in Section 4.5

for retrograde systems,
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From their results, Walker and Roy concluded that for given g23 ,
€32 , the o-line could be divided into four intervals. The first

interval is [0, ac] , where o 1is the critical value of o for a

c
guarantee of hierarchical preéervation. No unstable systems could be
found in this region, thus systems that were hierarchically preserved
were also seen tote_hierarchidally stgble.

The second interval is (ac, ao] , where no unstable systems
could be found. This is the empirical stability region that was
postulated. In every case a >, and in the case of the higher

epsilon values, there 1s a considerable difference between the two

values.

The third interval is (ao,ax)*where o, is the value of w such that
'mé may be closer to m, than'mz, rendering the given hierarchy as
immediatély broken, Within this interval, one can dﬁserve unstable
systems. The criteria for instability are explained-iﬁmore detail
in the next section. Within this interval, the lifetimes of the
systems tend to infinity as andecreases—tO-eabgnalthough not. mono-. -

tonically so, due to the presence of commensurabilities (see Chapter

5). The trend was modelled by the function

_ 1 -]
Ns(a) = exp| B -1 e <a < 1.
a - o
0 iy
where NS 1s the stability lifetime in units of the synodic period.
a 3By varied with €23 ,e3, . This curve-fitting technique is

reviewed in Section 4.4,
For a 2 a_, the given hierarchy is meaningless, as the crossover
of orbits has already taken place, The stability lifetime 1is zero

by definition, o = 1/(1-u), which for small yu is only slightly
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greater than one, Thus Ns(a=1)was assumed to be zero., It is to be
expected that the results for retrograde systems which are described

in this chapter will follow a similar pattern.

4.3 The Numerical Integration Routine

Several hundred different direct and retrograde threé-body
systems ﬁave been studied by ﬁumerical integration. All the experiments
were éarried out' on the ICL 2988 mainframe computer at Glasgow
University, using the s ame routine that Walker used for his experi-
ments. In this routine, ﬁhe'mutual radius vectors are caléulated by
a tenth order Iaylor series, where the derivatives are calculated by
recufrence relations (Schwarz and Walker, 1982), The programme
incorporates an automatic step-length regulator which shortens or
lengthens the intggratioq step of the computer in order that the
error caused by truncating the Taylor series after the tenth order
is less than a given tolerance, (eg. 1 part in 1010).

The accuracy of the integration routine is affected by the
accumulated effect of this truncation error, as well as the error
caused by the computer having to round numbers to 16 significant figures.
Brouwer (1937) showed that the effect of round-off error on a numerical
integration after n steps is to introduce a mean error proportional

% % -
2 in the mean longitude, and to n? in the other orbital

ton
elements, where the error is measured in units of the last decimal
place. Unfortunately this is not the whole story, since Brouwer assumes
that the rounding ig performed up or down 1n an unbiased fashion.,

This is not always true of modern computers, and in any case, the

error is modified by the truncation error, making a rigorous analysis

1mpossible,
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We are concernéd with knoﬁing_for‘how long we may run the

- numerical infegration before the aécumulated'errors render the results
as meaningless., A rough idea was gained by running the progrgmme

for fictitious three-body systems with €%3 = €30 = 0 and initially
non-circular orbits. In these cases, the elements of the two binary
orbits should remain constant. Any deviation is-due to the accumulated
error in the routine, It was found that after 150,000fsteps, the error
in the position of the body in its orbit was approximately 1%; A

17 error was considered sufficiently inaccurate to stop the inte-
gration. No systems are examined beyond the 150,000 step timescale,
which correSpbnds to lifetimes of between 4000 and 6000 synodic periods
fqr'most systems encountered,

The routine incorporates a number of diagnostics for detecting.
instabilities. Recalling the various criteria for hierarchical
stability, (Section 2.2); the routine tests the energies of each
binary orbit., If an exchange of energy between the binary orbits,
results in one binary having a positivé energy, then the smaller
mass must be escaping the system, hence t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>