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PREFACE. 

Then to the Heav In itself I cried., 

Asking., "What Lamp had Destiny to guide.. 

Her little Children stwnbZirg in the Dark. V' 

And - "A blind Understanding! " Heav In replied. 

Rubaiygt of Omar Khayygm 

It seems that not everybody in Persia in the eleventh century 

was as convinced as the astrologers that the movements of the heavens 

controlled the destiny of Man. Nevertheless, for many centuries before 

and since, kings and emperors rewarded handsomely those astronomer/ 

astrologers who could give them advice based on the movements of the 

planets and other celestial bodies. (There may be some astronomers 

today who would'wish for similar generous patronage). Since the 

advent of modern celestial mechanics with the work of Isaac Newton, 

orbital motion has been studied for its own sake and, in the last 

thirty years, for the purposes of sending artificial satellites and 

manned craft into space. Yet for 300 years, one of the most important 

questions posed by celestial mechanics remains unanswered: are the 

motions of the planets in the Solar System stable? Could planets 

collide or even escape? Countless workers since Newton's time have 

sought Lamps to the Destiny of the Solar System, but our Understanding 

is still obscured by many blind-spots. 

This thesis does not claim to give any definitive answers to 

these questions. 'It does indicate how to obtain quantitative estimates 

of the likelihood of certain events occurring. Simple statistical 
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methods are applied to the results of numerical experiments and give 

probabilities of planetary orbits crossing or bodies escaping dynamical 

systems altogether. 

In Chapter 1a general review of the problem of the Solar-System's 

stability is given along with brief descriptions of methods and 

definitions of stability which have been used in the past. This thesis 

studies the stability of real and fictitious dynamical systems not 

necessarily associated with the Solar System. It investigates one 

particular definition of stability, namely hierarchical stability, using 

special perturbation methods. The definitions of hierarchical systems, 

hierarchical stability and empirical stability parameters are reviewed 

in Chapter 2. These will form the basis for subsequent numerical 

experiments. 

_One 
further definition of stability Hill stability is an 

important condition for hierarchical stability. It has been studied 

in a mathematically rigorous way in the problem, of three massive 

bodies in mutually perturbed orbits. This analy_sis as well-as some 

new numerical results are given-in Chapter. 3. 

Numerical integration experiments were carried out, with the aid 

of a mainframe computer, to study the period of time for which various 

three-body systems remain stable. Several hundred fictitious systems 

with different masses and starting conditions were studied. In each 

case, all three bodies' orbits lay in the same plane. In some systems, 

all the bodies orbited in the same direction (direct); for other 

systems, one body orbited in the opposite direction from the other two 

(retrograde). The results of these experiments are presented in 

Chapter 4 (for retrograde systems) and Chapter'5 (for direct systems). 

The results are grouped in such a way that analytical curves may be 
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fitted to the data. This allows predictions of stability lifetimes 

for similar systems without the need for lengthy numerical integration 

experiments. Systems whose masses, initial positions and initial 

velocities fall into certain ranges are always stable. These regions 

of hierarchical stability are mapped out and compared with corresponding 

regions of Hill stability. In the case of direct systems, commensura- 

bilities give rise to large fluctuations in stability lifetimes, if 

the initial conditions are varied slightly. Additional statistical 

methods are described in Chapter 5 to cope with this effect. 

In Chapter 6, the results of Chapters 4 and 5 are compared with 

real three-body systems within the Solar System. Possible origins 

of the Solar System are discussed in the light of the results. 

In Chapter 7, four and more body systems are examined for align- 

ments. of the bodies in their orbits (syzygies). A s-tatistical analysis 

of thenumbers of syzygies occurring in a given time leads to the 

discovery of resonances in the orbital frequencies. The theory is. 

developed and applied to the result s of numerical experiments. 

Chapter 8 briefly states some of the questions that have not been 

considered in this work as well as some new ones that have arisen 

from it. 

Appendix A is a set of useful statistical tables. Appendix B 

is a discussion of some limiting cases of Hill stability in the 

general three-body problem. Appendix C gives a detailed mathematical 

background to the statistical methods used in Chapter 5. 

The original work of this thesis is contained in 
_Chapters 

4 to 7, 

the"second half of Chapter 3, and Appendices B an&C. Results from 

Chapter 5 have been published in Stability of the Solar System aýd Its 

Mi7zorNatural and ArtificiaZ Bodies., in the NATO ASI Series. 



iv 

Results from Chapter 7 have been" accepted for publication in Celestial 

Recha? ics. Parts. of Chapters 3 to 6 are in preparation as papers. 

This work does not answer any questions about the ultimate 

stability of the Solar System. I shall be happy though if it helps to 

irradicate even one blind-spot in our understanding of the Solar System's 

destiny. I leave the study of Man's destiny to others. (Besides, we 

Scorpios don't believe in astrology). 
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SUMMARY- 

After 300 years, Celestial mechanics is still unable to say 

whether or not the orbits of the planets and satellites in the Solar 

System are stable. The studies that have been performed along with 

the observational evidence strongly suggest that the majority of 

orbits are stable, including all planetary orbits. However a definitive 

answer is still not avail able. One of the main objectives of this 

thesis is to obtain statistical estimates of the likelihood of 

particular orbits being stable. 

Many dynamical systems in nature can be defined as. hierarchical; 

where the bodies' mutual separations can be ordered and that ordering 

(hierarchy) is preserved for a time considerably longer than any of 

the periods of revolution. The equations of motions are expressed 

in Jacobian coordinates. An expansion of the force function yields 

a set of dimensionless parameters, the empirical stability parameters., 

which represent the perturbations on the osculating Keplerian ellipses. 

This thesis investigates the stability of coplanar hierarchical 

systems. Particular consideration is given to coplanar initially 

circular, three-body systems, which can be divided into two classes 

according to their rotational sense: direct and retrograde. 

There are many definitions of stability.. This study uses the 

concept of hierarchical stability, i. e. no bodies escape the system; 

there are no secular changes in the semi-major axes, eccentricities 

and inclinations defining the osculating orbits; the hierarchy of 

the system is preserved. This last condition is guaranteed if. Hiýl- 

type stability can be proved. An analytical theory exists for the 

Hill-type stability of three bodies, which makes use of the topology 
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of the zero velocity curves. In this theory, it is found that direct 

systems are stable for a wider'range of initial conditions than retrograde 

systems. 

Several hundred numerical integration experiments have been 

performed for a variety of fictitious direct and retrograde three-body 

systems. The osculating elements of certain retrograde systems are 

studied in detail to show the differences between stable and unstable 

behaviour. 

For unstable systems, the times until instabilities have appeared 

are noted. The resulting data, which compares these stability lifetimes 

against the initial relative separations of the bodies, is grouped into 

classes of equal empirical stability parameters. A curve is fitted to 

each class of data. For retrograde systems, the data varies smoothly 

and the curves are in good agreement. This allows subsequent pre- 

dictions of stability lifetimes with good accuracy. The existence of 

commensurabilities produces wide fluctuations in the data for direct 

systems, so the curves do not fit so well. Additional statistical 

techniques are employed to derive probable ranges of stability life- 

times without the need for numerical integration. 

The results of these numerical experiments indicate that retro- 

grade systems are stable for a wider range of initial conditions than 

direct systems. This contradicts the Hill-type stability theory. 

The numerical results are compared with real three-body subsystems of 

the Solar System. They imply that the observed lack of retrograde 

systems may be due to the manner of the origin of the Solar System; 

not to any stability selection effect. Possible origins of the Solar 

System are discussed. 

Four and more body systems are discussed'with reference to an 
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orrery model of hierarchical, coplanar, unperturbed circular orbits. 

A theory is developed which predicts the average period of occurrence 

of near syzygies (alignments-of the bodies). The theory is found to 

be in agreement with numerical simulations. Commensurable systems 

are characterised as having a period of syzygy occurrence which is. 

radically different from that predicted. Examples are given of 

commensurable systems within the Solar System that are detected by 

this method. This method can be used to search for critical arguments 

using apsidal as well as bodily syzygies. This would best be achieved 

using a numerical integration method with the orrery model acting as 

interpolator. Miryor configuratiow could also be found leading to a 

discovery of near perio. dic- motix)n. in the Solar System. 
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1.2 The Restricted Three-Body Problem and Hill Stability 

1.3 Periodic Orbits 

1.4 Commensurabilities 

1.5 General Perturbations and KAM Theory 

1.6 Special Perturbation Methods 

1.. 7 Summary 
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1.1 The Structure and-Stability of the__Solar-System 

The Earth is but one body in the thousands -that make up the Solar 

System. The principal object is the Sun, a star which is a thousand 

times more massive than Jupiter, the second largest body. Orbiting the 

Sun are nine major planets (Figure 1.1) many having their own systems 

of satellites. 
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Figure 1.1: Orbits of the major planets in the 
Solar System 

There are over forty major satellites, (although the definitions of 

major and minor satellites become increasingly hazy as more small bodies 

are discovered by the Voyager mission and ever improving ground-based 

observations). Minor bodies include the asteroids, comets and meteor 
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streams. On the very small scale we must consider the planetary rings 

and the interstellar medium. 

In terms of composition, the planets may be divided into two groups. 

Firstly, there are the gas giants; Jupiter, Saturn, Uranus and Neptune. 

As implied, these planets are much larger than the other five and are 

mainly comprised of hydrogen and helium. All have their own satellite 

systems and three of them have been observed to have rings. It may 

well be that the fourth, Neptune, also possesses rings but these have not 

yet been detected. The second group is composed of the terrestrial 

planets; Mercury, Venus, Earth, Mars and Pluto. These planets. are 

much smaller and are mostly composed of silicate material. They have 

fewer satellites than-the gas giants, Mercury and Venus having none 

whatsoever. 

Kepler was able to describe the motions of the planets by his 

three famous laws: - 

(i) The orbit of each planet is an ellipse with the Sun at one 

focus. 

(ii) The rate at which the radius vector from Sun to planet sweeps 

area is constant. 

(iii) The cubes of the semi-major axes of the planetary orbits are 

proportional to the squares of the planets' orbital periods. 

These three laws are exact if we assume that the bodies are points 

and that the planets do not gravitationally disturb each other. In 

reality neither assumptions are true but Kepler's laws still give, in 

most cases, very good approximations t'O both planetary motion about 

the Sun and satellite motion about the planets. 

Most of the planets' orbits are inclined within a few degrees of 
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the Earth's orbit and possess near elliptical orbits with low eccen- 

tricities. The two exceptions are Mercury (eccentricity nu 0.21, 

inclination Q0) and Pluto (eccentricity -,. 0.25, inclination ý., 17 0 

Without exception, all the planets orbit in the same direction about 

the Sun. Most of the planets rotate on their axes in the same directions 

as they move in their orbits, the two exceptions being Venus, whose 

0 
equator is inclined at -, 179 to its orbit, and Uranus, whose equatorial 

0 inclination is \, 98 

In general the planetsorbits are well spaced and can be unam- 

biguously ordered in increasing size, i. e. in a hierarchical arrange- 

ment (Figure 1.1). The exceptions are Neptune and Pluto whose orbits 

cross. However, Pluto's highly inclined orbit prevents the two bodies 

from getting too close to each other and there is evidence from numerical 

experiments to suggest that additional dynamical mechanisms may be 

present which preserve this state, (see Section 1.6). 

The planetary distances from the Sun may be roughly described by 

Bode's law, namely 

r=0.4 + 0.3 (2 n) 
n 

where rn is measured in units of the Sun-Earth distance. For Mercury, 

n Venus ,n=0; Earth, n=1; and so on, including the 

asteroids at n=3. This empirical result works well out to Uranus, 

but is poor for Neptune and fails for Pluto. Because of its lack of 

physical justification, many believe Bode's law to be coincidental. 

However similar laws can be found for the larger satellite systems, so 

the controversy continues. 

The satellite systems, while similar to the planetary system but 
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on a smaller scale, show a greater variety of behaviour. Many of the 

satellite orbits have high eccentricities and inclinations. At least 

two satellites are spiralling in, towards their planets. These are 

Phobos around Mars and Triton around Neptune. In both cases-this is 

due to tidal deformation of the planet acting as a brake on the 

satellite, (Section 6.5). Some satellites are observed to be orbiting 

in the opposite direction from the other bodies. Triton is one and is 

close to Neptu ne. The others are the four outermost satellites of - 

Jupiter and theoutermost satellite of Saturn. Many believe these 

satellites to be captured asteroids and not permanent members of the 

system in question. This topic will be discussed at length in Chapter 

6. Whatever their subsequent behaviour, the Voyager mission has given us 

much information about the very individual compositions of the satellites 

which may lead to a better understanding of their history and the 

history of the Solar System as a whole. A general description of these 

bodies can be found in the Cambridge Atlas of Astronomy (1985). 

There are many near commensurabilities in mean motions (average 

orbital angular velocities) present in the Solar System. By a near 

commensurability we mean that the ratio of two mean motions may be closely 

approximated by a simple vulgar fraction. Some commensurabilities are 

important for maintaining stability. Some examples are Neptune-Pluto 

(3: 2), TitaP-Hyperion (4: 3), and Enceladus-Dione (2: 1). Other 

commensurabilities such as Jupiter-Saturn (5: 2) and Uranus-Neptune (2: 1) 

do not seem to be critical for maintaining stability. Roy and Ovenden 

(1954,1955) have shown that there are significantly more occurrences 

of near commensurabilities than expected by chance. This implies that 

these resonant states are preferred, and may be selected by a dynamical 
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mechanism, for example, tidal interactions (Goldreich, 1965). 

The asteroids are seen in a variety of orbits. Most are in near 

circular orbits between the orbits of Mars and Jupiter (Figure 1.1), 

but other families exist which have higher eccentricitiesand cross 

planetary orbits, includi ng the Earth's. Examples of the latter type 

are the Apollo aýnd Amor objects-and the Hidalgo group. On examining 

the main asteroid belt, gaps can be observed at certain distances from 

the Sun where there are relatively few asteroids. At other distances 

there is a greater concentration of bodies than average. Figure 1.2 

shows the distribution of asteroids with respect to their mean motions. 

The so-called Kirkwood gaps are clearly seen. Along the top of the 

figure are given the orders of commensurabilities between Jupiter and 

the asteroids at_the given mean motion. It becomes apparent that the 

most prominent gaps occur at commensurabilities 0: 1), (5: 2) and (7: 3). 

The main belt is cut off sharply at the (2: 1) commensurability, (called 

the Hecuba Gap). There are two further clusters of asteroids. These 

are the Hilda and Trojan groups associated with the (3: 2) and (1: 1) 

commensurabilities respectively. The Trojans will be referred to again 

in connection with the restricted three-body problem, (Section 1.2). 

At first sight, it might appear that these gaps are regions of unstable 

motion. However it was suggested by Brouwer (1963) and Message (1966) 

that the associated commensurabilities are stable and that asteroids are 

in orbits that oscillate about a mean position given by the gap. There- 

fore more asteroids would be observed to bound the gap than be present 

in it. 

Ring structure exists on a smaller scale around at least three of 
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the gas giants4 The most noticeable rings are around Saturn. These 

rings of small particles contain gaps similar to the Kirkwood Gaps which 

are caused by resonances with nearby satellites. Figure 1.3 shows 

some of the principal gaps and associated commensurabilities. The 

largest gap is Cassini's division between the A and B rings, which 

arises from commensurabilities with Mimas, Enceladus and Tethys in 

the ratios (2: 1), (3: 1) and (4: 1) respectively. The boundary between 

the B and C rings is called Encke's division and occurs at a distance 

which allows for a (3: 1) commensurability with Mimas. Images from the 

Voyager mission have shown that the rings are very finely structured, 

reflecting many different resonances at work. Small satellites have 

been found that graze the rings and must play an important part in 

deciding their evolution. 

-Comets. and meteors-are small bodies in highly eccentric, inclined 

orbits. The most popular explanation for the origin of the comets, 

given by Oort, is that many millions of them form a shell around the 

Solar System. Through perturbations by nearby stars, some are sent 

into the planetary region where subsequent perturbations by Jupiter 

and the other gas giants, render them in orbits that are either hyper- 

bolic or have semi-major axes comparable with the planetary orbits. 

As an example, Brook's Comet (1889-V) had a period of revolution 29.2 

years, its orbit lying outside Jupiter. On July. 20 1886 after a close 

encounter with Jupiter, its period became 7.10 years, its orbit inside 

Jupiter's. 

Meteors are much smaller silicate bodies that occur in streams 

whose orbital characteristics are similar to the comets. It may be 

expected that these streams are also prone to disturbances from the 
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planets. They cannot however be observed unless they fall through 

the Earth's atmosphere. It is suspected that meteors originate at the 

same time as comets or are remnants of disrupted comets. It is hoped 

that the rendezvous between Halley's Comet and the Giotto Probe this 

year may shed some light on these questions. 

With the possible exception-of the comets in Oort's Cloud, all 

the bodies of the Solar System are effectively isolated from other 

external influences such as nearby stars or the galactic bulge. Tidal 

and relativistic effects within the Solar System are more important. 

Given that the Solar System is isolated, we may ask various 

questions concerning its past and future evolution. How old are the 

planets and the satellites? How stable are the planets' orbits 

against their mutual gravitational disturbances? Are the satellites in 

stable orbits or will they be disrupted*by dynamical mechanisms such as 

tidal effects? Given that most bodies orbit in the same direction, 

how have the retrograde satellites-evolved? 

Cratering on the Moon and other satellites indicates that in the 

past there were many collisions with small bodies. The rings are 

presumably formed by satellites which have been tidally disrupted. 

There can be little doubt that some bodies are unstable. The reverse 

question of whether any are stable for all time is a more difficult 

question to answer. 

Records exist from Babylonia around 500 B. C. which describe the 

motions of Mercury, Venus, Mars, Jupiter and Saturn. They indicate 

that the planets' orbits differ very little from those followed at the 

present day. By studying megalithic observatories, we can see that 

around 3000 B. C. the Moon was moving in the orbit predicted by modern 
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lunar theory. These planets have been observed for hundreds of 

revolutions so drastic changes seem unlikely. The largest satellites 

have been observed for less than four hundred years. However in that 

time, they too have performed many thousands of revolutions. A few are 

observed to be spiralling in towards their respective planets but the-- 

majority show little change in the general size and shape of their orbits. 

Only in the case of the mo-st recently discovered planets; Uranus, Neptune 

and Pluto, are we short of direct observational evidence. Since their 

discoveries, Uranus has undergone 2.4 orbits; Neptune, one orbit and 

Pluto 1/5 of an orbit. We must therefore resort to numerical integration 

experiments to augment our meagre knowledge of their evolution. 

From geological and astrophysical-evidence, the Solar System is 

estimated as being around 4000 million years old. Our observational 

information over 300 0 years is no more than a snapshot when confronted 

with such timescales. No one should therefore underestimate the 

difficulties in predicting the long term evolution of the Solar System 

by extrapolating from these closely grouped data. Thus the questions 

concerning stability in the Solar System have yet to be answered con- 

clusively. 

Having asked the question, "Is the Solar System stable? ", we 

must define what we mean by stable. It is probably still. true that 

the number of workers in the field exceeds the number of definitions of 

stability. However there are sufficiently many definitions used that 

extreme-care must be taken to specify exactly the conditions for 

stability. A particular system may be stable according to one definition, 

yet unstable for another. 
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As an. example, ' consider the -motion -of a. planet about the' Sun in the 

absence of any other perturbing bodies. This is the classical two- 

body problem which yields an analytic solution for the planet's motion. 

It describes a fixed ellipse, characterised by six constants including 

the semi-major axis aV The time-dependent variable is the true 

anomaly fV If the planet is displaced by a small amount, it will 

describe a different ellipse with adifferent semi-major axis a 2' and 

true anomaly f 
2' We examine two definitions of stability. The first 

by Liapunov asks, "if the two orbits differ only slightly, at some 

initial time, will the two bodies remain close for all time? " The 

answer is "no", since by changing the semi-major axis, the orbital 

period is also changed and the bodies will drift-apart with time, the 

maximum separation being the major axis of their orbits. The second 

definition by Poincarý asks, "if the two orbits differ only slightly 

at some initial time, will the differences in size, shape and orientation 

remain small for all time? " The answer in this case is "yesil. 

Birkhoff (1927) found it appropriate to define time-dependent 

stability when a body remains in a specified neighbourhood for a specified 

time. (If the time is infinite we have complete stability). 

Hagihara (1957) asks the converse question, "After what length of 

time will a system deviate from its initial conditions by a previously 

specified amount? " 

There is the possibility that a system may or may not be stable 

depending on the choice of initial conditions. There are therefore 

many choices*of definition, each appropriate in its own way. Comparisons 

have been made by many authors a eg-Jefferys7 and-Szebeh&ly (1978), Szebehely 
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(1985). The rest of this chapter is devoted to looking at some of the 

more important definitions of stability as well as mentioning any relevant 

applications. 

1.2 The Restricted Three-Body Problem and Hill Stability 

Much of the work of this thesis will be concerned with the study 

of the general three-body problem. Given three bodies of finite mass 

and given their initial positions and velocities, the object is to derive 

their positions within their mutual gravitational field at any future 

time. 1n order to solve the nine second order differential equations, 

it is necessary to have 18 integrals of the motion. Unfortunate ly only 

10 exist, thus the problem does not admit an analytical-solution. Even 

by eliminating the time as independent variable and carrying out the 

so-called 'elimination of the nodes' procedure, the problem is still of 

sixth order. 

The complexity of the general problem has prompted many workers 

to consider a simpler model where one of the three bodies has an infini- 

tesimally small mass. In this case the two massive bodies describe 

circular orbits, unperturbed by the particle. This so-called circular 

restricted three-body problem requires us to derive the orbit of the 

third body in the gravitational field of the other two (a reduction 

from 18 unknowns to 6). The problem may be simplified further by con- 

sidering only coplanar orbits, in which case, there areonly four unknowns, 

namely the position and velocity of the particle in two dimensions. 

In order to make this simplification, we have been forced to 

discard the ten integrals. However, Jacobi (1836) derived another 

integral of the motion (Jacobi's integral) which is related to the total 
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energy of the system. This integral was used by Hill (1878), to 

study the stability of-the particle's orbitý Hill stability is also 

a useful concept for the. general three-body problem. Therefore, by 

way of introducing the work of subsequent chapters, we employ it in 

the circular restricted three-body problem, (Danby, 1962; Roy, 1978). 

Denote the two massive primaries by P and P (see Figure 1.4). 
112 

Figure 1.4: The Circular Restricted Three-Body Problem. The 
two massive bodies are Pl, P 2 and the particle is P. 

We take the unit of mass to be the total mass of the primaries, 

MI+m2 Hence we denote-the mass of PI and P2 by 1ýp and V res- 

pectively. Without loss of generality, assume that P2 is less massive. 
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Hence 0< 11 Let P1 and P2 describe circular orbits about 

their common mass-centre C. Hence their separation is a constant 

which is taken to be the unit of length. Kepler's third law states 

that 

n2a3 = G(m I+m (1) 

where a is the separation and n the mean motion of the primaries. 

(In the case of circular orbits, n is equal to the angular velocity). 

If we choose the unit of time such that the gravitational constant G 

is unity, then the angular velocity is als o unity. - 

The equations of motion of a particle P, placed in the gravitational 

field of PI and P2, are now required. In a non-rotating coordinate 

system, with its origin C; PI, P 
2' P have coordinates (Cjnj, Cj), 

(ý2012sC2)31 QT1, C) respectively. The equations of motion are 

EI-E C2-ý 
-3 11 (2) +3 

r 1, r2 

TI 1- Ti 
- 

Tl2-Tl 
+ 3 3 

r r2 

ý1-ý 
- 

ý2- 
+ 

,3 3 
r, r2 

where '. ' refers to differentiation with respect to time and 

2+2+ 

r2 2-- R&2-0 2+ (T12-TI) 2+ (ýZ-Q 2] 12 

Since PI and P2 are not disturbed by P, it is assumed that (C1,711, tj) 

and Q 
2'T'2'ý2 are known functions of time. Without-loss of generality 

we orientate the coordinate axes so that the motion of the primaries 
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is wholly in the &n-plane, i. e. C1 2: C2'ý 0 for all time. 

We shall be more interested in the motion of-P't6lative to PI and 

p We therefore adopt a new rotating coordinate system x, y, z with the 2* 

origin still at C and the z-axis coinciding with the ý-axis. However 

the system rotates with angular velocity equal to unity, such that the 

primaries always lie on the x-axis. In the new system, P1 and P2 have 

coordinates (-p, 0,0) and (1-p, 0,0) respectively. 

Let 0 be the angle E& at a given time t. Then the new coordinates 

of P (x, y, z) are given by 

Cos 

s in 

0 

-sin 00x 

Cos 0 
-Y 

0 Z_ 

(6) 

Since-the angular velocity is unity, 0=t+ constant. This constant 

may be set to zero without loss of generality. Using Matrix Equation 

(6), we may obtain and their derivatives. On substitution 

in Equations (2), (3), (4)9 

(x-2ý-x) cos t- (y +2k - y) sin. t 

X, 2 x r, 
-, HI + Cos t+ y +- s in 

r3 r3 
ýr 

r3 1 
1 2 2- 

(K-2§-x) sin t+ (ý + 2ý - y) cos 

1 
11 -2 --T- sin t 

J-P p 
Cos t 1-0 

+ T- + -3 
XrIxxr2 x] 

rIr 21 

(8) 

+ 77- 
r1r 2- 
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where 

r1=[ (x 
1- x)2 + y2 i. z2 1 

r2= [(x 
2- x)2 + y2 + z2 ]ý 

and XI 11 x2 ý" 1-11 

If we multiply Equation (7) by cos t and Equation (8) by sin t 

and add, then multiply Equation (7) by - sin t and Equation (8) by 

cos t and add, we obtain two equations which, along with Equation (9) 

comprise the equations of motion of P in the rotating coordinate frame, 

viz. 

2ý 
DU 
, rx 

2k = 
9u 
77 

au 
lä-z 

where 

U1 (x2+y2) + 
1-Ij 

+, 
a (15) 

2rIr2 

Multiplying Equations (12), (13), (14) by ý, ý, Z resp6ctively 

and adding, we obtain 

ýX + ;y+ýz= 
. 
2-U ý+ Eu ;+ ! U-- ý 
ax By 3z 

Since U does not depend on t explicitly, Equation (16) is a perfect 

differential which we may integrate once to obtain 

2U - (X2 + ;2+ ý2) =C (17) 

where C is a constant of integration known as Jacobi's integral. 
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Since (ý2 + ;2+ ý2) is always positive or zero it follows that 2U >, C. 

For a given value of C, there are therefore regions in the coordinate 

space where we may position the particle QU :ý 0- and regions where 

we may not OU < C, implying an imaginary relative velocity). Clearly 

the boundary is given when ý2 + ;2+ ý2 equals zero, i. e. the velocity 

of P in the rotating frame is zero. These zero-velocity surfaces are 

given by 

X2 + y2 + 
2(1-10 

+ 
211 

r, r2 

We now examine the topology of these surfaces as C varies, although 

it should be remembered that for any given dynamical system, C is an 

integral of the motion and hence constant for all time. It is from 

such an examination that we derive the concept of Hill StabilitY. 

Consider the case when the particle is restricted to the (x, y)- 

plane (coplanar motion) Sets of curves are presented in Figures 1.5 

which represent Equation (18) as C is varied. ' The region of. forbidden 

motion is shaded. - 

For C=CI >> 1 (Figure 1.5(a)), there are three disconnected 

regions of allowed motion; one bounded region around each primary and 

an unbounded region when X2 + y2 is sufficiently large. The particl e 

is confined to one of the three regions and is prohibited from moving 

to the other two. If the particle is confined to one of the bounded 

regions around a primary, it can never approach the other binary or 

escape to infinity. This consideration of the boundedness of the 

particle's orbit is the basis of Hill stability. We can say nothing 

concerning the character of the orbit within the region. We do not 
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Figures 1.5. The zero-velocity curves of the coplanar 
circular restricted three-body problem. 
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know how close it may approach the primary which it is orbiting. 

All we know is that it is constrained to remain close to that primary. 

If C is decreased to C2 (Figure 1.5(b)), the bounded regions 

are seen to have a common tangEPt at the point L11 If C is reduced 

further to C3$ (Figure 1.5(c)) then the bounded regions coalesce 

to form a dumb-bell shape. The particle, if confined to this region, 

is free to wander from one primary to the other (althoUgh it is not 

obliged to do so). It is still unable to escape to infinity from 

this region. 

If C is decreased further to C4 (Figure 1.5(d)), the two remaining 

regions of allowed motion have a common tangent at the point L2. if 

C is reduced fur ther then these regions coalesce. The particle is now 

free to move between primaries or wander into the external area. 

Once C=C 5' 
(Figure-1.5(e)), a common tangent occurs at the 

point L 3' Further reductions in C (Figure 1.5(f)), result in there- 

being two disconnected regions of forbidden- motion, whi: ch- -shrink 

eventually to points L4 and L 5' where rl =r2 ýý 1. Sections through the 

zero-velocity surfaces in the xz- and yz-planes are shown in Figures 

1.6 and 1.7 for the same values of the Jacobi Integral as are given in 

Figures 1.5. 

The critical values of the Jacobi Integral are C 
2' 

C4 and C 5' which 

determine the connectedness of the various regions of allowed motion. 

Hill stability can be applied to a variety of dynamical system . 

(a) Consider a massless planet in an inferior orbit about the 

larger star of a double star system (V< -3-2). Alternatively, consider Ili 

a planet in an inferior orbit about the Sun, perturbed by a massive 

superior planet (v << If C >, C then the planet is constrained 2* 
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Figure 1.6: Section through the zero-velocity surfaces 
of the circular restricted three-body problem 
in the xz-plane. 

Figure 1.7: Section through the zero-velocity surfaces 
of the circular restricted three-body problem 
in the yz-plane. 
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to orbit the larger primary. If C4<C<C 
2' then it could transfer 

its orbit to P2 or alternate between P1 and P 2* If C<C 41 then the 

planet could escape from the two primaries altogether. 

(b) Consider a massless planet in an- inferior orbit about the 

smaller star of a double star system (p or a satellite orbiting 

a planet (v << U. In both these cases the argument is identical to 

(a). 

(c) Consider a (massless) body in a superior orbit about a double 

star system (v < or a Sun-p lanet system 
. 
(P << k). The particle cannot 

approach either primary. so, long as CýC 4' In this case it does not 

matter if the two regions around the primaries are connected. 

It is possible to use the initial conditions to calculate C from 

Equation (17). We may then compare it with the critical values C2 and 

C4 to determine whether the particle is p rohibited from approaching one 

or both primaries. 

Critical values of C occur when the particle is at one of the 

points Ll, L2, L3, L4, L 5' 
(the most important being L1 and L when:.... 

considering Hill stability). These points are double points where 

tangents to the zero-velocity curves coincide. By definition, this 

is where the partial derivatives of the fuaction2U-C vanish. (Recall 

that 2U=C is the equation of the zero-velocity curves). Hence at these 

points 

DU DU Du 

Dy 
-ý rz (19) 

However, being zero-velocity curves, xyz0. By Equations 

(12), (13) and (14), R, Y, H are all zero, implying there are no 

resultant forces on the particle. Ll, L 2' L 3' L4 and L5 are therefore 
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the familiar Lagrange equilibrium solutions. The L1 and L2 points - 

may be found by solving Equations (19) with y=z=0. ' Hence C2 and 

C4 may be evaluated and the Hill stability of the system determined. 

It is possible to study the stability of the particle at these 

equilibrium points (xO1_YO% ZO) by disp lacing it a small amount to a new 

position (x 
0+ X's YO + Y" ZO + Z'). If the particle oscillates 

about this point, it is defined to be in-a stable position. If the 

particle departs from the neighbourhood of the point, it is unstable. 

The equations of motion, (12), (13), (14) may be expanded as Taylor 

series in powers of x', y', and z'. Because the displacement is small, 

we retain only the linear terms. The general solution of these 

linearised differential equations may be expressed in the form 

x1= et exp (X 

y1-E ß exp (X 
1 i 

zt exp 

where a. are constants of integration, and Y. depending on a.. 

Xt Xt o= Xt 
The X are obtained by substituting x' ae y' = ýe Z ye 

into the linearised differential equations. By eliminating a, ý, -y 

among the three equations we are left with a polynomial equation in 

X, with highest power X6 
. The solution of this equation provides 

at most six distinct values of X. If all of them are purely. imaginary 

then x', y', z' are purely oscillatory with time and hence give stable 

solutions. 
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When this linear stability criterion is applied to the five Lagrange 
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points it is found that Ll, L2 and L3 are always unstable while L4 and 

L5 are stable provided p<0.0385. A practical example of this stability 

can be found in the Trojan asteroids which exist at the L and L points 45 

of the Sun and Jupiter. 

In recent years, there has been considerable interest in the 

circular restricted three-body problem when non-gravitational forces are 

taken into account. Particular attention has been paid to the existence 

and stability of equilibrium points when radiation pressure from one or 

both primaries is considered, (Schuerman, 1980; Mignard, 1982; 

Mignard and Henon, 1984; Simmons et al; 1985). The effect on a charged 

particle in the presence of two revolving dipoles is an allied problem 

which has been. studied by Coudas and Petsagourakis (1985). 

Hill stability has been applied to many real systems. Szebehely 

and McKenzie have applied it to the cases Sun-Jupiter-Saturn (1977a) 

and Earth-Moon-Sun (1977b) and-shown-them-to'be ýUible. Higihara (1952) 

applied the Jacobi integral to the other natural satellites of the Solar 

System. The zero-velocity surfaces have been used extensively to study 

matter transfer between binary star components (Roy, 1978; Boyle, 1984). 

It must be remembered however that the results 

derived in these cases are only as valid as the model they are derived 

from, namely the circular restricted three-body problem. In general 

the orbits will have non-zero eccentricities and the "particle" may be 

rather massive (particularly in the case when Saturn is assumed to be 

massless beside the Sun and Jupiter). Using the theory that will be 

described in Chapter 3, Szebehely and McKenzie have shown that relaxing 

the conditions on the eccentricities and masses produces profound changes 

on the Hill-type stability. Indeed there is no longer any guarantee 
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that the Earth-Moon-Sun system is stable. 

When the primary bodies are allowed to describe elliptic orbits, 

there is no Jacobi integral to which we can apply Hill stability. It 

is possible to derive formal expressions for the angular momentum 

and Jacobi integrals (Ovenden and Roy, 1961; Sarris, 1982), but they 

are explicitly time-dependent. The zero-velocity surfaces varywith 

time which implies that Hill stability cannot be guaranteed at future 

epochs. 

Because of these problems, Hill stability in the restricted three- 

body problem is of limited use when applied to the Solar System, except 

when dealing with circular orbits and very small satellites. A more 

useful generalisation of Hill stability in the general three-body 

problem is presented in Chapter 3. 

1.3 Periodic Orbits 

Periodic orbits have played an important part in the study of 

dynamical systems this century.. They may be defined most generally as 

follows. A system comprising n bodies can be described at any instant 

by a point in the 6n-dimensional phase space defined by the 6n spatial 

coordinates and velocities of the bodies. Denote this position by 

vector k which is a function of time t. As t varies, so does 

and the system describes a trajectory in the phase space corresponding 

to an orbit in the 3-dimensional coordinate space. A periodic orbit is 

defined to be an orbit where 

k(t) =-k(t (20) 

for any t and some fixed value T. If T is the smallest value such that 
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Equation'(20) holds. for all t, -then it is called the period of the 

orbit. 

Since Poincare (1895) applied periodic orbits to the restricted 

three-body problem, many workers have made comprehensive studies of 

their properties. In recent years with the advent of faster computers, 

workers have been able to study periodic orbits in-the general three- 

body problem as well as other conservative and dissipative Hamiltonian 

system . This has allowed studies into a variety of problems such as 

galactic rotation (Contopoulos, 1983a). Although the concepts 

described'in this section apply to general dynamical systems, we shall 

mostly refer to the restricted three-body problem*. 

Roy and Ovenden (1955) describe their mirror theorem as follows: 

if n point masses are acted on by their mutual gravitational forces 

only, and at a certain- epoch, every radius vector from the centre of 

mass of the system is perpendicular to every velocity vector, then the 

orbit of each mass after that epoch is a mirror image of its orbit 

prior to that epoch. Such a configuration of radius and velocity 

vectors is called a miryor configuration,. As a result of this theorem, 

they point out that any system which undergoes two mirror configurations 

must be a symmetric periodic orbit. 

There are many reasons-why periodic orbits are useful in practical 

situations: 

The conjecture of Poincarý states that for any bounded 

solution to the equations of motion of a dynamical system, it is possible 

at any time to find a pdriodic solution which is arbitrarily close to 

the original, (although the same periodic solution may not remain close 
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f or all time). For this reason periodic solutions have applications 

as reference orbits, -for example in Encke-type numerical algorithms 

(Section 1.6). 

(ii) Many real dynamical systems are found to exhibit resonances, 

for which periodic orbits are directly relevant to stability. 

(iii) Periodic orbits may be found and classified by analytical 

and numerical techniques. In this way it is possible to find all the 

periodic solutions to a given problem. The stability of more general 

solutions may be found by studying the stability of nearby periodic 

orbits. 

It is possible to classify periodic orbits according to their 

initial conditions. A group of periodic orbits whose initial conditions 

vary continuously one to another is called a family. Due to this 

continuity, it has proved fruitful to search for distinct families using 

numerical techniques applied to an analytical continuation theory. 

Markellos (1974a) describes one such method for the restricted three- 

body problem, replacing one initial velocity component by Jacobi's 

integral to act as an independent variable. 

A linear stability analysis, similar to that described in Section 

1.2 may be applied to periodic orbits. Let s correspond to an 
iluo 

initial state of the orbit and s -correspond to a state which is only 
ri, 

slightly displaced from s Define the variational matrix 
PUO 

3(s. 
A(s t) 

3. 

%0 3(s 
(21) 

03 

where sip s. refer to compon8nts of s,, s respectively. The 
oj lu ljo 

condition for stability of the periodic orbit at s0 is that all the 
IV 
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eigenvalues'of Ms t) have modulus equal. to unity. For the restricted 
UO 

three-body problem there are four eigenvalues, two of which are always 

equal to-unity.. The other two have product unity and may be represented 

by exP(XT) and exp(-)LT), where T is the period of the orbit. x abd 

-X are called Poincare's characteristic exponents and must be purely 

imaginary for stability. 

Another important concept for stability analysis is the surface of 

section. In the circular coplanar restricted three-body problem, the 

position and velocity of the particle relative to the primaries, (x, y, x, y) 

define its orbit (see Section 1.2). By c hoosing a particular value 

of Jacobi's integral C, we may express ; in terms of X, y, ý. - Hence 

the orbit in phase space is given by the locus of points (x, y, ý, C., 

A particular value of C is chosen. We wish to examine the particle's 

orbit whenever y is a particular value y* and x>0. We therefore 

define a mapping Enwhich maps a point in the orbit (x C) to the 
00 

point in the orbit (x, y*, ý, C) which is reached as the orbit crosses 

the line y= Y* (x > 0) for the n 
th time. For example, if y* =0 and 

n=1, we are examining (x, ý) 
everytime the orbit crosses the positive 

x-axis. In this case, if the orbit closes after one synodic period then it 

is characterised by one invariant point on the plane (x, ý), x>0. 

This plane is called Poincarý's surface of section and is only one of 

many examples of surfaces of section. If the orbit closes after two 

synodic. periods then it will be characterised by two invariant points 

on the surface of section defined by MI or by one invariant point on the 

surface of section defined by M2 

Figure 1.8 gives an example of a surface of section for the case 
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Figure 1.8: Surface of section y=O, 
x>O on a fixed value C= -1.52 of the 
Jacobi integral in the Sun-Jupiter- 
Asteroid restricted circular problem. 
Each point gives the x, ý values when 
the orbit crosses the y=O axis with 
x>O; the x axis is aligned with the 
Sun-Jupiter vector and Jupiter is at 
x=l-p. The chaotic region (crosses) 
has been obtained by following the, 
same orbit for a few hundred synodic 
periods. 
(Reproduced from Milani & Nobili, 1985). 

of Sun-Jupiter-Asteroid. A symmetric periodic orbit which closes after 

one synodic period is represented by a single point on the x-axis. If 

the mapping M implies the point-is elliptic, then the corresponding 

periodic orbit is stable. This is observed when a starting point near an 

elliptic point is mapped onto a closed (invariant) curve around the elliptic 

point. As the starting point is moved further away from the elliptic point 

the invariant curve breaks up into a series of islands which gradually 

shrink into a set of invariant points, corresponding to a periodic orbit 

of longer period mT, where T is the period of the elliptic point and m 

is the number of island points. Each stable island point may in turn have 

invariant curves around it and so on. 

There are also regions where stable periodic orbits do not exist. 

In these chwtic regions a point on the surface of section is mapped 

to other points within a certain region but in a random manner (Figure 

1.8). It is clearly seen from this figure that the surface of section 

may be. divided into regions of chao'tic (unstable) motion and regions 

where invariant curves may be found around stable elliptic points. 

Henon (1966) describes-a method for finding the extent of the 

"region of curves" around elliptic points, requiring numerical inte- 

gration of the variational equations. There is a further problem in that 
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the boundary between stability and instability is not clearly defined. 

Markellos (1974b) points out that, due to the set of rational numbers 

being dense in the set of real numbers, chains of islands lie arbi- 

trarily close to any invariant curves. This guarantees the existence 

of invariant points of the mapping Mn where n may be as large as 

we please. In other words, regions of invariant curves correspond to 

regions of chains of islands. He describes an alternative method of 

finding these regions by examining regions where branching (bifurcations) 

of periodic orbits occur, resulting in new families of higher period. 

(Contopoulos and Pinotsis (1984) discuss infinite sequences of 

bifurcations in the restricted three-body problem). 

The circular restricted three-body problem is an example of a 

dynamical system of two degrees of freedom. When the dynamical system 

has three (or more) degrees of freedom, the difficulties in using 

periodic orbits are greater. New concepts such as inverse bifur- 

cations and complex instability are introduced and surfaces of sectioný-. --- 

occur in three (or more) dimensions. (See ContopoUlos, 1983 b, c). 

Because the stability analysis described here requires the system 

of equations to be linearised we must neglect the higher order terms. 

If the linearised system is unstable, this implies that the original 

system is also unstable. However a stable linearised system does not 

imply that the original system is stable. This is a considerable 

drawback when trying to consider long term stability except where 

resonances are involved. 
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. 
Before leaving this section it is worth noting one' result by Henon 

(1970). In the circular re_stricted three-body problem, on examining 

the zero velocity curves, a Hill stability examination implies that 

retrograde particle orbits should be stable for a smaller range of 

30 

initial conditions than direct orbits. By examining regions of invariant 

curves, HLon concluded that retrograde orbits were stable for a larger 

range of initial conditions than direct orbits. Chapters 3-6 of the work 

presented here are concerned with verifying a similar result for the 

general three-body-problem. 

I. A Commensurabili ties 

In Section 
-1.1, examples within the Solar System of commensurabili ties 

in mean motion were given. When two bodies orbit another more massive 

body, they are said to be commensurable if the ratio of their mean 

motions approximates to a rational number m/n where m and n are 

integers. Because rational numbers are dense in the set of real numbers, 

any two bodies can be defined as commensurable to arbitrary precision by 

taking m and n large enough. In general however when we refer to a 

commensurable system we may take. it that m and n are reasonably 

small 10) 

The importance of commens urabili ties may be judged in the light of 

general perturbation theory (Plummer, 1918). The motion of a body in 

the presence of other bodies may be derived from the Lagrange planetary 

equations wbich make reference to a quantity called the disturbing 

function (see Section 1.5). This function is generally made up of an 

infinite series of periodic terms, each term involving a linear combination 
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of the fundamental frequencies of the system. In order to solve the 

planetary equations it is necessary to integrate these terms, whereupon 

the linear combinations of frequencies appear as divisors in each term. 

A commensurable system may render some of these divisors very small, 

hence magnifying the effect of these terms on the motion of the bodies. 

It may be shown that the principal effect of a near-commensurability will 

be observed in perturbations of the mean longitude. (eg. Roy, 1979). 

As was mentioned in Section 1.1, the -number of commens urabi li ties 

observed in the Solar System is-significantly greater than expected by 

chance (Roy and Ovenden, 1954,1955). Commensurabilities Often manifest 

themselves in the appearance of stable resonant behaviour, where the 

conjunction line of two satellites orbiting a planet librates about a 

specific direction, often the apse line of one of the satellites. 

A quantity 0 may be defined which is a linear combination of mean, 

longitudes X and longitudes of pericentre @. One of the best known 

examples is that of Neptune and Pluto where 0= 3X - 2; k - Uj PNP 

oscillates about 180 0 with an amplitude of It, 80 0 and a period of 19440 

years (Cohen et al., 1967). In the case of the Saturnian satellites 

Enceladus and Dione, 0= 2X X-@ oscillates about 00 with an DEE 

amplitude of 1.50. 

Goldreich (1965) proposed that tidal forces between planets and 

satellites could stabilise such resonant systems. Due to tidal friction, 

angular momentum from the spinning planet is transferred to the two 

satellites in the form of orbital angular momentum causing their semi- 

major axes to increase. The inner satellite spins outwards faster. In 

fhis way the system may evolve from a non-commensurable state to a commensurab] 
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state. Having reached -that state, the angular momentum is shared between 

the satellites in such a manner as to maintain the. commensurability. 

This assumes that the gravitational interaction between the satellites 

is strong enough. The method for stabilising the resonance may be 

illustrated by the following example (see Figures 1.9 a, b). 

Consider two satellites orbiting planet P: SI the inner and S0 

the outer with periods T1 and T0 respectively, (T 
i<T0). Assume that 

tidal forces have caused the system to evolve into a resonant state. 

Suppose that a conjunction of the satellites occurs just prior to S0 

being at aphelion. After a further synodic period, the two satellites 

will be at conjunction once more. However angular momentum will have 

been transferred from S0 to Si$ due to the asymmetry 

This will result in T0 shortening and Ti lengthening. 

conjunction line will have drifted closer to the apse 

process will continue over successive synodic periods 

c)f the configuration. 

Hence the 

line of S This 
0 

until the line 

of conjunction crosses the apse line. When this happens the process 

is reversed. S i- gives up angular momentum to S0jT0 increases, Ti 

decreases and the line of conjunction begins to drift back towards 

the apse line once more. In this manner a critical argument may be 

observed. 

Another way in which commensurable behaviour is manifested is the 

Laplacian resonance between three satellites. The most famous example 

is that of the Galilean satellites Io, Europa and Ganymede where 

- 3X + 2X ='1800. This system has been studied by many workers. IEG 

For example, the stability of periodic orbits in the vicinity of the 

real solution hasý been examine d, (Wiesel, 1980). A less well known 

example of a Laplacian resonance can be found in the three Uranian 
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A, PHELIOI, l OF OUTER WELLITE 
I 

LINE OF COMISUNCTION 

Figure 1.9(a): If two satellites are in resonance, and their co njunction 
occurs before reaching the aphelion of the outer satellite, 
angular momentum is transferred from the outer to the inner 
body. 

. 
APHELION OF OuTEP SATELLITE 

UNE OF 
CONTUNCTIOt4 

DRIFTS 

Figure 1.9(b): Transfer of angular momentum from the outer to the inner 
body causes the period of the outer to shorten and the 
inner to lengthen. Therefore, the line of conjunction 
drifts towards the apse line. After crossing the apse 
line, the flow of angular momentum is reversed. The 
drift of the line of conjunction is slowed down, halted 
and reversed. 
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satellites Miranda, Ariel and Umbriel, (see Lazzaro, Ferraz-Mello and 

Veillet, 1984). 

It seems certain that tidal effects are responsible for the 

evolution of many satellite orbits. It is also likely that they are 

responsiblefor stabilising some satellite systems in commensurabilities. 

TIdal effects are too small to have an effect on planetary orbits, 

, Within the Solar System as it is presently arranged. During planetary 

formation, such effects were greater and may account for some of the 

resonances observed today (eg. Jupiter-Saturn is in a 5: 2 near- 

commensurability). 

1.5 General Perturbations-and KAM Theory 

This section is concerned with the study of Laplace's definition 

of stability by the use of general perturbations and Kolmogorov-Arnol'd- 

Moser (KAM) theory. Laplace's definition of stability in a n-body 

dynamical system requires that no collisi ons take place and no bodies 

escape the system. 

This simple, qualitative definition can be applied to the Sun and 

major planets of the Solar System as well as a host of satellite systems. 

In the case of the Solar System, the only planet that does not come 

under the scope of Laplace's definition is of course Pluto. All the 

other planetary orbits are well spaced and non-crossing (recall Figure 

1.1). The question then arises: will the status quo be maintained or 

will some orbits evolve so as to cross others? 

Laplace himself made one of the first attempts to answer this 

question, by solving the Lagrange planetary equations (mentioned in 
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Section 1.4). They describe the rate of change of a set of orbital 

elements when that orbit is perturbed, these perturbations being 

characterised by the disturbirg fuwtion (It should b_e noted that 

the Lagrange planetary equations hold for many different classes of 

perturbations. Only the form of the disturbing function will alter). 

Laplace found that the first order solution contained no secular 

terms in the expressions which yield the changes in the semi- 

major axes. The existence of secular terms would imply that the semi- 

major axes change linearly with time. This result therefore implies 

that each planet is restricted to an annulus containing its present 

orbit. The size of the periodic variations in the semi-major axes 

govern the widths of the annuli. Laplace demonstrated that the planetary 

annuli do not cross and are of small width in comparison to the orbits' 

mutual separations. He concluded that. to-first order, -collisions. and 

escapes were impossible. 

In later years the second order theory was-studied-by Po-issbn and 

the third order by many ot her-s. -- At present the state of the problem 

is that, if expanded in a particular way, the theory shows no secular 

terms in the changes in semi-major axis to any order (Message, 1978). 

It should be pointed out that these results require that only point-mass 

Newtonian gravitational forces act on the bodies. 

Laplace's approach was generalised by Newcomb (1876) who showed 

that the n-body problem admitted purely periodic solutions whose only 

secular terms arose in the angular variables. This assumed that the 

central mass was large compared to the others and that the others moved 

in near circular, coplanar orbits about the central mass. A few years 

later, Poincarý showed that the result ing trigonometrical series were in 



36 

1.5 

general divergent, thus ruling out this approach for studying the long- 

term stability of the. Solar System. 

The interest-in perturbation theories was revived in the middle 

of this century, Principally by Kolmogorov (1954)? followed by Arnol'd 

(1963) and Moser (1973). In their work (now known as KAM theory), 

they gave conditions under which the approach used by Laplace, Lagrange 

and Poisson could give rise to convergent series. With certain 

mathematical constraints, convergent series arise if: 

(i) the perturbations within the system are sufficiently small. 

(ii) the ratios of the natural frequencies of the. system are 

poorly approximated by rational numbers. 

Although KAM theory can be usefully employed for studying satellite 

orbits, it is unfortunately not applicable to the study of the stability 

of the Solar System. The second condition is satisfied except-in cases 

of high resonance (not found amongst the planets). The first condition 

is not satisfied because the masses of the planets are too large in 

comparison to that of the Sun. It should be pointed out however that 

the limits on perturbations are lower bounds only. It may be that the 

KAM theory is valid for a larger range of perturbations which encompass 

those found between the planets. Another drawback is the fact that 

there exist solutions to the differential equations which fail the 

second condition of irrationality and are unstable, but exist arbitrarily 

close to well behaved stable solutions. It may turn out therefore that 

the KAM theory, while attractive in principle, is of little use in 

deciding the stability of the Solar System. 
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1.6 Special Perturbation Methods 

We saw in the previous section, that general perturbations produce 

an elegant method for solving the equations of motion of a dynamical 

system. Unfortunately these analytical methods are often unusable in 

practice, due to s. uch problems as small divisors and the need to go to 

high orders to achieve accuracy. 

The alternative is to use special perturbation methods to solve 

the equations of motion by a numerical algorithm. Given the positions 

and velocities of the bodies at a particular epoch, it is possible to 

compute the displacements a short time later due to the forces each 

body exerts. Using these new updated positions and velocities, the 

procedure may be repeated many times in a step-by-step manner until 

numerical errors accumulate so much as to render any positions hopelessly 

inaccurate. 

In choosing a numerical procedure for solving the equations of 

motion it is necessary to weigh carefully all factors before deciding. 

These factors may be grouped as follows: 

(a) Orbit Type. 
_ 

Is the orbit in question near circular, highly 

elliptical or hyperbolic? Could it evolve drastically during the 

period of study? 

(b) Operational Requirements. For how long is the integration 

to last? Is one long computation better than many smaller ones with 

different initial conditions? What accuracy requirements need to be 

imposed? 

(c) Equations of Motion. Are they formulated as first-order or 

second-order differential equations? 
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(d) Numerical'Algorith ý Which is preferable: a single-step 

or a multi-step method; a Cowell-type method'or an Encke-type method? 

(These terms are explained below). 

(e) Computing'fadilities'. How sophisticated are the computing 

facilities at your'disposal? (Do you have your own desk-top vector 

processor, or a pencil, notepad and your fingers? )- 
-How 

fast and how 

accurate are they? How much memory is required? How expensive 

is it? 

Most of these questions can. only be answered in the light of a 

particular problem. However it is worth considering two factors in 

more detail: accuracy and the choice of algorithm. 

There are many factors which affect the accuracy of the results 

at the end of a computation. Some examples of sources of error-are: 

W truncation of infinite series to a finite number of terms. 

The error is the remainder at each step and may be negligible if enough 

terms are retained. This assumes that the series converges! 

round off error. A computer holds only a finite number of 

digits for each number. Any arithmetic operation is rounded to that 

number of significant figures. Round off error is always present, but 

may be reduced by increasing the number of significant figures. 

(ii-i) imperfect convergence. While performing any iteration, 

the convergence after a finite number of steps is not complete but can 

be made negligibly small. 

(iv) the physical model. Relevant physical effects may be omitted 

from-the theory. The initial conditions and masses may be in error. 

(v) theoretical instability. Two nearby orbits may be in a region of 

chaos (Section 1.3) and diverge exponentially. 
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All these ef fects combine to cause inaccuracies which accumulate with 

each step of the integration. It-is never clear how the various sources 

of error i nteract with each other. Workers usually minimise the errors 

as much-as possible. They'need'to be aware however that an increase 

in the accuracy of an integration procedure is usually accompanied by 

a decrease in speed. 

Numerical algorithms may be divided ii1to single-step and multi- 

step methods. Multi-step methods require that the positions and 

velocities of the bodies from several previous steps be used to calculate 

the next step. Singl e-step methodsrequire only the last known positions 

and velocities. In general multi-step methods are faster, mor e stable 

and simpler to implement. Unfortunately they need a special procedure 

for generating the first few steps before the main integrator can start. 

The single-step method is preferred if fre-quent changes in the step 

size are necessary, for example when dealing with highly eccentric 

orbits or near collisions. 

The other main classification is between Cowell-type and Encke-type 

methods. Cowell-type methods generally refer to methods where no 

knowledge of the orbital behaviour is assumed. Encke-type methods 

measure the differences between a real orbit and a fixed reference orbit 

(usually taken to be a Keplerian ellipse). At some epoch, when the 

differences become too great, the reference orbit is changed to that 

g iven by the present osculating elements of the real orbit. This 

process is called rectification. The advantages of the Encke methods 

over the Cowell methods are greater accuracy and a larger step size if 

the differences remain small. If the differences grow fast so that 

frequent rectification is required, a Cowell method may be preferable. 
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Also the Cowell methods are easier to implement and of wider application. 

One final method worth mentioning is that of numerically inte- 

grating the Lagrange planetary equations. This may be done on a step-by- 

step basis as for other integration methods. Alternatively, the 

osculating elements at the start are substituted into the equations 

which are integrated over an extended period. This provides the first 

order perturbations which may be substituted into the equations. The 

procedure is then repeated to obtain the second order perturbations '- 

and so on. This is a strict perturbation method of wide applicability. 

A larger step size may be used than is possible with rectangular 

coordinates. Unfortunately the method is unstable when the eccentricity 

of the orbit tends to zero or unity, or when the inclination tends to zero 

or 7 Various changes of variable can be used to eliminate these 

problems, but this method is still difficult to implement. 

There are many different numerical integration methods (Isaacson 

and Keller, 1966) and every worker has his/her favourite, - which he/she 

feels is most appropriate for a particular problem. Fox (1982) provides 

a useful critique of some of the more popular methods. 

At this point, it is worth discussing the use of Liapunov 

characteristic exponents in determining orbital stability from the 

results of a numerical integration. We wish to investigate the stability 

of the orbit described by the points P 
0$ 

P11 P2.... in Fi 
. 
gure 1.10. 

At time t=0, a body is at position P0 in its orbit. 

At time t=TP it will be at Pl; at t= 2T it will be at P2 
, etc. 

if the body is displaced from P0 by an amount d, it will travel to a 

point P, after time T which will be displaced from P, by an amount d,. 
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PO 

CL 

i/N\--., ý - Pý 

I 

Numerical computation of a Liapunov characteristic 
exponent. 

Similarly, if a body is displaced from PI by an'amount d, ''the - displacement 

at t 2T , from P 2' will be d2, and so on. The Liapunov characteristic 

exponent may be presented in the form 

liln 
1nd. 
nT 

log d1 

If L< Op the orbit is considered to be asympto tically stabZe . 

If L=0, the orbit is described as quasi-periodic. If L>0, the 

orbit is chaotic (unstable). Although this stability criterion is 

-widely applicable and gives useful information, -it is sometimes difficult 

to decide the value of L in the limit. 



42 

1.6 

We now-consider some of the more noteable special perturbation 

studies concentrating on those investigating the stability ofthe Solar 

System. Three studies of the orbits of the five outer planets have 

been made by Cohen and Hubbard (1965), and Cohen, Hubbard and 

Oesterwinter (1967,1972). The first integration spanned 120,000 years 

and showed the existence of a critical argument between Neptune and 

Pluto which prevents a close approach of less than 18 astronomical, units 

(Section 1.4). The second study refined these results using improved 

elements for Pluto. 

Their last study'spanned 500,000 years forward and backwards from 

epoch Jan. 6.0 1941. They found no evidence of any secular trends in 

the elements a, e, i for any of the planets (Figure 1,11). The evidence 

was inconclusive for Pluto, which showed variations in the eleuents 

with a period of 19500 years. It was possible that the eccentricity 

and inclination possessed secular trends. 

Williams and Benson (1971) performed a numerical integration of 
6 Pluto over a period of 4.5 x 1O. -years--t6 lbbk--for-secu-lar-or resonant 

behaviour. Assuming that the other four (outer) planets'-orbits were 

known, they eliminated the short period terms in Pluto's orbit, using 

the method of Gauss secular variations. They found that the argument 

of perihelion librates about 90 0 with an amplitude of 24 0 in a period 

of 3.995 x-10 
6 

years. 

More recently , Kinoshita and Nakai (1984) integrated the equations 

of motion for the outer planets over a period of 5x 10 6 
years. These 

results have been analysed by Milani and Nobili (1984) who showed that 

the angle between the perihelia of Jupiter and Saturn librate around 

1800 with an amplitude of 700 and a period of 1.1 x 10 6 
years. 
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Most recently, a project is in progress to study the behaviour of - 

the outer planets over a period of 10 8 
yea is, (Roy, 1983) Studies 

involving all nine planets span a much smaller time, the longest being 

4400 years OPL DE102). This is due primarily to the increase in the 

number of bodies making the integration time per step longer. It is also 

due to the greater speed of the inner bodies requiring a small step size 

with the possible inclusion of relativistic effects. 

Finally we consider some studies of fictitious systems. Nacozy 

(1977) has studied the stability of the Sun. -Jupiter -Saturn system by 

integrating the equations of motion with augmented Jupiter and Saturn 

masses. He found that if the masses of the planets exceeded their real 

values by a factor of around thirty, then secular trends appeared in 

the semi-major axes and eccentricities. He implied that the real masses, 

being much smaller, should give rise to stable orbits. 

Harrington (1972,1977) has considered several classes of hierarchical 

three-body systems (one body widely separated from the other two, as 

described in Chapter 2). Consider F igure 1.12 showing three bodies 

sip S 2' S3 with masses m,, m 2' m3 reýspectively. Harrington studied: 

(a) triple stellar systems, (m 
IM2 "U M3 

(b) inferior planets in double star sys tems (m 
2 << M1 ru M3 

(c) superior planets in double star systems (m 
3 << M1 "U M2). 

For class (a), Harrington found that the s tability varied depending on- 

the rotation of the third body with respect to the other two, i. e. direct 

(arrow 1 in Figure 1.12) or retrograde (arrow 2). The stability also 

varied with the ratio of the pericentre distance of the outer orbit to 

the semi-major axis of the inner orbit (AC: BC in Figure 1.12). 
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sips 2's3 
denote stars. 

C is the mass-centre of 

the close binary. 

A is the position of 

the pericentre of S3 

Figure 1.12--. 

In the case of equal mass triple stellar systems, it was found that 

this ratio must exceed 3.5 for direct systems and 2.75 for retrograde 

systems to ensure that no irreparable changes occur to the overall 

structure of the systems. 

For inferior and superior planets (b), (c) in double star systems, 

stability seemed assured if the ratio AC: BC exceeded a value between 

3 and 4, regardless of rotational sense. Harrington's results are extremely 

relevant to the-following work and are discussed again in Chapter 6. 

Amuch more thorough study of direct hierarchical three-body systems 

has been performed by Walker and Roy, using empirical stability parameters. 

Their formulation of the three-body problem as well as many of their 

results form the basis for the work presented in subsequent chapters. 

Their work is therefore reviewed in more detail within Chapters 2,4 and 5. 

1.7 Summary 

The purpose of this chapter has been to introduce various definitions 
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of stability and comment on their usefulness. Many of these definitions 

are relevant to the work presented in subsequent chapters. Examples 

of 
-their 

applications have mostly been taken from the Solar System. 

Many questions were asked in Section 1.1 concerning the stability of 

bodies in the Solar System. Few if any can be answered with much 

confidence given the studies to date. The main problem is that, the 

conclusions drawn from a particular study are only as valid as the 

physical model and stability definition used. For example, if the model 

uses point-mass bodies and Newtonian gravity, critical effects due to 

tidal interactions (Section 1.4) and general relativity may be missed, 

(there is a discrepancy between classical theory and observation in the 

precession rate of Mercury's apse which may be remedied by a rela- 

tivistic correction). These effects may not be negligible over the age 

of the Solar System 5x 10 9 
years). 

Given that it is impossible to say conclusively whether a real 

system is stable or not, another question may be asked: how likely is 

it, that the system will become unstable during a given length of time? 

Unless we are content to use phrases such as "extremely", "possible", 

or "not very", the help of probability and statistical theory should 

be sought, to give a quantitative estimate. With the advent of high 

speed computers, it is now possible to generate large amounts of data 

by numerical integration. For the first time, the worker has the 

opportunity to gather enough results in his lifetime to make a thorough 

statistical examination. 

In subsequent chapters, it is shown how simple statistical tools 

can be applied to the results of numerical integration experiments. 

Quantitative predictions of stability lifetimes in three-body systems 



48 

1.7 

are obtained, and a method for observing resonances is described. 

The work presented here concentrates on the stability of 

hierarchica 1 systems. The definitions of a hierarchicat SystdM and 

hierarchicaZ stabitity as given by Walker and Roy are presented in 

Chapter 2. The definition of hierarchical stability is Laplace-like 

in its qualitative nature; nevertheless quantitative criteria can be 

derived from it. 

Hill-type stability (Section 1.2) can be applied to the general 

three-body problem (Zare, 1976,1977; Marchal and Saari, 1975) and 

has been used in the study of real and fictitious systems (Szebehely, 

1977; Szebehely and McKenzie, 1977 a, b; Szebehely and Zare, 1977). 

This definition, reviewed in Chapter 3, forms one of the conditions for 

the more stringent definition of hierarchical stability. 

In Chapters 4 and 5, special perturbation methods are used'to study 

general three-body systems. All the systems are fictitious, coplanar 

and maybe direct or retrograde. Statistical techniques are used to 

analyse these results. Particular attention is paid to the influence 

of commensurabilities (Section 1.4). 

In Chapter 6, the results. for the fictitious systems are compared 

with real systems and with the results -of Harrington (Section 1.6). 

Harrington showed that retrograde orbits were generally more stable than 

the corresponding direct orbits. The range of parameters that he inves- 

tigated was rather small and he performed fewer experiments than are 

carried out here. The results of this work confirm his findings and mirror 

the results of Hýnon who found similar results for the restricted three- 

body problem, (Section 1.3). For the restricted a-nd general problems, 

the numerical results contradict the results of a Hill stability analysis, 

which shows that retrograde systems are less stable than direct systems. 
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Finally, in Chapter 79* 6ommensurabilities and mirror configurations 

for four and more body systems are examined. -In planetary systems, a 

statistical analysis of the numbers of syzygies (alignments) of the 

bodies in a given . time, leads to the discovery of resonances. The 

theory for this method is developed and its application to the results 

of numerical experiments is discussed.. 



CHAPTER 2 

EMPIRICAL STABILITY PARAMETERS IN HIERARCHICAL 

DYNAMICAL SYSTEMS 

2.1 Introduction 

2.2 Hierarchical Systems and their Stability 

2.3 Jacobian Coordinates 

2.4 Expansion of the Force Function of a Hierarchical 

n-Body Dynamical System 

2.5 Empirical Stability Parameters-for-Three-ýBody Systems 

2.6 Summary 
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2.1 Introduction 

Celestial mechanics is concerned with determining the relative 

motion of n bodies that are gravitationally interacting in three- 

dimensional space. In general, the problems encountered are insoluble 

by purely analytical methods. It is usually necessary to make certain 

simplifying assumptions. The basic assumptions expressed in this 

chapter will be used throughout all the chapters in this thesis. 

The first simplification that is made is to treat all bodies 

according to Newton's Law of Gravity and neglect any relativistic 

effects. The accuracy of this assumption will be governed by the speed 

of the bodies in question as well as by the duration of study of the 

system. 

The second simplification is that only point masses are considered. 

This means that we will neglect any effects due to the finite size, 

irregularity of shape or non-uniformity in internal distribution of mass 

of the bodies. If the bodies have spherically symmetric mass distri- 

butions then they-may be exactly represented by point masses. This 

is a reasonable assumption for most bodies in the Solar System with 

the exception of some satellites and asteroids. 

Thirdly, 
-we will be concerned only with two-dimensional motion. 

This assumption of coplanarity is reasonable for the Solar System and 

most satellite systems. The most notable exceptions to this rule, are 

Pluto, (inclined at 17 0 to the ecliptic) and some of the Jovian satellites. 

The fourth assumption is that the system is hierarchical in structure. 

A full description of this concept is given in Section 2.2 as well as a 

definition of hierarchical stability that will be used throughout this 

work. 
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In Section 2.3, Jacobian coordinates are discussed. The derivation 

of the equations of motion for n bodies in Jacobian coordinates is given 

in Section 2.4. The particular case of three bodies is d_iscussed in 

more detail in Section 2.5. 

The contents of this thesis rely heavily on definitions and results 

taken from the work of I. W. Walker and A. E. Roy. In this chapter, 

some of the relevant concepts are explained. More detailed explanations 

are given in Walker (1980) and a summary is available in Roy (1979). 

Much oftheir work is explained in five papers by. them, written between 

1980 and 1983. In future these will be referred to as Walker and Roy 

1,11, Ills IV and V. 

2.2 Hierarchical Systems and their Stability 

A dynamical n-body system is described as hierarchical if, when 

described by a suitable coordinate system, the orbital radii may be 

ordered in ascending size and that order is maintained for a time 

interval at least as long as the longest orbital period in the system. 

As we shall see in the next section, a Jacobian coordinate system 

is preferred in dealing with hierarchical systems (Roy et al. (1985)). 

Evans (1968) described the hierarchical arrangement of systems 

by 11mobile diagrams", (Figures 2.1 (a)-(c)). Figure 2.1(a) shows a 

planetary system where each planet is successively further from the 

sun. Satellite systems around a planet can be characterised in the 

same way, and Figure 2.1(b) shows the arrangement when both planetary 

and satellite systems are given in the same diagram. Multiple star 

systems can take up very complex arrangements, depending on the number 
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1b) 

rý 
13 in a ri 

Triple 
C) 

Quodruple: Nerarchy 3 

Ojodrvple * hierarchy 2 

Figure 2.1 Evans mobile diagrams for (a) planets 
(b) planets and satellites and (c) multiple 
stellar systems. 

of bodies - (Figure 2.1(c)). Binary and triple systems can. be arranged 

in only one way. A quadruple system may be arranged in two distinct 
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ways. The simple hierarchy (3) is equivalent to the planetary hierarchy 

while the double binary hierarchy (2) has two binary systems orbiting 

a common centre of mass. 

Complex hierarchical arrangements may be broken down into their 

constituent simple hierarchies (i. e. hierarchies where the bodies are 

successively further away from the first (principal) body). In this 

case a "body" may refer to the centre of mass of a subsystem. A nested 

set of numbers can describe any hierarchy, by breaking it up into its 

constituent simple hierarchies, (Walker and Roy V). For example, the 

simple four-body system would be a 4-system, while the double binary 

would be a 4(2.2)-syste'm. The Solar System of Sun, planets and major 

satellites (54 bodies in all) is described as 
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54( 52(49(43(25(8(5(3,2), 3) 17) 18) . 6) 3) 2). 

The (3,2) system is the triplet of Sun-Mercury-Venus with the Earth- 

Moon binary. This 5-body system forms a binary with the Martian system 

(3 bodies). This 8-body system forms a binary with the Jov . ian system, 

and so on. 

In all future work, we shall restrict ourselves to examining only 

simple hierarchies and in particular, three-body hierarchical systems, 

where two of the bodies form a close binary relative to the third body. 

Walker and Roy III give the following definition of hierarchical 

stability. A hierarchical dynamical n-body system is held to be stable 

if, during an interval of time substantially longer than the periods 

of revolution of the bodies in the system: 

none of the bodies escapes from the system; 

(ii) the ordering of the sizes of the radius vectors that 

define the hierarchy remains unchanges; 

(iii) no irreversible changes occur in any orbit's size, shape 

or orientation to the invariable plane of the system. 

These conditions ensure that the perturbed binary orbits that make up 

the system, undergo no drastic changes. 

This is the definition of stability that will be used throughout 

the rest of this work and will be explained in more detail in Chapter 

4 when the numerical experiments will be discussed. 

2.3 Jacobian Coordinates 

The Jacobian coordinate system and its application to the general 
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n-body problem was introduced by Jacobi and Lagrange (Plummer, 1918). 

This coordinate system is particularly useful for hierarchical dynamical 

systems where we are interested in the separation of a body from the 

centre of mass of an adjacent subsystem. 

Consider an n-body system with masses ml, m 2ý1-mn' 
(see Figure 

2.2). With respect to an inertial reference frame (origin 0) the 

equations of motion are 

m=v1u (1) 

where UGnn 
mk Mt 

(2) EE 2 k=l ý--l r k. Z 
kik 

is the force function. 

M2 

0 

-Ir2 
M3 

- 

Figure 2.2 A particular case of the Jacobian coordiiiate system 
where n=4. (see text for definition of symbols used). 
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RI is the position vector Omý' 
I 

V. is the gradient operatormith respect to R. 
-1 

rr ,I RZ -R kýZ ýk Ili ýk 

is the gravitational constant, 

and a dot denotes differentiation with respect to time. 

Let us suppose that the bodies lie in a simple hierarchical 

arrangement. This means that successive bodies mi (i=2,..., n) lie at 

a greater distance than the previous (i-1) bodies, from the centre of 

mass of the U-1)-body subsystem. The vector connecting this centre 

of mass to m. is denoted by p. and is called the Jacobian radius vector. 

The p1sform the basis of the Jacobian coordinate system. It is now 

necessary to express the equations of motion in terms of the new 

coordinates 

The centreof mass of the first j masses has position vector R., 

where 

m--im,, R j Tj kh -k 
and 

i 

k-ýl Mk 

From the definition, 

p, =RI-R 

3-. e. 
1 

i-i 
ei = 

-i m i-i k=l mk 
-k 

(j=l,..., n) 

(j=l,..., n) 

(i=2,..., n) 

(i=2,..., n) 



2.3 
56 

We differentiate Equation (5) twice, multiply it by mi) and substitute 

Equation (1) in, to get 

M. i-l 
mU _2 EvU (i=2, ..., 

n) (6) 
M 

1-1 k=l -k 

Let ýi (Xi' Yi, Zi )S 
-Pi 

.= (ýil Tlif Ci in the inertial frame. 

The x-component of Equation (6) is therefore 

au M. 
au M. E. I (i=2j 

.... n) (7) 
ax 

IM 3--l k=l ax 
k 

From the x-component of Equation (5), we see that 

ac 0 if j<1 (j=2,..., n) 
n ax 

1 if (i=i,..., n) 

Mi if j>i 
M j-1 

Hence 

au n au 3ý. 

ax E 3E ax j=2 

= 
au n1 au 

Mi ac i+1 -1 i 

where we define 3U/aEl 0. Equation (7) becomes 

.. n M. i-I Du 1 au I ýU 
i=-----E- MmE 

3. i=i+l Mi-1 aE iM i-I k=l aE 
k 

mn mk DU 
+MEM ac 

(8) 
i7l. k=1 j=k+l j-1 i 

By changing the order, the double summation becomes 
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n mk ýu 
=m11 

-1 w J- 1 
mk EE 

Mi ag mZZ M2--1 k=l j=k+l i i-1 j=2 'm j-i j k=l 

m 1 DU E Mi-i ag mk 
1-1- j=i+i i k=l 

au 1 au 
+ M. 

i-1 j=2 j=i+i Mi-i ag j 

using Equation (4). Hence Equation (8) becomes 

au m 
-1 

i au i-Ml au 
m+ 

iM i-l j=2 Dý j k=l DE k 

Since DU/9ý 1= 

DU Du 
mi 

au 
+ m 

With similar results for the y and z-components, we have the equations 

of motion for n bodies in Jacobian coordinates, 

m1 :i. 
(i2,. . �n) 

(9) 

where V. now denotes the gradient operator with respect to P. 
3. All 

Equations (9) form a (6n-6) th 
order system. This is a reduction from 

the original 6n th 
order system, since we have . 

exchanged the inertial 

frame for one moving with the centre of mass of the system. 

In the next section we derive the force function U in terms of 

ratios pi/pý 
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2.4 Expansion of the Force FunctiOn of a Hierarchical n-Body 

Dynamicýl System. 

This section is a summary of work performed by Walker who describes 

it in much greater detail, (Walker, 1980). The notation of Section 2.3 

still applies. 

From Equation (2), U may be rewritten as 

n mk 
UGEm -t 

k=2 k=l rk 
(10) 

Thus it is requi red to find 1/r 
kY, 

in terms of the Jacobian radii. 

Using equation (3) twice with subscriptsj and j-1, we get 

M. 

R. - Rj -1 (R. - R. 
-3 mj -j -3-1 

Summing this over j from-k to k-l (k <k). yields 

M. 
RX_j -R --J- (R. 

-k-1 j=k mj 
-3 

Now 

ý. t - Rk = (Rt -i -1 
)-(R -k 't 

P-k ikk ýkk 
-1)+(ý- - -1) 

Thus, using equation (11) and defining p, = Os 

X-1 M. 
rEp (1 iý k<k: ý n) kZ = Ek - Ek -ý 

j=k mj -j 

(11) 

On constructing (r -r we obtain 
-kk* -kk 

+2M 
mj mh 

E 2a C+ 
rR ctjk ahp, Cjh kk lek kk px 

Cýk k+ j=k h=k jMh 

k- 1 M. 

+2E -2 cc. (C C( C 
-M jg jk kY, jk j-k 3 
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where 
p 

a ij p 

P. 
C 

1] pp 
(i < (13) 

Pi ýI Pi I 

Note that C 
1] 

is just the cosine of the angle between the i th 
and J 

th 

Jacobian radius vector. Note also that up to this point, there has 

been no assumptions made concerning any hierarchical structure. Now, 
_ 

however, it is desirable to apply a binomial expansion of the form 

+ X) 2 to Equation (12) and truncate the expression - after the second 

order in the als. In order for this to be a valid procedure, we must 

now impose a hierarchical structure on the system. The conditions are 

rkP. <1 
. pt 

a kk - 

Vk, k (k<k) 

These conditions will be satisfied for a simple hierarchy of the form 

given in Figure 2.2, with m1 ý', m 2' and the Jacobian radius vector 

increasing in size as we move out from m1 towards mn. With these 

assumptions, 

Er1- 
mh 2m 

amt Cjh 2k7 -j k -h 
kzp j=k b=k j mil 

c+Ecc32 C2Z + kg kt j=k m3 j£ k9, ik jZ) akZ k 

Mh 9, -j M. ZE -1 - 3ot cE cc 2 
=k 

mj Mh j9, cjg, 
J=k h j£ (1h2, Cj9, 

-Ch9.1- k£ kZ 
j=k Mi1 

3 
O(a 

k9- 
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Lemma I k-I R, -i 
E mk 

k9, c kk -E M. 
--I ac jt jz 0 Vk 2, . n. 

k=l p j=k M 

Lemma 2 RI-I 
m 

k-1 k-I 

k=l 
k 2 T 
k 

E 
j=k 

E 
h=k 

mj 
-1 m j 

mh 
a -jY. Fh ahk OC jk Chk c jh 

k-l 2 

j=k 
M. J-aj, Ri, a kk 

OC jk Ckk c jk pt 
E 

j=i 
M. 

a m j, P (c 
2 jk i 

V, Z =2,. .., 

where 

P (x) = -! (3x2-1) 

is the Legendre polynomial of order two. 

Proofs See Walker (1980). 

We substit 

Lemmas 1 and 2., 

n 

U=GE 
k=2 

ute Equation (14) 

to obtaýn, (afte 

mm+ 
- X-1 
Pf k=l 

into Equation (lo) and make use of 

ra little reduction) 

mk M k-l-a 2p (C +0 (a 3 

M 
kk 2 ky-) 

I 
kk 

(15) 

We use this expanded form of U to obtain the equations of motion in 

Jacobian coordinates. Thus, by Equation (9), noting the independence 

of the p's, 

i-l 
ki n 

G M3 V+ECP2 (C 
ki 

). +EY, iP2 
(C 

ik 
(16) 

Pi k=l 

(1 = 2,.., ri). 
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where 
ki Mk Mk-1 2 

-k 

m£ 3 
E zi F-. ct i£ 

11 

(1 < 

(17) 

(1 I<£ n) 

where we define M=0 and p, =0. 

On examining Equation (16), it is seen that the first term on the 

right hand side represents the undisturbed elliptic motion of the i 
th 

body about the mass-centre of the subsystem of masses m,,..., m i-l* The 

C terms provide a measure of the disturbance of this elliptic motion 

by the other masses. E 
ki denotes the disýurbance of the i th body by 

the k th (inferior) body, while c ki 
denotes the disturbance of the i 

th 

th body by the k (superior) body. These disturbances are normalized 

with respect to the central "two body" force. 

There are several important points to be made concerning the 

appropriateness of this particular expansion to Subsystems of the 

61 

Solar System. This is a series in powers of a -and assumes that a ij 

is mur-h less than 1, V ij) i<j, in order to give good convergence. 

Clearly, as any a approaches 1, some neglected terms become increasingly 

important and in fact may exceed some of the present terms. While this 

is not a problem for three-body satellite systems like Earth-Moon-Sun, 

it does present a problem for planetary systems, where the a's may be 

quite large. 

A second point,. following from the first is that the first summation 

ki in Equation (16), containing the c s, gives the disturbance on mi by 

the inner bodies. These are only the leading terms in the expansion and 

contain a2 The second summation, containing the cti s, gives the 
ki * 
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disturbance on mI by the outer bodies. These leading terms contain a3 ki 

Thus there may be neglected terms of order a 
3. in the first-summation 
ki 

which dominate over the leading terms in the second summation. 

Walker (1980) recognised these limitations and rederived the 

equations of motion for planetary systems. Thus the ot's were no longer 

assumed to be small, but m (the Sun) was assumed to be much larger 
I. 

than the other masses (planets). In a method similar to the one described 

here, he expanded the force function in powers of mi /mV to obtain 

[ 
.11+ 6ki S1. +n 

11 
GMV6 sf ipi 

k=l ki V-1+1 
ki 

where 
ki mk 2 (2 <k<i n) Cki 

m 
-1 (19) 

m3 
- ct (2 <i<k n) ki m it 

and 
. -M r s 

3. j 
Ea ii p 

r+2 
(C 

ij 
(20) 

r=O 

where PrW is the Legendre polynomial of order r. 

Comparing Equations (17) with Equations (19), we see that, correct to 

the first order in the masses, 

6 ki 
=E 

ki 
and 6 

zi ý 'ki (2 <k<i<P, -ý n) (kýi) (iýk) 

using the approximation MI ý-- MIS Vi = 1, 
. 
..., n, in Equations(17). 

In addition, if we neglect all but the lowest powers of a.. ratios, 
-then ij 

Sf. =P (C ), Vij -ahd Equation (18) reduces to Equation (16) correct 
Ij 2 ij 

to lst order in the masses. 
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2.5 Empirical-Stability Parameters for Three-Body Systems 

The major part of this work will be concerned with the three-body 

problem. It is therefore useful to consider Equations (16) and (17) 

for n=3 (see Figure 2.3). ' 

ms 

I= a 

rn1, 
/ 

/ 

R ".. 

/ 
/ 

0 

~. 2 

Figure 2.3 Definitions of quantities in the Jacobian Coordinate 
System in the case n=3. 

They become 

, 
ý' 2 GM 2 

v 
-62 

( 
1+ F32 P2 (C23) 

[P 
(21) 

,, . 2 

GM 3 
[ 

.1 
(1 

+ C23 V 3p P2 (C23) (22) 
,, 3 

where 
23 m m2 2 

a (23) 
(M 23 

32 m 
3 

CL 3 
+m 23 

(24) 
I 2 
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Walker remarks that the E 
23 

term agrees with the term derived by Brown. 

in his lunar theory (1896). 

C 
23 is a measure of the disturbance of the third body by the other 

two (in a close binary). This disturbance is due to the fact that m1 and 

m are displaced from the-centre of mass and have a separation p if 2 2' 

the separationdecreases, a 23 tends to zero as does. c 
23 

and the motion of 

m3 tends to perfect Keplerian motion about the centre of mass of m1 and m 2' 

E 32 measures the disturbance on the binary (m 
l, m2 ) by the outer 

mass m 3* If m3 recedes from, the binary, i. e. P3 increases, then a 23 
(and 

C) tend to zero. The motion of the inner binary becomes Keplerian.. 32 
- It is seen that for c 

23 
3C 32 << 1, we are dealing with two approxi- 

mately Keplerian orbits. We can assign a set of six osculating elements 

to each orbit, viz: - 

a= semi-major axis of the ellipse 

e= eccentricity of the ellipse 

i= inclination of the orbital plane to the invariable 

plane of the system 

0= longitude of the ascending node of the orbital plane 

w= argument of pericentre 

T= the time of pericentre passage. 

Let (a 
2' e 2' '2' f22' W2 ,T2) describe the orbit of m2 about m, and 

(a3-, e 3' i3l 0 3' w 3' T3) describe the orbit of m3 about M 2' the mass-centre 

of mI and m 2' These elements are defined at any instant by the relative 

positions and velocities of the three bodies, and are linked to p2 and P3 

by the following equation, 
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ae2 
P2 

2 

+e2 cos f2 

where the position of m in its orbit is given by the true anomaly f 
22 

There is a similar equation for p 3' 

If the dist . 
urbances are small, i. e. small E 

23 
,C 32' then any periodic 

changes in the elemen ts should be small, and any secular changes- should 

take place over long periods of time. On the other hand, if either of 

the E's a ppr oach unity, then the relevant perturbation is of a 

comparable size to the Keplerian orbit and we should expect violent 

changes in the orbital elements. 

2.6 Summary 

In this chapter$ the concept of a hierarchical dynamical system 

has been introduced. 
. -We have seen that Jacobian coordinates are ideally 

suited to modelling simple hierarchical structure. By concentrating 

on simple hierarchies, we exclude the possibility of studying non- 

hierarchical systems such as open clusters, and complex hierarchical 

systems (eg. Castor). In the Solar System, however, the orbits of 

satellites about-planets, and planets about the Sun, can be considered 

as simple hierarchical systems. 

Two expansions-of the force function have been performed; one 

when a ij << 1, Vi, j=2,..., n; the other for mI >> M 2' ... 'm n 
In each 

ki 
case the leading terms in the series are factored by c and cjýi as 

given in Equations (1.7). - ' In most cases, they give a reasonable 

estimate of the perturbations compared to the central "two-body" forces 

acting on the Jacobian radius vectors. 
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A definition of hierarchical-stability was given in Section 2.2. 

It is -the aim in Chapters 3,4,5 and 6 to study the stability of 

hierarchical three-body systems, principally by examining the orbital 

elements that describe the near-Keplerian motion of the two binary 

systems, (ml, m2) and (m 
1+m2, m3 ). 

Many fictitious three-body systems will be examined. They will be 

grouped not by equal m asses, but by equal e-values, for the following 

reasons. A system-with large masses is not necessarily less stable than 

a system with smaller masses, provided one of the masses is sufficiently 

far from the other two. It is the combination of masses and their sepa- 

rations which will determine if a system is-stable for all time or if 

this particular hierarchical structure will only last for a short time 

before changing irreparably. The c parameters give an idea of the size 

of the perturbations on - one of 
! 
the binary - systems compared to the 

central two-body gravitational force. We have already seen that there may 

be neglected terms in the expansions "which may, for some systems, be 

comparable with the leading terms, or even dominate them. However, 

we have also seen that the same C-terms occur in both expansions and 

this would seem to indicate their usefulness in describing perturbations 

of all simple hierarchical systems. Systems with common relative 

perturbations intuitively seem more likely to exhibit the same behaviour 

than systems with common masses (or mass ratios). 

For these reasons, we will examine the stability of three-body 

systems grouped by equal c: -Ivalues. Because it would take too long 

to examine all possible initial conditions for three-body systems, the 

examination is restricted to coplanar, initially circular systems that 
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always start from conjunction of the three bodies. This limits the 

choos'ing of initial parameters to four (c 23 
C 32' C1231 '3 ), having chosen 

the units of mass, length and time. We set i2 ý- 00 and allow i 
_3 

ý00 

0 or 180 corresponding to direct and retrograde systems respectively. 

In Chapters 4,5 and 6 we proceed to investigate and compare the 

stability of these direct and retrograde systems by means of-numerical 

integration experiments and statistical data reduction. In the next 

chapter, we review some of the work performed using analytical techniques 

for determining sufficient conditions for stability. 



CHAPTER 

SUFFICIENT CONDITIONS FOR THE STABILITY OF 

HIERARCHICAL THREE-BODY SYSTEMS 

3.1 Introduction 

3. -2 A Review of Work by Marchal and Saari 

3.3 Determination of Critical Surfaces 

3.4 Discussion 
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3.1 Introduction 

A definition of hierarchical stability was given in Section 2.2, 

which is now applied to the general coplanar hierarchical three-body 

problem. The condition that none of the three bodies escapes is obviously 

essential for the maintenance of any three-body system. The condition 

that requires the preservation of the shape and orientation of the orbits 

is without doubt the most difficult to investigate by numerical experiments 

and will be discussed at greater length in Chapters 4 and 5. The third 

condition requires that the ordering of the sizes of p2 and p3 is 

unchanged, (i. e. a 23 < 1). This is the condition for preserving the 

particular hierarchical structure of the system and is the subject of this 

chapter. 

In the three-body problem, sufficient conditions can be derived 

which guarantee the preservation of a hierarchy for all subsequent times, 

by examining the topology of the regions of forbidden motion of the three 

bodies. This is analogous to the Hill stability criterion for the 

restricted three-body problem (Section 1.2). The treatment given here 

is by Marchal and Saari (Section 3.2). It holds for the non-coplanar 

three-body problem and indicates with some clarity why the conditions 

given are sufficient but not necessary for hierarchical preservation. 

Zare and Szebehely derived similar results for the coplanar three-body 

problem. 

We saw in Chapter 2, that for a system with prescribed masses, the 

perturbations on the orbits decrease as a23 decreases. Thus, in all 

likelihood, a system will be more stable, the smaller we make a 23' 

Indeed we may. find the critical value of a 23' called acp below which a 

system will have its hierarchical structure preserved for all time. 

In Section 2.4 the method for determining ac as a function of e2j C32 is 
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described and results for direct and retrograde coplanar three-body 

systems are given. 

3.2 A Review of Work by Marchal and Saari 

The theory presented here is described in much greater detail by 

Marchal and Saari (1975) and Marchal (1985). In the circular restricted 

three-body problem, there exist regions of forbidden motion bounded by 

the zero velocity curves which are determined by the value of the Jacobi 

constant, (Section 1-2). If these regions enclose two of the bodies with 

the third outside, then the hierarchical nature is preserved for all time. 

There is an analogous result for the general three-body problem. 

The constant of angular momentum-c, and the total energy of the 

system h, determine manifolds in the phase space of the system. By 

projecting these manifolds into the configuration space we find there are 

similar regions of forbidden motion. As in the restricted case, for 

particular values of c and h, these regions may enclose the inner binary 

for all time, thus preserving thehierarchy, 

Consider a three-body system with masses m1 'm 2m3' We will use 

the notation of Chapter 2, but in addition define the following quantities, 

Mm1+m2+m3 (1) 

M* M1m2+m1m3+m2m3 (2) 

a- GM*/2h (3) 

p Mc2/G(M*)2. 

a and p are respectively the semi-major axis and the semi-latus rectum 

of the elliptic orbit for two of the bodies when the third has negligible 

mass (i. e. the restricted three-body problem). Define the mean quadratic 
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distance* a and the mean harmonic distance-v by 

M*a2 = m. m r2 +mm r2 +mm r2 (5) 
12 12 13 13 23 23 

M* MIm2+mIm3+ m2m3 
(6) 

vr 12 13 23 

Defining the moment of inertia as 21 and recalling the force function 

U from Equation 2.2, it can be shown that 

M*a2 = 2MI (7) 

M*/v = U/G (8) 

Define the Sundman function j, 

+0 at 2 
j= 2a 2a 2 GM 

where a' da/dt. Using Equations 1-9, the followýng classical results 

may be rewritten. 

(a) The Lagrange-Jacobi identity 

d2I U+ 2h 
dt2 

becomes 

d2(U2) 
dt2- = GM 

(b) The Sundman inequality 

41(U+h) >, ( dI 2+ 
C2 dt 

becomes 
- (11) 
V 

*Marchal and Saari denote the mean quadratic distance by p. To 

avoid ambiguity with the Jacobian radius vectors p, we shall denote 

it by a. 
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It can be shown that 

min(r 12 ,r 13 ,r 23 vaaa max (r 
12 ,r 13 ,r 23)' 

It is easily seen that V=a in the restricted problem or when all 

three bodies form an equilateral triangle. 

This is-one of two classical sets of solutions, given by Lagrange 

and Euler. In these solutions, the configuration of the system does not 

alter with time, although the scale might. The acceleration on each of 

the bodies. is always radial from the centre of mass of the system and 

is proportional to the distance of the body from the mass centre. 

The Lagrangian configuration mentioned above is shown in Figure 3.1(a). 

For this solution, r 12 2-, r 13 ='= r 23 ý- a=v, and j=1, for all time. 

Thus the three bodies always form an equilateral triangle by describing 

coplanar ellipses with equal eccentricities, about the mass centre 0. 

The Eulerian solutions (Figure 3.1(b))are given when the bodies 

are arranged in a straight line for all time by describing homothetic 

ellipses about the mass centre. There are three such solutions depending 

on whether the middle body is mI 'm 2 or m 3* In each case a/v and j 

are both constant but not equal to 1, as in the Lagrangian solutions. 

The conditions on accelerations are automatically satisfied for the 

Lagrangian solutions. For the Eulerian solution, this condition defines 

the position of one of the bodies with respect to the other two, which 

can be derived in general by solving a quintic polynomial. This is more 

fully discussed in the next section. 

The ratio a/v , defined by Equations (2), (5), (6), is dependent 

on the shape, but not on the scale of the triangle described by the three 

bodies. Figures 3.2 show the contours of a/v in the configuration space 
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(a) 

AIE rrL , 

(b) 

( 

Figures 3. li Examples of (a) Lagrangian motion, (b) Eulerian 

motion in the general three-body problem, with 

m1<m2<m3. 
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for masses 10,5 and 2. In each diagram the configuration is described 

by the position of one of the bodies relative to the other two. All the 

diagrams are equivalent but, as we will see, all are useful for describing 

the preservation of the hierarchy. 

In all cases, o/v attains its minimum (unity) at the triangular 

Lagrange points L4 and L5, and tends to infinity at. infinity and the two 

fixed masses. There are saddle points at the Euler points Ll, L2, L 3' 

Throughout this section we will order the masses in increasing size 

as in Figures 3.2, i. e. 

<mI-, < m2< (12) 

We denote each of the Eulerian configurations by the points L,, L2, L 3' 

where L. is the configuration which has m. as the middle body. By 

studying Figures 3.2, we see that for the given ordering of the masses 

(Inequalities (12)), we have 

a 
. (L ) >, I(L ) ý: i(Lý > 

v2v 

Consider Equation (9) and the Sundman Inequality, i. e. 

cr cr 
- >1 i=P+ cy + . 

2. L2 

v 2cf 2a 2 GM (13) 

When the total energy of the system is positive, the system is deemed 

immediaiely unstable, since one of the bodies is in the process of escape. 

Assume therefore that h<0, hence a>0. For a system with prescribed 

masses, a and p, the minimum of the right hand side of Equation (13), 

with respect to a, is obtained when a' =0 and a Vraip, hence 

a h<0 => V 
(14) 
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b 

a 

Figures 3.2: a/v contours for m1=2, m2ý5 and m3= 10, (in terms 

of the position of one body with respect to the other two). 

The values of a/V for the contours are: (A) 1.5, 

(B) 1.1562, (C) 1.1283, (D) 1.0952, (E) 1.02. G/V 

at L 4' L5 and is infinite at the two fixed masses and 
infinity. All three diagrams are equivalent. 
(a) m3m2 are fixed and the position of ml is varied. 
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Figure 3.2(b): o/v contours when m 3' ml are fixed and the 

position of m2 is varied. 
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Figure 3.2(c): d/v contours when m2, m1 are fixed and the position 

of m3 is varied. 



3.2 

where vrp-la is the minimum of the Sundman function, and 

-2M 2 'ý=(-M*) 3ch (15) 

77 

Since cr ýv Inequality (14) gives no restrictions on the allowed 

configurations of the system, so long as p/a < 1, i. e. Inequality (14) 

is automatically satisfied for all configurations. If p/a is slightly 

greater than one, then there are small forbidden regions around the L4 

and L5 points, since a/v cannot tend to unity. The larger the value of 

p/a is, the more extensive are the forbidden regions. 

The analogy with the zero velocity curves in the restricted three- 

body problem now becomes apparent, as similar forbidden regions appear in 

both problems'. They are characterised in the restricted problem by the 

Jacobi constant and in the general problem by c2h. We can thus iapply- 

Hill-type stability to the general problem by considering the topology- 

of the forbidden regions. 

If rpla > a/v (L 
I 

), then the three collinear Eulerian configurations 

are forbidden and there are three unconnected zones of allowed motion. 

Thus one body is necessarily isolated from the other two, i. e. any 

hierarchical arrangement is preserved for all time. If Vpja = a/v(L lb, 

then the L, point is an allowed configuration, but no body can pass 

from one region, through this neck, to another. 

If a/v(LI) > &a > a/v(L 2 ), then the Ll point is an allowed 

configuration and there are now only two unconnected regions of possible 

motion, one of finite extent, the other of infinite extent. If the 

hierarchical arrangement is such that a binary exists in the finite 

region, with the third mass in the infinite region, then the hierarchy 

will still be preserved. If this is not the case, then there is a possibility 
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that the ordering of the Jacobian radius vectors may change and the 

hierarchy will be br6ken up. 

If Vp/a = a/v(L 2 
), then the L2 Po' 'It is an allowed configuration, 

but no exchange of bodies through this neck is possible, so the results 

of the previous paragraph still apply. 

If rpla < a/v(L 2)1 then the L1 and L2 points are 
. 
allowed configurations. 

There is now one region of possible motion and thus there is no guarantee 

that any hierarchy will be preserved. If in addition vlrp--/a < a/v(L 3) then 

there are two unconnected regions of forbidden motion around each of the 

L4, L5 points. 

By way of example consider the system described in Figures 3.2, where 

M=2, m-5, Since ml is the smallest mass, Figure 3.2(a), 12 1" M3 ý lo' 

is the one we are most familiar with. On comparing it with the zero 

velocity curves in the restricted problem, we s-ee that-the forbidden regions 

open up in the same order with L 1- 
in between the two fixed masses, as usual. 

As m1 tends to zero, the general problem tends to the restricted problem, 

so this is to be expected. If however we consider Figures 3.2(b), (c), 

then the smallest mass. is no longer the one that is allowed to move over 

the configuration space. Thus the order of the Ll. L 2' L3 points, and- 

hence of. connection of the allowed regions is not so familiar. It is 

however equivalent to the order in Figure 3.2(a). 

We are interested in determining the critical values of /p-7-a for 

which the preservation of the hierarchy is guaranteed for all time. We 

now impose a hierarchical structure on the three body system, with one 

body significantly further away from the other two, which form a binary. 

There are three different hierarchies, depending on the choice of m 1. m2 

or m3 for the outer body. 
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Let m1 be the outer body. In addition, let -/p/a ý a/v(L (e. g. 

contour A, -a/v = 1.5). In Figure 3.2(a), mI must lie in the unbounded 

region of allowed mo tion. in Figure 3.2(b), m2 must lie in the region 

around m 3* In Figure 3.2(c), m3 must lie in the region around m 2' This 

is in order to conform to the imposed hierarchy. Since v7p7a >. a/v(L 1 )1 

the hierarchy is guaranteed for all time, 

Let a/V(L 1)> 
V7pa ý a/v(L 2 In Figure 3.2(a), the regions around 

m3 and m2 have been connected, but mI is still unable to approach either 

through the L2 or L3 points. The hierarchy is s till preserved. In Figures 

3.2(b), (c), m is now free to move into ýhe-unbounded region but still 

cannot approach either m2 or m 3' which are in the other region. 

Let rp-la < a/V(L 2 
). m1- can now approach m2 or m3 through the "L 

2 

neck". There is no guarantee of hierarchical preservation. Thus the 

critical value of Apla is a/V(L 2 

Now consider the case when m2 is the outer body and Vp1a >, a/v(L, ). 

In Figure 3.2(a), m1 must lie in the region around m 3* In Figure_3.2(b), 

m2 mu'st lie in the unbounded region. In Figure 3.2(c), m3 must lie in 

the region around mV The given hierarchical arrangement is guaranteed 

for all-time. 

Let rp-la < a/'V(L In Figure 3.2(a), m1 is free to approach m 2' 

via the L1 neck, changing the hierarchy. In Figure 3.2(b), m. is free 

to approach ml, through the L1 neck. In Figure 3.2(c), m3 is able to 

wander into the unbounded region and move far from ml, compared to m2, 

In each case, thýre is a possible alteration of the hierarchy of the 

system. Thus the critical value of ip--/a is (1/, v(L 

When m3 is the outer body, the results are similar to the case when 

m2 is outermost.. The critical value of vrp7a is a/v(L, ). 

It is seen that for a hierarchical three-body system, the critical 

value of Vp7a for hierarchical preservation is a/v(L 2) if the smallest 
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mass is outermost. Otherwise the critical value is a/v(L By 

considering Figures 3.2, it is clear that in any case, -the critical 

value of a/v is derived when the three bodies are in the Euler 

configuration which has the smaller of the two masses in the close binary, 

as the central mass. If the hierarchy is ((m 
3'm2)'m, 

) then the relevant 

configuration is m3-m2-m1 (L 
2 point); whereas for hierarchies 

m ), m ) and ((m m ), m ), the relevant configuration is m -M -M ((m2,1 3132213 

(Llpoint). 

In Chapter 2, it was pointed out that a hierarchical system of three 

bodies could be described by two binary orbits with osculating elements. 

In the next section-we shall use this theory to derive critical values 

of a 23 'ý P2-/P3' such that any system with a 23 less than the critical 

value will be guaranteed as hierarchically preserved, for all time. 

3.3 Determination of Critical Surfaces 

The results of the previous section were also derived by Zare (1976, 

1977) for the coplanar three-body problem by considering the surfaces 

of zero velocity of the reduced Hamiltonian. He went on to derive a 

quintic polynomial which has as a solution, one of the Eulerian configur- 

ations, from which the critical value of c2h, could be obtained. Walker and 

Roy apply the analytical stability criterion of Zare to hierarchical 

coplanar three-body systems, whose binary systems (ml, m 2)' ((ml +m 2), m3) 

have circular orbits initially. They numerically derive the critical 

value of a23 as a function Of C23 PF-32 , for which any system, with a23 

less than this critical value, is guaranteed to maintain its present 

hierarchy. This approach will now be summarised in terms of the notation 

of Marchal and Saari. 
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Throughout the remainder of this chapter as well as Chapters 4,5,6, 

we will drop the subscript '23' on a and merely denote the ratio p /p 23 23 

by a. There will be no ambiguity as these chapters are solely concerned 

with the three-body problem. 

Using the notation of Chapter 2, we define the hierarchy of a three- 

body system in terms of two binary orbits, exhibiting approximate 

Keplerian motion. The orbits are m2 about ml, and m3 about 142' the centre 

of mass of m Vm2 . These orbits are characterised by the osculating 

elements a 2' e 2'62'T2 and a3, e3 '@ 3 'T3 , respectively, assuming the orbits 

are coplanar. 

The total energy of the system is approximately 

-E 
P'llln2 M2m3 

2 Fa2 +a31 (16) 

being the sum of the individual Keplerian energies. It does neglect 

the displacement of mI and m2 from M2 which gives rise to a small error 

in the energy of the outer binary for sufficiently small a. 

The-angular momentum of the system is exactly the sum of the angular 

momenta of the binaries. 

21 
ae2 (a3 (l-e3 i 

2) 
(17) 

cMIm2 
2(l 2ý 

+m 2m3 
3 

M2 M3 

where the + sign refers to direct systems and the - sign refers to 

retrograde systems. Rewriting Equation (15) in the notation of Chapter 

2, we have 

T-2M3. C2h 
a '6-2(M*) 3 
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where M* =mIm2+m1m3+M2m3 as befor 
. 
e. Combining Equations (16), (17), 

(18), 

mama 
Z22 .2 2) 22 2- =3mmm (1-e2 --+ 2m m2 ((I-e (1-e3)) (-=) 

a (M*) 123a- m2m3 2 

kM2 '2a 

3 3,1 3 

m3m333 
+12 (1-e 2 m3 M2 

(1-e 2 
m22 M3 3 

mIamm M2 M2 1a 
2m 2m2m (2 ((l-e2 )(1-e 2)) ( 3) +1232 (1-e 23 

123M323a2m33a2 

(19) 

We now normalise the masses with respect to the mass of the inner 

binary, M2, by defining 

m 2 I 
p= - m2 1 

P3 ý R2 i 

P* ý 11(l -P) 11113 + (1 - 11)113 (20) 

Hence, Equation (19) becomes 

P- 3) a2 (1-1j) I' I" a2 
3 

[(l-p) 
2p2li f 1-e2 +2 3 ((l-e2)(1-e2)) (-m-=) 

aT2a3 (1+il 
3)1 

23a3 

11 3 

(, -p)3pcs(l-e2) +3 (1-e2) 
2 1+113 3 

2pIa2a 
32 

(1-P) 11113 
(1-p) 2 (1-e2) (14ý) + (1-e 

(1+11 3) 
23a3 '+P3 3a3 

(21) 

Without loss of generality we may assume that m2<m,, i. e. 

P may of course take any positive value. Through Equation (21), the 
3 
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mass ratios, the shape and relative sizes of the binary orbits, define a 

value of p/a. For a guarantee of hierarchical-preservation, we require 

that Ip-75 a/V, where G/V is evaluated at the Eulerian configuration with 

m2 as the middle mass. 

In order to find this value of a/v, we normalise the masses as before 

and also normalise the distances r Ij with respect to r 12 * We choose 

2-dimensional coordinates such that m1 is at the origin, m2 at ("0)' m3 

at (1 + x, y). Thus the configuration is described by x, y. Thus, 

r 12 ý-- I 

r 13 ý ((l + x) 
2+y2)11 

(22) 

221 
r 23 

(x +y)i 

After normalising the masses, 

(Z) ( 11 *)3 = f2g., (23) 
v 

where 

(1-11) + V3 + 11113 
- 

(24) 

r13 ý23 

r 
2. + Vill rz (25) 9ý P(1-0 + (1 -P) P3 13 

-3 
23 

The critica 1 values of f2g are given by 

a(f2g)/Dx = a(f2g)/Dy = 0. 

Noting that f>0 we are required to solve 

LIE +2g3f (26) 
3x ax 

+ 2g ! 
-f =0 (27) 

ay Dy 

The rest is straightforward, if rather tedious. It can be verified that 

the Lagrangian solution, r 13 ýr 23 ý 1'. satisfies Equations (26) and (27). 

It is also easy to show that y=0 is a solution of Equation (27). 
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Substitution into Equation (26) yields three solutions for x in the 

domains (0, -) respectively. Since we are interested 

in the solution when m2 is the middle mass, we take the positive v alue 

of X. Hence Equation (26) becomes 

X5 + (3-OX4 + (3-2p)X3 - (p+3p 
3 )X2 - (2p+ 3p 3)x - (p+p3 

(28) 

which by Descartes Rule of Signs, has only one real positive solution. 

We shall be concerned only with coplanar systems that have initially 

circular orbits. Thus e2 ý- e3ý0, and a=p2 /P 
3ýa2 

/a 
3 at time zero 

(although not necessarily at subsequent times). This means that to every 

pair of nýass ratios, we may ascribe a, a critical value of a s. t. any 
c 

systems that have an initial a less than a, are guaranteed to preserve 
c 

the hierarchy for all time. If a'exceeds ac no such guarantee exists. 

The method is as follows. For prescribed 11"13' calculate x from 

Equation (26), by a suitable iterative method. For example,. a Newton- 

Raphson method can. be used, where 

p (X 1) x1 

is the new approximation of x, given a previous approximation xl. 

From the value of x, f2g can be calculated from Equation (24) and 

(25), with r 13 ý1+x, r 23 ý X. In order to find ac , we must set 

(a/V)2 = p/a, with a= a, ee0. Hence, by Equations (21) and (23), 
c23 

f2g = (1-p)2p2 2(1-p)p 2 (, +Vl )I ct 
I 

V3 (1+113) Clc -ý 113 3c 

3 pl(l+p )+IJ 3 +2 (1_11) Zp2p (1+P 
3333 

(1-P)PP 2a -1 (29) 3 
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Equation (2 9) may be expressed as a quartic polynomial in ac hence ac 

may be described by an iterative scheme similar to that used for 

deriving x. 

Figures 3.3 and 3.4 give the surfaces ac = ac("'P3 for direct- 

-9 -0.5 and retrograde systems. In each case the range is 10 P :ý 10 

10-9 < 10 7. 
with logarithmic scales in p, 

.P For the direct 
3 3' 

systems, the general behaviour is as expected. ac increases monotonically 

to unity as V and p3 tend to zero. This is not the case for the retrograde 

systems. Indeed, for p much greater than V32ac is almost zero.. . This is 

better seen in Figure 3.5, which shows ac against 113 for p=0.5, the 

largest value of p allowed. We see that for v <<I, a2 Thus 3c 'ý' '113 

any retrograde system with small V3 will in all probability have no 

guarantee of hierarchical preservation. This seems counter-inýuitive, 

and will be discussed again later. 

It is also of interest to see the surfaces ac ac (E: 23,632), The 

easiest method is to calculate from the (V, V 3' ac data, the corresponding 

values of C23 )E: 32 , from 

E 23 =2 (30) 

632 ý 113 a3 (31) 

where a is set equal to aC. By the use of various numerical interpolation 

routines, approximate contours may be drawn. 

Figures 3.6 and 3.7 show for direct and retrograde systems respectively, 

how a grid of (P"13) values transform into the (C23 , C32) space when a=aC. 

The scales are logarithmic with V= 10p, p 9, -8.5, -8, ..., -0.5, 

and P3 = loq ,q9, - 8.5, ..., 6.5,7. The arrows indicate increasing 

V with p3 fixed, or vice versa. There is a region in (E23 C32) space 
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Figure 3.5: log a against log p for 0.5. For V <<l, a p2 

-c33c3 

that does not correspond to real systems when a= ac. The (P'P3'a) 

region has as a bo 
- 
undary, the curve s 32 =C 32 

(C 
23' a) when c 21 

and P3 is varied. 

It is seen that for the direct systems (Figure 3.6), 623 -"'P' 

C 32 -'ý P3 , as P'P3 -"' 0' thus preserving the rectangular look of the 

projected gridpoints. This is a consequence of the fact that a -ý-l as 

11 ' 113 -)- 0. For the retrograde systems, ajI as P'113 0. Hence the 

transformation assumes a more irregular shape. 
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There are various asymptotic limits present under this transformation, 

the derivations of which are described in Appendix B. As V3 -* CO 
.0 

C 32 
3.02 x 10-2 for - direct systems and E 32 -)-. 7.10 x 10-3 for retro- 

grade systems. For P=0.5, "Y* 0, E23 -* 0.048 for direct systems 

and c- r\, 2 
5/12 

E: 
Y4 

for retrograde systems. 32 23 

The contours of ac for direct and retrograde systems in (C23 
PC32 

space are given in Figures 3.8 and 3.9 respectively. Although ac 

monotonically increases to unity as C23 sCj2 -* 0 for direct systems this 

is not the case for retrograde systems. 

The diagrams show qualitatively the behaviour 
-of ac with E23 and 

632- Because of the interpolation routine used for finding contours 

of ac, the errors in the actual values of ac for individual (E23 *E: 32 

pairs may be fairly large. This is particularly true for the retrograde 

systems near V=0.5 at the boundaries of possible (E23 E: 32 ) points. 

In order to find the value of aC at a particular pairE2% E: 32 ,a 

more refined technique is used. For the chosen values of 623 1632 9 

the value of ac is estimated roughly. this may be done by using the 

contour plots. Alternatively, if aC is being determined for a lattice of 

(C23 
2632) points, then values of a- for neighbouring lattice points may 

c 

provide a good first estimate. Having estimated ac, p and P3 may be 

calculated, from Equations (30) and (31), viz. 

1 [1. 
_ 

[1 
_ 

4E: 23 ]ý'21 (32) 
Vi 2 

113 E32 ýa3 (33) 

with a= ac. The procedure is now the same as before. x is calculated 

by the Newton-Raphson method applied to Equation (28). f2g is calculated 



91 

rv 
U 

cn, 

CY) 
0 

tn 
C', 

ci; 

(, A pn 

d7 
0 

1 

SI 

U, 

0 

U, 

0 

U 

In 

III 

0 

U, 

'0 

0 

F- 

Ui 

F.. 

fI 
Uý Uý C! llý 

Ln OD 

ci rZ 
J-j 0A 
0 (L) r-4 

-4 -2 Ci. p "0 
Co a) 

14 ri ji 
:i Ai 
0 (1) 0 
41 

19 10 0 

ce -i 

.n V) CYN 

10 u lý 
a) 

. 12 
.H Vf 

0 

G) 

CD 

U) Co -4 ?1 
>, öD . 
ul 0 CD 

43 

,0 re :: L 
> 

0 4-3 (V 

0 

Q) m 
> (. ) 

P cli 
cli "0 -- w 

t) 000 

cu 10 r-i 
G) rd 

> 

4-1 rA 0) 
0 r. 

G) 
U 
tu 

44 m 
1-1 cyl p G) 
:i :i cn 
rA cii 0 0) 

A-J P 
0 Ici r. 931. 

.Z r2 0 Q) 
H Co U )4 

Co 



92 

N 

CY) 
0 

on0 U" 0 LI' 0U0 IlL 0 LI DL 
I'; r .4 .6p.. 

IIIIIIIIII 

() 
0 

m 0 

P-0 04 
W 

0) 
0 

0 

"0 
a) 

Ei 

E-i C, 4 

(D 
vc? 

u 

c; 
vi 

CD 

C 

c; 

Q) Ln ro 0 
Et -. P0 
60 
0 U) 
k (1) 

$4 
0 (1) 

4-4 J-- 
4-3 

. cli C) 
m> 
ti cu 

N 

0 

,0 

G) 
4-4 
0 

.Z0 



93 

3.3_ 

from Equations (22), (24), (25). From Equation (29), a new value of ac 

is calculated by Newton-Raphson. The procedure is then repeated, by 

recalculating V, p3 from Equations (32), (33), and so on, until the value 

of ac has converged to sufficient accuracy. 

This procedure is performed-for a range of F23, E32 for direct and 

retrograde systems and are presented in Tables 3.1,3.2. 

632 

10-2 0.502 0.502 0.499 0.474 0.291 

10-3 0.759 0.758 0.750 0.681 0.343 

10-4 0.888 0.884 0.856 0.734 0.355 

16-5 1 0.946 0.934 0.881 0.740 0.356 

lo- 6 0.970 0.946 0.885 0.741 0.356 

10 -6 10 -5 10-4 10-3 10-2 623 

Table 3.1: Values of ac for various C23 e32, for direct systems. 

E32 

10-2 

10-3 0.212 0.212 0.203 0.145 

10-4 0.241 0.233 0.180 - 

10-5 0.239 0.188 0.081 

10-6 0.189 0.084 - - 

10-6 10-5 10-4 10-3.10-2 C23 

Table 3.2: Values for of a various CZ3 PE32 , 
for retrograde systems. 

c 
A dash indicates that no value of ac exists. 
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The values of aC for direct systems are slightly smaller than those 

calculated by Walker and Roy (Paper III), since they used the exact 

expression for c2h rather than the two-body approximation of Szbehely 

and Zare. 

3.4 Discussion 

This chapter has been concerned with examining the conditions for 

ensuring hierarchical preservation of three-body systems. For coplanar, 

initially circular systems, critical values aC have been determined such 

that any system with OL < ct c 
is guaranteed to be hierarchically preserved 

for all time. This does not mean that such a system is hierarchically 

stable. For example, the criterion does not rule out the possibility 

of the outer body m. 31 escaping, the system. Marchal (1985) shows possible 

limits of bounded motion, and describes separate tests for the eventual 

escape of the outer body. 

Intuitively, it is felt that ac should increase as C 
23 

and c32 

decrease. In other words, as the perturbations on the two-body systems 

decrease, m2 can stand being closer to m3 without their proximity 

drastically affecting each others orbit. Indeed, if there are no per- 

turbations at all (623 632 2-- 0)' the Keplerian orbits would remain 

unchanged, no matter how close m2 was to m 3' 
in which case a may exceed 

1. 

This reas oning is reflected for direct systems by ac1 as C23, 

C32 , 0. The same is not true of retrograde systems. For constant 

C23 , 632 (or constant 1ý'113)' the retrograde value of ac is always less 
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than the direct value. For many values of C23, C 32 there is no guarantee 

of hierarchical preservation no matter how small the value of a is, 

for the retrograde case. 

Two questions arise out of this chapter. The first is whether all 

systems with no guarantee of hierarchical preservation are hierar chically 

unstable or not. The analytical criterion indicates regions in the 

configuration space which guarantee hierarchical preservation. is there 

a larger region in the configuration space, inside which all systems are 

hierarchically stable? The second question is this: given that such an 

empirical stability region exists, is it larger for direct systems than it 

is for retrograde systems, or vice versa? 

There is some evidence to support the view that an empirical stability 

region outside the analytical region does exist. The analytical criterion 

is based on the fact that-the minimum of the-Sundman function (Vp-Ta-) is 

greater than cr/v(L 1 ). There is no reason to suppose that if this 

condition is not satisfied, that the actual value of a/v for a system must 

be less than a/v(L I ), at some time in its evolution. Even if o/v < cF/v(L I) 

at some time, this does not mean that the outer body must come close to 

one of the other bodies. Thus the criterion, although obviously sufficient - 

for hierarchical preservation, may not be necessary. 

For the restricted problem-, the Hill stability curves provide a 

similar criterion for stability to the c2h criterion. However,, it can be 

shown that there are regions where stable periodic orbits exist which are 

not Hill stable, (e. g. Markellos, 1973). Thus an empirical stability region 

is possible in the restricted problem. 

Nacozy (1977) found that the Sun-Jupiter-Saturn system is stable even 

if the planetary masses are multiplied by a factor up to about 30. The 
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analytical criterion only guarantees hierarchical preservation for 

planetary masses up to 25_times their actual value. Walker and Roy (Paper III) 

indicated thatan empirical stability region exists for coplanar, 
_initially 

circular, direct, three-body systems, by performing many numerical 

integration experiments. Thus there is some experimental evidence for 

the existence of an empirical stability region in the general three-body 

problem. 

The methods used by Walker and Roy will be used in this work. 

Their results for direct systems will be confirmed and it will be shown 

that a similar empirical-region of stability. exists for retrograde systems. 

If the surfaces of ct ýa (C23, E: 32 ) are to be taken at face value, cc 

then it seems likely that the empirical stability region for direct systems 

is larger than that for retrograde systems. We shall see in Chapters 4 

and 6 that this is not the case. -In fact, for constant E: 23 
9 6321a the 

retrograde system is more stable than its direct counterpart. 
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4.1 Introduction 
.. 

In the previous chapter', sufficient conditions were described for 

a three-body system to have its given hierarchy preserved for all time. 

These conditions corresponded to regions in the configuration space. 

The values of aC obtained reflect qualitatively the expected behaviour 

of direct systems, i. e. aC increases as E 23 C32 decrease. This is 

not the case for the retrograde systems. - Thus either our intuitive 

ideas concerning the stability of retrograde systems is wrong, or the 

analytical stability criterion is not an adequate tool for our examin- 

ation. 

This is allied with the fact that the definition of hierarchical 

stability given in Chapter 2, is a more stringent concept than the 

hierarchical preservation of Chapter 3. In the absence of any rigorous 

analytical treatment of hierarchical stability, the easiest approach 

is by numerically modelling individual systems. 

In this chapter, - particular attention is paid to fictitious 

retrograde systems, while direct systems are considered in Chapter 5. 

The numerical procedures and subsequent curve fitting techniques 

are based on those used by Walker and Roy, Paper III, for direct 

systems. These results are briefly reviewed in Section 4.2. The 

curve fitting techniques and their subsequent augmentation for both 

direct and retrograde systems are explained in Section 4.4. The 

results from several hundred numerical models are also presented in 

this section. A brief discussion of the behaviour of the systems 

as they approach instability is given in Section 4.5. 

A historical note is in order at this point. The work on 

direct systems was started before the work on retrograde systems. The 
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reason for discussing-the retrograde systems first is that in many 

ways the data from these systems is easier to handle And explain. 

Additional curve-fitting techniques are needed for the direct systems 

in order to predict the stable lifetimes of direct systems. This 

is. necessary due to the effect of sommensurabilities. These added 

complications will be explained in Chapter 5. 

. 
4.2 The Empirical Stability Region for Direct Three-Body Systems. 

In Walker and. Roy, Paper III, the authors describe the results 

of several hundred numerical experiments for direct coplanar three- 

body systems. They concentrated their examination on the following 

values of C23 P 632; 

e23 10-i 2,3,4,5,6. 

632 lo-k k 233,4,5,6. 

for orbits that are initially circular and starting from conjunction 

with m2 between mI and m 3' For a given pair of epsilons, the initial 

value of a was varied and the equations of motion for the given 

system were numerically integrated. The system was thus studied until 

it exhibited an instability according to the definition of hierarchical 

stability, given in Chapter 2. The lifetime of the system until 

instabf1ity was noted. In this way, graphs of the lifetime against 

a were obtained for fixed 623 9 F-32- 

The unit of time was the synodic period of the system. It was 

considered that the system was most highly perturbed near a conjunction, 

hence it seemed important to monitor the number of conjunctions that a 

system "survives" for. This will be discussed again in Section 4.5 

for retrograde systems. 
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From their results, Walker and Roy concluded that. for given 623 1 

cý2 , the a-line could be divided into four intervals. The first 

interval is [0, ac where a is the critical value of cc for a 

guarantee of hierarchical preservation. No unstable systems could be 

found in this region, thus systems that were hierarchically preserved 

were also seen tobe hierarchically stable. 

The second interval is (a., a where no unstable systems c0 

could be found. This is the empirical stability region that was 

postulated. In every case a0>aC and in the case of the higher 

epsilon values, there is a considerable difference between the two 

values. 

The third interval is (a 
)a 

) where a is the value of U such that 

mý may be closer to m than m rendering the given hierarchy as 
31 21 

immediately broken. Within this interval, one can observe unstable 

systems. The criteria for instability are explained-in more detail 

in the next section. Within this interval, the lifetimes of the 

systems tend to infinity as a--decreases-to ao-s--although not-mono-. -. 

tonically so, due to the presence of commensurabilities (see Chapter 

5). The trend was modelled by the function 

Ns (a) = exp cc 0<a< 

Ict ((Ixol 

where NS is the stability lifetime in units of the synodic period. 

a0ý, y varied with C23 s632 - This curve-fitting technique is 

reviewed in Section 4.4. 

For a >, a, the given hierarchy is meaningless, as the crossover x 

of orbits has already taken place. The stability lifetime is zero 

by definition. ax = 1/(l-p), which for small p is only slightly 
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greater thari one. Thus Ns (a=l) was assumed to be zero. It is to be 

expected that the results for retrograde systems which are described 

in this chapter will follow a similar pattern. 

4.3 The Numerical Integration Routine 

Several hundred different direct and retrograde three-body 

100 

systems have been studied by numerical integration. All the experiments 

were carried out-on the ICL 2988 mainframe computer at Glasgow 

University, using the same routine that Walker used for his experi- 

ments. In this routine, t. he mutual radius vectors are calculated by 

a tenth order Taylor series, wher e the derivatives are calculated by 

recurrence relations (Schwarz and Walker, 1982). The programme 

incorporates an automatic step-length regulator which shortens or 

lengthens the integration step of the computer in order that the 

error caused by truncating the Taylor series after the tenth order 

is less than a given tolerance, (eg. 1 part in 10 10 ). 

The accuracy of the integration routine is affected by the 

accumulated effect of this truncation error, as well as the error 

caused by the computer having to round numbers to 16 significant figures. 

Brouwer (1937) showed that the effect of round-off error on a numerical 

integration after n steps is to introduce a mean error proportional 
3 

to n'/' in the mean longitude, and to d' in the other orbital 2 L' 

elements, where the error is measured in units of the last decimal 

place. Unfortunately this is not the whole story, since Brouwer assumes 

that the rounding is performed up or down in an unbiased fashion. 

This is not always true of modern computers, and in any case, the 

error is modified by the truncation error, making a rigorous analysis 

impossible. 
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We are concerned with knowing for how long-we may run the 

numerical integration before the accumulated errors render the results 

as meaningless. A rough idea was gained by running the programme 

for fictitious three-body systems with C23 = E32 =0 and initially 

non-circular orbits. In these cases, the elements of the two binary 

orbits should remain constant. Any deviation is due to the accumulated 

error in the routine. It was found that after 150,000 steps, the error 

in the position of the body in its orbit was approximately 1%. A 

1% error was considered sufficiently inaccurate to stop the inte- 

gration. No systems are examined beyond the 150,000 step timescale, 

which corresponds to lifetimes of between 4000 and 6000 synodic periods 

for most systems encountered. 

The routine incorporates a number of diagnostics for detecting 

instabilities. Recalling the various criteria for hierarchical 

stability, (Section 2.2), the routine tests the energies of each 

binary orbit. If an exchange of energy between the binary orbits, 

results in one binary having a positive energy, then the smaller 

mass must be escaping the system, hence there is an instability. The 

routine also detects if the hierarchy is broken by a crossover of 

orbits, and stops the programme accordingly. 

The third criterion, namely detecting an irreversible change in 

the size, shape or orientation of any orbit, is too difficult for 

the numerical procedure to handle with 100% efficiency. The best 

that can be done is for the routine to note wherever the running 

value of the eccentricity exceeds the previous maximum by 20%. The 

maximum is then readjusted to its new value and the routine proceeds. 

It is then a matter for the 
. user to examine the output and 
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and decide if an increaýe in-the eccentricity is truly irreversible. 

In truth this is impossible to say with any certainty. Since the 

eccentricities start at zero, it seem unlikely that there will ever 

be an irreversible decrease. Indeed this has never been experienced 

in any of the experiments. During the running of the programme, the 

eccentricities are seen to vary in a periodic manner. There may be 

short period fluctuations superimposed on longer period effects, but 

once the eccentricity has reached such a local maximum, any further 

incr ease must be viewed as a possible instability, caused for example 

by m3 coming close to m 2' Such changes often precede either an escape 

of one of the bodies or a crossover, in-which case the stability life- 

time is taken up to the change in eccentricities. In-other isolated 

cases of eccentricity changes, care must be taken to ensure that this 

is not part of a very long term periodic effect. 

Most irreversible changes can be se en as a burst of 20% 

eccentricity increases taking place within a few synodic periods after 

a much longer period of stability. Any single occurrence of a 20% 

increase is normally viewed with some scepticism. 

4.4 Curve-Fitting Techniques Applied to Retrograde Systems. 

Over 800 fictitious retrograde three-body systems have been 

examined using the numerical integration procedure, described in 

Section 4.3. All the systems considered were coplanar, initially 

circular with the bodies arranged at m1-m2-m3 conjunction at the 

start of the integration. Each system can be unambiguously described 

by ml, m 2' m 3' a 21 a 3' By normalising the masses with respect to 

m1+M2 and the distances with respect to a 3' 
ihe number of parameters 
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describing a system may be reduced to three, iuch as C23 PC32 s- 

The unit of time- is taken to be the synodic period of the system for 

reasons described in Section 4.2. 

Ea ch system was numerically integrated for up to 600 synodic 

periods. During that time the system was checked to see if it had, 

exhibited any instability. If this was so, then the integration 

was stopped and the time noted. This time (measured in synodic 

periods) is called the stability lifetime for that given system. 

The fictitious systems that were 'chosen all had values of E23 

F-32 given by 

C23 = 10-k k= 293,4,5,6 

632 = lCm m= ls2j3,4,5,6. 

This range reflects the range of epsilon values found in the Solar 

System for the planets and their natural satellites (see Chapter 6). 

Graphs of stability lifetime Ns against a for given (C23 
sC32 

pairs. are presented in Figures 4.1., The crosses indicate the actual 

stability lifetime for that system and a line indicates the best fit 

curve through these points. This is discussed below. The circles 

represent systems for which no instabilities were detected during the 

600 synodic period investigation time. No definitive stability life- 

time can be attached to these systems. They may exhibit instabilities 

if. we study them for long enough. Alternatively they may always be 

hierarchically stable. We just don't know. 

There are several-poin ts that can be made about the behaviour 

and trends in these graphs, before discussing the curve-fitting pro- 

cedure. In general the eccentricities of the inner'and outer binaries 
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Figure 4.1: Stability lifetime against a for given 623 1 ý: 32 - 
The crosses indicate the stability lifetime for each 
unstable system. The circles indicate systems that 
have been studied for 600 synodic periods without 
exhibiting any instability. A line indicates a best-fit 
curve through the unstable system points. A full line 
indicates a weighted fit while a dotted line indicates an 
unweighted fit. 
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oscillate about some mean value which is proportional to. C23 or C: 32 

(see Section-4.5). Tor a stable system, the mean value is roughly 

constant. For an unstable system, ýbe mean value will rise steadily 

until there is an inevitable crossover of the inner and outer binary. 

In every case this was the observed pattern, unlike the direct systems, 

whose behaviours are far more varied. Because of the predictability 

of the retrograde systems and also because of . the problem of deciding 

when the eccentricities had changed irreparably (the third condition 

for hierarchical stability given in Section 2.2), it was decided 

that the stability lifetime should be taken to be the time until 

crossover occurred. 

In every graph we can see that as a decreases, the lifetimes of 

the systems rise, slowly at first, then extremely quickly and seem 

to-tend to infinity at some non-zero value of a. An idea of this 

value can be derived from the curve-fitting procedure. 

It does seem that when a system is at conjunction then it is at 

its least stable configuration, since the crossover always occurs 

around this time. There is therefore a quantisation effect with the 

lifetimes always being approximately integers. If a system survives 

one conjunction, it will survive at least until the next conjunction. 

We can see this in many of the graphs by noting their step-like nature. 

In almost every case the stability lifetime rises monotonically 

as cc decreases. The only exceptions are when C32 ý 10 -2 and C23 10-4 

56 10 or 10 For these pairs of epsilons, there appears a blip 

around a=0.95 where the lifetimes rise for a small range in a 

then drop again. 
- 

Although this phenomenon is discussed* again in the 

next section, the reason for it is not understood. The width and height 
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of the blip seem-to increase as C23 decreases. The yalue of a 

corresponding to the peak lifetime also seems to increase its cz3 

decreases. This mi&t indicate a possible commensurability. However, 

it seems unlikely as there is no strong resonance for such high values 

of a as 0.95. Secondly, there is no-evidence of any other co=en- 

surabilities affecting the stability lifetimes in a similar way. 

In each figure, it may be safely assumed that if a exceeds the 

highest plotted value of cc for any epsilon pair, then the associated 
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lifetime is zero, or very nearly zero due to the "integerisation" ofthe 

lifetimes. 

We see three different trends depending on whether C23 is less 

than, equal to, or greater than C32- 

(a) C23 *" e32 The lifetimes increase gradually over a relatively 

large rang6 in a. This allows us to fit a curve to the data. 

(b) r23 2-- C32 The lifetimes change from zero or one to over 600 

within a vanishingly small range of a making any curve fit impossible 

and totally unnecessary. All that need be quoted is the asymptote a0. 

(c) C23 > C32 The lifetimes increase very quickly but not as 

quickly as when 623 = C32 ., However there is still little point in 

fitting any curve to such sparse data as is shown in Figures 4.1. 

When'623 ý, ` E32, one need only quote the observed asymptotic cut 

off a, and be reasonably sure that any system with a<a will be 
00 

stable for over 600 synodic periods (and quite possibly for all time). 

If cc > ao, the system is highly unstable and will usually only survive 

for a few synodic periods (< 10). 

The curve-fitting procedure now described is only applied to 

systems with C23 ", E32. We recall from Section 4.2 that the lifetime 
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is infinite for a< aoq by definition of a0, and is zero for 

cc >a= 1/(17p) =. I. We must therefore find a suitable curve for 
x 

modelling the stability lifetimes Ns as a function of E23 sC32 1 01 

VcxE(a 
0 

11. It should be continuous and monotonically decreasing with 

a We are concerned with fitting curves to individual graphs 

among Figures 4.1. Hence we fit curves of the form 

NS = f(Ot; c l' C2""'ck ) 

where k EIN and cI=C1 (E23 
jC32)j Vi = la ... h- Clearly if k>2, 

the parameters cI cannot be independent. The more parameters we 

include in function f, the better the fit is likely to be. Obviously 

it would be desirable for simplicity to limit the number of parameters. 

For example a step function would fit the data well but would require 

many parameters to denote the length and height of each step. 

Walker (1980) investigated two choices of function for direct 

systems: 

(a) Ns f1 (ct; ao Y) 
1-a y 

ot, 0<a<, 
1. --CC,, 

(b) Ns =f (cc; a a,. y) = exp[ R(-'-cc -1, CE 0< (X <1 20 a-oto]y 

I 

Both curves are monotonically decreasing, Ns as a -)- a0 

and N=0 at a=1. Walker considered that fl, with two free 

parameters, a0 and y, was not sufficiently pliable in order to fit 

the data accurately enough. He preferred f2 with three free parameters 

ao and y. To have any more was considered unnecessary because 

of the noisiness of the data. 

Having chosen the functional form of the curve, it is now 

necessary to find the best fitting values of a ý, y for any given E23 
0 

F-32 from the data at our disposal. We may re-express Equation (2) as 
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-a S. _U01 
log(log(N + 1)) = log a+y log (3) 

Consider n systems with common C23 sC32 , where 61 is the initial 

ratio of semi-major axes and NS)I -the stability lifetime of the i th 

system. One can evaluate the quantities u i'vi, where 

ui = log 1-Ci 
(4) 

[Z, 

0 

v log(logC(N + 1» (5) 

having chosen a test value of a0. If Equation (2) accurately 

describes the distribution, then the (u 
i 'v i) data should lie on a 

straight line with gradient y and intercept at log A least 

squares fit is chosen to give the best fit value of and y for 

a given a0-. Walker chose by eye the value of a0 (with its associated 

O, y) which looked like it gave the best straight line. A more 

objective way is to calculate the value of the correlation coefficient 

for each set of a ý, y chosen. 

The correlation coefficient r -is a useful. statistical tool for 

examining data correlation and goodness of fit. Details can be found 

in many books on the statistical analysis of data (eg. Ande rson and 

Sclove). In this case 

n-2 
(u u)(v -V) 

r2 

1 

nn 
E (U. -U)2. E (V. -v )2 

i=l 1 i=l I 

where 
n 

nuunv 
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If r= 1, then the (u,,, j i 
Ydata is arranged in a perfectly straight line.. 

The worse the fit, the. lower' r becomes. 'If there is no correlation 

at all, then r=O. Obviously we choose the value of a0 which maximises 

r and compute ý and ý from it. 

It is considered to be more important to get a good fit for 

the low a-high NS data than for the high a-low Ns data. There is 

little point in knowing accurately the lifetime of a system'which we 

know will not survive for more than a few synodic periods. For 

systems where a is very close to aol an inaccurate curve may produce 

an error of tens or even hundreds of synodic periods. For this reason, 

the least squares fit is normally weighted in favour of the low a-high 

Ns data by introducing a weighting factor proportional to the lifetime 

of each system. 

There are many more data points per "step" for low lifetime systems 

which will tend to weight a fit in favour of the very unstable systems. 

To counteract this3 only the middle data point in each lifetime step 

is considered in fitting the curve. For ex ample, for E23 = 10-4 

3 
and C32 = 10 

, there are six systems with lifetimes approximately 

equal to three synodic periods. Only one point near the middle is 

used for curve fitting, namely a=0.969. This will reduce the 

available data set, but increase the accuracy of the fit. 

Although some systems show lifetimes exceeding 600 synodic periods, 

this does not necessarily mean that they are stable for all time. It 

may be that a0 is substantially less than aust the lowest value of 

a for which an unstable system is detected. Any best fit curve should 

however reflect-the fact that the systems circled in Figures 4.1 will 

have lifetimes greater than 600 synodic periods, even if their a value 
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exceeds a chosen a For example, if the value of a is too low, 
00 

the best fit curve may predict that a circled system will survive 

for 100 synodic peri ods. This particular value of a0 should therefore 

be rejected. - 

By restricting ao in this way as well as using the correlation 

coefficient, it is possible to describe Ns =Ns (C) for any E23 S E-32 

in a completely objective manner. This was done for all C23 "' C32 - 

The results are given in Table 4.1 for weighted and unweighted least 

squares fits. For those epsilon pairs that exhibit an anomalous peak 

in the lifetimes, the curves are fitted without using the data that 

make up the behaviour. Table 4.1 gives the critical values of a, 

i. e. CL 3a0a The analytical value of a for stability, a, c0 us c 
does not always exist and when it does is substantially lower than the 

empirical stabi1ity limit, a0. Note that a0 -is always very close to 

Cc 
us 

For systems with C23 C32 , curve-fitting parameters O, y are 

tabulated alongside the correlation coefficient r. 

The weighted least squares fit is preferred, as stated earlier. 

However in some cases the discrepan cy between this curve and the data 

is quite marked for high a-low Ns data. Thus the unweighted fit is 

included for comparison and drawn with a dotted line in Figures 4.1. 

Anyone wishing to use these curves for determining the lifetime of an 

unknown system may choose the more appropriate curve. 

The reason why we sometimes need both is best explained by looking 

at the (u, v) data and corresponding best fit straight lines for one 

pair of epsilons. Figure-4.2 is such a graph forE23= 10-5 F32 ý 10 -4 

The full and dotted lines are the weighted'and unweighted best fit 

straight lines respectively. Note that the points are weighted for 
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. C23 E32 ac ct 0 a us y r yr 

lo- 2 lo- 1 
- 0.553 0.554 1.548 0.111 0.83 

lo- 2 
- 0.822 0.823 

-3 10 - 0.834 0.835 
-4 10 - 0.834 0.835 

lo- 5 
- 0.834 0.835 

10- 6 0.834 0.835 

10- 3 lo- 2 
- 0.901 0.903 0.502 -0.566 0.95 

10- 3 0.145 0.938 0.939 
10- 4 

- 0.938 0.939 
10- 5 

- 0.938 0.939 

lo- 6 
- 0.938 0.939 

10- 4 lo- 1 
- 0.589 0.590 1.574 0.098 0.82 - 

10 -2 - 0.913 0.914 0.713 0.418 0.94 
lo- 3 0.203 0.936 0.937 2.118 0.151 0.68 1.510- 0.288 0.86 
10-4 0.180 0.980 0.981 

lo- 5 0.081 0.978 0.979 

lo- 6 
- 0.978 0.979 

lo- 5 lo- 2 
- 0.916 0.917 1.364 0.148 0.99 

lo- 3 0.212 0.935 0.936 2.170 0.140 0,70 1.528 0.290 0.92 
10 -4 0.233 0.965 0.968 2.558 0.320 0.86 
lo- 5 0.188 0.993 0.994 
lo- 6 

0.084 0.992 0.993 
6 10 -1 10 - 0.588 0.589 1.131 . 0.193 0.98 

10- 2 
- 0.916 0.917 1.330 0.162 0.94 

lo- 3 0.212 0.934 0.935 1.932 0.207 0.87 
10- 4 

0.241 0.967 0.968 3.041 0.128 0.55 2.136 0.338 0.89 
10- 5 

0.239 0.984 0.985 3.852 0.155 0.54 2.848 0.391 0.84 

lo- 6 0.189 0.997 0.998 

Table 4.1: Summary of critical values of a obtained from the results 

displayed in Figures 4.1. Curve fit parameters and 

correlation coefficients are also given for the cases where 

weighted and unweighted curves are drawn through the data. 

These results apply for retrograde systems only. 
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Figure 4.2: v against u for 623 = 10 

E 32 = 10 4. The crosses represent the real 
data. The full and dotted lines are the 
weighted and unweighted least squares fits res- 
pectedly. 



113 
4.4 

high u and v which corresponds to low a-high N6 (Equations (4) and (5))., 

It is now obvious that there is a systematic error in the curve. 

Moreover, it is not an error that we can eliminate easily. The (u, v) 

points which should lie in a straight line, ' in- fact form an "S"-shape. 

When fitting the curves for various a., if we choose A high value of a0 

the bending at high u, v can be eliminated, but only at the cost of 

making the bending at low u, v worse. Alternatively, for low aos the 

bending at low u, v is curable at the cost of increasing the bending 

at high u, v. We prefer to accept the former for the reasons expressed 

previously and a weighted fit will hence tend to lead to a higher value 

of a0 The unweighted fit will tend to seek a compromise between 

the two extremes, hence its correlation coefficient is normally higher 

than its weighted counterpart. There is little that can be done to 

remedy this error, ekcept choose a different functional form for 

Ns= f(a). Other functions will be mentioned in Chapter 8. However, 

this- function is generally adequate for determining lifetimes and if 

used properly should only lead to small errors in the lifetimes that 

it predicts. 

Returning to Table 4.1, we notice some trends. a 0 
is almost mono- 

tonic as itincreases, while C23 and c32 decrease. There is. some 

evidence that the same is true for There is however less of a 

trend for y. 
_It 

may be that we are looking for trends that are not 

present, since ý and y may be very complicated functions of C23 and 

C32 A. more likely rqason could be that the errors in the fitted 

value of y (and possibly a are so large as to make any trend difficult 

to see. 

The difference between a and a will be discussed at greater 
c0 

length in Chapter 6. 

I 
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The'trends discussed in the previous section. mostly pertained to 

groups of systems with common C23 and F-32 In this section we shall 

investigate characteristic behaviour that holds for all systems. 

These characteristics will be highlighted by particular examples taken 

from the dataset of systems that were numerically integrated in Section 

4.4. These systems were re-integrated and the elements'a and e were 

plotted step by step for each binary orbit in the system. These plots 

are given in Figures 4.3. Note that at time zero, a2=a, a3 'ý 1$ 

e2=e3 ý- 0. There is usually little qualitative difference between 

a and a or e and e Therefore on a and e the change in 2_ 
. 
3' 2 3* 2 2' 

elements every conjunction are superimposed on the changes every step. 

For reasons that will become apparent two such curves are drawn. The 

full one graphs a2 or e2 against time (measured in synodic periods Ns 

at every even conjunction, (i. e. at the zeroth, 2nd, 4th, 6th .... 

conjunction). We denote it by subscript e, (eg. (a The dotted 2e 

curve graphs a2 or e2 against time at every odd conjunction (i. e. at 

the Ist, 3rd, 5th, ... conjunction), denoted by subscript o, (eg. 

(a 
2)o 

). There is a lot of information contained in each graph 

presented here, and in others like them. All that is done in this 

section is to point out particularly interesting features which may or 

may not have a direct bearing on the stability of the system in 

question. Suggestions for a more detailed analysis are given in 

Chapter 8. 

In general, the maximum values of a2 and a3 per synodic period 

occur at conjunction showing a-strong peak before falling back sharply 

to a lower more 6onstant value (Figure 4A(b)). There is a maximum 

at opposition but it is usually very much smaller'than the maximum 
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Figures 4.3 

On the following pages there ire graphs of a 2' a 3' e 2' e3 

against time (N 
s) 

for various systems listed below. The thin line 

indicates the variation every step The thick line indicates the 

variation at every even conjunction; the dotted line indicates the 

variation at every odd conjunction (for a 2' e2 only). The unstable 

systems are graphed over their whole stability lifetimes. The stable 

systems Are only graphed over the first 100 conjunctions. 
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spike" at conjunction. (Note that the spikes occur at real conjunctions. 

The time is measured in synodic periods where the synodic period is 

calculated from the initial conditions. Therefore the spikes will 

not coincide exactly-w-ith the integer values of Ns). For the values 

of the semi-major axes, the maxima occur near conjunction and the 

average "running" value is approximately minimum. 

For the eccentricities, the behaviour is somewhat different. 

Both the maxima and minima occur near conjunction with the running 

value(s) being somewhere between the two extremes. - Quite often the 

running value after a minimum differs from therunning value after 

a maximum. These differences may vary over many synodic periods and 

this gives rise to some of the very beautiful eccentricity graphs 

produced by the stable systems (a), (c), (d), (f), (h). 

There is one noticeable difference between the behaviours of 

e2 and e 3' Between conjunctions, e2 has two turning points and e3 

has four. None of these turning points occur at opposition. There 

is no cori-esponding difference between a2 and a 3* There is no imme- 

diately obvious physical explanation for this behaviour. 

The magnitude of the perturbation on the osculating elements 

in each synodic period varies with C23 and E32 - This is not 

surprising since C23 and C32 are measures of the disturbance on the 

outer and inner binary orbits respectively. Defining 

6a = (a 
max a min 

)/a 
min 

and 6e e 
max e min 

for inner and 

outer orbit, we find that after one synodic period 

6a 
2=P C32 

6a 
3=p C23 

6e 
2=q C32 

6e =q C23 



4.5 

where p and q vary with -E23 
1 632) a but typically have values- 

between 10 and 100. Both 'p and q increase as'a increases. For 

stable systems, 6a 
2) 

6a 
3' 

6e 
2' 

6e 
3 change in a periodic fashion only 

as do the running averages (Figure 4.3(a)). For an unstable system 

however, the average and/oi 6a, 6e may change in an irreversible 

manner as the orbit is disturbed. These disturbances will be com- 

pounded and lead to a break up of the hierarchy. 

Figure 4.3(b) is a good example of this. The peak values of a2 

and a 3' which are attained every-even conjunction, rise steadily 

until crossover is reached. Note also that the running values of 
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a2 between conjunctions increases, while the running value of a3 

decreases. Combining this with the steadily rising eccentricities, 

it is not difficult to see that such behaviour inevitably leads to 

a crossover of the two orbits. The apocentre distance of the inner 

will increase, while the pericentre distance of the outer will'decrease. 

Of two unstable systems (with equal epsilons) the one with the lower 

initial value of a will survive for longer before exhibiting crossover. 

This is because the lower the value of a to begin with, the greater 

the initial separation of m2 and m 3' The system can therefore suffer 

more of an increase in either a2 or e2 before crossover occurs. Since 

the magnitude of the changes does not vary too much with a, the time 

to achieve crossover is longer. 

This is connected with the question of whether we are able to fit 

a curve to the (a, N 
s 

data or not, depending on 623 being greater than, 

equal to, or less than c32. Most of thesystems that we are 

investigaHng have high a values (>0.9). Therefore since 



4.5 

C23 
C: 32 113 a 

ru v for a 

m 2 
m3 

The relative sizes of the epsilons reflect the relative sizes of 

m2 and m3 to a close degree. 

F or E" `ý 632, m2 <M3' (Figure 4.3(b)) and the perturbation 

of. m 3 on the inner binary orbit is greater than that of (m 
Vm2 

) on 

the outer binary orbit. In this case, by a combination of small 

increments in-a 
2 and e2, m2 approaches the m3 orbit (more so than m3 

approaching m2), until crossover is reached. The time till crossover 

depends on the initial separation 

For E: 23 = E32, ) m2 ý. M3 
-' 

and 

the other. It'seems in this case 

well spaced never to interact-or- 
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of m2 and m 3' 

each body has an equal effect on 

that either m2 and m3 are sufficiently 

else the-effect they-have on each 

other is so strong as' to instantly disrupt. each other's orbit. -.. Unlike- 

the previous case when m3 could affect m2 's orbit without any reper- 

cussions, m. 2 
is now big enough to "fight back" and the result is mutual 

instability of each orbit in a very short time. 

When CZ3 > F-32 ' m2 > Ta 3 
instability occurs more rapidly in general 

compared to the case when C26 "' E: 32 Unlike the case when 6 23= E32s 

however, there are some systems that survive for a few synodic periods 

before crossover. Figure 4.3(e) shows one such system. In this case, 

the running valuesof a2 and a3 seem to be fairly constant. Indeed, 

the . peak-values seem to decrease. The-eccentricities both rise however 

and it is this that leads to a crossover. The influence of m2 on m3 

is much greater than that of m3 on m2' 
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If we compare. the (a, N 
s) plots of Figures 4.1 for 

(a) E23 ýý 10-4 C32 ý 10- 
5 

and 
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(b) E: 23 = 10-5 E32 'ý 10- 
4 

we find that the value of a for (a) is greater than that for (b). 
0 

However for equal a>a0, the lifetimes for (a) are shorter than for 

(b). The cut off between stable and unstable is much sharper for 

(a). - It does seem therefore that the outer orbit is more'sensitive 

to a strong perturbation than the inner orbit. 

The final point to mention concerning unstable systems is to 

stress again that the maximum values of the elements occur around 

conjunction, giving the best opportunity for a crossover of orbits. 

This is the reason for the "stepping" in the (a, N 
s) 

data shown in 

Figures 4.1. 

Turning now-to the behaviour of the stable systems, we see that 

for constant E23 and C32 -the running value of a2 for a stable 

system is lower than that for an unstable system. The running value 

of a3 is higher, and the values of e2 and e3 are lower. The inner 

and outer orbits are always more widely spaced, preventing crossover 

and enhancing stability. We are now able to study the elements over 

much longer times. When we do, many interesting features become 

apparent (Figures 4.3(a), (c), (d)). We have already noticed that 

the elements ae exhibit fluctuations with a period of two synodic 

periods, there being peak values at conjunctions. 

There was a substantial difference between the (a aee )o 
2' 3' 2' 3 

curves and the (a 
2' a 3' e2 e3 )e curves'. over many synodic periods, 

a long period trend becomes apparent. Both odd and even curves 

oscillate about a common mean value but with opposite phase. The 
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period of oscillation is common to a2, a 31 e2 and e 3' Just after the 

start of ea6h integration, 

(e) > (e) VE23 1 ý32 
0 e 

(a) < (a) C23 <F-32 
0 e 

(a) > (a) C23 >F-32 
0 e 

(a) = (a) EZ3= E32 0 e 

for both inner and outer binary orbits. In addition, there seems to 

be no oscillation of (a) 
0 and (a) 

e when C23 = E32 - Clearly the phase 

and amplitude of this long period oscillation is linked to the size and 

mutual difference of C23 and C32 

The following is a physical interpretation of some of these results. 

Firstly, define T2 to be the sidereal period of m2 about mI and T3 to 

be the sidereal period of m3 about M 2' nI= 2n/T 
I are the corresponding 

- mean motions. The synodic-period for a retrograde system S is defined 

by 

1_i 1 
S TT3 (7) 

Note that S<T 21 T3 for retrograde systems. For C23 9 632 << la a: = 

it follows that T22: T 3' The mean motions are roughly equal in size 

but opposite in"direction. If they were exactly equal, then S= T2/2 

T3/2 and consecutive conjunctions would occur exactly 1800 apart at 

opposite sides of the two binary orbits, (see Figures 4.4). Every 

second conjunction would occur in the same direction (with respect to 

the inertial frame). It is easily seen that 

n2 a3 G(m +m +m ') 
32-1.2 3 3(1+ 11 a3+ 

n .-2 a3 G(M +m 
ct 3 

2312 

For the systems described here, a3 + E32iS slightly less than one. 
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t=2S t": O 

t=s 

Figure_4.4: Retrograde system 
Owith 

similar binary periods. 
As T2T 31 00 

The two conjunction lines are seen to -precess -as in Figure 4.4 moving - 

at a rate e every two synodi'C' peii6ds 

0= 2S. n2- 2Tr (9) 

The precession period, assuming the elements remain fixed is equal 

to 2r. 2S/6 or in units of the synodic period is 4w/g. 

From Equations (7) and (9) it can be shown that 
n3 

2(l +-) 
47r n2 

(10) 
n3 

n2 

where n3 /n 
2 is given by Equation (8). Since E; 32 -<< 1, n3 /n 

2 (x 

The precession period is quite sensitive to cc and may well be a 

factor in determining the period of the oscillation in (a ), (a 
2o 
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(e ) s-etc, It-is seen that this period does decrease as a is 
2o 

decreased within the-btable region. This cannot be'the whole story 

as the observed*changesare not as dramatic as Equation (10) would 

predict. 'It therefore seems likely that the period is caused by 

a more complicated dynamical mechanism which may come to light after 

deriving an analytical perturbation theory. This however is outside 

the scope of the present work. 

To summarize, for given CZ3 1632 ,a system with initial a "ý ao 

seems to be stable for all time. (a 
2 and (a 

2 oscillate in anti- 

phase with common period, as do the odd and even conjunction values 

for a 31 e2 and e3 As a is increased, the period of oscillation of 

the eight functions is seen to incTease as do the average_values until 

a reaches a 0. 
A secular term then appears which, over a period of 

time, causes the inner (m Vm2 ) binary orbit to cross the outer (M VM3 

binary orbit. As a( >a 0) 
increases, the initial separation of the 

binary orbits decreases and the secular trend in a and e increases in 

strength, causing the time until crossover to decrease. 

Recall in Section 4.4, there was an anomalous peak in-the (aN 
s 

24 
curves for C32 2ý 10 C23 ', "' 10 

. 
Figures 4.3(f), (g), (h) show 

*2, a3, e2, e3 for C23, = 10-61 632 10- 2. 
Figures 4.3(f) describes 

* system in the empirical stability region. Figure 4.3(g) describes 

an unstable system. Figure 4.3(h) describes a system which is stable 

for over 600 synodic periods, although its initial a-value exceeds 

that of the previous unstable system. 

Comparing M and (h), we see that unlike the previous systems 

(a), (b), (c), (d), (e)', there are distinct differences in the. behaviour 

of the inner and outer'elements. In particular, the"buter orbit does 
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not show the same regularity in amplitude that the. inner orbit does, 

although we must remember that the actual size of the oscillations 

are four orders of magnitude smaller. We noted'previously that the 

period of oscillation of'(a 2)0, 
(a 

2)e . etc. increased as a increased. 

We note here that the period for system (h) is smaller than that of 

system 

For the previous systems as the initial a increased, the running 

value of a2 increased and the running value of a3 decreased (improving 

the chance of crossover). Comparing M, (g), W we notice that as 

a is increased, the average value of a3 falls as before, but so also 

does the average value of a 2' 

A possible explanation for the enhancement of the lifetime of 

systems like system (h) may be that they suffer a very early close 

encounter. This close encounter rather than destroying'the hierarchy 

has the surprising effect of changing the orbit so that the value of 

a2 is lower than it otherwise would be thus lessening the chance of a 

crossover. This "constructive" close encounter only takes place over 

a certain range of a. It will be noted from Figures 4.1 that for 

a exceeding this range, the lifetimes are zero, indicating a strong 

"destructive" close encounter and subsequent crossover. Obviously 

this explanation is highly speculative and needs a much more detailed 

study to confirm or deny it. 

4.6 Summary 

A considerable amount of information has been presented in this 

chapter concerning retrograde three-body systems. A brief summary is 

useful at this stage. 
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In Section 4.5'a. qualitative description was, given of the general 

behaviour of the systems with the aid of graphs of osculating elements 

a 2" a 3' e 2, e3, Various short and long period'oscillations in these 

elements were pointed out which indicate that an unstable system 

changes slowly, With the binary orbits approaching each other and 

finally crossing, Changing the hierarchy. The lifetime is a function 

of the relative sizes of the epsilons and the initial. separation of 

the orbits as given by a. Some of the explanations given for the 

observed behaviour cannot be justified without more study, possibly 

studying the elements of other systems by numerical integration, as 

before, or employin g analytical perturbation techniques to highlight 

inte resting periodicities. 

Section 4.4 gave the results from several hundred numerical 

integrations of different systems by graphs of lifetime against a 

for-given pairs of epsilons. Although for many of the epsilon pairs 

there was no analytical guarantee of stability for any a, there always 

seems to exist a value a0 below which no unstable systems could be 

found. For a> aof the systems were seen to be unstable and the 

stability lifetimes were seen to decrease monotonically (with the 

2 23 -4 exceptions Of C32 -'ý 10 1 E: 1< 10 where the singular peaks in 

the lifetimes occurred). The range of a over which the lifetimes 

fell frori over 600 synodic periods (integration limit) to one synodic 

peri6d varied with the epsilons. For C23 < C32 . smooth analytical 

curves were fitted to the data over this range. For E23 >- 632 

the range was too small for a curve to be usefully fitted. In these 

cases-only a0 wds determined'. 

It is worth summarising the c-urve fit procedure for C23 c E: 32- 
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We are fitting the--ýurve 
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N=f (a) = ex ' 0,11-a 
ly 

Sp 
(X 

0<a Fa-J 
characterised by the parameters a0a, y*, for given C23 C32 

We wish to weight this curve fit towards the low a-high N data. 
s 

Therefore for each step of data points (i. e. 'data with common lifetime) 

discard all the points except one in the middle of the step. Weight 

the remaining data points according to their Ns values. Calculate 

quantities u, v as given in Equations (4) and (5) for a chosen value 

0fa. 
0. 

Determine by least squares applied to the (u, v) data, the 

corresponding values of and y. We have found the best curve 

that fits the unstable system data for a chosen a0 It must also 

fit the "stable" data in' the sense that it should indicate any system 

that will survive for over 600 synodic periods; If it fails to do 

this for any of the observed systems, the curve should be discarded 

and this value of a0 disal lowed. We pick the curve that gives an 

allowed value Of a (with corresponding ý and y) that maximises 0 

the correlation coefficient r as given in Equation (6). 

We saw that the fitted curves, although showing a systematic 

error, in most cases gave a fairly accurate prediction of the actual 

stability lifetime for any given system. 

. 
We cannot say for certain that the value Of ao that we have found 

is the value of a such that all systems, with initial a< aop are 

stable for all time. We can say this however, insofar as Ns= f(a) 

is an accurate function for fitting to the (a, N )data, then there is 
S 

a region of empirical stability for ac<a<a0, where ao is 

substantially greater than the value ac, calculated by the analytical 
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stability theory, 

There is no reason why this curve-fit procedure should not be 

applied to the direct systems. The use of the correlation coefficient 

excludes the possibility of subjective bias in determining a0, as 

was the case in Walker and Roy, Paper III. Our success in being able 

to predict the stability lifetimes for retrograde systems encourages 

us to do the same for direct systems. As we shall -see in Chapter 5, 

this will turn out to be a much more difficult task. 



CHAPTER 5 

PREDICTIONS OF STABILITY LIFETIMES 

FOR DIRECT SYSTEMS 

5.1 Introduction 

5.2 Numerical Experiments for Direct Three-Body 

Systems 

5.3 Curve-Fitting Techniques Applied to Direct 

Systems 

5.4 The Effect of Commensurabilities 

5.5 Predictions of Stability Lifetimes 

5.6 Summary 
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5.1 Introddct: ion. -- 

This chapter is concerned with applying statistical techniques to 

data from coplanar direct three-body system in order to predict the 

stability lifetimes of such systems. The techniques described here 

are based on those described in the previous chapter as well as the work 

of Walker and Roy. Inevitably there will be comparisons made between 

their methods and the augmented methods given here. 

In the same manner as for the retrograde systems, using the same 

integration routine described in Section 4.3, approximately 450 direct 

three-body systems were studied. All were coplanar, initially circular, 

starting from-the m I-M 2-m3 conjunction configuration as before. Recall 

that these systems are uniquely defined by C23 x 6329 a- All the - 

systems t6ok values 

e2s = 10- 
i 

632 = lo-j 
ij = 2,3,4,5,6. 

Of the 450 systems investigated, 150 were taken from the original data 

set of Walker and Roy, Paper III. Some of their systems were reintegrated 

as the diagnostics within the integration program for detecting close 

encounters had been improved. Checks now take place after every step 

instead of every conjunction. This is particularly useful for detecting 

close encounters for systems with stability lifetimes of 5 synodic periods 

or less. Whereas Walker had integrated systems for a total of 500 synodic 

periods, this limit has been raised to 4000 synodic periods. Accumulated 

integration error prevent us integrating further, (Section 4.3). As a 

result many systems from the original data set which were stable over 500 

synodic periods, exhibit instabilities after longer times. 
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As was said above, this chapter is primarily. concerned with data- 

processing. The dynamical implications of this processing are largely 

left to Chapter 6 where the results from the fictitious systems of 

Chapters 4 and 5 are compared with real systems. The behaviour of 

direct three-body systems is discussed, very fully in Papers I, II and 

III by Walker and Roy and also in Walker (1980). Some relevant results 

are described in Section 5.2 along with graphs of stability lifetime 

against a for different values of C23 s E32 taken from the 450 in- 

tegrated systems. 

Section. 5.3 is concerned with fitting curves to the (a, N ) data 
s 

in a similar way to the retrograde systems. We shall see that curve- 

fitting is made more difficult, because commensurabilities cause a 

considerable spread in the data. These effects are discussed in 

Section 5.4. 

In Section 5.5, a method is found for normalising the (a, N 
s 

data for each pair of epsilons. This allows all the available data 

to be used together in order to obtain a quantitative evaluation of 

the spread of lifetimes about a predicted value. This allows us to 

test our procedures against a new set of 100 three-body systems to see 

if their behaviour matches our predictions. 

5.2 Numerical Experiments for Direct-Three-Body Systems 

The most striking aspect concerning direct three-body systems is 

the variety of behaviour that they exhibit. The retrograde systems 

were fair-ly consistent in the way they evolved either in a stable or 

unstable manner (Section 4.5). In the case of direct systems, some show 

steadily rising eccentricities which lead inevitably to a crossover of 

orbits (as for retrograde systems). On the other hand, many more show 
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osculating eccentricities. which vary periodically without any sign 

of a secular increase until a "close encounter" takes place. The, 

eccentricities rise sharply to resume their oscillations, this time 

about a new mean value, with a different amplitude and in some cases 

with a different period. The new amplitude need not be greater than 

before, but may in fact be smaller. In extreme cases, the eccen- 

tricities may be nearly constant. This may indicate that a system 

has been perturbed into a stable commensurable configuration. 

The method for diagnosing close encounters when the osculating 

elements of the inner and outer binary orbits change dramatically 

was described. fully in Section 4.3. On occasions, a system will show a 

sudden rise in eccentricities which looks irreversible but after a longer 

time, these eccentricities will fall again. We are then faced with a 

dilemma. Do we-treat this as a long period trend of the original system 

or-as two close encounters resulting in two drastic changes in the 

system? The stability lifetime will depend on the interpretation that 

we attach to the data. 1his is one of the problems encountered in inter- 

preting the behaviour of direct systems: we are unable to avoid a 

subjective analysis. Faced with the situation above, how do we judge 

the irreversibility of changes in eccentricity? If we choose to ignore 

close encounters altogether, as we did with the retrograde systems, and 

use only the objective tests of escape and crossover, then we miss 

detecting many system that evolve into a more stable configuration 

which they can maintain for all time. 

In the event, 
_we 

choose to retain the close encounter diagnostic and 

accept the subjectivity. Systems which exhibit very long period changes 

are considered to be stable, unless proved otherwise. In any case, the 
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number of ambiguous systems is relatively small. For most systems there 

is little doubt-that the changes are irreversible. For example, a set 

of close encounters is often succeeded by a crossover. - 

There is a further ambiguity in classifying the type of instability 

even if we know it has definitely taken place. Did the crossový! r arise as 

a result of the close encounters orvere the close encounters a symptom 

of the approaching crossover. Generally the former is assumed here and 

the stability lifetime is taken to be the time to close encounter. In 

most cases of this type, the difference in time is very small so the 

actual value of the lifetime will not be badly affected. Walker and 

Roy chose to include the classification of the method of instability 

in Paper III. However, 
-for 

reasons-of ambiguity and because it is not 

relevant to the subsequent work, we shall ignore such a classification. 

It can be seen as a7 general trend that the amplitudes of variation 

of the orbital elements are proportional to E23 P C32 in the same 

manner as for the retrograde systems (Section 4.5). Walker (1980) 

has done extensive investigations into this and it is not proposed to 

repeat them here. Suffice it to say, that this proportionality is a 

reflection of the definitions of C23 and 632 as a measure of the 

relative perturbation on the outer and inner binary orbits, respectively. 

It can also be confirmed-that on the few occasions when one of the 

bodies escaped the system, it was always the least massive. Marchal 

(1985) has shown that this need not always be the case, but that it is 

the most likely. 

The above comprises only a summary of some aspects concerning 

the behaviour of direct three-body systems, a more detailed analysis 

being given by Walker (1980). It is however sufficient as a background 



131 

Figures 5.1: Stability lifetime against a for given C23 , E32 for 
direct systems. The crosses indicate the stability 
lifetime for each unstable system. The circles indicate 
systems that showed no signs of instability during 
the given lifetime. A best fit curve is drawn through 
the unstable points Where some systems have lifetimes 
exceeding the graphs limits, the value of the lifetime 
is given in brackets. 
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for introducing the results of the 450 numerical experiments in the form 

of 25 graphs. of stability lifetime Ns against a for various combinations 

of C23 and 632 (Figures 5.1). The crosses'indicate the stability 

lifetimes of unstable systems. The circles indicate the time over which 

a system has been studied which as yet has shown no instability. A 

best fit curve is drawn through the data on each graph. The method of 

fitting is described in the next section. 

5.3 Curve-Fitting Techniques Applied to Direct Systdms. 

In comparing the graphs of Ns against a for direct systems (Figures 

5.1) with the graphs for retrograde systems (Figure 4.1), the most 

obvious difference is the effect of commensurabilities (see Sections 5.4 

and 6.3). For direct systems, the commensurabilities cause a spread in 

the data points which was missing in - the retrograde cases. This allows 

considerable tolerances when fitting curves to the data. 

Walker and Roy, in Paper III, considered the co=ensurabilities as 

acting to enhance the stability of systems in such a way as to increase 

the system's lifetime beyond its "natural" value. The amount of this 

increase would depend on the system's proximity to a natural commen- 

surable configuration and the inherent strength of the commensurability. 

With this in mind they fitted curves along the observed lower bound of 

the data. Some of the points would lie below the line, but the majority 

would lie above it. While there may be some justification for this 

approach on physical grounds (Section 6.3), there are problems in curve- 

fitting. 

The first is that the "natural" lower bound is hard to plot 
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accurately. If the data is sparse, there may be too few Points to mark 

it accurately. At high a values there may be so many commensurable 

values as to make'it impossible to find. There may be damaging 

commensura . bilities which cause a reduction in the lifetime from the 

"natural" value (Section 5.4). All these factors make finding the 

"natural" curve difficult. 

The second problem is the fact that this curve is only found by 

eye and is open to subjective bias in deciding what really is the lower 

bound. 

The third problem will arise when we come to combine the data from 

all epsilon pairs by a suitable normalisation. Unless we are able to 

fit the curves consistently accurately there may be a greater measure 

of deviation than is necessary (see Section 5.5). 

The solution to these problems is to proceed as for the retrograde 

systems and fit a curve through the "most likely" value of the lifetime 

for a particular a In other words, we fit a curve through the middle 

of the (a, N 
s) 

distribution rather than the lower bound. By fitting a 

curve that maximises the correlation coefficient r, for all a 0 

we achieve this end. The assessment of the curve is done in an objective 

fashion which gives the best fit available for the data. 

We now summarize the curve fitting procedure for direct systems, 

making comparisons with retrograde systems where necessary. 

For most E: 23 
s e32 pairs in the retrograde case, Ns decreased 

monotonically as a increased and showed strong quantisation around 

integer numbers of synodic periods. This was manifested by the step- 

function nature of the data (Figures 4.1). In fitting the curves, only 

one representative (a, N 
s) point from each "step" was used. There is no 
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stepping in the direct case andwso all the data is used'. 

Because the data is not monotonic, it is not possible to assume 

that all systems with a less than a prescribed value will undergo, say, 

600 synodic periods without exhibiting instability. That prescribed 

value cannot be found to any degree of accuracy and cannot therefore 

be used to test if a particular curve fits the "stable"2ý data (the 

circled systems in Figures 5.1). In fitting the curves, we are unable 

to use the data from the '. 'stable" systems in any way. Our choice of 

a0 is only limited by ac, the critical value-for hierarchical pre- 

servation, and by a us , 
the lowest value of a for which an 

. 
unstable system 

has been detected. 0,0 is assumed to lie in range (ac qa US). 
With these limitations, the curve fitting proceeds as for the 

retrograde systems. We are fitting the curve 

N= f(a; a O, y)-= exp --Ct )'Y a<a< s0p a-a 00 

for given C23 s C32 . The curve is parameterised by a 0 

For a particular value of a0, the best fit values of a and y are found 

by calculating u and v for each data point (a, N 
s) 

(Equations (4.4) and 

(4.5)) and constructing the least squares fit. The goodness of this 

fit is found by calculating the correlation coefficient r, (Equation 

(4.6)). The value of a0 is varied in the range Ca 
c cc % 

). The best 

fitting values of a will maximise r. 
0 

As with the retrograde systems, it is more important to get an 

accurate fit at the low a-high Ns end of the data than the high a-low 

*A "stable" system is taken to mean one that has shown no instability 
during the time it has been investigated. 
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Ns data. To this end, ýhe (u, v) data is weighted'accordingly-when 

performing the least squares fit to determin e0 and y for a particular 

a0 Care is taken to make the weighting fa ctor vary with u, rather 

than v. The reason for this is that u is a function of a, (u increases 

as a decreases), while v is a function of Ns (v increases as N increases). - 

If we were to apply weights according to how high Ns is for a pa rticular 

data point, then we would weight in favour of commensurable systems as 

well as systems near the threshold of stability. We avoid this pitfall 

by weightingaccording to u (and hence a 

A typical graph of v against u for direct systems is 
-givenin 

Figure 5.2. It is clear that there will be a considerable error in the 

estimation of ý and y due to uncertainties in the lifetime caused by 

commensurabilities. 

Curves are fitted in all 25 graphs in Figures 5.1, by these tech- 

niques. The critical values of a and the curve fit parameters are given 

in Table 5.1. It'is seen from the table that a0 tends to 1 as 623 

F-32 tend to zero. The rise is monotonic with few exceptions, one being 

-3 -3 -4 when E: 23 = 10 and F-32 10 
-t 

10 . It may be that the true 

value of a0 when C23 = F-32 10- 3 is actually lower than s tated here 

More numerical experiments at a<a us 
would be needed to verify this. 

There is little evidence of any trends in ý or y as -623 , 632 

vary. Although for E: 23 = 10-2 increases and y decreases as C32 

-2 decreases, there is no evidence from C23 < 10 that this is anything 

other than chance. 

For most curves, the agreement is reasonable. 16 out of 25 show 

r>0.8. Occasionally a fit is less than satisfactory (r < 0.5) and 

in some cases r<0 indicating a slight anti-correlation. Generally 
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Figure 5.2: Graph of v against u for E23 = E32 2-- 10- 2 (direct systems). 

there are two reasons for this. When r<0, there are usually commen- 

surable systems at high a with anomalously long lifetimes. When these 

points are excluded the curve fits well to the rest of the data and 

r>0.8. 
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p23 -C 32 

10- 2 10- 2 

10- 3 

10-4 

lo- 5 

lo- 6 

10- 3 
lo- 2 

lo- 3 

lo- 4 

10-5 

lo- 6 

10- 4 
10- 2 

10- 3 

10- 4 

lo- 5 

10- 6 

lo- 5 10- 2 

-3 lo - 
lo- 4 

10-5 

lo- 6 

10-6 10- 2 

lo- 3 

10-4 

lo- 5 

lo- 6 

OL . OL 
c0 

0, -324 0.434 

0.495 0.598 

0.518 0.620 

0.520 0.632 

0.521 0.627 

0.397 0.510 

0.707 0.792 

0.768 0.783 

0.776 0.794 

0.777 0.795 

0.412 0.519 

0.760 0.786 

0.871 0.902 

0i896 0.915 

0.899 0.914 

0.413 0.492 

0.767 0.798 

0.894 0.917 

0.942 0.942 

0.952 0.952 

0.413 0.518 

0.767 0.796 

0.897 0.916 

0.953 0.953 

0.973 0.974 

a us 

0.459 

0.620 

0.625 

0.633 

0.628 

0.511 

0.793 

0.788 

0.795 

0.796 

0.520 

0.790 

0.905 

0.917 

0.915 

0.525 

0.799 

0.918 

0.945 

0.954 

0.520 

0.798 

0.918 

0.958 

0.975 

a 

0.174 

0.449 

0.506 

0.920 

1.156 

0.739 

0.472 

0.811 

0.604 

0.687 

1.017 

0.120 

0.782 

0.675 

0.110 

0.062 

0.965 

0.260 

1.940 

2.283 

0.915 

0.885 

0.451 

0.598 

1.360 

y 

1.298 

0. 
-939 

0.595 

0.309 

0.268 

0.319 

0.479 

0.539 

0.397 

0.324 

0.284 

0.996 

0.495 

0.384 

0.890 

1.703 

0.303 

0.64'0 

0.051 

0.169 

0.401 

0.395 

0.596 

1.050 

0.160 

r 

0.94 

0.89 

0.91 

0.81 

0.85 

0.94 

0.86 

0.87 

0.75 

0.87 

0.77 

0.93 

0.86 

0.56 

0 

0.83 

0.90 

0.16 

0.46 * 

0.68 

0.89 

0.82 

0.85 

0.39 

Table 5,1: Summary of critical values of a obtained from the results 
displayed in Figures 5.1. Curve fit parameters and 
correlation coefficients are also given. These results 
apply for direct systems only. 

*These values are derived from an unweighted fit. If the weighted fit 
is used, B=4.336, y=-0.109, y=0. 
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The second reason is that the data seems genuinely scattered. 

This is generally the case when both C23 and C,, 2 are small. Walker 

and Roy experienced similar difficulties, quoting the high number of 

"one-spoke" co=ensurabilities as being responsible (see Section 5.4). 

In these cases the values of a should be treated with some 

scepticism. 

5.4 The Effect of Commensurabilities. 

It has been seen in Figure 5.1 that commensurabilities seem to 

play an important part in determining the stability lifetimes of direct 

three-body systems. It is interesting to note which commensurabilities 

may be responsible in individual cases. 

Let n2 and n3 be the mean motions of the (ml, m2) and (M 
2, m3 ) 

binary systems respectively (n 
2>n3 these being the osculating values, 

given by 

n2 a3 = G(m +m 2212 

n2 a3 = G(m +m+m 33123 

A system is defined to be commensurable when the ratio of mean motions 

approximates to a ratio of integers, i. e. 

n2A2A2'A3E7 

n3A3A2>A3 

Dividing the first equation by the second, we get 

3n321 Cc 
n2 1+11 3 

where p3 'ý m3/ (m 
1 +m 2) as before. Recalling that C 32ý 113 a3? 
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Hence we find the value 6 which gives rise to the. A'"A commen- 2' 3 

surability. Note that the equation is independent of c23 In addition, 

it depends only weakly on the value of 632 , when E32 is small. 

This allows us to give a simple table of the range of values of a for 

the strongest commensurabilities (Table 5.2). For each pair A 
2' 

A 3' 

two values of a are given. The lower corresponds to the value at 

632 ý 10 -2 ; the higher at C32 = 10- 6* 
. For C32 = 10- 31 10- 

49 
10- 

5 

the values of a lie closer to the higher value than the lower value. 

Obviously the 6: 3 commensurability is*equivalent to the 2: 1 commen- 

surability. The dashes in Table 5.2 indicate commensurabilities that 

are equivalent to others already given. 

Table 5.3 gives for each of the graphs in Figures 5.1, the values 

of a at which commensurable behaviour is detected from the numerical 

in tegration experiments. Along-side are__presenýed the commens u'rab i li ties 

that are suspected of being responsible and the corresponding exact 

value of a. This follows Walker and Roy's treatment, PaVer III. They 

noted that commencing each numerical experiment, the osculating value 

of a was seen to decrease. It therefore seems likely that any commen- 

surability will only affect systems whose initial value of a is greater 

than the value associated with the commensurability. 

The osculating synodic period of a system S= 2Tr/(n 
2 -n 3). From 

Equation (4), 

2Tr 2- 
n2A2 -A 3 
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A2 

2 0.621 
0.630 

3 0.466 0.757 
0.481 0.763 

4 0.374 - 0. -821 
0.397 - 0.825 

5 0.311 0.531 0.705 0.857 
0.342 0.543 0.711 0.862 

6 0.261 - - - 0.881 
0.303 - - 0.886 

7 0.218 0.415 0.558 0.: 682 0.794 0.898 
0.273 0.434 0.568 0.689 0.799 0.902 

1 2 3 
.4 

56A3 

Table 5.2: The values of a which give rise to commensurabilities 

6 -2 A2 :A 3' for 10 C32 10 . 
(The values are independent 

of C23 ). The two entries at each A 
2' A3 are the minimum 

and maximum values of a for C32 in this range. 
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Table 5.3 : Observed commensurabilities in mean motion for direct 

threeý-body sy stems. 

C23 E32 cc Commensurability/Corresponding a 

10- 2' lo- 2 
0.466 
0.47 
0.475 3: 1 0.466 
0.485 
0.500 11: 4 0.496 

lo- 2 lo- 3 
0.635 2: 1 0.629 

10- 2 lo- 4 
0.630 2: 1 0.630 

lo- 2 lo- 5 
0.630 2: 1 0.630 

lo- 2 lo- 6 
0.670 11: 6 0.668 
0.630 2: 1 0.630 

lo- 3 lo- 2 
- - 

lo- 3 lo- 3 0.795 7: 5 0.795 

lo- 3 10- 4 
0.792 17: 12 0.7925 
0.805 18: 13 0.805 
0.822 4: 3 0.822 

lo- 3 10-5 0.818 11: 8 0.809 
0.85 9: 7 0.846 

10- 3 lo- 6 0.798 7: 5 0.799 
0.802 

0.818 
0.820 4: 3 0.825 
0.822 

lo- 4 lo- 2 0.532 5: 2 0.531 
0.546 12: 5 0.546 

lo- 4 
lo- 3 

- - - 

lo- 4 10-4 0.908 15: 13 0.909 
0.95 13: 12 0.948 

lo- 4 lo- 5 0.920 9: 7 0 915 
0.927 9: 8 0.925 
0.936 10: 9 0.932 

lo- 4 lo- 6 0.95 13: 12 0.948 
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C23 

continued 

C32 

..;. 

a Commensurability/Corresponding a. 

10- 5 
10- 

2 
0.533 5: 2 0 . 531 
0.545 12: 5 0.547 

10- 
5 

10- 
3 

0,800 7-5 0.799 
0.808 11: 8 0.808 
0.83 0.825 

10- 5 10- 0.94 11: 10 0.938 
0.955 15: 14 0.955 

10- 5 10-5 0.951 14: 13 0.952 

10- 5 
10- 

6 
- - 

10- 
6 

10- 
2 

0.525 - - 
0.530) 5-2 0.531 
0.535) 

0.57 9: 4 0.572 
0.60 

10- 
6 

10- 
3 

0.800 7: 5 0.799 

-0.802 
0.805 18: 13 0.804 

10- 6 
10-4 0.925 9: 8 0.924 

0.940 11: 10 0.938 

lo- 6 10-5 

10- 6 lo- 6 0.989 
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In- this forra, it can be seen that straight line configurations can only 

occur along a finite number B-A2-A3 of sidereal directions. The 

sYstem of conjunction lines can be pictured like the spokes of a wheel. 

The wheel has B spokes with each-successive conjunction taking place 

A3 spokes away from the previous spoke. For example, let n2 :n3 22 5: 2 

as in Figure 5.3. 
- 

rn, 3 

Figure 5.3: System in 5: 2 commensurability will be at conjunction 
in directions 1-3-2 consecutively. If the-commensurability 
is exact the conjunction lines will remain fixed in positions 
la2s3. If not the fourth conjunction line will be displaced 
from the first by 4 small amount. 
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There are 3 spokes numbered clockwise (in"the direction. of rotation of 

the bodies). If the system'starts at conjunction in direction 1, after 

one synodic period S= 5/3 x 2TT/n 
2' 

ýherO- iqill-be a conjunction in 

direction 3. After a further synodic period, ýhe conjunction will take 

place in direction 2, and so on. 4: 1 commensurable system would also 

have three spokes but they would be visited in the order 1,2,3. If 

the commensurability is exact then spokes are fixed in the same sidereal 

directions. If the commensurability is inexact, the sytem. of conjunction 

lines will rotate, the speed of rotation depending on how inexact the 

commensurability is. 

We have already seen that the system is generally at its most 

unstable near conjunction, ýihere the perturbations are greatest. 1n 

particular, the perturbations will be greatest when the conjunction takes 

place at the apocentre of the (m ) binarY and the pericentre of l, m2 

the (M 
2, m3 ) binary. 

A commensurability limits the number of sidereal directions where 

conjunctions are allowed to take place. It may be that such a commen- 

surability prevents a system from approaching this worst possible 

conjunctionwhich may cause an instability to appear. If the commen- 

surability is inexact then there is only a temporary reprieve as the 

conjunction lines move towards the (m , m2 ) apocentre - (M 
2' M3) peri- 

centre configuration. Therefore the more exact the commensurability, 

the more likely the system is to survive for anomalously long periods 

of time. 

Clearly commensurabilities with few distinct conjunction lines are 

more likely to preserve stability in this way than commensurabilities 

showing many conjunction lines, in order to minimise the number of 
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conjunction positions. Thus the commensurabilities close. to the diagonal 

in Table 5.2 are favoured. 'In particular commensurabilities of the 

form n+1n have only one conjunction line And are the most favourable. 

Such commensurabilities occur for high a (> 0.9) and it may be that 

this explains the very random nature of the lifetimes shown when both 

23 -5 C and E32 are less than or equal to 10 

Table 5.4 gives the frequency of B arising from the commensurabilities 

associated with_the systems which exhibited anomalously long stability 

lifetimes. It does indeed seem that "one spoke wheels" are favoured. 

It also appears that odd values of B are favoured over even values. 

This should not be surprising since for even valued B, if one 

commensurability was well placed at (ml, m2 pericentre - (M 
2' m3 

apocentre, 

Table-5.4: Frequency of observed numbers of conjunction lines. 

B1234,5 67 

Frequency 1 17 700 

then there wouýd be another conjunction at (ml, m 2) apocentre - (M 
2 'm 3 

pericentre. Thus best and worst conjunctions always go together. It 

is however worth testing the significance of this data to see if in 

reality, even B are avoided. 

The probability that B is even is 1/3. 
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Sketch Proof 

It is assumed'that in any quoted commensurability the greatest 

common divisor of A 
2' 

A3 is one. -To 
begin hoWevi_: ýr, we pick integers 

A2 and A3 at random, such that A2>A 
3* Each has a 50% chance of 

being odd or even. Thus there are four cases to be considered, namely, 

(A 
2 odd, A3 odd), (A 

2 even, A3 odd), (A 
2 odd, A3 even), (A 

2 even, A3 

even). 

By . considering A2- and A3 as products of prime numbers it is easily 

seen that any common divisor of A and A is odd, if one of them is 
23 

odd. Thus in the first three cases when the ratio A2 :A3 is reduced 

so-that the greatest common divisor is one, the parities of A and A 
23 

are preserved. 

In the case when A2 and A3 are both even, we may divide-both by 2 

until one orboth are odd in which case they fall into one of the first 

three categories, each of which is equally likely to occur. 

When A2 and A3 are both odd then B is even. Otherwise, one is 

odd and the other is even, implying B is odd. Thus the probability 

1 
of B being even is /3. 

Q. E. D. 

The probability of r even spoked commensurabilities in n trials is 

given by the binomial distribution B(n, p) where p is the probability 
1 

of an even spoked commensurability in one trial. In this case p= /3' 

n= 37. We use the normal approximation to the binomial distribution, 

namely B(n, p) = N(np, npq). Thus B(37,1 /3) = N(12.33,8.22), (q=l-p), We 

detected 7 even spoked commensurabilities out of 37. The probability of 

having as few as that is 
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7*5: - ý12. ' P(r 7) 4) 
V18 22 

= 1) 

=1 -4ý (1.68) 

=1-0.9535 

= 0.0465 

where (D is the cumulative dis tribution function of N(0,1). 

Thus the probability of seeing as few even spoked commensurabilities is 

less than 5% and to this level of significance we must assume that 

systems do avoid such commensurabil ities. 

Recall in Chapter 4 that for retrograde s ystems, there was an 

anomalous peak in the (a, N 
s) 

distribution for some values of c 23 
3C 32 

There is also some evidence of similar peaks for direct systems. 

1n the cases (E23 
iE32-ja) 

-(10- 31 
lo- 

410.805)3 (10- 30 lo- 5j0.815), 

(10- 3$ 
10- 

6gO. W, (10- 6 lo- 2p0.57) 
there is evidence of a broad 

feature, (see Figures 5.1 and Table 5.3). Although there is a strong 

commensurability in the neighbourhood of each point, the strength of 

the feature is much greater than other commensurabilities. It is this 

that reminds us of similar peaks for retrograde systems. 

. Walker has pointed out that commens-urable behaviour can arise when 

a system is not initially commensurable because the osculating value of 

a decreases immediately after the start of the integration. It may be 

that as the system changes in this manner, it becomes commensurable for 

a time and this commensurability serves to enhance the overall stability. 

It is however-possible that the accumulated error in the numerical 

procedure could enhance the stability in the same way. The method of 
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rounding by the computer as well as the truncation error, may introduce 

a secular trend. to a and. a which will cause a dissipative effect in 
23 

what should be a conservative system. Goldrei& (1965) suggests that 

dissipation allo . ws systems to evolve into commensurable ones. Obviously, 

if the numerical error is small, ýhis effect will be small compared to 

the real dynamical effects that are taking place. If however we run a 

commensurable system for a long time in the hope of detecting an instability 

then we may be running it in vain; not because it is indeed stable, but 

because the numerical procedure renders it so. It is believed-however 

that in 4000 synodic periods (150,000 integration steps) the numerical 

errors are still small enough that this effect is neglible-. 

A further cautionary note is perceived, arising from the real problem 

of deciding which commensurability is "guilty of inciting stability" 

for a system that shows an anomalously long_stability lifetime. For 

example, the system may lie reasonably close to a strong commensurability 

like the 5: 3, with only 2 conjunction lines that are rotating fairly 

quickly. On the other hand it may be equally close to the 26: 15 commen- 

surability with 11 conjunction lines that are almost stationary. Which 

commensurability has the greater effect: an inexact "strong" commen- 

surability or an exact "weak" commensurability? One can go further. 

Because the set of rational numbers is dense on the real line, we may 

pick for any system, two integers A 
2' 

A3 such that n2 /n 
3 is arbitrarily 

close to A2 /A 
3* 

This leads directly on to the final point in this section. For the 

retrograde systems, we were fairly convinced'of the value of C, $ the 
0 

Ns (a) curve tending to a definite asymptote--Thýis is no longer the case for 

the direct systems. There is always the possibility that what seems to be 
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an asymptotic rise. to infinity as a decreases, could be another commen- 

surability and that the value of the lifetimes may decrease again for 

even lower a. 
-An 

example might be for E23 = 10-2 c3z: ý10 -3 

Here a0 is -close to 0.63 the value for the'2: 1 commensurability. 

Here, however, since the rise in lifetimes*takes place for a<0.63, 

we are reasonably confident that it is truly asymptotic. 

Commensurabilities have been discussed at some length in this 

section. in particular we have noted the difficulty in determining 

possible commensurable behaviour from a simple analysis of the initial 

parameters E23 C32 a This in turn makes it-very, difficult 

to predict the stability lifetime in advance. We can take for granted 

the existence of commensurabilities and treat them as noise on some 

"true" Ns (a) curve which would exist if they were not present as for 

the retrograde systems. This allows us to treat them in-a statistical 

sense as detailed in the next section. By this method it is possible 

to derive quantitative results regarding the stability lifetimes. 

5.5 Predictions of Stability Lifetimes 

In attempting to fit curves to the data in Figures 4.1 and 5.1, 

it has been assumed that for any (C23 
jc32 

) pair there exists a value 

a such that N (a) -)- co as cc -). - a We have also assumed that Ns=0 

for a=1. The mathematical form used to model the lifetimes in the 

range (a 
0 

1), given in Equation (1), was considered to be entirely 

adequate for the retrograde systems of Chapter. 4. It is not however 

as accurate in considering the behaviour of direct-systems. 

We have seen . in Section 5.4 that commensurabilities play an 

important part in determining the stability lifetime of a given system. 
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Individual commens urabili ties increase or decrease the stability of a 

system, the result being a marked uncertainty in the overall- distribution 

of (aN 
s) points for given. E23 C32 One may presume that every 

direct system is affected*by one or more commensurabilities. We note 

that the set of commensurable systems is dense on the real a-axis. 

Given both these conditions, it may be fruitless to search for a 

continuous, curve that models Ns against a. One may hypothesize a 

stochastic or fractal nature to the function Ns (a),. (Mandelbrot, 1982 

If this is indeed the case, a more relevant question might be, 

"How accurate is our estimate of the lifetime, Ns (a), likely to be"? 

We are now considering for a given system (defined as always by (623 

C32 a )) the lifetime Ns as a random variable to which we assign 

a probability density function (p. d. f. ). If we are able to find a 

suitable p.. d. f., h(N 
S) 

say, then by definition the probability of that 

system having a stability lifetime between two values (N and (N 
IS2 

is 

(N 
S2 

P((N5), Ns- < (N h(N*)dN* 
s2 (N ss 

s1 

where (N 
s 

(NS), ý: 0. We require that h has the following basic 

properties: - 

1) MN 0VN<0 
ss1 

2) h (N 
s>0VNs>0 

3) MN 0 as N Co 

4h has a functional form that is independent'of C23,632 sa 

although the parameters that characterise that form may vary with C23 

E: 32 Ia 
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Property (1) arises-from the definition of N as. the stability 
s 

lifetime. Properties (2) and (3) arise "from the-definition of a p. d. f. 

Property (4) should provide few problems if the form of h is characterized 

by sufficient parameters. 

Given these properties, h(N 
s 

would be different for each system, 

since we are assuming that each pi is a function of C23 i C32 x Ct 

In order to find accurate values of the parameters a curve-fitting 

procedure would have to be adopted. This would require numerical 

integration experiments being performed on many different systems with 

neighbouring values of 623 s E32 a. This seems a-pointless exercise 

since the object of the procedure is to avoid lengthy numerical inte- 

grations. We-would be faster and more accurate if we numerically inte- 

grated the system in question. Quite clearly the existing data sets for 

each C23 1 632 are pot nearly large enough to perform reliable fitting 

procedures. If we are to proceed at all, we must either find an 

analytical form that describes pi = pi (E23 
x C321 a) or increase the 

data set at our disposal. 

The solution is to adopt both methods in part. We assume (without- 

proof) that there exists a variable x=x (a; C23 s E: 32) such that the 

parameters pi are functions of x alone. The chosen form of x is given 

by 

1= 
o(I-a )y 

xa -a 

wher. e a0, $, y are as defined in Section 5.3. Substituting Equation 

(2) into Equation (1) yields 

N 
s 

g(x) = -x -1 (0 <xý 1) (3) 
e 
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Through a change of variable from a to x- via the parameters 

a0 'ý'Y we have Arrived at an equation for the stability lifetime that 

is independent of E: 23 
1 632- In other words we have taken the (a, N 

s 
data for each pair of epsilons, a,, < a<1 and produced normalised data 

(x, N 
s) 

that lies in the range 0<x<1 In this way the data from each 

epsilon pair can be superimposed on the one graph of N against x with s 

a common best fit curve, (see Figure 5.4). Note that there is no single 

value of Ns for a given value of x. 

Figure 5.4: Stability lifetime against x. The unstable systems are 
dotted'with the best fit curve drawn through them. The 
crosses represent anomalously stable systems, which are 
rigorously defined below. . '' 
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Through this p-kocedure we have simplified the determination of the 

parameters Pis as they now vary only with x, and increased the data 

set with which we are able to carry out curve-fitting procedures. it 

is assumed that the variance in the lifetimes'with respect to the best 

fit curves are comparable over all epsilon pairs. This being so, we 

may proceed to determine a suitable p. d. f. Three will be considered: 

M an empirically constructed p. d. f., (ii) the Gamma Vistribution, 

(iii) the Chi-square Distribution. 

Empirical Method. 

For each point in the data set (x, N 
s) 

it is possible to compute 

the normalised residual from the predicted value, namely 

9=g (g (X) 

where g(x) is given in Equation (3). A frequency plot of S-for the 

total data set of 450 points is given in Figure 5.5. This figure is 

rather encouraging since it shows a. sharp peak around zero. This in- 

dicates that the majority of points_do lie close to the best fit curve 

that has been devised. It can also be seen that the distribution is 

skew. This is entirely to be expected since the residuals are bounded 

below, but unbounded above, i. e. there is more scope for large positive 

values of s than for negative values. 

We are however concerned with evaluating probable stability lifetimes 

at a particular value of x, x* say. To do this, the easiest way is to 

consider'a sample of the data set in the neighbourhood of x*, i. e. choose 

(xij(N where x* -A<x, < x* +-A, for all possible i. Order the 
s 

lifetimes (N 
s 

in increasing size. ' We therefore have a sample of life- 
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Figure 5.5-: - Frequency diagram of normalised residuals of 
stability lifetimes. 

times from which we can make predictions. We do so by noting various 

percentile values within the sample. For example, in a sample of 50 

lifetimes, we might note the 25th or 26th value as the median-o-fthe 

distribution. We should then say that a system characterized by an 

x-value-equal to x--- would stand a 50% chance of surviving for the-time 

given by (N In a similar fashion we may note other percentiles, s 25' 
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such as (N 
s)5 

(10%), (N 
s) 10 

(20%), (N 
S) 40 

(80%), (N 
s) 45 

(90%). From 

these values we can make several kinds of deductions-, depending on our 

interests. For example, 'the system in question stands only a one in 

ten chance of surviving for as long as (N )ie the 90% value. s-45' '* 

Perhaps more optimistically it stands a 90% chance of lasting for longer 

than (Ns)ý, the 10% value. We can employ a two-tailed approach and say 

that there is an 80% chance of its lifetime Ns being in the range 

s)5<Ns< 
(N 

s) 45' 

We could have used the residuals as calculated by Equation (4) 

instead of the absolute lifetimes for determining percentiles. Indeed, 

there would have been a great advantage if it could be shown that (S) 
k%' 

the residual at the k th 
percentile, was independent of. x, for any k. 

We would then have been able to use the whole data set as given in 

Figure 5.5 and c- ompute the k th 
percentile stability lifetime from 

(N 
s) k% ý (S) 

k% 
(g(x)) 

I+ 
g(x) - 

Alas, this is not the case. The skewness of the. distriýution increases 

with x which causes the values of (S) 
k% to vary considerably. There is 

therefore nothing to be gained by normalising the errors in this way. 

The percentile approach deals very simply with the problem of the 

systems which are still observed to be stable although they are in the 

unstable region. If we are interested in the time within which 90% of 

all systems are unstable, i. e. (N 
s) 90%, then all we need do is ensure 

that any "stable" systems lie in the top 10% before measuring (N 
s) 90%, 

If this is not thE case then the systems should be numerically integrated 

until they become unstable or have stability lifetimes exceeding (N 
s) 90%* 
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The Gamma-Di6tribution 

The p. d. f. is. an analytical function given by 

-at b-1 
h(t) = F-(b) et (t >, 0) 

where t is equated with time*, a and b are parameters that vary with x, 

and' F(b) is the Gamma Function 

r (b) =z 
b-i 

e -Z dz (b > 0) 
0 

The cumulative distribution function (c. d. f. ) is 

T 
H(T) h(t) dt (7) 

0 

By definition, H(T) -*- 1 as T 

The c. d. f. gives the probability of the lifetime of the system being less 

than T. By substituting Equation (5) into Equation (7) and making the 

change of variable si = at, -the c. d. f. may be re-expressed as 

1u -u b-l 
ýR(b, U) =eu du -. -.. 

(8) 
r (b) 

0 

where U= aT. 

For a given x, we must find a, b to describe_H(b, U) = H(b, aT). 

We are then required to solve H(b, U) =P in terms of U for any given 

probability level P, (0 ýP :ý 1). For example, if we wish to calculate 

T 90%, the time within which 90% of all systems will become unstable for 

*During this discussion we denote the stability lifetime by the simpler T 

rather than N. The units in which the lifetimes are measured are not 
important at this moment. 
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a given x, then we. must solve H(b, U) =. 0.9, ' in order to obtain U and 

hence T. 

The numerical method for deriving a, b, 'U, 'for a particular subset of 

the (x, t) data set is rather complex and is described in Appendix C. 

We apply the algorithm to small samples taken from the complete (x, t) 

data set, to derive Figures 5.6 which give a and b against x. The 

dataset is ordered with increasing x. We take a sample of the first 50 

consecutive points, find a, b and assume these values hold at the midpoint 

in the x-range over which the sample spans. The sample is then moved 10 

points (i. e. the first 10 points are excluded, but the 51st-60th points 

replace them), and the procedure is repeated. This gives sufficient 

points to plot the graphs in Figures 5.6, but it does mean that the 

samples are not independent. 

On examining the graphs, -it is seen that while there is an obvious 

trend in a, there is s-cant evidence of any increase or decrease of b 

with x. The average of b taken from the discrete values is 1.66 = 1.7. 

As we shall see below, it is possible to take b=1.7 for all x without 

affecting the distribution's power to predict stability lifetimes. This 

assumption of the constancy of b is useful in that it provides an easier 

algorithm for determining T (Appendix C). Now for a given probability, 

U need only be calculated once, i. e- it is independent of x. a is also 

easily calculated since 

b/t (9) 

where t is mean lifetime of the sample. Thus T U/a can be readily 

evaluated by a simple calculation of the mean at each sample 

multiplied by U/b for the particular probability level of interest. 
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Figure*5.6: Gamma Distribution paramet6rs a, b against x. 
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Figure 5.7: Graph of mean stability lifetime agains-t. x for b 1.7. 
S 

P U/b P U/b 

0 0 0.50 0.812 

0.05 0.143 0.55 0.900 

0.10 0.225 0.60 0.996 

0.15 0.299 0.65 1.102 

0.20 0.369 0.70 1.222 

0.25 0.438 0.75 1.360 

0.30 0.508 0.80 1.526 

0.35 0.579 0.85 1.734 

0.40 0.653 0.90 2.021 

o. 45 0.730 0.95 2.499 

Table 5.5: U/b at various probability levels P, for b=1.7. 
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When the data is processed with b=1.7 for all x, the values of 

U/b are found to be as given in Table. 5.5 and the gr aph of against 
s 

x is given in Figure 5.7. 

There is however one problem still to. be overcome. There are the 

systems which show no signs of instability for long periods although 

they show a>ai. e. there are unstable systems with lower initial 
0 

01 values. We shall call these systems, "Anomalous Stable Systems" 

or A. S. S. 's,. for short. It was seen in Section 5.4 that most ASS's 

could be associated with some commensurability. In this section we 

are concerned with their nuisance value when it comes to estimating 

probability distributions. 

A priori, we are unable to determine if any system is an ASS. 

Indeed we have no formal definition yet of what an ASS is. We cannot 

say for certain whether an ASS is stable for all time or whether if 

we run the integration procedure for longer, the system will eventually 

become unstable. How long must we run a system before we can call it 

"anomalously stable"? Clearly, the ASS's cannot be used for estimating 

the p. d. f. as no stability lifetimes are available for them. In what 

way does their absence affect the distribution? 

The definition we finally adopt is-the following: 

an Anomalously Stable System is defined to be one whose stability 

lifetime exceeds 3 T90z, where T90z is the time within which 90% o-f 

unstable systems exhibit their instabi lity. 

This definition means that some of the systems that have been seen 

in Figures 5.1 to be unstable are in fact ASS's. 

The systemsin question are giv en in Table 5.6'. 
' 
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C23 632.:. - . ., 
". 

... - 

Stability lifetime 

- 
(synodic periods) 

3T 
90% 

. 
(synodic periods) 

3 10 -4 lo 0.805 234.3 119.3 
10- 3 10- 5 0.8225 35.3 24.5 
10- 3 10- 6 

0.81231 42 8' 28.6 
10- 3 10- 6 

0.8, 184.6 80.9 
10- 4 

10- 2 0.532 236.1 123.4 
10- 4 10- 5 0 92 78.2 40.0 

10- 6 10 -3 0.800192 1481. 
*8 

688.5 

Table 5.6: Anomalous Stable Systems with measured 

stability lifetimes from Figures 5.1 

For consistent data analysis, the ASS's must be excluded from the 

data set not only when finding the p. d. f. but also in evaluating t 

in order to calculate U and T. They must also be excluded when fitting 

the (a, N 
s) curves for individual epsilon. pairs. Starting from a fresh 

set of data, we are unable to determine T90%) therefore no unstable 

systems are excluded. After fitting (ct', N 
s 

)-curves, and normalising all 

data through Equation (2), T may be-obtained at any x by the method 90% 

above. We are then able to see if any of the unstable systems became 

unstable too late (i. e. Ns>3T 90% 
); if so, they must be exclude d. 

We can also see if there are any stable systems with NS<3T 90% 1 

whose stability is unproven. They must then be studied for longer before 

they can be classed as an ASS. Having excluded all ASS's from the data 

set, the whole procedure is repeated. This may have to be repeated 

several times as the resulting T 90% tends to decrease along w. ith the 

spread of the. available data. Howeve r the'-procedure does converge until 

a stage is reached where no new'ASS's are discovered. 
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This full procedure has in fact been carried out for the data 

presented in this chapter'. 'The curves in Figures 5.1 are fitted- 

excluding the points in Table. 5.6. Out of the total dataset of 453 

systems with a> ao, 25 are ASS's. There are however 17 systems which 

are stable after 4000 synodic periods (the numerical limit due to accumu- 

lated errors) but 3-T 
90% > 4000 synodic periods. These systems cannot be 

classed as ASS's but are of no use in curve-fitting. Thus the true 

percentage of ASS's in the dataset is 25/(453-17) = 5.8% Ix, 6%. 

Thus in considering the probable lifetime, we must say that there 

is a 6% chance of the system being an_ASS (i. e exceeding 3T 
90% 

After that we may'go on to assign more quantitative probability levels 

to other lifetimes. 

(iii) The Chi-Sguare Distribution. 

The last choice for a p. d. f. is the Chi-Square Distribution given 

by 

h(t) = 
n/2 

1-t n/2-1 e -t/2 t-> 0 (10) 
2 r(n/2). 

where t is associat ed with the stability lifetime as before, and n is 

a single parameter which must be determined from the sample (t 
I 

). On 

comparing Equation (10) with Equation (5) we can see that the Chi-Square 

Distribution is a special case of the Gamma Distribution with a 

and b= n/2. 

On realising this, it is obvious that the Chi-Square Distribution 

is too restrictive for determining the Actual distribution accurately. 

Figure 5.7 demonstrates that a changes in a marked manner over all possible 

x and so an assumption that a is not valid. For this reason, we rule out 

this particular distribution. 
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Comparing the three choices-of p. d. f. that have been considered, 

we see that whereaý the Chi-Square Distribution has been'ruled out, 

the Empirical and Gamma Distributions both seem reasonably promising. 

In the case of the Gamma Distribution it seems that b may be set as 

constant over all x. 

The lack of an analytic form of p. d. f. in the Empirical Distribution 

is both an advantage and a disadvantage. The advantage is that with no 

underlying assumptions made, this method should always allow us to predict 

stability lifetime intervals regardless of the form of the distribution. 

The disadvantage is that we need more data to accomplish the same 

accuracy in prediction. The reason is that by choosing the Gamma 

Distribution, we are using additional information concerning the form 

of the distribution. It therefore needs a smaller dataset to find 

accurate values of a, b from which probable lif etime intervals may be 

calculated. Without this help- from an analytic form*, the distribution 

must be derived only from data. 

An analytical form is also more useful when considering the wings 

of a distribution. For example, given a sample of 50 lifetimes in a 

neighbourhood of a particular x-value, having evaluated the p. d. f. as 

a Gamma Distribution, it is possible to estimate T 5% with 

some. accuracy. By the Empirical Method, after ordering the lifetimes 

in increasing size, T 5% would be estimated as lying between the second 

and third measured'lifetimes. The sparcity of data here will make the 

estimation error very large, so care must be taken when using the 

Empirical Method at the extremes of the data. 
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one final point on the subject of sample sizes may be made. 

Although by increasing the sample we can obýain a better estimate of the 

distribution, if we are still using the same. total dataset, the range 

in x that the sample spans will be greater'. The effect will be that 

"true" distributions from various x-values'will be added together and 

will cumulatively produce a much broader distribution that will not truly 

reflect the real distribution at any particular x. Therefore the smaller 

we can make the sample without introducing large errors in the esti- 

mation of the p. d. f., the better. This is more easily done with the. 

Gamma Distribution. 

The Empirical Method is easier to implement than the Gamma Distri- 

bution, but this advantage is lessened considerably if b is allowed to 

be constant. It is also possible to treat ASSts more easily by the 

Empirical Method although there may be problems running them for long 

enough, particular at low x, where an excessively large sample will 

result in a very false broad distribution as discussed above. 

In conclusion, the Gamma Distribution is likely to be more accurate 

and reliable than the Empirical Method in predicting stabilitý lifetime 

intervals, particularly at extremes in the data. This is true only if 

the Gamma Distribution adequately reflects the true distribution of 

lifetimes for a given x. If this does not turn out to be the case, 

then we must either find a more suitable analytical form for the p. d. f. 

or employ the Empirical Method. 

Having discussed at some lengths the merits and demerits of both 

approaches, we now apply them to the available dataset to derive the 

actual probability intervals for the stability lifetimes. We shall be 

conc 
. 
erned with how (Ns), 

OZ, 
(N 

s) 25%1 
(N 

s) 50% ' 
(N 

s) 75% and (N 
s) 90% vary 
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with x, where (N 
S) k% 

is the stability lifetime, measured in synodic 

periods, within which k% of all systems will exhibit instability. 

Figures 5.8 show the curves (N 
s) k% 

W for the Empirical Method and 

Gamma Distribution. The Empirical Method is used in Figures 5.8(a) 

and (b), with sample sizes of 50 and 100 respectively. Figure 5.8(c) 

is ob tained from the Gamma Distribution with. both a and b varying as 

in Figures 5.6. Figure 5.8(d) is obtained from the Gamma Distribution 

with b=1.7 and a varying as in Figure 5.7. A sample size of 50 

was used for both graphs. In all four cases, the sample was moved 

_with 
respect to x, by 10 points each time. This means that the points 

on the curvesare not calculated from independent data. Results from 

the four graphs are presented in tabular form in Tables 5.7. 

Comparing Tables 5.7 (a) and (b), we observe that the results 

using the Empirical. Method for different sample sizes are comparable. - 

As expected, the larger sample size ensures that the curves in Figure 

5.8(b) are smoother tb an those in Figure 5.8(a). When we look at Tables 

5.7(c) and (d), we find that the results are in approximate agreement 

for the two uses of the Gamma Distribution. The curves in Figure 5.8( - d) 

are smoother than in Figure 5.8(c), due to the fixing of b in the former. 

Much greater differences become apparent when we compare the two 

different methods of curve fitting. The curves for the Empirical 

Method are noticeably rougher than for the Gamma Distribution. There 

are two reasons for this. The first is that the Gamma Distribution 

curves have been processed with the ASS's removed, where as the Empirical 

Method includes them. This means that the 90% probable lifetime will 

be particularly rough when ASS's are taken into account. (see Figures 

5.8(a) and (b)). The second reason is that the curves for the Empirical 
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Figures 5.8: Prob able Stability Lifetime Curves by: - 

(a) Empirical Method. (Sample size = 50) 
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(b) Empirical Method. (Sample size = 100) 
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(c) Gamma Distribution with varying a, b. (Sample size = 50) 

(d) Gamma Distribution with varying a, and b fixed as 1.7 
(Sample size = 50) 



Table 5.7(a) Probable Stability Lifetimes calculated by the 
Empirical Method with -a sample size equal to 50. 

g (x) (N ) 
s 10% 

(N ) 
sM 

(N ) 
50% 

(N ) 
75% 

(N ) 
90% s s s 

0.4765 2 0.70 1.11 1.94 5.2o 14.7 
0.3832 4 1.62 2. o4 3.54 7.92 21.7 
0.3394 6 1.69 3.42 5.37 8.09 31.3 
0.3128 8 3.70 4.55 7.79 19.2 80.2 
0.2943 10 4.35 6.81 11.0 19.8 

. 
61.9 

0.2805 12 4.44 8.98 15.4 34.2 62.3 
0.2697 14 4.80 10.1 16.1 35.2 50.8 
0.2609 16 4.80 10.3 17.6 35.2 82.8 
0.2535 18 4.82 11.2 21.6 39.5 88.2 
0.2472 20 8.68 13.5 20.0 40.3 88.2 

0.2348 25- 11.4 17.2 29.4 54.7 122. 
0.2255 30 15.5 21.6 39.6 70.5 122. 
0.2182 35 20.6 31.1 42.8 73.4 164. 
0.2122 40 21.9 33.0 45.7 82.5 211. 
0.2071 45 23.3 36.6 59.4 104. 225. 
0.2028 50 26.4 36.8 59.4 112. 305. 
0.1990 55 31.5 40.0 66.8 135. 326. 
0.1957 60 32.8 U. o 88.2 178. 354. 
0.1927 65 36.5 53.0 92.1 131. 326. 
0.1900 70 36.5 51.4 92.1 131. 326. 
0.1876 75 47.9 57.0 97.4 139. 354. 
0.1854 80 -47.9 57.0 97.8 139. 326. 
0.1833 -85 44.5 57.0 97.8 165. 354. 
0.1815 90 44.5 58.1 98.7 182. 377. 
0.1797 95 47.9 60.2 98.7 182. 377. 
0.1781 100 48.1 60.2 98.7 182. 377. 

0.1752 110 49.0 74.0 100. 182. 386. 
0.1725 120 49.0 74.0 99.4 2o4. 380. 
0.1702 130 49.0 79.9 113. 246. 442. 
0.1681 140 49.. 0 85.1 124. 263. 581. 
0.1662 150 49.0 85.1 138. 294. 866. 
0.1644 160 55.6 93.2 151. 321. 944. 
0.1628 170 62.2 97.3 169. 414. 944. 
0.1613 180 62.2 106. 177. 455. 944. 
0.1599 190 62.2 114. 190. 455. 944. 
0.1586 200 62.2 117. 206. 515. 1310. 
0.1574 210 62.2 117. 228. 569. 1399. 
0.1563 220 62.2 117. 228. 569. 1399. 
0.1552 230 70.2 131. 283. 624. 1399. 
0.1542 240 70.2 131. 283. 624. 1399. 
0.1532 250 71.4 133. 261. 597. 1310. 
0.1523 260 71.4 140. 261. 597. 1310. 
0.1515 270 71-. 4 140. 261. 624. 1310. 
0.1506 280 71.4 140. 261. 624. 1310. 
0.1498 290 71.4 146. 261. 624. 944. 
0.1491 300 77.1 153. 283. 659. 944. 
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Table 5.7(b): 

g (x) 

Probabje Stability Lifetimes calculated by the 
Empirical Method with a sample size equal to 100. 

(N 
-) 

(N ) (N ) (N ) (N ) 
s 10% s 25% s 50% s 75% s 90% 

0.4765 2 0.79 1.6ý 2.90 5.02 9.79 
0.3832 4 1.4o 1.92 3.65 5.99 10.1 
0.3394 6 1.91 3.42 4.57 7.96 16.7 
0.3128 8 3.47 4.47 7.38 12.2 29.8 
0.2943 10 3.52 4.55 8.23 15.8 32.7 
0.2805 12 4.35 6.08 11.4 21.9 41. o 
0.2697 14 4.47 8.05 14. o 25.6 46.9 
0.2609 16 4.59 10.5 16.2 31.9 51.1 
0.2535 18 5.32 11.2 17.7 33.6 59.6 
0.2472 20 7.57 11.7 20.7 38.4 63.0 

0.2348 25 11.1 15.9 29.8 51.0 88.3 
0.2255 30 13.2 18.6 34.1 68.6 130. 
0.2182 35 15.5 25.8 42.1 82.6 165. 
0.2122 40 17.3 29.8 48.2 97.4 200. 
0.2071 45 19.6 -33.7 56.7 102. 200. 
0.2028 50 23.3 35.9 58.8 103. 200. 
0.1990 55 29.2 41.1 66.8 115. 243. 
0.1957 60 32.7 43.5 80.0 123. 243. 
0.1927 65 34.8 48.2 81.9 131. 297. 
0.1900 70 34.8 48.2 82.4 131. 297. 
0.1876 75 35.8 50.7 89.0 

. 
144. 297. 

0.1854 80 36.9 55.3 97.4 183. 326. 
0.1833 85 36.9 56.4 98.7 198. 354. 
0.1815 90 43.3 60.9 105. 210. 389. 
0.1797 95 43.3 60.9 105. - 206. 402. 
0.1781 100 43.4 61.8 109. 206. 402. 

0.1752 110 44.5 70.3 117. 223. 498, 
0.1725 120 48.1 75.9 123. 288. 589. 
0.1702 130 50.2 81.7 131. 323. 681. 
0.1681 140 50.3 83.3 138. 323. 681. 
0.1662 150 53.6 88.0 161. 374. 688. 
0.1644 160 56.3 93.8 176. 387. 688. 
0.1628 170 57.4 95.8 177. 436. 814 * 0.1613 180 58.6 97.4- 180. 453. 914. 
0.1599 190 58.6 97.4 193. 495. 879. 
0.1586 200 58.6 97.4 203. 570. 1310. 
0.1574 210 60.8 97.5 208. 584. 1404. 
0.1563 220 60.8 97.5 208. 584. 1404. 
0.1552 230 61.1 101. 210. 590. 1413. 
0.1542 240. 61.1 101. 210. 590. 1413. 
0.1532 250 61.0 108. 217. 597. 1420. 
0.1523 260 64.8 113. 223. 603. 1423. 
0.1515 270 7o. 4 116. 234. 608. 1426. 
0.1506 280 70.4 116. 234. 608. 1426. 
0.1498 290 70.2 118. 245. 621. 1432. 
0.1491 300 70.1 118. 245. 628. 1435. 
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Table 5.7(c): Probable Stability Lifetimes calculated by the 
Gamma Distribution with a and b varying. -(Sample size 
= 50). 

(N 
s) 10% 

(N 
s)M 

(N 
s) 50% 

(N 
s) 75% (N 

s) 90% A. s. s. 

0.4765 2 0.46 1.07 2.28 4.22 6.68 20.0 
0.3832 4 0.89 1.93 3.87 6.86 10.6 31.8 
0.3394 6 2.01 3.52 6.00 9.45 13.5 40.5 
0.3128 8 2.16 4.58 g. o8 16.0 24.4 73.3 
0.2943 10 2.98 6.13 11.9 20.6 31.2 93.5 
0.2805 12 3.63 7.66 15.1 26.5 40.6 122. 
0.2697 14 4.06 8.08 15.3 25.9 38.8 116. 
0.2609 16 4.53 8.90 16.6 28.0 41.8 125. 
0.2535 18 4.73 9.62 18.5 31.8 48.0 144. 
0.2472 20 

. 
5-. 92 11.3 20.5 33.9 49.9 150. 

0.2348 25 9.91 18.2 32.4 52.5 76.4 229. 
0.2255 30 12.7 23.0 43.4 71.5 105. 315. 
0.2182 35 14.8 30.5 58.9 10.2. 154. 462. 
0.2122 40 17.2 34.2 64.4 109. 164. 492. 
0.2071 45 21.2 39.7 71.3 117. 171. 513. 
0.2028 50- 19.4 39.5 75.8 

. 
130. 196. 589. 

0.1990 55 21.7 44.4 85.7 148. 224. 671. 
0.1957 60 25.6 49.9 92.8 156. 232. 695. 
0.1927 65 33.7 57.5 95.5 148. 2o8. 624. 
0.1900 70 32.7 55.6 92.5 143. 202. 605. 
0.1876 75 36.1 

. 
61.7 103. 159. 225. 674. 

0.1854 80 39.7 66.0 108. 164. 229. 687. 
0.1833 85 39.8 66.4 108. 165. 230. 691. 
0.1815 90 30.3 64.0 127. 222. 340. 1021. 
0.1797 95 30.8 64.6 127. 222. 339. 1018. 
0.1781 100 32.4 67.3 132. 229. 348. 1045. 

0.1752 110 34.0 69.3 133. 229. 346. 1039. 
0.1725 120 34.3 69.5 133. 228. 344. 1033. 
0.1702 130 34.6 73.2 145. 254. 390. 1169. 
0.1681 140 32.7 78.6 172. 323. 515. 1546. 
0.1662 150 32.7 84.9 197. 384. 629. 1886. 
0.1644 160 36.1 92.5 213. 413. 673. 2019. 
0.1628 170 43.2 106. 237. 450. 724. 2172. 
0.1613 180 43.7 108. 240. 457. 736. 2207. 
0.1599 190 48.0 115. 251. 47o. 750. 2249. 
0.1586 200 48.2 120. 268. 510. 823. 2470. 
0.1574 210 46.7 126. 299. 594. 982. 2945. 
0.1563 220 46.7 126. 299. 594. 982. 2945. 
0.1552 230 55.8 142. 326. 631. 1027. 3080. 
0.1542 240 55.8 142. 326. 631. 1027. 3080. 
0.15*32 250 61.1 150. 334. 635. 1022. 3065. 
0.1523 260 62.6 152. 337. 637. 1022. 3065. 
0.1515 270 61.4 150. 333. 630. 1013. 3039. 
0.1506 280 61.4 150. 333. 630. 1013. 3039. 
0.1498 290 67.8 158. 337. 623. 985. 2955. 
0.1491 300 75.6 170. 351. 636. 994. 2983. 
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Table 5.7(d): Probable Stability Lifetimes calculated by the-Gamma 
-Distribution with varying a and b fixed at 1.7. ' 
(Sample size _- 50). 

g(x) (N 
s) 10% 

(N 
s) 25% 

(N 
s) 50% 

(N 
s) 75% 

(N 
s) 90% A. S. S. 

0.4765 2 0.69 1.34 2.48 -4.16 6.18 18.5 
0.3832 4 1.13 2.19 4.06 6.80 10.1 30.3 
0.3394 6 1.59 3.09 5.73 9.60 14.3 

. 
42.8 

0.3128 8 2.62 5.09 9.44 15.8 23.5 70.5 
0.2943 10 3.38 6.58 12.2 20.4 3o. 4 91.1 
0.2805 12 4.36 8.48 15.7 26.3 39.1 117. 
0.2697 14 4.28 8.32 15.4 25.8 38.4 115. 
0.2609 16 4.63 9.01 16.7 28.0 41.6 125. 
0.2535 18 5.24 10.2 18.9 31.6 47.0 141. 
0.2472 20 5.63 11.0 20.3 34.0 50.5 151. 

0.2348 25 8.76 17.0 31.6 52.9 78.6 236. 
0.2255 30 11.9 23.1 42.8 71.7 107. 320. 
0.2182 35 16.7 32.5 60.3 101. 150. 450. 

_0.2122 
40 18.1 35.1 65.1 109. 162. 486. 

0.2071 45 19.4 37.8 70.1 117. 174. 523. 
0.2028 50 21.4 41.7 77.3 129. 192. 577. 
0.1990 55 24.3 47.3 87.7 147. 218. 655. 
0.1957 60 25.8 50.1 92.9 156. 231. 694. 
0.1927 65 25.0 48.6 90.0 151. 224. 672. 
0.1900 70 24.2 47.1 87.3 146. '217. 652. 
0.1876 75 26.9 52.4 97.1 163. 242. ' 725. 
0.1854 80 27.9 -54.2 101. 168. 250. 750. 
0.1833 85 28.0 54.5 101. 169. 252. 755. 
0.1815 90 36.5 71.0 132. 220. 328. 983. 
0.1797 95 36.5 71.0 132. 220. _ 328. 983. 
0.1781 100 37.6 73.2 136. 227. 338. 1013. 

0.1752 110 37.8 73.4 136. 228. 339. 1016. 
0.1725 120 37.6 73.2 136. 227. 338. 1013. 

. 0.1702 130 41.8 81.3 151. 252. 375. 1125. 
0.1681 140 52.6 102. 190. 317. 472. 1415. 
0.1662 150 62.5 122. 225. 377. 561. 1682. 
0.1644 160 67.1 131. 242. 405. 602. 1807. 
0.1628 170 73.2 142. 264. 442. 657. 1971. 
0.1613 180 74.4 145. 268. 449. 667. 2002. 
0.1599 190 76.6 149. 276. 462. 687. 2061. 
0.1586 200 83.1 162. 299. 502. 745. 2236. 
0.1574 210 96.5 188. 348. 583. 866. 2598. 
0.1563 220 96.5 188. 348. 583. 866. 2598. 
0.1552 230 lo3. 200. 370. 619. 921. 2762. 
0.1542 240 103. 200. 370. 619. 921. 2762. 
0.1532 , 250 103. 201. 373. 624. 928. 2783. 
0.1523 260 -104. 202. 374. 626. 931. 2792. 
0.1515 270 103. 200. 370. 620. 921. 2763. 
0.1506 280 103. 200. 370. 620. 921. 2763. 
0.1498 290 102. 198. 366. 614. 912. 2736. 
0.1491 300 104. 202. 375. 628. 934. 2801. 
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Method reflect the raw data more closely. By fitting an analytic 

function in the case of the Gamma Distribution Method, the data has 

undergone additional smoothing. The (N 
6) 10% and (N 

s 
)9, 

% curves for 

the Empirical Method are particularly rough. This is a reflection 

of the point made earlier concerning this method's ability to deal 

accurately with data at either end of the distribution. We would be 

unwise to use any curves below the 10% limit or above the 90% limit 

without increasing the sample size. Unfortunately we then run into the 

problem of "distribution smudging" described earlier. 

The tables may be used to predict probable stability lifetimes. 

For a given system prescribed by C23 s E32 . a. a most likely 

stability lifetime is given by-g(x), where 

g(x) exp (a < ct (L 
0 aa0 

as before, with a0ý, y as given in Table 5.1 from Section 5.3. 

We may then read off any prescribed confidence interval from one of, 

the tables, depending on the choice of method. Interpolation may be 

possible between the values given, but extrapolation should not be 

attempted. as the limits of the tables are also the limits of the dataset 

where the errors in predictions will be greatest. 

For the Empirical Method, the median curve (N 
s) 50% 

(x) is comparable 

with g(x) as expected, while the median curve for the Gamma Distribution 

is higher. There does seem to be a difference between corresponding 

stability curves for the two methods. It may be hoped that with a 

larger dataset, these differences might be lessened. 

In order to test the reliability of these predictions, 100 new 

direct systems were numerically integrated. These independent test 
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systems have C23 aC32 scý spanning the complete ranges already 

6 23 2 
Care was taken studied, i. e. 10 c (E 

jC32 10 
,a0< cc < 1. 

not to study systems that were close to the ends of the available 

dataset. Each system was -integrated until it exhibited instability or 

until it could be designated as an ASS. It is possible to compare 

the actu al measured stability lifetime with the probable lifetimes 

given in Tables 5.7. In this way we may assign each system to one 

of the intervals (N 
s) 0% - (Ns)107. 

, (Ns)lo% - (Ns )25% 
, et 

. 
c. We are 

able to compare the actual numbers of systems lying in the intervals 

with the numbers expected. For example, out of the 100 systems we 

would expect half-to lie in the range 
_(N s) 25% - (. N 

s) 75% 
barring 

the presence of ASS's. As was said above, ASS's are more easily 

accommodated in the Empirical Method and it should be possible to 

combine them within the (N 
s) 90% - (N 

s) 100% 
interval, i. e. all-systems 

with lifetimes exceeding (N For the Gamma Distribution, the 
s 90V 

ASS's must be treated as a separate class, after which the probable 

lifetime intervals maybe constructed. Thus the expected number of 

systems with lifetimes in the interval (N 
s) 25% - (N 

S) 75% 
is not 50 

out of 100 but 47 out of 94 (6% should be ASS's). 

The results of these experiments are given in Table 5.8 for the 

Empirical Method and Table 5.9 for the Gamma Distribution. It is - 

possible to test the goodness of fit of the experiments with the 

theoretical predictions, by using the Chi-Square Test. The statistic 

E, )2 

may be calculated, where n is the number of intervals, 
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2 

_Interval 
0-10% 10-25% 25-56% 50-75% 75-ý90% 90-400% X5 

Expected 10 15 25 25 15 10 

Actual 
(Sample 

Size=50) 13 17 12 27 23 8 12.75 

Actual - 
(Sample 

Size=100) 12 20 14 25 20 9 8.67 

2 
X5 11.1 at the 95% level. 

Table 5. 8: Frequency with which 100 test systems fall into 

probable lifetime int ervals using the Empirical 
Method taking samples of 50 and 100 from the 
original dataset. 

2 
Interval 0-10% 10-25% 25-50% 50-75% 75-90% 90-300%) ASS-X6 

Expected 9.4 14.1 23.5 23.5 14.1 9.4 6. o 

Actual 
(varying-a, b) ý2 20 16 22 12 11 7 6.43 

Actual 

constant - 
b=1.7) 9 18 22 20 12 12 7 2.91 

2 
X6 12.6 at the 95% level. 

Table 5.9: Frequency with which 100 test syste ms -fall into 

probable lifetime intervals using the Gamma 
Distribution. The lifetime sample size is 50. 
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01 is the observed number and E- i the expected number of systems with 

th lifetimes in the i interval. We are testing the null hypothesis 

that the models are true predictors of the actual-behaviour of 

direct three-body systems. With the given uncertainties, we should 

clearly not expect the observed counts to match the expected counts 
2 in every case, (giving. Xn_l = 0, for all samples). The question is 

how great a discrepancy can we allow between theory and observation? 
2 

Assuming the null hypothesis, the X 
n-l statistic has a sampling 

distribution given by the Chi-Square p. d. f. of Equation (10). The 

cumulative distribution function (c. d. f) of this distribution is 

tabulated for various n in Appendix A. The solution of the c. d. f. 
2 

at some probability level gives the value of X which must be 
n-1 

compared with the observed value. 

We have chosen the 95% point of the distribution. For the Empirical 

Method, there are six intervals, therefore 5 degrees of freedom. 
- 

The 

solution of the c. d. f. when equal to 0.9 .5 is 11.1. This means that 

if the null hypothesis is true, there is a 95% probability that the 
2 

observed X 
n-1 

8tatistic will be less than this value. If it actually 

exceeds this value, it is deemed to be sufficiently unlikely to cast 

doubts on the underlying hypothesis. We would therefore consider that 

the fit was not good enough for us to be able to assume that our model 

was accurate. 

Turning our attention to the tables, we see that the data fits the 

Gamma Distribution model exceedingly well, both with varying and with 

constant b. Indeed the agreement between theory and observation is 

marginally better for the distribution with constant b. There seems- 

little point in using a more complicated distribution than is 

necessary so the constant b distribution is preferred. 
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On the other hand, the Empirical Method does not fare as well, 

particularly when using a sample size of 50 to estimate the various 

percentiles. In this case the Chi-Square test fails the method 

at the 95% level. When we increase the sample size to 100 the 

agreement is better and the method passes the 'test, but the results are 

not as good as for the Gamma Distribution. The small sample of 50 

causes severe inaccuracies in prediction. There is an improvement 

by increasing the sample size but at the cost of distribution smudging 

over a wider range in x. The remedy of course is to increase the 

original dataset and herein lies the Empirical Method's greatest 

drawback; namely the need to acquire considerably more data than the 

Gamma Distribution to achieve the-same accuracy in prediction. 

It should be noted that the actual distribution is not exactly 

modelled by a Gamma Distribution. If it was, then we should expect 

around 1% of all systems to have stability lifetimes exceeding 

3(Ns)90.7 , 
(i. e. to be ASS's). Instead the figure is nearly 6%, 

indicating a much larger tail to the distribution; We therefore need 

the definition of an ASS in this form to eliminate the anomalous tail, 

in order that we might better fit a Gamma Distribution to the rest 

of the data. 
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5.6 Summary 

In this chapter,. Coplanar direct threeý-body systems have been 

studied in the same manner as for the retrograde systems. From numerical 

integration studies', 'graphs of'stability lifetime against initial a 

were displayed for various combinations of c23, E 32 
in Section 5.2. 

In general the lifetimes increase as a7 is decreased from 1, and seem 

to rise asymptotically to some critical value a0 The rise is not smooth 

as the points are scattered widely making any accurate curve-fit difficult. 

In Section 5.3, curves were fitted to the data provided by the 

unstable systems. Unlike the retrograde systems, no use can be made of 

systems that exhibit no instability in this fitting procedure, but all 

the data from the unstable systems must be-used. The form of the curve - 

that was fitted, given by Equation (1), is parameterised by aojý)y for 

a given E23 2 C32 . For given C23 1 C321- ao and y may be found 

by calculating u and v for each data point (a, N 
s 

(Equations (4.4) 

and (4.5))and constructing the least squares fit. The (u, v) points 

are weighted with increasing u. The goodness of- fit of the curve for 

a0a, y may be found by computing the correlation coefficient r (Equation 

(4.6)). The value of cc 0 
(with corresponding a and y) is varied in 

the range (a 
c SCL us 

). The best fitting values of a0a, y maximise r. 

Section 5.4 discussed the role commensurabilities play in causing 

the scattering of the (a, N 
s) points about the best fit curve. It was 

seen that in most cases of anomalously stable systems, 'there was a nearby 

commensurability that could account for the behaviour. It was also seen 

that there was a significant preponderance of "odd-spoked"-commensura- 

bilities compared to "even-spoked" commensurabilities which helped 

stabilize systems in this way. Occasionally there was evidence of a 

much broader range of anomalously stable systems in the same manner as 
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the retrograde systems (discussed in Chapter 4). 

The deviations from the'best fit curve make accurate predictions 

very difficult. -Sectioni5.5 was concerned with methods of obtaining 

predictions of quantifiable un certainty. To this end, the (a, N 
s) 

da-ta 

from each E23 1 ý32 pair may be combined into one data set (xjN 
s) 

by 

normalising a according to Equation (2). 

For any system of this kind that we may wish to study, we may 

calculate from C23 j C32s a, a value of x*. By considering only that 

part of the (x, N ) data set in the immediate neighbourhood of x*, we s 

may fit a probability distribution to the (N 
s 

data that allows us to 

predict possible lifetime ranges. For example we can compute (N 
S) 90% 

which gives the time within which 90% of all systems characterised by 

value x'-. should become unstable. 

Three models for the probable lifetime distribution were considered. 

These used the Empirical Method, Ganma Distribution and Chi-Square 

Distribution as described in Appendix C. The Chi-Square Distribution, 

being a one parameter function was too restrictive. Of the remaining 

two, the Gamma Distribution is preferred. Although the Empirical 

Method always is more widely applicable and easier to use, for this 

particular dataset the Gamma Distribution has proved more reliable and 

accurate in its subsequent predictions of test systems. It is consider- 

ably simplified since one of its parameters, b, may be assumed to be 

constant at 1.7 without affecting the accuracy. 

From the ýrobability distributions, we were able to class certain 

systems as "anomalously stable" if their stability lifetimes exceeded 3 

times'the 90% lifetime limit. By neglecting these systems, the curve- 

fitting of a O, 
O)Y can be repeated with a smoothed data set which in 
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turn allows more accurate normalisation to, x. With more accurate 

normalisation the predictions are liable to be 
-constrained over a smaller 

range. 

This definition of the "anomalous stable system" has already helped 

in compiling the data set'as it highlighted stable systems which should 

be studied for longer. - Many of these systems subsequently became 

unstable within 3(N 
s) 90% Thus some of Walker and Roy's original 

data has been modified and the empirical stability region has shrunk 

slightly from their original estimates. It would therefore be prudent 

to perform many more experiments around a0( C23 , c32) to determine 

its value accurately. 

A final point follows from this. We may expect that by inc-reasing 

the available data set, we will vary our estimates of a 
OPOSY 

-hopefully 
in such a way as to achieve a better fitting curve to the data. 

With more accurate a0ý, y we should expect that normalisation of a 

to x will result in the spread of points about. the curve 

g(x) = exp x 
being less, in other words, the probable lifetime ranges should be 

smaller in width. (Note that the reliability of the predictions 

should not improve; only the precision of the predictions that we make). 

The spread of (x, N 
S) points will shrink with increasing data to some 

limit, where the spread is due only, to physical considerations such as 

commensurabilities, and not to statistical errors in the distribution 

fitting. 

Chapters 4 and 5 have been concerned with numerical studies of 

fictitious threeý-body systems. 'In the next chapter, we shall compare 

the results for fictitious systems with real three-body subsystems 

contained in the Solar System. 
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6.1 Introduction 

The previous three chapters have been concerned with aspects of 

the hierarchical stability of general three-body systems. Chapter 3 

was concerned with the sufficient conditions to preserve the hierar- 

chical arrangement of the three bodies. Chapter 4 dealt with fic- 

titious retrograde systems, while Chapter 5 dealt with fictitious 

direct systems. In both these chapters, the emphasis was on the 

processing of data derived from numerical integration experiments. 

The systems studied were in no way related to real subsystems of 

three bodies present in the Solar System. It was seen that for both 

direct and retrograde cases, there was a considerable region in the 

configuration space where systems were hierarchically stable. This 

empirical stability region was seen to enclose the analytical region 

of hierarchical preservation, described in Chapter 3. 

By way of a summary of the preceding chapters, we shall be 

concerned with an overall comparison of these results, as well as 

comparing them with various three-body subsystems of the Solar System. 

In S6-ction 6.2, we shall compare the empirical stability regions 

for direct and retrograde systems as well as comment on the differences 

between them and the stability regions predicted by the analytical 

"Hill-type" stability involved in preserving the hierarchy. Section 

6.3 will comment briefly on the effects of commensurabilities on 

direct and retrograde systems. 

Walker and Roy, in Paper I of their series, published extensive 

tables of the valuesof C23 and C32 for three-body subsystems in the 

Solar System as well as for triple star systems and fictitious systems 

investigated by other authors. These tables were drawn up in 1980. 
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Since then, our knowledge of the physical and mineralogical properties 

of the planets and satellites has increased dramatically. Most 

notably, the Voyager programme has discovered many new satellites in 

the Jovian and Saturnian systems as well as returning more accurate 

data concerning those satellites that had been discovered from terres- 

trial observations. For the first time the physical dimensions and 

mineral composition of the small-satellites can be accurately deter- 

mined, leading to measurements of the masses which are considerably 

better than the guesses of only a decade ago. More knowledge has 

also been gained concerning the orbital characteristics of some of these 

bodies. 

Land based observations have also improved. In 1978, it was noted 

that photographs of Pluto showed a slight elongation. Using the 

techniques of speckle interferometry, Bonneau and Foy in 1980 confirmed 

the-existqnce of Gharon, a satellite of Pluto. Spectroscopic obser- 

vations of Pluto have also shown it to be covered in frozen methane 

rather than rock. - Its albedo--is-theirefore much greater-than-was -- 

previously thought. Given its -. jpcparent magnitude 'as--seen- from-the-Earth, 

we now find that Pluto is between 2000 and 3000 km in diameter 

(less than the Moon). It therefore seems that its mass is very much 

smaller than first estimated. 

Given that our knowledge of the Solar System has increased so 

dramatically, we repeat the work of Walker and Roy in Section 6.4 and 

determine E23 s E32 , ac) cc 
0 

for various subsystems, using revised 

estimates for the masses of the planets and satellites. (This is done 

in the certain knowledge that the data on Uranus are immediately out 

of date due to the fly-past by Voyager). Comments are made concerning 

the stability of the relevant systems, particularly where retrograde 
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satellites are involved. 

In Section 6.5, we discuss the implications that this work has 

for possible theories concerning the dynamical ori gin of the Solar 

System. 
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6.2 A Review of the Numerical Experiments 

In this section, we shall compare the behaviour of the direct 

and retrograde three-body systems numerically integrated in Chapters 

4 and 5. In particular, the results from Figures 4.1 and Table 4.1 

(for retrograde systems) will be compared with Figures 5.1 and 

Table 5.1 (for direct systems). Some comparisons have already been 

made within the preceding chapters; where necessary, these will be 

summarised while presenting a suitable overview of all the experiments. 

All the three-body systems studied have been coplanar, initially 

circular and starting from a conjunction of m1-m2-m 3* These 

systems can be classified unambiguously by their values of c2s , C32 

a and the rotational sense of the outer binary (M 
2, m3 with respect 

to the inner binary (ml. m -i. e, -direct or retrograde motion. 2 

In Chapter 3, it was shown that, given 623,632 there existed 

aC such that all systems defined by C23 s C32 s*ct "ý ac would retain 

their initial hierarchy for all time. The surface CL = cL (E: z3 F-32) 
CC. 

differed depending on whether the systems in question were direct or 

retrograde. It was seen that for direct systems, ac ->. l as 

C23 j E: 32-ý'O- Over the range of C23 

with C23 i 
(E32 fixed) and with 632 

in line with the intuitive nature of 

perturbations decrease, m2 should be 

without endangering the stability of 

, C32 studied, ac rose monotonically 

(CZ3 fixed). This was entirely 

the problem, namely, that as the 

able to approach closer to m3 

the system. 
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In retrograde systems however, we found that the corresponding 

aC surface did not reflect this intuitive idea. Instead, the highest 

value of a occurred when C2j ý' C32 For many pairs of U23 
C PC32 

there were no values of aC, and for every pair, the value of ac for 

the retrograde case was considerably less than ac for the direct case. 

Considerable use has been made of this analytical criterion for 

hierarchical preservation in the case of direct systems. Its use for 

retrograde systems was far less clear. Either the aC surface does not 

accurately reflect the physical behaviour of the system, or our intuitive 

ideas concerning the empirical stability parameters are wrong. 

This question was resolved in Chapters 4 and 5. From many hundreds 

of numerical integrations carried out on fictitious direct and retrograde 

systems, graphs of stability lifetime N against a were obtained for 
s 

given (C23 
s632 

) pairs. For each pair, -as a decreased from 1, N. was 

seen to rise, tending to infinity at some value of a equal to eL 
0 

Wherever possible a curve 

f exp ß 
s. ý _0) 1u 

OL 
was fitted in the range (a 

,1 By a statistical approach, values 
0 

of a0 and y were found which gave the best fit to the available 

data. While some physical meaning can be attached to ao, there is no 

physical interpretation of either ý or y. In fact, there is scant 

evidence of any systematic trends in a or y as functions Of E23 and 

632 , as can be seen from Tables 4.1 and 5.1. 

There are, however, systematic trends in ao =a0 (C23 E: 32) that 

apply to both direct and retrograde systems. If we fix C23 and 

decrease C32s ao rises to some limit. This limit itself 
. 
varies with 
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the value that CZ3 is fixed at, but it tends to unity as E23 tends to 

zero. If we study Table 4.1, for retrograde systems, we see that the 

limit is attained when C32 <c 23 

A similar situation occurs if we fix 632 and de crease C23 . CL 0 

rises to a limit as before and this limit tends to unity as 632 tends 

to zero. From Table 4.1, this limit is attained when Ez3 632 

but is not as well maintained. Indeed there is a little evidence to 

suggest that a peak in a0 is attained when C23 = 

the value a0 drops slightly as C23 is decreased. 

effect is due only to statistital fluctuations in 

In the case of direct systems, similar tren& 

632 and thereafter 

It may be that this 

fitting ao. 

5 probably exist, but 

it is difficult to be certain about this because the commensurabilities 

allow for considerable errors in determining cc 
0, as was discussed in 

Section 5.4. 

It certainly seems, both from this comparison and also from the 

individual graphs of Figures 4.1, that the systems which show C23 632 

are critical in their behaviour, especially for the retrograde systems. 

They . may be divided into classes: those with C23 'ý c3z -and 
those 

with E23 : -" 632 With the latter class, it is pointless fitting 

curves in the domain (a 
0,11 since for a given pair of CZ3 3 632 

the domain D of a over which Ns rises from one to infinity is vanishingly 

small. When 62ý; < E32 , the rise is more leisurely and shows the 

step nature (Figures 4.1), allowing curves to be fitted through the 

centre of each step. 

It is interesting to note that one of the reasons why Walker and 

Roy chose to group systems by E 23 
1 E32 rather than the normalised 

masses V, V3 , was to produce a sharper cut-off between stable (infinite 
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Ns) and immediately unstable systems (N 
s< 

1) for a graph of Ns against 

cc For direct systems with given E23 j C32, the domain D is-usually 

large enough to attempt a curve fit with some success as the cut-off 

is never that sharp. However for retrograde systems with C23 > , C32 

the full potential of the stability parameters in this respect is 

realised. 

For retrograde systems with E: z3 "ý E32 it is possible to 

fit curves of the type given in Equation (1) to the (a, N 
s) 

data. The 

data is very much smoother for the retrograde system than it is for 

the direct. (It should be recalled from Chapter 4 that the general 

behaviours of unstable retrograde systems were remarkably similar 

compared to the direct systems). There were considerable uncertainties 

when curves were fitted to the direct systems. Because of the smooth- 

ness of the retrograde data the uncertainties in curve-fitting were 

much reduced. It became apparent however that Equation (1) was not 

an entirely suitable form for fitting to the data. A much more com- 

plicated-function is probably needed to get more accurate results 

(see Chapter 8). For the time being, we must be cautious about our 

findings concerning the region of empirical stability. The systematic 

errors involved in evaluating a0 from Equation (1) prompt us to express 

our findings in the following way. 

Insofar as f(a), as given in Equation (1)_, models the stability 

lifetimes of systems in the domain ((, 
0, 

I] 
, for given C23 -IC32 

(i) there exists a VaZue ao, such that any system with a< ao is 

hierarchically stable . 

ao always exceeds ac the 6ritical value of a below which 

a system has an aralyticat guarantee of hierarchical Preservation. 
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a0- for ret2vgrade systL? ms exceeds a0 for direct sYstems, 

VE23 
. 31 E: 32- 

These are the major findings from Chapters 4 and 5, so it is worth 

looking at them in more detail. From the f irst point, within the 

(C23 
9632 a) space that describes the class of system we are examining 

here, (i. e. coplanar, initially c ircular, starting at conjunction), 

there is a region of empirical stability defined by 

0a<a0 (E23 
j632 

0< C23 <I (2) 

-0 
"ý. ý: 32 "ý I 

Any system defined by parameters in this region is observed to be 

hierarchically stable for all time. 

From the second point, there is a region of hierarchical preservation 

within the (E23, E32, (y ) space within which any system is guaranteed to 

be hierarchically preserved for all time. This region is strictly 

contained in the empirical stability region. This is surprising since 

hierarchical preservation is a necessary but not sufficient-condition 

for hierarchical stability. It therefore seems that the analytical 

work of Chapter 3 is not sufficient for determining the hierarchical 

stability of a given system. This is particularly noticeable for 

retrograde systems where the differences between a0 and ac are much 

greater than for the direct systems, for which ac, a0 --)--l as 

C23 P 632 -)- 0. * For direct systems it is therefore seen that the 

analytical preservation criterion tends to the empirical stability 

criterion as C23 j E32 approaches zero. However the analytical criterion 

never reflects the empirical criterion for retrograde systems and is in 

fact positively misleading, as will be discussed in Sections 6.4 and 6.5. 

*Chapter 8 discusses the possibility. that a0 <a 
c 

for direct systems with 

E: 23 
9 C32 < 10- 

5. 
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The third point is perhaps the most important. While the -region 

of analytical preservation is smaller for the retrograde case than it 

is-for the direct case, the opposite is true for the region of empirical 

stability. It seems that for two systems with equal C23 j 632 1a 

one retrograde and the other direct, the retrograde system will be 

more stable. A closer examination is necessary however. 

We know that a0 (direct) <a0 (retrograde) for all pairs of 

C23 s 632 that have been studied. If we take one direct and one-retro- 

grade system with fixed E23 x C32 and gradually increase a then we 

see that both are hierarchically stable for a<a0 (direct)< a0 

(retrograde). When a0 (direct)< a<a0 (retrograde) then the direct 

system becomes unstable while the retrograde system is still stable. 

When a>a0 (retrograde) the situation is far less clear. Now both 

systems are unstable but the question still remains, which will exhibit 

instability-sooner?. Secondly, what do we mean by sooner?. 

If we are merely concerned with comparing the number of synodic 

periods that the two systems survive for, then it is easy enough to 

compare the relevant graphs from Figures 4.1 and 5.1. If a is only 

slightly greater than a0 (retrograde), then the retrograde system will 

be able to "survive" for many synodic periods compared to the direct 

system. We have seen however that for the retrograde systems with 

C23 ý: E3z , the lifetimes fall off very quickly with a and may 

well fall below the comparable direct system lifetimes. We must also 

remember that commensurabilities enhance the stability of certain 

direct systems. These systems will almost certainly have stability 

lifetimes exceeding their retrograde counterparts, especially for 

a approaching unity. 
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If we are concerned with comparing abs-olute lifetimes, then the 

situation is more complicated still. Let tl,, tD be the absolute 

lifetimes of the retrograde and direct system respectively. In addition 

let S RI SD be the corresponding synodic periods and (N 
s) R' 

(Ns )D be 

the lifetimes in units of the synodic periods as given by the fitted 

curve f(a), (Equation (1)). Thus the predicted absolute lifetimes 

are 

s R 
(N 
.s 

) 
R 

tD sD (N 
s 

)D 
(3) 

S2 Tr/(n -n ) and =2 7T/(n +n where n and n D23 
SR 2323 are sidereal 

mean motions of the inner and outer binaries in each case. Note that 

-n 2 is the same for the retrograde and direct system; as is n 3* Only 

the sign prefixing n3 alters. Therefore 

sRn2 -n 3- 
n +n 23 

In a similar manner to that given in Section 5.4, 

implies 

Hence 

*2 a3 = G(m +m 221,2 

*2a3= G(m +m+m 33123 

In 
3j 

2= 
CL3 (1 + IJ3)- 

rnI 

2 

n3 
ý; 

2 

Substituting Equation (7) into Equation (4), we find 

SR1- V/a 3+ 632 
(8) 

DI+ V/OL 3+ 632 
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Hence, from Equation (3), 
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t V/a 3+ 632 f (a )) 
RR (9) 

tD1+ 
, /Cc 3 -- _CT ( -CC ) T- + E32 D 

where 

f (a) = exp 

1 

CLO 

)YI 
l, (I ý' (ao)R 0) 

4 

and the values of a0 101Y vary depending on whether the system 

is direct or retrograde. 

. We proceed to examine Equation (9) for (a 
o)R<a<1, 

(recall 

(a 
0)D< 

(aO )R As a rises towards the value (1 -C32) 
713 

,n2n3 

and hence SD-, %- CO R' (f(a)) R' and (f(a)) 
D all. remain strictly 

positive and finite. Hence t R/tD -ý- 0, i. e. the direct system is more 

stable than its retrograde equivalent. 

--)- CO As a falls towards (a 
o) R' 

(f(a))R S 
R' 

SD and f(a) 
D remain 

strictly positive and finite. Hence tR /t D and the retrograde 

system is more stable. Somewhere between (cc 
oR and (1-632? 1 

there exists a value of a where tR /t Dý1, 
i. e. each system has the 

same absolute stability lifetime. This critical value of a will 

of course depend on the values of a ý, y pertaining to each system. 0 
To summarise, it seems that for given C23 1632 there exists 

two critical values of q; (a 
D and cc R where (a 

D< 
(q 

R' 
For 

QýE (0, (q 
o)D 

both direct and retrograde systems are hierarchically 

stable. For a E((a 
0)D, 

(a 
0)R 

the direct systems usually exhibit 

instability after a finite time, while the retrograde systems are still 

stable for all time. For aE ((ct 
o) RI 1), both direct and retrograde 

systems are unstable. Comparing equivalent direct and retrograde 

system , 
it is seen that for a slightly greater than (ao) 

R' 
'the retro- 

grade system will survive longer. However as a is increased, the 
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retrograde system's stability decreases faster than that of the direct 

system and at high a, the direct system will be the more stable, 

although both are likely to have very short stability lifetimes. 

It is found that in general, retrograde systems are more stable 

than direct systems. This is contrary to the behaviour implied by 

the analytical criterion of Chapter 3. This has interesting impli- 

cations, discussed in Sections 6.4 and 6.5. 

6.3 The Role of Commensurabilities 

The importance of commensurabilities in determining the stability 

of direct systems has already been discussed in Section 5.4, Equally 

clearly, they play little part in the stabil ity of retrograde systems. 

The resulting behaviour was discussed in the previous s ection. The 

commensurabilities may enhance the stability of a particular direct 

system compared to its retrograde counterpart, whereas other direct 

systems characterised by neighbouring values of 623 )E32 sa may 

well be less stable than the equivalent retrograde ones. 

We are therefore led to question the physical relevance of 

commensurabilities for retrograde systems. It has always been the 

view of this work that the stability of a hierarchical system is 

critically affected by the strength of the perturbing forces on the 

two binary orbits near conjunction. This view has been corroborated 

by Figures4.3 which shows that for retrograde systems, the osculating 

elements are at local maxima near conjunction. Commensurabilities 

restrict the positions of conjunctions in the orbit to certain regions. 

In particular, certain regions may be excluded, where conjunctions would 

be more damaging to the stability of the system, due to a particularly 

close approach of m2 to m 3' for example. 
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Comparing two systems with equal C23 C32-, a, one retrograde, 

the other direct, the retrograde system will undergo many more 

conjunctions in a given time. We might expect that it would 

therefore be less stable as there would be many more closeapproaches 

of m2 and m 3' However, the time per conjunction for which the two 

bodies are close is much smaller, dueto their greater relative 

angular velocity, so that the disturbing force has less time to act on 

the disturbed body; the effect on the stability will be therefore 

less. We must ask the-question: which is more. disruptive, many weak 

perturbations or few strong ones? This question was answered in the 

previous section, where it was shown that the retrograde systems with 

many small 1, erturbations caused by frequent conjunctions were more 

stable in general. 

The same commensurability arises from given masses and separations 

of the bodies for both direct and retrograde systerw. However the 

effect of the commensurability is completely different. Recall from 

Section 5.4, that a commensurability n2 /n 
3 "1 A2 /A 

3' 
(A 

2, 
A3E 3N) 

possesses B conjuii'ction lines (spokes). In the case of direct 

systems B=A2-A 3' 
but for retrograde systems B=A2+A 3' This 

means that the one-spoked commensurabilities that were the most 

effective in stabilizing direct systems, cannot exist for retrograde 

systems. 

3 Another 
. 

relevant point is that as a _ý' (1 -632) ,n2 -)- n3 (Equation 

For direct systems this leads to systems with a one-spoked 

commensurability with conjunctions occurring every synodic period S, 

where S -* cO on the other hand, retrograde system-s-exhibit two- 

spoked commensurabilities with a synodic period that converges to a 

finite value. In this way the behaviour of retrograde systems converges 
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as n2 -* n 3' while the direct sys. tems' behaviour diverges. This may 

explain why it is so difficult to model the behaviour via. (a, N 
s 

curves of direct systems with high a values, while it is relatively 

easy to model the retrograde systems. Many of the strongest commen- 

surabilities occur ata <-(a 
0)R' 

(see Table 5.2), and are therefore 

acting on retrograde systems that are inherently stable in any case. 

It is suggested that commensurabilities do exist for retrograde 

systems., Their effect on (a, N 
S 

)curves is lessened in compa rison with 

direct systems since, (a) the strongest commensurabilities affect 

already stable systems, (b) the frequency of occurrence of conjunctions 

converges as a increases for retrograde systems producing greater 

uniformity in stability. 

Walker and Roy, (Paper III), in considering direct systems, 

assumed that the (a, N 
s) 

data points could be modelled by a steadily 

decreasing curve f(a) (Equation (1)) tqith a dispersion of points from 

the curve caused by commensurabilities. They tacitly assumed that the 

commensurabilitie s generally enhanced the stability and therefore fitted 

the curve to the lowest data. The question arises, does the evidence 

from the retrograde systems support'this assumption? 

We must be careful about inferring too much about direct systems 

from retrograde ones, as we have just pointed out the very real physical 

differences in their behaviour. Having said that, the question can 

still be considered, although the answer is far from clear. 

If we consider the retrograde systems with C23 "ý c32 then 

we see that there is a smooth transition from lifetimes of several 

hundred synodic periods down to one or two. This steady decrease 

supports the assumption of Walker and. Roy. On the other hand, for 
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C23 :ýE: 32 , the cut off between stability and immediate instability 

is almost instantaneous. If we were to assume this principle for 

direct systems, then any non-zero but finite stability lifetimes must 

be due wholly to commensurabilities. -it seems therefore that the case 

is not proven. 

There is a limit to which this argument can be taken. Commensura- 

bilities are an inherent property of any system and it may be quite 

wrong to try and separate them out from the behaviour of a dynamical 

system. Perhaps the safest statement to'make is to say that for 

direct systems, there is a spread in the (a, N 
s) 

data due to their 

commensurable nature. This spread is best modelled by a probability 

density function based on the Gamma Distribution (Section 5.5). 

The curves that are fitted are useful for normalising the data and for 

estimating the value of a0 which denotes the bounds of hierarchical 

stability. We should be cautious if attaching any other physical 

significance to them. 

Since the beginning of Chapter 5, commensurabilities have been 

looked on in a rather negative fashion. They have been considered as 

obstacles to data analysis, barring accurate predictions of stability 

lifetimes for direct systems. They do however enhance stability and 

there are a number of commensurable systems present in the Solar System 

(significantly more than expected, as shown by Roy and Ovenden, 1954, 

1955). They are therefore of interest in their own right. - Chapter 7 

takes a more constructive view of them and indicates another way in 

which they might be detected. 
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6.4 Comparisoh2. with Real Systems 

In this section, the results from the studies of fictitious systems 

are applied to real three-body systems. The majority of real systems 

considered are in fact three-body subsystems of_the Solar System. In 

order to apply the previous results, we need-to assume that they are 

isolated from all perturbations apart from the mutual perturbations of 

the three bodies in question. They must be considered to be coplanar 

with near circular orbits. These assumptions are justified to a 

greater or lesser extent for each of the system considered. Cases 

where they are not will usually be noted. 

The comparisons between real systems and the numerical results - 

are described by reference to Tables 6.1 - 6.6, at the end of this 

section. Each table containsa separate class of system, as will be 

readily seen when we examine each in turn. For each system, V and 

P3 are calculated from the masses. These masses are taken from a 

number of sources, -(principally Roy, 1979; Aksnes, 1985; Cambridge 

Atlas of Astronomy, 1985). In the case of the small satellites the 

masses are inferred from their si zes and densities- These densities 

are only estimates from spectrosdopic and photometric data and there- 

fore there is a considerable uncertainty in measuring the masses. 

From V and P3 , the critical value cc C 
for hierarchical pre- 

servation may be evaluated and compared with the actual value a 

If a< ac, the system exhibits the given hierarchy for all time. 

The values of C23 and 632 may be calc ulated from P, V3 and a 

Using Tables 4.1 and 5.1, CL can be determined using the value whose 0 

epsilon parameters agree most closely with those measured. Where the 

actual epsilon parameters are less than those tabulated, a lower limit 
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on a is given. - If the actual values are greater than those tabulated 
.0 

an upper limit on a- is given. From the value of a, it is possible to 
00 

say whether the given system is hierarchically stable or not. We now 

go on to study each table individually. (For a given system, a bracketed 

value of ac indicates that a >'a c 
). 

Table 6.1: Sun-Planet-Planet 

Within the Solar System, the stability of the Sun and various pairs 

of planets are considered. One pair that is excluded is Neptune-Pluto. 

Since these planets have crossing orbits they are deemed to be hierar- 

chically unstable. Their orbits are maintained because a critical 

argument prevents Neptune from approaching Pluto when the latter is 

near perihelion, (see Section 7.4). Pluto's orbit is decidedly 

eccentric (e ru 0.25) and is inclined at 1-- 17 0 to the Earth's orbital 

plane, violating our underlying assumptions. We should not attach too 

much significance- to any results concerning this planet. 

The whole class of systems in this table are characterised by the 

small p, 113 and hence small 623. sE32 -. --This implies that both aC 

and a0 are close to unity (all-systems-are-direct)-. As- the - 

actual value of cc for each system is much less than both ac and a op 

we can say with a degree of confidence that the systems considered 

here are strongly stable. This does not of course exclude the possi-_ 

bility that a pl-anet's orbit may be disrupted by a combination of 

perturbations from many planets. Such a study is outside the scope of 

this work, although it will be discussed briefly in Chapter 8. 

By studying C23 j 632 , we can see that Jupiter dominates in 

terms of its-perturbations on other bodies' orbits about the Sun. 

Every planet receives its greatest perturbation from Jupiter - even 

Mercury (although Venus comes a close second). 
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Care must be taken-in examining the stability of the systems with 

respect to a0 We know the values of -11, P3, a and can therefore 

calculate E23 and c32 - For this pair of empirical st ability para- 

meters there is an associated value of cc 0 
Since cc <a0 for All 

the systems listed in Table 6.1, we may assume they are hierarchically 

stable. We may not assume that they remain stable if a is increased 

to-the value a0 This is because a is a function of C23 and 

632 which in turn depend on a. As a is increased, 623 and E32 

increase and the value of a decreases. 
0 

The true stability limit a0 for given V, V3 is obtained by solving 

a0=a0 (C23 ('PsadsC32 039CLO)) 
. 

(11) 

Unfortunately no analytical form for a0=a0 (C23 632) has been found. 

However a reasonably accurate value may be estimated from Tables 4.1 

or 5.1 if desired. As an example take the Sun-Mars-Jupiter system. 

Here a=0.273 and a exceeds 0.95 for 3.24 x 10- 7 
and 0 

V3 = 9.55 x 10- 
4 

Obviously the true stability limit for these 

masses lies somewhere between 0.273 and 0.95. 
_ 

Suppose Mars is 

positioned nearer Jupiter (neglecting obstacles like the asteroid 

belt) such that cc = 0.6. Then 623 = 1.17 x 10- 7 
and eno = 2.06 x 10- 

4 

which implies that a0 has a value between 0.80 and 0.92 (Table 6.1). 

Thus we investigate a=0.7 and so on until a and a0 agree within 

the accuracy of measurement. In this case, a (V, P3) is estimated 0 

as being in the range (0.8,0.85). This is less than the original 

estimate of 0.95 but is still considerably higher than the actual value 

of a. We may-therefore conclude that Mars will not be violently 

perturbed by Jupiter. The other systems follow a similar pattern. 
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Table 6.. 2.: -Planet-Satellite-Satellite 

There is little difference in the sizes of the parameters'in 
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Table 6.2 compared with Table 6.1. This is not surprising since a 

planet and its satellites have the same hierarchical structure as the- 

Sun and planets. The only real differences are that many satellites' 

orbits cross while many others show large a values which are never- 

theless smaller than (x c and a indicating hierarchical stability. 

For the retrograde satellites, a usually exceeds ac but is still 

comfortably less than a0. 

For the Hartian system, we see that it will exhibit the same 

hierarchy for all time and is moreover hierarchically stable. It has 

been observed that the orbit of the inner satellite, -Phobos3 is de- 

creasing. Phobos will crash onto the surface of Mars in about 30 

million years, (hardly the mark of a stable system). -11is apparent 

contradiction is resolved in two ways. Phobos by moving towards Mars 

is not changing the hierarchy. The fact that a<ac means that the 

perturbations from Deimos will never allow Phobos--to reverse-this 

inward spiral and move out to cross Deimos' orbit. Since -a <a 
09 

this means that Deimos is not responsible for the irreparable changes 

in Phobos' orbit but rather it is due to tidal interactions between 

Phobos and Mars (see Section 6.5). These tidal forces are not modelled 

in the classical three-body problem. 

The main satellites of Jupiter can be divided naturally into four 

groups of four (a feature which might have appealed to Kepler). The 

first four are Metis, A drastea, Amalthea and Thebe. These small 

satellites have such small empirical stability parameters that they 

must be very close before significant interaction takes place. Metis 

and Adrastea occupy the same orbit situated on the outer edge of Jupiter's 

rings. Because of the interaction between the rings and these small 
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satellites,. any results from the point mass three-body problem must 

be viewed with caution. 

The second group is the Galilean satellites - Io, Europa, 

Ganymede and Callisto. - These are by far the largest of Jupiters 

satellites and produce the greatest disturbances on the other bodies. 

No single one dominates but Io-being the innermost of the four has 

most influence on the inner four satellites, while Callisto mostly 

influences the outer satellites. All seem highly stable with respect 

to each other. 

The third group comprises Leda, Himalia, Lysithea and Elara. 

These bodies have eccentric, inclined, orbits that cross (typically 

e nu 0.15, i nu 280). Once again these bodies are hierarchically 

unstable with respect to each other, therefore some other mechanism 

must be looked for to justify their continued proximity. Note from 

Table 6.2 that had Himalia and Lysithea been in circular orbits with 

the same semi-major axes, then they would have been hierarchically 

stable, being so small. This group do seem stable with respect to 

the other groups. 

The final group is perhaps the most interesting for our purposes. 

It comprises Ananke, Carme, Pasiphae and Sinope. These satellites 

also have eccentric, inclined orbits that cross but these are retrograde, 

(e ru0.2$ i nu 150 0 ). Once again they are hierarchically unstable 

with respect to each other but must be maintained by some resonant 

behaviour. If we are to believe the analytical preservation criterion, 

they may also cross the orbits of the second and third groups. However 

by studying the values of a0 we-find that they are in fact stable. with 

respect to all other groups. 
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The. Saturnian system is now seen to be very complex-with a number 

of small-objects in the same orbits as some of the major satellites. 
I 

They are therefore by our definition hierarchically unstable, but 

retain their orbits by the resonances that exist between them (Aksnes, 

1985). For example, Telesto and Calypso are situated at the L4 and L5 

points of Tethys, respectively. Although there is still some discussion 

over the nature of Janus and-Epimetheus, it now seems that these co- 

orbiting satellites never meet as Epimetheus describes a horse-shoe 

orbit in relation to Janus. The shepherd satellites S26, S27 and S28, 

as their names suggest, have orbits that border the rings of Saturn, 

with which they interact. Spirig and Waldvogel (1985) have used the 

-three-body problemwith two small masses tending to zero, to model their 

behaviour and predict that Janus and Epimetheus exchange orbits at close 

encounter to produce the horse-shoe orbit, whereas S26 and S27 do not. 

Such behaviour is hierarchically unstable by our definition, but seems 

to be repeated over as'tronomically long timescales. 

The remaining major satellites are well spread in their orbits 

with a much less than both ac and a0, indicating high stability. 

Titan dominates the perturbations of the other satellites in the same 

manner that Jupiter dominates the Solar System. 

In the case of Saturn-Titan-Hyperion, Hyperion and Titan are 

fairly close to ac and a0. Their stability is enhanced by the 4: 3 

commensurability in mean motions-that exists between them. The outermost 

satellite; Phoebe, is retrograde. Once again the analytical criterion 

indicates the possibility that it may cross the orbits of Iapetus, 

Hyperion and Titan at least. However, the empirical stability limit 

a0 is still substantially greater than any value of a observed in 

connection with phoebe, hence it is pronounced hierarchically stable. 
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The five principal satellites of the Uranian system are well 

spaced and seem hierarchically stable. No satellite dominates as 
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four of the five have comparable masses. Only the innermost, Miranda, 

differs from the rest, being two orders of magnitude smaller in mass. 

The system of Neptune-Triton-Nereid is retrograde with a very 

small value of a. Being retrograde, ac is even smaller, hence 

there is no guarantee of hierarchical preservation. The-value of 

ao, being much greater, implies that the system is indeed stable 

(although with an eccentricity of 0.75, Nereid's orbit is hardly circular! ) 

In a sense this system resembles the Martian system since the inner 

satellite, Triton, is in a decreasing orbit. It will eventually pass 

through the Roche limit of Neptune and shatter producing a ring around 

Neptune. When this-happens, all the gas giants will have rings 

associated with them. It is interesting to note that Triton is the only 

retrogr4de satellite to be-observed within a direct satellite's orbit, 

and it will disintegrate in less than 100 million years. This will 

mean that the only stable retrograde satellites will be the outermost 

satellites of Jupiter and Saturn, (see Section 5.5). 

Table 6.3: Planet-Satellite-Sun 

This group of systems is substantially different from the previous 

two. The plafiet and one of its satellites is the close binary being 

perturbed by the Sun which is the third body. For this group, V << 1 

and P3 : ": " 1, which implies that ac is very small. Even so, a< acl 

for most of the systems studied, the only exceptions being the third 

and fourth-groups in the Jovian system characterised by Himalia and 

Pasiphae respectively. 
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Z3 are still much- less than one, The values of V and E32 

implying that a0 exceeds 0.9 in many cases. For example a0>0.97, 

for the Saturn-Dione-Sun system. This does not mean-that Dione may 

approach the Sun to within 3% of Saturn's orbital radius before 

hierarchical instability sets in. Recall that a decreases as a 0 
increases for constant P, V3 When both 11,113"l, (I decreased fairly 

0 

slowly with a. However, when P3 > 1, (Xo decreases more quickly 

and will result in a small value of a 0 
From their definition, C23 and E32 are a measure of the pertur- 

bAtions on the outer and inner binary respectively. These measures 

are normalised with respect to the central forces producing the 

Keplerian motions. Implicit in the definition of a hierarchical 

system, is the assumption that the perturbations on the binaries 

are small compared to the central forces, i. e. E23 - E32 are less 

than one, preferably much less. Any system where C23 or C32 approach 

one must be considered as a poor hierarchy for which it would be 

unwise to expect hierarchical stability. We may therefore define a' 

to be that value of a for which EZ3 or E32 equals one. For the 

systems here, E23 1 presents no problem. E23 measures the pertur- 

bation on the planet-satellite system's orbit about the Sun, due to the 

relative displacement of the planet and satellite. This will always 

be very small. The perturbation of the Sun on the planet-satellite 

system could be large. The hierarchy would be effectively broken if 

E32 ý 113a 3 exceeds one. In this case, 

3 

which is less than one and provides a more useful stability limit than 

cc 
0 

as given in Tables 4.1 and 5.1. In the example of Saturn-Dione-Sun, 
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cc" 0.066, a more reasonable estimate which acts as an upper limit 

on a for all of the Saturnian sat ellites. It is likely that systems 

with a 'slightly less than a' would be unstable and that the true 

stability limit is somewhat lower. The only way to find-this limit 

is to perform more numerical integration experiments for constant 

V, P3 instead of C23 * C; 32 (Chapter 8). Note that a is much less 

than a' for Himalia and Pasiphae, indicating that they are possibly 

stable. 

The largest values Of E. 2 occur for Earth-Moon and the outer 

satellites of Jupiter and Saturn. By far the largest value of r23occurs 

for Earth-Moon. -We are not justified in applying our results to the 

Uranian system since the inclination of the satellites' orbits with 

re - spect to Uranus's orbit about the Sun is close to 900. In fact it 

is approximately 98 0 therefore, if anything, the satellites should be 

considered as retrograde-ratherthan direct. The results should be 

viewed with caution in any case. 

Table 6.4: Sun-Planet-Asteroid 

Not surprisingly, Jupiter dominates the planetary perturbations 

on the asteroid belt (632 10- 
4 ). Saturn is the next most important 

(E32 10- 5 ). liars (C23 10- 7) is much less influential. At 

the outer edge of the asteroid-belt, a is close to aC and a0 as 

defined by Jupiter. It is almost certainly this body which governs 

the extent of the belt. The values of aC and a0 will vary only slightly 

with U, P3- assuming that masses of the asteroids are small. Neither 

the complicated interactions between asteroids nor the gaps in the_belt 

caused by resonances with Jupiter are discussed in this theory. 
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Table 6.5: Harrington's Experiments 

In 1977, Harrington completed a number of numerical experiments 

of a similar nature to the ones described in this work. He was 

6oncerned with showing the existence of. stable planetary orbits around 

I binary stars. He examined three-body systems with two equal masses 

and one small mass. His definition of stability closely matched that 

of hierarchical stability. He chose systems that were both direct 

and retrograde. The planet was, allowed to orbit one or both stellar 

masses in an initially circular orbit. The stellar binary could have 

eccentricities of 0. or 0.5 (only the zero eccentricity results are 

quoted in Table 6.5). The masses. were as follows: Star A= Star B= 19, 

Planet a 10- 3@ (approximately the mass of Jupiter), Planet b 

3.3 x 10- 
6@ (approximately the mass of Earth) - The experiments with 

Star A, Star B, Planet a and Planet b involved studying the stability 

of each system for various separations of the bodies. The stability 

cut-off, analogous to a0, was noted in each case. 

Harrington chose only to examine a values whose reciprocals were 

integers, hence his results are rather imprecise. Broadly speaking 

his results agree with the results of Chapters 4 and 5. His results 

mostly arise from systems with high E23 or c32 ("' 10- 2) 
which is at 

the limit of the present studies. They do indicate that the retrograde 

systems are as stable, if not more so, than their direct counterparts. 

He also shows that for the retrograde systems, his empirical value for 

the stability cut-off in a is greater than ac. In general the value of 

a0 derived here is greater than Haddington's limit. There may be many 

explanations for this. In many cases, we can only give upper limits 

on a0 because of the high values of CZ3 and 6.2. The actual values 
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will be lower. Secondly, Haddington's values are very imprecise 

particularly at higher a as he only samples a=1, 

Thirdly, the way he diagnoses an instability may be different from the 

way presented here, both methods being open to subjectivity. 

Another set of experiments that he performed assumed that the 

mass of Jupiter equalled the mass of the Sun. He examined the stability 

of the inner planets, assumed to have zero mass. He found that 

Mercury, Venus and Earth remained stable while Mars went unstable. 

The results presented here agree with Haddington insofar as a<a0 

for Mercury, Venus and Earth, while no guarantee exists for Mars. 

Table 6.6: Triple Star Systems 

Eight real triple star systems are studied and seen to be hierar- 

chically stable (a <a). The eight are considered-to be both direct 
0- 

and retrograde for comparison. Many of the systems show a>ac *for 

retrograde motion but nevertheless a is much less than a0. On the 

grounds of stability, there is no reason why retrograde triple star 

systems should be any less common than direct systems. 

6.5 Implications for the origin of the Solar System 

All the results presented so far have been based on observed data. 

Any conclusions can in principle be verified by numerical integration. 

This section is concerned with one of the most important, if not the 

most important, unanswered question in celestial mechanics; namely 

the origin of the Solar System. What implications do the results 

presented here have? Can the concepts of hierarchical structureand 

stability contribute anything to the discussion? 
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We can say from the previous section that under the assumptions 

discussed most of the planets and their satellites exhibit hierarchical 

stability. There are some exceptions such as Phobos and Triton, but 

the vast majority give no indiqation that the orbits which they currently 

descri be will alter dramatically in the future. We may infer from this 

t hat they have followed-the same paths for long periods of time in the 

past. The question is when and how did they fall. into the stable patterns 

that we see today? The fact that so many are stable in their orbits 

does not rule out the possibility that they evolved at the same time 

as the Sun. 

Perhaps the most important result to come out of these studies, 

is the fact that most retrograde systems are at least as hierarchically 

stable as direct systems. We must therefore ask, why are there so few 

retrograde bodies in the Solar System? Why are they the outermost 

-satellites, (with the exception of Triton which we know has a relatively 

short lifetime)? It seems that a selection effect due to hierarchical 

stability is not the answer. The evidence points instead to the hypothesis 

that this is the way they originated. The fact that the majority of 

bodies are orbiting in the same direction in roughly the same plane 

indicates the likelihood of a common origin, rather than a series of 

independent events. The question of what event could cause such a 

diversity of bodies remain unanswered. 

There are two popular theories (as well as a host of less popular 

derivatives). The first is that a close encounter took place between 

the Sun and another star. Material was passed between them from which 

the planets and the satellites formed. This is a rather pessimistic 

theory as it implies that the formation of a planetary system round a 
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star is a chance event and we are in a privileged position. - The 

possibilities for-life elsewhere in the Galaxy are substantially 

reduced if we accept that planet fo rmation is a rare event. The 

second theory is that the Sun, planets and satellites condensed from 

one gas cloud with the Sun at the centre accreting most matter. The 

proto-planets'orbitsabout the Sun gravitationally sweep up the 

remaining dust and hydrogen contracting to form the system we know today. 

It is difficult however to explain the differing compositions of the 

planets by this theory. 

G. H. A. Cole, in a recent paper (1985), proposes a condensation 

model that exhibits a greater degree of consistency than the previous 

model, by merely taking a different perspective of the structure of the 

Solar System. 

Cole points out the similarity in density and composition between 

the Sun and the. -gaseous major planets Jupiter, Saturn, Uranus and Neptune. 

Each is a fluid body whose principal chemical component is hydrogen. 

Jupiter in particular is almost massive enough to be a star in its own 

right. By adding more material of the same type, each of the gas giants 

could become a star like the Sun. 

On the other hand, the terrestrial planets Mercury, Venus, Earth 

and Mars are less massive but denser than the gas giants and composed 

of cosmically rarer elements. They have more in common with the 

satellites of the major planets than with the major planets themselves. 

The model that Cole proposes assumes the Solar System originated 

from a cloud of material which collapsed to form five initial centres, 

namely the-Sun and major planets. Only one centre grew to sufficient 

size to become stellar, although Jupiter nearly did. At the same time 
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or possibly later, other material collapsed to form satellites around 

these five gaseous centres. The terrestrial planets are considered 

to be the Sun's satellites. The mechanism that differentiates the 

silicate material from the hydrogen and helium is not clearly under- 

stood and could take place either prior or as part of the accretion 

of the silicate bodies. 

As further evidence, Cole compares the angular momenta for. 

various components of the Solar System. For each major planet, its 

rotational angular momentum is much greater than the total orbital 

angular momentum of its satellites. However the rotational angular 

momentum of the Sun is-less than the total orbital angular momentum 

of all the planets. This inconsistency is remedied in Cole's model, 

since the angular momentum from the terrestrial planets is less than 

that of the Sun. 

This model-is of interest from the point of view of hierarchical 

systems and their stability. It breaks up the Solar System into 

clusters of four or five bodies. On the largest scale, there are the 

five gaseous bodies, i. e. the-Sun and major planets, arranged in a 

hierarchical manner, with centre of mass very close to the Sun. The 

Sun has four satellites; the terrestrial planets (five if we include 

the Moon). Cole suggests that the natural division of the Jovian 

satellites into four groups of four may be more than coincidence. Uranus 

also has five well spaced satellites. In Cole's model, he proposes 

that the condensation takes place in clusters of five or six bodies 

that can be hierarchically ordered. The model may be applied to the 

formation of star-clusters in a similar way. If this model is valid, 

then it increases the importance of studying hierarchical systems of 



217 
6.5 

five or six bodies. 
- This task-would be far more difficult than the 

study of three bodies (see Chapter'8). 

It was remarked in Section 6.4 that the retrograde satellite 

Triton is spiralling towards Neptune. Once it has broken up the 

only retrograde satellites will b. e the outermost ones of Jupiter 

and Saturn. Considerations of hierarchical stability imply that 

Triton should be stable, therefore we must look to other mechanisms 

to describe its instability. The answer lies in the concept of tidal 

friction. 

All the studies performed in this work have assumed the bodies 

to be spherically symmetric (or point) masses. In reality, the 

bodies are of finite size and are rotating. A nearby satellite will 

cause a tidal bulge in a planet. The interactions of the two non- 

spherical masses cause exchanges in the rotational and orbital angular 

momenta, producing changds in the satellite's orbit. The different 

types of behaviour are best described by three examples: Earth-Moon, 

Mars-Phobos, Neptune-Triton. 

In the Earth-Moon system, the Earth's rotation period is shorter 

than the Moon's orbital period. The Moon produces a tidal bulge on the 

Earth. The Earth tries to carry the bulge round at the same rotation 

rate but is held back by the slowly orbiting Moon. As a consequence 

the Earth's rotation is slowed: It loses rotational angular momentum 

which is passed to the Moon in the form of orbital angular momentum. 

The Moon recedes as a consequence and its orbital period increases. 

The recession of the Moon will continue until the Earth's rotational 

period matches-the Moon's orbital period, whereupon, the solar tidal 

drag decreases the angular momentum of the Earth-Moon system and the 
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Moon will approach the Earth again. 

In the case of Mars and Phobos, the difference is that Mars' 

rotational period is longer than Phobos' orbital period. In this case 

the Mars tidal bulge is pulled round by Phobos. 'Mars' rotational 

period must increase along with its rotational angular momentum. To 

conserve the total angular momentum of the system, Phobos must lose 

orbital angular momentum. It therefore spiral s in and will increase 

its orbital period accordingly. Unlike the Earth-Moon system, n0 

limit-is reached-and Phobos will eventually crash onto Mars. 

The case of Neptune-Triton is slightly different again. Because 

Triton is retrograde, its orbital angular momentum. is of opposite sign 

to Neptune's rotational angular momentum. Triton is moving in the 

opposite direction to the bulge it is producing. Like the Earth-Moon 

system, the rotation of Neptune is slowed and it loses angular moment-um 

to Triton. Unlike the Moon, the additional angular momentum is of the 

opposite sign to Triton's angular momentum. The result is an overall 

decrease in the magnitude of Triton's orbital angular momentum, producing 

an orbit that spirals inwards, like Phobos. There is no limit to this 

infall and so Triton must eventually break up within Neptune's Roche limit. 

It does seem that tidal friction may account for the lack of retro- 

grade satellites close to the planets. There are still very few retro- 

grade satellites, even at large distances, fewer than may be expected 

if we assume that they are as likely to occur as direct systems. Hence 

the arguments concerning the origin of the Solar System still stand. 

If we assume that the planets and satellites were formed by related' 

condensation mechanisms, acting-on a iotating gas cloud, it is likely that 

all the original bodies were orbiting in the same sense. The retrograde 
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satellites that we see have been captured subsequently from residual 

debris or orbit crossing asteroid streams such as the Apollo-Amor 

group. - We know from our studies, that-retrograde bodies are more likely 

to be captured than direct systems, especially at large distances where 

the Sun's perturbations become increasingly -important. 

Pluto has been studiously avoided until now. Its existence and 

behaviour are very difficult to explain given the present theories. 

Pluto is the smallest planet in the Solar System, with a composition 

like the terrestrial planets. Recent spectroscopic evidence shows 

it is covered in frozen methane like Triton. It has been suggested 

that Pluto orbited Neptune in the past but some catastrophic event caused 

it to pursue its present orbit which crosses Neptune's. At the same 

time Triton may. have been perturbed towards Neptune. Nereid's high 

eccentricity may also be a consequence of the same event. There is 

however little evidence to support this theory and it does not properly 

explain Pluto's highly inclined orbit or-the existence of the critical 

argument involving Neptune. Alternatively, Pluto may have been an 

asteroid which closely encountered Neptune and was locked in the critical 

qrgument that we see today. Such theories are still speculative and 

Pluto remains very much a mystery. 

6.6 Summary 

In this chapter, we have compared the behaviour of direct and retro- 

grade systems. In Section 6.2 we concluded that retrograde systems were 

generally more stable than theirdirect counterparts. This led us to 

deduce that the lack of retrograde satellites and planets in the Solar 

System w as due to tidal friction or a counon mechanism for originating 

the bodies (Section 6.5). 
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The numerical results of Chapters 4 and 5 were used to-compute 

hierarchical stability limits for real three-body systems, mostly 

contained in the Solar System. (The results on the Uranian system 

will soon need updating as more data from the Voyager flyPast becomes 

available). By comparing the mutual distances of three bodies (a) 

against the empirical stability limit (a 
0 

we may say whether they 

are in a hierachically stable configuration. If they are not, we 

may still assume that they have been pursuing their present orbits 

for astronomically long time scales, but only if We look for some 

other dynamical mechanism that prevents them behaving in 
-a chaotic 

manner. For example, we may observe critical 'arguments, as is the 

case with Neptune and Pluto, or ring interactions with nearby 

satellites as with the shepherd satellites of Saturn. 

The stability of these systems has been described by this work 

only insofar as the systems are point mass, coplanar in initially 

circular orbits. To analyse them more accurately, there needs to be 

investigations into systems with small eccentricities and inclinations. 

This would amount to considerably more work (see Chapter 8) as would 

any attempt to model tidal interactions. 

It was suggested in Section 6.5 that there may be many rewards in 

studying five and six-body systems within the Solar System. There are 

many complexities in studying four and more-body systems. The surface 

will only be skimmed in Chapters 7 and 8 and yet it is surprising how 

many interesting results appear from the simplest examinations. 
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7.1 Introduction 

The previous chapters have concentrated almost solely on the general- 

three-body problem. It is however of some-interest to consider the 

stability of four and more body systems. Whereas there is only one 

hierarchical arrangement of three bodies, namely ((m 
Vm2 

)'M 
3 

), there are 

two hierarchicallý distinct arrangements for four bodies. They are 

the simple hierarchy (((ml, m 2 
), m 3 

), m 4) and the double binary hierarchy 

((M , m2 ), (m V m4)) as was discussed in Section 2.2. For larger systems 

the picture becomes even more complicated. Walker (1983) described a 

coordinate system for a general n-body hierarchical'dynamical system 

with generalised empirical stability parameters giving the mutual 

perturbations on various subsystems. Walker and Roy (1983) presented 

explicitly the equations of motion for both four-body hierarchies in 

terms of the empirical s tability parameters, as well as giving the 

regions in the parameter space-where-real. systems may 
-exist-stably. - 

B cause of the many complexities --involveid -in-: studyin7g th&-n-bbdy 

problem, it is necessary to restrict the field of study to simple, 

coplanar hierarchies as given in Figure 7.1. Thus it is not possible 

to consider multiple stellar systems such as Castor. This condition 

is less of a restriction within the solar system however since the 

orbits of planets about the Sun as well as satellites about a planet, 

can be considered by using a simple coplanar hierarchical model. 

The importance of conjunctions in determining stability has been 

stressed in the preceding chapters on three-body systems. In 

particular, for the retrograde systems, it was particularly noticeable 

that the stability lifetimes were quantised into whole numbers of 
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M2 
M3 

M3 M4, 

M12 

Figure. 7.1 A simple n-body hierarchical system 
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2 
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3 
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where M. denoted the centre of mass of the subsystem 

... 
((MISM 

2 
)'M 

3)'... 'M i 

synodic periods. This indicated that the perturbations were greatest 

at a conjunction, giving the greatest opportunity for an instability 

to occur. This was the reason for using the synodic period as a unit 

of time; it gives the number of conjunctions for which a system is 

stable. 

There is no reason to suppose that four and more bodies 

will behave in a radically different manner. In other words the 

occurrence of conjunctions is of considerable importance, in 

determining the stability of n-body systems. - 

There is, of course, difficulty in dealing with four and more 

bodies, since a perfect alignment of four bodies is practically never 

possible. If one considers the sun and three planets, it is possible 

to compute a synodic period for any two of-the planets about the sun. 

However, the probability of the third planet being exactly aligned with the 

other two at the instant when they are at conjunction '- 
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is zero. Thus the definition of a synodic period as the time 

between successive ordered alignments of n-bodies, implies an infinite 

period for n>3. (The only exceptions would occur for fictitious 

systems, where-one can choose arbitrary longitudes and mean motions, 

unencumbered by the problems of real data). 

Walker (1980) describes one possible definition forthe synodic 

period of a four-body system, which he further elaborates in Roy et al. 

(1985). His method-involves computing S 23' S 24' S 34 where S 
Ij 

is the 

synodic period of the three-body subsystem, comprising the (Mi_lpm 
i 

)S 

(M 
j-", j 

) two-body subsystems. A rough idea of the three-body subsystem 

that is least stable can be obtained by noting the size of the epsilon, 

- parameters; the greater the epsilon, the greater the perturbation on 

the relevant subsystem, and the more likely it is to exhibit an insta- 

bility. Thus some synodic periods will be more important-than others 

as a unit of time measurement. Using this basic idea, Walker has 

constructed a four-body synodic period S 

(F23 + E: 32)/S23 + (E24 + E: 42)/S24+ (F- 34 + F-43)/S34 

s 
F- 23 + E32) + (F- 24 + F-42) + (E 34 + E43) 

where the individual three-body synodic periods have been weighted 

according to the relevant epsilon parameters. 

This appyoach can be generalised to more than four bodies and gives 

an unambiguous unit of time for a given system. There are however two 

drawbacks. The first is that S is a function of the masses, as well 

as the mean motions, making the value more difficult to evaluate for 

real systems, where the masses of the bodies may not be accurately 

determined. The epsilon values also vary with time. 
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The second disadvantage is that this value of S gives no indication 

of the period of occurrence of alignments of the four (or more) bodies. 

We have already observed that a. perfect alignment of more than three 

bodies is impossible. ýowever if we allow alignments within a specified 

angular spread then it is possible to answer the question, "What is 

the average period of occurrence of alignments, within a certain 

tolerance 0 0? 11 Such an alignment of n-bodies irrespective of 

conjunctions or oppositions is called a "syzygy". 

A formula is derived in Section 7.2 for the average period 

of occurrence of syzygies from the mean motions alone. The results 

of numerical testing are given in Section 7.3, indicating the spread 

of deviations from the predicted periods for fictitious systems. 

These results are compared with the results for real systems in the 

Solar System in Section 7.4. Possible uses for this theory are 

discussed at the end of the chapter, where we consider not just the 

rotation of real bodies but also the rotation of the apse lines of 

orbits. This leads to a discussion into the nature of critical 

arguments, and mirror configurations in Section 7.6. 

7.2 Predictions of the Period of Occurrence of Syzygies 

Consider the sun S and p planets Pi as in Figure 7.2. 

Let these planets have coplanar, circular orbits, so that their angular 

velocities are equal to their mean motions ni P). 

of generality, order the planets such that 

Without loss 

ni >, ni+l Ivi=1,2s .... P-1 
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R p 

p 

Figure 7.2. Illustration of the orbit of planet P 
3. with respect 

to planet Pp (the outermost planet). When Pi passes 

through the shaded region, then a syzygy -of S, PiOP 
p 

has occurred to within a tolerance e. 
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Let these orbits be unperturbed by the other planets in the system. 

Let ki ý-- LXSPi be the longitude of planet P 
1. with respect to fixed 

axis SX. (Note that a negative mean motion indicates rotation in the 

opposite direction from a positive mean motion). Let the required 

tolerance on the syzygy be 0. This means that the system is defined 

to have undergone a near syzygy if 

or Vi, j=l, 2,. 
Tr 

Because it is only necessary to consider the differences in longitudes 

and mean motions, define 

n 
Vi 

and set the condition on a near syzygy to be (from Inequaliti6s (2)) 

IL 

ýi 

I<0 

or 
IL Tr 10 

and IL L0 Ivi, 

" 

j=ls... 
)P-l 

or IL L Tr E) 

Thus the system is considered in a rotating frame with angular velocity 

equal to np and reference direction along the radius vector SV- 
p 

The evolution of the system is given by a straight line in the (P-1)- 

dimensional space of (L,, L 2L P-1 
(See Figure 7.3). This line 

has parametric equations 

L 
3-0 

+NIt i=l 
.... sp-1 
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-1 

Figure 7.3: Regions of acceptable syzygies in the (L,, L 2) 

plane for three planets. The evolution line 

of a system is shown to be at near syzygy for 

L2 'ý! Tr 
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where t is time and L. is the value of L. at t=O. In this 
10 1 

configuration space there is a small region of near syzygies around 

each "lattice point" (k 
I 7T, k2 Tr, k 

P-1 
n), (klp 

... k 
P-1 

E with 

all angles measured in radians. (For example, when all the k1 's 

are even, the configuration is a conjunction of all the planets at the 

same side of the sun). 

The boundaries of these regions are given by points in the 

(p-l)-dimensional space at which one of Inequalities (3) becomes an 

equality, i. e., a linear equation in L Thus these 

boundaries are constructed from (p-2 dimensional hyperplanes. 

They intersect to form a hyperpolyhedron about each lattice point. 

By way of example, Figure 7.5 shows such -a region for p=4 (i. e. three 

dimensions), where each face is a region of a two-dimensional plane. 

The extent of the face is governed by the locus of points which satisfy 

Inequalities (3) while one of the inequalities is a strict equality. 

For p>4, the hyperpolyhedron is bounded by regions of hyper- 

planes in exactly the same manner. We shall describe these regions 

as hyperfaces and refer to the hypervolume that they occupy in (p-2) - 

dimensional space as "areas". 

The shape and orientation of each hyperpolyhedron is the same 

and the size varies with the value of e. The object is to find out 

how often the line (Equation (4)) passes through one of these 

regions. 

Consider the system to be evolving by travelling along the line 

in 
P-1 

) space with constant velocity. The average distance 

between intersections with regions of syzygies is d where 

d=( CF T )_ 
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where -r is the number density of discrete regions of syzygies in the 

(L,,..., L 
P-1 

) space and a is the (p-2) - dimensional cross-section of 

each region in-the direction of travel of the, system. The direction 

of travel is N= (NIN N) and the average time t between- 
Ilu 2""' P-1 p 

intersections (i. e. syzygies) is given by 

d2 = t2 
pE 

p i=i 

Combining this equation with the fact that T= 11-a P-1 
gives 

t 
7T 

pE 

N2 (5) 
-1 P"l -2 

pa i=l I 

Thus it is required to find a. Note that all vectors are (p-1) - 

dimensional. 

Consider one region of syzygies R. Suppose it is bounded by m 

hyperfaces with areas A (j=l,..., M). Associated with each hyperface 

is a unit normal vector q (j=l,..., m). To find the cross-section 
_j 

it is necessary to find the projection of each hyperface along N. 

These projections are (N. 
_qj)A, 

/JýJ remembering that 

although qJ are unit vectors, N is not. The cross-section is derived 

by summing the projections of the hyperfaces, taking care only to sum 

over projections with the same sign. (If one sum over all possible 

faces, then one is considering hidden faces and a= 0). Without loss 

of generality, assume that the summing is done over positive projections. 

Therefore 

m 
a=E max 0, 

INI j=l 

1 
il 

Combining Equation (6) with Equation (5) and noting that 

IN12 = N2 + ... + N2_ Ip1 gives 
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P-1 m 
IT E max (0, N. q, ). Aj 

p j=l 

I 

Having found the relevant unit normal q say, the corresponding area 

A is given by the following result. 

Theorem 

P-1 I 
Af1- . 11 

dL. 

- 
jýi Bi iq 

il 
i 

where q. denotes the i 
th 

component of unit normal vector q, I 

assuming qi + 0, and Bi is the projection of the relevant hyperface 

onto the (p-2) - dimensional subspace L1=0. 
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Proof for p--=4 

For p=4, we are considering the three-dimensional space (Ll, L 21 L 3) 

(see Figure 7.4). It is required to find the area A of surfac -eE 

Let it be projected onto the (Ll, L2) plane as surface E 3' E can be 

divided into small areal elements dS, whose p rojections on the (Llj L2 

plane are rectangles with sides dL,, dL 
21 as shown. Let q=(ql, q 2q3 

be the unit normal to dS in either direction. Clearly 

dL I, dL 2 2- dS. cos yI= dS Iq 
31 ** Thus 

A= 
fE 

dS =fE 
dL, dl, 2 

3 Iq 31 

where q3 may be a function of L, and L 2* Care must be taken to ensure 

that q3 is never zero. Similar results can be obtained by projecting E 

onto E2 (on the(Ll, L 3ý plane) or E1 (on the (L 
21 L3) plane). Thus 

fE 
1 dL dL 

r 
dL dL dL, dL 

I 
Tqll 23 

fE2 
Iq 

21 
13 =fE 

3 Iq 32 
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This theory pan be generalised-to higher dimensions, the result being 

Equation (8). 

Figure 7.4 Surface E projected-onto E--. on-, t-he (L,.,, I,, ) -plane 3 

it is now possible to find qj, Ai Equation (7) is 

independent of the initial longitudes, hence it is only necessary to 

examine the region R around the origin. The results obtained apply to 

regions centred at other lattice points with coordinates that are - 

integer multiples of n. Thus from Inequalities (3), the conditions 

for near syzygy become 

I Lil <e vilklo ... IP-1 
and ILi rL <0 

To evaluate q. and A. it is necessary to consider the hyperfaces in 
33 

three categories. 
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a) L. >, Oj i=l, 2j.... P-1 

Inequalities (9) become 

max 

Let Lk max 
_(L 

for some k=ls! --PP-1- The relevant boundary hyperface 

has equation Lk0 and extends over the region where Li <L k' 

vi=lý 
... p-1. The normal vector to the' hyperface g=(O.... 30,11SO)..., 0) 

where the 1 is in the k th 
place. From Equation (8), 

LkLK P-1 
A=... jýj dL 

j 
00 Jýk 

with 0 Lj *L k -ý 0' vj=l,..., P-l. Thus 

P-1 0 
dL. p-2 A JI 0 

j=l 03 
jýk 

Clearly there are p-1 distinct faces-in this category to be considered. 

b) Li 
ý< 

0, Vi: --1,2,..., p-i 

The theory is similar to (a). 

q (0 
.... lof-l'o'... 'o) 

(-l in k th 
place), k=l,..,, P-l 

A p-2 

C) 3i, j=l, p-l such that L< 0*. L. >0 

Inequalities (9) become 

max (L min (L 
i 

i=lp .... P-1 
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Let-L 
k- max (L 

i 
)., 'Lm min (L. ). There are (p-1) (p-2) possible com- 

binations of k and m, Choosing a particular pair of values, the equation 

of the boundary. hyperface is 

Lk-Lm 

The unit normal vector q has . 
all zero components except for the k th 

and m 
th 

components which are equal to 11V2 and - lb/2 respectively. 

Projecting the hyperface onto Bk we get 

P 
AB V2 nl -dL 

k 
3fK 

0 Lk P-1 
t/2 ... 11 dL. dL 

-0 L 

-. 
m .m jýk, m 

- 
0 -p-1 L +0 

= ý/2 H m dL. dL 
j=l 3 

. -0 jýk, m - L 
_ . m 

0 
V2 0 p-3 dL 

Y12 6 p-2 

The same result can be obtained by projecting the hyperface onto Bm 

The number of hyperfaces m--p(p-1). Considerable simplification 

of Equation (7) is now possible. As a consequence of the ordering of 

the mean motions 
- 

(Inequalities (1)), N1>, N2>, ...: ý N 
P-1 

ý 0. Although 
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Table 7.1 lists the area and normal of all faces, those of groups (b) 

and (d) are never used, being hidden. (Note that the hyperfaces 

always occur in parallel pairs). Thus from Table-7.1, the group (a) 

faces give 

(N. q)A =Ni0 
p-2 

and the group (c) faces give 

(N. q)A = (N 
i -N j 

)Op-2 

Therefore Equation (7) becomes 

iýll P-1 

j2,..., p-1; i1,... J-1 

7rp 
-1 P-1 P-1 j-1 

tp 
p-2 

E N. +EE (N. -N 
e j=l 3 j=2 i=l 

Area Normal 

(a) op-2 
'p-1. 

-(ith place) 

(b) op-2 (03 
... so, -1109 .. .. 0) i=ib 

.. .. P-1 

(ith place) 

(c) v20p -2 j=2, ..., P-l 

(itII place) (j th 
place) i=l, ... J-1 

(d) V2ep-2 (0 
. ..... l/v/2,... , l/v/2 . ... 30) j=2, ..., P-l 

th 
place j th 

place) 

Table 7.1 Area and unit normal vectors for all (p-2)-dimensional 

hyperfaces around a region of acceptable syzygies in 

the (p-l)-dimensional space. 0 is the maximum angular 

deviation from an exact syzygy that is allowable. 
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Theorem 

P-1 p-l'j-1 P-1 
7- N. + 7- 1: (N. -N. ) =YN (p+1-2j) 

j=2 i=l j=l 
j 

p 
7- ri (p+1-2j) 

j=l 
j 

Proof (by induction) 

Let p=3. 

LHS =N1+N2+ (N 
1-N2 2N I 

RHS = 2N 1 +. O. N 2 
2N, = LHS. 

Assume the proposition is true for some p :ý3. To complete the 

proof, it is required to show that if the proposition is true for p 

then it is also true for p+l. 

p- j-1 
7- N. +ZE (N. -N. ) 

j=l 3 j=2 i=l '3 

P-1 P-1 j-1 P-1 
=EN. + 7- Z (N 

1 -N j 
)+ N+ 7- Np) 

j=l 3 j=2 i=l 

P-1 P-1 
F- N. (p+l - 2j) +N+I (N. -N assuming the proposition 

j=l 3P j=j 3p 
holds for p. 

P-1 
1: (N (p+1-2j) +N (p-UN +N 

j=i ipp 

P-1 
=. 1: N «p+1) + 1-2j) - (p-2) N 

p 
p 
EN «p+1) +1- 2j) 

j=l 
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Thus the proposition holding for p, implies-that it holds for p+l, 

as required. 

Thus 

P-1 
EN (p+1-2j) 

P-1 
Z (n n )(p+1-2j) 

j=l p 

P-1 P-1 
Zn (P+1-2j) -. n Y- (p+I-2j) 

P 

P-1 P-1 
7- n (p+1-2j) - np[ (p-1)(p+1) -2Z 

j=l i 
j=i 

P-1 
Ini (p+1-2j) -npI (P-1)(P+1). - (P-l)p 

P-1 
= F- n (p+1-2j) - (p-l)n 

j=l p 

p I n. (p+1-2i) 
j=j J 

Q. E. D. 

Fromthis theorem we obtain the final results, namely 

Tr 
P-1 P-1 

t =ý -: -- 
jil . 

Nj (p+1-2j 
p0p2 

(10) 

' -1 P 
Z- IT-P Y- n. (p+1-2j ) 

C)p-2 j=j 3 

It is instructive to derive explicitly the syzygy periods for small 

values of p. 
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which is half a classical synodic period, or the time between conjunction 

and opposition. 

p=3 
IT, -I 
0 2N 

The region 2 in the (L,, L 2) space is given in Figure 7.3. 

P=4 
Tr3 .-1 
027 TN-j-T N2-N3 

The region in the (L1, L L) space is described'in Figure 7.5. 
2' 3 

It should be noted that when there is an odd number of planets, 

t is independent of the mean motion of the middle planet. 
p 

Equation (10) gives the average period of syzygy occurrence for 

systems comprising of a sun and p planets with mean motions, relative 

to the slowest (or fastest retrograde), equal to Nj, If 

it is desirable to find the average period of occurrence of conjunctions 

alone, rather than syzygies, then it is necessary to multiply the time 

by 2p-. ' This may be of use if we want a measure of the synodic period 

of a dynamical system. In the -remainder of this chapter however, we 

shall be interested in syzygies rather than conjunctions. 

The averaging is done over all possible initial positions, therefore 

the actual frequency of occurrence of syzygies may vary a great deal, 

depending on the initial configuration and how commensurable the mean 

motions are. To take an extreme example if all the planets have identical 
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L3 =e 

L-L 31 

L-L=9 
12 

L-L=8 
LI=-8 L=-8 13 LiL = 67 

Figure 7.5: A region of acceptable syzygies in the (Ll, L', L') space 23 
for four planets. 

ý(i) The region is. -a three-dimensional polyhedron centred 
on the origin. 

(ii) A net of the polyhedron is presented with the equations 
of the faces. 

238- 
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mean motions then L1=L 
10 

for all time, thus either the 

system is at permanent syzygy or it is not, - depending on the initial 

conditions. The importance of this point is more fully discussed in 

i Section 7.5, but it is of-Interest to see the actual spread of deviations 

from predictions. This is done by numerical experiment in the next 

section. 
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7.3 Numerical Experiments for Fictitious System .s 

In order to test the accuracy of the theory, many numerical 

experiments have been performed by- investigating fictitious systems of 

p planets in circular orbits about a sun. Note that the distances and 

masses of the planets are not considered in these experiments, only 

their mean motions n 3. and initial longitudes k. 
10 . 

The longitudes k1 at 

any subsequent time are given by 

Z. 
10 

The mean motions and initial longitudes are chosen randomly'by equating 

n=10 -3r 
0= 

360 0 r, where r is a random number between 0 and 1. 

The mean motions are chosen in this way to simulate the range of mean 

motions present in the solar system. The mean motions are ordered in 

decreasing size, (i. e. n1>n2>... >n 
p 

). The time tp for a sy zygy of 

p planets to accuracy 0 is calculated by Equation (10). The computer 

then counts the number of syzygies encountered by the system on a 

timescale equal to 50t . Thus the predicted number of syzygies is 
p 

always 50. Figures 7.6 show histograms of the actual counts observed 

for three, four and five-planet systems. 

It is seen that the distributions are non-normal and obviously 

skew. One can apply normal statistics however by omitting the data 

from the wings. This is done by excluding all counts that lie more 

than 3a away from the observed mean, a being the observed standard 

deviation. The mean and standard deviation are recalculated from 

the truncated data and the procedure is repeated until the standard 

deviation converges to a constant value. The resulting data is thus 

approximated to a normal distribution. 
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The reliability of the theory can now be tested, by comparing 

the observed mean with the actual mean, using the Student t-test. 

If X denotes the observed mean, the expected-mean,. Ij , being equal to 

50, then the t-statistic is calculated as 

X 

cr/rn 

where n is the sample size. The 95% level for. a two-tailed test is 

1.98 for a sample of approximately 100 points. -This means that if 

we accept that the theory is correct, 'then the value of t calculated 

from the observations, will lie outside the range (-1.98,1.98) with 

a probability of only 5%. Thus, if this happens, it is sufficiently 

unlikely to raise doubts about the theory's validity. 

As has been implied already, for samples of 100 or more, the 

resulting distribution has to be approximately normal for the t-test 

to be legitimately applied. The normality of the data can be tested 

by considering the skewness S k_ and kurtosis K of the distribution. 

These are measured by calculating 

skm3 /M 
2 

Y2 

K /M2 m4 2 
nr 

where mr (x 
I -X) nr= 2s3,4 

The skewness is a measure of the symmetry of the distribution, and 

the kurtosis is a measure of the thickness of the distribution compared 

to the wings. The 95% limits within which SkK should lie, for different 

sample sizes, are given in Appendix A. 

A summary of the results of the numerical experiments is given in 

Table 7.2, for various values of p and 0. An underlined value of 

t, S k' K indicates failure at the 95% level. 
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Figs. 
'Fine Total Useful 

o Mesh Sample 
-Sample tSK 7.6 P 

Size Size Size k 

a3 10 11 100 92 50.13 1.93 0.647 -0.222 3.752 

b3 5 11 200 184 49.99 2.42 -0.061 -0.107 6.291 

c3 1 11 118 111 50.23 1.68 1.465 -0.131 5.234 

d 4 10 11 150 141 50.02 2.86 0.088 0.200 3.143 

e 4 5 11 150 142 49.82 2.68 -0.784' 0.042 3.617 

f 4 1 11 116 110 49.46 3.60 -1.564 0.199 3.741 

9 5 5 11 124 118 48.95 3.93 -2.907 0.259 3.382 

h 5 10 7 140 131 48.10 3.76 -5.783 0.021 3.474 

i 5 10 11 150 143 49.11 4.07 -2.609 0.191 4.837 

5 10 51 137 133 48.98 3.70 -3.160 -0.424 3.780 

k 5 20 161 173 165 49.92 4.02 -0.271 -0.043 3.702 

Table 7.2 Summary of the results from numerical experiments 

on randomly chosen fictitious system . The 

predicted mean is 50. An underlined t value 
indicates a lack of agreement between the observed 

and predicted mean. An underlined skewness or 

kurtosis value indicates a lack of normality in the 

distribution. 



(a) 

Figure 7.6; Histogram of actual syzygy counts for fictitious 

3,4 and 5 planet. systems. The expected mean is always 50 
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The experiments on three and four planet systems seem to agree very 

well with the theory. In some cases the kurtos - is is higher than it 

should be, indicating that the central peak is too sharp compared to 

the wings. Even with these reservations, the agreement seems significant. 

For five planet systems, problems are encountered. The data is usually 

normal, but the Student t-test fails. In each case, the observed mean 

is significantly less than 50. It is suspected that this systematic 

error lies in the numerical procedure, rather than in the theory. To 

see this, it is necessary to consider the orrery routine in more detail. 

The method for detecting syzygies is to investigate the mutual 

differences in longitudes using two time intervals. The first coarse 

mesh time-step has a-period corresponding to half-the fastest synodic 

period of two of the bodies, (usually the innermost and outermost). 

This time-step is designed to coincide with conjunction and opposition 

of the relevant bodies. Around each time there will be an'intervil 

0 within which these bodies will be within () of an exact syzygy. Outside 

this interval, there is no-chance of a syzygy being detected. Within 

this interval we take a fine mesh of time steps and examine the mutual 

differences in longitudes of-all other bodies to search for a syzygy. 

Because we can only look for syzygies at discrete times, some 

occurrences may be missed, through being stepped over, thus the observed 

mean is less than it should be. Obviously it should be possible for 

the observed mean to converge to the predicted mean, by taking more 

and more mesh points. Indeed this seems to be the case since a mesh 

of 7 points gives a much poorer mean than a mesh of 11 or 51 points. 

When the mesh size is increased to 161 the observed mean is in very 

close agreement with the predicted mean. From Equation (10), the 
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runtime of the orrery varies with the mesh size and with 02-p, thus in 

order to obtain the. results for the finer meshes, it was necessary to 

increase the value of 0 

In (L,,..., L 
P-1 

) space, the shape of the region of acceptable 

syzygies will become more complicated as p increases. This may 

possibly be the reason why this discrepancy between observation and 

theory becomes more apparent for higher values of p. The opportunity 

for overstepping boundaries becomes greater. The value of 

0 should have no effect, since it controls the size, not. the shape, of 

the region. 

Looking once again at Table 7.2, there seems little evidence for 

supposing that the standard deviation varies systematically with 0 

although much more work would be needed to confirm this. The spread 

in deviations does seem to-widen as p increases though. If we consider 

the mean and standard deviation of the values of a for p=3,4,5 

we find 

p=32.01 ± 0.38 

p=43.05 ± 0.49 

p=53.90 ± 0.16 

On applying a two-sample t-test, it is found that these differences 

are significant, (Hodge and See-d, 1972). This test involves calculating 

t where 

xy 

sj" + m mn 
mn 

where s (x 
1 -X) +E (yj - y) 

j=i j=l 
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for the two samples (xi, (yj, j=l, '..., n) 'and comparing this 

with the values given in the table of t-values in Appendix A. 

Comparing the samples for p=3,4,5 we find that 

t34=2.93 for 4 degrees of freedom 

t4j5 = 3.74 for 6 degrees o. f freedom 

t 3,5 = 10.2 for 6 degrees of freedom 

all of which represent significant deviations at the 95% level. 

Most of the evidence presented here indicates that the theory is 

an accurate representation 'of the average-period of occurrence of 

syzygies. We have a rough measure of the distribution. and deviation 

from the predicted values. However, if the distribution was truly 

normal, less than 1% of all counts should lie outside the interval 

(p-3a, p+ 3a). This is clearly not so, but it is the-systems that 

give rise to these anomalous points that are of the most interest and 

which are discussed in the following sections. Any system whose behaviour 

deviates substantially from the theory exhibits some kind of commen- 

surability in its mean motions. For such a system, syzygies will occur 

in blocks together, followed by long periods with no occurrence at all'. 

For example, if the period of these blocks is greater than the time 

over which the system is being numerically investigated, then there is 

a chance that no syzygies will be detected. (One can see this on the 

histograms on Figures 7.6). By counting over longer times, the observed 

number of syzygies should be in closer agreement with the predicted 

number. This is an important point. - The theory is compared with a 

very simple model, and will show up near commensurabilities in the mean 

motions over short times. Care should be taken not to over average with 

respect to time as this will smootIf out the fluctuations. 
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Recall that the averaging performed in deriving Equation (10) is 

not only with respect to time, - but also with respect to longitude as well. 

As examples, Fi-gure 7.7 shows the number of syzygies observed in two 

three-planet-systems. The crossed system is non-commensurable; the 

starred system is highly commensurable. Each system is started at 

conjunction of the inner and outer planets, but varying L- the initial 
20' 

longitude of the middle with respect to the outer planet. Each system 

is run for 20 t3 and the graph of syzygy count s against L 20 
is plotted. 

It is obvious that the difference in source counts is much greater for 

the commensurable system. However the average over all initial configu-. 

rations is very close to 20 in both cases. This indicates that the. initial 

configuration is as important as the commensurability when it comes to 

detecting anomalous numbers of syzygies. 

COUNT 
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Figure 7.7 Graph of syzygy count against the initial longitude Of k2--A3 
for two three-planet solar systems. The "crossed" 

sýstem has mean motions 0.986,0.0831,0.00593 (corresponding 
to Earth-Jupiter-Neptune). The "starred" system has mean 
motions 1,0.599,0.201. 
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7.4 Numerical Experiments for Real Systems 

It is instructive to compare the-behaviour of real systems with 

the average expected behaviour of fictitious systems. We shall 

restrict ourselves to only three-planet systems. Thus the equation 

for determining the period of syzygy occurrence is 

Tr2 .I 
3 2(nl-n 3) 

where n,, n 3 are the mean motions of the inner and outer planets 

respectively. The numerical orrery, described in Section 7.3, is used 

as before, with the initial longitudes and mean motions of real four- 

bo dy (three-planet) systems use d as input The results are presented 

for subsystems of three planets around the Sun (Table 7.3), three 

Jovian satellites (Table 7.4), and three Saturnian satellites (Table 

7.5). -There are four different types of syzygy, depending on the 

combination of conjunction and opposition. Remembering mI is the 

innermost planet; m 2' the middle planet; and m3 the outermost; they 

are: - 

Type 1: All three planets at conjunction 

Type 2: m 2. m3 at conjunction, ml at opposition 

Type 3: m 1, m3 at conjunction, m2 at opposition 

Type 4: ml, m2 at conjunction, m3 at opposition. - 

The only three planet/satellite subsystems that are considered are 

those with the bodies neighbouring or at most separated by one other 

body. It seems unlikely that any other three planet systems could 

exhibit a commensurability. For example, it is difficult to see how 

a commensurability between Jupiter, Saturn and Pluto could exist which 
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was not affected by either Uranus or Neptune. If a commensurability 

showed up in the case of Uranus-Neptune-Pluto, and Jupiter-Saturn-Pluto, 

it could conceivably appear in other combinations of the five outer 

planets. It would therefore be more constructive to consider a five 

planet syzygy analysis. 

A commensurability may be exhibited in one of two ways. The first 

(Type A) is when the total number of syzygies observed deviates 

substantially from the expected number. The second way (Type B), is when 

the occurrence of two configurations are preferred over the other two 

(eg. Venus-Earth-Mars for 0= 100). In the first case, there is 

usually no doubt that-a commensurability is present, albeit sometimes 

weakly (eg. Saturn-Neptune-Pluto for 0 =-100). A little more care 

is needed in the second case. A subsystem with the inner moving much 

faster than the. outer two, could conceivably orbit many times while the 

outer pair are close to conjunction. Thus we would see a preponderance 

of type 1 and 2 syzygies over types 3 and 4, or vice versa. The system 

of Mercury-Neptune-Pluto would exhibit such a false commensurability. 

The choice of-0 is very important. -In the case of a very exact 

commensurability like'lo-Europa-Ganymede, the smaller we make 0, 

the more noticeable the commensurability becomes. This subsystem finds 

a 10 syzygy as easily as a 50 syzygy, when it should be considerably 

harder. Because the time to find a 10 syzygy is five times longer than 

for a50, the actual count is five times greater. 

For a less exact commensurability, the amplitude of a critical 

argument will be considerably greater than 10. Thus a10 syzygy search 

will be too stringent to detect such a commensurability. Only by 

increasing E) to larger values like 10 0, will such commensurabilities be 

detected. Jupiter-Saturn-Uranus is an example of this. 
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Table 7.3 

Syzygy counts for three-planet subsystems of the solar system. 
The initial longitudes and mean motions on March 31 1986 
. are taken from the Astronomical Almanac. The predicted 
number is always 20. 

(a) Planet number Name initial daily mean motion (degrees) 
longitude 

1 Mercury 210.1029 4.09234 

2 Venus 51.8828 1.60215 

3 Earth 188.0786 0.985615 

4 Mars 242.2499 0.524068 

5 Jupiter 336.7161 0.0830974 

6 Saturn 241.7857 0.0334005 

7 Uranus 254.2854 0.0116657 

8 Neptune 274.8309 0.00593309 

9 Pluto 219.0029 0.00396925 

(b) 0 
Syzygy Counts 

Pl ane ts 0 t3 (years) Type 1 Type 2 Type 3 Type 4 TOTAL 

1 2 3 10- 1.428 5 7 7 4 23 
5 2.855 7 4 3 6 20 
1 14.276 

-4 
5 6 5 20 

1 2 4 10 1.243 5 5 4 6 20 
5 2.486 6 5 4 5 20 
1 12.430 7 4 4 6 21 

1 3 4 10 1.243 6 4 5 5 20 
5 2.486 5 5 6 5 21 
1 12.430 5 6 5 5 21 

2 3 4 10 4.114 0 10 11 0 21 
5 8.228 6 6. 6 6 24 
1 41.140 5 6 5 6 22 

1 3 5 10 1.106 6 5 5 4 20 
5 2.212 4 6 5 5 20 
1 11.063 4 4 8 7 23 

2 3 5 10 2.920 5 4 4 6 19 
5 5.840 5 4 5 5 19 
1 29.198 5 7 5 4 21 
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(Table 7.3 contd. ) 
Syzygy Counts 

Plane ts 00 T 3(Years).. Type I Type 2 Type 3 Type 4 TOTAL 

2 4 5 10 2.920 3 6 6 3 18 
5 5.840 6 4 3 6 19 
1 29.198 3 6 6 2 17 

3 4 5 10 4.914 5 5 4 5 19 
5 9.829 4 5 5 6 20 
1 49.143 6 6 3 4 19 

2 4 6 10 2.827 6 4 6 4 20 
5 5.654 6 3 6 3 18 
1 28.273 4 6 5 4 19 

3 4 6 10 4.658 4 6 4 5 19 
5 9.316 5 6 4 6 21 
1 46.578 5 5 5 5 20 

3 5 6 10 4.658 4 4 5 6 19 
5 9.316 6 5 4 6 21 
1 46.578 5 4 5 6 20 

4 5 6 10 9.039 6 6 4 5 21 
5 18.079 6 6 4 4 20 
1 90.393 7 6 4 4 21 

3 5 7 10 4.554 4 -5 5 6 20 
5 9.108 5 5 5 6 21 
1 45.539' 5 5 4 6 20 

4 5 7 10 8.656 5 5 6 4 20 
5 17.312 5 6 6 4 21 
1 '86.558 6 5 5 5 21 

4 6 7 10 8.656 6 -5 5 5 21 
5 17.312 5 6 5 5 21 

-1 86.558 5 6 4 5 20 

5 6 7 10 62.091 8 4 4 8 24 
5 124.18 1 8 8 1 18 
1 620.91 3 6 8 4 21 

4 6 8 10 8.560 6 5 5 5 21 
5 17'. 120 4 6 6 4 20 
1 85.601 6 7 4 4 21 

5 6 8 10 57.478 4 7 6 5 22 
5 114.96 3 6 6. 4 19 
1 574.78 6 4 6 5 21 
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Syzygy Counts 
Pl anets 

0 0 T3 (Years) Type 1 Type 2 Type 3 Type 4 TOTAL 

5 7 8 10 57.478 6 6 4 5 21 
5 114.96 6 5 5 5 . 21 
1 574.78 5 5 4 5 19 

6 7 8 10 161.47 5 4 5 5 19 
5 322.95 4 6 4 5 19 
1 1614.7 5 5 5 5 20 

5 7 9 10 56.052 4 5 4 6 19 
5 112.10 5 5 5 5 20 
1 560.52 4 5 6 5 20 

6 7 9 10 150.70 5 5 6 6 22 
5 301.40 4 6 5 5 20 
1 1507.0 6 4 5 4 19 

6 8 9 10 150.70 6 6 6 6 24 
5 301.40 0 10- 10 0 20 
1 1507.0 7 6 6 6 25 

7 8 9 10 576.27 
.5 

4 5 4 18 
5 1152.5 5 4 6 5 20 
1 5762.7 6 5 6 5 22 
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Syzygy counts for three of the Galilean satellites around 
Jupiter. The initial longitudes and mean motions on 
January 0.5 1900 are taken from the Connaissance Des Temps. 
The predicted number if always 20. 

(a) Daily mean motion 
Satellite Number Name Initial Longitude (degrees) 

1 10 142.5999 203.4890 

2 Europa 99.5508 101.3748 

3 Ganymede 168.0263 50.3176 

4 Callisto 234.4079 21.5711 

Syzygy Counts 
Satellites 0 0 t3 (days) Type 1 Type 2 Type 3 Type 4 TOTAL 

123 10 10.58 0 30 30 0- 60 
5 21.15 0 60 60 0 120 
1 105.76 0 300 -300 0 600 

124 10 8.91 5 6 5 4 20 
5 17.81 6 

.4 
6 5 21 

1 89.05 5 4 4 4 17 

134 10 8.91 5. 5 5 5 20 
5 17.81 0 9 10 0 19 
1 89.05 6 4 6 4 20 

234 10 20.30 4664 20 
5 40.60 5545 19 
1 203.00 5555 20 
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Syzygy counts for three Saturnian satellites.. The initial 
longitudes and mean motions on November 2.0 1960 are taken 
from the American Ephemeris-. The predicted number is always 
20. 

(a) Daily Mean Motion 
Satellite Number Name Initial Longitude (degrees) 

1 Mimas 321.04 381.999 

2 Enceladus 334.78 262.7319 

3 Tethys 73.175 190.6976 

4 Dione 356.855 131.5349 

5 Rhea 247.211 79.690 

6 Titan 336.469 22.5769 

7 Hyperion 179.74 16.916 

8- 56.141 4.5381 

(b) 
Syzygy Counts 

Satellite 0 0 t3 (4ys Type I Type 2 Type 3 Type 4 TOTAL 

123 10 8.47 6 5 5 4 20 
5 16.94 5 4 6 -4 19 
1 84.68 5 5 5 5 20 

124 10 6.47 5 4 5 4 18 
5 12.94 9 0 0 9 18 
1 64.68 0 0 0 0 0 

-1 34 10 6.47 5 5 4 5 19 
5 12.94 4 4 6 6 20 
1 64.68 4 5 5 5 19 

234 10 12.35 5 5 5 5 20 
5 24.70 4 6 8 3 21 
1 123.48 6 3 4 6 19 

135 10 5.36 6 5 5 4 20 
5 10.72 6 6 5 4 21 
1 53.59 4 6 5 6 21 
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Syzygy Counts 
Sa tel lites 0 0 t3 (days) Type 1 Type 2 Type 3 Type 4 TOTAL 

2 3 5 10 8.85 5 6 5 6 22 
5 17.70 -5 4 6 5 20 
1 88.50 4 5 6 5 20 

2 4 5 10 8.85 3 5 6 6 20 
5 17.70 5 5 5 6 21 
1 88.50 5 5 5 20 

3 4 5 10 14.59 6 5 4 5 20 
5 29.19 5 5 5 5 20 
1 145.94 6 5 5 5 21 

2 4 6 10 6.75 5 4 5 5 19 
5 13.49 5 6 6 5 22 
1 67.46 7 3 8 2 20 

3 4 6 10 9.64 5 5 5 5 20 
5 19.27 6 4 6 4 20 
1 96.36 3 6 5 5 19 

3 5 6 10 9.64 5 6 6 4 21 
5 19.27 6 5 4 5 20 
1 96.36 6 -4 4 5 19 

4 5 6 10 14.87 4 5 4 6 19 
5 29.74 5 5 6 4 20 
1- 148.68 5 5 5 5 20 

3 5 7 10 9.32 6 5 4 5 
. 

20 
5 18.64 5 5 5 5 20 
1 93.22 6 3 6 3 18 

4 5 7 10 14.13 5 5 4 5 19 
5 28.27 5 5 4 5 19 
1 141.34 5 5 5 5 20 

4 6 7 10 14.13 4 4 6 6 20 
_ 5 28.27 5 4 5 5 19 

1 141.34 0 0 11 10 21 

5 6 7 10 25.81 5 5 5 5 20 
5 51.61 3 6 7 4 20 
1 258.07 4 6 6 5 21 

4 6 8 10 12.76 2 . ý8 8 2 20 
5 25.51 5 5 -5 5 20 
1 127.56 5 6 5 5 21 
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(Table 7.5 contd. ) 
Syzygy Counts 

S atellites 0 0 t3 <days) Type 1 Type 2 Type 3 Type 4 TOTAL 

568 10 21.56 6 7 3 4 20 
5 43.11 3 4 7 8 22 
1 215.56 3 3 8 7 21 

578 10 21.56 5 6 5 6 22 
5 43.11 4 5 4 6 19 
1 215.56 0 0 8 8 16 

678 10 8 9.81 5 4 5 6 20 
5 179.61 4 5 5 5 19 
1 898.06 5 4 5 5 19 
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The following subsystems show evidence of commensurable behaviour: - 

Venus -Earth -Mars: nV /n. nu 3, nE/nM I'u 2. 

This rather poor commensurability-- is still detected as a Type A 

00 for 0=5 and Type B for 0= 10 

Jupiter-Saturn-Uranus. n. /n 
S, x) 512 sns 

/n 
u 

1%, 

There is a predominance of Type 1 and 4 syzygies for 0= 10 0, but 

00 a predominance of-Type 2 and 3 syzygies for 0=5 and 1. This may 

indicate that the orrery quickly averages out any anomalies. 

Saturn-Neptune-Plut o nN/np Ix, 
3 /2 

The dominant commensurabilitý is between Neptune and Pluto. 

Saturn is probably incidental. The results with Uranus-Neptune-Pluto 

give no. evidence of a commensurability. Because the sidereal period of 

Uranus is longer than that of Saturn, the time per syzygy is that much 

longer and the short period anomalies have a chance to average out. 

The orrery is very inaccurate with eccentric orbits and thus any results 

with Pluto must be viewed with some caution. This problem will be 

returned to in Section 7.5. 

Io-Europa-Ganymede nI- 3nE + 2n, =0 

This famous commensurability gives a most striking example of the 

use of the theory and has already been discussed. 

Io-Ganymede-Callisto nG /n 
C f%j 

7 /3 

This may be a similar case to Saturn-Neptune-Pluto with Ganymede- 

Callisto giving the dominant commensurability. 
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Mimas-Enceladus-Dione nE /nD-*lu2. 

There is a strong commensurability between Enceladus and Dione 

- which is further enhanced when considered with the perisaturnium of 

Enceladus, rather than Mimas. (See Section 7.6). There is also some 

evidence for this commensurability within the Enceladus-Dione-Titan 

0 system for 0=1 

Dione-Titan-Iapetus nT /n 
I ru 

There is a weak commensurability between Titan and Iapetus which 

0 only shows up for 0 10 

There seems to be two false commensurabilities for Dione-Titan- 

Hyperion and Rhea-Hyperion-Iapetus, of the type described previously 

where the inner body is moving-much faster than the other two. It 

should however be pointed out that there is a 4/3 commensurability 

between Titan and Hyperion but this subsystem will be examined again in 

Section 7.6. 

7.5 Comparison of Real and Fictitious Data 

For a direct comparison, the orrery was run for 1000 fictitious 

three-planet/satellite systems. The-run time was 20 t3 and 0=50. 

The syzygy counts are shown in Figure 7.8. The standard deviation 

1.5. It should be recalled that there was no evidence that a varied 

00 
with 0, thus we may assume this value of a, for 0=1 and 10 . if 

this distribution were truly normal then 5% of the systems should lie 

outsid& the range (20-2a, 2o+ 2a), i. e. (17,23). In reality, * 112 out of 

1000 systems lie outside this range, i. e. 11%. 
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Figure 7.8 Syzygy Counts for three-planet/satellite fictitious 
systems. The expected mean i-s 20 and the dotted 
lines indicate the 3a- boundary. Five systems had 
counts greater than 40. 

The real systems are significantly closer to the mean on average. 

Out of 48 systems, the number that lie outside the 2a level are 3 for 

0= 10 0. (6.25%), 2 for 0= 50 (4.2 %), 4 for E) = 1--o (8.33%). 

This seems to contradict the results of Roy and_Ovenden (1954) 

where they show that there are more commensurable systems than should be 

expected. The reason for this is that the theory presented here does 

not take into account the fact than in the solar system, the orbits 

are well spaced. None of the relative mean motions N. are close to zero 

so there is a bias against such systems as will go for long periods 

without encountering a syzygy. It is the fictitious systems with slow 

relative mean 
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motions ýhat give the zero counts in Figure 7.8, (23 in a-11). If they 

were run for longer, we would observe a sudden "burst" of syzygies 

grouped together. The outer bodies with slow relative motion finally 

come close enough, and stay close for a long time. The inner 

body may be moving very quickly by comparison, and performing many 

orbits during the one cbnjunction of the outer bodies. Thus afterthe 

famine comes a feast of syzygies occurring every sidereal period of 

the inner body! 

It would therefore be quite wrong to expect as large a spread of 

syzygy counts within the real solar system as are displayed by the 

fictitious systems. It is noticeable-however that the orrery as used 

here is far less effective in dealing with eccentric orbits. Possible 

remedies are discussed in Sections 7.6 and 7.7. 

7.6 The Search for Critical Arguments and Mirror Configurations 

Everything said so far has been related to occurrences of syzygies 

in unperturbed, coplanar, circular, planetary orbits. If the orbits 

are given small eccentricities and are. perturbed by the other bodies 

in the system, then. the situation is considerably more complicated, 

since the osculating mean motions are now changing in a periodic manner. 

Our. assumption of constant angular velocity is no longer valid. This 

means that the straight line describing the evolution of the system 

(Equation W) now becomes a helix with all the difficulties in 

calculating cross-sections that are implied. Providing the system is 

stable within the observed time, however, the average values of the 

mean motions are likely to remain fairly constant. This theory can 
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therefore still be applied, for-small eccentricities.. These 

eccentricities do however raise many new and interesting possibilities. 

Some subsystems exhibit critical arguments where the conjunction 

line of two bodies oscillates about the moving apse line of one of the 

bodies. As examples, 

(a) Neptune-Pluto-Pluto's apse, has critical argument 

.0=2 kli - 

0-0 It is found that 0 librates about 180 With an amplitude of 76 and a 

period of 19,670 years. 

(b) Titan-Hyperion-Hyperion's apse gives 

4k-3.9 - 1800 HT 

0 with an amplitude of 36 

As will be discussed in Section'7.7, these resonances may be 

maintained by a dynamical mechanism which is not included. in the simple 

numerical orrery described here. However, over relatively short 

times, such resonances will have a marked effect on the number of 

-syzygies detected and perhaps lead to the discover'y of new critical 

arguments. 

To investigate resonant systems, the apses m-ust be considered and 

apsidal as well as planetary sy zygies looked for, the pericentres being 

considered as separate "bodies". Thus the argument and mean motion 

of pericentre can be used in an analogous manner to the longitude and 

mean motion of a real body. 

For example, it is possible to examine the 4: 3 commensurability 

of Titan and Hyperion, by running the orrery for 
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L2 

0 nTwH 

2= nH - OH 

as found in the Explanatory Supplement to the Ephemeris. From the 

epoch 1900.0, in the time predicted for 20 syzygies within 0 10 0 

(t 
3= 72 days), there are in fact 45. 

An even more striking example is given by Enceladus-Dione-Enceladus 

apse. The initial conditions on April 0.5 1889 aie taken fromý- - the 

Connaisance Des Temps. In the time predicted for 20 syzygies within 

0= 20 (t = 31 days), there are 450. 3 

For many orbits with very low eccentricities, the rate of precession 

of the apses are very poorly determined. In any case, it is debatable 

if the apse of such a system plays a significant role in a critical 

argument. 

For high eccentricies (e > 0.1), ' this method for finding critical 

arguments becomes suspect due to the variations in angular velocity 

of the bodies involved, and a more accurate numerical procedure may be 

necessary, (see Section 7.7). 

This use of apsidal syzygies is helpful in considering near 

mirror configurations, which are described by Roy and Ovenden (1955) 

as being configurations when all the mutual radius vectors are perpen- 

dicular to all mutual velocity vectors within the system. If such a 

configuration occurs then the behaviour of the system after that time 

is a mirror image of its behaviour before that time. If two exact 

mirror configurations occur in a system's lifetime, it is periodic. 

For a coplanar system of elliptic orbits the condition for a mirror 

configuration is that all the radius vectors and apse line vectors must 

be parallel. Thus to search for mirror configurations, it is necessary 
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to-look for syzygies of bodies and apses. 

Table 7.6 gives the average period of occurrence of bodily syzygies 

and mirror configuration s-in the solar system. By inverting Equ ation 

(10), it is found that-in the age of the Solar System 0,4.5 x 10 9 
years), 

the closest syzygy we can expect is for 0=40, and the closest syzygy of 

0 bodies and apses should be approximately 25 In other words, there. 

should be little chance of a "good" mirror configuration. Note that 

although p=3 in Equation (10) when deriving the period of syzygy 

occurrence for Jupiter-Saturn-Uranus, p=6 is used to derive the period 

of occurrence of mirror configurations. Due to the low eccentricity of 

Venus and Neptune, their apses are-neglected Ue. p= 16 to calculate the 

period of occurrence of mirror configurations for all nine planets). 

Pluto causes problems. Not only are the eccentricity and inclination 

of its orbit high, thus violating the assumptions of coplanar, circular 

orbits, but the rate of precession of the apse is not well determined. 

Thus any results incorporating Pluto must be viewed with some caution. 

syzygy period mirror 
(years) configuration period 

0 0 (years) 

JSU 5 124 1.57 x 106 

JSUN 5 2520 4.55 x 107 

JSUNP 5 61900 4.18 x 1010 

Solar System 10 6.40 x 106 fo 15 

Solar System 5 8.19 x 108 1019 

Solar System 2 5.00 x 1011 1025 

Solar System 1 6.40 x 1013 1029 

J=Jupiter, S=Saturn,. U=Uranus, N=Neptune, P=Pluto 

Table 7.6 Average period of occurrence of planetary syzygies and 
mirror configurations for the nine planets of the Solar 
System and subsystems of the five outer planets. 
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7.7 Discussion 

This chapter has been concerned with developing methods for 

detecting syzygies within the Solar System. Eq uation (10) provides 

a gauge of the frequency of occurrence of syzygies, which has in turn 

led to methods for discovering commensurabilities ' critical arguments 

and mirror configurations, where the orbits have small eccentricities. 

If however the eccentricities become large, the angular velocities 

of the bodies are no longer approximately constant and the theory 

becomes invalid. The simple orrery described in Section 7.3 is no 

longer sufficient. Given a long enough time, this routine will average 

out all inexact commensurabilities which is why the orrery was never 

run for longer than 20 t when examining real systems. Thus this theory 3 

is valid only for low eccentricities, and its application to the 

dis - covery of commensurabilities is valid only for short times. - 

In addition there is the possibility that a dynamical-mechanism 

may be encouraging a commensurable system. Goldreich -(1-9.65) has 

suggeste d that tidal forces may--stabilize commensurable systems, thereby 

allowing frequent occurrences of syzygies for all time. In this case 

no amount of averaging with respect to time will allow the observed 

mean to tend to the expected mean. It is obvious that the simple 

numerical procedure indicated here could not detect such a "locking 

mechanism". To investigate such a dynamical effect, we . would require 

a much more complicated numerical integration procedure. 

Over the years, there have been many numerical schemes for 

integrating the equations of motion of the Solar System. - Some of 

these hav e been discussed in Section 1.6. Recently, a Longterm Gravi- 

tational Study of the Outer Planets (LONGSTOP) project has been 
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proposed"(Roy, 1983). This project incorporates some dynamical effects 

missing from the classical six-body problem, and will examine the five 

outer planets over 10 8 
years, (5 x ()7 back and forward from the 

present time). The inner planets are simulated by a ring around the 

Sun and relativistic effects are considered. 

In order to overcome the difficulties in detecting syzygies 

described here, it will be necessary to use such a numerical procedure. 

Data on the orbits will appear relatively infrequently due to problems 

of storing so much information. A large step length is also preferable 

from the point of view of computational speed. However, the simple 

orrery may be used to interpolate between the points, where an 

assumption of constant angular velocities may be sufficiently accurate. 

obviously the simple resonances given here as examples can be 

detected by an examination of the mean motions and longitudes of 

the relevant bodies and apses-. If we consider systems with more- -than 

three-bodies it becomes difficult- to find more subtle- resonances. -. 

In this way, an exhaustive search for commensurabilities, critical 

arguments and mirror configurations may be carried out for very large 

numbers of objects, be they bodies or apses. This would be a major 

project in itself and is outside the scope of the present work. 

11 
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It is inevitable, 'in a study such as this, that there remain 

many unanswered questions. Some have arisen during the course of 

this work. Some have existed for many years previously. This final 

chapter is concerned with looking at some of the more important questions 

and suggests methods for investigating the answers. 

8.1 Refinements in the Analysis of Results from the Three-Body 

Numerical Experiments. 

In Chapters 4 and 5, results from several hundred numerical inte- 

gration experiments were given for coplanar, initially circular three- 

body systems. In particular, graphs were given of stability lifetime 

Ns against the initial ratio of semi-major axes a, grouped according_ 

to the values of 623 and E: 32 , the empirical stability parameters. 

Analytic curves were fitted to the (a, N 
s) 

data to allow subsequent 

predictions of stability lifetime, 'given F2j sE32 -, 
Ct 

Due to the smooth nature of the data, a thorough. inve. 5tigation of 

the unstable retrograde systems was possible within the chosen ranges 

of initial conditions. This allowed accurate values of aos the limit 

of hierarchical stability to be determined. A aimilar systematic -search was 

not performed with the direct systems for two reasons. Firstly, much 

of the data was taken from Walker and Roy, Paper III and secondly, the 

range of initial conditions for unstable direct systems is much greater. 

A more thorough numerical examination of the direct systems is 

highly desirable, for many reasons. It was pointed out in Section 5.4, 

that it was often difficult to say whether the observed asymptote at 

a was real or whether it was a strong commensurability and more 
0 

unstable systems existed for lower values of a. By investigating more 
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systems near the suspected value of a, many of these questions may 0 
be resolved. It may also be prudent to increase the accuracy of the 

numerical integration method, in order to study the systems for longer 

and avoid the worry of numerically induced commensurabilities (Section 

5.4). In any case, with more data, the precision of the lifetime 

predictions should also increase (Section 5.5. ). 

The curve that was fitted to the (a, N 
s) 

data was of the form 

Ns f (cc) = exp 
ri-a Y 

(a 
0<a 

The three fitted parameters are cc 
0 1ý3y 

value of a for hierarchical stability). 

functions of C23 and C32 . For both 

cc 
0 

was seen to rise monotonically as c 

no such trends were observed for ý or 

being the boundary 
0 

These parameters are all 

direct and retrograde systems, 

23 C32 0. Unfortunately, 

y There could be two. 

reasons for this. The first (and more likely) is that the errors in 

estimating ý and y are still large and any systematic trend is swamped 

by the statistical error. The second possibility-is that gE23 
sC32 

and y (E23 
j C32 ) are genuinely not monotonic functions. This 

question may possibly be resolved if more data aremade av ailable. 

Another alternative may be to choose a different form for the curve. 

it is seen from Equation (1), that f(l) =0 at present. It was 

pointed out in Chapter 4 that there exists a value of a, denoted by 

CCxj at which the orbits of the inner and outer binary cross. 

It can be shown that 
1 23 CL =-I+ F- 1 

(2) 
x 1-p 

implying ax >1. In reality therefore Ns=0 at cc =ax, and Ns>0 
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at a=1. On studying Figures 4.1, it is clear that f(a) while adequate, 

is not an ideal form for the best fit curve to the (a, N 
s) 

data. There 

is a systematic error which cannot be overcome by changing the values 

of a0 and alone. A more accurate form may therefore be 

f (a) 
CL 

x 
cc) 

(3) 
I (a -a 0 

or 

ex, 
( CL X- ct )y 
(CL-OL 

0 
)6 

where the parameters a0S Ot 
x 

ý, y 6 are functions of C23 and C32 

ax -is a known function of F23 alone (Equation (2)) so only a 0, 
ý$Y)6 

need to be determined by statistical methods. There are now four 

parameters instead of three, making the statistical analysis more 

complicated. It is unlikely that one of the forms in Equations (3) 

and (4) would produce significantly better results than the other. 

Equation (4) is the more complicated but would produce a greater 

spread of points over the x-range during the normalisation procedure 

described in Section 5.5. 

It may be of interest to group the (a, N 
s) 

data according to e qual 

23 values of the normalised masses P, V3 rather than E E32- 

The curve fitting procedures are general enough that they could still 

be appl ied and predictions of stability lifetimes could be obtained. 

Note that the parameters aosa, y would be functions of V, V3 rather 

than C23 # C32 - The advantage of grouping in this way is to make 

comparisons with real systems easier (see Section 6.4). A real system 

may be characterised by the-values of 11,11 3 ja 
(assuming it is coplanar 

and initially circular). It would be useful to obtain aO(V)P3 ) to 
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say at what value of a the system becomes unstable. If a is given in 
0 

terms of 623 and C32 , this value becomes less clear, since C23 and 

632 vary with cc. A disadvant age of the (P, V3) grouping is that the 

curves are likely to be less sharp and the values of Cto correspondingly 

less well defined. There is liable to be significantly greater ranges 

of cc where the systems are unstable but nevertheless survive for many 

synodic periods. This was the reason why Walker and Roy originally chose 

to group according to E: 23and 632- 
'Another disadvantage is that the 

range of possible values of V, V3 is greater than the range of C23 

(0 <(C23 F-32)< l)- C32 (0 'ý P -ý 
32 

10 "" P3 `ý co) compared with 

This implies that many more (p, p3) groupings must be studied. 

8.2 Comparison of Results with General Perturbation Theory 

Section 4.5 considered a few retrograde systems in detail. By 

numerical integration, graphs were obtained showing the varia tion with 

time of the semi-major axes and eccentricities of the inner and outer 

binary orbits. Two curves were superimposed on the graphs, showing the 

behaviour of the elements at every even conjunction and every odd 

conjunction, respectively. From these graphs, the differences in 

behaviour between stable and unstable systems were clearly seen. Other 

effects were also apparent. The odd conjunction curves were seen to 

oscillate with opposite phase to the even conjunction curves. The 

amplitude, period and initial phase of these oscillations depended on 

the sizes of E 23 and C32 and also whether E: 23 was less. than, equal to, 

or greater than E32 - There was some evidence to suggest that the period 

may be related to the precession of the apses. Another interesting 

difference can be seen between the behaviour. of the eccentricities 
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ee for the inner and outer binaries, respectively. Between 23 

conjunctions, e3 has four turning points, while 62 has only two. 

On examining the retrograde systems in Figure 4.1, ' we observe 

that Ns rises as a decreases. For C23 C32 the rise is far more 

dramatic than for E23 "ý C32 - In most graphs, N rises monotonically, s 

the only exceptions being for E23 = 10-2 'E32ý 10- 4 
when an anomalous 

peak in Ns appears at high a. 

We can only guess at the physical reasons behind many of these 
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effects until a more detailed study is performed. The first objective 

of this thesis has been to obtain enough datafrom numerical integration 

experiments to perform reliable statistical curve fitting and hence 

be able to predict stability lifetimes for three-body systems. A more 

detailed analysis of individual systems would have slown down the 

process at the time, but would now be of considerable interest. 

- Such a-study could involve the results from numerical integration 

compared to a general perturbation theory, (see Section 1.5). Such 

an approach could-yield information concerning the periodicities observed 

in the retrograde systems. More graphs of the orbital elements 

including the arguments of pericentre should be obtained by numerical 

integration of the equations of motion or by numerical-integration 

of the Lagrange planetary equations (Section 1.6). An analytical 

perturbation theory may provide information concerning the periodicities 

observed in retrograde systems. Similar studies could be applied to the 

direct systems in order to understand more clearly which commensurabilities 

are important in enhancing stability (Section 5.4). 

8.3 Cross-Overs, Escapes-and Close . Encotlntersý 

The definition of hierarchical stability requires three separate 
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condit ions to be satisfied: no body must escape; 'no orbits should 

ever cross; there must be no secular changes . in semi-major axis, 

eccentricity or inclination of the orbits ("close encounter"). 

The retrograde three-body system seem to approach instability 

in a consistent manner (Chapter 4) with secular changes in the elements 

leading to a crossover of orbits. The behaviour of the direct systems, 

on the other hand, shows greater variation. This makes it difficult to 

classify the manner of instability and leads to subjectivity in 

determining the stability lifetime of an individual system (Section 5.2). 

Chapter 3 reviewed at length the analytical Hill-type stability 

criterion applied to the general three-body problem. By this method, 

sufficient conditions can be derived which prevent a cross-over of orbits. 

When this happens, the topology of the zero-velocity curves prevent the 

third mass from approaching the other two. Marchal (1985) describes 

this state as isolated. When the zero-velocity curves allow the 

third mass to approach either of the other two, an irterplay may take 

place. 

The treatment by Marchal and Saari allows less stringent conditions 

to be derived. Using the notation of Section 3.2, the Sundman 

Inequality is 

CF cr 2 
ýi=p+ . 

2-- + -ýL 
v 2(y 2a 2GM 

Marchal (1985) points out that whenever the Sundman function j ý- a/V(L 1 

the third body m3 is isolated. (If m3 is the smallest mass, it suffices 

that 0/'*)(L 
2 

)). The minimum value of j is vtp7-a if iF7-a >, U/v(L 

(or O/v(L 
2 

)), the isolation is permanent and the system shows the 

hierarchical preservation described in Chapter'3*. 

*With so many terms being used, it is worth recalling that "no cross-over", 
"hierarchical preservation" and "permanent isolation" are synonomous. 
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If rp--l a< a/v(L 1 
)(or a/V(L 2 

)), the isolation may only be temporary 

and interplay can occur. 

From the results of this thesis, it seems there exist systems 

, where the bodies are only temporarily is6lated but which never actually 

interplay in such a way as to cross orbits. It would be of interest 

to monitor the value of j for systems with initial a in the range 

(a 
ca0 

to examine why m3 never approaches mI or m 2* As an example, 

if j is large and aJ > 0, j is non-decreasing so long as a is non- 

decreasing. In this case a temporarily isolated body could remain 

isolated for a considerable length of time. 

Marchal (1985) also gives conditions for escape, stating 

"Ah isolated body that, at any time, has an escape velocity arrives 

from infinity and/or will escape to infinity. " 

He then proceeds to derive bounds on the escape velocities. It would 

be interesting to compare these conditions with the numerical experiments 

performed here. Very few escapes-have -been detected-in -these experiments 

but this is due to the system exhibiting either a crDss -over-", or : close-.. ' 

encounter-first. If the n umerical integration was allowed-to continue 

past this point, more escapes may be apparent. Marcbal shows that the 

smallest mass is mostly likely to escape the system. In practice we 

are unable to find a system where one of the larger masses escapes. 

These conditions for isolation and escape are extremely relevant 

to the work presented here. In. Section 3.3, ac was calculated for 

various pairs of c 
23 

and C32. m3 is permanently isolated for any 

system with initial cc in the range 
. 
(O, a 

c 
), but this does not rule 

out the possibility that. m 3 could escape. For most pairs Of E 
23 

632 an empirical limit on hierarchical stability ot 
0 

is found which 
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exceeds ac This implies that the probability, of m3 escaping becomes 

vanishingly small for a< cc 
0 

and hence Also for a<ac Alternatively, 

some additional restraint may prevent escapes altogether. If the 

first explanation is correct, many numerical experiments may produce 

a few unstable systems for a<aC<a0 The chances of finding such 

systems would decrease with decreasing a. In this case, we would 

have to rethink our ideas of an empirical stability region and consider 

a more probabilistic view of hierarchical stability over the whole range 

of initial conditions. The second explanation seems the more likely 

at this stage. In the retrograde systems, the smooth trend towards 

an infinite stability lifetime as a decreases, implies that the region 

of empirical stability does exist and no unstable systems will be found 

within it. It is likely, though not certain, that the direct systems 

behave in a similar way. 

It has been assumed throughout this work that ac<a0 and this 

assumption has been borne out by numerical experiment for the most 

part. An exception may be the direct systems-with low C23 and C32 

(typically both less than 10- 5 ). For these systems, the lifetime 

curvesdo not fit at all well and there is little evidence of any 

systematic trends (Figures 5.1). It was suggested by Walker and Roy 

(Paper III) that this was due to the presence of many one-spoked 

commensurabilities (Section 5.4). Another reason may be that there 

exist unstable systems with a<ac (a 
C 

as E23 1 632 -* 0). This 

possibility has not been properly investigated and could be part of a 

larger study into the nature and value of a0 as a critical value for 

hierarchical stability. 
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The numerical results for three-body systems presentedin this 

thesis cbver a limited range of initial conditions. In each case, the 

system was coplanar with initially circular osculating orbits. In 

addition the initial value of 0 was always zero, where 0 is the angle- 

subtended by the Jacobian radius vectorsp2, p3 (i. e. the system was at 
"U ru 

a conjunction of mm2-m3). Most real systems do not conform to 

these restraints, therefore the effect of varying other parameters 

needs to be investigated. 

The range of empirical stability parameters C23 j F-32 was 

chosen to be physically relevant to the Solar System. The behaviour 

of the stability curves and a0 was littl e different for fictitious 

systems with C23 -5 23 - 6. 
632 ý' 10 compared to c C32 "' 10 Thus 

although many real systems show C23 P C32 ""ý 10- 63 it is expected 

that their behaviour will not differ greatly from the case when 

23 -6 E E32 10 (the lowest values studied). it may be of 

interest to perform more numerical experiments for direct systems with 

E2 
-39 

C32 ý' 10- 
2 (the highest values studied) as they could be 

relevant to the study of multiple star systems. 

Turning to the orbital parameters, there is the question of how 

the stability of a system depends on its initial configuration (0 varying). 

Walker and Roy (Paper II) have studied the effects on Hill-type stability 

(the hierarchical preservation criterion of Chapter 3), for various 

initial configurations. They showed that for initially circular orbits 

with all other parameters constant, E) =0 maximises stability and 

0=0T minimises it, where E) T varies for different systems. Another 

result was the-following: when the'systein has initially eccentric 

orbits such that 0=0, the most stable configuration is when the 
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(m VM2 ) binary is at apocentre while the (S 
2, m3 ) binary is at pericentre 

When 0. = -T, the opposite is true and the most stable 6onfiguration 

ariseswhen (ml, m 2) 
is at pericentre and (m 

2, m3) is at apocentre. A 

limited number-of numerical experiments based on the work of Harrington 

(1972) and Nacozy (1977) confirm the nature of the results. It would 

be of interest to perform a more detailed numerical study of the effects 

of varying E). 

Most orbits in the Solar System have small eccentricities. 

Valsecchi, Carusi and Roy (1984) have examined the critical surfaces 

ac = ac (V, P3) for direct systems with initially eccentric orbits in a 

similar manner to that described in Chapter 3. They find that the 

surfaces are much lower than that for initially circular orbits. 

This implies that many of the real three-body subsystems in the Solar 

System have no guarantee of hiý! rarchical preservation unless thely dre 

considered initially circular (see Section 6.4). 

A similar fall in the a -surface was observed for retrograde c 

systems, yet this thesis shows that the empirical region of parameters 

for hierarchical stability is very much larger. We are therefore 

encouraged to believe that a similar result may apply for systems with 

initially eccentric orbits. 

We should also consider the case of non-planar systems and examine 

three-body systems with inclinations that deviate slightly from 00or 

180 0 
as. is the case in the Solar System. Marchal and Saari (1975) 

computed limits on inclinations where motion of three bodies may or may 

not occur. 
-Their 

results could be used to limit the range of 

inclinations which are investigated. 

All of these studies would give us a closer comparison with real 
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systems. However many more parameters have to be monitored and initial 

conditions chosen. For example in dealin'g with eccentric orbits, initial- 

values. for longitudes of pericentre and true anomalies must be chosen. 

For non-planar motion, the longitude of the ascending node must be 

taken into account. These studies would take considerably longer than 

the two cases considered in this work. However the curve-fitting 

procedures should be applicable. 

8.5 The Four and More Body Problem 

The general three-body problem still poses many unanswered 

questions. This is one reason why far less work has been done on the 

four-body problem, (the other-reason almost certainly being . cowardice). 

In considering four and more bodies, it is common to consider it as 

a collection of three-body subsystems which are interacting with each 

other. 

Milani and Nobili (1985) have-used this iipproach to study-Hill-type- . -- 

stability in the Solar System-. - They consider the value of c2h 

which controls the topology of the forbidden regions of motion for a 

three-body system (Equation (3.15) in -Section 3.2). If z<z cr 
then 

the system is hierarchically preserved, where z cr 
is the value of z for 

the appropriate Euler configuration. (Note that z is negative, when 

the energy h is negative, whereas the quantity p/a used in Chapter 3 

is positive). For an isolated three-body system, z is constant. 

However when various three-body subsystems interact, energy and angular 

momentum are exchanged; hence z is no longer constant. There is 

therefore no analytical Hill stability criterion for four or more bodies. 

It is however possible to examine the variation with time of 

Az(t) = z(t) -z cr 
So long as Az(t) < 0, the subsystem in question 
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is hierarchically preserved. 

Milani and Nobilihave studied Aztt) both by analytical means (1983) 

and directly from numerical integration (1985), Producing useful results. 

For example, it is found that 
-A-z(t) 

for the Sun-Jupi ter- Saturn system 

oscillates in anti-phase with Az(t) for the Sun-Uranus-Neptune system. 

Both quantities are negative during the time studied, implying hierarchical 

pres ervation. Moreover, there is no evidence of any secular trends in 

Az which might lead to Az > 0. Hence it implies that the Sun-jupiter- 

Saturn-Uranus -Neptune system may be hierarchically preserved for the 

agf-, -of the -5olar System. 

More studies of this nature could be performed and would complement 

studies of temporary isolation for three--body systems discussed in 

Section 8.3. 

Walker and Roy (Paper IV) have generalised the use of Jacob ian 

coordinates and empirical stability parameters to n-bodyhierarchical 

systems as well as performing a more detailed study of four-body systems 

(Paper V). A hierarchical system may be described in terms of perturbed 

binary orbits. An idea of the total perturbation on a particular 

binary may be obtained by examining the perturbations from the other 

individual bodies. 

For example, consider a four-body system arranged in a simple 

hierarchy. The equations of motion in Jacobian coordinates are given by 

Equation (2.16) in Section 2.4, (n = 4). The perturbations will be 

maximised at conjunction, when C 
ki = 1, Vk, i=2,3,4. The perturbations 

on the (m 
Vm2), 

(M2, m3) and (M 
3m4) 

binaries are related to F2' FV 1ý4 

respectively where 
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these quantities are analogous to the empirical stability parameters 

C23 c32 for a three-body system. 

It is possible to perform similar numerical studies for four-body 

systems to those presented here for three bodies. However the number of 

initial conditions to be specified is larger and hence much more time 

and effort is necessary to acquire enough data for any kind of 

statistical analysis. Ina paper by Roy, Walker and McDonald (1985) 

the results are given for several hundred experiments involving four- 

body systems over a limited range of parameters. The systems were 

assumed to be coplanar, initially circular, initially at mI-m2-M 3-- m. 4 

conjunction. The remaining free parameters are Z 
2' 

EV EV Cý233 Cý34 

Ct24ý a23, a34, so is not independent). Fixing values of Z2'E 3' EV 

the initial values of a23 and a34 were varied and the resulting systems 

studied for hierarchical instability. In order to find how stability 

lifetime varies with (X23 and a34, it is necessary to fit either a two- 

dimensional surface or a one-dimensional curve where one Of CL23 or a34 

is fixed and the other varied. 

The studies of Milani and Nobili, and Walker and Roy, both assume 

that the systems in question can be broken down into three-body sub- 

systems. How meaningful this approach is will depend on the system 

chosen and whether the perturbations within the three-body subsystems are 

much greater than those perturbations imposed by external masses. For 

example, it is not especially meaningful to consider the Sun-Neptune- 

Pluto system as being isolated since the perturbations on Pluto's orbit 
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by Jupiter, Saturn and Uranus are comparable with the perturbation by 

Neptune (Table 6.1). In this case, we should include All five planets 

and the Sun in any study of Pluto's orbit. 

8.6 The Search for Syzygies 

In Chapter 7, an equation was derived which gives the Average 

period of occurrence of near-syzygies for p bodies in unperturbed 

circular orbits about a fixed centre, (Equation 7.10 ). With the above 

assumptions, this equation can be applied to the planets of -the Solar 

System in orbit about the (fixed) Sun or satellites in orbit about a 

planet. The actual numbers of near-syzygies undergone by the system 

can be compared with the theory. Any significant differences may 

indicate a commensurability in mean motions. A commensurable system 

may also manifest itself by showing a preference for particular types 

of syzygy, (eg. all planets at conjunction). 

In a similar way, near-syzygies of bodies and apses can be 

investigated to search for resonant critical arguments. This assumes 

that any eccentricities are small enough to consider the mean motions 

as constant. It should also be possible to discover critical arguments 

involving the longitude of the ascending node, by considering the node 

as a "body". This assumes that the inclination is near enough to 00 

or 180 0 for a syzygy to be meaningful. Mirror configurations can be 

observed by watching for near-syzygies of both body and apse for each 

planet of interest. 

A study using this technique with a numerical integrator, was 

mentioned at the end of Section 7.7, and is now discussed more fully. 

It is applicable to the planets of the Solar System as well as existing 
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satellite systems. Such a study is particularly relevarit at this 

time due to the more accurate values of the masses and positions of, 

the outer planets and satellites being relayed by the Voyager probes. 

Consider a hierarchical system of p small bodies orbiting a much larger 

body. A numerical procedure integrates the equations of motion as 

accurately as possible using a large step size. A, -simpler. method is used 

to interpolate beti4een. steps. Fcr example, the orrery described in Section 

7.3 could be used. Alternatively, we could use a Keplerian ellipse, 

updated every step. This would be more accurate but slower. Using 

the interpolator with small steps, near-syzygies involving any or all 

bodies, apses and nodes can be counted. ýhese may then be compared 

with the numbers expected from Equation (7.10 

As an example consider a numerical integration for the Sun and the 

5 five outer planets. There are 3 10 distinct subsystems of three 

planets, 
55 distinct subsystems of four planets and 1 system of 4 

5 planets. There are therefore a total of 16 subsystems of three or more 

planets that may be s. tudied for commensurabilities at the same time, 

by this technique. The same 16 subsystems still apply if we wish to 

investigate the occurrence of mirror configurations. However we must 

count syzygies of planets and apses which means the number of "bodies" 

is doubled compared to the previous study. 

If we wish to study all possible critical arguments involving 

three or more apses and planets, the number of subsystems is 

10 10 
E 968 systems. 

i=3 

It becomes quite a daunting task to keep a track of all possible 

subsystems. However many can be immediately ruled out for a number of 



280 

8.6 

reasons. The Apses often-move so slowly between steps that they can 

be considered as constant and therefore the near-syzygy condition need 

only be. considered once per step. Secondly, any system of four -bodies 

will not be at near-syzygy if a previous subsystem of three bodies was 

also not at near-syzygy. Thirdly, we may rule out some systems for 

not being resonant on physical grounds, eg. a resonance involving the 

apses of Neptune and Mercury is unlikely. 

It is doubtful in this example that any one would wish to study all 

resonances of three and more"bodies"which involve planets, apses and 

nodes, the total number being 32647! 

When investigating a resonant system, the biggest difference 

between observed and expected syzygy counts will occur when the pres- 

scribed syzygy tolerance 0 is equal to twice the amplitude of oscillation 

of the critical argument. A priori, we do not know what this amplitude 

is. It is therefore advisable to search for syzygies at more than one 

00 tolerance, say 0=5 and 20 . We may then "tune into" any promising 

system by altering the value of 0. 

This method will not give as detailed information on a resonant 

system as a general perturbation theory would. It can however be used 

to investigate many systems simultaneously and draw attention to possible 

resonances that could then be analysed using more rigorous methods. 

8.7 Final Remarks 

This thesis has been primarily concerned with the processing of 

data which arises from numerical simulations of hierarchical dynamical 

systems. Using the methods described here, the expected behaviour of 

individual systems can be predicted in advance through estimates of 
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either the stability lifetime or the rate of occurrence of syzygies, 

In this way, unusual systems can be highlighted', whose behaviour is 

noticeably different from that predicted. 

These statistical methods have been aýplied to studies which 

involve varying the fewest parameters possible, but still give useful 

physical results. -This chapter has shown that many other studies , using 

different assumptions and initial conditions are possible. At present, 

many of them would take years to obtain the necessary data. 'If however 

computers continue to improve in both speed and accuracy, these studies 

should prove less daunting in years to come. At that point, the factor 

which decides how long the study takes will not be the speed of the 

numerical integration, but rather the efficiency of the data processing. 



APPENDIX A 

. -STATISTICAL TABLES 

Table-1 - Areas Under the Standard-Normal Curve 

Table 2- Percentile Values for Student's t Distribution 

Table 3- Percentile Values for the Chi-Square Distribution 

Table 4- 95% Points of Skewness-and Kurtosis---- 

(Tables 1-3 are-reproduced from "Mathematical Handbook of 

Formulas and Tables" by M. R. Spiegel) 

(Table 4 was computed by A. L. Brooks at the Department of 

Astronomy, Glasgow University). 
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TABLE 
AREAS UNDER THE 

STANDARD NORMAL CURVE 
from -- to x I. 

erf (x) =1 e'-e/2 dt 
V2-ir 

f-'-c 

0.0 
0.1 
0.2 
0.3 
0.4 

0.6 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
3.3 
3.4 

3.5 
3.6 
3.7 
3.8 
3.9 

0 

. 5000 

. 5399 

. 5793 

. 6179 

. 6554 

. 6915 

. 7258 

. 7580 

. 7881 

. 8159 

. 8413 

. 8643 

. 8849 

. 9032 

. 9192 

. 9332 

. 9452 

. 9554 

. 9641 

. 9713 

. 9772 

. 9821 

. 9861 

. 9893 

. 9918 

. 9938 

. 9953 

. 9965 

. 9974 

. 9981 

. 9987 

. 9990 

. 9993 

. 9995 

. 9997 

. 9998 

. 9998 

. 9999 

. 9999 
1.0000 

1 

. 6040 

. 5439 

. 5832 

. 6217 

. 6591 

. 6950 

. 7291 

. 7612 

. 7910 

. 8186 

. 843S 

. 8665 

. 8869 

. 9049 

. 9207 

. 9345 

. 9463 

. 9564 

. 9649 

. 9719 

. 9778 

. 9826 

. 9864 

. 9896 

. 9920 

. 9940 

. 9955 

. 9966 

. 9975 

. 9982 

. 9987 

. 9991 

. 9993 

. 9995 

. 9997 

. 9998 

. 9998 

. 9999 

. 9999 
1.0000 

2 

. 5080 

. 5479 

. 6871 

. 6255 

. 6628 

. 6985 

. 7324 

. 7642 

. 7939 

. 8212 

. 8461 

. 8686 

. 8888 

. 9066 

. 9222 

. 9357 

. 9474 

. 9573 

. 9656 

. 9726 

. 9783 

. 9830 

. 9868 

. 9898 

. 9922 

. 9941 

. 9956 

. 9967 

. 9976 

. 9982 

. 9987 

. 9991 

. 9994 

. 9995 

. 9997 

. 9998 

. 9999 

. 9999 

. 9999 
1.0000 

3 4 5 

. 5120 . 5160 . 5199 

. 5517 . 5557 . 5596 

. 5910 . . 5948 . 5997 

. 6293 . 6331 . 6368 

. 6664 . 6700 . 6736 

. 7019 . 7054 . 7088 

. 7357 . 7389 . 7422 

. 7673 . 7704 . 7734 

. 7967 
.. 

7996 . 8023 

. 8238 . 8264 . 8289 

. 8485 . 8509 . 8531 

. 8708 . 8729 . 8749 

. 8907 . 8925 . 8944 

. 9082 . 9099 . 9115 

. 9236 . 9251 . 9265 

. 9370- . 9382 . 9394 

. 9484 . 9495 . 9505 

. 9582 . 9591 . 9599 

. 9664-- . 9671 . 9G78 

. 
473Z 

. 9788': . 9744- 

. 9188 . 9793 . 9798 

. 9834 . 9839 . 9842- 

. 9871 . 9875 . 9878 

. 9901 . 9904 . 9906 

. 9925 . 9927 . 9929 

. 9943 . 9945 . 9946 

. 9957 . 9959 . 9960 

. 9968 . 9969 . 9970 

. 9977 . 9977 . 9978 

. 9983 . 9984 . 9984 

. 9989 . 9988 . 9989 

. 9991 . 9992 . 9992 

. 9994 . 9994 . 9994 

. 9996 . 9996 . 9996 

. 9997 . 9997 . 9997 

. 9998 . 9998 . 9998 

. 9999 . 9999 . 9999 

. 9999 . 9999 . 9999 

. 9999 . 9999 . 9999 
1.0000 1.0000 1.0000 

6 7 8 

. 5239 . 6279 . 5319 

. 563G . 5675 . 5714 

. 6026 . 6064 . 6103 

. 6406 . 6443 . 6480 

. 6772 . 6808 . 6844 

. 7123 . 7157 . 7190 

. 7454 . 7486 . 7618 

. 7764 . 7794 . 7823 

. 8051 . 8078 . 8106 

. 8315 . 8340 . 8365 

. 8554 . 8577 . 8599 

. 8770 . 8790 . 8810 

. 8962 . 8980 . 8997 

. 9131 . 9147 . 9162 

. 9279 . 9292 . 9306 

. 9406 . 9418 . 9429 

. 9515 . 9525 . 9535 

. 9608 . 9616 . 9625 

. 9686 . 9693 . 9699 

. 9760't. . 975& 1 . 9761 

. 9803 . 9808 . 9812 

. 9846 . 9850 . 9854 

. 9881 . 9884 . 9887 

-. 9909 . 9911 . 9913 

. 9931 . 9932 . 9934 

. 9949 . 9949 . 9951 

. 9961 . 9962 . 9963 

. 9971 . 9972 . 9973 

. 9979 . 9979 . 9980 

. 9985 . 9985 . 9986 

. 9989 . 9989 . 9990 

. 9992 . 9992 . 9993 

. 9994 . 9995 . 9995 

. 9996 . 9996 . 9996 

. 9997 . 9997 . 9997 

. 9998 . 9998 . 9998 

. 9999 . 9999 . 9999 

. 9999 . 9999 . 9999 

. 9999 M99 . 9999 
1.0000 1.0000 1.0000 

9 

. 6359 

. 5754 

. 6141 

. 6517 

. 6879 

. 7224 

. 7549 

. 7852 

. 8133 

. 8389 

. 8621 

. 8930 

. 9015 

. 9177 

. 9319 

. 9441 

. 9545 

. 9633 

. 9706 

. 9767 

. 9817 

. 9857 

. 9890 

. 9916 

. 9936 

. 9952 

. 9964 

. 9974 

. 9981 

. 9986 

. 9990 

. 9993 

. 9995 

. 9997 

. 9998 

. 9998 

. 9999 

. 9999 

. 9999 
1.0000 
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TABLE 

2 
PERCENYILE VALUES (tv) 1101 
STUDENT'S t DISTRIBUTION 

with n degrees of freedom 
(shaded area = p) 

n t. 995 t. 99 t. 975 t. 95 t. 90 t. 80 t. 73 t. 70 t. 60 t. 55 

1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 . 727 . 325 . 168 
2 9.92 6.96 4.30 2.92 1.89 1.061 . 816 . 617 . 289 . 142 
3 6.84 4.64 3.18 2.35 1.64 . 978 . 765 . 684 . 277 . 137 
4 4.60 3.75 2.78 2.13 1.63 . 941 . 741 . 569 . 271 . 134 

5' 4.03 3.36 2.57 2.02 1.48 . 920 . 727 . 659 . 267 . 132 
6 3.71 3.14 2.45 1.94 1.44 . 906 . 718 . 553 . 265 . 131 
7 3.60 3.00 2.36 1.90 1.42 . 896 . 711 . 649 . 263 . 130 
8 3.36 2.90 2.31 1.86 1.40 . 889 . 706 . 646 . 262- . 130 
9 3.25 2.82 2.26 1.83 1.39 . 983 . 703 . 643 . 261 . 129 

10 3.17 2.76 2.23 1.81 1.37 . 879 . 700 . 542 . 260 . 129 
11 3.11 2.72 2.20 1.80 1.36 . 876 . 697 . 640 . 260 . 129 
12 3.06 2.68 2.18 1.78 1.36 . 873 . 695 . 639 . 259 . 128 
13 3.01 2.65 2.16 1.77 1.35 . 870 . 694 . 638 . 259 . 128 
14 2.98 2.62 2.14 1.76 1.34 . 868 . 692 . 537 . 268-- . 128 

15 2.95 2.60 2.13 . 1.75 1.34 . 866 . 691 . 536 . 258 - . 128 
16 2.92 2.58 2.12 R. 75' 1.34 . 865 . 690'. . 535. -. - . 258' . 128 
17 2.90 2.57 2.11 -1.74-- 1.33-- . 863 . 689 . 534 . 257 . 128 
18 2.88 2.55 2.10 1.73 1.33 . 862 -. 688 . 534 . 257 . 127 
19 2.86 2.54 2.09 1.73 1.33 . 861 . 698 . 533 . 257 . 127 

20 2.84 2.53 2.09 1.72 1.32 . 860 . 687 . 533 . 257 . 127 
21 2.83 2.52 2.08 1.72 1.32 . 859 . 686 . 532 . 257 . 127 
22 2.82 2.51 2.07 1.72 1.32 . 858 . 686 . 532 . 256 . 127 
23 2.81 2.50 2.07 1.71 1.32 . 858 . 685 . 532 . 256 . 127 
24 2.80 2.49 2.06 1.71 1.32 . 857 . 685 . 531 . 256 . 127 

25 2.79 2.48 2.06 1.71 1.32 . 856 . 684 . 531 . 256 . 127 
26 2.78 2.48 2.06 1.71 1.32 . 856 . 684 . 531 . 256 . 127 
27 2.77 2.47 2.05 1.70 1.31 . 855 . 684 . 531 . 256 . 127 
28 2.76 2.47 2.05 1.70 1.31 . 855 . 683 . 630 . 256 . 127 
29 2.76 2.46 2.04 1.70 1.31 . 854 . 683 . 630 . 256 . 127 

30 2.75 2.46 2.04 1.70 1.31 . 854 . 683 . 530 . 256 . 127 
40 2.70 2.42 2.02 1.68 1.30 . 851 . 681 . 529 . 255 . 126 
60 2.66 2.39- 2.00 1.67 1.30 . 848 . 679 . 527 . 254 . 126 

120 2.62 2.36 1.98 1.66 1.29 . 845 . 677 - . 626 . 254 . 126 

co 2.68 2.33 1.96 1.645 1.28 . 842 . 674 . 524 . 253 . 126 
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TABLE 

3 
PERCEN: rILE VALUES (X2) FOR 

THE -CHI. SQUARE DISTRIBUTION 
withn degrees of -freedom 

(shaded area = P) 

x2 p 

n ýggs 2 X. 99 
2 

X. 945 
2 

X. 95 
2 X. 90 

2 X. 75 
2 

X. 50 
2. 

X. 25 
2 X. 10 

2 
X. os 

2 
X. 025 

2 
X. 01 

2 
X. 005 

1 7.88 6.63 5.02 3.84 2.71 1.32 . 455 . 102 . 0158 . 0039 . 0010 . 0002 0000 
2 10.6 9-21 7.38 5.99 4.61 2.77 1.39 . 575 . 211 . 103 . 0506 . 0201 . 0100 
3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 . 684 . 352 . 216 . 115 . 072 
4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 . 711 . 484 . 297 . 207 

6 16.7 15.1 12.8 11.1 9.24 6.63 4.35 2.67 1.61 1.15 . 831 . 554 . 412 
6 18.5 16.8 14.4 12.6 10.6 7.84 5.35 3.45 2.20 1.64 1.24 . 872 . 676 
7 20.3 18.5 16.0 14.1 12.0 9.04 6.35 4.25 2.83 2.17 1.69 1.24 . 98§ 
8 22.0 20.1 17.5 15.5 13.4 10.2 7.34 6.07 3.49 2.73 2.18 1.65 1.34 
9 23.6 21.7 19.0 16.9 14.7 11.4- 8.34 5.90 4.17 3.33 2.70 2.09 1.73 

10 25.2 23.2 20.5 18.3 16.0 12.5 9.34 6.74 4.87 3.94 3.25 2256 2.16 
11 26.8 24.7 21.9 19.7 17.3 13.7 10.3 7.68 5.58 4.57 3.82 3.05 2.60 
12 28.3 26.2 23.3 21.0 18.5 14.8 11.3 8.44 6.30 5.23 4.40 3.57 3.07 
13 29.8 27.7 24.7 22.4 19.8 16.0 12.3 9.30 7.04 5.89 5.01 4.11 3.57 
14 31.3 29.1 26.1 23.7 21.1 17.1 13.3 10.2 7.79 6.57 5.63- 4.66 4.07 

15 32.8 30.6 27.5 25.0 22.3 18.2 14.3 11.0 S. 65 7.26 6.26 5.23 4.60 
16 34.3 32.0 28.8 26.3 23.5-- 19A 15.3 11.9 9.31 . 7.96 6.91 5.81 5.14 
17 35.7 33.4 30.2 27.6 24.8 20.5 16.3 12.8 10.1 8.67 7.56 6.41 5.70 
18 37.2 34.8 31.5 28.9 26.0- 21.6 17.3 13.7 10.9 9.39 8.23 7.01 6.26 
19 38.6 36.2 32.9 30.1 g7.2; '*, -22.7 18.3 14.6 11.1 10.1 8.91- 7.63 6.84- 

20 40.0 37.6 34.2 31.4 28.4 23.8 19.3 15.5. 12.4 10.9 
. 

9.59 8.26 7.43. 
21 41.4 38.9 35.5 32.7 29.6 24.9 20.3 16.3 13.2 11.6 10.3 8.90 8.03 
22 42.8 40.3 36.8 33.9 30.8 26.0 21.3 17.2 14.0 12.3 11.0 9.54 8.64 
23 44.2 41.6 38.1 35.2 32.0 27.1 22.3 18.1 14.8 13.1 11.7 10.2 9.26 
24 45.6 43.0 39.4 36.4 33.2 28.2 23.3 19.0 15.7 13.8 12.4 10.9 9.89 

25 46.9 44.3 40.6 37.7 34.4 29.3 24.3 19.9 16.5 14.6 13.1 11.5 10.5 
26 48.3 45: 6 41.9 38.9 35.6 30.4 25.3 20.8 17.3 15.4 13.8 12.2 11.2 
27 49.6 47.0 43.2 40.1 36.7 31.5 26.3 21.7 18.1 16.2 14.6 12.9 11.8 
28 51.0 48.3 44.5 41.3 37.9 32.6 27.3 22.7 18.9 16.9 15.3 13.6 12.5 
29 52.3 -49.6 45.7 42.6 39.1 33.7 28.3 23.6 19.8 17.7 16.0 14.3 13.1 

30 53.7 50.9 47.0 43.8 40.3 34.8 29.3 24.5 20.6 18.5 16.8 15.0 13.8 
40 66.8 63.7 59.3 55.8 51.8 45.6 39.3 33.7 29.1 26.5 24.4 22.2 20.7 
60 79.5 76.2 71.4 67.5 63.2 56.3 49.3 42.9 37.7 34.8 32.4 29.7 28.0 
60 92.0 88.4 83.3 79.1 74.4 67.0 59.3 52.3 46.5 43.2 40.5 37.5 35.5 

70 104.2 100.4 95.0 90.5 85.5 77.6 69.3 61.7 55.3 51.7 48.8 45.4 43.3 
80 116.3 112.3 106.6 101.9 96.6 88.1 79.3 71.1 64.3 60.4 57.2 63.5 51.2 
90 128.3 124.1 118.1 113.1 107.6 98.6 89.3 80.6 73.3 69.1 65.6 61.8 59.2 

100 140.2 135.8 129.6 124.3 118.5 109.1 99.3 90.1 82.4 77.9 74.2 70.1 67.3 
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Table 4: Simulated 95% points of skewness. and kurtosis for the 

normal distribution. 

SKEWNESS ....... VITPTrlc: TC 

Number 
of 
points 

Lower 
point.. ' 

Standardl 
'.. 'error'. ' 

Upper 
point . 

Standard 
*error. '.. 

Lower 
point .. 

Standard 

.. error .. 

Upper Standard 
point.. error 

3 -0.7047 0.0001 0.70ýO 0.0001 1.5000 0.0000 1.5000 0.0000 
4 -1.0687 0.0018 1.0685 0.0022 1.0667 0.0014 2.2996 0.0008 
5 -1.2076 0.0041 1.2130 0.0035 1.2437 0.0011 3.0081 0.0030 

6 -1.2390 0.0042 1.2357 0.0056 1.2906 0.0030 3.5173 0.0064 
7 -1.2323 0.0056 1.2297 0.0065 1.3279 0.0024 3.8673 0.0093 
8 -1.2034 0.0064 1.2080 0.0074 1.3935 0.0020 4.0985 0.0098 
9 -1.1868 0.0074 1.1836 0.0060 1.4397 0.0028 4.2820 0.0141 

10 -1.1652 0.0070 1.1547 0.0060 1.4795 0.0028 4.4121 0.0158 

11 -1.1320 0.0063 1.1360 0.0067 1.5134 0.0026 4.5165 0.0168 

. 
12 -1.0994 0.0061 1.1145 0.0062 1.5463 0.0025 4.5457 0.0203 
13 -1.0965 0.0046 1.0802 0.0059 1.5806 0.0024 4.6172 0.0196 
14 -1.0585 0.0043 1.0561 0.0062 1.6044 0.0023 4.6200 0.0137 
15 -1.0354 0.0064 1.0341 0.0061 1.6348 0.0023 4.6140 0.0190 

16 -1.0238 0.0061 1.0176 0.0055 1.6615 0.0027 4.6494 0.0113 
17 -1.0609 0.0061 0.9969 0.0068 1.6767 0.0029 4.6473 0.0166 
18 -0.9684 0.0047 0.9747 0.0049 1.7003 0.0024 4.6374 0.0161 
19 -0.9595 0.0048 -0.94-98 ----D. OD59 '1. -7249 0.0028 4.6451 0.0190 
20 -0.9352 0.0055 0.9291 0.0049 1.7472 0.0028 4.6280 0.0143 

21 -0.9174 0.0054 0.9217 0.0054 1.7540 0.0025 4.6258 0.0150 
22 -0.9022 0.0053 0.9114 0.0049 1.7764 0.0024 4.6355 0.0159 
23 -0.8898 0.0053 0.8991 '0.0041 1.7895 0.6030 4.6053 0.0166 
24 -0.8719 0.0035 0.8691 0.0045 1.8053 - 0.0031 4.6122 0.0145 
25 -0.8694 0.0042 0.8577 0.0049 1.8267 0.0027 4.5972 0.0145 

26 -0.8480 0.0047 0.8452 0.0043 1.8378 0.0025 4.6026 0.0139 
27 -0.8382 0.0044 0.8395 0.0046 1.8515 0.0029 4.5982 0.0150 
28 -0.8203 0.0046 0.8284 0.0045 1.8605 0.0028 4.5817 0.0153 
29 -0.8108 0.0040 0.8089 0.0053 1.8749 0.0025 4.5481 0.0170 
3o -0.80if 0.0047 0.7970 0.0041 1.8896 0.0029 4.5591 0.0158 

40 -0.7057 0.0040 0.7079 0.0047' 1.9863 0.0026 4.4324 0.0121 

50 -0.6529 0.0043 0.6438 0.0039 2.0642 0.0025 4.3569 0.0122 

60 -0.5946 0.0034 0.5949 0.0029 2.1160 0.0019 4.2440 0.0111 

70 -0.5528 0.0031 0.5527 0.0030 2.1684 0.0028 4.1839 0.0100 

80 -0.5223 0.0033 0.5208 0.0025 2.2078 0.0025 4.1358 0.0099 

90 -0 4913 0.0020 0 4896 0.0026 2.2404. 0 0022 4 0789 0 0102 

100 -0.4671 0.0022 0.4658 0.0022 2.2664 0.0021 4.0305 0.0105 

110 -0.4462 0.0023 0.4477 0.0019 2.2948 0.0020 3.9792 0.0076 

120 -0.4313 0.0022 0.4310 0.0026 2.3205 0.0021 3.9442 0.0083 
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FOR 
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Chapter 3 wag. concerhed*with deriving-analytical criteria for the 

hierarchical pres6rvation. of three-body systems,. - 'The'hierarchical 

arrangement of the bodies'. may be described'by two binary orbits (m 
, m2 

and (m 
1+m 2' 

63), where ý7ithout loss of generality it is assumed that 

m2<mV The mass ratios'P, P3 are defined as 

m2 

m+m2 

113 
m+m2 

For given P, p3 
-' 

there exists a critical value for the ratio of semi- 

major axes of the binary orbits, denoted by aC For values of this 

ratio a which are less than ac, the hierarchy is guaranteed to be 

preserved for all time. 

The variables f and g are given as 

f++ VV3 

r13 r. 3 

2 
11(1-11) + ('-P)113 r 13 + PP3 r23 

It is found that 

f2g = (1-11 .) 2V, 2 .±2 (1- 11) V2 a 
32" 

113(1*113)cýc 11 3 (1+113 
c 

+3 (3) 1+113) + 113 

2(1- )2ti2j' 
k 

11 P 113(1+113) + (1-Olivi ct-l- 
cc 

when r13 ý-- 1+x., r23 =x with x given by 

X5 + (3-11)X4 + . 
0-2ý)X3 - (11t3113 )X2 

-(211+3P3)x - (11+113) 5: ý 0 
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corresponding to the collinear Eulerian configuration mm-m 12 3* 

In the second and fifth terms of Equation'(3)', the "+". and "-" denote 

direct and retrograde motion respectively- 

Therefore Equations (1) and (2) become 

(1-10P lip 
f= 11(1-11) +3+3 (5) 

1+x x 

+ (1-II)IJ 
3 

(1+X)2 +P'13 X2 

By eliminating x, f, g from Equations (3), (4), (5), (6) we obtain 

a as a fu nction of V, v 3' 

The empirical stability parameters are 

C23 , (I-ll)a2 

C32 113 a3 
(7) 

0 

Figures 3.6 and 3.7 show the transformation of a rectangular grid of 

- P'11 3) points onto the (E: 23 
s E32) space-when a=a 

c 

Clearly there are various asy mptoti. c limits- pres P--n't-- -under -this 

transformation which are examined in greater detail in this appendix. 

p=1 /2 113 -ý' 

An example of such a system would be a binary star system with 

equal masses and a planet orbiting outside this binary. is set at 

its maximum value and tends to its minimum. In the limit we 113 

are dealing with the Copenhagen problem. The limiting value of x is 

0.698, Obtained by solving numerically (from'Equation (4)), the following 

p6lynomial. 
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554 
X2 x x+yx+ 2x 22 

Substituting for P in Equations (5) and (6), 

f+A 42 

''P3 B 
(8) 

42 

wbere 

1+1 
+xx 

(1 + X)2 + X2 

From Equations(8) 

11 p2 3 
213 (2A+B) + -: 

3 (A2+2AB) + 
113 

A2B (11) fg -4 + '5 -2 16 8 

expressed as a polynomial in P 3* Equation (3), on substitution for 

and rearranging terms, becomes 

P p2 
213 (1 + 4a )+3 (a +4 g -4 + -4 C 16 c CL 

C (12) 

+ 113 
3 -1 

3+P 3) -g- (+03ac 
C ýý 

Equating Equations (11) and (12), and multiplying both sides by 16/v 31 

(A +. 
ý )+ 11 (A2+2AB) + 112.2A2B 233 

4' )2 

+ 
4113 

+ 16,12 ± 2(--- (1 +4 (13) + Ctc + PPc a3a P3 ac 
cc 

This expression is exact. 

It is convenient.. to*express ac as a Taylor series in 11V since 

11 3 0. ' We Oroceed by setting a. 
c equal to the leading term in the series, 

cb where bEZ, c EIR. P3 '- 
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To maintain the hierarchy, & is constrained, to lie-between 0 and c 

1/(l-v) 2. If b<0, ýi 
c 

tends. to or 'Thus we suppose 

b=0, c>0, i. e. -ac = c, Yp 
3. 

'Equating the leading terms in 

Equations (13), we theref6re-obtain 

B2 A+24+C 

By evaluating A and B at x=0.698, we obtain 

3 
c 

Y2 
3.46 cý 

Direct Case 

k Equation (15) is a cubic. polynomial in-c 

3e 
(c . 7)3 - 3.46 c+20 

There are three real solutions which yield the values 

c=4.412, 
_2.070,0.438. 

of these, only c=0.438 is meaningful. This implies that (x 0.438 
C 

as v -)-0 for direct systems with V=0.5. Hence E 23 = 012/4 tends to 3c 

0.0480. This is verified on Figure 3.6 where log 
10 F23-)_1.319 as 

p -* 0.5 and V3 is small. 

(ii) Retrograde Case 

From Equation (1-6), c=3.46 + 2/c 
12- 

> 3.46 Hence there is no 

physically meaningful solution-for aC with a constant leading term. 

Consider now a leading term in the Taylor Series with b=1, 

i. e. a=c+ 0(pz). Ve substitute into Equation (13) and neglect 
c33 

ternsof order P3 and higher to obtain 

B A+ -f + 2'('+ , 
P3) (16) 

c (cp 
3 
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As P 4-0, the right hand side. of Equation (16) tends. to infinity while 3 

the left hand side iemains-finite. H&nce-the leading terih cannot have b 

Repeating the above-procedure with b 2, i. e. ctc CV2 + O(P3) 33 

we obtain from Equation-M) 

4 
. 2(ifli A+3 

24 +0(113) 
cP3 

C 

Hence 

.42 0= --ý- + O(P 0 
CP3 3 

c 113. 

which implies that C=4. Hence a= 4P2-+ O(p3) for retrograde systems, c33 
when ji-- 0.53 p3 -)- 0. 

From Equations(7), with p=0.5, 

1 
log C23 = log ý/4 +2 log ac (17) 

log E: 32 ý log V3 +3 log ac0 

2 
cc c 

r%, 4vi 3 imp lies 

log ac = log 4+2 log P3 

Eliminating log ac and 109 P3 from Equations (17)-(19) gives 

109 632ý 
" 109 623 +2 log 4 (20) 
44 

On Figure 3.7 this equation prescribes a straight line with gradient 

7/1, and intercept at = 0.753. 4 log 632 

CC) 

The condition that P3 is very large pertains to the case of planet 

and satellite as, a close binary being perturbed by the Sun. Walker' 
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(1983) derives &c as a series . in 
- 
113- 

k3for 
P3 >> 1. Although he uses 

a different ordering of the masses mm from that of Chapter 3, 
1, m2,. 3' 

the techniques he employs are similar to those described in the previous 

case, involving careful expansion of Equations (3), (4), (5), (6) in 

powers of V3-'ý'3 
'. 

He derives a-s the leading term in his series for ac; 

ac 81 + 0( (21) ? /3 
33ý. 

where K iS obtained from 

I±ýx+ 
2- 

K3p-K=0 (22) 
9 81 2 

(Cos E) ) 

The "+" sign in the second term of Equation (22) refers to direct motion 

and the "-" sign refers to retrograde motion. 
_ 

P2 (x) = (3x2-1)/2. 

Walker uses the exact expression for the energy of the three-body 

system. 0 is the difference in longitudes between the bodies in their 

orbits. However, in Chapter 3, the energy wasapproximated by the sum 

of the energies of the (ml, m 2) and 
. 

((m 
I- 

+M 2), m3 ) systems. In this case 

the third term in Equation (22), vanishes. -and-we -are -left to solve-w- 

2 
1ýKK0 (23) 

From Equation (21), to a first approximation, 

K= (81 IJ3 ) 
Y3 

C, 
c 

= (81 632 ) 
V3 

Therefore, as P3 -ý' co , E32 tends to an asymptotic limit determined by 

1ý1 ý'3 
2 E: 32 - 81 C32 --4 0 (24) 

Equation (24) is a cubic equation in 63, 
ý6 

When solved it yields 
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3'. 02 X10- 
2 

F-32 

7.10 x 10- 3 

for*direct motion 

for retrograde motion. 

This result describes the. horizontal asymptOtesý for loglo C32 "ý -. 1.52 

and -2.15 on Figures 3.6 and 3.7 respectively. These numerical results 

agree with Walker's analytical results. 



APPENDIX C 

NUMERICAL PROCEDURE FOR ESTIMATING 

THE PARAMETERS OF A GAMMA DISTRIBUTION 

FROIJ A PRESCRIBED DATASET AND FOR- 

SOLVING THE ASSOCIATED CUMULATIVE 

DISTRIBUTION FUNCTION 
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With reference to Section 5.5, we have obtained from a dataset 

(x, t) a subset of n points (x 
ilti 

) where 1xi - x*1 A for some 

values of x* and A It is proposed to fit a probability density 

function (p. d. f. ) to the stability lifetimes (t 
ii=1,..., n) and 

assume that this p. d. f. models the distribution of probable lifetimes 

on the interval (x* - A, x* + A). 

The p, d. f. chosen is the GaTnTna Distribution, namely 

h(t) =abI at t 
b-1 

r(b) 

where a and b are parameters to be determined. r(b) is the 

Gamma Function, 

r(b) =Z 
b-1 

e- Z dz p (b > 0) (2) 

For the sample (t 
3. 

), a and b must be estimated. The method that is 

chosen is the method of Maximum Likelihood Estimates. This well known 

theory can be found in detail in many books on statistics (eg. Meyer, 

1978). Essentially the method. is as follows. 

The lifetime T is a random variable with an associated p. d. f., 

h(Ti; a, b) as given in Equation (1) where T1 is a sample lifetime. 

Let Tl, T 21***, Tn be a random sample from T and let t l' t2"**'tn be 

the sample values. We define the likelihood function L as 

n 
L(T,, T T; a, b) = -IT h(T;; a, b) (3) 

2'**" n i=1 I 

(This is merely the joint p. d. f. for a set of independent random 

variables T with the same p. d. f. ). It is assumed that we have measured 

the sample values tl, ... It n, 
but we must still determine a and b. The 
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question that is asked is, "What values of a, b are most likely to have 

produced a sample of values't,,,.. It n 
The definition of the, maximum 

likelihood estimates of a and b are those values that maximise L for 

the given sample. log L will achieve its maximum value-for the same 

values of a, b as will L and in general this is an easier function to 

use. We therefore have to solve the following equations simultaneously. 

a 
7- (log L (tl't2"** 

't n 
; a, b)) 

a 

a 
7 (log L ; a, b)) =0 b 

(tl't2"** 
n 

The application of maximum likelihood estimates to the Gamma 

Distribution is described by Chapman_(1953). Substituting Equation (1) 

into Equation (3) gives 

nb 
L(tll ... t ; a, b) -T-1 a -at b-1 

nr (b )etI 

from which it can be shown that 

n 
log L=b 

-log a- log r(b) - at + (b-1) tL (7) 

where 
n 

nt = t. 

n 
nt LýE log t 

i=l 

On substitution of Equation (7), Equations (4) and (5) become 

ii 
- -t =0 (10) 

a 

rI(b) log a- --- -+t0 (11) 
r Cb7 L 2- 

- 

Thus from Equation (10) 
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b/t 

which when substituted into Equation (11) gives 

ý(b) = log b- rl(b) 
-c-0 (13) 

r 57 

where 

c= log t-tL (14) 

is known. There is no analytical solution to Equation (13) for b. 

Tables are available which give numerically derived values for b, 

given c, (Chapman, 1953). It is however relatively simple to obtain 

a value of b to arbitrary accuracy for any given c, by the following 

method. 

We use the analytical result (Spiegel, 1968) 

r, (b) CO 1 
rY+ k=l 

CO 
+ (b-1) E (15) 

k=l k(b+k-1) 

in Equation (13) to give 

CO 
ý(b) = log b+ (y - c) (b -1) E1- (16) 

k=1 k(b+k-1) 

where y is Euler's constant 0.5772156 .... 
). 

After, a little algebra, it can be seen that the derivative of ý(b) is 

CO 
(b) E (b +k : -1)2 (17) 

k=l 

We are then able to use a Newton-Raphson iterative scheme to solve 

ý(b) =0 where each successive approximation to b is, 

bb 
(b) 

(18) 
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The procedure to find the best estimates of a, b is as follows: - 

From the dataset (t 
I 

), compute 'c from Equations 

(9) and (14). 

(ii) Solve Equation (13) for b by the Newton-Raphson 

*technique using Equations (16), (17) and (18). Obviously 

the infinite series must be truncated at some value of k, 

when the summation is sufficiently accurate. 

(iii) Compute a from Equation (12). 

In this way we have determined the most likely probability 

distribution given the dataset we possess. In order to-make use of 

it, (and test its validity) this p. d. f. should allow us to predict with 

quantitative uncertainty what values further measurements are likely 

to take. Put another way, if we run 100 test systems and note when they 

become unstable how long must we wait before 10,25,50,75 or 90 become 

unstable? 

To answer this question, we must study the cumulative distribution 

function (c. d. f. ) 

T 
HM = 

fo 
h(t) dt (T > 0) 

H(T) gives the probability of a random sample having value t<T. 

In our usage, it gives the probability that a system will become unstable 

within time T. Note that H(O) = 00 H(T) --)-l as T --)- -. 

From Equations (1) and (19), 

H(T; a, b) 
jT.. abe -at t 

b-1 (T ý 0) (20)_ 
0 r7-b-7 
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Let u= at and U aT. 'Then Equation (20) becomes 

u b-1 H(b, U) =-eu du (21) 
F(b) 0 

For a chosen probability"H(b, U), Equation (21) must be solved for U. 

Define r(b, U) by 

r(b, U) = r(b) (1 - H(b, -U) ) (22) 

We make use of the analytical result, (Abramowitz and Stegun, 1972), 

r(b, U) = e-U Ub C(b, U) (23) 

-where C(b, u) is a continued fraction. 

C(bsu) =1 
(1-b) I (2-b) 2 

U. +-- -T+-- U-+ T+-- U- + 
(24) 

r(b) may be approximated by a power series 

co 
r(b+l) =E CF 

1 
b3' (0 <b (25) 

i=O 

making use of the result 

r(b+l) = br(b) (26) 

to reduce b to the required range for Equation (25), if necessary. 

The first few1coefficients ai are given by Abramowitz and Stegun (1972) 

as 

T 0 

cr, -0.5771917 

()'2 0.9882059 

a-3 -0.8970569 

cr4 0.9182069 

(r5 -0.7567041 

0-6 0.4821994 

0-7 -0.1.935278 

0-8 0.0358683 

(27) 
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From Equation (22), 

MOU) -K=0 (28) 

where 

r(b) (1 - H(bpU)) (29) 

is a constant (remember that H(b, U) is chosen). 

Once again we use the Newton-Raphson method, this time to solve 

Equation (28) for U. Note that 

dd 
ý-U r(b, U) =- r(b) - F(b) H(b, U) dU 

[I 

du b-1 
=- äu .eu 

du 

0 

e- 
UU b-1 

Hence the Newton-Raphson iteration uses 

ul =u+ (r(b, U) - K) 

-T b-1 
e JU 

-b i. e. UU (1 + MOW -K eU U (30) 

from Equation (23). 

The procedure' to find U is as follows: - 

M Set H(b, U) equal to a chosen probability level. 

(ii) Calculate r(b) from Equations (25), (26) and (27). 

(iii) Solve Equation (28) for U by the Newton-Raphson technique 

using Equations (24), (29) and (30). The continued fraction 

C(b, U) must be truncated when sufficiently accurate. 

In this way, for any probability, a lifetime T= U/a may be 

calculated such that the corresponding proportion of systems will have 

stability lifetimes less than T. 
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